Sample records for neurotrophic factor treatment

  1. Towards Clinical Application of Neurotrophic Factors to the Auditory Nerve; Assessment of Safety and Efficacy by a Systematic Review of Neurotrophic Treatments in Humans.

    PubMed

    Bezdjian, Aren; Kraaijenga, Véronique J C; Ramekers, Dyan; Versnel, Huib; Thomeer, Hans G X M; Klis, Sjaak F L; Grolman, Wilko

    2016-11-26

    Animal studies have evidenced protection of the auditory nerve by exogenous neurotrophic factors. In order to assess clinical applicability of neurotrophic treatment of the auditory nerve, the safety and efficacy of neurotrophic therapies in various human disorders were systematically reviewed. Outcomes of our literature search included disorder, neurotrophic factor, administration route, therapeutic outcome, and adverse event. From 2103 articles retrieved, 20 randomized controlled trials including 3974 patients were selected. Amyotrophic lateral sclerosis (53%) was the most frequently reported indication for neurotrophic therapy followed by diabetic polyneuropathy (28%). Ciliary neurotrophic factor (50%), nerve growth factor (24%) and insulin-like growth factor (21%) were most often used. Injection site reaction was a frequently occurring adverse event (61%) followed by asthenia (24%) and gastrointestinal disturbances (20%). Eighteen out of 20 trials deemed neurotrophic therapy to be safe, and six out of 17 studies concluded the neurotrophic therapy to be effective. Positive outcomes were generally small or contradicted by other studies. Most non-neurodegenerative diseases treated by targeted deliveries of neurotrophic factors were considered safe and effective. Hence, since local delivery to the cochlea is feasible, translation from animal studies to human trials in treating auditory nerve degeneration seems promising.

  2. Thyroxin treatment protects against white matter injury in the immature brain via brain-derived neurotrophic factor.

    PubMed

    Hung, Pi-Lien; Huang, Chao-Ching; Huang, Hsiu-Mei; Tu, Dom-Gene; Chang, Ying-Chao

    2013-08-01

    Low level of thyroid hormone is a strong independent risk factor for white matter (WM) injury, a major cause of cerebral palsy, in preterm infants. Thyroxin upregulates brain-derived neurotrophic factor during development. We hypothesized that thyroxin protected against preoligodendrocyte apoptosis and WM injury in the immature brain via upregulation of brain-derived neurotrophic factor. Postpartum (P) day-7 male rat pups were exposed to hypoxic ischemia (HI) and intraperitoneally injected with thyroxin (T4; 0.2 mg/kg or 1 mg/kg) or normal saline immediately after HI at P9 and P11. WM damage was analyzed for myelin formation, axonal injury, astrogliosis, and preoligodendrocyte apoptosis. Neurotrophic factor expression was assessed by real-time polymerase chain reaction and immunohistochemistry. Neuromotor functions were measured using open-field locomotion (P11 and P21), inclined plane climbing (P11), and beam walking (P21). Intracerebroventricular injection of TrkB-Fc or systemic administration of 7,8-dihydroxyflavone was performed. On P11, the HI group had significantly lower blood T4 levels than the controls. The HI group showed ventriculomegaly and marked reduction of myelin basic protein immunoreactivities in the WM. T4 (1 mg/kg) treatment after HI markedly attenuated axonal injury, astrocytosis, and microgliosis, and increased preoligodendrocyte survival. In addition, T4 treatment significantly increased myelination and selectively upregulated brain-derived neurotrophic factor expression in the WM, and improved neuromotor deficits after HI. The protective effect of T4 on WM myelination and neuromotor performance after HI was significantly attenuated by TrkB-Fc. Systemic 7,8-dihydroxyflavone treatment ameliorated hypomyelination after HI injury. T4 protects against WM injury at both pathological and functional levels via upregulation of brain-derived neurotrophic factor-TrkB signaling in the immature brain.

  3. Treatment of neurotrophic keratopathy with nicergoline.

    PubMed

    Lee, Young-Chun; Kim, Su-Young

    2015-03-01

    The aim of this study was to determine the effect of nicergoline in patients with neurotrophic keratopathy. This is a prospective, noncomparative interventional study. The study included 27 eyes of 24 patients with neurotrophic keratopathy who were unresponsive to conventional therapy. Patients were treated with 10 mg of oral nicergoline twice daily for at least 2 weeks. Slit-lamp examination, photography, corneal fluorescein dye testing, Cochet-Bonnet corneal sensitivity, and best-corrected visual acuity tests were performed before and after treatment. Tear nerve growth factor levels were measured before and after treatment. In 23 eyes (85%), epithelial defects healed completely between 7 and 30 days of treatment with nicergoline (mean, 15.6 ± 8.0 days). Epithelial defects persisted in 4 eyes (15%). The mean corneal sensitivity before and after treatment with nicergoline was 20.5 ± 8.5 and 30.2 ± 10.8 mm, respectively (P < 0.001). The best-corrected visual acuity (measured in units according to the logarithm of the minimum angle of resolution) was significantly improved from 1.1 ± 0.6 to 0.8 ± 0.6 (P < 0.001). The tear nerve growth factor levels were significantly higher ranging from 3.2 ± 0.3 to 6.2 ± 0.3 pg/mL (P < 0.001). Treatment with nicergoline helps patients with neurotrophic keratopathy in whom conventional treatment has failed.

  4. Neurotrophic factors and corneal nerve regeneration

    PubMed Central

    Sacchetti, Marta; Lambiase, Alessandro

    2017-01-01

    The cornea has unique features that make it a useful model for regenerative medicine studies. It is an avascular, transparent, densely innervated tissue and any pathological changes can be easily detected by slit lamp examination. Corneal sensitivity is provided by the ophthalmic branch of the trigeminal nerve that elicits protective reflexes such as blinking and tearing and exerts trophic support by releasing neuromediators and growth factors. Corneal nerves are easily evaluated for both function and morphology using standard instruments such as corneal esthesiometer and in vivo confocal microscope. All local and systemic conditions that are associated with damage of the trigeminal nerve cause the development of neurotrophic keratitis, a rare degenerative disease. Neurotrophic keratitis is characterized by impairment of corneal sensitivity associated with development of persistent epithelial defects that may progress to corneal ulcer, melting and perforation. Current neurotrophic keratitis treatments aim at supporting corneal healing and preventing progression of corneal damage. Novel compounds able to stimulate corneal nerve recovery are in advanced development stage. Among them, nerve growth factor eye drops showed to be safe and effective in stimulating corneal healing and improving corneal sensitivity in patients with neurotrophic keratitis. Neurotrophic keratitis represents an useful model to evaluate in clinical practice novel neuro-regenerative drugs. PMID:28966630

  5. Neurotrophic factor intervention restores auditory function in deafened animals

    NASA Astrophysics Data System (ADS)

    Shinohara, Takayuki; Bredberg, Göran; Ulfendahl, Mats; Pyykkö, Ilmari; Petri Olivius, N.; Kaksonen, Risto; Lindström, Bo; Altschuler, Richard; Miller, Josef M.

    2002-02-01

    A primary cause of deafness is damage of receptor cells in the inner ear. Clinically, it has been demonstrated that effective functionality can be provided by electrical stimulation of the auditory nerve, thus bypassing damaged receptor cells. However, subsequent to sensory cell loss there is a secondary degeneration of the afferent nerve fibers, resulting in reduced effectiveness of such cochlear prostheses. The effects of neurotrophic factors were tested in a guinea pig cochlear prosthesis model. After chemical deafening to mimic the clinical situation, the neurotrophic factors brain-derived neurotrophic factor and an analogue of ciliary neurotrophic factor were infused directly into the cochlea of the inner ear for 26 days by using an osmotic pump system. An electrode introduced into the cochlea was used to elicit auditory responses just as in patients implanted with cochlear prostheses. Intervention with brain-derived neurotrophic factor and the ciliary neurotrophic factor analogue not only increased the survival of auditory spiral ganglion neurons, but significantly enhanced the functional responsiveness of the auditory system as measured by using electrically evoked auditory brainstem responses. This demonstration that neurotrophin intervention enhances threshold sensitivity within the auditory system will have great clinical importance for the treatment of deaf patients with cochlear prostheses. The findings have direct implications for the enhancement of responsiveness in deafferented peripheral nerves.

  6. NEUROTROPHIC FACTORS IN COMBINATORIAL APPROACHES FOR SPINAL CORD REGENERATION

    PubMed Central

    McCall, Julianne; Weidner, Norbert; Blesch, Armin

    2012-01-01

    Axonal regeneration is inhibited by a plethora of different mechanisms in the adult central nervous system (CNS). While neurotrophic factors have been shown to stimulate axonal growth in numerous animal models of nervous system injury, a lack of suitable growth substrates, an insufficient activation of neuron-intrinsic regenerative programs and extracellular inhibitors of regeneration limit the efficacy of neurotrophic factor delivery for anatomical and functional recovery after spinal cord injury. Thus, growth-stimulating factors will likely have to be combined with other treatment approaches to tap into the full potential of growth factor therapy for axonal regeneration. In addition, the temporal and spatial distribution of growth factors have to be tightly controlled to achieve biologically active concentrations, to allow for the chemotropic guidance of axons and to prevent adverse effects related to the widespread distribution of neurotrophic factors. Here, we will review the rationale for combinatorial treatments in axonal regeneration and summarize some recent progress in promoting axonal regeneration in the injured CNS using such approaches. PMID:22526621

  7. Neurotrophic factors as a therapeutic target for Parkinson's disease.

    PubMed

    Evans, Jonathan R; Barker, Roger A

    2008-04-01

    The search for therapeutic agents that might alter the disease course in Parkinson's disease (PD) is ongoing. One area of particular interest involves neurotrophic factors (NTFs), with those of the glial cell line-derived neurotrophic factor (GDNF) family showing greatest promise. The safety and efficacy of these therapies has recently come into question. Furthermore, many of the key questions pertaining to such therapies, such as the optimal method of delivery, timing of treatment and selection of patients most likely to benefit, remain unanswered. In this review we sought to evaluate the therapeutic potential of NTFs in the treatment of PD. We appraised the evidence provided by both in vitro and in vivo work before proceeding to a critical assessment of the relevant clinical trial data. Relevant literature was identified using a PubMed search of articles published up to October 2007. Search terms included: 'Parkinson's disease', 'Neurotrophic factors', 'BDNF' (Brain-derived neurotrophic factor), 'GDNF' and 'Neurturin'. Original articles were reviewed, and relevant citations from these articles were also appraised. NTF therapy has potential in the treatment of nigrostriatal dysfunction in PD but numerous methodological and safety issues will need to be addressed before this approach can be widely adopted. Furthermore PD is now recognized as being more than a pure motor disorder, and one in which neuronal loss is not just confined to the dopaminergic nigrostriatal system. Non-motor symptomatology in PD is unlikely to benefit from therapies that target only the nigrostriatal system, and this must inform our thinking as to the maximal achievable benefit that NTFs are ever likely to provide.

  8. Optimizing neurotrophic factor combinations for neurite outgrowth

    NASA Astrophysics Data System (ADS)

    Deister, C.; Schmidt, C. E.

    2006-06-01

    Most neurotrophic factors are members of one of three families: the neurotrophins, the glial cell-line derived neurotrophic factor family ligands (GFLs) and the neuropoietic cytokines. Each family activates distinct but overlapping cellular pathways. Several studies have shown additive or synergistic interactions between neurotrophic factors from different families, though generally only a single combination has been studied. Because of possible interactions between the neurotrophic factors, the optimum concentration of a factor in a mixture may differ from the optimum when applied individually. Additionally, the effect of combinations of neurotrophic factors from each of the three families on neurite extension is unclear. This study examines the effects of several combinations of the neurotrophin nerve growth factor (NGF), the GFL glial cell-line derived neurotrophic factor (GDNF) and the neuropoietic cytokine ciliary neurotrophic factor (CNTF) on neurite outgrowth from young rat dorsal root ganglion (DRG) explants. The combination of 50 ng ml-1 NGF and 10 ng ml-1 of each GDNF and CNTF induced the highest level of neurite outgrowth at a 752 ± 53% increase over untreated DRGs and increased the longest neurite length to 2031 ± 97 µm compared to 916 ± 64 µm for untreated DRGs. The optimum concentrations of the three factors applied in combination corresponded to the optimum concentration of each factor when applied individually. These results indicate that the efficacy of future therapies for nerve repair would be enhanced by the controlled release of a combination of neurotrophins, GFLs and neuropoietic cytokines at higher concentrations than used in previous conduit designs.

  9. Brain-Derived Neurotrophic Factor Gene Expression in Pediatric Bipolar Disorder: Effects of Treatment and Clinical Response

    ERIC Educational Resources Information Center

    Pandey, Ghanshyam N.; Rizavi, Hooriyah S.; Dwivedi, Yogesh; Pavuluri, Mani N.

    2008-01-01

    The study determines the gene expression of brain-derived neurotrophic factor (BDNF) in the lymphocytes of subjects with pediatric bipolar disorder (PBD) before and during treatment with mood stabilizers and in drug-free normal control subjects. Results indicate the potential of BDNF levels as a biomarker for PBD and as a treatment predictor and…

  10. Neurotrophic Factors and Maternal Nutrition During Pregnancy.

    PubMed

    Dhobale, M

    2017-01-01

    Maternal nutrition is one of the major determinants of pregnancy outcome. It has been suggested that reduced intakes or lack of specific nutrients during pregnancy influences the length of gestation, proper placental and fetal growth during pregnancy. Maternal nutrition, particularly micronutrients such as folate and vitamin B 12 , and long-chain polyunsaturated fatty acids (LCPUFA) are the major determinants of the one carbon cycle and are suggested to be at the heart of intrauterine programming of diseases in adult life. LCPUFA play a key role in the normal feto-placental development, as well as in the development and functional maturation of the brain and central nervous system and also regulate the levels of neurotrophic factors. These neurotrophic factors are known to regulate the development of the placenta at the materno-fetal interface and act in a paracrine and endocrine manner. Neurotrophic factors like brain-derived neurotrophic factor and nerve growth factor are proteins involved in angiogenesis and potentiate the placental development. This chapter mainly focuses on micronutrients since they play a main physiological role during pregnancy. © 2017 Elsevier Inc. All rights reserved.

  11. Trophic and neurotrophic factors in human pituitary adenomas (Review).

    PubMed

    Spoletini, Marialuisa; Taurone, Samanta; Tombolini, Mario; Minni, Antonio; Altissimi, Giancarlo; Wierzbicki, Venceslao; Giangaspero, Felice; Parnigotto, Pier Paolo; Artico, Marco; Bardella, Lia; Agostinelli, Enzo; Pastore, Francesco Saverio

    2017-10-01

    The pituitary gland is an organ that functionally connects the hypothalamus with the peripheral organs. The pituitary gland is an important regulator of body homeostasis during development, stress, and other processes. Pituitary adenomas are a group of tumors arising from the pituitary gland: they may be subdivided in functional or non-functional, depending on their hormonal activity. Some trophic and neurotrophic factors seem to play a key role in the development and maintenance of the pituitary function and in the regulation of hypothalamo-pituitary-adrenocortical axis activity. Several lines of evidence suggest that trophic and neurotrophic factors may be involved in pituitary function, thus suggesting a possible role of the trophic and neurotrophic factors in the normal development of pituitary gland and in the progression of pituitary adenomas. Additional studies might be necessary to better explain the biological role of these molecules in the development and progression of this type of tumor. In this review, in light of the available literature, data on the following neurotrophic factors are discussed: ciliary neurotrophic factor (CNTF), transforming growth factors β (TGF‑β), glial cell line-derived neurotrophic factor (GDNF), nerve growth factor (NGF), vascular endothelial growth factor (VEGF), vascular endothelial growth inhibitor (VEGI), fibroblast growth factors (FGFs) and epidermal growth factor (EGF) which influence the proliferation and growth of pituitary adenomas.

  12. Clinical application of neurotrophic factors: the potential for primary auditory neuron protection

    PubMed Central

    Gillespie, Lisa N.; Shepherd, Robert K.

    2007-01-01

    Sensorineural hearing loss, as a result of damage to or destruction of the sensory epithelia within the cochlea, is a common cause of deafness. The subsequent degeneration of the neural elements within the inner ear may impinge upon the efficacy of the cochlear implant. Experimental studies have demonstrated that neurotrophic factors can prevent this degeneration in animal models of deafness, and can even provide functional benefits. Neurotrophic factor therapy may, therefore, provide similar protective effects in humans, resulting in improved speech perception outcomes among cochlear implant patients. There are, however, numerous issues pertaining to delivery techniques and treatment regimes which need to be addressed prior to any clinical application. This review considers these issues in view of the potential therapeutic application of neurotrophic factors within the auditory system. PMID:16262651

  13. Evidence that DmMANF is an invertebrate neurotrophic factor supporting dopaminergic neurons

    PubMed Central

    Palgi, Mari; Lindström, Riitta; Peränen, Johan; Piepponen, T. Petteri; Saarma, Mart; Heino, Tapio I.

    2009-01-01

    In vertebrates the development and function of the nervous system is regulated by neurotrophic factors (NTFs). Despite extensive searches no neurotrophic factors have been found in invertebrates. However, cell ablation studies in Drosophila suggest trophic interaction between neurons and glia. Here we report the invertebrate neurotrophic factor in Drosophila, DmMANF, homologous to mammalian MANF and CDNF. DmMANF is expressed in glia and essential for maintenance of dopamine positive neurites and dopamine levels. The abolishment of both maternal and zygotic DmMANF leads to the degeneration of axonal bundles in the embryonic central nervous system and subsequent nonapoptotic cell death. The rescue experiments confirm DmMANF as a functional ortholog of the human MANF gene thus opening the window for comparative studies of this protein family with potential for the treatment of Parkinson's disease. PMID:19164766

  14. Brain-derived neurotrophic factor inhibits glucose intolerance after cerebral ischemia

    PubMed Central

    Shu, Xiaoliang; Zhang, Yongsheng; Xu, Han; Kang, Kai; Cai, Donglian

    2013-01-01

    Brain-derived neurotrophic factor is associated with the insulin signaling pathway and glucose tabolism. We hypothesized that expression of brain-derived neurotrophic factor and its receptor may be involved in glucose intolerance following ischemic stress. To verify this hypothesis, this study aimed to observe the changes in brain-derived neurotrophic factor and tyrosine kinase B receptor expression in glucose metabolism-associated regions following cerebral ischemic stress in mice. At day 1 after middle cerebral artery occlusion, the expression levels of brain-derived neurotrophic factor were significantly decreased in the ischemic cortex, hypothalamus, liver, skeletal muscle, and pancreas. The expression levels of tyrosine kinase B receptor were decreased in the hypothalamus and liver, and increased in the skeletal muscle and pancreas, but remained unchanged in the cortex. Intrahypothalamic administration of brain-derived neurotrophic factor (40 ng) suppressed the decrease in insulin receptor and tyrosine-phosphorylated insulin receptor expression in the liver and skeletal muscle, and inhibited the overexpression of gluconeogenesis-associated phosphoenolpyruvate carboxykinase and glucose-6-phosphatase in the liver of cerebral ischemic mice. However, serum insulin levels remained unchanged. Our experimental findings indicate that brain-derived neurotrophic factor can promote glucose metabolism, reduce gluconeogenesis, and decrease blood glucose levels after cerebral ischemic stress. The low expression of brain-derived neurotrophic factor following cerebral ischemia may be involved in the development of glucose intolerance. PMID:25206547

  15. Role of Neurotrophic Factors in Parkinson's Disease.

    PubMed

    Tome, Diogo; Fonseca, Carla Pais; Campos, Filipa Lopes; Baltazar, Graca

    2017-01-01

    Parkinson's disease is an age-associated progressive neurodegenerative disorder that has gained crescent social and economic impact due to the aging of the western society. All current therapies are symptomatic and fail to reverse or halt the progression of dopaminergic neurons loss. The discovery of the capability of neurotrophic factors to protect these neurons lead numerous research groups to focus their efforts in developing therapies aiming at promoting the control of Parkinson´s disease through the delivery of neurotrophic factors to the brain or by boosting their endogenous levels. Both strategies were successful in inducing protection of dopaminergic neurons and motor recovery in preclinical models of the disease. Contrariwise, very limited success was obtained in clinical studies, where glial cell line-derived neurotrophic factor and neurturin were the neurotrophic factors of choice for Parkinson's disease therapy. These drawbacks motivate the development of novel forms of delivery or the modification of the injected molecules aiming at providing a more stable and effective administration with improved diffusion in the target tissue, and without the immune responses observed in the earliest clinical studies. Although promising results were obtained with some of these new approaches performed in experimental models of the disease, they were not yet tested in human studies. In this review, we present the current knowledge on neurotrophic factors and their role in Parkinson's disease, focusing on the strategies that have been developed to increase their levels in target areas of the brain to achieve protection of dopaminergic neurons and motor behaviour recovery. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. Serum Brain-Derived Neurotrophic Factors in Taiwanese Patients with Drug-Naïve First-Episode Major Depressive Disorder: Effects of Antidepressants.

    PubMed

    Chiou, Yu-Jie; Huang, Tiao-Lai

    2017-03-01

    Brain-derived neurotrophic factors are known to be related to the psychopathology of major depressive disorder. However, studies focusing on drug-naïve first-episode patients are still rare. Over a 6-year period, we examined the serum brain-derived neurotrophic factors levels in patients with first-episode drug-naïve major depressive disorder and compared them with sex-matched healthy controls. We also investigated the relationships between serum brain-derived neurotrophic factors levels, suicidal behavior, and Hamilton Depression Rating Scale scores before and after a 4-week antidepressant treatment. The baseline serum brain-derived neurotrophic factors levels of 71 patients were significantly lower than those of the controls (P=.017), and the Hamilton Depression Rating Scale scores in 71 patients did not correlate with brain-derived neurotrophic factor levels. Brain-derived neurotrophic factor levels were significantly lower in 13 suicidal major depressive disorder patients than in 58 nonsuicidal major depressive disorder patients (P=.038). Among 41 followed-up patients, there was no alteration in serum brain-derived neurotrophic factors levels after treatment with antidepressants (P=.126). In receiver operating characteristic curve analysis of using pretreatment brain-derived neurotrophic factors to estimate the response to treatment, the area under the curve was 0.684. The most suitable cut-off point was 6.1 ng/mL (sensitivity=78.6%, specificity = 53.8%). Our data support the serum brain-derived neurotrophic factor levels in patients with drug-naïve first-episode major depressive disorder were lower than those in the healthy controls, and patients with pretreatment brain-derived neurotrophic factors >6.1 ng/mL were more likely to be responders. Although the relationship of our results to the mechanism of drug action and pathophysiology of depression remains unclear, the measure may have potential use as a predictor of response to treatment. In the future

  17. Delayed histochemical alterations within the neurovascular unit due to transient focal cerebral ischemia and experimental treatment with neurotrophic factors.

    PubMed

    Michalski, Dominik; Pitsch, Roman; Pillai, Deepu R; Mages, Bianca; Aleithe, Susanne; Grosche, Jens; Martens, Henrik; Schlachetzki, Felix; Härtig, Wolfgang

    2017-01-01

    Current stroke therapy is focused on recanalizing strategies, but neuroprotective co-treatments are still lacking. Modern concepts of the ischemia-affected neurovascular unit (NVU) and surrounding penumbra emphasize the complexity during the transition from initial damaging to regenerative processes. While early treatment with neurotrophic factors was shown to result in lesion size reduction and blood-brain barrier (BBB) stabilization, cellular consequences from these treatments are poorly understood. This study explored delayed cellular responses not only to ischemic stroke, but also to an early treatment with neurotrophic factors. Rats underwent 60 minutes of focal cerebral ischemia. Fluorescence labeling was applied to sections from brains perfused 7 days after ischemia. Analyses focused on NVU constituents including the vasculature, astrocytes and microglia in the ischemic striatum, the border zone and the contralateral hemisphere. In addition to histochemical signs of BBB breakdown, a strong up-regulation of collagen IV and microglia activation occurred within the ischemic core with simultaneous degradation of astrocytes and their endfeet. Activated astroglia were mainly depicted at the border zone in terms of a glial scar formation. Early treatment with pigment epithelium-derived factor (PEDF) resulted in an attenuation of the usually up-regulated collagen IV-immunoreactivity. However, glial activation was not influenced by treatment with PEDF or the epidermal growth factor (EGF). In conclusion, these data on ischemia-induced cellular reactions within the NVU might help to develop treatments addressing the transition from injury towards regeneration. Thereby, the integrity of the vasculature in close relation to neighboring structures like astrocytes appears as a promising target.

  18. The Effect of Repeated Electroacupuncture Analgesia on Neurotrophic and Cytokine Factors in Neuropathic Pain Rats

    PubMed Central

    Wang, Junying; Duanmu, Chenlin; Feng, Xiumei; Yan, Yaxia

    2016-01-01

    Chronic pain is a common disability influencing quality of life. Results of previous studies showed that acupuncture has a cumulative analgesic effect, but the relationship with spinal cytokines neurotrophic factors released by astrocytes remains unknown. The present study was designed to observe the effect of electroacupuncture (EA) treatment on spinal cytokines neurotrophic factors in chronic neuropathic pain rats. The chronic neuropathic pain was established by chronic constrictive injury (CCI). EA treatment was applied at Zusanli (ST36) and Yanglingquan (GB34) (both bilateral) once a day, for 30 min. IL-1β mRNA, TNF-α mRNA, and IL-1 mRNA were detected by quantitative real-time PCR, and the proteins of BDNF, NGF, and NT3/4 were detected by Western blot. The expression levels of cytokines such as IL-1β mRNA, TNF-α mRNA, IL-6 mRNA, and neurotrophic factors such as BDNF, NGF, and NT3/4 in the spinal cord were increased significantly after CCI. The astrocytes released more IL-1β and BDNF after CCI. Repeated EA treatment could suppress the elevated expression of IL-1β mRNA, TNFα mRNA, and BDNF, NGF, and NT3/4 but had no effect on IL-6 mRNA. It is suggested that cytokines and neurotrophic factors which may be closely associated with astrocytes participated in the process of EA relieving chronic pain. PMID:27800006

  19. Hyperbaric Oxygen Therapy Alleviates Carbon Monoxide Poisoning-Induced Delayed Memory Impairment by Preserving Brain-Derived Neurotrophic Factor-Dependent Hippocampal Neurogenesis.

    PubMed

    Liu, Wen-Chung; Yang, San-Nan; Wu, Chih-Wei J; Chen, Lee-Wei; Chan, Julie Y H

    2016-01-01

    To test the hypothesis that hyperbaric oxygen therapy ameliorates delayed cognitive impairment after acute carbon monoxide poisoning by promoting neurogenesis through upregulating the brain-derived neurotrophic factor in the hippocampus. Laboratory animal experiments. University/Medical center research laboratory. Adult, male Sprague-Dawley rats. Rats were divided into five groups: (1) non-carbon monoxide-treated control, (2) acute carbon monoxide poisoning, (3) acute carbon monoxide poisoning followed by 7-day hyperbaric oxygen treatment, (4) carbon monoxide + hyperbaric oxygen with additional intracerebroventricular infusion of Fc fragment of tyrosine kinase receptor B protein (TrkB-Fc) chimera, and (5) acute carbon monoxide poisoning followed by intracerebroventricular infusion of brain-derived neurotrophic factor. Acute carbon monoxide poisoning was achieved by exposing the rats to carbon monoxide at 2,500 ppm for 40 minutes, followed by 3,000 ppm for 20 minutes. Hyperbaric oxygen therapy (at 2.5 atmospheres absolute with 100% oxygen for 60 min) was conducted during the first 7 days after carbon monoxide poisoning. Recombinant human TrkB-Fc chimera or brain-derived neurotrophic factor was infused into the lateral ventricle via the implanted osmotic minipump. For labeling of mitotic cells in the hippocampus, bromodeoxyuridine was injected into the peritoneal cavity. Distribution of bromodeoxyuridine and two additional adult neurogenesis markers, Ki-67 and doublecortin, in the hippocampus was evaluated by immunohistochemistry or immunofluorescence staining. Tissue level of brain-derived neurotrophic factor was assessed by enzyme-linked immunosorbent assay. Cognitive behavior was evaluated by the use of eight-arm radial maze. Acute carbon monoxide poisoning significantly suppressed adult hippocampal neurogenesis evident by the reduction in number of bromodeoxyuridine-positive, Ki-67⁺, and doublecortin⁺ cells in the subgranular zone of the dentate gyrus. This

  20. Inhibitory Effect of Memantine on Streptozotocin-Induced Insulin Receptor Dysfunction, Neuroinflammation, Amyloidogenesis, and Neurotrophic Factor Decline in Astrocytes.

    PubMed

    Rajasekar, N; Nath, Chandishwar; Hanif, Kashif; Shukla, Rakesh

    2016-12-01

    Our earlier studies showed that insulin receptor (IR) dysfunction along with neuroinflammation and amyloidogenesis played a major role in streptozotocin (STZ)-induced toxicity in astrocytes. N-methyl-D-aspartate (NMDA) receptor antagonist-memantine shows beneficial effects in Alzheimer's disease (AD) pathology. However, the protective molecular and cellular mechanism of memantine in astrocytes is not properly understood. Therefore, the present study was undertaken to investigate the effect of memantine on insulin receptors, neurotrophic factors, neuroinflammation, and amyloidogenesis in STZ-treated astrocytes. STZ (100 μM) treatment for 24 h in astrocytes resulted significant decrease in brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), and insulin-degrading enzyme (IDE) expression in astrocytes. Treatment with memantine (1-10 μM) improved STZ-induced neurotrophic factor decline (BDNF, GDNF) along with IR dysfunction as evidenced by a significant increase in IR protein expression, phosphorylation of IRS-1, Akt, and GSK-3 α/β in astrocytes. Further, memantine attenuated STZ-induced amyloid precursor protein (APP), β-site APP-cleaving enzyme-1 and amyloid-β 1-42 expression and restored IDE expression in astrocytes. In addition, memantine also displays protective effects against STZ-induced astrocyte activation showed by reduction of inflammatory markers, nuclear factor kappa-B translocation, glial fibrillary acidic protein, cyclooxygenase-2, tumor necrosis factor-α level, and oxidative-nitrostative stress. The results suggest that besides the NMDA receptor antagonisic activity, effect on astroglial IR and neurotrophic factor may also be an important factor in the beneficial effect of memantine in AD pathology. Graphical Abstract Novel neuroprotective mechanisms of memenatine in streptozotocin-induced toxicity in astrocytes.

  1. Serum brain-derived neurotrophic factor, glial-derived neurotrophic factor, nerve growth factor, and neurotrophin-3 levels in children with attention-deficit/hyperactivity disorder.

    PubMed

    Bilgiç, Ayhan; Toker, Aysun; Işık, Ümit; Kılınç, İbrahim

    2017-03-01

    It has been suggested that neurotrophins are involved in the etiopathogenesis of attention-deficit/hyperactivity disorder (ADHD). This study aimed to investigate whether there are differences in serum brain-derived neurotrophic factor (BDNF), glial-derived neurotrophic factor (GDNF), nerve growth factor (NGF), and neurotrophin-3 (NTF3) levels between children with ADHD and healthy controls. A total of 110 treatment-naive children with the combined presentation of ADHD and 44 healthy controls aged 8-18 years were enrolled in this study. The severity of ADHD symptoms was determined by scores on the Conners' Parent Rating Scale-Revised Short and Conners' Teacher Rating Scale-Revised Short. The severity of depression and anxiety symptoms of the children were evaluated by the self-report inventories. Serum levels of neurotrophins were measured using commercial enzyme-linked immunosorbent assay kits. The multivariate analysis of covariance (MANCOVA) revealed a significant main effect of groups in the levels of serum neurotrophins, an effect that was independent of age, sex, and the severity of the depression and anxiety. The analysis of covariance (ANCOVA) indicated that the mean serum GDNF and NTF3 levels of ADHD patients were significantly higher than that of controls. However, serum BDNF and NGF levels did not show any significant differences between groups. No correlations between the levels of serum neurotrophins and the severity of ADHD were observed. These results suggest that elevated serum GDNF and NTF3 levels may be related to ADHD in children.

  2. Neuronal plasticity and neurotrophic factors in drug responses

    PubMed Central

    Castrén, Eero; Antila, Hanna

    2017-01-01

    Neurotrophic factors, particularly brain-derived neurotrophic factor (BDNF) and other members of the neurotrophin family, are central mediators of the activity-dependent plasticity through which environmental experiences, such as sensory information are translated into the structure and function of neuronal networks. Synthesis, release and action of BDNF is regulated by neuronal activity and BDNF in turn leads to trophic effects such as formation, stabilization and potentiation of synapses through its high-affinity TrkB receptors. Several clinically available drugs directly activate neurotrophins and neuronal plasticity. In particular, antidepressant drugs rapidly activate TrkB signaling and gradually increase BDNF expression, and the behavioral effects of antidepressants are mediated by and dependent on BDNF signaling through TrkB at least in rodents. These findings indicate that antidepressants, widely used drugs, effectively act as TrkB activators. They further imply that neuronal plasticity is a central mechanism in the action of antidepressant drugs. Indeed, it was recently discovered that antidepressants reactivate a state of plasticity in the adult cerebral cortex that closely resembles the enhanced plasticity normally observed during postnatal critical periods. This state of induced plasticity, known as iPlasticity, allows environmental stimuli to beneficially reorganize networks abnormally wired during early life. iPlasticity has been observed in cortical as well as subcortical networks and is induced by several pharmacological and non-pharmacological treatments. iPlasticity is a new pharmacological principle where drug treatment and rehabilitation cooperate: the drug acts permissively to enhance plasticity and rehabilitation provides activity to guide the appropriate wiring of the plastic network. Optimization of iPlastic drug treatment with novel means of rehabilitation may help improve the efficacy of available drug treatments and expand the use of

  3. Angels and demons: neurotrophic factors and epilepsy.

    PubMed

    Simonato, Michele; Tongiorgi, Enrico; Kokaia, Merab

    2006-12-01

    Several lines of evidence indicate that neurotrophic factors (NTFs) could be key causal mediators in the development of acquired epileptic syndromes. Yet the trophic properties of NTFs indicate that they might be used to treat epilepsy-associated damage. Accordingly, different NTFs, or even the same NTF, could produce functionally contrasting effects in the context of epilepsy. Recent experimental evidence begins to shed light on the mechanisms underlying these contrasting effects. Understanding these mechanisms will be instrumental for the development of effective therapies, which must be based on a careful consideration of the biological properties of NTFs. Here, we critically evaluate new information emerging in this area and discuss its implications for clinical treatment.

  4. Lower brain-derived neurotrophic factor levels associated with worsening fatigue in prostate cancer patients during repeated stress from radiation therapy.

    PubMed

    Saligan, L N; Lukkahatai, N; Holder, G; Walitt, B; Machado-Vieira, R

    2016-12-01

    Fatigue during cancer treatment is associated with depression. Neurotrophic factors play a major role in depression and stress and might provide insight into mechanisms of fatigue. This study investigated the association between plasma concentrations of three neurotrophic factors (BDNF, brain-derived neurotrophic factor; GDNF, glial-derived neurotrophic factor; and SNAPIN, soluble N-ethylmaleimide sensitive fusion attachment receptor-associated protein) and initial fatigue intensification during external beam radiation therapy (EBRT) in euthymic non-metastatic prostate cancer men. Fatigue, as measured by the 13-item Functional Assessment of Cancer Therapy-Fatigue (FACT-F), and plasma neurotrophic factors were collected at baseline (prior to EBRT) and mid-EBRT. Subjects were categorized into fatigue and no fatigue groups using a > 3-point change in FACT-F scores between the two time points. Multiple linear regressions analysed the associations between fatigue and neurotrophic factors. FACT-F scores of 47 subjects decreased from baseline (43.95 ± 1.3) to mid-EBRT (38.36 ± 1.5, P < 0.001), indicating worsening fatigue. SNAPIN levels were associated with fatigue scores (r s = 0.43, P = 0.005) at baseline. A significant decrease of BDNF concentration (P = 0.008) was found in fatigued subjects during EBRT (n = 39). Baseline SNAPIN and decreasing BDNF levels may influence worsening fatigue during EBRT. Further investigations are warranted to confirm their role in the pathophysiology and therapeutics of fatigue.

  5. The expanding universe of neurotrophic factors: therapeutic potential in aging and age-associated disorders.

    PubMed

    Lanni, C; Stanga, S; Racchi, M; Govoni, S

    2010-01-01

    Multiple molecular, cellular, structural and functional changes occur in the brain during aging. Neural cells may respond to these changes adaptively by employing multiple mechanisms in order to maintain the integrity of nerve cell circuits and to facilitate responses to environmental demands. Otherwise, they may succumb to neurodegenerative cascades that result in disorders such as Alzheimer's and Parkinson's diseases. An important role in this balancement is played by neurotrophic factors, which are central to many aspects of nervous system function since they regulate the development, maintenance and survival of neurons and neuron-supporting cells such as glia and oligodendrocytes. A vast amount of evidence indicates that alterations in levels of neurotrophic factors or their receptors can lead to neuronal death and contribute to aging as well as to the pathogenesis of diseases of abnormal trophic support (such as neurodegenerative diseases and depression) and diseases of abnormal excitability (such as epilepsy and central pain sensitization). Cellular and molecular mechanisms by which neurotrophic factors may influence cell survival and excitability are also critically examined to provide novel concepts and targets for the treatment of physiological changes bearing detrimental functional alterations and of different diseases affecting the central nervous system during aging.

  6. Long-term lithium treatment increases intracellular and extracellular brain-derived neurotrophic factor (BDNF) in cortical and hippocampal neurons at subtherapeutic concentrations.

    PubMed

    De-Paula, Vanessa J; Gattaz, Wagner F; Forlenza, Orestes V

    2016-12-01

    The putative neuroprotective effects of lithium treatment rely on the fact that it modulates several homeostatic mechanisms involved in the neurotrophic response, autophagy, oxidative stress, inflammation, and mitochondrial function. Lithium is a well-established therapeutic option for the acute and long-term management of bipolar disorder and major depression. The aim of this study was to evaluate the effects of subtherapeutic and therapeutic concentrations of chronic lithium treatment on brain-derived neurotrophic factor (BDNF) synthesis and secretion. Primary cultures of cortical and hippocampal neurons were treated with different subtherapeutic (0.02 and 0.2 mM) and therapeutic (2 mM) concentrations of chronic lithium treatment in cortical and hippocampal cell culture. Lithium treatment increased the intracellular protein expression of cortical neurons (10% at 0.02 mM) and hippocampal neurons (28% and 14% at 0.02 mM and 0.2 mM, respectively). Extracellular BDNF of cortical neurons increased 30% and 428% at 0.02 and 0.2 mM, respectively and in hippocampal neurons increased 44% at 0.02 mM. The present study indicates that chronic, low-dose lithium treatment up-regulates BDNF production in primary neuronal cell culture. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Assembly and activation of neurotrophic factor receptor complexes.

    PubMed

    Simi, Anastasia; Ibáñez, Carlos F

    2010-04-01

    Neurotrophic factors play important roles in the development and function of both neuronal and glial elements of the central and peripheral nervous systems. Their functional diversity is in part based on their ability to interact with alternative complexes of receptor molecules. This review focuses on our current understanding of the mechanisms that govern the assembly and activation of neurotrophic factor receptor complexes. The realization that many, if not the majority, of these complexes exist in a preassembled form at the plasma membrane has forced the revision of classical ligand-mediated oligomerization models, and led to the discovery of novel mechanisms of receptor activation and generation of signaling diversity which are likely to be shared by many different classes of receptors.

  8. Focused ultrasound-enhanced intranasal brain delivery of brain-derived neurotrophic factor

    NASA Astrophysics Data System (ADS)

    Chen, Hong; Yang, Georgiana Zong Xin; Getachew, Hoheteberhan; Acosta, Camilo; Sierra Sánchez, Carlos; Konofagou, Elisa E.

    2016-06-01

    The objective of this study was to unveil the potential mechanism of focused ultrasound (FUS)-enhanced intranasal (IN) brain drug delivery and assess its feasibility in the delivery of therapeutic molecules. Delivery outcomes of fluorescently-labeled dextrans to mouse brains by IN administration either before or after FUS sonication were compared to evaluate whether FUS enhances IN delivery by active pumping or passive diffusion. Fluorescence imaging of brain slices found that IN administration followed by FUS sonication achieved significantly higher delivery than IN administration only, while pre-treatment by FUS sonication followed by IN administration was not significantly different from IN administration only. Brain-derived neurotrophic factor (BDNF), a promising neurotrophic factor for the treatment of many central nervous system diseases, was delivered by IN followed by FUS to demonstrate the feasibility of this technique and compared with the established FUS technique where drugs are injected intravenously. Immunohistochemistry staining of BDNF revealed that FUS-enhanced IN delivery achieved similar locally enhanced delivery as the established FUS technique. This study suggested that FUS enhances IN brain drug delivery by FUS-induced active pumping of the drug and demonstrated that FUS-enhanced IN delivery is a promising technique for noninvasive and localized delivery of therapeutic molecules to the brain.

  9. Association Between Brain-Derived Neurotrophic Factor Genotype and Upper Extremity Motor Outcome After Stroke.

    PubMed

    Chang, Won Hyuk; Park, Eunhee; Lee, Jungsoo; Lee, Ahee; Kim, Yun-Hee

    2017-06-01

    The identification of intrinsic factors for predicting upper extremity motor outcome could aid the design of individualized treatment plans in stroke rehabilitation. The aim of this study was to identify prognostic factors, including intrinsic genetic factors, for upper extremity motor outcome in patients with subacute stroke. A total of 97 patients with subacute stroke were enrolled. Upper limb motor impairment was scored according to the upper limb of Fugl-Meyer assessment score at 3 months after stroke. The prediction of upper extremity motor outcome at 3 months was modeled using various factors that could potentially influence this impairment, including patient characteristics, baseline upper extremity motor impairment, functional and structural integrity of the corticospinal tract, and brain-derived neurotrophic factor genotype. Multivariate ordinal logistic regression models were used to identify the significance of each factor. The independent predictors of motor outcome at 3 months were baseline upper extremity motor impairment, age, stroke type, and corticospinal tract functional integrity in all stroke patients. However, in the group with severe motor impairment at baseline (upper limb score of Fugl-Meyer assessment <25), the number of Met alleles in the brain-derived neurotrophic factor genotype was also an independent predictor of upper extremity motor outcome 3 months after stroke. Brain-derived neurotrophic factor genotype may be a potentially useful predictor of upper extremity motor outcome in patients with subacute stroke with severe baseline motor involvement. © 2017 American Heart Association, Inc.

  10. Actions of Brain-Derived Neurotrophic Factor and Glucocorticoid Stress in Neurogenesis

    PubMed Central

    Numakawa, Tadahiro; Odaka, Haruki; Adachi, Naoki

    2017-01-01

    Altered neurogenesis is suggested to be involved in the onset of brain diseases, including mental disorders and neurodegenerative diseases. Neurotrophic factors are well known for their positive effects on the proliferation/differentiation of both embryonic and adult neural stem/progenitor cells (NSCs/NPCs). Especially, brain-derived neurotrophic factor (BDNF) has been extensively investigated because of its roles in the differentiation/maturation of NSCs/NPCs. On the other hand, recent evidence indicates a negative impact of the stress hormone glucocorticoids (GCs) on the cell fate of NSCs/NPCs, which is also related to the pathophysiology of brain diseases, such as depression and autism spectrum disorder. Furthermore, studies including ours have demonstrated functional interactions between neurotrophic factors and GCs in neural events, including neurogenesis. In this review, we show and discuss relationships among the behaviors of NSCs/NPCs, BDNF, and GCs. PMID:29099059

  11. Protection by [6]-shogaol against lipopolysaccharide-induced toxicity in murine astrocytes is related to production of brain-derived neurotrophic factor.

    PubMed

    Shim, Sehwan; Kim, Sokho; Kwon, Young-Bae; Kwon, Jungkee

    2012-03-01

    [6]-Shogaol has beneficial effects in spinal neuronal regeneration, but associated molecules and mechanisms are not identified. Neurotrophic factors, including brain-derived neurotrophic factor (BDNF), are associated with proliferation and differentiation of neuronal cells and exert a neuroprotective effect in neurodegenerative models. We investigated whether treatment with [6]-shogaol increases BDNF expression in lipopolysaccharide (LPS)-treated astrocytes, and examined the effect of [6]-shogaol on neuronal protection. [6]-Shogaol significantly attenuated the cell death induced by LPS. Western blotting showed that [6]-shogaol treatment reduced Bax expression and increased B-cell lymphoma (Bcl)-2 and BclxL expression in LPS-treated cells, consistent with the effects of BDNF treatment. Furthermore, K252a, a blocker of neurotrophic factors, attenuated the cellular protective effects of [6]-shogaol and BDNF. This study provides the first evidence that [6]-shogaol increases the expression of BDNF in LPS-treated astrocytes. Furthermore, these experimental results indicate that production of BDNF in astrocytes might be related to altered cell viability following [6]-shogaol treatment. Thus, the neuroprotective effects of [6]-shogaol is mediated by up-regulation of BDNF. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Update of Neurotrophic Factors in Neurobiology of Addiction and Future Directions

    PubMed Central

    Koskela, Maryna; Bäck, Susanne; Võikar, Vootele; Richie, Christopher T.; Domanskyi, Andrii; Harvey, Brandon K.; Airavaara, Mikko

    2016-01-01

    Drug addiction is a chronic brain disease and drugs of abuse cause long lasting neuroadaptations. Addiction is characterized by the loss of control over drug use despite harmful consequences, and high rates of relapse even after long periods of abstinence. Neurotrophic factors (NTFs) are well known for their actions on neuronal survival in the peripheral nervous system. Moreover, NTFs have been shown to be involved in synaptic plasticity in the brain. Brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF) are two of the most studied NTFs and both of them have been reported to increase craving when administered into the mesocorticolimbic dopaminergic system after drug self-administration. Here we review recent data on BDNF and GDNF functions in addiction-related behavior and discuss them in relation to previous findings. Finally, we give an insight into how new technologies could aid in further elucidating the role of these factors in drug addiction. PMID:27189755

  13. The Effects of Physical Exercise and Cognitive Training on Memory and Neurotrophic Factors.

    PubMed

    Heisz, Jennifer J; Clark, Ilana B; Bonin, Katija; Paolucci, Emily M; Michalski, Bernadeta; Becker, Suzanna; Fahnestock, Margaret

    2017-11-01

    This study examined the combined effect of physical exercise and cognitive training on memory and neurotrophic factors in healthy, young adults. Ninety-five participants completed 6 weeks of exercise training, combined exercise and cognitive training, or no training (control). Both the exercise and combined training groups improved performance on a high-interference memory task, whereas the control group did not. In contrast, neither training group improved on general recognition performance, suggesting that exercise training selectively increases high-interference memory that may be linked to hippocampal function. Individuals who experienced greater fitness improvements from the exercise training (i.e., high responders to exercise) also had greater increases in the serum neurotrophic factors brain-derived neurotrophic factor and insulin-like growth factor-1. These high responders to exercise also had better high-interference memory performance as a result of the combined exercise and cognitive training compared with exercise alone, suggesting that potential synergistic effects might depend on the availability of neurotrophic factors. These findings are especially important, as memory benefits accrued from a relatively short intervention in high-functioning young adults.

  14. Neuroprotective Effects of Exercise Treatments After Injury: The Dual Role of Neurotrophic Factors

    PubMed Central

    Cobianchi, Stefano; Arbat-Plana, Ariadna; López-Álvarez, Víctor M.; Navarro, Xavier

    2017-01-01

    Background Shared connections between physical activity and neuroprotection have been studied for decades, but the mechanisms underlying this effect of specific exercise were only recently brought to light. Several evidences suggest that physical activity may be a reasonable and beneficial method to improve functional recovery in both peripheral and central nerve injuries and to delay functional decay in neurodegenerative diseases. In addition to improving cardiac and immune functions, physical activity may represent a multifunctional approach not only to improve cardiocirculatory and immune functions, but potentially modulating trophic factors signaling and, in turn, neuronal function and structure at times that may be critical for neurodegeneration and regeneration. Methods Research content related to the effects of physical activity and specific exercise programs in normal and injured nervous system have been reviewed. Results Sustained exercise, particularly if applied at moderate intensity and early after injury, exerts anti-inflammatory and pro-regenerative effects, and may boost cognitive and motor functions in aging and neurological disorders. However, newest studies show that exercise modalities can differently affect the production and function of brain-derived neurotrophic factor and other neurotrophins involved in the generation of neuropathic conditions. These findings suggest the possibility that new exercise strategies can be directed to nerve injuries with therapeutical benefits. Conclusion Considering the growing burden of illness worldwide, understanding of how modulation of neurotrophic factors contributes to exercise-induced neuroprotection and regeneration after peripheral nerve and spinal cord injuries is a relevant topic for research, and represents the beginning of a new non-pharmacological therapeutic approach for better rehabilitation of neural disorders. PMID:27026050

  15. Protective effects of brain-derived neurotrophic factor on the noise-damaged cochlear spiral ganglion.

    PubMed

    Zhai, S-Q; Guo, W; Hu, Y-Y; Yu, N; Chen, Q; Wang, J-Z; Fan, M; Yang, W-Y

    2011-05-01

    To explore the protective effects of brain-derived neurotrophic factor on the noise-damaged cochlear spiral ganglion. Recombinant adenovirus brain-derived neurotrophic factor vector, recombinant adenovirus LacZ and artificial perilymph were prepared. Guinea pigs with audiometric auditory brainstem response thresholds of more than 75 dB SPL, measured seven days after four hours of noise exposure at 135 dB SPL, were divided into three groups. Adenovirus brain-derived neurotrophic factor vector, adenovirus LacZ and perilymph were infused into the cochleae of the three groups, variously. Eight weeks later, the cochleae were stained immunohistochemically and the spiral ganglion cells counted. The auditory brainstem response threshold recorded before and seven days after noise exposure did not differ significantly between the three groups. However, eight weeks after cochlear perfusion, the group receiving brain-derived neurotrophic factor had a significantly decreased auditory brainstem response threshold and increased spiral ganglion cell count, compared with the adenovirus LacZ and perilymph groups. When administered via cochlear infusion following noise damage, brain-derived neurotrophic factor appears to improve the auditory threshold, and to have a protective effect on the spiral ganglion cells.

  16. Brain-derived neurotrophic factor and its clinical implications

    PubMed Central

    Bathina, Siresha

    2015-01-01

    Brain-derived neurotrophic factor (BDNF) plays an important role in neuronal survival and growth, serves as a neurotransmitter modulator, and participates in neuronal plasticity, which is essential for learning and memory. It is widely expressed in the CNS, gut and other tissues. BDNF binds to its high affinity receptor TrkB (tyrosine kinase B) and activates signal transduction cascades (IRS1/2, PI3K, Akt), crucial for CREB and CBP production, that encode proteins involved in β cell survival. BDNF and insulin-like growth factor-1 have similar downstream signaling mechanisms incorporating both p-CAMK and MAPK that increase the expression of pro-survival genes. Brain-derived neurotrophic factor regulates glucose and energy metabolism and prevents exhaustion of β cells. Decreased levels of BDNF are associated with neurodegenerative diseases with neuronal loss, such as Parkinson's disease, Alzheimer's disease, multiple sclerosis and Huntington's disease. Thus, BDNF may be useful in the prevention and management of several diseases including diabetes mellitus. PMID:26788077

  17. Neurotrophic keratitis after transscleral diode laser cyclophotocoagulation.

    PubMed

    Fernández-Vega González, Á; Barraquer Compte, R I; Cárcamo Martínez, A L; Torrico Delgadillo, M; de la Paz, M F

    2016-07-01

    To study the relationship between treatment with diode laser transscleral cyclophotocoagulation and development a neurotrophic keratitis due to the damage of the sensitive corneal innervation. A study was conducted on 5 eyes of 5 patients who were treated with diode laser transscleral cyclophotocoagulation and soon developed neurotrophic ulcers. Personal characteristics of the patients were collected, as well as refraction and risk factors for corneal hypoesthesia, and the parameters of the laser used in the surgery. It was found that the 5 patients had predisposing factors of corneal hypoesthesia prior to surgery (chronic use of topical beta blockers, surgery with corneal incisions, diabetes mellitus, or corneal dystrophies); however none had developed neurotrophic keratitis until the cyclophotocoagulation was performed. It also showed that 4 of them were highly myopic, and they all were treated with high laser parameters (with an average of 2880 mW for 3s at an average surface of 275°), triggering neurotrophic ulcers between 10 and 35 days after surgery. Neurotrophic keratitis is a rare complication that can occur after diode laser transscleral cyclophotocoagulation, secondary to the damage of the long ciliary nerves. The emergence of this disorder can be triggered by the existence of previous risk factors, including high myopia, thus it is important to respect the recommended treatment parameters to prevent the development of this disorder. Copyright © 2015 Sociedad Española de Oftalmología. Published by Elsevier España, S.L.U. All rights reserved.

  18. Plasma brain-derived neurotrophic factor in women after bariatric surgery: a pilot study.

    PubMed

    Merhi, Zaher O; Minkoff, Howard; Lambert-Messerlian, Geralyn M; Macura, Jerzy; Feldman, Joseph; Seifer, David B

    2009-04-01

    Eighteen morbidly obese women had plasma brain-derived neurotrophic factor (BDNF) measured before bariatric surgery and 3 months postoperatively. We analyzed plasma BDNF levels in all the participants then subdivided according to menopausal status and type of surgery. Brain-derived neurotrophic factor decreased significantly in all the participants and in the premenopausal group when looked at in isolation.

  19. The effects of adolescent methylphenidate exposure on the behavioral and brain-derived neurotrophic factor response to nicotine.

    PubMed

    Cummins, Elizabeth D; Leedy, Kristen K; Dose, John M; Peterson, Daniel J; Kirby, Seth L; Hernandez, Liza J; Brown, Russell W

    2017-01-01

    This study analyzed the interaction of adolescent methylphenidate on the behavioral response to nicotine and the effects of these drug treatments on brain-derived neurotrophic factor in the nucleus accumbens and hippocampus in male and female Sprague-Dawley rats. Animals were intraperitoneal administered 1 mg/kg methylphenidate or saline using a "school day" regimen (five days on, two days off) beginning on postnatal day (P)28 and throughout behavioral testing. In Experiment 1, animals were intraperitoneal administered 0.5 mg/kg (free base) nicotine or saline every second day for 10 days from P45-P63 and tested after a three-day drug washout on the forced swim stress task on P67-P68. Results revealed that adolescent methylphenidate blunted nicotine behavioral sensitization. However, methylphenidate-treated rats given saline during sensitization demonstrated decreased latency to immobility and increased immobility time on the forced swim stress task in males that was reduced by nicotine. In Experiment 2, a different set of animals were conditioned to nicotine (0.6 mg/kg free base) or saline using the conditioned place preference behavioral paradigm from P44-P51, and given a preference test on P52. On P53, the nucleus accumbens and hippocampus were analyzed for brain-derived neurotrophic factor. Methylphenidate enhanced nicotine-conditioned place preference in females and nicotine produced conditioned place preference in males and females pre-exposed to saline in adolescence. In addition, methylphenidate and nicotine increased nucleus accumbens brain-derived neurotrophic factor in females and methylphenidate enhanced hippocampus brain-derived neurotrophic factor in males and females. Methylphenidate adolescent exposure using a clinically relevant dose and regimen results in changes in the behavioral and brain-derived neurotrophic factor responses to nicotine in adolescence that are sex-dependent.

  20. [The role of neurotrophic factors in adaptational processes in the nervous system].

    PubMed

    Akoev, G N; Chalisova, N I

    1995-08-01

    Many of neurotrophic factors (NTF) promote the survival during development, growth and neurite differentiation of neurons. The most known NTF are nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophins-3,4,5. These factors increase the survival of peripheral sensory neurons and some central neurons. The NTF are produced by the target of neuronal proections including brain tissues. So the process of adaptation in the nervous system may be also connected with level of the NTF. Recently it is shown that the NTF level in the brain is changed by central nervous system deseases--epilepsy, Parcinson and Alcgeimer deseases. In this conditions NGF and BDNF mRNC expression and their receptors mRNC are increased. So NTF diffusion in intracellular space can provide the brain function regulation in normal and pathological conditions. Model of chronic epileptogenesis was in vitro. The organotypic coculture was used--the rat newborn hippocampus and chick embryo dorsal root ganglia. Veratridine (30 nM) added in culture media induced neuronal activity in hippocampus explants and the level of NTF in media cosequently rised. It was shown that neurite-stimulating effect was mediated by veratridine. This action was blocked by NGF-antybody treatment and due to NGF activity.

  1. Mechanisms of extracellular signal-regulated kinase/cAMP response element-binding protein/brain-derived neurotrophic factor signal transduction pathway in depressive disorder☆

    PubMed Central

    Wang, Hongyan; Zhang, Yingquan; Qiao, Mingqi

    2013-01-01

    The extracellular signal-regulated kinase/cAMP response element-binding protein/brain-derived neurotrophic factor signal transduction pathway plays an important role in the mechanism of action of antidepressant drugs and has dominated recent studies on the pathogenesis of depression. In the present review we summarize the known roles of extracellular signal-regulated kinase, cAMP response element-binding protein and brain-derived neurotrophic factor in the pathogenesis of depression and in the mechanism of action of antidepressant medicines. The extracellular signal-regulated kinase/cAMP response element-binding protein/brain-derived neurotrophic factor pathway has potential to be used as a biological index to help diagnose depression, and as such it is considered as an important new target in the treatment of depression. PMID:25206732

  2. Plasma brain derived neurotrophic factor (BDNF) and response to ketamine in treatment-resistant depression.

    PubMed

    Haile, C N; Murrough, J W; Iosifescu, D V; Chang, L C; Al Jurdi, R K; Foulkes, A; Iqbal, S; Mahoney, J J; De La Garza, R; Charney, D S; Newton, T F; Mathew, S J

    2014-02-01

    Ketamine produces rapid antidepressant effects in treatment-resistant depression (TRD), but the magnitude of response varies considerably between individual patients. Brain-derived neurotrophic factor (BDNF) has been investigated as a biomarker of treatment response in depression and has been implicated in the mechanism of action of ketamine. We evaluated plasma BDNF and associations with symptoms in 22 patients with TRD enrolled in a randomized controlled trial of ketamine compared to an anaesthetic control (midazolam). Ketamine significantly increased plasma BDNF levels in responders compared to non-responders 240 min post-infusion, and Montgomery-Åsberg Depression Rating Scale (MADRS) scores were negatively correlated with BDNF (r=-0.701, p = 0.008). Plasma BDNF levels at 240 min post-infusion were highly negatively associated with MADRS scores at 240 min (r = -0.897, p=.002), 24 h (r = -0.791, p = 0.038), 48 h (r = -0.944, p = 0.001) and 72 h (r = -0.977, p = 0.010). No associations with BDNF were found for patients receiving midazolam. These data support plasma BDNF as a peripheral biomarker relevant to ketamine antidepressant response.

  3. Cranial electrotherapy stimulation affects mood state but not levels of peripheral neurotrophic factors or hypothalamic- pituitary-adrenal axis regulation.

    PubMed

    Roh, Hee-Tae; So, Wi-Young

    2017-01-01

    Cranial electrotherapy stimulation (CES) is reported to aid in relieving symptoms of depression and anxiety, though the mechanism underlying this effect remains unclear. Therefore, the present study aimed to evaluate changes in the hypothalamic-pituitary-adrenal (HPA) axis response and levels of neurotrophic factors, as well as changes in mood state, in patients undergoing CES therapy. Fifty healthy postmenopausal women were randomly assigned to either a Sham CES group (n = 25) or an Active CES group (n = 25). CES treatment was conducted in 20-minute sessions, three times per week for 8 weeks, using a micro current cranial electrotherapy stimulator. Blood samples were collected prior to and following the 8-week treatment period for measurement of cortisol, adrenocorticotropic hormone (ACTH), brain-derived neurotrophic factor (BDNF), and nerve growth factor (NGF) levels. Changes in mood state were also examined at the time of blood collection using the Profile of Mood States (POMS). No significant differences in cortisol, ACTH, BDNF, or NGF were observed between the two participant groups (p > 0.05) following the treatment period. However, those in the Active CES group exhibited significantly decreased Tension-Anxiety and Depression-Dejection scores on the POMS relative to pre-treatment scores (p < 0.05). Furthermore, Depression-Dejection scores following treatment were significantly lower in the Active CES group than in the Sham CES group (p < 0.05). No significant differences were observed in any other POMS scores such as Anger-Hostility, Vigor-Activity, Fatigue-Inertia, and Confusion-Bewilderment (p > 0.05). These results suggest that 8 weeks of CES treatment does not induce changes in blood levels of neurotrophic factors or HPA-axis-related hormones, though such treatment may be effective in treating symptoms of anxiety and depression.

  4. Astrocytes produce an insulin-like neurotrophic factor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kadle, R.; Suksang, C.; Fellows, R.E.

    1986-05-01

    They have previously reported that survival of dissociated neurons from fetal rat telencephalon plated at low density in serum-free, hormone-free defined medium is enhanced in the presence of insulin. In the absence of insulin a similar effect on neuronal survival is observed if cells are grown in medium conditioned by glial cells. The present study was carried out to characterize the insulin-like neurotrophic activity present in the glial conditioned medium (GLCM). Conditioned medium from confluent cultures of astrogial cells maintained in a serum free defined medium without insulin was collected every two or three days. A 5 to 30kDa fractionmore » of this medium was obtained by filtering it sequentially through YM30 and YM5 membrane filters. Binding of /sup 125/I-insulin to high density neuronal cultures was inhibited 43% by this fraction. Radioimmunoassay for insulin indicated that 1-2 ng of immuno-reactive insulin were present per ml of GLCM. Immunosequestration of the factor by insulin antibodies bound to protein A agarose gel resulted in loss of neurotrophic activity of the 5 to 30 kDa fraction. These results indicate that cultured astrocytes produce a factor immunologically and biochemically similar to insulin. This factor enhances the survival of neurons in culture and may be important for their normal development and differentiation.« less

  5. Brain-derived neurotrophic factor and its receptors in Bergmann glia cells.

    PubMed

    Poblete-Naredo, Irais; Guillem, Alain M; Juárez, Claudia; Zepeda, Rossana C; Ramírez, Leticia; Caba, Mario; Hernández-Kelly, Luisa C; Aguilera, José; López-Bayghen, Esther; Ortega, Arturo

    2011-12-01

    Brain-derived neurotrophic factor is an abundant and widely distributed neurotrophin expressed in the Central Nervous System. It is critically involved in neuronal differentiation and survival. The expression of brain-derived neurotrophic factor and that of its catalytic active cognate receptor (TrkB) has been extensively studied in neuronal cells but their expression and function in glial cells is still controversial. Despite of this fact, brain-derived neurotrophic factor is released from astrocytes upon glutamate stimulation. A suitable model to study glia/neuronal interactions, in the context of glutamatergic synapses, is the well-characterized culture of chick cerebellar Bergmann glia cells. Using, this system, we show here that BDNF and its functional receptor are present in Bergmann glia and that BDNF stimulation is linked to the activation of the phosphatidyl-inositol 3 kinase/protein kinase C/mitogen-activated protein kinase/Activator Protein-1 signaling pathway. Accordingly, reverse transcription-polymerase chain reaction (RT-PCR) experiments predicted the expression of full-length and truncated TrkB isoforms. Our results suggest that Bergmann glia cells are able to express and respond to BDNF stimulation favoring the notion of their pivotal role in neuroprotection. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Targeted delivery of brain-derived neurotrophic factor for the treatment of blindness and deafness

    PubMed Central

    Khalin, Igor; Alyautdin, Renad; Kocherga, Ganna; Bakar, Muhamad Abu

    2015-01-01

    Neurodegenerative causes of blindness and deafness possess a major challenge in their clinical management as proper treatment guidelines have not yet been found. Brain-derived neurotrophic factor (BDNF) has been established as a promising therapy against neurodegenerative disorders including hearing and visual loss. Unfortunately, the blood–retinal barrier and blood–cochlear barrier, which have a comparable structure to the blood–brain barrier prevent molecules of larger sizes (such as BDNF) from exiting the circulation and reaching the targeted cells. Anatomical features of the eye and ear allow use of local administration, bypassing histo-hematic barriers. This paper focuses on highlighting a variety of strategies proposed for the local administration of the BDNF, like direct delivery, viral gene therapy, and cell-based therapy, which have been shown to successfully improve development, survival, and function of spiral and retinal ganglion cells. The similarities and controversies for BDNF treatment of posterior eye diseases and inner ear diseases have been analyzed and compared. In this review, we also focus on the possibility of translation of this knowledge into clinical practice. And finally, we suggest that using nanoparticulate drug-delivery systems may substantially contribute to the development of clinically viable techniques for BDNF delivery into the cochlea or posterior eye segment, which, ultimately, can lead to a long-term or permanent rescue of auditory and optic neurons from degeneration. PMID:25995632

  7. Neurotrophic factors switch between two signaling pathways that trigger axonal growth.

    PubMed

    Paveliev, Mikhail; Lume, Maria; Velthut, Agne; Phillips, Matthew; Arumäe, Urmas; Saarma, Mart

    2007-08-01

    Integration of multiple inputs from the extracellular environment, such as extracellular matrix molecules and growth factors, is a crucial process for cell function and information processing in multicellular organisms. Here we demonstrate that co-stimulation of dorsal root ganglion neurons with neurotrophic factors (NTFs) - glial-cell-line-derived neurotrophic factor, neurturin or nerve growth factor - and laminin leads to axonal growth that requires activation of Src family kinases (SFKs). A different, SFK-independent signaling pathway evokes axonal growth on laminin in the absence of the NTFs. By contrast, axonal branching is regulated by SFKs both in the presence and in the absence of NGF. We propose and experimentally verify a Boolean model of the signaling network triggered by NTFs and laminin. Our results demonstrate that NTFs provide an environmental cue that triggers a switch between separate pathways in the cell signaling network.

  8. Up-regulation of neurotrophic factors by cinnamon and its metabolite sodium benzoate: therapeutic implications for neurodegenerative disorders.

    PubMed

    Jana, Arundhati; Modi, Khushbu K; Roy, Avik; Anderson, John A; van Breemen, Richard B; Pahan, Kalipada

    2013-06-01

    This study underlines the importance of cinnamon, a widely-used food spice and flavoring material, and its metabolite sodium benzoate (NaB), a widely-used food preservative and a FDA-approved drug against urea cycle disorders in humans, in increasing the levels of neurotrophic factors [e.g., brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3)] in the CNS. NaB, but not sodium formate (NaFO), dose-dependently induced the expression of BDNF and NT-3 in primary human neurons and astrocytes. Interestingly, oral administration of ground cinnamon increased the level of NaB in serum and brain and upregulated the levels of these neurotrophic factors in vivo in mouse CNS. Accordingly, oral feeding of NaB, but not NaFO, also increased the level of these neurotrophic factors in vivo in the CNS of mice. NaB induced the activation of protein kinase A (PKA), but not protein kinase C (PKC), and H-89, an inhibitor of PKA, abrogated NaB-induced increase in neurotrophic factors. Furthermore, activation of cAMP response element binding (CREB) protein, but not NF-κB, by NaB, abrogation of NaB-induced expression of neurotrophic factors by siRNA knockdown of CREB and the recruitment of CREB and CREB-binding protein to the BDNF promoter by NaB suggest that NaB exerts its neurotrophic effect through the activation of CREB. Accordingly, cinnamon feeding also increased the activity of PKA and the level of phospho-CREB in vivo in the CNS. These results highlight a novel neutrophic property of cinnamon and its metabolite NaB via PKA - CREB pathway, which may be of benefit for various neurodegenerative disorders.

  9. Neural progenitor cell implants modulate vascular endothelial growth factor and brain-derived neurotrophic factor expression in rat axotomized neurons.

    PubMed

    Talaverón, Rocío; Matarredona, Esperanza R; de la Cruz, Rosa R; Pastor, Angel M

    2013-01-01

    Axotomy of central neurons leads to functional and structural alterations which largely revert when neural progenitor cells (NPCs) are implanted in the lesion site. The new microenvironment created by NPCs in the host tissue might modulate in the damaged neurons the expression of a high variety of molecules with relevant roles in the repair mechanisms, including neurotrophic factors. In the present work, we aimed to analyze changes in neurotrophic factor expression in axotomized neurons induced by NPC implants. For this purpose, we performed immunofluorescence followed by confocal microscopy analysis for the detection of vascular endothelial growth factor (VEGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3) and nerve growth factor (NGF) on brainstem sections from rats with axotomy of abducens internuclear neurons that received NPC implants (implanted group) or vehicle injections (axotomized group) in the lesion site. Control abducens internuclear neurons were strongly immunoreactive to VEGF and BDNF but showed a weak staining for NT-3 and NGF. Comparisons between groups revealed that lesioned neurons from animals that received NPC implants showed a significant increase in VEGF content with respect to animals receiving vehicle injections. However, the immunoreactivity for BDNF, which was increased in the axotomized group as compared to control, was not modified in the implanted group. The modifications induced by NPC implants on VEGF and BDNF content were specific for the population of axotomized abducens internuclear neurons since the neighboring abducens motoneurons were not affected. Similar levels of NT-3 and NGF immunolabeling were obtained in injured neurons from axotomized and implanted animals. Among all the analyzed neurotrophic factors, only VEGF was expressed by the implanted cells in the lesion site. Our results point to a role of NPC implants in the modulation of neurotrophic factor expression by lesioned central neurons, which might

  10. In vitro assessment of TAT — Ciliary Neurotrophic Factor therapeutic potential for peripheral nerve regeneration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barbon, Silvia, E-mail: silvia.barbon@yahoo.it

    In regenerative neurobiology, Ciliary Neurotrophic Factor (CNTF) is raising high interest as a multifunctional neurocytokine, playing a key role in the regeneration of injured peripheral nerves. Despite its promising trophic and regulatory activity, its clinical application is limited by the onset of severe side effects, due to the lack of efficient intracellular trafficking after administration. In this study, recombinant CNTF linked to the transactivator transduction domain (TAT) was investigated in vitro and found to be an optimized fusion protein which preserves neurotrophic activity, besides enhancing cellular uptake for therapeutic advantage. Moreover, a compelling protein delivery method was defined, in themore » future perspective of improving nerve regeneration strategies. Following determination of TAT-CNTF molecular weight and concentration, its specific effect on neural SH-SY5Y and PC12 cultures was assessed. Cell proliferation assay demonstrated that the fusion protein triggers PC12 cell growth within 6 h of stimulation. At the same time, the activation of signal transduction pathway and enhancement of cellular trafficking were found to be accomplished in both neural cell lines after specific treatment with TAT-CNTF. Finally, the recombinant growth factor was successfully loaded on oxidized polyvinyl alcohol (PVA) scaffolds, and more efficiently released when polymer oxidation rate increased. Taken together, our results highlight that the TAT domain addiction to the protein sequence preserves CNTF specific neurotrophic activity in vitro, besides improving cellular uptake. Moreover, oxidized PVA could represent an ideal biomaterial for the development of nerve conduits loaded with the fusion protein to be delivered to the site of nerve injury. - Highlights: • TAT-CNTF is an optimized fusion protein that preserves neurotrophic activity. • In neural cell lines, TAT-CNTF triggers the activation of signal transduction. • Fast cellular uptake of TAT

  11. Upregulation of Neurotrophic Factors Selectively in Frontal Cortex in Response to Olfactory Discrimination Learning

    PubMed Central

    Naimark, Ari; Barkai, Edi; Matar, Michael A.; Kaplan, Zeev; Kozlovsky, Nitzan; Cohen, Hagit

    2007-01-01

    We have previously shown that olfactory discrimination learning is accompanied by several forms of long-term enhancement in synaptic connections between layer II pyramidal neurons selectively in the piriform cortex. This study sought to examine whether the previously demonstrated olfactory-learning-task-induced modifications are preceded by suitable changes in the expression of mRNA for neurotrophic factors and in which brain areas this occurs. Rats were trained to discriminate positive cues in pair of odors for a water reward. The relationship between the learning task and local levels of mRNA for brain-derived neurotrophic factor, tyrosine kinase B, nerve growth factor, and neurotrophin-3 in the frontal cortex, hippocampal subregions, and other regions were assessed 24 hours post olfactory learning. The olfactory discrimination learning activated production of endogenous neurotrophic factors and induced their signal transduction in the frontal cortex, but not in other brain areas. These findings suggest that different brain areas may be preferentially involved in different learning/memory tasks. PMID:17710248

  12. Neurotrophic factor - Characterization and partial purification

    NASA Technical Reports Server (NTRS)

    Popiela, H.; Ellis, S.

    1981-01-01

    Recent evidence suggests that neurotrophic activity is required for the normal proliferation and development of muscle cells. The present paper reports a study of the purification and characterization of a neurotrophic factor (NTF) from adult chicken ischiatic-peroneal nerves using two independent quantitative in vitro assay systems. The assays were performed by the measurement of the incorporation of tritiated thymidine or the sizes of single-cell clones by chick muscle cells grown in culture. The greatest amount of neutrotrophic activity is found to be extracted at a pH of 8; aqueous suspensions of the activity are stable to long-term storage at room temperature. The specific activity of the substance is doubled upon precipitation with ammonium sulfate or after gel filtration, and increase 4 to 5 fold after salt gradient elution from DEAE cellulose columns. The active fraction obtained after gel filtration and rechromatography on DEAE cellulose exhibits a 7 to 10-fold increase in specific activity. Electrophoresis of the most highly purified material yields a greatly concentrated band at around 80,000 daltons. Although NTF is purified almost 10-fold as indicated by the increase in specific activity, the maximum activity of the partially purified material is greatly reduced, possibly due to a requirement for a cofactor for the expression of maximum activity.

  13. Activation of signaling pathways following localized delivery of systemically administered neurotrophic factors across the blood-brain barrier using focused ultrasound and microbubbles

    NASA Astrophysics Data System (ADS)

    Baseri, Babak; Choi, James J.; Deffieux, Thomas; Samiotaki, Gesthimani; Tung, Yao-Sheng; Olumolade, Oluyemi; Small, Scott A.; Morrison, Barclay, III; Konofagou, Elisa E.

    2012-04-01

    The brain-derived neurotrophic factor (BDNF) has been shown to have broad neuroprotective effects in addition to its therapeutic role in neurodegenerative disease. In this study, the efficacy of delivering exogenous BDNF to the left hippocampus is demonstrated in wild-type mice (n = 7) through the noninvasively disrupted blood-brain barrier (BBB) using focused ultrasound (FUS). The BDNF bioactivity was found to be preserved following delivery as assessed quantitatively by immunohistochemical detection of the pTrkB receptor and activated pAkt, pMAPK, and pCREB in the hippocampal neurons. It was therefore shown for the first time that systemically administered neurotrophic factors can cross the noninvasively disrupted BBB and trigger neuronal downstream signaling effects in a highly localized region in the brain. This is the first time that the administered molecule is tracked through the BBB and localized in the neuron triggering molecular effects. Additional preliminary findings are shown in wild-type mice with two additional neurotrophic factors such as the glia-derived neurotrophic factor (n = 12) and neurturin (n = 2). This further demonstrates the impact of FUS for the early treatment of CNS diseases at the cellular and molecular level and strengthens its premise for FUS-assisted drug delivery and efficacy.

  14. [The role of neurotrophic factors in regeneration of the nervous system].

    PubMed

    Machaliński, Bogusław; Lażewski-Banaszak, Piotr; Dąbkowska, Elżbieta; Paczkowska, Edyta; Gołąb-Janowska, Monika; Nowacki, Przemysław

    2012-01-01

    Neurotrophic factors regulate survival, development, and function of nervous tissue. They act via two different classes of receptors and activation of various signaling pathways in the target cells. Illumination of their physiological role in the maintenance of central nervous system homeostasis as well as regeneration of damaged tissue have ignited expectations to heal neurodegenerative diseases, including amyotrophic late-ral sclerosis and Parkinson disease. Advances in pharmaco-therapy, gene therapy, and stem cell biology have enabled development of novel therapies with application of regenerating cell transplantation. In the foreseeable future, it may lead to the establishment of safe and effective ways of treatment of these severe and currently incurable diseases.

  15. Brain-derived neurotrophic factor transgenic mice exhibit passive avoidance deficits, increased seizure severity and in vitro hyperexcitability in the hippocampus and entorhinal cortex.

    PubMed

    Croll, S D; Suri, C; Compton, D L; Simmons, M V; Yancopoulos, G D; Lindsay, R M; Wiegand, S J; Rudge, J S; Scharfman, H E

    1999-01-01

    Transgenic mice overexpressing brain-derived neurotrophic factor from the beta-actin promoter were tested for behavioral, gross anatomical and physiological abnormalities. Brain-derived neurotrophic factor messenger RNA overexpression was widespread throughout brain. Overexpression declined with age, such that levels of overexpression decreased sharply by nine months. Brain-derived neurotrophic factor transgenic mice had no gross deformities or behavioral abnormalities. However, they showed a significant passive avoidance deficit. This deficit was dependent on continued overexpression, and resolved with age as brain-derived neurotrophic factor transcripts decreased. In addition, the brain-derived neurotrophic factor transgenic mice showed increased seizure severity in response to kainic acid. Hippocampal slices from brain-derived neurotrophic factor transgenic mice showed hyperexcitability in area CA3 and entorhinal cortex, but not in dentate gyrus. Finally, area CA1 long-term potentiation was disrupted, indicating abnormal plasticity. Our data suggest that overexpression of brain-derived neurotrophic factor in the brain can interfere with normal brain function by causing learning impairments and increased excitability. The results also support the hypothesis that excess brain-derived neurotrophic factor could be pro-convulsant in the limbic system.

  16. From Molecular to Nanotechnology Strategies for Delivery of Neurotrophins: Emphasis on Brain-Derived Neurotrophic Factor (BDNF)

    PubMed Central

    Géral, Claire; Angelova, Angelina; Lesieur, Sylviane

    2013-01-01

    Neurodegenerative diseases represent a major public health problem, but beneficial clinical treatment with neurotrophic factors has not been established yet. The therapeutic use of neurotrophins has been restrained by their instability and rapid degradation in biological medium. A variety of strategies has been proposed for the administration of these leading therapeutic candidates, which are essential for the development, survival and function of human neurons. In this review, we describe the existing approaches for delivery of brain-derived neurotrophic factor (BDNF), which is the most abundant neurotrophin in the mammalian central nervous system (CNS). Biomimetic peptides of BDNF have emerged as a promising therapy against neurodegenerative disorders. Polymer-based carriers have provided sustained neurotrophin delivery, whereas lipid-based particles have contributed also to potentiation of the BDNF action. Nanotechnology offers new possibilities for the design of vehicles for neuroprotection and neuroregeneration. Recent developments in nanoscale carriers for encapsulation and transport of BDNF are highlighted. PMID:24300402

  17. More inflammation but less brain-derived neurotrophic factor in antisocial personality disorder.

    PubMed

    Wang, Tzu-Yun; Lee, Sheng-Yu; Hu, Ming-Chuan; Chen, Shiou-Lan; Chang, Yun-Hsuan; Chu, Chun-Hsien; Lin, Shih-Hsien; Li, Chia-Ling; Wang, Liang-Jen; Chen, Po See; Chen, Shih-Heng; Huang, San-Yuan; Tzeng, Nian-Sheng; Lee, I Hui; Chen, Kao Chin; Yang, Yen Kuang; Hong, Jau-Shyong; Lu, Ru-Band

    2017-11-01

    Antisocial personality disorder (ASPD) is highly comorbid with substance use disorders (SUDs). We hypothesize that chronic neuroinflammation and the loss of neurotrophic factors prompts the pathogenesis of both disorders. We used ELISA to measure plasma levels of proinflammatory (tumor necrosis factor-α [TNF-α], C-reactive protein [CRP]) and anti-inflammatory factors (transforming growth factor-β1 [TGF-β1] and interleukin-10 [IL-10]), and brain-derived neurotrophic factor (BDNF) in male patients with ASPD (n=74), SUDs (n=168), ASPD comorbid with SUDs (ASPD+SUDs) (n=438), and Healthy Controls (HCs) (n=81). A multivariate analysis of covariance (MANCOVA) controlled for possible confounders was used to compare cytokines and BDNF levels between groups. The results of MANCOVA adjusted for age showed a significant (p<0.001) main effect of diagnosis on inflammatory factors and BDNF expression in these groups. ASPD, SUDs, and ASPD+SUDs patients had significantly (p<0.001) higher TNF-α levels but lower TGF-β1 and BDNF levels. SUDs and ASPD+SUDs patients had higher IL-10 levels than did ASPD patients and HCs. There was no difference in IL-10 levels between HCs and ASPD. Moreover, subgrouping SUDs and ASPD±SUDs into opioid use disorder (OUD) and other SUDs groups showed that the IL-10 levels were specifically higher in OUD and ASPD±OUD groups than other SUDs (P≤0.001). We conclude that uncontrolled inflammation and losing neurotrophic factors, with or without comorbid SUDs, underlies ASPD. IL-10 expression might be more specifically associated with OUD. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Decreased Plasma Brain-Derived Neurotrophic Factor and Vascular Endothelial Growth Factor Concentrations during Military Training

    PubMed Central

    Nibuya, Masashi; Ishida, Toru; Yamamoto, Tetsuo; Mukai, Yasuo; Mitani, Keiji; Tsumatori, Gentaro; Scott, Daniel; Shimizu, Kunio

    2014-01-01

    Decreased concentrations of plasma brain-derived neurotrophic factor (BDNF) and serum BDNF have been proposed to be a state marker of depression and a biological indicator of loaded psychosocial stress. Stress evaluations of participants in military mission are critically important and appropriate objective biological parameters that evaluate stress are needed. In military circumstances, there are several problems to adopt plasma BDNF concentration as a stress biomarker. First, in addition to psychosocial stress, military missions inevitably involve physical exercise that increases plasma BDNF concentrations. Second, most participants in the mission do not have adequate quality or quantity of sleep, and sleep deprivation has also been reported to increase plasma BDNF concentration. We evaluated plasma BDNF concentrations in 52 participants on a 9-week military mission. The present study revealed that plasma BDNF concentration significantly decreased despite elevated serum enzymes that escaped from muscle and decreased quantity and quality of sleep, as detected by a wearable watch-type sensor. In addition, we observed a significant decrease in plasma vascular endothelial growth factor (VEGF) during the mission. VEGF is also neurotrophic and its expression in the brain has been reported to be up-regulated by antidepressive treatments and down-regulated by stress. This is the first report of decreased plasma VEGF concentrations by stress. We conclude that decreased plasma concentrations of neurotrophins can be candidates for mental stress indicators in actual stressful environments that include physical exercise and limited sleep. PMID:24586790

  19. Regulation of GluR2 promoter activity by neurotrophic factors via a neuron-restrictive silencer element.

    PubMed

    Brené, S; Messer, C; Okado, H; Hartley, M; Heinemann, S F; Nestler, E J

    2000-05-01

    The AMPA glutamate receptor subunit GluR2, which plays a critical role in regulation of AMPA channel function, shows altered levels of expression in vivo after several chronic perturbations. To evaluate the possibility that transcriptional mechanisms are involved, we studied a 1254-nucleotide fragment of the 5'-promoter region of the mouse GluR2 gene in neural-derived cell lines. We focused on regulation of GluR2 promoter activity by two neurotrophic factors, which are known to be altered in vivo in some of the same systems that show GluR2 regulation. Glial-cell line derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF) both induced GluR2 promoter activity. This was associated with increased expression of endogenous GluR2 immunoreactivity in the cells as measured by Western blotting. The effect of GDNF and BDNF appeared to be mediated via a NRSE (neuron-restrictive silencer element) present within the GluR2 promoter. The response to these neurotrophic factors was lost upon mutating or deleting this site, but not several other putative response elements present within the promoter. Moreover, overexpression of REST (restrictive element silencer transcription factor; also referred to as NRSF or neuron restrictive silencer factor), which is known to act on NRSEs in other genes to repress gene expression, blocked the ability of GDNF to induce GluR2 promoter activity. However, GDNF did not alter endogenous levels of REST in the cells. Together, these findings suggest that GluR2 expression can be regulated by neurotrophic factors via an apparently novel mechanism involving the NRSE present within the GluR2 gene promoter.

  20. Involvement of Brain-Derived Neurotrophic Factor in Late-Life Depression

    PubMed Central

    Dwivedi, Yogesh

    2013-01-01

    Brain-derived neurotrophic factor (BDNF), one of the major neurotrophic factors, plays an important role in the maintenance and survival of neurons, synaptic integrity, and synaptic plasticity. Evidence suggests that BDNF is involved in major depression, such that the level of BDNF is decreased in depressed patients and that antidepressants reverse this decrease. Stress, a major factor in depression, also modulates BDNF expression. These studies have led to the proposal of the neurotrophin hypothesis of depression. Late-life depression is associated with disturbances in structural and neural plasticity as well as impairments in cognitive behavior. Stress and aging also play a crucial role in late-life depression. Many recent studies have suggested that not only expression of BDNF is decreased in the serum/plasma of patients with late-life depression, but structural abnormalities in the brain of these patients may be associated with a polymorphism in the BDNF gene, and that there is a relationship between a BDNF polymorphism and antidepressant remission rates. This review provides a critical review of the involvement of BDNF in major depression, in general, and in late-life depression, in particular. PMID:23570887

  1. Neurotrophic factors and receptors in the immature and adult spinal cord after mechanical injury or kainic acid.

    PubMed

    Widenfalk, J; Lundströmer, K; Jubran, M; Brene, S; Olson, L

    2001-05-15

    Delivery of neurotrophic factors to the injured spinal cord has been shown to stimulate neuronal survival and regeneration. This indicates that a lack of sufficient trophic support is one factor contributing to the absence of spontaneous regeneration in the mammalian spinal cord. Regulation of the expression of neurotrophic factors and receptors after spinal cord injury has not been studied in detail. We investigated levels of mRNA-encoding neurotrophins, glial cell line-derived neurotrophic factor (GDNF) family members and related receptors, ciliary neurotrophic factor (CNTF), and c-fos in normal and injured spinal cord. Injuries in adult rats included weight-drop, transection, and excitotoxic kainic acid delivery; in newborn rats, partial transection was performed. The regulation of expression patterns in the adult spinal cord was compared with that in the PNS and the neonate spinal cord. After mechanical injury of the adult rat spinal cord, upregulations of NGF and GDNF mRNA occurred in meningeal cells adjacent to the lesion. BDNF and p75 mRNA increased in neurons, GDNF mRNA increased in astrocytes close to the lesion, and GFRalpha-1 and truncated TrkB mRNA increased in astrocytes of degenerating white matter. The relatively limited upregulation of neurotrophic factors in the spinal cord contrasted with the response of affected nerve roots, in which marked increases of NGF and GDNF mRNA levels were observed in Schwann cells. The difference between the ability of the PNS and CNS to provide trophic support correlates with their different abilities to regenerate. Kainic acid delivery led to only weak upregulations of BDNF and CNTF mRNA. Compared with several brain regions, the overall response of the spinal cord tissue to kainic acid was weak. The relative sparseness of upregulations of endogenous neurotrophic factors after injury strengthens the hypothesis that lack of regeneration in the spinal cord is attributable at least partly to lack of trophic support.

  2. Brain-Derived Neurotrophic Factor and Neuropsychiatric Disorders

    PubMed Central

    Autry, Anita E.

    2012-01-01

    Brain derived neurotrophic factor (BDNF) is the most prevalent growth factor in the central nervous system (CNS). It is essential for the development of the CNS and for neuronal plasticity. Because BDNF plays a crucial role in development and plasticity of the brain, it is widely implicated in psychiatric diseases. This review provides a summary of clinical and preclinical evidence for the involvement of this ubiquitous growth factor in major depressive disorder, schizophrenia, addiction, Rett syndrome, as well as other psychiatric and neurodevelopmental diseases. In addition, the review includes a discussion of the role of BDNF in the mechanism of action of pharmacological therapies currently used to treat these diseases, such antidepressants and antipsychotics. The review also covers a critique of experimental therapies such as BDNF mimetics and discusses the value of BDNF as a target for future drug development. PMID:22407616

  3. BBB-Permeable, Neuroprotective, and Neurotrophic Polysaccharide, Midi-GAGR.

    PubMed

    Makani, Vishruti; Jang, Yong-Gil; Christopher, Kevin; Judy, Wesley; Eckstein, Jacob; Hensley, Kenneth; Chiaia, Nicolas; Kim, Dong-Shik; Park, Joshua

    2016-01-01

    An enormous amount of efforts have been poured to find an effective therapeutic agent for the treatment of neurodegenerative diseases including Alzheimer's disease (AD). Among those, neurotrophic peptides that regenerate neuronal structures and increase neuron survival show a promise in slowing neurodegeneration. However, the short plasma half-life and poor blood-brain-barrier (BBB)-permeability of neurotrophic peptides limit their in vivo efficacy. Thus, an alternative neurotrophic agent that has longer plasma half-life and better BBB-permeability has been sought for. Based on the recent findings of neuroprotective polysaccharides, we searched for a BBB-permeable neuroprotective polysaccharide among natural polysaccharides that are approved for human use. Then, we discovered midi-GAGR, a BBB-permeable, long plasma half-life, strong neuroprotective and neurotrophic polysaccharide. Midi-GAGR is a 4.7kD cleavage product of low acyl gellan gum that is approved by FDA for human use. Midi-GAGR protected rodent cortical neurons not only from the pathological concentrations of co-/post-treated free reactive radicals and Aβ42 peptide but also from activated microglial cells. Moreover, midi-GAGR showed a good neurotrophic effect; it enhanced neurite outgrowth and increased phosphorylated cAMP-responsive element binding protein (pCREB) in the nuclei of primary cortical neurons. Furthermore, intra-nasally administered midi-GAGR penetrated the BBB and exerted its neurotrophic effect inside the brain for 24 h after one-time administration. Midi-GAGR appears to activate fibroblast growth factor receptor 1 (FGFR1) and its downstream neurotrophic signaling pathway for neuroprotection and CREB activation. Additionally, 14-day intranasal administration of midi-GAGR not only increased neuronal activity markers but also decreased hyperphosphorylated tau, a precursor of neurofibrillary tangle, in the brains of the AD mouse model, 3xTg-AD. Taken together, midi-GAGR with good BBB

  4. BBB-Permeable, Neuroprotective, and Neurotrophic Polysaccharide, Midi-GAGR

    PubMed Central

    Makani, Vishruti; Jang, Yong-gil; Christopher, Kevin; Judy, Wesley; Eckstein, Jacob; Hensley, Kenneth; Chiaia, Nicolas; Kim, Dong-Shik; Park, Joshua

    2016-01-01

    An enormous amount of efforts have been poured to find an effective therapeutic agent for the treatment of neurodegenerative diseases including Alzheimer’s disease (AD). Among those, neurotrophic peptides that regenerate neuronal structures and increase neuron survival show a promise in slowing neurodegeneration. However, the short plasma half-life and poor blood-brain-barrier (BBB)-permeability of neurotrophic peptides limit their in vivo efficacy. Thus, an alternative neurotrophic agent that has longer plasma half-life and better BBB-permeability has been sought for. Based on the recent findings of neuroprotective polysaccharides, we searched for a BBB-permeable neuroprotective polysaccharide among natural polysaccharides that are approved for human use. Then, we discovered midi-GAGR, a BBB-permeable, long plasma half-life, strong neuroprotective and neurotrophic polysaccharide. Midi-GAGR is a 4.7kD cleavage product of low acyl gellan gum that is approved by FDA for human use. Midi-GAGR protected rodent cortical neurons not only from the pathological concentrations of co-/post-treated free reactive radicals and Aβ42 peptide but also from activated microglial cells. Moreover, midi-GAGR showed a good neurotrophic effect; it enhanced neurite outgrowth and increased phosphorylated cAMP-responsive element binding protein (pCREB) in the nuclei of primary cortical neurons. Furthermore, intra-nasally administered midi-GAGR penetrated the BBB and exerted its neurotrophic effect inside the brain for 24 h after one-time administration. Midi-GAGR appears to activate fibroblast growth factor receptor 1 (FGFR1) and its downstream neurotrophic signaling pathway for neuroprotection and CREB activation. Additionally, 14-day intranasal administration of midi-GAGR not only increased neuronal activity markers but also decreased hyperphosphorylated tau, a precursor of neurofibrillary tangle, in the brains of the AD mouse model, 3xTg-AD. Taken together, midi-GAGR with good BBB

  5. I.V. infusion of brain-derived neurotrophic factor gene-modified human mesenchymal stem cells protects against injury in a cerebral ischemia model in adult rat.

    PubMed

    Nomura, T; Honmou, O; Harada, K; Houkin, K; Hamada, H; Kocsis, J D

    2005-01-01

    I.V. delivery of mesenchymal stem cells prepared from adult bone marrow reduces infarction size and ameliorates functional deficits in rat cerebral ischemia models. Administration of the brain-derived neurotrophic factor to the infarction site has also been demonstrated to be neuroprotective. To test the hypothesis that brain-derived neurotrophic factor contributes to the therapeutic benefits of mesenchymal stem cell delivery, we compared the efficacy of systemic delivery of human mesenchymal stem cells and human mesenchymal stem cells transfected with a fiber-mutant F/RGD adenovirus vector with a brain-derived neurotrophic factor gene (brain-derived neurotrophic factor-human mesenchymal stem cells). A permanent middle cerebral artery occlusion was induced by intraluminal vascular occlusion with a microfilament. Human mesenchymal stem cells and brain-derived neurotrophic factor-human mesenchymal stem cells were i.v. injected into the rats 6 h after middle cerebral artery occlusion. Lesion size was assessed at 6 h, 1, 3 and 7 days using MR imaging, and histological methods. Functional outcome was assessed using the treadmill stress test. Both human mesenchymal stem cells and brain-derived neurotrophic factor-human mesenchymal stem cells reduced lesion volume and elicited functional improvement compared with the control sham group, but the effect was greater in the brain-derived neurotrophic factor-human mesenchymal stem cell group. ELISA analysis of the infarcted hemisphere revealed an increase in brain-derived neurotrophic factor in the human mesenchymal stem cell groups, but a greater increase in the brain-derived neurotrophic factor-human mesenchymal stem cell group. These data support the hypothesis that brain-derived neurotrophic factor contributes to neuroprotection in cerebral ischemia and cellular delivery of brain-derived neurotrophic factor can be achieved by i.v. delivery of human mesenchymal stem cells.

  6. Brain-Derived Neurotrophic Factor Signaling Rewrites the Glucocorticoid Transcriptome via Glucocorticoid Receptor Phosphorylation

    PubMed Central

    Lambert, W. Marcus; Xu, Chong-Feng; Neubert, Thomas A.; Chao, Moses V.

    2013-01-01

    Abnormal glucocorticoid and neurotrophin signaling has been implicated in numerous psychiatric disorders. However, the impact of neurotrophic signaling on glucocorticoid receptor (GR)-dependent gene expression is not understood. We therefore examined the impact of brain-derived neurotrophic factor (BDNF) signaling on GR transcriptional regulatory function by gene expression profiling in primary rat cortical neurons stimulated with the selective GR agonist dexamethasone (Dex) and BDNF, alone or in combination. Simultaneous treatment with BDNF and Dex elicited a unique set of GR-responsive genes associated with neuronal growth and differentiation and also enhanced the induction of a large number of Dex-sensitive genes. BDNF via its receptor TrkB enhanced the transcriptional activity of a synthetic GR reporter, suggesting a direct effect of BDNF signaling on GR function. Indeed, BDNF treatment induces the phosphorylation of GR at serine 155 (S155) and serine 287 (S287). Expression of a nonphosphorylatable mutant (GR S155A/S287A) impaired the induction of a subset of BDNF- and Dex-regulated genes. Mechanistically, BDNF-induced GR phosphorylation increased GR occupancy and cofactor recruitment at the promoter of a BDNF-enhanced gene. GR phosphorylation in vivo is sensitive to changes in the levels of BDNF and TrkB as well as stress. Therefore, BDNF signaling specifies and amplifies the GR transcriptome through a coordinated GR phosphorylation-dependent detection mechanism. PMID:23878391

  7. Brain-Derived Neurotrophic Factor Serum Levels and Genotype: Association with Depression during Interferon-α Treatment

    PubMed Central

    Lotrich, Francis E; Albusaysi, Salwa; Ferrell, Robert E

    2013-01-01

    Depression has been associated with inflammation, and inflammation may both influence and interact with growth factors such as brain-derived neurotrophic factor (BDNF). Both the functional Val66Met BDNF polymorphism (rs6265) and BDNF levels have been associated with depression. It is thus plausible that decreased BDNF could mediate and/or moderate cytokine-induced depression. We therefore prospectively employed the Beck Depression Inventory-II (BDI-II), the Hospital Anxiety and Depression Scale (HADS), and the Montgomery–Asberg Depression Rating Scale (MADRS) in 124 initially euthymic patients during treatment with interferon-alpha (IFN-α), assessing serum BDNF and rs6265. Using mixed-effect repeated measures, lower pretreatment BDNF was associated with higher depression symptoms during IFN-α treatment (F144,17.2=6.8; P<0.0001). However, although the Met allele was associated with lower BDNF levels (F1,83.0=5.0; P=0.03), it was only associated with increased MADRS scores (F4,8.9=20.3; P<0.001), and not the BDI-II or HADS. An exploratory comparison of individual BDI-II items indicated that the Met allele was associated with suicidal ideation, sadness, and worthlessness, but not neurovegetative symptoms. Conversely, the serotonin transporter promoter polymorphism (5-HTTLPR) short allele was associated with neurovegetative symptoms such as insomnia, poor appetite and fatigue, but not sadness, worthlessness, or suicidal ideation. IFN-α therapy further lowered BDNF serum levels (F4,37.7=5.0; P=0.003), but this decrease occurred regardless of depression development. The findings thus do not support the hypothesis that decreasing BDNF is the primary pathway by which IFN-α worsens depression. Nonetheless, the results support the hypothesis that BDNF levels influence resiliency against developing inflammatory cytokine-associated depression, and specifically to a subset of symptoms distinct from those influenced by 5-HTTLPR. PMID:23303061

  8. History of Glial Cell Line-Derived Neurotrophic Factor (GDNF) and Its Use for Spinal Cord Injury Repair.

    PubMed

    Walker, Melissa J; Xu, Xiao-Ming

    2018-06-13

    Following an initial mechanical insult, traumatic spinal cord injury (SCI) induces a secondary wave of injury, resulting in a toxic lesion environment inhibitory to axonal regeneration. This review focuses on the glial cell line-derived neurotrophic factor (GDNF) and its application, in combination with other factors and cell transplantations, for repairing the injured spinal cord. As studies of recent decades strongly suggest that combinational treatment approaches hold the greatest therapeutic potential for the central nervous system (CNS) trauma, future directions of combinational therapies will also be discussed.

  9. Neurotrophic effects of growth/differentiation factor 5 in a neuronal cell line.

    PubMed

    Toulouse, André; Collins, Grace C; Sullivan, Aideen M

    2012-04-01

    The neurotrophin growth/differentiation factor 5 (GDF5) is studied as a potential therapeutic agent for Parkinson's disease as it is believed to play a role in the development and maintenance of the nigrostriatal system. Progress in understanding the effects of GDF5 on dopaminergic neurones has been hindered by the use of mixed cell populations derived from primary cultures or in vivo experiments, making it difficult to differentiate between direct and indirect effects of GDF5 treatment on neurones. In an attempt to establish an useful model to study the direct neuronal influence of GDF5, we have characterised the effects of GDF5 on a human neuronal cell line, SH-SY5Y. Our results show that GDF5 has the capability to promote neuronal but not dopaminergic differentiation. We also show that it promotes neuronal survival in vitro following a 6-hydroxydopamine insult. Our results show that application of GDF5 to SH-SY5Y cultures induces the SMAD pathway which could potentially be implicated in the intracellular transmission of GDF5's neurotrophic effects. Overall, our study shows that the SH-SY5Y neuroblastoma cell line provides an excellent neuronal model to study the neurotrophic effects of GDF5.

  10. Role of neurotrophic factors in attention deficit hyperactivity disorder.

    PubMed

    Tsai, Shih-Jen

    2017-04-01

    Neurotrophins (NTs), a family of proteins including nerve growth factor, brain-derived neurotrophic factor (BDNF), neurotrophin-3, and neurotrophin-4, are essential for neural growth, survival, and differentiation, and are therefore crucial for brain development. Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder characterized by problems of inattention and/or hyperactivity-impulsivity. ADHD is one of the most common childhood onset psychiatric disorders. Studies have suggested that both genetic and environmental factors influence the development of the disorder, although the precise causes of ADHD have not yet been identified. In this review, we assess the role of NTs in the pathophysiology of ADHD. Preclinical evidence indicates that BDNF knockout mice are hyperactive, and an ADHD rodent model exhibited decreased cerebral BDNF levels. Several lines of evidence from clinical studies, including blood level and genetic studies, have suggested that NTs are involved in the pathogenesis of ADHD and in the mechanism of biological treatments for ADHD. Future directions for research are proposed, such as using blood NTs as ADHD biomarkers, optimizing NT genetic studies in ADHD, considering NTs as a link between ADHD and other comorbid mental disorders, and investigating methods for optimally modulating NT signaling to discover novel therapeutics for treating ADHD. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Effect of Mirtazapine Treatment on Serum Levels of Brain-Derived Neurotrophic Factor and Tumor Necrosis Factor-α in Patients of Major Depressive Disorder with Severe Depression.

    PubMed

    Gupta, Rachna; Gupta, Keshav; Tripathi, A K; Bhatia, M S; Gupta, Lalit K

    2016-01-01

    This study evaluated the clinical efficacy of mirtazapine and its effect on serum brain-derived neurotrophic factor (BDNF) and tumor necrosis factor-α (TNF-α) levels in patients of major-depressive disorder (MDD) with severe depression. Patients (aged 18-60) with MDD diagnosed by DSM-IV criteria, and Hamilton Rating Scale for Depression (HAM-D) score ≥25 were included (n = 30). Mirtazapine was given in the doses of 30 mg/day. All patients were followed up for 12 weeks for the evaluation of clinical efficacy, safety along with serum BDNF and TNF-α levels. HAM-D score at the start of treatment was 30.1 ± 1.92, which significantly (p < 0.05) reduced to 13.47 ± 1.77 at 12 weeks of treatment. In responders, mean serum BDNF levels at the start of treatment were 2.32 ± 0.3 ng/ml, which significantly (p < 0.05) increased to 2.79 ± 0.33 ng/ml at 12 weeks of treatment and mean serum TNF-α levels at the start were 5.18 ± 0.67 pg/ml, which significantly decreased to 4.36 ± 0.72 pg/ml (p < 0.05) at 12 weeks of treatment. Our results suggest that mirtazapine is effective and well tolerated in severely depressed patients and treatment response is associated with an increase in serum BDNF and a decrease in serum TNF-α levels. © 2016 S. Karger AG, Basel.

  12. Prevention of Memory Impairment and Neurotrophic Factors Increased by Lithium in Wistar Rats Submitted to Pneumococcal Meningitis Model

    PubMed Central

    Simões, Lutiana R.; Abreu, Roberta R. E. S.; Goularte, Jéssica A.; Collodel, Allan; Giridharan, Vijayasree Vayalanellore

    2017-01-01

    The aim of this study was to investigate the effects of lithium on brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), and glial cell line-derived neurotrophic factor (GDNF) expression in the hippocampus and on memory in experimental pneumococcal meningitis. The mood-stabilizer lithium is known as a neuroprotective agent with many effects on the brain. In this study, animals received either artificial cerebrospinal fluid or Streptococcus pneumoniae suspension at a concentration of 5 × 109 CFU/mL. Eighteen hours after induction, all animals received ceftriaxone. The animals received saline or lithium (47.5 mg/kg) or tamoxifen (1 mg/kg) as adjuvant treatment, and they were separated into six groups: control/saline, control/lithium, control/tamoxifen, meningitis/saline, meningitis/lithium, and meningitis/tamoxifen. Ten days after meningitis induction, animals were subjected to open-field habituation and the step-down inhibitory avoidance tasks. Immediately after these tasks, the animals were killed and their hippocampus was removed to evaluate the expression of BDNF, NGF, and GDNF. In the meningitis group, treatment with lithium and tamoxifen resulted in improvement in memory. Meningitis group showed decreased expression of BDNF and GDNF in the hippocampus while lithium reestablished the neurotrophin expression. Lithium was able to prevent memory impairment and reestablishes hippocampal neurotrophin expression in experimental pneumococcal meningitis. PMID:29200666

  13. Brain-derived neurotrophic factor heterozygous mutant rats show selective cognitive changes and vulnerability to chronic corticosterone treatment.

    PubMed

    Gururajan, A; Hill, R A; van den Buuse, M

    2015-01-22

    Brain-derived neurotrophic factor (BDNF) is a widely expressed neurotrophin involved in neurodevelopment, neuroprotection and synaptic plasticity. It is also implicated in a range of psychiatric disorders such as schizophrenia, depression and post-traumatic stress disorder. Stress during adolescence/young adulthood can have long-term psychiatric and cognitive consequences, however it is unknown how altered BDNF signaling is involved in such effects. Here we investigated whether a congenital deficit in BDNF availability in rats increases vulnerability to the long-term effects of the stress hormone, corticosterone (CORT). Compared to wildtype (WT) littermates, BDNF heterozygous (HET) rats showed higher body weights and minor developmental changes, such as reduced relative brain and pituitary weight. These animals furthermore showed deficits in short-term spatial memory in the Y-maze and in prepulse inhibition and startle, but not in object-recognition memory. CORT treatment induced impairments in novel-object recognition memory in both genotypes but disrupted fear conditioning extinction learning in BDNF HET rats only. These results show selective behavioral changes in BDNF HET rats, at baseline or after chronic CORT treatment and add to our understanding of the role of BDNF and its interaction with stress. Importantly, this study demonstrates the utility of the BDNF HET rat in investigations into the pathophysiology of various psychiatric disorders. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  14. [6]-shogaol attenuates neuronal apoptosis in hydrogen peroxide-treated astrocytes through the up-regulation of neurotrophic factors.

    PubMed

    Kim, Sokho; Kwon, Jungkee

    2013-12-01

    Neuronal apoptosis induced by oxidative stress is a prominent feature of neurodegenerative disorders. [6]-shogaol, a bio-active compound in ginger, possesses potent anti-inflammatory actions and has recently emerged as a potential therapeutic agent for neurodegenerative disorders. However, the effects of [6]-shogaol on astroglial apoptosis following exogenously induced oxidative stress has not yet been investigated. Here, we show that the anti-apoptotic activity of [6]-shogaol in astrocytes following exposure to hydrogen peroxide (H2 O2 ) involves a marked up-regulation of neurotrophic factors such as nerve growth factor, glial cell line-derived neurotrophic factor, and brain-derived neurotrophic factor. Astrocytes co-treated with [6]-shogaol and H2 O2 for 1 h showed decrease in reactive oxygen species production compared with those only treated with H2 O2 . Moreover, [6]-shogaol counteracted the reduced expression of ERK1/2 in H2 O2 -treated astrocytes and protected these cells from oxidative stress and apoptosis by attenuating the impairment of mitochondrial function proteins such as Bcl-2 and Bcl-xL. Additionally, [6]-shogaol inhibits the expression of the apoptotic proteins Bax and caspase-3 in H2 O2 -treated astrocytes. This data suggest that following oxidative stress, [6]-shogaol protects astrocytes from oxidative damage through the up-regulating levels of neurotrophic factors. These findings provide further support for the use of [6]-shogaol as a therapeutic agent in neurodegenerative disorders. Copyright © 2013 John Wiley & Sons, Ltd.

  15. Modulation of neurotrophic signaling pathways by polyphenols

    PubMed Central

    Moosavi, Fatemeh; Hosseini, Razieh; Saso, Luciano; Firuzi, Omidreza

    2016-01-01

    Polyphenols are an important class of phytochemicals, and several lines of evidence have demonstrated their beneficial effects in the context of a number of pathologies including neurodegenerative disorders such as Alzheimer’s and Parkinson’s disease. In this report, we review the studies on the effects of polyphenols on neuronal survival, growth, proliferation and differentiation, and the signaling pathways involved in these neurotrophic actions. Several polyphenols including flavonoids such as baicalein, daidzein, luteolin, and nobiletin as well as nonflavonoid polyphenols such as auraptene, carnosic acid, curcuminoids, and hydroxycinnamic acid derivatives including caffeic acid phentyl ester enhance neuronal survival and promote neurite outgrowth in vitro, a hallmark of neuronal differentiation. Assessment of underlying mechanisms, especially in PC12 neuronal-like cells, reveals that direct agonistic effect on tropomyosin receptor kinase (Trk) receptors, the main receptors of neurotrophic factors including nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) explains the action of few polyphenols such as 7,8-dihydroxyflavone. However, several other polyphenolic compounds activate extracellular signal-regulated kinase (ERK) and phosphoinositide 3-kinase (PI3K)/Akt pathways. Increased expression of neurotrophic factors in vitro and in vivo is the mechanism of neurotrophic action of flavonoids such as scutellarin, daidzein, genistein, and fisetin, while compounds like apigenin and ferulic acid increase cyclic adenosine monophosphate response element-binding protein (CREB) phosphorylation. Finally, the antioxidant activity of polyphenols reflected in the activation of Nrf2 pathway and the consequent upregulation of detoxification enzymes such as heme oxygenase-1 as well as the contribution of these effects to the neurotrophic activity have also been discussed. In conclusion, a better understanding of the neurotrophic effects of polyphenols and

  16. Cortisol and Brain-Derived Neurotrophic Factor Levels Prior to Treatment in Children With Obsessive-Compulsive Disorder.

    PubMed

    Şimşek, Şeref; Gençoğlan, Salih; Yüksel, Tuğba; Kaplan, İbrahim; Alaca, Rümeysa

    2016-07-01

    In this study, we investigated serum brain-derived neurotrophic factor (BDNF), adrenocorticotropic hormone (ACTH), and cortisol levels between children with obsessive-compulsive disorder (OCD) prior to treatment and healthy controls. In addition, the study aimed to assess any correlations between OCD symptom severity and BDNF, ACTH, and cortisol levels. Twenty-nine children, aged from 7 to 17 years (male/female: 21/8) and diagnosed with OCD according to DSM-IV prior to treatment, were compared with 25 healthy control subjects (male/female: 16/9). The study was conducted between December 2012 and December 2013. The Kiddie Schedule for Affective Disorders and Schizophrenia, Present and Lifetime Version (K-SADS-PL), Children's Yale-Brown Obsessive Compulsive Scale, and Children's Depression Inventory (CDI) were administered to the children. BDNF, ACTH, and cortisol levels were detected using a prepared kit with the enzyme-linked immunosorbent assay method. BDNF, ACTH, and cortisol levels in the OCD group were significantly higher when compared with the control group (P = .02, P = .03, and P = .046, respectively). No association was detected between the severity and duration of OCD symptoms and BDNF, ACTH, and cortisol levels. CDI scores in both groups were similar. The mean (SD) duration of OCD symptoms was 17.9 (18.5) months. Our findings suggest that BDNF levels adaptively increase as a result of the damaging effects of the hypothalamic-pituitary-adrenal (HPA) axis hyperactivity on brain tissue in the early stages of OCD. HPA axis abnormalities and BDNF may play a role in the pathogenesis of the disease. © Copyright 2016 Physicians Postgraduate Press, Inc.

  17. Translating neurotrophic and cellular plasticity: from pathophysiology to improved therapeutics for bipolar disorder.

    PubMed

    Soeiro-de-Souza, M G; Dias, V V; Figueira, M L; Forlenza, O V; Gattaz, W F; Zarate, C A; Machado-Vieira, R

    2012-11-01

    Bipolar disorder (BD) likely involves, at a molecular and cellular level, dysfunctions of critical neurotrophic, cellular plasticity and resilience pathways and neuroprotective processes. Therapeutic properties of mood stabilizers are presumed to result from a restoration of the function of these altered pathways and processes through a wide range of biochemical and molecular effects. We aimed to review the altered pathways and processes implicated in BD, such as neurotrophic factors, mitogen-activated protein kinases, Bcl-2, phosphoinositol signaling, intracellular calcium and glycogen synthase kinase-3. We undertook a literature search of recent relevant journal articles, book chapter and reviews on neurodegeneration and neuroprotection in BD. Search words entered were 'brain-derived neurotrophic factor,''Bcl-2,''mitogen-activated protein kinases,''neuroprotection,''calcium,''bipolar disorder,''mania,' and 'depression.' The most consistent and replicated findings in the pathophysiology of BD may be classified as follows: i) calcium dysregulation, ii) mitochondrial/endoplasmic reticulum dysfunction, iii) glial and neuronal death/atrophy and iv) loss of neurotrophic/plasticity effects in brain areas critically involved in mood regulation. In addition, the evidence supports that treatment with mood stabilizers; in particular, lithium restores these pathophysiological changes. Bipolar disorder is associated with impairments in neurotrophic, cellular plasticity and resilience pathways as well as in neuroprotective processes. The evidence supports that treatment with mood stabilizers, in particular lithium, restores these pathophysiological changes. Studies that attempt to prevent (intervene before the onset of the molecular and cellular changes), treat (minimize severity of these deficits over time), and rectify (reverse molecular and cellular deficits) are promising therapeutic strategies for developing improved treatments for bipolar disorder. © 2012 John Wiley

  18. Changes in compressed neurons from dogs with acute and severe cauda equina constrictions following intrathecal injection of brain-derived neurotrophic factor-conjugated polymer nanoparticles☆

    PubMed Central

    Tan, Junming; Shi, Jiangang; Shi, Guodong; Liu, Yanling; Liu, Xiaohong; Wang, Chaoyang; Chen, Dechun; Xing, Shunming; Shen, Lianbing; Jia, Lianshun; Ye, Xiaojian; He, Hailong; Li, Jiashun

    2013-01-01

    This study established a dog model of acute multiple cauda equina constriction by experimental constriction injury (48 hours) of the lumbosacral central processes in dorsal root ganglia neurons. The repair effect of intrathecal injection of brain-derived neurotrophic factor with 15 mg encapsulated biodegradable poly(lactide-co-glycolide) nanoparticles on this injury was then analyzed. Dorsal root ganglion cells (L7) of all experimental dogs were analyzed using hematoxylin-eosin staining and immunohistochemistry at 1, 2 and 4 weeks following model induction. Intrathecal injection of brain-derived neurotrophic factor can relieve degeneration and inflammation, and elevate the expression of brain-derived neurotrophic factor in sensory neurons of compressed dorsal root ganglion. Simultaneously, intrathecal injection of brain-derived neurotrophic factor obviously improved neurological function in the dog model of acute multiple cauda equina constriction. Results verified that sustained intraspinal delivery of brain-derived neurotrophic factor encapsulated in biodegradable nanoparticles promoted the repair of histomorphology and function of neurons within the dorsal root ganglia in dogs with acute and severe cauda equina syndrome. PMID:25206593

  19. Brain-derived neurotrophic factor (BDNF) and oxidative stress in heroin-dependent male patients undergoing methadone maintenance treatment.

    PubMed

    Tsai, Meng-Chang; Huang, Tiao-Lai

    2017-03-01

    Brain-derived neurotrophic factor (BDNF) and oxidative stress may play a role in patients with heroin dependence. The aim of this study was to investigate the serum levels and activities of BDNF and oxidative stress markers, such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), thiobarbituric acid reactive substances (TBARS), protein carbonyl content (PCC), and 8-hydroxy 2'-deoxyguanosine (8-OHdG), in heroin-dependent patients undergoing methadone maintenance treatment (MMT). 60 heroin-dependent male MMT patients and 30 healthy males were recruited for this study. The serum BDNF and oxidative stress markers of these subjects were measured with assay kits. Analyses of covariance (ANCOVAs) with age and body mass index adjustments indicated that the serum levels of BDNF in the MMT patients were significantly higher than those in the healthy controls (F=5.169; p=0.026). However, there were no significant differences between the heroin-dependent patients and the healthy controls in the serum levels or activities of oxidative stress markers (p>0.05). In conclusion, our results suggest that MMT increases BDNF levels in heroin-dependent patients, and that patients undergoing MMT might be in a balanced state of reduced oxidation. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  20. Translating neurotrophic and cellular plasticity: from pathophysiology to improved therapeutics for bipolar disorder

    PubMed Central

    Soeiro-de-Souza, M. G.; Dias, V. V.; Figueira, M. L.; Forlenza, O. V.; Gattaz, W. F.; Zarate, C. A.; Machado-Vieira, R.

    2014-01-01

    Objective Bipolar disorder (BD) likely involves, at a molecular and cellular level, dysfunctions of critical neurotrophic, cellular plasticity and resilience pathways and neuroprotective processes. Therapeutic properties of mood stabilizers are presumed to result from a restoration of the function of these altered pathways and processes through a wide range of biochemical and molecular effects. We aimed to review the altered pathways and processes implicated in BD, such as neurotrophic factors, mitogen-activated protein kinases, Bcl-2, phosphoinositol signaling, intracellular calcium and glycogen synthase kinase-3. Methods We undertook a literature search of recent relevant journal articles, book chapter and reviews on neurodegeneration and neuroprotection in BD. Search words entered were ‘brain-derived neurotrophic factor,’ ‘Bcl-2,’ ‘mitogen-activated protein kinases,’ ‘neuroprotection,’ ‘calcium,’ ‘bipolar disorder,’ ‘mania,’ and ‘depression.’ Results The most consistent and replicated findings in the pathophysiology of BD may be classified as follows: i) calcium dysregulation, ii) mitochondrial/endoplasmic reticulum dysfunction, iii) glial and neuronal death/atrophy and iv) loss of neurotrophic/plasticity effects in brain areas critically involved in mood regulation. In addition, the evidence supports that treatment with mood stabilizers; in particular, lithium restores these pathophysiological changes. Conclusion Bipolar disorder is associated with impairments in neurotrophic, cellular plasticity and resilience pathways as well as in neuroprotective processes. The evidence supports that treatment with mood stabilizers, in particular lithium, restores these pathophysiological changes. Studies that attempt to prevent (intervene before the onset of the molecular and cellular changes), treat (minimize severity of these deficits over time), and rectify (reverse molecular and cellular deficits) are promising therapeutic strategies for

  1. Brain-derived Neurotrophic Factor (BDNF) and gray matter volume in bipolar disorder.

    PubMed

    Poletti, S; Aggio, V; Hoogenboezem, T A; Ambrée, O; de Wit, H; Wijkhuijs, A J M; Locatelli, C; Colombo, C; Arolt, V; Drexhage, H A; Benedetti, F

    2017-02-01

    Bipolar Disorder (BD) is a severe psychiatric condition characterized by grey matter (GM) volumes reduction. Neurotrophic factors have been suggested to play a role in the neuroprogressive changes during the illness course. In particular peripheral brain-derived neurotrophic factor (BDNF) has been proposed as a potential biomarker related to disease activity and neuroprogression in BD. The aim of our study was to investigate if serum levels of BDNF are associated with GM volumes in BD patients and healthy controls (HC). We studied 36 inpatients affected by a major depressive episode in course of BD type I and 17 HC. Analysis of variance was performed to investigate the effect of diagnosis on GM volumes in the whole brain. Threshold for significance was P<0.05, Family Wise Error (FWE) corrected for multiple comparisons. All the analyses were controlled for the effect of nuisance covariates known to influence GM volumes, such as age, gender and lithium treatment. BD patients showed significantly higher serum BDNF levels compared with HC. Reduced GM volumes in BD patients compared to HC were observed in several brain areas, encompassing the caudate head, superior temporal gyrus, insula, fusiform gyrus, parahippocampal gyrus, and anterior cingulate cortex. The interaction analysis between BDNF levels and diagnosis showed a significant effect in the middle frontal gyrus. HC reported higher BDNF levels associated with higher GM volumes, whereas no association between BDNF and GM volumes was observed in BD. Our study seems to suggest that although the production of BDNF is increased in BD possibly to prevent and repair neural damage, its effects could be hampered by underlying neuroinflammatory processes interfering with the neurodevelopmental role of BDNF. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  2. Subchronic treatment with fluoxetine and ketanserin increases hippocampal brain-derived neurotrophic factor, β-catenin and antidepressant-like effects.

    PubMed

    Pilar-Cuéllar, F; Vidal, R; Pazos, A

    2012-02-01

    5-HT(2A) receptor antagonists improve antidepressant responses when added to 5-HT-selective reuptake inhibitors (SSRIs) or tricyclic antidepressants. Here, we have studied the involvement of neuroplasticity pathways and/or the 5-hydroxytryptaminergic system in the antidepressant-like effect of this combined treatment, given subchronically. Expression of brain-derived neurotrophic factor (BDNF) and its receptor (TrkB), 5-bromo-2'-deoxyuridine (BrdU) incorporation, and β-catenin protein expression in different cellular fractions, as well as 5-HT(1A) receptor function were measured in the hippocampus of rats treated with fluoxetine, ketanserin and fluoxetine + ketanserin for 7 days, followed by a forced swimming test (FST) to analyse antidepressant efficacy. mRNA for BDNF was increased in the CA3 field and dentate gyrus of the hippocampus by combined treatment with fluoxetine + ketanserin. Expression of β-catenin was increased in total hippocampal homogenate and in the membrane fraction, but unchanged in the nuclear fraction after combined treatment with fluoxetine + ketanserin. These effects were paralleled by a decreased immobility time in the FST. There were no changes in BrdU incorporation, TrkB expression and 5-HT(1A) receptor function in any of the groups studied. The antidepressant-like effect induced by subchronic co-treatment with a SSRI and a 5-HT(2A) receptor antagonist may mainly be because of modifications in hippocampal neuroplasticity (BDNF and membrane-associated β-catenin), without a significant role for other mechanisms involved in chronic antidepressant response, such as hippocampal neuroproliferation or 5-HT(1A) receptor desensitization in the dorsal raphe nucleus. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  3. Brain-Derived Neurotrophic Factor Levels in Autism: A Systematic Review and Meta-Analysis

    ERIC Educational Resources Information Center

    Saghazadeh, Amene; Rezaei, Nima

    2017-01-01

    Brain-derived neurotrophic factor (BDNF) plays an important role in activity-dependent synaptic plasticity. Altered blood BDNF levels have been frequently identified in people with autism spectrum disorders (ASD). There are however wide discrepancies in the evidence. Therefore, we performed the present systematic review and meta-analysis aimed at…

  4. Ciliary neurotrophic factor is an endogenous pyrogen.

    PubMed

    Shapiro, L; Zhang, X X; Rupp, R G; Wolff, S M; Dinarello, C A

    1993-09-15

    Fever is initiated by the action of polypeptide cytokines called endogenous pyrogens, which are produced by the host during inflammation, trauma, or infection and which elevate the thermoregulatory set point in the hypothalamus. Ciliary neurotrophic factor (CNTF) supports the differentiation and survival of central and peripheral neurons. We describe the activity of CNTF as intrinsically pyrogenic in the rabbit. CNTF induced a monophasic fever which rose rapidly (within the first 12 min) following intravenous injection; CNTF fever was blocked by pretreatment with indomethacin. The fever induced by CNTF was not due to contaminating endotoxins. Increasing doses of CNTF resulted in prolongation of the fever, suggesting the subsequent induction of additional endogenous pyrogenic activity. After passive transfer of plasma obtained during CNTF-induced fever, endogenous pyrogen activity was not present in the circulation; CNTF also did not induce the endogenous pyrogens interleukin 1, tumor necrosis factor, or interleukin 6 in vitro. Nevertheless, a second endogenous pyrogen may originate within the central nervous system following the systemic injection of CNTF. Of the four endogenous pyrogens described to date (interleukin 1, tumor necrosis factor, interferon, and interleukin 6), CNTF, like interleukin 6, utilizes the cell-surface gp 130 signal-transduction apparatus.

  5. A putative model of overeating and obesity based on brain-derived neurotrophic factor: direct and indirect effects.

    PubMed

    Ooi, Cara L; Kennedy, James L; Levitan, Robert D

    2012-08-01

    Increased food intake is a major contributor to the obesity epidemic in all age groups. Elucidating brain systems that drive overeating and that might serve as targets for novel prevention and treatment interventions is thus a high priority for obesity research. The authors consider 2 major pathways by which decreased activity of brain-derived neurotrophic factor (BDNF) may confer vulnerability to overeating and weight gain in an obesogenic environment. The first "direct" pathway focuses on the specific role of BDNF as a mediator of food intake control at brain areas rich in BDNF receptors, including the hypothalamus and hindbrain. It is proposed that low BDNF activity limited to this direct pathway may best explain overeating and obesity outside the context of major neuropsychiatric disturbance. A second "indirect" pathway considers the broad neurotrophic effects of BDNF on key monoamine systems that mediate mood dysregulation, impulsivity, and executive dysfunction as well as feeding behavior per se. Disruption in this pathway may best explain overeating and obesity in the context of various neuropsychiatric disturbances including mood disorders, attention-deficit disorder, and/or binge eating disorders. An integrative model that considers these potential roles of BDNF in promoting obesity is presented. The implications of this model for the early prevention and treatment of obesity are also considered.

  6. REGULATION OF BRAIN-DERIVED NEUROTROPHIC FACTOR MESSENGER RNA LEVELS IN AVIAN HYPOTHALAMIC SLICE CULTURES. (R825294)

    EPA Science Inventory

    Mechanisms regulating the expression of brain-derived neurotrophic factor, a member of the neurotrophin family, have been extensively studied in the rat cerebral cortex, hippocampus and cerebellum. In contrast, little is known regarding the regulation of this growth factor in ...

  7. Alterations in BDNF (brain derived neurotrophic factor) and GDNF (glial cell line-derived neurotrophic factor) serum levels in bipolar disorder: The role of lithium.

    PubMed

    Tunca, Zeliha; Ozerdem, Aysegul; Ceylan, Deniz; Yalçın, Yaprak; Can, Güneş; Resmi, Halil; Akan, Pınar; Ergör, Gül; Aydemir, Omer; Cengisiz, Cengiz; Kerim, Doyuran

    2014-09-01

    Brain-derived neurotrophic factor (BDNF) has been consistently reported to be decreased in mania or depression in bipolar disorders. Evidence suggests that Glial cell line-derived neurotrophic factor (GDNF) has a role in the pathogenesis of mood disorders. Whether GDNF and BDNF act in the same way across different episodes in bipolar disorders is unclear. BDNF and GDNF serum levels were measured simultaneously by enzyme-linked immunosorbent assay (ELISA) method in 96 patients diagnosed with bipolar disorder according to DSM-IV (37 euthymic, 33 manic, 26 depressed) in comparison to 61 healthy volunteers. SCID- I and SCID-non patient version were used for clinical evaluation of the patients and healthy volunteers respectively. Correlations between the two trophic factor levels, and medication dose, duration and serum levels of lithium or valproate were studied across different episodes of illness. Patients had significantly lower BDNF levels during mania and depression compared to euthymic patients and healthy controls. GDNF levels were not distinctive. However GDNF/BDNF ratio was higher in manic state compared to euthymia and healthy controls. Significant negative correlation was observed between BDNF and GDNF levels in euthymic patients. While BDNF levels correlated positively, GDNF levels correlated negatively with lithium levels. Regression analysis confirmed that lithium levels predicted only GDNF levels positively in mania, and negatively in euthymia. Small sample size in different episodes and drug-free patients was the limitation of thestudy. Current data suggests that lithium exerts its therapeutic action by an inverse effect on BDNF and GDNF levels, possibly by up-regulating BDNF and down-regulating GDNF to achieve euthymia. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Long-term delivery of brain-derived neurotrophic factor (BDNF) from nanoporous silica nanoparticles improves the survival of spiral ganglion neurons in vitro

    PubMed Central

    Warwas, Dawid P.; Ehlert, Nina; Lenarz, Thomas; Warnecke, Athanasia; Behrens, Peter

    2018-01-01

    Sensorineural hearing loss (SNHL) can be overcome by electrical stimulation of spiral ganglion neurons (SGNs) via a cochlear implant (CI). Restricted CI performance results from the spatial gap between the SGNs and the electrode, but the efficacy of CI is also limited by the degeneration of SGNs as one consequence of SHNL. In the healthy cochlea, the survival of SGNs is assured by endogenous neurotrophic support. Several applications of exogenous neurotrophic supply have been shown to reduce SGN degeneration in vitro and in vivo. In the present study, nanoporous silica nanoparticles (NPSNPs), with an approximate diameter of <100 nm, were loaded with the brain-derived neurotrophic factor (BDNF) to test their efficacy as long-term delivery system for neurotrophins. The neurotrophic factor was released constantly from the NPSNPs over a release period of 80 days when the surface of the nanoparticles had been modified with amino groups. Cell culture investigations with NIH3T3 fibroblasts attest a good general cytocompatibility of the NPSNPs. In vitro experiments with SGNs indicate a significantly higher survival rate of SGNs in cell cultures that contained BDNF-loaded nanoparticles compared to the control culture with unloaded NPSNPs (p<0.001). Importantly, also the amounts of BDNF released up to a time period of 39 days increased the survival rate of SGNs. Thus, NPSNPs carrying BDNF are suitable for the treatment of inner ear disease and for the protection and the support of SGNs. Their nanoscale nature and the fact that a direct contact of the nanoparticles and the SGNs is not necessary for neuroprotective effects, should allow for the facile preparation of nanocomposites, e.g., with biocompatible polymers, to install coatings on implants for the realization of implant-based growth factor delivery systems. PMID:29584754

  9. Restoration of Long-Term Potentiation in Middle-Aged Hippocampus After Induction of Brain-Derived Neurotrophic Factor

    PubMed Central

    Rex, Christopher S.; Lauterborn, Julie C.; Lin, Ching-Yi; Kramár, Eniko A.; Rogers, Gary A.; Gall, Christine M.; Lynch, Gary

    2006-01-01

    Rex, Christopher S., Julie C. Lauterborn, Ching-Yi Lin, Eniko A. Kramár, Gary A. Rogers, Christine M. Gall, and Gary Lynch. Restoration of long-term potentiation in middle-aged hippocampus after induction of brain-derived neurotrophic factor. J Neurophysiol 96: 677-685, 2006. First published May 17, 2006; doi:10.1152/jn.00336.2006. Restoration of neuronal viability and synaptic plasticity through increased trophic support is widely regarded as a potential therapy for the cognitive declines that characterize aging. Previous studies have shown that in the hippocampal CA1 basal dendritic field deficits in the stabilization of long-term potentiation (LTP) are evident by middle age. The present study tested whether increasing endogenous brain-derived neurotrophic factor (BDNF) could reverse this age-related change. We report here that in middle-aged (8- to 10-mo-old) rats, in vivo treatments with a positive AMPA-type glutamate receptor modulator both increase BDNF protein levels in the cortical telencephalon and restore stabilization of basal dendritic LTP as assessed in acute hippocampal slices 18 h after the last drug treatment. These effects were not attributed to enhanced synaptic transmission or to facilitation of burst responses used to induce LTP. Increasing extracellular levels of BDNF by exogenous application to slices of middle-aged rats was also sufficient to rescue the stabilization of basal dendritic LTP. Finally, otherwise stable LTP in ampakine-treated middle-aged rats can be eliminated by infusion of the extracellular BDNF scavenger TrkB-Fc. Together these results indicate that increases in endogenous BDNF signaling can offset deficits in the postinduction processes that stabilize LTP. PMID:16707719

  10. Brain-Derived Neurotrophic Factor, Depression, and Physical Activity: Making the Neuroplastic Connection

    PubMed Central

    2017-01-01

    Brain-derived neurotrophic factor (BDNF) is a neurotrophin that is vital to the survival, growth, and maintenance of neurons in key brain circuits involved in emotional and cognitive function. Convergent evidence indicates that neuroplastic mechanisms involving BDNF are deleteriously altered in major depressive disorder (MDD) and animal models of stress. Herein, clinical and preclinical evidence provided that stress-induced depressive pathology contributes to altered BDNF level and function in persons with MDD and, thereby, disruptions in neuroplasticity at the regional and circuit level. Conversely, effective therapeutics that mitigate depressive-related symptoms (e.g., antidepressants and physical activity) optimize BDNF in key brain regions, promote neuronal health and recovery of function in MDD-related circuits, and enhance pharmacotherapeutic response. A greater knowledge of the interrelationship between BDNF, depression, therapeutic mechanisms of action, and neuroplasticity is important as it necessarily precedes the derivation and deployment of more efficacious treatments. PMID:28928987

  11. Brain-Derived Neurotrophic Factor, Depression, and Physical Activity: Making the Neuroplastic Connection.

    PubMed

    Phillips, Cristy

    2017-01-01

    Brain-derived neurotrophic factor (BDNF) is a neurotrophin that is vital to the survival, growth, and maintenance of neurons in key brain circuits involved in emotional and cognitive function. Convergent evidence indicates that neuroplastic mechanisms involving BDNF are deleteriously altered in major depressive disorder (MDD) and animal models of stress. Herein, clinical and preclinical evidence provided that stress-induced depressive pathology contributes to altered BDNF level and function in persons with MDD and, thereby, disruptions in neuroplasticity at the regional and circuit level. Conversely, effective therapeutics that mitigate depressive-related symptoms (e.g., antidepressants and physical activity) optimize BDNF in key brain regions, promote neuronal health and recovery of function in MDD-related circuits, and enhance pharmacotherapeutic response. A greater knowledge of the interrelationship between BDNF, depression, therapeutic mechanisms of action, and neuroplasticity is important as it necessarily precedes the derivation and deployment of more efficacious treatments.

  12. Brain-Derived Neurotrophic Factor in Alzheimer's Disease: Risk, Mechanisms, and Therapy.

    PubMed

    Song, Jing-Hui; Yu, Jin-Tai; Tan, Lan

    2015-12-01

    Brain-derived neurotrophic factor (BDNF) has a neurotrophic support on neuron of central nervous system (CNS) and is a key molecule in the maintenance of synaptic plasticity and memory storage in hippocampus. However, changes of BDNF level and expression have been reported in the CNS as well as blood of Alzheimer's disease (AD) patients in the last decade, which indicates a potential role of BDNF in the pathogenesis of AD. Therefore, this review aims to summarize the latest progress in the field of BDNF and its biological roles in AD pathogenesis. We will discuss the interaction between BDNF and amyloid beta (Aβ) peptide, the effect of BDNF on synaptic repair in AD, and the association between BDNF polymorphism and AD risk. The most important is, enlightening the detailed biological ability and complicated mechanisms of action of BDNF in the context of AD would provide a future BDNF-related remedy for AD, such as increment in the production or release of endogenous BDNF by some drugs or BDNF mimics.

  13. The gene coding for glial cell line derived neurotrophic factor (GDNF) maps to chromosome 5p12-p13.1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schindelhauer, D.; Schuffenhauer, S.; Meitinger, T.

    1995-08-10

    The gene coding for glial cell line derived neurotrophic factor (GDNF) has biological properties that may have potential as a treatment for Parkinson`s and motoneuron diseases. Using the NIGMS Mapping Panel 2, we have localized the GDNF gene to human chromosome 5p12-p13.1. Large NruI and NotI fragments on chromosome 5 will facilitate the construction of a long-range map of the region. 26 refs., 1 fig., 1 tab.

  14. Ciliary neurotrophic factor is an endogenous pyrogen.

    PubMed Central

    Shapiro, L; Zhang, X X; Rupp, R G; Wolff, S M; Dinarello, C A

    1993-01-01

    Fever is initiated by the action of polypeptide cytokines called endogenous pyrogens, which are produced by the host during inflammation, trauma, or infection and which elevate the thermoregulatory set point in the hypothalamus. Ciliary neurotrophic factor (CNTF) supports the differentiation and survival of central and peripheral neurons. We describe the activity of CNTF as intrinsically pyrogenic in the rabbit. CNTF induced a monophasic fever which rose rapidly (within the first 12 min) following intravenous injection; CNTF fever was blocked by pretreatment with indomethacin. The fever induced by CNTF was not due to contaminating endotoxins. Increasing doses of CNTF resulted in prolongation of the fever, suggesting the subsequent induction of additional endogenous pyrogenic activity. After passive transfer of plasma obtained during CNTF-induced fever, endogenous pyrogen activity was not present in the circulation; CNTF also did not induce the endogenous pyrogens interleukin 1, tumor necrosis factor, or interleukin 6 in vitro. Nevertheless, a second endogenous pyrogen may originate within the central nervous system following the systemic injection of CNTF. Of the four endogenous pyrogens described to date (interleukin 1, tumor necrosis factor, interferon, and interleukin 6), CNTF, like interleukin 6, utilizes the cell-surface gp 130 signal-transduction apparatus. PMID:8378338

  15. Human obesity associated with an intronic SNP in the brain-derived neurotrophic factor locus

    USDA-ARS?s Scientific Manuscript database

    Brain-derived neurotrophic factor (BDNF) plays a key role in energy balance. In population studies, SNPs of the BDNF locus have been linked to obesity, but the mechanism by which these variants cause weight gain is unknown. Here, we examined human hypothalamic BDNF expression in association with 44 ...

  16. Brain-derived neurotrophic factor in human subjects with function-altering melanocortin-4 receptor variants

    USDA-ARS?s Scientific Manuscript database

    In rodents, hypothalamic brain-derived neurotrophic factor (BDNF) expression appears to be regulated by melanocortin-4 receptor (MC4R) activity. The impact of MC4R genetic variation on circulating BDNF in humans is unknown. The objective of this study is to compare BDNF concentrations of subjects wi...

  17. Neurotrophic and neuroprotective potential of human limbus-derived mesenchymal stromal cells.

    PubMed

    Liang, Chang-Min; Weng, Shao-Ju; Tsai, Tung-Han; Li, I-Hsun; Lu, Pin-Hui; Ma, Kuo-Hsing; Tai, Ming-Cheng; Chen, Jiann-Torng; Cheng, Cheng-Yi; Huang, Yuahn-Sieh

    2014-10-01

    The purpose of this study was to examine neurotrophic and neuroprotective effects of limbus stroma-derived mesenchymal stromal cells (L-MSCs) on cortical neurons in vitro and in vivo. Cultured L-MSCs were characterized by flow cytometry and immunofluorescence through the use of specific MSC marker antibodies. Conditioned media were collected from normoxia- and hypoxia-treated L-MSCs to assess neurotrophic effects. Neuroprotective potentials were evaluated through the use of in vitro hypoxic cortical neuron culture and in vivo rat focal cerebral ischemia models. Neuronal morphology was confirmed by immunofluorescence with the use of anti-MAP2 antibody. Post-ischemic infarct volume and motor behavior were assayed by means of triphenyltetrazolium chloride staining and open-field testing, respectively. Human growth antibody arrays and enzyme-linked immunoassays were used to analyze trophic/growth factors contained in conditioned media. Isolated human L-MSCs highly expressed CD29, CD90 and CD105 but not CD34 and CD45. Mesenchymal lineage cell surface expression pattern and differentiation capacity were identical to MSCs derived form human bone marrow and adipose tissue. The L-MSC normoxic and hypoxic conditioned media both promoted neurite outgrowth in cultured cortical neurons. Hypoxic conditioned medium showed superior neurotrophic function and neuroprotective potential with reduced ischemic brain injury and improved functional recovery in rat focal cerebral ischemia models. Human growth factor arrays and enzyme-linked immunoassays measurements showed neuroprotective and growth-associated cytokines (vascular endothelial growth factor [VEGF], VEGFR3, brain-derived neurotrophic factor, insulin-like growth factor -2 and hepatocyte growth factor) contained in conditioned media. Hypoxic exposure caused VEGF and brain-derived neurotrophic factor upregulation, possibly contributing to neurotrophic and neuroprotective effects. L-MSCs can secrete various neurotrophic factors

  18. Brain-Derived Neurotrophic Factor (BDNF) and Traumatic Brain Injury (Head and Spinal)

    DTIC Science & Technology

    2000-01-01

    phosphatidylinositol 3-kinase are involved in brain-derived neurotrophic factor- mediated survival and neuritogenesis of the neuroblastoma cell line ... SH - SY5Y , J. Neurochem. 73 (1999) 1409-1421. 15. Gottshalk, W.A., Jiang, H., Tartaglia, N., Feng, L., Figurov, A., Lu, B., Signaling mechanisms...NT-6), and neurotrophin-7 (NT-7) (4, 5, 24, 80). Neurotrophins are believed to promote their cell survival, growth, and differentiation effects

  19. Low-Intensity Extracorporeal Shock Wave Therapy Enhances Brain-Derived Neurotrophic Factor Expression through PERK/ATF4 Signaling Pathway.

    PubMed

    Wang, Bohan; Ning, Hongxiu; Reed-Maldonado, Amanda B; Zhou, Jun; Ruan, Yajun; Zhou, Tie; Wang, Hsun Shuan; Oh, Byung Seok; Banie, Lia; Lin, Guiting; Lue, Tom F

    2017-02-16

    Low-intensity extracorporeal shock wave therapy (Li-ESWT) is used in the treatment of erectile dysfunction, but its mechanisms are not well understood. Previously, we found that Li-ESWT increased the expression of brain-derived neurotrophic factor (BDNF). Here we assessed the underlying signaling pathways in Schwann cells in vitro and in penis tissue in vivo after nerve injury. The result indicated that BDNF were significantly increased by the Li-ESWT after nerve injury, as well as the expression of BDNF in Schwann cells (SCs, RT4-D6P2T) in vitro. Li-ESWT activated the protein kinase RNA-like endoplasmic reticulum (ER) kinase (PERK) pathway by increasing the phosphorylation levels of PERK and eukaryotic initiation factor 2a (eIF2α), and enhanced activating transcription factor 4 (ATF4) in an energy-dependent manner. In addition, GSK2656157-an inhibitor of PERK-effectively inhibited the effect of Li-ESWT on the phosphorylation of PERK, eIF2α, and the expression of ATF4. Furthermore, silencing ATF4 dramatically attenuated the effect of Li-ESWT on the expression of BDNF, but had no effect on hypoxia-inducible factor (HIF)1α or glial cell-derived neurotrophic factor (GDNF) in Schwann cells. In conclusion, our findings shed new light on the underlying mechanisms by which Li-ESWT may stimulate the expression of BDNF through activation of PERK/ATF4 signaling pathway. This information may help to refine the use of Li-ESWT to further improve its clinical efficacy.

  20. Low-Intensity Extracorporeal Shock Wave Therapy Enhances Brain-Derived Neurotrophic Factor Expression through PERK/ATF4 Signaling Pathway

    PubMed Central

    Wang, Bohan; Ning, Hongxiu; Reed-Maldonado, Amanda B.; Zhou, Jun; Ruan, Yajun; Zhou, Tie; Wang, Hsun Shuan; Oh, Byung Seok; Banie, Lia; Lin, Guiting; Lue, Tom F.

    2017-01-01

    Low-intensity extracorporeal shock wave therapy (Li-ESWT) is used in the treatment of erectile dysfunction, but its mechanisms are not well understood. Previously, we found that Li-ESWT increased the expression of brain-derived neurotrophic factor (BDNF). Here we assessed the underlying signaling pathways in Schwann cells in vitro and in penis tissue in vivo after nerve injury. The result indicated that BDNF were significantly increased by the Li-ESWT after nerve injury, as well as the expression of BDNF in Schwann cells (SCs, RT4-D6P2T) in vitro. Li-ESWT activated the protein kinase RNA-like endoplasmic reticulum (ER) kinase (PERK) pathway by increasing the phosphorylation levels of PERK and eukaryotic initiation factor 2a (eIF2α), and enhanced activating transcription factor 4 (ATF4) in an energy-dependent manner. In addition, GSK2656157—an inhibitor of PERK—effectively inhibited the effect of Li-ESWT on the phosphorylation of PERK, eIF2α, and the expression of ATF4. Furthermore, silencing ATF4 dramatically attenuated the effect of Li-ESWT on the expression of BDNF, but had no effect on hypoxia-inducible factor (HIF)1α or glial cell-derived neurotrophic factor (GDNF) in Schwann cells. In conclusion, our findings shed new light on the underlying mechanisms by which Li-ESWT may stimulate the expression of BDNF through activation of PERK/ATF4 signaling pathway. This information may help to refine the use of Li-ESWT to further improve its clinical efficacy. PMID:28212323

  1. A Single Brain-Derived Neurotrophic Factor Infusion into the Dorsomedial Prefrontal Cortex Attenuates Cocaine Self-Administration-Induced Phosphorylation of Synapsin in the Nucleus Accumbens during Early Withdrawal

    PubMed Central

    Sun, Wei-Lun; Eisenstein, Sarah A.; Zelek-Molik, Agnieszka

    2015-01-01

    Background: Dysregulation in the prefrontal cortex-nucleus accumbens pathway has been implicated in cocaine addiction. We have previously demonstrated that one intra-dorsomedial prefrontal cortex brain-derived neurotrophic factor (BDNF) infusion immediately following the last cocaine self-administration session caused a long-lasting inhibition of cocaine-seeking and normalized the cocaine-induced disturbance of glutamate transmission in the nucleus accumbens after extinction and a cocaine prime. However, the molecular mechanism mediating the brain-derived neurotrophic factor effect on cocaine-induced alterations in extracellular glutamate levels is unknown. Methods: In the present study, we determined the effects of brain-derived neurotrophic factor on cocaine-induced changes in the phosphorylation of synapsin (p-synapsin), a family of presynaptic proteins that mediate synaptic vesicle mobilization, in the nucleus accumbens during early withdrawal. Results: Two hours after cocaine self-administration, p-synapsin Ser9 and p-synapsin Ser62/67, but not p-synapsin Ser603, were increased in the nucleus accumbens. At 22 hours, only p-synapsin Ser9 was still elevated. Elevations at both time points were attenuated by an intra-dorsomedial prefrontal cortex brain-derived neurotrophic factor infusion immediately after the end of cocaine self-administration. Brain-derived neurotrophic factor also reduced cocaine self-administration withdrawal-induced phosphorylation of the protein phosphatase 2A C-subunit, suggesting that brain-derived neurotrophic factor disinhibits protein phosphatase 2A C-subunit, consistent with p-synapsin Ser9 dephosphorylation. Further, co-immunoprecipitation demonstrated that protein phosphatase 2A C-subunit and synapsin are associated in a protein-protein complex that was reduced after 2 hours of withdrawal from cocaine self-administration and reversed by brain-derived neurotrophic factor. Conclusions: Taken together, these findings demonstrate that

  2. Brain-derived-neurotrophic-factor (BDNF) stress response in rats bred for learned helplessness.

    PubMed

    Vollmayr, B; Faust, H; Lewicka, S; Henn, F A

    2001-07-01

    Stress-induced elevation of glucocorticoids is accompanied by structural changes and neuronal damage in certain brain areas. This includes reduced expression of brain-derived neurotrophic factor (BDNF) in the hippocampus which can be prevented by chronic electroconvulsive seizures and antidepressant drug treatment. In the last years we have bred two strains of rats, one which reacts with congenital helplessness to stress (cLH), and one which congenitally does not acquire helplessness when stressed (cNLH). After being selectively bred for more than 40 generations these strains have lost their behavioural plasticity including their sensitivity to antidepressant treatment. We show here that in cLH rats, acute immobilization stress does not induce a reduction of BDNF expression in the hippocampus which is observed in Sprague--Dawley and cNLH rats. All animals tested exhibited elevated corticosterone levels when stressed, an indication, that in cLH rats regulation of BDNF expression in the hippocampal formation is uncoupled from corticosterone increase induced through stress. This may explain the lack of adaptive responses in this strain.

  3. Differential Regulation of Brain-Derived Neurotrophic Factor Transcripts during the Consolidation of Fear Learning

    ERIC Educational Resources Information Center

    Ressler, Kerry J.; Rattiner, Lisa M.; Davis, Michael

    2004-01-01

    Brain-derived neurotrophic factor (BDNF) has been implicated as a molecular mediator of learning and memory. The BDNF gene contains four differentially regulated promoters that generate four distinct mRNA transcripts, each containing a unique noncoding 5[prime]-exon and a common 3[prime]-coding exon. This study describes novel evidence for the…

  4. 7,8-Dihydroxyflavone as a pro-neurotrophic treatment for neurodevelopmental disorders.

    PubMed

    Du, X; Hill, R A

    2015-10-01

    Neurodevelopmental disorders are a group of conditions that arises from impairments of the central nervous system during its development. The causes of the various disorders are heterogeneous and the symptoms likewise are multifarious. Most of these disorders currently have very little available treatment that is effective in combating the plethora of serious symptoms. Brain-derived neurotrophic factor (BDNF) is a fundamental neurotrophin with vital functions during brain development. Pre-clinical studies have shown that increasing BDNF signalling may be a potent way to prevent, arrest or even reverse abnormal neurodevelopmental events arising from a variety of genetic or environmental causes. However, many difficulties make BDNF problematic to administer in an efficient manner. The recent discovery of a small BDNF-mimetic, the naturally occurring flavonoid 7,8-dihydroxyflavone (7,8-DHF), may provide an avenue to allow efficient and safe activation of the BDNF pathway in tackling the symptoms of neurodevelopmental disorders. Here, evidence will be provided to support the potential of 7,8-DHF as a novel treatment for several neurodevelopmental disorders where the BDNF signalling pathway is implicated in the pathophysiology and where benefits are therefore most likely to be derived from its implementation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. The relationship between neurotrophic factors and CaMKII in the death and survival of retinal ganglion cells.

    PubMed

    Cooper, N G F; Laabich, A; Fan, W; Wang, X

    2008-01-01

    The scientific discourse relating to the causes and treatments for glaucoma are becoming reflective of the need to protect and preserve retinal neurons from degenerative changes, which result from the injurious environment associated with this disease. Knowledge, in particular, of the signal transduction pathways which affect death and survival of the retinal ganglion cells is critical to this discourse and to the development of a suitable neurotherapeutic strategy for this disease. The goal of this chapter is to review what is known of the chief suspects involved in initiating the cell death/survival pathways in these cells, and what still remains to be uncovered. The least controversial aspect of the subject relates to the potential role of neurotrophic factors in the protection of the retinal ganglion cells. On the other hand, the postulated triggers for signaling cell death in glaucoma remain controversial. Certainly, the restricted flow of neurotrophic factors has been cited as one possible trigger. However, the connections between glaucoma and other factors present in the retina, such as glutamate, long held to be a prospective culprit in retinal ganglion cell death are still being questioned. Whatever the outcome of this particular debate, it is clear that the downstream intersections between the cell death and survival pathways should provide important foci for future studies whose goal is to protect retinal neurons, situated as they are, in the stressful environment of a cell destroying disease. The evidence for CaMKII being one of these intersecting points is discussed.

  6. Plasma glial cell line-derived neurotrophic factor in patients with major depressive disorder: a preliminary study.

    PubMed

    Lee, Bun-Hee; Hong, Jin-Pyo; Hwang, Jung-A; Na, Kyoung-Sae; Kim, Won-Joong; Trigo, Jose; Kim, Yong-Ku

    2016-02-01

    Some clinical studies have reported reduced peripheral glial cell line-derived neurotrophic factor (GDNF) level in elderly patients with major depressive disorder (MDD). We verified whether a reduction in plasma GDNF level was associated with MDD. Plasma GDNF level was measured in 23 healthy control subjects and 23 MDD patients before and after 6 weeks of treatment. Plasma GDNF level in MDD patients at baseline did not differ from that in healthy controls. Plasma GDNF in MDD patients did not differ significantly from baseline to the end of treatment. GDNF level was significantly lower in recurrent-episode MDD patients than in first-episode patients before and after treatment. Our findings revealed significantly lower plasma GDNF level in recurrent-episode MDD patients, although plasma GDNF levels in MDD patients and healthy controls did not differ significantly. The discrepancy between our study and previous studies might arise from differences in the recurrence of depression or the ages of the MDD patients.

  7. Dendrobium alkaloids prevent Aβ25–35-induced neuronal and synaptic loss via promoting neurotrophic factors expression in mice

    PubMed Central

    Nie, Jing; Tian, Yong; Zhang, Yu; Lu, Yan-Liu; Li, Li-Sheng

    2016-01-01

    Background Neuronal and synaptic loss is the most important risk factor for cognitive impairment. Inhibiting neuronal apoptosis and preventing synaptic loss are promising therapeutic approaches for Alzheimer’s disease (AD). In this study, we investigate the protective effects of Dendrobium alkaloids (DNLA), a Chinese medicinal herb extract, on β-amyloid peptide segment 25–35 (Aβ25-35)-induced neuron and synaptic loss in mice. Method Aβ25–35(10 µg) was injected into the bilateral ventricles of male mice followed by an oral administration of DNLA (40 mg/kg) for 19 days. The Morris water maze was used for evaluating the ability of spatial learning and memory function of mice. The morphological changes were examined via H&E staining and Nissl staining. TUNEL staining was used to check the neuronal apoptosis. The ultrastructure changes of neurons were observed under electron microscope. Western blot was used to evaluate the protein expression levels of ciliary neurotrophic factor (CNTF), glial cell line-derived neurotrophic factor (GDNF), and brain-derived neurotrophic factor (BDNF) in the hippocampus and cortex. Results DNLA significantly attenuated Aβ25–35-induced spatial learning and memory impairments in mice. DNLA prevented Aβ25–35-induced neuronal loss in the hippocampus and cortex, increased the number of Nissl bodies, improved the ultrastructural injury of neurons and increased the number of synapses in neurons. Furthermore, DNLA increased the protein expression of neurotrophic factors BDNF, CNTF and GDNF in the hippocampus and cortex. Conclusions DNLA can prevent neuronal apoptosis and synaptic loss. This effect is mediated at least in part via increasing the expression of BDNF, GDNF and CNTF in the hippocampus and cortex; improving Aβ-induced spatial learning and memory impairment in mice. PMID:27994964

  8. Brain-Derived Neurotrophic Factor in the Airways

    PubMed Central

    Prakash, Y.S.; Martin, Richard J.

    2014-01-01

    In addition to their well-known roles in the nervous system, there is increasing recognition that neurotrophins such as brain derived neurotrophic factor (BDNF) as well as their receptors are expressed in peripheral tissues including the lung, and can thus potentially contribute to both normal physiology and pathophysiology of several diseases. The relevance of this family of growth factors lies in emerging clinical data indicating altered neurotrophin levels and function in a range of diseases including neonatal and adult asthma, sinusitis, influenza, and lung cancer. The current review focuses on 1) the importance of BDNF expression and signaling mechanisms in early airway and lung development, critical to both normal neonatal lung function and also its disruption in prematurity and insults such as inflammation and infection; 2) how BDNF, potentially derived from airway nerves modulate neurogenic control of airway tone, a key aspect of airway reflexes as well as dysfunctional responses to allergic inflammation; 3) the emerging idea that local BDNF production by resident airway cells such as epithelium and airway smooth muscle can contribute to normal airway structure and function, and to airway hyperreactivity and remodeling in diseases such as asthma. Furthermore, given its pleiotropic effects in the airway, BDNF may be a novel and appealing therapeutic target. PMID:24560686

  9. Long-term follow-up of patients with retinitis pigmentosa (RP) receiving intraocular ciliary neurotrophic factor implants

    PubMed Central

    Birch, David G.; Bennett, Lea D.; Duncan, Jacque L.; Weleber, Richard G.; Pennesi, Mark E.

    2016-01-01

    Purpose To evaluate the long-term efficacy of ciliary neurotrophic factor delivered via an intraocular encapsulated cell implant for the treatment of retinitis pigmentosa (RP). Design Long-term follow up of a multicenter, sham-controlled study. Methods Thirty-six patients at three CNTF4 sites were randomly assigned to receive a high- or low- dose implant in one eye and sham surgery in the fellow eye. The primary endpoint (change in visual field sensitivity at 12 months) has been reported previously.1 Here we report long-term visual acuity, visual field and optical coherence tomography (OCT) outcomes in 24 patients either retaining or explanting the device at 24 months relative to sham-treated eyes. Results Eyes retaining the implant showed significantly greater visual field loss from baseline than either explanted eyes or sham eyes through 42 months. By 60 months and continuing through 96 months, visual field loss was comparable among sham-treated eyes, eyes retaining the implant and explanted eyes, as was visual acuity and OCT macular volume. Conclusions Over the short term, ciliary neurotrophic factor released continuously from an intra-vitreal implant lead to loss of total visual field sensitivity that was greater than the natural progression in the sham-treated eye. This additional loss of sensitivity related to the active implant was reversible when the implant was removed. Over the long term (60 – 96 months), there was no evidence of efficacy for visual acuity, visual field sensitivity or OCT measures of retinal structure. PMID:27457255

  10. Short-term ethanol exposure causes imbalanced neurotrophic factor allocation in the basal forebrain cholinergic system: a novel insight into understanding the initial processes of alcohol addiction.

    PubMed

    Miki, Takanori; Kusaka, Takashi; Yokoyama, Toshifumi; Ohta, Ken-ichi; Suzuki, Shingo; Warita, Katsuhiko; Jamal, Mostofa; Wang, Zhi-Yu; Ueki, Masaaki; Liu, Jun-Qian; Yakura, Tomiko; Tamai, Motoki; Sumitani, Kazunori; Hosomi, Naohisa; Takeuchi, Yoshiki

    2014-02-01

    Alcohol ingestion affects both motor and cognitive functions. One brain system that is influenced by ethanol is the basal forebrain (BF) cholinergic projection system, which projects to diverse neocortical and limbic areas. The BF is associated with memory and cognitive function. Our primary interest is the examination of how regions that receive BF cholinergic projections are influenced by short-term ethanol exposure through alterations in the mRNA levels of neurotrophic factors [nerve growth factor/TrkA, brain-derived neurotrophic factor/TrkB, and glial-derived neurotrophic factor (GDNF)/GDNF family receptor α1]. Male BALB/C mice were fed a liquid diet containing 5 % (v/v) ethanol. Pair-fed control mice were maintained on an identical liquid diet, except that the ethanol was isocalorically substituted with sucrose. Mice exhibiting signs of ethanol intoxication (stages 1-2) were used for real-time reverse transcription-polymerase chain reaction analyses. Among the BF cholinergic projection regions, decreased levels of GDNF mRNA and increased levels of TrkB mRNA were observed in the basal nucleus, and increased levels of TrkB mRNA were observed in the cerebral cortex. There were no significant alterations in the levels of expression of relevant neurotrophic factors in the septal nucleus and hippocampus. Given that neurotrophic factors function in retrograde/anterograde or autocrine/paracrine mechanisms and that BF cholinergic projection regions are neuroanatomically connected, these findings suggested that an imbalanced allocation of neurotrophic factor ligands and receptors is an initial phenomenon in alcohol addiction. The exact mechanisms underlying this phenomenon in the BF cholinergic system are unknown. However, our results provide a novel notion for the understanding of the initial processes in alcohol addiction.

  11. Local delivery of glial cell line-derived neurotrophic factor improves facial nerve regeneration after late repair.

    PubMed

    Barras, Florian M; Kuntzer, Thierry; Zurn, Anne D; Pasche, Philippe

    2009-05-01

    Facial nerve regeneration is limited in some clinical situations: in long grafts, by aged patients, and when the delay between nerve lesion and repair is prolonged. This deficient regeneration is due to the limited number of regenerating nerve fibers, their immaturity and the unresponsiveness of Schwann cells after a long period of denervation. This study proposes to apply glial cell line-derived neurotrophic factor (GDNF) on facial nerve grafts via nerve guidance channels to improve the regeneration. Two situations were evaluated: immediate and delayed grafts (repair 7 months after the lesion). Each group contained three subgroups: a) graft without channel, b) graft with a channel without neurotrophic factor; and c) graft with a GDNF-releasing channel. A functional analysis was performed with clinical observation of facial nerve function, and nerve conduction study at 6 weeks. Histological analysis was performed with the count of number of myelinated fibers within the graft, and distally to the graft. Central evaluation was assessed with Fluoro-Ruby retrograde labeling and Nissl staining. This study showed that GDNF allowed an increase in the number and the maturation of nerve fibers, as well as the number of retrogradely labeled neurons in delayed anastomoses. On the contrary, after immediate repair, the regenerated nerves in the presence of GDNF showed inferior results compared to the other groups. GDNF is a potent neurotrophic factor to improve facial nerve regeneration in grafts performed several months after the nerve lesion. However, GDNF should not be used for immediate repair, as it possibly inhibits the nerve regeneration.

  12. Brain-derived neurotrophic factor secreted by the cerebral endothelium: A new actor of brain function?

    PubMed

    Marie, Christine; Pedard, Martin; Quirié, Aurore; Tessier, Anne; Garnier, Philippe; Totoson, Perle; Demougeot, Céline

    2018-06-01

    Low cerebral levels of brain-derived neurotrophic factor (BDNF), which plays a critical role in many brain functions, have been implicated in neurodegenerative, neurological and psychiatric diseases. Thus, increasing BDNF levels in the brain is considered an attractive possibility for the prevention/treatment of various brain diseases. To date, BDNF-based therapies have largely focused on neurons. However, given the cross-talk between endothelial cells and neurons and recent evidence that BDNF expressed by the cerebral endothelium largely accounts for BDNF levels present in the brain, it is likely that BDNF-based therapies would be most effective if they also targeted the cerebral endothelium. In this review, we summarize the available knowledge about the biology and actions of BDNF derived from endothelial cells of the cerebral microvasculature and we emphasize the remaining gaps and shortcomings.

  13. Encapsulated cell device approach for combined electrical stimulation and neurotrophic treatment of the deaf cochlea.

    PubMed

    Konerding, W S; Janssen, H; Hubka, P; Tornøe, J; Mistrik, P; Wahlberg, L; Lenarz, T; Kral, A; Scheper, V

    2017-07-01

    Profound hearing impairment can be overcome by electrical stimulation (ES) of spiral ganglion neurons (SGNs) via a cochlear implant (CI). Thus, SGN survival is critical for CI efficacy. Application of glial cell line-derived neurotrophic factor (GDNF) has been shown to reduce SGN degeneration following deafness. We tested a novel method for local, continuous GDNF-delivery in combination with ES via a CI. The encapsulated cell (EC) device contained a human ARPE-19 cell-line, genetically engineered for secretion of GDNF. In vitro, GDNF delivery was stable during ES delivered via a CI. In the chronic in vivo part, cats were systemically deafened and unilaterally implanted into the scala tympani with a CI and an EC device, which they wore for six months. The implantation of control devices (same cell-line not producing GDNF) had no negative effect on SGN survival. GDNF application without ES led to an unexpected reduction in SGN survival, however, the combination of GDNF with initial, short-term ES resulted in a significant protection of SGNs. A tight fibrous tissue formation in the scala tympani of the GDNF-only group is thought to be responsible for the increased SGN degeneration, due to mechanisms related to an aggravated foreign body response. Furthermore, the fibrotic encapsulation of the EC device led to cell death or cessation of GDNF release within the EC device during the six months in vivo. In both in vitro and in vivo, fibrosis was reduced by CI stimulation, enabling the neuroprotective effect of the combined treatment. Thus, fibrous tissue growth limits treatment possibilities with an EC device. For a stable and successful long-term neurotrophic treatment of the SGN via EC devices in human CI users, it would be necessary to make changes in the treatment approach (provision of anti-inflammatories), the EC device surface (reduced cell adhesion) and the ES (initiation prior to fibrosis formation). Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Ciliary neurotrophic factor analogue aggravates CCl4-induced acute hepatic injury in rats.

    PubMed

    Cui, Ming-Xia; Jiang, Jun-Feng; Min, Guang-Ning; Han, Wei; Wu, Yong-Jie

    2017-05-01

    Ciliary neurotrophic factor (CNTF) and CNTF analogs were reported to have hepatoprotective effect and ameliorate hepatic steatosis in db/db or high-fat-diet-fed mice. Because hepatic steatosis and injury are also commonly induced by hepatotoxin, the aim of the present study is to clarify whether CNTF could alleviate hepatic steatosis and injury induced by carbon tetrachloride (CCl 4 ). Unexpectedly, when combined with CCl 4 , CNTF aggravated hepatic steatosis and liver injury. The mechanism is associated with effects of CNTF that inhibited lipoprotein secretion and drastically impaired the ability of lipoproteins to act as transport vehicles for lipids from the liver to the circulation. While injected after CCl 4 cessation, CNTF could improve liver function. These data suggest that CNTF could be a potential hepatoprotective agent against CCl 4 -induced hepatic injury after the cessation of CCl 4 exposure. However, it is forbidden to combine recombinant mutant of human CNTF treatment with CCl 4 .

  15. Methamphetamine self-administration attenuates hippocampal serotonergic deficits: role of brain-derived neurotrophic factor.

    PubMed

    McFadden, Lisa M; Vieira-Brock, Paula L; Hanson, Glen R; Fleckenstein, Annette E

    2014-08-01

    Preclinical studies suggest that prior treatment with escalating doses of methamphetamine (METH) attenuates the persistent deficits in hippocampal serotonin (5-hydroxytryptamine; 5HT) transporter (SERT) function resulting from a subsequent 'binge' METH exposure. Previous work also demonstrates that brain-derived neurotrophic factor (BDNF) exposure increases SERT function. The current study investigated changes in hippocampal BDNF protein and SERT function in rats exposed to saline or METH self-administration prior to a binge exposure to METH or saline. Results revealed that METH self-administration increased hippocampal mature BDNF (mBDNF) immunoreactivity compared to saline-treated rats as assessed 24 h after the start of the last session. Further, mBDNF immunoreactivity was increased and SERT function was not altered in rats that self-administered METH prior to the binge METH exposure as assessed 24 h after the binge exposure. These results suggest that prior exposure to contingent METH increases hippocampal mBDNF, and this may contribute to attenuated deficits in SERT function.

  16. Adjunctive N-acetylcysteine in depression: exploration of interleukin-6, C-reactive protein and brain-derived neurotrophic factor.

    PubMed

    Hasebe, Kyoko; Gray, Laura; Bortolasci, Chiara; Panizzutti, Bruna; Mohebbi, Mohammadreza; Kidnapillai, Srisaiyini; Spolding, Briana; Walder, Ken; Berk, Michael; Malhi, Gin; Dodd, Seetal; Dean, Olivia M

    2017-12-01

    This study aimed to explore effects of adjunctive N-acetylcysteine (NAC) treatment on inflammatory and neurogenesis markers in unipolar depression. We embarked on a 12-week clinical trial of NAC (2000 mg/day compared with placebo) as an adjunctive treatment for unipolar depression. A follow-up visit was conducted 4 weeks following the completion of treatment. We collected serum samples at baseline and the end of the treatment phase (week 12) to determine changes in interleukin-6 (IL6), C-reactive protein (CRP) and brain-derived neurotrophic factor (BDNF) following NAC treatment. NAC treatment significantly improved depressive symptoms on the Montgomery-Asberg Depression Rating Scale (MADRS) over 16 weeks of the trial. Serum levels of IL6 were associated with reductions of MADRS scores independent of treatment response. However, we found no significant changes in IL6, CRP and BDNF levels following NAC treatment. Overall, this suggests that our results failed to support the hypothesis that IL6, CRP and BDNF are directly involved in the therapeutic mechanism of NAC in depression. IL6 may be a useful marker for future exploration of treatment response.

  17. The Effect of Brain-Derived Neurotrophic Factor on Periodontal Furcation Defects

    PubMed Central

    Jimbo, Ryo; Tovar, Nick; Janal, Malvin N.; Mousa, Ramy; Marin, Charles; Yoo, Daniel; Teixeira, Hellen S.; Anchieta, Rodolfo B.; Bonfante, Estevam A.; Konishi, Akihiro; Takeda, Katsuhiro; Kurihara, Hidemi; Coelho, Paulo G.

    2014-01-01

    This study aimed to observe the regenerative effect of brain-derived neurotrophic factor (BDNF) in a non-human primate furcation defect model. Class II furcation defects were created in the first and second molars of 8 non-human primates to simulate a clinical situation. The defect was filled with either, Group A: BDNF (500 µg/ml) in high-molecular weight-hyaluronic acid (HMW-HA), Group B: BDNF (50 µg/ml) in HMW-HA, Group C: HMW-HA acid only, Group D: empty defect, or Group E: BDNF (500 µg/ml) in saline. The healing status for all groups was observed at different time-points with micro computed tomography. The animals were euthanized after 11 weeks, and the tooth-bone specimens were subjected to histologic processing. The results showed that all groups seemed to successfully regenerate the alveolar buccal bone, however, only Group A regenerated the entire periodontal tissue, i.e., alveolar bone, cementum and periodontal ligament. It is suggested that the use of BDNF in combination with a scaffold such as the hyaluronic acid in periodontal furcation defects may be an effective treatment option. PMID:24454754

  18. Primate Phencyclidine Model of Schizophrenia: Sex-Specific Effects on Cognition, Brain Derived Neurotrophic Factor, Spine Synapses, and Dopamine Turnover in Prefrontal Cortex

    PubMed Central

    Groman, Stephanie M.; Jentsch, James D.; Leranth, Csaba; Redmond, D. Eugene; Kim, Jung D.; Diano, Sabrina; Roth, Robert H.

    2015-01-01

    Background: Cognitive deficits are a core symptom of schizophrenia, yet they remain particularly resistant to treatment. The model provided by repeatedly exposing adult nonhuman primates to phencyclidine has generated important insights into the neurobiology of these deficits, but it remains possible that administration of this psychotomimetic agent during the pre-adult period, when the dorsolateral prefrontal cortex in human and nonhuman primates is still undergoing significant maturation, may provide a greater understanding of schizophrenia-related cognitive deficits. Methods: The effects of repeated phencyclidine treatment on spine synapse number, dopamine turnover and BDNF expression in dorsolateral prefrontal cortex, and working memory accuracy were examined in pre-adult monkeys. Results: One week following phencyclidine treatment, juvenile and adolescent male monkeys demonstrated a greater loss of spine synapses in dorsolateral prefrontal cortex than adult male monkeys. Further studies indicated that in juvenile males, a cognitive deficit existed at 4 weeks following phencyclidine treatment, and this impairment was associated with decreased dopamine turnover, decreased brain derived neurotrophic factor messenger RNA, and a loss of dendritic spine synapses in dorsolateral prefrontal cortex. In contrast, female juvenile monkeys displayed no cognitive deficit at 4 weeks after phencyclidine treatment and no alteration in dopamine turnover or brain derived neurotrophic factor messenger RNA or spine synapse number in dorsolateral prefrontal cortex. In the combined group of male and female juvenile monkeys, significant linear correlations were detected between dopamine turnover, spine synapse number, and cognitive performance. Conclusions: As the incidence of schizophrenia is greater in males than females, these findings support the validity of the juvenile primate phencyclidine model and highlight its potential usefulness in understanding the deficits in

  19. Treatment of patients with neurotrophic keratitis stages 2 and 3 with plasma rich in growth factors (PRGF-Endoret) eye-drops.

    PubMed

    Sanchez-Avila, Ronald Mauricio; Merayo-Lloves, Jesus; Riestra, Ana Cristina; Fernandez-Vega Cueto, Luis; Anitua, Eduardo; Begoña, Leire; Muruzabal, Francisco; Orive, Gorka

    2018-06-01

    To provide preliminary data about efficacy and safety of plasma rich in growth factors (PRGF) eye-drops in neurotrophic keratitis (NK) and to analyze the possible influence of certain variables on treatment outcomes. This retrospective study included patients with stages 2-3 of NK treated with PRGF eye-drops. Primary endpoint was the resolution time of corneal ulcer defect. Outcome measures including percentage of ulcer closure at 4 weeks, Ocular Surface Disease Index (OSDI), Best-Corrected Visual Acuity (BCVA) and Visual Analogue Scale (VAS) were also evaluated before and after treatment with PRGF. The influence of some patients' clinical variables on results was assessed. Safety assessment was also performed reporting all adverse events. Thirty-eight treated eyes in a total of thirty-one patients were evaluated, of which five cases had no prior response to autologous serum treatment. Most cases (97.4%) achieved the complete resolution of corneal defect/ulcer. Mean resolution time was 11.4 weeks (SD = 13.7). A statistical significant (p < 0.05) reduction in OSDI (60.9%), VAS frequency (59.9%), VAS severity (57.0%) and improvement in BCVA (52.8%) was observed. The results were stratified according to the pathology stage and to the identified potential effect modifiers variables. Only one adverse event was reported in one patient (2.6%). PRGF eye-drops could be a safe and effective therapeutic option for patients with stages 2-3 of NK, showing high rates of corneal defect/ulcer resolution in short times, either in reducing signs and symptoms of NK, and therefore preventing the progression of NK to greater ocular complications.

  20. Neuroendocrine and neurotrophic signaling in Huntington's disease: Implications for pathogenic mechanisms and treatment strategies.

    PubMed

    Bartlett, Danielle M; Cruickshank, Travis M; Hannan, Anthony J; Eastwood, Peter R; Lazar, Alpar S; Ziman, Mel R

    2016-12-01

    Huntington's disease (HD) is a fatal neurodegenerative disease caused by an extended polyglutamine tract in the huntingtin protein. Circadian, sleep and hypothalamic-pituitary-adrenal (HPA) axis disturbances are observed in HD as early as 15 years before clinical disease onset. Disturbances in these key processes result in increased cortisol and altered melatonin release which may negatively impact on brain-derived neurotrophic factor (BDNF) expression and contribute to documented neuropathological and clinical disease features. This review describes the normal interactions between neurotrophic factors, the HPA-axis and circadian rhythm, as indicated by levels of BDNF, cortisol and melatonin, and the alterations in these intricately balanced networks in HD. We also discuss the implications of these alterations on the neurobiology of HD and the potential to result in hypothalamic, circadian, and sleep pathologies. Measurable alterations in these pathways provide targets that, if treated early, may reduce degeneration of brain structures. We therefore focus here on the means by which multidisciplinary therapy could be utilised as a non-pharmaceutical approach to restore the balance of these pathways. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Neuropeptide cycloprolylglycine increases the levels of brain-derived neurotrophic factor in neuronal cells.

    PubMed

    Gudasheva, T A; Koliasnikova, K N; Antipova, T A; Seredenin, S B

    2016-07-01

    It was shown for the first time that the endogenous cyclic dipeptide cycloprolylglycine (CPG) at concentrations of 10(-7) and 10(-3) M and piracetam at a concentration of 10(-3) M increased the content of brainderived neurotrophic factor (BDNF) in the culture of neuronal cells in normal state and under conditions of glutamate and 6-oxydopamine neurotoxicity. This may indicate the possible involvement of BDNF in the mechanism of action of neuropeptide CPG and piracetam.

  2. Striatal increase of neurotrophic factors as a mechanism of nicotine protection in experimental parkinsonism.

    PubMed

    Maggio, R; Riva, M; Vaglini, F; Fornai, F; Racagni, G; Corsini, G U

    1997-01-01

    The repeated finding of an apparent protective effect of cigarette smoking on the risk of Parkinson's disease is one of the few consistent results in the epidemiology of this disorder. Among the innumerous substances that originate from tobacco smoke, nicotine is by far the most widely studied, and the most likely candidate for a protective effect against neuronal degeneration in Parkinson's disease. Nicotine is a natural alkaloid that has considerable stimulatory effects on the central nervous system (CNS). Its effects on the CNS are mediated by the activation of neuronal heteromeric acetylcholine-gated ion channel receptors (nAChR, also termed nicotinic acetylcholine receptors). In the present study, we describe the neuroprotective effects of (-)nicotine in two animal models of parkinsonism: the diethyldithiocarbamate (DDC)-induced enhancement of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) toxicity in mice, and the methamphetamine-induced neurotoxicity in rats and mice. In parallel experiments, we found that (-)nicotine induces the basic fibroblast growth factor (FGF-2) and the brain-derived neurotrophic factor (BDNF) in rat striatum. As FGF-2 and BDNF have been reported to be neuroprotective for dopaminergic cells, our data indicate that the increase in neurotrophic factors is a possible mechanism by which (-)nicotine protects from experimental parkinsonisms. Moreover, they suggest that nAChR agonists could be of potential benefit in the progression of Parkinson's disease.

  3. Glial Cell Line-Derived Neurotrophic Factor (GDNF) serum level in women with schizophrenia and depression, correlation with clinical and metabolic parameters.

    PubMed

    Skibinska, Maria; Kapelski, Pawel; Pawlak, Joanna; Rajewska-Rager, Aleksandra; Dmitrzak-Weglarz, Monika; Szczepankiewicz, Aleksandra; Czerski, Piotr; Twarowska-Hauser, Joanna

    2017-10-01

    Neurotrophic factors have been implicated in neuropsychiatric disorders, including schizophrenia and depression. Glial Cell Line-Derived Neurotrophic Factor (GDNF) promotes development, differentiation, and protection of dopaminergic, serotonergic, GABAergic and noradrenergic neurons as well as glial cells in different brain regions. This study examined serum levels of GDNF in schizophrenia and depression and its correlation with metabolic parameters during 8 weeks of treatment. Serum GDNF level, fasting serum glucose and lipid profile were measured at baseline and week 8 in 133 women: 55 with schizophrenia, 30 with a first episode depression and 48 healthy controls. The severity of the symptoms was evaluated using Positive and Negative Syndrome Scale (PANSS), 17-item Hamilton Depression Rating Scale (HDRS) and Beck Depression Inventory (BDI). There was statistically significant higher GDNF level in schizophrenia at baseline when compared with week 8. Correlations of GDNF with PANSS in schizophrenia and cholesterol level in depression have also been detected. To our knowledge, this is the first study which correlates GDNF levels with metabolic parameters. Our results show no differences in GDNF serum level between schizophrenia, a first depressive episode, and healthy controls. GDNF serum level did not correlate with metabolic parameters except for total cholesterol in depression. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Brain-derived neurotrophic factor (BDNF) and neurotrophin 3 (NT3) levels in post-mortem brain tissue from patients with depression compared to healthy individuals - a proof of concept study.

    PubMed

    Sheldrick, A; Camara, S; Ilieva, M; Riederer, P; Michel, T M

    2017-10-01

    The neurotrophic factors (NTF) hypothesis of depression was postulated nearly a decade ago and is nowadays widely acknowledged. Previous reports suggest that cerebral concentrations of NTF may be reduced in suicide victims who received minimal or no antidepressant pharmacotherapy. Recent evidence suggests that antidepressant treatment may improve or normalise cerebral concentrations of neurotrophic factors. Therefore, we examined the concentration of brain-derived neurotrophic factor (BDNF) and neurotrophin 3 (NT3) in different brain regions (cortex, cingulate gyrus, thalamus, hippocampus, putamen and nucleus caudatus) of 21 individuals - 7 patients of which 4 patients with major depressive disorder (MDD) and overall age 86.8±5 years who received antidepressant pharmacotherapy (selective serotonin re-uptake inhibitors [SSRI]; tricyclic antidepressants [TCA]), 3 patients with MDD without antidepressant treatment and overall age 84.3±5 years versus 14 unaffected subjects at age 70.3±13.8. We detected significant elevation of BDNF (parietal cortex) and NT3 (parietal, temporal and occipital cortex, cingulate gyrus, thalamus, putamen and nucleus caudatus regions) in MDD patients who received antidepressant medication compared to MDD untreated patients and controls. Moreover, we detected a significant decrease of NT3 levels in the parietal cortex of patients suffering from MDD non-treated patients without treatment compared to healthy individuals. Although the limited statistical power due to the small sample size in this proof of concept study corroborates data from previous studies, which show that treatment with antidepressants mediates alterations in neuroplasticity via the action of NTF. However, more research using post-mortem brain tissue with larger samples needs to be carried out as well as longitudinal studies to further verify these results. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  5. Gray Matter Volume in Adolescent Anxiety: An Impact of the Brain-Derived Neurotrophic Factor Val[superscript 66]Met Polymorphism?

    ERIC Educational Resources Information Center

    Mueller, Sven C.; Aouidad, Aveline; Gorodetsky, Elena; Goldman, David; Pine, Daniel S.; Ernst, Monique

    2013-01-01

    Objective: Minimal research links anxiety disorders in adolescents to regional gray matter volume (GMV) abnormalities and their modulation by genetic factors. Prior research suggests that a brain-derived neurotrophic factor (BNDF) Val[superscript 66]Met polymorphism may modulate such brain morphometry profiles. Method: Using voxel-based…

  6. A Standardized Chinese Herbal Decoction, Kai-Xin-San, Restores Decreased Levels of Neurotransmitters and Neurotrophic Factors in the Brain of Chronic Stress-Induced Depressive Rats

    PubMed Central

    Zhu, Kevin Yue; Mao, Qing-Qiu; Ip, Siu-Po; Choi, Roy Chi-Yan; Dong, Tina Ting-Xia; Lau, David Tai-Wai; Tsim, Karl Wah-Keung

    2012-01-01

    Kai-xin-san (KXS), a Chinese herbal decoction being prescribed by Sun Simiao in Beiji Qianjin Yaofang about 1400 years ago, contains Ginseng Radix et Rhizoma, Polygalae Radix, Acori tatarinowii Rhizoma, and Poria. KXS has been used to treat stress-related psychiatric disease with the symptoms of depression and forgetfulness in ancient China until today. However, the mechanism of its antidepression action is still unknown. Here, the chronic mild-stress-(CMS-) induced depressive rats were applied in exploring the action mechanisms of KXS treatment. Daily intragastric administration of KXS for four weeks significantly alleviated the CMS-induced depressive symptoms displayed by enhanced sucrose consumption. In addition, the expressions of those molecular bio-markers relating to depression in rat brains were altered by the treatment of KXS. These KXS-regulated brain biomarkers included: (i) the levels of dopamine, norepinephrine, and serotonin (ii) the transcript levels of proteins relating to neurotransmitter metabolism; (iii) the transcript levels of neurotrophic factors and their receptors. The results suggested that the anti-depressant-like action of KXS might be mediated by an increase of neurotransmitters and expression of neurotrophic factors and its corresponding receptors in the brain. Thus, KXS could serve as alternative medicine, or health food supplement, for patients suffering from depression. PMID:22973399

  7. Brain-derived neurotrophic factor and Alzheimer's disease: physiopathology and beyond.

    PubMed

    Diniz, Breno Satler; Teixeira, Antonio Lucio

    2011-12-01

    Brain-derived neurotrophic factor (BDNF) is the most widely distributed neurotrophin in the central nervous system where it plays several pivotal roles in synaptic plasticity and neuronal survival. As a consequence, BDNF became a key target in the physiopathology of several neurological and psychiatric diseases. Recent studies have reported altered levels of BDNF in the circulation, i.e. serum or plasma, of patients with Alzheimer's disease (AD), and low BDNF levels in the CSF as predictor of future cognitive decline in healthy older subjects. Altered BDNF circulating levels have also been reported in other neurodegenerative and psychiatric disorders, hampering its use as a specific biomarker for AD. Therefore, BDNF seems to be an unspecific biomarker of neuropsychiatric disorders marked by neurodegenerative changes.

  8. The different effects of lithium and tamoxifen on memory formation and the levels of neurotrophic factors in the brain of male and female rats.

    PubMed

    Valvassori, Samira S; Borges, Cenita P; Varela, Roger B; Bavaresco, Daniela V; Bianchini, Guilherme; Mariot, Edemilson; Arent, Camila O; Resende, Wilson R; Budni, Josiane; Quevedo, João

    2017-09-01

    Lithium (Li) is a mood-stabilizing drug used in the treatment of bipolar disorder (BD). Recently, preclinical studies have demonstrated the potential of tamoxifen (TMX) in the treatment of acute episodes of BD. However, the prolonged use of TMX for mood disorders treatment is controversial. In this study, we evaluated the effects of TMX or Li on cognitive behavior, as well as the levels of neurotrophic factors in the brain of male and female rats. Male and female Wistar rats received administrations of water (control group), TMX or Li via gavage for a period of 28days; the rats were then subjected to the open-field test (to evaluate spontaneous locomotion), and the novel object recognition and step-down inhibitory avoidance tests (to evaluate cognition). The levels of NGF, BDNF and GDNF were evaluated in the hippocampus and frontal cortex of the subject rats. No significant differences were observed in the open-field and inhibitory avoidance tests after drug administration in either the male or female rats. The administration of TMX, but not Li, decreased the recognition index of both the male and female rats in the object recognition test. The chronic administration of TMX decreased, whereas Li increased the levels of BDNF in the hippocampus of both the male and female rats. Tamoxifen decreased the levels of NGF in the hippocampus of female rats. In conclusion, it can be suggested that long-term treatments with TMX can lead to significant cognitive impairments by reducing the levels of neurotrophic factors in the brain of rats. Copyright © 2017. Published by Elsevier Inc.

  9. Developmental Thyroid Hormone Insufficiency Reduces Expression of Brain-Derived Neurotrophic Factor (BDNF) in Adults But Not in Neonates

    EPA Science Inventory

    Brain-derived neurotrophic factor (BDNF) is a neurotrophin critical for many developmental and physiological aspects of CNS function. Severe hypothyroidism in the early neonatal period results in developmental and cognitive impairments and reductions in mRNA and protein expressio...

  10. A novel natural product inspired scaffold with robust neurotrophic, neurogenic and neuroprotective action

    PubMed Central

    Chakravarty, Sumana; Maitra, Swati; Reddy, R Gajendra; Das, Tapatee; Jhelum, Priya; Kootar, Scherazad; Rajan, Wenson D.; Samanta, Anumita; Samineni, Ramesh; Pabbaraja, Srihari; Kernie, Steven G.; Mehta, Goverdhan; Kumar, Arvind

    2015-01-01

    In search for drugs to treat neuropsychiatric disorders wherein neurotrophic and neurogenic properties are affected, two neurotrophically active small molecules specially crafted following natural product leads based on 2-oxa-spiro[5.5]-undecane scaffold, have been thoroughly evaluated for their neurotrophic, neurogenic and neuroprotective potential in ex vivo primary culture and in vivo zebrafish and mouse models. The outcome of in vivo investigations suggest that one of these molecules is more neurotrophic than neurogenic while the other one is more neurogenic than neurotrophic and the former exhibits remarkable neuroprotection in a mouse acute ischemic stroke model. The molecular mechanisms of action of these compounds appear to be through the TrkB-MEK-ERK-CREB-BDNF pathway as pre-treatment with neurotrophin receptor TrkB inhibitor ANA-12 and MEK inhibitor PD98059 attenuates the neurotrophic action of compounds. PMID:26388493

  11. Corallocins A-C, Nerve Growth and Brain-Derived Neurotrophic Factor Inducing Metabolites from the Mushroom Hericium coralloides.

    PubMed

    Wittstein, Kathrin; Rascher, Monique; Rupcic, Zeljka; Löwen, Eduard; Winter, Barbara; Köster, Reinhard W; Stadler, Marc

    2016-09-23

    Three new natural products, corallocins A-C (1-3), along with two known compounds were isolated from the mushroom Hericium coralloides. Their benzofuranone and isoindolinone structures were elucidated by spectral methods. All corallocins induced nerve growth factor and/or brain-derived neurotrophic factor expression in human 1321N1 astrocytes. Furthermore, corallocin B showed antiproliferative activity against HUVEC and human cancer cell lines MCF-7 and KB-3-1.

  12. Plasma levels of mature brain-derived neurotrophic factor (BDNF) and matrix metalloproteinase-9 (MMP-9) in treatment-resistant schizophrenia treated with clozapine.

    PubMed

    Yamamori, Hidenaga; Hashimoto, Ryota; Ishima, Tamaki; Kishi, Fukuko; Yasuda, Yuka; Ohi, Kazutaka; Fujimoto, Michiko; Umeda-Yano, Satomi; Ito, Akira; Hashimoto, Kenji; Takeda, Masatoshi

    2013-11-27

    Brain-derived neurotrophic factor (BDNF) regulates the survival and growth of neurons, and influences synaptic efficiency and plasticity. Peripheral BDNF levels in patients with schizophrenia have been widely reported in the literature. However, it is still controversial whether peripheral levels of BDNF are altered in patients with schizophrenia. The peripheral BDNF levels previously reported in patients with schizophrenia were total BDNF (proBDNF and mature BDNF) as it was unable to specifically measure mature BDNF due to limited BDNF antibody specificity. In this study, we examined whether peripheral levels of mature BDNF were altered in patients with treatment-resistant schizophrenia. Matrix metalloproteinase-9 (MMP-9) levels were also measured, as MMP-9 plays a role in the conversion of proBDNF to mature BDNF. Twenty-two patients with treatment-resistant schizophrenia treated with clozapine and 22 age- and sex-matched healthy controls were enrolled. The plasma levels of mature BDNF and MMP-9 were measured using ELISA kits. No significant difference was observed for mature BDNF however, MMP-9 was significantly increased in patients with schizophrenia. The significant correlation was observed between mature BDNF and MMP-9 plasma levels. Neither mature BDNF nor MMP-9 plasma levels were associated clinical variables. Our results do not support the view that peripheral BDNF levels are associated with schizophrenia. MMP-9 may play a role in the pathophysiology of schizophrenia and serve as a biomarker for schizophrenia. Copyright © 2013 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  13. Interface between hypothalamic-pituitary-adrenal axis and brain-derived neurotrophic factor in depression.

    PubMed

    Kunugi, Hiroshi; Hori, Hiroaki; Adachi, Naoki; Numakawa, Tadahiro

    2010-10-01

    Although the pathophysiology of depressive disorder remains elusive, two hypothetical frameworks seem to be promising: the involvement of hypothalamic pituitary-adrenal (HPA) axis abnormalities and brain-derived neurotrophic factor (BDNF) in the pathogenesis and in the mechanism of action of antidepressant treatments. In this review, we focused on research based on these two frameworks in relation to depression and related conditions and tried to formulate an integrated theory of the disorder. Hormonal challenge tests, such as the dexamethasone/corticotropin-releasing hormone test, have revealed elevated HPA activity (hypercortisolism) in at least a portion of patients with depression, although growing evidence has suggested that abnormally low HPA axis (hypocortisolism) has also been implicated in a variety of stress-related conditions. Several lines of evidence from postmortem studies, animal studies, blood levels, and genetic studies have suggested that BDNF is involved in the pathogenesis of depression and in the mechanism of action of biological treatments for depression. Considerable evidence has suggested that stress reduces the expression of BDNF and that antidepressant treatments increase it. Moreover, the glucocorticoid receptor interacts with the specific receptor of BDNF, TrkB, and excessive glucocorticoid interferes with BDNF signaling. Altered BDNF function is involved in the structural changes and possibly impaired neurogenesis in the brain of depressed patients. Based on these findings, an integrated schema of the pathological and recovery processes of depression is illustrated. © 2010 The Authors. Psychiatry and Clinical Neurosciences © 2010 Japanese Society of Psychiatry and Neurology.

  14. Are the changes in the peripheral brain-derived neurotrophic factor levels due to platelet activation?

    PubMed Central

    Serra-Millàs, Montserrat

    2016-01-01

    Brain-derived neurotrophic factor (BDNF) plays an important role in central nervous system development, neurogenesis and neuronal plasticity. BDNF is also expressed in several non-neuronal tissues, and it could play an important role in other processes, such as cancer, angiogenesis, etc. Platelets are the major source of peripheral BDNF. However, platelets also contain high amounts of serotonin; they express specific surface receptors during activation, and a multitude of pro-inflammatory and immunomodulatory bioactive compounds are secreted from the granules. Until recently, there was insufficient knowledge regarding the relationship between BDNF and platelets. Recent studies showed that BDNF is present in two distinct pools in platelets, in α-granules and in the cytoplasm, and only the BDNF in the granules is secreted following stimulation, representing 30% of the total BDNF in platelets. BDNF has an important role in the pathophysiology of depression. Low levels of serum BDNF have been described in patients with major depressive disorder, and BDNF levels increased with chronic antidepressant treatment. Interestingly, there is an association between depression and platelet function. This review analyzed studies that evaluated the relationship between BDNF and platelet activation and the effect of treatments on both parameters. Only a few studies consider this possible confounding factor, and it could be very important in diseases such as depression, which show changes in both parameters. PMID:27014600

  15. Effect of Exercise Intensity on Neurotrophic Factors and Blood-Brain Barrier Permeability Induced by Oxidative-Nitrosative Stress in Male College Students.

    PubMed

    Roh, Hee-Tae; Cho, Su-Youn; Yoon, Hyung-Gi; So, Wi-Young

    2017-06-01

    We investigated the effects of aerobic exercise intensity on oxidative-nitrosative stress, neurotrophic factor expression, and blood-brain barrier (BBB) permeability. Fifteen healthy men performed treadmill running under low-intensity (LI), moderate-intensity (MI), and high-intensity (HI) conditions. Blood samples were collected immediately before exercise (IBE), immediately after exercise (IAE), and 60 min after exercise (60MAE) to examine oxidative-nitrosative stress (reactive oxygen species [ROS]; nitric oxide [NO]), neurotrophic factors (brain-derived neurotrophic factor [BDNF]; nerve growth factor [NGF]), and blood-brain barrier (BBB) permeability (S-100β; neuron-specific enolase). ROS concentration significantly increased IAE and following HI (4.9 ± 1.7 mM) compared with that after LI (2.8 ± 1.4 mM) exercise (p < .05). At 60MAE, ROS concentration was higher following HI (2.5 ± 1.2 mM) than after LI (1.5 ± 0.5 mM) and MI (1.4 ± 0.3 mM) conditions (p < .05). Plasma NO IAE increased significantly after MI and HI exercise (p < .05). Serum BDNF, NGF, and S-100b levels were significantly higher IAE following MI and HI exercise (p < .05). BDNF and S-100b were higher IAE following MI (29.6 ± 3.4 ng/mL and 87.1 ± 22.8 ng/L, respectively) and HI (31.4 ± 3.8 ng/mL and 100.6 ± 21.2 ng/L, respectively) than following LI (26.5 ± 3.0 ng/mL and 64.8 ± 19.2 ng/L, respectively) exercise (p < .05). 60MAE, S-100b was higher following HI (71.1 ± 14.5 ng/L) than LI (56.2 ± 14.7 ng/L) exercise (p < .05). NSE levels were not significantly different among all intensity conditions and time points (p > .05). Moderate- and/or high-intensity exercise may induce higher oxidative-nitrosative stress than may low-intensity exercise, which can increase peripheral neurotrophic factor levels by increasing BBB permeability.

  16. Neurotrophic Natural Products: Chemistry and Biology

    PubMed Central

    Xu, Jing; Lacoske, Michelle H.

    2014-01-01

    Neurodegenerative diseases and spinal cord injury affect approximately 50 million people worldwide, bringing the total healthcare cost to over 600 billion dollars per year. Nervous system growth factors, that is, neurotrophins, are a potential solution to these disorders, since they could promote nerve regeneration. An average of 500 publications per year attests to the significance of neurotrophins in biomedical sciences and underlines their potential for therapeutic applications. Nonetheless, the poor pharmacokinetic profile of neurotrophins severely restricts their clinical use. On the other hand, small molecules that modulate neurotrophic activity offer a promising therapeutic approach against neurological disorders. Nature has provided an impressive array of natural products that have potent neurotrophic activities. This Review highlights the current synthetic strategies toward these compounds and summarizes their ability to induce neuronal growth and rehabilitation. It is anticipated that neurotrophic natural products could be used not only as starting points in drug design but also as tools to study the next frontier in biomedical sciences: the brain activity map project. PMID:24353244

  17. Brain derived neurotrophic factor (BDNF) and autism spectrum disorders (ASD) in childhood.

    PubMed

    Bryn, V; Halvorsen, B; Ueland, T; Isaksen, J; Kolkova, K; Ravn, K; Skjeldal, O H

    2015-07-01

    Neurotrophic factors are essential regulators of neuronal maturation including synaptic synthesis. Among those, Brain derived neurotrophic factor (BDNF) has been in particular focus in the understanding of autism spectrum disorders (ASD). The aim of our study was to investigate whether BNDF could be used as diagnostic/biological marker for ASD. For this purpose we examined the plasma levels of BDNF and the precursors pro- BDNF in patients with ASD and compared it with non-autistic controls; determined whether there was a correlation between the BDNF and proBDNF levels and clinical severity. We also investigated the coding region of BDNF identify for well-variations which could be associated to ASD. The 65 ASD patients (51 boys) were enrolled from a recent completed epidemiological survey covering two counties (Oppland and Hedmark) in Norway. The mean age of the total number of children who participated in this study was 11,7 years. 30 non-autistic children were included as controls, 14 boys and 16 girls. The mean age was 11.3 years. Exclusion criteria for control group were individuals suffering from either neurological, endocrine, or immune insuffiency. Patients with ASD were characterized by moderately but significantly elevated plasma levels of BDNF compared to matched controls. No differences were observed in the proBDNF level between patients and controls. Within the ASD group, children with intellectual disability demonstrated increased BDNF, but not proBDNF levels, while the presence of ADHD had no impact on circulating proBDNF or BDNF. No further associations between plasma proBDNF or BDNF and other clinical demographics were observed. Copyright © 2015 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  18. 3-hydroxymorphinan is neurotrophic to dopaminergic neurons and is also neuroprotective against LPS-induced neurotoxicity.

    PubMed

    Zhang, Wei; Qin, Liya; Wang, Tongguang; Wei, Sung-Jen; Gao, Hui-ming; Liu, Jie; Wilson, Belinda; Liu, Bin; Zhang, Wanqin; Kim, Hyoung-Chun; Hong, Jau-Shyong

    2005-03-01

    The purpose of this study was to develop a novel therapy for Parkinson's disease (PD). We recently reported that dextromethorphan (DM), an active ingredient in a variety of widely used anticough remedies, protected dopaminergic neurons in rat primary mesencephalic neuron-glia cultures against lipopolysaccharide (LPS)-mediated degeneration and provided potent protection for dopaminergic neurons in a MPTP mouse model. The underlying mechanism for the protective effect of DM was attributed to its anti-inflammatory activity through inhibition of microglia activation. In an effort to develop more potent compounds for the treatment of PD, we have screened a series of analogs of DM, and 3-hydroxymorphinan (3-HM) emerged as a promising candidate for this purpose. Our study using primary mesencephalic neuron-glia cultures showed that 3-HM provided more potent neuroprotection against LPS-induced dopaminergic neurotoxicity than its parent compound. The higher potency of 3-HM was attributed to its neurotrophic effect in addition to the anti-inflammatory effect shared by both DM and 3-HM. First, we showed that 3-HM exerted potent neuroprotective and neurotrophic effects on dopaminergic neurons in rat primary mesencephalic neuron-glia cultures treated with LPS. The neurotrophic effect of 3-HM was glia-dependent since 3-HM failed to show any protective effect in the neuron-enriched cultures. We subsequently demonstrated that it was the astroglia, not the microglia, that contributed to the neurotrophic effect of 3-HM. This conclusion was based on the reconstitution studies, in which we added different percentages of microglia (10-20%) or astroglia (40-50%) back to the neuron-enriched cultures and found that 3-HM was neurotrophic after the addition of astroglia, but not microglia. Furthermore, 3-HM-treated astroglia-derived conditioned media exerted a significant neurotrophic effect on dopaminergic neurons. It appeared likely that 3-HM caused the release of neurotrophic factor(s

  19. Effect of brain-derived neurotrophic factor (BDNF) on hepatocyte metabolism.

    PubMed

    Genzer, Yoni; Chapnik, Nava; Froy, Oren

    2017-07-01

    Brain-derived neurotrophic factor (BDNF) plays crucial roles in the development, maintenance, plasticity and homeostasis of the central and peripheral nervous systems. Perturbing BDNF signaling in mouse brain results in hyperphagia, obesity, hyperinsulinemia and hyperglycemia. Currently, little is known whether BDNF affects liver tissue directly. Our aim was to determine the metabolic signaling pathways activated after BDNF treatment in hepatocytes. Unlike its effect in the brain, BDNF did not lead to activation of the liver AKT pathway. However, AMP protein activated kinase (AMPK) was ∼3 times more active and fatty acid synthase (FAS) ∼2-fold less active, suggesting increased fatty acid oxidation and reduced fatty acid synthesis. In addition, cAMP response element binding protein (CREB) was ∼3.5-fold less active together with its output the gluconeogenic transcript phosphoenolpyruvate carboxykinase (Pepck), suggesting reduced gluconeogenesis. The levels of glycogen synthase kinase 3b (GSK3b) was ∼3-fold higher suggesting increased glycogen synthesis. In parallel, the expression levels of the clock genes Bmal1 and Cry1, whose protein products play also a metabolic role, were ∼2-fold increased and decreased, respectively. In conclusion, BDNF binding to hepatocytes leads to activation of catabolic pathways, such as fatty acid oxidation. In parallel gluconeogenesis is inhibited, while glycogen storage is triggered. This metabolic state mimics that of after breakfast, in which the liver continues to oxidize fat, stops gluconeogenesis and replenishes glycogen stores. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Nootropic, neuroprotective and neurotrophic effects of phloretin in scopolamine induced amnesia in mice.

    PubMed

    Ghumatkar, Priya J; Patil, Sachin P; Jain, Pankaj D; Tambe, Rufi M; Sathaye, Sadhana

    2015-08-01

    Phloretin (PHL), a dihydrochalcone flavonoid usually present in the roots and leaves of apple tree. In vitro study on GT1-7 immortalized hypothalamic neurons exposed to amyloid beta (25-35), demonstrated that PHL significantly influenced membrane fluidity and potential. PHL also significantly decreased excitotoxicity by restoring the calcium homeostasis in the same. Thus, PHL proves to be a promising therapeutic moiety which should be further screened in the treatment of Alzheimer's disease. The objective of the present study was to evaluate the nootropic, neuroprotective and neurotrophic roles of PHL in the subacute scopolamine induced amnesia in mice. In this study, mice were pretreated with PHL 2.5mg/kg, 5mg/kg, 10mg/kg and Donepezil (DON) 1mg/kg intraperitoneally (i.p) for 14days. The last 7days of treatment regimen included daily injection of SCP 1.5mg/kg to induce cognitive deficits. Mice were subjected to behavioral analysis. Biochemical estimation of the brain homogenates for acetylcholinesterase and oxidative stress biomarkers were conducted. Furthermore, immunohistochemical analysis for the brain derived neurotrophic factor (BDNF) was carried out particularly in the hippocampus. PHL was found to significantly improve the performance of mice in Morris water maze test (P<0.001) and significantly decreased the acetylcholinesterase activity (P<0.001) at all doses compared to SCP treated mice. Also, PHL significantly elevated the activity of antioxidant enzymes viz. superoxide dismutase, catalase, reduced glutathione levels (P<0.001) and decreased malonaldehyde levels (P<0.001) in comparison with the SCP group. Immunohistochemistry revealed that PHL treatment dose dependently improved BDNF levels in the hippocampus which were found to be significantly depleted (P<0.001) in the SCP group. Additionally, PHL (10mg/kg) significantly enhanced the spatial memory formation (P<0.05) and neurotrophicity (P<0.001) compared to DON (1mg/kg). The aforementioned research

  1. Rapid transient isoform-specific neuregulin1 transcription in motor neurons is regulated by neurotrophic factors and axon-target interactions.

    PubMed

    Wang, Jiajing; Hmadcha, Abdelkrim; Zakarian, Vaagn; Song, Fei; Loeb, Jeffrey A

    2015-09-01

    The neuregulins (NRGs) are a family of alternatively spliced factors that play important roles in nervous system development and disease. In motor neurons, NRG1 expression is regulated by activity and neurotrophic factors, however, little is known about what controls isoform-specific transcription. Here we show that NRG1 expression in the chick embryo increases in motor neurons that have extended their axons and that limb bud ablation before motor axon outgrowth prevents this induction, suggesting a trophic role from the developing limb. Consistently, NRG1 induction after limb bud ablation can be rescued by adding back the neurotrophic factors BDNF and GDNF. Mechanistically, BDNF induces a rapid and transient increase in type I and type III NRG1 mRNAs that peak at 4h in rat embryonic ventral spinal cord cultures. Blocking MAPK or PI3K signaling or blocking transcription with Actinomycin D blocks BDNF induced NRG1 gene induction. BDNF had no effect on mRNA degradation, suggesting that transcriptional activation rather than message stability is important. Furthermore, BDNF activates a reporter construct that includes 700bp upstream of the type I NRG1 start site. Protein synthesis is also required for type I NRG1 mRNA transcription as cycloheximide produced a super-induction of type I, but not type III NRG1 mRNA, possibly through a mechanism involving sustained activation of MAPK and PI3K. These results reveal the existence of highly responsive, transient transcriptional regulatory mechanisms that differentially modulate NRG1 isoform expression as a function of extracellular and intracellular signaling cascades and mediated by neurotrophic factors and axon-target interactions. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Fibrin matrices with affinity-based delivery systems and neurotrophic factors promote functional nerve regeneration.

    PubMed

    Wood, Matthew D; MacEwan, Matthew R; French, Alexander R; Moore, Amy M; Hunter, Daniel A; Mackinnon, Susan E; Moran, Daniel W; Borschel, Gregory H; Sakiyama-Elbert, Shelly E

    2010-08-15

    Glial-derived neurotrophic factor (GDNF) and nerve growth factor (NGF) have both been shown to enhance peripheral nerve regeneration following injury and target different neuronal populations. The delivery of either growth factor at the site of injury may, therefore, result in quantitative differences in motor nerve regeneration and functional recovery. In this study we evaluated the effect of affinity-based delivery of GDNF or NGF from fibrin-filled nerve guidance conduits (NGCs) on motor nerve regeneration and functional recovery in a 13 mm rat sciatic nerve defect. Seven experimental groups were evaluated consisting of GDNF or NGF and the affinity-based delivery system (DS) within NGCs, control groups excluding the DS and/or growth factor, and nerve isografts. Groups with growth factor in the conduit demonstrated equivalent or superior performance in behavioral tests and relative muscle mass measurements compared to isografts at 12 weeks. Additionally, groups with GDNF demonstrated greater specific twitch and tetanic force production in extensor digitorum longus (EDL) muscle than the isograft control, while groups with NGF produced demonstrated similar force production compared to the isograft control. Assessment of motor axon regeneration by retrograde labeling further revealed that the number of ventral horn neurons regenerating across NGCs containing GDNF and NGF DS was similar to the isograft group and these counts were greater than the groups without growth factor. Overall, the GDNF DS group demonstrated superior functional recovery and equivalent motor nerve regeneration compared to the isograft control, suggesting it has potential as a treatment for motor nerve injury.

  3. Gene therapy with brain-derived neurotrophic factor as a protection: retinal ganglion cells in a rat glaucoma model.

    PubMed

    Martin, Keith R G; Quigley, Harry A; Zack, Donald J; Levkovitch-Verbin, Hana; Kielczewski, Jennifer; Valenta, Danielle; Baumrind, Lisa; Pease, Mary Ellen; Klein, Ronald L; Hauswirth, William W

    2003-10-01

    To develop a modified adenoassociated viral (AAV) vector capable of efficient transfection of retinal ganglion cells (RGCs) and to test the hypothesis that use of this vector to express brain-derived neurotrophic factor (BDNF) could be protective in experimental glaucoma. Ninety-three rats received one unilateral, intravitreal injection of either normal saline (n = 30), AAV-BDNF-woodchuck hepatitis posttranscriptional regulatory element (WPRE; n = 30), or AAV-green fluorescent protein (GFP)-WPRE (n = 33). Two weeks later, experimental glaucoma was induced in the injected eye by laser application to the trabecular meshwork. Survival of RGCs was estimated by counting axons in optic nerve cross sections after 4 weeks of glaucoma. Transgene expression was assessed by immunohistochemistry, Western blot analysis, and direct visualization of GFP. The density of GFP-positive cells in retinal wholemounts was 1,828 +/- 299 cells/mm(2) (72,273 +/- 11,814 cells/retina). Exposure to elevated intraocular pressure was similar in all groups. Four weeks after initial laser treatment, axon loss was 52.3% +/- 27.1% in the saline-treated group (n = 25) and 52.3% +/- 24.2% in the AAV-GFP-WPRE group (n = 30), but only 32.3% +/- 23.0% in the AAV-BDNF-WPRE group (n = 27). Survival in AAV-BDNF-WPRE animals increased markedly and the difference was significant compared with those receiving either AAV-GFP-WPRE (P = 0.002, t-test) or saline (P = 0.006, t-test). Overexpression of the BDNF gene protects RGC as estimated by axon counts in a rat glaucoma model, further supporting the potential feasibility of neurotrophic therapy as a complement to the lowering of IOP in the treatment of glaucoma.

  4. Zinc Interactions With Brain-Derived Neurotrophic Factor and Related Peptide Fragments.

    PubMed

    Travaglia, A; La Mendola, D

    2017-01-01

    Brain-derived neurotrophic factor (BDNF) is a neurotrophin essential for neuronal development and survival, synaptic plasticity, and cognitive function. Dysregulation of BDNF signaling is involved in several neurodegenerative disorders, including Alzheimer's disease. Alteration of metal ion homeostasis is observed both in normal aging and in many neurodegenerative diseases. Interestingly, there is a significant overlap between brain areas characterized by metal ion dyshomeostasis and those where BDNF exerts its biological activity. Therefore, it is reasonable to speculate that metal ions, especially zinc, can modulate the activity of BDNF. The synthesis of BDNF peptidomimetic can be helpful both to understand the molecular interaction of BDNF with metal ions and to develop new drugs for neurodegenerative diseases. © 2017 Elsevier Inc. All rights reserved.

  5. Performance on the Wisconsin card-sorting test and serum levels of glial cell line-derived neurotrophic factor in patients with major depressive disorder.

    PubMed

    Zhang, Xiaobin; Ru, Bu; Sha, Weiwei; Xin, Wang; Zhou, Honghui; Zhang, Yumei

    2014-09-01

    Some evidence suggests that neurotrophic growth factor systems might be involved in the etiology of major depressive disorder (MDD). Glial cell line-derived neurotrophic factor (GDNF) is a neurotrophic factor from the transforming growth factor-β family that plays a role in the development and function of the brain. This study aimed to test whether GDNF in serum was abnormal in MDD, and whether it was related to the cognitive impairment of MDD. Serum GDNF levels in MDD patients (n = 32) and normal controls (n = 32) were measured with the enzyme-linked immunosorbent assay method. All subjects were assessed for performance on the Wisconsin card-sorting test (WCST). Performance on the WCST in MDD patients was significantly poorer than that in controls. Serum GDNF levels in MDD patients were significantly decreased compared to that of the control subjects (P < 0.001). Furthermore, the decrease in the serum GDNF levels positively correlated with performance in the WCST-% CONC and negatively with performance in the WCST-P in MDD patients. The findings suggest that MDD patients have extensive impairments of executive functioning, and lower serum GDNF might be involved in the pathogenesis of MDD, which may be associated with the cognitive dysfunction in MDD patients. © 2014 Wiley Publishing Asia Pty Ltd.

  6. Alpha2-adrenoceptor blockade accelerates the neurogenic, neurotrophic, and behavioral effects of chronic antidepressant treatment.

    PubMed

    Yanpallewar, Sudhirkumar U; Fernandes, Kimberly; Marathe, Swananda V; Vadodaria, Krishna C; Jhaveri, Dhanisha; Rommelfanger, Karen; Ladiwala, Uma; Jha, Shanker; Muthig, Verena; Hein, Lutz; Bartlett, Perry; Weinshenker, David; Vaidya, Vidita A

    2010-01-20

    Slow-onset adaptive changes that arise from sustained antidepressant treatment, such as enhanced adult hippocampal neurogenesis and increased trophic factor expression, play a key role in the behavioral effects of antidepressants. alpha(2)-Adrenoceptors contribute to the modulation of mood and are potential targets for the development of faster acting antidepressants. We investigated the influence of alpha(2)-adrenoceptors on adult hippocampal neurogenesis. Our results indicate that alpha(2)-adrenoceptor agonists, clonidine and guanabenz, decrease adult hippocampal neurogenesis through a selective effect on the proliferation, but not the survival or differentiation, of progenitors. These effects persist in dopamine beta-hydroxylase knock-out (Dbh(-/-)) mice lacking norepinephrine, supporting a role for alpha(2)-heteroceptors on progenitor cells, rather than alpha(2)-autoreceptors on noradrenergic neurons that inhibit norepinephrine release. Adult hippocampal progenitors in vitro express all the alpha(2)-adrenoceptor subtypes, and decreased neurosphere frequency and BrdU incorporation indicate direct effects of alpha(2)-adrenoceptor stimulation on progenitors. Furthermore, coadministration of the alpha(2)-adrenoceptor antagonist yohimbine with the antidepressant imipramine significantly accelerates effects on hippocampal progenitor proliferation, the morphological maturation of newborn neurons, and the increase in expression of brain derived neurotrophic factor and vascular endothelial growth factor implicated in the neurogenic and behavioral effects of antidepressants. Finally, short-duration (7 d) yohimbine and imipramine treatment results in robust behavioral responses in the novelty suppressed feeding test, which normally requires 3 weeks of treatment with classical antidepressants. Our results demonstrate that alpha(2)-adrenoceptors, expressed by progenitor cells, decrease adult hippocampal neurogenesis, while their blockade speeds up antidepressant action

  7. α2-adrenoceptor blockade accelerates the neurogenic, neurotrophic, and behavioral effects of chronic antidepressant treatment

    PubMed Central

    Yanpallewar, Sudhirkumar U.; Fernandes, Kimberly; Marathe, Swananda V.; Vadodaria, Krishna C.; Jhaveri, Dhanisha; Rommelfanger, Karen; Ladiwala, Uma; Jha, Shanker; Muthig, Verena; Hein, Lutz; Bartlett, Perry; Weinshenker, David; Vaidya, Vidita A.

    2010-01-01

    Slow-onset adaptive changes that arise from sustained antidepressant treatment, such as enhanced adult hippocampal neurogenesis and increased trophic factor expression, play a key role in the behavioral effects of antidepressants. α2-adrenoceptors contribute to the modulation of mood and are potential targets for the development of faster acting antidepressants. We investigated the influence of α2-adrenoceptors on adult hippocampal neurogenesis. Our results indicate that α2-adrenoceptor agonists, clonidine and guanabenz, decrease adult hippocampal neurogenesis through a selective effect on the proliferation, but not the survival or differentiation, of progenitors. These effects persist in dopamine β-hydroxylase knockout (Dbh −/−) mice lacking norepinephrine, supporting a role for α2-heteroceptors on progenitor cells, rather than α2-autoreceptors on noradrenergic neurons that inhibit norepinephrine release. Adult hippocampal progenitors in vitro express all the α2-adrenoceptor subtypes, and decreased neurosphere frequency and BrdU incorporation indicate direct effects of α2-adrenoceptor stimulation on progenitors. Further, co-administration of the α2-adrenoceptor antagonist yohimbine with the antidepressant imipramine significantly accelerates effects on hippocampal progenitor proliferation, the morphological maturation of newborn neurons, and the increase in expression of brain derived neurotrophic factor and vascular endothelial growth factor implicated in the neurogenic and behavioral effects of antidepressants. Finally, short duration (7 day) yohimbine and imipramine treatment results in robust behavioral responses in the novelty suppressed feeding test, which normally requires 3 weeks of treatment with classical antidepressants. Our results demonstrate that α2-adrenoceptors, expressed by progenitor cells, decrease adult hippocampal neurogenesis, while their blockade speeds up antidepressant action, highlighting their importance as targets for

  8. Brain-derived neurotrophic factor Val66Met polymorphism and dexamethasone/CRH test results in depressed patients.

    PubMed

    Schüle, Cornelius; Zill, Peter; Baghai, Thomas C; Eser, Daniela; Zwanzger, Peter; Wenig, Nadine; Rupprecht, Rainer; Bondy, Brigitta

    2006-09-01

    Data suggest that both neurotrophic and hypothalamic-pituitary-adrenocortical (HPA) systems are involved in the pathophysiology of depression. The aim of the present study was to investigate whether the non-conservative brain-derived neurotrophic factor (BDNF) Val66Met polymorphism has an impact on HPA axis activity in depressed patients. At admission, the dexamethasone/CRH (DEX/CRH) test was performed in 187 drug-free in-patients suffering from major depression or depressed state of bipolar disorder (DSM-IV criteria). Moreover, genotyping of BDNF Val66Met polymorphism was carried out using the fluorescence resonance energy transfer method (FRET). Homozygous carriers of the Met/Met genotype showed a significantly higher HPA axis activity during the DEX/CRH test than patients carrying the Val/Val or Val/Met genotype (ACTH, cortisol). Our results further contribute to the hypothesized association between HPA axis dysregulation and reduced neuroplasticity in depression and are consistent with the assumption that BDNF is a stress-responsive intercellular messenger modifying HPA axis activity.

  9. Brain-derived neurotrophic factor protects against tau-related neurodegeneration of Alzheimer's disease

    PubMed Central

    Jiao, S-S; Shen, L-L; Zhu, C; Bu, X-L; Liu, Y-H; Liu, C-H; Yao, X-Q; Zhang, L-L; Zhou, H-D; Walker, D G; Tan, J; Götz, J; Zhou, X-F; Wang, Y-J

    2016-01-01

    Reduced expression of brain-derived neurotrophic factor (BDNF) has a crucial role in the pathogenesis of Alzheimer's disease (AD), which is characterized with the formation of neuritic plaques consisting of amyloid-beta (Aβ) and neurofibrillary tangles composed of hyperphosphorylated tau protein. A growing body of evidence indicates a potential protective effect of BDNF against Aβ-induced neurotoxicity in AD mouse models. However, the direct therapeutic effect of BDNF supplement on tauopathy in AD remains to be established. Here, we found that the BDNF level was reduced in the serum and brain of AD patients and P301L transgenic mice (a mouse model of tauopathy). Intralateral ventricle injection of adeno-associated virus carrying the gene encoding human BDNF (AAV-BDNF) achieved stable expression of BDNF gene and restored the BDNF level in the brains of P301L mice. Restoration of the BDNF level attenuated behavioral deficits, prevented neuron loss, alleviated synaptic degeneration and reduced neuronal abnormality, but did not affect tau hyperphosphorylation level in the brains of P301L mice. Long-term expression of AAV-BDNF in the brain was well tolerated by the mice. These findings suggest that the gene delivery of BDNF is a promising treatment for tau-related neurodegeneration for AD and other neurodegenerative disorders with tauopathy. PMID:27701410

  10. Role of brain-derived neurotrophic factor during the regenerative response after traumatic brain injury in adult zebrafish.

    PubMed

    Cacialli, Pietro; Palladino, Antonio; Lucini, Carla

    2018-06-01

    Several mammalian animal models of traumatic brain injury have been used, mostly rodents. However, reparative mechanisms in mammalian brain are very limited, and newly formed neurons do not survive for long time. The brain of adult zebrafish, a teleost fish widely used as vertebrate model, possesses high regenerative properties after injury due to the presence of numerous stem cells niches. The ventricular lining of the zebrafish dorsal telencephalon is the most studied neuronal stem cell niche because its dorso-lateral zone is considered the equivalent to the hippocampus of mammals which contains one of the two constitutive neurogenic niches of mammals. To mimic TBI, stab wound in the dorso-lateral telencephalon of zebrafish was used in studies devoted to fish regenerative properties. Brain-derived neurotrophic factor, which is known to play key roles in the repair process after traumatic brain lesions, persists around the lesioned area of injured telencephalon of adult zebrafish. These results are extensively compared to reparative processes in rodent brain. Considering the complete repair of the damaged area in fish, it could be tempting to consider brain-derived neurotrophic factor as a factor contributing to create a permissive environment that enables the establishment of new neuronal population in damaged brain.

  11. Effects of Six-Week Ginkgo biloba Supplementation on Aerobic Performance, Blood Pro/Antioxidant Balance, and Serum Brain-Derived Neurotrophic Factor in Physically Active Men.

    PubMed

    Sadowska-Krępa, Ewa; Kłapcińska, Barbara; Pokora, Ilona; Domaszewski, Przemysław; Kempa, Katarzyna; Podgórski, Tomasz

    2017-07-26

    Extracts of Ginkgo biloba leaves, a natural source of flavonoids and polyphenolic compounds, are commonly used as therapeutic agents for the improvement of both cognitive and physiological performance. The present study was aimed to test the effects of a six-week supplementation with 160 mg/day of a standardized extract of Ginkgo biloba or a matching placebo on aerobic performance, blood antioxidant capacity, and brain-derived neurotrophic factor (BDNF) level in healthy, physically active young men, randomly allocated to two groups ( n = 9 each). At baseline, as well as on the day following the treatment, the participants performed an incremental cycling test for the assessment of maximal oxygen uptake. Venous blood samples taken at rest, then immediately post-test and following 1 h of recovery, were analyzed for activities of antioxidant enzymes and plasma concentrations of non-enzymatic antioxidants, total phenolics, uric acid, lipid peroxidation products, ferric reducing ability of plasma (FRAP), and serum brain-derived neurotrophic factor (BDNF). Our results show that six weeks' supplementation with Ginkgo biloba extract in physically active young men may provide some marginal improvements in their endurance performance expressed as VO₂max and blood antioxidant capacity, as evidenced by specific biomarkers, and elicit somewhat better neuroprotection through increased exercise-induced production of BDNF.

  12. NTS-polyplex: A potential nanocarrier for neurotrophic therapy of Parkinson’s disease

    PubMed Central

    Martinez-Fong, Daniel; Bannon, Michael J.; Trudeau, Louis-Eric; Gonzalez-Barrios, Juan A.; Arango-Rodriguez, Martha L.; Hernandez-Chan, Nancy G.; Reyes-Corona, David; Armendáriz-Borunda, Juan; Navarro-Quiroga, Ivan

    2012-01-01

    Nanomedicine has focused on targeted neurotrophic gene delivery to the brain as a strategy to stop and reverse neurodegeneration in Parkinson’s disease. Because of improved transfection ability, synthetic nanocarriers have become candidates for neurotrophic therapy. Neurotensin (NTS)-polyplex is a “Trojan horse” synthetic nanocarrier system that enters dopaminergic neurons through NTS receptor internalization to deliver a genetic cargo. The success of preclinical studies with different neurotrophic genes supports the possibility of using NTS-polyplex in nanomedicine. In this review, we describe the mechanism of NTS-polyplex transfection. We discuss the concept that an effective neurotrophic therapy requires a simultaneous effect on the axon terminals and soma of the remaining dopaminergic neurons. We also discuss the future of this strategy for the treatment of Parkinson’s disease. PMID:22406187

  13. Exercise increases serum brain-derived neurotrophic factor in patients with major depressive disorder.

    PubMed

    Kerling, A; Kück, M; Tegtbur, U; Grams, L; Weber-Spickschen, S; Hanke, A; Stubbs, B; Kahl, K G

    2017-06-01

    Brain derived neurotrophic factor (BDNF) has been implicated in the pathogenesis of major depressive disorder (MDD). Existing data on exercise treatment in people with MDD are inconsistent concerning the effect of exercise on BDNF pointing either to increased or unaltered BDNF concentrations. However, studies in non-depressed persons demonstrated a significant effect on resting peripheral BDNF concentrations in aerobic training interventions. Given the lack of clarity mentioned above, the current study aimed at examining the effect of adjunctive exercise on serum BDNF levels in guideline based treated patients with MDD. 42 depressed inpatients were included, and randomized either to a 6 week structured and supervised exercise intervention plus treatment as usual (EXERCISE, n=22), or to treatment as usual (TAU, n=20). BDNF serum concentrations were assessed before and after the intervention in both study groups with established immunoassays. Serum BDNF slightly decreased in the TAU group, whilst there was an increase in BDNF levels in the exercise group. There was a significant time x group effect concerning sBDNF (p=0.030) with repeated ANOVA measures with age and BMI as covariates, suggesting an increase in BDNF concentrations in the EXERCISE group compared to TAU. Though there was no statistic difference in the antidepressant medication between EXERCISE and TAU potential interactions between exercise and medication on the effects of exercise in BDNF cannot be excluded. Gender was not considered as a covariate in ANOVA due to the small number of objects. Exercise training given as adjunct to standard guideline based treatment appears to have additional effects on BDNF serum concentrations in people with MDD. Our results add further evidence to the beneficial effects of exercise in the treatment of MDD. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  14. Brain-derived neurotrophic factor mediates cognitive improvements following acute exercise.

    PubMed

    Borror, Andrew

    2017-09-01

    The mechanisms causing improved cognition following acute exercise are poorly understood. This article proposes that brain-derived neurotrophic factor (BDNF) is the main factor contributing to improved cognition following exercise. Additionally, it argues that cerebral blood flow (CBF) and oxidative stress explain the release of BDNF from cerebral endothelial cells. One way to test these hypotheses is to block endothelial function and measure the effect on BDNF levels and cognitive performance. The CBF and oxidative stress can also be examined in relationship to BDNF using a multiple linear regression. If these hypotheses are true, there would be a linear relationship between CBF+oxidative stress and BDNF levels as well as between BDNF levels and cognitive performance. The novelty of these hypotheses comes from the emphasis on the cerebral endothelium and the interplay between BDNF, CBF, and oxidative stress. If found to be valid, these hypotheses would draw attention to the cerebral endothelium and provide direction for future research regarding methods to optimize BDNF release and enhance cognition. Elucidating these mechanisms would provide direction for expediting recovery in clinical populations, such as stroke, and maintaining quality of life in the elderly. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Effect of Agomelatine and Fluoxetine on HAM-D Score, Serum Brain-Derived Neurotrophic Factor, and Tumor Necrosis Factor-α Level in Patients With Major Depressive Disorder With Severe Depression.

    PubMed

    Gupta, Keshav; Gupta, Rachna; Bhatia, M S; Tripathi, A K; Gupta, Lalit K

    2017-12-01

    Evidence suggests that neurotrophic factors, inflammatory markers, and circadian rhythm dysfunctions could be involved in pathophysiology of major depressive disorder. This study evaluated the efficacy and tolerability of agomelatine, a melatonergic drug, and fluoxetine (positive comparator) and their effect on serum brain-derived neurotrophic factor (BDNF) and tumor necrosis factor (TNF)-α level in patients having major depressive disorder with severe depression. In the present study, we chose TNF-α and BDNF because reduction of TNF-α and rise in BDNF levels are linked with improvement in major depressive disorder. Patients with Hamilton Rating Scale for Depression (HAM-D) score ≥25 were treated with agomelatine or fluoxetine and followed up for 12 weeks. In the agomelatine group, the HAM-D score, BDNF level, and TNF-α level at the start of treatment were 31.1 ± 1.88 ng/mL, 2.44 ± 0.38 ng/mL, and 512.5 ± 86.2 pg/mL, respectively, which significantly changed to 13.67 ± 2.22 ng/mL, 2.87 ± 0.44 ng/mL, and 391.64 ± 104.8 pg/mL, respectively (P < .05 for all 3 measures), at 12 weeks. In the fluoxetine group, the HAM-D score, BDNF level, and TNF-α level at the start of treatment were 30.83 ± 2.60 ng/mL, 2.54 ± 0.37 ng/mL, and 554.14 ± 46.8 pg/mL, respectively, which significantly changed to 13.67 ± 1.79 ng/mL, 3.07 ± 0.33 ng/mL, and 484.15 ± 49.9 pg/mL, respectively (P < .05 for all 3 measures) at 12 weeks. The BDNF level was significantly increased posttreatment with both drugs, and TNF-α level fell significantly more with agomelatine compared to fluoxetine. Thus, chronic neuroinflammatory biomarkers contribute to circuitry dysregulation in depression. Trophic factors repair dysfunctional circuits in depression. Both treatments were found to be safe and well tolerated. © 2017, The American College of Clinical Pharmacology.

  16. Prolonged metformin treatment leads to reduced transcription of Nrf2 and neurotrophic factors without cognitive impairment in older C57BL/6J mice

    PubMed Central

    Allard, Joanne S.; Perez, Evelyn J; Fukui, Koji; Carpenter, Priscilla; Ingram, Donald K.; de Cabo, Rafael

    2016-01-01

    Long-term use of anti-diabetic agents has become commonplace as rates of obesity, metabolic syndrome and diabetes continue to escalate. Metformin, a commonly used anti-diabetic drug, has been shown to have many beneficial effects outside of its therapeutic regulation of glucose metabolism and insulin sensitivity. Studies on metformin’s effects on the central nervous system are limited and predominantly consist of in vitro studies and a few in vivo studies with short-term treatment in relatively young animals; some provide support for metformin as a neuroprotective agent while others show evidence that metformin may be deleterious to neuronal survival. In this study, we examined the effect of long-term metformin treatment on brain neurotrophins and cognition in aged male C57Bl/6 mice. Mice were fed control (C), high-fat (HF) or a high-fat diet supplemented with metformin (HFM) for 6 months. Metformin decreased body fat composition and attenuated declines in motor function induced by a HF diet. Performance in the Morris water maze test of hippocampal based memory function, showed that metformin prevented impairment of spatial reference memory associated with the HF diet. Quantitative RT-PCR on brain homogenates revealed decreased transcription of BDNF, NGF and NTF3; however protein levels were not altered. Metformin treatment also decreased expression of the antioxidant pathway regulator, Nrf2. The decrease in transcription of neurotrophic factors and Nrf2 with chronic metformin intake, cautions of the possibility that extended metformin use may alter brain biochemistry in a manner that creates a vulnerable brain environment and warrants further investigation. PMID:26698400

  17. Peripheral brain-derived neurotrophic factor (BDNF) as a biomarker in bipolar disorder: a meta-analysis of 52 studies.

    PubMed

    Fernandes, Brisa S; Molendijk, Marc L; Köhler, Cristiano A; Soares, Jair C; Leite, Cláudio Manuel G S; Machado-Vieira, Rodrigo; Ribeiro, Thamara L; Silva, Jéssica C; Sales, Paulo M G; Quevedo, João; Oertel-Knöchel, Viola; Vieta, Eduard; González-Pinto, Ana; Berk, Michael; Carvalho, André F

    2015-11-30

    The neurotrophic hypothesis postulates that mood disorders such as bipolar disorder (BD) are associated with a lower expression of brain-derived neurotrophic factor (BDNF). However, its role in peripheral blood as a biomarker of disease activity and of stage for BD, transcending pathophysiology, is still disputed. In the last few years an increasing number of clinical studies assessing BDNF in serum and plasma have been published. Therefore, it is now possible to analyse the association between BDNF levels and the severity of affective symptoms in BD as well as the effects of acute drug treatment of mood episodes on BDNF levels. We conducted a systematic review and meta-analysis of all studies on serum and plasma BDNF levels in bipolar disorder. Through a series of meta-analyses including a total of 52 studies with 6,481 participants, we show that, compared to healthy controls, peripheral BDNF levels are reduced to the same extent in manic (Hedges' g = -0.57, P = 0.010) and depressive (Hedges' g = -0.93, P = 0.001) episodes, while BDNF levels are not significantly altered in euthymia. In meta-regression analyses, BDNF levels additionally negatively correlate with the severity of both manic and depressive symptoms. We found no evidence for a significant impact of illness duration on BDNF levels. In addition, in plasma, but not serum, peripheral BDNF levels increase after the successful treatment of an acute mania episode, but not of a depressive one. In summary, our data suggest that peripheral BDNF levels, more clearly in plasma than in serum, is a potential biomarker of disease activity in BD, but not a biomarker of stage. We suggest that peripheral BDNF may, in future, be used as a part of a blood protein composite measure to assess disease activity in BD.

  18. Construction of a plasmid for human brain-derived neurotrophic factor and its effect on retinal pigment epithelial cell viability

    PubMed Central

    Yan, Bo-jing; Wu, Zhi-zhong; Chong, Wei-hua; Li, Gen-lin

    2016-01-01

    Several studies have investigated the protective functions of brain-derived neurotrophic factor (BDNF) in retinitis pigmentosa. However, a BDNF-based therapy for retinitis pigmentosa is not yet available. To develop an efficient treatment for fundus disease, an eukaryotic expression plasmid was generated and used to transfect human 293T cells to assess the expression and bioactivity of BDNF on acute retinal pigment epithelial-19 (ARPE-19) cells, a human retinal epithelial cell line. After 96 hours of co-culture in a Transwell chamber, ARPE-19 cells exposed to BDNF secreted by 293T cells were more viable than ARPE-19 cells not exposed to secreted BDNF. Western blot assay showed that Bax levels were downregulated and that Bcl-2 levels were upregulated in human ARPE-19 cells exposed to BDNF. Furthermore, 293T cells transfected with the BDNF gene steadily secreted the protein. The powerful anti-apoptotic function of this BDNF may be useful for the treatment of retinitis pigmentosa and other retinal degenerative diseases. PMID:28197196

  19. Astrocytes mediated the nootropic and neurotrophic effects of Sarsasapogenin-AA13 via upregulating brain-derived neurotrophic factor.

    PubMed

    Dong, Dong; Mao, Yu; Huang, Cui; Jiao, Qian; Pan, Hui; Ma, Lei; Wang, Rui

    2017-01-01

    Rhizoma Anemarrhena , a widely used traditional Chinese medicine, has previously been shown to have neuroprotective effect. Sarsasapogenin-AA13 (AA13) is a novel synthetic derivative of Sarsasapogenin, which is extracted from Rhizoma Anemarrhena . The aim of this study is to investigate the nootropic and neurotrophic effects of AA13 and underlying mechanisms. In vitro , cell viability of rat primary astrocytes treated with AA13 and neurons cultured with conditioned medium of AA13-treated rat primary astrocytes was tested by MTT assays. In vivo , a pharmacological model of cognitive impairment induced by scopolamine was employed and spatial memory of the mice was assessed by Morris water maze. This study found that AA13 increased cell viability of primary astrocytes and AA13-treated astrocyte-conditioned medium enhanced the survival rate of primary neurons. Interestingly, AA13 markedly enhanced the level of BDNF in astrocytes. Furthermore, AA13 (6 mg/kg) improved the cognitive deficits in animal models (p<0.05) and BDNF and PSD95 levels were increased in brain. Therefore, we hypothesize that AA13 exerts nootropic and neurotrophic activities through astrocytes mediated upregulation of BDNF secretion. The results suggest that AA13 could be a potential compound for cognitive impairment after further research.

  20. Serum levels of brain-derived neurotrophic factor (BNDF) in multiple sclerosis patients with Trichuris suis ova therapy.

    PubMed

    Rosche, Berit; Werner, Jonas; Benzel, Friderike Joëlle; Harms, Lutz; Danker-Hopfe, Heidi; Hellweg, Rainer

    2013-01-01

    We previously analysed clinical and immunological parameters under Trichuris suis ova (TSO) therapy in four patients with secondary progressive multiple sclerosis. The serum Brain-derived neurotrophic factor (BDNF) levels of these four patients were assessed before, during and after therapy with TSO and showed significant decrease of BDNF during TSO therapy (p < 0.05). © B. Rosche et al., published by EDP Sciences, 2013.

  1. Ketamine induces brain-derived neurotrophic factor expression via phosphorylation of histone deacetylase 5 in rats.

    PubMed

    Choi, Miyeon; Lee, Seung Hoon; Park, Min Hyeop; Kim, Yong-Seok; Son, Hyeon

    2017-08-05

    Ketamine shows promise as a therapeutic agent for the treatment of depression. The increased expression of brain-derived neurotrophic factor (BDNF) has been associated with the antidepressant-like effects of ketamine, but the mechanism of BDNF induction is not well understood. In the current study, we demonstrate that the treatment of rats with ketamine results in the dose-dependent rapid upregulation of Bdnf promoter IV activity and expression of Bdnf exon IV mRNAs in rat hippocampal neurons. Transfection of histone deacetylase 5 (HDAC5) into rat hippocampal neurons similarly induces Bdnf mRNA expression in response to ketamine, whereas transfection of a HDAC5 phosphorylation-defective mutant (Ser259 and Ser498 replaced by Ala259 and Ala498), results in the suppression of ketamine-mediated BDNF promoter IV transcriptional activity. Viral-mediated hippocampal knockdown of HDAC5 induces Bdnf mRNA and protein expression, and blocks the enhancing effects of ketamine on BDNF expression in both unstressed and stressed rats, and thereby providing evidence for the role of HDAC5 in the regulation of Bdnf expression. Taken together, our findings implicate HDAC5 in the ketamine-induced transcriptional regulation of Bdnf, and suggest that the phosphorylation of HDAC5 regulates the therapeutic actions of ketamine. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Serum levels of brain-derived neurotrophic factor in alcohol-dependent patients receiving high-dose baclofen.

    PubMed

    Geisel, Olga; Hellweg, Rainer; Müller, Christian A

    2016-06-30

    The neurotrophin brain-derived neurotrophic factor (BDNF) has been suggested to be involved in the development and maintenance of addictive and other psychiatric disorders. Also, interactions of γ-aminobutyric acid (GABA)-ergic compounds and BDNF have been reported. The objective of this study was to investigate serum levels of BDNF over time in alcohol-dependent patients receiving individually titrated high-dose treatment (30-270mg/d) with the GABA-B receptor agonist baclofen or placebo for up to 20 weeks. Serum levels of BDNF were measured in patients of the baclofen/placebo group at baseline (t0), 2 weeks after reaching individual high-dose of baclofen/placebo treatment (t1) and after termination of study medication (t2) in comparison to carefully matched healthy controls. No significant differences in serum levels of BDNF between the baclofen and the placebo group or healthy controls were found at t0, t1, or at t2. Based on these findings, it seems unlikely that baclofen exerts a direct effect on serum levels of BDNF in alcohol-dependent patients. Future studies are needed to further explore the mechanism of action of baclofen and its possible relationship to BDNF in alcohol use disorders. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Gemfibrozil has antidepressant effects in mice: Involvement of the hippocampal brain-derived neurotrophic factor system.

    PubMed

    Ni, Yu-Fei; Wang, Hao; Gu, Qiu-Yan; Wang, Fei-Ying; Wang, Ying-Jie; Wang, Jin-Liang; Jiang, Bo

    2018-04-01

    Major depressive disorder has become one of the most serious neuropsychiatric disorders worldwide. However, currently available antidepressants used in clinical practice are ineffective for a substantial proportion of patients and always have side effects. Besides being a lipid-regulating agent, gemfibrozil is an agonist of peroxisome proliferator-activated receptor-α (PPAR-α). We investigated the antidepressant effects of gemfibrozil on C57BL/6J mice using the forced swim test (FST) and tail suspension test (TST), as well as the chronic unpredictable mild stress (CUMS) model of depression. The changes in brain-derived neurotrophic factor (BDNF) signaling cascade in the brain after CUMS and gemfibrozil treatment were further assessed. Pharmacological inhibitors and lentivirus-expressed short hairpin RNA (shRNA) were also used to clarify the antidepressant mechanisms of gemfibrozil. Gemfibrozil exhibited significant antidepressant actions in the FST and TST without affecting the locomotor activity of mice. Chronic gemfibrozil administration fully reversed CUMS-induced depressive-like behaviors in the FST, TST and sucrose preference test. Gemfibrozil treatment also restored CUMS-induced inhibition of the hippocampal BDNF signaling pathway. Blocking PPAR-α and BDNF but not the serotonergic system abolished the antidepressant effects of gemfibrozil on mice. Gemfibrozil produced antidepressant effects in mice by promoting the hippocampal BDNF system.

  4. Preferential Enhancement of Sensory and Motor Axon Regeneration by Combining Extracellular Matrix Components with Neurotrophic Factors

    PubMed Central

    Santos, Daniel; González-Pérez, Francisco; Giudetti, Guido; Micera, Silvestro; Udina, Esther; Del Valle, Jaume; Navarro, Xavier

    2016-01-01

    After peripheral nerve injury, motor and sensory axons are able to regenerate but inaccuracy of target reinnervation leads to poor functional recovery. Extracellular matrix (ECM) components and neurotrophic factors (NTFs) exert their effect on different neuronal populations creating a suitable environment to promote axonal growth. Here, we assessed in vitro and in vivo the selective effects of combining different ECM components with NTFs on motor and sensory axons regeneration and target reinnervation. Organotypic cultures with collagen, laminin and nerve growth factor (NGF)/neurotrophin-3 (NT3) or collagen, fibronectin and brain-derived neurotrophic factor (BDNF) selectively enhanced sensory neurite outgrowth of DRG neurons and motor neurite outgrowth from spinal cord slices respectively. For in vivo studies, the rat sciatic nerve was transected and repaired with a silicone tube filled with a collagen and laminin matrix with NGF/NT3 encapsulated in poly(lactic-co-glycolic acid) (PLGA) microspheres (MP) (LM + MP.NGF/NT3), or a collagen and fibronectin matrix with BDNF in PLGA MPs (FN + MP.BDNF). Retrograde labeling and functional tests showed that LM + MP.NGF/NT3 increased the number of regenerated sensory neurons and improved sensory functional recovery, whereas FN + MP.BDNF preferentially increased regenerated motoneurons and enhanced motor functional recovery. Therefore, combination of ECM molecules with NTFs may be a good approach to selectively enhance motor and sensory axons regeneration and promote appropriate target reinnervation. PMID:28036084

  5. Stimulation of neurotrophic factors and inhibition of proinflammatory cytokines by exogenous application of triiodothyronine in the rat model of ischemic stroke.

    PubMed

    Sabbaghziarani, Fatemeh; Mortezaee, Keywan; Akbari, Mohammad; Kashani, Iraj Ragerdi; Soleimani, Mansooreh; Hassanzadeh, Gholamreza; Zendedel, Adib

    2017-01-01

    There is a positive relation between decreases of triiodothyronine (T3) amounts and severity of stroke. The aim of this study was to evaluate the effect of exogenous T3 application on levels of neurogenesis markers in the subventricular zone. Cerebral ischemia was induced by middle cerebral artery occlusion in male Wistar rats. There were 4 experimental groups: sham, ischemic, vehicle, and treatment. Rats were injected with T3 (25 μg/kg, IV injection) at 24 hours after ischemia. Animals were sacrificed at day 7 after ischemia. There were high levels of brain-derived neurotrophic factor, nestin, and Sox2 expressions in gene and protein levels in the T3 treatment group (P ≤ .05 vs ischemic group). Treatment group showed high levels of sera T3 and thyroxine (T4) but low levels of thyrotropin (TSH), tumor necrosis factor-α, and interleukin-6 (P ≤ .05 vs ischemic group) at day 4 after ischemia induction. Findings of this study revealed the effectiveness of exogenous T3 application in the improvement of neurogenesis possibly via regulation of proinflammatory cytokines. Copyright © 2017 John Wiley & Sons, Ltd.

  6. Autism as a disorder of deficiency of brain-derived neurotrophic factor and altered metabolism of polyunsaturated fatty acids.

    PubMed

    Das, Undurti N

    2013-10-01

    Autism has a strong genetic and environmental basis in which inflammatory markers and factors concerned with synapse formation, nerve transmission, and information processing such as brain-derived neurotrophic factor (BDNF), polyunsaturated fatty acids (PUFAs): arachidonic (AA), eicosapentaenoic (EPA), and docosahexaenoic acids (DHA) and their products and neurotransmitters: dopamine, serotonin, acetylcholine, γ-aminobutyric acid, and catecholamines and cytokines are altered. Antioxidants, vitamins, minerals, and trace elements are needed for the normal metabolism of neurotrophic factors, eicosanoids, and neurotransmitters, supporting reports of their alterations in autism. But, the exact relationship among these factors and their interaction with genes and proteins concerned with brain development and growth is not clear. It is suggested that maternal infections and inflammation and adverse events during intrauterine growth of the fetus could lead to alterations in the gene expression profile and proteomics that results in dysfunction of the neuronal function and neurotransmitters, alteration(s) in the metabolism of PUFAs and their metabolites resulting in excess production of proinflammatory eicosanoids and cytokines and a deficiency of anti-inflammatory cytokines and bioactive lipids that ultimately results in the development of autism. Based on these evidences, it is proposed that selective delivery of BDNF and methods designed to augment the production of anti-inflammatory cytokines and eicosanoids and PUFAs may prevent, arrest, or reverse the autism disease process. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Brain-Derived Neurotrophic Factor Deficiency Restricts Proliferation of Oligodendrocyte Progenitors Following Cuprizone-Induced Demyelination

    PubMed Central

    Tsiperson, Vladislav; Huang, Yangyang; Bagayogo, Issa; Song, Yeri; VonDran, Melissa W; DiCicco-Bloom, Emanuel

    2015-01-01

    Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophin family of growth factors that through its neurotrophic tyrosine kinase, receptor, type 2 (TrkB) receptor, increases 5-bromo-2-deoxyuridine incorporation in oligodendrocyte progenitor cells (OPCs) in culture. Roles in vivo are less well understood; however, increases in numbers of OPCs are restricted in BDNF+/− mice following cuprizone-elicited demyelination. Here, we investigate whether these blunted increases in OPCs are associated with changes in proliferation. BDNF+/+ and BDNF+/− mice were fed cuprizone-containing or control feed. To assess effects on OPC numbers, platelet-derived growth factor receptor alpha (PDGFRα)+ or NG2+ cells were counted. To monitor DNA synthesis, 5-ethynyl-2′-deoxyuridine (EdU) was injected intraperitoneally and colocalized with PDGFRα+ cells. Alternatively, proliferating cell nuclear antigen (PCNA) was colocalized with PDGFRα or NG2. Labeling indices were determined in the BDNF+/+ and BDNF+/− animals. After 4 or 5 weeks of control feed, BDNF+/− mice exhibit similar numbers of OPCs compared with BDNF+/+ animals. The labeling indices for EdU and PCNA also were not significantly different, suggesting that neither the DNA synthesis phase (S phase) nor the proliferative pool size was different between genotypes. In contrast, when mice were challenged by cuprizone for 4 or 5 weeks, increases in OPCs observed in BDNF+/+ mice were reduced in the BDNF+/− mice. This difference in elevations in cell number was accompanied by decreases in EdU labeling and PCNA labeling without changes in cell death, indicating a reduction in the DNA synthesis and the proliferative pool. Therefore, levels of BDNF influence the proliferation of OPCs resulting from a demyelinating lesion. PMID:25586993

  8. Generalization of rapidly recurring seizures is suppressed in mice lacking glial cell line-derived neurotrophic factor family receptor alpha2.

    PubMed

    Nanobashvili, A; Kokaia, Z; Lindvall, O

    2003-01-01

    Recent experimental evidence indicates that neurotrophic factors play a role in the pathophysiology of epilepsy. The objective of this study was to explore whether signaling through one of the glial cell line-derived neurotrophic factor family receptors, GFRalpha2, influences the severity of kindling-evoked, rapidly recurring seizures and the subsequent development of permanent hyperexcitability. We applied the rapid kindling model to adult mice, using 40 threshold stimulations delivered with 5-min interval in the ventral hippocampus. Generalized seizures were fewer and developed later in response to kindling stimulations in mice lacking GFRalpha2. However, GFRalpha2 gene deletion did not influence the acquisition of the permanent abnormal excitability as assessed 4 weeks later. In situ hybridization revealed marked and dynamic changes of GFRalpha2 mRNA levels in several forebrain areas following the stimulus-evoked seizures. Our findings provide evidence that signaling through the GFRalpha2 receptor contributes to seizure generalization in rapid kindling.

  9. Posttraumatic Propofol Neurotoxicity Is Mediated via the Pro-Brain-Derived Neurotrophic Factor-p75 Neurotrophin Receptor Pathway in Adult Mice.

    PubMed

    Sebastiani, Anne; Granold, Matthias; Ditter, Anja; Sebastiani, Philipp; Gölz, Christina; Pöttker, Bruno; Luh, Clara; Schaible, Eva-Verena; Radyushkin, Konstantin; Timaru-Kast, Ralph; Werner, Christian; Schäfer, Michael K; Engelhard, Kristin; Moosmann, Bernd; Thal, Serge C

    2016-02-01

    The gamma-aminobutyric acid modulator propofol induces neuronal cell death in healthy immature brains by unbalancing neurotrophin homeostasis via p75 neurotrophin receptor signaling. In adulthood, p75 neurotrophin receptor becomes down-regulated and propofol loses its neurotoxic effect. However, acute brain lesions, such as traumatic brain injury, reactivate developmental-like programs and increase p75 neurotrophin receptor expression, probably to foster reparative processes, which in turn could render the brain sensitive to propofol-mediated neurotoxicity. This study investigates the influence of delayed single-bolus propofol applications at the peak of p75 neurotrophin receptor expression after experimental traumatic brain injury in adult mice. Randomized laboratory animal study. University research laboratory. Adult C57BL/6N and nerve growth factor receptor-deficient mice. Sedation by IV propofol bolus application delayed after controlled cortical impact injury. Propofol sedation at 24 hours after traumatic brain injury increased lesion volume, enhanced calpain-induced αII-spectrin cleavage, and increased cell death in perilesional tissue. Thirty-day postinjury motor function determined by CatWalk (Noldus Information Technology, Wageningen, The Netherlands) gait analysis was significantly impaired in propofol-sedated animals. Propofol enhanced pro-brain-derived neurotrophic factor/brain-derived neurotrophic factor ratio, which aggravates p75 neurotrophin receptor-mediated cell death. Propofol toxicity was abolished both by pharmacologic inhibition of the cell death domain of the p75 neurotrophin receptor (TAT-Pep5) and in mice lacking the extracellular neurotrophin binding site of p75 neurotrophin receptor. This study provides first evidence that propofol sedation after acute brain lesions can have a deleterious impact and implicates a role for the pro-brain-derived neurotrophic factor-p75 neurotrophin receptor pathway. This observation is important as sedation

  10. Intraspinal Rewiring of the Corticospinal Tract Requires Target-Derived Brain-Derived Neurotrophic Factor and Compensates Lost Function after Brain Injury

    ERIC Educational Resources Information Center

    Ueno, Masaki; Hayano, Yasufumi; Nakagawa, Hiroshi; Yamashita, Toshihide

    2012-01-01

    Brain injury that results in an initial behavioural deficit is frequently followed by spontaneous recovery. The intrinsic mechanism of this functional recovery has never been fully understood. Here, we show that reorganization of the corticospinal tract induced by target-derived brain-derived neurotrophic factor is crucial for spontaneous recovery…

  11. Fingolimod inhibits brain atrophy and promotes brain-derived neurotrophic factor in an animal model of multiple sclerosis.

    PubMed

    Smith, Paul A; Schmid, Cindy; Zurbruegg, Stefan; Jivkov, Magali; Doelemeyer, Arno; Theil, Diethilde; Dubost, Valérie; Beckmann, Nicolau

    2018-05-15

    Longitudinal brain atrophy quantification is a critical efficacy measurement in multiple sclerosis (MS) clinical trials and the determination of No Evidence of Disease Activity (NEDA). Utilising fingolimod as a clinically validated therapy we evaluated the use of repeated brain tissue volume measures during chronic experimental autoimmune encephalomyelitis (EAE) as a new preclinical efficacy measure. Brain volume changes were quantified using magnetic resonance imaging (MRI) at 7 Tesla and correlated to treatment-induced brain derived neurotrophic factor (BDNF) measured in blood, cerebrospinal fluid, spinal cord and brain. Serial brain MRI measurements revealed slow progressive brain volume loss in vehicle treated EAE mice despite a stable clinical score. Fingolimod (1 mg/kg) significantly ameliorated brain tissue atrophy in the cerebellum and striatum when administered from established EAE disease onwards. Fingolimod-dependent tissue preservation was associated with induction of BDNF specifically within the brain and co-localized with neuronal soma. In contrast, therapeutic teriflunomide (3 mg/kg) treatment failed to inhibit CNS autoimmune mediated brain degeneration. Finally, weekly anti-IL-17A antibody (15 mg/kg) treatment was highly efficacious and preserved whole brain, cerebellum and striatum volume. Fingolimod-mediated BDNF increases within the CNS may contribute to limiting progressive tissue loss during chronic neuroinflammation. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Neurotransmitter systems and neurotrophic factors in autism: association study of 37 genes suggests involvement of DDC.

    PubMed

    Toma, Claudio; Hervás, Amaia; Balmaña, Noemí; Salgado, Marta; Maristany, Marta; Vilella, Elisabet; Aguilera, Francisco; Orejuela, Carmen; Cuscó, Ivon; Gallastegui, Fátima; Pérez-Jurado, Luis Alberto; Caballero-Andaluz, Rafaela; Diego-Otero, Yolanda de; Guzmán-Alvarez, Guadalupe; Ramos-Quiroga, Josep Antoni; Ribasés, Marta; Bayés, Mònica; Cormand, Bru

    2013-09-01

    Neurotransmitter systems and neurotrophic factors can be considered strong candidates for autism spectrum disorder (ASD). The serotoninergic and dopaminergic systems are involved in neurotransmission, brain maturation and cortical organization, while neurotrophic factors (NTFs) participate in neurodevelopment, neuronal survival and synapses formation. We aimed to test the contribution of these candidate pathways to autism through a case-control association study of genes selected both for their role in central nervous system functions and for pathophysiological evidences. The study sample consisted of 326 unrelated autistic patients and 350 gender-matched controls from Spain. We genotyped 369 tagSNPs to perform a case-control association study of 37 candidate genes. A significant association was obtained between the DDC gene and autism in the single-marker analysis (rs6592961, P = 0.00047). Haplotype-based analysis pinpointed a four-marker combination in this gene associated with the disorder (rs2329340C-rs2044859T-rs6592961A-rs11761683T, P = 4.988e-05). No significant results were obtained for the remaining genes after applying multiple testing corrections. However, the rs167771 marker in DRD3, associated with ASD in a previous study, displayed a nominal association in our analysis (P = 0.023). Our data suggest that common allelic variants in the DDC gene may be involved in autism susceptibility.

  13. Ethanol- and acetaldehyde-induced cholinergic imbalance in the hippocampus of Aldh2-knockout mice does not affect nerve growth factor or brain-derived neurotrophic factor.

    PubMed

    Jamal, Mostofa; Ameno, Kiyoshi; Ruby, Mostofa; Miki, Takanori; Tanaka, Naoko; Nakamura, Yu; Kinoshita, Hiroshi

    2013-11-20

    Neurotrophins, including nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF), play an important role in the maintenance of cholinergic-neuron function. The objective of this study was to investigate whether ethanol (EtOH)- and acetaldehyde (AcH)- induced cholinergic effects would cause neurotrophic alterations in the hippocampus of mice. We used Aldh2 knockout (Aldh2-KO) mice, a model of aldehyde dehydrogenase 2 (ALDH2)-deficiency in humans, to examine the effects of acute administration of EtOH and the role of AcH. Hippocampal slices were collected and the mRNA and protein levels of choline acetyltransferase (ChAT), acetylcholinesterase (AChE), NGF and BDNF were analyzed 30 min after the i.p. administration of EtOH (0.5, 1.0, or 2.0 g/kg). We show that treatment with 2.0 g/kg of EtOH decreased ChAT mRNA and protein levels in Aldh2-KO mice but not in wild-type (WT) mice, which suggests a role for AcH in the mechanism of action of EtOH. The administration of 2.0 g/kg of EtOH increased AChE mRNA in both strains of mice. EtOH failed to change the levels of NGF or BDNF at any dose. Aldh2-KO mice exhibited a distinctly lower expression of ChAT and a higher expression of NGF both at mRNA and protein levels in the hippocampus compared with WT mice. Our observations suggest that administration of EtOH and elevated AcH can alter cholinergic markers in the hippocampus of mice, and this effect did not change the levels of NGF or BDNF. © 2013 Elsevier B.V. All rights reserved.

  14. Early neurotrophic pharmacotherapy rescues developmental delay and Alzheimer’s-like memory deficits in the Ts65Dn mouse model of Down syndrome

    PubMed Central

    Kazim, Syed Faraz; Blanchard, Julie; Bianchi, Riccardo; Iqbal, Khalid

    2017-01-01

    Down syndrome (DS), caused by trisomy 21, is the most common genetic cause of intellectual disability and is associated with a greatly increased risk of early-onset Alzheimer’s disease (AD). The Ts65Dn mouse model of DS exhibits several key features of the disease including developmental delay and AD-like cognitive impairment. Accumulating evidence suggests that impairments in early brain development caused by trisomy 21 contribute significantly to memory deficits in adult life in DS. Prenatal genetic testing to diagnose DS in utero, provides the novel opportunity to initiate early pharmacological treatment to target this critical period of brain development. Here, we report that prenatal to early postnatal treatment with a ciliary neurotrophic factor (CNTF) small-molecule peptide mimetic, Peptide 021 (P021), rescued developmental delay in pups and AD-like hippocampus-dependent memory impairments in adult life in Ts65Dn mice. Furthermore, this treatment prevented pre-synaptic protein deficit, decreased glycogen synthase kinase-3beta (GSK3β) activity, and increased levels of synaptic plasticity markers including brain derived neurotrophic factor (BNDF) and phosphorylated CREB, both in young (3-week-old) and adult (~ 7-month-old) Ts65Dn mice. These findings provide novel evidence that providing neurotrophic support during early brain development can prevent developmental delay and AD-like memory impairments in a DS mouse model. PMID:28368015

  15. Prolonged metformin treatment leads to reduced transcription of Nrf2 and neurotrophic factors without cognitive impairment in older C57BL/6J mice.

    PubMed

    Allard, Joanne S; Perez, Evelyn J; Fukui, Koji; Carpenter, Priscilla; Ingram, Donald K; de Cabo, Rafael

    2016-03-15

    Long-term use of anti-diabetic agents has become commonplace as rates of obesity, metabolic syndrome and diabetes continue to escalate. Metformin, a commonly used anti-diabetic drug, has been shown to have many beneficial effects outside of its therapeutic regulation of glucose metabolism and insulin sensitivity. Studies on metformin's effects on the central nervous system are limited and predominantly consist of in vitro studies and a few in vivo studies with short-term treatment in relatively young animals; some provide support for metformin as a neuroprotective agent while others show evidence that metformin may be deleterious to neuronal survival. In this study, we examined the effect of long-term metformin treatment on brain neurotrophins and cognition in aged male C57Bl/6 mice. Mice were fed control (C), high-fat (HF) or a high-fat diet supplemented with metformin (HFM) for 6 months. Metformin decreased body fat composition and attenuated declines in motor function induced by a HF diet. Performance in the Morris water maze test of hippocampal based memory function, showed that metformin prevented impairment of spatial reference memory associated with the HF diet. Quantitative RT-PCR on brain homogenates revealed decreased transcription of BDNF, NGF and NTF3; however protein levels were not altered. Metformin treatment also decreased expression of the antioxidant pathway regulator, Nrf2. The decrease in transcription of neurotrophic factors and Nrf2 with chronic metformin intake, cautions of the possibility that extended metformin use may alter brain biochemistry in a manner that creates a vulnerable brain environment and warrants further investigation. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Consequences of brain-derived neurotrophic factor withdrawal in CNS neurons and implications in disease

    PubMed Central

    Mariga, Abigail; Mitre, Mariela; Chao, Moses V.

    2017-01-01

    Growth factor withdrawal has been studied across different species and has been shown to have dramatic consequences on cell survival. In the nervous system, withdrawal of nerve growth factor (NGF) from sympathetic and sensory neurons results in substantial neuronal cell death, signifying a requirement for NGF for the survival of neurons in the peripheral nervous system (PNS). In contrast to the PNS, withdrawal of central nervous system (CNS) enriched brain-derived neurotrophic factor (BDNF) has little effect on cell survival but is indispensible for synaptic plasticity. Given that most early events in neuropsychiatric disorders are marked by a loss of synapses, lack of BDNF may thus be an important part of a cascade of events that leads to neuronal degeneration. Here we review reports on the effects of BDNF withdrawal on CNS neurons and discuss the relevance of the loss in disease. PMID:27015693

  17. [BRAIN-DERIVED NEUROTROPHIC FACTOR (BDNF): NEUROBIOLOGY AND MARKER VALUE IN NEUROPSYCHIATRY].

    PubMed

    Levada, O A; Cherednichenko, N V

    2015-01-01

    In this review current publications about neurobiology and marker value of brain derived neurotrophic factor (BDNF) in neuropsychiatry are analyzed. It is shown that BDNF is an important member of the family of neurotrophins which widely represented in various structures of the CNS. In prenatal period BDNF is involved in all stages of neuronal networks formation, and in the postnatal period its main role is maintaining the normal brain architectonics, involvement in the processes of neurogenesis and realization of neuroprotective functions. BDNF plays an important role in learning and memory organization, food and motor behavior. BDNF brain expression decreases with age, as well as in degenerative and vascular dementias, affective, anxiety, and behavioral disorders. The reducing of BDNF serum, level reflects the decreasing of its cerebral expression and could be used as a neurobiological marker of these pathological processes but the rising of its concentration could indicate the therapy effectiveness.

  18. Determinants of Blood Brain-Derived Neurotrophic Factor Blood Levels in Patients with Alcohol Use Disorder.

    PubMed

    Nubukpo, Philippe; Ramoz, Nicolas; Girard, Murielle; Malauzat, Dominique; Gorwood, Philip

    2017-07-01

    Blood brain-derived neurotrophic factor (BDNF) levels are influenced by both addiction and mood disorders, as well as somatic conditions, gender, and genetic polymorphisms, leading to widely varying results. Depressive symptoms and episodes are frequently observed in patients with alcohol use disorder, and vary widely over time, making it a challenge to determine which aspects are specifically involved in variations of serum BDNF levels in this population. We assessed 227 patients with alcohol dependence involved in a detoxification program, at baseline and after a follow-up of 6 months, for the Alcohol Use Disorders Identification Test score, the length of alcohol dependence, and the number of past detoxification programs. The Beck Depression Inventory and information on current tobacco and alcohol use, suicidal ideation, body mass index, age, gender, and psychotropic treatments were also collected. Serum BDNF (ELISA) and 2 genetic polymorphisms of the BDNF gene (Val33Met and rs962369) were analyzed. The presence of the Met allele, 2 markers of the history of alcohol dependence (gamma glutamyl transferase and the number of past treatments in detoxification programs), and the presence of a depressive episode (but not depressive score) were significantly associated with the 2 blood levels of BDNF at baseline and after 6 months. After controlling for baseline BDNF levels, the presence of the Met allele and an ongoing depressive episode were the only variables associated with changes in BNDF levels after 6 months. Low serum BDNF levels are associated with characteristics related to alcohol consumption and mood disorders, and variants of the BDNF gene in alcohol use disorder patients. The factors that most strongly influenced changes in serum BDNF levels following treatment in an alcohol detoxification program were variants of the BDNF gene and ongoing depression. Copyright © 2017 by the Research Society on Alcoholism.

  19. Restoration of long-term potentiation in middle-aged hippocampus after induction of brain-derived neurotrophic factor.

    PubMed

    Rex, Christopher S; Lauterborn, Julie C; Lin, Ching-Yi; Kramár, Eniko A; Rogers, Gary A; Gall, Christine M; Lynch, Gary

    2006-08-01

    Restoration of neuronal viability and synaptic plasticity through increased trophic support is widely regarded as a potential therapy for the cognitive declines that characterize aging. Previous studies have shown that in the hippocampal CA1 basal dendritic field deficits in the stabilization of long-term potentiation (LTP) are evident by middle age. The present study tested whether increasing endogenous brain-derived neurotrophic factor (BDNF) could reverse this age-related change. We report here that in middle-aged (8- to 10-mo-old) rats, in vivo treatments with a positive AMPA-type glutamate receptor modulator both increase BDNF protein levels in the cortical telencephalon and restore stabilization of basal dendritic LTP as assessed in acute hippocampal slices 18 h after the last drug treatment. These effects were not attributed to enhanced synaptic transmission or to facilitation of burst responses used to induce LTP. Increasing extracellular levels of BDNF by exogenous application to slices of middle-aged rats was also sufficient to rescue the stabilization of basal dendritic LTP. Finally, otherwise stable LTP in ampakine-treated middle-aged rats can be eliminated by infusion of the extracellular BDNF scavenger TrkB-Fc. Together these results indicate that increases in endogenous BDNF signaling can offset deficits in the postinduction processes that stabilize LTP.

  20. Brain-derived neurotrophic factor, impaired glucose metabolism, and bipolar disorder course.

    PubMed

    Mansur, Rodrigo B; Santos, Camila M; Rizzo, Lucas B; Asevedo, Elson; Cunha, Graccielle R; Noto, Mariane N; Pedrini, Mariana; Zeni-Graiff, Maiara; Cordeiro, Quirino; Vinberg, Maj; Kapczinski, Flavio; McIntyre, Roger S; Brietzke, Elisa

    2016-06-01

    The neurotrophin brain-derived neurotrophic factor (BDNF) has been proposed as a potential biomarker in bipolar disorder (BD). However, current evidence is limited and results have been highly heterogeneous. This study aimed to assess the moderating effect of impaired glucose metabolism (IGM) on plasma levels of BDNF in individuals with BD, and on the relationship between BDNF and variables of illness course. We measured and compared the plasma levels of BDNF in individuals with BD (n=57) and healthy controls (n=26). IGM was operationalized as pre-diabetes or type 2 diabetes mellitus. Information related to current and past psychiatric/medical history, as well as prescription of pharmacological treatments was also captured. Individuals with BD had lower levels of BDNF, relative to healthy controls, after adjustment for age, gender, current medications, smoking, alcohol use, and IGM (P=.046). There was no effect of IGM (P=.860) and no interaction between BD diagnosis and IGM (P=.893). Peripheral BDNF levels were positively correlated with lifetime depressive episodes (P<.001), psychiatric hospitalizations (P=.001) and suicide attempts (P=.021). IGM moderated the association between BDNF and the number of previous mood episodes (P<.001), wherein there was a positive correlation in euglycemic participants and a negative correlation in individuals with IGM. BD is independently associated with lower levels of BDNF; IGM may modify the relationship between BDNF and BD course, suggesting an interactive effect of BDNF with metabolic status on illness progression. © 2016 John Wiley & Sons A/S Published by John Wiley & Sons Ltd.

  1. Cyclic AMP response element binding protein and brain-derived neurotrophic factor: Molecules that modulate our mood?

    PubMed Central

    Nair, A; Vaidya, V A

    2008-01-01

    Depression is the major psychiatric ailment of our times, afflicting ~20% of the population. Despite its prevalence, the pathophysiology of this complex disorder is not well understood. In addition, although antidepressants have been in existence for the past several decades, the mechanisms that underlie their therapeutic effects remain elusive. Building evidence implicates a role for the plasticity of specific neuro-circuitry in both the pathophysiology and treatment of depression. Damage to limbic regions is thought to contribute to the etiology of depression and antidepressants have been reported to reverse such damage and promote adaptive plasticity. The molecular pathways that contribute to the damage associated with depression and antidepressant-mediated plasticity are a major focus of scientific enquiry. The transcription factor cyclic AMP response element binding protein (CREB) and the neurotrophin brain-derived neurotrophic factor (BDNF) are targets of diverse classes of antidepressants and are known to be regulated in animal models and in patients suffering from depression. Given their role in neuronal plasticity, CREB and BDNF have emerged as molecules that may play an important role in modulating mood. The purpose of this review is to discuss the role of CREB and BDNF in depression and as targets/mediators of antidepressant action. PMID:17006024

  2. Urinary brain-derived neurotrophic factor as a biomarker of executive functioning.

    PubMed

    Koven, Nancy S; Collins, Larisa R

    2014-01-01

    Neurotrophins such as brain-derived neurotrophic factor (BDNF) are vital for neuronal survival and adaptive plasticity. With high BDNF gene expression in the prefrontal cortex, BDNF is a potential regulatory factor for building and maintaining cognitive reserves. Recent studies suggest that individual differences in executive functioning, a broad cognitive domain reliant upon frontal lobe structure and function, are governed in part by variance in BDNF polymorphisms. However, as neurogenetic data are not necessarily indicative of in vivo neurochemistry, this study examines the relationship between executive functioning and the neurotransmitter by measuring peripheral BDNF levels. Fifty-two healthy young adults completed a battery of standardized executive function tests. BDNF levels, adjusted for creatinine, were quantified with enzyme-linked immunosorbent assay of urine samples taken at the time of testing. BDNF concentration was positively associated with cognitive flexibility but had no relationship with working memory, abstract reasoning/planning, self-monitoring/response inhibition, or fluency. These results individuate cognitive flexibility as the specific facet of executive functioning associated with in vivo BDNF levels. This study also validates urinary BDNF as a peripheral biomarker of cognition in healthy adults. © 2014 S. Karger AG, Basel.

  3. Brain-derived neurotrophic factor reduces inflammation and hippocampal apoptosis in experimental Streptococcus pneumoniae meningitis.

    PubMed

    Xu, Danfeng; Lian, Di; Wu, Jing; Liu, Ying; Zhu, Mingjie; Sun, Jiaming; He, Dake; Li, Ling

    2017-08-04

    Streptococcus pneumoniae meningitis is a serious inflammatory disease of the central nervous system (CNS) and is associated with high morbidity and mortality rates. The inflammatory processes initiated by recognition of bacterial components contribute to apoptosis in the hippocampal dentate gyrus. Brain-derived neurotrophic factor (BDNF) has long been recommended for the treatment of CNS diseases due to its powerful neuro-survival properties, as well as its recently reported anti-inflammatory and anti-apoptotic effects in vitro and in vivo. In this study, we investigated the effects of BDNF-related signaling on the inflammatory response and hippocampal apoptosis in experimental models of pneumococcal meningitis. Pretreatment with exogenous BDNF or the tropomyosin-receptor kinase B (TrkB) inhibitor k252a was performed to assess the activation or inhibition of the BDNF/TrkB-signaling axis prior to intracisternal infection with live S. pneumoniae. At 24 h post-infection, rats were assessed for clinical severity and sacrificed to harvest the brains. Paraffin-embedded brain sections underwent hematoxylin and eosin staining to evaluate pathological severity, and cytokine and chemokine levels in the hippocampus and cortex were evaluated by enzyme-linked immunosorbent assay. Additionally, apoptotic neurons were detected in the hippocampal dentate gyrus by terminal deoxynucleotidyl transferase dUTP-nick-end labeling, key molecules associated with the related signaling pathway were analyzed by real-time polymerase chain reaction and western blot, and the DNA-binding activity of nuclear factor kappa B (NF-κB) was measured by electrophoretic mobility shift assay. Rats administered BDNF exhibited reduced clinical impairment, pathological severity, and hippocampal apoptosis. Furthermore, BDNF pretreatment suppressed the expression of inflammatory factors, including tumor necrosis factor α, interleukin (IL)-1β, and IL-6, and increased the expression of the anti

  4. Ethanol Influences on Bax Translocation, Mitochondrial Membrane Potential, and Reactive Oxygen Species Generation are Modulated by Vitamin E and Brain-Derived Neurotrophic Factor

    PubMed Central

    Heaton, Marieta Barrow; Paiva, Michael; Siler-Marsiglio, Kendra

    2011-01-01

    Background This study investigated ethanol influences on intracellular events which predispose developing neurons toward apoptosis, and the capacity of the antioxidant α-tocopherol (vitamin E) and the neurotrophin brain-derived neurotrophic factor (BDNF) to modulate these effects. Assessments were made of the following: (1) ethanol-induced translocation of the pro-apoptotic Bax protein to the mitochondrial membrane, a key upstream event in the initiation of apoptotic cell death; (2) disruption of the mitochondrial membrane potential (MMP) as a result of ethanol exposure, an important process in triggering the apoptotic cascade; and (3) generation of damaging reactive oxygen species (ROS) as a function of ethanol exposure. Methods These interactions were investigated in cultured postnatal day 8 neonatal rat cerebellar granule cells, a population vulnerable to developmental ethanol exposure in vivo and in vitro. Bax mitochondrial translocation was analyzed via subcellular fractionation followed by Western blot, and mitochondrial membrane integrity was determined using the lipophilic dye, JC-1, which exhibits potential-dependent accumulation in the mitochondrial membrane as a function of the MMP. Results Brief ethanol exposure in these preparations precipitated Bax translocation, but both vitamin E and BDNF reduced this effect to control levels. Ethanol treatment also resulted in a disturbance of the MMP, and this effect was blunted by the antioxidant and the neurotrophin. ROS generation was enhanced by a short ethanol exposure in these cells, but the production of these harmful free radicals was diminished to control levels by co-treatment with either vitamin E or BDNF. Conclusions These results indicate that both antioxidants and neurotrophic factors have the potential to ameliorate ethanol neurotoxicity, and suggest possible interventions which could be implemented in preventing or lessening the severity of the damaging effects of ethanol in the developing central

  5. Serum concentrations of brain-derived neurotrophic factor in patients with gender identity disorder.

    PubMed

    Fontanari, Anna-Martha V; Andreazza, Tahiana; Costa, Ângelo B; Salvador, Jaqueline; Koff, Walter J; Aguiar, Bianca; Ferrari, Pamela; Massuda, Raffael; Pedrini, Mariana; Silveira, Esalba; Belmonte-de-Abreu, Paulo S; Gama, Clarissa S; Kauer-Sant'Anna, Marcia; Kapczinski, Flavio; Lobato, Maria Ines R

    2013-10-01

    Gender Identity Disorder (GID) is characterized by a strong and persistent cross-gender identification that affects different aspects of behavior. Brain-derived neurotrophic factor (BDNF) plays a critical role in neurodevelopment and neuroplasticity. Altered BDNF-signaling is thought to contribute to the pathogenesis of psychiatric disordersand is related to traumatic life events. To examine serum BDNF levels, we compared one group of DSM-IV GID patients (n = 45) and one healthy control group (n = 66). Serum BDNF levels were significantly decreased in GID patients (p = 0.013). This data support the hypothesis that the reduction found in serum BDNF levels in GID patients may be related to the psychological abuse that transsexuals are exposed during their life. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Music exposure differentially alters the levels of brain-derived neurotrophic factor and nerve growth factor in the mouse hypothalamus.

    PubMed

    Angelucci, Francesco; Ricci, Enzo; Padua, Luca; Sabino, Andrea; Tonali, Pietro Attilio

    2007-12-18

    It has been reported that music may have physiological effects on blood pressure, cardiac heartbeat, respiration, and improve mood state in people affected by anxiety, depression and other psychiatric disorders. However, the physiological bases of these phenomena are not clear. Hypothalamus is a brain region involved in the regulation of body homeostasis and in the pathophysiology of anxiety and depression through the modulation of hypothalamic-pituitary-adrenal (HPA) axis. Hypothalamic functions are also influenced by the presence of the neurotrophins brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF), which are proteins involved in the growth, survival and function of neurons in the central nervous system. The aim of this study was to investigate the effect of music exposure in mice on hypothalamic levels of BDNF and NGF. We exposed young adult mice to slow rhythm music (6h per day; mild sound pressure levels, between 50 and 60 dB) for 21 consecutive days. At the end of the treatment mice were sacrificed and BDNF and NGF levels in the hypothalamus were measured by enzyme-linked immunosorbent assay (ELISA). We found that music exposure significantly enhanced BDNF levels in the hypothalamus. Furthermore, we observed that music-exposed mice had decreased NGF hypothalamic levels. Our results demonstrate that exposure to music in mice can influence neurotrophin production in the hypothalamus. Our findings also suggest that physiological effects of music might be in part mediated by modulation of neurotrophins.

  7. Downregulated Brain-Derived Neurotrophic Factor-Induced Oxidative Stress in the Pathophysiology of Diabetic Retinopathy.

    PubMed

    Behl, Tapan; Kotwani, Anita

    2017-04-01

    Brain-derived neurotrophic factor (BDNF), a member of neurotrophin growth factor family, physiologically mediates induction of neurogenesis and neuronal differentiation, promotes neuronal growth and survival and maintains synaptic plasticity and neuronal interconnections. Unlike the central nervous system, its secretion in the peripheral nervous system occurs in an activity-dependent manner. BDNF improves neuronal mortality, growth, differentiation and maintenance. It also provides neuroprotection against several noxious stimuli, thereby preventing neuronal damage during pathologic conditions. However, in diabetic retinopathy (a neuromicrovascular disorder involving immense neuronal degeneration), BDNF fails to provide enough neuroprotection against oxidative stress-induced retinal neuronal apoptosis. This review describes the prime reasons for the downregulation of BDNF-mediated neuroprotective actions during hyperglycemia, which renders retinal neurons vulnerable to damaging stimuli, leading to diabetic retinopathy. Copyright © 2016 Canadian Diabetes Association. Published by Elsevier Inc. All rights reserved.

  8. The Effect of Recombinant Erythropoietin on Plasma Brain Derived Neurotrophic Factor Levels in Patients with Affective Disorders: A Randomised Controlled Study

    PubMed Central

    Vinberg, Maj; Miskowiak, Kamilla; Hoejman, Pernille; Pedersen, Maria; Kessing, Lars Vedel

    2015-01-01

    The study aims to investigate the effect of repeated infusions of recombinant erythropoietin (EPO) on plasma brain derived neurotrophic factor (BDNF) levels in patients with affective disorders. In total, 83 patients were recruited: 40 currently depressed patients with treatment-resistant depression (TRD) (Hamilton Depression Rating Scale-17 items (HDRS-17) score >17) (study 1) and 43 patients with bipolar disorder (BD) in partial remission (HDRS-17 and Young Mania Rating Scale (YMRS) ≤ 14) (study 2). In both studies, patients were randomised to receive eight weekly EPO (Eprex; 40,000 IU) or saline (0.9% NaCl) infusions in a double-blind, placebo-controlled, parallel—group design. Plasma BDNF levels were measured at baseline and at weeks 5, 9 and at follow up, week 14. In contrast with our hypothesis, EPO down regulated plasma BDNF levels in patients with TRD (mean reduction at week 9 (95% CI): EPO 10.94 ng/l (4.51-21.41 ng/l); mean increase at week 9: Saline 0.52 ng/l, p=0.04 (-5.88-4.48 ng/l) p=0.04, partial ŋ2=0.12). No significant effects were found on BDNF levels in partially remitted patients with BD (p=0.35). The present effects of EPO on BDNF levels in patients with TRD point to a role of neurotrophic factors in the potential effects of EPO seen in TRD and BD. The neurobiological mechanisms underlying these effects and the interaction between EPO and peripheral levels on BDNF need to be further elucidated in human studies including a broad range of biomarkers. Trial Registration ClinicalTrials.gov: NCT00916552. PMID:26011424

  9. The Impact of the Brain-Derived Neurotrophic Factor Gene on Trauma and Spatial Processing.

    PubMed

    Miller, Jessica K; McDougall, Siné; Thomas, Sarah; Wiener, Jan

    2017-11-27

    The influence of genes and the environment on the development of Post-Traumatic Stress Disorder (PTSD) continues to motivate neuropsychological research, with one consistent focus being the Brain-Derived Neurotrophic Factor (BDNF) gene, given its impact on the integrity of the hippocampal memory system. Research into human navigation also considers the BDNF gene in relation to hippocampal dependent spatial processing. This speculative paper brings together trauma and spatial processing for the first time and presents exploratory research into their interactions with BDNF. We propose that quantifying the impact of BDNF on trauma and spatial processing is critical and may well explain individual differences in clinical trauma treatment outcomes and in navigation performance. Research has already shown that the BDNF gene influences PTSD severity and prevalence as well as navigation behaviour. However, more data are required to demonstrate the precise hippocampal dependent processing mechanisms behind these influences in different populations and environmental conditions. This paper provides insight from recent studies and calls for further research into the relationship between allocentric processing, trauma processing and BDNF. We argue that research into these neural mechanisms could transform PTSD clinical practice and professional support for individuals in trauma-exposing occupations such as emergency response, law enforcement and the military.

  10. Localization and expression of ciliary neurotrophic factor (CNTF) in postmortem sciatic nerve from patients with motor neuron disease and diabetic neuropathy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, D.A.; Gross, L.; Wittrock, D.A.

    1996-08-01

    Ciliary neurotrophic factor (CNTF) is thought to play an important role in the maintenance of the mature motor system. The factor is found most abundantly in myelinating Schwann cells in the adult sciatic nerve. Lack of neuronal growth factors has been proposed as one possible etiology of amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA). Growth factor replacement therapies are currently being evaluated as a treatment for motor neuron disease. In this report we determined whether the expression of CNTF in sciatic nerve differed in patients with motor neuron disease compared to controls or patients with another form ofmore » axonopathy. We identified 8 patients (7 with ALS and 1 with SMA) with motor neuron disease and 6 patients with diabetic motor neuropathy who had autopsy material available. Immunoperoxidase staining showed reduced CNTF expression in nerves of patients with motor neuron disease but not in patients with diabetic motor neuropathy. Decreased CNTF appears be associated with primary motor neuron disease rather than a generalized process of axon loss. This result supports suggestions that CNTF deficiency may be an important factor in the development of motor neuron disease. 20 refs., 4 figs., 1 tab.« less

  11. Up-regulation of Ciliary Neurotrophic Factor in Astrocytes by Aspirin

    PubMed Central

    Modi, Khushbu K.; Sendtner, Michael; Pahan, Kalipada

    2013-01-01

    Ciliary neurotrophic factor (CNTF) is a promyelinating trophic factor, and the mechanisms by which CNTF expression could be increased in the brain are poorly understood. Acetylsalicylic acid (aspirin) is one of the most widely used analgesics. Interestingly, aspirin increased mRNA and protein expression of CNTF in primary mouse and human astrocytes in a dose- and time-dependent manner. Aspirin induced the activation of protein kinase A (PKA) but not protein kinase C (PKC). H-89, an inhibitor of PKA, abrogated aspirin-induced expression of CNTF. The activation of cAMP-response element-binding protein (CREB), but not NF-κB, by aspirin, the abrogation of aspirin-induced expression of CNTF by siRNA knockdown of CREB, the presence of a consensus cAMP-response element in the promoter of CNTF, and the recruitment of CREB and CREB-binding protein to the CNTF promoter by aspirin suggest that aspirin increases the expression of the Cntf gene via the activation of CREB. Furthermore, we demonstrate that aspirin-induced astroglial CNTF was also functionally active and that supernatants of aspirin-treated astrocytes of wild type, but not Cntf null, mice increased myelin-associated proteins in oligodendrocytes and protected oligodendrocytes from TNF-α insult. These results highlight a new and novel myelinogenic property of aspirin, which may be of benefit for multiple sclerosis and other demyelinating disorders. PMID:23653362

  12. Brain-Derived Neurotrophic Factor in Patients with Huntington's Disease

    PubMed Central

    Zuccato, Chiara; Mariotti, Caterina; Valenza, Marta; Lahiri, Nayana; Wild, Edward J.; Sassone, Jenny; Ciammola, Andrea; Bachoud-Lèvi, Anne Catherine; Tabrizi, Sarah J.; Di Donato, Stefano; Cattaneo, Elena

    2011-01-01

    Reduced Brain-Derived Neurotrophic Factor (BDNF) levels have been described in a number of patho-physiological conditions, most notably, in Huntington's disease (HD), a progressive neurodegenerative disorder. Since BDNF is also produced in blood, we have undertaken the measurement of its peripheral levels in the attempt to identify a possible link with HD prognosis and/or its progression. Here we evaluated BDNF level in 398 blood samples including 138 controls, 56 preHD, and 204 HD subjects. We found that BDNF protein levels were not reliably different between groups, whether measured in plasma (52 controls, 26 preHD, 105 HD) or serum (39 controls, 5 preHD, 29 HD). Our experience, and a re-analysis of the literature highlighted that intra-group variability and methodological aspects affect this measurement, especially in serum. We also assessed BDNF mRNA levels in blood samples from 47 controls, 25 preHD, and 70 HD subjects, and found no differences among the groups. We concluded that levels of BDNF in human blood were not informative (mRNA levels or plasma protein level) nor reliable (serum protein levels) as HD biomarkers. We also wish to warn the scientific community in interpreting the significance of changes measured in BDNF protein levels in serum from patients suffering from different conditions. PMID:21857974

  13. Neuroprotective properties of ciliary neurotrophic factor on retinoic acid (RA)-predifferentiated SH-SY5Y neuroblastoma cells.

    PubMed

    Wang, Ke; Zhou, Fanfan; Zhu, Xue; Zhang, Kai; Huang, Biao; Zhu, Lan; Zhu, Ling

    2014-01-01

    Ciliary neurotrophic factor (CNTF) is a neurocytokine, which could promote survival and/or differentiation in many cell types. In this study, the biological effects of CNTF on retinoic acid (RA)-predifferentiated SH-SY5Y neuroblastoma cells and the underlying molecular mechanism of this effect were investigated for the first time. The results showed that RA was able to increase cells susceptibility to CNTF via regulating the expression levels of CNTF receptors. A further study revealed that CNTF could induce phosphorylation of STAT3, Akt and ERK1/2 in RA-predifferentiated SH-SY5Y neuroblastoma cells, while the promoting activity of CNTF on survival and neurite growth of cells was attenuated by co-treatment with JAK2 inhibitor AG490 (25 μM), STAT3 inhibitor Curcumin (50 μM), PI3K inhibitor LY-294002 (50 µM), but not by co-treatment with MEK inhibitor PD98059 (50 μM). These findings suggested that JAK2/STAT3, as well as PI3K/Akt, play important roles in mediating the survival and neurite growth response of RA-predifferentiated cells to CNTF. Our study may be useful to further understand the functional role of CNTF and offer a convenient model to explore the therapeutic potential of CNTF in neurodegenerative diseases.

  14. Brain-derived neurotrophic factor/neurotrophin 3 regulate axon initial segment location and affect neuronal excitability in cultured hippocampal neurons.

    PubMed

    Guo, Yu; Su, Zi-Jun; Chen, Yi-Kun; Chai, Zhen

    2017-07-01

    Plasticity of the axon initial segment (AIS) has aroused great interest in recent years because it regulates action potential initiation and neuronal excitability. AIS plasticity manifests as modulation of ion channels or variation in AIS structure. However, the mechanisms underlying structural plasticity of the AIS are not well understood. Here, we combined immunofluorescence, patch-clamp recordings, and pharmacological methods in cultured hippocampal neurons to investigate the factors participating in AIS structural plasticity during development. With lowered neuronal density, the distance between the AIS and the soma increased, while neuronal excitability decreased, as shown by the increased action potential threshold and current threshold for firing an action potential. This variation in the location of the AIS was associated with cellular secretory substances, including brain-derived neurotrophic factor (BDNF) and neurotrophin 3 (NT3). Indeed, blocking BDNF and NT3 with TrkB-Fc eliminated the effect of conditioned medium collected from high-density cultures on AIS relocation. Elevating the extracellular concentration of BDNF or NT3 promoted movement of the AIS proximally to the soma and increased neuronal excitability. Furthermore, knockdown of neurotrophin receptors TrkB and TrkC caused distal movement of the AIS. Our results demonstrate that BDNF and NT3 regulate AIS location and neuronal excitability. These regulatory functions of neurotrophic factors provide insight into the molecular mechanisms underlying AIS biology. © 2017 International Society for Neurochemistry.

  15. Retinal pigment epithelium, age-related macular degeneration and neurotrophic keratouveitis.

    PubMed

    Bianchi, Enrica; Scarinci, Fabio; Ripandelli, Guido; Feher, Janos; Pacella, Elena; Magliulo, Giuseppe; Gabrieli, Corrado Balacco; Plateroti, Rocco; Plateroti, Pasquale; Mignini, Fiorenzo; Artico, Marco

    2013-01-01

    Age-related macular degeneration (AMD) is the leading cause of impaired vision and blindness in the aging population. The aims of our studies were to identify qualitative and quantitative alterations in mitochondria in human retinal pigment epithelium (RPE) from AMD patients and controls and to test the protective effects of pigment epithelium-derived factor (PEDF), a known neurotrophic and antiangiogenic substance, against neurotrophic keratouveitis. Histopathological alterations were studied by means of morphometry, light and electron microscopy. Unexpectedly, morphometric data showed that the RPE alterations noted in AMD may also develop in normal aging, 10-15 years later than appearing in AMD patients. Reduced tear secretion, corneal ulceration and leukocytic infiltration were found in capsaicin (CAP)-treated rats, but this effect was significantly attenuated by PEDF. These findings suggest that PEDF accelerated the recovery of tear secretion and also prevented neurotrophic keratouveitis and vitreoretinal inflammation. PEDF may have a clinical application in inflammatory and neovascular diseases of the eye.

  16. Brain-Derived neurotrophic factor levels in late-life depression and comorbid mild cognitive impairment: a longitudinal study

    PubMed Central

    Diniz, Breno Satler; Reynolds, Charles F.; Begley, Amy; Dew, Mary Amanda; Anderson, Stewart J.; Lotrich, Francis; Erickson, Kirk I.; Lopez, Oscar; Aizenstein, Howard; Sibille, Etienne L.; Butters, Meryl A.

    2014-01-01

    Changes in brain-derived neurotrophic factor (BDNF) level are implicated in the pathophysiology of cognitive decline in depression and neurodegenerative disorders in older adults. We aimed to evaluate the longitudinal association over two years between BDNF and persistent cognitive decline in individuals with remitted late-life depression and Mild Cognitive Impairment (LLD+MCI) compared to either individuals with remitted LLD and no cognitive decline (LLD+NCD) or never-depressed, cognitively normal, elderly control participants. We additionally evaluated the effect of double-blind, placebo-controlled donepezil treatment on BDNF levels in all of the remitted LLD participants (across the levels of cognitive function). We included 160 elderly participants in this study (72 LLD+NCD, 55 LLD+MCI and 33 never-depressed cognitively normal elderly participants). At the same visits, cognitive assessments were conducted and blood sampling to determine serum BDNF levels were collected at baseline assessment and after one and two years of follow-up. We utilized repeated measure, mixed effect models to assess: (1) the effects of diagnosis (LLD+MCI, LLD+NCD, and controls), time, and their interaction on BDNF levels; and (2) the effects of donepezil treatment (donepezil vs. placebo), time, baseline diagnosis (LLD+MCI vs. LLD+NCD), and interactions between these contrasts on BDNF levels. We found a significant effect of time on BDNF level (p=0.02) and a significant decline in BDNF levels over 2 years of follow-up in participants with LLD+MCI (p=0.004) and controls (p=0.04). We found no effect of donepezil treatment on BDNF level. The present results suggest that aging is an important factor related to decline in BDNF level. PMID:24290367

  17. Challenges and promises in the development of neurotrophic factor-based therapies for Parkinson's disease.

    PubMed

    Rodrigues, Tiago Martins; Jerónimo-Santos, André; Outeiro, Tiago Fleming; Sebastião, Ana Maria; Diógenes, Maria José

    2014-04-01

    Parkinson's disease (PD) is a chronic movement disorder typically coupled to progressive degeneration of dopaminergic neurons in the substantia nigra (SN). The treatments currently available are satisfactory for symptomatic management, but the efficacy tends to decrease as neuronal loss progresses. Neurotrophic factors (NTFs) are endogenous proteins known to promote neuronal survival, even in degenerating states. Therefore, the use of these factors is regarded as a possible therapeutic approach, which would aim to prevent PD or to even restore homeostasis in neurodegenerative disorders. Intriguingly, although favorable results in in vitro and in vivo models of the disease were attained, clinical trials using these molecules have failed to demonstrate a clear therapeutic benefit. Therefore, the development of animal models that more closely reproduce the mechanisms known to underlie PD-related neurodegeneration would be a major step towards improving the capacity to predict the clinical usefulness of a given NTF-based approach in the experimental setting. Moreover, some adjustments to the design of clinical trials ought to be considered, which include recruiting patients in the initial stages of the disease, improving the efficacy of the delivery methods, and combining synergetic NTFs or adding NTF-boosting drugs to the already available pharmacological approaches. Despite the drawbacks on the road to the use of NTFs as pharmacological tools for PD, very relevant achievements have been reached. In this article, we review the current status of the potential relevance of NTFs for treating PD, taking into consideration experimental evidence, human observational studies, and data from clinical trials.

  18. Evidence of associations between brain-derived neurotrophic factor (BDNF) serum levels and gene polymorphisms with tinnitus.

    PubMed

    Coskunoglu, Aysun; Orenay-Boyacioglu, Seda; Deveci, Artuner; Bayam, Mustafa; Onur, Ece; Onan, Arzu; Cam, Fethi S

    2017-01-01

    Brain-derived neurotrophic factor (BDNF) gene polymorphisms are associated with abnormalities in regulation of BDNF secretion. Studies also linked BDNF polymorphisms with changes in brainstem auditory-evoked response test results. Furthermore, BDNF levels are reduced in tinnitus, psychiatric disorders, depression, dysthymic disorder that may be associated with stress, conversion disorder, and suicide attempts due to crises of life. For this purpose, we investigated whether there is any role of BDNF changes in the pathophysiology of tinnitus. In this study, we examined the possible effects of BDNF variants in individuals diagnosed with tinnitus for more than 3 months. Fifty-two tinnitus subjects between the ages of 18 and 55, and 42 years healthy control subjects in the same age group, who were free of any otorhinolaryngology and systemic disease, were selected for examination. The intensity of tinnitus and depression was measured using the tinnitus handicap inventory, and the differential diagnosis of psychiatric diagnoses made using the Structured Clinical Interview for Fourth Edition of Mental Disorders. BDNF gene polymorphism was analyzed in the genomic deoxyribonucleic acid (DNA) samples extracted from the venous blood, and the serum levels of BDNF were measured. One-way analysis of variance and Chi-squared tests were applied. Serum BDNF level was found lower in the tinnitus patients than controls, and it appeared that there is no correlation between BDNF gene polymorphism and tinnitus. This study suggests neurotrophic factors such as BDNF may have a role in tinnitus etiology. Future studies with larger sample size may be required to further confirm our results.

  19. Evidence of associations between brain-derived neurotrophic factor (BDNF) serum levels and gene polymorphisms with tinnitus

    PubMed Central

    Coskunoglu, Aysun; Orenay-Boyacioglu, Seda; Deveci, Artuner; Bayam, Mustafa; Onur, Ece; Onan, Arzu; Cam, Fethi S.

    2017-01-01

    Background: Brain-derived neurotrophic factor (BDNF) gene polymorphisms are associated with abnormalities in regulation of BDNF secretion. Studies also linked BDNF polymorphisms with changes in brainstem auditory-evoked response test results. Furthermore, BDNF levels are reduced in tinnitus, psychiatric disorders, depression, dysthymic disorder that may be associated with stress, conversion disorder, and suicide attempts due to crises of life. For this purpose, we investigated whether there is any role of BDNF changes in the pathophysiology of tinnitus. Materials and Methods: In this study, we examined the possible effects of BDNF variants in individuals diagnosed with tinnitus for more than 3 months. Fifty-two tinnitus subjects between the ages of 18 and 55, and 42 years healthy control subjects in the same age group, who were free of any otorhinolaryngology and systemic disease, were selected for examination. The intensity of tinnitus and depression was measured using the tinnitus handicap inventory, and the differential diagnosis of psychiatric diagnoses made using the Structured Clinical Interview for Fourth Edition of Mental Disorders. BDNF gene polymorphism was analyzed in the genomic deoxyribonucleic acid (DNA) samples extracted from the venous blood, and the serum levels of BDNF were measured. One-way analysis of variance and Chi-squared tests were applied. Results: Serum BDNF level was found lower in the tinnitus patients than controls, and it appeared that there is no correlation between BDNF gene polymorphism and tinnitus. Conclusions: This study suggests neurotrophic factors such as BDNF may have a role in tinnitus etiology. Future studies with larger sample size may be required to further confirm our results. PMID:28615544

  20. Neurorestoration induced by the HDAC inhibitor sodium valproate in the lactacystin model of Parkinson’s is associated with histone acetylation and up-regulation of neurotrophic factors

    PubMed Central

    Harrison, Ian F; Crum, William R; Vernon, Anthony C; Dexter, David T

    2015-01-01

    Background and Purpose Histone hypoacetylation is associated with Parkinson's disease (PD), due possibly to an imbalance in the activities of enzymes responsible for histone (de)acetylation; correction of which may be neuroprotective/neurorestorative. This hypothesis was tested using the anti-epileptic drug sodium valproate, a known histone deacetylase inhibitor (HDACI), utilizing a delayed-start study design in the lactacystin rat model of PD. Experimental Approach The irreversible proteasome inhibitor lactacystin was unilaterally injected into the substantia nigra of Sprague–Dawley rats that subsequently received valproate for 28 days starting 7 days after lactacystin lesioning. Longitudinal motor behavioural testing, structural MRI and post-mortem assessment of nigrostriatal integrity were used to track changes in this model of PD and quantify neuroprotection/restoration. Subsequent cellular and molecular analyses were performed to elucidate the mechanisms underlying valproate's effects. Key Results Despite producing a distinct pattern of structural re-modelling in the healthy and lactacystin-lesioned brain, delayed-start valproate administration induced dose-dependent neuroprotection/restoration against lactacystin neurotoxicity, characterized by motor deficit alleviation, attenuation of morphological brain changes and restoration of dopaminergic neurons in the substantia nigra. Molecular analyses revealed that valproate alleviated lactacystin-induced histone hypoacetylation and induced up-regulation of brain neurotrophic/neuroprotective factors. Conclusions and Implications The histone acetylation and up-regulation of neurotrophic/neuroprotective factors associated with valproate treatment culminate in a neuroprotective and neurorestorative phenotype in this animal model of PD. As valproate induced structural re-modelling of the brain, further research is required to determine whether valproate represents a viable candidate for disease treatment; however

  1. The Effect of Rosa Damascena Extract on Expression of Neurotrophic Factors in the CA1 Neurons of Adult Rat Hippocampus Following Ischemia.

    PubMed

    Moniri, Seyedeh Farzaneh; Hedayatpour, Azim; Hassanzadeh, Gholamreza; Vazirian, Mahdi; Karimian, Morteza; Belaran, Maryam; Ejtemaie Mehr, Shahram; Akbari, Mohamad

    2017-12-01

    Ischemic stroke is an important cause of death and disability in the world. Brain ischemia causes damage to brain cell, and among brain neurons, pyramidal neurons of the hippocampal CA1 region are more susceptive to ischemic injury. Recent findings suggest that neurotrophic factors protect against ischemic cell death. A dietary component of Rosa damascene extract possibly is associated with expression of neurotrophic factors mRNA following ischemia, so it can have therapeutic effect on cerebral ischemia. The present study attempts to evaluate the neuroprotective effect of Rosa damascene extract on adult rat hippocampal neurons following ischemic brain injury. Forty-eight adult male Wistar rats (weighing 250±20 gr and ages 10-12 weeks) used in this study, animals randomly were divided into 6 groups including Control, ischemia/ reperfusion (IR), vehicle and three treated groups (IR+0.5, 1, 2 mg/ml extract). Global ischemia was induced by bilateral common carotid arteries occlusion for 20 minutes. The treatment was done by different doses of Rosa damascena extract for 30 days. After 30 days cell death and gene expression in neurons of the CA1 region of the hippocampus were evaluated by Nissl staining and real time PCR assay. We found a significant decrease in NGF, BDNF and NT3 mRNA expression in neurons of CA1 region of the hippocampus in ischemia group compared to control group (P<0.0001). Our results also revealed that the number of dark neurons significantly increases in ischemia group compared to control group (P<0.0001). Following treatment with Rosa damascene extract reduced the number of dark neurons that was associated with NGF, NT3, and BDNF mRNA expression. All doses level had positive effects, but the most effective dose of Rosa damascena extract was 1 mg/ml. Our results suggest that neuroprotective activity of Rosa damascena can enhance hippocampal CA1 neuronal survival after global ischemia.

  2. Glucocorticoid Receptors, Brain-Derived Neurotrophic Factor, Serotonin and Dopamine Neurotransmission are Associated with Interferon-Induced Depression

    PubMed Central

    Udina, M; Navinés, R; Egmond, E; Oriolo, G; Langohr, K; Gimenez, D; Valdés, M; Gómez-Gil, E; Grande, I; Gratacós, M; Kapczinski, F; Artigas, F; Vieta, E; Solà, R

    2016-01-01

    Background: The role of inflammation in mood disorders has received increased attention. There is substantial evidence that cytokine therapies, such as interferon alpha (IFN-alpha), can induce depressive symptoms. Indeed, proinflammatory cytokines change brain function in several ways, such as altering neurotransmitters, the glucocorticoid axis, and apoptotic mechanisms. This study aimed to evaluate the impact on mood of initiating IFN-alpha and ribavirin treatment in a cohort of patients with chronic hepatitis C. We investigated clinical, personality, and functional genetic variants associated with cytokine-induced depression. Methods: We recruited 344 Caucasian outpatients with chronic hepatitis C, initiating IFN-alpha and ribavirin therapy. All patients were euthymic at baseline according to DSM-IV-R criteria. Patients were assessed at baseline and 4, 12, 24, and 48 weeks after treatment initiation using the Patient Health Questionnaire (PHQ), the Hospital Anxiety and Depression Scale (HADS), and the Temperament and Character Inventory (TCI). We genotyped several functional polymorphisms of interleukin-28 (IL28B), indoleamine 2,3-dioxygenase (IDO-1), serotonin receptor-1A (HTR1A), catechol-O-methyl transferase (COMT), glucocorticoid receptors (GCR1 and GCR2), brain-derived neurotrophic factor (BDNF), and FK506 binding protein 5 (FKBP5) genes. A survival analysis was performed, and the Cox proportional hazards model was used for the multivariate analysis. Results: The cumulative incidence of depression was 0.35 at week 24 and 0.46 at week 48. The genotypic distributions were in Hardy-Weinberg equilibrium. Older age (p = 0.018, hazard ratio [HR] per 5 years = 1.21), presence of depression history (p = 0.0001, HR = 2.38), and subthreshold depressive symptoms at baseline (p = 0.005, HR = 1.13) increased the risk of IFN-induced depression. So too did TCI personality traits, with high scores on fatigability (p = 0.0037, HR = 1.17), impulsiveness (p = 0.0200 HR = 1

  3. Growth factor treatment of demyelinating disease: at last, a leap into the light.

    PubMed

    Ransohoff, Richard M; Howe, Charles L; Rodriguez, Moses

    2002-11-01

    Researchers seeking treatments for multiple sclerosis (MS) have long dreamed of using neurotrophic factors to enhance remyelination. Previous attempts to apply trophic support for oligodendrocytes in experimental demyelination uniformly produced complicated outcomes that reflected unexpected effects on immune or inflammatory responses and could be interpreted only with caution. Now, two recent publications have demonstrated convincingly that cytokines of the interleukin (IL)-6 superfamily can ameliorate experimental autoimmune encephalomyelitis and promote oligodendrocyte survival, without demonstrable effect on inflammation or immune responses.

  4. Brain-derived neurotrophic factor and addiction: Pathological versus therapeutic effects on drug seeking

    PubMed Central

    Barker, Jacqueline M.; Taylor, Jane R.; De Vries, Taco J.; Peters, Jamie

    2015-01-01

    Many abused drugs lead to changes in endogenous brain-derived neurotrophic factor (BDNF) expression in neural circuits responsible for addictive behaviors. BDNF is a known molecular mediator of memory consolidation processes, evident at both behavioral and neurophysiological levels. Specific neural circuits are responsible for storing and executing drug-procuring motor programs, whereas other neural circuits are responsible for the active suppression of these “seeking” systems. These seeking-circuits are established as associations are formed between drug-associated cues and the conditioned responses they elicit. Such conditioned responses (e.g. drug seeking) can be diminished either through a passive weakening of seeking-circuits or an active suppression of those circuits through extinction. Extinction learning occurs when the association between cues and drug are violated, for example, by cue exposure without the drug present. Cue exposure therapy has been proposed as a therapeutic avenue for the treatment of addictions. Here we explore the role of BDNF in extinction circuits, compared to seeking-circuits that “incubate” over prolonged withdrawal periods. We begin by discussing the role of BDNF in extinction memory for fear and cocaine-seeking behaviors, where extinction circuits overlap in infralimbic prefrontal cortex (PFC). We highlight the ability of estrogen to promote BDNF-like effects in hippocampal–prefrontal circuits and consider the role of sex differences in extinction and incubation of drug-seeking behaviors. Finally, we examine how opiates and alcohol “break the mold” in terms of BDNF function in extinction circuits. PMID:25451116

  5. Rapid and Sensitive Detection of Brain-Derived Neurotrophic Factor with a Plasmonic Chip

    NASA Astrophysics Data System (ADS)

    Tawa, Keiko; Satoh, Mari; Uegaki, Koichi; Hara, Tomoko; Kojima, Masami; Kumanogoh, Haruko; Aota, Hiroyuki; Yokota, Yoshiki; Nakaoki, Takahiko; Umetsu, Mitsuo; Nakazawa, Hikaru; Kumagai, Izumi

    2013-06-01

    Plasmonic chips, which are grating replicas coated with thin metal layers and overlayers such as ZnO, were applied in immunosensors to improve their detection sensitivity. Fluorescence from labeled antibodies bound to plasmonic chips can be enhanced on the basis of a grating-coupled surface plasmon resonance (GC-SPR) field. In this study, as one of the representative candidate protein markers for brain disorders, the brain-derived neurotrophic factor (BDNF) was quantitatively measured by sandwich assay on a plasmonic chip and detected on our plasmonic chip in the concentration of 5-7 ng/mL within 40 min. Furthermore, BDNF was detected in the blood sera from three types of mice: wild-type mice and two types of mutant mice. This technique is promising as a new clinical diagnosis tool for brain disorders based on scientific evidence such as blood test results.

  6. Brain-Derived Neurotrophic Factor (BDNF) Promotes Cochlear Spiral Ganglion Cell Survival and Function in Deafened, Developing Cats

    PubMed Central

    Leake, Patricia A.; Hradek, Gary T.; Hetherington, Alexander M.; Stakhovskaya, Olga

    2011-01-01

    Postnatal development and survival of spiral ganglion (SG) neurons depend upon both neural activity and neurotrophic support. Our previous studies showed that electrical stimulation from a cochlear implant only partly prevents SG degeneration after early deafness. Thus, neurotrophic agents that might be combined with an implant to improve neural survival are of interest. Recent studies reporting that BDNF promotes SG survival after deafness, have been conducted in rodents and limited to relatively short durations. Our study examined longer duration BDNF treatment in deafened cats that may better model the slow progression of SG degeneration in human cochleae and provides the first study of BDNF in the developing auditory system. Kittens were deafened neonatally, implanted at 4-5 weeks with intracochlear electrodes containing a drug-delivery cannula, and BDNF or artificial perilymph was infused for 10 weeks from a mini-osmotic pump. In BDNF-treated cochleae SG cells grew to normal size and were significantly larger than cells on the contralateral side. However, their morphology was not completely normal and many neurons lacked or had thinned perikaryl myelin. Unbiased stereology was employed to estimate SG cell density, independent of cell size. BDNF was effective in promoting significantly improved survival of SG neurons in these developing animals. BDNF treatment also resulted in higher density and larger size of myelinated radial nerve fibers, sprouting of fibers into the scala tympani, and improvement in electrically-evoked auditory brainstem response thresholds. Although BDNF may have potential therapeutic value in the developing auditory system, many serious obstacles currently preclude clinical application. PMID:21452221

  7. Targeting brain-derived neurotrophic factor in the medial thalamus for the treatment of central poststroke pain in a rodent model.

    PubMed

    Shih, Hsi-Chien; Kuan, Yung-Hui; Shyu, Bai-Chung

    2017-07-01

    Approximately 7% to 10% of patients develop a chronic pain syndrome after stroke. This chronic pain condition is called central poststroke pain (CPSP). Recent studies have observed an abnormal increase in the secretion of brain-derived neurotrophic factor (BDNF) in spinal cord tissue after spinal cord injury. An animal model of CPSP was established by an intrathalamus injection of collagenase. Mechanical and thermal allodynia was induced after lesions of the thalamic ventral basal complex in rats. Four weeks after the injection, the number of neurons decreased, the number of astrocytes, microglia, and P2X4 receptors increased, and BDNF mRNA expression increased in the brain lesion area. Nociceptive activity in the medial thalamus (MT) and the coherence coefficient of spontaneous field potential oscillations in the anterior cingulate cortex were enhanced in CPSP animals, and these enhancements were blocked by an acute injection of TrkB-Fc and TrkB antagonist Tat Cyclotraxin-B. Instead of being inhibited by the γ-aminobutyric acid (GABA) system in normal rats, multiunit activity in the MT was enhanced after a microinjection of muscimol, a GABAA receptor agonist, in CPSP animals. After CPSP, BDNF expression was enhanced in the MT, whereas the expression of GABAA channels and the cotransporter KCC2 decreased in the same area. These findings suggest that neuronal plasticity in the MT that was induced by BDNF overexpression after the thalamic lesion was a key factor in CPSP.

  8. Physical therapy intervention (PTI) increases plasma brain-derived neurotrophic factor (BDNF) levels in non-frail and pre-frail elderly women.

    PubMed

    Coelho, F M; Pereira, D S; Lustosa, L P; Silva, J P; Dias, J M D; Dias, R C D; Queiroz, B Z; Teixeira, A L; Teixeira, M M; Pereira, L S M

    2012-01-01

    Biomarkers are important factors in the identification of the frail elderly (higher risk of developing disease) and in assessing the impact of PTI. On the other hand, BDNF has been related to neuroprotection in a series of central nervous system diseases in older age. The levels of BDNF in groups of elderly women classified according to Fried phenotype (non-frail and pre-frail) were compared. We assessed the impact of a PTI on BDNF levels. A convenience sample of 48 elderly women was randomly selected. The PTI group was composed by 20 elderly women selected from this group. Plasma neurotrophic factors, such as BDNF, glial-derived neutrophic factor (GDNF), and nerve growth factor (NGF) were measured by enzyme-linked immunosorbent assay (ELISA). Timed-up-and-go (TUG) test, hand-grip and work/body weight were evaluated before and after the intervention. Plasma concentrations of BDNF were significantly higher in non-frail in comparison to pre-frail elderly women. After the PTI, higher levels of BDNF were found in elderly women (before 351±68 pg/ml and after 593±79 pg/ml; p<0.001). Both groups had an increase in BDNF levels after the PTI. The low levels of BDNF in pre-frail elderly women suggest that this neurotrophic factor may be a key pathophysiological mediator in the syndrome of frailty. The fact that PTI increased BDNF levels in both groups suggests that it may be possible to modify this phenotype. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  9. Neurotrophically Induced Mesenchymal Progenitor Cells Derived from Induced Pluripotent Stem Cells Enhance Neuritogenesis via Neurotrophin and Cytokine Production

    PubMed Central

    Brick, Rachel M.; Sun, Aaron X.

    2017-01-01

    Abstract Adult tissue‐derived mesenchymal stem cells (MSCs) are known to produce a number of bioactive factors, including neurotrophic growth factors, capable of supporting and improving nerve regeneration. However, with a finite culture expansion capacity, MSCs are inherently limited in their lifespan and use. We examined here the potential utility of an alternative, mesenchymal‐like cell source, derived from induced pluripotent stem cells, termed induced mesenchymal progenitor cells (MiMPCs). We found that several genes were upregulated and proteins were produced in MiMPCs that matched those previously reported for MSCs. Like MSCs, the MiMPCs secreted various neurotrophic and neuroprotective factors, including brain‐derived neurotrophic factor (BDNF), interleukin‐6 (IL‐6), leukemia inhibitory factor (LIF), osteopontin, and osteonectin, and promoted neurite outgrowth in chick embryonic dorsal root ganglia (DRG) cultures compared with control cultures. Cotreatment with a pharmacological Trk‐receptor inhibitor did not result in significant decrease in MiMPC‐induced neurite outgrowth, which was however inhibited upon Jak/STAT3 blockade. These findings suggest that the MiMPC induction of DRG neurite outgrowth is unlikely to be solely dependent on BDNF, but instead Jak/STAT3 activation by IL‐6 and/or LIF is likely to be critical neurotrophic signaling pathways of the MiMPC secretome. Taken together, these findings suggest MiMPCs as a renewable, candidate source of therapeutic cells and a potential alternative to MSCs for peripheral nerve repair, in view of their ability to promote nerve growth by producing many of the same growth factors and cytokines as Schwann cells and signaling through critical neurotrophic pathways. stem cells translational Medicine 2018;7:45–58 PMID:29215199

  10. Retinoic acid-pretreated Wharton's jelly mesenchymal stem cells in combination with triiodothyronine improve expression of neurotrophic factors in the subventricular zone of the rat ischemic brain injury.

    PubMed

    Sabbaghziarani, Fatemeh; Mortezaee, Keywan; Akbari, Mohammad; Kashani, Iraj Ragerdi; Soleimani, Mansooreh; Moini, Ashraf; Ataeinejad, Nahid; Zendedel, Adib; Hassanzadeh, Gholamreza

    2017-02-01

    Stroke is the consequence of limited blood flow to the brain with no established treatment to reduce the neurological deficits. Focusing on therapeutic protocols in targeting subventricular zone (SVZ) neurogenesis has been investigated recently. This study was designed to evaluate the effects of retinoic acid (RA)-pretreated Wharton's jelly mesenchymal stem cells (WJ-MSCs) in combination with triiodothyronine (T3) in the ischemia stroke model. Male Wistar rats were used to induce focal cerebral ischemia by middle cerebral artery occlusion (MCAO). There were seven groups of six animals: Sham, Ischemic, WJ-MSCs, RA-pretreated WJ-MSCs, T3, WJ-MSCs +T3, and RA-pretreated WJ-MSCs + T3. The treatment was performed at 24 h after ischemia, and animals were sacrificed one week later for assessments of retinoid X receptor β (RXRβ), brain-derived neurotrophic factor (BDNF), Sox2 and nestin in the SVZ. Pro-inflammatory cytokines in sera were measured at days four and seven after ischemia. RXRβ, BDNF, Sox2 and nestin had the significant expressions in gene and protein levels in the treatment groups, compared with the ischemic group, which were more vivid in the RA-pretreated WJ-MSCs + T3 (p ≤ 0.05). The same trend was also resulted for the levels of TNF-α and IL-6 at four days after ischemia (p ≤ 0.05). In conclusion, application of RA-pretreated WJ-MSCs + T3 could be beneficial in exerting better neurotrophic function probably via modulation of pro-inflammatory cytokines.

  11. Zirconium oxide ceramic foam: a promising supporting biomaterial for massive production of glial cell line-derived neurotrophic factor*

    PubMed Central

    Liu, Zhong-wei; Li, Wen-qiang; Wang, Jun-kui; Ma, Xian-cang; Liang, Chen; Liu, Peng; Chu, Zheng; Dang, Yong-hui

    2014-01-01

    This study investigated the potential application of a zirconium oxide (ZrO2) ceramic foam culturing system to the production of glial cell line-derived neurotrophic factor (GDNF). Three sets of ZrO2 ceramic foams with different pore densities of 10, 20, and 30 pores per linear inch (PPI) were prepared to support a 3D culturing system. After primary astrocytes were cultured in these systems, production yields of GDNF were evaluated. The biomaterial biocompatibility, cell proliferation and activation of cellular signaling pathways in GDNF synthesis and secretion in the culturing systems were also assessed and compared with a conventional culturing system. In this study, we found that the ZrO2 ceramic foam culturing system was biocompatible, using which the GDNF yields were elevated and sustained by stimulated cell proliferation and activation of signaling pathways in astrocytes cultured in the system. In conclusion, the ZrO2 ceramic foam is promising for the development of a GDNF mass production device for Parkinson’s disease treatment. PMID:25471830

  12. Venlafaxine inhibits apoptosis of hippocampal neurons by up-regulating brain-derived neurotrophic factor in a rat depression model

    PubMed Central

    Huang, Xiao; Mao, Yue-Shi; Li, Chao; Wang, Hao; Ji, Jian-Lin

    2014-01-01

    Objective: To study the effect of venlafaxine on the expression of brain-derived neurotrophic factor (BDNF) in rat hippocampal neurons, as well as its inhibitory effect on apoptosis of hippocampal neurons. Methods: Differences in behavioral ability between the depression model group and the Venlafaxine treatment group were observed using behavioral, sucrose-water and open field tests. The rat hippocampal tissue was sliced, stained and observed for BDNF distribution by immunohistochemistry. Apoptosis of hippocampal neurons was detected by TUNEL. BDNF expression in the hippocampal tissue was detected by Western blot. Injury and apoptosis of the hippocampal tissue were observed by electron microscopy. Results: Behavioral test showed that venlafaxine effectively improved the behavioral abilities of depressed rats. Immunohistochemistry showed that venlafaxine markedly increased the BDNF expression in the rat hippocampus. TUNEL showed that venlafaxine markedly inhibited apoptosis of hippocampal neurons, which was also confirmed by electron microscopic observation of the pathologic sections. Conclusion: Venlafaxine improved the expression of BDNF through working on PI3k/PKB/eNOS pathway and repressed the apoptosis of hippocampal neurons. PMID:25197330

  13. Enriched environment influences hormonal status and hippocampal brain derived neurotrophic factor in a sex dependent manner.

    PubMed

    Bakos, J; Hlavacova, N; Rajman, M; Ondicova, K; Koros, C; Kitraki, E; Steinbusch, H W M; Jezova, D

    2009-12-01

    The present study is aimed at testing the hypothesis that an enriched environment (EE) induces sex-dependent changes in stress hormone release and in markers of increased brain plasticity. The focus was on hypothalamic-pituitary-adrenocortical (HPA) axis activity, plasma levels of stress hormones, gene expression of glutamate receptor subunits and concentrations of brain-derived neurotrophic factor (BDNF) in selected brain regions. Rats exposed to EE were housed in groups of 12 in large cages with various objects, which were frequently changed, for 6 weeks. Control animals were housed four per cage under standard conditions. In females the EE-induced rise in hippocampal BDNF, a neurotrophic factor associated with increased neural plasticity, was more pronounced than in males. Similar sex-specific changes were observed in BDNF concentrations in the hypothalamus. EE also significantly attenuated oxytocin and aldosterone levels only in female but not male rats. Plasma testosterone positively correlated with hippocampal BDNF in female but not male rats housed in EE. In male rats housing in EE led to enhanced levels of testosterone and adrenocorticotropic hormone (ACTH), this was not seen in females. Hippocampal glucocorticoid but not mineralocorticoid receptor levels decreased in rats housed in EE irrespective of sex. Housing conditions failed to modify mRNA levels of glutamate receptor type 1 (Glur1) and metabotropic glutamate receptor subtype 5 (mGlur5) subunits of glutamate receptors in the forebrain. Moreover, a negative association between corticosterone and BDNF was observed in both sexes. The results demonstrate that the association between hormones and changes in brain plasticity is sex related. In particular, testosterone seems to be involved in the regulatory processes related to neuroplasticity in females.

  14. Cerebrolysin modulates pronerve growth factor/nerve growth factor ratio and ameliorates the cholinergic deficit in a transgenic model of Alzheimer's disease.

    PubMed

    Ubhi, Kiren; Rockenstein, Edward; Vazquez-Roque, Ruben; Mante, Michael; Inglis, Chandra; Patrick, Christina; Adame, Anthony; Fahnestock, Margaret; Doppler, Edith; Novak, Philip; Moessler, Herbert; Masliah, Eliezer

    2013-02-01

    Alzheimer's disease (AD) is characterized by degeneration of neocortex, limbic system, and basal forebrain, accompanied by accumulation of amyloid-β and tangle formation. Cerebrolysin (CBL), a peptide mixture with neurotrophic-like effects, is reported to improve cognition and activities of daily living in patients with AD. Likewise, CBL reduces synaptic and behavioral deficits in transgenic (tg) mice overexpressing the human amyloid precursor protein (hAPP). The neuroprotective effects of CBL may involve multiple mechanisms, including signaling regulation, control of APP metabolism, and expression of neurotrophic factors. We investigate the effects of CBL in the hAPP tg model of AD on levels of neurotrophic factors, including pro-nerve growth factor (NGF), NGF, brain-derived neurotrophic factor (BDNF), neurotropin (NT)-3, NT4, and ciliary neurotrophic factor (CNTF). Immunoblot analysis demonstrated that levels of pro-NGF were increased in saline-treated hAPP tg mice. In contrast, CBL-treated hAPP tg mice showed levels of pro-NGF comparable to control and increased levels of mature NGF. Consistently with these results, immunohistochemical analysis demonstrated increased NGF immunoreactivity in the hippocampus of CBL-treated hAPP tg mice. Protein levels of other neurotrophic factors, including BDNF, NT3, NT4, and CNTF, were unchanged. mRNA levels of NGF and other neurotrophins were also unchanged. Analysis of neurotrophin receptors showed preservation of the levels of TrKA and p75(NTR) immunoreactivity per cell in the nucleus basalis. Cholinergic cells in the nucleus basalis were reduced in the saline-treated hAPP tg mice, and treatment with CBL reduced these cholinergic deficits. These results suggest that the neurotrophic effects of CBL might involve modulation of the pro-NGF/NGF balance and a concomitant protection of cholinergic neurons. Copyright © 2012 Wiley Periodicals, Inc.

  15. Deconstructing brain-derived neurotrophic factor actions in adult brain circuits to bridge an existing informational gap in neuro-cell biology.

    PubMed

    Bowling, Heather; Bhattacharya, Aditi; Klann, Eric; Chao, Moses V

    2016-03-01

    Brain-derived neurotrophic factor (BDNF) plays an important role in neurodevelopment, synaptic plasticity, learning and memory, and in preventing neurodegeneration. Despite decades of investigations into downstream signaling cascades and changes in cellular processes, the mechanisms of how BDNF reshapes circuits in vivo remain unclear. This informational gap partly arises from the fact that the bulk of studies into the molecular actions of BDNF have been performed in dissociated neuronal cultures, while the majority of studies on synaptic plasticity, learning and memory were performed in acute brain slices or in vivo. A recent study by Bowling-Bhattacharya et al., measured the proteomic changes in acute adult hippocampal slices following treatment and reported changes in proteins of neuronal and non-neuronal origin that may in concert modulate synaptic release and secretion in the slice. In this paper, we place these findings into the context of existing literature and discuss how they impact our understanding of how BDNF can reshape the brain.

  16. Sex Differences in Brain-Derived Neurotrophic Factor Signaling and Functions

    PubMed Central

    Chan, Chi Bun; Ye, Keqiang

    2016-01-01

    Brain derived neurotrophic factor (BDNF) is a member of the neurotrophin family that plays a critical role in numerous neuronal activities. Recent studies report that some functions or action mechanisms of BDNF vary in a sex-dependent manner. In particular, BDNF content in some brain parts and the tendency of developing BDNF-deficient-related diseases like depression is higher in female animals. With the support of other relevant studies, it is suggested that sex hormones or steroids can modulate the activities of BDNF, which may account for its functional discrepancy in different sexes. Indeed, the cross-talk between BDNF and sex steroids has been detected for decades and some sex steroids like estrogen have a positive regulatory effect to BDNF expression and signaling. Thus, the sex of animal models used is critical when studying the functions of BDNF in vivo. In this review, we will summarize our current findings on the difference in expression, signaling, and functions of BDNF between sexes. We will also discuss the potential mechanisms in mediating these differential responses with a specific emphasis on sex steroids. By presenting and discussing these findings, we encourage taking sex influences into consideration when designing experiments, interpreting results and drawing conclusions. PMID:27870419

  17. Differential effects of voluntary wheel running and toy rotation on the mRNA expression of neurotrophic factors and FKBP5 in a post-traumatic stress disorder rat model with the shuttle-box task.

    PubMed

    Tanichi, Masaaki; Toda, Hiroyuki; Shimizu, Kunio; Koga, Minori; Saito, Taku; Enomoto, Shingo; Boku, Shuken; Asai, Fumiho; Mitsui, Yumi; Nagamine, Masanori; Fujita, Masanori; Yoshino, Aihide

    2018-06-18

    Life-threatening experiences can result in the development of post-traumatic stress disorder. We have developed an animal model for post-traumatic stress disorder (PTSD) using a shuttle box in rats. In this paradigm, the rats were exposed to inescapable foot-shock stress (IS) in a shuttle box, and then an avoidance/escape task was performed in the same box 2 weeks after IS. A previous study using this paradigm revealed that environmental enrichment (EE) ameliorated avoidance/numbing-like behaviors, but not hyperarousal-like behaviors, and EE also elevated hippocampal brain-derived neurotrophic factor (BDNF) expression. However, the differential effects of EE components, i.e., running wheel (RW) or toy rotation, on PTSD-like behaviors has remained unclear. In this experiment, we demonstrated that RW, toy rotation, and EE (containing RW and toy rotation) ameliorated avoidance/numbing-like behaviors, induced learning of avoidance responses, and improved depressive-like behaviors in traumatized rats. The RW increased the hippocampal mRNA expression of neurotrophic factors, especially BDNF and glial-cell derived neurotrophic factor. Toy rotation influenced FK506 binding protein 5 mRNA expression, which is believed to be a regulator of the hypothalamic-pituitary-adrenal (HPA)-axis system, in the hippocampus and amygdala. This is the first report to elucidate the differential mechanistic effects of RW and toy rotation. The former appears to exert its effects via neurotrophic factors, while the latter exerts its effects via the HPA axis. Further studies will lead to a better understanding of the influence of environmental factors on PTSD. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Agavins Increase Neurotrophic Factors and Decrease Oxidative Stress in the Brains of High-Fat Diet-Induced Obese Mice.

    PubMed

    Franco-Robles, Elena; López, Mercedes G

    2016-08-02

    Fructans obtained from agave, called agavins, have recently shown significant benefits for human health including obesity. Therefore, we evaluated the potential of agavins as neuroprotectors and antioxidants by determining their effect on brain-derived neurotrophic factor (BDNF) and glial-derived neurotrophic factor (GDNF) as well as oxidative brain damage in of obese mice. Male C57BL/6J mice were fed a high-fat diet (HFD) and treated daily with 5% (HFD/A5) or 10% (HFD/A10) of agavins or a standard diet (SD) for 10 weeks. The levels of BDNF and GDNF were evaluated by ELISA. The oxidative stress was evaluated by lipid peroxidation (TBARS) and carbonyls. SCFAs were also measured with GC-FID. Differences between groups were assessed using ANOVA and by Tukey's test considering p < 0.05. The body weight gain and food intake of mice HFD/A10 group were significantly lower than those in the HFD group. Agavins restored BDNF levels in HFD/A5 group and GDNF levels of HFD/A5 and HFD/A10 groups in cerebellum. Interestingly, agavins decreased TBARS levels in HFD/A5 and HFD/A10 groups in the hippocampus, frontal cortex and cerebellum. Carbonyl levels were also lower in HFD/A5 and HFD/A10 for only the hippocampus and cerebellum. It was also found that agavins enhanced SCFAs production in feces. Agavins may act as bioactive ingredients with antioxidant and protective roles in the brain.

  19. β5 Integrin Up-Regulation in Brain-Derived Neurotrophic Factor Promotes Cell Motility in Human Chondrosarcoma

    PubMed Central

    Li, Te-Mao; Fong, Yi-Chin; Liu, Shan-Chi; Chen, Po-Chun; Tang, Chih-Hsin

    2013-01-01

    Chondrosarcoma is a primary malignant bone cancer, with a potent capacity to invade locally and cause distant metastasis; it has a poor prognosis and shows a predilection for metastasis to the lungs. Brain derived neurotrophic factor (BDNF) is a small-molecule protein from the neurotrophin family of growth factors that is associated with the disease status and outcomes of cancers. However, the effect of BDNF on migration activity in human chondrosarcoma cells is mostly unknown. Here, we found that human chondrosarcoma tissues showed significant expression of BDNF, which was higher than that in normal cartilage and primary chondrocytes. We also found that BDNF increased the migration and expression of β5 integrin in human chondrosarcoma cells. In addition, knockdown of BDNF expression markedly inhibited migratory activity. BDNF-mediated migration and β5 integrin up-regulation were attenuated by antibody, inhibitor, or siRNA against the TrkB receptor. Pretreatment of chondrosarcoma cells with PI3K, Akt, and NF-κB inhibitors or mutants also abolished BDNF-promoted migration and integrin expression. The PI3K, Akt, and NF-κB signaling pathway was activated after BDNF treatment. Taken together, our results indicate that BDNF enhances the migration of chondrosarcoma by increasing β5 integrin expression through a signal transduction pathway that involves the TrkB receptor, PI3K, Akt, and NF-κB. BDNF thus represents a promising new target for treating chondrosarcoma metastasis. PMID:23874483

  20. Effect of Brain-Derived Neurotrophic Factor Haploinsufficiency on Stress-Induced Remodeling of Hippocampal Neurons

    PubMed Central

    Magariños, A.M.; Li, C.J.; Toth, J. Gal; Bath, K.G.; Jing, D.; Lee, F.S.; McEwen, B.S.

    2010-01-01

    Chronic restraint stress (CRS) induces the remodeling (i.e., retraction and simplification) of the apical dendrites of hippocampal CA3 pyramidal neurons in rats, suggesting that intrahippocampal connectivity can be affected by a prolonged stressful challenge. Since the structural maintenance of neuronal dendritic arborizations and synaptic connectivity requires neurotrophic support, we investigated the potential role of brain derived neurotrophic factor (BDNF), a neurotrophin enriched in the hippocampus and released from neurons in an activity-dependent manner, as a mediator of the stress-induced dendritic remodeling. The analysis of Golgi-impregnated hippocampal sections revealed that wild type (WT) C57BL/6 male mice showed a similar CA3 apical dendritic remodeling in response to three weeks of CRS to that previously described for rats. Haploinsufficient BDNF mice (BDNF±) did not show such remodeling, but, even without CRS, they presented shorter and simplified CA3 apical dendritic arbors, like those observed in stressed WT mice. Furthermore, unstressed BDNF± mice showed a significant decrease in total hippocampal volume. The dendritic arborization of CA1 pyramidal neurons was not affected by CRS or genotype. However, only in WT mice, CRS induced changes in the density of dendritic spine shape subtypes in both CA1 and CA3 apical dendrites. These results suggest a complex role of BDNF in maintaining the dendritic and spine morphology of hippocampal neurons and the associated volume of the hippocampal formation. The inability of CRS to modify the dendritic structure of CA3 pyramidal neurons in BDNF± mice suggests an indirect, perhaps permissive, role of BDNF in mediating hippocampal dendritic remodeling. PMID:20095008

  1. Impact of acamprosate on behavior and brain-derived neurotrophic factor: an open-label study in youth with fragile X syndrome.

    PubMed

    Erickson, Craig A; Wink, Logan K; Ray, Balmiki; Early, Maureen C; Stiegelmeyer, Elizabeth; Mathieu-Frasier, Lauren; Patrick, Vanessa; Lahiri, Debomoy K; McDougle, Christopher J

    2013-07-01

    Fragile X syndrome (FXS) is an inherited form of developmental disability and a single gene cause of autism. As a disorder with increasingly understood pathophysiology, FXS is a model form of developmental disability for targeted drug development efforts. Preclinical animal model findings have focused targeted drug treatment development in FXS on an imbalance between excessive glutamate and deficient gamma-aminobutyric acid (GABA) neurotransmission. We conducted a prospective open-label 10-week trial of acamprosate in 12 youth aged 6-17 years (mean age: 11.9 years) with FXS. Acamprosate use (mean dose: 1,054  ±  422 mg/day) was associated with treatment response (defined by a Clinical Global Impressions Improvement (CGI-I) scale score of "very much improved" or "much improved") in nine of 12 (75 %) subjects. Improvement was noted in social behavior and inattention/hyperactivity using multiple standard behavioral outcome measures. No significant adverse effects or changes in vital signs, including weight or laboratory measures, occurred during treatment with acamprosate. Additionally, pre- and post-treatment blood biomarker analyses looking at brain-derived neurotrophic factor (BDNF) levels found a significant increase in BDNF with treatment. In our pilot sample, treatment response did not correlate with change in BDNF with treatment. Acamprosate was generally safe and well tolerated and was associated with a significant improvement in social behavior and a reduction in inattention/hyperactivity. The increase in BDNF that occurred with treatment may be a useful pharmacodynamic marker in future acamprosate studies. Given these findings, a double-blind, placebo-controlled study of acamprosate in youth with FXS is warranted.

  2. Role of brain-derived neurotrophic factor and nerve growth factor in the regulation of Neuropeptide W in vitro and in vivo.

    PubMed

    Wang, Rikang; Yan, Fengxia; Liao, Rifang; Wan, Pei; Little, Peter J; Zheng, Wenhua

    2017-05-15

    Nerve growth factor (NGF) and Brain-derived neurotrophic factor (BDNF) are neurotrophic factors involved in the growth, survival and functioning of neurons. In addition, a possible role of neurotrophins, particularly BDNF, in HPA axis hyperactivation has recently been proposed. Neuropeptide W (NPW) is an endogenous peptide ligand for the GPR7 and GPR8 and a stress mediator in the hypothalamus. It activates the HPA axis by working on hypothalamic corticotrophin-releasing hormone (CRH). No information is available about the interrelationships between neurotrophines like NGF/BDNF and NPW. We studied the effect and underlying mechanisms of NGF/BDNF on the production of NPW in PC12 cells and hypothalamus. NGF time- and concentration-dependently stimulated the expression of NPW in PC12 cells. The effect of NGF was blocked by the inhibition of PI3K/Akt signal pathway with specific inhibitors for PI3K or AktsiRNA for Akt while inhibition of ERK pathway had no effect. Moreover, BDNF concentration-dependently induced the expression of NPW mRNA and decreased the expression of NPY mRNA in primary cultured hypothalamic neurons which was also blocked by a PI3K kinase inhibitor. Finally, in vivo study showed that exogenous BDNF injected icv increased NPW production in the hypothalamus and this effect was reversed by a PI3 kinase inhibitor. These results and the fact that BDNF was able to stimulate the expression of CRH demonstrated that neurotrophines can modulate the expression of NPW in neuronal cells via the PI3K/Akt pathway and suggest that BDNF might be involved in functions of the HPA axis, at least in part by modulating the expression of NPW/NPY and CRH. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. PAR1 activation affects the neurotrophic properties of Schwann cells.

    PubMed

    Pompili, Elena; Fabrizi, Cinzia; Somma, Francesca; Correani, Virginia; Maras, Bruno; Schininà, Maria Eugenia; Ciraci, Viviana; Artico, Marco; Fornai, Francesco; Fumagalli, Lorenzo

    2017-03-01

    Protease-activated receptor-1 (PAR1) is the prototypic member of a family of four G-protein-coupled receptors that signal in response to extracellular proteases. In the peripheral nervous system, the expression and/or the role of PARs are still poorly investigated. High PAR1 mRNA expression was found in the rat dorsal root ganglia and the signal intensity of PAR1 mRNA increased in response to sciatic nerve transection. In the sciatic nerve, functional PAR1 receptor was reported at the level of non-compacted Schwann cell myelin microvilli of the nodes of Ranvier. Schwann cells are the principal population of glial cells of the peripheral nervous system which myelinate axons playing an important role during axonal regeneration and remyelination. The present study was undertaken in order to determine if the activation of PAR1 affects the neurotrophic properties of Schwann cells. Our results suggest that the stimulation of PAR1 could potentiate the Schwann cell ability to favour nerve regeneration. In fact, the conditioned medium obtained from Schwann cell cultures challenged with a specific PAR1 activating peptide (PAR1 AP) displays increased neuroprotective and neurotrophic properties with respect to the culture medium from untreated Schwann cells. The proteomic analysis of secreted proteins in untreated and PAR1 AP-treated Schwann cells allowed the identification of factors differentially expressed in the two samples. Some of them (such as macrophage migration inhibitory factor, matrix metalloproteinase-2, decorin, syndecan 4, complement C1r subcomponent, angiogenic factor with G patch and FHA domains 1) appear to be transcriptionally regulated after PAR1 AP treatment as shown by RT-PCR. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Bioreactor Transient Exposure Activates Specific Neurotrophic Pathway in Cortical Neurons

    NASA Astrophysics Data System (ADS)

    Zimmitti, V.; Benedetti, E.; Caracciolo, V.; Sebastiani, P.; Di Loreto, S.

    2010-02-01

    Altered gravity forces might influence neuroplasticity and can provoke changes in biochemical mechanisms. In this contest, neurotrophins have a pivotal role, particularly nerve growth factor (NGF) and brain derived neurotrophic factor (BDNF). A suspension of dissociated cortical cells from rat embryos was exposed to 24 h of microgravity before plating in normal adherent culture system. Expression and transductional signalling pathways of NGF and BDNF were assessed at the end of maturational process (8-10 days in vitro). Rotating wall vessel bioreactor (RWV) pre-exposition did not induce changes in NGF expression and its high affinity receptor TrkA. On the contrary both BDNF expression and its high affinity receptor TrkB were strongly up-regulated, inducing Erk-5, but not Erk-1/2 activation and, in turn, MEF2C over-expression and activation. According to our previous and present results, we postulate that relatively short microgravitational stimuli, applied to neural cells during the developmental stage, exert a long time activation of specific neurotrophic pathways.

  5. Intraocular gene transfer of ciliary neurotrophic factor rescues photoreceptor degeneration in RCS rats.

    PubMed

    Huang, Shun-Ping; Lin, Po-Kang; Liu, Jorn-Hon; Khor, Chin-Ni; Lee, Yih-Jing

    2004-01-01

    Ciliary neurotrophic factor (CNTF) is known as an important factor in the regulation of retinal cell growth. We used both recombinant CNTF and an adenovirus carrying the CNTF gene to regulate retinal photoreceptor expression in a retinal degenerative animal, Royal College of Surgeons (RCS) rats. Cells in the outer nuclear layer of the retinae from recombinant-CNTF-treated, adenoviral-CNTF-treated, saline-operated, and contralateral untreated preparations were examined for those exhibiting CNTF photoreceptor protective effects. Cell apoptosis in the outer nuclear layer of the retinae was also detected. It was found that CNTF had a potent effect on delaying the photoreceptor degeneration process in RCS rats. Furthermore, adenovirus CNTF gene transfer was proven to be better at rescuing photoreceptors than that when using recombinant CNTF, since adenoviral CNTF prolonged the photoreceptor protection effect. The function of the photoreceptors was also examined by taking electroretinograms of different animals. Adenoviral-CNTF-treated eyes showed better retinal function than did the contralateral control eyes. This study indicates that adenoviral CNTF effectively rescues degenerating photoreceptors in RCS rats. Copyright 2004 National Science Council, ROC and S. Karger AG, Basel

  6. Exogenous ciliary neurotrophic factor (CNTF) reduces synaptic depression during repetitive stimulation.

    PubMed

    Garcia, Neus; Santafé, Manel M; Tomàs, Marta; Priego, Mercedes; Obis, Teresa; Lanuza, Maria A; Besalduch, Nuria; Tomàs, Josep

    2012-09-01

    It has been shown that ciliary neurotrophic factor (CNTF) has trophic and maintenance effects on several types of peripheral and central neurons, glia, and cells outside the nervous system. Both CNTF and its receptor, CNTF-Rα, are expressed in the muscle. We use confocal immunocytochemistry to show that the trophic cytokine and its receptor are present in the pre- and post-synaptic sites of the neuromuscular junctions (NMJs). Applied CNTF (7.5-200 ng/ml, 60 min-3 h) does not acutely affect spontaneous potentials (size or frequency) or quantal content of the evoked acetylcholine release from post-natal (in weak or strong axonal inputs on dually innervated end plates or in the most mature singly innervated synapses at P6) or adult (P30) NMJ of Levator auris longus muscle of the mice. However, CNTF reduces roughly 50% the depression produced by repetitive stimulation (40 Hz, 2 min) on the adult NMJs. Our findings indicate that, unlike neurotrophins, exogenous CNTF does not acutely modulate transmitter release locally at the mammalian neuromuscular synapse but can protect mature end plates from activity-induced synaptic depression. © 2012 Peripheral Nerve Society.

  7. Effects of brain-derived neurotrophic factor (BDNF) on the cochlear nucleus in cats deafened as neonates.

    PubMed

    Kandathil, Cherian K; Stakhovskaya, Olga; Leake, Patricia A

    2016-12-01

    the AVCN ipsilateral to the implant than on the contralateral side, consistent with the larger AVCN volume observed with BDNF treatment. Together, findings indicate significant neurotrophic effects of intracochlear BDNF infusion on the developing CN. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Hypothyroidism in the adult rat causes incremental changes in brain-derived neurotrophic factor, neuronal and astrocyte apoptosis, gliosis, and deterioration of postsynaptic density.

    PubMed

    Cortés, Claudia; Eugenin, Eliseo; Aliaga, Esteban; Carreño, Leandro J; Bueno, Susan M; Gonzalez, Pablo A; Gayol, Silvina; Naranjo, David; Noches, Verónica; Marassi, Michelle P; Rosenthal, Doris; Jadue, Cindy; Ibarra, Paula; Keitel, Cecilia; Wohllk, Nelson; Court, Felipe; Kalergis, Alexis M; Riedel, Claudia A

    2012-09-01

    Adult hypothyroidism is a highly prevalent condition that impairs processes, such as learning and memory. Even though tetra-iodothyronine (T(4)) treatment can overcome the hypothyroidism in the majority of cases, it cannot fully recover the patient's learning capacity and memory. In this work, we analyzed the cellular and molecular changes in the adult brain occurring with the development of experimental hypothyroidism. Adult male Sprague-Dawley rats were treated with 6-propyl-2-thiouracil (PTU) for 20 days to induce hypothyroidism. Neuronal and astrocyte apoptosis were analyzed in the hippocampus of control and hypothyroid adult rats by confocal microscopy. The content of brain-derived neurotrophic factor (BDNF) was analyzed using enzyme-linked immunosorbent assay (ELISA) and in situ hybridization. The glutamatergic synapse and the postsynaptic density (PSD) were analyzed by electron microscopy. The content of PSD proteins like tyrosine receptor kinase B (TrkB), p75, and N-methyl-D-aspartate receptor (NMDAr) were analyzed by immunoblot. We observed that the hippocampus of hypothyroid adult rats displayed increased apoptosis levels in neurons and astrocyte and reactive gliosis compared with controls. Moreover, we found that the amount of BDNF mRNA was higher in the hippocampus of hypothyroid rats and the content of TrkB, the receptor for BDNF, was reduced at the PSD of the CA3 region of hypothyroid rats, compared with controls. We also observed that the glutamatergic synapses from the stratum radiatum of CA3 from hypothyroid rats, contained thinner PSDs than control rats. This observation was in agreement with a reduced content of NMDAr subunits at the PSD in hypothyroid animals. Our data suggest that adult hypothyroidism affects the hippocampus by a mechanism that alters the composition of PSD, reduces neuronal and astrocyte survival, and alters the content of the signaling neurotrophic factors, such as BDNF.

  9. Human neuroblastoma growth inhibitory factor (h-NGIF), derived from human astrocytoma conditioned medium, has neurotrophic properties.

    PubMed

    Eksioglu, Y Z; Iida, J; Asai, K; Ueki, T; Nakanishi, K; Isobe, I; Yamagata, K; Kato, T

    1994-05-02

    Investigations on the general characteristics of human astrocytoma cell line NAC-1 revealed neuroblastoma growth inhibitory activity in conditioned medium. Neuroblastoma growth inhibitory factor (NGIF) was partially purified by Econo Q, Econo CM, and Superose 12 column chromatography. The protein is weakly basic with an estimated M(r) of 120,000, possibly having an M(r) 60,000 dimeric structure. NGIF inhibits the growth of human neuroblastoma cell lines but has no effect on morphology nor does it produce any change in the growth of human glioblastoma cell lines. Interestingly, NGIF appears to promote survival and neurite outgrowth of embryonal rat cortical neurons. These neurotrophic properties suggest a role for NGIF in the development of the nervous system.

  10. Conditional Depletion of Hippocampal Brain-Derived Neurotrophic Factor Exacerbates Neuropathology in a Mouse Model of Alzheimer's Disease.

    PubMed

    Braun, David J; Kalinin, Sergey; Feinstein, Douglas L

    2017-01-01

    Damage occurring to noradrenergic neurons in the locus coeruleus (LC) contributes to the evolution of neuroinflammation and neurodegeneration in a variety of conditions and diseases. One cause of LC damage may be loss of neurotrophic support from LC target regions. We tested this hypothesis by conditional unilateral knockout of brain-derived neurotrophic factor (BDNF) in adult mice. To evaluate the consequences of BDNF loss in the context of neurodegeneration, the mice harbored familial mutations for human amyloid precursor protein and presenilin-1. In these mice, BDNF depletion reduced tyrosine hydroxylase staining, a marker of noradrenergic neurons, in the rostral LC. BDNF depletion also reduced noradrenergic innervation in the hippocampus, the frontal cortex, and molecular layer of the cerebellum, assessed by staining for dopamine beta hydroxylase. BDNF depletion led to an increase in cortical amyloid plaque numbers and size but was without effect on plaque numbers in the striatum, a site with minimal innervation from the LC. Interestingly, cortical Iba1 staining for microglia was reduced by BDNF depletion and was correlated with reduced dopamine beta hydroxylase staining. These data demonstrate that reduction of BDNF levels in an LC target region can cause retrograde damage to LC neurons, leading to exacerbation of neuropathology in distinct LC target areas. Methods to reduce BDNF loss or supplement BDNF levels may be of value to reduce neurodegenerative processes normally limited by LC noradrenergic activities.

  11. Serum concentrations of brain-derived neurotrophic factor in patients diagnosed with gender dysphoria undergoing sex reassignment surgery.

    PubMed

    Schneider, Maiko A; Andreazza, Tahiana; Fontanari, Anna Martha V; Costa, Angelo B; Silva, Dhiordan C da; Aguiar, Bianca W de; Massuda, Raffael; Pedrini, Mariana; Gama, Clarissa S; Schwarz, Karine; Kauer-Sant'Anna, Marcia; Lobato, Maria Ines R

    2017-01-01

    Transsexualism (ICD-10) is a condition characterized by a strong and persistent dissociation with one's assigned gender. Sex reassignment surgery (SRS) and hormone therapy provide a means of allowing transsexual individuals to feel more congruent with their gender and have played a major role in treatment over the past 70 years. Brain-derived neurotrophic factor (BDNF) appears to play a key role in recovery from acute surgical trauma and environmentally mediated vulnerability to psychopathology. We hypothesize that BDNF may be a biomarker of alleviation of gender incongruence suffering. To measure preoperative and postoperative serum BDNF levels in transsexual individuals as a biomarker of alleviation of stress related to gender incongruence after SRS. Thirty-two male-to-female transsexual people who underwent both surgery and hormonal treatment were selected from our initial sample. BDNF serum levels were assessed before and after SRS with sandwich enzyme linked immunosorbent assay (ELISA). The time elapsed between the pre-SRS and post-SRS blood collections was also measured. No significant difference was found in pre-SRS or post-SRS BDNF levels or with relation to the time elapsed after SRS when BDNF levels were measured. Alleviation of the suffering related to gender incongruence after SRS cannot be assessed by BDNF alone. Surgical solutions may not provide a quick fix for psychological distress associated with transsexualism and SRS may serve as one step toward, rather than as the conclusion of, construction of a person's gender identity.

  12. New insight in expression, transport, and secretion of brain-derived neurotrophic factor: Implications in brain-related diseases

    PubMed Central

    Adachi, Naoki; Numakawa, Tadahiro; Richards, Misty; Nakajima, Shingo; Kunugi, Hiroshi

    2014-01-01

    Brain-derived neurotrophic factor (BDNF) attracts increasing attention from both research and clinical fields because of its important functions in the central nervous system. An adequate amount of BDNF is critical to develop and maintain normal neuronal circuits in the brain. Given that loss of BDNF function has been reported in the brains of patients with neurodegenerative or psychiatric diseases, understanding basic properties of BDNF and associated intracellular processes is imperative. In this review, we revisit the gene structure, transcription, translation, transport and secretion mechanisms of BDNF. We also introduce implications of BDNF in several brain-related diseases including Alzheimer’s disease, Huntington’s disease, depression and schizophrenia. PMID:25426265

  13. Increased serum brain-derived neurotrophic factor (BDNF) is predictive of cocaine relapse outcomes: A prospective study

    PubMed Central

    D’Sa, Carrol; Fox, Helen C.; Hong, Adam K.; Dileone, Ralph J.; Sinha, Rajita

    2011-01-01

    Background Cocaine dependence is associated with high relapse rates but few biological markers associated with relapse outcomes have been identified. Extending preclinical research showing a role for central Brain Derived Neurotrophic Factor (BDNF) in cocaine seeking, we examined whether serum BDNF is altered in abstinent, early recovering, cocaine-dependent individuals and if it is predictive of subsequent relapse risk. Methods Serum samples were collected across three consecutive mornings from 35 treatment-engaged, 3 week abstinent cocaine-dependent inpatients (17M/18F) and 34 demographically matched hospitalized healthy control participants (17M/17F). Cocaine dependent individuals were prospectively followed on days 14, 30 and 90 post-treatment discharge to assess cocaine relapse outcomes. Time to cocaine relapse, number of days of cocaine use (frequency), and amount of cocaine use (quantity) were the main outcome measures. Results High correlations in serum BDNF across days indicated reliable and stable serum BDNF measurements. Significantly higher mean serum BDNF levels were observed for the cocaine-dependent patients compared to healthy control participants (p<.001). Higher serum BDNF levels predicted shorter subsequent time to cocaine relapse (hazard ratio: HR: 1.09, p<.05), greater number of days (p<.05) and higher total amounts of cocaine used (p = .05). Conclusions High serum BDNF levels in recovering cocaine-dependent individuals are predictive of future cocaine relapse outcomes and may represent a clinically relevant marker of relapse risk. These data suggest that serum BDNF levels may provide an indication of relapse risk during early recovery from cocaine dependence. PMID:21741029

  14. Either brain-derived neurotrophic factor or neurotrophin-3 only neurotrophin-producing grafts promote locomotor recovery in untrained spinalized cats.

    PubMed

    Ollivier-Lanvin, Karen; Fischer, Itzhak; Tom, Veronica; Houlé, John D; Lemay, Michel A

    2015-01-01

    Background. Transplants of cellular grafts expressing a combination of 2 neurotrophic factors, brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) have been shown to promote and enhance locomotor recovery in untrained spinalized cats. Based on the time course of recovery and the absence of axonal growth through the transplants, we hypothesized that recovery was due to neurotrophin-mediated plasticity within the existing locomotor circuitry of the lumbar cord. Since BDNF and NT-3 have different effects on axonal sprouting and synaptic connectivity/strengthening, it becomes important to ascertain the contribution of each individual neurotrophins to recovery. Objective. We studied whether BDNF or NT-3 only producing cellular grafts would be equally effective at restoring locomotion in untrained spinal cats. Methods. Rat fibroblasts secreting one of the 2 neurotrophins were grafted into the T12 spinal transection site of adult cats. Four cats in each group (BDNF alone or NT-3 alone) were evaluated. Locomotor recovery was tested on a treadmill at 3 and 5 weeks post-transection/grafting. Results. Animals in both groups were capable of plantar weight-bearing stepping at speed up to 0.8 m/s as early as 3 weeks and locomotor capabilities were similar at 3 and 5 weeks for both types of graft. Conclusions. Even without locomotor training, either BDNF or NT-3 only producing grafts promote locomotor recovery in complete spinal animals. More clinically applicable delivery methods need to be developed. © The Author(s) 2014.

  15. Transdifferentiation of brain-derived neurotrophic factor (BDNF)-secreting mesenchymal stem cells significantly enhance BDNF secretion and Schwann cell marker proteins.

    PubMed

    Bierlein De la Rosa, Metzere; Sharma, Anup D; Mallapragada, Surya K; Sakaguchi, Donald S

    2017-11-01

    The use of genetically modified mesenchymal stem cells (MSCs) is a rapidly growing area of research targeting delivery of therapeutic factors for neuro-repair. Cells can be programmed to hypersecrete various growth/trophic factors such as brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), and nerve growth factor (NGF) to promote regenerative neurite outgrowth. In addition to genetic modifications, MSCs can be subjected to transdifferentiation protocols to generate neural cell types to physically and biologically support nerve regeneration. In this study, we have taken a novel approach by combining these two unique strategies and evaluated the impact of transdifferentiating genetically modified MSCs into a Schwann cell-like phenotype. After 8 days in transdifferentiation media, approximately 30-50% of transdifferentiated BDNF-secreting cells immunolabeled for Schwann cell markers such as S100β, S100, and p75 NTR . An enhancement was observed 20 days after inducing transdifferentiation with minimal decreases in expression levels. BDNF production was quantified by ELISA, and its biological activity tested via the PC12-TrkB cell assay. Importantly, the bioactivity of secreted BDNF was verified by the increased neurite outgrowth of PC12-TrkB cells. These findings demonstrate that not only is BDNF actively secreted by the transdifferentiated BDNF-MSCs, but also that it has the capacity to promote neurite sprouting and regeneration. Given the fact that BDNF production remained stable for over 20 days, we believe that these cells have the capacity to produce sustainable, effective, BDNF concentrations over prolonged time periods and should be tested within an in vivo system for future experiments. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  16. The interrelationship of metabolic syndrome and neurodegenerative diseases with focus on brain-derived neurotrophic factor (BDNF): Kill two birds with one stone.

    PubMed

    Motamedi, Shima; Karimi, Isaac; Jafari, Fariba

    2017-06-01

    The brain-derived neurotrophic factor (BDNF) is involved in metabolic syndrome (MetS) and neurodegenerative diseases (NDD) like Alzheimer's disease, Huntington's disease, Parkinson's disease and depression. If one factor plays an essential role in the pathogenesis of two diseases, it can be concluded that there might be a common root in these two diseases, as well. This review was aimed to highlight the crucial roles of BDNF in the pathogenesis of MetS and NDD and to introduce sole prophylactic or therapeutic applications, BDNF gene therapy and BDFN administration, in controlling MetS and NDD.

  17. A peptide fragment of ependymin neurotrophic factor uses protein kinase C and the mitogen-activated protein kinase pathway to activate c-Jun N-terminal kinase and a functional AP-1 containing c-Jun and c-Fos proteins in mouse NB2a cells.

    PubMed

    Adams, David S; Hasson, Brendan; Boyer-Boiteau, Anne; El-Khishin, Adam; Shashoua, Victor E

    2003-05-01

    Ependymin (EPN) is a goldfish brain neurotrophic factor previously shown to function in a variety of cellular events related to long-term memory formation and neuronal regeneration. CMX-8933, an 8-amino-acid synthetic peptide fragment of EPN, was designed for aiding an investigation of the biological properties of this glycoprotein. We reported from previous studies that treatment of mouse neuroblastoma (NB2a) cultures with CMX-8933 promotes activation of transcription factor AP-1, a characteristic previously associated with the following full-length neurotrophic factors: nerve growth factor, neurotropin-3, and brain-derived neurotrophic factor. The CMX-8933-activated AP-1 specifically bound an AP-1 consensus probe and appeared to contain c-Jun and c-Fos protein components in antibody supershift experiments. Because AP-1 influences a variety of positive and negative cellular processes, determined in part by its exact protein composition and mechanism of activation, we extended these initial AP-1 observations in the current study to confirm the identity of the CMX-8933-activated c-Jun and c-Fos components. CMX-8933 increases the enzymatic activity of c-Jun N-terminal kinase (JNK), increases the phosphorylation of JNK and c-Jun proteins, and increases the cellular titers of c-Jun and c-Fos mRNAs. Furthermore, the AP-1 activated by CMX-8933 is functional, insofar as it transactivates both synthetic and natural AP-1-dependent reporter plasmids. Inhibition studies indicate that activation of the 8933-induced AP-1 occurs via the mitogen-activated protein kinase pathway. These data are in agreement with the recently proposed model for the conversion of short- to long-term synaptic plasticity and memory, in which a JNK-activated transcription factor AP-1, containing c-Jun and c-Fos components, functions at the top of a hierarchy of transcription factors known to regulate long-term neural plasticity. Copyright 2003 Wiley-Liss, Inc.

  18. Time-Dependent Serum Brain-Derived Neurotrophic Factor Decline During Methamphetamine Withdrawal.

    PubMed

    Ren, Wenwei; Tao, Jingyan; Wei, Youdan; Su, Hang; Zhang, Jie; Xie, Ying; Guo, Jun; Zhang, Xiangyang; Zhang, Hailing; He, Jincai

    2016-02-01

    Methamphetamine (METH) is a widely abused illegal psychostimulant, which is confirmed to be neurotoxic and of great damage to human. Studies on the role of brain-derived neurotrophic factor (BDNF) in human METH addicts are limited and inconsistent. The purposes of this study are to compare the serum BDNF levels between METH addicts and healthy controls during early withdrawal, and explore the changes of serum BDNF levels during the first month after METH withdrawal.179 METH addicts and 90 age- and gender-matched healthy controls were recruited in this study. We measured serum BDNF levels at baseline (both METH addicts and healthy controls) and at 1 month after abstinence of METH (METH addicts only).Serum BDNF levels of METH addicts at baseline were significantly higher than controls (1460.28  ±  490.69 vs 1241.27  ±  335.52  pg/mL; F = 14.51, P < 0.001). The serum BDNF levels of 40 METH addicts were re-examined after 1 month of METH abstinence, which were significantly lower than that at baseline (1363.70  ±  580.59 vs 1621.41  ±  591.07  pg/mL; t = 2.26, P = .03), but showed no differences to the controls (1363.70  ±  580.59 vs 1241.27  ±  335.52  pg/mL; F = 2.29, P = 0.13).Our study demonstrated that serum BDNF levels were higher in METH addicts than controls during early withdrawal, and were time dependent decreased during the first month of abstinence. These findings may provide further evidence that increased serum BDNF levels may be associated with the pathophysiology of METH addiction and withdrawal and may be a protective response against the subsequent METH-induced neurotoxicity. Besides, these findings may also promote the development of medicine in the treatment of METH addiction and withdrawal.

  19. Correlation Between Hedgehog (Hh) Protein Family and Brain-Derived Neurotrophic Factor (BDNF) in Autism Spectrum Disorder (ASD).

    PubMed

    Halepoto, Dost Muhammad; Bashir, Shahid; Zeina, Rana; Al-Ayadhi, Laila Y

    2015-12-01

    To determine the correlation of Sonic Hedgehog (SHH), Indian Hedgehog (IHH), and Brain-Derived Neurotrophic Factor (BDNF) in children with Autism Spectrum Disorder (ASD). An observational, comparative study. Autism Research and Treatment Center, Al-Amodi Autism Research Chair, Department of Physiology, Faculty of Medicine, King Khalid University Hospital, King Saud University, Riyadh, Saudi Arabia, from October 2011 to May 2012. Serum levels of SHH, IHH and BDNF were determined in recently diagnosed autistic patients and age-matched healthy children (n=25), using the Enzyme-Linked Immunosorbent Assay (ELISA). Childhood Autism Rating Scale (CARS) was used for the assessment of autistic severity. Spearman correlation co-efficient 'r' was determined. The serum levels of IHH and SHH were significantly higher in autistic subjects than those of control subjects. There was significant correlation between age and IHH (r = 0.176, p = 0.03), BDNF and severe IHH (r = 0.1763, p = 0.003), and severe BDNF and severe SHH (r = 0.143, p < 0.001). However, there were no significant relationships among the serum levels of SHH, IHH and BDNF and the CARS score, age or gender. The findings support a correlation between SHH, IHH and BDNF in autistic children, suggesting their pathological role in autism.

  20. Variant Brain-Derived Neurotrophic Factor Val66Met Polymorphism Alters Vulnerability to Stress and Response to Antidepressants

    PubMed Central

    Yu, Hui; Wang, Dong-Dong; Wang, Yue; Liu, Ting; Lee, Francis S.; Chen, Zhe-Yu

    2012-01-01

    Brain-derived neurotrophic factor (BDNF) plays important roles in cell survival, neural plasticity, learning, and stress regulation. However, whether the recently found human BDNF Val66Met (BDNFMet) polymorphism could alter stress vulnerability remains controversial. More importantly, the molecular and structural mechanisms underlying the interaction between the BDNFMet polymorphism and stress are unclear. We found that heterozygous BDNF+/Met mice displayed hypothalamic-pituitary-adrenal axis hyperreactivity, increased depressive-like and anxiety-like behaviors, and impaired working memory compared with WT mice after 7 d restraint stress. Moreover, BDNF+/Met miceexhibited more prominent changes in BDNF levels and apical dendritic spine density in the prefrontal cortex and amygdala after stress, which correlated with the impaired working memory and elevated anxiety-like behaviors. Finally, the depressive-like behaviors in BDNF+/Met mice could be selectively rescued by acute administration of desipramine but not fluoxetine. These data indicate selective behavioral, molecular, and structural deficits resulting from the interaction between stress and the human genetic BDNFMet polymorphism. Importantly, desipramine but not fluoxetine has antidepressant effects on BDNF+/Met mice, suggesting that specific classes of antidepressant may be a more effective treatment option for depressive symptoms in humans with this genetic variant BDNF. PMID:22442074

  1. Brain-derived neurotrophic factor Val66Met genotype modulates amygdala habituation.

    PubMed

    Perez-Rodriguez, M Mercedes; New, Antonia S; Goldstein, Kim E; Rosell, Daniel; Yuan, Qiaoping; Zhou, Zhifeng; Hodgkinson, Colin; Goldman, David; Siever, Larry J; Hazlett, Erin A

    2017-05-30

    A deficit in amygdala habituation to repeated emotional stimuli may be an endophenotype of disorders characterized by emotion dysregulation, such as borderline personality disorder (BPD). Amygdala reactivity to emotional stimuli is genetically modulated by brain-derived neurotrophic factor (BDNF) variants. Whether amygdala habituation itself is also modulated by BDNF genotypes remains unknown. We used imaging-genetics to examine the effect of BDNF Val66Met genotypes on amygdala habituation to repeated emotional stimuli. We used functional magnetic resonance imaging (fMRI) in 57 subjects (19 BPD patients, 18 patients with schizotypal personality disorder [SPD] and 20 healthy controls [HC]) during a task involving viewing of unpleasant, neutral, and pleasant pictures, each presented twice to measure habituation. Amygdala responses across genotypes (Val66Met SNP Met allele-carriers vs. Non-Met carriers) and diagnoses (HC, BPD, SPD) were examined with ANOVA. The BDNF 66Met allele was significantly associated with a deficit in amygdala habituation, particularly for emotional pictures. The association of the 66Met allele with a deficit in habituation to unpleasant emotional pictures remained significant in the subsample of BPD patients. Using imaging-genetics, we found preliminary evidence that deficient amygdala habituation may be modulated by BDNF genotype. Copyright © 2017. Published by Elsevier B.V.

  2. Brain-derived neurotrophic factor as a model system for examining gene by environment interactions across development.

    PubMed

    Casey, B J; Glatt, C E; Tottenham, N; Soliman, F; Bath, K; Amso, D; Altemus, M; Pattwell, S; Jones, R; Levita, L; McEwen, B; Magariños, A M; Gunnar, M; Thomas, K M; Mezey, J; Clark, A G; Hempstead, B L; Lee, F S

    2009-11-24

    There has been a dramatic rise in gene x environment studies of human behavior over the past decade that have moved the field beyond simple nature versus nurture debates. These studies offer promise in accounting for more variability in behavioral and biological phenotypes than studies that focus on genetic or experiential factors alone. They also provide clues into mechanisms of modifying genetic risk or resilience in neurodevelopmental disorders. Yet, it is rare that these studies consider how these interactions change over the course of development. In this paper, we describe research that focuses on the impact of a polymorphism in a brain-derived neurotrophic factor (BDNF) gene, known to be involved in learning and development. Specifically we present findings that assess the effects of genotypic and environmental loadings on neuroanatomic and behavioral phenotypes across development. The findings illustrate the use of a genetic mouse model that mimics the human polymorphism, to constrain the interpretation of gene-environment interactions across development in humans.

  3. Exercise reduces diet-induced cognitive decline and increases hippocampal brain-derived neurotrophic factor in CA3 neurons

    PubMed Central

    Noble, Emily E.; Mavanji, Vijayakumar; Little, Morgan R.; Billington, Charles J.; Kotz, Catherine M.; Wang, ChuanFeng

    2014-01-01

    Background Previous studies have shown that a western diet impairs, whereas physical exercise enhances hippocampus-dependent learning and memory. Both diet and exercise influence expression of hippocampal brain-derived neurotrophic factor (BDNF), which is associated with improved cognition. We hypothesized that exercise reverses diet-induced cognitive decline while increasing hippocampal BDNF. Methods To test the effects of exercise on hippocampal-dependent memory, we compared cognitive scores of Sprague-Dawley rats exercised by voluntary running wheel (RW) access or forced treadmill (TM) to sedentary (Sed) animals. Memory was tested by two-way active avoidance test (TWAA), in which animals are exposed to a brief shock in a specific chamber area. When an animal avoids, escapes or has reduced latency to do either, this is considered a measure of memory. In a second experiment, rats were fed either a high-fat diet or control diet for 16 weeks, then randomly assigned to running wheel access or sedentary condition, and TWAA memory was tested once a week for seven weeks of exercise intervention. Results Both groups of exercised animals had improved memory as indicated by reduced latency to avoid and escape shock, and increased avoid and escape episodes (p<0.05). Exposure to a high-fat diet resulted in poor performance during both the acquisition and retrieval phases of the memory test as compared to controls. Exercise reversed high-fat diet-induced memory impairment, and increased brain-derived neurotrophic factor (BDNF) in neurons of the hippocampal CA3 region. Conclusions These data suggest that exercise improves memory retrieval, particularly with respect to avoiding aversive stimuli, and may be beneficial in protecting against diet induced cognitive decline, likely via elevated BDNF in neurons of the CA3 region. PMID:24755094

  4. Exercise reduces diet-induced cognitive decline and increases hippocampal brain-derived neurotrophic factor in CA3 neurons.

    PubMed

    Noble, Emily E; Mavanji, Vijayakumar; Little, Morgan R; Billington, Charles J; Kotz, Catherine M; Wang, ChuanFeng

    2014-10-01

    Previous studies have shown that a western diet impairs, whereas physical exercise enhances hippocampus-dependent learning and memory. Both diet and exercise influence expression of hippocampal brain-derived neurotrophic factor (BDNF), which is associated with improved cognition. We hypothesized that exercise reverses diet-induced cognitive decline while increasing hippocampal BDNF. To test the effects of exercise on hippocampal-dependent memory, we compared cognitive scores of Sprague-Dawley rats exercised by voluntary running wheel (RW) access or forced treadmill (TM) to sedentary (Sed) animals. Memory was tested by two-way active avoidance test (TWAA), in which animals are exposed to a brief shock in a specific chamber area. When an animal avoids, escapes or has reduced latency to do either, this is considered a measure of memory. In a second experiment, rats were fed either a high-fat diet or control diet for 16 weeks, then randomly assigned to running wheel access or sedentary condition, and TWAA memory was tested once a week for 7 weeks of exercise intervention. Both groups of exercised animals had improved memory as indicated by reduced latency to avoid and escape shock, and increased avoid and escape episodes (p<0.05). Exposure to a high-fat diet resulted in poor performance during both the acquisition and retrieval phases of the memory test as compared to controls. Exercise reversed high-fat diet-induced memory impairment, and increased brain-derived neurotrophic factor (BDNF) in neurons of the hippocampal CA3 region. These data suggest that exercise improves memory retrieval, particularly with respect to avoiding aversive stimuli, and may be beneficial in protecting against diet induced cognitive decline, likely via elevated BDNF in neurons of the CA3 region. Published by Elsevier Inc.

  5. Long non-coding RNA nuclear paraspeckle assembly transcript 1 inhibits the apoptosis of retina Müller cells after diabetic retinopathy through regulating miR-497/brain-derived neurotrophic factor axis.

    PubMed

    Li, Xiu-Juan

    2018-05-01

    The role of long non-coding RNA in diabetic retinopathy, a serious complication of diabetes mellitus, has attracted increasing attention in recent years. The purpose of this study was to explore whether long non-coding RNA nuclear paraspeckle assembly transcript 1 was involved in the context of diabetic retinopathy and its underlying mechanisms. Our results revealed that nuclear paraspeckle assembly transcript 1 was significantly downregulated in the retina of diabetes mellitus rats. Meanwhile, miR-497 was significantly increased in diabetes mellitus rats' retina and high glucose-treated Müller cells, but brain-derived neurotrophic factor was increased. We also found that high glucose-induced apoptosis of Müller cells was accompanied by the significant downregulation of nuclear paraspeckle assembly transcript 1 in vitro. Further study demonstrated that high glucose-promoted Müller cells apoptosis through downregulating nuclear paraspeckle assembly transcript 1 and downregulated nuclear paraspeckle assembly transcript 1 mediated this effect via negative regulating miR-497. Moreover, brain-derived neurotrophic factor was negatively regulated by miR-497 and associated with the apoptosis of Müller cells under high glucose. Our results suggested that under diabetic conditions, downregulated nuclear paraspeckle assembly transcript 1 decreased the expression of brain-derived neurotrophic factor through elevating miR-497, thereby promoting Müller cells apoptosis and aggravating diabetic retinopathy.

  6. Serum brain-derived neurotrophic factor levels and personality traits in patients with major depression.

    PubMed

    Nomoto, Hiroshi; Baba, Hajime; Satomura, Emi; Maeshima, Hitoshi; Takebayashi, Naoko; Namekawa, Yuki; Suzuki, Toshihito; Arai, Heii

    2015-03-04

    Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophin family of growth factors. Previous studies have demonstrated lower serum BDNF levels in patients with major depressive disorder (MDD) and reported an association between BDNF levels and depression-related personality traits in healthy subjects. The aim of the present study was to explore for a possible association between peripheral BDNF levels and personality traits in patients with MDD. In this cross-sectional study, a total of 123 inpatients with MDD (Diagnostic and Statistical Manual for Mental Disorders, 4th edition) at the Juntendo University Koshigaya Hospital were recruited. Serum levels of BDNF were measured. Personality traits were assessed using the 125-item short version of the Temperament and Character Inventory (TCI). Multiple regression analysis adjusted for age, sex, body mass index, dose of antidepressant, and depression severity showed that TCI Self-Directedness (SD) scores were negatively associated with serum BDNF levels (β = -0.23, p = 0.026). MDD patients who have low SD did not show the reduction in serum BDNF levels that is normally associated with depressive state. Our findings suggest that depression-related biological changes may not occur in these individuals.

  7. Precursor N-cadherin mediates glial cell line-derived neurotrophic factor-promoted human malignant glioma

    PubMed Central

    Zhu, Shuang; Zhang, Baole; Qin, Yuxia; Yao, Ruiqin; Zhou, Hao; Gao, Dian Shuai

    2017-01-01

    As the most prevalent primary brain tumor, gliomas are highly metastatic, invasive and are characteristic of high levels of glial cell-line derived neurotrophic factor (GDNF). GDNF is an important factor for invasive glioma cell growth; however, the underlying mechanism involved is unclear. In this study, we affirm a significantly higher expression of the precursor of N-cadherin (proN-cadherin) in most gliomas compared with normal brain tissues. Our findings reveal that GDNF interacts with the extracellular domain of proN-cadherin, which suggests that proN-cadherin mediates GDNF-induced glioma cell migration and invasion. We hypothesize that proN-cadherin might cause homotypic adhesion loss within neighboring cells and at the same time promote heterotypic adhesion within the extracellular matrix (ECM) through a certain mechanism. This study also demonstrates that the interaction between GDNF and proN-cadherin activates specific intracellular signaling pathways; furthermore, GDNF promoted the secretion of matrix metalloproteinase-9 (MMP-9), which degrades the ECM via proN-cadherin. To reach the future goal of developing novel therapies of glioma, this study, reveals a unique mechanism of glioma cell migration and invasion. PMID:28212546

  8. Precursor N-cadherin mediates glial cell line-derived neurotrophic factor-promoted human malignant glioma.

    PubMed

    Xiong, Ye; Liu, Liyun; Zhu, Shuang; Zhang, Baole; Qin, Yuxia; Yao, Ruiqin; Zhou, Hao; Gao, Dian Shuai

    2017-04-11

    As the most prevalent primary brain tumor, gliomas are highly metastatic, invasive and are characteristic of high levels of glial cell-line derived neurotrophic factor (GDNF). GDNF is an important factor for invasive glioma cell growth; however, the underlying mechanism involved is unclear. In this study, we affirm a significantly higher expression of the precursor of N-cadherin (proN-cadherin) in most gliomas compared with normal brain tissues. Our findings reveal that GDNF interacts with the extracellular domain of proN-cadherin, which suggests that proN-cadherin mediates GDNF-induced glioma cell migration and invasion. We hypothesize that proN-cadherin might cause homotypic adhesion loss within neighboring cells and at the same time promote heterotypic adhesion within the extracellular matrix (ECM) through a certain mechanism. This study also demonstrates that the interaction between GDNF and proN-cadherin activates specific intracellular signaling pathways; furthermore, GDNF promoted the secretion of matrix metalloproteinase-9 (MMP-9), which degrades the ECM via proN-cadherin. To reach the future goal of developing novel therapies of glioma, this study, reveals a unique mechanism of glioma cell migration and invasion.

  9. Epigenetic mechanisms underlying the role of brain-derived neurotrophic factor in depression and response to antidepressants

    PubMed Central

    Duclot, Florian; Kabbaj, Mohamed

    2015-01-01

    Major depressive disorder (MDD) is a devastating neuropsychiatric disorder encompassing a wide range of cognitive and emotional dysfunctions. The prevalence of MDD is expected to continue its growth to become the second leading cause of disease burden (after HIV) by 2030. Despite an extensive research effort, the exact etiology of MDD remains elusive and the diagnostics uncertain. Moreover, a marked inter-individual variability is observed in the vulnerability to develop depression, as well as in response to antidepressant treatment, for nearly 50% of patients. Although a genetic component accounts for some cases of MDD, it is now clearly established that MDD results from strong gene and environment interactions. Such interactions could be mediated by epigenetic mechanisms, defined as chromatin and DNA modifications that alter gene expression without changing the DNA structure itself. Some epigenetic mechanisms have recently emerged as particularly relevant molecular substrates, promoting vulnerability or resilience to the development of depressive-like symptoms. Although the role of brain-derived neurotrophic factor (BDNF) in the pathophysiology of MDD remains unclear, its modulation of the efficacy of antidepressants is clearly established. Therefore, in this review, we focus on the epigenetic mechanisms regulating the expression of BDNF in humans and in animal models of depression, and discuss their role in individual differences in vulnerability to depression and response to antidepressant drugs. PMID:25568448

  10. Effect of glial cell line-derived neurotrophic factor on behavior and key members of the brain serotonin system in mouse strains genetically predisposed to behavioral disorders.

    PubMed

    Naumenko, Vladimir S; Bazovkina, Daria V; Semenova, Alina A; Tsybko, Anton S; Il'chibaeva, Tatyana V; Kondaurova, Elena M; Popova, Nina K

    2013-12-01

    The effect of glial cell line-derived neurotrophic factor (GDNF) on behavior and on the serotonin (5-HT) system of a mouse strain predisposed to depressive-like behavior, ASC/Icg (Antidepressant Sensitive Cataleptics), in comparison with the parental "nondepressive" CBA/Lac mice was studied. Within 7 days after acute administration, GDNF (800 ng, i.c.v.) decreased cataleptic immobility but increased depressive-like behavioral traits in both investigated mouse strains and produced anxiolytic effects in ASC mice. The expression of the gene encoding the key enzyme for 5-HT biosynthesis in the brain, tryptophan hydroxylase-2 (Tph-2), and 5-HT1A receptor gene in the midbrain as well as 5-HT2A receptor gene in the frontal cortex were increased in GDNF-treated ASC mice. At the same time, GDNF decreased 5-HT1A and 5-HT2A receptor gene expression in the hippocampus of ASC mice. GDNF failed to change Tph2, 5-HT1A , or 5-HT2A receptor mRNA levels in CBA mice as well as 5-HT transporter gene expression and 5-HT1A and 5-HT2A receptor functional activity in both investigated mouse strains. The results show 1) a GDNF-induced increase in the expression of key genes of the brain 5-HT system, Tph2, 5-HT1A , and 5-HT2A receptors, and 2) significant genotype-dependent differences in the 5-HT system response to GDNF treatment. The data suggest that genetically defined cross-talk between neurotrophic factors and the brain 5-HT system underlies the variability in behavioral response to GDNF. Copyright © 2013 Wiley Periodicals, Inc.

  11. Serum brain-derived neurotrophic factor and glucocorticoid receptor levels in lymphocytes as markers of antidepressant response in major depressive patients: a pilot study.

    PubMed

    Rojas, Paulina Soledad; Fritsch, Rosemarie; Rojas, Romina Andrea; Jara, Pablo; Fiedler, Jenny Lucy

    2011-09-30

    Depressive patients often have altered cortisol secretion, an effect that likely derives from impaired activity of the glucocorticoid receptor (GR), the main regulator of the hypothalamus-pituitary-adrenal (HPA) axis. Glucocorticoids reduce the levels of brain-derived neurotrophic factor (BDNF), a downstream target of antidepressants. Antidepressants promote the transcriptional activity of cyclic adenosine monophosphate (cAMP) response element binding protein (CREB), a regulator of BDNF expression. To identify potential biomarkers for the onset of antidepressant action in depressive patients, GR and phospho-CREB (pCREB) levels in lymphocytes and serum BDNF levels were repeatedly measured during the course of antidepressant treatment. Thirty-four depressed outpatients (10 male and 24 female) were treated with venlafaxine (75mg/day), and individuals exhibiting a 50% reduction in their baseline 17-Item Hamilton Depression Rating Scale score by the 6th week of treatment were considered responders. Responders showed an early improvement in parallel with a rise in BDNF levels during the first two weeks of treatment. Non-responders showed increased GR levels by the third week and reduced serum BDNF by the sixth week of treatment. In contrast, venlafaxine did not affect levels of pCREB. We conclude that levels of BDNF in serum and GR levels in lymphocytes may represent biomarkers that could be used to predict responses to venlafaxine treatment. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Brain-derived neurotrophic factor into adult neocortex strengthens a taste aversion memory.

    PubMed

    Martínez-Moreno, Araceli; Rodríguez-Durán, Luis F; Escobar, Martha L

    2016-01-15

    Nowadays, it is known that brain derived neurotrophic-factor (BDNF) is a protein critically involved in regulating long-term memory related mechanisms. Previous studies from our group in the insular cortex (IC), a brain structure of the temporal lobe implicated in acquisition, consolidation and retention of conditioned taste aversion (CTA), demonstrated that BDNF is essential for CTA consolidation. Recent studies show that BDNF-TrkB signaling is able to mediate the enhancement of memory. However, whether BDNF into neocortex is able to enhance aversive memories remains unexplored. In the present work, we administrated BDNF in a concentration capable of inducing in vivo neocortical LTP, into the IC immediately after CTA acquisition in two different conditions: a "strong-CTA" induced by 0.2M lithium chloride i.p. as unconditioned stimulus, and a "weak-CTA" induced by 0.1M lithium chloride i.p. Our results show that infusion of BDNF into the IC converts a weak CTA into a strong one, in a TrkB receptor-dependent manner. The present data suggest that BDNF into the adult insular cortex is sufficient to increase an aversive memory-trace. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Treadmill running prevents age-related memory deficit and alters neurotrophic factors and oxidative damage in the hippocampus of Wistar rats.

    PubMed

    Vanzella, Cláudia; Neves, Juliana Dalibor; Vizuete, Adriana Fernanda; Aristimunha, Dirceu; Kolling, Janaína; Longoni, Aline; Gonçalves, Carlos Alberto Saraiva; Wyse, Angela T S; Netto, Carlos Alexandre

    2017-09-15

    Clinical and pre-clinical studies indicate that exercise is beneficial to many aspects of brain function especially during aging. The present study investigated the effects of a treadmill running protocol in young (3month-old) and aged (22month-old) male Wistar rats, on: I) cognitive function, as assessed by spatial reference memory in the Morris water maze; II) oxidative stress parameters and the expression of neurotrophic factors BDNF, NT-3, IGF-1 and VEGF in the hippocampus. Animals of both ages were assigned to sedentary (non-exercised) and exercised (20min of daily running sessions, 3 times per week for 4weeks) groups. Cognition was assessed by a reference memory task run in the Morris water maze; twenty four hours after last session of behavioral testing hippocampi were collected for biochemical analysis. Results demonstrate that the moderate treadmill running exercise: I) prevented age-related deficits in reference memory in the Morris water maze; II) prevented the age-related increase of reactive oxygen species levels and lipid peroxidation in the hippocampus; III) caused an increase of BDNF, NT-3 and IGF-1 expression in the hippocampus of aged rats. Taken together, results suggest that both exercise molecular effects, namely the reduction of oxidative stress and the increase of neurotrophic factors expression in the hippocampus, might be related to its positive effect on memory performance in aged rats. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Pleiotropy of tissue-specific growth factors: from neurons to vessels via the bone marrow

    PubMed Central

    Duda, Dan G.; Jain, Rakesh K.

    2005-01-01

    Recent evidence has demonstrated that endothelial-specific growth factors affect the development of apparently unrelated organs and cells. Expanding this evidence further, new findings in this issue of the JCI show that neurotrophic factors can affect neovascularization. Neurotrophic factors achieve proangiogenic effects not only by directly affecting endothelial cells, but also by recruiting hematopoietic precursors. Further understanding of the biology of angiogenic factors, as well as of the function of hematopoietic cells in tissue neovascularization, will lead to improved therapeutic strategies for the treatment of diseases ranging from ischemia to cancer. PMID:15765145

  15. Low-level laser therapy promotes dendrite growth via upregulating brain-derived neurotrophic factor expression

    NASA Astrophysics Data System (ADS)

    Meng, Chengbo; He, Zhiyong; Xing, Da

    2014-09-01

    Downregulation of brain-derived neurotrophic factor (BDNF) in the hippocampus occurs early in the progression of Alzheimer's disease (AD). Since BDNF plays a critical role in neuronal survival and dendrite growth, BDNF upregulation may contribute to rescue dendrite atrophy and cell loss in AD. Low-level laser therapy (LLLT) has been demonstrated to regulate neuronal function both in vitro and in vivo. In the present study, we found that LLLT rescued neurons loss and dendritic atrophy via the increase of both BDNF mRNA and protein expression. In addition, dendrite growth was improved after LLLT, characterized by upregulation of PSD95 expression, and the increase in length, branching, and spine density of dendrites in hippocampal neurons. Together, these studies suggest that upregulation of BDNF with LLLT can ameliorate Aβ-induced neurons loss and dendritic atrophy, thus identifying a novel pathway by which LLLT protects against Aβ-induced neurotoxicity. Our research may provide a feasible therapeutic approach to control the progression of Alzheimer's disease.

  16. Brain-derived neurotrophic factor signaling and subgenual anterior cingulate cortex dysfunction in major depressive disorder.

    PubMed

    Tripp, Adam; Oh, Hyunjung; Guilloux, Jean-Philippe; Martinowich, Keri; Lewis, David A; Sibille, Etienne

    2012-11-01

    The subgenual anterior cingulate cortex is implicated in the pathology and treatment response of major depressive disorder. Low levels of brain-derived neurotrophic factor (BDNF) and reduced markers for GABA function, including in the amygdala, are reported in major depression, but their contribution to subgenual anterior cingulate cortex dysfunction is not known. Using polymerase chain reaction, we first assessed the degree to which BDNF controls mRNA expression (defined as BDNF dependency) of 15 genes relating to GABA and neuropeptide functions in the cingulate cortex of mice with reduced BDNF function (BDNF-heterozygous [Bdnf(+/-)] mice and BDNF exon-IV knockout [Bdnf(KIV)] mice). Gene expression was then quantified in the subgenual anterior cingulate cortex of 51 postmortem subjects with major depressive disorder and comparison subjects (total subjects, N=102; 49% were women) and compared with previous amygdala results. Based on the results in Bdnf(+/-) and Bdnf(KIV) mice, genes were sorted into high, intermediate, and no BDNF dependency sets. In postmortem human subjects with major depression, BDNF receptor (TRKB) expression, but not BDNF, was reduced. Postmortem depressed subjects exhibited down-regulation in genes with high and intermediate BDNF dependency, including markers of dendritic targeting interneurons (SST, NPY, and CORT) and a GABA synthesizing enzyme (GAD2). Changes extended to BDNF-independent genes (PVALB and GAD1). Changes were greater in men (potentially because of low baseline expression in women), displayed notable differences from prior amygdala results, and were not explained by demographic or clinical factors other than sex. These parallel human/mouse analyses provide direct (low TRKB) and indirect (low expression of BDNF-dependent genes) evidence in support of decreased BDNF signaling in the subgenual anterior cingulate cortex in individuals with major depressive disorder, implicate dendritic targeting GABA neurons and GABA synthesis

  17. Chronic administration of branched-chain amino acids impairs spatial memory and increases brain-derived neurotrophic factor in a rat model.

    PubMed

    Scaini, Giselli; Comim, Clarissa M; Oliveira, Giovanna M T; Pasquali, Matheus A B; Quevedo, João; Gelain, Daniel P; Moreira, José Cláudio F; Schuck, Patrícia F; Ferreira, Gustavo C; Bogo, Maurício R; Streck, Emilio L

    2013-09-01

    Maple syrup urine disease (MSUD) is a neurometabolic disorder that leads to the accumulation of branched-chain amino acids (BCAAs) and their α-keto branched-chain by-products. Because the neurotoxic mechanisms of MSUD are poorly understood, this study aimed to evaluate the effects of chronic administration of a BCAA pool (leucine, isoleucine and valine). This study examined the effects of BCAA administration on spatial memory and the levels of brain-derived neurotrophic factor (BNDF). We examined both pro-BDNF and bdnf mRNA expression levels after administration of BCAAs. Furthermore, this study examined whether antioxidant treatment prevented the alterations induced by BCAA administration. Our results demonstrated an increase in BDNF in the hippocampus and cerebral cortex, accompanied by memory impairment in spatial memory tasks. Additionally, chronic administration of BCAAs did not induce a detectable change in pro-BDNF levels. Treatment with N-acetylcysteine and deferoxamine prevented both the memory deficit and the increase in the BDNF levels induced by BCAA administration. In conclusion, these results suggest that when the brain is chronically exposed to high concentrations of BCAA (at millimolar concentrations) an increase in BDNF levels occurs. This increase in BDNF may be related to the impairment of spatial memory. In addition, we demonstrated that antioxidant treatment prevented the negative consequences related to BCAA administration, suggesting that oxidative stress might be involved in the pathophysiological mechanism(s) underlying the brain damage observed in MSUD.

  18. Intracerebral adult stem cells transplantation increases brain-derived neurotrophic factor levels and protects against phencyclidine-induced social deficit in mice

    PubMed Central

    Barzilay, R; Ben-Zur, T; Sadan, O; Bren, Z; Taler, M; Lev, N; Tarasenko, I; Uzan, R; Gil-Ad, I; Melamed, E; Weizman, A; Offen, D

    2011-01-01

    Stem cell-based regenerative therapy is considered a promising cellular therapeutic approach for the patients with incurable brain diseases. Mesenchymal stem cells (MSCs) represent an attractive cell source for regenerative medicine strategies for the treatment of the diseased brain. Previous studies have shown that these cells improve behavioral deficits in animal models of neurological disorders such as Parkinson's and Huntington's diseases. In the current study, we examined the capability of intracerebral human MSCs transplantation (medial pre-frontal cortex) to prevent the social impairment displayed by mice after withdrawal from daily phencyclidine (PCP) administration (10 mg kg−1 daily for 14 days). Our results show that MSCs transplantation significantly prevented the PCP-induced social deficit, as assessed by the social preference test. In contrast, the PCP-induced social impairment was not modified by daily clozapine treatment. Tissue analysis revealed that the human MSCs survived in the mouse brain throughout the course of the experiment (23 days). Significantly increased cortical brain-derived neurotrophic factor levels were observed in the MSCs-treated group as compared with sham-operated controls. Furthermore, western blot analysis revealed that the ratio of phosphorylated Akt to Akt was significantly elevated in the MSCs-treated mice compared with the sham controls. Our results demonstrate that intracerebral transplantation of MSCs is beneficial in attenuating the social deficits induced by sub-chronic PCP administration. We suggest a novel therapeutic approach for the treatment of schizophrenia-like negative symptoms in animal models of the disorder. PMID:22832353

  19. Serum brain-derived neurotrophic factor levels in treatment-naïve boys with attention-deficit/hyperactivity disorder treated with methylphenidate: an 8-week, observational pretest-posttest study.

    PubMed

    Akay, Aynur Pekcanlar; Resmi, Halil; Güney, Sevay Alsen; Erkuran, Handan Özek; Özyurt, Gonca; Sargin, Enis; Topuzoglu, Ahmet; Tufan, Ali Evren

    2018-01-01

    Brain-derived neurotrophic factor (BDNF) is an important neurotrophin in the brain that modulates dopaminergic neurons. In this study, we aimed to investigate the changes in serum BDNF levels of children with attention-deficit/hyperactivity disorder (ADHD) in response to OROS methylphenidate treatment. We also aimed to determine whether there were any pre-post-differences between ADHD subtypes and comorbid psychiatric disorders in serum BDNF levels. Fifty male children with ADHD and 50 male healthy controls within the age range of 6-12 years were recruited to the study. The psychiatric diagnoses were determined by applying a structured interview with Kiddie schedule for affective disorders and schizophrenia for school-age children-present and lifetime version. The symptom severity of ADHD was measured using the Clinical Global Impression ADHD Severity Scale (CGI-S). Physicians completed Du Paul ADHD questionnaires. The levels of serum BDNF were assessed before and after 8 weeks of treatment with effective dosages of OROS methylphenidate. In the present study, the mean serum BDNF levels of boys with ADHD and of the healthy controls were 2626.33 ± 1528.05 and 2989.11 ± 1420.08 pg/mL, respectively. Although there were no statistically significant difference between the ADHD group and healthy controls at baseline (p = 0.22), the increase of serum BDNF was statistically significant from baseline to endpoint in the ADHD group (p = 0.04). The mean serum BDNF levels at baseline and endpoint of the ADHD group were 2626.33 ± 1528.05 and 3255.80 ± 1908.79 pg/mL, respectively. The serum BDNF levels of ADHD-inattentive subtype were significantly lower at baseline (p = 0.02), whereas BDNF levels post-treatment showed no significant difference. The increase of serum BDNF levels with methylphenidate treatment after 8 weeks was significantly higher in the inattentive group (p = 0.005). The increase of serum BDNF levels with methylphenidate treatment after 8

  20. Total flavonoid extract from Dracoephalum moldavica L. attenuates β-amyloid-induced toxicity through anti-amyloidogenesic and neurotrophic pathways.

    PubMed

    Liu, Qing-Shan; Jiang, Hai-Lun; Wang, Yu; Wang, Lin-Lin; Zhang, Jun-Xia; He, Cheng-Hui; Shao, Shuai; Zhang, Tian-Tai; Xing, Jian-Guo; Liu, Rui

    2018-01-15

    Alzheimer's disease (AD) is an incurable neurodegenerative disorder characterized by global cognitive impairment that involves accumulation of amyloid-beta peptides (Aβ) in the brain. Herbal approaches can be used as alternative medicines to slow the progression of AD. This study aimed to determine the beneficial effects and potential underlying mechanisms of total flavonoid extract from Dracoephalum moldavica L. (TFDM) for attenuating Alzheimer-related deficits induced by Aβ. We used amyloid precursor protein (APP) and presenilin 1 (PS1) double transgenic mice and copper-injured APP Swedish mutation overexpressing SH-SY5Y cells to evaluate the beneficial effects of TFDM. Further, identifying the mechanisms of action was conducted on anti-amyloidogenic and neurotrophic transductions. Our results indicated that TFDM treatment ameliorated cognitive impairments and neurodegeneration and improved the antioxidant defense system in APP/PS1 mice. TFDM also reduced Aβ burden by relieving Aβ deposition, decreasing insoluble Aβ levels, and inhibiting β-amyloidogenic processing pathway involving downregulation of β-secretase and β-C-terminal fragment in the brain. In the in vitro model of AD, TFDM treatment protected injured cells, and combined with the beneficial effects of decreasing APP levels, lowered Aβ 1-42 and regulated the redox imbalance. Moreover, TFDM preserved the extracellular signal-regulated kinase/cAMP response element-binding protein/brain-derived neurotrophic factor pathway both in vitro and in vivo. In conclusion, TFDM clearly demonstrated neuroprotective effects by restoring the anti-amyloidogenic and neurotrophic transductions in the context of AD-associated deficits. These findings indicate the potential use of herb-based substances as supplements or potential alternative supplements for attenuating the progression of AD. Copyright © 2017. Published by Elsevier Inc.

  1. Autoregulation of glial cell line-derived neurotrophic factor expression: implications for the long-lasting actions of the anti-addiction drug, Ibogaine.

    PubMed

    He, Dao-Yao; Ron, Dorit

    2006-11-01

    We recently showed that the up-regulation of the glial cell line-derived neurotrophic factor (GDNF) pathway in the midbrain, is the molecular mechanism by which the putative anti-addiction drug Ibogaine mediates its desirable action of reducing alcohol consumption. Human reports and studies in rodents have shown that a single administration of Ibogaine results in a long-lasting reduction of drug craving (humans) and drug and alcohol intake (rodents). Here we determine whether, and how, Ibogaine exerts its long-lasting actions on GDNF expression and signaling. Using the dopaminergic-like SHSY5Y cell line as a culture model, we observed that short-term Ibogaine exposure results in a sustained increase in GDNF expression that is mediated via the induction of a long-lasting autoregulatory cycle by which GDNF positively regulates its own expression. We show that the initial exposure of cells to Ibogaine or GDNF results in an increase in GDNF mRNA, leading to protein expression and to the corresponding activation of the GDNF signaling pathway. This, in turn, leads to a further increase in the mRNA level of the growth factor. The identification of a GDNF-mediated, autoregulatory long-lasting feedback loop could have important implications for GDNF's potential value as a treatment for addiction and neurodegenerative diseases.

  2. Modulatory effects of aromatherapy massage intervention on electroencephalogram, psychological assessments, salivary cortisol and plasma brain-derived neurotrophic factor.

    PubMed

    Wu, Jin-Ji; Cui, Yanji; Yang, Yoon-Sil; Kang, Moon-Seok; Jung, Sung-Cherl; Park, Hyeung Keun; Yeun, Hye-Young; Jang, Won Jung; Lee, Sunjoo; Kwak, Young Sook; Eun, Su-Yong

    2014-06-01

    Aromatherapy massage is commonly used for the stress management of healthy individuals, and also has been often employed as a therapeutic use for pain control and alleviating psychological distress, such as anxiety and depression, in oncological palliative care patients. However, the exact biological basis of aromatherapy massage is poorly understood. Therefore, we evaluated here the effects of aromatherapy massage interventions on multiple neurobiological indices such as quantitative psychological assessments, electroencephalogram (EEG) power spectrum pattern, salivary cortisol and plasma brain-derived neurotrophic factor (BDNF) levels. A control group without treatment (n = 12) and aromatherapy massage group (n = 13) were randomly recruited. They were all females whose children were diagnosed as attention deficit hyperactivity disorder and followed up in the Department of Psychiatry, Jeju National University Hospital. Participants were treated with aromatherapy massage for 40 min twice per week for 4 weeks (8 interventions). A 4-week-aromatherapy massage program significantly improved all psychological assessment scores in the Stat-Trait Anxiety Index, Beck Depression Inventory and Short Form of Psychosocial Well-being Index. Interestingly, plasma BDNF levels were significantly increased after a 4 week-aromatherapy massage program. Alpha-brain wave activities were significantly enhanced and delta wave activities were markedly reduced following the one-time aromatherapy massage treatment, as shown in the meditation and neurofeedback training. In addition, salivary cortisol levels were significantly reduced following the one-time aromatherapy massage treatment. These results suggest that aromatherapy massage could exert significant influences on multiple neurobiological indices such as EEG pattern, salivary cortisol and plasma BDNF levels as well as psychological assessments. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Stress and inflammation reduce brain-derived neurotrophic factor expression in first-episode psychosis: a pathway to smaller hippocampal volume.

    PubMed

    Mondelli, Valeria; Cattaneo, Annamaria; Murri, Martino Belvederi; Di Forti, Marta; Handley, Rowena; Hepgul, Nilay; Miorelli, Ana; Navari, Serena; Papadopoulos, Andrew S; Aitchison, Katherine J; Morgan, Craig; Murray, Robin M; Dazzan, Paola; Pariante, Carmine M

    2011-12-01

    Reduced brain-derived neurotrophic factor (BDNF) levels have been reported in the serum and plasma of patients with psychosis. The aim of this cross-sectional case-control study was to investigate potential causes and consequences of reduced BDNF expression in these patients by examining the association between BDNF levels and measures of stress, inflammation, and hippocampal volume in first-episode psychosis. Brain-derived neurotrophic factor, interleukin (IL)-6, and tumor necrosis factor (TNF)-α messenger RNA levels were measured in the leukocytes of 49 first-episode psychosis patients (DSM-IV criteria) and 30 healthy controls, all aged 18 to 65 years, recruited between January 2006 and December 2008. Patients were recruited from inpatient and outpatient units of the South London and Maudsley National Health Service Foundation Trust in London, United Kingdom, and the healthy controls were recruited from the same catchment area via advertisement and volunteer databases. In these same subjects, we measured salivary cortisol levels and collected information about psychosocial stressors (number of childhood traumas, number of recent stressors, and perceived stress). Finally, hippocampal volume was measured using brain magnetic resonance imaging in a subsample of 19 patients. Patients had reduced BDNF (effect size, d = 1.3; P < .001) and increased IL-6 (effect size, d = 1.1; P < .001) and TNF-α (effect size, d = 1.7; P < .001) gene expression levels when compared with controls, as well as higher levels of psychosocial stressors. A linear regression analysis in patients showed that a history of childhood trauma and high levels of recent stressors predicted lower BDNF expression through an inflammation-mediated pathway (adjusted R(2) = 0.23, P = .009). In turn, lower BDNF expression, increased IL-6 expression, and increased cortisol levels all significantly and independently predicted a smaller left hippocampal volume (adjusted R(2) = 0.71, P < .001). Biological

  4. Effect of brain-derived neurotrophic factor (BDNF) on sperm quality of normozoospermic men.

    PubMed

    Safari, Hassan; Khanlarkhani, Neda; Sobhani, Aligholi; Najafi, Atefeh; Amidi, Fardin

    2017-07-05

    The neurotrophin family of proteins and their receptors act as important proliferative and pro-survival factors in differentiation of nerve cells and are thought to play key roles in the development of reproductive tissues and normal function of spermatozoa. The objective of the present study was to evaluate the effect of Brain-Derived Neurotrophic Factor (BDNF) on the sperm viability and motility, lipid peroxidation (LPO), mitochondrial activity and concentration of leptin, nitric oxide (NO) and insulin in normozoospermic men. Semen samples from 20 normozoospermic men were divided into three groups: (i) control, (ii) BDNF and (iii) BDNF + K252a. BDNF and K252a were added in the dose of 0.133 and 0.1 nM, respectively. Viability was assessed by eosin-nigrosin staining technique, and motility was observed by microscopy. NO concentration and mitochondrial activity were measured with flow cytometry, and LPO was analyzed using enzyme-linked immunosorbent assay (ELISA) kits. Results showed that exogenous BDNF at 0.133 nM could significantly (p < 0.05) influence viability, motility, NO concentration, mitochondrial activity and LPO content. Secretions of insulin and leptin by human sperm were increased in cells exposed to the exogenous BDNF, whereas viability, mitochondrial activity and insulin and leptin secretions were decreased in cells exposed to the K252.

  5. Serum Brain-derived neurotrophic factor (BDNF): the severity and symptomatic dimensions of depression.

    PubMed

    Jevtović, Saša; Karlović, Dalibor; Mihaljević-Peleš, Alma; Šerić, Vesna; Vrkić, Nada; Jakšić, Nenad

    2011-12-01

    The aim of this study was to compare the concentration of serum Brain-derived neurotrophic factor (BDNF) in patients suffering from major depressive disorder (MDD) considering the severity of MDD episode defined by the Hamilton rating scale for depression (HAMD-17). The other aim was to research the connection between serum BDNF and the symptomatic dimensions of MDD. The study includes 139 participants with major depressive disorder (MDD). Diagnosis of MDD was set by DSM-IV-TR criteria. The severity of MDD was estimated with HAM-D-17 in the manner that mild episode was diagnosed if the score on HAMD-17 was up to 18, moderately severe 18-25 and severe over 25. Concentration of BDNF was determined by the ELISA method. This research could not find a difference in BDNF concentration considering the severity of the depressive disorder in groups suffering from mild, moderately severe and severe episodes of MDD (F=1.816; p=0.169). Factor analysis of HAMD-17 extracted four dimensions of depressive symptoms. None of the symptomatic dimensions was significantly related to BDNF concentration. Results of this study indicate that serum BDNF levels are not related to the severity of depression and its specific symptomatic dimensions. These findings support the idea of a complex relationship between BDNF concentration at the periphery and in the CNS.

  6. Exposure to Organophosphates Reduces the Expression of Neurotrophic Factors in Neonatal Rat Brain Regions: Similarities and Differences in the Effects of Chlorpyrifos and Diazinon on the Fibroblast Growth Factor Superfamily

    PubMed Central

    Slotkin, Theodore A.; Seidler, Frederic J.; Fumagalli, Fabio

    2007-01-01

    Background The fibroblast growth factor (FGF) superfamily of neurotrophic factors plays critical roles in neural cell development, brain assembly, and recovery from neuronal injury. Objectives We administered two organophosphate pesticides, chlorpyrifos and diazinon, to neonatal rats on postnatal days 1–4, using doses below the threshold for systemic toxicity or growth impairment, and spanning the threshold for barely detectable cholinesterase inhibition: 1 mg/kg/day chlorpyrifos and 1 or 2 mg/kg/day diazinon. Methods Using microarrays, we then examined the regional expression of mRNAs encoding the FGFs and their receptors (FGFRs) in the forebrain and brain stem. Results Chlorpyrifos and diazinon both markedly suppressed fgf20 expression in the forebrain and fgf2 in the brain stem, while elevating brain stem fgfr4 and evoking a small deficit in brain stem fgf22. However, they differed in that the effects on fgf2 and fgfr4 were significantly larger for diazinon, and the two agents also showed dissimilar, smaller effects on fgf11, fgf14, and fgfr1. Conclusions The fact that there are similarities but also notable disparities in the responses to chlorpyrifos and diazinon, and that robust effects were seen even at doses that do not inhibit cholinesterase, supports the idea that organophosphates differ in their propensity to elicit developmental neurotoxicity, unrelated to their anticholinesterase activity. Effects on neurotrophic factors provide a mechanistic link between organophosphate injury to developing neurons and the eventual, adverse neurodevelopmental outcomes. PMID:17589599

  7. Observed parenting behaviors interact with a polymorphism of the brain-derived neurotrophic factor gene to predict the emergence of oppositional defiant and callous-unemotional behaviors at age 3 years.

    PubMed

    Willoughby, Michael T; Mills-Koonce, Roger; Propper, Cathi B; Waschbusch, Daniel A

    2013-11-01

    Using the Durham Child Health and Development Study, this study (N = 171) tested whether observed parenting behaviors in infancy (6 and 12 months) and toddlerhood/preschool (24 and 36 months) interacted with a child polymorphism of the brain-derived neurotrophic factor gene to predict oppositional defiant disorder (ODD) and callous-unemotional (CU) behaviors at age 3 years. Child genotype interacted with observed harsh and intrusive (but not sensitive) parenting to predict ODD and CU behaviors. Harsh-intrusive parenting was more strongly associated with ODD and CU for children with a methionine allele of the brain-derived neurotrophic factor gene. CU behaviors were uniquely predicted by harsh-intrusive parenting in infancy, whereas ODD behaviors were predicted by harsh-intrusive parenting in both infancy and toddlerhood/preschool. The results are discussed from the perspective of the contributions of caregiving behaviors as contributing to distinct aspects of early onset disruptive behavior.

  8. Glial cell line-derived neurotrophic factor promotes barrier maturation and wound healing in intestinal epithelial cells in vitro.

    PubMed

    Meir, Michael; Flemming, Sven; Burkard, Natalie; Bergauer, Lisa; Metzger, Marco; Germer, Christoph-Thomas; Schlegel, Nicolas

    2015-10-15

    Recent data suggest that neurotrophic factors from the enteric nervous system are involved in intestinal epithelial barrier regulation. In this context the glial cell line-derived neurotrophic factor (GDNF) was shown to affect gut barrier properties in vivo directly or indirectly by largely undefined processes in a model of inflammatory bowel disease (IBD). We further investigated the potential role and mechanisms of GDNF in the regulation of intestinal barrier functions. Immunostaining of human gut specimen showed positive GDNF staining in enteric neuronal plexus and in enterocytes. In Western blots of the intestinal epithelial cell lines Caco2 and HT29B6, significant amounts of GDNF were detected, suggesting that enterocytes represent an additional source of GDNF. Application of recombinant GDNF on Caco2 and HT29B6 cells for 24 h resulted in significant epithelial barrier stabilization in monolayers with immature barrier functions. Wound-healing assays showed a significantly faster closure of the wounded areas after GDNF application. GDNF augmented cAMP levels and led to significant inactivation of p38 MAPK in immature cells. Activation of p38 MAPK signaling by SB-202190 mimicked GDNF-induced barrier maturation, whereas the p38 MAPK activator anisomycin blocked GDNF-induced effects. Increasing cAMP levels had adverse effects on barrier maturation, as revealed by permeability measurements. However, increased cAMP augmented the proliferation rate in Caco2 cells, and GDNF-induced proliferation of epithelial cells was abrogated by the PKA inhibitor H89. Our data show that enterocytes represent an additional source of GDNF synthesis. GDNF contributes to wound healing in a cAMP/PKA-dependent manner and promotes barrier maturation in immature enterocytes cells by inactivation of p38 MAPK signaling. Copyright © 2015 the American Physiological Society.

  9. Neurotrophic Factors NGF, GDNF and NTN Selectively Modulate HSV1 and HSV2 Lytic Infection and Reactivation in Primary Adult Sensory and Autonomic Neurons

    PubMed Central

    Yanez, Andy A.; Harrell, Telvin; Sriranganathan, Heather J.; Ives, Angela M.; Bertke, Andrea S.

    2017-01-01

    Herpes simplex viruses (HSV1 and HSV2) establish latency in peripheral ganglia after ocular or genital infection, and can reactivate to produce different patterns and frequencies of recurrent disease. Previous studies showed that nerve growth factor (NGF) maintains HSV1 latency in embryonic sympathetic and sensory neurons. However, adult sensory neurons are no longer dependent on NGF for survival, some populations cease expression of NGF receptors postnatally, and the viruses preferentially establish latency in different populations of sensory neurons responsive to other neurotrophic factors (NTFs). Thus, NGF may not maintain latency in adult sensory neurons. To identify NTFs important for maintaining HSV1 and HSV2 latency in adult neurons, we investigated acute and latently-infected primary adult sensory trigeminal (TG) and sympathetic superior cervical ganglia (SCG) after NTF removal. NGF and glial cell line-derived neurotrophic factor (GDNF) deprivation induced HSV1 reactivation in adult sympathetic neurons. In adult sensory neurons, however, neurturin (NTN) and GDNF deprivation induced HSV1 and HSV2 reactivation, respectively, while NGF deprivation had no effects. Furthermore, HSV1 and HSV2 preferentially reactivated from neurons expressing GFRα2 and GFRα1, the high affinity receptors for NTN and GDNF, respectively. Thus, NTN and GDNF play a critical role in selective maintenance of HSV1 and HSV2 latency in primary adult sensory neurons. PMID:28178213

  10. Neurotrophic Factors NGF, GDNF and NTN Selectively Modulate HSV1 and HSV2 Lytic Infection and Reactivation in Primary Adult Sensory and Autonomic Neurons.

    PubMed

    Yanez, Andy A; Harrell, Telvin; Sriranganathan, Heather J; Ives, Angela M; Bertke, Andrea S

    2017-02-07

    Herpes simplex viruses (HSV1 and HSV2) establish latency in peripheral ganglia after ocular or genital infection, and can reactivate to produce different patterns and frequencies of recurrent disease. Previous studies showed that nerve growth factor (NGF) maintains HSV1 latency in embryonic sympathetic and sensory neurons. However, adult sensory neurons are no longer dependent on NGF for survival, some populations cease expression of NGF receptors postnatally, and the viruses preferentially establish latency in different populations of sensory neurons responsive to other neurotrophic factors (NTFs). Thus, NGF may not maintain latency in adult sensory neurons. To identify NTFs important for maintaining HSV1 and HSV2 latency in adult neurons, we investigated acute and latently-infected primary adult sensory trigeminal (TG) and sympathetic superior cervical ganglia (SCG) after NTF removal. NGF and glial cell line-derived neurotrophic factor (GDNF) deprivation induced HSV1 reactivation in adult sympathetic neurons. In adult sensory neurons, however, neurturin (NTN) and GDNF deprivation induced HSV1 and HSV2 reactivation, respectively, while NGF deprivation had no effects. Furthermore, HSV1 and HSV2 preferentially reactivated from neurons expressing GFRα2 and GFRα1, the high affinity receptors for NTN and GDNF, respectively. Thus, NTN and GDNF play a critical role in selective maintenance of HSV1 and HSV2 latency in primary adult sensory neurons.

  11. Use of Brevibacillus choshinensis for the production of biologically active brain-derived neurotrophic factor (BDNF).

    PubMed

    Angart, Phillip A; Carlson, Rebecca J; Thorwall, Sarah; Patrick Walton, S

    2017-07-01

    Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophin family critical for neuronal cell survival and differentiation, with therapeutic potential for the treatment of neurological disorders and spinal cord injuries. The production of recombinant, bioactive BDNF is not practical in most traditional microbial expression systems because of the inability of the host to correctly form the characteristic cystine-knot fold of BDNF. Here, we investigated Brevibacillus choshinensis as a suitable expression host for bioactive BDNF expression, evaluating the effects of medium type (2SY and TM), temperature (25 and 30 °C), and culture time (48-120 h). Maximal BDNF bioactivity (per unit mass) was observed in cultures grown in 2SY medium at extended times (96 h at 30 °C or >72 h at 25 °C), with resulting bioactivity comparable to that of a commercially available BDNF. For cultures grown in 2SY medium at 25 °C for 72 h, the condition that led to the greatest quantity of biologically active protein in the shortest culture time, we recovered 264 μg/L of BDNF. As with other microbial expression systems, BDNF aggregates did form in all culture conditions, indicating that while we were able to recover biologically active BDNF, further optimization of the expression system could yield still greater quantities of bioactive protein. This study provides confirmation that B. choshinensis is capable of producing biologically active BDNF and that further optimization of culture conditions could prove valuable in increasing BDNF yields.

  12. The role of dorsal root ganglia activation and brain-derived neurotrophic factor in multiple sclerosis

    PubMed Central

    Zhu, Wenjun; Frost, Emma E; Begum, Farhana; Vora, Parvez; Au, Kelvin; Gong, Yuewen; MacNeil, Brian; Pillai, Prakash; Namaka, Mike

    2012-01-01

    Abstract Multiple sclerosis (MS) is characterized by focal destruction of the white matter of the brain and spinal cord. The exact mechanisms underlying the pathophysiology of the disease are unknown. Many studies have shown that MS is predominantly an autoimmune disease with an inflammatory phase followed by a demyelinating phase. Recent studies alongside current treatment strategies, including glatiramer acetate, have revealed a potential role for brain-derived neurotrophic factor (BDNF) in MS. However, the exact role of BDNF is not fully understood. We used the experimental autoimmune encephalomyelitis (EAE) model of MS in adolescent female Lewis rats to identify the role of BDNF in disease progression. Dorsal root ganglia (DRG) and spinal cords were harvested for protein and gene expression analysis every 3 days post-disease induction (pdi) up to 15 days. We show significant increases in BDNF protein and gene expression in the DRG of EAE animals at 12 dpi, which correlates with peak neurological disability. BDNF protein expression in the spinal cord was significantly increased at 12 dpi, and maintained at 15 dpi. However, there was no significant change in mRNA levels. We show evidence for the anterograde transport of BDNF protein from the DRG to the dorsal horn of the spinal cord via the dorsal roots. Increased levels of BDNF within the DRG and spinal cord in EAE may facilitate myelin repair and neuroprotection in the CNS. The anterograde transport of DRG-derived BDNF to the spinal cord may have potential implications in facilitating central myelin repair and neuroprotection. PMID:22050733

  13. Conditional Depletion of Hippocampal Brain-Derived Neurotrophic Factor Exacerbates Neuropathology in a Mouse Model of Alzheimer’s Disease

    PubMed Central

    Braun, David J.; Kalinin, Sergey

    2017-01-01

    Damage occurring to noradrenergic neurons in the locus coeruleus (LC) contributes to the evolution of neuroinflammation and neurodegeneration in a variety of conditions and diseases. One cause of LC damage may be loss of neurotrophic support from LC target regions. We tested this hypothesis by conditional unilateral knockout of brain-derived neurotrophic factor (BDNF) in adult mice. To evaluate the consequences of BDNF loss in the context of neurodegeneration, the mice harbored familial mutations for human amyloid precursor protein and presenilin-1. In these mice, BDNF depletion reduced tyrosine hydroxylase staining, a marker of noradrenergic neurons, in the rostral LC. BDNF depletion also reduced noradrenergic innervation in the hippocampus, the frontal cortex, and molecular layer of the cerebellum, assessed by staining for dopamine beta hydroxylase. BDNF depletion led to an increase in cortical amyloid plaque numbers and size but was without effect on plaque numbers in the striatum, a site with minimal innervation from the LC. Interestingly, cortical Iba1 staining for microglia was reduced by BDNF depletion and was correlated with reduced dopamine beta hydroxylase staining. These data demonstrate that reduction of BDNF levels in an LC target region can cause retrograde damage to LC neurons, leading to exacerbation of neuropathology in distinct LC target areas. Methods to reduce BDNF loss or supplement BDNF levels may be of value to reduce neurodegenerative processes normally limited by LC noradrenergic activities. PMID:28266222

  14. Reduced Cerebrospinal Fluid Levels of Brain-Derived Neurotrophic Factor Is Associated With Cognitive Impairment in Late-Life Major Depression

    PubMed Central

    Teixeira, Antonio L.; Machado-Vieira, Rodrigo; Talib, Leda L.; Radanovic, Marcia; Gattaz, Wagner F.; Forlenza, Orestes V.

    2014-01-01

    Objectives. Late-life depression (LLD) is associated with reduced neurotrophic support and abnormalities in neurodegenerative cascades. The aim of the present study is to determine the concentrations of brain-derived neurotrophic factor (BDNF), amyloid-β42, total Tau, and phosphorylated Tau in the cerebrospinal fluid (CSF) of patients with LLD and cognitive impairment compared to healthy older adults. Method. We included 25 antidepressant-free patients with LLD (10 with mild cognitive impairment [LLD + MCI] and 15 with no cognitive decline [LLD + NCD]) and 25 healthy older adults as a comparison group. Depressive symptoms were assessed by the 21-item Hamilton Depression Rating Scale (HDRS-21) and cognitive performance by a comprehensive cognitive battery. Results. Patients with LLD + MCI showed significantly lower CSF BDNF levels compared to LLD + NCD and healthy controls (p = .003). There were no significant differences in Alzheimer’s disease–related CSF biomarkers between groups. CSF BDNF concentrations were positively correlated with Cambridge Cognitive Test (CAMCOG) scores (r = .36, p = .02). Discussion. The present study adds to the growing body of evidence that abnormalities in the BDNF system are involved in the pathophysiology of LLD. The reduction of the availability of BDNF in the central nervous system may indicate increased vulnerability to the development of several age-related neuropsychiatric disorders as well as to adverse cognitive outcomes. PMID:25149921

  15. Neuroprotective Effects of Filgrastim in Rotenone-Induced Parkinson's Disease in Rats: Insights into its Anti-Inflammatory, Neurotrophic, and Antiapoptotic Effects.

    PubMed

    Azmy, Mariama S; Menze, Esther T; El-Naga, Reem N; Tadros, Mariane G

    2018-01-11

    All current treatments of Parkinson's disease (PD) focus on enhancing the dopaminergic effects and providing symptomatic relief; however, they cannot delay the disease progression. Filgrastim, a recombinant methionyl granulocyte colony-stimulating factor, demonstrated neuroprotection in many neurodegenerative and neurological diseases. This study aimed to assess the neuroprotective effects of filgrastim in rotenone-induced rat model of PD and investigate the potential underlying mechanisms of filgrastim actions. The effects of two doses of filgrastim (20 and 40 μg/kg) on spontaneous locomotion, catalepsy, body weight, histology, and striatal dopamine (DA) content, as well as tyrosine hydroxylase (TH) and α-synuclein expression, were evaluated. Then, the effective dose was further tested for its potential anti-inflammatory, neurotrophic, and antiapoptotic effects. Filgrastim (40 μg/kg) prevented rotenone-induced motor deficits, weight reduction, striatal DA depletion, and histological damage. Besides, it significantly inhibited rotenone-induced decrease in TH expression and increase in α-synuclein immunoreactivity in the midbrains and striata of the rats. These effects were associated with reduction of rotenone-induced neuroinflammation, apoptosis, and brain-derived neurotrophic factor depletion. Collectively, these results suggest that filgrastim might be a good candidate for management of PD.

  16. Elevated expression of brain-derived neurotrophic factor facilitates visual imprinting in chicks.

    PubMed

    Suzuki, Keiko; Maekawa, Fumihiko; Suzuki, Shingo; Nakamori, Tomoharu; Sugiyama, Hayato; Kanamatsu, Tomoyuki; Tanaka, Kohichi; Ohki-Hamazaki, Hiroko

    2012-12-01

    With the aim of elucidating the neural mechanisms of early learning, we studied the role of brain-derived neurotrophic factor (BDNF) in visual imprinting in birds. The telencephalic neural circuit connecting the visual Wulst and intermediate medial mesopallium is critical for imprinting, and the core region of the hyperpallium densocellulare (HDCo), situated at the center of this circuit, has a key role in regulating the activity of the circuit. We found that the number of BDNF mRNA-positive cells in the HDCo was elevated during the critical period, particularly at its onset, on the day of hatching (P0). After imprinting training on P1, BDNF mRNA-positive cells in the HDCo increased in number, and tyrosine phosphorylation of TrkB was observed. BDNF infusion into the HDCo at P1 induced imprinting, even with a weak training protocol that does not normally induce imprinting. In contrast, K252a, an antagonist of Trk, inhibited imprinting. Injection of BDNF at P7, after the critical period, did not elicit imprinting. These results suggest that BDNF promotes the induction of imprinting through TrkB exclusively during the critical period. © 2012 The Authors Journal of Neurochemistry © 2012 International Society for Neurochemistry.

  17. Glucocorticoid receptor represses brain-derived neurotrophic factor expression in neuron-like cells.

    PubMed

    Chen, Hui; Lombès, Marc; Le Menuet, Damien

    2017-04-12

    Brain-derived neurotrophic factor (BDNF) is involved in many functions such as neuronal growth, survival, synaptic plasticity and memorization. Altered expression levels are associated with many pathological situations such as depression, epilepsy, Alzheimer's, Huntington's and Parkinson's diseases. Glucocorticoid receptor (GR) is also crucial for neuron functions, via binding of glucocorticoid hormones (GCs). GR actions largely overlap those of BDNF. It has been proposed that GR could be a regulator of BDNF expression, however the molecular mechanisms involved have not been clearly defined yet. Herein, we analyzed the effect of a GC agonist dexamethasone (DEX) on BDNF expression in mouse neuronal primary cultures and in the newly characterized, mouse hippocampal BZ cell line established by targeted oncogenesis. Mouse Bdnf gene exhibits a complex genomic structure with 8 untranslated exons (I to VIII) splicing onto one common and unique coding exon IX. We found that DEX significantly downregulated total BDNF mRNA expression by around 30%. Expression of the highly expressed exon IV and VI containing transcripts was also reduced by DEX. The GR antagonist RU486 abolished this effect, which is consistent with specific GR-mediated action. Transient transfection assays allowed us to define a short 275 bp region within exon IV promoter responsible for GR-mediated Bdnf repression. Chromatin immunoprecipitation experiments demonstrated GR recruitment onto this fragment, through unidentified transcription factor tethering. Altogether, GR downregulates Bdnf expression through direct binding to Bdnf regulatory sequences. These findings bring new insights into the crosstalk between GR and BDNF signaling pathways both playing a major role in physiology and pathology of the central nervous system.

  18. Expression of brain-derived neurotrophic factors, neurotrophin-3, and neurotrophin-4 in the nucleus accumbens during heroin dependency and withdrawal.

    PubMed

    Li, Yixin; Xia, Baijuan; Li, Rongrong; Yin, Dan; Wang, Yanlin; Liang, Wenmei

    2017-08-02

    Neurotrophins, brain-derived neurotrophic factors (BDNF), neurotrophin-3 (NT-3), and neurotrophin-4 (NT-4), have been implicated in the modulation of heroin dependency. This study was designed to explore the expression alterations of BDNF, NT-3, and NT-4 in the context of heroin dependence and withdrawal in the rat nucleus accumbens (NAc). Heroin dependence was induced by a progressive intraperitoneal treatment of heroin. The results showed that the expression levels of BDNF and NT-4 were significantly decreased in the NAc of rats with heroin addiction in comparison with the control group, whereas there was a significant increase in BDNF and NT-4 expressions in the groups of rats with both naloxone-induced and spontaneous withdrawal. Moreover, NT-3 expression was markedly increased in the NAc of rats with heroin addiction and spontaneous withdrawal in comparison with the control group, but decreased in the NAc of rats with naloxone-induced withdrawal. These results indicated that chronic administration of heroin results in the alterations of BDNF, NT-3, and NT-4 expressions in the rat NAc. BDNF, NT-3, and NT-4 may play a critical role in the development of heroin dependency and withdrawal.

  19. Expression of brain-derived neurotrophic factors, neurotrophin-3, and neurotrophin-4 in the nucleus accumbens during heroin dependency and withdrawal

    PubMed Central

    Li, Yixin; Xia, Baijuan; Li, Rongrong; Yin, Dan; Wang, Yanlin

    2017-01-01

    Neurotrophins, brain-derived neurotrophic factors (BDNF), neurotrophin-3 (NT-3), and neurotrophin-4 (NT-4), have been implicated in the modulation of heroin dependency. This study was designed to explore the expression alterations of BDNF, NT-3, and NT-4 in the context of heroin dependence and withdrawal in the rat nucleus accumbens (NAc). Heroin dependence was induced by a progressive intraperitoneal treatment of heroin. The results showed that the expression levels of BDNF and NT-4 were significantly decreased in the NAc of rats with heroin addiction in comparison with the control group, whereas there was a significant increase in BDNF and NT-4 expressions in the groups of rats with both naloxone-induced and spontaneous withdrawal. Moreover, NT-3 expression was markedly increased in the NAc of rats with heroin addiction and spontaneous withdrawal in comparison with the control group, but decreased in the NAc of rats with naloxone-induced withdrawal. These results indicated that chronic administration of heroin results in the alterations of BDNF, NT-3, and NT-4 expressions in the rat NAc. BDNF, NT-3, and NT-4 may play a critical role in the development of heroin dependency and withdrawal. PMID:28538519

  20. The Effects of Acute Exercise on Memory and Brain-Derived Neurotrophic Factor (BDNF).

    PubMed

    Etnier, Jennifer L; Wideman, Laurie; Labban, Jeffrey D; Piepmeier, Aaron T; Pendleton, Daniel M; Dvorak, Kelly K; Becofsky, Katie

    2016-08-01

    Acute exercise benefits cognition, and some evidence suggests that brain-derived neurotrophic factor (BDNF) plays a role in this effect. The purpose of this study was to explore the dose-response relationship between exercise intensity, memory, and BDNF. Young adults completed 3 exercise sessions at different intensities relative to ventilator threshold (Vt) (VO 2max , Vt - 20%, Vt + 20%). For each session, participants exercised for approximately 30 min. Following exercise, they performed the Rey Auditory Verbal Learning Test (RAVLT) to assess short-term memory, learning, and long-term memory recall. Twenty-four hours later, they completed the RAVLT recognition trial, which provided another measure of long-term memory. Blood was drawn before exercise, immediately postexercise, and after the 30-min recall test. Results indicated that long-term memory as assessed after the 24-hr delay differed as a function of exercise intensity with the largest benefits observed following maximal intensity exercise. BDNF data showed a significant increase in response to exercise; however, there were no differences relative to exercise intensity and there were no significant associations between BDNF and memory. Future research is warranted so that we can better understand how to use exercise to benefit cognitive performance.

  1. Brain-Derived Neurotrophic Factor Levels in Autism: A Systematic Review and Meta-Analysis.

    PubMed

    Saghazadeh, Amene; Rezaei, Nima

    2017-04-01

    Brain-derived neurotrophic factor (BDNF) plays an important role in activity-dependent synaptic plasticity. Altered blood BDNF levels have been frequently identified in people with autism spectrum disorders (ASD). There are however wide discrepancies in the evidence. Therefore, we performed the present systematic review and meta-analysis aimed at qualitative and quantitative synthesis of studies that measured blood BDNF levels in ASD and control subjects. Observational studies were identified through electronic database searching and also hand-searching of reference lists of relevant articles. A total of 183 papers were initially identified for review and eventually twenty studies were included in the meta-analysis. A meta-analysis of blood BDNF in 887 patients with ASD and 901 control subjects demonstrated significantly higher BDNF levels in ASD compared to controls with the SMD of 0.47 (95% CI 0.07-0.86, p = 0.02). In addition subgroup meta-analyses were performed based on the BDNF specimen. The present meta-analysis study led to conclusion that BDNF might play role in autism initiation/ propagation and therefore it can be considered as a possible biomarker of ASD.

  2. Neurotrophic and Neurotoxic Effects of Amyloid |beta Protein: Reversal by Tachykinin Neuropeptides

    NASA Astrophysics Data System (ADS)

    Yankner, Bruce A.; Duffy, Lawrence K.; Kirschner, Daniel A.

    1990-10-01

    The amyloid β protein is deposited in the brains of patients with Alzheimer's disease but its pathogenic role is unknown. In culture, the amyloid β protein was neurotrophic to undifferentiated hippocampal neurons at low concentrations and neurotoxic to mature neurons at higher concentrations. In differentiated neurons, amyloid β protein caused dendritic and axonal retraction followed by neuronal death. A portion of the amyloid β protein (amino acids 25 to 35) mediated both the trophic and toxic effects and was homologous to the tachykinin neuropeptide family. The effects of the amyloid β protein were mimicked by tachykinin antagonists and completely reversed by specific tachykinin agonists. Thus, the amyloid β protein could function as a neurotrophic factor for differentiating neurons, but at high concentrations in mature neurons, as in Alzheimer's disease, could cause neuronal degeneration.

  3. Neuroprotective Role of Exogenous Brain-Derived Neurotrophic Factor in Hypoxia-Hypoglycemia-Induced Hippocampal Neuron Injury via Regulating Trkb/MiR134 Signaling.

    PubMed

    Huang, Weidong; Meng, Facai; Cao, Jie; Liu, Xiaobin; Zhang, Jie; Li, Min

    2017-05-01

    Hypoxic-ischemic brain injury is an important cause of neonatal mortality and morbidity. Brain-derived neurotrophic factor (BDNF) has been reported to play a neuroprotective role in hypoxic-ischemic brain injury; however, the specific effects and mechanism of BDNF on hypoxic-hypoglycemic hippocampal neuron injury remains unknown. The current study investigated the action of BDNF in regulating cerebral hypoxic-ischemic injury by simulating hippocampal neuron ischemia and hypoxia. We found that BDNF, p-Trkb, and miR-134 expression levels decreased, and that exogenous BDNF increased survival and reduced apoptosis in hypoxic-hypoglycemic hippocampal neurons. The results also show that BDNF inhibits MiR-134 expression by activating the TrkB pathway. Transfection with TrkB siRNA and pre-miR-134 abrogated the neuroprotective role of BDNF in hypoxic-hypoglycemic hippocampal neurons. Our results suggest that exogenous BDNF alleviates hypoxic-ischemic brain injury through the Trkb/MiR-134 pathway. These findings may help to identify a potential therapeutic agent for the treatment of hypoxic-ischemic brain injury.

  4. Brain-derived Neurotrophic Factor Promotes the Migration of Olfactory Ensheathing Cells Through TRPC Channels.

    PubMed

    Wang, Ying; Teng, Hong-Lin; Gao, Yuan; Zhang, Fan; Ding, Yu-Qiang; Huang, Zhi-Hui

    2016-12-01

    Olfactory ensheathing cells (OECs) are a unique type of glial cells with axonal growth-promoting properties in the olfactory system. Organized migration of OECs is essential for neural regeneration and olfactory development. However, the molecular mechanism of OEC migration remains unclear. In the present study, we examined the effects of brain-derived neurotrophic factor (BDNF) on OEC migration. Initially, the "scratch" migration assay, the inverted coverslip and Boyden chamber migration assays showed that BDNF could promote the migration of primary cultured OECs. Furthermore, BDNF gradient attracted the migration of OECs in single-cell migration assays. Mechanistically, TrkB receptor expressed in OECs mediated BDNF-induced OEC migration, and BDNF triggered calcium signals in OECs. Finally, transient receptor potential cation channels (TRPCs) highly expressed in OECs were responsible for BDNF-induced calcium signals, and required for BDNF-induced OEC migration. Taken together, these results demonstrate that BDNF promotes the migration of cultured OECs and an unexpected finding is that TRPCs are required for BDNF-induced OEC migration. GLIA 2016;64:2154-2165. © 2016 Wiley Periodicals, Inc.

  5. AMPA receptor-induced local brain-derived neurotrophic factor signaling mediates motor recovery after stroke.

    PubMed

    Clarkson, Andrew N; Overman, Justine J; Zhong, Sheng; Mueller, Rudolf; Lynch, Gary; Carmichael, S Thomas

    2011-03-09

    Stroke is the leading cause of adult disability. Recovery after stroke shares similar molecular and cellular properties with learning and memory. A main component of learning-induced plasticity involves signaling through AMPA receptors (AMPARs). We systematically tested the role of AMPAR function in motor recovery in a mouse model of focal stroke. AMPAR function controls functional recovery beginning 5 d after the stroke. Positive allosteric modulators of AMPARs enhance recovery of limb control when administered after a delay from the stroke. Conversely, AMPAR antagonists impair motor recovery. The contributions of AMPARs to recovery are mediated by release of brain-derived neurotrophic factor (BDNF) in periinfarct cortex, as blocking local BDNF function in periinfarct cortex blocks AMPAR-mediated recovery and prevents the normal pattern of motor recovery. In contrast to a delayed AMPAR role in motor recovery, early administration of AMPAR agonists after stroke increases stroke damage. These findings indicate that the role of glutamate signaling through the AMPAR changes over time in stroke: early potentiation of AMPAR signaling worsens stroke damage, whereas later potentiation of the same signaling system improves functional recovery.

  6. Investigation of brain-derived neurotrophic factor (BDNF) gene expression in hypothalamus of obese rats: Modulation by omega-3 fatty acids.

    PubMed

    Abdel-Maksoud, Sahar M; Hassanein, Sally I; Gohar, Neveen A; Attia, Saad M M; Gad, Mohamed Z

    2017-10-01

    The aim of this study was investigating the effect of omega-3 fatty acids (ω-3 FAs) on brain-derived neurotrophic factor (BDNF) gene expression, using in vivo and in vitro models, to unravel the potential mechanisms of polyunsaturated fatty acids use in obesity. Twenty-nine Sprague-Dawley rats were divided into three groups; lean controls fed normal chow diet for 14 weeks, obese controls fed 60% of their diet as saturated fats for 14 weeks, and ω-3 FAs-treated rats fed 60% saturated fat diet for 14 weeks with concomitant oral administration of 400 mg/kg/day ω-3 FAs, mainly docosahexaenoic acid and EPA, from week 12 to week 14. For the in vitro experiment, hypothalamic cells from six obese rats were cultured in the presence of different concentrations of ω-3 FAs to determine its direct effect on BDNF expression. In vivo results showed that obesity has negative effect on BDNF gene expression in rat hypothalamus that was reversed by administration of ω-3 FAs. Obese rats showed hypercholesterolemia, hypertriglyceridemia, normoinsulinemia, hyperglycemia and hyperleptinemia. Treatment with ω-3 FAs showed significant decrease in serum total cholesterol and TAG. Also serum glucose level and HOMA index were decreased significantly. In vitro results demonstrated the increase in BDNF expression by ω-3 FAs in a dose-dependent manner. Obesity causes down-regulation of BDNF gene expression that can be reversed by ω-3 FAs treatment, making them an interesting treatment approach for obesity and metabolic disease.

  7. Longitudinal assessment of brain-derived neurotrophic factor in Sardinian psychotic patients (LABSP): a protocol for a prospective observational study

    PubMed Central

    Primavera, Diego; Deriu, Luca; Collu, Roberto; Scherma, Maria; Fadda, Paola; Fratta, Walter; Carpiniello, Bernardo

    2017-01-01

    Introduction Brain-derived neurotrophic factor (BDNF) plays a crucial role in neurodevelopment, synaptic plasticity and neuronal function and survival. Serum and plasma BDNF levels are moderately, but consistently, decreased in patients with schizophrenia (SCZ) compared with healthy controls. There is a lack of knowledge, however, on the temporal manifestation of this decline. Clinical, illness course and treatment factors might influence the variation of BDNF serum levels in patients with psychosis. In this context, we propose a longitudinal study of a cohort of SCZ and schizophrenic and schizoaffective disorder (SAD) Sardinian patients with the aim of disentangling the relationship between peripheral BDNF serum levels and changes of psychopathology, cognition and drug treatments. Methods and analysis Longitudinal assessment of BDNF in Sardinian psychotic patients (LABSP) is a 24-month observational prospective cohort study. Patients with SAD will be recruited at the Psychiatry Research Unit of the Department of Medical Science and Public Health, University of Cagliari and University of Cagliari Health Agency, Cagliari, Italy. We will collect BDNF serum levels as well as sociodemographic, psychopathological and neurocognitive measures. Structured, semistructured and self-rating assessment tools, such as the Positive and Negative Syndrome Scale for psychopathological measures and the Brief Assessment of Cognition in Schizophrenia for cognitive function, will be used. Ethics and dissemination This study protocol was approved by the University of Cagliari Health Agency Ethics Committee (NP2016/5491). The study will be conducted in accordance with the principles of good clinical practice, in the Declaration of Helsinki in compliance with the regulations. Participation will be voluntary and written informed consent will be obtained for each participant upon entry into the study. We plan to disseminate the results of our study through conference presentations and

  8. The aryl hydrocarbon receptor AhR links atopic dermatitis and air pollution via induction of the neurotrophic factor artemin.

    PubMed

    Hidaka, Takanori; Ogawa, Eisaku; Kobayashi, Eri H; Suzuki, Takafumi; Funayama, Ryo; Nagashima, Takeshi; Fujimura, Taku; Aiba, Setsuya; Nakayama, Keiko; Okuyama, Ryuhei; Yamamoto, Masayuki

    2017-01-01

    Atopic dermatitis is increasing worldwide in correlation with air pollution. Various organic components of pollutants activate the transcription factor AhR (aryl hydrocarbon receptor). Through the use of AhR-CA mice, whose keratinocytes express constitutively active AhR and that develop atopic-dermatitis-like phenotypes, we identified Artn as a keratinocyte-specific AhR target gene whose product (the neurotrophic factor artemin) was responsible for epidermal hyper-innervation that led to hypersensitivity to pruritus. The activation of AhR via air pollutants induced expression of artemin, alloknesis, epidermal hyper-innervation and inflammation. AhR activation and ARTN expression were positively correlated in the epidermis of patients with atopic dermatitis. Thus, AhR in keratinocytes senses environmental stimuli and elicits an atopic-dermatitis pathology. We propose a mechanism of air-pollution-induced atopic dermatitis via activation of AhR.

  9. Metrifonate, like acetylcholine, up-regulates neurotrophic activity of cultured rat astrocytes.

    PubMed

    Mele, Tina; Jurič, Damijana Mojca

    2014-08-01

    Metrifonate is an inhibitor of acetylcholinesterase (AChE). Several studies confirmed its positive effects on cognitive impairment in Alzheimer's disease but it was due to adverse events withdrawn from clinical trials. Based on the importance of astrocytes in physiological and pathological brain activities we investigated the impact of metrifonate and, for comparison, acetylcholine on intrinsic neurotrophic activity in these cells. Metabolic activity, intracellular adenosine 5'-triphosphate (ATP) levels and lactate dehydrogenase (LDH) release was measured to examine the impact of metrifonate on viability and integrity of cultured rat cortical astrocytes. The influence of metrifonate, acetylcholine and selective cholinergic ligands on nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) synthesis and secretion was determined by specific two-site enzyme immunoassays. Exposure of cultured astrocytes to metrifonate displayed no toxic effects on cell viability. Metrifonate and acetylcholine potently and transiently elevated NGF and BDNF, but not NT-3, protein levels and secretion with different intensity and time frame of their maximal response. Stimulatory effect on NGF was mimicked by selective nicotinic receptor agonist nicotine and completely blocked by nicotinic antagonist mecamylamine. The impact on BDNF synthesis was mimicked by muscarinic receptor agonist pilocarpine and abolished by selective muscarinic antagonist scopolamine. Metrifonate up-regulates astrocytic NGF and BDNF synthesis in the same manner as acetylcholine, their effect depends on different cholinergic pathways. These results suggest a trophic role of metrifonate, based on a well-known neurotrophic activity of NGF and BDNF in vivo. Copyright © 2014 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  10. Effect of electroacupuncture on brain-derived neurotrophic factor mRNA expression in mouse hippocampus following cerebral ischemia-reperfusion injury.

    PubMed

    Zhao, Jianxin; Xu, Huazhou; Tian, Yuanxiang; Hu, Manxiang; Xiao, Hongling

    2013-04-01

    This work aims to observe the effects of electroacupuncture on brain-derived neurotrophic factor (BDNF) mRNA expression in mouse hippocampus following cerebral ischemia-reperfusion injury. The models of mouse cerebral ischemia-reperfusion injury were established. A total of 96 healthy mice were randomly assigned into 4 groups, namely, the sham surgery, model, model + electroacupuncture, and mode + hydergine groups. Mice in the model + electroacupuncture group were treated through electroacupuncture at the Shenshu (BL 23), Geshu (BL 17), and Baihui (GV 20) acupoints. Mice in the model+hydergine group were intragastrically administered with hydergine (0.77 mg/kg(-1) x day(-1)). The levels of BDNF mRNA expressions in the hippocampus were ana lyzed through a semi-quantitative reverse transcription-polymerase chain reaction assay on days 1 and 7 after the surgeries. BDNF mRNA expressions in the mouse hippocampus of the model group on days 1 and 7 after the surgery were higher than those of the sham surgery group (both P < 0.01). On days 1 and 7 of the electroacupuncture treatment, BDNF mRNA expression in the mouse hippocampus of the model + electroacupuncture group was significantly elevated compared with the model group (both P < 0.01) or the model + hydergine group (both P < 0.01). On days 1 and 7 of the hydergine treatment, BDNF mRNA expression in the mouse hippocampus of the model + hydergine group tended to increase compared with the model group; however, statistical significance was not achieved (both P > 0.05). Electroacupuncture treatment enhances endogenous BDNF expression, which may improve the survival environment for intracerebral neurons and inhibit the apoptosis of hippocampal cells.

  11. Remission of depression following electroconvulsive therapy (ECT) is associated with higher levels of brain-derived neurotrophic factor (BDNF).

    PubMed

    Freire, Thiago Fernando Vasconcelos; Fleck, Marcelo Pio de Almeida; da Rocha, Neusa Sica

    2016-03-01

    Research on the association between electroconvulsive therapy (ECT) and increased brain derived neurotrophic factor (BDNF) levels has produced conflicting result. There have been few studies which have evaluated BDNF levels in clinical contexts where there was remission following treatment. The objective of this study was to investigate whether remission of depression following ECT is associated with changes in BDNF levels. Adult inpatients in a psychiatric unit were invited to participate in this naturalistic study. Diagnoses were made using the Mini-International Neuropsychiatric Interview (MINI) and symptoms were evaluated at admission and discharge using the Hamilton Rating Scale for Depression (HDRS-17). Thirty-one patients who received a diagnosis of depression and were subjected to ECT were included retrospectively. Clinical remission was defined as a score of less than eight on the HDRS-17 at discharge. Serum BDNF levels were measured in blood samples collected at admission and discharge with a commercial kit used in accordance with the manufacturer's instructions. Subjects HDRS-17 scores improved following ECT (t = 13.29; p = 0.00). A generalized estimating equation (GEE) model revealed a remission × time interaction with BDNF levels as a dependent variable in a Wald chi-square test [Wald χ(2) = 5.98; p = 0.01]. A post hoc Bonferroni test revealed that non-remitters had lower BDNF levels at admission than remitters (p = 0.03), but there was no difference at discharge (p = 0.16). ECT remitters had higher serum BDNF levels at admission and the level did not vary during treatment. ECT non-remitters had lower serum BDNF levels at admission, but levels increased during treatment and were similar to those of ECT remitters at discharge. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. The Efficacy of Non-Pharmacological Interventions on Brain-Derived Neurotrophic Factor in Schizophrenia: A Systematic Review and Meta-Analysis.

    PubMed

    Sanada, Kenji; Zorrilla, Iñaki; Iwata, Yusuke; Bermúdez-Ampudia, Cristina; Graff-Guerrero, Ariel; Martínez-Cengotitabengoa, Mónica; González-Pinto, Ana

    2016-10-24

    Several studies have investigated the relationship between non-pharmacological interventions (NPIs) and peripheral brain-derived neurotrophic factor (BDNF) in schizophrenia patients. We conducted a systematic review and meta-analysis to review the efficacy of NPIs on peripheral serum and plasma BDNF in subjects with schizophrenia (including schizoaffective disorder). Meta-analyses were conducted to examine the effects of NPIs on blood BDNF levels by using the standardized mean differences (SMDs) between the intervention groups and controls. In total, six randomized controlled trials with 289 participants were included. Of them, five studies used exercise, physical training or diet products. One study used cognitive training. Overall, the BDNF levels in the NPI group increased significantly compared with the control groups (SMD = 0.95, 95% confidence interval (CI) = 0.07 to 1.83, p = 0.03). Subgroup analyses indicated beneficial effects of a non-exercise intervention on peripheral BDNF levels (SMD = 0.41, 95% CI = 0.08 to 0.74, p = 0.01). Meta-regression analyses showed that the completion rate influenced the variation in SMD ( p = 0.01). Despite insufficient evidence to draw a conclusion, our results suggest that use of NPIs as adjunctive treatments, specifically non-exercise interventions, may affect positively serum or plasma BDNF in patients with schizophrenia.

  13. EEG alpha power as an intermediate measure between brain-derived neurotrophic factor Val66Met and depression severity in patients with major depressive disorder.

    PubMed

    Zoon, Harriët F A; Veth, C P M; Arns, Martijn; Drinkenburg, W H I M; Talloen, Willem; Peeters, Pieter J; Kenemans, J L

    2013-06-01

    Major depressive disorder has a large impact on patients and society and is projected to be the second greatest global burden of disease by 2020. The brain-derived neurotrophic factor (BDNF) gene is considered to be one of the important factors in the etiology of major depressive disorder. In a recent study, alpha power was found to mediate between BDNF Met and subclinical depressed mood. The current study looked at a population of patients with major depressive disorder (N = 107) to examine the association between the BDNF Val66Met polymorphism, resting state EEG alpha power, and depression severity. For this purpose, repeated-measures analysis of variance, partial correlation, and multiple linear models were used. Results indicated a negative association between parietal-occipital alpha power in the eyes open resting state and depression severity. In addition, Met/Met patients showed lower global absolute alpha power in the eyes closed condition compared with Val-carriers. These findings are in accordance with the previously uncovered pathway between BDNF Val66Met, resting state EEG alpha power, and depression severity. Additional research is needed for the clarification of this tentative pathway and its implication in personalized treatment of major depressive disorder.

  14. Association of Peripheral Blood Levels of Brain-Derived Neurotrophic Factor With Autism Spectrum Disorder in Children: A Systematic Review and Meta-analysis.

    PubMed

    Qin, Xiao-Yan; Feng, Jin-Chao; Cao, Chang; Wu, Huan-Tong; Loh, Y Peng; Cheng, Yong

    2016-11-01

    Accumulating evidence suggests that brain-derived neurotrophic factor (BDNF) may be implicated in the developmental outcomes of children with autism spectrum disorder (ASD). To use meta-analysis to determine whether children with ASD have altered peripheral blood levels of BDNF. A systematic search of PubMed, PsycINFO, and Web of Science was performed for English-language literature through February 7, 2016. The search terms included brain-derived neurotrophic factor or BDNF in combination with autism, without year restriction. Two additional records were retrieved after a review of the reference lists of selected articles. Studies were included if they provided data on peripheral blood levels of BDNF in children with ASD and healthy control children. Studies that included adults or with overlapping samples were excluded. Data were extracted by 2 independent observers from 19 included studies. Data were pooled using a random-effects model with Comprehensive Meta-analysis software. Blood levels of BDNF in children with ASD compared with healthy controls. Altered levels of BDNF were hypothesized to be related to ASD. This meta-analysis included 19 studies with 2896 unique participants. Random-effects meta-analysis of all 19 studies showed that children with ASD had significantly increased peripheral blood levels of BDNF compared with healthy controls (Hedges g, 0.490; 95% CI, 0.185-0.794; P = .002). Subgroup analyses in 4 studies revealed that neonates diagnosed with ASD later in life had no association with blood levels of BDNF (Hedges g, 0.384; 95% CI, -0.244 to 1.011; P = .23), whereas children in the nonneonate ASD group (15 studies) demonstrated significantly increased BDNF levels compared with healthy controls (Hedges g, 0.524; 95% CI, 0.206 to 0.842; P = .001). Further analysis showed that children in the nonneonate ASD group had increased BDNF levels in serum (10 studies) (Hedges g, 0.564; 95% CI, 0.168 to 0.960; P = .005) but not in plasma

  15. A novel herbal treatment reduces depressive-like behaviors and increases brain-derived neurotrophic factor levels in the brain of type 2 diabetic rats.

    PubMed

    Luo, Chun; Ke, Yuting; Yuan, Yanyan; Zhao, Ming; Wang, Fuyan; Zhang, Yisheng; Bu, Shizhong

    2016-01-01

    Radix Puerariae and hawthorn fruit have been demonstrated to treat diabetes. They offer potential benefits for preventing depression in diabetes. The aim of this study was to investigate whether the combination of Radix Puerariae and hawthorn fruit (CRPHF) could prevent depression in a diabetic rat model generated by feeding the rats with a high-fat diet and a low-dose streptozotocin (STZ). The CRPHF was provided by the Shanghai Chinese Traditional Medical University. Twenty-four rats were randomly divided into four groups: normal control, normal-given-CRPHF (NC), diabetic control, and diabetic-given-CRPHF (DC) groups. The type 2 diabetic model was created by feeding the rats with a high-fat diet for 4 weeks followed by injection of 25 mg/kg STZ. CRPHF was given at 2 g/kg/d to the rats of NC and DC groups by intragastric gavage daily for 4 weeks after the type 2 diabetic model was successfully created. Body weight, random blood glucose (RBG), oral glucose tolerance test, total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C) were measured during the study. Depressive-like behavior was evaluated at the end of the treatment by using the open field test (OFT), the elevated plus-maze test (EPMT), locomotor activity test (LAT), and forced swimming test (FST). Levels of extracellular signal-regulated protein kinase (ERK) and brain-derived neurotrophic factor (BDNF) in the prefrontal cortex were evaluated by using Western blot. 1) CRPHF reduced RBG and improved glucose tolerance in diabetic rats; 2) CRPHF reduced TC and TG but did not significantly change HDL-C or LDL-C in diabetic rats; 3) CRPHF reversed the loss in body weights observed in diabetic rats; 4) CRPHF reduced depressive-like behavior as measured by OFT, EPMT, LAT, and FST; 5) BDNF was upregulated, and ERK was activated in the prefrontal cortex of diabetic rats treated with CRPHF. CRPHF has the potential of preventing depression

  16. Brain-derived neurotrophic factor in the nucleus tractus solitarii modulates glucose homeostasis after carotid chemoreceptor stimulation in rats.

    PubMed

    Montero, Sergio; Cuéllar, Ricardo; Lemus, Mónica; Avalos, Reyes; Ramírez, Gladys; de Álvarez-Buylla, Elena Roces

    2012-01-01

    Neuronal systems, which regulate energy intake, energy expenditure and endogenous glucose production, sense and respond to input from hormonal related signals that convey information from body energy availability. Carotid chemoreceptors (CChr) function as sensors for circulating glucose levels and contribute to glycemic counterregulatory responses. Brain-derived neurotrophic factor (BDNF) that plays an important role in the endocrine system to regulate glucose metabolism could play a role in hyperglycemic glucose reflex with brain glucose retention (BGR) evoked by anoxic CChr stimulation. Infusing BDNF into the nucleus tractus solitarii (NTS) before CChr stimulation, showed that this neurotrophin increased arterial glucose and BGR. In contrast, BDNF receptor (TrkB) antagonist (K252a) infusions in NTS resulted in a decrease in both glucose variables.

  17. Trauma profile in Egyptian adolescents with first-episode schizophrenia: relation to psychopathology and plasma brain-derived neurotrophic factor.

    PubMed

    Fawzi, Mounir H; Kira, Ibrahim A; Fawzi, Mohab M; Mohamed, Hanan E; Fawzi, Maggie M

    2013-01-01

    We aimed to investigate the relation of trauma profile to schizophrenia psychopathology in a sample of Egyptian drug-naïve adolescent patients with first-episode schizophrenia. In addition, a hypothesized mediating effect of brain-derived neurotrophic factor (BDNF) in this relation was formally tested. We assessed 74 eligible outpatients using the Positive and Negative Syndrome Scale (PANSS) for measuring psychopathology. Trauma histories were recorded with the help of the Cumulative Trauma Measure. Serum BDNF levels were estimated by enzyme-linked immunosorbent assay. Total cumulative trauma, personal identity trauma, and survival trauma were found to be the significant predictors for schizophrenia psychopathology. BDNF fully mediated the associations between total cumulative trauma and overall schizophrenia psychopathology. BDNF also mediated the associations between some types of trauma and both PANSS-positive and PANSS-negative symptom factors. We concluded that total cumulative trauma and certain trauma types are linked with schizophrenia psychopathology. BDNF appears to mediate these links.

  18. Brain-derived neurotrophic factor (BDNF) and TrkB in the piglet brainstem after post-natal nicotine and intermittent hypercapnic hypoxia.

    PubMed

    Tang, Samantha; Machaalani, Rita; Waters, Karen A

    2008-09-26

    Brain-derived neurotrophic factor (BDNF) and its receptor TrkB play a significant role in the regulation of cell growth, survival and death during central nervous system development. The expression of BDNF and TrkB is affected by noxious insults. Two insults during the early post-natal period that are of interest to our laboratory are exposure to nicotine and to intermittent hypercapnic hypoxia (IHH). Piglet models were used to mimic the conditions associated with the risk factors for the sudden infant death syndrome (SIDS) including post-natal cigarette smoke exposure (nicotine model) and prone sleeping where the infant is subjected to re-breathing of expired gases (IHH model). We aimed to determine the effects of nicotine and IHH, alone or in combination, on pro- and rhBDNF and TrkB expression in the developing piglet brainstem. Four piglet groups were studied, with equal gender ratios in each: control (n=14), nicotine (n=14), IHH (n=10) and nic+IHH (n=14). Applying immunohistochemistry, and studying six nuclei of the caudal medulla, we found that compared to controls, TrkB was the only protein significantly decreased after nicotine and nic+IHH exposure regardless of gender. For pro-BDNF and rhBDNF however, observed changes were more evident in males than females exposed to nicotine and nic+IHH. The implications of these findings are that a prior nicotine exposure makes the developing brainstem susceptible to greater changes in the neurotrophic effects of BDNF and its receptor TrkB in the face of a hypoxic insult, and that the effects are greater in males than females.

  19. Infrequent detectable somatic mutations of the RET and glial cell line-derived neurotrophic factor (GDNF) genes in human pituitary adenomas.

    PubMed

    Yoshimoto, K; Tanaka, C; Moritani, M; Shimizu, E; Yamaoka, T; Yamada, S; Sano, T; Itakura, M

    1999-02-01

    RET is a receptor tyrosine kinase expressed in neuroendocrine cells and tumors. RET is activated by a ligand complex comprising glial cell line-derived neurotrophic factor (GDNF) and GDNF receptor-alpha (GDNFR-alpha). Activating mutations of the RET proto-oncogene were found in multiple endocrine neoplasia (MEN) 2 and in sporadic medullary thyroid carcinoma and pheochromocytoma of neuroendocrine origin. Mutations of the RET proto-oncogene and the glial cell line-derived neurotrophic factor (GDNF) gene were examined in human pituitary tumors. No mutations of the RET proto-oncogene including the cysteine-rich region or codon 768 and 918 in the tyrosine kinase domain were detected in 172 human pituitary adenomas either by polymerase chain reaction (PCR)-single strand conformation polymorphism (SSCP) or by PCR-restriction fragment length polymorphism (RFLP). Further, somatic mutations of the GDNF gene in 33 human pituitary adenomas were not detected by PCR-SSCP. One polymorphism of the GDNF gene at codon 145 of TGC or TGT was observed in a prolactinoma. The RET proto-oncogene message was detected in a normal human pituitary gland or 4 of 4 human pituitary adenomas with reverse transcription (RT)-PCR, and in rodent pituitary tumor cell lines with Western blotting. The expression of GDNF gene was detected in 1 of 4 human somatotroph adenomas, 1 of 2 corticotroph adenomas, and 2 of 6 rodent pituitary tumor cell lines with RT-PCR. Based on these, it is concluded that somatic mutations of the RET proto-oncogene or the GDNF gene do not appear to play a major role in the pituitary tumorigenesis in examined tumors.

  20. Role of Hypoxia-Induced Brain Derived Neurotrophic Factor in Human Pulmonary Artery Smooth Muscle

    PubMed Central

    Hartman, William; Helan, Martin; Smelter, Dan; Sathish, Venkatachalem; Thompson, Michael; Pabelick, Christina M.; Johnson, Bruce; Prakash, Y. S.

    2015-01-01

    Background Hypoxia effects on pulmonary artery structure and function are key to diseases such as pulmonary hypertension. Recent studies suggest that growth factors called neurotrophins, particularly brain-derived neurotrophic factor (BDNF), can influence lung structure and function, and their role in the pulmonary artery warrants further investigation. In this study, we examined the effect of hypoxia on BDNF in humans, and the influence of hypoxia-enhanced BDNF expression and signaling in human pulmonary artery smooth muscle cells (PASMCs). Methods and Results 48h of 1% hypoxia enhanced BDNF and TrkB expression, as well as release of BDNF. In arteries of patients with pulmonary hypertension, BDNF expression and release was higher at baseline. In isolated PASMCs, hypoxia-induced BDNF increased intracellular Ca2+ responses to serotonin: an effect altered by HIF1α inhibition or by neutralization of extracellular BDNF via chimeric TrkB-Fc. Enhanced BDNF/TrkB signaling increased PASMC survival and proliferation, and decreased apoptosis following hypoxia. Conclusions Enhanced expression and signaling of the BDNF-TrkB system in PASMCs is a potential mechanism by which hypoxia can promote changes in pulmonary artery structure and function. Accordingly, the BDNF-TrkB system could be a key player in the pathogenesis of hypoxia-induced pulmonary vascular diseases, and thus a potential target for therapy. PMID:26192455

  1. The neurotrophic effects of different human dental mesenchymal stem cells.

    PubMed

    Kolar, Mallappa K; Itte, Vinay N; Kingham, Paul J; Novikov, Lev N; Wiberg, Mikael; Kelk, Peyman

    2017-10-03

    The current gold standard treatment for peripheral nerve injury is nerve grafting but this has disadvantages such as donor site morbidity. New techniques focus on replacing these grafts with nerve conduits enhanced with growth factors and/or various cell types such as mesenchymal stem cells (MSCs). Dental-MSCs (D-MSCs) including stem cells obtained from apical papilla (SCAP), dental pulp stem cells (DPSC), and periodontal ligament stem cells (PDLSC) are potential sources of MSCs for nerve repair. Here we present the characterization of various D-MSCs from the same human donors for peripheral nerve regeneration. SCAP, DPSC and PDLSC expressed BDNF, GDNF, NGF, NTF3, ANGPT1 and VEGFA growth factor transcripts. Conditioned media from D-MSCs enhanced neurite outgrowth in an in vitro assay. Application of neutralizing antibodies showed that brain derived neurotrophic factor plays an important mechanistic role by which the D-MSCs stimulate neurite outgrowth. SCAP, DPSC and PDLSC were used to treat a 10 mm nerve gap defect in a rat sciatic nerve injury model. All the stem cell types significantly enhanced axon regeneration after two weeks and showed neuroprotective effects on the dorsal root ganglia neurons. Overall the results suggested SCAP to be the optimal dental stem cell type for peripheral nerve repair.

  2. Peptidergic Agonists of Activity-Dependent Neurotrophic Factor Protect Against Prenatal Alcohol-Induced Neural Tube Defects and Serotonin Neuron Loss

    PubMed Central

    Zhou, Feng C.; Fang, Yuan; Goodlett, Charles

    2009-01-01

    Introduction Prenatal alcohol exposure via maternal liquid diet consumption by C57BL/6 (B6) mice causes conspicuous midline neural tube deficit (dysraphia) and disruption of genesis and development of serotonin (5-HT) neurons in the raphe nuclei, together with brain growth retardation. The current study tested the hypothesis that concurrent treatment with either an activity-dependent neurotrophic factor (ADNF) agonist peptide [SALLRSIPA, (SAL)] or an activity-dependent neurotrophic protein (ADNP) agonist peptide [NAPVSIPQ, (NAP)] would protect against these alcohol-induced deficits in brain development. Methods Timed-pregnant B6 dams consumed alcohol from embryonic day 7 (E7, before the onset of neurulation) until E15. Fetuses were obtained on E15 and brain sections processed for 5-HT immunocytochemistry, for evaluation of morphologic development of the brainstem raphe and its 5-HT neurons. Additional groups were treated either with SAL or NAP daily from E7 to E15 to assess the potential protective effects of these peptides. Measures of incomplete occlusion of the ventral canal and the frequency and extent of the openings in the rhombencephalon were obtained to assess fetal dysraphia. Counts of 5-HT-immunostained neurons were also obtained in the rostral and caudal raphe. Results Prenatal alcohol exposure resulted in abnormal openings along the midline and delayed closure of ventral canal in the brainstem. This dysraphia was associated with reductions in the number of 5-HT neurons both in the rostral raphe nuclei (that gives rise to ascending 5-HT projections) and in the caudal raphe (that gives rise to the descending 5-HT projections). Concurrent treatment of the alcohol-consuming dams with SAL prevented dysraphia and protected against the alcohol-induced reductions in 5-HT neurons in both the rostral and caudal raphe. NAP was less effective in protecting against dysraphia and did not protect against 5-HT loss in the rostral raphe, but did protect against loss in

  3. Cholecystokinin-8 induces brain-derived neurotrophic factor expression in noradrenergic neuronal cells.

    PubMed

    Hwang, Cheol Kyu; Kim, Do Kyung; Chun, Hong Sung

    2013-08-01

    The sulfated cholecystokinin octapeptide (CCK-8S) is one of the most abundant CCK fragment in the brain, but the effects of CCK-8S on locus coeruleus (LC) noradrenergic (NA) neuronal cells activity have not been studied. In this study, we investigated the effects of CCK-8S on the expression of brain-derived neurotrophic factor (BDNF) in LC NA neuronal cell line, LC3541. Results showed that CCK-8S (10 nM) elevates BDNF levels time-dependently and by 1.82-fold after 4h of incubation. In addition, pretreatment with CCK-8S reversed H₂O₂ (100 μM)-mediated down-regulation of BDNF expression, and effectively suppressed H₂O₂-induced caspase-3 activation. Furthermore, CCK-8S markedly induced expression of neuronal survival markers, such as extracellular signal-regulated kinase 1/2 (ERK 1/2), Akt/protein kinase B (PKB), Bcl-2, and peroxisome proliferators-activated receptor gamma coactivator-1α (PGC-1α). Pharmacological inhibitors of ERK 1/2, Akt/PKB, and protein kinase A (PKA) reversed CCK-8S-mediated BDNF induction in LC3541 cells. These results suggest the first evidence that CCK-8S can protect noradrenergic neurons and enhance the expression of BDNF via ERK 1/2-Akt/PKB-PKA-dependent pathways. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Glial cell line-derived neurotrophic factor promotes the development of adrenergic neurons in mouse neural crest cultures

    PubMed Central

    Maxwell, Gerald D.; Reid, Kate; Elefanty, Andrew; Bartlett, Perry F.; Murphy, Mark

    1996-01-01

    Growth of mouse neural crest cultures in the presence of glial cell line-derived neurotrophic factor (GDNF) resulted in a dramatic dose-dependent increase in the number of tyrosine hydroxylase (TH)-positive cells that developed when 5% chicken embryo extract was present in the medium. In contrast, growth in the presence of bone morphogenetic protein (BMP)-2, BMP-4, BMP-6, transforming growth factor (TGF) β1, TGF-β2, and TGF-β3 elicited no increase in the number of TH-positive cells. The TH-positive cells that developed in the presence of GDNF had neuronal morphology and contained the middle and low molecular weight neurofilament proteins. Numerous TH-negative cells with the morphology of neurons also were observed in GDNF-treated cultures. Analysis revealed that the period from 6 to 12 days in vitro was the critical time for exposure to GDNF to generate the increase in TH-positive cell number. The growth factors neurotrophin-3 and fibroblast growth factor-2 elicited increases in the number of TH-positive cells similar to that seen in response to GDNF. In contrast, nerve growth factor was unable to substitute for GDNF. These findings extend the previously reported biological activities of GDNF by showing that it can act on mouse neural crest cultures to promote the development of neurons. PMID:8917581

  5. Altered Expression of NF- κ B and SP1 after Exposure to Advanced Glycation End-Products and Effects of Neurotrophic Factors in AGEs Exposed Rat Retinas.

    PubMed

    Bikbova, Guzel; Oshitari, Toshiyuki; Baba, Takayuki; Yamamoto, Shuichi

    2015-01-01

    To determine the effect of advanced glycation end-products (AGEs) on neurite regeneration, and also to determine the regenerative effects of different neurotrophic factors (NTFs) on rat retinal explants, the retinas of SD rats were cultured in three-dimensional collagen gels and incubated in 6 types of media: (1) serum-free control culture media; (2) 100 μg/mL AGEs-BSA media; (3) AGEs-BSA + 100 ng/mL neurotrophin-4 (NT-4) media; (4) AGEs-BSA + 100 ng/mL hepatocyte growth factor media; (5) AGEs-BSA + 100 ng/mL glial cell line-derived neurotrophic factor media; or (6) AGEs-BSA + 100 µM tauroursodeoxycholic acid media. After 7 days, the number of regenerating neurites was counted. The explants were immunostained for nuclear factor-κB (NF-κB) and specificity protein 1 (SP1). Statistical analyses were performed by one-way ANOVA. In retinas incubated with AGEs, the numbers of neurites were fewer than in control. All of the NTFs increased the number of neurites, and the increase was more significant in the NT-4 group. The number of NF-κB and SP1 immunopositive cells was higher in retinas exposed to AGEs than in control. All of the NTFs decreased the number of NF-κB immunopositive cells but did not significantly affect SP1 expression. These results demonstrate the potential of the NTFs as axoprotectants in AGEs exposed retinal neurons.

  6. Antidiabetic Effect of Brain-Derived Neurotrophic Factor and Its Association with Inflammation in Type 2 Diabetes Mellitus

    PubMed Central

    Kaplon-Cieslicka, Agnieszka; Malek, Lukasz; Postula, Marek

    2017-01-01

    Brain-derived neurotrophic factor (BDNF) is a neurotrophin, which plays an important role in the central nervous system, and systemic or peripheral inflammatory conditions, such as acute coronary syndrome and type 2 diabetes mellitus (T2DM). BDNF is also expressed in several nonneuronal tissues, and platelets are the major source of peripheral BDNF. Here, we reviewed the potential role of BDNF in platelet reactivity in T2DM and its association with selected inflammatory and platelet activation mediators. Besides that, we focused on adipocytokines such as leptin, resistin, and adiponectin which are considered to take part in inflammation and both lipid and glucose metabolism in diabetic patients as previous studies showed the relation between adipocytokines and BDNF. We also reviewed the evidences of the antidiabetic effect of BDNF and the association with circulating inflammatory cytokines in T2DM. PMID:29062839

  7. Alteration in brain-derived neurotrophic factor (BDNF) after treatment of mice with herbal mixture containing Euphoria longana, Houttuynia cordata and Dioscorea japonica.

    PubMed

    Jeon, Songhee; Lee, Chia-Hung; Liu, Quan Feng; Kim, Geun Woo; Koo, Byung-Soo; Pak, Sok Cheon

    2014-11-28

    Literature data indicate that brain-derived neurotrophic factor (BDNF), cyclic-AMP response element-binding protein (CREB) and phospho-CREB (pCREB) may have a place in depression. BDNF belongs to the neurotrophin family that plays an important role in proliferation, survival and differentiation of different cell populations in the mammalian nervous system. The herbal mixture used in the present study consists of Euphoria longana, Houttuynia cordata and Dioscorea japonica. The purpose of the present study was to determine the neuroprotective effect of herbal mixture. We also tested the hypothesis that administration of herbs reverses memory deficits and promotes the protein expression of BDNF in the mouse brain. Mice were randomized into four different treatment groups (n = 10/group). Normal and stress groups received regular lab chow without stress and under stress conditions, respectively, for 3 weeks. The animals in the stress group were immobilized for 4 hours a day for 2 weeks. Different doses of herbal mixture (206 and 618 mg/kg) were administered for 3 weeks to those mice under stress conditions. Mice were analyzed by behavioral tests and immunoblotting examination in the hippocampus and cortex. An additional in vitro investigation was performed to examine whether herbs induce neurotoxicity in a human neuroblastoma cell line, SH-SY5Y cells. No significant toxicity of herbs on human neuroblastoma cells was observed. These herbs demonstrated an inductive effect on the expression of BDNF, pCREB and pAkt. For spatial working memory test, herbal mixture fed mice exhibited an increased level of spontaneous alternation (p < 0.01) compared to those in stress conditions. Moreover, herbal mixture produced highly significant (p < 0.01) reduction in the immobility time in the tail suspension test. Mice in the herbal mixture groups demonstrated lower serum corticosterone concentration than mice in the stress group (p < 0.05). Effects of the oral administration of

  8. Knockdown of long noncoding antisense RNA brain-derived neurotrophic factor attenuates hypoxia/reoxygenation-induced nerve cell apoptosis through the BDNF-TrkB-PI3K/Akt signaling pathway.

    PubMed

    Zhong, Jian-Bin; Li, Xie; Zhong, Si-Ming; Liu, Jiu-Di; Chen, Chi-Bang; Wu, Xiao-Yan

    2017-09-27

    Brain-derived neurotrophic factor (BDNF) plays an important role in neuronal cell apoptosis. The antisense RNA of brain-derived neurotrophic factor (BDNF-AS) is a natural antisense transcript that is transcribed opposite the gene that encodes BDNF. The aim of this study was to determine whether knockdown of BDNF-AS can suppress hypoxia/reoxygenation (H/R)-induced neuronal cell apoptosis and whether this is mediated by the BDNF-TrkB-PI3K/Akt pathway. We detected the expression of BDNF and BDNF-AS in brain tissue from 20 patients with cerebral infarction and five patients with other diseases (but no cerebral ischemia). We found that BDNF expression was significantly downregulated in patients with cerebral infarction, whereas the expression of BDNF-AS was significantly upregulated. In both human cortical neurons (HCN2) and human astrocytes, H/R significantly induced the expression of BDNF-AS, but significantly decreased BDNF expression. H/R also significantly induced apoptosis and reduced the mitochondrial membrane potential in these cells. Following downregulation of BDNF-AS by siRNA in human cortical neurons and human astrocyte cells, BDNF expression was significantly upregulated and the H/R-induced upregulation of BDNF-AS was significantly attenuated. BDNF-AS siRNA inhibited H/R-induced cell apoptosis and ameliorated the H/R-induced suppression of mitochondrial membrane potential. H/R inhibited the expression of BDNF, p-AKT/AKT, and TrKB, and this inhibition was recovered by BDNF-AS siRNA. In summary, this study indicates that BDNF-AS siRNA induces activation of the BDNF-TrkB-PI3K/Akt pathway following H/R-induced neurotoxicity. These findings will be useful toward the application of BDNF-AS siRNA for the treatment of neurodegenerative diseases.

  9. The Impact of Aerobic Exercise on Brain-Derived Neurotrophic Factor and Neurocognition in Individuals With Schizophrenia: A Single-Blind, Randomized Clinical Trial

    PubMed Central

    Kimhy, David; Vakhrusheva, Julia; Bartels, Matthew N.; Armstrong, Hilary F.; Ballon, Jacob S.; Khan, Samira; Chang, Rachel W.; Hansen, Marie C.; Ayanruoh, Lindsey; Lister, Amanda; Castrén, Eero; Smith, Edward E.; Sloan, Richard P.

    2015-01-01

    Individuals with schizophrenia display substantial neurocognitive deficits for which available treatments offer only limited benefits. Yet, findings from studies of animals, clinical and nonclinical populations have linked neurocognitive improvements to increases in aerobic fitness (AF) via aerobic exercise training (AE). Such improvements have been attributed to up-regulation of brain-derived neurotrophic factor (BDNF). However, the impact of AE on neurocognition, and the putative role of BDNF, have not been investigated in schizophrenia. Employing a proof-of-concept, single-blind, randomized clinical trial design, 33 individuals with schizophrenia were randomized to receive standard psychiatric treatment (n = 17; “treatment as usual”; TAU) or attend a 12-week AE program (n = 16) utilizing active-play video games (Xbox 360 Kinect) and traditional AE equipment. Participants completed assessments of AF (indexed by VO2 peak ml/kg/min), neurocognition (MATRICS Consensus Cognitive Battery), and serum-BDNF before and after and 12-week period. Twenty-six participants (79%) completed the study. At follow-up, the AE participants improved their AF by 18.0% vs a −0.5% decline in the TAU group (P = .002) and improved their neurocognition by 15.1% vs −2.0% decline in the TAU group (P = .031). Hierarchical multiple regression analyses indicated that enhancement in AF and increases in BDNF predicted 25.4% and 14.6% of the neurocognitive improvement variance, respectively. The results indicate AE is effective in enhancing neurocognitive functioning in people with schizophrenia and provide preliminary support for the impact of AE-related BDNF up-regulation on neurocognition in this population. Poor AF represents a modifiable risk factor for neurocognitive dysfunction in schizophrenia for which AE training offer a safe, nonstigmatizing, and side-effect-free intervention. PMID:25805886

  10. The Impact of Aerobic Exercise on Brain-Derived Neurotrophic Factor and Neurocognition in Individuals With Schizophrenia: A Single-Blind, Randomized Clinical Trial.

    PubMed

    Kimhy, David; Vakhrusheva, Julia; Bartels, Matthew N; Armstrong, Hilary F; Ballon, Jacob S; Khan, Samira; Chang, Rachel W; Hansen, Marie C; Ayanruoh, Lindsey; Lister, Amanda; Castrén, Eero; Smith, Edward E; Sloan, Richard P

    2015-07-01

    Individuals with schizophrenia display substantial neurocognitive deficits for which available treatments offer only limited benefits. Yet, findings from studies of animals, clinical and nonclinical populations have linked neurocognitive improvements to increases in aerobic fitness (AF) via aerobic exercise training (AE). Such improvements have been attributed to up-regulation of brain-derived neurotrophic factor (BDNF). However, the impact of AE on neurocognition, and the putative role of BDNF, have not been investigated in schizophrenia. Employing a proof-of-concept, single-blind, randomized clinical trial design, 33 individuals with schizophrenia were randomized to receive standard psychiatric treatment (n = 17; "treatment as usual"; TAU) or attend a 12-week AE program (n = 16) utilizing active-play video games (Xbox 360 Kinect) and traditional AE equipment. Participants completed assessments of AF (indexed by VO2 peak ml/kg/min), neurocognition (MATRICS Consensus Cognitive Battery), and serum-BDNF before and after and 12-week period. Twenty-six participants (79%) completed the study. At follow-up, the AE participants improved their AF by 18.0% vs a -0.5% decline in the TAU group (P = .002) and improved their neurocognition by 15.1% vs -2.0% decline in the TAU group (P = .031). Hierarchical multiple regression analyses indicated that enhancement in AF and increases in BDNF predicted 25.4% and 14.6% of the neurocognitive improvement variance, respectively. The results indicate AE is effective in enhancing neurocognitive functioning in people with schizophrenia and provide preliminary support for the impact of AE-related BDNF up-regulation on neurocognition in this population. Poor AF represents a modifiable risk factor for neurocognitive dysfunction in schizophrenia for which AE training offer a safe, nonstigmatizing, and side-effect-free intervention. © The Author 2015. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center

  11. A Method for Electrochemical Detection of Brain Derived Neurotrophic Factor (BDNF) in plasma.

    PubMed

    Bockaj, Marina; Fung, Barnabas; Tsoulis, Michael; Foster, Lauren Warren; Soleymani, Leyla

    2018-06-22

    Currently, a blood test for the diagnosis of endometriosis, a common estrogen-dependent gynecological disease, does not exist. Recent studies suggest that circulating concentrations of brain derived neurotrophic factor (BDNF) have potential for the diagnosis of endometriosis. However, at present BDNF can only be measured by ELISA which requires a clinic visit, a routine blood sample, and laboratory testing. Therefore, we developed a point-of-care device (EndoChip) for use with small blood volumes that can be collected through a finger prick. Specifically, the presented device is a polymer-based chip with a wrinkled nanoporous gold film acting as the electrode/sensing layer, allowing for the electrochemical detection of BDNF in plasma. Increasing concentrations of BDNF (0.25 - 2.0 ng/ml) induced significant differences in redox current. The biosensor produces a signal readout in a matter of seconds, and is ideal for realizing multiplexing. Blood samples were collected from women (n=20) with chronic pelvic pain undergoing a diagnostic laparoscopy. Plasma BDNF concentrations measured by commercial ELISA were positively correlated (r2=0.8216; p<0.001) with results from the EndoChip. Our results demonstrate a quick and reliable method for point-of-care quantification of circulating concentrations of BDNF and a promising diagnostic tool for endometriosis.

  12. Diagnosis and management of neurotrophic keratitis

    PubMed Central

    Sacchetti, Marta; Lambiase, Alessandro

    2014-01-01

    Neurotrophic keratitis (NK) is a degenerative disease characterized by corneal sensitivity reduction, spontaneous epithelium breakdown, and impairment of corneal healing. Several causes of NK, including herpetic keratitis, diabetes, and ophthalmic and neurosurgical procedures, share the common mechanism of trigeminal damage. Diagnosis of NK requires accurate investigation of clinical ocular and systemic history, complete eye examination, and assessment of corneal sensitivity. All diagnostic procedures to achieve correct diagnosis and classification of NK, including additional examinations such as in vivo confocal microscopy, are reviewed. NK can be classified according to severity of corneal damage, ie, epithelial alterations (stage 1), persistent epithelial defect (stage 2), and corneal ulcer (stage 3). Management of NK should be based on clinical severity, and aimed at promoting corneal healing and preventing progression of the disease to stromal melting and perforation. Concomitant ocular diseases, such as exposure keratitis, dry eye, and limbal stem cell deficiency, negatively influence the outcome of NK and should be treated. Currently, no specific medical treatment exists, and surgical approaches, such as amniotic membrane transplantation and conjunctival flap, are effective in preserving eye integrity, without ameliorating corneal sensitivity or visual function. This review describes experimental and clinical reports showing several novel and potential therapies for NK, including growth factors and metalloprotease inhibitors, as well as three ongoing Phase II clinical trials. PMID:24672223

  13. Serum brain-derived neurotrophic factor and interleukin-6 response to high-volume mechanically demanding exercise.

    PubMed

    Verbickas, Vaidas; Kamandulis, Sigitas; Snieckus, Audrius; Venckunas, Tomas; Baranauskiene, Neringa; Brazaitis, Marius; Satkunskiene, Danguole; Unikauskas, Alvydas; Skurvydas, Albertas

    2018-01-01

    The aim of this study was to follow circulating brain-derived neurotrophic factor (BDNF) and interleukin-6 (IL-6) levels in response to severe muscle-damaging exercise. Young healthy men (N = 10) performed a bout of mechanically demanding stretch-shortening cycle exercise consisting of 200 drop jumps. Voluntary and electrically induced knee extension torque, serum BDNF levels, and IL-6 levels were measured before and for up to 7 days after exercise. Muscle force decreased by up to 40% and did not recover by 24 hours after exercise. Serum BDNF was decreased 1 hour and 24 hours after exercise, whereas IL-6 increased immediately and 1 hour after but recovered to baseline by 24 hours after exercise. IL-6 and 100-Hz stimulation torque were correlated (r = -0.64, P < 0.05) 24 hours after exercise. In response to acute, severe muscle-damaging exercise, serum BDNF levels decrease, whereas IL-6 levels increase and are associated with peripheral fatigue. Muscle Nerve 57: E46-E51, 2018. © 2017 Wiley Periodicals, Inc.

  14. Abdominal pain and the neurotrophic system in ulcerative colitis.

    PubMed

    Deberry, Jennifer J; Bielefeldt, Klaus; Davis, Brian M; Szigethy, Eva M; Hartman, Douglas J; Coates, Matthew D

    2014-12-01

    We undertook a study to test the hypothesis that inflammation alters peripheral sensory mechanisms, thereby contributing to chronic abdominal pain in ulcerative colitis (UC). Patients with UC and healthy individuals rated abdominal pain using a visual analog scale and completed surveys describing anxiety or depression (Hospital Anxiety and Depression Score) and gastrointestinal symptoms (Rome III questionnaire). Patient age, sex, and severity of inflammation were determined. Rectal biopsies were processed using immunohistochemical techniques to assess nerve fiber density and real-time PCR to determine transcript expression of neurotrophins (nerve growth factor, glial cell-derived neurotrophic factor, artemin, neurturin), ion channels (transient receptor potential vanilloid type 1, transient receptor potential ankyrin 1) and inflammatory mediators (tumor necrosis factor-α, interleukin [IL]-1β, IL-6, IL-10, IL-17). A total of 77 patients with UC (27 female, 50 male) and 21 controls (10 female, 11 male) were enrolled. Patients with UC with pain had significantly higher depression scores than controls and patients with UC without pain (P < 0.05). There was no correlation between any of the inflammatory markers and pain scores. Visual analog scale pain scores significantly correlated with younger age, higher depression scores, increased expression of neurturin and decreased expression of transient receptor potential ankyrin 1 in the mucosa. Mucosal nerve fiber density did not correlate with any measures of inflammation or pain. Only higher depression scores independently predicted pain in UC (r > 0.5). We did not observe changes in mucosal innervation and did not see a significant relationship between nerve fiber density, inflammatory mediators, neurotrophic factors, or mucosal ion channel expression and pain. In contrast, the importance of depression as the only independent predictor of pain ratings mirrors functional disorders, where central processes significantly

  15. Decreased serum fibroblast growth factor - 2 levels in pre- and post-treatment patients with major depressive disorder.

    PubMed

    He, Shen; Zhang, Tianhong; Hong, Bo; Peng, Daihui; Su, Hui; Lin, Zhiguang; Fang, Yiru; Jiang, Kaida; Liu, Xiaohua; Li, Huafang

    2014-09-05

    Increasing evidence indicates that neurotrophic factor dysfunction might be involved in the pathophysiology and treatment of major depressive disorder (MDD). Fibroblast growth factor (FGF)-2, one of the major neurotrophins, plays an important role in the central nervous system (CNS). The aim of this study was to explore whether the FGF-2 in serum was associated with MDD and to evaluate the effects of antidepressant treatment on serum FGF-2 levels. Serum FGF-2 levels were determined in 28 pre- and post-treatment MDD patients and 30 healthy controls using ELISA. The results of the current study revealed that serum FGF-2 levels in MDD patients were significantly lower than those in healthy controls (p=0.005), and the serum FGF-2 levels decreased significantly but marginally following treatment for 8 weeks (p=0.005). These findings demonstrate that the lower serum FGF-2 levels contribute to the pathophysiology of MDD and that FGF-2 may be used as a peripheral biological marker for MDD. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  16. Brain-Derived Neurotrophic Factor Serum Levels and Hippocampal Volume in Mild Cognitive Impairment and Dementia due to Alzheimer Disease.

    PubMed

    Borba, Ericksen Mielle; Duarte, Juliana Avila; Bristot, Giovana; Scotton, Ellen; Camozzato, Ana Luiza; Chaves, Márcia Lorena Fagundes

    2016-01-01

    Hippocampal atrophy is a recognized biomarker of Alzheimer disease (AD) pathology. Serum brain-derived neurotrophic factor (BDNF) reduction has been associated with neurodegeneration. We aimed to evaluate BDNF serum levels and hippocampal volume in clinical AD (dementia and mild cognitive impairment [MCI]). Participants were 10 patients with MCI and 13 with dementia due to AD as well as 10 healthy controls. BDNF serum levels were determined by ELISA and volumetric measures with NeuroQuant®. MCI and dementia patients presented lower BDNF serum levels than healthy participants; dementia patients presented a smaller hippocampal volume than MCI patients and healthy participants. The findings support that the decrease in BDNF might start before the establishment of neuronal injury expressed by the hippocampal reduction.

  17. Low-level laser irradiation modulates brain-derived neurotrophic factor mRNA transcription through calcium-dependent activation of the ERK/CREB pathway.

    PubMed

    Yan, Xiaodong; Liu, Juanfang; Zhang, Zhengping; Li, Wenhao; Sun, Siguo; Zhao, Jian; Dong, Xin; Qian, Jixian; Sun, Honghui

    2017-01-01

    Low-level laser (LLL) irradiation has been reported to promote neuronal differentiation, but the mechanism remains unclear. Brain-derived neurotrophic factor (BDNF) has been confirmed to be one of the most important neurotrophic factors because it is critical for the differentiation and survival of neurons during development. Thus, this study aimed to investigate the effects of LLL irradiation on Bdnf messenger RNA (mRNA) transcription and the molecular pathway involved in LLL-induced Bdnf mRNA transcription in cultured dorsal root ganglion neurons (DRGNs) using Ca 2+ imaging, pharmacological detections, RNA interference, immunocytochemistry assay, Western blot, and qPCR analysis. We show here that LLL induced increases in the [Ca 2+ ] i level, Bdnf mRNA transcription, cAMP-response element-binding protein (CREB) phosphorylation, and extracellular signal-regulated kinase (ERK) phosphorylation, mediated by Ca 2+ release via inositol triphosphate receptor (IP3R)-sensitive calcium (Ca 2+ ) stores. Blockade of Ca 2+ increase suppressed Bdnf mRNA transcription, CREB phosphorylation, and ERK phosphorylation. Downregulation of phosphorylated (p)-CREB reduced Bdnf mRNA transcription triggered by LLL. Furthermore, blockade of ERK using PD98059 inhibitor reduced p-CREB and Bdnf mRNA transcription induced by LLL. Taken together, these findings establish the Ca 2+ -ERK-CREB cascade as a potential signaling pathway involved in LLL-induced Bdnf mRNA transcription. To our knowledge, this is the first report of the mechanisms of Ca 2+ -dependent Bdnf mRNA transcription triggered by LLL. These findings may help further explore the complex molecular signaling networks in LLL-triggered nerve regeneration in vivo and may also provide experimental evidence for the development of LLL for clinical applications.

  18. The brain-derived neurotrophic factor (BDNF) gene Val66Met polymorphism affects memory performance in older adults.

    PubMed

    Azeredo, Lucas A de; De Nardi, Tatiana; Levandowski, Mateus L; Tractenberg, Saulo G; Kommers-Molina, Julia; Wieck, Andrea; Irigaray, Tatiana Q; Silva, Irênio G da; Grassi-Oliveira, Rodrigo

    2017-01-01

    Memory impairment is an important contributor to the reduction in quality of life experienced by older adults, and genetic risk factors seem to contribute to variance in age-related cognitive decline. Brain-derived neurotrophic factor (BDNF) is an important nerve growth factor linked with development and neural plasticity. The Val66Met polymorphism in the BDNF gene has been associated with impaired episodic memory in adults, but whether this functional variant plays a role in cognitive aging remains unclear. The purpose of this study was to investigate the effects of the BDNF Val66Met polymorphism on memory performance in a sample of elderly adults. Eighty-seven subjects aged > 55 years were recruited using a community-based convenience sampling strategy in Porto Alegre, Brazil. The logical memory subset of the Wechsler Memory Scale-Revised was used to assess immediate verbal recall (IVR), delayed verbal recall (DVR), and memory retention rate. BDNF Met allele carriers had lower DVR scores (p = 0.004) and a decline in memory retention (p = 0.017) when compared to Val/Val homozygotes. However, we found no significant differences in IVR between the two groups (p = 0.088). These results support the hypothesis of the BDNF Val66Met polymorphism as a risk factor associated with cognitive impairment, corroborating previous findings in young and older adults.

  19. Human immunodeficiency virus-associated depression: contributions of immuno-inflammatory, monoaminergic, neurodegenerative, and neurotrophic pathways.

    PubMed

    Del Guerra, F B; Fonseca, J L I; Figueiredo, V M; Ziff, E B; Konkiewitz, E Castelon

    2013-08-01

    In the era of greatly improved pharmacological treatment of HIV infection through highly active antiretroviral therapy (HAART), HIV patients experience reduced viral loads, reduced opportunistic infections, increased CD4+ T cell count, and greater life expectancy. Although life expectancy is increased, patients often develop neurological disturbances that may persist for long periods, seriously jeopardizing quality of life and adherence to the medication protocols of HAART. For these reasons, HIV-associated neurological disorders have gained importance in both clinical and basic investigations of HIV infection. Depression is the most prevalent neuropsychiatric disorder among people living with HIV. In this review, we discuss how HIV can predispose infected individuals to depression by several interrelated mechanisms. These include inducing chronic elevation of cytokines through activation of microglia and astrocytes; decreasing monoaminergic function; inducing neurotoxicity, especially in dopaminergic neurons; and reducing brain-derived neurotrophic factor. These viral pathways interact with psychosocial factors to create the depressive state. HIV depression has a great impact on quality of life and implementation of antiretroviral therapy, and thus, recognition of these modes of action is significant for understanding HIV neuropathology and for selecting modalities for pharmacologic treatment.

  20. Treatment of autistic spectrum disorder with insulin-like growth factors.

    PubMed

    Riikonen, Raili

    2016-11-01

    There are no treatments for the core symptoms of autistic spectrum disorder (ASD), but there is now more knowledge on emerging mechanisms and on mechanism-based therapies. In autism there are altered synapses: genes affected are commonly related to synaptic and immune function. Dysregulation of activity-dependent signaling networks may have a key role the etiology of autism. There is an over-activation of IGF-AKT-mTor in autism spectrum disorders. Morphological and electro-physiological defects of the cerebellum are linked to system-wide ASD-like behavior defects. The molecular basis for a cerebellar contribution has been demonstrated in a mouse model. These have led to a potential mechanism-based use of drug targets and mouse models. Neurotrophic factors are potential candidates for the treatment. Insulin-like growth factor-1 (IGF-1) is altered in autism. It reduces neuro-inflammation: by causing changes of cytokines such as IL-6 and microglial function. IGF-1 reduces the defects in the synapse. It alleviates NMDA-induced neurotoxicity via the IGF-AKT-mTor pathway in microglia. IGF-1 may rescue function in Rett syndrome and ASD caused by changes of the SCHANK3 gene. There are recently pilot studies of the treatment of Rett syndrome and of SCHANK3 gene deficiency syndromes. The FDA has granted Orphan drug designations for Fragile X syndrome, SCHANK3 gene deficiency syndrome and Rett syndrome. Copyright © 2016 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  1. Agomelatine Increases BDNF Serum Levels in Depressed Patients in Correlation with the Improvement of Depressive Symptoms

    PubMed Central

    Pettorruso, Mauro; De Berardis, Domenico; Varasano, Paola Annunziata; Lucidi Pressanti, Gabriella; De Remigis, Valeria; Valchera, Alessandro; Ricci, Valerio; Di Nicola, Marco; Janiri, Luigi; Biggio, Giovanni; Di Giannantonio, Massimo

    2016-01-01

    Background: Agomelatine modulates brain-derived neurotrophic factor expression via its interaction with melatonergic and serotonergic receptors and has shown promising results in terms of brain-derived neurotrophic factor increase in animal models. Methods: Twenty-seven patients were started on agomelatine (25mg/d). Venous blood was collected and brain-derived neurotrophic factor serum levels were measured at baseline and after 2 and 8 weeks along with a clinical assessment, including Hamilton Depression Rating Scale and Snaith-Hamilton Pleasure Scale. Results: Brain-derived neurotrophic factor serum concentration increased after agomelatine treatment. Responders showed a significant increase in brain-derived neurotrophic factor levels after 2 weeks of agomelatine treatment; no difference was observed in nonresponders. Linear regression analysis showed that more prominent brain-derived neurotrophic factor level variation was associated with lower baseline BDNF levels and greater anhedonic features at baseline. Conclusions: Patients affected by depressive disorders showed an increase of brain-derived neurotrophic factor serum concentration after a 2-week treatment with agomelatine. The increase of brain-derived neurotrophic factor levels was found to be greater in patients with lower brain-derived neurotrophic factor levels and marked anhedonia at baseline. PMID:26775293

  2. A common polymorphism in the brain-derived neurotrophic factor gene (BDNF) modulates human cortical plasticity and the response to rTMS.

    PubMed

    Cheeran, Binith; Talelli, Penelope; Mori, Francesco; Koch, Giacomo; Suppa, Antonio; Edwards, Mark; Houlden, Henry; Bhatia, Kailash; Greenwood, Richard; Rothwell, John C

    2008-12-01

    The brain-derived neurotrophic factor gene (BDNF) is one of many genes thought to influence synaptic plasticity in the adult brain and shows a common single nucleotide polymorphism (BDNF Val66Met) in the normal population that is associated with differences in hippocampal volume and episodic memory. It is also thought to influence possible synaptic changes in motor cortex following a simple motor learning task. Here we extend these studies by using new non-invasive transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (TDCS) techniques that directly test the excitability and plasticity of neuronal circuits in human motor cortex in subjects at rest. We investigated whether the susceptibility to TMS probes of plasticity is significantly influenced by the BDNF polymorphism. Val66Met carriers were matched with Val66Val individuals and tested on the following protocols: continuous and intermittent theta burst TMS; median nerve paired associative stimulation; and homeostatic plasticity in the TDCS/1 Hz rTMS model. The response of Met allele carriers differed significantly in all protocols compared with the response of Val66Val individuals. We suggest that this is due to the effect of BNDF on the susceptibility of synapses to undergo LTP/LTD. The circuits tested here are implicated in the pathophysiology of movement disorders such as dystonia and are being assessed as potential new targets in the treatment of stroke. Thus the polymorphism may be one factor that influences the natural response of the brain to injury and disease.

  3. Resilience to chronic stress is mediated by hippocampal brain-derived neurotrophic factor.

    PubMed

    Taliaz, Dekel; Loya, Assaf; Gersner, Roman; Haramati, Sharon; Chen, Alon; Zangen, Abraham

    2011-03-23

    Chronic stress is a trigger for several psychiatric disorders, including depression; however, critical individual differences in resilience to both the behavioral and the neurochemical effects of stress have been reported. A prominent mechanism by which the brain reacts to acute and chronic stress is activation of the hypothalamic-pituitary-adrenal (HPA) axis, which is inhibited by the hippocampus via a polysynaptic circuit. Alterations in secretion of stress hormones and levels of brain-derived neurotrophic factor (BDNF) in the hippocampus were implicated in depression and the effects of antidepressant medications. However, the potential role of hippocampal BDNF in behavioral resilience to chronic stress and in the regulation of the HPA axis has not been evaluated. In the present study, Sprague Dawley rats were subjected to 4 weeks of chronic mild stress (CMS) to induce depressive-like behaviors after lentiviral vectors were used to induce localized BDNF overexpression or knockdown in the hippocampus. The behavioral outcome was measured during 3 weeks after the CMS procedure, then plasma samples were taken for measurements of corticosterone levels, and finally hippocampal tissue was taken for BDNF measurements. We found that hippocampal BDNF expression plays a critical role in resilience to chronic stress and that reduction of hippocampal BDNF expression in young, but not adult, rats induces prolonged elevations in corticosterone secretion. The present study describes a mechanism for individual differences in responses to chronic stress and implicates hippocampal BDNF in the development of neural circuits that control adequate stress adaptations.

  4. Effect of childhood maltreatment and brain-derived neurotrophic factor on brain morphology

    PubMed Central

    Schmaal, Lianne; Jansen, Rick; Milaneschi, Yuri; Opmeer, Esther M.; Elzinga, Bernet M.; van der Wee, Nic J. A.; Veltman, Dick J.; Penninx, Brenda W. J. H.

    2016-01-01

    Childhood maltreatment (CM) has been associated with altered brain morphology, which may partly be due to a direct impact on neural growth, e.g. through the brain-derived neurotrophic factor (BDNF) pathway. Findings on CM, BDNF and brain volume are inconsistent and have never accounted for the entire BDNF pathway. We examined the effects of CM, BDNF (genotype, gene expression and protein level) and their interactions on hippocampus, amygdala and anterior cingulate cortex (ACC) morphology. Data were collected from patients with depression and/or an anxiety disorder and healthy subjects within the Netherlands Study of Depression and Anxiety (NESDA) (N = 289). CM was assessed using the Childhood Trauma Interview. BDNF Val66Met genotype, gene expression and serum protein levels were determined in blood and T1 MRI scans were acquired at 3T. Regional brain morphology was assessed using FreeSurfer. Covariate-adjusted linear regression analyses were performed. Amygdala volume was lower in maltreated individuals. This was more pronounced in maltreated met-allele carriers. The expected positive relationship between BDNF gene expression and volume of the amygdala is attenuated in maltreated subjects. Finally, decreased cortical thickness of the ACC was identified in maltreated subjects with the val/val genotype. CM was associated with altered brain morphology, partly in interaction with multiple levels of the BNDF pathway. Our results suggest that CM has different effects on brain morphology in met-carriers and val-homozygotes and that CM may disrupt the neuroprotective effect of BDNF. PMID:27405617

  5. Immunolocalization of ciliary neurotrophic factor receptor alpha (CNTFRalpha) in mammalian photoreceptor cells.

    PubMed

    Beltran, William A; Rohrer, Hermann; Aguirre, Gustavo D

    2005-04-01

    To characterize the site of expression of the alpha subunit of the receptor for ciliary neurotrophic factor (CNTFRalpha) in the retina of a variety of mammalian species, and determine whether CNTFRalpha is localized to photoreceptor cells. The cellular distribution of CNTFRalpha(protein) was examined by immunocytochemistry in the adult retinas of several mammalian species that included mouse, rat, dog, cat, sheep, pig, horse, monkey, and human. Developing retinas from 3-day-old and 6-day-old rats were also included in this study. The molecular weight of CNTFRalpha in rat, dog, cat, pig, and human retinas was determined by immunoblotting. CNTFRalpha immunolabeling was present in the retina of all species. A common pattern was observed in all species, and represented labeling of the nerve fiber layer (NFL), ganglion cell layer (GCL), inner plexiform layer (IPL), inner nuclear layer (INL), and outer plexiform layer (OPL). CNTFRalpha did not immunolocalize to photoreceptor cells in both adult and developing rodent retinas, but was consistently observed in both rods and cones of non-rodent species. The molecular weight of CNTFRalpha in mammalian retinas was approximately 61-64 kDa. These findings highlight a significant difference in the expression of CNTFRalpha in the retina of rodent and non-rodent mammalian species. The expression of CNTFRalpha by rods and cones in non-rodent species may suggest a direct mechanism of action if CNTF administration results in photoreceptor rescue.

  6. Norrin mediates neuroprotective effects on retinal ganglion cells via activation of the Wnt/beta-catenin signaling pathway and the induction of neuroprotective growth factors in Muller cells.

    PubMed

    Seitz, Roswitha; Hackl, Simon; Seibuchner, Thomas; Tamm, Ernst R; Ohlmann, Andreas

    2010-04-28

    Norrin is a secreted protein that binds to frizzled 4 and controls development of capillaries in retina and inner ear. We provide evidence that Norrin has distinct neuroprotective properties that are independent from its effects on vascular development. The function of Norrin was investigated in a mouse model of excitotoxic retinal ganglion cell (RGC) damage after intravitreal injection of NMDA, and in cultured Müller glia or immortalized RGC-5 cells. Intravitreal injection of Norrin significantly increased the number of surviving RGC axons in the optic nerve and decreased apoptotic death of retinal neurons following NMDA-mediated damage. This effect could be blocked by adding dickkopf (DKK)-1, an inhibitor of the Wnt/beta-catenin signaling pathway. Treatment of eyes with combined Norrin/NMDA activated Wnt/beta-catenin signaling and increased the retinal expression of leukemia inhibitory factor and endothelin-2, as well as that of neurotrophic growth factors such as fibroblast growth factor-2, brain-derived neurotrophic factor, lens epithelium-derived growth factor, and ciliary neurotrophic factor. A similar activation of Wnt/beta-catenin signaling and an increased expression of neurotrophic factors was observed in cultured Müller cells after treatment with Norrin, effects that again could be blocked by adding DKK-1. In addition, conditioned cell culture medium of Norrin-treated Müller cells increased survival of differentiated RGC-5 cells. We conclude that Norrin has pronounced neuroprotective properties on retinal neurons with the distinct potential to decrease the damaging effects of NMDA-induced RGC loss. The effects of Norrin involve activation of Wnt/beta-catenin signaling and subsequent induction of neurotrophic growth factors in Müller cells.

  7. Brain-derived neurotrophic factor Val66met polymorphism and plasma levels in road traffic accident survivors.

    PubMed

    van den Heuvel, Leigh; Suliman, Sharain; Malan-Müller, Stefanie; Hemmings, Sian; Seedat, Soraya

    2016-11-01

    Alterations in brain-derived neurotrophic factor (BDNF) expression and release may play a role in the pathogenesis of post-traumatic stress disorder (PTSD). This study evaluated road traffic accident (RTA) survivors to determine whether PTSD and trauma-related factors were associated with plasma BDNF levels and BDNF Val66Met carrier status following RTA exposure. One hundred and twenty-three RTA survivors (mean age 33.2 years, SD = 10.6 years; 56.9% male) were assessed 10 (SD = 4.9) days after RTA exposure. Acute stress disorder (ASD), as assessed with the Acute Stress Disorder Scale, was present in 50 (42.0%) of the participants. Plasma BDNF levels were measured with enzyme-linked immunosorbent assay and BDNF Val66Met genotyping was performed. PTSD, as assessed with the Clinician-Administered PTSD Scale, was present in 10 (10.8%) participants at 6 months follow-up. Neither BDNF Val66Met genotype nor plasma BDNF was significantly associated with the presence or severity of ASD or PTSD. Plasma BDNF levels were, however, significantly correlated with the lifetime number of trauma exposures. In RTA survivors, plasma BDNF levels increased with increasing number of prior trauma exposures. Plasma BDNF may, therefore, be a marker of trauma load.

  8. Determinants of brain-derived neurotrophic factor (BDNF) in umbilical cord and maternal serum.

    PubMed

    Flöck, A; Weber, S K; Ferrari, N; Fietz, C; Graf, C; Fimmers, R; Gembruch, U; Merz, W M

    2016-01-01

    Brain-derived neurotrophic factor (BDNF) plays a fundamental role in brain development; additionally, it is involved in various aspects of cerebral function, including neurodegenerative and psychiatric diseases. Involvement of BDNF in parturition has not been investigated. The aim of our study was to analyze determinants of umbilical cord BDNF (UC-BDNF) concentrations of healthy, term newborns and their respective mothers. This cross-sectional prospective study was performed at a tertiary referral center. Maternal venous blood samples were taken on admission to labor ward; newborn venous blood samples were drawn from the umbilical cord (UC), before delivery of the placenta. Analysis was performed with a commercially available immunoassay. Univariate analyses and stepwise multivariate regression models were applied. 120 patients were recruited. UC-BDNF levels were lower than maternal serum concentrations (median 641 ng/mL, IQR 506 vs. median 780 ng/mL, IQR 602). Correlation between UC- and maternal BDNF was low (R=0.251, p=0.01). In univariate analysis, mode of delivery (MoD), gestational age (GA), body mass index at delivery, and gestational diabetes were determinants of UC-BDNF (MoD and smoking for maternal BDNF, respectively). Stepwise multivariate regression analysis revealed a model with MoD and GA as determinants for UC-BDNF (MoD for maternal BDNF). MoD and GA at delivery are determinants of circulating BDNF in the mother and newborn. We hypothesize that BDNF, like other neuroendocrine factors, is involved in the neuroendocrine cascade of delivery. Timing and mode of delivery may exert BDNF-induced effects on the cerebral function of newborns and their mothers. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. The canonical nuclear factor-κB pathway regulates cell survival in a developmental model of spinal cord motoneurons.

    PubMed

    Mincheva, Stefka; Garcera, Ana; Gou-Fabregas, Myriam; Encinas, Mario; Dolcet, Xavier; Soler, Rosa M

    2011-04-27

    In vivo and in vitro motoneuron survival depends on the support of neurotrophic factors. These factors activate signaling pathways related to cell survival or inactivate proteins involved in neuronal death. In the present work, we analyzed the involvement of the nuclear factor-κB (NF-κB) pathway in mediating mouse spinal cord motoneuron survival promoted by neurotrophic factors. This pathway comprises ubiquitously expressed transcription factors that could be activated by two different routes: the canonical pathway, associated with IKKα/IKKβ kinase phosphorylation and nuclear translocation RelA (p65)/p50 transcription factors; and the noncanonical pathway, related to IKKα kinase homodimer phosphorylation and RelB/p52 transcription factor activation. In our system, we show that neurotrophic factors treatment induced IKKα and IKKβ phosphorylation and RelA nuclear translocation, suggesting NF-κB pathway activation. Protein levels of different members of the canonical or noncanonical pathways were reduced in a primary culture of isolated embryonic motoneurons using an interference RNA approach. Even in the presence of neurotrophic factors, selective reduction of IKKα, IKKβ, or RelA proteins induced cell death. In contrast, RelB protein reduction did not have a negative effect on motoneuron survival. Together these results demonstrated that the canonical NF-κB pathway mediates motoneuron survival induced by neurotrophic factors, and the noncanonical pathway is not related to this survival effect. Canonical NF-κB blockade induced an increase of Bim protein level and apoptotic cell death. Bcl-x(L) overexpression or Bax reduction counteracted this apoptotic effect. Finally, RelA knockdown causes changes of CREB and Smn protein levels.

  10. Explore the Features of Brain-Derived Neurotrophic Factor in Mood Disorders

    PubMed Central

    Yeh, Fan-Chi; Kao, Chung-Feng; Kuo, Po-Hsiu

    2015-01-01

    Objectives Brain-derived neurotrophic factor (BDNF) plays important roles in neuronal survival and differentiation; however, the effects of BDNF on mood disorders remain unclear. We investigated BDNF from the perspective of various aspects of systems biology, including its molecular evolution, genomic studies, protein functions, and pathway analysis. Methods We conducted analyses examining sequences, multiple alignments, phylogenetic trees and positive selection across 12 species and several human populations. We summarized the results of previous genomic and functional studies of pro-BDNF and mature-BDNF (m-BDNF) found in a literature review. We identified proteins that interact with BDNF and performed pathway-based analysis using large genome-wide association (GWA) datasets obtained for mood disorders. Results BDNF is encoded by a highly conserved gene. The chordate BDNF genes exhibit an average of 75% identity with the human gene, while vertebrate orthologues are 85.9%-100% identical to human BDNF. No signs of recent positive selection were found. Associations between BDNF and mood disorders were not significant in most of the genomic studies (e.g., linkage, association, gene expression, GWA), while relationships between serum/plasma BDNF level and mood disorders were consistently reported. Pro-BDNF is important in the response to stress; the literature review suggests the necessity of studying both pro- and m-BDNF with regard to mood disorders. In addition to conventional pathway analysis, we further considered proteins that interact with BDNF (I-Genes) and identified several biological pathways involved with BDNF or I-Genes to be significantly associated with mood disorders. Conclusions Systematically examining the features and biological pathways of BDNF may provide opportunities to deepen our understanding of the mechanisms underlying mood disorders. PMID:26091093

  11. The Three-Dimensional Culture System with Matrigel and Neurotrophic Factors Preserves the Structure and Function of Spiral Ganglion Neuron In Vitro.

    PubMed

    Sun, Gaoying; Liu, Wenwen; Fan, Zhaomin; Zhang, Daogong; Han, Yuechen; Xu, Lei; Qi, Jieyu; Zhang, Shasha; Gao, Bradley T; Bai, Xiaohui; Li, Jianfeng; Chai, Renjie; Wang, Haibo

    2016-01-01

    Whole organ culture of the spiral ganglion region is a resourceful model system facilitating manipulation and analysis of live sprial ganglion neurons (SGNs). Three-dimensional (3D) cultures have been demonstrated to have many biomedical applications, but the effect of 3D culture in maintaining the SGNs structure and function in explant culture remains uninvestigated. In this study, we used the matrigel to encapsulate the spiral ganglion region isolated from neonatal mice. First, we optimized the matrigel concentration for the 3D culture system and found the 3D culture system protected the SGNs against apoptosis, preserved the structure of spiral ganglion region, and promoted the sprouting and outgrowth of SGNs neurites. Next, we found the 3D culture system promoted growth cone growth as evidenced by a higher average number and a longer average length of filopodia and a larger growth cone area. 3D culture system also significantly elevated the synapse density of SGNs. Last, we found that the 3D culture system combined with neurotrophic factors had accumulated effects in promoting the neurites outgrowth compared with 3D culture or NFs treatment only groups. Together, we conclude that the 3D culture system preserves the structure and function of SGN in explant culture.

  12. Different levels of brain-derived neurotrophic factor and cortisol in healthy heavy smokers.

    PubMed

    Neves, C D C; Lacerda, A C R; Lima, L P; Lage, V K S; Balthazar, C H; Leite, H R; Mendonça, V A

    2017-10-19

    Studies suggest that brain-derived neurotrophic factor (BDNF) and the hypothalamic-pituitary-adrenal (HPA) axis modulate dopaminergic activity in response to nicotine and that the concentrations of BDNF and cortisol seem to be dependent on the amount and duration of smoking. Therefore, we investigated BDNF and cortisol levels in smokers ranked by daily cigarette consumption. Twenty-seven adult males (13 non-smokers and 14 smokers) participated in the study. The smokers were divided in two groups: light (n=7) and heavy smokers (n=7). Anthropometric parameters and age were paired between the groups, and plasma BDNF and salivary cortisol levels were measured. Saliva samples were collected on awakening, 30 min after awakening, at 10:00 and 12:00 am, 5:00 and 10:00 pm. Additionally, cotinine serum levels were measured in smokers. Heavy smokers had higher mean values of BDNF compared to the control group (P=0.01), whereas no difference was observed in light smokers. Moreover, heavy smokers presented lower cortisol levels in the last collection (10:00 pm) than the control group (P=0.02) and presented statically higher values of cotinine than the light smokers (P=0.002). In conclusion, changes in BDNF and cortisol levels (10:00 pm) appear to be dependent on heavy cigarette smoking and can be involved in activation and in the relationship between the mesolimbic system and the HPA axis.

  13. Different levels of brain-derived neurotrophic factor and cortisol in healthy heavy smokers

    PubMed Central

    Neves, C.D.C.; Lacerda, A.C.R.; Lima, L.P.; Lage, V.K.S.; Balthazar, C.H.; Leite, H.R.; Mendonça, V.A.

    2017-01-01

    Studies suggest that brain-derived neurotrophic factor (BDNF) and the hypothalamic-pituitary-adrenal (HPA) axis modulate dopaminergic activity in response to nicotine and that the concentrations of BDNF and cortisol seem to be dependent on the amount and duration of smoking. Therefore, we investigated BDNF and cortisol levels in smokers ranked by daily cigarette consumption. Twenty-seven adult males (13 non-smokers and 14 smokers) participated in the study. The smokers were divided in two groups: light (n=7) and heavy smokers (n=7). Anthropometric parameters and age were paired between the groups, and plasma BDNF and salivary cortisol levels were measured. Saliva samples were collected on awakening, 30 min after awakening, at 10:00 and 12:00 am, 5:00 and 10:00 pm. Additionally, cotinine serum levels were measured in smokers. Heavy smokers had higher mean values of BDNF compared to the control group (P=0.01), whereas no difference was observed in light smokers. Moreover, heavy smokers presented lower cortisol levels in the last collection (10:00 pm) than the control group (P=0.02) and presented statically higher values of cotinine than the light smokers (P=0.002). In conclusion, changes in BDNF and cortisol levels (10:00 pm) appear to be dependent on heavy cigarette smoking and can be involved in activation and in the relationship between the mesolimbic system and the HPA axis. PMID:29069228

  14. Brain-Derived Neurotrophic Factor Serum Levels and Hippocampal Volume in Mild Cognitive Impairment and Dementia due to Alzheimer Disease

    PubMed Central

    Borba, Ericksen Mielle; Duarte, Juliana Avila; Bristot, Giovana; Scotton, Ellen; Camozzato, Ana Luiza; Chaves, Márcia Lorena Fagundes

    2016-01-01

    Background/Aims Hippocampal atrophy is a recognized biomarker of Alzheimer disease (AD) pathology. Serum brain-derived neurotrophic factor (BDNF) reduction has been associated with neurodegeneration. We aimed to evaluate BDNF serum levels and hippocampal volume in clinical AD (dementia and mild cognitive impairment [MCI]). Methods Participants were 10 patients with MCI and 13 with dementia due to AD as well as 10 healthy controls. BDNF serum levels were determined by ELISA and volumetric measures with NeuroQuant®. Results MCI and dementia patients presented lower BDNF serum levels than healthy participants; dementia patients presented a smaller hippocampal volume than MCI patients and healthy participants. Discussion The findings support that the decrease in BDNF might start before the establishment of neuronal injury expressed by the hippocampal reduction. PMID:28101102

  15. Autologous epidermal cells can induce wound closure of neurotrophic ulceration caused by trigeminal trophic syndrome.

    PubMed

    Schwerdtner, O; Damaskos, T; Kage, A; Weitzel-Kage, D; Klein, M

    2005-06-01

    Trigeminal trophic syndrome is an extremely rare complication following surgical ablation of the trigeminal nerve or after alcohol injection or thermocoagulation of the Gasserian ganglion. These lesions show a poor healing tendency and sometimes persist for years. The therapeutic results of local wound care with ointments and wound dressings are often unsatisfactory, and those of plastic surgery are variable. In the case presented, the skin area affected by neurotrophic ulceration is successfully treated with autologous cultivated epidermal cells. This form of tissue engineering is already a clinically established procedure for treating burns and chronic wounds. The results show for the first time that transplantation of in vitro cultivated epidermal cells can induce tissue regeneration and may be an effective tool in the treatment of neurotrophic ulcerations in the facial region.

  16. Over-expression of brain-derived neurotrophic factor in mesenchymal stem cells transfected with recombinant lentivirus BDNF gene.

    PubMed

    Zhang, X; Zhu, J; Zhang, K; Liu, T; Zhang, Z

    2016-12-30

    This study was aimed at investigating the expression of brain-derived neurotrophic factor (BDNF) in mesenchymal stem cells (MSCs) modified with recombinant lentivirus bearing BDNF gene. Lentivirus vectors bearing BDNF gene were constructed. MSCs were isolated from rats and cultured. The lentiviral vectors containing BDNF gene were transfected into the MSCs, and BDNF gene and protein expressions were monitored with enhanced green fluorescent protein (EGFP). RT-PCR and Western blot were used to measure gene and protein expressions, respectibvely in MSCs, MSCs-EGFP and MSCs-EGFP-BDNF groups. Green fluorescence assay confirmed successful transfection of BDNF gene recombinant lentivirus into MSCs. RT-PCR and Western blot revealed that BDNF gene and protein expressions in the MSCs-EGFP-BDNF group were significantly higher than that in MSCs group and MSCs-EGFP group. There were no statistically significant differences in gene expression between MSCs and MSCs-EGFP groups. MSCs can over-express BDNF when transfected with recombinant lentivirus bearing BDNF gene.

  17. Ketamine impairs recognition memory consolidation and prevents learning-induced increase in hippocampal brain-derived neurotrophic factor levels.

    PubMed

    Goulart, B K; de Lima, M N M; de Farias, C B; Reolon, G K; Almeida, V R; Quevedo, J; Kapczinski, F; Schröder, N; Roesler, R

    2010-06-02

    The non-competitive N-methyl-d-aspartate (NMDA) glutamate receptor antagonist ketamine has been shown to produce cognitive deficits. However, the effects of ketamine on the consolidation phase of memory remain poorly characterized. Here we show that systemic administration of ketamine immediately after training dose-dependently impairs long-term retention of memory for a novel object recognition (NOR) task in rats. Control experiments showed that the impairing effects of ketamine could not be attributed to an influence on memory retrieval or sensorimotor effects. In addition, ketamine prevented the increase in hippocampal brain-derived neurotrophic factor (BDNF) levels induced by NOR learning. Our results show for the first time that ketamine disrupts the consolidation phase of long-term recognition memory. In addition, the findings suggest that the amnestic effects of ketamine might be at least partially mediated by an influence on BDNF signaling in the hippocampus. Copyright 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

  18. No effect of escitalopram versus placebo on brain-derived neurotrophic factor in healthy individuals: a randomised trial.

    PubMed

    Knorr, Ulla; Koefoed, Pernille; Soendergaard, Mia H Greisen; Vinberg, Maj; Gether, Ulrik; Gluud, Christian; Wetterslev, Jørn; Winkel, Per; Kessing, Lars V

    2016-04-01

    Brain-derived neurotrophic factor (BDNF) seems to play an important role in the course of depression including the response to antidepressants in patients with depression. We aimed to study the effect of an antidepressant intervention on peripheral BDNF in healthy individuals with a family history of depression. We measured changes in BDNF messenger RNA (mRNA) expression and whole-blood BDNF levels in 80 healthy first-degree relatives of patients with depression randomly allocated to receive daily tablets of escitalopram 10 mg versus placebo for 4 weeks. We found no statistically significant difference between the escitalopram and the placebo group in the change in BDNF mRNA expression and whole-blood BDNF levels. Post hoc analyses showed a statistically significant negative correlation between plasma escitalopram concentration and change in whole-blood BDNF levels in the escitalopram-treated group. The results of this randomised trial suggest that escitalopram 10 mg has no effect on peripheral BDNF levels in healthy individuals.

  19. Effect of co-administration of memantine and sertraline on the antidepressant-like activity and brain-derived neurotrophic factor (BDNF) levels in the rat brain.

    PubMed

    Amidfar, Meysam; Réus, Gislaine Z; Quevedo, João; Kim, Yong-Ku; Arbabi, Mohammad

    2017-01-01

    A developing body of data has drawn attention to the N-methyl-d-aspartate (NMDA) receptor antagonists as potential drugs for the treatment of major depressive disorder (MDD). We investigated the possibility of synergistic interactions between the antidepressant sertraline with the uncompetitive NMDA receptor antagonist, memantine. The present study was aimed to evaluate behavioural and molecular effects of the chronic treatment with memantine and sertraline alone or in combination in rats. To this aim, rats were chronically treated with memantine (2.5 and 5mg/kg) and sertraline (5mg/kg) for 14days once a day, and then exposed to the forced swimming test. The brain-derived neurotrophic factor (BDNF) levels were assessed in the hippocampus and prefrontal cortex in all groups by ELISA sandwich assay. Sertraline and memantine (2.5mg/kg) alone did not have effect on the immobility time; however, the effect of sertraline was enhanced by both doses of memantine. Combined treatment with memantine and sertraline produced stronger increases in the BDNF protein levels in the hippocampus and prefrontal cortex. Our results indicate that co-administration of antidepressant memantine with sertraline may induce a more pronounced antidepressant activity than treatment with each antidepressant alone. Antidepressant properties using the combination of memantine and sertraline could be attributed to increased levels of BDNF. This finding may be of particular importance in the case of drug-resistant patients and could suggest a method of obtaining significant antidepressant actions whereas limiting side effects. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Curcumin produces neuroprotective effects via activating brain-derived neurotrophic factor/TrkB-dependent MAPK and PI-3K cascades in rodent cortical neurons.

    PubMed

    Wang, Rui; Li, Yu-Hua; Xu, Ying; Li, Ying-Bo; Wu, Hong-Li; Guo, Hao; Zhang, Jian-Zhao; Zhang, Jing-Jie; Pan, Xue-Yang; Li, Xue-Jun

    2010-02-01

    Curcumin is a major constituent of curcuma longa, a traditional medicine used to manage mental disorders effectively in China. The neuroprotective effects of curcumin have been demonstrated in our previous studies. In the present research, we confirmed this effect by showing that curcumin application promoted the viability of cultured rodent cortical neurons. Moreover, when neurons were pretreated with tyrosine kinase B (TrkB) antibody, known to inhibit the activity of brain-derived neurotrophic factor (BDNF), the protective effect of curcumin was blocked. Additionally, treatment of curcumin increased BDNF and phosphor-TrkB and both of these enhancements can be suppressed by ERK and PI-3K inhibitors. The administration of curcumin led to increased levels of phosphor-ERK and AKT, which were each blocked by MAPK and PI-3K inhibitors. Furthermore, the curcumin-induced increase in phosphorylated cyclic AMP response element binding protein (CREB), which has been implicated as a possible mediator of antidepressant actions, was prevented by MAPK and PI-3K inhibitors. Therefore, we hypothesize the neuroprotection of curcumin might be mediated via BDNF/TrkB-MAPK/PI-3K-CREB signaling pathway. Copyright 2009. Published by Elsevier Inc.

  1. [Clinical efficacy of mouse nerve growth factor in treatment of occupational hand-arm vibration disease].

    PubMed

    Fan, Chunyue; Wang, Yanyan; Zhang, Ying; Lang, Li; Deng, Xiaofeng; Cheng, Ying

    2014-12-01

    To investigate the efficacy of mouse nerve growth factor (mNGF) in treating occupational hand-arm vibration disease (HAVD). Sixty-four patients with HAVD were equally and randomly divided into treatment group and control group. The control group was given Salvia miltiorrhiza Bunge and deproteinized extract of calf blood to improve circulation, and also given methylcobalamin tablets and vitamin B6 for neurotrophic treatment. In addition to the above treatments for the control group, the treatment group was also given 30 µg/d mNGF by intramuscular injection for two courses (4 weeks for each course) with a 15-day interval. Both the treatment group and the control group showed significant improvements in clinical symptoms and signs (hand numbness and pain, and reduced senses of touch, pain, and vibration), cold water loading test (CWLT), and electroneuromyography (ENMG) after treatments (P < 0.05). And the treatment group had significantly more improvements than the control group (P < 0.05). mNGF can significantly improve hand numbness and pain, reduced senses of touch, pain, and vibration, CWLT, and ENMG, so it has better clinical effect and safety in treating HAVD. Early diagnosis and treatment can improve the outcome of patients with HAVD.

  2. Gene Transfer of Brain-derived Neurotrophic Factor (BDNF) Prevents Neurodegeneration Triggered by FXN Deficiency.

    PubMed

    Katsu-Jiménez, Yurika; Loría, Frida; Corona, Juan Carlos; Díaz-Nido, Javier

    2016-05-01

    Friedreich's ataxia is a predominantly neurodegenerative disease caused by recessive mutations that produce a deficiency of frataxin (FXN). Here, we have used a herpesviral amplicon vector carrying a gene encoding for brain-derived neurotrophic factor (BDNF) to drive its overexpression in neuronal cells and test for its effect on FXN-deficient neurons both in culture and in the mouse cerebellum in vivo. Gene transfer of BDNF to primary cultures of mouse neurons prevents the apoptosis which is triggered by the knockdown of FXN gene expression. This neuroprotective effect of BDNF is also observed in vivo in a viral vector-based knockdown mouse cerebellar model. The injection of a lentiviral vector carrying a minigene encoding for a FXN-specific short hairpin ribonucleic acid (shRNA) into the mouse cerebellar cortex triggers a FXN deficit which is accompanied by significant apoptosis of granule neurons as well as loss of calbindin in Purkinje cells. These pathological changes are accompanied by a loss of motor coordination of mice as assayed by the rota-rod test. Coinjection of a herpesviral vector encoding for BDNF efficiently prevents both the development of cerebellar neuropathology and the ataxic phenotype. These data demonstrate the potential therapeutic usefulness of neurotrophins like BDNF to protect FXN-deficient neurons from degeneration.

  3. Pro-region engineering for improved yeast display and secretion of brain derived neurotrophic factor.

    PubMed

    Burns, Michael L; Malott, Thomas M; Metcalf, Kevin J; Puguh, Arthya; Chan, Jonah R; Shusta, Eric V

    2016-03-01

    Brain derived neurotrophic factor (BDNF) is a promising therapeutic candidate for a variety of neurological diseases. However, it is difficult to produce as a recombinant protein. In its native mammalian context, BDNF is first produced as a pro-protein with subsequent proteolytic removal of the pro-region to yield mature BDNF protein. Therefore, in an attempt to improve yeast as a host for heterologous BDNF production, the BDNF pro-region was first evaluated for its effects on BDNF surface display and secretion. Addition of the wild-type pro-region to yeast BDNF production constructs improved BDNF folding both as a surface-displayed and secreted protein in terms of binding its natural receptors TrkB and p75, but titers remained low. Looking to further enhance the chaperone-like functions provided by the pro-region, two rounds of directed evolution were performed, yielding mutated pro-regions that further improved the display and secretion properties of BDNF. Subsequent optimization of the protease recognition site was used to control whether the produced protein was in pro- or mature BDNF forms. Taken together, we have demonstrated an effective strategy for improving BDNF compatibility with yeast protein engineering and secretion platforms. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Brain-derived neurotrophic factor promoter methylation and cortical thickness in recurrent major depressive disorder.

    PubMed

    Na, Kyoung-Sae; Won, Eunsoo; Kang, June; Chang, Hun Soo; Yoon, Ho-Kyoung; Tae, Woo Suk; Kim, Yong-Ku; Lee, Min-Soo; Joe, Sook-Haeng; Kim, Hyun; Ham, Byung-Joo

    2016-02-15

    Recent studies have reported that methylation of the brain-derived neurotrophic factor (BDNF) gene promoter is associated with major depressive disorder (MDD). This study aimed to investigate the association between cortical thickness and methylation of BDNF promoters as well as serum BDNF levels in MDD. The participants consisted of 65 patients with recurrent MDD and 65 age- and gender-matched healthy controls. Methylation of BDNF promoters and cortical thickness were compared between the groups. The right medial orbitofrontal, right lingual, right lateral occipital, left lateral orbitofrontal, left pars triangularis, and left lingual cortices were thinner in patients with MDD than in healthy controls. Among the MDD group, right pericalcarine, right medical orbitofrontal, right rostral middle frontal, right postcentral, right inferior temporal, right cuneus, right precuneus, left frontal pole, left superior frontal, left superior temporal, left rostral middle frontal and left lingual cortices had inverse correlations with methylation of BDNF promoters. Higher levels of BDNF promoter methylation may be closely associated with the reduced cortical thickness among patients with MDD. Serum BDNF levels were significantly lower in MDD, and showed an inverse relationship with BDNF methylation only in healthy controls. Particularly the prefrontal and occipital cortices seem to indicate key regions in which BDNF methylation has a significant effect on structure.

  5. Brain-derived neurotrophic factor improves proliferation of endometrial epithelial cells by inhibition of endoplasmic reticulum stress during early pregnancy.

    PubMed

    Lim, Whasun; Bae, Hyocheol; Bazer, Fuller W; Song, Gwonhwa

    2017-12-01

    Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophin family binds to two transmembrane receptors; neurotrophic receptor tyrosine kinase 2 (NTRK2) with high affinity and p75 with low affinity. Although BDNF-NTRK2 signaling in the central nervous system is known, signaling in the female reproductive system is unknown. Therefore, we determined effects of BDNF on porcine endometrial luminal epithelial (pLE) cells isolated from Day 12 of pregnancy, as well as expression of BDNF and NTRK2 in endometria of cyclic and pregnant pigs. BDNF-NTRK2 genes were expressed in uterine glandular (GE) and luminal (LE) epithelia during early pregnancy. In addition, their expression in uterine GE and LE decreased with increasing parity of sows. Recombinant BDNF increased proliferation in pLE cells in a dose-dependent, as well as expression of PCNA and Cyclin D1 in nuclei of pLE cells. BDNF also activated phosphorylation of AKT, P70S6K, S6, ERK1/2, JNK, P38 proteins in pLE cells. In addition, cell death resulting from tunicamycin-induced ER stress was prevented when pLE cells were treated with the combination of tunicamycin and BDNF which also decreased cells in the Sub-G 1 phase of the cell cycle. Furthermore, tunicamycin-induced unfolded protein response genes were mostly down-regulated to the basal levels as compared to non-treated pLE cells. Our finding suggests that BDNF acts via NTRK2 to induce development of pLE cells for maintenance of implantation and pregnancy by activating cell signaling via the PI3K and MAPK pathways and by inhibiting ER stress. © 2017 Wiley Periodicals, Inc.

  6. The brain-derived neurotrophic factor pathway, life stress, and chronic multi-site musculoskeletal pain.

    PubMed

    Generaal, Ellen; Milaneschi, Yuri; Jansen, Rick; Elzinga, Bernet M; Dekker, Joost; Penninx, Brenda W J H

    2016-01-01

    Brain-derived neurotrophic factor (BDNF) disturbances and life stress, both independently and in interaction, have been hypothesized to induce chronic pain. We examined whether (a) the BDNF pathway (val(66)met genotype, gene expression, and serum levels), (b) early and recent life stress, and (c) their interaction are associated with the presence and severity of chronic multi-site musculoskeletal pain. Cross-sectional data are from 1646 subjects of the Netherlands Study of Depression and Anxiety. The presence and severity of chronic multi-site musculoskeletal pain were determined using the Chronic Pain Grade (CPG) questionnaire. The BDNF val(66)met polymorphism, BDNF gene expression, and BDNF serum levels were measured. Early life stress before the age of 16 was assessed by calculating a childhood trauma index using the Childhood Trauma Interview. Recent life stress was assessed as the number of recent adverse life events using the List of Threatening Events Questionnaire. Compared to val(66)val, BDNF met carriers more often had chronic pain, whereas no differences were found for BDNF gene expression and serum levels. Higher levels of early and recent stress were both associated with the presence and severity of chronic pain (p < 0.001). No interaction effect was found for the BDNF pathway with life stress in the associations with chronic pain presence and severity. This study suggests that the BDNF gene marks vulnerability for chronic pain. Although life stress did not alter the impact of BDNF on chronic pain, it seems an independent factor in the onset and persistence of chronic pain. © The Author(s) 2016.

  7. Brain-derived neurotrophic factor as a regulator of systemic and brain energy metabolism and cardiovascular health

    PubMed Central

    Rothman, Sarah M; Griffioen, Kathleen J; Wan, Ruiqian; Mattson, Mark P

    2012-01-01

    Overweight sedentary individuals are at increased risk for cardiovascular disease, diabetes, and some neurological disorders. Beneficial effects of dietary energy restriction (DER) and exercise on brain structural plasticity and behaviors have been demonstrated in animal models of aging and acute (stroke and trauma) and chronic (Alzheimer's and Parkinson's diseases) neurological disorders. The findings described later, and evolutionary considerations, suggest brain-derived neurotrophic factor (BDNF) plays a critical role in the integration and optimization of behavioral and metabolic responses to environments with limited energy resources and intense competition. In particular, BDNF signaling mediates adaptive responses of the central, autonomic, and peripheral nervous systems from exercise and DER. In the hypothalamus, BDNF inhibits food intake and increases energy expenditure. By promoting synaptic plasticity and neurogenesis in the hippocampus, BDNF mediates exercise- and DER-induced improvements in cognitive function and neuroprotection. DER improves cardiovascular stress adaptation by a mechanism involving enhancement of brainstem cholinergic activity. Collectively, findings reviewed in this paper provide a rationale for targeting BDNF signaling for novel therapeutic interventions in a range of metabolic and neurological disorders. PMID:22548651

  8. Brain-derived neurotrophic factor (BDNF) and its precursor (proBDNF) in genetically defined fear-induced aggression.

    PubMed

    Ilchibaeva, Tatiana V; Kondaurova, Elena M; Tsybko, Anton S; Kozhemyakina, Rimma V; Popova, Nina K; Naumenko, Vladimir S

    2015-09-01

    The brain-derived neurotrophic factor (BDNF), its precursor (proBDNF) and BDNF mRNA levels were studied in the brain of wild rats selectively bred for more than 70 generations for either high level or for the lack of affective aggressiveness towards man. Significant increase of BDNF mRNA level in the frontal cortex and increase of BDNF level in the hippocampus of aggressive rats was revealed. In the midbrain and hippocampus of aggressive rats proBDNF level was increased, whereas BDNF/proBDNF ratio was reduced suggesting the prevalence and increased influence of proBDNF in highly aggressive rats. In the frontal cortex, proBDNF level in aggressive rats was decreased. Thus, considerable structure-specific differences in BDNF and proBDNF levels as well as in BDNF gene expression between highly aggressive and nonaggressive rats were shown. The data suggested the implication of BDNF and its precursor proBDNF in the mechanism of aggressiveness and in the creation of either aggressive or nonaggressive phenotype. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Collagen scaffolds combined with collagen-binding ciliary neurotrophic factor facilitate facial nerve repair in mini-pigs.

    PubMed

    Lu, Chao; Meng, Danqing; Cao, Jiani; Xiao, Zhifeng; Cui, Yi; Fan, Jingya; Cui, Xiaolong; Chen, Bing; Yao, Yao; Zhang, Zhen; Ma, Jinling; Pan, Juli; Dai, Jianwu

    2015-05-01

    The preclinical studies using animal models play a very important role in the evaluation of facial nerve regeneration. Good models need to recapitulate the distance and time for axons to regenerate in humans. Compared with the most used rodent animals, the structure of facial nerve in mini-pigs shares more similarities with humans in microanatomy. To evaluate the feasibility of repairing facial nerve defects by collagen scaffolds combined with ciliary neurotrophic factor (CNTF), 10-mm-long gaps were made in the buccal branch of mini-pigs' facial nerve. Three months after surgery, electrophysiological assessment and histological examination were performed to evaluate facial nerve regeneration. Immunohistochemistry and transmission electron microscope observation showed that collagen scaffolds with collagen binding (CBD)-CNTF could promote better axon regeneration, Schwann cell migration, and remyelination at the site of implant device than using scaffolds alone. Electrophysiological assessment also showed higher recovery rate in the CNTF group. In summary, combination of collagen scaffolds and CBD-CNTF showed promising effects on facial nerve regeneration in mini-pig models. © 2014 Wiley Periodicals, Inc.

  10. Differential Involvement of Brain-Derived Neurotrophic Factor in Reconsolidation and Consolidation of Conditioned Taste Aversion Memory

    PubMed Central

    Wang, Yue; Zhang, Tian-Yi; Xin, Jian; Li, Ting; Yu, Hui; Li, Na; Chen, Zhe-Yu

    2012-01-01

    Consolidated memory can re-enter states of transient instability following reactivation, which is referred to as reconsolidation, and the exact molecular mechanisms underlying this process remain unexplored. Brain-derived neurotrophic factor (BDNF) plays a critical role in synaptic plasticity and memory processes. We have recently observed that BDNF signaling in the central nuclei of the amygdala (CeA) and insular cortex (IC) was involved in the consolidation of conditioned taste aversion (CTA) memory. However, whether BDNF in the CeA or IC is required for memory reconsolidation is still unclear. In the present study, using a CTA memory paradigm, we observed increased BDNF expression in the IC but not in the CeA during CTA reconsolidation. We further determined that BDNF synthesis and signaling in the IC but not in the CeA was required for memory reconsolidation. The differential, spatial-specific roles of BDNF in memory consolidation and reconsolidation suggest that dissociative molecular mechanisms underlie reconsolidation and consolidation, which might provide novel targets for manipulating newly encoded and reactivated memories without causing universal amnesia. PMID:23185492

  11. Conserved and non-conserved characteristics of porcine glial cell line-derived neurotrophic factor expressed in the testis.

    PubMed

    Kakiuchi, Kazue; Taniguchi, Kazumi; Kubota, Hiroshi

    2018-05-16

    Glial cell line-derived neurotrophic factor (GDNF) is essential for the self-renewal and proliferation of spermatogonial stem cells (SSCs) in mice, rats, and rabbits. Although the key extrinsic factors essential for spermatogonial proliferation in other mammals have not been determined, GDNF is one of the potential candidates. In this study, we isolated porcine GDNF (pGDNF) cDNAs from neonatal testis and generated recombinant pGDNF to investigate its biological activity on gonocytes/undifferentiated spermatogonia, including SSCs. In porcine testis, long and short forms of GDNF transcripts, the counterparts of pre-(α)pro and pre-(β)pro GDNF identified in humans and rodents, were expressed. The two transcripts encode identical mature proteins. Recombinant pGDNF supported proliferation of murine SSCs in culture, and their stem cell activity was confirmed by a transplantation assay. Subsequently, porcine gonocytes/undifferentiated spermatogonia were cultured with pGDNF; however, pGDNF did not affect their proliferation. Furthermore, GDNF expression was localised to the vascular smooth muscle cells, and its cognate receptor GFRA1 expression was negligible during spermatogonial proliferation in the testes. These results indicate that although pGDNF retains structural similarity with those of other mammals and conserves the biological activity on the self-renewal of murine SSCs, porcine SSCs likely require extrinsic factors other than GDNF for their proliferation.

  12. Glial cell line-derived neurotrophic factor protects against high-fat diet-induced hepatic steatosis by suppressing hepatic PPAR-γ expression.

    PubMed

    Mwangi, Simon Musyoka; Peng, Sophia; Nezami, Behtash Ghazi; Thorn, Natalie; Farris, Alton B; Jain, Sanjay; Laroui, Hamed; Merlin, Didier; Anania, Frank; Srinivasan, Shanthi

    2016-01-15

    Glial cell line-derived neurotrophic factor (GDNF) protects against high-fat diet (HFD)-induced hepatic steatosis in mice, however, the mechanisms involved are not known. In this study we investigated the effects of GDNF overexpression and nanoparticle delivery of GDNF in mice on hepatic steatosis and fibrosis and the expression of genes involved in the regulation of hepatic lipid uptake and de novo lipogenesis. Transgenic overexpression of GDNF in liver and other metabolically active tissues was protective against HFD-induced hepatic steatosis. Mice overexpressing GDNF had significantly reduced P62/sequestosome 1 protein levels suggestive of accelerated autophagic clearance. They also had significantly reduced peroxisome proliferator-activated receptor-γ (PPAR-γ) and CD36 gene expression and protein levels, and lower expression of mRNA coding for enzymes involved in de novo lipogenesis. GDNF-loaded nanoparticles were protective against short-term HFD-induced hepatic steatosis and attenuated liver fibrosis in mice with long-standing HFD-induced hepatic steatosis. They also suppressed the liver expression of steatosis-associated genes. In vitro, GDNF suppressed triglyceride accumulation in Hep G2 cells through enhanced p38 mitogen-activated protein kinase-dependent signaling and inhibition of PPAR-γ gene promoter activity. These results show that GDNF acts directly in the liver to protect against HFD-induced cellular stress and that GDNF may have a role in the treatment of nonalcoholic fatty liver disease.

  13. Cross-sectional associations of objectively measured physical activity with brain-derived neurotrophic factor in adolescents.

    PubMed

    Huang, Tao; Gejl, Anne Kær; Tarp, Jakob; Andersen, Lars Bo; Peijs, Lone; Bugge, Anna

    2017-03-15

    The purpose of this study was to examine the associations between objectively measured physical activity and serum brain-derived neurotrophic factor (BDNF) in adolescents. Cross-sectional analyses were performed using data from 415 adolescents who participated in the 2015 follow-up of the Childhood Health Activity and Motor Performance School Study Denmark (the CHAMPS-study DK). Physical activity was objectively measured by accelerometry monitors. Serum BDNF levels were analyzed using the Enzyme-linked immunosorbent assay (ELISA). Anthropometrics and pubertal status were measured using standardized procedures. With adjustment for age, pubertal status and body mass index, mean physical activity (counts per minute) was negatively associated with serum BDNF in boys (P=0.013). Similarly, moderate-to-vigorous physical activity (MVPA) was negatively associated with serum BDNF in boys (P=0.035). In girls, mean physical activity and MVPA were not associated with serum BDNF. Without adjustment for wear time, sedentary time was not associated with serum BDNF in either sex. These findings indicate that higher physical activity is associated with lower serum BDNF in boys, but not in girls. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Effect of childhood maltreatment and brain-derived neurotrophic factor on brain morphology.

    PubMed

    van Velzen, Laura S; Schmaal, Lianne; Jansen, Rick; Milaneschi, Yuri; Opmeer, Esther M; Elzinga, Bernet M; van der Wee, Nic J A; Veltman, Dick J; Penninx, Brenda W J H

    2016-11-01

    Childhood maltreatment (CM) has been associated with altered brain morphology, which may partly be due to a direct impact on neural growth, e.g. through the brain-derived neurotrophic factor (BDNF) pathway. Findings on CM, BDNF and brain volume are inconsistent and have never accounted for the entire BDNF pathway. We examined the effects of CM, BDNF (genotype, gene expression and protein level) and their interactions on hippocampus, amygdala and anterior cingulate cortex (ACC) morphology. Data were collected from patients with depression and/or an anxiety disorder and healthy subjects within the Netherlands Study of Depression and Anxiety (NESDA) (N = 289). CM was assessed using the Childhood Trauma Interview. BDNF Val66Met genotype, gene expression and serum protein levels were determined in blood and T1 MRI scans were acquired at 3T. Regional brain morphology was assessed using FreeSurfer. Covariate-adjusted linear regression analyses were performed. Amygdala volume was lower in maltreated individuals. This was more pronounced in maltreated met-allele carriers. The expected positive relationship between BDNF gene expression and volume of the amygdala is attenuated in maltreated subjects. Finally, decreased cortical thickness of the ACC was identified in maltreated subjects with the val/val genotype. CM was associated with altered brain morphology, partly in interaction with multiple levels of the BNDF pathway. Our results suggest that CM has different effects on brain morphology in met-carriers and val-homozygotes and that CM may disrupt the neuroprotective effect of BDNF. © The Author (2016). Published by Oxford University Press.

  15. Correlates of early pregnancy serum brain-derived neurotrophic factor in a Peruvian population.

    PubMed

    Yang, Na; Levey, Elizabeth; Gelaye, Bizu; Zhong, Qiu-Yue; Rondon, Marta B; Sanchez, Sixto E; Williams, Michelle A

    2017-12-01

    Knowledge about factors that influence serum brain-derived neurotrophic factor (BDNF) concentrations during early pregnancy is lacking. The aim of the study is to examine the correlates of early pregnancy serum BDNF concentrations. A total of 982 women attending prenatal care clinics in Lima, Peru, were recruited in early pregnancy. Pearson's correlation coefficient was calculated to evaluate the relation between BDNF concentrations and continuous covariates. Analysis of variance and generalized linear models were used to compare the unadjusted and adjusted BDNF concentrations according to categorical variables. Multivariable linear regression models were applied to determine the factors that influence early pregnancy serum BDNF concentrations. In bivariate analysis, early pregnancy serum BDNF concentrations were positively associated with maternal age (r = 0.16, P < 0.001) and early pregnancy body mass index (BMI) (r = 0.17, P < 0.001), but inversely correlated with gestational age at sample collection (r = -0.21, P < 0.001) and C-reactive protein (CRP) concentrations (r = -0.07, P < 0.05). In the multivariable linear regression model, maternal age (β = 0.11, P = 0.001), early pregnancy BMI (β = 1.58, P < 0.001), gestational age at blood collection (β = -0.33, P < 0.001), and serum CRP concentrations (β = -0.57, P = 0.002) were significantly associated with early pregnancy serum BDNF concentrations. Participants with moderate antepartum depressive symptoms (Patient Health Questionnaire-9 (PHQ-9) score ≥ 10) had lower serum BDNF concentrations compared with participants with no/mild antepartum depressive symptoms (PHQ-9 score < 10). Maternal age, early pregnancy BMI, gestational age, and the presence of moderate antepartum depressive symptoms were statistically significantly associated with early pregnancy serum BDNF concentrations in low-income Peruvian women. Biological changes of CRP during pregnancy may affect serum

  16. Brain-derived neurotrophic factor (BDNF) Val66Met polymorphism interacts with gender to influence cortisol responses to mental stress.

    PubMed

    Jiang, Rong; Babyak, Michael A; Brummett, Beverly H; Siegler, Ilene C; Kuhn, Cynthia M; Williams, Redford B

    2017-05-01

    Brain-derived neurotrophic factor (BDNF) Val66Met polymorphism has been associated with cortisol responses to stress with gender differences reported, although the findings are not entirely consistent. To evaluate the role of Val66Met genotype and gender on cortisol responses to stress, we conducted a 45-min mental stress protocol including four tasks and four rest periods. Blood cortisol was collected for assay immediately before and after each task and rest period. A significant two-way interaction of Val66Met genotype×gender (P=0.022) was observed on the total area under the curve (AUC), a total cortisol response over time, such that the Val/Val genotype was associated with a larger cortisol response to stress as compared to the Met group in women but not in men. Further contrast analyses between the Val/Val and Met group for each stress task showed a similar increased cortisol pattern among women Val/Val genotype but not among men. The present findings indicate the gender differences in the effect of Val66Met genotype on the cortisol responses to stress protocol, and extend the evidence for the importance of gender and the role of Val66Met in the modulation of stress reactivity and subsequent depression prevalence. Further studies and the underlying mechanism need to be investigated, which may provide an insight for prevention, intervention, and treatment strategies that target those at high risk. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Brain-Derived Neurotrophic Factor (BDNF) Val66Met Polymorphism Interacts with Gender to Influence Cortisol Responses to Mental Stress

    PubMed Central

    Jiang, Rong; Babyak, Michael A.; Brummett, Beverly H.; Siegler, Ilene C.; Kuhn, Cynthia M.; Williams, Redford B.

    2017-01-01

    Brain-derived neurotrophic factor (BDNF) Val66Met polymorphism has been associated with cortisol responses to stress with gender differences reported, although the findings are not entirely consistent. To evaluate the role of Val66Met genotype and gender on cortisol responses to stress, we conducted a 45-min mental stress protocol including four tasks and four rest periods. Blood cortisol was collected for assay immediately before and after each task and rest period. A significant two-way interaction of Val66Met genotype × gender (P = 0.022) was observed on the total area under the curve (AUC), a total cortisol response over time, such that the Val/Val genotype was associated with a larger cortisol response to stress as compared to the Met group in women but not in men. Further contrast analyses between the Val/Val and Met group for each stress task showed a similar increased cortisol pattern among women Val/Val genotype but not among men. The present findings indicate the gender differences in the effect of Val66Met genotype on the cortisol responses to stress protocol, and extend the evidence for the importance of gender and the role of Val66Met in the modulation of stress reactivity and subsequent depression prevalence. Further studies and the underlying mechanism need to be investigated, which may provide an insight for prevention, intervention, and treatment strategies that target those at high risk. PMID:28249185

  18. Association of brain-derived neurotrophic factor (BDNF) Val66Met polymorphism with early-onset bipolar disorder.

    PubMed

    Nassan, Malik; Croarkin, Paul E; Luby, Joan L; Veldic, Marin; Joshi, Paramjit T; McElroy, Susan L; Post, Robert M; Walkup, John T; Cercy, Kelly; Geske, Jennifer R; Wagner, Karen D; Cuellar-Barboza, Alfredo B; Casuto, Leah; Lavebratt, Catharina; Schalling, Martin; Jensen, Peter S; Biernacka, Joanna M; Frye, Mark A

    2015-09-01

    Brain-derived neurotrophic factor (BDNF) Val66Met (rs6265) functional polymorphism has been implicated in early-onset bipolar disorder. However, results of studies are inconsistent. We aimed to further explore this association. DNA samples from the Treatment of Early Age Mania (TEAM) and Mayo Clinic Bipolar Disorder Biobank were investigated for association of rs6265 with early-onset bipolar disorder. Bipolar cases were classified as early onset if the first manic or depressive episode occurred at age ≤19 years (versus adult-onset cases at age >19 years). After quality control, 69 TEAM early-onset bipolar disorder cases, 725 Mayo Clinic bipolar disorder cases (including 189 early-onset cases), and 764 controls were included in the analysis of association, assessed with logistic regression assuming log-additive allele effects. Comparison of TEAM cases with controls suggested association of early-onset bipolar disorder with the rs6265 minor allele [odds ratio (OR) = 1.55, p = 0.04]. Although comparison of early-onset adult bipolar disorder cases from the Mayo Clinic versus controls was not statistically significant, the OR estimate indicated the same direction of effect (OR = 1.21, p = 0.19). When the early-onset TEAM and Mayo Clinic early-onset adult groups were combined and compared with the control group, the association of the minor allele rs6265 was statistically significant (OR = 1.30, p = 0.04). These preliminary analyses of a relatively small sample with early-onset bipolar disorder are suggestive that functional variation in BDNF is implicated in bipolar disorder risk and may have a more significant role in early-onset expression of the disorder. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Brain-derived neurotrophic factor modulates angiotensin signaling in the hypothalamus to increase blood pressure in rats

    PubMed Central

    Backes, Iara; McCowan, Michael L.; Hayward, Linda F.; Scheuer, Deborah A.

    2015-01-01

    Brain-derived neurotrophic factor (BDNF) expression increases in the paraventricular nucleus of the hypothalamus (PVN) in response to hypertensive stimuli including stress and hyperosmolarity. However, it is unclear whether BDNF in the PVN contributes to increases in blood pressure (BP). We tested the hypothesis that increased BDNF levels within the PVN would elevate baseline BP and heart rate (HR) and cardiovascular stress responses by altering central angiotensin signaling. BP was recorded using radiotelemetry in male Sprague-Dawley rats after bilateral PVN injections of adeno-associated viral vectors expressing green fluorescent protein (GFP) or myc epitope-tagged BDNF fusion protein. Cardiovascular responses to acute stress were evaluated 3 to 4 wk after injections. Additional GFP and BDNF-treated animals were equipped with osmotic pumps for intracerebroventricular infusion of saline or the angiotensin type-1 receptor (AT1R) inhibitor losartan (15 μg·0.5 μl−1·h−1). BDNF treatment significantly increased baseline BP (121 ± 3 mmHg vs. 99 ± 2 mmHg in GFP), HR (394 ± 9 beats/min vs. 314 ± 4 beats/min in GFP), and sympathetic tone indicated by HR- and BP-variability analysis and adrenomedullary tyrosine hydroxylase protein expression. In contrast, body weight and BP elevations to acute stressors decreased. BDNF upregulated AT1R mRNA by ∼80% and downregulated Mas receptor mRNA by ∼50% in the PVN, and losartan infusion partially inhibited weight loss and increases in BP and HR in BDNF-treated animals without any effect in GFP rats. Our results demonstrate that BDNF overexpression in the PVN results in sympathoexcitation, BP and HR elevations, and weight loss that are mediated, at least in part, by modulating angiotensin signaling in the PVN. PMID:25576628

  20. Maternal deprivation and adolescent cannabinoid exposure impact hippocampal astrocytes, CB1 receptors and brain-derived neurotrophic factor in a sexually dimorphic fashion.

    PubMed

    López-Gallardo, M; López-Rodríguez, A B; Llorente-Berzal, Á; Rotllant, D; Mackie, K; Armario, A; Nadal, R; Viveros, M-P

    2012-03-01

    We have recently reported that early maternal deprivation (MD) for 24 h [postnatal day (PND) 9-10] and/or an adolescent chronic treatment with the cannabinoid agonist CP-55,940 (CP) [0.4 mg/kg, PND 28-42] in Wistar rats induced, in adulthood, diverse sex-dependent long-term behavioral and physiological modifications. Here we show the results obtained from investigating the immunohistochemical analysis of CB1 cannabinoid receptors, glial fibrillary acidic protein (GFAP) positive (+) cells and brain-derived neurotrophic factor (BDNF) expression in the hippocampus of the same animals. MD induced, in males, a significant increase in the number of GFAP+ cells in CA1 and CA3 areas and in the polymorphic layer of the dentate gyrus (DG), an effect that was attenuated by CP in the two latter regions. Adolescent cannabinoid exposure induced, in control non-deprived males, a significant increase in the number of GFAP+ cells in the polymorphic layer of the DG. MD induced a decrease in CB1 expression in both sexes, and this effect was reversed in males by the cannabinoid treatment. In turn, the drug "per se" induced, in males, a general decrease in CB1 immunoreactivity, and the opposite effect was observed in females. Cannabinoid exposure tended to reduce BDNF expression in CA1 and CA3 of females, whereas MD counteracted this trend and induced an increase of BDNF in females. As a whole, the present results show sex-dependent long-term effects of both MD and juvenile cannabinoid exposure as well as functional interactions between the two treatments. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  1. MATERNAL DEPRIVATION AND ADOLESCENT CANNABINOID EXPOSURE IMPACT HIPPOCAMPAL ASTROCYTES, CB1 RECEPTORS AND BRAIN-DERIVED NEUROTROPHIC FACTOR IN A SEXUALLY DIMORPHIC FASHION

    PubMed Central

    LÓPEZ-GALLARDO, M.; LÓPEZ-RODRÍGUEZ, A. B.; LLORENTE-BERZAL, Á.; ROTLLANT, D.; MACKIE, K.; ARMARIO, A.; NADAL, R.; VIVEROS, M.-P.

    2013-01-01

    We have recently reported that early maternal deprivation (MD) for 24 h [postnatal day (PND) 9–10] and/or an adolescent chronic treatment with the cannabinoid agonist CP-55,940 (CP) [0.4 mg/kg, PND 28–42] in Wistar rats induced, in adulthood, diverse sex-dependent long-term behavioral and physiological modifications. Here we show the results obtained from investigating the immunohistochemical analysis of CB1 cannabinoid receptors, glial fibrillary acidic protein (GFAP) positive (+) cells and brain-derived neurotrophic factor (BDNF) expression in the hippocampus of the same animals. MD induced, in males, a significant increase in the number of GFAP+ cells in CA1 and CA3 areas and in the polymorphic layer of the dentate gyrus (DG), an effect that was attenuated by CP in the two latter regions. Adolescent cannabinoid exposure induced, in control non-deprived males, a significant increase in the number of GFAP+ cells in the polymorphic layer of the DG. MD induced a decrease in CB1 expression in both sexes, and this effect was reversed in males by the cannabinoid treatment. In turn, the drug “per se” induced, in males, a general decrease in CB1 immunoreactivity, and the opposite effect was observed in females. Cannabinoid exposure tended to reduce BDNF expression in CA1 and CA3 of females, whereas MD counteracted this trend and induced an increase of BDNF in females. As a whole, the present results show sex-dependent long-term effects of both MD and juvenile cannabinoid exposure as well as functional interactions between the two treatments. PMID:22001306

  2. MicroRNA‑10b suppresses the migration and invasion of chondrosarcoma cells by targeting brain‑derived neurotrophic factor.

    PubMed

    Aili, Abudunaibi; Chen, Yong; Zhang, Hongqi

    2016-01-01

    MicroRNAs (miRs) can lead to mRNA degradation or inhibit protein translation through directly binding to the 3'‑untranslational region (UTR) of their target mRNAs. Deregulation of miR‑10b has been reported to be associated with chondrosarcoma. However, the role of miR‑10b in chondrosarcoma cell migration and invasion, as well as the underlying mechanisms, has not been investigated. In the present study, it was demonstrated that miR‑10b was notably downregulated in the JJ012 and SW1353 chondrosarcoma cell lines compared with the TC28a2 normal chondrocyte line. Treatment with DNA demethylating agent 5‑aza‑2'‑deoxycytidine and histone deacetylase inhibitor 4‑phenylbutyric acid, or transfection with miR‑10b mimics promoted the expression of miR‑10b, which further suppressed the migratory and invasive capacities of JJ012 chondrosarcoma cells. Moreover, brain‑derived neurotrophic factor (BDNF) was identified as a novel target of miR‑10b, and its protein expression level was negatively regulated by miR‑10b in JJ012 cells. Furthermore, overexpression of BDNF reversed the inhibitory effect of miR‑10b upregulation on the migration and invasion of JJ012 cells. In addition, the data suggest that matrix metalloproteinase 1 (MMP1) may be involved in the miR‑10b/BDNF‑mediated chondrosarcoma cell migration and invasion in JJ012 cells. In conclusion, these findings suggest that miR‑10b/BDNF may serve as a potential therapeutic target for chondrosarcoma.

  3. Brain-derived neurotrophic factor (BDNF) in children with ASD and their parents: a 3-year follow-up.

    PubMed

    Francis, K; Dougali, A; Sideri, K; Kroupis, C; Vasdekis, V; Dima, K; Douzenis, A

    2018-05-01

    Several lines of evidence point to a probable relationship between brain-derived neurotrophic factor (BDNF) and autism spectrum disorder (ASD), but studies have yielded inconsistent findings on the BDNF serum level in ASD. The study aimed to assess those levels in children with ASD and their families. BDNF serum levels were measured in 45 ASD children without intellectual disability (ID) and allergies, age 30-42 months and age-matched normal controls. BDNF serum levels in the parents of the ASD subjects were compared to normal controls. BDNF serum levels in the ASD subjects were followed up for 3 years and correlated with adaptive functioning changes. BDNF serum levels were measured to be lower in children with ASD and independent of all the major baseline characteristics of the subjects. Having a child with ASD raises the BDNF levels in parents comparing to controls. Prospectively, no correlation between the change of BDNF variables in time and the change of the Vineland scores was found. Our results contradict those from recent published meta-analyses with the age, the presence of ID and allergies being possible contributing factors. The parents' data indeed point to a role of BDNF in the pathophysiology of ASD. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Effect of cigarette smoke on monocyte procoagulant activity: Focus on platelet-derived brain-derived neurotrophic factor (BDNF).

    PubMed

    Amadio, Patrizia; Baldassarre, Damiano; Sandrini, Leonardo; Weksler, Babette B; Tremoli, Elena; Barbieri, Silvia S

    2017-01-01

    Cigarette smoke (CS) activates platelets, promotes vascular dysfunction, and enhances Tissue Factor (TF) expression in blood monocytes favoring pro-thrombotic states. Brain-derived neurotrophic factor (BDNF), a member of the family of neurotrophins involved in survival, growth, and maturation of neurons, is released by activated platelets (APLTs) and plays a role in the cardiovascular system. The effect of CS on circulating levels of BDNF is controversial and the function of circulating BDNF in atherothrombosis is not fully understood. Here, we have shown that human platelets, treated with an aqueous extract of CS (CSE), released BDNF in a dose-dependent manner. In addition, incubation of human monocytes with BDNF or with the supernatant of platelets activated with CSE increased TF activity by a Tropomyosin receptor kinase B (TrkB)-dependent mechanism. Finally, comparing serum and plasma samples of 12 male never smokers (NS) and 29 male active smokers (AS) we observed a significant increase in microparticle-associated TF activity (MP-TF) as well as BDNF in AS, while in serum, BDNF behaved oppositely. Taken together these findings suggest that platelet-derived BDNF is involved in the regulation of TF activity and that CS plays a role in this pathway by favoring a pro-atherothrombotic state.

  5. The association between serum brain-derived neurotrophic factor and a cluster of cardiovascular risk factors in adolescents: The CHAMPS-study DK

    PubMed Central

    Tarp, Jakob; Andersen, Lars Bo; Gejl, Anne Kær; Huang, Tao; Peijs, Lone; Bugge, Anna

    2017-01-01

    Background and objective Cardiovascular disease and type 2 diabetes pose a global health burden. Therefore, clarifying the pathology of these risk factors is essential. Previous studies have found positive and negative associations between one or more cardiovascular risk factors and brain-derived neurotrophic factor (BDNF) probably due to diverse methodological approaches when analysing peripheral BDNF levels. Moreover, only a few studies have been performed in youth populations. Consequently, the main objective of this study was to examine the association between serum BDNF and a composite z-score consisting of six cardiovascular risk factors. A secondary aim was to examine the associations between serum BDNF and each of the six risk factors. Methods Four hundred and forty-seven apparently healthy adolescents between 11–17 years of age participated in this cross-sectional study. Cardiorespiratory fitness (CRF), anthropometrics, pubertal status, blood pressure (BP), serum BDNF, high-density lipoprotein cholesterol (HDL-C), triglyceride (TG), blood glucose and insulin were measured. Information about alcohol consumption and socio-economic status was collected via questionnaires. Associations were modelled using linear regression analysis. Results Serum BDNF was positively associated with the composite z-score in the total study sample (standardized beta coefficient (std.β) = 0.10, P = 0.037). In males, serum BDNF was positively associated with the composite z-score (Std. β = 0.14, P = 0.034) and HOMA-IR (Std. β = 0.19, P = 0.004), and negatively associated with CRF (Std. β = -0.15, P = 0.026). In females, BDNF was positively associated with TG (Std. β = 0.14, P = 0.030) and negatively associated with waist circumference (WC) (Std. β = -0.16, P = 0.012). Conclusion Serum BDNF was positively associated with a composite z-score of cardiovascular risk factors. This association seems to be mainly driven by the association between TG, HOMA-IR and serum BDNF, and

  6. Clinical correlates of plasma brain-derived neurotrophic factor in post-traumatic stress disorder spectrum after a natural disaster.

    PubMed

    Stratta, Paolo; Sanità, Patrizia; Bonanni, Roberto L; de Cataldo, Stefano; Angelucci, Adriano; Rossi, Rodolfo; Origlia, Nicola; Domenici, Luciano; Carmassi, Claudia; Piccinni, Armando; Dell'Osso, Liliana; Rossi, Alessandro

    2016-10-30

    Clinical correlates of plasma Brain-Derived Neurotrophic Factor (BDNF) have been investigated in a clinical population with Post Traumatic Stress Disorder (PTSD) symptoms and healthy control subjects who survived to the L'Aquila 2009 earthquake. Twenty-six outpatients and 14 control subjects were recruited. Assessments included: Structured Clinical Interview for DSM-IV Axis-I disorders Patient Version, Trauma and Loss Spectrum-Self Report (TALS-SR) for post-traumatic spectrum symptoms. Thirteen patients were diagnosed as Full PTSD and 13 as Partial PTSD. The subjects with full-blown PTSD showed lower BDNF level than subjects with partial PTSD and controls. Different relationship patterns of BDNF with post-traumatic stress spectrum symptoms have been reported in the three samples. Our findings add more insight on the mechanisms regulating BDNF levels in response to stress and further proofs of the utility of the distinction of PTSD into full and partial categories. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Glial cell-derived neurotrophic factor gene polymorpisms affect severity and functionality of bipolar disorder.

    PubMed

    Safari, Roghaiyeh; Tunca, Zeliha; Özerdem, Ayşegül; Ceylan, Deniz; Yalçın, Yaprak; Sakizli, Meral

    2017-01-01

    Glial cell-derived neurotrophic factor and other neurotrophins have important role in the development of mental disorders. Here, we aimed to assess the effects of Single nucleotide polymorphisms at potentially regulated regions of GDNF on severity and functionality of bipolar disorder and GDNF serum levels in bipolar disorder patients and healthy volunteers. Severity and functionality of bipolar disorder were evaluated using the Clinical Global Impression and Global Assessment of Functioning scales in sixty-six bipolar disorder patients. The GDNF serum levels obtained from bipolar disorder patients and healthy volunteers who had been already reported SNPs information by our group. GAF scales were lower and GDNF serum levels were higher in Bipolar disorder patients with T/A genotype at 5:37812784 and 5:37812782 compared to patients with T/T genotype. There were significant difference in severity and functionality scores, but not in GDNF serum levels, between patients with G/G and G/A genotype of rs62360370 G > A SNP.rs2075680 C > A and rs79669773 T > C SNPs had no effect on bipolar disorder severity and functionality scores and GDNF serum levels. The results suggest that some SNPs of GDNF have potential association with severity and functionality of bipolar disorder. In addition, except two SNPs, none of GDNF SNPs had association with GDNF serum levels.

  8. Effect of different anesthesia techniques on the serum brain-derived neurotrophic factor (BDNF) levels.

    PubMed

    Ozer, A B; Demirel, I; Erhan, O L; Firdolas, F; Ustundag, B

    2015-10-01

    Serum Brain-Derived Neurotrophic Factor (BDNF) levels are associated with neurotransmission and cognitive functions. The goal of this study was to examine the effect of general anesthesia on BDNF levels. It was also to reveal whether this effect had a relationship with the surgical stress response or not. The study included 50 male patients, age 20-40, who were scheduled to have inguinoscrotal surgery, and who were in the ASA I-II risk group. The patients were divided into two groups according to the anesthesia techniques used: general (GA) and spinal (SA). In order to measure serum BDNF, cortisol, insulin and glucose levels, blood samples were taken at four different times: before and after anesthesia, end of the surgery, and before transferal from the recovery room. Serum BDNF levels were significantly low (p < 0.01), cortisol and glucose levels were higher (p < 0.05 and p < 0.01) in Group GA compared with Group SA. No significant difference was detected between the groups in terms of serum insulin levels. There was no correlation between serum BDNF and the stress hormones. Our findings suggested that general anesthetics had an effect on serum BDNF levels independent of the stress response. In future, BDNF could be used as biochemical parameters of anesthesia levels, but studies with a greater scope should be carried out to present the relationship between anesthesia and neurotrophins.

  9. Preliminary evidence of cannabinoid effects on brain-derived neurotrophic factor (BDNF) levels in humans

    PubMed Central

    D’Souza, Deepak Cyril; Pittman, Brian; Perry, Edward; Simen, Arthur

    2009-01-01

    Background Acute and chronic exposure to cannabinoids has been associated with cognitive deficits, a higher risk for schizophrenia and other drug abuse. However, the precise mechanism underlying such effects is not known. Preclinical studies suggest that cannabinoids modulate brain-derived neurotrophic factor (BDNF). Accordingly, we hypothesized that Δ9-tetrahydrocannabinol (Δ9-THC), the principal active component of cannabis, would alter BDNF levels in humans. Materials and methods Healthy control subjects (n=14) and light users of cannabis (n=9) received intravenous administration of (0.0286 mg/kg) Δ9-THC in a double-blind, fixed order, placebo-controlled, laboratory study. Serum sampled at baseline, after placebo administration, and after Δ9-THC administration was assayed for BDNF using ELISA. Results Δ9-THC increased serum BDNF levels in healthy controls but not light users of cannabis. Further, light users of cannabis had lower basal BDNF levels. Δ9-THC produced psychotomimetic effects, perceptual alterations, and “high” and spatial memory impairments. Implications The effects of socially relevant doses of cannabinoids on BDNF suggest a possible mechanism underlying the consequences of exposure to cannabis. This may be of particular importance for the developing brain and also in disorders believed to involve altered neurodevelopment such as schizophrenia. Larger studies to investigate the effects of cannabinoids on BDNF and other neurotrophins are warranted. PMID:18807247

  10. Effects of brain-derived neurotrophic factor on dopaminergic function and motor behavior during aging

    PubMed Central

    Boger, Heather A.; Mannangatti, Padmanabhan; Samuvel, Devadoss J.; Saylor, Alicia J.; Bender, Tara S.; McGinty, Jacqueline F.; Fortress, Ashley M.; Zaman, Vandana; Huang, Peng; Middaugh, Lawrence D.; Randall, Patrick K.; Jayanthi, Lankupalle D.; Rohrer, Baerbel; Helke, Kristi L.; Granholm, Ann-Charlotte; Ramamoorthy, Sammanda

    2010-01-01

    Brain-derived neurotrophic factor (BDNF) is critical in synaptic plasticity and in the survival and function of midbrain dopamine neurons. In the present study, we assessed the effects of a partial genetic deletion of BDNF on motor function and dopamine (DA) neurotransmitter measures by comparing (Bdnf+/−) with wildtype mice (WT) at different ages. Bdnf+/ and WT mice had similar body weights until 12 months of age; however, at 21 months, Bdnf+/− mice were significantly heavier than WT mice. Horizontal and vertical motor activity was reduced for Bdnf+/− compared to WT mice; but was not influenced by Age. Performance on an accelerating rotarod declined with age for both genotypes and was exacerbated for Bdnf+/− mice. Body weight did not correlate with any of the three behavioral measures studied. DA neurotransmitter markers indicated no genotypic difference in striatal tyrosine hydroxylase (TH), dopamine transporter (DAT), or vesicular monoamine transporter 2 (VMAT2) immunoreactivity at any age. However, DA transport via DAT (starting at 12 months) and VMAT2 (starting at 3 months) as well as KCl-stimulated DA release were reduced in Bdnf+/− mice and declined with age suggesting an increasingly important role for BDNF in the release and uptake of DA with the aging process. These findings suggest that a BDNF expression deficit becomes more critical to dopaminergic dynamics and related behavioral activities with increasing age. PMID:20860702

  11. Phase 2 Randomized, Double-Masked, Vehicle-Controlled Trial of Recombinant Human Nerve Growth Factor for Neurotrophic Keratitis.

    PubMed

    Bonini, Stefano; Lambiase, Alessandro; Rama, Paolo; Sinigaglia, Francesco; Allegretti, Marcello; Chao, Wendy; Mantelli, Flavio

    2018-04-10

    To evaluate the safety and efficacy of topical recombinant human nerve growth factor (rhNGF) for treating moderate-to-severe neurotrophic keratitis (NK), a rare degenerative corneal disease resulting from impaired corneal innervation. Phase 2 multicenter, randomized, double-masked, vehicle-controlled trial. Patients with stage 2 (moderate) or stage 3 (severe) NK in 1 eye. The REPARO phase 2 study assessed safety and efficacy in 156 patients randomized 1:1:1 to rhNGF 10 μg/ml, 20 μg/ml, or vehicle. Treatment was administered 6 drops per day for 8 weeks. Patients then entered a 48- or 56-week follow-up period. Safety was assessed in all patients who received study treatment, whereas efficacy was by intention to treat. Corneal healing (defined as <0.5-mm maximum diameter of fluorescein staining in the lesion area) was assessed by masked central readers at week 4 (primary efficacy end point) and week 8 (key secondary end point) of controlled treatment. Corneal healing was reassessed post hoc by masked central readers using a more conservative measure (0-mm staining in the lesion area and no other persistent staining). At week 4 (primary end point), 19.6% of vehicle-treated patients achieved corneal healing (<0.5-mm lesion staining) versus 54.9% receiving rhNGF 10 μg/ml (+35.3%; 97.06% confidence interval [CI], 15.88-54.71; P < 0.001) and 58.0% receiving rhNGF 20 μg/ml (+38.4%; 97.06% CI, 18.96-57.83; P < 0.001). At week 8 (key secondary end point), 43.1% of vehicle-treated patients achieved less than 0.5-mm lesion staining versus 74.5% receiving rhNGF 10 μg/ml (+31.4%; 97.06% CI, 11.25-51.49; P = 0.001) and 74.0% receiving rhNGF 20 μg/ml (+30.9%; 97.06% CI, 10.60-51.13; P = 0.002). Post hoc analysis of corneal healing by the more conservative measure (0-mm lesion staining and no other persistent staining) maintained statistically significant differences between rhNGF and vehicle at weeks 4 and 8. More than 96% of patients who healed after controlled rh

  12. Investigating the role of the brain-derived neurotrophic factor (BDNF) val66met variant in obsessive-compulsive disorder (OCD).

    PubMed

    Hemmings, Sîan M J; Kinnear, Craig J; Van der Merwe, Lize; Lochner, Christine; Corfield, Valerie A; Moolman-Smook, Johanna C; Stein, Dan J

    2008-01-01

    Although evidence from family studies suggest that genetic factors play an important role in mediating obsessive-compulsive disorder (OCD), results from genetic case-control association analyses have been inconsistent. Discrepant findings may be attributed to the lack of phenotypic resolution, and population stratification. The aim of the present study was to investigate the role that the val66met variant within the gene encoding brain-derived neurotrophic factor (BDNF) may play in mediating the development of selected OCD subtypes accounting for the aforementioned confounding factors. One hundred and twelve OCD subjects and 140 controls were selected from the South African Afrikaner population. A significant association was observed in the male subgroup, with the met66 allele implicated as the risk allele in the development of OCD. This allele was also found to be associated with an earlier age at onset of OCD in males. On the other hand, the val66val genotype was associated with more severe OCD in the female population. No evidence of population stratification was observed in Afrikaner control subjects. These preliminary results point towards genetically distinct characteristics of OCD mediated by dysfunctions in BDNF. The present investigation forms part of ongoing research to elucidate the genetic components involved in the aetiology of OCD and OCD-related characteristics.

  13. NANOS2 acts downstream of glial cell line-derived neurotrophic factor signaling to suppress differentiation of spermatogonial stem cells.

    PubMed

    Sada, Aiko; Hasegawa, Kazuteru; Pin, Pui Han; Saga, Yumiko

    2012-02-01

    Stem cells are maintained by both stem cell-extrinsic niche signals and stem cell-intrinsic factors. During murine spermatogenesis, glial cell line-derived neurotrophic factor (GDNF) signal emanated from Sertoli cells and germ cell-intrinsic factor NANOS2 represent key regulators for the maintenance of spermatogonial stem cells. However, it remains unclear how these factors intersect in stem cells to control their cellular state. Here, we show that GDNF signaling is essential to maintain NANOS2 expression, and overexpression of Nanos2 can alleviate the stem cell loss phenotype caused by the depletion of Gfra1, a receptor for GDNF. By using an inducible Cre-loxP system, we show that NANOS2 expression is downregulated upon the conditional knockout (cKO) of Gfra1, while ectopic expression of Nanos2 in GFRA1-negative spermatogonia does not induce de novo GFRA1 expression. Furthermore, overexpression of Nanos2 in the Gfra1-cKO testes prevents precocious differentiation of the Gfra1-knockout stem cells and partially rescues the stem cell loss phenotypes of Gfra1-deficient mice, indicating that the stem cell differentiation can be suppressed by NANOS2 even in the absence of GDNF signaling. Taken together, we suggest that NANOS2 acts downstream of GDNF signaling to maintain undifferentiated state of spermatogonial stem cells. Copyright © 2011 AlphaMed Press.

  14. Effects of music aerobic exercise on depression and brain-derived neurotrophic factor levels in community dwelling women.

    PubMed

    Yeh, Shu-Hui; Lin, Li-Wei; Chuang, Yu Kuan; Liu, Cheng-Ling; Tsai, Lu-Jen; Tsuei, Feng-Shiou; Lee, Ming-Tsung; Hsiao, Chiu-Yueh; Yang, Kuender D

    2015-01-01

    A randomized clinical trial was utilized to compare the improvement of depression and brain-derived neurotrophic factor (BDNF) levels between community women with and without music aerobic exercise (MAE) for 12 weeks. The MAE group involved 47 eligible participants, whereas the comparison group had 59 participants. No significant differences were recorded in the demographic characteristics between the participants in the MAE group and the comparison group. Forty-one participants in the MAE group and 26 in the comparison group completed a pre- and posttest. The MAE group displayed significant improvement in depression scores (p = 0.016), decreased depression symptoms in crying (p = 0.03), appetite (p = 0.006), and fatigue (p = 0.011). The BDNF levels of the participants significantly increased after the 12-week MAE (p = 0.042). The parallel comparison group revealed no significant changes in depression scores or BDNF levels. In summary, the 12-week MAE had a significant impact on the enhancement of BDNF levels and improvement of depression symptoms. Middle-aged community women are encouraged to exercise moderately to improve their depression symptoms and BDNF levels.

  15. Effects of Music Aerobic Exercise on Depression and Brain-Derived Neurotrophic Factor Levels in Community Dwelling Women

    PubMed Central

    Yeh, Shu-Hui; Lin, Li-Wei; Chuang, Yu Kuan; Liu, Cheng-Ling; Tsai, Lu-Jen; Tsuei, Feng-Shiou; Lee, Ming-Tsung; Hsiao, Chiu-Yueh; Yang, Kuender D.

    2015-01-01

    A randomized clinical trial was utilized to compare the improvement of depression and brain-derived neurotrophic factor (BDNF) levels between community women with and without music aerobic exercise (MAE) for 12 weeks. The MAE group involved 47 eligible participants, whereas the comparison group had 59 participants. No significant differences were recorded in the demographic characteristics between the participants in the MAE group and the comparison group. Forty-one participants in the MAE group and 26 in the comparison group completed a pre- and posttest. The MAE group displayed significant improvement in depression scores (p = 0.016), decreased depression symptoms in crying (p = 0.03), appetite (p = 0.006), and fatigue (p = 0.011). The BDNF levels of the participants significantly increased after the 12-week MAE (p = 0.042). The parallel comparison group revealed no significant changes in depression scores or BDNF levels. In summary, the 12-week MAE had a significant impact on the enhancement of BDNF levels and improvement of depression symptoms. Middle-aged community women are encouraged to exercise moderately to improve their depression symptoms and BDNF levels. PMID:26075212

  16. Brain-derived neurotrophic factor plasma levels and premature cognitive impairment/dementia in type 2 diabetes

    PubMed Central

    Murillo Ortíz, Blanca; Ramírez Emiliano, Joel; Ramos-Rodríguez, Edna; Martínez-Garza, Sandra; Macías-Cervantes, Hilda; Solorio-Meza, Sergio; Pereyra-Nobara, Texar Alfonso

    2016-01-01

    AIM To assess the relationship of brain-derived neurotrophic factor (BDNF) with cognitive impairment in patients with type 2 diabetes. METHODS The study included 40 patients with diabetes mellitus type 2 (DM2), 37 patients with chronic kidney disease in hem dialysis hemodialysis therapy (HD) and 40 healthy subjects. BDNF in serum was quantified by ELISA. The Folstein Mini-Mental State Examination was used to evaluate cognitive impairment. RESULTS The patients with DM2 and the patients in HD were categorized into two groups, with cognitive impairment and without cognitive impairment. The levels of BDNF showed significant differences between patients with DM2 (43.78 ± 9.05 vs 31.55 ± 10.24, P = 0.005). There were no differences between patients in HD (11.39 ± 8.87 vs 11.11 ± 10.64 P = 0.77); interestingly, ferritin levels were higher in patients with cognitive impairment (1564 ± 1335 vs 664 ± 484 P = 0.001). The comparison of BDNF values, using a Kruskal Wallis test, between patients with DM2, in HD and healthy controls showed statistical differences (P < 0.001). CONCLUSION Low levels of BDNF are associated with cognitive impairment in patients with DM2. The decrease of BDNF occurs early and progressively in patients in HD. PMID:28031779

  17. Brain-derived neurotrophic factor plasma levels and premature cognitive impairment/dementia in type 2 diabetes.

    PubMed

    Murillo Ortíz, Blanca; Ramírez Emiliano, Joel; Ramos-Rodríguez, Edna; Martínez-Garza, Sandra; Macías-Cervantes, Hilda; Solorio-Meza, Sergio; Pereyra-Nobara, Texar Alfonso

    2016-12-15

    To assess the relationship of brain-derived neurotrophic factor (BDNF) with cognitive impairment in patients with type 2 diabetes. The study included 40 patients with diabetes mellitus type 2 (DM2), 37 patients with chronic kidney disease in hem dialysis hemodialysis therapy (HD) and 40 healthy subjects. BDNF in serum was quantified by ELISA. The Folstein Mini-Mental State Examination was used to evaluate cognitive impairment. The patients with DM2 and the patients in HD were categorized into two groups, with cognitive impairment and without cognitive impairment. The levels of BDNF showed significant differences between patients with DM2 (43.78 ± 9.05 vs 31.55 ± 10.24, P = 0.005). There were no differences between patients in HD (11.39 ± 8.87 vs 11.11 ± 10.64 P = 0.77); interestingly, ferritin levels were higher in patients with cognitive impairment (1564 ± 1335 vs 664 ± 484 P = 0.001). The comparison of BDNF values, using a Kruskal Wallis test, between patients with DM2, in HD and healthy controls showed statistical differences ( P < 0.001). Low levels of BDNF are associated with cognitive impairment in patients with DM2. The decrease of BDNF occurs early and progressively in patients in HD.

  18. Dietary Levels of Pure Flavonoids Improve Spatial Memory Performance and Increase Hippocampal Brain-Derived Neurotrophic Factor

    PubMed Central

    Rendeiro, Catarina; Vauzour, David; Rattray, Marcus; Waffo-Téguo, Pierre; Mérillon, Jean Michel; Butler, Laurie T.; Williams, Claire M.; Spencer, Jeremy P. E.

    2013-01-01

    Evidence suggests that flavonoid-rich foods are capable of inducing improvements in memory and cognition in animals and humans. However, there is a lack of clarity concerning whether flavonoids are the causal agents in inducing such behavioral responses. Here we show that supplementation with pure anthocyanins or pure flavanols for 6 weeks, at levels similar to that found in blueberry (2% w/w), results in an enhancement of spatial memory in 18 month old rats. Pure flavanols and pure anthocyanins were observed to induce significant improvements in spatial working memory (p = 0.002 and p = 0.006 respectively), to a similar extent to that following blueberry supplementation (p = 0.002). These behavioral changes were paralleled by increases in hippocampal brain-derived neurotrophic factor (R = 0.46, p<0.01), suggesting a common mechanism for the enhancement of memory. However, unlike protein levels of BDNF, the regional enhancement of BDNF mRNA expression in the hippocampus appeared to be predominantly enhanced by anthocyanins. Our data support the claim that flavonoids are likely causal agents in mediating the cognitive effects of flavonoid-rich foods. PMID:23723987

  19. Correlations of recognition memory performance with expression and methylation of brain-derived neurotrophic factor in rats.

    PubMed

    Muñoz, Pablo C; Aspé, Mauricio A; Contreras, Luis S; Palacios, Adrián G

    2010-01-01

    Object recognition memory allows discrimination between novel and familiar objects. This kind of memory consists of two components: recollection, which depends on the hippocampus, and familiarity, which depends on the perirhinal cortex (Pcx). The importance of brain-derived neurotrophic factor (BDNF) for recognition memory has already been recognized. Recent evidence suggests that DNA methylation regulates the expression of BDNF and memory. Behavioral and molecular approaches were used to understand the potential contribution of DNA methylation to recognition memory. To that end, rats were tested for their ability to distinguish novel from familiar objects by using a spontaneous object recognition task. Furthermore, the level of DNA methylation was estimated after trials with a methyl-sensitive PCR. We found a significant correlation between performance on the novel object task and the expression of BDNF, negatively in hippocampal slices and positively in perirhinal cortical slices. By contrast, methylation of DNA in CpG island 1 in the promoter of exon 1 in BDNF only correlated in hippocampal slices, but not in the Pxc cortical slices from trained animals. These results suggest that DNA methylation may be involved in the regulation of the BDNF gene during recognition memory, at least in the hippocampus.

  20. Nanoformulation of Brain-Derived Neurotrophic Factor with Target Receptor-Triggered-Release in the Central Nervous System.

    PubMed

    Jiang, Yuhang; Fay, James M; Poon, Chi-Duen; Vinod, Natasha; Zhao, Yuling; Bullock, Kristin; Qin, Si; Manickam, Devika S; Yi, Xiang; Banks, William A; Kabanov, Alexander V

    2018-02-07

    Brain-derived neurotrophic factor (BDNF) is identified as a potent neuroprotective and neuroregenerative agent for many neurological diseases. Regrettably, its delivery to the brain is hampered by poor serum stability and rapid brain clearance. Here, a novel nanoformulation is reported composed of a bio-compatible polymer, poly(ethylene glycol)- b -poly(L-glutamic acid) (PEG-PLE), that hosts the BDNF molecule in a nanoscale complex, termed here Nano-BDNF. Upon simple mixture, Nano-BDNF spontaneously forms uniform spherical particles with a core-shell structure. Molecular dynamics simulations suggest that binding between BDNF and PEG-PLE is mediated through electrostatic coupling as well as transient hydrogen bonding. The formation of Nano-BDNF complex stabilizes BDNF and protects it from nonspecific binding with common proteins in the body fluid, while allowing it to associate with its receptors. Following intranasal administration, the nanoformulation improves BDNF delivery throughout the brain and displays a more preferable regional distribution pattern than the native protein. Furthermore, intranasally delivered Nano-BDNF results in superior neuroprotective effects in the mouse brain with lipopolysaccharides-induced inflammation, indicating promise for further evaluation of this agent for the therapy of neurologic diseases.

  1. Brain-derived Neurotrophic Factor (BDNF)-TrkB Signaling in Inflammation-related Depression and Potential Therapeutic Targets

    PubMed Central

    Zhang, Ji-chun; Yao, Wei; Hashimoto, Kenji

    2016-01-01

    Depression is the most prevalent and among the most debilitating of psychiatric disorders. The precise neurobiology of this illness is unknown. Several lines of evidence suggest that peripheral and central inflammation plays a role in depressive symptoms, and that anti-inflammatory drugs can improve depressive symptoms in patients with inflammation-related depression. Signaling via brain-derived neurotrophic factor (BDNF) and its receptor, tropomycin receptor kinase B (TrkB) plays a key role in the pathophysiology of depression and in the therapeutic mechanisms of antidepressants. A recent paper showed that lipopolysaccharide (LPS)-induced inflammation gave rise to depression-like phenotype by altering BDNF-TrkB signaling in the prefrontal cortex, hippocampus, and nucleus accumbens, areas thought to be involved in the antidepressant effects of TrkB agonist, 7,8-dihydroxyflavone (7,8-DHF) and TrkB antagonist, ANA-12. Here we provide an overview of the tryptophan-kynurenine pathway and BDNF-TrkB signaling in the pathophysiology of inflammation-induced depression, and propose mechanistic actions for potential therapeutic agents. Additionally, the authors discuss the putative role of TrkB agonists and antagonists as novel therapeutic drugs for inflammation-related depression. PMID:26786147

  2. Is the Val66Met polymorphism of the brain-derived neurotrophic factor gene associated with panic disorder? A meta-analysis.

    PubMed

    Chen, Kaiyuan; Wang, Na; Zhang, Jie; Hong, Xiaohong; Xu, Haiyun; Zhao, Xiaofeng; Huang, Qingjun

    2017-06-01

    Although emerging evidence has suggested an association between the Val66Met (rs6265) polymorphisms in brain-derived neurotrophic factor (BDNF) gene and the panic disorder, the conclusion is inclusive given the mixed results. This meta-analysis reviewed and analyzed the recent studies addressing the potential association between the Val66Met polymorphisms and panic disorder susceptibility. Related case-control studies were retrieved by database searching and selected according to established inclusion criteria. Six articles were identified, which explored the association between the BDNF Val66Met polymorphism and panic disorder. Statistical analyses revealed no association for the allele contrast and the dominant model. However, the recessive model showed a significant association between the BDNF Val66Met polymorphism and panic disorder (odds ratio = 1.26, 95% confidence interval = 1.04-1.52, z = 2.39, P = 0.02). Despite of some limitations, this meta-analysis suggests that the Val66Met polymorphism of BDNF gene is a susceptibility factor for panic disorder. © 2015 Wiley Publishing Asia Pty Ltd.

  3. Ciliary neurotrophic factor activates leptin-like pathways and reduces body fat, without cachexia or rebound weight gain, even in leptin-resistant obesity.

    PubMed

    Lambert, P D; Anderson, K D; Sleeman, M W; Wong, V; Tan, J; Hijarunguru, A; Corcoran, T L; Murray, J D; Thabet, K E; Yancopoulos, G D; Wiegand, S J

    2001-04-10

    Ciliary Neurotrophic Factor (CNTF) was first characterized as a trophic factor for motor neurons in the ciliary ganglion and spinal cord, leading to its evaluation in humans suffering from motor neuron disease. In these trials, CNTF caused unexpected and substantial weight loss, raising concerns that it might produce cachectic-like effects. Countering this possibility was the suggestion that CNTF was working via a leptin-like mechanism to cause weight loss, based on the findings that CNTF acts via receptors that are not only related to leptin receptors, but also similarly distributed within hypothalamic nuclei involved in feeding. However, although CNTF mimics the ability of leptin to cause fat loss in mice that are obese because of genetic deficiency of leptin (ob/ob mice), CNTF is also effective in diet-induced obesity models that are more representative of human obesity, and which are resistant to leptin. This discordance again raised the possibility that CNTF might be acting via nonleptin pathways, perhaps more analogous to those activated by cachectic cytokines. Arguing strongly against this possibility, we now show that CNTF can activate hypothalamic leptin-like pathways in diet-induced obesity models unresponsive to leptin, that CNTF improves prediabetic parameters in these models, and that CNTF acts very differently than the prototypical cachectic cytokine, IL-1. Further analyses of hypothalamic signaling reveals that CNTF can suppress food intake without triggering hunger signals or associated stress responses that are otherwise associated with food deprivation; thus, unlike forced dieting, cessation of CNTF treatment does not result in binge overeating and immediate rebound weight gain.

  4. Increased stress reactivity is associated with cognitive deficits and decreased hippocampal brain-derived neurotrophic factor in a mouse model of affective disorders.

    PubMed

    Knapman, A; Heinzmann, J-M; Hellweg, R; Holsboer, F; Landgraf, R; Touma, C

    2010-07-01

    Cognitive deficits are a common feature of major depression (MD), with largely unknown biological underpinnings. In addition to the affective and cognitive symptoms of MD, a dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis is commonly observed in these patients. Increased plasma glucocorticoid levels are known to render the hippocampus susceptible to neuronal damage. This structure is important for learning and memory, creating a potential link between HPA axis dysregulation and cognitive deficits in depression. In order to further elucidate how altered stress responsiveness may contribute to the etiology of MD, three mouse lines with high (HR), intermediate (IR), or low (LR) stress reactivity were generated by selective breeding. The aim of the present study was to investigate whether increased stress reactivity is associated with deficits in hippocampus-dependent memory tests. To this end, we subjected mice from the HR, IR, and LR breeding lines to tests of recognition memory, spatial memory, and depression-like behavior. In addition, measurements of brain-derived neurotrophic factor (BDNF) in the hippocampus and plasma of these animals were conducted. Our results demonstrate that HR mice exhibit hippocampus-dependent memory deficits along with decreased hippocampal, but not plasma, BDNF levels. Thus, the stress reactivity mouse lines are a promising animal model of the cognitive deficits in MD with the unique feature of a genetic predisposition for an altered HPA axis reactivity, which provides the opportunity to explore the progression of the symptoms of MD, predisposing genetic factors as well as new treatment strategies. Copyright 2009 Elsevier Ltd. All rights reserved.

  5. Activation of brain-derived neurotrophic factor/tropomyosin-related kinase B signaling accompanying filial imprinting in domestic chicks (Gallus gallus domesticus).

    PubMed

    Yamaguchi, Shinji; Aoki, Naoya; Kobayashi, Daisuke; Kitajima, Takaaki; Iikubo, Eiji; Katagiri, Sachiko; Matsushima, Toshiya; Homma, Koichi J

    2011-12-07

    Newly hatched domestic chicks serve as an important model for experimental studies of neural and behavioral plasticity. Brain-derived neurotrophic factor (BDNF) has been shown to play a critical role in synaptic plasticity, including long-term potentiation, which underlies learning and memory in rodents. Here we show that BDNF mRNA levels increased in the intermediate medial hyperpallium apicale (IMHA), which is the caudal area of the visual Wulst, of imprinted chick brains, and the upregulation of gene expression correlated with the strength of the learned preference to the training object. In addition, activation of tropomyosin-related kinase B (TrkB)/phosphatidylinositol 3-kinase signaling was associated with filial imprinting. However, pharmacological deprivation of TrkB phosphorylation in IMHA did not impair memory formation, suggesting that activation of BDNF/TrkB signaling in IMHA is not involved in memory acquisition in filial imprinting.

  6. The glial cell line-derived neurotrophic factor (GDNF) does not acutely change acetylcholine release in developing and adult neuromuscular junction.

    PubMed

    Garcia, Neus; Santafé, Manel M; Tomàs, Marta; Lanuza, Maria A; Besalduch, Nuria; Priego, Merche; Tomàs, Josep

    2010-08-16

    We use immunocytochemistry to show that the trophic molecule glial cell line-derived neurotrophic factor (GDNF) and its receptor GDNF family receptor alpha-1 (GFRalpha-1) are present in both neonatal (P6) and adult (P45) rodent neuromuscular junctions (NMJ) colocalized with several synaptic markers. However, incubation with exogenous GDNF (10-200ng/ml, 1-3h), does not affect spontaneous ACh release. Moreover, GDNF does not change the size of the evoked ACh release from the weak and the strong axonal inputs on dually innervated postnatal endplates nor in the most developed singly-innervated synapses at P6 and P45. Our findings indicate that GDNF (unlike neurotrophins) does not acutely modulate transmitter release during the developmental process of synapse elimination nor as the NMJ matures. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  7. Glial cell line-derived neurotrophic factor mediates the desirable actions of the anti-addiction drug ibogaine against alcohol consumption.

    PubMed

    He, Dao-Yao; McGough, Nancy N H; Ravindranathan, Ajay; Jeanblanc, Jerome; Logrip, Marian L; Phamluong, Khanhky; Janak, Patricia H; Ron, Dorit

    2005-01-19

    Alcohol addiction manifests as uncontrolled drinking despite negative consequences. Few medications are available to treat the disorder. Anecdotal reports suggest that ibogaine, a natural alkaloid, reverses behaviors associated with addiction including alcoholism; however, because of side effects, ibogaine is not used clinically. In this study, we first characterized the actions of ibogaine on ethanol self-administration in rodents. Ibogaine decreased ethanol intake by rats in two-bottle choice and operant self-administration paradigms. Ibogaine also reduced operant self-administration of ethanol in a relapse model. Next, we identified a molecular mechanism that mediates the desirable activities of ibogaine on ethanol intake. Microinjection of ibogaine into the ventral tegmental area (VTA), but not the substantia nigra, reduced self-administration of ethanol, and systemic administration of ibogaine increased the expression of glial cell line-derived neurotrophic factor (GDNF) in a midbrain region that includes the VTA. In dopaminergic neuron-like SHSY5Y cells, ibogaine treatment upregulated the GDNF pathway as indicated by increases in phosphorylation of the GDNF receptor, Ret, and the downstream kinase, ERK1 (extracellular signal-regulated kinase 1). Finally, the ibogaine-mediated decrease in ethanol self-administration was mimicked by intra-VTA microinjection of GDNF and was reduced by intra-VTA delivery of anti-GDNF neutralizing antibodies. Together, these results suggest that GDNF in the VTA mediates the action of ibogaine on ethanol consumption. These findings highlight the importance of GDNF as a new target for drug development for alcoholism that may mimic the effect of ibogaine against alcohol consumption but avoid the negative side effects.

  8. Glial Cell Line-Derived Neurotrophic Factor Mediates the Desirable Actions of the Anti-Addiction Drug Ibogaine against Alcohol Consumption

    PubMed Central

    He, Dao-Yao; McGough, Nancy N. H.; Ravindranathan, Ajay; Jeanblanc, Jerome; Logrip, Marian L.; Phamluong, Khanhky; Janak, Patricia H.; Ron, Dorit

    2005-01-01

    Alcohol addiction manifests as uncontrolled drinking despite negative consequences. Few medications are available to treat the disorder. Anecdotal reports suggest that ibogaine, a natural alkaloid, reverses behaviors associated with addiction including alcoholism; however, because of side effects, ibogaine is not used clinically. In this study, we first characterized the actions of ibogaine on ethanol self-administration in rodents. Ibogaine decreased ethanol intake by rats in two-bottle choice and operant self-administration paradigms. Ibogaine also reduced operant self-administration of ethanol in a relapse model. Next, we identified a molecular mechanism that mediates the desirable activities of ibogaine on ethanol intake. Microinjection of ibogaine into the ventral tegmental area (VTA), but not the substantia nigra, reduced self-administration of ethanol, and systemic administration of ibogaine increased the expression of glial cell line-derived neurotrophic factor (GDNF) in a midbrain region that includes the VTA. In dopaminergic neuron-like SHSY5Y cells, ibogaine treatment upregulated the GDNF pathway as indicated by increases in phosphorylation of the GDNF receptor, Ret, and the downstream kinase, ERK1 (extracellular signal-regulated kinase 1). Finally, the ibogaine-mediated decrease in ethanol self-administration was mimicked by intra-VTA microinjection of GDNF and was reduced by intra-VTA delivery of anti-GDNF neutralizing antibodies. Together, these results suggest that GDNF in the VTA mediates the action of ibogaine on ethanol consumption. These findings highlight the importance of GDNF as a new target for drug development for alcoholism that may mimic the effect of ibogaine against alcohol consumption but avoid the negative side effects. PMID:15659598

  9. Preliminary associations between brain derived neurotrophic factor, memory impairment, functional cognition, and depressive symptoms following severe TBI

    PubMed Central

    Failla, Michelle D.; Juengst, Shannon B.; Arenth, Patricia; Wagner, Amy K.

    2015-01-01

    Background Traumatic brain injury (TBI) often leads to mood and cognitive complications, impacting functional recovery. Understanding neurobiological alterations common in post-TBI depression (PTD) and cognition may identify novel biomarkers for TBI complications. Brain-derived neurotrophic factor (BDNF) is a likely target based on evidence of reduced BDNF signaling in experimental TBI and depression models and its role in learning and memory. Objective Evaluate BDNF as a biomarker for PTD, cognitive impairment, and functional cognition in a prospective cohort with severe TBI. Methods Participants with TBI (n=113) were evaluated for PTD (Patient Health Questionnaire-9), cognitive impairment (cognitive composite score) and functional cognition (Functional Independence Measure–Cognition, FIM-Cog). BDNF levels were measured in cerebrospinal fluid (CSF) and serum 0–6 days post-injury and in serum at 6 and 12 months post-injury. Results Serum BDNF was reduced after TBI versus controls at all time-points. Acute serum BDNF positively correlated with Memory composites (6 months: r=0.43, p=0.019, n=30; 12 months: r=0.53, p=0.005, n=26) and FIM-Memory scores (6 months: r=0.35, p=0.019, n=45; 12 months: r=0.38, p=0.018, n=38). Acute serum BDNF negatively correlated with 12 month PHQ-9 scores (r=−0.38, p=0.044, n=29). At 12 months, chronic serum BDNF tended to be lower in participants with PTD (p=0.07) and correlated with PHQ-9 scores (r=−0.41, p=0.019, n=32). Conclusions Acute BDNF associations with memory recovery may implicate hippocampal damage/degeneration. Comparatively, BDNF associations with PTD status were not as strong as associations with PTD severity. Further investigation may delineate longitudinal BDNF patterns, and BDNF responsive treatments, reflecting mood and cognitive recovery following TBI. PMID:26276123

  10. Regional differences in the expression of brain-derived neurotrophic factor (BDNF) pro-peptide, proBDNF and preproBDNF in the brain confer stress resilience.

    PubMed

    Yang, Bangkun; Yang, Chun; Ren, Qian; Zhang, Ji-Chun; Chen, Qian-Xue; Shirayama, Yukihiko; Hashimoto, Kenji

    2016-12-01

    Using learned helplessness (LH) model of depression, we measured protein expression of brain-derived neurotrophic factor (BDNF) pro-peptide, BDNF precursors (proBDNF and preproBDNF) in the brain regions of LH (susceptible) and non-LH rats (resilience). Expression of preproBDNF, proBDNF and BDNF pro-peptide in the medial prefrontal cortex of LH rats, but not non-LH rats, was significantly higher than control rats, although expression of these proteins in the nucleus accumbens of LH rats was significantly lower than control rats. This study suggests that regional differences in conversion of BDNF precursors into BDNF and BDNF pro-peptide by proteolytic cleavage may contribute to stress resilience.

  11. Measuring and Validating the Levels of Brain-Derived Neurotrophic Factor in Human Serum

    PubMed Central

    Naegelin, Yvonne; Dingsdale, Hayley; Säuberli, Katharina; Schädelin, Sabine; Kappos, Ludwig

    2018-01-01

    Brain-derived neurotrophic factor (BDNF) secreted by neurons is a significant component of synaptic plasticity. In humans, it is also present in blood platelets where it accumulates following its biosynthesis in megakaryocytes. BDNF levels are thus readily detectable in human serum and it has been abundantly speculated that they may somehow serve as an indicator of brain function. However, there is a great deal of uncertainty with regard to the range of BDNF levels that can be considered normal, how stable these values are over time and even whether BDNF levels can be reliably measured in serum. Using monoclonal antibodies and a sandwich ELISA, this study reports on BDNF levels in the serum of 259 volunteers with a mean value of 32.69 ± 8.33 ng/ml (SD). The mean value for the same cohort after 12 months was not significantly different (N = 226, 32.97 ± 8.36 ng/ml SD, p = 0.19). Power analysis of these values indicates that relatively large cohorts are necessary to identify significant differences, requiring a group size of 60 to detect a 20% change. The levels determined by ELISA could be validated by Western blot analyses using a BDNF monoclonal antibody. While no association was observed with gender, a weak, positive correlation was found with age. The overall conclusions are that BDNF levels can be reliably measured in human serum, that these levels are quite stable over one year, and that comparisons between two populations may only be meaningful if cohorts of sufficient sizes are assembled. PMID:29662942

  12. Brain-derived neurotrophic factor promotes VEGF-C-dependent lymphangiogenesis by suppressing miR-624-3p in human chondrosarcoma cells.

    PubMed

    Lin, Chih-Yang; Wang, Shih-Wei; Chen, Yen-Ling; Chou, Wen-Yi; Lin, Ting-Yi; Chen, Wei-Cheng; Yang, Chen-Yu; Liu, Shih-Chia; Hsieh, Chia-Chu; Fong, Yi-Chin; Wang, Po-Chuan; Tang, Chih-Hsin

    2017-08-03

    Chondrosarcoma is the second most common primary malignancy of bone, and one of the most difficult bone tumors to diagnose and treat. It is well known that increased levels of vascular endothelial growth factor-C (VEGF-C) promote active tumor lymphangiogenesis and lymphatic tumor spread to regional lymph nodes. Brain-derived neurotrophic factor (BDNF) is known to promote metastasis in human chondrosarcoma cells. Knowing more about the mechanism of BDNF in VEGF-C expression and lymphangiogenesis in human chondrosarcoma would improve our understanding as how to prevent chondrosarcoma angiogenesis and metastasis, which currently lacks effective adjuvant treatment. Here, we found that BDNF expression was at least 2.5-fold higher in the highly migratory JJ012(S10) cell line as compared with the primordial cell line (JJ012). In addition, VEGF-C expression and secretion was markedly increased in JJ012(S10) cells. Conditioned medium from JJ012(S10) cells significantly promoted migration and tube formation of human lymphatic endothelial cells (LECs), whereas knockdown of BDNF attenuated LEC migration and tube formation by suppressing VEGF-C production in JJ012(S10) cells. Mechanistic investigations indicated that BDNF facilitated VEGF-C-dependent lymphangiogenesis through the MEK/ERK/mTOR signaling pathway. We also showed that microRNA (miR)-624-3p expression was negatively regulated by BDNF via the MEK/ERK/mTOR cascade. Importantly, BDNF knockdown profoundly inhibited tumor-associated lymphangiogenesis in vivo. Further analyses identified that BDNF promoted tumor lymphangiogenesis by downregulating miR-624-3p in human chondrosarcoma tissues. In conclusion, this study is the first to reveal the mechanism underlying BDNF-induced lymphangiogenesis. We suggest that BDNF may serve as a promising therapeutic target for the restriction of VEGF-C-mediated tumor lymphangiogenesis and lymphatic metastasis.

  13. Brain-derived neurotrophic factor promotes VEGF-C-dependent lymphangiogenesis by suppressing miR-624-3p in human chondrosarcoma cells

    PubMed Central

    Lin, Chih-Yang; Wang, Shih-Wei; Chen, Yen-Ling; Chou, Wen-Yi; Lin, Ting-Yi; Chen, Wei-Cheng; Yang, Chen-Yu; Liu, Shih-Chia; Hsieh, Chia-Chu; Fong, Yi-Chin; Wang, Po-Chuan; Tang, Chih-Hsin

    2017-01-01

    Chondrosarcoma is the second most common primary malignancy of bone, and one of the most difficult bone tumors to diagnose and treat. It is well known that increased levels of vascular endothelial growth factor-C (VEGF-C) promote active tumor lymphangiogenesis and lymphatic tumor spread to regional lymph nodes. Brain-derived neurotrophic factor (BDNF) is known to promote metastasis in human chondrosarcoma cells. Knowing more about the mechanism of BDNF in VEGF-C expression and lymphangiogenesis in human chondrosarcoma would improve our understanding as how to prevent chondrosarcoma angiogenesis and metastasis, which currently lacks effective adjuvant treatment. Here, we found that BDNF expression was at least 2.5-fold higher in the highly migratory JJ012(S10) cell line as compared with the primordial cell line (JJ012). In addition, VEGF-C expression and secretion was markedly increased in JJ012(S10) cells. Conditioned medium from JJ012(S10) cells significantly promoted migration and tube formation of human lymphatic endothelial cells (LECs), whereas knockdown of BDNF attenuated LEC migration and tube formation by suppressing VEGF-C production in JJ012(S10) cells. Mechanistic investigations indicated that BDNF facilitated VEGF-C-dependent lymphangiogenesis through the MEK/ERK/mTOR signaling pathway. We also showed that microRNA (miR)-624-3p expression was negatively regulated by BDNF via the MEK/ERK/mTOR cascade. Importantly, BDNF knockdown profoundly inhibited tumor-associated lymphangiogenesis in vivo. Further analyses identified that BDNF promoted tumor lymphangiogenesis by downregulating miR-624-3p in human chondrosarcoma tissues. In conclusion, this study is the first to reveal the mechanism underlying BDNF-induced lymphangiogenesis. We suggest that BDNF may serve as a promising therapeutic target for the restriction of VEGF-C-mediated tumor lymphangiogenesis and lymphatic metastasis. PMID:28771226

  14. Emodin opposes chronic unpredictable mild stress induced depressive-like behavior in mice by upregulating the levels of hippocampal glucocorticoid receptor and brain-derived neurotrophic factor.

    PubMed

    Li, Meng; Fu, Qiang; Li, Ying; Li, Shanshan; Xue, Jinsong; Ma, Shiping

    2014-10-01

    Emodin, the major active component of Rhubarb, has shown neuroprotective activity. This study is attempted to investigate whether emodin possesses beneficial effects on chronic unpredictable mild stress (CUMS)-induced behavioral deficits (depression-like behaviors) and explore the possible mechanisms. ICR mice were subjected to chronic unpredictable mild stress for 42 consecutive days. Then, emodin and fluoxetine (positive control drug) were administered for 21 consecutive days at the last three weeks of CUMS procedure. The classical behavioral tests: open field test (OFT), sucrose preference test (SPT), tail suspension test (TST) and forced swimming test (FST) were applied to evaluate the antidepressant effects of emodin. Then plasma corticosterone concentration, hippocampal glucocorticoid receptor (GR) and brain-derived neurotrophic factor (BDNF) levels were tested to probe the mechanisms. Our results indicated that 6 weeks of CUMS exposure induced significant depression-like behavior, with high, plasma corticosterone concentration and low hippocampal GR and BDNF expression levels. Whereas, chronic emodin (20, 40 and 80 mg/kg) treatments reversed the behavioral deficiency induced by CUMS exposure. Treatment with emodin normalized the change of plasma corticosterone level, which demonstrated that emodin could partially restore CUMS-induced HPA axis impairments. Besides, hippocampal GR (mRNA and protein) and BDNF (mRNA) expressions were also up-regulated after emodin treatments. In conclusion, emodin remarkably improved depression-like behavior in CUMS mice and its antidepressant activity is mediated, at least in part, by the up-regulating GR and BDNF levels in hippocampus. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Brain-derived neurotrophic factor Val66Met polymorphism and alcohol-related phenotypes.

    PubMed

    Nedic, Gordana; Perkovic, Matea Nikolac; Sviglin, Korona Nenadic; Muck-Seler, Dorotea; Borovecki, Fran; Pivac, Nela

    2013-01-10

    Alcoholism is a chronic psychiatric disorder affecting neural pathways that regulate motivation, stress, reward and arousal. Brain-derived neurotrophic factor (BDNF) regulates mood, response to stress and interacts with neurotransmitters and stress systems involved in reward pathways and addiction. Aim of the study was to evaluate the association between a single nucleotide polymorphism (BDNF Val66Met or rs6265) and alcohol related phenotypes in Caucasian patients. In ethnically homogenous Caucasian subjects of the Croatian origin, the BDNF Val66Met genotype distribution was determined in 549 male and 126 female patients with alcohol dependence and in 655 male and 259 female healthy non-alcoholic control subjects. Based on the structured clinical interview, additional detailed clinical interview, the Brown-Goodwin Scale, the Hamilton Rating Scale for Depression and the Clinical Global Impression scores, alcoholic patients were subdivided into those with or without comorbid depression, aggression, delirium tremens, withdrawal syndrome, early/late onset of alcohol abuse, prior suicidal attempt during lifetime, current suicidal behavior, and severity of alcohol dependence. The results showed no significant association between BDNF Val66Met variants and alcohol dependence and/or any of the alcohol related phenotypes in either Caucasian women, or men, with alcohol dependence. There are few limitations of the study. The overall study sample size was large (N=1589) but not well-powered to detect differences in BDNF Val66Met genotype distribution between studied groups. Healthy control women were older than female alcoholic patients. Only one BDNF polymorphism (rs6265) was studied. In conclusion, these data do not support the view that BDNF Val66Met polymorphism correlates with the specific alcohol related phenotypes in ethnically homogenous medication-free Caucasian subjects with alcohol dependence. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. The Brain-Derived Neurotrophic Factor Val66Met Polymorphism Moderates an Effect of Physical Activity on Working Memory Performance

    PubMed Central

    Erickson, Kirk I.; Banducci, Sarah E.; Weinstein, Andrea M.; MacDonald, Angus W.; Ferrell, Robert E.; Halder, Indrani; Flory, Janine D.; Manuck, Stephen B.

    2014-01-01

    Physical activity enhances cognitive performance, yet individual variability in its effectiveness limits its widespread therapeutic application. Genetic differences might be one source of this variation. For example, carriers of the methionine-specifying (Met) allele of the brain-derived neurotrophic factor (BDNF) Val66Met polymorphism have reduced secretion of BDNF and poorer memory, yet physical activity increases BDNF levels. To determine whether the BDNF polymorphism moderated an association of physical activity with cognitive functioning among 1,032 midlife volunteers (mean age = 44.59 years), we evaluated participants’ performance on a battery of tests assessing memory, learning, and executive processes, and evaluated their physical activity with the Paffenbarger Physical Activity Questionnaire. BDNF genotype interacted robustly with physical activity to affect working memory, but not other areas of cognitive functioning. In particular, greater levels of physical activity offset a deleterious effect of the Met allele on working memory performance. These findings suggest that physical activity can modulate domain-specific genetic (BDNF) effects on cognition. PMID:23907543

  17. Therapeutic potential of brain-derived neurotrophic factor (BDNF) and a small molecular mimics of BDNF for traumatic brain injury.

    PubMed

    Wurzelmann, Mary; Romeika, Jennifer; Sun, Dong

    2017-01-01

    Traumatic brain injury (TBI) is a major health problem worldwide. Following primary mechanical insults, a cascade of secondary injuries often leads to further neural tissue loss. Thus far there is no cure to rescue the damaged neural tissue. Current therapeutic strategies primarily target the secondary injuries focusing on neuroprotection and neuroregeneration. The neurotrophin brain-derived neurotrophic factor (BDNF) has significant effect in both aspects, promoting neuronal survival, synaptic plasticity and neurogenesis. Recently, the flavonoid 7,8-dihydroxyflavone (7,8-DHF), a small TrkB agonist that mimics BDNF function, has shown similar effects as BDNF in promoting neuronal survival and regeneration following TBI. Compared to BDNF, 7,8-DHF has a longer half-life and much smaller molecular size, capable of penetrating the blood-brain barrier, which makes it possible for non-invasive clinical application. In this review, we summarize functions of the BDNF/TrkB signaling pathway and studies examining the potential of BDNF and 7,8-DHF as a therapy for TBI.

  18. Brain-Derived Neurotrophic Factor Expression in Individuals With Schizophrenia and Healthy Aging: Testing the Accelerated Aging Hypothesis of Schizophrenia.

    PubMed

    Islam, Farhana; Mulsant, Benoit H; Voineskos, Aristotle N; Rajji, Tarek K

    2017-07-01

    Schizophrenia has been hypothesized to be a syndrome of accelerated aging. Brain plasticity is vulnerable to the normal aging process and affected in schizophrenia: brain-derived neurotrophic factor (BDNF) is an important neuroplasticity molecule. The present review explores the accelerated aging hypothesis of schizophrenia by comparing changes in BDNF expression in schizophrenia with aging-associated changes. Individuals with schizophrenia show patterns of increased overall mortality, metabolic abnormalities, and cognitive decline normally observed later in life in the healthy population. An overall decrease is observed in BDNF expression in schizophrenia compared to healthy controls and in older individuals compared to a younger cohort. There is a marked decrease in BDNF levels in the frontal regions and in the periphery among older individuals and those with schizophrenia; however, data for BDNF expression in the occipital, parietal, and temporal cortices and the hippocampus is inconclusive. Accelerated aging hypothesis is supported based on frontal regions and peripheral studies; however, further studies are needed in other brain regions.

  19. A meta-analytic review of the effects of exercise on brain-derived neurotrophic factor.

    PubMed

    Szuhany, Kristin L; Bugatti, Matteo; Otto, Michael W

    2015-01-01

    Consistent evidence indicates that exercise improves cognition and mood, with preliminary evidence suggesting that brain-derived neurotrophic factor (BDNF) may mediate these effects. The aim of the current meta-analysis was to provide an estimate of the strength of the association between exercise and increased BDNF levels in humans across multiple exercise paradigms. We conducted a meta-analysis of 29 studies (N = 1111 participants) examining the effect of exercise on BDNF levels in three exercise paradigms: (1) a single session of exercise, (2) a session of exercise following a program of regular exercise, and (3) resting BDNF levels following a program of regular exercise. Moderators of this effect were also examined. Results demonstrated a moderate effect size for increases in BDNF following a single session of exercise (Hedges' g = 0.46, p < 0.001). Further, regular exercise intensified the effect of a session of exercise on BDNF levels (Hedges' g = 0.59, p = 0.02). Finally, results indicated a small effect of regular exercise on resting BDNF levels (Hedges' g = 0.27, p = 0.005). When analyzing results across paradigms, sex significantly moderated the effect of exercise on BDNF levels, such that studies with more women showed less BDNF change resulting from exercise. Effect size analysis supports the role of exercise as a strategy for enhancing BDNF activity in humans, but indicates that the magnitude of these effects may be lower in females relative to males. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. A meta-analytic review of the effects of exercise on brain-derived neurotrophic factor

    PubMed Central

    Szuhany, Kristin L.; Bugatti, Matteo; Otto, Michael W.

    2014-01-01

    Consistent evidence indicates that exercise improves cognition and mood, with preliminary evidence suggesting that brain-derived neurotrophic factor (BDNF) may mediate these effects. The aim of the current meta-analysis was to provide an estimate of the strength of the association between exercise and increased BDNF levels in humans across multiple exercise paradigms. We conducted a meta-analysis of 29 studies (N = 1,111 participants) examining the effect of exercise on BDNF levels in three exercise paradigms: (1) a single session of exercise, (2) a session of exercise following a program of regular exercise, and (3) resting BDNF levels following a program of regular exercise. Moderators of this effect were also examined. Results demonstrated a moderate effect size for increases in BDNF following a single session of exercise (Hedges’ g = 0.46, p < 0.001). Further, regular exercise intensified the effect of a session of exercise on BDNF levels (Hedges’ g = 0.58, p = 0.02). Finally, results indicated a small effect of regular exercise on resting BDNF levels (Hedges’ g = 0.28, p = 0.005). When analyzing results across paradigms, sex significantly moderated the effect of exercise on BDNF levels, such that studies with more women showed less BDNF change resulting from exercise. Effect size analysis supports the role of exercise as a strategy for enhancing BDNF activity in humans, but indicates that the magnitude of these effects may be lower in females relative to males. PMID:25455510

  1. Effect of exercise training on saliva brain derived neurotrophic factor, catalase and vitamin c.

    PubMed

    Babaei, Parvin; Damirchi, Arsalan; Soltani Tehrani, Bahram; Nazari, Yazgaldi; Sariri, Reyhaneh; Hoseini, Rastegar

    2016-01-01

    Background: The balance between production of Reactive Oxygen Species (ROS) and antioxidant defense in the body has important health implications. The aim of this study was to investigate the changes in salivary antioxidants: catalase, vitamin C and brain-derived neurotrophic factor (BDNF), in sedentary men at rest and after acute exhaustive exercise. Methods: This randomized controlled clinical trial (The registry code IRCT2011053212431N1) recruited twenty-five sedentary men (age=21±3yrs; height=172±8cm; weight=66±9kg; VO2 max=37.6±7.4mL•kgkg -1 •min -1 ) participated in a double-blind randomized experiment. Unstimulated whole saliva samples were collected before, immediately and 1 hour after exhaustive treadmill running. Catalase, vitamin C (Vit C) concentration, and BDNF concentrations were determined using biochemical assays and ELISA respectively. Repeated measures ANOVA and Bonferroni posthoc test were used to analyze data. Results: The results of the present study showed that an acute intensive exercise causes a reduction in salivary catalase, Vit C and also BDNF concentration (p<0.05) compared with pre-exercise. Both catalase and Vit C showed a tendency to return to pre-exercise value after one hour. However, BDNF continued to reduction at least 1 hour after the ending of the training. Conclusion: Reduction in antioxidants capacity of saliva might reflects disturbance in natural antioxidant defense mechanisms of the body after an acute intensive physical stress and possible further health threatening consequences.

  2. Thyroid stimulating hormone and serum, plasma, and platelet brain-derived neurotrophic factor during a 3-month follow-up in patients with major depressive disorder.

    PubMed

    Baek, Ji Hyun; Kang, Eun-Suk; Fava, Maurizio; Mischoulon, David; Nierenberg, Andrew A; Lee, Dongsoo; Heo, Jung-Yoon; Jeon, Hong Jin

    2014-12-01

    Thyroid dysfunction and elevated thyroid stimulating hormone (TSH) are common in patients with depression. TSH might exert its function in the brain through blood levels of brain-derived neurotrophic factor (BDNF). BDNF decreases during depressed states and normalize after treatment. The gap is that the association between TSH and BDNF in patients with major depressive disorder (MDD) is unknown. We studied 105 subjects ≥18 years of age with MDD and measured serum, plasma, and platelet BDNF at baseline, 1 month and 3 months during antidepressant treatment. Other baseline measurements included hypothalamic-pituitary-thyroid axis hormones such as TSH, triiodothyronine (T3) and thyroxine (T4); hypothalamic-pituitary-adrenal (HPA) axis hormones and hypothalamic-pituitary-gonadal (HPG) axis hormones and prolactin. Linear mixed model effect analyses revealed that baseline TSH level was negatively associated with changes of serum BDNF from baseline to 3 months (F=7.58, p=0.007) after adjusting for age, sex, and body mass index, but was not associated with plasma and platelet BDNF. In contrast, T3 and T4, HPA axis hormones, HPG axis hormones, and prolactin were not associated with serum, plasma, or platelet BDNF levels. Patients in the highest quartile of TSH showed significantly lower serum BDNF than in the other quartiles (F=4.54, p=0.038), but no significant differences were found based on T3 and T4 levels. TSH was only measured at baseline. Higher TSH is associated with lower baseline and reduced the increase of serum BDNF levels during antidepressant treatment in patients with MDD. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Effects of brain-derived and glial cell line-derived neurotrophic factors on startle response and disrupted prepulse inhibition in mice of DBA/2J inbred strain.

    PubMed

    Naumenko, Vladimir S; Bazovkina, Daria V; Morozova, Maryana V; Popova, Nina K

    2013-08-29

    Prepulse inhibition (PPI), the reduction in acoustic startle reflex when it is preceded by weak prepulse stimuli, is a measure of critical to normal brain functioning sensorimotor gating. PPI deficit was shown in a variety of psychiatric disorders including schizophrenia, and in DBA/2J mouse strain. In the current study, we examined the effects of brain-derived (BDNF) and glial cell line-derived (GDNF) neurotrophic factors on acoustic startle response and PPI in DBA/2J mice. It was found that BDNF (300 ng, i.c.v.) significantly increased amplitude of startle response and restored disrupted PPI in 7 days after acute administration. GDNF (800 ng, i.c.v.) did not produce significant alteration neither in amplitude of startle response nor in PPI in DBA/2J mice. The reversal effect of BDNF on PPI deficit was unusually long-lasting: significant increase in PPI was found 1.5 months after single acute BDNF administration. Long-term ameliorative effect BDNF on disrupted PPI suggested the implication of epigenetic mechanism in BDNF action on neurogenesis. BDNF rather than GDNF could be a perspective drug for the treatment of sensorimotor gating impairments. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  4. Brain-derived neurotrophic factor and hypothalamic-pituitary-adrenal axis adaptation processes in a depressive-like state induced by chronic restraint stress.

    PubMed

    Naert, Gaelle; Ixart, Guy; Maurice, Tangui; Tapia-Arancibia, Lucia; Givalois, Laurent

    2011-01-01

    Depression is potentially life-threatening. The most important neuroendocrine abnormality in this disorder is hypothalamo-pituitary-adrenocortical (HPA) axis hyperactivity. Recent findings suggest that all depression treatments may boost the neurotrophin production especially brain-derived neurotrophic factor (BDNF). Moreover, BDNF is highly involved in the regulation of HPA axis activity. The aim of this study was to determine the impact of chronic stress (restraint 3h/day for 3 weeks) on animal behavior and HPA axis activity in parallel with hippocampus, hypothalamus and pituitary BDNF levels. Chronic stress induced changes in anxiety (light/dark box test) and anhedonic states (sucrose preference test) and in depressive-like behavior (forced swimming test); general locomotor activity and body temperature were modified and animal body weight gain was reduced by 17%. HPA axis activity was highly modified by chronic stress, since basal levels of mRNA and peptide hypothalamic contents in CRH and AVP and plasma concentrations in ACTH and corticosterone were significantly increased. The HPA axis response to novel acute stress was also modified in chronically stressed rats, suggesting adaptive mechanisms. Basal BDNF contents were increased in the hippocampus, hypothalamus and pituitary in chronically stressed rats and the BDNF response to novel acute stress was also modified. This multiparametric study showed that chronic restraint stress induced a depressive-like state that was sustained by mechanisms associated with BDNF regulation. Copyright © 2010 Elsevier Inc. All rights reserved.

  5. Brain-derived neurotrophic factor and interleukin-6 levels in the serum and cerebrospinal fluid of children with viral infection-induced encephalopathy.

    PubMed

    Morichi, Shinichiro; Yamanaka, Gaku; Ishida, Yu; Oana, Shingo; Kashiwagi, Yasuyo; Kawashima, Hisashi

    2014-11-01

    We investigated changes in the brain-derived neurotrophic factor (BDNF) and interleukin (IL)-6 levels in pediatric patients with central nervous system (CNS) infections, particularly viral infection-induced encephalopathy. Over a 5-year study period, 24 children hospitalized with encephalopathy were grouped based on their acute encephalopathy type (the excitotoxicity, cytokine storm, and metabolic error types). Children without CNS infections served as controls. In serum and cerebrospinal fluid (CSF) samples, BDNF and IL-6 levels were increased in all encephalopathy groups, and significant increases were noted in the influenza-associated and cytokine storm encephalopathy groups. Children with sequelae showed higher BDNF and IL-6 levels than those without sequelae. In pediatric patients, changes in serum and CSF BDNF and IL-6 levels may serve as a prognostic index of CNS infections, particularly for the diagnosis of encephalopathy and differentiation of encephalopathy types.

  6. Preservation of General Intelligence following Traumatic Brain Injury: Contributions of the Met66 Brain-Derived Neurotrophic Factor

    PubMed Central

    Barbey, Aron K.; Colom, Roberto; Paul, Erick; Forbes, Chad; Krueger, Frank; Goldman, David; Grafman, Jordan

    2014-01-01

    Brain-derived neurotrophic factor (BDNF) promotes survival and synaptic plasticity in the human brain. The Val66Met polymorphism of the BDNF gene interferes with intracellular trafficking, packaging, and regulated secretion of this neurotrophin. The human prefrontal cortex (PFC) shows lifelong neuroplastic adaption implicating the Val66Met BDNF polymorphism in the recovery of higher-order executive functions after traumatic brain injury (TBI). In this study, we examined the effect of this BDNF polymorphism on the preservation of general intelligence following TBI. We genotyped a sample of male Vietnam combat veterans (n = 156) consisting of a frontal lobe lesion group with focal penetrating head injuries for the Val66Met BDNF polymorphism. Val/Met did not differ from Val/Val genotypes in general cognitive ability before TBI. However, we found substantial average differences between these groups in general intelligence (≈ half a standard deviation or 8 IQ points), verbal comprehension (6 IQ points), perceptual organization (6 IQ points), working memory (8 IQ points), and processing speed (8 IQ points) after TBI. These results support the conclusion that Val/Met genotypes preserve general cognitive functioning, whereas Val/Val genotypes are largely susceptible to TBI. PMID:24586380

  7. The correlation between perceived social support, cortisol and brain derived neurotrophic factor levels in healthy women.

    PubMed

    Ma, Doy Yung; Chang, Wei Hung; Chi, Mei Hung; Tsai, Hsin Chun; Yang, Yen Kuang; Chen, Po See

    2016-05-30

    In this study, the role of brain derived neurotrophic factor (BDNF) in stress resilience was investigated. With a focus on healthy subjects, we explored whether plasma BDNF levels are correlated with the dexamethasone suppression test (DST) and subjectively perceived social support status. Moreover, we examined the possible interacting effect of DST status and perceived social support on BDNF levels. Seventy-two healthy volunteers, 44 females and 28 males, were recruited from the community and completed the perceived routine support subscale of Measurement of Support Function (PRS_MSF) questionnaire. Plasma BDNF levels and DST suppression rate with the low dose DST were measured. There was a significant positive correlation between BDNF and DST suppression rate in the female subjects. This was also true for the plasma BDNF levels and PRS_MSF in the female subjects. The positive correlation between BDNF and PRS_MSF was significant only in female subjects with low DST suppression rates. Plasma BDNF levels were associated with stress resilience in a sex-specific manner. Subjects' belief in social support might buffer the biological stress reactions. Differences in social perception and the biological stress response between men and women merits further investigation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Mature brain-derived neurotrophic factor and its receptor TrkB are upregulated in human glioma tissues.

    PubMed

    Xiong, Jing; Zhou, L I; Lim, Yoon; Yang, Miao; Zhu, Yu-Hong; Li, Zhi-Wei; Fu, Deng-Li; Zhou, Xin-Fu

    2015-07-01

    There are two forms of brain-derived neurotrophic factor (BDNF), precursor of BDNF (proBDNF) and mature BDNF, which each exert opposing effects through two different transmembrane receptor signaling systems, consisting of p75 neurotrophin receptor (p75NTR) and tyrosine receptor kinase B (TrkB). Previous studies have demonstrated that proBDNF promotes cell death and inhibits the growth and migration of C6 glioma cells through p75NTR in vitro , while mature BDNF has opposite effects on C6 glioma cells. It is hypothesized that mature BDNF is essential in the development of malignancy in gliomas. However, histological data obtained in previous studies were unable distinguish mature BDNF from proBDNF due to the lack of specific antibodies. The present study investigated the expression of mature BDNF using a specific sheep monoclonal anti-mature BDNF antibody in 42 human glioma tissues of different grades and 10 control tissues. The correlation between mature BDNF and TrkB was analyzed. Mature BDNF expression was significantly increased in high-grade gliomas, and was positively correlated with the malignancy of the tumor and TrkB receptor expression. The present data have demonstrated that increased levels of mature BDNF contribute markedly to the development of malignancy of human gliomas through the primary BDNF receptor TrkB.

  9. Sonic hedgehog signaling in spinal cord contributes to morphine-induced hyperalgesia and tolerance through upregulating brain-derived neurotrophic factor expression

    PubMed Central

    Song, Zhi-Jing; Miao, Shuai; Zhao, Ye; Wang, Xiu-Li; Liu, Yue-Peng

    2018-01-01

    Purpose Preventing opioid-induced hyperalgesia and tolerance continues to be a major clinical challenge, and the underlying mechanisms of hyperalgesia and tolerance remain elusive. Here, we investigated the role of sonic hedgehog (Shh) signaling in opioid-induced hyperalgesia and tolerance. Methods Shh signaling expression, behavioral changes, and neurochemical alterations induced by morphine were analyzed in male adult CD-1 mice with repeated administration of morphine. To investigate the contribution of Shh to morphine-induced hyperalgesia (MIH) and tolerance, Shh signaling inhibitor cyclopamine and Shh small interfering RNA (siRNA) were used. To explore the mechanisms of Shh signaling in MIH and tolerance, brain-derived neurotrophic factor (BDNF) inhibitor K252 and anti-BDNF antibody were used. Results Repeated administration of morphine produced obvious hyperalgesia and tolerance. The behavioral changes were correlated with the upregulation and activation of morphine treatment-induced Shh signaling. Pharmacologic and genetic inhibition of Shh signaling significantly delayed the generation of MIH and tolerance and associated neurochemical changes. Chronic morphine administration also induced upregulation of BDNF. Inhibiting BDNF effectively delayed the generation of MIH and tolerance. The upregulation of BDNF induced by morphine was significantly suppressed by inhibiting Shh signaling. In naïve mice, exogenous activation of Shh signaling caused a rapid increase of BDNF expression, as well as thermal hyperalgesia. Inhibiting BDNF significantly suppressed smoothened agonist-induced hyperalgesia. Conclusion These findings suggest that Shh signaling may be a critical mediator for MIH and tolerance by regulating BDNF expression. Inhibiting Shh signaling, especially during the early phase, may effectively delay or suppress MIH and tolerance. PMID:29662325

  10. Exercise Induced Neuroplasticity to Enhance Therapeutic Outcomes of Cognitive Remediation in Schizophrenia: Analyzing the Role of Brai nderived Neurotrophic Factor.

    PubMed

    Campos, Carlos; Rocha, Nuno B F; Lattari, Eduardo; Nardi, Antonio E; Machado, Sergio

    2017-01-01

    Cognitive impairment is a major manifestation of schizophrenia and a crucial treatment target as these deficits are closely related to patients' functional outcomes. Cognitive remediation is the gold-standard practice to address cognitive deficits in schizophrenia. There is clear evidence stating that cognitive remediation improves cognitive function and promotes structural neuroplastic changes in patients with schizophrenia, with brain-derived neurotrophic factor (BDNF) expression emerging as a potential biomarker for its efficacy. This is particularly important as there is clear evidence relating atypical BDNF expression to cognitive impairment in patients with schizophrenia. Despite the valuable role of cognitive remediation in the management of schizophrenia, there is still a need to develop methods that allow maximizing its efficacy. In this review, we present a hypothesis arguing that cognitive remediation efficacy for patients with schizophrenia can be enhanced by aerobic exercise-induced BDNF upregulation. There have been a few trials reporting that combining aerobic exercise with cognitive training was superior to cognitive training alone to improve cognitive functioning in patients with schizophrenia. Furthermore, there is preliminary evidence suggesting that combined aerobic and cognitive training can increase peripheral BDNF levels. Thereby, engaging in aerobic exercise in close temporal proximity to cognitive remediation may allow achieving a state of neuroplastic readiness in the brain, facilitating cognitive functioning enhancement. Although this hypothesis still lacks evidence, future clinical trials using cognitive remediation for schizophrenia should explore strategies to maximize neuroplasticity and achieve optimal cognitive improvements. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. Expression of brain derived-neurotrophic factor and granulocyte-colony stimulating factor in the urothelium: relation with voiding function.

    PubMed

    Yuk, Seung Mo; Shin, Ju Hyun; Song, Ki Hak; Na, Yong Gil; Lim, Jae Sung; Sul, Chong Koo

    2015-05-08

    We designed this experiment to elucidate the relationship between the expression of brain derived-neurotrophic factor (BDNF), the expression of granulocyte-colony stimulating factor (G-CSF), and the development of overactive bladder (OAB). In our previous study, the urothelium was observed to be more than a simple mechanosensory receptor and was found to be a potential therapeutic target for OAB. Moreover, neuregulin-1 and BDNF were found to be potential new biomarkers of OAB. Here, we investigated the relationship between changes in the voiding pattern and the expression of BDNF and G-CSF in the urothelium and evaluated the effects of 5-hydroxymethyl tolterodine (5-HMT) on rats with bladder outlet obstruction (BOO). A total of 100 Sprague-Dawley rats were divided into the following groups: 20 control rats; 40 BOO rats; and 40 BOO rats administered 5-HMT (0.1 mg/kg). After BOO was induced for 4 weeks, the rats were assessed by cystometrography. The changes in BDNF and G-CSF expression were examined in both separated urothelial tissues and in cultured urothelial cells by reverse transcription polymerase chain reaction (RT-PCR). BOO rats showed increased non-voiding activity [NVA; (number/10 voidings)] and bladder weight and decreased micturition volume (MV), micturition interval (MI), and micturition time (MT) relative to the controls. Moreover, the 5-HMT administration rats showed decreased NVA and bladder weight and increased MV and MI in comparison to the BOO rats. BDNF and G-CSF expression was increased in BOO rats and decreased following 5-HMT administration. In this model, voiding dysfunction developed as a result of BOO. As a therapeutic agent for OAB, the administration of 5-HMT improved the voiding dysfunction. BDNF and G-CSF might modulate voiding patterns through micturition pathways and might be involved only in the urothelium. Moreover, the expression of both genes in the urothelium might be related to voiding dysfunction in OAB patients. Thus, the

  12. Low-dose memantine attenuated morphine addictive behavior through its anti-inflammation and neurotrophic effects in rats.

    PubMed

    Chen, Shiou-Lan; Tao, Pao-Luh; Chu, Chun-Hsien; Chen, Shih-Heng; Wu, Hsiang-En; Tseng, Leon F; Hong, Jau-Shyong; Lu, Ru-Band

    2012-06-01

    Opioid abuse and dependency are international problems. Studies have shown that neuronal inflammation and degeneration might be related to the development of opioid addiction. Thus, using neuroprotective agents might be beneficial for treating opioid addiction. Memantine, an Alzheimer's disease medication, has neuroprotective effects in vitro and in vivo. In this study, we evaluated whether a low dose of memantine prevents opioid-induced drug-seeking behavior in rats and analyzed its mechanism. A conditioned-place-preference test was used to investigate the morphine-induced drug-seeking behaviors in rats. We found that a low-dose (0.2-1 mg/kg) of subcutaneous memantine significantly attenuated the chronic morphine-induced place-preference in rats. To clarify the effects of chronic morphine and low-dose memantine, serum and brain levels of cytokines and brain-derived neurotrophic factor (BDNF) were measured. After 6 days of morphine treatment, cytokine (IL-1β, IL-6) levels had significantly increased in serum; IL-1β and IL-6 mRNA levels had significantly increased in the nucleus accumbens and medial prefrontal cortex, both addiction-related brain areas; and BDNF levels had significantly decreased, both in serum and in addiction-related brain areas. Pretreatment with low-dose memantine significantly attenuated chronic morphine-induced increases in serum and brain cytokines. Low-dose memantine also significantly potentiated serum and brain BDNF levels. We hypothesize that neuronal inflammation and BDNF downregulation are related to the progression of opioid addiction. We hypothesize that the mechanism low-dose memantine uses to attenuate morphine-induced addiction behavior is its anti-inflammatory and neurotrophic effects.

  13. Mechanism of Hyperphagia Contributing to Obesity in Brain-Derived Neurotrophic Factor Knockout Mice

    PubMed Central

    Fox, Edward A.; Biddinger, Jessica E.; Jones, Kevin R.; McAdams, Jennifer; Worman, Amber

    2012-01-01

    Global-heterozygous and brain-specific homozygous knockouts (KO's) of brain-derived neurotrophic factor (BDNF) cause late- and early-onset obesity, respectively, both involving hyperphagia. Little is known about the mechanism underlying this hyperphagia or whether BDNF loss from peripheral tissues could contribute to overeating. Since global-homozygous BDNF-KO is perinatal lethal, a BDNF-KO that spared sufficient brainstem BDNF to support normal health was utilized to begin to address these issues. Meal pattern and microstructure analyses suggested overeating of BDNF-KO mice was mediated by deficits in both satiation and satiety that resulted in increased meal size and frequency and implicated a reduction of vagal signaling from gut-to-brain. Meal-induced c-Fos activation in the nucleus of the solitary tract, a more direct measure of vagal afferent signaling, however, was not decreased in BDNF-KO mice, and thus was not consistent with a vagal afferent role. Interestingly though, meal-induced c-Fos activation was increased in the dorsal vagal motor nucleus (DMV) of BDNF-KO mice. This could imply that augmentation of vago-vagal digestive reflexes occurred (e.g., accommodation), which would support increased meal size and possibly increased meal number by reducing the increase in intragastric pressure produced by a given amount of ingesta. Additionally, vagal sensory neuron number in BDNF-KO mice was altered in a manner consistent with the increased meal-induced activation of the DMV. These results suggest reduced BDNF causes satiety and satiation deficits that support hyperphagia, possibly involving augmentation of vago-vagal reflexes mediated by central pathways or vagal afferents regulated by BDNF levels. PMID:23069761

  14. Mechanism of hyperphagia contributing to obesity in brain-derived neurotrophic factor knockout mice.

    PubMed

    Fox, E A; Biddinger, J E; Jones, K R; McAdams, J; Worman, A

    2013-01-15

    Global-heterozygous and brain-specific homozygous knockouts (KOs) of brain-derived neurotrophic factor (BDNF) cause late- and early-onset obesity, respectively, both involving hyperphagia. Little is known about the mechanism underlying this hyperphagia or whether BDNF loss from peripheral tissues could contribute to overeating. Since global-homozygous BDNF-KO is perinatal lethal, a BDNF-KO that spared sufficient brainstem BDNF to support normal health was utilized to begin to address these issues. Meal pattern and microstructure analyses suggested overeating of BDNF-KO mice was mediated by deficits in both satiation and satiety that resulted in increased meal size and frequency and implicated a reduction of vagal signaling from the gut to the brain. Meal-induced c-Fos activation in the nucleus of the solitary tract, a more direct measure of vagal afferent signaling, however, was not decreased in BDNF-KO mice, and thus was not consistent with a vagal afferent role. Interestingly though, meal-induced c-Fos activation was increased in the dorsal motor nucleus of the vagus nerve (DMV) of BDNF-KO mice. This could imply that augmentation of vago-vagal digestive reflexes occurred (e.g., accommodation), which would support increased meal size and possibly increased meal number by reducing the increase in intragastric pressure produced by a given amount of ingesta. Additionally, vagal sensory neuron number in BDNF-KO mice was altered in a manner consistent with the increased meal-induced activation of the DMV. These results suggest reduced BDNF causes satiety and satiation deficits that support hyperphagia, possibly involving augmentation of vago-vagal reflexes mediated by central pathways or vagal afferents regulated by BDNF levels. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  15. Impact of brain-derived neurotrophic factor genetic polymorphism on cognition: A systematic review.

    PubMed

    Toh, Yi Long; Ng, Terence; Tan, Megan; Tan, Azrina; Chan, Alexandre

    2018-06-01

    Brain-derived neurotrophic factor (BDNF) has an important role in the neurogenesis and neuroplasticity of the brain. This systematic review was designed to examine the association between BDNF Val66Met (rs6265) polymorphism and four cognitive domains-attention and concentration, executive function, verbal fluency, and memory, respectively. Primary literature search was performed using search engines such as PubMed and Scopus. Observational studies that evaluated the neurocognitive performances in relation to BDNF polymorphism within human subjects were included in this review, while animal studies, overlapping studies, and meta-analysis were excluded. Forty of 82 reviewed studies (48.8%) reported an association between Val66Met polymorphism and neurocognitive domains. The proportion of the studies showing positive findings in cognitive performances between Val/Val homozygotes and Met carriers was comparable, at 30.5% and 18.3%, respectively. The highest percentage of positive association between Val66Met polymorphism and neurocognition was reported under the memory domain, with 26 of 63 studies (41.3%), followed by 18 of 47 studies (38.3%) under the executive function domain and four of 23 studies (17.4%) under the attention and concentration domain. There were no studies showing an association between Val66Met polymorphism and verbal fluency. In particular, Val/Val homozygotes performed better in tasks related to the memory domain, while Met carriers performed better in terms of executive function, in both healthy individuals and clinical populations. While numerous studies report an association between Val66Met polymorphism and neurocognitive changes in executive function and memory domains, the effect of Met allele has not been clearly established. © 2018 The Authors. Brain and Behavior published by Wiley Periodicals, Inc.

  16. Brain-derived neurotrophic factor (BDNF) induces sustained intracellular Ca2+ elevation through the up-regulation of surface transient receptor potential 3 (TRPC3) channels in rodent microglia.

    PubMed

    Mizoguchi, Yoshito; Kato, Takahiro A; Seki, Yoshihiro; Ohgidani, Masahiro; Sagata, Noriaki; Horikawa, Hideki; Yamauchi, Yusuke; Sato-Kasai, Mina; Hayakawa, Kohei; Inoue, Ryuji; Kanba, Shigenobu; Monji, Akira

    2014-06-27

    Microglia are immune cells that release factors, including proinflammatory cytokines, nitric oxide (NO), and neurotrophins, following activation after disturbance in the brain. Elevation of intracellular Ca(2+) concentration ([Ca(2+)]i) is important for microglial functions such as the release of cytokines and NO from activated microglia. There is increasing evidence suggesting that pathophysiology of neuropsychiatric disorders is related to the inflammatory responses mediated by microglia. Brain-derived neurotrophic factor (BDNF) is a neurotrophin well known for its roles in the activation of microglia as well as in pathophysiology and/or treatment of neuropsychiatric disorders. In this study, we sought to examine the underlying mechanism of BDNF-induced sustained increase in [Ca(2+)]i in rodent microglial cells. We observed that canonical transient receptor potential 3 (TRPC3) channels contribute to the maintenance of BDNF-induced sustained intracellular Ca(2+) elevation. Immunocytochemical technique and flow cytometry also revealed that BDNF rapidly up-regulated the surface expression of TRPC3 channels in rodent microglial cells. In addition, pretreatment with BDNF suppressed the production of NO induced by tumor necrosis factor α (TNFα), which was prevented by co-adiministration of a selective TRPC3 inhibitor. These suggest that BDNF induces sustained intracellular Ca(2+) elevation through the up-regulation of surface TRPC3 channels and TRPC3 channels could be important for the BDNF-induced suppression of the NO production in activated microglia. We show that TRPC3 channels could also play important roles in microglial functions, which might be important for the regulation of inflammatory responses and may also be involved in the pathophysiology and/or the treatment of neuropsychiatric disorders. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. A glial cell line-derived neurotrophic factor (GDNF):tetanus toxin fragment C protein conjugate improves delivery of GDNF to spinal cord motor neurons in mice.

    PubMed

    Larsen, Kristin E; Benn, Susanna C; Ay, Ilknur; Chian, Ru-Ju; Celia, Samuel A; Remington, Mary P; Bejarano, Michelle; Liu, Meiqin; Ross, Joshua; Carmillo, Paul; Sah, Dinah; Phillips, Kester A; Sulzer, David; Pepinsky, R Blake; Fishman, Paul S; Brown, Robert H; Francis, Jonathan W

    2006-11-20

    Glial cell line-derived neurotrophic factor (GDNF) has shown robust neuroprotective and neuroreparative activities in various animal models of Parkinson's Disease or amyotrophic lateral sclerosis (ALS). The successful use of GDNF as a therapeutic in humans, however, appears to have been hindered by its poor bioavailability to target neurons in the central nervous system (CNS). To improve delivery of exogenous GDNF protein to CNS motor neurons, we employed chemical conjugation techniques to link recombinant human GDNF to the neuronal binding fragment of tetanus toxin (tetanus toxin fragment C, or TTC). The predominant species present in the purified conjugate sample, GDNF:TTC, had a molecular weight of approximately 80 kDa as determined by non-reducing SDS-PAGE. Like GDNF, addition of GDNF:TTC to culture media of neuroblastoma cells expressing GFRalpha-1/c-RET produced a dose-dependent increase in cellular phospho-c-RET levels. Treatment of cultured midbrain dopaminergic neurons with either GDNF or the conjugate similarly promoted both DA neuron survival and neurite outgrowth. However, in contrast to mice treated with GDNF by intramuscular injection, mice receiving GDNF:TTC revealed intense GDNF immunostaining associated with spinal cord motor neurons in fixed tissue sections. That GDNF:TTC provided neuroprotection of axotomized motor neurons in neonatal rats further revealed that the conjugate retained its GDNF activity in vivo. These results indicate that TTC can serve as a non-viral vehicle to substantially improve the delivery of functionally active growth factors to motor neurons in the mammalian CNS.

  18. Neurotrophic requirements of human motor neurons defined using amplified and purified stem cell-derived cultures.

    PubMed

    Lamas, Nuno Jorge; Johnson-Kerner, Bethany; Roybon, Laurent; Kim, Yoon A; Garcia-Diaz, Alejandro; Wichterle, Hynek; Henderson, Christopher E

    2014-01-01

    Human motor neurons derived from embryonic and induced pluripotent stem cells (hESCs and hiPSCs) are a potentially important tool for studying motor neuron survival and pathological cell death. However, their basic survival requirements remain poorly characterized. Here, we sought to optimize a robust survival assay and characterize their response to different neurotrophic factors. First, to increase motor neuron yield, we screened a small-molecule collection and found that the Rho-associated kinase (ROCK) inhibitor Y-27632 enhances motor neuron progenitor proliferation up to 4-fold in hESC and hiPSC cultures. Next, we FACS-purified motor neurons expressing the Hb9::GFP reporter from Y-27632-amplified embryoid bodies and cultured them in the presence of mitotic inhibitors to eliminate dividing progenitors. Survival of these purified motor neurons in the absence of any other cell type was strongly dependent on neurotrophic support. GDNF, BDNF and CNTF all showed potent survival effects (EC(50) 1-2 pM). The number of surviving motor neurons was further enhanced in the presence of forskolin and IBMX, agents that increase endogenous cAMP levels. As a demonstration of the ability of the assay to detect novel neurotrophic agents, Y-27632 itself was found to support human motor neuron survival. Thus, purified human stem cell-derived motor neurons show survival requirements similar to those of primary rodent motor neurons and can be used for rigorous cell-based screening.

  19. Neurotrophic Requirements of Human Motor Neurons Defined Using Amplified and Purified Stem Cell-Derived Cultures

    PubMed Central

    Lamas, Nuno Jorge; Johnson-Kerner, Bethany; Roybon, Laurent; Kim, Yoon A.; Garcia-Diaz, Alejandro; Wichterle, Hynek; Henderson, Christopher E.

    2014-01-01

    Human motor neurons derived from embryonic and induced pluripotent stem cells (hESCs and hiPSCs) are a potentially important tool for studying motor neuron survival and pathological cell death. However, their basic survival requirements remain poorly characterized. Here, we sought to optimize a robust survival assay and characterize their response to different neurotrophic factors. First, to increase motor neuron yield, we screened a small-molecule collection and found that the Rho-associated kinase (ROCK) inhibitor Y-27632 enhances motor neuron progenitor proliferation up to 4-fold in hESC and hiPSC cultures. Next, we FACS-purified motor neurons expressing the Hb9::GFP reporter from Y-27632-amplified embryoid bodies and cultured them in the presence of mitotic inhibitors to eliminate dividing progenitors. Survival of these purified motor neurons in the absence of any other cell type was strongly dependent on neurotrophic support. GDNF, BDNF and CNTF all showed potent survival effects (EC50 1–2 pM). The number of surviving motor neurons was further enhanced in the presence of forskolin and IBMX, agents that increase endogenous cAMP levels. As a demonstration of the ability of the assay to detect novel neurotrophic agents, Y-27632 itself was found to support human motor neuron survival. Thus, purified human stem cell-derived motor neurons show survival requirements similar to those of primary rodent motor neurons and can be used for rigorous cell-based screening. PMID:25337699

  20. Brain-Derived Neurotrophic Factor in TBI-related mortality: Interrelationships between Genetics and Acute Systemic and CNS BDNF Profiles

    PubMed Central

    Failla, Michelle D.; Conley, Yvette P.; Wagner, Amy K.

    2015-01-01

    Background Older adults have higher mortality rates after severe traumatic brain injury (TBI) compared to younger adults. Brain derived neurotrophic factor (BDNF) signaling is altered in aging and is important to TBI given its role in neuronal survival/plasticity and autonomic function. Following experimental TBI, acute BDNF administration has not been efficacious. Clinically, genetic variation in BDNF (reduced signaling alleles: rs6265, Met-carriers; rs7124442, C-carriers) were protective in acute mortality. Post-acutely, these genotypes carried lower mortality risk in older adults, and greater mortality risk among younger adults. Objective Investigate BDNF levels in mortality/outcome following severe TBI in the context of age and genetic risk. Methods CSF and serum BDNF were assessed prospectively during the first week following severe TBI (n=203), and in controls (n=10). Age, BDNF genotype, and BDNF levels were assessed as mortality/outcome predictors. Results CSF BDNF levels tended to be higher post-TBI (p=0.061) versus controls and were associated with time until death (p=0.042). In contrast, serum BDNF levels were reduced post-TBI versus controls (p<0.0001). Both gene*BDNF serum and gene*age interactions were mortality predictors post-TBI in the same multivariate model. CSF and serum BDNF tended to be negatively correlated post-TBI (p=0.07). Conclusions BDNF levels predicted mortality, in addition to gene*age interactions, suggesting levels capture additional mortality risk. Higher CSF BDNF post-TBI may be detrimental due to injury and age-related increases in pro-apoptotic BDNF target receptors. Negative CSF and serum BDNF correlations post-TBI suggest blood-brain barrier transit alterations. Understanding BDNF signaling in neuronal survival, plasticity, and autonomic function may inform treatment. PMID:25979196

  1. Endothelial nitric oxide synthase protects neurons against ischemic injury through regulation of brain-derived neurotrophic factor expression.

    PubMed

    Li, Shi-Ting; Pan, Jing; Hua, Xu-Ming; Liu, Hong; Shen, Sa; Liu, Jia-Fu; Li, Bin; Tao, Bang-Bao; Ge, Xiao-Li; Wang, Xu-Hui; Shi, Juan-Hong; Wang, Xiao-Qiang

    2014-02-01

    Several lines of evidence demonstrated that endothelial nitric oxide synthase (eNOS) confers protective effects during cerebral ischemia. In this study, we explored the underlying cellular and molecular mechanisms of neuroprotection by eNOS. A series of in vivo and in vitro ischemic models were employed to study the role of eNOS in maintaining neuronal survival and to identify the downstream factors. The current data showed that pretreatment with a specific eNOS inhibitor, L-N5-(1-iminoethyl) ornithine (L-NIO), aggravated the neuronal loss in the rat cerebral ischemic model, accompanied by reduction in brain-derived neurotrophic factor (BDNF) level, which was consistent with the findings in an oxygen-glucose deprivation model (OGD) with two neuronal cells: primary rat cortical neurons and human neuroblastoma SH-SY5Y cells. Furthermore, the extensive neuronal loss induced by L-NIO was totally abolished by exogenous BDNF in both in vitro and in vivo models. On the other hand, eNOS overexpression through an adenoviral vector exerted a prominent protective effect on the neuronal cells subject to OGD, and the protective effect was totally abrogated by a neutralizing anti-BDNF antibody. Collectively, our results indicate that the neuroprotection of neuron-derived eNOS against the cerebral ischemia was mediated through the regulation of BDNF secretion. In conclusion, our discovery provides a novel explanation for the neuroprotective effect of eNOS under pathological ischemic conditions such as stroke. © 2014 John Wiley & Sons Ltd.

  2. Epigenetic and epistatic interactions between serotonin transporter and brain-derived neurotrophic factor genetic polymorphism: insights in depression.

    PubMed

    Ignácio, Z M; Réus, G Z; Abelaira, H M; Quevedo, J

    2014-09-05

    Epidemiological studies have shown significant results in the interaction between the functions of brain-derived neurotrophic factor (BDNF) and 5-HT in mood disorders, such as major depressive disorder (MDD). The latest research has provided convincing evidence that gene transcription of these molecules is a target for epigenetic changes, triggered by stressful stimuli that starts in early childhood and continues throughout life, which are subsequently translated into structural and functional phenotypes culminating in depressive disorders. The short variants of 5-HTTLPR and BDNF-Met are seen as forms which are predisposed to epigenetic aberrations, which leads individuals to a susceptibility to environmental adversities, especially when subjected to stress in early life. Moreover, the polymorphic variants also feature epistatic interactions in directing the functional mechanisms elicited by stress and underlying the onset of depressive disorders. Also emphasized are works which show some mediators between stress and epigenetic changes of the 5-HTT and BDNF genes, such as the hypothalamic-pituitary-adrenal (HPA) axis and the cAMP response element-binding protein (CREB), which is a cellular transcription factor. Both the HPA axis and CREB are also involved in epistatic interactions between polymorphic variants of 5-HTTLPR and Val66Met. This review highlights some research studying changes in the epigenetic patterns intrinsic to genes of 5-HTT and BDNF, which are related to lifelong environmental adversities, which in turn increases the risks of developing MDD. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  3. Dose-Dependent Differential Effect of Neurotrophic Factors on In Vitro and In Vivo Regeneration of Motor and Sensory Neurons

    PubMed Central

    Santos, Daniel; Gonzalez-Perez, Francisco; Navarro, Xavier

    2016-01-01

    Although peripheral axons can regenerate after nerve transection and repair, functional recovery is usually poor due to inaccurate reinnervation. Neurotrophic factors promote directional guidance to regenerating axons and their selective application may help to improve functional recovery. Hence, we have characterized in organotypic cultures of spinal cord and dorsal root ganglia the effect of GDNF, FGF-2, NGF, NT-3, and BDNF at different concentrations on motor and sensory neurite outgrowth. In vitro results show that GDNF and FGF-2 enhanced both motor and sensory neurite outgrowth, NGF and NT-3 were the most selective to enhance sensory neurite outgrowth, and high doses of BDNF selectively enhanced motor neurite outgrowth. Then, NGF, NT-3, and BDNF (as the most selective factors) were delivered in a collagen matrix within a silicone tube to repair the severed sciatic nerve of rats. Quantification of Fluorogold retrolabeled neurons showed that NGF and NT-3 did not show preferential effect on sensory regeneration whereas BDNF preferentially promoted motor axons regeneration. Therefore, the selective effects of NGF and NT-3 shown in vitro are lost when they are applied in vivo, but a high dose of BDNF is able to selectively enhance motor neuron regeneration both in vitro and in vivo. PMID:27867665

  4. Apigenin reverses depression-like behavior induced by chronic corticosterone treatment in mice.

    PubMed

    Weng, Lianjin; Guo, Xiaohua; Li, Yang; Yang, Xin; Han, Yuanyuan

    2016-03-05

    Previous researches found that apigenin exerted antidepressant-like effects in rodents. However, it is unclear whether the neurotrophic system is involved in the antidepressant-like effects of apigenin. Our present study aimed to explore the neurotrophic related mechanism of apigenin in depressive-like mice induced by chronic corticosterone treatment. Mice were repeatedly injected with corticosterone (40 mg/kg) subcutaneously (s.c) once daily for consecutive 21 days. Apigenin (20 and 40 mg/kg) and fluoxetine (20 mg/kg) were administered 30 min prior to the corticosterone injection. The behavioral tests indicated that apigenin reversed the reduction of sucrose preference and the elevation of immobility time in mice induced by chronic corticosterone treatment. In addition, the increase in serum corticosterone levels and the decrease in hippocampal brain-derived neurotrophic factor (BDNF) levels in corticosterone-treated mice were also ameliorated by apigenin administration. Taken together, our findings intensively confirmed the antidepressant-like effects of apigenin and indicated that the antidepressant-like mechanism of apigenin was mediated, at least partly by up-regulation of BDNF levels in the hippocampus. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. The positive cognitive impact of aerobic fitness is associated with peripheral inflammatory and brain-derived neurotrophic biomarkers in young adults.

    PubMed

    Hwang, Jungyun; Castelli, Darla M; Gonzalez-Lima, F

    2017-10-01

    There is ample evidence for supporting the positive impact of aerobic fitness on cognitive function, but little is known about the physiological mechanisms. The objective of this study was to investigate whether the positive cognitive impact of aerobic fitness is associated with inflammatory and neurotrophic peripheral biomarkers in young adults aged 18 to 29years (n=87). For the objective assessment of aerobic fitness, we measured maximal oxygen uptake (VO 2 max) as a parametric measure of cardiorespiratory capacity. We demonstrated that young adults with the higher levels of VO 2 max performed better on computerized cognitive tasks assessing sustained attention and working memory. This positive VO 2 max-cognitive performance association existed independently of confounders (e.g., years of education, intelligence scores) but was significantly dependent on resting peripheral blood levels of inflammatory (C-reactive protein, CRP) and neurotrophic (brain-derived neurotrophic factor, BDNF) biomarkers. Statistical models showed that CRP was a mediator of the effect of VO 2 max on working memory. Further, BDNF was a moderator of the effect of VO 2 max on working memory. These mediating and moderating effects occurred in individuals with higher levels of aerobic fitness. The results suggest that higher aerobic fitness, as measured by VO 2 max, is associated with enhanced cognitive functioning and favorable resting peripheral levels of inflammatory and brain-derived neurotrophic biomarkers in young adults. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Variation in the ciliary neurotrophic factor gene and muscle strength in older Caucasian women.

    PubMed

    Arking, Dan E; Fallin, Daniele M; Fried, Linda P; Li, Tao; Beamer, Brock A; Xue, Qian Li; Chakravarti, Aravinda; Walston, Jeremy

    2006-05-01

    To determine whether genetic variants in the ciliary neurotrophic factor (CNTF) gene are associated with muscle strength in older women. Cross-sectional analysis of baseline data from the Women's Health and Aging Studies I (1992) and II (1994), complementary population-based studies. Twelve contiguous ZIP code areas in Baltimore, Maryland. Three hundred sixty-three Caucasian, community-dwelling women aged 70 to 79. Participants were genotyped at the CNTF locus for eight single nucleotide polymorphisms (SNPs), including the null allele rs1800169. The dependent variables were grip strength and the frailty syndrome, identified as presence of three or more of five frailty indicators (weakness, slowness, weight loss, low physical activity, exhaustion). In addition to genotypes, independent variables of body mass index (BMI) and osteoarthritis of the hands were included. Using multivariate linear regression, single SNP analysis identified five SNPs significantly associated with grip strength (P<.05), after adjusting for age, BMI, and osteoarthritis. Haplotype analysis was performed, and a single haplotype associated with grip strength was identified (P<.01). The rs1800169 null allele fully explained the association between this haplotype and grip strength under a recessive model, with individuals homozygous for the null allele exhibiting a 3.80-kg lower (95% confidence interval=1.01-6.58) grip strength. No association was seen between the CNTF null allele and frailty. Individuals homozygous for the CNTF null allele had significantly lower grip strength but did not exhibit overt frailty. Larger prospective studies are needed to confirm this finding and extend it to additional populations.

  7. rs10767664 Gene Variant in Brain-Derived Neurotrophic Factor Is Associated with Diabetes Mellitus Type 2 in Caucasian Females with Obesity.

    PubMed

    de Luis, Daniel Antonio; Aller, Rocío; Izaola, Olatz; Primo, David; Romero, Enrique

    2017-01-01

    The role of brain-derived neurotrophic factor (BDNF) variants on diabetes prevalence, basal adipokine levels, body weight, and cardiovascular risk factors remains unclear in obese patients. This study is aimed at analyzing the effects of rs10767664 BDNF gene polymorphism on diabetes mellitus prevalence, body weight, cardiovascular risk factors, and serum adipokine levels in obese female patients. A total of 507 obese women were enrolled in a prospective way. Biochemical evaluation and anthropometric measures were recorded. The frequency of diabetes mellitus in the group of patients with non-T allele was 20.1 and 28.3% in T-allele carriers. Logistic regression showed a risk of diabetes mellitus of 1.33 (95% CI 1.17-2.08) in subjects with T allele adjusted by age and body mass index (BMI). T-allele carriers with diabetes mellitus have a higher weight, BMI, waist circumference, blood pressure, glucose, homeostasis model assessment insulin resistance (HOMA-IR), insulin, and C-reactive protein (CRP) levels than non-T-allele carriers. rs10767664 polymorphism of BDNF gene is associated with prevalence of diabetes mellitus in obese female patients. T-allele carriers with diabetes mellitus have a higher weight, fat mass, blood pressure, level of insulin, glucose, HOMA-IR, and CRP than non-T-allele carriers. © 2017 S. Karger AG, Basel.

  8. Lack of Postprandial Peak in Brain-Derived Neurotrophic Factor in Adults with Prader-Willi Syndrome

    PubMed Central

    Bueno, Marta; Esteba-Castillo, Susanna; Novell, Ramon; Giménez-Palop, Olga; Coronas, Ramon; Gabau, Elisabeth; Corripio, Raquel; Baena, Neus; Viñas-Jornet, Marina; Guitart, Míriam; Torrents-Rodas, David; Deus, Joan; Pujol, Jesús; Rigla, Mercedes

    2016-01-01

    Context Prader-Willi syndrome (PWS) is characterized by severe hyperphagia. Brain-derived neurotrophic factor (BDNF) and leptin are reciprocally involved in energy homeostasis. Objectives To analyze the role of BDNF and leptin in satiety in genetic subtypes of PWS. Design Experimental study. Setting University hospital. Subjects 90 adults: 30 PWS patients; 30 age-sex-BMI-matched obese controls; and 30 age-sex-matched lean controls. Interventions Subjects ingested a liquid meal after fasting ≥10 hours. Main Outcome Measures Leptin and BDNF levels in plasma extracted before ingestion and 30’, 60’, and 120’ after ingestion. Hunger, measured on a 100-point visual analogue scale before ingestion and 60’ and 120’ after ingestion. Results Fasting BDNF levels were lower in PWS than in controls (p = 0.05). Postprandially, PWS patients showed only a truncated early peak in BDNF, and their BDNF levels at 60' and 120' were lower compared with lean controls (p<0.05). Leptin was higher in PWS patients than in controls at all time points (p<0.001). PWS patients were hungrier than controls before and after eating. The probability of being hungry was associated with baseline BDNF levels: every 50-unit increment in BDNF decreased the odds of being hungry by 22% (OR: 0.78, 95%CI: 0.65–0.94). In uniparental disomy, the odds of being hungry decreased by 66% (OR: 0.34, 90%CI: 0.13–0.9). Postprandial leptin patterns did no differ among genetic subtypes. Conclusions Low baseline BDNF levels and lack of postprandial peak may contribute to persistent hunger after meals. Uniparental disomy is the genetic subtype of PWS least affected by these factors. PMID:27685845

  9. Glial cell line-derived neurotrophic factor and endothelial cells promote self-renewal of rabbit germ cells with spermatogonial stem cell properties.

    PubMed

    Kubota, Hiroshi; Wu, Xin; Goodyear, Shaun M; Avarbock, Mary R; Brinster, Ralph L

    2011-08-01

    Previous studies suggest that exogenous factors crucial for spermatogonial stem cell (SSC) self-renewal are conserved among several mammalian species. Since glial cell line-derived neurotrophic factor (GDNF) and fibroblast growth factor 2 (FGF2) are critical for rodent SSC self-renewal, we hypothesized that they might promote self-renewal of nonrodent SSCs. Therefore, we cultured testicular germ cells from prepubertal rabbits in the presence of GDNF and FGF2 and found they proliferated indefinitely as cellular clumps that displayed characteristics previously identified for rodent SSCs. The rabbit germ cells could not be maintained on mouse embryonic fibroblast (STO) feeders that support rodent SSC self-renewal in vitro but were rather supported on mouse yolk sac-derived endothelial cell (C166) feeder layers. Proliferation of rabbit germ cells was dependent on GDNF. Of critical importance was that clump-forming rabbit germ cells colonized seminiferous tubules of immunodeficient mice, proliferated for at least 6 mo, while retaining an SSC phenotype in the testes of recipient mice, indicating that they were rabbit SSCs. This study demonstrates that GDNF is a mitogenic factor promoting self-renewal that is conserved between rodent and rabbit SSCs; with an evolutionary separation of ∼ 60 million years. These findings provide a foundation to study the mechanisms governing SSC self-renewal in nonrodent species.

  10. Spatial learning in the Morris water maze in mice genetically different in the predisposition to catalepsy: the effect of intraventricular treatment with brain-derived neurotrophic factor.

    PubMed

    Kulikov, Alexander V; Fursenko, Daria V; Khotskin, Nikita V; Bazovkina, Daria V; Kulikov, Victor A; Naumenko, Vladimir S; Bazhenova, Ekaterina Yu; Popova, Nina K

    2014-07-01

    Hereditary catalepsy in mice is accompanied with volume reduction of some brain structures and high vulnerability to inflammatory agents. Here an association between hereditary catalepsy and spatial learning deficit in the Morris water maze (MWM) in adult mouse males of catalepsy-resistant AKR, catalepsy-prone CBA and AKR.CBA-D13Mit76 (D13) strains was studied. Recombinant D13 strain was created by means of the transfer of the CBA-derived allele of the major gene of catalepsy to the AKR genome. D13 mice showed a low MWM performance in the acquisition test and high expression of the gene coding proinflammatory interleukin-6 (Il-6) in the hippocampus and cortex compared with mice of the parental AKR and CBA strains. An acute ivc administration of 300 ng of brain derived neurotrophic factor (BDNF) normalized the performance in the MWM, but did not decrease the high Il-6 gene expression in the brain of D13 mice. These results indicated a possible association between the hereditary catalepsy, MWM performance, BDNF and level of Il-6 mRNA in the brain, although the relation between these characteristics seems to be more complex. D13 recombinant mice with deficit of spatial learning is a promising model for study of the genetic and molecular mechanisms of learning disorders as well as for screening potential cognitive enhancers. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Essential oil of Syzygium aromaticum reverses the deficits of stress-induced behaviors and hippocampal p-ERK/p-CREB/brain-derived neurotrophic factor expression.

    PubMed

    Liu, Bin-Bin; Luo, Liu; Liu, Xiao-Long; Geng, Di; Li, Cheng-Fu; Chen, Shao-Mei; Chen, Xue-Mei; Yi, Li-Tao; Liu, Qing

    2015-02-01

    Syzygium aromaticum has been widely used in traditional medicine. Our study investigated the safety and antidepressant-like effects of the essential oil of S. aromaticum after acute or long-term treatment. Using GC-MS, a total of eight volatile constituents were identified in the essential oil of S. aromaticum. The single LD50 was approximately 4500 mg/kg based on a 24-h acute oral toxicity study. In a long-term repeated toxicity study of this essential oil (100, 200, and 400 mg/kg, p. o.), only 400 mg/kg induced a significant decrease in body weight. In addition, no significant changes in relative organ weights and histopathological analysis were observed in all doses of essential oil-treated mice compared with the control group. Furthermore, acute S. aromaticum essential oil administration by gavage exerted antidepressant-like effects in the forced swimming test (200 mg/kg, p < 0.05) and tail suspension test (100 and 200 mg/kg, p < 0.05). Long-term S. aromaticum essential oil treatment via gavage significantly increased sucrose preference (50 mg/kg, p < 0.05; 100 and 200 mg/kg, p < 0.01) as well as elevated the protein levels of hippocampal p-ERK, p-CREB, and brain-derived neurotrophic factor in mice exposed to chronic unpredictable mild stress. These results confirmed the safety of the essential oil of S. aromaticum and suggested that its potent antidepressant-like property might be attributed to the improvement in the hippocampal pERK1/2-pCREB-BDNF pathway in rats exposed to chronic unpredictable mild stress. Georg Thieme Verlag KG Stuttgart · New York.

  12. Insulin-like growth factor-1: a possible marker for emotional and cognitive disturbances, and treatment effectiveness in major depressive disorder.

    PubMed

    Levada, Oleg A; Troyan, Alexandra S

    2017-01-01

    Depression and cognitive dysfunction share a common neuropathological platform. Abnormal neural plasticity in the frontolimbic circuits has been linked to changes in the expression of neurotrophic factors, including IGF-1. These changes may result in clinical abnormalities observed over the course of major depressive disorder (MDD), including cognitive dysfunction. The present review aimed to summarize evidence regarding abnormalities of peripheral IGF-1 in MDD patients and assess a marker and predictive role of the neurotrophin for emotional and cognitive disturbances, and treatment effectiveness. A literature search of the PubMed database was conducted for studies, in which peripheral IGF-1 levels were evaluated. Our analysis revealed four main findings: (1) IGF-1 levels in MDD patients mismatch across the studies, which may arise from various factors, e.g., age, gender, the course of the disease, presence of cognitive impairment, ongoing therapy, or general health conditions; (2) the initial peripheral IGF-1 levels may predict the occurrence of depression in future; (3) peripheral IGF-1 levels may reflect cognitive dysfunction, although the data is limited; (4) it is difficult to evaluate the influence of treatment on IGF-1 levels as there is discrepancy of this growth factor among the studies at baseline, although most of them showed a decrease in IGF-1 levels after treatment.

  13. Induction of the plasticity-associated immediate early gene Arc by stress and hallucinogens: role of brain-derived neurotrophic factor.

    PubMed

    Benekareddy, Madhurima; Nair, Amrita R; Dias, Brian G; Suri, Deepika; Autry, Anita E; Monteggia, Lisa M; Vaidya, Vidita A

    2013-03-01

    Exposure to stress and hallucinogens in adulthood evokes persistent alterations in neurocircuitry and emotional behaviour. The structural and functional changes induced by stress and hallucinogen exposure are thought to involve transcriptional alterations in specific effector immediate early genes. The immediate early gene, activity regulated cytoskeletal-associated protein (Arc), is important for both activity and experience dependent plasticity. We sought to examine whether trophic factor signalling through brain-derived neurotrophic factor (BDNF) contributes to the neocortical regulation of Arc mRNA in response to distinct stimuli such as immobilization stress and the hallucinogen 2,5-dimethoxy-4-iodoamphetamine (DOI). Acute exposure to either immobilization stress or DOI induced Arc mRNA levels within the neocortex. BDNF infusion into the neocortex led to a robust up-regulation of local Arc transcript expression. Further, baseline Arc mRNA expression in the neocortex was significantly decreased in inducible BDNF knockout mice with an adult-onset, forebrain specific BDNF loss. The induction of Arc mRNA levels in response to both acute immobilization stress or a single administration of DOI was significantly attenuated in the inducible BDNF knockout mice. Taken together, our results implicate trophic factor signalling through BDNF in the regulation of cortical Arc mRNA expression, both under baseline conditions and following stress and hallucinogen exposure. These findings suggest the possibility that the regulation of Arc expression via BDNF provides a molecular substrate for the structural and synaptic plasticity observed following stimuli such as stress and hallucinogens.

  14. Effect of glucagon-like peptide-1 analogue; Exendin-4, on cognitive functions in type 2 diabetes mellitus; possible modulation of brain derived neurotrophic factor and brain Visfatin.

    PubMed

    Abdelwahed, O M; Tork, O M; Gamal El Din, M M; Rashed, L; Zickri, M

    2018-05-01

    Brain derived neurotrophic factor (BDNF) is one of the most essential neurotrophic factors in the brain. BDNF is involved in learning, memory and locomotion suggesting it as a target in type 2 diabetes mellitus (T2DM) associated cognitive changes. Visfatin; an adipokine discovered to be expressed in the brain; was found to have multiple effects including its participation in keeping energy supply to the cell and is consequentially involved in cell survival. Its role in cognitive functions in T2DM was not studied before. Recent studies point to the possible neuro-protective mechanisms of glucagon-like peptide 1 analogue: Exendin-4 (Ex-4) in many cognitive disorders, but whether BDNF or Visfatin are involved or not in its neuro-protective mechanisms; is still unknown. to study the changes in cognitive functions in T2DM, either not treated or treated with Glucagon-like peptide 1 (GLP-1) analogue: Ex-4, and to identify the possible underlying mechanisms of these changes and whether BDNF and brain Visfatin are involved. A total of 36 adult male wistar albino rats were divided into 4 groups; Control, Exendin-4 control, Diabetic and Exendin-4 treated groups. At the end of the study, Y-maze and open field tests were done the day before scarification to assess spatial working memory and locomotion, respectively. Fasting glucose and insulin, lipid profile and tumor necrosis factor- alpha (TNF-α) were measured in the serum. Homeostasis model assessment insulin resistance was calculated. In the brain tissue, malondialdehyde (MDA) level, gene expression and protein levels of BDNF and Visfatin, area of degenerated neurons, area of glial cells and area % of synaptophysin immunoexpression were assessed. Compared with the control, the untreated diabetic rats showed insulin resistance, dyslipidemia and elevation of serum TNF-α. The brain tissue showed down-regulation of BDNF gene expression and reduction of its protein level, up-regulation of Visfatin gene expression and elevation

  15. Effect of controlled release of brain-derived neurotrophic factor and neurotrophin-3 from collagen gel on neural stem cells.

    PubMed

    Huang, Fei; Wu, Yunfeng; Wang, Hao; Chang, Jun; Ma, Guangwen; Yin, Zongsheng

    2016-01-20

    This study aimed to examine the effect of controlled release of brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) from collagen gel on rat neural stem cells (NSCs). With three groups of collagen gel, BDNF/collagen gel, and NT-3/collagen gel as controls, BDNF and NT-3 were tested in the BDNF-NT-3/collagen gel group at different time points. The enzyme-linked immunosorbent assay results showed that BDNF and NT-3 were steadily released from collagen gels for 10 days. The cell viability test and the bromodeoxyuridine incorporation assay showed that BDNF-NT-3/collagen gel supported the survival and proliferation of NSCs. The results also showed that the length of processes was markedly longer and differentiation percentage from NSCs into neurons was much higher in the BDNF-NT-3/collagen gel group than those in the collagen gel, BDNF/collagen gel, and NT-3/collagen gel groups. These findings suggest that BDNF-NT-3/collagen gel could significantly improve the ability of NSCs proliferation and differentiation.

  16. Brain-derived neurotrophic factor (BDNF) plasma concentration in patients diagnosed with premature ovarian insufficiency (POI).

    PubMed

    Czyzyk, Adam; Filipowicz, Dorota; Podfigurna, Agnieszka; Ptas, Paula; Piestrzynska, Malgorzata; Smolarczyk, Roman; Genazzani, Andrea R; Meczekalski, Blazej

    2017-05-01

    Premature ovarian insufficiency (POI) is defined as a cessation of function of ovaries in women younger than 40 years old. Brain-derived neurotrophic factor (BDNF) is a protein critically involved in neuronal growth and metabolism. BDNF also has been shown to be important regulator of oocyte maturation. Recent data show that BDNF can be potentially involved in POI pathology. The aim of the study was to assess the BDNF plasma concentrations in patients diagnosed with idiopathic POI. 23 women diagnosed with POI (age 31 ± 7 years) and 18 (age 31 ± 3) controls were included to the study, matched according to age and body mass index. The BDNF concentrations were measured using competitive enzyme-linked immunosorbent assay (ELISA). Hormonal and metabolic parameters were measured in all individuals, in controls in late follicular phase. The POI group demonstrated lower mean plasma concentrations of BDNF (429.25 ± 65.52 pg/ml) in comparison to healthy controls (479.75 ± 34.75 pg/ml, p = 0.0345). The BDNF plasma concentration correlated negatively (R = -0.79, p < 0.001) with number of months since last menstrual period. There was a positive correlation between BDNF and progesterone in controls. In conclusion, POI patients show significantly lower BDNF plasma concentration and it correlates with the duration of amenorrhea. This observation brings important potential insights to the pathology of POI.

  17. Decreased plasma concentrations of brain-derived neurotrophic factor (BDNF) in patients with functional hypothalamic amenorrhea.

    PubMed

    Podfigurna-Stopa, Agnieszka; Casarosa, Elena; Luisi, Michele; Czyzyk, Adam; Meczekalski, Blazej; Genazzani, Andrea Riccardo

    2013-09-01

    Functional hypothalamic amenorrhea (FHA) is a non organic, secondary amenorrhea related to gonadotropin-releasing hormone pulsatile secretion impairment. Brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family of survival-promoting molecules, plays an important role in the growth, development, maintenance and function of several neuronal systems. The aim of the study was the evaluation of plasma BDNF concentrations in patients with the diagnosis of FHA. We studied 85 subjects diagnosed with FHA who were compared with 10 healthy, eumenorrheic controls with normal body mass index. Plasma BDNF and serum luteinizing hormone, follicle-stimulating hormone and estradiol (E2) concentrations were measured by immunoenzymatic method (enzyme-linked immunosorbent assay). Significantly lower concentration of plasma BDNF was found in FHA patients (196.31 ± 35.26 pg/ml) in comparison to healthy controls (407.20 ± 25.71 pg/ml; p < 0.0001). In the control group, there was a strong positive correlation between plasma BDNF and serum E2 concentrations (r = 0.92, p = 0.0001) but in FHA group it was not found. Role of BDNF in FHA is not yet fully understood. There could be found studies concerning plasma BDNF concentrations in humans and animals in the literature. However, our study is one of the first projects which describes decreased plasma BDNF concentration in patients with diagnosed FHA. Therefore, further studies on BDNF in FHA should clarify the role of this peptide.

  18. Diurnal Variation of Plasma Brain-Derived Neurotrophic Factor Levels in Women with Functional Hypothalamic Amenorrhea.

    PubMed

    Drakopoulos, Panagiotis; Casarosa, Elena; Bucci, Fiorella; Piccinino, Manuela; Wenger, Jean-Marie; Nappi, Rossella Elena; Polyzos, Nicholas; Genazzani, Andrea Riccardo; Pluchino, Nicola

    2015-01-01

    Brain-derived neurotrophic factor (BDNF) is strongly related to hormonal networks and is modulated by hypothalamic activity. To evaluate plasma BDNF concentration in patients with functional hypothalamic amenorrhea (FHA), with reference to the BDNF circadian rhythm and its relation with the cortisol (F) rhythm, and to assess whether the duration of amenorrhea might influence the BDNF:F ratio in FHA. This was an observational study evaluating 36 amenorrheic and 30 eumenorrheic women. Basal values of BDNF and hormones were examined in blood samples collected from 7:00 to 9:00 h in all the women. Basal BDNF and F levels were determined in blood samples collected in 12 subjects from each group at 8:00, 12:00, 16:00, 20:00, and 24:00 h. BDNF plasma levels are significantly lower in amenorrheic women (p < 0.001) than in the follicular phase of eumenorrheic women. There are no correlations between BDNF values (p > 0.05), sex steroids, and F in FHA. Low plasma BDNF levels in FHA are not significantly correlated with duration of amenorrhea. The 24-hour variation of BDNF in amenorrheic women is significantly lower when compared to the control group, and normal daily variations of BDNF disappeared in FHA patients. F preserved its circadian rhythm in both groups. Interactions between BDNF, the hypothalamus-pituitary-adrenal axis, and sex steroids might be critical in clinical conditions of modified homeostasis/adaptation, such as FHA. © 2015 S. Karger AG, Basel.

  19. Serotonin regulates brain-derived neurotrophic factor expression in select brain regions during acute psychological stress

    PubMed Central

    Jiang, De-guo; Jin, Shi-li; Li, Gong-ying; Li, Qing-qing; Li, Zhi-ruo; Ma, Hong-xia; Zhuo, Chuan-jun; Jiang, Rong-huan; Ye, Min-jie

    2016-01-01

    Previous studies suggest that serotonin (5-HT) might interact with brain-derived neurotrophic factor (BDNF) during the stress response. However, the relationship between 5-HT and BDNF expression under purely psychological stress is unclear. In this study, one hour before psychological stress exposure, the 5-HT1A receptor agonist 8-OH-DPAT or antagonist MDL73005, or the 5-HT2A receptor agonist DOI or antagonist ketanserin were administered to rats exposed to psychological stress. Immunohistochemistry and in situ hybridization revealed that after psychological stress, with the exception of the ventral tegmental area, BDNF protein and mRNA expression levels were higher in the 5-HT1A and the 5-HT2A receptor agonist groups compared with the solvent control no-stress or psychological stress group in the CA1 and CA3 of the hippocampus, prefrontal cortex, central amygdaloid nucleus, dorsomedial hypothalamic nucleus, dentate gyrus, shell of the nucleus accumbens and the midbrain periaqueductal gray. There was no significant difference between the two agonist groups. In contrast, after stress exposure, BDNF protein and mRNA expression levels were lower in the 5-HT1A and 5-HT2A receptor antagonist groups than in the solvent control non-stress group, with the exception of the ventral tegmental area. Our findings suggest that 5-HT regulates BDNF expression in a rat model of acute psychological stress. PMID:27857753

  20. Peripheral brain-derived neurotrophic factor in autism spectrum disorder: a systematic review and meta-analysis.

    PubMed

    Zheng, Zhen; Zhang, Li; Zhu, Tingting; Huang, Jichong; Qu, Yi; Mu, Dezhi

    2016-08-10

    Brain-derived neurotrophic factor (BDNF) regulates neuronal survival and growth and promotes synaptic plasticity. Recently, researchers have begun to explore the relationship between peripheral BDNF levels and autism spectrum disorder (ASD), but the findings are inconsistent. We undertook the first systematic review and meta-analysis of studies examining peripheral BDNF levels in ASD compared with healthy controls. The PubMed, Embase, and Cochrane Library databases were searched for studies published before February 2016. Fourteen studies involving 2,707 participants and 1,131 incident cases were included. The meta-analysis provided evidence of higher peripheral BDNF levels in ASD compared with controls [standardized mean difference (SMD) = 0.63, 95% confidence interval (95% CI) = 0.18-1.08; P = 0.006]. Subgroup analyses revealed higher BDNF levels in ASD compared with controls for both serum [SMD = 0.58, 95% CI = 0.11-1.04; P = 0.02] and plasma [SMD = 1.27, 95% CI = 0.92-1.61; P < 0.001]. Studies of childhood yielded similar cumulative effect size [SMD = 0.78, 95% CI = 0.31-1.26; P = 0.001], while this was not true for the studies of adulthood [SMD = 0.04, 95% CI = -1.72-1.80; P = 0.97]. This meta-analysis suggests that peripheral BDNF levels are a potential biomarker of ASD.

  1. Sex and Stress Hormone Influences on the Expression and Activity of Brain-Derived Neurotrophic Factor

    PubMed Central

    Carbone, David L.; Handa, Robert J.

    2012-01-01

    The neurotrophin, brain-derived neurotrophic factor (BDNF), is recognized as a key component in the regulation of central nervous system ontogeny, homeostasis and adult neuroplasticity. The importance of BDNF in central nervous system development and function is well documented by numerous reports from animal studies linking abnormal BDNF signaling to metabolic disturbances and anxiety or depressive-like behavior. Despite the diverse roles for BDNF in nearly all aspects of central nervous system physiology, the regulation of BDNF expression, as well as our understanding of the signaling mechanisms associated with this neurotrophin, remains incomplete. However, links between sex hormones such as estradiol and testosterone, as well as endogenous and synthetic glucocorticoids, have emerged as important mediators of BDNF expression and function. Examples of such regulation include brain region-specific induction of Bdnf mRNA in response to estradiol. Additional studies have also documented regulation of the expression of the high-affinity BDNF receptor TrkB by estradiol, thus implicating sex steroids not only in the regulation of BDNF expression, but on mechanisms of signaling associated with it. In addition to gonadal steroids, further evidence also suggests functional interaction between BDNF and glucocorticoids, such as in the regulation of corticotrophin-releasing hormone and other important neuropeptides. In this review, we provide an overview of the roles played by selected sex or stress hormones in the regulation of BDNF expression and signaling in the central nervous system PMID:23211562

  2. Exercise impacts brain-derived neurotrophic factor plasticity by engaging mechanisms of epigenetic regulation.

    PubMed

    Gomez-Pinilla, F; Zhuang, Y; Feng, J; Ying, Z; Fan, G

    2011-02-01

    We have evaluated the possibility that the action of voluntary exercise on the regulation of brain-derived neurotrophic factor (BDNF), a molecule important for rat hippocampal learning, could involve mechanisms of epigenetic regulation. We focused the studies on the Bdnf promoter IV, as this region is highly responsive to neuronal activity. We have found that exercise stimulates DNA demethylation in Bdnf promoter IV, and elevates levels of activated methyl-CpG-binding protein 2, as well as BDNF mRNA and protein in the rat hippocampus. Chromatin immunoprecipitation assay showed that exercise increases acetylation of histone H3, and protein assessment showed that exercise elevates the ratio of acetylated :total for histone H3 but had no effects on histone H4 levels. Exercise also reduces levels of the histone deacetylase 5 mRNA and protein implicated in the regulation of the Bdnf gene [N.M. Tsankova et al. (2006)Nat. Neurosci., 9, 519-525], but did not affect histone deacetylase 9. Exercise elevated the phosphorylated forms of calcium/calmodulin-dependent protein kinase II and cAMP response element binding protein, implicated in the pathways by which neural activity influences the epigenetic regulation of gene transcription, i.e. Bdnf. These results showing the influence of exercise on the remodeling of chromatin containing the Bdnf gene emphasize the importance of exercise on the control of gene transcription in the context of brain function and plasticity. Reported information about the impact of a behavior, inherently involved in the daily human routine, on the epigenome opens exciting new directions and therapeutic opportunities in the war against neurological and psychiatric disorders. © 2010 The Authors. European Journal of Neuroscience © 2010 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  3. Involvement of Endogenous Brain-Derived Neurotrophic Factor in Hypothalamic-Pituitary-Adrenal Axis Activity.

    PubMed

    Naert, G; Zussy, C; Tran Van Ba, C; Chevallier, N; Tang, Y-P; Maurice, T; Givalois, L

    2015-11-01

    Brain-derived neurotrophic factor (BDNF) appears to be highly involved in hypothalamic-pituitary-adrenal (HPA) axis regulation during adulthood, playing an important role in homeostasis maintenance. The present study aimed to determine the involvement of BDNF in HPA axis activity under basal and stress conditions via partial inhibition of this endogenous neurotrophin. Experiments were conducted in rats and mice with two complementary approaches: (i) BDNF knockdown with stereotaxic delivery of BDNF-specific small interfering RNA (siRNA) into the lateral ventricle of adult male rats and (ii) genetically induced knockdown (KD) of BDNF expression specifically in the central nervous system during the first ontogenesis in mice (KD mice). Delivery of siRNA in the rat brain decreased BDNF levels in the hippocampus (-31%) and hypothalamus (-35%) but not in the amygdala, frontal cortex and pituitary. In addition, siRNA induced no change of the basal HPA axis activity. BDNF siRNA rats exhibited decreased BDNF levels and concomitant altered adrenocortoctrophic hormone (ACTH) and corticosterone responses to restraint stress, suggesting the involvement of BDNF in the HPA axis adaptive response to stress. In KD mice, BDNF levels in the hippocampus and hypothalamus were decreased by 20% in heterozygous and by 60% in homozygous animals compared to wild-type littermates. Although, in heterozygous KD mice, no significant change was observed in the basal levels of plasma ACTH and corticosterone, both hormones were significantly increased in homozygous KD mice, demonstrating that robust cerebral BDNF inhibition (60%) is necessary to affect basal HPA axis activity. All of these results in both rats and mice demonstrate the involvement and importance of a robust endogenous pool of BDNF in basal HPA axis regulation and the pivotal function of de novo BDNF synthesis in the establishment of an adapted response to stress. © 2015 British Society for Neuroendocrinology.

  4. Effects of postnatal ethanol exposure at different developmental phases on neurotrophic factors and phosphorylated proteins on signal transductions in rat brain.

    PubMed

    Tsuji, Ryozo; Fattori, Vittorio; Abe, Shin-ichi; Costa, Lucio G; Kobayashi, Kumiko

    2008-01-01

    Exposure to ethanol during development induces severe brain damage resulting in a number of CNS dysfunctions including microencephaly and mental retardation in humans and in laboratory animals. The most vulnerable period to ethanol neurotoxicity coincides with the peak of brain growth spurt. Recently, neurotrophic factors and/or their signal transduction pathways have been reported as a potential relevant target for the developmental neurotoxicity of ethanol. The present studies were designed to investigate the effects of ethanol given in various developmental phases during the brain growth spurt in rats. Rat pups were assigned to the three treatment groups and treated with 5 g/kg of ethanol for three days, on postnatal days (PND) 2-4, 6-8 or 13-15. Whole brain weights were reduced only in the PND 6-8 group concurrently with the reduction of GDNF mRNA in cortex in this group. BDNF mRNA expression was reduced in both the PND 6-8 and 13-15 groups, while mRNA expressions of NT-3 and NGF were unchanged in all three groups. Phospho-Akt level was mostly reduced in the PND 6-8 group. Both phospho-MAPK and p-70S6 kinase levels were decreased in all groups whereas no changes were observed in either phospho-PKCzeta or CREB level. The phosphorylation of Akt was immediately inhibited after single administration of ethanol, and its inhibition was correlated with variations in blood ethanol concentration. These findings suggest that GDNF and the phosphorylation of Akt play a possible key role in the ethanol-induced developmental neurotoxicity.

  5. Sex differences in stress-induced social withdrawal: role of brain derived neurotrophic factor in the bed nucleus of the stria terminalis.

    PubMed

    Greenberg, Gian D; Laman-Maharg, Abigail; Campi, Katharine L; Voigt, Heather; Orr, Veronica N; Schaal, Leslie; Trainor, Brian C

    2013-01-01

    Depression and anxiety disorders are more common in women than men, and little is known about the neurobiological mechanisms that contribute to this disparity. Recent data suggest that stress-induced changes in neurotrophins have opposing effects on behavior by acting in different brain networks. Social defeat has been an important approach for understanding neurotrophin action, but low female aggression levels in rats and mice have limited the application of these methods primarily to males. We examined the effects of social defeat in monogamous California mice (Peromyscus californicus), a species in which both males and females defend territories. We demonstrate that defeat stress increases mature brain-derived neurotrophic factor (BDNF) protein but not mRNA in the bed nucleus of the stria terminalis (BNST) in females but not males. Changes in BDNF protein were limited to anterior subregions of the BNST, and there were no changes in the adjacent nucleus accumbens (NAc). The effects of defeat on social withdrawal behavior and BDNF were reversed by chronic, low doses of the antidepressant sertraline. However, higher doses of sertraline restored social withdrawal and elevated BDNF levels. Acute treatment with a low dose of sertraline failed to reverse the effects of defeat. Infusions of the selective tyrosine-related kinase B receptor (TrkB) antagonist ANA-12 into the anterior BNST specifically increased social interaction in stressed females but had no effect on behavior in females naïve to defeat. These results suggest that stress-induced increases in BDNF in the anterior BNST contribute to the exaggerated social withdrawal phenotype observed in females.

  6. Melatonin Promotes Brain-Derived Neurotrophic Factor (BDNF) Expression and Anti-Apoptotic Effects in Neonatal Hemolytic Hyperbilirubinemia via a Phospholipase (PLC)-Mediated Mechanism

    PubMed Central

    Luo, Yong; Peng, Mei; Wei, Hong

    2017-01-01

    Background Melatonin therapy shows positive effects on neuroprotective factor brain-derived neurotrophic factor (BDNF) expression and neuronal apoptosis in neonatal hemolytic hyperbilirubinemia. We hypothesized that melatonin promotes BDNF expression and anti-apoptotic effects in neonatal hemolytic hyperbilirubinemia through a phospholipase (PLC)-mediated mechanism. Material/Methods A phenylhydrazine hydrochloride (PHZ)-induced neonatal hemolytic hyperbilirubinemia model was constructed in neonatal rats. Four experimental groups – a control group (n=30), a PHZ group (n=30), a PHZ + melatonin group (n=30), and a PHZ + melatonin+U73122 (a PLC inhibitor) group (n=30) – were constructed. Trunk blood was assayed for serum hemoglobin, hematocrit, total and direct bilirubin, BDNF, S100B, and tau protein levels. Brain tissue levels of neuronal apoptosis, BDNF expression, PLC activity, IP3 content, phospho- and total Ca2+/calmodulin-dependent protein kinase type IV (CaMKIV) expression, and phospho- and total cAMP response element binding protein (CREB) expression were also assayed. Results PHZ-induced hemolytic hyperbilirubinemia was validated by significantly decreased serum hemoglobin and hematocrit as well as significantly increased total and direct serum bilirubin (p<0.05). Neonatal bilirubin-induced neurotoxicity was validated by significantly decreased serum BDNF, brain BDNF, and serum S100B, along with significantly increased serum tau protein (p<0.05). PHZ-induced hemolytic hyperbilirubinemia significantly decreased serum BDNF, brain BDNF, and PLC/IP3/Ca2+ pathway activation while increasing neuronal apoptosis levels (p<0.05), all of which were partially rescued by melatonin therapy (p<0.05). Pre-treatment with the PLC inhibitor U73122 largely abolished the positive effects of melatonin on PLC/IP3/Ca2+ pathway activation, downstream BDNF levels, and neuronal apoptosis (p<0.05). Conclusions Promotion of BDNF expression and anti-apoptotic effects in neonatal

  7. Decreased Serum Levels of Ghrelin and Brain-Derived Neurotrophic Factor in Premenopausal Women With Metabolic Syndrome.

    PubMed

    Jabbari, Masoumeh; Kheirouri, Sorayya; Alizadeh, Mohammad

    2018-03-21

    We aimed to investigate the association between serum levels of ghrelin and brain-derived neurotrophic factor (BDNF) with MetS and its components in premenopausal women. 43 patients with MetS and 43 healthy controls participated in this study. Participants' body mass index (BMI), waist circumference (WC), systolic and diastolic blood pressure (SBP and DBP) were measured. Serum levels of total cholesterol (TC), triglyceride (TG), low and high density lipoprotein cholesterol (LDL-C and HDL-C), fasting blood sugar (FBS), insulin, BDNF and ghrelin determined. Homeostasis model assessment insulin resistance index (HOMA-IR) was also calculated. Participants in MetS group had higher waist-to-hip ratios, elevated SBP and DBP, and higher serum levels of TG, FBS and insulin when compared with the control group. Serum ghrelin and BDNF levels were significantly lower in participants with MetS than in the healthier control subjects. There was a strong, positive correlation between serum ghrelin and BDNF levels. Both proteins negatively correlated with TG, FBS, HOMA-IR and positively with HDL-C. Furthermore, serum BDNF levels negatively associated with insulin levels. The findings indicate that variations occur in the circulating level of ghrelin and BDNF proteins in MetS patients. A strong correlation between serum ghrelin and BDNF suggests that production, release or practice of these 2 proteins might be related mechanically.

  8. The brain-derived neurotrophic factor (BDNF) Val66Met polymorphism is associated with increased body mass index and insulin resistance measures in bipolar disorder and schizophrenia.

    PubMed

    Bonaccorso, Stefania; Sodhi, Monsheel; Li, Jiang; Bobo, William V; Chen, Yuejin; Tumuklu, Mevhibe; Theleritis, Christos; Jayathilake, Karuna; Meltzer, Herbert Y

    2015-08-01

    We tested the hypothesis that a common functional variant in brain-derived neurotrophic factor (BDNF), Val66Met, which has been shown to be associated with increased body mass index (BMI) in schizophrenia (SCZ) and schizoaffective disorder (SAD), is also associated with antipsychotic-induced weight gain in bipolar disorder (BPD). Association of Val66Met with other metabolic measures, including high- and low-density cholesterol, triglycerides, total cholesterol, fasting blood glucose, and hemoglobin A1c, was also tested. This was a 12-month, prospective, randomized trial of two atypical antipsychotic drugs (APDs) with moderate (risperidone) or high (olanzapine) risk to cause weight gain. Subjects were diagnosed as having BPD (n = 90) and SCZ or SAD (n = 76). BMI was significantly greater in all diagnoses for Met66 allele carriers at six months (p = 0.01). Met66 carriers with BPD showed a greater increase in the triglycerides/high-density (HDL) cholesterol ratio (p = 0.01), a key marker for metabolic syndrome related to insulin resistance, and log-triglycerides (p = 0.04), after three or six months of treatment. Met66 carriers had the greatest increase in log-triglycerides (p = 0.03) and triglycerides/HDL cholesterol ratio after three months of treatment with risperidone (p = 0.003), and the highest BMI at six months (p = 0.01). The positive association of BNDF Val66Met with high BMI values replicates previous findings in patients with SCZ and indicates the BDNF Val66Met genotype as a potential risk factor for obesity and insulin resistance measures in patients with BPD receiving antipsychotics as well. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Antidepressant, antioxidant and neurotrophic properties of the standardized extract of Cocos nucifera husk fiber in mice.

    PubMed

    Lima, Eliane Brito Cortez; de Sousa, Caren Nádia Soares; Vasconcelos, Germana Silva; Meneses, Lucas Nascimento; E Silva Pereira, Yuri Freitas; Ximenes, Naiara Coelho; Santos Júnior, Manuel Alves; Matos, Natália Castelo Branco; Brito, Rayanne; Miron, Diogo; Leal, Luzia Kalyne Almeida Moreira; Macêdo, Danielle; Vasconcelos, Silvânia Maria Mendes

    2016-07-01

    The plant Cocos nucifera and its derivatives have shown antidepressant-like effects, although its hydroalcoholic extract has not been studied with this end in mind. Therefore, we decided to determine the antidepressant-like effects of the standardized hydroalcoholic extract of Cocos nucifera husk fiber (HECN) as well as oxidative alterations in the prefrontal cortex (PFC), hippocampus (HC) and striatum (ST), and the levels of brain-derived neurotrophic factor (BDNF) in the HC of mice. The extract was characterized based on the content of total polyphenols as well as two phenol compounds-catechin and chlorogenic acid-by HPLC-PDA. Male animals were treated per os (p.o.) for 7 days with distilled water or HECN (50, 100 or 200 mg/kg), or intraperitoneally with vitamin E (Vit E 400 mg/kg). One hour after the last drug administration, the animals were submitted to the open field test, forced swimming test (FST), tail suspension test (TST) and, immediately after the behavioral tests, had their brain removed for neurochemical determinations. The results showed that HECN100 decreased the immobility time in the FST and TST presenting, thus demonstrating an antidepressant-like effect. The administration of HECN decreased malondialdehyde levels in all doses and brain areas studied with the exception of HECN50 in the HC. The administration of HECN also decreased nitrite levels in all doses and brain regions studied. HECN100 also increased the levels of BDNF in HC of mice. In conclusion, we demonstrated that HECN has antidepressant-like properties, probably based on its antioxidant and neurotrophic effects, and is thus relevant for the treatment of depression.

  10. mTORC1 pathway disruption abrogates the effects of the ciliary neurotrophic factor on energy balance and hypothalamic neuroinflammation.

    PubMed

    André, Caroline; Catania, Caterina; Remus-Borel, Julie; Ladeveze, Elodie; Leste-Lasserre, Thierry; Mazier, Wilfrid; Binder, Elke; Gonzales, Delphine; Clark, Samantha; Guzman-Quevedo, Omar; Abrous, Djoher Nora; Layé, Sophie; Cota, Daniela

    2018-05-01

    Ciliary neurotrophic factor (CNTF) potently decreases food intake and body weight in diet-induced obese mice by acting through neuronal circuits and pathways located in the arcuate nucleus (ARC) of the hypothalamus. CNTF also exerts pro-inflammatory actions within the brain. Here we tested whether CNTF modifies energy balance by inducing inflammatory responses in the ARC and whether these effects depend upon the mechanistic target of rapamycin complex 1 (mTORC1) pathway, which regulates both energy metabolism and inflammation. To this purpose, chow- and high fat diet (HFD)- fed mice lacking the S6 kinase 1 (S6K1 -/- ), a downstream target of mTORC1, and their wild-type (WT) littermates received 12 days continuous intracerebroventricular (icv) infusion of the CNTF analogue axokine (CNTF Ax15 ). Behavioral, metabolic and molecular effects were evaluated. Central chronic administration of CNTF Ax15 decreased body weight and feed efficiency in WT mice only, when fed HFD, but not chow. These metabolic effects correlated with increased number of iba-1 positive microglia specifically in the ARC and were accompanied by significant increases of IL-1β and TNF-α mRNA expression in the hypothalamus. Hypothalamic iNOS and SOCS3 mRNA, molecular markers of pro-inflammatory response, were also increased by CNTF Ax15 . All these changes were absent in S6K1 -/- mice. This study reveals that CNTF Ax15 requires a functional S6K1 to modulate energy balance and hypothalamic inflammation in a diet-dependent fashion. Further investigations should determine whether S6K1 is a suitable target for the treatment of pathologies characterized by a high neuroinflammatory state. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Brain derived neurotrophic factor gene (BDNF) and personality traits: the modifying effect of season of birth and sex.

    PubMed

    Kazantseva, A; Gaysina, D; Kutlumbetova, Yu; Kanzafarova, R; Malykh, S; Lobaskova, M; Khusnutdinova, E

    2015-01-02

    Personality traits are complex phenotypes influenced by interactions of multiple genetic variants of small effect and environmental factors. It has been suggested that the brain derived neurotrophic factor gene (BDNF) is involved in personality traits. Season of birth (SOB) has also been shown to affect personality traits due to its influences on brain development during prenatal and early postnatal periods. The present study aimed to investigate the effects of BDNF on personality traits; and the modifying effects of SOB and sex on associations between BDNF and personality traits. A sample of 1018 young adults (68% women; age range 17-25years) of Caucasian origin from the Russian Federation was assessed on personality traits (Novelty Seeking, Harm Avoidance, Reward Dependence, Persistence, Self-directedness, Cooperativeness, Self-transcendence) with the Temperament and Character Inventory-125 (TCI-125). Associations between personality traits and 12 BDNF SNPs were tested using linear regression models. The present study demonstrated the effect of rs11030102 on Persistence in females only (PFDR=0.043; r(2)=1.3%). There were significant interaction effects between Val66Met (rs6265) and SOB (PFDR=0.048, r(2)=1.4%), and between rs2030323 and SOB (PFDR=0.042, r(2)=1.3%), on Harm Avoidance. Our findings provide evidence for the modifying effect of SOB on the association between BDNF and Harm Avoidance, and for the modifying effect of sex on the association between BDNF and Persistence. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Effects of exercise training on brain-derived neurotrophic factor in skeletal muscle and heart of rats post myocardial infarction.

    PubMed

    Lee, Heow Won; Ahmad, Monir; Wang, Hong-Wei; Leenen, Frans H H

    2017-03-01

    What is the central question of this study? Exercise training increases brain-derived neurotrophic factor (BDNF) in the hippocampus, which depends on a myokine, fibronectin type III domain-containing protein 5 (FNDC5). Whether exercise training after myocardial infarction induces parallel increases in FNDC5 and BDNF expression in skeletal muscle and the heart has not yet been studied. What is the main finding and its importance? Exercise training after myocardial infarction increases BDNF protein in skeletal muscle and the non-infarct area of the LV without changes in FNDC5 protein, suggesting that BDNF is not regulated by FNDC5 in skeletal muscle and heart. An increase in cardiac BDNF may contribute to the improvement of cardiac function by exercise training. Exercise training after myocardial infarction (MI) attenuates progressive left ventricular (LV) remodelling and dysfunction, but the peripheral stimuli induced by exercise that trigger these beneficial effects are still unclear. We investigated as possible mediators fibronectin type III domain-containing protein 5 (FNDC5) and brain-derived neurotrophic factor (BDNF) in the skeletal muscle and heart. Male Wistar rats underwent either sham surgery or ligation of the left descending coronary artery, and surviving MI rats were allocated to either a sedentary (Sed-MI) or an exercise group (ExT-MI). Exercise training was done for 4 weeks on a motor-driven treadmill. At the end, LV function was evaluated, and FNDC5 and BDNF mRNA and protein were assessed in soleus muscle, quadriceps and non-, peri- and infarct areas of the LV. At 5 weeks post MI, FNDC5 mRNA was decreased in soleus muscle and all areas of the LV, but FNDC5 protein was increased in the soleus muscle and the infarct area. Mature BDNF (mBDNF) protein was decreased in the infarct area without a change in mRNA. Exercise training attenuated the decrease in ejection fraction and the increase in LV end-diastolic pressure post MI. Exercise training had no

  13. Acute aerobic exercise increases brain-derived neurotrophic factor levels in elderly with Alzheimer's disease.

    PubMed

    Coelho, Flávia Gomes de Melo; Vital, Thays Martins; Stein, Angelica Miki; Arantes, Franciel José; Rueda, André Veloso; Camarini, Rosana; Teodorov, Elizabeth; Santos-Galduróz, Ruth Ferreira

    2014-01-01

    Studies indicate the involvement of brain-derived neurotrophic factor (BDNF) in the pathogenesis of Alzheimer's disease (AD). Decreased BDNF levels may constitute a lack of trophic support and contribute to cognitive impairment in AD. The benefits of acute and chronic physical exercise on BDNF levels are well-documented in humans, however, exercise effects on BDNF levels have not been analyzed in older adults with AD. The aim of this study was to investigate the effects of acute aerobic exercise on BDNF levels in older adults with AD and to verify associations among BDNF levels, aerobic fitness, and level of physical activity. Using a controlled design, twenty-one patients with AD (76.3 ± 6.2 years) and eighteen healthy older adults (74.6 ± 4.7 years) completed an acute aerobic exercise. The outcomes included measures of BDNF plasma levels, aerobic fitness (treadmill grade, time to exhaustion, VO2, and maximal lactate) and level of physical activity (Baecke Questionnaire Modified for the Elderly). The independent t-test shows differences between groups with respect to the BDNF plasma levels at baseline (p = 0.04; t = 4.53; df = 37). In two-way ANOVA, a significant effect of time was found (p = 0.001; F = 13.63; df = 37), the aerobic exercise significantly increased BDNF plasma levels in AD patients and healthy controls. A significant correlation (p = 0.04; r = 0.33) was found between BDNF levels and the level of physical activity. The results of our study suggest that aerobic exercise increases BDNF plasma levels in patients with AD and healthy controls. In addition to that, BDNF levels had association with level of physical activity.

  14. Serum concentrations of brain-derived neurotrophic factor (BDNF) are decreased in colorectal cancer patients.

    PubMed

    Brierley, G V; Priebe, I K; Purins, L; Fung, K Y C; Tabor, B; Lockett, T; Nice, E; Gibbs, P; Tie, J; McMurrick, P; Moore, J; Ruszkiewicz, A; Burgess, A; Cosgrove, L J

    2013-01-01

    To determine the usefulness of brain-derived neurotrophic factor (BDNF) as a diagnostic biomarker for colorectal cancer (CRC). ELISA immunoassay was used to examine BDNF concentrations in the sera of two different retrospective cohorts consisting of CRC patients and age/gender matched controls. Cohort 1 consisted of 99 controls and 97 CRC patients, whereas cohort 2 consisted of 47 controls and 91 CRC patients. In cohort 1, the median concentration of BDNF was significantly (p< 0.0001) lower in CRC patient samples (18.8 ng/mL, range 4.0-56.5 ng/mL) than control samples (23.4 ng/mL, range 3.0-43.1 ng/mL). This finding was validated in an independent patient cohort (CRC patients: 23.0 ng/mL, range 6.0-45.9 ng/mL; control patients: 32.3 ng/mL, range 14.2-62.4 ng/mL). BDNF concentrations did not differ significantly between Dukes' staging in the patient cohort, however patients with Stages A, B, C and D (p< 0.01 for each stage) tumours had significantly reduced BDNF levels compared to healthy controls. Receiver operating characteristic analysis was performed to determine the ability of BDNF to discriminate between healthy controls and those with CRC. At 95% specificity, BDNF concentrations distinguished CRC patients with 25% and 18% sensitivity, respectively, in cohorts 1 and 2 (cohort 1: AUC=0.79, 95% CI 0.70-0.87; cohort 2: AUC =0.69, 95% CI 0.61-0.76). The serum levels of BDNF were significantly lower in colorectal cancer patients when compared to a control population, and this did not differ between different Dukes' stages.

  15. Brain-Derived Neurotrophic Factor Contributes to Colonic Hypermotility in a Chronic Stress Rat Model.

    PubMed

    Quan, Xiaojing; Luo, Hesheng; Fan, Han; Tang, Qincai; Chen, Wei; Cui, Ning; Yu, Guang; Xia, Hong

    2015-08-01

    Brain-derived neurotrophic factor (BDNF) has prokinetic effects on gut motility and is increased in the colonic mucosa of irritable bowel syndrome. We aimed to investigate the possible involvement of BDNF in stress-induced colonic hypermotility. Male Wistar rats were exposed to daily 1-h water avoidance stress (WAS) or sham WAS for 10 consecutive days. The presence of BDNF and substance P (SP) in the colonic mucosa was determined using enzyme immunoassay kits. Immunohistochemistry and western blotting were performed to assess the expression of BDNF and its receptor, TrkB. The contractions of muscle strips were studied in an organ bath system. Repeated WAS increased the fecal pellet expulsion and spontaneous contractile activities of the colonic muscle strips. Both BDNF and SP in the colonic mucosa were elevated following WAS. Immunohistochemistry revealed the presence of BDNF and TrkB in the mucosa and myenteric plexus. BDNF and TrkB were both up-regulated in colon devoid of mucosa and submucosa from the stressed rats compared with the control. BDNF pretreatment caused an enhancement of the SP-induced contraction of the circular muscle (CM) strips. TrkB antibody significantly inhibited the contraction of the colonic muscle strips and attenuated the excitatory effects of SP on contractions of the CM strips. Repeated WAS increased the contractile activities of the CM strips induced by SP after BDNF pretreatment, and this effect was reversed by TrkB antibody. The colonic hypermotility induced by repeated WAS may be associated with the increased expression of endogenous BDNF and TrkB. BDNF may have potential clinical therapeutic use in modulating gut motility.

  16. Theobromine up-regulates cerebral brain-derived neurotrophic factor and facilitates motor learning in mice.

    PubMed

    Yoneda, Mitsugu; Sugimoto, Naotoshi; Katakura, Masanori; Matsuzaki, Kentaro; Tanigami, Hayate; Yachie, Akihiro; Ohno-Shosaku, Takako; Shido, Osamu

    2017-01-01

    Theobromine, which is a caffeine derivative, is the primary methylxanthine produced by Theobroma cacao. Theobromine works as a phosphodiesterase (PDE) inhibitor to increase intracellular cyclic adenosine monophosphate (cAMP). cAMP activates the cAMP-response element-binding protein (CREB), which is involved in a large variety of brain processes, including the induction of the brain-derived neurotrophic factor (BDNF). BDNF supports cell survival and neuronal functions, including learning and memory. Thus, cAMP/CREB/BDNF pathways play an important role in learning and memory. Here, we investigated whether orally administered theobromine could act as a PDE inhibitor centrally and affect cAMP/CREB/BDNF pathways and learning behavior in mice. The mice were divided into two groups. The control group (CN) was fed a normal diet, whereas the theobromine group (TB) was fed a diet supplemented with 0.05% theobromine for 30 days. We measured the levels of theobromine, phosphorylated vasodilator-stimulated phosphoprotein (p-VASP), phosphorylated CREB (p-CREB), and BDNF in the brain. p-VASP was used as an index of cAMP increases. Moreover, we analyzed the performance of the mice on a three-lever motor learning task. Theobromine was detectable in the brains of TB mice. The brain levels of p-VASP, p-CREB, and BDNF were higher in the TB mice compared with those in the CN mice. In addition, the TB mice performed better on the three-lever task than the CN mice did. These results strongly suggested that orally administered theobromine acted as a PDE inhibitor in the brain, and it augmented the cAMP/CREB/BDNF pathways and motor learning in mice. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Serum and plasma brain-derived neurotrophic factor (BDNF) in abstinent alcoholics and social drinkers

    PubMed Central

    D’Sa, Carrol; Dileone, Ralph J.; Anderson, George M.; Sinha, Rajita

    2013-01-01

    Although the effects of alcohol on brain-derived neurotrophic factor (BDNF) have been extensively studied in rodents, BDNF levels have rarely been measured in abstinent, alcohol-dependent (AD) individuals. Interpretation of reported group comparisons of serum BDNF levels is difficult due to limited information regarding analytical variance, biological variability, and the relative contribution of platelet and plasma pools to serum BDNF. Analytical variance (intra- and inter-assay coefficients of variation) of the enzyme-linked immunosorbent assay (ELISA) was characterized. Within- and between-subject variability, and group differences in serum and plasma BDNF, was assessed on three separate days in 16, 4-week abstinent AD individuals (7M/9F) and 16 social drinkers (SDs; 8M/8F). Significantly higher mean (±sd) serum BDNF levels were observed for the AD group compared to the SD (p = 0.003). No significant difference in mean baseline plasma BDNF levels was observed between AD and SD groups. The low analytical variance, high day-to-day within-individual stability and the high degree of individuality demonstrates the potential clinical utility of measuring serum BDNF levels. The low correlations that we observed between plasma and serum levels are congruent with their representing separate pools of BDNF. The observation of higher basal serum BDNF in the AD group without a concomitant elevation in plasma BDNF levels indicates that the elevated serum BDNF in AD patients is not due to greater BDNF exposure. Further research is warranted to fully elucidate mechanisms underlying this alteration and determine the utility of serum BDNF as a predictor or surrogate marker of chronic alcohol abuse. PMID:22364688

  18. Changes in mRNA levels for brain-derived neurotrophic factor after wheel running in rats selectively bred for high- and low-aerobic capacity

    PubMed Central

    Groves-Chapman, Jessica L.; Murray, Patrick S.; Stevens, Kristin L.; Monroe, Derek; Koch, Lauren G.; Britton, Steven L.; Holmes, Philip V.

    2012-01-01

    We evaluated levels of exercise-induced brain-derived neurotrophic factor (BDNF) messenger RNA (mRNA) within the hippocampal formation in rats selectively bred for 1) high intrinsic (i.e., untrained) aerobic capacity (High Capacity Runners, HCR), 2) low intrinsic aerobic capacity (Low Capacity Runners, LCR), and 3) unselected Sprague-Dawley (SD) rats with or without free access to running wheels for three weeks. The specific aim of the study was to determine whether a dose-response relationship exists between cumulative running distance and levels of BDNF mRNA. No additional treatments or behavioral manipulations were used. HCR, LCR, and SD rats were grouped by strain and randomly assigned to sedentary or activity (voluntary access to activity wheel) conditions. Animals were killed after 21 days of exposure to the assigned conditions. Daily running distances (mean ± standard deviation meters/d) during week three were: HCR (4726 ± 3220), SD (2293 ± 3461), LCR (672 ± 323). Regardless of strain, levels of BDNF mRNA in CA1 were elevated in wheel runners compared to sedentary rats and this difference persisted after adjustment for age (p=0.040). BDNF mRNA was not affected by intrinsic aerobic capacity and was not related to total running distance. The results support that BDNF mRNA expression is increased by unlimited access to activity wheel running for 3 weeks but is not dependent upon accumulated running distance. PMID:22024546

  19. Pivotal Role of Brain-Derived Neurotrophic Factor Secreted by Mesenchymal Stem Cells in Severe Intraventricular Hemorrhage in Newborn Rats.

    PubMed

    Ahn, So Yoon; Chang, Yun Sil; Sung, Dong Kyung; Sung, Se In; Ahn, Jee-Yin; Park, Won Soon

    2017-01-24

    Mesenchymal stem cell (MSC) transplantation protects against neonatal severe intraventricular hemorrhage (IVH)-induced brain injury by a paracrine rather than regenerative mechanism; however, the paracrine factors involved and their roles have not yet been delineated. This study aimed to identify the paracrine mediator(s) and to determine their role in mediating the therapeutic effects of MSCs in severe IVH. We first identified significant upregulation of brain-derived neurotrophic factor (BDNF) in MSCs compared with fibroblasts, in both DNA and antibody microarrays, after thrombin exposure. We then knocked down BDNF in MSCs by transfection with small interfering (si)RNA specific for human BDNF. The therapeutic effects of MSCs with or without BDNF knockdown were evaluated in vitro in rat neuronal cells challenged with thrombin, and in vivo in newborn Sprague-Dawley rats by injecting 200 μl of blood on postnatal day 4 (P4), and transplanting MSCs (1 × 105 cells) intraventricularly on P6. siRNA-induced BDNF knockdown abolished the in vitro benefits of MSCs on thrombin-induced neuronal cell death. BDNF knockdown also abolished the in vivo protective effects against severe IVH-induced brain injuries such as the attenuation of posthemorrhagic hydrocephalus, impaired behavioral test performance, increased astrogliosis, increased number of TUNEL cells, ED-1+ cells, and inflammatory cytokines, and reduced myelin basic protein expression. Our data indicate that BDNF secreted by transplanted MSCs is one of the critical paracrine factors that play a seminal role in attenuating severe IVH-induced brain injuries in newborn rats.

  20. Treatment-resistant panic disorder: clinical significance, concept and management.

    PubMed

    Chen, Mu-Hong; Tsai, Shih-Jen

    2016-10-03

    Panic disorder is commonly prevalent in the population, but the treatment response for panic disorder in clinical practice is much less effective than that in our imagination. Increasing evidence suggested existence of a chronic or remitting-relapsing clinical course in panic disorder. In this systematic review, we re-examine the definition of treatment-resistant panic disorder, and present the potential risk factors related to the treatment resistance, including the characteristics of panic disorder, other psychiatric and physical comorbidities, and psychosocial stresses. Furthermore, we summarize the potential pathophysiologies, such as genetic susceptibility, altered brain functioning, brain-derived neurotrophic factor, and long-term inflammation, to explain the treatment resistance. Finally, we conclude the current therapeutic strategies for treating treatment-resistant panic disorder from pharmacological and non-pharmacological views. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Association of Lipid Peroxidation and Brain-Derived Neurotrophic Factor with Executive Function in Adolescent Bipolar Disorder.

    PubMed

    Newton, Dwight F; Naiberg, Melanie R; Andreazza, Ana C; Scola, Gustavo; Dickstein, Daniel P; Goldstein, Benjamin I

    2017-02-01

    Executive dysfunction is common and impairing in youth bipolar disorder (BD), and oxidative stress (OS) and brain-derived neurotrophic factor (BDNF) have been implicated in executive deficits of adult BD. This study aimed to determine the association between OS and executive dysfunction in BD adolescents and the influence of BDNF on this association. Serum levels of lipid hydroperoxides (LPH) and 4-hydroxy-2-nonenal (4-HNE) and BDNF levels were measured in 29 BD and 25 control adolescents. The intra-extra-dimensional (IED) set-shifting task assessed executive function. Lower IED scores indicated better performance. High and low BDNF subgroups were defined by median split. IED Z-scores were impaired in the BD group compared to controls, whereas biomarker levels were not significantly different between groups. LPH-BDNF correlations were significantly different between BD and controls (Z = 2.046, p = 0.041). In high BDNF BD subjects, LPH was significantly positively correlated with IED completed stage trials (ρ = 0.755, p = 0.001) and pre-extra-dimensional shift errors (ρ = 0.588, p = 0.017). Correlations were opposite in controls. In a linear model, LPH, BDNF, and the LPH-BDNF interaction each significantly explained variance of IED total trials (adjusted) (model r 2  = 0.187, F = 2.811, p = 0.035). There is a negative association between LPH and executive function in BD adolescents, which may be modulated by BDNF. LPH and BDNF may be useful biomarkers of executive function in BD. These findings highlight the importance of examining multiple peripheral biomarkers in relation to cognitive functions in BD adolescents. Future studies should explore these factors in longitudinal designs to determine the directionality of observed associations.

  2. High-Intensity Locomotor Exercise Increases Brain-Derived Neurotrophic Factor in Individuals with Incomplete Spinal Cord Injury.

    PubMed

    Leech, Kristan A; Hornby, T George

    2017-03-15

    High-intensity locomotor exercise is suggested to contribute to improved recovery of locomotor function after neurological injury. This may be secondary to exercise-intensity-dependent increases in neurotrophin expression demonstrated previously in control subjects. However, rigorous examination of intensity-dependent changes in neurotrophin levels is lacking in individuals with motor incomplete spinal cord injury (SCI). Therefore, the primary aim of this study was to evaluate the effect of locomotor exercise intensity on peripheral levels of brain-derived neurotrophic factor (BDNF) in individuals with incomplete SCI. We also explored the impact of the Val66Met single-nucleotide polymorphism (SNP) on the BDNF gene on intensity-dependent changes. Serum concentrations of BDNF and insulin-like growth factor-1 (IGF-1), as well as measures of cardiorespiratory dynamics, were evaluated across different levels of exercise intensity achieved during a graded-intensity, locomotor exercise paradigm in 11 individuals with incomplete SCI. Our results demonstrate a significant increase in serum BDNF at high, as compared to moderate, exercise intensities (p = 0.01) and 15 and 30 min post-exercise (p < 0.01 for both), with comparison to changes at low intensity approaching significance (p = 0.05). Serum IGF-1 demonstrated no intensity-dependent changes. Significant correlations were observed between changes in BDNF and specific indicators of exercise intensity (e.g., rating of perceived exertion; R = 0.43; p = 0.02). Additionally, the data suggest that Val66Met SNP carriers may not exhibit intensity-dependent changes in serum BDNF concentration. Given the known role of BDNF in experience-dependent neuroplasticity, these preliminary results suggest that exercise intensity modulates serum BDNF concentrations and may be an important parameter of physical rehabilitation interventions after neurological injury.

  3. High-Intensity Locomotor Exercise Increases Brain-Derived Neurotrophic Factor in Individuals with Incomplete Spinal Cord Injury

    PubMed Central

    Leech, Kristan A.

    2017-01-01

    Abstract High-intensity locomotor exercise is suggested to contribute to improved recovery of locomotor function after neurological injury. This may be secondary to exercise-intensity–dependent increases in neurotrophin expression demonstrated previously in control subjects. However, rigorous examination of intensity-dependent changes in neurotrophin levels is lacking in individuals with motor incomplete spinal cord injury (SCI). Therefore, the primary aim of this study was to evaluate the effect of locomotor exercise intensity on peripheral levels of brain-derived neurotrophic factor (BDNF) in individuals with incomplete SCI. We also explored the impact of the Val66Met single-nucleotide polymorphism (SNP) on the BDNF gene on intensity-dependent changes. Serum concentrations of BDNF and insulin-like growth factor-1 (IGF-1), as well as measures of cardiorespiratory dynamics, were evaluated across different levels of exercise intensity achieved during a graded-intensity, locomotor exercise paradigm in 11 individuals with incomplete SCI. Our results demonstrate a significant increase in serum BDNF at high, as compared to moderate, exercise intensities (p = 0.01) and 15 and 30 min post-exercise (p < 0.01 for both), with comparison to changes at low intensity approaching significance (p = 0.05). Serum IGF-1 demonstrated no intensity-dependent changes. Significant correlations were observed between changes in BDNF and specific indicators of exercise intensity (e.g., rating of perceived exertion; R = 0.43; p = 0.02). Additionally, the data suggest that Val66Met SNP carriers may not exhibit intensity-dependent changes in serum BDNF concentration. Given the known role of BDNF in experience-dependent neuroplasticity, these preliminary results suggest that exercise intensity modulates serum BDNF concentrations and may be an important parameter of physical rehabilitation interventions after neurological injury. PMID:27526567

  4. Parental brain-derived neurotrophic factor genotype, child prosociality, and their interaction as predictors of parents' warmth.

    PubMed

    Avinun, Reut; Knafo-Noam, Ariel

    2017-05-01

    Parental warmth has been associated with various child behaviors, from effortful control to callous-unemotional traits. Factors that have been shown to affect parental warmth include heritability and child behavior. However, there is limited knowledge about which specific genes are involved, how they interact with child behavior, how they affect differential parenting, and how they affect fathers. We examined what affects paternal and maternal warmth by focusing on the child's prosocial behavior and parents' genotype, specifically a Valine to Methionine substitution at codon 66 in the brain-derived neurotrophic factor (BDNF) gene. Data was available from a sample of 6.5 year-old twins, consisting of 369 mothers and 663 children and 255 fathers and 458 children. Self-reports were used to assess mothers' and fathers' warmth. Child prosociality was assessed with the other-parent report and experimental assessments. Mothers' warmth was not affected by their BDNF genotype, neither as a main effect nor in an interaction with child prosociality. Fathers with the Met allele scored higher on warmth. Additionally, there was a significant interaction between fathers' BDNF genotype and child prosociality. For fathers with the Met allele there was a positive association between warmth and child prosociality. Conversely, for fathers with the Val/Val genotype there was no association between warmth and child prosociality. Results were repeated longitudinally in a subsample with data on age 8-9 years. A direct within family analysis showed that fathers with the Met allele were more likely than Val/Val carriers to exhibit differential parenting toward twins who differed in their prosocial behavior. The same pattern of findings was found with mother-rated and experimentally assessed prosociality. These results shed light on the genetic and environmental underpinnings of paternal behavior and differential parenting.

  5. Chotosan (Diaoteng San)-induced improvement of cognitive deficits in senescence-accelerated mouse (SAMP8) involves the amelioration of angiogenic/neurotrophic factors and neuroplasticity systems in the brain

    PubMed Central

    2011-01-01

    Background Chotosan (CTS, Diaoteng San), a Kampo medicine (ie Chinese medicine) formula, is reportedly effective in the treatment of patients with cerebral ischemic insults. This study aims to evaluate the therapeutic potential of CTS in cognitive deficits and investigates the effects and molecular mechanism(s) of CTS on learning and memory deficits and emotional abnormality in an animal aging model, namely 20-week-old senescence-accelerated prone mice (SAMP8), with and without a transient ischemic insult (T2VO). Methods Age-matched senescence-resistant inbred strain mice (SAMR1) were used as control. SAMP8 received T2VO (T2VO-SAMP8) or sham operation (sham-SAMP8) at day 0. These SAMP8 groups were administered CTS (750 mg/kg, p.o.) or water daily for three weeks from day 3. Results Compared with the control group, both sham-SAMP8 and T2VO-SAMP8 groups exhibited cognitive deficits in the object discrimination and water maze tests and emotional abnormality in the elevated plus maze test. T2VO significantly exacerbated spatial cognitive deficits of SAMP8 elucidated by the water maze test. CTS administration ameliorated the cognitive deficits and emotional abnormality of sham- and T2VO-SAMP8 groups. Western blotting and immunohistochemical studies revealed a marked decrease in the levels of phosphorylated forms of neuroplasticity-related proteins, N-methyl-D-aspartate receptor 1 (NMDAR1), Ca2+/calmodulin-dependent protein kinase II (CaMKII), cyclic AMP responsive element binding protein (CREB) and brain-derived neurotrophic factor (BDNF) in the frontal cortices of sham-SAMP8 and T2VO-SAMP8. Moreover, these animal groups showed significantly reduced levels of vasculogenesis/angiogenesis factors, vascular endothelial growth factor (VEGF), VEGF receptor type 2 (VEGFR2), platelet-derived growth factor-A (PDGF-A) and PDGF receptor α (PDGFRα). CTS treatment reversed the expression levels of these factors down-regulated in the brains of sham- and T2VO-SAMP8. Conclusion

  6. Involvement of ciliary neurotrophic factor in early diabetic retinal neuropathy in streptozotocin-induced diabetic rats.

    PubMed

    Ma, Mingming; Xu, Yupeng; Xiong, Shuyu; Zhang, Jian; Gu, Qing; Ke, Bilian; Xu, Xun

    2018-05-23

    Ciliary neurotrophic factor (CNTF) has been evaluated as a candidate therapeutic agent for diabetes and its neural complications. However, its role in diabetic retinopathy has not been fully elucidated. This is a randomized unblinded animal experiment. Wistar rats with streptozocin (STZ)-induced diabetes were regularly injected with CNTF or vehicle control in their vitreous bodies beginning at 2 weeks after STZ injection. A total of five injections were used. In diabetic rats, the levels of CNTF and neurotrophin-3 (NT-3) were evaluated by enzyme-linked immunosorbent assays (ELISA) and real-time PCR. The abundance of tyrosine hydroxylase (TH) and β-III tubulin was detected by western blot. Transferase-mediated dUTP nick-end labeling staining (TUNEL) was used to detect cell apoptosis in the retinal tissue. The activation of caspase-3 was also measured. The protein and mRNA levels of CNTF in diabetic rat retinas were reduced compared to control rats. In addition, retinal ganglion cells (RGCs) and dopaminergic amacrine cells appeared to undergo degeneration in diabetic rat retinas, as revealed by transferase-mediated dUTP nick-end labeling staining (TUNEL). Tyrosine hydroxylase (TH) and β-III tubulin protein levels also decreased significantly. Intraocular administration of CNTF rescued RGCs and dopaminergic amacrine cells from neurodegeneration and counteracted the downregulation of β-III tubulin and TH expression, thus demonstrating its therapeutic potential. Our study suggests that early diabetic retinal neuropathy involves the reduced expression of CNTF and can be ameliorated by an exogenous supply of this neurotrophin.

  7. Physical exercise in overweight to obese individuals induces metabolic- and neurotrophic-related structural brain plasticity

    PubMed Central

    Mueller, Karsten; Möller, Harald E.; Horstmann, Annette; Busse, Franziska; Lepsien, Jöran; Blüher, Matthias; Stumvoll, Michael; Villringer, Arno; Pleger, Burkhard

    2015-01-01

    Previous cross-sectional studies on body-weight-related alterations in brain structure revealed profound changes in the gray matter (GM) and white matter (WM) that resemble findings obtained from individuals with advancing age. This suggests that obesity may lead to structural brain changes that are comparable with brain aging. Here, we asked whether weight-loss-dependent improved metabolic and neurotrophic functioning parallels the reversal of obesity-related alterations in brain structure. To this end we applied magnetic resonance imaging (MRI) together with voxel-based morphometry and diffusion-tensor imaging in overweight to obese individuals who participated in a fitness course with intensive physical training twice a week over a period of 3 months. After the fitness course, participants presented, with inter-individual heterogeneity, a reduced body mass index (BMI), reduced serum leptin concentrations, elevated high-density lipoprotein-cholesterol (HDL-C), and alterations of serum brain-derived neurotrophic factor (BDNF) concentrations suggesting changes of metabolic and neurotrophic function. Exercise-dependent changes in BMI and serum concentration of BDNF, leptin, and HDL-C were related to an increase in GM density in the left hippocampus, the insular cortex, and the left cerebellar lobule. We also observed exercise-dependent changes of diffusivity parameters in surrounding WM structures as well as in the corpus callosum. These findings suggest that weight-loss due to physical exercise in overweight to obese participants induces profound structural brain plasticity, not primarily of sensorimotor brain regions involved in physical exercise, but of regions previously reported to be structurally affected by an increased body weight and functionally implemented in gustation and cognitive processing. PMID:26190989

  8. Amitriptyline induces brain-derived neurotrophic factor (BDNF) mRNA expression through ERK-dependent modulation of multiple BDNF mRNA variants in primary cultured rat cortical astrocytes and microglia.

    PubMed

    Hisaoka-Nakashima, Kazue; Kajitani, Naoto; Kaneko, Masahiro; Shigetou, Takahiro; Kasai, Miho; Matsumoto, Chie; Yokoe, Toshiki; Azuma, Honami; Takebayashi, Minoru; Morioka, Norimitsu; Nakata, Yoshihiro

    2016-03-01

    A significant role of brain-derived neurotrophic factor (BDNF) has been previously implicated in the therapeutic effect of antidepressants. To ascertain the contribution of specific cell types in the brain that produce BDNF following antidepressant treatment, the effects of the tricyclic antidepressant amitriptyline on rat primary neuronal, astrocytic and microglial cortical cultures were examined. Amitriptyline increased the expression of BDNF mRNA in astrocytic and microglial cultures but not neuronal cultures. Antidepressants with distinct mechanisms of action, such as clomipramine, duloxetine and fluvoxamine, also increased BDNF mRNA expression in astrocytic and microglial cultures. There are multiple BDNF mRNA variants (exon I, IIA, IV and VI) expressed in astrocytes and microglia and the variant induced by antidepressants has yet to be elaborated. Treatment with antidepressants increased the expression of exon I, IV and VI in astrocyte and microglia. Clomipramine alone significantly upregulated expression of exon IIA. The amitriptyline-induced expression of both total and individual BDNF mRNA variants (exon I, IV and VI) were blocked by MEK inhibitor U0126, indicating MEK/ERK signaling is required in the expression of BDNF. These findings indicate that non-neural cells are a significant target of antidepressants and further support the contention that glial production of BDNF is crucial role in the therapeutic effect of antidepressants. The current data suggest that targeting of glial function could lead to the development of antidepressants with a truly novel mechanism of action. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Brain-derived neurotrophic factor blocks long-term depression in solitary neurones cultured from rat visual cortex

    PubMed Central

    Kumura, Eiji; Kimura, Fumitaka; Taniguchi, Nobuaki; Tsumoto, Tadaharu

    2000-01-01

    To address questions of whether long-term depression (LTD) in the visual cortex is expressed in pre- or postsynaptic sites, whether brain-derived neurotrophic factor (BDNF) exerts its LTD-blocking action without involvement of GABAergic inhibition, and whether the action of BDNF is pre- or postsynaptic, we observed excitatory postsynaptic currents (EPSCs) from solitary neurones cultured on glial microislands. In this preparation GABAergic inhibition is not involved and a group of synapses (autapses) which generate evoked EPSCs is thought to be the same as those generating spontaneous EPSCs. A short depolarising voltage step to the soma generated Na+ spikes which were followed by autaptic EPSCs. When this somatic activation was paired with prolonged depolarisation for 100 ms to −30 mV and repeated at 1 Hz for 5 min, LTD was induced in all of the nine cells tested. Then, the frequency of spontaneous EPSCs decreased, but the amplitude did not change, suggesting that the site of LTD expression is presynaptic. Application of BDNF at 50 ng ml−1 blocked the depression of evoked EPSCs and the decrease in the frequency of spontaneous EPSCs. An inhibitor for receptor tyrosine kinases, K252a, antagonised the action of BDNF, suggesting an involvement of BDNF receptors, TrkB. These results suggest that BDNF prevents low-frequency inputs from inducing LTD of excitatory synaptic transmission through presynaptic mechanisms in the developing visual cortex. PMID:10747192

  10. Vascular brain-derived neurotrophic factor pathway in rats with adjuvant-induced arthritis: Effect of anti-rheumatic drugs.

    PubMed

    Pedard, Martin; Quirié, Aurore; Totoson, Perle; Verhoeven, Frank; Garnier, Philippe; Tessier, Anne; Demougeot, Céline; Marie, Christine

    2018-05-02

    In rheumatoid arthritis, the control of both disease activity and standard cardiovascular (CV) risk factors is expected to attenuate the increased CV risk. Evidence that brain-derived neurotrophic factor (BDNF) plays a role in vascular biology led us to investigate the vascular BDNF pathway in arthritis rats as well as the interaction between endothelial nitric oxide (NO) and BDNF production. The aortic BDNF pathway was studied in rats with adjuvant-induced arthritis, (AIA) using Western blot and immunohistochemical analysis. Control of arthritis score was achieved by administration (for 3 weeks) of an equipotent dosage of etanercept, prednisolone, methotrexate, celecoxib or diclofenac. Aortas were exposed to an NO donor or an NO synthase inhibitor and vasoreactivity experiments were performed using LM22A-4 as a TrkB agonist. Vascular BDNF and full length tropomyosin-related kinase B receptor (TrkB-FL) were higher in AIA than in control rats. These changes coincided with decreased endothelial immunoreactivity in BDNF and pTrkB tyr816 and were disconnected from arthritis score. Among anti-rheumatic drugs, only prednisolone and methotrexate prevented AIA-induced vascular BDNF loss. The effect of AIA on aortic BDNF levels was reversed by an NO donor and reproduced by an NOS inhibitor. Finally, LM22A-4 induced both NO-dependent vasodilation and phosphorylation of endothelial NO synthase at serine 1177. Our study identified changes in the BDNF/TrkB pathway as a disease activity-independent component of AIA-associated changes in endothelial phenotype. It provides new perspectives in the understanding and management of the high CV risk reported in rheumatoid arthritis. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Association of Brain-Derived Neurotrophic Factor G196A and Attempted Suicide: A Case-Control Study in Rural China.

    PubMed

    Wang, Jin-Yu; Wang, Xin-Ting; Wang, Lin-Lin; Jia, Cun-Xian

    2015-01-01

    Suicide is an important public problem, the mechanism of which has not been clarified. Many studies have focused on the molecular, biological and genetic mechanisms of suicide. Brain-derived neurotrophic factor (BDNF) G196A is one of the most leading loci in recent studies, but the results are inconsistent. We conducted a 1:1 age- and sex-matched case-control study in rural areas of Shandong Province, China. A total of 365 pairs of cases and controls were finally recruited into our study. The adjusted odds ratios (AORs) of BDNF 196G/G and their 95% confidence intervals (CIs) were calculated by multivariate conditional logistic regression models. No association between BDNF polymorphisms and attempted suicide was found in the overall population. However, the BDNF 196G/G genotype was significantly related to attempted suicide in the elderly population (AOR = 7.85, 95% CI: 1.12-54.90, p = 0.038), while the associations were not significant in young and middle-aged groups. Our study suggests that the BDNF 196G/G genotype increases the risk of attempted suicide in elderly people. © 2015 S. Karger AG, Basel.

  12. Delivery of Brain-Derived Neurotrophic Factor by 3D Biocompatible Polymeric Scaffolds for Neural Tissue Engineering and Neuronal Regeneration.

    PubMed

    Limongi, T; Rocchi, A; Cesca, F; Tan, H; Miele, E; Giugni, A; Orlando, M; Perrone Donnorso, M; Perozziello, G; Benfenati, Fabio; Di Fabrizio, Enzo

    2018-03-29

    Biopolymers are increasingly employed for neuroscience applications as scaffolds to drive and promote neural regrowth, thanks to their ability to mediate the upload and subsequent release of active molecules and drugs. Synthetic degradable polymers are characterized by different responses ranging from tunable distension or shrinkage to total dissolution, depending on the function they are designed for. In this paper we present a biocompatible microfabricated poly-ε-caprolactone (PCL) scaffold for primary neuron growth and maturation that has been optimized for the in vitro controlled release of brain-derived neurotrophic factor (BDNF). We demonstrate that the designed morphology confers to these devices an enhanced drug delivery capability with respect to monolithic unstructured supports. After incubation with BDNF, micropillared PCL devices progressively release the neurotrophin over 21 days in vitro. Moreover, the bioactivity of released BDNF is confirmed using primary neuronal cultures, where it mediates a consistent activation of BDNF signaling cascades, increased synaptic density, and neuronal survival. These results provide the proof-of-principle on the fabrication process of micropatterned PCL devices, which represent a promising therapeutic option to enhance neuronal regeneration after lesion and for neural tissue engineering and prosthetics.

  13. Hippocampal brain-derived neurotrophic factor but not neurotrophin-3 increases more in mice selected for increased voluntary wheel running.

    PubMed

    Johnson, R A; Rhodes, J S; Jeffrey, S L; Garland, T; Mitchell, G S

    2003-01-01

    Voluntary wheel running in rats increases hippocampal brain-derived neurotrophic factor (BDNF) expression, a neurochemical important for neuronal survival, differentiation, connectivity and synaptic plasticity. Here, we report the effects of wheel running on BDNF and neurotrophin-3 (NT-3) protein levels in normal control mice, and in mice selectively bred (25 generations) for increased voluntary wheel running. We hypothesized that increased voluntary wheel running in selected (S) mice would increase CNS BDNF and NT-3 protein levels more than in control (C) mice. Baseline hippocampal BDNF levels (mice housed without running wheels) were similar in S and C mice. Following seven nights of running, hippocampal BDNF increased significantly more in S versus C mice, and levels were correlated with distance run (considering C and S mice together). Spinal and cerebellar BDNF and hippocampal NT-3 levels were not significantly affected by wheel running in any group, but there was a small, positive correlation between spinal C3-C6 BDNF levels and distance run (considering C and S mice together). This is the first study to demonstrate that mice which choose to run more have greater elevations in hippocampal BDNF, suggesting enhanced potential for exercise-induced hippocampal neuroplasticity.

  14. Interleukin 1-beta upregulates brain-derived neurotrophic factor, neurotrophin 3 and neuropilin 2 gene expression and NGF production in annulus cells.

    PubMed

    Gruber, H E; Hoelscher, G L; Bethea, S; Hanley, E N

    2012-11-01

    The relationship between disc cells, nerves and pain production in the intervertebral disc is poorly understood. Neurotrophins, signaling molecules involved in the survival, differentiation and migration of neurons, and neurite outgrowth, are expressed in non-neuronal tissues including the disc. We hypothesized that three-dimensional exposure of human disc cells to the proinflammatory cytokine IL-1ß in vitro would elevate neurotrophin gene expression levels and production of nerve growth factor (NGF). Cells isolated from Thompson grade III and IV discs were cultured for 14 days under control conditions or with addition of 10(2) pM IL-1ß; mRNA was isolated and conditioned media assayed for NGF content. IL-1ß exposure in three-dimensional culture significantly increased expression of neurotrophin 3, brain-derived neurotrophic factor, and neuropilin 2 compared to controls. IL-1ß-exposed cells showed significantly increased NGF production compared to controls. Findings support our hypothesis, expand previous data concerning expression of neurotrophins, and provide the first documented expression of neurotrophin 3 and neuropilin 2. Our results have direct translational relevance, because they address the primary clinical issue of low back pain and open the possibility of novel analgesic therapies using specific small-molecular antagonists to neurotrophins.

  15. Interaction between different sports branches such as taekwondo, box, athletes and serum brain derived neurotrophic factor levels.

    PubMed

    Oztasyonar, Yunus

    2017-04-01

    This study aimed to compare serum brain-derived neurotrophic factor (BDNF) levels "which contributes in both neuron development/regeneration" between combat sport braches, which requires high attention and concentration and can lead micro and macro brain trauma, and athleticism, which requires durability in competition. The study design included 4 groups. Group 1 had sedentary participants, and group 2 athletes (middle and long runners) who exercised for two 2-hour daily training sessions 6 days a week. group 3 included boxers, and group 4 taekwondo fighters. We investigated changes in the blood BDNF levels of taekwondo fighters, boxers, and athletes before and after training and compared them among each other and with measurements of sedentary controls. All athletes had higher basal BDNF levels than sedentary participants. Boxers and taekwondo athletes had especially high basal BDNF levels. When we compared different sports branch each other Pre- and post- training BDNF values are ranked as follows: taekwondo > boxing > athletes > sedentary. In sport branches such as combat sports and athletes, serum BDNF levels have been demonstrated to be higher after training than before. In addition, serum BDNF levels were higher in taekwondo fighters and boxers than athletes. BDNF might have a role in the protection mechanism against brain damage or contributes in occurrence and maintenance of high attention and concentration especially among combat sports.

  16. A positive correlation between serum levels of mature brain-derived neurotrophic factor and negative symptoms in schizophrenia.

    PubMed

    Niitsu, Tomihisa; Ishima, Tamaki; Yoshida, Taisuke; Hashimoto, Tasuku; Matsuzawa, Daisuke; Shirayama, Yukihiko; Nakazato, Michiko; Shimizu, Eiji; Hashimoto, Kenji; Iyo, Masaomi

    2014-02-28

    A meta-analysis study reported serum brain-derived neurotrophic factor (BDNF) levels as a potential biomarker for schizophrenia. However, at the time, commercially available human ELISA kits were unable to distinguish between pro-BDNF (precursor BDNF) and mature BDNF, because of limited antibody specificity. Here, we used new ELISA kits, to examine serum levels of mature BDNF and matrix metalloproteinase-9 (MMP-9), which converts pro-BDNF to mature BDNF in schizophrenia. Sixty-three patients with chronic schizophrenia and 52 age- and sex-matched healthy controls were enrolled. Patients were evaluated using the Brief Psychiatry Rating Scale, the Scale for the Assessment of Negative Symptoms (SANS) and neuropsychological tests. Neither serum mature BDNF nor MMP-9 levels differed between patients and controls. In male subgroups, serum MMP-9 levels of smoking patients were higher than those of non-smoking patients, but this was not observed in male controls or the female subgroup. In patients, serum mature BDNF levels were associated with SANS total scores and the Information subtest scores of the Wechsler Adult Intelligence Scale Revised (WAIS-R), while serum MMP-9 levels were associated with smoking and category fluency scores. These findings suggest that neither mature BDNF nor MMP-9 is a suitable biomarker for schizophrenia, although further studies using large samples are needed. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  17. The association between brain-derived neurotrophic factor and central pulse pressure after an oral glucose tolerance test.

    PubMed

    Lee, I-Te; Chen, Chen-Huan; Wang, Jun-Sing; Fu, Chia-Po; Lee, Wen-Jane; Liang, Kae-Woei; Lin, Shih-Yi; Sheu, Wayne Huey-Herng

    2018-01-01

    Arterial stiffening blunts postprandial vasodilatation. We hypothesized that brain-derived neurotrophic factor (BDNF) may modulate postprandial central pulse pressure, a surrogate marker for arterial stiffening. A total of 82 non-diabetic subjects received a 75-g oral glucose tolerance test (OGTT) after overnight fasting. Serum BDNF concentrations were determined at 0, 30, and 120min to calculate the area under the curve (AUC). Brachial and central blood pressures were measured using a noninvasive central blood pressure monitor before blood withdrawals at 0 and 120min. With the median AUC of BDNF of 45(ng/ml)∗h as the cutoff value, the central pulse pressure after glucose intake was significantly higher in the subjects with a low BDNF than in those with a high BDNF (63±16 vs. 53±11mmHg, P=0.003), while the brachial pulse pressure was not significantly different between the 2 groups (P=0.099). In a multivariate linear regression model, a lower AUC of BDNF was an independent predictor of a higher central pulse pressure after oral glucose intake (linear regression coefficient-0.202, 95% confidence interval-0.340 to -0.065, P=0.004). After oral glucose challenge, a lower serum BDNF response is significantly associated with a higher central pulse pressure. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Peripheral lipopolysaccharide administration transiently affects expression of brain-derived neurotrophic factor, corticotropin and proopiomelanocortin in mouse brain.

    PubMed

    Schnydrig, Sabine; Korner, Lukas; Landweer, Svenja; Ernst, Beat; Walker, Gaby; Otten, Uwe; Kunz, Dieter

    2007-12-11

    Peripheral inflammation induced by intraperitoneal (i.p.) injection of Lipopolysaccharide (LPS) is known to cause functional impairments in the brain affecting memory and learning. One of mechanisms may be the interference with neurotrophin (NT) expression and function. In the current study we administered a single, high dose of LPS (3mg/kg, i.p.) into mice and investigated changes in brain-derived neurotrophic factor (BDNF) gene expression within 1-6 days after LPS injection. Crude synaptosomes were isolated from brain tissue and subjected to Western-blot analyses. We found transient reductions in synaptosomal proBDNF- and BDNF protein expression, with a maximal decrease at day 3 as compared to saline injected controls. The time course of reduction of BDNF mRNA in whole brain extracts parallels the decrease in protein levels in synaptosomes. LPS effects in the central nervous system (CNS) are known to crucially involve the activation of the hypothalamic-pituitary-adrenal (HPA) axis. We analysed the time course of corticotropin releasing hormone (CRH)- and proopiomelanocortin (POMC) mRNA expression. As observed for BDNF-, CRH- and POMC mRNA levels are also significantly reduced on day 3 indicating a comparable time course. These results suggest that peripheral inflammation causes a reduction of trophic supply in the brain, including BDNF at synaptic sites. The mechanisms involved could be a negative feedback of the activated HPA axis.

  19. Brain-derived neurotrophic factor (BDNF)-induced mitochondrial motility arrest and presynaptic docking contribute to BDNF-enhanced synaptic transmission.

    PubMed

    Su, Bo; Ji, Yun-Song; Sun, Xu-lu; Liu, Xiang-Hua; Chen, Zhe-Yu

    2014-01-17

    Appropriate mitochondrial transport and distribution are essential for neurons because of the high energy and Ca(2+) buffering requirements at synapses. Brain-derived neurotrophic factor (BDNF) plays an essential role in regulating synaptic transmission and plasticity. However, whether and how BDNF can regulate mitochondrial transport and distribution are still unclear. Here, we find that in cultured hippocampal neurons, application of BDNF for 15 min decreased the percentage of moving mitochondria in axons, a process dependent on the activation of the TrkB receptor and its downstream PI3K and phospholipase-Cγ signaling pathways. Moreover, the BDNF-induced mitochondrial stopping requires the activation of transient receptor potential canonical 3 and 6 (TRPC3 and TRPC6) channels and elevated intracellular Ca(2+) levels. The Ca(2+) sensor Miro1 plays an important role in this process. Finally, the BDNF-induced mitochondrial stopping leads to the accumulation of more mitochondria at presynaptic sites. Mutant Miro1 lacking the ability to bind Ca(2+) prevents BDNF-induced mitochondrial presynaptic accumulation and synaptic transmission, suggesting that Miro1-mediated mitochondrial motility is involved in BDNF-induced mitochondrial presynaptic docking and neurotransmission. Together, these data suggest that mitochondrial transport and distribution play essential roles in BDNF-mediated synaptic transmission.

  20. Serum brain-derived neurotrophic factor and stability of depressive symptoms in coronary heart disease patients: A prospective study.

    PubMed

    Kuhlmann, Stella L; Tschorn, Mira; Arolt, Volker; Beer, Katja; Brandt, Julia; Grosse, Laura; Haverkamp, Wilhelm; Müller-Nordhorn, Jacqueline; Rieckmann, Nina; Waltenberger, Johannes; Warnke, Katharina; Hellweg, Rainer; Ströhle, Andreas

    2017-03-01

    Brain-derived neurotrophic factor (BDNF) supports neurogenesis, angiogenesis, and promotes the survival of various cell types in the brain and the coronary system. Moreover, BDNF is associated with both coronary heart disease (CHD) and depression. The current study aims to investigate whether serum BDNF levels are associated with the course of depressive symptoms in CHD patients. At baseline, N=225 CHD patients were enrolled while hospitalized. Of these, N=190 (84%) could be followed up 6 months later. Depressive symptoms were assessed both at baseline and at the 6-months follow-up using the Patient Health Questionnaire (PHQ-9). Serum BDNF concentrations were measured using fluorometric Enzyme-linked immunosorbent assays (ELISA). Logistic regression models showed that lower BDNF levels were associated with persistent depressive symptoms, even after adjustment for age, sex, smoking and potential medical confounders. The incidence of depressive symptoms was not related to lower BDNF levels. However, somatic comorbidity (as measured by the Charlson Comorbidity Index) was significantly associated with the incidence of depressive symptoms. Our findings suggest a role of BDNF in the link between CHD and depressive symptoms. Particularly, low serum BDNF levels could be considered as a valuable biomarker for the persistence of depressive symptoms among depressed CHD patients. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Activation of the Sigma-1 receptor by haloperidol metabolites facilitates brain-derived neurotrophic factor secretion from human astroglia

    PubMed Central

    Dalwadi, Dhwanil A.; Kim, Seongcheol; Schetz, John A.

    2017-01-01

    Glial cells play a critical role in neuronal support which includes the production and release of the neurotrophin brain-derived neurotrophic factor (BDNF). Activation of the sigma-1 receptor (S1R) has been shown to attenuate inflammatory stress-mediated brain injuries, and there is emerging evidence that this may involve a BDNF-dependent mechanism. In this report we studied S1R-mediated BDNF release from human astrocytic glial cells. Astrocytes express the S1R, which mediates BDNF release when stimulated with the prototypical S1R agonists 4-PPBP and (+)-SKF10047. This effect could be antagonized by a selective concentration of the S1R antagonist BD1063. Haloperidol is known to have high affinity interactions with the S1R, yet it was unable to facilitate BDNF release. Remarkably, however, two metabolites of haloperidol, haloperidol I and haloperidol II (reduced haloperidol), were discovered to facilitate BDNF secretion and this effect was antagonized by BD1063. Neither 4-PPBP, nor either of the haloperidol metabolites affected the level of BDNF mRNA as assessed by qPCR. These results demonstrate for the first time that haloperidol metabolites I and II facilitate the secretion of BDNF from astrocytes by acting as functionally selective S1R agonists. PMID:28188803

  2. Sodium Benzoate, a Metabolite of Cinnamon and a Food Additive, Upregulates Ciliary Neurotrophic Factor in Astrocytes and Oligodendrocytes.

    PubMed

    Modi, Khushbu K; Jana, Malabendu; Mondal, Susanta; Pahan, Kalipada

    2015-11-01

    Ciliary neurotrophic factor (CNTF) is a promyelinating trophic factor that plays an important role in multiple sclerosis (MS). However, mechanisms by which CNTF expression could be increased in the brain are poorly understood. Recently we have discovered anti-inflammatory and immunomodulatory activities of sodium benzoate (NaB), a metabolite of cinnamon and a widely-used food additive. Here, we delineate that NaB is also capable of increasing the mRNA and protein expression of CNTF in primary mouse astrocytes and oligodendrocytes and primary human astrocytes. Accordingly, oral administration of NaB and cinnamon led to the upregulation of astroglial and oligodendroglial CNTF in vivo in mouse brain. Induction of experimental allergic encephalomyelitis, an animal model of MS, reduced the level of CNTF in the brain, which was restored by oral administration of cinnamon. While investigating underlying mechanisms, we observed that NaB induced the activation of protein kinase A (PKA) and H-89, an inhibitor of PKA, abrogated NaB-induced expression of CNTF. The activation of cAMP response element binding (CREB) protein by NaB, the recruitment of CREB and CREB-binding protein to the CNTF promoter by NaB and the abrogation of NaB-induced expression of CNTF in astrocytes by siRNA knockdown of CREB suggest that NaB increases the expression of CNTF via the activation of CREB. These results highlight a novel myelinogenic property of NaB and cinnamon, which may be of benefit for MS and other demyelinating disorders.

  3. Ciliary neurotrophic factor promotes the activation of corneal epithelial stem/progenitor cells and accelerates corneal epithelial wound healing.

    PubMed

    Zhou, Qingjun; Chen, Peng; Di, Guohu; Zhang, Yangyang; Wang, Yao; Qi, Xia; Duan, Haoyun; Xie, Lixin

    2015-05-01

    Ciliary neurotrophic factor (CNTF), a well-known neuroprotective cytokine, has been found to play an important role in neurogenesis and functional regulations of neural stem cells. As one of the most innervated tissue, however, the role of CNTF in cornea epithelium remains unclear. This study was to explore the roles and mechanisms of CNTF in the activation of corneal epithelial stem/progenitor cells and wound healing of both normal and diabetic mouse corneal epithelium. In mice subjecting to mechanical removal of corneal epithelium, the corneal epithelial stem/progenitor cell activation and wound healing were promoted by exogenous CNTF application, while delayed by CNTF neutralizing antibody. In cultured corneal epithelial stem/progenitor cells, CNTF enhanced the colony-forming efficiency, stimulated the mitogenic proliferation, and upregulated the expression levels of corneal epithelial stem/progenitor cell-associated transcription factors. Furthermore, the promotion of CNTF on the corneal epithelial stem/progenitor cell activation and wound healing was mediated by the activation of STAT3. Moreover, in diabetic mice, the content of CNTF in corneal epithelium decreased significantly when compared with that of normal mice, and the supplement of CNTF promoted the diabetic corneal epithelial wound healing, accompanied with the advanced activation of corneal epithelial stem/progenitor cells and the regeneration of corneal nerve fibers. Thus, the capability of expanding corneal epithelial stem/progenitor cells and promoting corneal epithelial wound healing and nerve regeneration indicates the potential application of CNTF in ameliorating limbal stem cell deficiency and treating diabetic keratopathy. © 2014 AlphaMed Press.

  4. Placental and cord blood brain derived neurotrophic factor levels are decreased in nondiabetic macrosomia.

    PubMed

    Cai, Qian-Ying; Zhang, Heng-Xin; Wang, Chen-Chen; Sun, Hao; Sun, Shu-Qiang; Wang, Yu-Huan; Yan, Hong-Tao; Yang, Xin-Jun

    2017-08-01

    To measure levels of placental brain derived neurotrophic factor (BDNF) gene expression and umbilical cord blood BDNF in neonates with nondiabetic macrosomia and determine associations between these levels and macrosomia. This case-control study included 58 nondiabetic macrosomic and 59 normal birth weight mother-infant pairs. Data were collected from interviews and our hospital's database. BDNF gene expression was quantified in placental tissues using quantitative real-time polymerase chain reaction (n = 117). Umbilical cord blood BDNF levels were measured by enzyme-linked immunosorbent assay (n = 90). Multivariate logistic regression models were used to evaluate associations between BDNF levels and macrosomia. Placental BDNF gene expression (P = 0.026) and cord blood BDNF (P = 0.008) were lower in neonates with nondiabetic macrosomia than in normal birth weight controls. Cord blood BDNF was significantly lower in vaginally delivered macrosomic neonates than vaginally delivered controls (P = 0.014), but cord BDNF did not differ between vaginal and cesarean section delivery modes in macrosomic neonates. Cord blood BDNF was positively associated with gestational age in control neonates (r = 0.496, P < 0.001), but not in macrosomic neonates. Cord blood BDNF was positively associated with placental BDNF relative expression (r s  = 0.245, P = 0.02) in the total group. Higher cord blood BDNF levels were independently associated with protection against nondiabetic macrosomia (adjusted odds ratio 0.992; 95% confidence interval 0.986-0.998). Both placental BDNF gene expression and cord blood BDNF were downregulated in neonates with nondiabetic macrosomia compared with normal birth weight neonates. Cord BDNF may partly derive from BDNF secreted by the placenta. Higher cord plasma BDNF levels protected against nondiabetic macrosomia.

  5. Polymorphisms of alpha-actinin-3 and ciliary neurotrophic factor in national-level Italian athletes.

    PubMed

    Persi, A; Maltese, P E; Bertelli, M; Cecchin, S; Ciaghi, M; Guarnieri, M C; Agnello, L; Maggioni, M A; Merati, G; Veicsteinas, A

    2013-06-01

    The R577X polymorphism of the alpha-actinin-3 (ACTN3) gene and the IVS1-6G>A polymorphism of the ciliary neurotrophic factor (CNTF) gene have been associated with a favourable muscle phenotype (more muscle fibres with high glycolytic activity), reduced predisposition for congenital dystrophy and resistance to sarcopenia in old age. The aim of this study was to look for evidence of selective pressure towards genotypes favourable for strong muscle activity in a sample of national-level Italian athletes. We analysed two stop codon polymorphisms in the DNA of 50 Italian athletes, specialised in power or endurance sports, and compared their genotypic distribution with those of a population of 50 controls. In a representative sub-group of athletes (N.=42) we then compared the genetic data with anaerobic threshold, assessed by an incremental exercise test up to exhaustion. The athlete group showed an allelic distribution of ACTN3 (R/R:64%, R/X:16%, X/X:20%) and CNTF (G/G:72%, G/A:26%, A/A:2%), significantly imbalanced towards alleles R/R and G/G, respectively, compared to controls (ACTN3=R/R:40% R/X:22% X/X:38% and CNTF=G/G:52%, G/A:24%, A/A:24%) (p=0.0024 and p=0.0001, respectively). Only the ACTN3 577X/X polymorphism showed a significant association with the anaerobic threshold of athletes (F-ratio= 4.037; p=0.025). Factorial ANOVA demonstrated a non significant interaction between favourable allelic patterns of ACTN3 and CNTF genes on aerobic performance in the athlete group. The relationship found between favourable muscle phenotype and this genetic profile may have interesting implications in sport performance and training, athlete selection and different clinical activities, such as physical rehabilitation and modifying phenotypes associated with neuromuscular diseases.

  6. The association between brain-derived neurotrophic factor gene polymorphism and migraine: a meta-analysis.

    PubMed

    Cai, Xiaoying; Shi, Xiaolei; Zhang, Ximeng; Zhang, Aiwu; Zheng, Minying; Fang, Yannan

    2017-12-01

    Migraine is a recurrent headache disease related to genetic variants. The brain-derived neurotrophic factor (BDNF) gene rs6265 (Val66Met) and rs2049046 polymorphism has been found to be associated with migraine. However, their roles in this disorder are not well established. Then we conduct this meta-analysis to address this issue. PubMed, Web of Science and Cochrane databases were systematically searched to identify all relevant studies. Odds ratio (OR) with corresponding 95% confidence interval (CI) was used to estimate the strength of association between BDNF gene rs6265 and rs2049046 polymorphism and migraine. Four studies with 1598 cases and 1585 controls, fulfilling the inclusion criteria were included in our meta-analysis. Overall data showed significant association between rs6265 polymorphism and migraine in allele model (OR = 0.86, 95%CI: 0.76-0.99, p = 0.03), recessive model (OR = 0.84, 95%CI: 0.72-0.98, p = 0.03) and additive model (GG vs GA: OR = 0.85, 95%CI: 0.72-1.00, p = 0.04), respectively. We also found significant association between rs2049046(A/T) polymorphism and migraine in allele model (OR = 0.88, 95%CI: 0.79-0.98, p = 0.02), recessive model (OR = 0.80, 95%CI: 0.67-0.96, p = 0.02) and additive model (AA vs TT: OR = 0.72, 95%CI: 0.57-0.92, p = 0.008; AA vs AT: OR = 0.81, 95%CI: 0.67-0.99, p = 0.03), respectively. Our meta-analysis suggested that BDNF rs6265 and rs2049046 polymorphism were associated with common migraine in Caucasian population. Further studies are awaited to update this finding in Asian population and other types of migraine.

  7. Learned helplessness is independent of levels of brain-derived neurotrophic factor in the hippocampus

    PubMed Central

    Greenwood, Benjamin N.; Strong, Paul V.; Foley, Teresa E.; Thompson, Robert; Fleshner, Monika

    2007-01-01

    Reduced levels of brain-derived neurotrophic factor (BDNF) in the hippocampus have been implicated in human affective disorders and behavioral stress responses. The current studies examined the role of BDNF in the behavioral consequences of inescapable stress, or learned helplessness. Inescapable stress decreased BDNF mRNA and protein in the hippocampus of sedentary rats. Rats allowed voluntary access to running wheels for either 3 or 6 weeks prior to exposure to stress were protected against stress-induced reductions of hippocampal BDNF protein. The observed prevention of stress-induced deceases in BDNF, however, occurred in a time course inconsistent with the prevention of learned helplessness by wheel running, which is evident following 6 weeks, but not 3 weeks, of wheel running. BDNF suppression in physically active rats was produced by administering a single injection of the selective serotonin reuptake inhibitor fluoxetine (10 mg/kg) just prior to stress. Despite reduced levels of hippocampal BDNF mRNA following stress, physically active rats given the combination of fluoxetine and stress remained resistant against learned helplessness. Sedentary rats given both fluoxetine and stress still demonstrated typical learned helplessness behaviors. Fluoxetine by itself reduced BDNF mRNA in sedentary rats only, but did not affect freezing or escape learning 24 hours later. Finally, bilateral injections of BDNF (1 μg) into the dentate gyrus prior to stress prevented stress-induced reductions of hippocampal BDNF but did not prevent learned helplessness in sedentary rats. These data indicate that learned helplessness behaviors are independent of the presence or absence of hippocampal BDNF because blocking inescapable stress-induced BDNF suppression does not always prevent learned helplessness, and learned helplessness does not always occur in the presence of reduced BDNF. Results also suggest that the prevention of stress-induced hippocampal BDNF suppression is not

  8. Learned helplessness is independent of levels of brain-derived neurotrophic factor in the hippocampus.

    PubMed

    Greenwood, B N; Strong, P V; Foley, T E; Thompson, R S; Fleshner, M

    2007-02-23

    Reduced levels of brain-derived neurotrophic factor (BDNF) in the hippocampus have been implicated in human affective disorders and behavioral stress responses. The current studies examined the role of BDNF in the behavioral consequences of inescapable stress, or learned helplessness. Inescapable stress decreased BDNF mRNA and protein in the hippocampus of sedentary rats. Rats allowed voluntary access to running wheels for either 3 or 6 weeks prior to exposure to stress were protected against stress-induced reductions of hippocampal BDNF protein. The observed prevention of stress-induced deceases in BDNF, however, occurred in a time course inconsistent with the prevention of learned helplessness by wheel running, which is evident following 6 weeks, but not 3 weeks, of wheel running. BDNF suppression in physically active rats was produced by administering a single injection of the selective serotonin reuptake inhibitor fluoxetine (10 mg/kg) just prior to stress. Despite reduced levels of hippocampal BDNF mRNA following stress, physically active rats given the combination of fluoxetine and stress remained resistant against learned helplessness. Sedentary rats given both fluoxetine and stress still demonstrated typical learned helplessness behaviors. Fluoxetine by itself reduced BDNF mRNA in sedentary rats only, but did not affect freezing or escape learning 24 h later. Finally, bilateral injections of BDNF (1 mug) into the dentate gyrus prior to stress prevented stress-induced reductions of hippocampal BDNF but did not prevent learned helplessness in sedentary rats. These data indicate that learned helplessness behaviors are independent of the presence or absence of hippocampal BDNF because blocking inescapable stress-induced BDNF suppression does not always prevent learned helplessness, and learned helplessness does not always occur in the presence of reduced BDNF. Results also suggest that the prevention of stress-induced hippocampal BDNF suppression is not

  9. Antimanic-like activity of candesartan in mice: Possible involvement of antioxidant, anti-inflammatory and neurotrophic mechanisms.

    PubMed

    de Souza Gomes, Júlia Ariana; de Souza, Greicy Coelho; Berk, Michael; Cavalcante, Lígia Menezes; de Sousa, Francisca Cléa F; Budni, Josiane; de Lucena, David Freitas; Quevedo, João; Carvalho, André F; Macêdo, Danielle

    2015-11-01

    Activation of the brain angiotensin II type 1 receptor (AT1R) triggers pro-oxidant and pro-inflammatory mechanisms which are involved in the neurobiology of bipolar disorder (BD). Candesartan (CDS) is an AT1 receptor antagonist with potential neuroprotective properties. Herein we investigated CDS effects against oxidative, neurotrophic inflammatory and cognitive effects of amphetamine (AMPH)-induced mania. In the reversal protocol adult mice were given AMPH 2 mg/kg i.p. or saline and between days 8 and 14 received CDS 0.1, 0.3 or 1 mg/kg orally, lithium (Li) 47.5 mg/kg i.p., or saline. In the prevention treatment, mice were pretreated with CDS, Li or saline prior to AMPH. Locomotor activity and working memory performance were assessed. Glutathione (GSH), thiobarbituric acid-reactive substance (TBARS) and TNF-α levels were evaluated in the hippocampus (HC) and cerebellar vermis (CV). Brain-derived neurotrophic factor (BDNF) and glycogen synthase kinase 3-beta (GSK-3beta) levels were measured in the HC. CDS and Li prevented and reversed the AMPH-induced increases in locomotor activity. Only CDS prevented and reversed AMPH-induced working memory deficits. CDS prevented AMPH-induced alterations in GSH (HC and CV), TBARS (HC and CV), TNF-α (HC and CV) and BDNF (HC) levels. Li prevented alterations in BDNF and phospho-Ser9-GSK3beta. CDS reversed AMPH-induced alterations in GSH (HC and CV), TBARS (HC), TNF-α (CV) and BDNF levels. Li reversed AMPH-induced alterations in TNF-α (HC and CV) and BDNF (HC) levels. CDS is effective in reversing and preventing AMPH-induced behavioral and biochemical alterations, providing a rationale for the design of clinical trials investigating CDS׳s possible therapeutic effects. Copyright © 2015 Elsevier B.V. and ECNP. All rights reserved.

  10. Astrocytes Promote Oligodendrogenesis after White Matter Damage via Brain-Derived Neurotrophic Factor.

    PubMed

    Miyamoto, Nobukazu; Maki, Takakuni; Shindo, Akihiro; Liang, Anna C; Maeda, Mitsuyo; Egawa, Naohiro; Itoh, Kanako; Lo, Evan K; Lok, Josephine; Ihara, Masafumi; Arai, Ken

    2015-10-14

    Oligodendrocyte precursor cells (OPCs) in the adult brain contribute to white matter homeostasis. After white matter damage, OPCs compensate for oligodendrocyte loss by differentiating into mature oligodendrocytes. However, the underlying mechanisms remain to be fully defined. Here, we test the hypothesis that, during endogenous recovery from white matter ischemic injury, astrocytes support the maturation of OPCs by secreting brain-derived neurotrophic factor (BDNF). For in vitro experiments, cultured primary OPCs and astrocytes were prepared from postnatal day 2 rat cortex. When OPCs were subjected to chemical hypoxic stress by exposing them to sublethal CoCl2 for 7 d, in vitro OPC differentiation into oligodendrocytes was significantly suppressed. Conditioned medium from astrocytes (astro-medium) restored the process of OPC maturation even under the stressed conditions. When astro-medium was filtered with TrkB-Fc to remove BDNF, the BDNF-deficient astro-medium no longer supported OPC maturation. For in vivo experiments, we analyzed a transgenic mouse line (GFAP(cre)/BDNF(wt/fl)) in which BDNF expression is downregulated specifically in GFAP(+) astrocytes. Both wild-type (GFAP(wt)/BDNF(wt/fl) mice) and transgenic mice were subjected to prolonged cerebral hypoperfusion by bilateral common carotid artery stenosis. As expected, compared with wild-type mice, the transgenic mice exhibited a lower number of newly generated oligodendrocytes and larger white matter damage. Together, these findings demonstrate that, during endogenous recovery from white matter damage, astrocytes may promote oligodendrogenesis by secreting BDNF. The repair of white matter after brain injury and neurodegeneration remains a tremendous hurdle for a wide spectrum of CNS disorders. One potentially important opportunity may reside in the response of residual oligodendrocyte precursor cells (OPCs). OPCs may serve as a back-up for generating mature oligodendrocytes in damaged white matter. However

  11. Accelerated recovery from acute brain injuries: clinical efficacy of neurotrophic treatment in stroke and traumatic brain injuries.

    PubMed

    Bornstein, N; Poon, W S

    2012-04-01

    Stroke is one of the most devastating vascular diseases in the world as it is responsible for almost five million deaths per year. Almost 90% of all strokes are ischemic and mainly due to atherosclerosis, cardiac embolism and small-vessel disease. Intracerebral or subarachnoid hemorrhage can lead to hemorrhagic stroke, which usually has the poorest prognosis. Cerebrolysin is a peptide preparation which mimics the action of a neurotrophic factor, protecting stroke-injured neurons and promoting neuroplasticity and neurogenesis. Cerebrolysin has been widely studied as a therapeutic tool for both ischemic and hemorrhagic stroke, as well as traumatic brain injury. In ischemic stroke, Cerebrolysin given as an adjuvant therapy to antiplatelet and rheologically active medication resulted in accelerated improvement in global, neurological and motor functions, cognitive performance and activities of daily living. Cerebrolysin was also safe and well tolerated when administered in patients suffering from hemorrhagic stroke. Traumatic brain injury leads to transient or chronic impairments in physical, cognitive, emotional and behavioral functions. This is associated with deficits in the recognition of basic emotions, the capacity to interpret the mental states of others, and executive functioning. Pilot clinical studies with adjuvant Cerebrolysin in the acute and postacute phases of the injury have shown faster recovery, which translates into an earlier onset of rehabilitation and shortened hospitalization time. Copyright 2012 Prous Science, S.A.U. or its licensors. All rights reserved.

  12. Synergistic Increase of Serum BDNF in Alzheimer Patients Treated with Cerebrolysin and Donepezil: Association with Cognitive Improvement in ApoE4 Cases

    PubMed Central

    Alvarez, Irene; Iglesias, Olalla; Crespo, Ignacio; Figueroa, Jesus; Aleixandre, Manuel; Linares, Carlos; Granizo, Elias; Garcia-Fantini, Manuel; Marey, Jose; Masliah, Eliezer; Winter, Stefan; Muresanu, Dafin; Moessler, Herbert

    2016-01-01

    Background: Low circulating brain derived neurotrophic factor may promote cognitive deterioration, but the effects of neurotrophic and combination drug therapies on serum brain derived neurotrophic factor were not previously investigated in Alzheimer’s disease. Methods: We evaluated the effects of Cerebrolysin, donepezil, and the combined therapy on brain derived neurotrophic factor serum levels at week 16 (end of Cerebrolysin treatment) and week 28 (endpoint) in mild-to-moderate Alzheimer’s disease patients. Results: Cerebrolysin, but not donepezil, increased serum brain derived neurotrophic factor at week 16, while the combination therapy enhanced it at both week 16 and study endpoint. Brain derived neurotrophic factor responses were significantly higher in the combination therapy group than in donepezil and Cerebrolysin groups at week 16 and week 28, respectively. Brain derived neurotrophic factor increases were greater in apolipoprotein E epsilon-4 allele carriers, and higher brain derived neurotrophic factor levels were associated with better cognitive improvements in apolipoprotein E epsilon-4 allele patients treated with Cerebrolysin and the combined therapy. Conclusion: Our results indicate a synergistic action of Cerebrolysin and donepezil to increase serum brain derived neurotrophic factor and delaying cognitive decline, particularly in Alzheimer’s disease cases with apolipoprotein E epsilon-4 allele. PMID:27207906

  13. Brain-Derived Neurotrophic Factor Promotes Vasculature-Associated Migration of Neuronal Precursors toward the Ischemic Striatum

    PubMed Central

    Grade, Sofia; Weng, Yuan C.; Snapyan, Marina; Kriz, Jasna; Malva, João O.; Saghatelyan, Armen

    2013-01-01

    Stroke induces the recruitment of neuronal precursors from the subventricular zone (SVZ) into the ischemic striatum. In injured areas, de-routed neuroblasts use blood vessels as a physical scaffold to their migration, in a process that resembles the constitutive migration seen in the rostral migratory stream (RMS). The molecular mechanism underlying injury-induced vasculature-mediated migration of neuroblasts in the post-stroke striatum remains, however, elusive. Using adult mice we now demonstrate that endothelial cells in the ischemic striatum produce brain-derived neurotrophic factor (BDNF), a neurotrophin that promotes the vasculature-mediated migration of neuronal precursors in the RMS, and that recruited neuroblasts maintain expression of p75NTR, a low-affinity receptor for BDNF. Reactive astrocytes, which are widespread throughout the damaged area, ensheath blood vessels and express TrkB, a high-affinity receptor for BDNF. Despite the absence of BDNF mRNA, we observed strong BDNF immunolabeling in astrocytes, suggesting that these glial cells trap extracellular BDNF. Importantly, this pattern of expression is reminiscent of the adult RMS, where TrkB-expressing astrocytes bind and sequester vasculature-derived BDNF, leading to the entry of migrating cells into the stationary phase. Real-time imaging of cell migration in acute brain slices revealed a direct role for BDNF in promoting the migration of neuroblasts to ischemic areas. We also demonstrated that cells migrating in the ischemic striatum display higher exploratory behavior and longer stationary periods than cells migrating in the RMS. Our findings suggest that the mechanisms involved in the injury-induced vasculature-mediated migration of neuroblasts recapitulate, at least partially, those observed during constitutive migration in the RMS. PMID:23383048

  14. The Pilot Study of the Effect of Meditation to the Serum Brain-Derived Neurotrophic Factor (BDNF) of Medical Students, Srinakharinvirot University.

    PubMed

    Turakitwanakan, Wanpen; Mekseepralard, Chantana; Busarakumtragul, Panaree

    2015-11-01

    Mindfulness meditation is a method to decrease stress and increase memory. So, mindfulness meditation should increase serum brain-derived neurotrophic factor (BDNF). To study the effect of mindfulness meditation on the serum BDNF of medical students. The study group consisted of 30 male and female second-year medical students that volunteered to participate in the study, aged 19.1 ± 0.55 year olds (range 18-20) from Srinakharinwirot University. Their blood was drawn to measure BDNF before and after a four-day mindfulness meditation programme. The comparison of serum BDNF levels before and after meditation were analysed by paired t-test. The subjects were 66.77%female and 33.33% male. The average serum BDNF level before the meditation was 17.67 ng/ml (SD 3.58). After meditation, there was a decrease in serum BDNF to 17.34 ng/ml, which was however not statistically significant (SD 4.04, p > 0.05). The levels of blood BDNF decreases slightly after practising meditation. We plan to investigate the reason in the future.

  15. Altered maternal micronutrients (folic acid, vitamin B(12)) and omega 3 fatty acids through oxidative stress may reduce neurotrophic factors in preterm pregnancy.

    PubMed

    Dhobale, Madhavi; Joshi, Sadhana

    2012-04-01

    Preterm pregnancies account for approximately 10% of the total pregnancies and are associated with low birth weight (LBW) babies. Recent studies have shown that LBW babies are at an increased risk of developing brain disorders such as cognitive dysfunction and psychiatric disorders. Maternal nutrition, particularly, micronutrients involved in one-carbon metabolism (folic acid, vitamin B(12), and docosahexaenoic acid (DHA)) have a major role during pregnancy for developing fetus and are important determinants of epigenesis. A series of our studies in pregnancy complications have well established the importance of omega 3 fatty acids especially DHA. DHA regulates levels of neurotrophins like brain-derived neurotrophic factor and nerve growth factor, which are required for normal neurological development. We have recently described that in one carbon metabolic pathway, membrane phospholipids are major methyl group acceptors and reduced DHA levels may result in diversion of methyl groups toward deoxyribonucleic acid (DNA) ultimately resulting in DNA methylation. In this review, we propose that altered maternal micronutrients (folic acid, vitamin B(12)), increased homocysteine, and oxidative stress levels that cause epigenetic modifications may be one of the mechanisms that contribute to preterm birth and poor fetal outcome, increasing risk for behavioural disorders in children.

  16. Targeted taste cell-specific overexpression of brain-derived neurotrophic factor in adult taste buds elevates phosphorylated TrkB protein levels in taste cells, increases taste bud size, and promotes gustatory innervation.

    PubMed

    Nosrat, Irina V; Margolskee, Robert F; Nosrat, Christopher A

    2012-05-11

    Brain-derived neurotrophic factor (BDNF) is the most potent neurotrophic factor in the peripheral taste system during embryonic development. It is also expressed in adult taste buds. There is a lack of understanding of the role of BDNF in the adult taste system. To address this, we generated novel transgenic mice in which transgene expression was driven by an α-gustducin promoter coupling BDNF expression to the postnatal expression of gustducin in taste cells. Immunohistochemistry revealed significantly stronger BDNF labeling in taste cells of high BDNF-expressing mouse lines compared with controls. We show that taste buds in these mice are significantly larger and have a larger number of taste cells compared with controls. To examine whether innervation was affected in Gust-BDNF mice, we used antibodies to neural cell adhesion molecule (NCAM) and ATP receptor P2X3. The total density of general innervation and specifically the gustatory innervation was markedly increased in high BDNF-expressing mice compared with controls. TrkB and NCAM gene expression in laser capture microdissected taste epithelia were significantly up-regulated in these mice. Up-regulation of TrkB transcripts in taste buds and elevated taste cell-specific TrkB phosphorylation in response to increased BDNF levels indicate that BDNF controls the expression and activation of its high affinity receptor in taste cells. This demonstrates a direct taste cell function for BDNF. BDNF also orchestrates and maintains taste bud innervation. We propose that the Gust-BDNF transgenic mouse models can be employed to further dissect the specific roles of BDNF in the adult taste system.

  17. Repeated forced swimming impairs prepulse inhibition and alters brain-derived neurotrophic factor and astroglial parameters in rats.

    PubMed

    Borsoi, Milene; Antonio, Camila Boque; Müller, Liz Girardi; Viana, Alice Fialho; Hertzfeldt, Vivian; Lunardi, Paula Santana; Zanotto, Caroline; Nardin, Patrícia; Ravazzolo, Ana Paula; Rates, Stela Maris Kuze; Gonçalves, Carlos-Alberto

    2015-01-01

    Glutamate perturbations and altered neurotrophin levels have been strongly associated with the neurobiology of neuropsychiatric disorders. Environmental stress is a risk factor for mood disorders, disrupting glutamatergic activity in astrocytes in addition to cognitive behaviours. Despite the negative impact of stress-induced neuropsychiatric disorders on public health, the molecular mechanisms underlying the response of the brain to stress has yet to be fully elucidated. Exposure to repeated swimming has proven useful for evaluating the loss of cognitive function after pharmacological and behavioural interventions, but its effect on glutamate function has yet to be fully explored. In the present study, rats previously exposed to repeated forced swimming were evaluated using the novel object recognition test, object location test and prepulse inhibition (PPI) test. In addition, quantification of brain-derived neurotrophic factor (BDNF) mRNA expression and protein levels, glutamate uptake, glutathione, S100B, GluN1 subunit of N-methyl-D-aspartate receptor and calmodulin were evaluated in the frontal cortex and hippocampus after various swimming time points. We found that swimming stress selectively impaired PPI but did not affect memory recognition. Swimming stress altered the frontal cortical and hippocampal BDNF expression and the activity of hippocampal astrocytes by reducing hippocampal glutamate uptake and enhancing glutathione content in a time-dependent manner. In conclusion, these data support the assumption that astrocytes may regulate the activity of brain structures related to cognition in a manner that alters complex behaviours. Moreover, they provide new insight regarding the dynamics immediately after an aversive experience, such as after behavioural despair induction, and suggest that forced swimming can be employed to study altered glutamatergic activity and PPI disruption in rodents. Copyright © 2014. Published by Elsevier Inc.

  18. The influence of aging on the methylation status of brain-derived neurotrophic factor gene in blood.

    PubMed

    Ihara, Kazushige; Fuchikami, Manabu; Hashizume, Masahiro; Okada, Satoshi; Kawai, Hisashi; Obuchi, Shuichi; Hirano, Hirohiko; Fujiwara, Yoshinori; Hachisu, Mitsugu; Hongyong, Kim; Morinobu, Shigeru

    2018-06-28

    Brain-derived neurotrophic factor (BDNF) is involved in the pathophysiology of psychiatric disorders in adults and elderly individuals, and as a result, the DNA methylation (DNAm) of the BDNF gene in peripheral tissues including blood has been extensively examined to develop a useful biomarker for psychiatric disorders. However, studies to date have not previously investigated the effect of age on DNAm of the BDNF gene in blood. In this context, we measured DNAm of 39 CpG units in the CpG island at the promoter of exon I of the BDNF gene. We analyzed genomic DNA from peripheral blood of 105 health Japanese women 20 to 80 years of age to identify aging-associated change in DNAm of the BDNF gene. In addition, we examined the relationship between total MMSE scores, numbers of stressful life events, and serum BDNF levels on DNAm of the BDNF gene. The DNAm rate at each CpG unit was measured using a MassArray ® system (Agena Bioscience), and serum BDNF levels were measured by ELISA. There was a significant correlation between DNAm and age in 13 CpGs. However, there was no significant correlation between DNAm and total MMSE scores, numbers of life events, or serum BDNF levels. Despite the small number of subjects and the inclusion of only female subjects, our results suggest that DNAm of 13 CpGs of the BDNF gene may be an appropriate biomarker for aging and useful for predicting increased susceptibility to age-related psychiatric disorders. © 2018 John Wiley & Sons, Ltd.

  19. Localization of functional receptor epitopes on the structure of ciliary neurotrophic factor indicates a conserved, function-related epitope topography among helical cytokines.

    PubMed

    Panayotatos, N; Radziejewska, E; Acheson, A; Somogyi, R; Thadani, A; Hendrickson, W A; McDonald, N Q

    1995-06-09

    By rational mutagenesis, receptor-specific functional analysis, and visualization of complex formation in solution, we identified individual amino acid side chains involved specifically in the interaction of ciliary neurotrophic factor (CNTF) with CNTFR alpha and not with the beta-components, gp130 and LIFR. In the crystal structure, the side chains of these residues, which are located in helix A, the AB loop, helix B, and helix D, are surface accessible and are clustered in space, thus constituting an epitope for CNTFR alpha. By the same analysis, a partial epitope for gp130 was also identified on the surface of helix A that faces away from the alpha-epitope. Superposition of the CNTF and growth hormone structures showed that the location of these epitopes on CNTF is analogous to the location of the first and second receptor epitopes on the surface of growth hormone. Further comparison with proposed binding sites for alpha- and beta-receptors on interleukin-6 and leukemia inhibitory factor indicated that this epitope topology is conserved among helical cytokines. In each case, epitope I is utilized by the specificity-conferring component, whereas epitopes II and III are used by accessory components. Thus, in addition to a common fold, helical cytokines share a conserved order of receptor epitopes that is function related.

  20. Serum brain-derived neurotrophic factor levels in subjects with major depressive disorder with previous suicide attempt: A population-based study.

    PubMed

    Pedrotti Moreira, Fernanda; Borges, Cristiane Jackson; Wiener, Carolina David; da Silva, Paula Moraes; Portela, Luis Valmor; Lara, Diogo R; da Silva, Ricardo Azevedo; de Mattos Souza, Luciano Dias; Jansen, Karen; Oses, Jean Pierre

    2018-04-01

    Major depressive disorders (MDD) and suicide are significant public health concerns. Recent studies have been demonstrated that alterations in Brain Derived Neurotrophic Factor (BDNF) can be associated with this psychiatric disorders, MDD and suicide. Thus, the aim of this study was to evaluate differences in serum levels in individuals with MDD and with or without suicide attempt (SA), from a population-based sample. This was a paired cross-sectional study nested in a population-based study. The psychopathology screen was performed with the Mini-International Neuropsychiatric Interview (MINI). The total population of the sample consisted of 147 subjects distributed in three groups: 49 healthy controls, 49 subjects with MDD and 49 subjects with MDD and SA (MDD + SA). The BDNF serum levels were significantly reduced in subjects with MDD and MDD + SA compared to the healthy controls. However, there were no significant differences between the MDD and MDD + SA groups with respect to BDNF serum levels. These results suggest that SA did not interfere in the serum levels of BDNF, indicating that this neurotrophin may be related to the diagnosis of MDD and not to suicide attempt. Copyright © 2017 Elsevier B.V. All rights reserved.