Science.gov

Sample records for neurotrophic factor treatment

  1. Neurotrophic factors and neurologic disease.

    PubMed Central

    Holtzman, D M; Mobley, W C

    1994-01-01

    Discovered only 40 years ago, nerve growth factor is the prototypic neurotrophic factor. By binding to specific receptors on certain neurons in the peripheral nervous system and brain, nerve growth factor acts to enhance their survival, differentiation, and maintenance. In recent years, many additional neurotrophic factors have been discovered; some are structurally related to nerve growth factor while others are distinct from it. The robust actions of neurotrophic factors have suggested their use in preventing or lessening the dysfunction and death of neurons in neurologic disorders. We review the progress in defining neurotrophic factors and their receptors and in characterizing their actions. We also discuss some of the uses of neurotrophic factors in animal models of disease. Finally, we discuss how neurotrophic factors could be implicated in the pathogenesis of neurologic disorders. Images PMID:7975562

  2. Brain-Derived Neurotrophic Factor Gene Expression in Pediatric Bipolar Disorder: Effects of Treatment and Clinical Response

    ERIC Educational Resources Information Center

    Pandey, Ghanshyam N.; Rizavi, Hooriyah S.; Dwivedi, Yogesh; Pavuluri, Mani N.

    2008-01-01

    The study determines the gene expression of brain-derived neurotrophic factor (BDNF) in the lymphocytes of subjects with pediatric bipolar disorder (PBD) before and during treatment with mood stabilizers and in drug-free normal control subjects. Results indicate the potential of BDNF levels as a biomarker for PBD and as a treatment predictor and…

  3. Targeted delivery of brain-derived neurotrophic factor for the treatment of blindness and deafness

    PubMed Central

    Khalin, Igor; Alyautdin, Renad; Kocherga, Ganna; Bakar, Muhamad Abu

    2015-01-01

    Neurodegenerative causes of blindness and deafness possess a major challenge in their clinical management as proper treatment guidelines have not yet been found. Brain-derived neurotrophic factor (BDNF) has been established as a promising therapy against neurodegenerative disorders including hearing and visual loss. Unfortunately, the blood–retinal barrier and blood–cochlear barrier, which have a comparable structure to the blood–brain barrier prevent molecules of larger sizes (such as BDNF) from exiting the circulation and reaching the targeted cells. Anatomical features of the eye and ear allow use of local administration, bypassing histo-hematic barriers. This paper focuses on highlighting a variety of strategies proposed for the local administration of the BDNF, like direct delivery, viral gene therapy, and cell-based therapy, which have been shown to successfully improve development, survival, and function of spiral and retinal ganglion cells. The similarities and controversies for BDNF treatment of posterior eye diseases and inner ear diseases have been analyzed and compared. In this review, we also focus on the possibility of translation of this knowledge into clinical practice. And finally, we suggest that using nanoparticulate drug-delivery systems may substantially contribute to the development of clinically viable techniques for BDNF delivery into the cochlea or posterior eye segment, which, ultimately, can lead to a long-term or permanent rescue of auditory and optic neurons from degeneration. PMID:25995632

  4. Tricyclic antidepressant treatment evokes regional changes in neurotrophic factors over time within the intact and degenerating nigrostriatal system

    PubMed Central

    Paumier, Katrina L.; Sortwell, Caryl E.; Madhavan, Lalitha; Terpstra, Brian; Daley, Brian F.; Collier, Timothy J.

    2015-01-01

    In addition to alleviating depression, trophic responses produced by antidepressants may regulate neural plasticity in the diseased brain, providing not only symptomatic benefit but potentially slowing the rate of disease progression in Parkinson’s disease (PD). Recent in vitro and in vivo data provide evidence that neurotrophic factors such as brain derived-neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF) may be key mediators of the therapeutic response to antidepressants. As such, we conducted a cross-sectional time-course study to determine whether antidepressant-mediated changes in neurotrophic factors occur in relevant brain regions in response to amitriptyline (AMI) treatment before and after intrastriatal 6-hydroxydopamine (6OHDA). Adult male Wistar rats were divided into seven cohorts and given daily injections (i.p.) of AMI (5mg/kg) or saline throughout the duration of the study. In parallel, various cohorts of intact or parkinsonian animals were sacrificed at specific time points to determine the impact of AMI treatment on trophic factor levels in the intact and degenerating nigrostriatal system. The left and right hemispheres of the substantia nigra, striatum, frontal cortex, piriform cortex, hippocampus and anterior cingulate cortex were dissected and BDNF and GDNF levels were measured with ELISA. Results show that chronic AMI treatment elicits effects in multiple brain regions and differentially regulates levels of BDNF and GDNF depending on the region. Additionally, AMI halts the progressive degeneration of dopamine (DA) neurons elicited by an intrastriatal 6-OHDA lesion. Taken together, these results suggest that AMI treatment elicits significant trophic changes important to DA neuron survival within both the intact and degenerating nigrostriatal system. PMID:25681575

  5. Future Antidepressant Targets: Neurotrophic Factors and Related Signaling Cascades

    PubMed Central

    Schmidt, Heath D.; Banasr, Mounira; Duman, Ronald S.

    2009-01-01

    Preclinical and clinical studies demonstrate that neurotrophic factors play critical roles in the etiology and treatment of depression. While the mechanisms underlying the therapeutic efficacy of antidepressants remain unknown, increasing evidence supports a role for increased trophic support in the treatment of depression. Furthermore, antidepressants block or reverse stress-induced down regulation of neurotrophic factor expression in limbic and cortical nuclei involved in the underlying pathophysiology of depression. Thus, components of neurotrophic factor-mediated signaling cascades or the signal transduction pathways that regulate neurotrophic factor expression may provide additional targets for the development of novel, more efficacious antidepressant drugs. PMID:19802372

  6. Peripheral nerve regeneration and neurotrophic factors

    PubMed Central

    TERENGHI, GIORGIO

    1999-01-01

    The role of neurotrophic factors in the maintenance and survival of peripheral neuronal cells has been the subject of numerous studies. Administration of exogenous neurotrophic factors after nerve injury has been shown to mimic the effect of target organ-derived trophic factors on neuronal cells. After axotomy and during peripheral nerve regeneration, the neurotrophins NGF, NT-3 and BDNF show a well defined and selective beneficial effect on the survival and phenotypic expression of primary sensory neurons in dorsal root ganglia and of motoneurons in spinal cord. Other neurotrophic factors such as CNTF, GDNF and LIF also exert a variety of actions on neuronal cells, which appear to overlap and complement those of the neurotrophins. In addition, there is an indirect contribution of GGF to nerve regeneration. GGF is produced by neurons and stimulates proliferation of Schwann cells, underlining the close interaction between neuronal and glial cells during peripheral nerve regeneration. Different possibilities have been investigated for the delivery of growth factors to the injured neurons, in search of a suitable system for clinical applications. The studies reviewed in this article show the therapeutic potential of neurotrophic factors for the treatment of peripheral nerve injury and for neuropathies. PMID:10227662

  7. Cross-sex hormone treatment in male-to-female transsexual persons reduces serum brain-derived neurotrophic factor (BDNF).

    PubMed

    Fuss, Johannes; Hellweg, Rainer; Van Caenegem, Eva; Briken, Peer; Stalla, Günter K; T'Sjoen, Guy; Auer, Matthias K

    2015-01-01

    Serum levels of brain-derived neurotrophic factor (BDNF) are reduced in male-to-female transsexual persons (MtF) compared to male controls. It was hypothesized before that this might reflect either an involvement of BDNF in a biomechanism of transsexualism or to be the result of persistent social stress due to the condition. Here, we demonstrate that 12 month of cross-sex hormone treatment reduces serum BDNF levels in male-to-female transsexual persons independent of anthropometric measures. Participants were acquired through the European Network for the Investigation of Gender Incongruence (ENIGI). Reduced serum BDNF in MtF thus seems to be a result of hormonal treatment rather than a consequence or risk factor of transsexualism. PMID:25498415

  8. Tetrahydroxystilbene Glucoside Improves Neurotrophic Factors Release in Cultured Astroglia.

    PubMed

    Lin, FengQin; Zhou, YanZhen; Shi, WanLan; Wan, YanYing; Zhang, ZeGang; Zhang, Feng

    2016-01-01

    Tetrahydroxystilbene glucoside (TSG), one of the main ingredients of Polygonum multiflorum, has a great number of beneficial effects for health including anti-oxidant, free radicalscavenging and anti-inflammatory properties. However, the potential effects of TSG on neurotrophic factors release remain unclear. In this study, rat primary astroglia cultures were applied to investigate TSG-mediated neurotrophic effects. The protein levels and production of glial cell-line derived neurotrophic factor (GDNF), brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) in astroglia and the culture medium were determined by western blotting assay and ELISA, respectively. Results indicated that TSG increased the production of neurotrophic factors in a concentration-dependent manner. At different time points of TSG treatment, the BDNF and NGF production in the culture medium was increased 48 h after treatment, while GDNF secretion was initially induced 24 h after TSG treatment. Consistent with the neurotrophic factors release, TSG significantly increased the BDNF, GDNF and NGF protein expressions in astroglia. Furthermore, TSG significantly induced the phosphorylation of extracellular signal-regulated kinase (ERK) 1/2 and a specific ERK inhibitor-U0126 inhibited TSG-mediated secretion of BDNF, GDNF and NGF. Overall, this study demonstrated that TSG induces astroglia-derived neurotrophic factors release, suggesting TSG might hold a therapeutic potential for neurological disorders. PMID:26295829

  9. Neurotrophic factor control of satiety and body weight.

    PubMed

    Xu, Baoji; Xie, Xiangyang

    2016-05-01

    Energy balance - that is, the relationship between energy intake and energy expenditure - is regulated by a complex interplay of hormones, brain circuits and peripheral tissues. Leptin is an adipocyte-derived cytokine that suppresses appetite and increases energy expenditure. Ironically, obese individuals have high levels of plasma leptin and are resistant to leptin treatment. Neurotrophic factors, particularly ciliary neurotrophic factor (CNTF) and brain-derived neurotrophic factor (BDNF), are also important for the control of body weight. CNTF can overcome leptin resistance in order to reduce body weight, although CNTF and leptin activate similar signalling cascades. Mutations in the gene encoding BDNF lead to insatiable appetite and severe obesity. PMID:27052383

  10. Delivery of neurotrophic factors and therapeutic proteins for retinal diseases.

    PubMed

    Thanos, Chris; Emerich, Dwaine

    2005-11-01

    Neurotrophic factors have the ability to protect and initiate growth of neurons. In the central nervous system, neurotrophic factors are neuroprotective in a wide range of disease states. Similarly, disease pathologies of the neurosensory retina respond favourably in animal models of retinitis pigmentosa, macular degeneration, glaucoma and others. With advances in drug delivery and cell therapy, an almost universal increase in efficacy is being realised. Now, repeated injections of neurotrophic factors are being replaced by controlled delivery of cell-mediated factor secretion, reducing the number of potential acute side effects. Tissue engineering strategies in conjunction with gene-modulated protein therapy or gene transfer are creating a unique treatment niche and are quickly gaining acclaim in the clinic. This review surveys the founding and current work on neurotrophic factors such as CNTF, BDNF, GDNF, LEDGF, PEDF and others. Ongoing clinical trials and successful preclinical studies are summarised as well. PMID:16255648

  11. High levels of brain-derived neurotrophic factor are associated with treatment adherence among crack-cocaine users.

    PubMed

    Scherer, Juliana N; Schuch, Silvia; Ornell, Felipe; Sordi, Anne O; Bristot, Giovana; Pfaffenseller, Bianca; Kapczinski, Flávio; Kessler, Felix H P; Fumagalli, Fabio; Pechansky, Flavio; von Diemen, Lisia

    2016-09-01

    Due to the complexity of crack -cocaine addiction treatment, the identification of biological markers that could help determining the impact or outcome of drug use has become a major subject of study. Therefore, we aim to evaluate the association of Brain-Derived Neurotrophic Factor (BDNF) and Thiobarbituric Acid Reactive Substances (TBARS) levels in crack -cocaine users with treatment adherence and with drug addiction severity. A sample of 47 male inpatient crack- cocaine users were recruited in a treatment unit, and blood samples were collected at admission and discharge in order to measure BDNF and TBARS serum levels. Subjects were split into 2 groups: treatment non-completers (n=23) and treatment completers (n=24). The completer group had a tendency of higher levels of BDNF than non-completers at admission (16.85±3.24 vs. 14.65±5.45, p=0.10), and significant higher levels at discharge (18.10±4.88 vs. 13.91±4.77, p=0.001). A negative correlation between BDNF levels at admission and years of crack use was observed. We did not find significant changes in TBARS levels during inpatient treatment, although the completer group tended to decrease these levels while non-completers tend to increase it. These findings suggest an association between higher levels of BDNF and better clinical outcomes in crack- cocaine users after detoxification. We believe that the variation in BDNF and TBARS found here add evidence to literature data that propose that such biomarkers could be used to better understand the physiopathology of crack- cocaine addiction. PMID:27473943

  12. Neurotrophic factor intervention restores auditory function in deafened animals

    NASA Astrophysics Data System (ADS)

    Shinohara, Takayuki; Bredberg, Göran; Ulfendahl, Mats; Pyykkö, Ilmari; Petri Olivius, N.; Kaksonen, Risto; Lindström, Bo; Altschuler, Richard; Miller, Josef M.

    2002-02-01

    A primary cause of deafness is damage of receptor cells in the inner ear. Clinically, it has been demonstrated that effective functionality can be provided by electrical stimulation of the auditory nerve, thus bypassing damaged receptor cells. However, subsequent to sensory cell loss there is a secondary degeneration of the afferent nerve fibers, resulting in reduced effectiveness of such cochlear prostheses. The effects of neurotrophic factors were tested in a guinea pig cochlear prosthesis model. After chemical deafening to mimic the clinical situation, the neurotrophic factors brain-derived neurotrophic factor and an analogue of ciliary neurotrophic factor were infused directly into the cochlea of the inner ear for 26 days by using an osmotic pump system. An electrode introduced into the cochlea was used to elicit auditory responses just as in patients implanted with cochlear prostheses. Intervention with brain-derived neurotrophic factor and the ciliary neurotrophic factor analogue not only increased the survival of auditory spiral ganglion neurons, but significantly enhanced the functional responsiveness of the auditory system as measured by using electrically evoked auditory brainstem responses. This demonstration that neurotrophin intervention enhances threshold sensitivity within the auditory system will have great clinical importance for the treatment of deaf patients with cochlear prostheses. The findings have direct implications for the enhancement of responsiveness in deafferented peripheral nerves.

  13. Optimizing neurotrophic factor combinations for neurite outgrowth

    NASA Astrophysics Data System (ADS)

    Deister, C.; Schmidt, C. E.

    2006-06-01

    Most neurotrophic factors are members of one of three families: the neurotrophins, the glial cell-line derived neurotrophic factor family ligands (GFLs) and the neuropoietic cytokines. Each family activates distinct but overlapping cellular pathways. Several studies have shown additive or synergistic interactions between neurotrophic factors from different families, though generally only a single combination has been studied. Because of possible interactions between the neurotrophic factors, the optimum concentration of a factor in a mixture may differ from the optimum when applied individually. Additionally, the effect of combinations of neurotrophic factors from each of the three families on neurite extension is unclear. This study examines the effects of several combinations of the neurotrophin nerve growth factor (NGF), the GFL glial cell-line derived neurotrophic factor (GDNF) and the neuropoietic cytokine ciliary neurotrophic factor (CNTF) on neurite outgrowth from young rat dorsal root ganglion (DRG) explants. The combination of 50 ng ml-1 NGF and 10 ng ml-1 of each GDNF and CNTF induced the highest level of neurite outgrowth at a 752 ± 53% increase over untreated DRGs and increased the longest neurite length to 2031 ± 97 µm compared to 916 ± 64 µm for untreated DRGs. The optimum concentrations of the three factors applied in combination corresponded to the optimum concentration of each factor when applied individually. These results indicate that the efficacy of future therapies for nerve repair would be enhanced by the controlled release of a combination of neurotrophins, GFLs and neuropoietic cytokines at higher concentrations than used in previous conduit designs.

  14. Poxue Huayu and Tianjing Busui Decoction for cerebral hemorrhage (Upregulation of neurotrophic factor expression): Upregulation of neurotrophic factor expression

    PubMed Central

    Ren, Jixiang; Zhou, Xiangyu; Wang, Jian; Zhao, Jianjun; Zhang, Pengguo

    2013-01-01

    This study established a rat model of cerebral hemorrhage by injecting autologous anticoagulated blood. Rat models were intragastrically administered 5, 10, 20 g/kg Poxue Huayu and Tianjing Busui Decoction, supplemented with Hirudo, raw rhubarb, raw Pollen Typhae, gadfly, Fructrs Trichosanthis, Radix Notoginseng, Rhizoma Acori Talarinowii, and glue of tortoise plastron, once a day, for 14 consecutive days. Results demonstrated that brain water content significantly reduced in rats with cerebral hemorrhage, and intracerebral hematoma volume markedly reduced after treatment. Immunohistochemical staining revealed that brain-derived neurotrophic factor, tyrosine kinase B and vascular endothelial growth factor expression noticeably increased around the surrounding hematoma. Reverse transcription-PCR revealed that brain-derived neurotrophic factor and tyrosine kinase B mRNA expression significantly increased around the surrounding hematoma. Neurologic impairment obviously reduced. These results indicated that Poxue Huayu and Tianjing Busui Decoction exert therapeutic effects on cerebral hemorrhage by upregulating the expression of brain-derived neurotrophic factor. PMID:25206512

  15. LncRNA analysis of mouse spermatogonial stem cells following glial cell-derived neurotrophic factor treatment

    PubMed Central

    Li, Lufan; Wang, Min; Wang, Mei; Wu, Xiaoxi; Geng, Lei; Xue, Yuanyuan; Wei, Xiang; Jia, Yuanyuan; Wu, Xin

    2015-01-01

    Spermatonial stem cells (SSCs) are the foundation of spermatogenesis. Long non-coding RNAs (lncRNAs) are a class of non-coding RNAs with at least 200 bp in length, which play important roles in various biological processes. Growth factor glial cell line-derived neurotrophic factor (GDNF), secreted from testis niches, is critical for self-renewal of SSCs in vitro and in vivo. Using Illumina HiSeq™ 2000 high throughput sequencing, we found 55924 lncRNAs which were regulated by GDNF in SSCs in vitro; these included 21,929 known lncRNAs from NONCODE library (version 3.0) and 33,975 predicted lncRNAs which were identified using Coding Potential Calculator. Analyses of these data should provide new insights into regulated mechanism in SSC self-renewal and proliferation. The data have been deposited in the Gene Expression Omnibus (series GSE66998). PMID:26484267

  16. Neonatal (+)-methamphetamine increases brain derived neurotrophic factor, but not nerve growth factor, during treatment and results in long-term spatial learning deficits.

    PubMed

    Skelton, Matthew R; Williams, Michael T; Schaefer, Tori L; Vorhees, Charles V

    2007-07-01

    In this study, brain derived neurotrophic factor (BDNF) and nerve growth factor (NGF) were examined at five time points [postnatal day (P)11, 15, 20, 21, and 68 (the latter with or without behavioral testing)] during and after P11-20 (+)-methamphetamine (MA) (10 mg/kg 4 x day) treatment. BDNF in MA-treated animals was elevated on P15 and P20 in the hippocampus but not in the hypothalamus and was unchanged on P11 and P21. On P68 (1 h after Morris water maze testing) MA-treated offspring showed a trend toward higher levels of BDNF in the hippocampus than saline-treated animals. MA treatment increased NGF levels in the hippocampus but only on P20. No effect of MA treatment was observed in the elevated zero maze. MA-treated offspring had increased latencies, cumulative distances, path lengths, and first bearings in the Morris water maze. The findings indicate that early MA exposure induces hippocampal BDNF increases that precede the later emergence of spatial learning deficits. PMID:17606327

  17. Memory and brain-derived neurotrophic factor after subchronic or chronic amphetamine treatment in an animal model of mania.

    PubMed

    Fries, Gabriel R; Valvassori, Samira S; Bock, Hugo; Stertz, Laura; Magalhães, Pedro Vieira da Silva; Mariot, Edimilson; Varela, Roger B; Kauer-Sant'Anna, Marcia; Quevedo, João; Kapczinski, Flávio; Saraiva-Pereira, Maria Luiza

    2015-09-01

    Progression of bipolar disorder (BD) has been associated with cognitive impairment and changes in neuroplasticity, including a decrease in serum brain-derived neurotrophic factor (BDNF). However, no study could examine BDNF levels directly in different brain regions after repeated mood episodes to date. The proposed animal model was designed to mimic several manic episodes and evaluate whether the performance in memory tasks and BDNF levels in hippocampus, prefrontal cortex, and amygdala would change after repeated amphetamine (AMPH) exposure. Adult male Wistar rats were divided into subchronic (AMPH for 7 days) and chronic groups (35 days), mimicking manic episodes at early and late stages of BD, respectively. After open field habituation or inhibitory avoidance test, rats were killed, brain regions were isolated, and BDNF mRNA and protein levels were measured by quantitative real-time PCR and ELISA, respectively. AMPH impaired habituation memory in both subchronic and chronic groups, and the impairment was worse in the chronic group. This was accompanied by increased Bdnf mRNA levels in the prefrontal cortex and amygdala region, as well as reduced BDNF protein in the hippocampus. In the inhibitory avoidance, AMPH significantly decreased the change from training to test when compared to saline. No difference was observed between subchronic and chronic groups, although chronically AMPH-treated rats presented increased Bdnf mRNA levels and decreased protein levels in hippocampus when compared to the subchronic group. Our results suggest that the cognitive impairment related to BD neuroprogression may be associated with BDNF alterations in hippocampus, prefrontal cortex, and amygdala. PMID:26026487

  18. Neurotrophic factor - Characterization and partial purification

    NASA Technical Reports Server (NTRS)

    Popiela, H.; Ellis, S.

    1981-01-01

    Recent evidence suggests that neurotrophic activity is required for the normal proliferation and development of muscle cells. The present paper reports a study of the purification and characterization of a neurotrophic factor (NTF) from adult chicken ischiatic-peroneal nerves using two independent quantitative in vitro assay systems. The assays were performed by the measurement of the incorporation of tritiated thymidine or the sizes of single-cell clones by chick muscle cells grown in culture. The greatest amount of neutrotrophic activity is found to be extracted at a pH of 8; aqueous suspensions of the activity are stable to long-term storage at room temperature. The specific activity of the substance is doubled upon precipitation with ammonium sulfate or after gel filtration, and increase 4 to 5 fold after salt gradient elution from DEAE cellulose columns. The active fraction obtained after gel filtration and rechromatography on DEAE cellulose exhibits a 7 to 10-fold increase in specific activity. Electrophoresis of the most highly purified material yields a greatly concentrated band at around 80,000 daltons. Although NTF is purified almost 10-fold as indicated by the increase in specific activity, the maximum activity of the partially purified material is greatly reduced, possibly due to a requirement for a cofactor for the expression of maximum activity.

  19. D-Amphetamine withdrawal-induced decreases in brain-derived neurotrophic factor in sprague-dawley rats are reversed by treatment with ketamine.

    PubMed

    Fuller, Jasmine J L; Murray, Ryan C; Horner, Kristen A

    2015-10-01

    Withdrawal from chronic D-amphetamine (D-AMPH) can induce negative emotional states, which may contribute to relapse and the maintenance of addiction. Diminished levels of brain-derived neurotrophic factor (BDNF), particularly in the hippocampus has been observed after exposure to stress, and recent data indicate that treatment with the N-methyl-D-aspartate (NMDA) receptor antagonist, ketamine may reverse these changes. However, it is unclear whether BDNF levels in the hippocampus or other regions of the limbic system are altered following the stress of D-AMPH withdrawal and it is not currently known if treatment with ketamine has any effect on these changes. The goals of this study were to examine BDNF levels throughout the limbic system following D-AMPH withdrawal and determine whether ketamine treatment would alter D-AMPH-induced changes in BDNF. Sprague-Dawley rats were treated with D-AMPH and BDNF protein examined in the prefrontal cortex, nucleus accumbens, amygdala and hippocampus at 24 h and 4 days of withdrawal. Our data show that at 24 h post-D-AMPH, BDNF levels were increased in the nucleus accumbens and decreased in the hippocampus. At 4 d post-D-AMPH, BDNF protein levels were decreased in all areas examined, and these decreases were reversed by treatment with ketamine. These data suggest that diminished BDNF may contribute to the negative affect seen following D-AMPH withdrawal, and that ketamine treatment could offer relief from these symptoms. PMID:25986696

  20. VOLUNTARY EXERCISE OR AMPHETAMINE TREATMENT, BUT NOT THE COMBINATION, INCREASES HIPPOCAMPAL BRAIN-DERIVED NEUROTROPHIC FACTOR AND SYNAPSIN I FOLLOWING CORTICAL CONTUSION INJURY IN RATS

    PubMed Central

    GRIESBACH, G. S.; HOVDA, D. A.; GOMEZ-PINILLA, F.; SUTTON, R. L.

    2008-01-01

    Prior work has shown that d-amphetamine (AMPH) treatment or voluntary exercise improves cognitive functions after traumatic brain injury (TBI). In addition, voluntary exercise increases levels of brain-derived neurotrophic factor (BDNF). The current study was conducted to determine how AMPH and exercise treatments, either alone or in combination, affect molecular events that may underlie recovery following controlled cortical impact (CCI) injury in rats. We also determined if these treatments reduced injury-induced oxidative stress. Following a CCI or sham injury, rats received AMPH (1 mg/kg/day) or saline treatment via an ALZET® pump and were housed with or without access to a running wheel for 7 days. CCI rats ran significantly less than sham controls, but exercise level was not altered by drug treatment. On day 7 the hippocampus ipsilateral to injury was harvested and BDNF, synapsin I and phosphorylated (P) -synapsin I proteins were quantified. Exercise or AMPH alone significantly increased BDNF protein in sham and CCI rats, but this effect was lost with the combined treatment. In sham-injured rats synapsin I increased significantly after AMPH or exercise, but did not increase after combined treatment. Synapsin levels, including the P-synapsin/total synapsin ratio, were reduced from sham controls in the saline-treated CCI groups, with or without exercise. AMPH treatment significantly increased the P-synapsin/total synapsin ratio after CCI, an effect that was attenuated by combining AMPH with exercise. Exercise or AMPH treatment alone significantly decreased hippocampal carbonyl groups on oxidized proteins in the CCI rats, compared with saline-treated sedentary counterparts, but this reduction in a marker of oxidative stress was not found with the combination of exercise and AMPH treatment. These results indicate that, whereas exercise or AMPH treatment alone may induce plasticity and reduce oxidative stress after TBI, combining these treatments may cancel each

  1. Neurotrophic Factors and Their Potential Applications in Tissue Regeneration

    PubMed Central

    Le, Quynh-Thu

    2016-01-01

    Neurotrophic factors are growth factors that can nourish neurons and promote neuron survival and regeneration. They have been studied as potential drug candidates for treating neurodegenerative diseases. Since their identification, there are more and more evidences to indicate that neurotrophic factors are also expressed in non-neuronal tissues and regulate the survival, anti-inflammation, proliferation and differentiation in these tissues. This mini review summarizes the characteristics of the neurotrophic factors and their potential clinical applications in the regeneration of neuronal and non-neuronal tissues. PMID:26611762

  2. Plasma Brain-Derived Neurotrophic Factor as a Biomarker for the Main Types of Mild Neurocognitive Disorders and Treatment Efficacy: A Preliminary Study

    PubMed Central

    2016-01-01

    Decreased levels of brain-derived neurotrophic factor (BDNF) are assumed to play a crucial role in the pathophysiology of mild neurocognitive disorders (MNCDs). In this study, we compared plasma BDNF levels (at baseline and after two months of treatment with escitalopram) in patients with the main types of MNCDs and normal controls. 21 patients met the DSM-5 diagnostic criteria for possible MNCD due to Alzheimer's disease (MNCD-AD); 22 patients fulfilled the diagnostic criteria for subcortical vascular MNCD (ScVMNCD) according to Frisoni et al. (2002) and neuroimaging-supported probable diagnosis of vascular MNCD according to DSM-5; 16 subjects entered control group. At baseline, we detected lower BDNF levels in both MNCD groups, which was significant only in subjects with MNCD-AD. Moreover, plasma BDNF level of 21160 pg/mL showed high sensitivity (94%) to discriminate patients with MNCD-AD. Decreased plasma BDNF highly correlated with the severity of memory impairment and total MMSE score in MNCD-AD group. Escitalopram treatment in patients with MNCD-AD or ScVMNCD led to an increase of plasma BDNF concentrations and as a result to a decrease of cognitive, depressive, and anxiety symptom severity. In conclusion, plasma BDNF might be a reliable biomarker for the validation of MNCD-AD diagnosis and treatment efficacy. PMID:27597800

  3. Plasma Brain-Derived Neurotrophic Factor as a Biomarker for the Main Types of Mild Neurocognitive Disorders and Treatment Efficacy: A Preliminary Study.

    PubMed

    Levada, Oleg A; Cherednichenko, Nataliya V; Trailin, Andriy V; Troyan, Alexandra S

    2016-01-01

    Decreased levels of brain-derived neurotrophic factor (BDNF) are assumed to play a crucial role in the pathophysiology of mild neurocognitive disorders (MNCDs). In this study, we compared plasma BDNF levels (at baseline and after two months of treatment with escitalopram) in patients with the main types of MNCDs and normal controls. 21 patients met the DSM-5 diagnostic criteria for possible MNCD due to Alzheimer's disease (MNCD-AD); 22 patients fulfilled the diagnostic criteria for subcortical vascular MNCD (ScVMNCD) according to Frisoni et al. (2002) and neuroimaging-supported probable diagnosis of vascular MNCD according to DSM-5; 16 subjects entered control group. At baseline, we detected lower BDNF levels in both MNCD groups, which was significant only in subjects with MNCD-AD. Moreover, plasma BDNF level of 21160 pg/mL showed high sensitivity (94%) to discriminate patients with MNCD-AD. Decreased plasma BDNF highly correlated with the severity of memory impairment and total MMSE score in MNCD-AD group. Escitalopram treatment in patients with MNCD-AD or ScVMNCD led to an increase of plasma BDNF concentrations and as a result to a decrease of cognitive, depressive, and anxiety symptom severity. In conclusion, plasma BDNF might be a reliable biomarker for the validation of MNCD-AD diagnosis and treatment efficacy. PMID:27597800

  4. Plasma levels of mature brain-derived neurotrophic factor (BDNF) and matrix metalloproteinase-9 (MMP-9) in treatment-resistant schizophrenia treated with clozapine.

    PubMed

    Yamamori, Hidenaga; Hashimoto, Ryota; Ishima, Tamaki; Kishi, Fukuko; Yasuda, Yuka; Ohi, Kazutaka; Fujimoto, Michiko; Umeda-Yano, Satomi; Ito, Akira; Hashimoto, Kenji; Takeda, Masatoshi

    2013-11-27

    Brain-derived neurotrophic factor (BDNF) regulates the survival and growth of neurons, and influences synaptic efficiency and plasticity. Peripheral BDNF levels in patients with schizophrenia have been widely reported in the literature. However, it is still controversial whether peripheral levels of BDNF are altered in patients with schizophrenia. The peripheral BDNF levels previously reported in patients with schizophrenia were total BDNF (proBDNF and mature BDNF) as it was unable to specifically measure mature BDNF due to limited BDNF antibody specificity. In this study, we examined whether peripheral levels of mature BDNF were altered in patients with treatment-resistant schizophrenia. Matrix metalloproteinase-9 (MMP-9) levels were also measured, as MMP-9 plays a role in the conversion of proBDNF to mature BDNF. Twenty-two patients with treatment-resistant schizophrenia treated with clozapine and 22 age- and sex-matched healthy controls were enrolled. The plasma levels of mature BDNF and MMP-9 were measured using ELISA kits. No significant difference was observed for mature BDNF however, MMP-9 was significantly increased in patients with schizophrenia. The significant correlation was observed between mature BDNF and MMP-9 plasma levels. Neither mature BDNF nor MMP-9 plasma levels were associated clinical variables. Our results do not support the view that peripheral BDNF levels are associated with schizophrenia. MMP-9 may play a role in the pathophysiology of schizophrenia and serve as a biomarker for schizophrenia. PMID:24141084

  5. Oligodendroglia and neurotrophic factors in neurodegeneration.

    PubMed

    Bankston, Andrew N; Mandler, Mariana D; Feng, Yue

    2013-04-01

    Myelination by oligodendroglial cells (OLs) enables the propagation of action potentials along neuronal axons, which is essential for rapid information flow in the central nervous system. Besides saltatory conduction, the myelin sheath also protects axons against inflammatory and oxidative insults. Loss of myelin results in axonal damage and ultimately neuronal loss in demyelinating disorders. However, accumulating evidence indicates that OLs also provide support to neurons via mechanisms beyond the insulating function of myelin. More importantly, an increasing volume of reports indicates defects of OLs in numerous neurodegenerative diseases, sometimes even preceding neuronal loss in pre-symptomatic episodes, suggesting that OL pathology may be an important mechanism contributing to the initiation and/or progression of neurodegeneration. This review focuses on the emerging picture of neuronal support by OLs in the pathogenesis of neurodegenerative disorders through diverse molecular and cellular mechanisms, including direct neuron-myelin interaction, metabolic support by OLs, and neurotrophic factors produced by and/or acting on OLs. PMID:23558590

  6. Prolonged metformin treatment leads to reduced transcription of Nrf2 and neurotrophic factors without cognitive impairment in older C57BL/6J mice.

    PubMed

    Allard, Joanne S; Perez, Evelyn J; Fukui, Koji; Carpenter, Priscilla; Ingram, Donald K; de Cabo, Rafael

    2016-03-15

    Long-term use of anti-diabetic agents has become commonplace as rates of obesity, metabolic syndrome and diabetes continue to escalate. Metformin, a commonly used anti-diabetic drug, has been shown to have many beneficial effects outside of its therapeutic regulation of glucose metabolism and insulin sensitivity. Studies on metformin's effects on the central nervous system are limited and predominantly consist of in vitro studies and a few in vivo studies with short-term treatment in relatively young animals; some provide support for metformin as a neuroprotective agent while others show evidence that metformin may be deleterious to neuronal survival. In this study, we examined the effect of long-term metformin treatment on brain neurotrophins and cognition in aged male C57Bl/6 mice. Mice were fed control (C), high-fat (HF) or a high-fat diet supplemented with metformin (HFM) for 6 months. Metformin decreased body fat composition and attenuated declines in motor function induced by a HF diet. Performance in the Morris water maze test of hippocampal based memory function, showed that metformin prevented impairment of spatial reference memory associated with the HF diet. Quantitative RT-PCR on brain homogenates revealed decreased transcription of BDNF, NGF and NTF3; however protein levels were not altered. Metformin treatment also decreased expression of the antioxidant pathway regulator, Nrf2. The decrease in transcription of neurotrophic factors and Nrf2 with chronic metformin intake, cautions of the possibility that extended metformin use may alter brain biochemistry in a manner that creates a vulnerable brain environment and warrants further investigation. PMID:26698400

  7. Neurotrophic factors and their receptors in human sensory neuropathies.

    PubMed

    Anand, Praveen

    2004-01-01

    Neurotrophic factors may play key roles in pathophysiological mechanisms of human neuropathies. Nerve growth factor (NGF) is trophic to small-diameter sensory fibers and regulates nociception. This review focuses on sensory dysfunction and the potential of neurotrophic treatments. Genetic neuropathy. Mutations of the NGF high-affinity receptor tyrosine kinase A (Trk A) have been found in congenital insensitivity to pain and anhidrosis; these are likely to be partial loss-of-function mutations, as axon-reflex vasodilatation and sweating can be elicited albeit reduced, suggesting rhNGF could restore nociception in some patients. Leprous neuropathy. Decreased NGF in leprosy skin may explain cutaneous hypoalgesia even with inflammation and rhNGF may restore sensation, as spared nerve fibers show Trk A-staining. Diabetic neuropathy. NGF is depleted in early human diabetic neuropathy skin, in correlation with dysfunction of nociceptor fibers. We proposed rhNGF prophylaxis may prevent diabetic foot ulceration. Clinical trials have been disappointed, probably related to difficulty delivering adequate doses and need for multiple trophic factors. NGF and glial cell line-derived neurotrophic factor (GDNF) are both produced by basal keratinocytes and neurotrophin (NT-3) by suprabasal keratinocytes: relative mRNA expression was significantly lower in early diabetic neuropathy skin compared to controls, for NGF (P < 0.02), BDNF (P < 0.05), NT-3 (P < 0.05), GDNF (< 0.02), but not NT4/5, Trk A or p75 neurotrophin receptor (all P > 0.05). Posttranslational modifications of mature and pro-NGF may also affect bioactivity and immunoreactivity. A 53 kD band that could correspond to a prepro-NGF-like molecule was reduced in diabetic skin. Traumatic neuropathy and pain. While NGF levels are acutely reduced in injured nerve trunks, neuropathic patients with chronic skin hyperalgesia and allodynia show marked local increases of NGF levels; here anti-NGF agents may provide analgesia

  8. Delayed neurotrophic treatment preserves nerve survival and electrophysiological responsiveness in neomycin-deafened guinea pigs.

    PubMed

    Yamagata, Takahiko; Miller, Josef M; Ulfendahl, Mats; Olivius, N Petri; Altschuler, Richard A; Pyykkö, Ilmari; Bredberg, Göran

    2004-10-01

    Benefits of cochlear prostheses for the deaf are dependent on survival and excitability of the auditory nerve. Degeneration of deafferented auditory nerve fibers is prevented and excitability maintained by immediate replacement therapy with exogenous neurotrophic factors, in vivo. It is important to know whether such interventions are effective after a delay following deafness, typical for the human situation. This study evaluated the efficacy of brain-derived neurotrophic factor (BDNF) and ciliary neurotrophic factor axokine-1 analogue (CNTF Ax1) application, 2 or 6 weeks postdeafening, in preventing further degeneration and a decrease in excitability. Guinea pigs were deafened and implanted with intracochlear stimulating electrodes, a scala tympani cannula-osmotic pump system, and auditory brainstem response (ABR) recording electrodes. Subjects received BDNF + CNTF Ax1 or artificial perilymph (AP) treatment for 27 days, beginning at 2 or 6 weeks following deafening. Electrical (E) ABR thresholds increased following deafening. After 1 week, in the 2-weeks-delayed neurotrophic factor treatment group, EABR thresholds decreased relative to AP controls, which were statistically significant at 2 weeks. In the 6-week delay group, a tendency to enhanced EABR sensitivity began at 2 weeks of treatment and increased thereafter, with a significant difference between neurotrophic factor- and AP-treated groups across the treatment period. A clear, statistically significant, enhanced survival of spiral ganglion cells was seen in both neurotrophic factor treatment groups relative to AP controls. These findings demonstrate that BDNF + CNTF Ax1 can act to delay or possibly even reverse degenerative and, likely apoptotic, processes well after they have been activated. These survival factors can rescue cells from death and enhance electrical excitability, even during the period of degeneration and cell loss when the spiral ganglion cell population is reduced by >50% (6 weeks). It is

  9. Electroacupuncture-regulated neurotrophic factor mRNA expression in the substantia nigra of Parkinson's disease rats.

    PubMed

    Wang, Shuju; Fang, Jianqiao; Ma, Jun; Wang, Yanchun; Liang, Shaorong; Zhou, Dan; Sun, Guojie

    2013-02-25

    Acupuncture for the treatment of Parkinson's disease has a precise clinical outcome. This study investigated the effect of electroacupuncture at Fengfu (GV16) and Taichong (LR3) acupoints in rat models of Parkinson's disease induced by subcutaneous injection of rotenone into rat neck and back. Reverse transcription-PCR demonstrated that brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor mRNA expression was significantly increased in the substantia nigra of rat models of Parkinson's disease, and that abnormal behavior of rats was significantly improved following electroacupuncture treatment. These results indicated that electroacupuncture treatment upregulated brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor mRNA expression in the substantia nigra of rat models of Parkinson's disease. Thus, electroacupuncture may be useful in the treatment of Parkinson's disease. PMID:25206697

  10. Brain-derived neurotrophic factor and suicidal behavior.

    PubMed

    Sher, L

    2011-05-01

    Studies of the neurobiology of suicidal behavior have become an important and integral part of psychiatric research. Over the past several years, studies of the role of brain-derived neurotrophic factor (BDNF) in the pathophysiology of suicidality have attracted significant interest of researchers. Multiple lines of evidence including studies of levels of BDNF in blood cells and plasma of suicidal patients, postmortem brain studies in suicidal subjects with or without depression, and genetic association studies linking BDNF to suicide suggest that suicidal behavior may be associated with a decrease in BDNF functioning. Studies of the BDNF function are important for suicide research and prevention because of the multiple reasons including the following: (i) BDNF plays a role in the pathophysiology of depression, post-traumatic stress disorder, substance use disorders and other conditions associated with suicidal behavior. Treatment-induced enhancements of BDNF can facilitate neural integrity and recovery of function in psychiatric disorders, and consequently prevent suicidal behavior; (ii) abnormal BDNF function may be associated with elevated suicidality independently of psychiatric diagnoses. It is possible that treatment-induced improvement in the BDNF function prevents suicidal behavior independently of improvement in psychiatric disorders; (iii) BDNF may be a biological marker of suicidal behavior in certain patient populations. It is to be hoped that the studies of the neurobiology of suicidal behavior will lead to the development of new methods of suicide prevention. PMID:21051476

  11. Brain-derived neurotrophic factor: the neurotrophin hypothesis of psychopathology.

    PubMed

    Stein, Dan J; Daniels, Willie M U; Savitz, Jonathan; Harvey, Brian H

    2008-11-01

    While monoaminergic hypotheses of psychopathology remain popular, there has been growing interest in the role of neurotrophins in neuropsychiatric disorders. Basic laboratory work has documented the importance of neurotrophins in neuronal survival and synaptic plasticity, and a range of clinical studies has provided analogous evidence of their role in neuropathology. Work on gene variants in brain-derived neurotrophic factor, and associated changes in structural and function brain imaging, have further contributed to our understanding of this area. Much remains to be done to delineate fully the relevant mechanisms by which brain-derived neurotrophic factor and other neurotrophins contribute to psychopathology, and to develop targeted therapeutic interventions. Nevertheless, the neurotrophin hypothesis has already given impetus to a range of valuable research. PMID:19037180

  12. Bridging between transplantation therapy and neurotrophic factors in Parkinson's disease.

    PubMed

    Ghosh, Biswarup; Zhang, Chen; Smith, George M

    2014-01-01

    Parkinson's disease (PD) represents a challenging condition where different therapeutic options have evolved over the course of the last 50 years. The potential for therapeutic use of cell transplantation for cell replacement or for gene delivery of neurotrophic factors has received a great deal of attention. Currently, all available treatment options are directed towards the amelioration of symptoms. A greater understanding of the distinctive pathology underlying PD might offer some novel therapeutic approaches. Transplantation of embryonic ventral mesencephalon (VM) dopaminergic neurons has shown promise in animal studies, but similar transplant procedures have shown limited success in clinical trials. One important issue may be the site of transplantation. Previous studies have transplanted VM into the striatum, which is the target of these neurons. With increased understanding of growth and guidance molecule effecting dopaminergic neurons, it may be feasible to place transplants in the damaged substantia nigra and direct the growth of axons into target regions to reconstruction of midbrain dopamine (DA) circuitry. Our established and on-going understanding of the molecular cues which support directed growth of DA neurons form an important basis for the refinement and optimization of VM grafting procedures, and also the development of new procedures based on the use of stem cells. In this review, we discuss transplantation therapy and how selective guidance molecules could be used to reconstruction of nigrostriatal circuit. PMID:24896204

  13. Constitutive expression of ciliary neurotrophic factor in mouse hypothalamus

    PubMed Central

    Severi, Ilenia; Carradori, Maria Rita; Lorenzi, Teresa; Amici, Adolfo; Cinti, Saverio; Giordano, Antonio

    2012-01-01

    Ciliary neurotrophic factor (CNTF) is a potent survival molecule for a large number of neuronal and glial cells in culture; its expression in glial cells is strongly upregulated after a variety of nerve tissue injuries. Exogenously administered CNTF produces an anorectic effect via activation of hypothalamic neurons and stimulates neurogenesis in mouse hypothalamus. To determine whether CNTF is produced endogenously in the hypothalamus, we sought cellular sources and examined their distribution in adult mouse hypothalamus by immunohistochemistry. CNTF immunoreactivity (IR) was predominantly detected in the ependymal layer throughout the rostrocaudal extension of the third ventricle, where numerous ependymocytes and tanycytes exhibited specific staining. Some astrocytes in the grey matter of the anterior hypothalamus and in the median eminence of the hypothalamic tuberal region were also positive. Stimulation of cells bearing CNTF receptor α (CNTFRα) induces specific activation of the signal transducer and activator of transcription 3 (STAT3) signalling system. Treatment with recombinant CNTF and detection of the nuclear expression of phospho-STAT3 (P-STAT3) showed that CNTF-producing ependymal cells and tanycytes were intermingled with, or very close to, P-STAT3-positive, CNTFRα-bearing cells. A fraction of CNTF-producing ependymal cells and tanycytes and some median eminence astrocytes also exhibited P-STAT3 IR. Thus, in normal adult mice the ependyma of the third ventricle is both a source of and a target for CNTF, which may play hitherto unknown roles in hypothalamic function in physiological conditions. PMID:22458546

  14. Brain-derived neurotrophic factor in urinary continence and incontinence.

    PubMed

    Song, Qi-Xiang; Chermansky, Christopher J; Birder, Lori A; Li, Longkun; Damaser, Margot S

    2014-10-01

    Urinary incontinence adversely affects quality of life and results in an increased financial burden for the elderly. Accumulating evidence suggests a connection between neurotrophins, such as brain-derived neurotrophic factor (BDNF), and lower urinary tract function, particularly with regard to normal physiological function and the pathophysiological mechanisms of stress urinary incontinence (SUI) and bladder pain syndrome/interstitial cystitis (BPS/IC). The interaction between BDNF and glutamate receptors affects both bladder and external urethral sphincter function during micturition. Clinical findings indicate reduced BDNF levels in antepartum and postpartum women, potentially correlating with postpartum SUI. Experiments with animal models demonstrate that BDNF is decreased after simulated childbirth injury, thereby impeding the recovery of injured nerves and the restoration of continence. Treatment with exogenous BDNF facilitates neural recovery and the restoration of continence. Serotonin and noradrenaline reuptake inhibitors, used to treat both depression and SUI, result in enhanced BDNF levels. Understanding the neurophysiological roles of BDNF in maintaining normal urinary function and in the pathogenesis of SUI and BPS/IC could lead to future therapies based on these mechanisms. PMID:25224451

  15. Neurotrophic factors: from neurodevelopmental regulators to novel therapies for Parkinson's disease

    PubMed Central

    Hegarty, Shane V.; O’Keeffe, Gerard W.; Sullivan, Aideen M.

    2014-01-01

    Neuroprotection and neuroregeneration are two of the most promising disease-modifying therapies for the incurable and widespread Parkinson's disease. In Parkinson's disease, progressive degeneration of nigrostriatal dopaminergic neurons causes debilitating motor symptoms. Neurotrophic factors play important regulatory roles in the development, survival and maintenance of specific neuronal populations. These factors have the potential to slow down, halt or reverse the loss of nigrostriatal dopaminergic neurons in Parkinson's disease. Several neurotrophic factors have been investigated in this regard. This review article discusses the neurodevelopmental roles and therapeutic potential of three dopaminergic neurotrophic factors: glial cell line-derived neurotrophic factor, neurturin and growth/differentiation factor 5. PMID:25422631

  16. Shuganjieyu capsule increases neurotrophic factor expression in a rat model of depression

    PubMed Central

    Fu, Jinhua; Zhang, Yingjin; Wu, Renrong; Zheng, Yingjun; Zhang, Xianghui; Yang, Mei; Zhao, Jingping; Liu, Yong

    2014-01-01

    Shuganjieyu capsule has been approved for clinical treatment by the State Food and Drug Ad-ministration of China since 2008. In the clinic, Shuganjieyu capsule is often used to treat mild to moderate depression. In the rat model of depression established in this study, Shuganjieyu capsule was administered intragastrically daily before stress. Behavioral results confirmed that depressive symptoms lessened after treatment with high-dose (150 mg/kg) Shuganjieyu capsule. Immunohistochemistry results showed that high-dose Shuganjieyu capsule significantly increased phosphorylation levels of phosphorylation cyclic adenosine monophosphate response element binding protein and brain-derived neurotrophic factor expression in the medial prefrontal cortex and hippocampal CA3 area. Overall, our results suggest that in rats, Shuganjieyu capsule effec-tively reverses depressive-like behaviors by increasing expression levels of neurotrophic factors in the brain. PMID:25206843

  17. Ectopic Muscle Expression of Neurotrophic Factors Improves Recovery After Nerve Injury.

    PubMed

    Glat, Micaela Johanna; Benninger, Felix; Barhum, Yael; Ben-Zur, Tali; Kogan, Elena; Steiner, Israel; Yaffe, David; Offen, Daniel

    2016-01-01

    Sciatic nerve damage is a common medical problem. The main causes include direct trauma, prolonged external nerve compression, and pressure from disk herniation. Possible complications include leg numbness and the loss of motor control. In mild cases, conservative treatment is feasible. However, following severe injury, recovery may not be possible. Neuronal regeneration, survival, and maintenance can be achieved by neurotrophic factors (NTFs). In this study, we examined the potency of combining brain-derived neurotrophic factor (BDNF), glial-derived neurotrophic factor (GDNF), vascular endothelial growth factor (VEGF), and insulin-like growth factor-1 (IGF-1) on the recovery of motor neuron function after crush injury of the sciatic nerve. We show that combined NTF application increases the survival of motor neurons exposed to a hypoxic environment. The ectopic expression of NTFs in the injured muscle improves the recovery of the sciatic nerve after crush injury. A significantly faster recovery of compound muscle action potential (CMAP) amplitude and conduction velocity is observed after muscle injections of viral vectors expressing a mixture of the four NTF genes. Our findings suggest a rationale for using genetic treatment with a combination of NTF-expressing vectors, as a potential therapeutic approach for severe peripheral nerve injury. PMID:26385386

  18. Brain-derived neurotrophic factor and its clinical implications

    PubMed Central

    Bathina, Siresha

    2015-01-01

    Brain-derived neurotrophic factor (BDNF) plays an important role in neuronal survival and growth, serves as a neurotransmitter modulator, and participates in neuronal plasticity, which is essential for learning and memory. It is widely expressed in the CNS, gut and other tissues. BDNF binds to its high affinity receptor TrkB (tyrosine kinase B) and activates signal transduction cascades (IRS1/2, PI3K, Akt), crucial for CREB and CBP production, that encode proteins involved in β cell survival. BDNF and insulin-like growth factor-1 have similar downstream signaling mechanisms incorporating both p-CAMK and MAPK that increase the expression of pro-survival genes. Brain-derived neurotrophic factor regulates glucose and energy metabolism and prevents exhaustion of β cells. Decreased levels of BDNF are associated with neurodegenerative diseases with neuronal loss, such as Parkinson's disease, Alzheimer's disease, multiple sclerosis and Huntington's disease. Thus, BDNF may be useful in the prevention and management of several diseases including diabetes mellitus. PMID:26788077

  19. Astrocytes produce an insulin-like neurotrophic factor

    SciTech Connect

    Kadle, R.; Suksang, C.; Fellows, R.E.

    1986-05-01

    They have previously reported that survival of dissociated neurons from fetal rat telencephalon plated at low density in serum-free, hormone-free defined medium is enhanced in the presence of insulin. In the absence of insulin a similar effect on neuronal survival is observed if cells are grown in medium conditioned by glial cells. The present study was carried out to characterize the insulin-like neurotrophic activity present in the glial conditioned medium (GLCM). Conditioned medium from confluent cultures of astrogial cells maintained in a serum free defined medium without insulin was collected every two or three days. A 5 to 30kDa fraction of this medium was obtained by filtering it sequentially through YM30 and YM5 membrane filters. Binding of /sup 125/I-insulin to high density neuronal cultures was inhibited 43% by this fraction. Radioimmunoassay for insulin indicated that 1-2 ng of immuno-reactive insulin were present per ml of GLCM. Immunosequestration of the factor by insulin antibodies bound to protein A agarose gel resulted in loss of neurotrophic activity of the 5 to 30 kDa fraction. These results indicate that cultured astrocytes produce a factor immunologically and biochemically similar to insulin. This factor enhances the survival of neurons in culture and may be important for their normal development and differentiation.

  20. Neurotrophic factor small-molecule mimetics mediated neuroregeneration and synaptic repair: emerging therapeutic modality for Alzheimer's disease.

    PubMed

    Kazim, Syed Faraz; Iqbal, Khalid

    2016-01-01

    Alzheimer's disease (AD) is an incurable and debilitating chronic progressive neurodegenerative disorder which is the leading cause of dementia worldwide. AD is a heterogeneous and multifactorial disorder, histopathologically characterized by the presence of amyloid β (Aβ) plaques and neurofibrillary tangles composed of Aβ peptides and abnormally hyperphosphorylated tau protein, respectively. Independent of the various etiopathogenic mechanisms, neurodegeneration is a final common outcome of AD neuropathology. Synaptic loss is a better correlate of cognitive impairment in AD than Aβ or tau pathologies. Thus a highly promising therapeutic strategy for AD is to shift the balance from neurodegeneration to neuroregeneration and synaptic repair. Neurotrophic factors, by virtue of their neurogenic and neurotrophic activities, have potential for the treatment of AD. However, the clinical therapeutic usage of recombinant neurotrophic factors is limited because of the insurmountable hurdles of unfavorable pharmacokinetic properties, poor blood-brain barrier (BBB) permeability, and severe adverse effects. Neurotrophic factor small-molecule mimetics, in this context, represent a potential strategy to overcome these short comings, and have shown promise in preclinical studies. Neurotrophic factor small-molecule mimetics have been the focus of intense research in recent years for AD drug development. Here, we review the relevant literature regarding the therapeutic beneficial effect of neurotrophic factors in AD, and then discuss the recent status of research regarding the neurotrophic factor small-molecule mimetics as therapeutic candidates for AD. Lastly, we summarize the preclinical studies with a ciliary neurotrophic factor (CNTF) small-molecule peptide mimetic, Peptide 021 (P021). P021 is a neurogenic and neurotrophic compound which enhances dentate gyrus neurogenesis and memory processes via inhibiting leukemia inhibitory factor (LIF) signaling pathway and increasing

  1. Brain-Derived Neurotrophic Factor and Neuropsychiatric Disorders

    PubMed Central

    Autry, Anita E.

    2012-01-01

    Brain derived neurotrophic factor (BDNF) is the most prevalent growth factor in the central nervous system (CNS). It is essential for the development of the CNS and for neuronal plasticity. Because BDNF plays a crucial role in development and plasticity of the brain, it is widely implicated in psychiatric diseases. This review provides a summary of clinical and preclinical evidence for the involvement of this ubiquitous growth factor in major depressive disorder, schizophrenia, addiction, Rett syndrome, as well as other psychiatric and neurodevelopmental diseases. In addition, the review includes a discussion of the role of BDNF in the mechanism of action of pharmacological therapies currently used to treat these diseases, such antidepressants and antipsychotics. The review also covers a critique of experimental therapies such as BDNF mimetics and discusses the value of BDNF as a target for future drug development. PMID:22407616

  2. Regulation of brain-derived neurotrophic factor expression in neurons

    PubMed Central

    Zheng, Fei; Zhou, Xianju; Moon, Changjong; Wang, Hongbing

    2012-01-01

    Brain-derived neurotrophic factor (BDNF) plays critical roles in many aspects of brain functions, including cell survival, differentiation, development, learning and memory. Aberrant BDNF expression has also been implicated in numerous neurological disorders. Thus, significant effort has been made to understand how BDNF transcription as well as translation is regulated. Interestingly, the BDNF gene structure suggests that multiple promoters control its transcription, leading to the existence of distinct mRNA species. Further, the long- and short-tail of the 3’un-translated region may dictate different sub-cellular BDNF mRNA targeting and translational responses following neuronal stimulation. This review aims to summarize the main findings that demonstrate how neuronal activities specifically up-regulate the transcription and translation of unique BDNF transcripts. We also discuss some of the recent reports that emphasize the epigenetic regulation of BDNF transcription. PMID:23320132

  3. Brain-derived neurotrophic factor inhibits glucose intolerance after cerebral ischemia

    PubMed Central

    Shu, Xiaoliang; Zhang, Yongsheng; Xu, Han; Kang, Kai; Cai, Donglian

    2013-01-01

    Brain-derived neurotrophic factor is associated with the insulin signaling pathway and glucose tabolism. We hypothesized that expression of brain-derived neurotrophic factor and its receptor may be involved in glucose intolerance following ischemic stress. To verify this hypothesis, this study aimed to observe the changes in brain-derived neurotrophic factor and tyrosine kinase B receptor expression in glucose metabolism-associated regions following cerebral ischemic stress in mice. At day 1 after middle cerebral artery occlusion, the expression levels of brain-derived neurotrophic factor were significantly decreased in the ischemic cortex, hypothalamus, liver, skeletal muscle, and pancreas. The expression levels of tyrosine kinase B receptor were decreased in the hypothalamus and liver, and increased in the skeletal muscle and pancreas, but remained unchanged in the cortex. Intrahypothalamic administration of brain-derived neurotrophic factor (40 ng) suppressed the decrease in insulin receptor and tyrosine-phosphorylated insulin receptor expression in the liver and skeletal muscle, and inhibited the overexpression of gluconeogenesis-associated phosphoenolpyruvate carboxykinase and glucose-6-phosphatase in the liver of cerebral ischemic mice. However, serum insulin levels remained unchanged. Our experimental findings indicate that brain-derived neurotrophic factor can promote glucose metabolism, reduce gluconeogenesis, and decrease blood glucose levels after cerebral ischemic stress. The low expression of brain-derived neurotrophic factor following cerebral ischemia may be involved in the development of glucose intolerance. PMID:25206547

  4. Brain-derived neurotrophic factor, food intake regulation, and obesity.

    PubMed

    Rosas-Vargas, Haydeé; Martínez-Ezquerro, José Darío; Bienvenu, Thierry

    2011-08-01

    Brain-derived neurotrophic factor (BDNF) is a neurotrophin that plays a fundamental role in development and plasticity of the central nervous system (CNS). It is currently recognized as a major participant in the regulation of food intake. Multiple studies have shown that different regulators of appetite such as leptin, insulin and pancreatic polypeptide (PP) potentially exert anorexigenic effects through BDNF. Low circulating levels of BDNF are associated with a higher risk of eating disorders such as anorexia nervosa (AN) and bulimia nervosa (BN). Strict food restriction reduces BDNF and may trigger binge-eating episodes and weight gain. The existence of mutations that cause haploinsufficiency of BDNF as well as some genetic variants, notably the BDNF p.Val66Met polymorphism, are also associated with the development of obese phenotypes and hyperphagia. However, association of the Met allele with AN and BN, which have different phenotypic characteristics, shows clearly the existence of other relevant factors that regulate eating behavior. This may, in part, be explained by the epigenetic regulation of BDNF through mechanisms like DNA methylation and histone acetylation. Environmental factors, primarily during early development, are crucial to the establishment of these stable but reversible changes that alter the transcriptional expression and are transgenerationally heritable, with potential concomitant effects on the development of eating disorders and body weight control. PMID:21945389

  5. Systemic administration of ciliary neurotrophic factor induces cachexia in rodents.

    PubMed Central

    Henderson, J T; Seniuk, N A; Richardson, P M; Gauldie, J; Roder, J C

    1994-01-01

    Ciliary neurotrophic factor (CNTF) has previously been shown to promote the survival of several classes of neurons and glial. We report here that in addition to its effects on the nervous system, CNTF can induce potent effects in extra-neural tissues. Implantation of C6 glioma cells engineered to secrete CNTF either subcutaneously or into the peritoneal cavity of adult mice, or systemic injections of purified rat or human recombinant CNTF, resulted in a rapid syndrome of weight loss resulting in death over a period of 7-10 d. This weight loss could not be explained by a reduction in food intake and involved losses of both fat and skeletal muscle. CNTF also induced the synthesis of acute phase proteins such as haptoglobin. Implantation of C6 lines expressing a nonsecreted form of CNTF, or the parental C6 line itself, did not result in wasting effects. Analysis of this CNTF-induced wasting indicates similarities with the previously described cachectins, tumor necrosis factor, interleukin 6, and leukemia inhibitory factor, but does not involve the induction of these cytokines. Images PMID:8201002

  6. Glial cell derived neurotrophic factor induces spermatogonial stem cell marker genes in chicken mesenchymal stem cells.

    PubMed

    Boozarpour, Sohrab; Matin, Maryam M; Momeni-Moghaddam, Madjid; Dehghani, Hesam; Mahdavi-Shahri, Naser; Sisakhtnezhad, Sajjad; Heirani-Tabasi, Asieh; Irfan-Maqsood, Muhammad; Bahrami, Ahmad Reza

    2016-06-01

    Mesenchymal stem cells (MSCs) are known with the potential of multi-lineage differentiation. Advances in differentiation technology have also resulted in the conversion of MSCs to other kinds of stem cells. MSCs are considered as a suitable source of cells for biotechnology purposes because they are abundant, easily accessible and well characterized cells. Nowadays small molecules are introduced as novel and efficient factors to differentiate stem cells. In this work, we examined the potential of glial cell derived neurotrophic factor (GDNF) for differentiating chicken MSCs toward spermatogonial stem cells. MSCs were isolated and characterized from chicken and cultured under treatment with all-trans retinoic acid (RA) or glial cell derived neurotrophic factor. Expression analysis of specific genes after 7days of RA treatment, as examined by RT-PCR, proved positive for some germ cell markers such as CVH, STRA8, PLZF and some genes involved in spermatogonial stem cell maintenance like BCL6b and c-KIT. On the other hand, GDNF could additionally induce expression of POU5F1, and NANOG as well as other genes which were induced after RA treatment. These data illustrated that GDNF is relatively more effective in diverting chicken MSCs towards Spermatogonial stem cell -like cells in chickens and suggests GDNF as a new agent to obtain transgenic poultry, nevertheless, exploitability of these cells should be verified by more experiments. PMID:27026484

  7. Continued Administration of Ciliary Neurotrophic Factor Protects Mice from Inflammatory Pathology in Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Kuhlmann, Tanja; Remington, Leah; Cognet, Isabelle; Bourbonniere, Lyne; Zehntner, Simone; Guilhot, Florence; Herman, Alexandra; Guay-Giroux, Angélique; Antel, Jack P.; Owens, Trevor; Gauchat, Jean-François

    2006-01-01

    Multiple sclerosis is an inflammatory disease of the central nervous system that leads to loss of myelin and oligodendrocytes and damage to axons. We show that daily administration (days 8 to 24) of murine ciliary neurotrophic factor (CNTF), a neurotrophic factor that has been described as a survival and differentiation factor for neurons and oligodendrocytes, significantly ameliorates the clinical course of a mouse model of multiple sclerosis. In the acute phase of experimental autoimmune encephalomyelitis induced by myelin oligodendrocyte glycoprotein peptide 35-55, treatment with CNTF did not change the peripheral immune response but did reduce the number of perivascular infiltrates and T cells and the level of diffuse microglial activation in spinal cord. Blood brain barrier permeability was significantly reduced in CNTF-treated animals. Beneficial effects of CNTF did not persist after it was withdrawn. After cessation of CNTF treatment, inflammation and symptoms returned to control levels. However, slight but significantly higher numbers of oligodendrocytes, NG2-positive cells, axons, and neurons were observed in mice that had been treated with high concentrations of CNTF. Our results show that CNTF inhibits inflammation in the spinal cord, resulting in amelioration of the clinical course of experimental autoimmune encephalomyelitis during time of treatment. PMID:16877358

  8. Human umbilical cord blood stem cells and brain-derived neurotrophic factor for optic nerve injury: a biomechanical evaluation.

    PubMed

    Zhang, Zhong-Jun; Li, Ya-Jun; Liu, Xiao-Guang; Huang, Feng-Xiao; Liu, Tie-Jun; Jiang, Dong-Mei; Lv, Xue-Man; Luo, Min

    2015-07-01

    Treatment for optic nerve injury by brain-derived neurotrophic factor or the transplantation of human umbilical cord blood stem cells has gained progress, but analysis by biomechanical indicators is rare. Rabbit models of optic nerve injury were established by a clamp. At 7 days after injury, the vitreous body received a one-time injection of 50 μg brain-derived neurotrophic factor or 1 × 10(6) human umbilical cord blood stem cells. After 30 days, the maximum load, maximum stress, maximum strain, elastic limit load, elastic limit stress, and elastic limit strain had clearly improved in rabbit models of optical nerve injury after treatment with brain-derived neurotrophic factor or human umbilical cord blood stem cells. The damage to the ultrastructure of the optic nerve had also been reduced. These findings suggest that human umbilical cord blood stem cells and brain-derived neurotrophic factor effectively repair the injured optical nerve, improve biomechanical properties, and contribute to the recovery after injury. PMID:26330839

  9. Comparative Analysis of the Effects of Neurotrophic Factors CDNF and GDNF in a Nonhuman Primate Model of Parkinson's Disease.

    PubMed

    Garea-Rodríguez, Enrique; Eesmaa, Ave; Lindholm, Päivi; Schlumbohm, Christina; König, Jessica; Meller, Birgit; Krieglstein, Kerstin; Helms, Gunther; Saarma, Mart; Fuchs, Eberhard

    2016-01-01

    Cerebral dopamine neurotrophic factor (CDNF) belongs to a newly discovered family of evolutionarily conserved neurotrophic factors. We demonstrate for the first time a therapeutic effect of CDNF in a unilateral 6-hydroxydopamine (6-OHDA) lesion model of Parkinson's disease in marmoset monkeys. Furthermore, we tested the impact of high chronic doses of human recombinant CDNF on unlesioned monkeys and analyzed the amino acid sequence of marmoset CDNF. The severity of 6-OHDA lesions and treatment effects were monitored in vivo using 123I-FP-CIT (DaTSCAN) SPECT. Quantitative analysis of 123I-FP-CIT SPECT showed a significant increase of dopamine transporter binding activity in lesioned animals treated with CDNF. Glial cell line-derived neurotrophic factor (GDNF), a well-characterized and potent neurotrophic factor for dopamine neurons, served as a control in a parallel comparison with CDNF. By contrast with CDNF, only single animals responded to the treatment with GDNF, but no statistical difference was observed in the GDNF group. However, increased numbers of tyrosine hydroxylase immunoreactive neurons, observed within the lesioned caudate nucleus of GDNF-treated animals, indicate a strong bioactive potential of GDNF. PMID:26901822

  10. Brain-derived Neurotrophic Factor in Megakaryocytes*♦

    PubMed Central

    Chacón-Fernández, Pedro; Säuberli, Katharina; Colzani, Maria; Moreau, Thomas; Ghevaert, Cedric

    2016-01-01

    The biosynthesis of endogenous brain-derived neurotrophic factor (BDNF) has thus far been examined in neurons where it is expressed at very low levels, in an activity-dependent fashion. In humans, BDNF has long been known to accumulate in circulating platelets, at levels far higher than in the brain. During the process of blood coagulation, BDNF is released from platelets, which has led to its extensive use as a readily accessible biomarker, under the assumption that serum levels may somehow reflect brain levels. To identify the cellular origin of BDNF in platelets, we established primary cultures of megakaryocytes, the progenitors of platelets, and we found that human and rat megakaryocytes express the BDNF gene. Surprisingly, the pattern of mRNA transcripts is similar to neurons. In the presence of thapsigargin and external calcium, the levels of the mRNA species leading to efficient BDNF translation rapidly increase. Under these conditions, pro-BDNF, the obligatory precursor of biologically active BDNF, becomes readily detectable. Megakaryocytes store BDNF in α-granules, with more than 80% of them also containing platelet factor 4. By contrast, BDNF is undetectable in mouse megakaryocytes, in line with the absence of BDNF in mouse serum. These findings suggest that alterations of BDNF levels in human serum as reported in studies dealing with depression or physical exercise may primarily reflect changes occurring in megakaryocytes and platelets, including the ability of the latter to retain and release BDNF. PMID:27006395

  11. Brain-derived neurotrophic factor expression ex vivo in obesity.

    PubMed

    Huang, Chun-Jung; Mari, David C; Whitehurst, Michael; Slusher, Aaron; Wilson, Alan; Shibata, Yoshimi

    2014-01-17

    Obesity is associated with an increased risk in neurodegenerative diseases. To counteract the neuronal damage, the human body increases brain-derived neurotrophic factor (BDNF) expression, leading to neuronal survival and plasticity. Recently, peripheral blood mononuclear cells (PBMCs) have been found to release BDNF as a potential neuroprotective role of inflammation. Therefore, the purpose of this study was to examine whether lipopolysaccharide (LPS)-induced PBMC activation would lead to differences in BDNF and inflammatory responses between obese and non-obese subjects. Thirty-one subjects (14 obese and 17 non-obese), ages 18 to 30years, were recruited. PBMCs were cultured for 24h with 10ng/mL LPS. BDNF, tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) were measured in both plasma and cell culture supernatants. Our results did not illustrate any differences in plasma BDNF levels between obese and non-obese groups. However, obese subjects elicited a greater plasma IL-6 production, which was positively associated with plasma BDNF. Furthermore, LPS-induced PBMCs expressed significantly higher BDNF and IL-6 levels in obese subjects compared to the non-obese subjects. Finally, these BDNF levels were positively correlated with IL-6 response ex vivo. These findings suggest that under a high inflammatory state, PBMCs produce greater BDNF and IL-6 expression which may play a collaborative role to protect against neuronal damage associated with obesity. PMID:24140987

  12. Changes in neurotrophic factors of adult rat laryngeal muscles during nerve regeneration.

    PubMed

    Hernandez-Morato, Ignacio; Sharma, Sansar; Pitman, Michael J

    2016-10-01

    Injury to the recurrent laryngeal nerve (RLN) leads to the loss of ipsilateral laryngeal fold movement, with dysphonia, and occasionally dysphagia. Functional movement of the vocal folds is never restored due to misrouting of regenerating axons to agonist and antagonist laryngeal muscles. Changes of neurotrophic factor expression within denervated muscles occur after nerve injury and may influence nerve regeneration, axon guidance and muscle reinnervation. This study investigates the expression of certain neurotrophic factors in the laryngeal muscles during the course of axonal regeneration using RT-PCR. The timing of neurotrophic factor expression was correlated to the reinnervation of the laryngeal muscles by motor axons. Nerve Growth Factor (NGF), Brain-Derived Neurotrophic Factor (BDNF) and Netrin-1 (NTN-1) increased their expression levels in laryngeal muscles after nerve section and during regeneration of RLN. The upregulation of trophic factors returned to control levels following regeneration of RLN. The expression levels of the neurotrophic factors were correlated with the innervation of regenerating axons into the denervated muscles. The results suggest that certain neurotrophic factor expression is strongly correlated to the reinnervation pattern of the regenerating RLN. These factors may be involved in guidance and neuromuscular junction formation during nerve regeneration. In the future, their manipulation may enhance the selective reinnervation of the larynx. PMID:27421227

  13. Zonisamide up-regulated the mRNAs encoding astrocytic anti-oxidative and neurotrophic factors.

    PubMed

    Choudhury, M E; Sugimoto, K; Kubo, M; Iwaki, H; Tsujii, T; Kyaw, W T; Nishikawa, N; Nagai, M; Tanaka, J; Nomoto, M

    2012-08-15

    Zonisamide has been proven as an effective drug for the recovery of degenerating dopaminergic neurons in the animal models of Parkinson's disease. However, several lines of evidence have questioned the neuroprotective capacity of zonisamide in animal models of Parkinson's disease. Although it suppresses dopaminergic neurodegeneration in animal models, the cellular and molecular mechanisms underlying the effectiveness of zonisamide are not fully understood. The current study demonstrates the effects of zonisamide on astrocyte cultures and two 6-hydroxydopamine-induced models of Parkinson's disease. Using primary astrocyte cultures, we showed that zonisamide up-regulated the expression of mRNA encoding mesencephalic astrocyte-derived neurotrophic factor, vascular endothelial growth factor, proliferating cell nuclear antigen, metallothionein-2, copper/zinc superoxide dismutase, and manganese superoxide dismutase. Similar responses to zonisamide were found in substantia nigra where the rats were pre-treated with 6-hydroxydopamine. Notably, pharmacological inhibition of 6-hydroxydopamine-induced toxicity by zonisamide pre-treatment was also confirmed using rat mesencephalic organotypic slice cultures of substantia nigra. In addition to this, zonisamide post-treatment also attenuated the nigral tyrosine hydroxylase-positive neuronal loss induced by 6-hydroxydopamine. Taken together, these studies demonstrate that zonisamide protected dopamine neurons in two Parkinson's disease models through a novel mechanism, namely increasing the expression of some important astrocyte-mediated neurotrophic and anti-oxidative factors. PMID:22659113

  14. Brain-derived neurotrophic factor and cocaine addiction.

    PubMed

    McGinty, Jacqueline F; Whitfield, Timothy W; Berglind, William J

    2010-02-16

    The effects of brain-derived neurotrophic factor (BDNF) on cocaine-seeking are brain region-specific. Infusion of BDNF into subcortical structures, like the nucleus accumbens and ventral tegmental area, enhances cocaine-induced behavioral sensitization and cocaine-seeking. Conversely, repeated administration of BDNF antiserum into the nucleus accumbens during chronic cocaine self-administration attenuates cocaine-induced reinstatement. In contrast, BDNF infusion into the dorsomedial prefrontal cortex immediately following a final session of cocaine self-administration attenuates relapse to cocaine-seeking after abstinence, as well as cue- and cocaine prime-induced reinstatement of cocaine-seeking following extinction. BDNF-induced alterations in the ERK-MAP kinase cascade and in prefronto-accumbens glutamatergic transmission are implicated in BDNF's ability to alter cocaine-seeking. Within 22 hours after infusion into the prefrontal cortex, BDNF increases BDNF protein in prefrontal cortical targets, including nucleus accumbens, and restores cocaine-mediated decreases in phospho-ERK expression in the nucleus accumbens. Furthermore, 3 weeks after BDNF infusion in animals with a cocaine self-administration history, suppressed basal levels of glutamate are normalized and a cocaine prime-induced increase in extracellular glutamate levels in the nucleus accumbens is prevented. Thus, BDNF may have local effects at the site of infusion and distal effects in target areas that are critical to mediating or preventing cocaine-induced dysfunctional neuroadaptations. PMID:19732758

  15. Brain-derived neurotrophic factor and cocaine addiction

    PubMed Central

    McGinty, Jacqueline F.; Whitfield, Timothy W.; Berglind, William J.

    2009-01-01

    The effects of brain-derived neurotrophic factor (BDNF) on cocaine-seeking are brain region-specific. Infusion of BDNF into subcortical structures, like the nucleus accumbens and ventral tegmental area, enhances cocaine-induced behavioral sensitization and cocaine seeking. Conversely, repeated administration of BDNF antiserum into the nucleus accumbens during chronic cocaine self-administration attenuates cocaine-induced reinstatement. In contrast, BDNF infusion into the dorsomedial prefrontal cortex immediately following a final session of cocaine self-administration attenuates relapse to cocaine seeking after abstinence, as well as cue- and cocaine prime-induced reinstatement of cocaine-seeking following extinction. BDNF-induced alterations in the ERK-MAP kinase cascade and in prefronto-accumbens glutamatergic transmission are implicated in BDNF’s ability to alter cocaine seeking. Within 22 hr after infusion into the prefrontal cortex, BDNF increases BDNF protein in prefrontal cortical targets, including nucleus accumbens, and restores cocaine-mediated decreases in phospho-ERK expression in the nucleus accumbens. Furthermore, three weeks after BDNF infusion in animals with a cocaine self-administration history, suppressed basal levels of glutamate are normalized and a cocaine-prime-induced increase in extracellular glutamate levels in the nucleus accumbens is prevented. Thus, BDNF may have local effects at the site of infusion and distal effects in target areas that are critical to mediating or preventing cocaine-induced dysfunctional neuroadaptations. PMID:19732758

  16. Levels of Serum Brain-Derived Neurotrophic Factor in Schizophrenia.

    PubMed

    Lee, Jimmy; Nurjono, Milawaty; Lee, Tih-Shih

    2016-08-01

    Recent meta-analyses of serum brain-derived neurotrophic factor (BDNF) have reported lower levels in patients with schizophrenia. However, most studies did not consider the potential confounding effects of time of collection, age, sex, smoking, and obesity. Here, we sought to examine differences in serum BDNF between medicated patients with schizophrenia compared with control subjects, taking into consideration the potential confounders of serum BDNF. Serum was obtained from a sample of fasted blood collected from all participants, and BDNF was assayed on a commercially available kit. After adjusting for potential confounders, there was no statistically significant difference between cases and control subjects (p = 0.261). In the model, body mass index emerged as the most significant predictor of serum BDNF (β = 0.22, p = 0.009). The present study did not support a role for serum BDNF as a biomarker in schizophrenia. This could be due to the nonspecific nature of serum BDNF and its association with both mental and physical conditions. PMID:27479612

  17. Focused ultrasound-enhanced intranasal brain delivery of brain-derived neurotrophic factor

    PubMed Central

    Chen, Hong; Yang, Georgiana Zong Xin; Getachew, Hoheteberhan; Acosta, Camilo; Sierra Sánchez, Carlos; Konofagou, Elisa E.

    2016-01-01

    The objective of this study was to unveil the potential mechanism of focused ultrasound (FUS)-enhanced intranasal (IN) brain drug delivery and assess its feasibility in the delivery of therapeutic molecules. Delivery outcomes of fluorescently-labeled dextrans to mouse brains by IN administration either before or after FUS sonication were compared to evaluate whether FUS enhances IN delivery by active pumping or passive diffusion. Fluorescence imaging of brain slices found that IN administration followed by FUS sonication achieved significantly higher delivery than IN administration only, while pre-treatment by FUS sonication followed by IN administration was not significantly different from IN administration only. Brain-derived neurotrophic factor (BDNF), a promising neurotrophic factor for the treatment of many central nervous system diseases, was delivered by IN followed by FUS to demonstrate the feasibility of this technique and compared with the established FUS technique where drugs are injected intravenously. Immunohistochemistry staining of BDNF revealed that FUS-enhanced IN delivery achieved similar locally enhanced delivery as the established FUS technique. This study suggested that FUS enhances IN brain drug delivery by FUS-induced active pumping of the drug and demonstrated that FUS-enhanced IN delivery is a promising technique for noninvasive and localized delivery of therapeutic molecules to the brain. PMID:27345430

  18. Focused ultrasound-enhanced intranasal brain delivery of brain-derived neurotrophic factor.

    PubMed

    Chen, Hong; Yang, Georgiana Zong Xin; Getachew, Hoheteberhan; Acosta, Camilo; Sierra Sánchez, Carlos; Konofagou, Elisa E

    2016-01-01

    The objective of this study was to unveil the potential mechanism of focused ultrasound (FUS)-enhanced intranasal (IN) brain drug delivery and assess its feasibility in the delivery of therapeutic molecules. Delivery outcomes of fluorescently-labeled dextrans to mouse brains by IN administration either before or after FUS sonication were compared to evaluate whether FUS enhances IN delivery by active pumping or passive diffusion. Fluorescence imaging of brain slices found that IN administration followed by FUS sonication achieved significantly higher delivery than IN administration only, while pre-treatment by FUS sonication followed by IN administration was not significantly different from IN administration only. Brain-derived neurotrophic factor (BDNF), a promising neurotrophic factor for the treatment of many central nervous system diseases, was delivered by IN followed by FUS to demonstrate the feasibility of this technique and compared with the established FUS technique where drugs are injected intravenously. Immunohistochemistry staining of BDNF revealed that FUS-enhanced IN delivery achieved similar locally enhanced delivery as the established FUS technique. This study suggested that FUS enhances IN brain drug delivery by FUS-induced active pumping of the drug and demonstrated that FUS-enhanced IN delivery is a promising technique for noninvasive and localized delivery of therapeutic molecules to the brain. PMID:27345430

  19. Focused ultrasound-enhanced intranasal brain delivery of brain-derived neurotrophic factor

    NASA Astrophysics Data System (ADS)

    Chen, Hong; Yang, Georgiana Zong Xin; Getachew, Hoheteberhan; Acosta, Camilo; Sierra Sánchez, Carlos; Konofagou, Elisa E.

    2016-06-01

    The objective of this study was to unveil the potential mechanism of focused ultrasound (FUS)-enhanced intranasal (IN) brain drug delivery and assess its feasibility in the delivery of therapeutic molecules. Delivery outcomes of fluorescently-labeled dextrans to mouse brains by IN administration either before or after FUS sonication were compared to evaluate whether FUS enhances IN delivery by active pumping or passive diffusion. Fluorescence imaging of brain slices found that IN administration followed by FUS sonication achieved significantly higher delivery than IN administration only, while pre-treatment by FUS sonication followed by IN administration was not significantly different from IN administration only. Brain-derived neurotrophic factor (BDNF), a promising neurotrophic factor for the treatment of many central nervous system diseases, was delivered by IN followed by FUS to demonstrate the feasibility of this technique and compared with the established FUS technique where drugs are injected intravenously. Immunohistochemistry staining of BDNF revealed that FUS-enhanced IN delivery achieved similar locally enhanced delivery as the established FUS technique. This study suggested that FUS enhances IN brain drug delivery by FUS-induced active pumping of the drug and demonstrated that FUS-enhanced IN delivery is a promising technique for noninvasive and localized delivery of therapeutic molecules to the brain.

  20. Brain-derived neurotrophic factor serum concentrations in acute depressive patients increase during lithium augmentation of antidepressants.

    PubMed

    Ricken, Roland; Adli, Mazda; Lange, Claudia; Krusche, Esther; Stamm, Thomas J; Gaus, Sebastian; Koehler, Stephan; Nase, Sarah; Bschor, Tom; Richter, Christoph; Steinacher, Bruno; Heinz, Andreas; Rapp, Michael A; Borgwardt, Stefan; Hellweg, Rainer; Lang, Undine E

    2013-12-01

    In recent years, lithium has proved an effective augmentation strategy of antidepressants in both acute and treatment-resistant depression. Neuroprotective and procognitive effects of lithium have been evidenced. Brain-derived neurotrophic factor (BDNF) has been shown to play a key role in the pathophysiology of several neurological and psychiatric disorders. The BDNF hypothesis of depression postulates that a loss of BDNF is directly involved in the pathophysiology of depression, and its restoration may underlie the therapeutic efficacy of antidepressant treatments. Brain-derived neurotrophic factor serum concentrations were measured in a total of 83 acutely depressed patients before and after 4 weeks of lithium augmentation. A significant BDNF increase has been found during treatment (F2,81 = 5.04, P < 0.05). Brain-derived neurotrophic factor concentrations at baseline correlated negatively with relative Hamilton Depression Scale change after treatment with lithium (n = 83; r = -0.23; P < 0.05). This is the first study showing that lithium augmentation of an antidepressant strategy can increase BDNF serum concentrations. Our study replicates previous findings showing that serum BDNF levels in patients with depressive episodes increase during effective antidepressant treatment. Further studies are needed to separate specific effects of different antidepressants on BDNF concentration and address potential BDNF downstream mechanisms. PMID:24018547

  1. Beta hairpin peptide hydrogels as an injectable solid vehicle for neurotrophic growth factor delivery

    PubMed Central

    Lindsey, Stephan; Piatt, Joseph H.; Worthington, Peter; Sönmez, Cem; Satheye, Sameer; Schneider, Joel P.; Pochan, Darrin J.; Langhans, Sigrid A.

    2016-01-01

    There is intense interest in developing novel methods for the sustained delivery of low levels of clinical therapeutics. MAX8 is a peptide-based beta-hairpin hydrogel that has unique shear thinning properties that allow for immediate rehealing after the removal of shear forces, making MAX8 an excellent candidate for injectable drug delivery at a localized injury site. The current studies examined the feasibility of using MAX8 as a delivery system for Nerve Growth Factor (NGF) and Brain-derived neurotrophic factor (BDNF), two neurotrophic growth factors currently used in experimental treatments of spinal cord injuries. Experiments determined that encapsulation of NGF and BDNF within MAX8 did not negatively impact gel formation or rehealing and that shear thinning did not result in immediate growth factor release. We found that increased NGF/BDNF dosages increased the amount and rate of growth factor release and that NGF/BDNF release was inversely related to the concentration of MAX8, indicating that growth factor release can be tuned by adjusting MAX8 concentrations. Encapsulation within MAX8 protected NGF and BDNF from in vitro degradation for up to 28 days. Released NGF resulted in the formation of neurite-like extensions in PC12 pheochromocytoma cells, demonstrating that NGF remains biologically active after release from encapsulation. Direct physical contact of PC12 cells with NGF-containing hydrogel did not inhibit neurite-like extension formation. On a molecular level, encapsulated growth factors activated the NGF/BDNF signaling pathways. Taken together, our data show MAX8 acts as a time-release gel, continually releasing low levels of growth factor over 21 days. MAX8 allows for greater dosage control and sustained therapeutic growth factor delivery, potentially alleviating side effects and improving the efficacy of current therapies. PMID:26225909

  2. Treatment of diabetic polyneuropathy with the neurotrophic peptide ORG 2766.

    PubMed

    Valk, G D; Kappelle, A C; Tjon-A-Tsien, A M; Bravenboer, B; Bakker, K; Michels, R P; Groenhout, C M; Bertelsmann, F W

    1996-03-01

    The efficacy of the neurotrophic peptide ORG 2766 in diabetic patients with polyneuropathy was evaluated in a double-blind, placebo-controlled, multicentre trial. One hundred and twenty four patients were randomised in five groups to receive 0.1, 0.4, 2 or 5 mg ORG 2766 or placebo, once daily, administered subcutaneously 52 weeks. Thermal discrimination thresholds (TDT) and vibration perception thresholds (VPT), motor and sensory nerve conduction velocity, Hoffmann reflex, heart rate variation during deep breathing and heart rate response after standing up, neurological examination score and neuropathic symptom score were determined at baseline and after 17, 34 and 52 weeks of treatment. Of the nerve function indices studied, at week 52 the TDTwarmth of the hand in the ORG 2766 0.1, 0.4 and 5 mg groups and the TDTcold of the foot in the ORG 2766 0.1 and 0.4 mg groups significantly improved compared with placebo. Further significant improvement as compared with placebo was observed in the paraesthesia score at week 34 and week 52 in the ORG 2766 2 mg group. Only at week 34 had both the heartbeat variation during deep breathing and the VPT of the foot in the ORG 2766 0.1 mg group improved significantly, compared with placebo. No further statistically significant differences were observed at time for the other measures. No adverse reactions were observed. The only recorded drug-induced side effect was pain at the injection site. Taking all measures of efficacy into account, the statistically significant results observed did not show consistency within each measure. Therefore, it is concluded that ORG 2766, in contrast to earlier reports, is not effective in treating diabetic polyneuropathy. PMID:8936356

  3. Advances in Neurotrophic Factor and Cell-Based Therapies for Parkinson's Disease: A Mini-Review.

    PubMed

    Staudt, Michael D; Di Sebastiano, Andrea R; Xu, Hu; Jog, Mandar; Schmid, Susanne; Foster, Paula; Hebb, Matthew O

    2016-01-01

    Parkinson's disease (PD) affects an estimated 7-10 million people worldwide and remains without definitive or disease-modifying treatment. There have been many recent developments in cell-based therapy (CBT) to replace lost circuitry and provide chronic biological sources of therapeutic agents to the PD-affected brain. Early neural transplantation studies underscored the challenges of immune compatibility, graft integration and the need for renewable, autologous graft sources. Neurotrophic factors (NTFs) offer a potential class of cytoprotective pharmacotherapeutics that may complement dopamine (DA) replacement and CBT strategies in PD. Chronic NTF delivery may be an integral goal of CBT, with grafts consisting of autologous drug-producing (e.g., DA, NTF) cells that are capable of integration and function in the host brain. In this mini-review, we outline the past experience and recent advances in NTF technology and CBT as promising and integrated approaches for the treatment of PD. PMID:26330171

  4. Serum brain-derived neurotrophic factor (BDNF) is not regulated by testosterone in transmen.

    PubMed

    Auer, Matthias K; Hellweg, Rainer; Briken, Peer; Stalla, Günter K; T'Sjoen, Guy; Fuss, Johannes

    2016-01-01

    Brain morphology significantly differs between the sexes. It has been shown before that some of these differences are attributable to the sex-specific hormonal milieu. Brain-derived neurotrophic factor (BDNF) is involved in myriads of neuroplastic processes and shows a sexual dimorphism. Transsexual persons may serve as a model to study sex steroid-mediated effects on brain plasticity. We have recently demonstrated that serum levels of BDNF are reduced in transwomen following 12 months of cross-sex hormone treatment. We now wanted to look at the effects of testosterone treatment on BDNF in transmen. In contrast to our initial hypothesis, BDNF levels did not significantly change, despite dramatic changes in the sex-hormonal milieu. Our data indicate that testosterone does not seem to play a major role in the regulation of BDNF in females. PMID:26753091

  5. Brain derived neurotrophic factor in newly diagnosed diabetes and prediabetes.

    PubMed

    Liu, Wei; Han, Xueyao; Zhou, Xianghai; Zhang, Simin; Cai, Xiaoling; Zhang, Lihua; Li, Yufeng; Li, Meng; Gong, Siqian; Ji, Linong

    2016-07-01

    Brain derived neurotrophic factor (BDNF) is thought to play an important role in glucose metabolism, but the exact mechanism has not been elucidated. The aim was to assess differences in serum BDNF levels across individuals with varying levels of glucose tolerance, and the association of serum BDNF levels with genetic variants and DNA methylation. Participants were selected from an ongoing population-based cohort study in rural China. In a randomly selected subsample of healthy participants (n = 33 males, n = 52 female), we assessed serum BDNF and in n = 50 of these, also DNA methylation. In a second subsample (all women; n = 28 with diabetes, n = 104 with prediabetes, and n = 105 age- and body mass index (BMI)-matched controls), we assessed serum BDNF and genetic variants. In a third subsample (all with diabetes; n = 7 normal BMI + low insulin level, n = 9 normal BMI + high insulin level, n = 9 obese + high insulin level), we assessed DNA methylation. Compared to age- and BMI-matched controls (24.71 (IQR, 20.44, 29.80) ng/ml), serum BDNF was higher in participants with prediabetes (27.38 (IQR, 20.64, 34.29) ng/ml), but lower in those with diabetes (23.40 (IQR, 18.12, 30.34) ng/ml) (P < 0.05). Two genetic variants near BDNF (rs4074134 and rs6265) were confirmed to be associated with BMI. BDNF CpG-6 methylation was positively associated with waist-to-hip ratio (P < 0.05). Furthermore, hyper-methylation in this site was found in participants with diabetes and high fasting insulin levels compared to those with diabetes and low fasting insulin levels, regardless of BMI status (P < 0.001 and P = 0.001, respectively). Observed differences in serum BDNF levels, genetic variants, and DNA methylation patterns across different glucose metabolic state suggest that BDNF may be involved in the pathophysiological process of insulin resistance and type 2 diabetes. PMID:27062899

  6. [The effect of neurotrophic treatment on the activation of reparative processes in patients with acute traumatic brain injury].

    PubMed

    Selianina, N V; Karakulova, Iu V

    2012-01-01

    The complex study of cognitive and emotional status, levels of serum serotonin and brain-derived neurotrophic factor (BDNF) were performed in 72 patients with acute traumatic brain injury, with a special focus on middle brain injuries (MBI), treated with Cerebrolysin. The neurological and cognitive impairment, mild state anxiety and depression and increased levels of humoral serotonin, which depends on the severity of the injury, were identified in patients with MBI before treatment. After the treatment, there were the decrease in the severity of neurological symptoms and a significant positive dynamics on the FAB scale as well as the increase in blood BDNF and serotonin levels. It has been concluded that using cerebrolysin in complex treatment of acute MBI promotes activation of neurotrophic processes and improves outcomes of closed craniocerebral injury. PMID:22951781

  7. Neurotrophic factors and neural prostheses: potential clinical applications based upon findings in the auditory system

    PubMed Central

    Pettingill, L.N.; Richardson, R.T.; Wise, A.K.; O'Leary, S.; Shepherd, R.K.

    2007-01-01

    Spiral ganglion neurons (SGNs) are the target cells of the cochlear implant, a neural prosthesis designed to provide important auditory cues to severely or profoundly deaf patients. The ongoing degeneration of SGNs that occurs following a sensorineural hearing loss is therefore considered a limiting factor in cochlear implant efficacy. We review neurobiological techniques aimed at preventing SGN degeneration using exogenous delivery of neurotrophic factors. Application of these proteins prevents SGN degeneration and can enhance neurite outgrowth. Furthermore, chronic electrical stimulation of SGNs increases neurotrophic factor-induced survival and is correlated with functional benefits. The application of neurotrophic factors has the potential to enhance the benefits that patients can derive from cochlear implants; moreover, these techniques may be relevant for use with neural prostheses in other neurological conditions. PMID:17551571

  8. Vascular Endothelial Growth Factor and Brain-Derived Neurotrophic Factor in Quetiapine Treated First-Episode Psychosis

    PubMed Central

    Murphy, Brendan P.; Pang, Terence Y.; Hannan, Anthony J.; Proffitt, Tina-Marie; McConchie, Mirabel; Kerr, Melissa; Markulev, Connie; O'Donnell, Colin; McGorry, Patrick D.; Berger, Gregor E.

    2014-01-01

    Objective. It has been suggested that atypical antipsychotics confer their effects via brain-derived neurotrophic factor (BDNF). We investigated the effect of quetiapine on serum levels of BDNF and vascular endothelial growth factor (VEGF) in drug-naive first-episode psychosis subjects. Methods. Fifteen patients drawn from a larger study received quetiapine treatment for twelve weeks. Baseline levels of serum BDNF and VEGF were compared to age- and sex-matched healthy controls and to levels following treatment. Linear regression analyses were performed to determine the relationship of BDNF and VEGF levels with outcome measures at baseline and week 12. Results. The mean serum BDNF level was significantly higher at week 12 compared to baseline and correlated with reductions in Brief Psychiatric Rating Scale (BPRS) and general psychopathology scores. Changes in serum VEGF levels also correlated significantly with a reduction in BPRS scores, a significant improvement in PANNS positive symptoms scores, and displayed a positive relationship with changes in BDNF levels. Conclusions. Our findings suggest that BDNF and VEGF are potential biomarkers for gauging improvement of psychotic symptoms. This suggests a novel neurotrophic-based mechanism of the drug effects of quetiapine on psychosis. This is the first report of VEGF perturbation in psychosis. PMID:24672724

  9. Chronic neonatal nicotine exposure increases mRNA expression of neurotrophic factors in the postnatal rat hippocampus.

    PubMed

    Son, Jong-Hyun; Winzer-Serhan, Ursula H

    2009-06-30

    Nicotine, the psychoactive ingredient in tobacco, can be neuroprotective but the mechanism is unknown. In the adult hippocampus, chronic nicotine can increase expression of growth factors which could contribute to nicotine's neuroprotective effects. During development, nicotine could also increase expression of neurotrophic factors. Therefore, we determined whether chronic neonatal nicotine (CNN) exposure increased mRNA expression levels of brain-derived neurotrophic factor (BDNF), nerve-growth factor (NGF), neurotrophin-3 (NT-3), fibroblast growth factor-2 (FGF-2), and insulin-like growth factor-1 (IGF-1). Nicotine (6 mg/kg/day in milk formula) or milk formula (controls) were delivered in three daily doses via oral gastric intubation to rat pups from postnatal day (P)1 to P8, and then sacrificed. Brains were processed for in situ hybridization using specific (35)S-labeled cRNA probes. At P8, CNN had a significant stimulant treatment effect on the expression of BDNF, FGF-2, NT-3 and IGF-1 [p<0.01], but not NGF. Specifically, BDNF mRNA expression, detected in CA1, CA3 stratum (s.) pyramidal and granule cell layer of the dentate gyrus (DG), was increased by 27.4%, 23.26% and 27.3%, respectively. FGF-2 mRNA expression, detected in neurons and astrocytes in CA1 s. radiatum, CA2 and CA3 s. pyramidale, and molecular layer of the DG, was increased by 34.0%, 8.9%, 31.0% and 23.1%, respectively. NT-3 mRNA expression in CA2 s. pyramidale was increased by 80.0%, and CNN increased the number of IGF-1-expressing cells in CA1 (18.0%), CA3 (20.9%) and DG (17.7%). Thus, nicotine exposure during early postnatal development differentially up-regulated expression of neurotrophic factor mRNAs in the hippocampus, which could increase neurotrophic tone and alter developmental processes. PMID:19410565

  10. From Molecular to Nanotechnology Strategies for Delivery of Neurotrophins: Emphasis on Brain-Derived Neurotrophic Factor (BDNF)

    PubMed Central

    Géral, Claire; Angelova, Angelina; Lesieur, Sylviane

    2013-01-01

    Neurodegenerative diseases represent a major public health problem, but beneficial clinical treatment with neurotrophic factors has not been established yet. The therapeutic use of neurotrophins has been restrained by their instability and rapid degradation in biological medium. A variety of strategies has been proposed for the administration of these leading therapeutic candidates, which are essential for the development, survival and function of human neurons. In this review, we describe the existing approaches for delivery of brain-derived neurotrophic factor (BDNF), which is the most abundant neurotrophin in the mammalian central nervous system (CNS). Biomimetic peptides of BDNF have emerged as a promising therapy against neurodegenerative disorders. Polymer-based carriers have provided sustained neurotrophin delivery, whereas lipid-based particles have contributed also to potentiation of the BDNF action. Nanotechnology offers new possibilities for the design of vehicles for neuroprotection and neuroregeneration. Recent developments in nanoscale carriers for encapsulation and transport of BDNF are highlighted. PMID:24300402

  11. Protective Action of Neurotrophic Factors and Estrogen against Oxidative Stress-Mediated Neurodegeneration.

    PubMed

    Numakawa, Tadahiro; Matsumoto, Tomoya; Numakawa, Yumiko; Richards, Misty; Yamawaki, Shigeto; Kunugi, Hiroshi

    2011-01-01

    Oxidative stress is involved in the pathogenesis of neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, and Huntington's disease. Low levels of reactive oxygen species (ROS) and reactive nitrogen species (RNS) are important for maintenance of neuronal function, though elevated levels lead to neuronal cell death. A complex series of events including excitotoxicity, Ca(2+) overload, and mitochondrial dysfunction contributes to oxidative stress-mediated neurodegeneration. As expected, many antioxidants like phytochemicals and vitamins are known to reduce oxidative toxicity. Additionally, growing evidence indicates that neurotrophic factors such as brain-derived neurotrophic factor (BDNF) and estrogens significantly prevent neuronal damage caused by oxidative stress. Here, we review and discuss recent studies addressing the protective mechanisms of neurotrophic factors and estrogen within this system. PMID:21776259

  12. Parasite-Derived Neurotrophic Factor/trans-Sialidase of Trypanosoma cruzi Links Neurotrophic Signaling to Cardiac Innate Immune Response

    PubMed Central

    Salvador, Ryan; Aridgides, Daniel

    2014-01-01

    The Chagas' disease parasite Trypanosoma cruzi elicits a potent inflammatory response in acutely infected hearts that keeps parasitism in check and triggers cardiac abnormalities. A most-studied mechanism underlying innate immunity in T. cruzi infection is Toll-like receptor (TLR) activation by lipids and other parasite molecules. However, yet-to-be-identified pathways should exist. Here, we show that T. cruzi strongly upregulates monocyte chemoattractant protein 1 (MCP-1)/CCL2 and fractalkine (FKN)/CX3CL1 in cellular and mouse models of heart infection. Mechanistically, upregulation of MCP-1 and FKN stems from the interaction of parasite-derived neurotrophic factor (PDNF)/trans-sialidase with neurotrophic receptors TrkA and TrkC, as assessed by pharmacological inhibition, neutralizing antibodies, and gene silencing studies. Administration of a single dose of intravenous PDNF to naive mice results in a dose-dependent increase in MCP-1 and FKN in the heart and liver with pulse-like kinetics that peak at 3 h postinjection. Intravenous PDNF also augments MCP-1 and FKN in TLR signaling-deficient MyD88-knockout mice, underscoring the MyD88-independent action of PDNF. Although single PDNF injections do not increase MCP-1 and FKN receptors, multiple PDNF injections at short intervals up the levels of receptor transcripts in the heart and liver, suggesting that sustained PDNF triggers cell recruitment at infection sites. Thus, given that MCP-1 and FKN are chemokines essential to the recruitment of immune cells to combat inflammation triggers and to enhance tissue repair, our findings uncover a new mechanism in innate immunity against T. cruzi infection mediated by Trk signaling akin to an endogenous inflammatory and fibrotic pathway resulting from cardiomyocyte-TrkA recognition by matricellular connective tissue growth factor (CTGF/CCN2). PMID:24935974

  13. Aerobic exercise interacts with neurotrophic factors to predict cognitive functioning in adolescents.

    PubMed

    Lee, Tatia M C; Wong, Mark Lawrence; Lau, Benson Wui-Man; Lee, Jada Chia-Di; Yau, Suk-Yu; So, Kwok-Fai

    2014-01-01

    Recent findings have suggested that aerobic exercise may have a positive effect on brain functioning, in addition to its well-recognized beneficial effects on human physiology. This study confirmed the cognitive effects of aerobic exercise on the human brain. It also examined the relationships between exercise and the serum levels of neurotrophic factors (BDNF, IGI-1, and VEGF). A total of 91 healthy teens who exercised regularly participated in this study. A between-group design was adopted to compare cognitive functioning subserved by the frontal and temporal brain regions and the serum levels of neurotrophic factors between 45 regular exercisers and 46 matched controls. The exercisers performed significantly better than the controls on the frontal and temporal functioning parameters measured. This beneficial cognitive effect was region-specific because no such positive cognitive effect on task-tapping occipital functioning was observed. With respect to the serum levels of the neurotrophic factors, a negative correlation between neurotrophic factors (BDNF and VEGF) with frontal and medial-temporal lobe function was revealed. Furthermore, the levels of BDNF and VEGF interacted with exercise status in predicting frontal and temporal lobe function. This is the first report of the interaction effects of exercise and neurotrophic factors on cognitive functioning. Herein, we report preliminary evidence of the beneficial effects of regular aerobic exercise in improving cognitive functions in teens. These beneficial effects are region-specific and are associated with the serum levels of neurotrophic factors. Our findings lay the path for future studies looking at ways to translate these beneficial effects to therapeutic strategies for adolescents. PMID:24149089

  14. Phospholipase C gamma mediates endogenous brain-derived neurotrophic factor-regulated calcitonin gene-related peptide expression in colitis-induced visceral pain

    PubMed Central

    Hashmi, Fiza; Liu, Miao; Shen, Shanwei

    2016-01-01

    Background Visceral hypersensitivity is a complex pathophysiological paradigm with unclear mechanisms. Primary afferent neuronal plasticity marked by alterations in neuroactive compounds such as calcitonin gene-related peptide is suggested to underlie the heightened sensory responses. Signal transduction that leads to calcitonin gene-related peptide expression thereby sensory neuroplasticity during colitis remains to be elucidated. Results In a rat model with colitis induced by 2,4,6-trinitrobenzene sulfonic acid, we found that endogenously elevated brain-derived neurotrophic factor elicited an up-regulation of calcitonin gene-related peptide in the lumbar L1 dorsal root ganglia. At seven days of colitis, neutralization of brain-derived neurotrophic factor with a specific brain-derived neurotrophic factor antibody reversed calcitonin gene-related peptide up-regulation in the dorsal root ganglia. Colitis-induced calcitonin gene-related peptide transcription was also inhibited by brain-derived neurotrophic factor antibody treatment. Signal transduction studies with dorsal root ganglia explants showed that brain-derived neurotrophic factor-induced calcitonin gene-related peptide expression was mediated by the phospholipase C gamma, but not the phosphatidylinositol 3-kinase/Akt or the mitogen-activated protein kinase/extracellular signal-regulated protein kinase pathway. Application of PLC inhibitor U73122 in vivo confirmed that colitis-induced and brain-derived neurotrophic factor-mediated calcitonin gene-related peptide up-regulation in the dorsal root ganglia was regulated by the phospholipase C gamma pathway. In contrast, suppression of the phosphatidylinositol 3-kinase activity in vivo had no effect on colitis-induced calcitonin gene-related peptide expression. During colitis, calcitonin gene-related peptide also co-expressed with phospholipase C gamma but not with p-Akt. Calcitonin gene-related peptide up-regulation during colitis correlated to the activation

  15. Polylactic-co-glycolic acid microspheres containing three neurotrophic factors promote sciatic nerve repair after injury

    PubMed Central

    Zhao, Qun; Li, Zhi-yue; Zhang, Ze-peng; Mo, Zhou-yun; Chen, Shi-jie; Xiang, Si-yu; Zhang, Qing-shan; Xue, Min

    2015-01-01

    A variety of neurotrophic factors have been shown to repair the damaged peripheral nerve. However, in clinical practice, nerve growth factor, neurotrophin-3 and brain-derived neurotrophic factor are all peptides or proteins that may be rapidly deactivated at the focal injury site; their local effective concentration time following a single medication cannot meet the required time for spinal axons to regenerate and cross the glial scar. In this study, we produced polymer sustained-release microspheres based on the polylactic-co-glycolic acid copolymer; the microspheres at 300-μm diameter contained nerve growth factor, neurotrophin-3 and brain-derived neurotrophic factor. Six microspheres were longitudinally implanted into the sciatic nerve at the anastomosis site, serving as the experimental group; while the sciatic nerve in the control group was subjected to the end-to-end anastomosis using 10/0 suture thread. At 6 weeks after implantation, the lower limb activity, weight of triceps surae muscle, sciatic nerve conduction velocity and the maximum amplitude were obviously better in the experimental group than in the control group. Compared with the control group, more regenerating nerve fibers were observed and distributed in a dense and ordered manner with thicker myelin sheaths in the experimental group. More angiogenesis was also visible. Experimental findings indicate that polylactic-co-glycolic acid composite microspheres containing nerve growth factor, neurotrophin-3 and brain-derived neurotrophic factor can promote the restoration of sciatic nerve in rats after injury. PMID:26604912

  16. Regulation of proteolytic cleavage of brain-derived neurotrophic factor precursor by antidepressants in human neuroblastoma cells

    PubMed Central

    Lin, Pao-Yen

    2015-01-01

    Evidence has supported the role of brain-derived neurotrophic factor (BDNF) in antidepressant effect. The precursor of BDNF (proBDNF) often exerts opposing biological effects on mature BDNF (mBDNF). Hence, the balance between proBDNF and mBDNF might be critical in total neurotrophic effects, leading to susceptibility to or recovery from depression. In the current study, we measured the protein expression levels of proBDNF, and its proteolytic products, truncated BDNF, and mBDNF, in human SH-SY5Y cells treated with different antidepressants. We found that the treatment significantly increased the production of mBDNF, but decreased the production of truncated BDNF and proBDNF. These results support that antidepressants can promote proBDNF cleavage. Further studies are needed to clarify whether proBDNF cleavage plays a role in antidepressant mechanisms. PMID:26491331

  17. Human umbilical cord blood-derived stem cells and brain-derived neurotrophic factor protect injured optic nerve: viscoelasticity characterization

    PubMed Central

    Lv, Xue-man; Liu, Yan; Wu, Fei; Yuan, Yi; Luo, Min

    2016-01-01

    The optic nerve is a viscoelastic solid-like biomaterial. Its normal stress relaxation and creep properties enable the nerve to resist constant strain and protect it from injury. We hypothesized that stress relaxation and creep properties of the optic nerve change after injury. More-over, human brain-derived neurotrophic factor or umbilical cord blood-derived stem cells may restore these changes to normal. To validate this hypothesis, a rabbit model of optic nerve injury was established using a clamp approach. At 7 days after injury, the vitreous body re-ceived a one-time injection of 50 μg human brain-derived neurotrophic factor or 1 × 106 human umbilical cord blood-derived stem cells. At 30 days after injury, stress relaxation and creep properties of the optic nerve that received treatment had recovered greatly, with patho-logical changes in the injured optic nerve also noticeably improved. These results suggest that human brain-derived neurotrophic factor or umbilical cord blood-derived stem cell intervention promotes viscoelasticity recovery of injured optic nerves, and thereby contributes to nerve recovery. PMID:27212930

  18. Human umbilical cord blood-derived stem cells and brain-derived neurotrophic factor protect injured optic nerve: viscoelasticity characterization.

    PubMed

    Lv, Xue-Man; Liu, Yan; Wu, Fei; Yuan, Yi; Luo, Min

    2016-04-01

    The optic nerve is a viscoelastic solid-like biomaterial. Its normal stress relaxation and creep properties enable the nerve to resist constant strain and protect it from injury. We hypothesized that stress relaxation and creep properties of the optic nerve change after injury. More-over, human brain-derived neurotrophic factor or umbilical cord blood-derived stem cells may restore these changes to normal. To validate this hypothesis, a rabbit model of optic nerve injury was established using a clamp approach. At 7 days after injury, the vitreous body re-ceived a one-time injection of 50 μg human brain-derived neurotrophic factor or 1 × 10(6) human umbilical cord blood-derived stem cells. At 30 days after injury, stress relaxation and creep properties of the optic nerve that received treatment had recovered greatly, with patho-logical changes in the injured optic nerve also noticeably improved. These results suggest that human brain-derived neurotrophic factor or umbilical cord blood-derived stem cell intervention promotes viscoelasticity recovery of injured optic nerves, and thereby contributes to nerve recovery. PMID:27212930

  19. Chemically extracted acellular allogeneic nerve graft combined with ciliary neurotrophic factor promotes sciatic nerve repair

    PubMed Central

    Zhang, Yanru; Zhang, Hui; Katiella, Kaka; Huang, Wenhua

    2014-01-01

    A chemically extracted acellular allogeneic nerve graft can reduce postoperative immune rejection, similar to an autologous nerve graft, and can guide neural regeneration. However, it remains poorly understood whether a chemically extracted acellular allogeneic nerve graft combined with neurotrophic factors provides a good local environment for neural regeneration. This study investigated the repair of injured rat sciatic nerve using a chemically extracted acellular allogeneic nerve graft combined with ciliary neurotrophic factor. An autologous nerve anastomosis group and a chemical acellular allogeneic nerve bridging group were prepared as controls. At 8 weeks after repair, sciatic functional index, evoked potential amplitude of the soleus muscle, triceps wet weight recovery rate, total number of myelinated nerve fibers and myelin sheath thickness were measured. For these indices, values in the three groups showed the autologous nerve anastomosis group > chemically extracted acellular nerve graft + ciliary neurotrophic factor group > chemical acellular allogeneic nerve bridging group. These results suggest that chemically extracted acellular nerve grafts combined with ciliary neurotrophic factor can repair sciatic nerve defects, and that this repair is inferior to autologous nerve anastomosis, but superior to chemically extracted acellular allogeneic nerve bridging alone. PMID:25221592

  20. Brain-derived neurotrophic factor in human subjects with function-altering melanocortin-4 receptor variants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In rodents, hypothalamic brain-derived neurotrophic factor (BDNF) expression appears to be regulated by melanocortin-4 receptor (MC4R) activity. The impact of MC4R genetic variation on circulating BDNF in humans is unknown. The objective of this study is to compare BDNF concentrations of subjects wi...

  1. Differential Regulation of Brain-Derived Neurotrophic Factor Transcripts during the Consolidation of Fear Learning

    ERIC Educational Resources Information Center

    Ressler, Kerry J.; Rattiner, Lisa M.; Davis, Michael

    2004-01-01

    Brain-derived neurotrophic factor (BDNF) has been implicated as a molecular mediator of learning and memory. The BDNF gene contains four differentially regulated promoters that generate four distinct mRNA transcripts, each containing a unique noncoding 5[prime]-exon and a common 3[prime]-coding exon. This study describes novel evidence for the…

  2. Chemically extracted acellular allogeneic nerve graft combined with ciliary neurotrophic factor promotes sciatic nerve repair.

    PubMed

    Zhang, Yanru; Zhang, Hui; Katiella, Kaka; Huang, Wenhua

    2014-07-15

    A chemically extracted acellular allogeneic nerve graft can reduce postoperative immune rejection, similar to an autologous nerve graft, and can guide neural regeneration. However, it remains poorly understood whether a chemically extracted acellular allogeneic nerve graft combined with neurotrophic factors provides a good local environment for neural regeneration. This study investigated the repair of injured rat sciatic nerve using a chemically extracted acellular allogeneic nerve graft combined with ciliary neurotrophic factor. An autologous nerve anastomosis group and a chemical acellular allogeneic nerve bridging group were prepared as controls. At 8 weeks after repair, sciatic functional index, evoked potential amplitude of the soleus muscle, triceps wet weight recovery rate, total number of myelinated nerve fibers and myelin sheath thickness were measured. For these indices, values in the three groups showed the autologous nerve anastomosis group > chemically extracted acellular nerve graft + ciliary neurotrophic factor group > chemical acellular allogeneic nerve bridging group. These results suggest that chemically extracted acellular nerve grafts combined with ciliary neurotrophic factor can repair sciatic nerve defects, and that this repair is inferior to autologous nerve anastomosis, but superior to chemically extracted acellular allogeneic nerve bridging alone. PMID:25221592

  3. Human obesity associated with an intronic SNP in the brain-derived neurotrophic factor locus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Brain-derived neurotrophic factor (BDNF) plays a key role in energy balance. In population studies, SNPs of the BDNF locus have been linked to obesity, but the mechanism by which these variants cause weight gain is unknown. Here, we examined human hypothalamic BDNF expression in association with 44 ...

  4. Cerebrolysin, a mixture of neurotrophic factors induces marked neuroprotection in spinal cord injury following intoxication of engineered nanoparticles from metals.

    PubMed

    Menon, Preeti Kumaran; Muresanu, Dafin Fior; Sharma, Aruna; Mössler, Herbert; Sharma, Hari Shanker

    2012-02-01

    Spinal cord injury (SCI) is the world's most disastrous disease for which there is no effective treatment till today. Several studies suggest that nanoparticles could adversely influence the pathology of SCI and thereby alter the efficacy of many neuroprotective agents. Thus, there is an urgent need to find suitable therapeutic agents that could minimize cord pathology following trauma upon nanoparticle intoxication. Our laboratory has been engaged for the last 7 years in finding suitable therapeutic strategies that could equally reduce cord pathology in normal and in nanoparticle-treated animal models of SCI. We observed that engineered nanoparticles from metals e.g., aluminum (Al), silver (Ag) and copper (Cu) (50-60 nm) when administered in rats daily for 7 days (50 mg/kg, i.p.) resulted in exacerbation of cord pathology after trauma that correlated well with breakdown of the blood-spinal cord barrier (BSCB) to serum proteins. The entry of plasma proteins into the cord leads to edema formation and neuronal damage. Thus, future drugs should be designed in such a way to be effective even when the SCI is influenced by nanoparticles. Previous research suggests that a suitable combination of neurotrophic factors could induce marked neuroprotection in SCI in normal animals. Thus, we examined the effects of a new drug; cerebrolysin that is a mixture of different neurotrophic factors e.g., brain-derived neurotrophic factor (BDNF), glial cell line derived neurotrophic factor (GDNF), nerve growth factor (NGF), ciliary neurotrophic factor (CNTF) and other peptide fragments to treat normal or nanoparticle-treated rats after SCI. Our observations showed that cerebrolysin (2.5 ml/kg, i.v.) before SCI resulted in good neuroprotection in normal animals, whereas nanoparticle-treated rats required a higher dose of the drug (5.0 ml/kg, i.v.) to induce comparable neuroprotection in the cord after SCI. Cerebrolysin also reduced spinal cord water content, leakage of plasma proteins

  5. Neurotrophic Peptides: Potential Drugs for Treatment of Amyotrophic Lateral Sclerosis and Alzheimer’s disease

    PubMed Central

    Ciesler, Jessica; Sari, Youssef

    2013-01-01

    Neurodegenerative diseases are characterized by the progressive loss of neurons and glial cells in the central nervous system correlated to their symptoms. Among these neurodegenerative diseases are Alzheimer’s disease (AD) and amyotrophic lateral sclerosis (ALS). Neurodegeneration is mostly restricted to specific neuronal populations: cholinergic neurons in AD and motoneurons in ALS. The demonstration that the onset and progression of neurodegenerative diseases in models of transgenic mice, in particular, is delayed or improved by the application of neurotrophic factors and derived peptides from neurotrophic factors has emphasized their importance in neurorestoration. A range of neurotrophic factors and growth peptide factors derived from activity-dependent neurotrophic factor/activity-dependent neuroprotective protein has been suggested to restore neuronal function, improve behavioral deficits and prolong the survival in animal models. In this review article, we focus on the role of trophic peptides in the improvement of AD and ALS. An understanding of the molecular pathways involved with trophic peptides in these neurodegenerative diseases may shed light on potential therapies. PMID:23795307

  6. Gender and environmental effects on regional brain-derived neurotrophic factor expression after experimental traumatic brain injury.

    PubMed

    Chen, X; Li, Y; Kline, A E; Dixon, C E; Zafonte, R D; Wagner, A K

    2005-01-01

    Alterations in brain-derived neurotrophic factor expression have been reported in multiple brain regions acutely after traumatic brain injury, however neither injury nor post-injury environmental enrichment has been shown to affect hippocampal brain-derived neurotrophic factor gene expression in male rats chronically post-injury. Studies have demonstrated hormone-related neuroprotection for female rats after traumatic brain injury, and estrogen and exercise both influence brain-derived neurotrophic factor levels. Despite recent studies suggesting that exposure post-traumatic brain injury to environmental enrichment improves cognitive recovery in male rats, we have shown that environmental enrichment mediated improvements with spatial learning are gender specific and only positively affect males. Therefore the purpose of this study was to evaluate the effect of gender and environmental enrichment on chronic post-injury cortical and hippocampal brain-derived neurotrophic factor protein expression. Sprague-Dawley male and cycling female rats were placed into environmental enrichment or standard housing after controlled cortical impact or sham surgery. Four weeks post-surgery, hippocampal and frontal cortex brain-derived neurotrophic factor expression were examined using Western blot. Results revealed significant increases in brain-derived neurotrophic factor expression in the frontal cortex ipsilateral to injury for males (P=0.03). Environmental enrichment did not augment this effect. Neither environmental enrichment nor injury significantly affected cortical brain-derived neurotrophic factor expression for females. In the hippocampus ipsilateral to injury brain-derived neurotrophic factor expression for both males and females was half (49% and 51% respectively) of that observed in shams housed in the standard environment. For injured males, there was a trend in this region for environmental enrichment to restore brain-derived neurotrophic factor levels to sham values

  7. PERIPHERAL NERVE REGENERATION: CELL THERAPY AND NEUROTROPHIC FACTORS

    PubMed Central

    Sebben, Alessandra Deise; Lichtenfels, Martina; da Silva, Jefferson Luis Braga

    2015-01-01

    Peripheral nerve trauma results in functional loss in the innervated organ, and recovery without surgical intervention is rare. Many surgical techniques can be used for nerve repair. Among these, the tubulization technique can be highlighted: this allows regenerative factors to be introduced into the chamber. Cell therapy and tissue engineering have arisen as an alternative for stimulating and aiding peripheral nerve regeneration. Therefore, the aim of this review was to provide a survey and analysis on the results from experimental and clinical studies that used cell therapy and tissue engineering as tools for optimizing the regeneration process. The articles used came from the LILACS, Medline and SciELO scientific databases. Articles on the use of stem cells, Schwann cells, growth factors, collagen, laminin and platelet-rich plasma for peripheral nerve repair were summarized over the course of the review. Based on these studies, it could be concluded that the use of stem cells derived from different sources presents promising results relating to nerve regeneration, because these cells have a capacity for neuronal differentiation, thus demonstrating effective functional results. The use of tubes containing bioactive elements with controlled release also optimizes the nerve repair, thus promoting greater myelination and axonal growth of peripheral nerves. Another promising treatment is the use of platelet-rich plasma, which not only releases growth factors that are important in nerve repair, but also serves as a carrier for exogenous factors, thereby stimulating the proliferation of specific cells for peripheral nerve repair. PMID:27027067

  8. Are the changes in the peripheral brain-derived neurotrophic factor levels due to platelet activation?

    PubMed

    Serra-Millàs, Montserrat

    2016-03-22

    Brain-derived neurotrophic factor (BDNF) plays an important role in central nervous system development, neurogenesis and neuronal plasticity. BDNF is also expressed in several non-neuronal tissues, and it could play an important role in other processes, such as cancer, angiogenesis, etc. Platelets are the major source of peripheral BDNF. However, platelets also contain high amounts of serotonin; they express specific surface receptors during activation, and a multitude of pro-inflammatory and immunomodulatory bioactive compounds are secreted from the granules. Until recently, there was insufficient knowledge regarding the relationship between BDNF and platelets. Recent studies showed that BDNF is present in two distinct pools in platelets, in α-granules and in the cytoplasm, and only the BDNF in the granules is secreted following stimulation, representing 30% of the total BDNF in platelets. BDNF has an important role in the pathophysiology of depression. Low levels of serum BDNF have been described in patients with major depressive disorder, and BDNF levels increased with chronic antidepressant treatment. Interestingly, there is an association between depression and platelet function. This review analyzed studies that evaluated the relationship between BDNF and platelet activation and the effect of treatments on both parameters. Only a few studies consider this possible confounding factor, and it could be very important in diseases such as depression, which show changes in both parameters. PMID:27014600

  9. Are the changes in the peripheral brain-derived neurotrophic factor levels due to platelet activation?

    PubMed Central

    Serra-Millàs, Montserrat

    2016-01-01

    Brain-derived neurotrophic factor (BDNF) plays an important role in central nervous system development, neurogenesis and neuronal plasticity. BDNF is also expressed in several non-neuronal tissues, and it could play an important role in other processes, such as cancer, angiogenesis, etc. Platelets are the major source of peripheral BDNF. However, platelets also contain high amounts of serotonin; they express specific surface receptors during activation, and a multitude of pro-inflammatory and immunomodulatory bioactive compounds are secreted from the granules. Until recently, there was insufficient knowledge regarding the relationship between BDNF and platelets. Recent studies showed that BDNF is present in two distinct pools in platelets, in α-granules and in the cytoplasm, and only the BDNF in the granules is secreted following stimulation, representing 30% of the total BDNF in platelets. BDNF has an important role in the pathophysiology of depression. Low levels of serum BDNF have been described in patients with major depressive disorder, and BDNF levels increased with chronic antidepressant treatment. Interestingly, there is an association between depression and platelet function. This review analyzed studies that evaluated the relationship between BDNF and platelet activation and the effect of treatments on both parameters. Only a few studies consider this possible confounding factor, and it could be very important in diseases such as depression, which show changes in both parameters. PMID:27014600

  10. [Blood levels of brain-derived neurotrophic factor (BDNF) in major depressive disorder].

    PubMed

    Yoshimura, Reiji; Ikenouchi-Sugita, Atsuko; Hori, Hikaru; Umene-Nakano, Wakako; Hayashi, Kenji; Katsuki, Asuka; Ueda, Nobuhisa; Nakamura, Jun

    2010-01-01

    Brain-derived neurotrophic factor (BDNF) is a neurotrophin that has been linked to the viability of neurons in brain circuits that regulate emotion, memory, learning, sleep, and appetite. BDNF has been most extensively studied in relation to depression. Depressed patients show reduced levels of hippocampal and cortical BDNF in postmortem studies. Recently, to the best of our knowledge, there are at least three meta-analyses regarding blood BDNF levels in depressed patients, suggesting that blood BDNF levels are decreased in depressive state, and those are recovered after treatment with biological treatments such as antidepressants, ECT, and rTMS. From these findings into account, it is possible that blood (plasma and serum) BDNF level is a biological marker for depressive state. We have recently demonstrated that a significantly negative correlation was observed between the HAMD scores and serum BDNF levels. In addition, responders to fluvoxamine, paroxetine, milnacipran, and sertraline all increased serum BDNF levels. Blood BDNF levels did not distinguish between responders and remitters to the treatment. In conclusion, blood BDNF levels partially reflect those in the brain, and there is also strong and consistent evidence indicating that these levels normalize following the biological intervention for depression. PMID:21179660

  11. The Role of Neurotrophic Factors Conjugated to Iron Oxide Nanoparticles in Peripheral Nerve Regeneration: In Vitro Studies

    PubMed Central

    Ziv-Polat, Ofra; Neuman, Sara; Fregnan, Federica; Grothe, Claudia; Margel, Shlomo

    2014-01-01

    Local delivery of neurotrophic factors is a pillar of neural repair strategies in the peripheral nervous system. The main disadvantage of the free growth factors is their short half-life of few minutes. In order to prolong their activity, we have conjugated to iron oxide nanoparticles three neurotrophic factors: nerve growth factor (βNGF), glial cell-derived neurotrophic factor (GDNF), and basic fibroblast growth factor (FGF-2). Comparative stability studies of free versus conjugated factors revealed that the conjugated neurotrophic factors were significantly more stable in tissue cultures and in medium at 37°C. The biological effects of free versus conjugated neurotrophic factors were examined on organotypic dorsal root ganglion (DRG) cultures performed in NVR-Gel, composed mainly of hyaluronic acid and laminin. Results revealed that the conjugated neurotrophic factors enhanced early nerve fiber sprouting compared to the corresponding free factors. The most meaningful result was that conjugated-GDNF, accelerated the onset and progression of myelin significantly earlier than the free GDNF and the other free and conjugated factors. This is probably due to the beneficial and long-acting effect that the stabilized conjugated-GDNF had on neurons and Schwann cells. These conclusive results make NVR-Gel enriched with conjugated-GDNF, a desirable scaffold for the reconstruction of severed peripheral nerve. PMID:25133160

  12. Coexpression of neurotrophic growth factors and their receptors in human facial motor neurons.

    PubMed

    Li, J M; Brackmann, D E; Hitselberger, W E; Linthicum, F H; Lim, D J

    1999-09-01

    Neuronal development and maintenance of facial motor neurons is believed to be regulated by neurotrophic growth factors. Using celloidin-embedded sections, we evaluated immunoreactivity of 11 neurotrophic factors and their receptors in facial nuclei of human brain stems (4 normal cases, and 1 from a patient with facial palsy and synkinesis). In the normal subjects, positive immunoreactivity of the growth factor neurotrophin-4 and acidic fibroblast growth factor (aFGF) was observed in facial motor neurons, as was positive immunoreactivity against ret, the receptor shared by glial cell line-derived neurotrophic factor and neurturin. Immunoreactivity was moderate for the receptor trkB and strong for trkC. In the case of partial facial palsy, surviving cells failed to show immunoreactivity against neurotrophins. However, immunoreactivity of aFGF was up-regulated in both neuronal and non-neuronal cells in this patient. Results suggest that these trophic growth factors and their receptors may protect facial neurons from secondary degeneration and promote regrowth of the facial nerve after axotomy or injury. PMID:10527284

  13. Synergetic effects of ciliary neurotrophic factor and olfactory ensheathing cells on optic nerve reparation (complete translation)

    PubMed Central

    Yin, Dan-ping; Chen, Qing-ying; Liu, Lin

    2016-01-01

    At present, there is no effective treatment for the repair of the optic nerve after injury, or improvement of its microenvironment for regeneration. Intravitreally injected ciliary neurotrophic factor (CNTF) and olfactory ensheathing cells (OECs) promote the long-distance regrowth of severed optic nerve fibers after intracranial injury. Here, we examined the efficacy of these techniques alone and in combination, in a rat model of optic nerve injury. We injected condensed OEC suspension at the site of injury, or CNTF into the vitreous body, or both simultaneously. Retrograde tracing techniques showed that 4 weeks postoperatively, the number of surviving retinal ganglion cells and their axonal density in the optic nerve were greater in rats subjected to OEC injection only than in those receiving CNTF injection only. Furthermore, combined OEC + CNTF injection achieved better results than either monotherapy. These findings confirm that OECs are better than CNTF at protecting injured neurons in the eye, but that combined OEC and CNTF therapy is notably more effective than either treatment alone. PMID:27482233

  14. Intermittent administration of brain-derived neurotrophic factor ameliorates glucose metabolism in obese diabetic mice.

    PubMed

    Ono, M; Itakura, Y; Nonomura, T; Nakagawa, T; Nakayama, C; Taiji, M; Noguchi, H

    2000-01-01

    We have previously shown that brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family, interacts with the endocrine system in obese diabetic mice, and systemic peripheral administration of BDNF regulates glucose metabolism in this model. Results from the present study show that the hypoglycemic effect induced by 2 weeks' daily administration of BDNF (20 mg/kg/d) to db/db mice lasts for several weeks after treatment cessation, irrespective of food reduction. On the other hand, the antidiabetic agent, metformin had no lasting effect. This duration of the BDNF hypoglycemic action prompted us to examine the efficacy of BDNF intermittent administration on glucose metabolism. BDNF administered once or twice per week (70 mg/kg/wk) to db/db mice for 3 weeks significantly reduced blood glucose concentrations and hemoglobin A(1c), (HbA(1c)) as compared with ad libitum-fed phosphate-buffered saline (PBS)-treated and pair-fed PBS-treated groups. This suggests that BDNF not only temporarily reduced blood glucose concentrations but also ameliorated systemic glucose balance in this obese diabetic mouse model during the experimental period. Our results indicate that BDNF could be a novel hypoglycemic agent with an exceptional ability to normalize glucose metabolism even with treatment as infrequently as once per week. PMID:10647076

  15. Comparative Analysis of the Effects of Neurotrophic Factors CDNF and GDNF in a Nonhuman Primate Model of Parkinson’s Disease

    PubMed Central

    Garea-Rodríguez, Enrique; Eesmaa, Ave; Lindholm, Päivi; Schlumbohm, Christina; König, Jessica; Meller, Birgit; Krieglstein, Kerstin; Helms, Gunther; Saarma, Mart; Fuchs, Eberhard

    2016-01-01

    Cerebral dopamine neurotrophic factor (CDNF) belongs to a newly discovered family of evolutionarily conserved neurotrophic factors. We demonstrate for the first time a therapeutic effect of CDNF in a unilateral 6-hydroxydopamine (6-OHDA) lesion model of Parkinson’s disease in marmoset monkeys. Furthermore, we tested the impact of high chronic doses of human recombinant CDNF on unlesioned monkeys and analyzed the amino acid sequence of marmoset CDNF. The severity of 6-OHDA lesions and treatment effects were monitored in vivo using 123I-FP-CIT (DaTSCAN) SPECT. Quantitative analysis of 123I-FP-CIT SPECT showed a significant increase of dopamine transporter binding activity in lesioned animals treated with CDNF. Glial cell line-derived neurotrophic factor (GDNF), a well-characterized and potent neurotrophic factor for dopamine neurons, served as a control in a parallel comparison with CDNF. By contrast with CDNF, only single animals responded to the treatment with GDNF, but no statistical difference was observed in the GDNF group. However, increased numbers of tyrosine hydroxylase immunoreactive neurons, observed within the lesioned caudate nucleus of GDNF-treated animals, indicate a strong bioactive potential of GDNF. PMID:26901822

  16. Protection of photoreceptor cells from phototoxicity by transplanted retinal pigment epithelial cells expressing different neurotrophic factors.

    PubMed

    Abe, Toshiaki; Saigo, Yoko; Hojo, Masayoshi; Kano, Tetsuya; Wakusawa, Ryosuke; Tokita, Yumi; Tamai, Makoto

    2005-01-01

    Transplantation of cells or tissues and the intravitreal injection of neurotrophic factors are two methods that have been used to treat retinal diseases. The purpose of this study was to examine the effects of combining both methods: the transplantation of retinal pigment epithelial (RPE) cells expressing different neurotrophic factors. The neutrophic factors were Axokine, brain derived-neurotrophic factor (BDNF), and basic fibroblast growth factor (bFGF). The enhanced green fluorescence protein (eGFP) gene was used as a reporter gene. These genes were transduced into RPE cells by lipofection, selected by antibiotics, and transplanted into the subretinal space of 108 rats. The rats were examined at 1 week and 3 months after the transplantation to determine whether the transduced cells were present, were expressing the protein, and were able to protect photoreceptors against phototoxicity. The survival of the transplanted cells was monitored by the presence of eGFP. The degree of protection was determined by the thickness of the outer nuclear layer. Our results showed that the degree of photoreceptor protection was different for the different types of neurotrophic factors at 1 week. After 3 months, the number of surviving transplanted cell was markedly reduced, and protection was observed only with the BDNF-transduced RPE cells. A significant degree of rescue was also observed by BDNF-transduced RPE cells in the nontransplanted area of the retina at both the early and late times. Lymphocytic infiltration was not detected in the vitreous, retina, and choroid at any time. We conclude that the transplantation of BDNF-transduced RPE cells can reduce the photoreceptor damage induced by phototoxicity in the transplanted area and weakly in the nontransplanted area. PMID:16454354

  17. Repetitive acute intermittent hypoxia increases growth/neurotrophic factor expression in non-respiratory motor neurons.

    PubMed

    Satriotomo, I; Nichols, N L; Dale, E A; Emery, A T; Dahlberg, J M; Mitchell, G S

    2016-05-13

    Repetitive acute intermittent hypoxia (rAIH) increases growth/trophic factor expression in respiratory motor neurons, thereby eliciting spinal respiratory motor plasticity and/or neuroprotection. Here we demonstrate that rAIH effects are not unique to respiratory motor neurons, but are also expressed in non-respiratory, spinal alpha motor neurons and upper motor neurons of the motor cortex. In specific, we used immunohistochemistry and immunofluorescence to assess growth/trophic factor protein expression in spinal sections from rats exposed to AIH three times per week for 10weeks (3×wAIH). 3×wAIH increased brain-derived neurotrophic factor (BDNF), its high-affinity receptor, tropomyosin receptor kinase B (TrkB), and phosphorylated TrkB (pTrkB) immunoreactivity in putative alpha motor neurons of spinal cervical 7 (C7) and lumbar 3 (L3) segments, as well as in upper motor neurons of the primary motor cortex (M1). 3×wAIH also increased immunoreactivity of vascular endothelial growth factor A (VEGFA), the high-affinity VEGFA receptor (VEGFR-2) and an important VEGF gene regulator, hypoxia-inducible factor-1α (HIF-1α). Thus, rAIH effects on growth/trophic factors are characteristic of non-respiratory as well as respiratory motor neurons. rAIH may be a useful tool in the treatment of disorders causing paralysis, such as spinal injury and motor neuron disease, as a pretreatment to enhance motor neuron survival during disease, or as preconditioning for cell-transplant therapies. PMID:26944605

  18. Glial cell line-derived neurotrophic factor-conjugated nanoparticles suppress acquisition of cocaine self-administration in rats.

    PubMed

    Green-Sadan, T; Kuttner, Y; Lublin-Tennenbaum, T; Kinor, N; Boguslavsky, Y; Margel, S; Yadid, G

    2005-07-01

    The neurotrophic factor glial cell line-derived neurotrophic factor (GDNF) may have therapeutic potential for preventing and treating cocaine addiction. Previously, we found that transplantation of a GDNF-expressing astrocyte cell line into the striatum and nucleus accumbens attenuates cocaine-seeking behavior in Sprague-Dawley rats. However, as a potential treatment for humans, cell transplantation presents several technical and ethical complications. Nanoparticulate systems are a safe and effective method for introducing exogenous compounds into the brain. Therefore, we examined the effect of GDNF-conjugated nanoparticles microinjected into the striatum and nucleus accumbens on cocaine self-administration in rats. GDNF-conjugated nanoparticles blocked the acquisition of cocaine self-administration compared to control treatments. Furthermore, a cocaine dose response demonstrated that decreased lever response in rats that received GDNF-conjugated nanoparticles persisted after substitution with different cocaine doses. This effect is not due to a non-specific disruption of locomotor or operant behavior, as seen following a water operant task. The current study is one of the first demonstrations that drug-conjugated nanoparticles may be effective in treating brain disorders. These findings suggest that GDNF-conjugated nanoparticles may serve as a novel potential treatment for drug addiction. PMID:15899247

  19. Modulation of visceral hypersensitivity by glial cell line-derived neurotrophic factor family receptor α-3 in colorectal afferents

    PubMed Central

    Shinoda, M.; Feng, B.; Albers, K. M.; Gebhart, G. F.

    2011-01-01

    Irritable bowel syndrome is characterized by colorectal hypersensitivity and contributed to by sensitized mechanosensitive primary afferents and recruitment of mechanoinsensitive (silent) afferents. Neurotrophic factors are well known to orchestrate dynamic changes in the properties of sensory neurons. Although pain modulation by proteins in the glial cell line-derived neurotrophic factor (GDNF) family has been documented in various pathophysiological states, their role in colorectal hypersensitivity remains unexplored. Therefore, we investigated the involvement of the GDNF family receptor α-3 (GFRα3) signaling in visceral hypersensitivity by quantifying visceromotor responses (VMR) to colorectal distension before and after intracolonic treatment with 2,4,6-trinitrobenzene sulfonic acid (TNBS). Baseline responses to colorectal distension did not differ between C57BL/6 and GFRα3 knockout (KO) mice. Relative to intracolonic saline treatment, TNBS significantly enhanced the VMR to colorectal distension in C57BL/6 mice 2, 7, 10, and 14 days posttreatment, whereas TNBS-induced visceral hypersensitivity was significantly suppressed in GFRα3 KO mice. The proportion of GFRα3 immunopositive thoracolumbar and lumbosacral colorectal dorsal root ganglion neurons was significantly elevated 2 days after TNBS treatment. In single fiber recordings, responses to circumferential stretch of colorectal afferent endings in C57BL/6 mice were significantly increased (sensitized) after exposure to an inflammatory soup, whereas responses to stretch did not sensitize in GFRα3 KO mice. These findings suggest that enhanced GFRα3 signaling in visceral afferents may contribute to development of colorectal hypersensitivity. PMID:21193524

  20. Assembly of Neuronal Connectivity by Neurotrophic Factors and Leucine-Rich Repeat Proteins.

    PubMed

    Ledda, Fernanda; Paratcha, Gustavo

    2016-01-01

    Proper function of the nervous system critically relies on sophisticated neuronal networks interconnected in a highly specific pattern. The architecture of these connections arises from sequential developmental steps such as axonal growth and guidance, dendrite development, target determination, synapse formation and plasticity. Leucine-rich repeat (LRR) transmembrane proteins have been involved in cell-type specific signaling pathways that underlie these developmental processes. The members of this superfamily of proteins execute their functions acting as trans-synaptic cell adhesion molecules involved in target specificity and synapse formation or working in cis as cell-intrinsic modulators of neurotrophic factor receptor trafficking and signaling. In this review, we will focus on novel physiological mechanisms through which LRR proteins regulate neurotrophic factor receptor signaling, highlighting the importance of these modulatory events for proper axonal extension and guidance, tissue innervation and dendrite morphogenesis. Additionally, we discuss few examples linking this set of LRR proteins to neurodevelopmental and psychiatric disorders. PMID:27555809

  1. Assembly of Neuronal Connectivity by Neurotrophic Factors and Leucine-Rich Repeat Proteins

    PubMed Central

    Ledda, Fernanda; Paratcha, Gustavo

    2016-01-01

    Proper function of the nervous system critically relies on sophisticated neuronal networks interconnected in a highly specific pattern. The architecture of these connections arises from sequential developmental steps such as axonal growth and guidance, dendrite development, target determination, synapse formation and plasticity. Leucine-rich repeat (LRR) transmembrane proteins have been involved in cell-type specific signaling pathways that underlie these developmental processes. The members of this superfamily of proteins execute their functions acting as trans-synaptic cell adhesion molecules involved in target specificity and synapse formation or working in cis as cell-intrinsic modulators of neurotrophic factor receptor trafficking and signaling. In this review, we will focus on novel physiological mechanisms through which LRR proteins regulate neurotrophic factor receptor signaling, highlighting the importance of these modulatory events for proper axonal extension and guidance, tissue innervation and dendrite morphogenesis. Additionally, we discuss few examples linking this set of LRR proteins to neurodevelopmental and psychiatric disorders. PMID:27555809

  2. Brain-derived neurotrophic factor modulates auditory function in the hearing cochlea.

    PubMed

    Sly, David J; Hampson, Amy J; Minter, Ricki L; Heffer, Leon F; Li, Jack; Millard, Rodney E; Winata, Leon; Niasari, Allen; O'Leary, Stephen J

    2012-02-01

    Neurotrophins prevent spiral ganglion neuron (SGN) degeneration in animal models of ototoxin-induced deafness and may be used in the future to improve the hearing of cochlear implant patients. It is increasingly common for patients with residual hearing to undergo cochlear implantation. However, the effect of neurotrophin treatment on acoustic hearing is not known. In this study, brain-derived neurotrophic factor (BDNF) was applied to the round window membrane of adult guinea pigs for 4 weeks using a cannula attached to a mini-osmotic pump. SGN survival was first assessed in ototoxically deafened guinea pigs to establish that the delivery method was effective. Increased survival of SGNs was observed in the basal and middle cochlear turns of deafened guinea pigs treated with BDNF, confirming that delivery to the cochlea was successful. The effects of BDNF treatment in animals with normal hearing were then assessed using distortion product otoacoustic emissions (DPOAEs), pure tone, and click-evoked auditory brainstem responses (ABRs). DPOAE assessment indicated a mild deficit of 5 dB SPL in treated and control groups at 1 and 4 weeks after cannula placement. In contrast, ABR evaluation showed that BDNF lowered thresholds at specific frequencies (8 and 16 kHz) after 1 and 4 weeks posttreatment when compared to the control cohort receiving Ringer's solution. Longer treatment for 4 weeks not only widened the range of frequencies ameliorated from 2 to 32 kHz but also lowered the threshold by at least 28 dB SPL at frequencies ≥16 kHz. BDNF treatment for 4 weeks also increased the amplitude of the ABR response when compared to either the control cohort or prior to treatment. We show that BDNF applied to the round window reduces auditory thresholds and could potentially be used clinically to protect residual hearing following cochlear implantation. PMID:22086147

  3. CHANGES IN PLASMA MULLERIAN INHIBITING SUBSTANCE AND BRAIN-DERIVED NEUROTROPHIC FACTOR AFTER CHEMOTHERAPY IN PREMENOPAUSAL WOMEN

    PubMed Central

    Aslam, Muhammad Faisal; Merhi, Zaher O; Ahmed, Safaa; Kuzbari, Oumar; Seifer, David B.; Minkoff, Howard

    2010-01-01

    Eight premenopausal women with cancer had blood drawn for brain-derived neurotrophic factor (BDNF) and Mullerian Inhibiting Substance (MIS) before and three months after receiving chemotherapy. Unlike MIS, BDNF levels were not reduced following chemotherapy. PMID:21075370

  4. Inducible expression of neurotrophic factors by mesenchymal progenitor cells derived from traumatically injured human muscle.

    PubMed

    Bulken-Hoover, Jamie D; Jackson, Wesley M; Ji, Youngmi; Volger, Jared A; Tuan, Rocky S; Nesti, Leon J

    2012-06-01

    Peripheral nerve damage frequently accompanies musculoskeletal trauma and repair of these nerves could be enhanced by the targeted application of neurotrophic factors (NTFs), which are typically expressed by endogenous cells that support nerve regeneration. Injured muscle tissues express NTFs to promote reinnervation as the tissue regenerates, but the source of these factors from within the muscles is not fully understood. We have previously identified a population of mesenchymal progenitor cells (MPCs) in traumatized muscle tissue with properties that support tissue regeneration, and our hypothesis was that MPCs also secrete the NTFs that are associated with muscle tissue reinnervation. We determined that MPCs express genes associated with neurogenic function and measured the protein-level expression of specific NTFs with known functions to support nerve regeneration. We also demonstrated the effectiveness of a neurotrophic induction protocol to enhance the expression of the NTFs, which suggests that the expression of these factors may be modulated by the cellular environment. Finally, neurotrophic induction affected the expression of cell surface markers and proliferation rate of the MPCs. Our findings indicate that traumatized muscle-derived MPCs may be useful as a therapeutic cell type to enhance peripheral nerve regeneration following musculoskeletal injury. PMID:21904958

  5. The Effect of Brain-Derived Neurotrophic Factor on Periodontal Furcation Defects

    PubMed Central

    Jimbo, Ryo; Tovar, Nick; Janal, Malvin N.; Mousa, Ramy; Marin, Charles; Yoo, Daniel; Teixeira, Hellen S.; Anchieta, Rodolfo B.; Bonfante, Estevam A.; Konishi, Akihiro; Takeda, Katsuhiro; Kurihara, Hidemi; Coelho, Paulo G.

    2014-01-01

    This study aimed to observe the regenerative effect of brain-derived neurotrophic factor (BDNF) in a non-human primate furcation defect model. Class II furcation defects were created in the first and second molars of 8 non-human primates to simulate a clinical situation. The defect was filled with either, Group A: BDNF (500 µg/ml) in high-molecular weight-hyaluronic acid (HMW-HA), Group B: BDNF (50 µg/ml) in HMW-HA, Group C: HMW-HA acid only, Group D: empty defect, or Group E: BDNF (500 µg/ml) in saline. The healing status for all groups was observed at different time-points with micro computed tomography. The animals were euthanized after 11 weeks, and the tooth-bone specimens were subjected to histologic processing. The results showed that all groups seemed to successfully regenerate the alveolar buccal bone, however, only Group A regenerated the entire periodontal tissue, i.e., alveolar bone, cementum and periodontal ligament. It is suggested that the use of BDNF in combination with a scaffold such as the hyaluronic acid in periodontal furcation defects may be an effective treatment option. PMID:24454754

  6. Activity-dependent scaling of GABAergic synapse strength is regulated by brain-derived neurotrophic factor

    PubMed Central

    Swanwick, Catherine Croft; Murthy, Namita R.; Kapur, Jaideep

    2010-01-01

    The homeostatic plasticity hypothesis suggests that neuronal activity scales synaptic strength. This study analyzed effects of activity deprivation on GABAergic synapses in cultured hippocampal neurons using patch clamp electrophysiology to record mIPSCs and immunocytochemistry to visualize presynaptic GAD-65 and the γ2 subunit of the GABAA receptor. When neural activity was blocked for 48 h with tetrodotoxin (TTX, 1 μM), the amplitude of mIPSCs was reduced, corresponding with diminished sizes of GAD-65 puncta and γ2 clusters. Treatment with the NMDA receptor antagonist APV (50 μM) or the AMPA receptor antagonist DNQX (20 μM) mimicked these effects, and co-application of brain-derived neurotrophic factor (BDNF, 100 ng/mL) overcame them. Moreover, when neurons were treated with BDNF alone for 48 h, these effects were reversed via the TrkB receptor. Overall, these results suggest that activity-dependent scaling of inhibitory synaptic strength can be modulated by BDNF/TrkB-mediated signaling. PMID:16330218

  7. Brain-derived neurotrophic factor and addiction: Pathological versus therapeutic effects on drug seeking.

    PubMed

    Barker, Jacqueline M; Taylor, Jane R; De Vries, Taco J; Peters, Jamie

    2015-12-01

    Many abused drugs lead to changes in endogenous brain-derived neurotrophic factor (BDNF) expression in neural circuits responsible for addictive behaviors. BDNF is a known molecular mediator of memory consolidation processes, evident at both behavioral and neurophysiological levels. Specific neural circuits are responsible for storing and executing drug-procuring motor programs, whereas other neural circuits are responsible for the active suppression of these "seeking" systems. These seeking-circuits are established as associations are formed between drug-associated cues and the conditioned responses they elicit. Such conditioned responses (e.g. drug seeking) can be diminished either through a passive weakening of seeking- circuits or an active suppression of those circuits through extinction. Extinction learning occurs when the association between cues and drug are violated, for example, by cue exposure without the drug present. Cue exposure therapy has been proposed as a therapeutic avenue for the treatment of addictions. Here we explore the role of BDNF in extinction circuits, compared to seeking-circuits that "incubate" over prolonged withdrawal periods. We begin by discussing the role of BDNF in extinction memory for fear and cocaine-seeking behaviors, where extinction circuits overlap in infralimbic prefrontal cortex (PFC). We highlight the ability of estrogen to promote BDNF-like effects in hippocampal-prefrontal circuits and consider the role of sex differences in extinction and incubation of drug-seeking behaviors. Finally, we examine how opiates and alcohol "break the mold" in terms of BDNF function in extinction circuits. PMID:25451116

  8. Human Obesity Associated with an Intronic SNP in the Brain-Derived Neurotrophic Factor Locus

    PubMed Central

    Mou, Zongyang; Hyde, Thomas M.; Lipska, Barbara K.; Martinowich, Keri; Wei, Peter; Ong, Chiew-Jen; Hunter, Lindsay A.; Palaguachi, Gladys I.; Morgun, Eva; Teng, Rujia; Lai, Chen; Condarco, Tania A.; Demidowich, Andrew P.; Krause, Amanda J.; Marshall, Leslie J.; Haack, Karin; Voruganti, V. Saroja; Cole, Shelley A.; Butte, Nancy F.; Comuzzie, Anthony G.; Nalls, Michael A.; Zonderman, Alan B.; Singleton, Andrew B.; Evans, Michele K.; Martin, Bronwen; Maudsley, Stuart; Tsao, Jack W.; Kleinman, Joel E.; Yanovski, Jack A.; Han, Joan C.

    2015-01-01

    SUMMARY Brain-derived neurotrophic factor (BDNF) plays a key role in energy balance. In population studies, single nucleotide polymorphisms (SNPs) of the BDNF locus have been linked with obesity, but the mechanism by which these variants cause weight gain is unknown. Here, we examined human hypothalamic BDNF expression in association with 44 BDNF SNPs. We discovered that the minor C allele of rs12291063 is associated with lower human ventromedial hypothalamic BDNF expression (p<0.001) and greater adiposity in both adult and pediatric cohorts (p’s<0.05). We further demonstrated that the major T allele for rs12291063 possesses a binding capacity for the transcriptional regulator, heterogeneous nuclear ribonucleoprotein D0B, knockdown of which disrupts transactivation by the T allele. Binding and transactivation functions are both disrupted by substituting C for T. These findings provide a rationale for BDNF augmentation as a targeted treatment for obesity in individuals who have the rs12291063 CC genotype. PMID:26526993

  9. Activation of signaling pathways following localized delivery of systemically administered neurotrophic factors across the blood-brain barrier using focused ultrasound and microbubbles

    NASA Astrophysics Data System (ADS)

    Baseri, Babak; Choi, James J.; Deffieux, Thomas; Samiotaki, Gesthimani; Tung, Yao-Sheng; Olumolade, Oluyemi; Small, Scott A.; Morrison, Barclay, III; Konofagou, Elisa E.

    2012-04-01

    The brain-derived neurotrophic factor (BDNF) has been shown to have broad neuroprotective effects in addition to its therapeutic role in neurodegenerative disease. In this study, the efficacy of delivering exogenous BDNF to the left hippocampus is demonstrated in wild-type mice (n = 7) through the noninvasively disrupted blood-brain barrier (BBB) using focused ultrasound (FUS). The BDNF bioactivity was found to be preserved following delivery as assessed quantitatively by immunohistochemical detection of the pTrkB receptor and activated pAkt, pMAPK, and pCREB in the hippocampal neurons. It was therefore shown for the first time that systemically administered neurotrophic factors can cross the noninvasively disrupted BBB and trigger neuronal downstream signaling effects in a highly localized region in the brain. This is the first time that the administered molecule is tracked through the BBB and localized in the neuron triggering molecular effects. Additional preliminary findings are shown in wild-type mice with two additional neurotrophic factors such as the glia-derived neurotrophic factor (n = 12) and neurturin (n = 2). This further demonstrates the impact of FUS for the early treatment of CNS diseases at the cellular and molecular level and strengthens its premise for FUS-assisted drug delivery and efficacy.

  10. Transplantation of ciliary neurotrophic factor-expressing adult oligodendrocyte precursor cells promotes remyelination and functional recovery after spinal cord injury.

    PubMed

    Cao, Qilin; He, Qian; Wang, Yaping; Cheng, Xiaoxin; Howard, Russell M; Zhang, Yiping; DeVries, William H; Shields, Christopher B; Magnuson, David S K; Xu, Xiao-Ming; Kim, Dong H; Whittemore, Scott R

    2010-02-24

    Demyelination contributes to the dysfunction after traumatic spinal cord injury (SCI). We explored whether the combination of neurotrophic factors and transplantation of adult rat spinal cord oligodendrocyte precursor cells (OPCs) could enhance remyelination and functional recovery after SCI. Ciliary neurotrophic factor (CNTF) was the most effective neurotrophic factor to promote oligodendrocyte (OL) differentiation and survival of OPCs in vitro. OPCs were infected with retroviruses expressing enhanced green fluorescent protein (EGFP) or CNTF and transplanted into the contused adult thoracic spinal cord 9 d after injury. Seven weeks after transplantation, the grafted OPCs survived and integrated into the injured spinal cord. The survival of grafted CNTF-OPCs increased fourfold compared with EGFP-OPCs. The grafted OPCs differentiated into adenomatus polyposis coli (APC(+)) OLs, and CNTF significantly increased the percentage of APC(+) OLs from grafted OPCs. Immunofluorescent and immunoelectron microscopic analyses showed that the grafted OPCs formed central myelin sheaths around the axons in the injured spinal cord. The number of OL-remyelinated axons in ventrolateral funiculus (VLF) or lateral funiculus (LF) at the injured epicenter was significantly increased in animals that received CNTF-OPC grafts compared with all other groups. Importantly, 75% of rats receiving CNTF-OPC grafts recovered transcranial magnetic motor-evoked potential and magnetic interenlargement reflex responses, indicating that conduction through the demyelinated axons in VLF or LF, respectively, was partially restored. More importantly, recovery of hindlimb locomotor function was significantly enhanced in animals receiving grafts of CNTF-OPCs. Thus, combined treatment with OPC grafts expressing CNTF can enhance remyelination and facilitate functional recovery after traumatic SCI. PMID:20181596

  11. Assays for the Antiangiogenic and Neurotrophic Serpin Pigment Epithelium-Derived Factor

    PubMed Central

    Subramanian, Preeti; Crawford, Susan E.; Becerra, S. Patricia

    2012-01-01

    Pigment epithelium-derived factor (PEDF) is a secreted serpin that exhibits a variety of interesting biological activities. The multifunctional PEDF has neurotrophic and antiangiogenic properties, and acts in retinal differentiation, survival, and maintenance. It is also antitumorigenic and antimetastatic, and has stem cell self-renewal properties. It is widely distributed in the human body and exists in abundance in the eye as a soluble extracellular glycoprotein. Its levels are altered in diseases characterized by retinopathies and angiogenesis. Its mechanisms of neuroprotection and angiogenesis are associated with receptor interactions at cell-surface interfaces and changes in protein expression. This serpin lacks demonstrable serine protease inhibitory activity, but has binding affinity to extracellular matrix components and cell-surface receptors. Here we describe purification protocols, methods to quantify PEDF, and determine interactions with specific molecules, as well as neurotrophic and angiogenesis assays for this multifunctional protein. PMID:21683255

  12. Treatment with the neurotoxic Aβ (25-35) peptide modulates the expression of neuroprotective factors Pin1, Sirtuin 1, and brain-derived neurotrophic factor in SH-SY5Y human neuroblastoma cells.

    PubMed

    Lattanzio, Francesca; Carboni, Lucia; Carretta, Donatella; Candeletti, Sanzio; Romualdi, Patrizia

    2016-05-01

    The deposition of Amyloid β peptide plaques is a pathological hallmark of Alzheimer's disease (AD). The Aβ (25-35) peptide is regarded as the toxic fragment of full-length Aβ (1-42). The mechanism of its toxicity is not completely understood, along with its contribution to AD pathological processes. The aim of this study was to investigate the effect of the neurotoxic Aβ (25-35) peptide on the expression of the neuroprotective factors Pin1, Sirtuin1, and Bdnf in human neuroblastoma cells. Levels of Pin1, Sirtuin 1, and Bdnf were compared by real-time PCR and Western blotting in SH-SY5Y cells treated with Aβ (25-35) or administration vehicle. The level of Pin1 gene and protein expression was significantly decreased in cells exposed to 25μM Aβ (25-35) compared to vehicle-treated controls. Similarly, Sirtuin1 expression was significantly reduced by Aβ (25-35) exposure. In contrast, both Bdnf mRNA and protein levels were significantly increased by Aβ (25-35) treatment, suggesting the activation of a compensatory response to the insult. Both Pin1 and Sirtuin 1 exert a protective role by reducing the probability of plaque deposition, since they promote amyloid precursor protein processing through non-amyloidogenic pathways. The present results show that Aβ (25-35) peptide reduced the production of these neuroprotective proteins, thus further increasing Aβ generation. PMID:26915812

  13. C3-induced release of neurotrophic factors from Schwann cells - potential mechanism behind its regeneration promoting activity.

    PubMed

    Rohrbeck, Astrid; Stahl, Frank; Höltje, Markus; Hettwer, Timo; Lindner, Patrick; Hagemann, Sandra; Pich, Andreas; Haastert-Talini, Kirsten

    2015-11-01

    Previous studies revealed a peripheral nerve regeneration (PNR)(1) promoting activity of Clostridium botulinum C3(2) exoenzyme or a 26(mer) C-terminal peptide fragment covering amino acids 156-181 (C3(156-181)),(3) when delivered as one-time injection at the lesion site. The current study was performed to 1) investigate if prolonged availability of C3 and C3(156-181) at the lesion site can further enhance PNR in vivo and to 2) elucidate effects of C3 and C3(156-181) on Schwann cells (SCs)(4)in vitro. For in vivo studies, 10 mm adult rat sciatic nerve gaps were reconstructed with the epineurial pouch technique or autologous nerve grafts. Epineurial pouches were filled with a hydrogel containing i) vehicle, ii) 40 μM C3 or iii) 40 μM C3(156-181). Sensory and motor functional recovery was monitored over 12 weeks and the outcome of PNR further analyzed by nerve morphometry. In vitro, we compared gene expression profiles (microarray analysis) and neurotrophic factor expression (western blot analysis) of untreated rat neonatal SCs with those treated with C3 or C3(156-181) for 72 h. Effects on neurotrophic factor expression levels were proven in adult human SCs. Unexpectedly, prolonged delivery of C3 and C3(156-181) at the lesion site did not increase the outcome of PNR. Regarding the potential mechanism underlying their previously detected PNR promoting action, however, 6 genes were found to be commonly altered in SCs upon treatment with C3 or C3(156-181). We demonstrate significant down-regulation of genes involved in glutamate uptake (Eaac1,(5)Grin2a(6)) and changes in neurotrophic factor expression (increase of FGF-2(7) and decrease of NGF(8)). Our microarray-based expression profiling revealed novel C3-regulated genes in SCs possibly involved in the axonotrophic (regeneration promoting) effects of C3 and C3(156-181). Detection of altered neurotrophic factor expression by C3 or C3(156-181) treated primary neonatal rat SCs and primary adult human SCs supports

  14. Brain-derived neurotrophic factor promotes cochlear spiral ganglion cell survival and function in deafened, developing cats.

    PubMed

    Leake, Patricia A; Hradek, Gary T; Hetherington, Alexander M; Stakhovskaya, Olga

    2011-06-01

    Postnatal development and survival of spiral ganglion (SG) neurons depend on both neural activity and neurotrophic support. Our previous studies showed that electrical stimulation from a cochlear implant only partially prevents SG degeneration after early deafness. Thus, neurotrophic agents that might be combined with an implant to improve neural survival are of interest. Recent studies reporting that brain-derived neurotrophic factor (BDNF) promotes SG survival after deafness have been conducted in rodents and limited to relatively short durations. Our study examined longer duration BDNF treatment in deafened cats that may better model the slow progression of SG degeneration in human cochleae, and this is the first study of BDNF in the developing auditory system. Kittens were deafened neonatally, implanted at 4-5 weeks with intracochlear electrodes containing a drug-delivery cannula, and BDNF or artificial perilymph was infused for 10 weeks from a miniosmotic pump. In BDNF-treated cochleae, SG cells grew to normal size and were significantly larger than cells on the contralateral side. However, their morphology was not completely normal, and many neurons lacked or had thinned perikaryl myelin. Unbiased stereology was employed to estimate SG cell density, independent of cell size. BDNF was effective in promoting significantly improved survival of SG neurons in these developing animals. BDNF treatment also resulted in higher density and larger size of myelinated radial nerve fibers, sprouting of fibers into the scala tympani, and improvement of electrically evoked auditory brainstem response thresholds. BDNF may have potential therapeutic value in the developing auditory system, but many serious obstacles currently preclude clinical application. PMID:21452221

  15. Experimental neurotrophic factor therapy leads to cortical synaptic remodeling and compensates for behavioral deficits.

    PubMed Central

    Cuello, A C

    1997-01-01

    This brief review discusses experimental therapy with neurotrophic factors in a model of central nervous system (CNS) neural atrophy and synaptic loss resulting from unilateral cortical infarctions. It discusses the trophic factor protection of the cholinergic phenotype of neurons belonging to the forebrain-to-neocortex projection, as well as the capacity of trophic therapy to elicit synaptogenesis in the cerebral cortex of adult animals. Finally, it addresses the behavioral consequences of trophic factor-induced synaptic remodeling of the neocortex in this model. Images Figure 3 PMID:9002392

  16. Identification of Pro- and Mature Brain-derived Neurotrophic Factor in Human Saliva

    PubMed Central

    Mandel, AL; Ozdener, H; Utermohlen, V

    2009-01-01

    Objective Growth factors, including brain-derived neurotrophic factor (BDNF), are polypeptides that are involved in the maintenance, survival, and death of central and peripheral cells. Numerous growth factors have been identified in saliva and are thought to promote wound healing and maintenance of the oral epithelium. The aim of this study was to determine if BDNF is also found in human saliva. Methods Whole, unstimulated saliva samples (n=30) were analyzed by SDS-PAGE and Western blot using an anti-human BDNF antibody. Proteolytic cleavage products were similarly assessed following the incubation of pooled saliva with N-glycanase F and plasmin. Subjects genotyped for the BDNF Val66Met single nucleotide polymorphism (SNP). Results These experiments revealed the presence of immunoreactive bands at 14, 32 and 34 kD, corresponding to mature (mBDNF) and proBDNF, as well as a truncated pro-form at 24 kD. Not every sample contained all forms of BDNF. Treatment with N-glycanase and plasmin reduced the size of the higher molecular weight bands, confirming the glycosylated pro-form of BDNF. mBDNF was detected significantly less often in subjects with the Val66Met SNP, compared to those without the polymorphism (X2 = 4.05; P<0.05). Conclusions While the function of salivary BDNF still requires elucidation, these findings suggest that it may be possible to use saliva in lieu of blood in future studies of BDNF and the Val66Met polymorphism. PMID:19467646

  17. Serum brain-derived neurotrophic factor and nerve growth factor decreased in chronic ketamine abusers

    PubMed Central

    Ke, Xiaoyin; Ding, Yi; Xu, Ke; He, Hongbo; Zhang, Minling; Wang, Daping; Deng, Xuefeng; Zhang, Xifan; Zhou, Chao; Liu, Yuping; Ning, Yuping; Fan, Ni

    2016-01-01

    Aims This study investigated the serum levels of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) in a group of chronic ketamine abusers in comparison to healthy controls. The correlations between the serum BDNF, NGF level with the subjects’ demographic, pattern of ketamine use were also examined. Methods 93 subjects who met the criteria of ketamine dependence and 39 healthy subjects were recruited. Serum BDNF and NGF levels were assayed by enzyme-linked immunosorbent assay (ELISA). Psychopathological symptoms were assessed using Positive and Negative Syndrome Scale (PANSS), Beck Depression Inventory (BDI) and Beck Anxiety Inventory (BAI). Results Both serum levels of BDNF and NGF were significant lower in the ketamine users compared to the healthy control subjects (9.50 ± 6.68 versus 14.37 ± 6.07 ng/ml, p = 0.019 for BDNF; 1.93 ± 0.80 versus 2.60 ± 1.07 ng/ml, p = 0.011 for NGF). BDNF level was negatively associated with current frequency of ketamine use (r = −0.209, p = 0.045). Conclusions Both BDNF and NGF serum concentrations were significantly lower among chronic ketamine users than among health controls. PMID:25064020

  18. The role of lithium in the treatment of bipolar disorder: convergent evidence for neurotrophic effects as a unifying hypothesis.

    PubMed

    Machado-Vieira, Rodrigo; Manji, Husseini K; Zarate, Carlos A

    2009-06-01

    Lithium has been and continues to be the mainstay of bipolar disorder (BD) pharmacotherapy for acute mood episodes, switch prevention, prophylactic treatment, and suicide prevention. Lithium is also the definitive proof-of-concept agent in BD, although it has recently been studied in other psychoses as well as diverse neurodegenerative disorders. Its neurotrophic effects can be viewed as a unifying model to explain several integrated aspects of the pathophysiology of mood disorders and putative therapeutics for those disorders. Enhancing neuroprotection (which directly involves neurotrophic effects) is a therapeutic strategy intended to slow or halt the progression of neuronal loss, thus producing long-term benefits by favorably influencing outcome and preventing either the onset of disease or clinical decline. The present article: (i) reviews what has been learned regarding lithium's neurotrophic effects since Cade's original studies with this compound; (ii) presents human data supporting the presence of cellular atrophy and death in BD as well as neurotrophic effects associated with lithium in human studies; (iii) describes key direct targets of lithium involved in these neurotrophic effects, including neurotrophins, glycogen synthase kinase 3 (GSK-3), and mitochondrial/endoplasmic reticulum key proteins; and (iv) discusses lithium's neurotrophic effects in models of apoptosis and excitotoxicity as well as its potential neurotrophic effects in models of neurological disorders. Taken together, the evidence reviewed here suggests that lithium's neurotrophic effects in BD are an example of an old molecule acting as a new proof-of-concept agent. Continued work to decipher lithium's molecular actions will likely lead to the development of not only improved therapeutics for BD, but to neurotrophic enhancers that could prove useful in the treatment of many other illnesses. PMID:19538689

  19. Mesencephalic astrocyte-derived neurotrophic factor reduces cell apoptosis via upregulating GRP78 in SH-SY5Y cells.

    PubMed

    Huang, Jingwei; Chen, Changyan; Gu, Hua; Li, Chen; Fu, Xing; Jiang, Ming; Sun, Hui; Xu, Jun; Fang, Jianmin; Jin, Lingjing

    2016-07-01

    Mesencephalic astrocyte-derived neurotrophic factor (MANF) protects dopaminergic neurons from damage. In this study, we used MTT, immunohistochemistry, and TUNEL staining to investigate the protective effect of MANF in SH-SY5Y cells treated with 6-OHDA or overexpressed α-synuclein. Cleaved caspase-3 levels significantly increased in cells treated with 6-OHDA or overexpressed α-synuclein. 6-OHDA or α-synuclein overexpression that induced cleaved caspase-3 levels to increase was reduced by MANF treatment. In addition, MANF treatment upregulated GRP78 expressions in cells treated with 6-OHDA or overexpressed α-synuclein, and RNAi knockdown for GRP78 could block the MANF induced cell survival from 6-OHDA treatment. Furthermore, GRP78 overexpression inhibited 6-OHDA-induced apoptosis. Our data suggest that MANF inhibits apoptosis induced by 6-OHDA and overexpressed α-synuclein in SH-SY5Y cells via upregulating GRP78 in the transcriptional pattern. PMID:27145383

  20. A putative model of overeating and obesity based on brain-derived neurotrophic factor: direct and indirect effects.

    PubMed

    Ooi, Cara L; Kennedy, James L; Levitan, Robert D

    2012-08-01

    Increased food intake is a major contributor to the obesity epidemic in all age groups. Elucidating brain systems that drive overeating and that might serve as targets for novel prevention and treatment interventions is thus a high priority for obesity research. The authors consider 2 major pathways by which decreased activity of brain-derived neurotrophic factor (BDNF) may confer vulnerability to overeating and weight gain in an obesogenic environment. The first "direct" pathway focuses on the specific role of BDNF as a mediator of food intake control at brain areas rich in BDNF receptors, including the hypothalamus and hindbrain. It is proposed that low BDNF activity limited to this direct pathway may best explain overeating and obesity outside the context of major neuropsychiatric disturbance. A second "indirect" pathway considers the broad neurotrophic effects of BDNF on key monoamine systems that mediate mood dysregulation, impulsivity, and executive dysfunction as well as feeding behavior per se. Disruption in this pathway may best explain overeating and obesity in the context of various neuropsychiatric disturbances including mood disorders, attention-deficit disorder, and/or binge eating disorders. An integrative model that considers these potential roles of BDNF in promoting obesity is presented. The implications of this model for the early prevention and treatment of obesity are also considered. PMID:22687148

  1. Exenatide enhances cognitive performance and upregulates neurotrophic factor gene expression levels in diabetic mice.

    PubMed

    Gumuslu, Esen; Mutlu, Oguz; Celikyurt, Ipek K; Ulak, Guner; Akar, Furuzan; Erden, Faruk; Ertan, Merve

    2016-08-01

    Exenatide is a potent and selective agonist for the GLP-1 (glucagon-like peptide-1) receptor. Recent studies are focused on the effects of GLP-1 analogues on hippocampal neurogenesis, cognition, learning and memory functions. The aim of this study was to assess the effects of chronic exenatide treatment (0.1 μg/kg, s.c, twice daily for 2 weeks) on spatial memory functions by using the modified elevated plus maze (mEPM) test and emotional memory functions by using the passive avoidance (PA) test in streptozotocin/nicotinamide (STZ-NA)-induced diabetic mice. As the genes involved in neurite remodelling are among the primary targets of regulation, the effects of diabetes and chronic administration of exenatide on brain-derived neurotrophic factor (BDNF) and cyclic adenosine monophosphate (cAMP) response element binding protein (CREB) messenger ribonucleic acid (mRNA) levels in the hippocampus of mice were also determined using quantitative real-time polymerase chain reaction (RT-PCR). This study revealed that in the mEPM and PA tests, type-2 diabetes-induced mice exhibited significant impairment of learning and memory which were ameliorated by GLP-1 receptor agonist exenatide. Quantitative RT-PCR revealed that CREB and BDNF gene expression levels were downregulated in diabetic mice, and these alterations were increased by exenatide treatment. Since, exenatide improves cognitive ability in STZ/NA-induced diabetic mice and activates molecular mechanisms of memory storage in response to a learning experience, it may be a candidate for alleviation of mood and cognitive disorder. PMID:26935863

  2. Family-based study of brain-derived neurotrophic factor (BDNF) gene polymorphism in alcohol dependence.

    PubMed

    Grzywacz, Anna; Samochowiec, Agnieszka; Ciechanowicz, Andrzej; Samochowiec, Jerzy

    2010-01-01

    Brain-derived neurotrophic factor (BDNF) belongs to a family of proteins related to the nerve growth factor family, which are responsible for the proliferation, survival and differentiation of neurons. BDNF is thought to be involved in the pathogenesis of bipolar disorder, schizophrenia, eating disorders and addiction. We hypothesize that a functionally relevant polymorphism of the BDNF gene promoter may be associated with the pathogenesis of alcohol dependence. We performed an association study of 141 families with alcohol dependence. One hundred and thirty-eight healthy control subjects were matched based on ethnicity and gender. An association between the BDNF Val66Met gene polymorphism and alcoholism was not found. PMID:21098877

  3. Beneficial effects of a neurotrophic peptidergic mixture persist for a prolonged period following treatment interruption in a transgenic model of Alzheimer's disease.

    PubMed

    Rockenstein, Edward; Ubhi, Kiren; Pham, Emiley; Michael, Sarah; Doppler, Edith; Novak, Philipp; Inglis, Chandra; Mante, Michael; Adame, Anthony; Alvarez, X Anton; Moessler, Herbert; Masliah, Eliezer

    2011-11-01

    Neurodegenerative disorders such as Alzheimer's disease (AD) are characterized by the loss of neurotrophic factors, and experimental therapeutical approaches to AD have investigated the efficacy of replacing or augmenting neurotrophic factor activity. Cerebrolysin, a peptide mixture with neurotrophic-like effects, has been shown to improve cognition in patients with AD and to reduce synaptic and behavioral deficits in transgenic (tg) mice overexpressing the amyloid precursor protein (APP). However, it is unclear how long-lasting the beneficial effects of Cerebrolysin are and whether or not behavioral and neuropathological alterations will reappear following treatment interruption. The objective of the present study was to investigate the consequences of interrupting Cerebrolysin treatment (washout effect) 3 and 6 months after the completion of a 3-month treatment period in APP tg mice. We demonstrate that, in APP tg mice, Cerebrolysin-induced amelioration of memory deficits in the water maze and reduction of neurodegenerative pathology persist for 3 months after treatment interruption; however, these effects dissipate 6 months following treatment termination. Immunohistochemical analysis demonstrated that the decrease in neocortical and hippocampal amyloid plaque load observed in Cerebrolysin-treated APP tg mice immediately after treatment was no longer apparent at 3 months after treatment interruption, indicating that the beneficial effects of Cerebrolysin at this time point were independent of its effect on amyloid-β deposition. In conclusion, the results demonstrate that the effects of Cerebrolysin persist for a significant period of time following treatment termination and suggest that this prolonged effect may involve the neurotrophic factor-like activity of Cerebrolysin. PMID:21793038

  4. Time Course of Behavioral Alteration and mRNA Levels of Neurotrophic Factor Following Stress Exposure in Mouse.

    PubMed

    Hashikawa, Naoya; Ogawa, Takumi; Sakamoto, Yusuke; Ogawa, Mami; Matsuo, Yumi; Zamami, Yoshito; Hashikawa-Hobara, Narumi

    2015-08-01

    Stress is known to affect neurotrophic factor expression, which induces depression-like behavior. However, whether there are time-dependent changes in neurotrophic factor mRNA expression following stress remains unclear. In the present study, we tested whether chronic stress exposure induces long-term changes in depression-related behavior, serum corticosterone, and hippocampal proliferation as well as neurotrophic factor family mRNA levels, such as brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), neurotrophin-3 (NT-3), and ciliary neurotrophic factor (CNTF), in the mouse hippocampus. The mRNA level of neurotrophic factors (BDNF, NGF, NT-3, and CNTF) was measured using the real-time PCR. The serum corticosterone level was evaluated by enzyme-linked immunosorbent assay, and, for each subject, the hippocampal proliferation was examined by 5-bromo-2-deoxyuridine immunostaining. Mice exhibited depression-like behavior in the forced-swim test (FST) and decreased BDNF mRNA and hippocampal proliferation in the middle of the stress exposure. After 15 days of stress exposure, we observed increased immobility in the FST, serum corticosterone levels, and BDNF mRNA levels and degenerated hippocampal proliferation, maintained for at least 2 weeks. Anhedonia-like behavior in the sucrose preference test and NGF mRNA levels were decreased following 15 days of stress. NGF mRNA levels were significantly higher 1 week after stress exposure. The current data demonstrate that chronic stress exposure induces prolonged BDNF and NGF mRNA changes and increases corticosterone levels and depression-like behavior in the FST, but does not alter other neurotrophic factors or performance in the sucrose preference test. PMID:25820756

  5. Up-regulation of neurotrophic factors by cinnamon and its metabolite sodium benzoate: therapeutic implications for neurodegenerative disorders.

    PubMed

    Jana, Arundhati; Modi, Khushbu K; Roy, Avik; Anderson, John A; van Breemen, Richard B; Pahan, Kalipada

    2013-06-01

    This study underlines the importance of cinnamon, a widely-used food spice and flavoring material, and its metabolite sodium benzoate (NaB), a widely-used food preservative and a FDA-approved drug against urea cycle disorders in humans, in increasing the levels of neurotrophic factors [e.g., brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3)] in the CNS. NaB, but not sodium formate (NaFO), dose-dependently induced the expression of BDNF and NT-3 in primary human neurons and astrocytes. Interestingly, oral administration of ground cinnamon increased the level of NaB in serum and brain and upregulated the levels of these neurotrophic factors in vivo in mouse CNS. Accordingly, oral feeding of NaB, but not NaFO, also increased the level of these neurotrophic factors in vivo in the CNS of mice. NaB induced the activation of protein kinase A (PKA), but not protein kinase C (PKC), and H-89, an inhibitor of PKA, abrogated NaB-induced increase in neurotrophic factors. Furthermore, activation of cAMP response element binding (CREB) protein, but not NF-κB, by NaB, abrogation of NaB-induced expression of neurotrophic factors by siRNA knockdown of CREB and the recruitment of CREB and CREB-binding protein to the BDNF promoter by NaB suggest that NaB exerts its neurotrophic effect through the activation of CREB. Accordingly, cinnamon feeding also increased the activity of PKA and the level of phospho-CREB in vivo in the CNS. These results highlight a novel neutrophic property of cinnamon and its metabolite NaB via PKA - CREB pathway, which may be of benefit for various neurodegenerative disorders. PMID:23475543

  6. Up-regulation of neurotrophic factors by cinnamon and its metabolite sodium benzoate: Therapeutic implications for neurodegenerative disorders

    PubMed Central

    Jana, Arundhati; Modi, Khushbu K.; Roy, Avik; Anderson, John A.; van Breemen, Richard B.; Pahan, Kalipada

    2013-01-01

    This study underlines the importance of cinnamon, a widely-used food spice and flavoring material, and its metabolite sodium benzoate (NaB), a widely-used food preservative and a FDA-approved drug against urea cycle disorders in humans, in increasing the levels of neurotrophic factors [e.g., brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3)] in the CNS. NaB, but not sodium formate (NaFO), dose-dependently induced the expression of BDNF and NT-3 in primary human neurons and astrocytes. Interestingly, oral administration of ground cinnamon increased the level of NaB in serum and brain and upregulated the levels of these neurotrophic factors in vivo in mouse CNS. Accordingly, oral feeding of NaB, but not NaFO, also increased the level of these neurotrophic factors in vivo in the CNS of mice. NaB induced the activation of protein kinase A (PKA), but not protein kinase C (PKC), and H-89, an inhibitor of PKA, abrogated NaB-induced increase in neurotrophic factors. Furthermore, activation of cAMP response element binding (CREB) protein, but not NF-κB, by NaB, abrogation of NaB-induced expression of neurotrophic factors by siRNA knockdown of CREB and the recruitment of CREB and CREB-binding protein to the BDNF promoter by NaB suggest that NaB exerts its neurotrophic effect through the activation of CREB. Accordingly, cinnamon feeding also increased the activity of PKA and the level of phospho-CREB in vivo in the CNS. These results highlight a novel neutrophic property of cinnamon and its metabolite NaB via PKA – CREB pathway, which may be of benefit for various neurodegenerative disorders. PMID:23475543

  7. Comparing interval and continuous exercise training regimens on neurotrophic factors in rat brain.

    PubMed

    Afzalpour, Mohammad Esmaiel; Chadorneshin, Hossein Taheri; Foadoddini, Mohsen; Eivari, Hossein Abtahi

    2015-08-01

    The research literature suggests that oxidative stress and pro-inflammatory factors influence neurotrophins in vitro. However, there is insufficient information about their effects on exercise training conditions, especially during high intensity trainings. This study aimed to compare the effects of 6weeks of high intensity interval and continuous training regimens on brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), hydrogen peroxide (H2O2), and tumor necrosis factor alpha (TNF-α) in the rat brain. For this purpose, twenty-four Albino Wistar rats were divided into sedentary control (SC), high intensity interval training (HIIT), and continuous training (CT) groups. Both HIIT and CT regimens increased H2O2 level and TNF-α concentration in the brain, and the alterations made were greater following HIIT than CT. In addition, both HIIT and CT regimens increased BDNF and GDNF concentrations significantly, with a higher elevation following HIIT than CT. Furthermore, H2O2 level and TNF-α concentration correlated positively with both BDNF and GDNF concentrations. Generally, high intensity interval training regimen, rather than continuous training regimen, is highly potential to improve BDNF and GDNF through a greater increase in H2O2 and TNF-α as oxidative stress and pro-inflammatory factors. PMID:25868740

  8. Spiral ganglion neuron survival and function in the deafened cochlea following chronic neurotrophic treatment

    PubMed Central

    Landry, Thomas G.; Wise, Andrew K.; Fallon, James B.; Shepherd, Robert K.

    2011-01-01

    Cochlear implants electrically stimulate residual spiral ganglion neurons (SGNs) to provide auditory cues for the severe-profoundly deaf. However, SGNs gradually degenerate following cochlear hair cell loss, leaving fewer neurons available for stimulation. Providing an exogenous supply of neurotrophins (NTs) has been shown to prevent SGN degeneration, and when combined with chronic intracochlear electrical stimulation (ES) following a short period of deafness (5 days), may also promote the formation of new neurons. The present study assessed the histopathological response of guinea pig cochleae treated with NTs (brain-derived neurotrophic factor and neurotrophin-3) with and without ES over a four week period, initiated two-weeks after deafening. Results were compared to both NT alone and artificial perilymph (AP) treated animals. AP/ES treated animals exhibited no evidence of SGN rescue compared with untreated deafened controls. In contrast, NT administration showed a significant SGN rescue effect in the lower and middle cochlear turns (two-way ANOVA, p < 0.05) compared with AP-treated control animals. ES in combination with NT did not enhance SGN survival compared with NT alone. SGN function was assessed by measuring electrically-evoked auditory brainstem response (EABR) thresholds. EABR thresholds following NT treatment were significantly lower than animals treated with AP (two-way ANOVA, p = 0.033). Finally, the potential for induced neurogenesis following the combined treatment was investigated using a marker of DNA synthesis. However, no evidence of neurogenesis was observed in the SGN population. The results indicate that chronic NT delivery to the cochlea may be beneficial to cochlear implant patients by increasing the number of viable SGNs and decreasing activation thresholds compared to chronic ES alone. PMID:21762764

  9. Spiral ganglion neuron survival and function in the deafened cochlea following chronic neurotrophic treatment.

    PubMed

    Landry, Thomas G; Wise, Andrew K; Fallon, James B; Shepherd, Robert K

    2011-12-01

    Cochlear implants electrically stimulate residual spiral ganglion neurons (SGNs) to provide auditory cues for the severe-profoundly deaf. However, SGNs gradually degenerate following cochlear hair cell loss, leaving fewer neurons available for stimulation. Providing an exogenous supply of neurotrophins (NTs) has been shown to prevent SGN degeneration, and when combined with chronic intracochlear electrical stimulation (ES) following a short period of deafness (5 days), may also promote the formation of new neurons. The present study assessed the histopathological response of guinea pig cochleae treated with NTs (brain-derived neurotrophic factor and neurotrophin-3) with and without ES over a four week period, initiated two weeks after deafening. Results were compared to both NT alone and artificial perilymph (AP) treated animals. AP/ES treated animals exhibited no evidence of SGN rescue compared with untreated deafened controls. In contrast, NT administration showed a significant SGN rescue effect in the lower and middle cochlear turns (two-way ANOVA, p < 0.05) compared with AP-treated control animals. ES in combination with NT did not enhance SGN survival compared with NT alone. SGN function was assessed by measuring electrically-evoked auditory brainstem response (EABR) thresholds. EABR thresholds following NT treatment were significantly lower than animals treated with AP (two-way ANOVA, p = 0.033). Finally, the potential for induced neurogenesis following the combined treatment was investigated using a marker of DNA synthesis. However, no evidence of neurogenesis was observed in the SGN population. The results indicate that chronic NT delivery to the cochlea may be beneficial to cochlear implant patients by increasing the number of viable SGNs and decreasing activation thresholds compared to chronic ES alone. PMID:21762764

  10. The gene coding for glial cell line derived neurotrophic factor (GDNF) maps to chromosome 5p12-p13.1

    SciTech Connect

    Schindelhauer, D.; Schuffenhauer, S.; Meitinger, T.

    1995-08-10

    The gene coding for glial cell line derived neurotrophic factor (GDNF) has biological properties that may have potential as a treatment for Parkinson`s and motoneuron diseases. Using the NIGMS Mapping Panel 2, we have localized the GDNF gene to human chromosome 5p12-p13.1. Large NruI and NotI fragments on chromosome 5 will facilitate the construction of a long-range map of the region. 26 refs., 1 fig., 1 tab.

  11. Repair of peripheral nerve defects with chemically extracted acellular nerve allografts loaded with neurotrophic factors-transfected bone marrow mesenchymal stem cells.

    PubMed

    Zhang, Yan-Ru; Ka, Ka; Zhang, Ge-Chen; Zhang, Hui; Shang, Yan; Zhao, Guo-Qiang; Huang, Wen-Hua

    2015-09-01

    Chemically extracted acellular nerve allografts loaded with brain-derived neurotrophic factor-transfected or ciliary neurotrophic factor-transfected bone marrow mesenchymal stem cells have been shown to repair sciatic nerve injury better than chemically extracted acellular nerve allografts alone, or chemically extracted acellular nerve allografts loaded with bone marrow mesenchymal stem cells. We hypothesized that these allografts compounded with both brain-derived neurotrophic factor- and ciliary neurotrophic factor-transfected bone marrow mesenchymal stem cells may demonstrate even better effects in the repair of peripheral nerve injury. We cultured bone marrow mesenchymal stem cells expressing brain-derived neurotrophic factor and/or ciliary neurotrophic factor and used them to treat sciatic nerve injury in rats. We observed an increase in sciatic functional index, triceps wet weight recovery rate, myelin thickness, number of myelinated nerve fibers, amplitude of motor-evoked potentials and nerve conduction velocity, and a shortened latency of motor-evoked potentials when allografts loaded with both neurotrophic factors were used, compared with allografts loaded with just one factor. Thus, the combination of both brain-derived neurotrophic factor and ciliary neurotrophic factor-transfected bone marrow mesenchymal stem cells can greatly improve nerve injury. PMID:26604913

  12. Repair of peripheral nerve defects with chemically extracted acellular nerve allografts loaded with neurotrophic factors-transfected bone marrow mesenchymal stem cells

    PubMed Central

    Zhang, Yan-ru; Ka, Ka; Zhang, Ge-chen; Zhang, Hui; Shang, Yan; Zhao, Guo-qiang; Huang, Wen-hua

    2015-01-01

    Chemically extracted acellular nerve allografts loaded with brain-derived neurotrophic factor-transfected or ciliary neurotrophic factor-transfected bone marrow mesenchymal stem cells have been shown to repair sciatic nerve injury better than chemically extracted acellular nerve allografts alone, or chemically extracted acellular nerve allografts loaded with bone marrow mesenchymal stem cells. We hypothesized that these allografts compounded with both brain-derived neurotrophic factor- and ciliary neurotrophic factor-transfected bone marrow mesenchymal stem cells may demonstrate even better effects in the repair of peripheral nerve injury. We cultured bone marrow mesenchymal stem cells expressing brain-derived neurotrophic factor and/or ciliary neurotrophic factor and used them to treat sciatic nerve injury in rats. We observed an increase in sciatic functional index, triceps wet weight recovery rate, myelin thickness, number of myelinated nerve fibers, amplitude of motor-evoked potentials and nerve conduction velocity, and a shortened latency of motor-evoked potentials when allografts loaded with both neurotrophic factors were used, compared with allografts loaded with just one factor. Thus, the combination of both brain-derived neurotrophic factor and ciliary neurotrophic factor-transfected bone marrow mesenchymal stem cells can greatly improve nerve injury. PMID:26604913

  13. Glial cell line-derived neurotrophic factor gene delivery via a polyethylene imine grafted chitosan carrier

    PubMed Central

    Peng, Yu-Shiang; Lai, Po-Liang; Peng, Sydney; Wu, His-Chin; Yu, Siang; Tseng, Tsan-Yun; Wang, Li-Fang; Chu, I-Ming

    2014-01-01

    Parkinson’s disease is known to result from the loss of dopaminergic neurons. Direct intracerebral injections of high doses of recombinant glial cell line-derived neurotrophic factor (GDNF) have been shown to protect adult nigral dopaminergic neurons. Because GDNF does not cross the blood–brain barrier, intracerebral gene transfer is an ideal option. Chitosan (CHI) is a naturally derived material that has been used for gene transfer. However, the low water solubility often leads to decreased transfection efficiency. Grafting of highly water-soluble polyethylene imines (PEI) and polyethylene glycol onto polymers can increase their solubility. The purpose of this study was to design a non-viral gene carrier with improved water solubility as well as enhanced transfection efficiency for treating Parkinsonism. Two molecular weights (Mw =600 and 1,800 g/mol) of PEI were grafted onto CHI (PEI600-g-CHI and PEI1800-g-CHI, respectively) by opening the epoxide ring of ethylene glycol diglycidyl ether (EX-810). This modification resulted in a non-viral gene carrier with less cytotoxicity. The transfection efficiency of PEI600-g-CHI/deoxyribonucleic acid (DNA) polyplexes was significantly higher than either PEI1800-g-CHI/DNA or CHI/DNA polyplexes. The maximal GDNF expression of PEI600-g-CHI/DNA was at the polymer:DNA weight ratio of 10:1, which was 1.7-fold higher than the maximal GDNF expression of PEI1800-g-CHI/DNA. The low toxicity and high transfection efficiency of PEI600-g-CHI make it ideal for application to GDNF gene therapy, which has potential for the treatment of Parkinson’s disease. PMID:25061293

  14. Intracerebral infusion of a second-generation ciliary neurotrophic factor reduces neuronal loss in rat striatum following experimental intracerebral hemorrhage.

    PubMed

    Del Bigio, M R; Yan, H J; Xue, M

    2001-11-15

    Neuronal and glial cell death in the striatum of a rat model of collagenase-induced intracerebral hemorrhage begins at 1 day and continues for at least 3 weeks. We hypothesized that administration of a neurotrophic agent would reduce neuronal loss in this experimental model. Because it has been shown to protect striatal neurons against excitotoxic injury, a second-generation ciliary neurotrophic factor (CNTF) (AXOKINE) was administered by continuous intracerebral infusion (2 microg/day) beginning 28 h after hemorrhage and continuing for 2 weeks. Magnetic resonance imaging showed that the hematoma size was comparable in control and treated rats prior to treatment. Counts of medium-sized striatal neurons within 320 microm of the hematoma 8 weeks after the hemorrhage revealed a slight but statistically significant benefit with a 42.5% loss in treated rats compared to 51.7% loss in controls. The results suggest that AXOKINE might be protective of striatal neurons in the vicinity of a hemorrhagic lesion. PMID:11701153

  15. Neurotrophic factors in Parkinson's disease are regulated by exercise: Evidence-based practice.

    PubMed

    da Silva, Paula Grazielle Chaves; Domingues, Daniel Desidério; de Carvalho, Litia Alves; Allodi, Silvana; Correa, Clynton Lourenço

    2016-04-15

    We carried out a qualitative review of the literature on the influence of forced or voluntary exercise in Parkinson's Disease (PD)-induced animals, to better understand neural mechanisms and the role of neurotrophic factors (NFs) involved in the improvement of motor behavior. A few studies indicated that forced or voluntary exercise may promote neuroprotection, through upregulation of NF expression, against toxicity of drugs that simulate PD. Forced training, such as treadmill exercise and forced-limb use, adopted in most studies, in addition to voluntary exercise on a running wheel are suitable methods for NFs upregulation. PMID:27000212

  16. Neurotrophic factors in Alzheimer’s disease: role of axonal transport

    PubMed Central

    Schindowski, K; Belarbi, K; Buée, L

    2008-01-01

    Neurotrophic factors (NTF) are small, versatile proteins that maintain survival and function to specific neuronal populations. In general, the axonal transport of NTF is important as not all of them are synthesized at the site of its action. Nerve growth factor (NGF), for instance, is produced in the neocortex and the hippocampus and then retrogradely transported to the cholinergic neurons of the basal forebrain. Neurodegenerative dementias like Alzheimer’s disease (AD) are linked to deficits in axonal transport. Furthermore, they are also associated with imbalanced distribution and dysregulation of NTF. In particular, brain-derived neurotrophic factor (BDNF) plays a crucial role in cognition, learning and memory formation by modulating synaptic plasticity and is, therefore, a critical molecule in dementia and neurodegenerative diseases. Here, we review the changes of NTF expression and distribution (NGF, BDNF, neurotrophin-3, neurotrophin-4/5 and fibroblast growth factor-2) and their receptors [tropomyosin-related kinase (Trk)A, TrkB, TrkC and p75NTR] in AD and AD models. In addition, we focus on the interaction with neuropathological hallmarks Tau/neurofibrillary tangle and amyloid-β (Abeta)/amyloid plaque pathology and their influence on axonal transport processes in order to unify AD-specific cholinergic degeneration and Tau and Abeta misfolding through NTF pathophysiology. PMID:18184369

  17. Action of Administered Ciliary Neurotrophic Factor on the Mouse Dorsal Vagal Complex.

    PubMed

    Senzacqua, Martina; Severi, Ilenia; Perugini, Jessica; Acciarini, Samantha; Cinti, Saverio; Giordano, Antonio

    2016-01-01

    Ciliary neurotrophic factor (CNTF) induces weight loss in obese rodents and humans through activation of the hypothalamic Jak-STAT (Janus kinase-signal transducer and activator of transcription) signaling pathway. Here, we tested the hypothesis that CNTF also affects the brainstem centers involved in feeding and energy balance regulation. To this end, wild-type and leptin-deficient (ob/ob and db/db) obese mice were acutely treated with intraperitoneal recombinant CNTF. Coronal brainstem sections were processed for immunohistochemical detection of STAT3, STAT1, STAT5 phosphorylation and c-Fos. In wild-type mice, CNTF treatment for 45 min induced STAT3, STAT1, and STAT5 phosphorylation in neurons as well as glial cells of the area postrema; here, the majority of CNTF-responsive cells activated multiple STAT isoforms, and a significant proportion of CNTF-responsive glial cells bore the immaturity and plasticity markers nestin and vimentin. After 120 min CNTF treatment, c-Fos expression was intense in glial cells and weak in neurons of the area postrema, it was intense in several neurons of the rostral and caudal solitary tract nucleus (NTS), and weak in some cholinergic neurons of the dorsal motor nucleus of the vagus. In the ob/ob and db/db mice, Jak-STAT activation and c-Fos expression were similar to those induced in wild-type mouse brainstem. Treatment with CNTF (120 min, to induce c-Fos expression) and leptin (25 min, to induce STAT3 phosphorylation) demonstrated the co-localization of the two transcription factors in a small neuron population in the caudal NTS portion. Finally, weak immunohistochemical CNTF staining, detected in funiculus separans, and meningeal glial cells, matched the modest amount of CNTF found by RT-qPCR in micropunched area postrema tissue, which in contrast exhibited a very high amount of CNTF receptor. Collectively, the present findings show that the area postrema and the NTS exhibit high, distinctive responsiveness to circulating

  18. Action of Administered Ciliary Neurotrophic Factor on the Mouse Dorsal Vagal Complex

    PubMed Central

    Senzacqua, Martina; Severi, Ilenia; Perugini, Jessica; Acciarini, Samantha; Cinti, Saverio; Giordano, Antonio

    2016-01-01

    Ciliary neurotrophic factor (CNTF) induces weight loss in obese rodents and humans through activation of the hypothalamic Jak-STAT (Janus kinase-signal transducer and activator of transcription) signaling pathway. Here, we tested the hypothesis that CNTF also affects the brainstem centers involved in feeding and energy balance regulation. To this end, wild-type and leptin-deficient (ob/ob and db/db) obese mice were acutely treated with intraperitoneal recombinant CNTF. Coronal brainstem sections were processed for immunohistochemical detection of STAT3, STAT1, STAT5 phosphorylation and c-Fos. In wild-type mice, CNTF treatment for 45 min induced STAT3, STAT1, and STAT5 phosphorylation in neurons as well as glial cells of the area postrema; here, the majority of CNTF-responsive cells activated multiple STAT isoforms, and a significant proportion of CNTF-responsive glial cells bore the immaturity and plasticity markers nestin and vimentin. After 120 min CNTF treatment, c-Fos expression was intense in glial cells and weak in neurons of the area postrema, it was intense in several neurons of the rostral and caudal solitary tract nucleus (NTS), and weak in some cholinergic neurons of the dorsal motor nucleus of the vagus. In the ob/ob and db/db mice, Jak-STAT activation and c-Fos expression were similar to those induced in wild-type mouse brainstem. Treatment with CNTF (120 min, to induce c-Fos expression) and leptin (25 min, to induce STAT3 phosphorylation) demonstrated the co-localization of the two transcription factors in a small neuron population in the caudal NTS portion. Finally, weak immunohistochemical CNTF staining, detected in funiculus separans, and meningeal glial cells, matched the modest amount of CNTF found by RT-qPCR in micropunched area postrema tissue, which in contrast exhibited a very high amount of CNTF receptor. Collectively, the present findings show that the area postrema and the NTS exhibit high, distinctive responsiveness to circulating

  19. Exposure to Early Life Stress Results in Epigenetic Changes in Neurotrophic Factor Gene Expression in a Parkinsonian Rat Model

    PubMed Central

    Mpofana, Thabisile; Daniels, Willie M. U.; Mabandla, Musa V.

    2016-01-01

    Early life adversity increases the risk of mental disorders later in life. Chronic early life stress may alter neurotrophic factor gene expression including those for brain derived neurotrophic factor (BDNF) and glial cell derived neurotrophic factor (GDNF) that are important in neuronal growth, survival, and maintenance. Maternal separation was used in this study to model early life stress. Following unilateral injection of a mild dose of 6-hydroxydopamine (6-OHDA), we measured corticosterone (CORT) in the blood and striatum of stressed and nonstressed rats; we also measured DNA methylation and BDNF and GDNF gene expression in the striatum using real time PCR. In the presence of stress, we found that there was increased corticosterone concentration in both blood and striatal tissue. Further to this, we found higher DNA methylation and decreased neurotrophic factor gene expression. 6-OHDA lesion increased neurotrophic factor gene expression in both stressed and nonstressed rats but this increase was higher in the nonstressed rats. Our results suggest that exposure to early postnatal stress increases corticosterone concentration which leads to increased DNA methylation. This effect results in decreased BDNF and GDNF gene expression in the striatum leading to decreased protection against subsequent insults later in life. PMID:26881180

  20. Involvement of Brain-Derived Neurotrophic Factor in Late-Life Depression

    PubMed Central

    Dwivedi, Yogesh

    2013-01-01

    Brain-derived neurotrophic factor (BDNF), one of the major neurotrophic factors, plays an important role in the maintenance and survival of neurons, synaptic integrity, and synaptic plasticity. Evidence suggests that BDNF is involved in major depression, such that the level of BDNF is decreased in depressed patients and that antidepressants reverse this decrease. Stress, a major factor in depression, also modulates BDNF expression. These studies have led to the proposal of the neurotrophin hypothesis of depression. Late-life depression is associated with disturbances in structural and neural plasticity as well as impairments in cognitive behavior. Stress and aging also play a crucial role in late-life depression. Many recent studies have suggested that not only expression of BDNF is decreased in the serum/plasma of patients with late-life depression, but structural abnormalities in the brain of these patients may be associated with a polymorphism in the BDNF gene, and that there is a relationship between a BDNF polymorphism and antidepressant remission rates. This review provides a critical review of the involvement of BDNF in major depression, in general, and in late-life depression, in particular. PMID:23570887

  1. Vascular function and brain-derived neurotrophic factor: The functional capacity factor.

    PubMed

    Alomari, Mahmoud A; Khabour, Omar F; Maikano, Abubakar; Alawneh, Khaldoon

    2015-12-01

    Brain-derived neurotrophic factor (BDNF) is essential for neurocognitive function. This study aims at establishing a plausible link between level of serum BDNF, functional capacity (FC), and vascular function in 181 young (age 25.5±9.1 years old), apparently healthy adults. Fasting blood samples were drawn from participants' antecubital veins into plain glass tubes while they were in a sitting position to evaluate serum BDNF using enzyme-linked immunosorbent assay (ELISA). Mercury-in-silastic strain-gauge plethysmography was used to determine arterial function indices, blood flow and vascular resistance at rest and following 5 minutes of arterial ischemia. The 6-minute walk distance (6MWD) test was used to determine FC, according to the American Thoracic Society Committee on Proficiency Standards for Clinical Pulmonary Function Laboratories guidelines. It was conducted in an enclosed corridor on a flat surface with a circular track 33 meters long. The walking course was demarcated with bright colored cones. The 6MWD correlated with BDNF (r=0.3, p=0.000), as well as with forearm blood inflow (r=0.5, p=0.000) and vascular resistance (r = -0.4, p=0.000). Subsequent comparison showed that BDNF and blood inflow were greater (p<0.05) while vascular resistance was less (p<0.05) in participants who achieved a longer 6MWD. Similarly, BDNF correlated with forearm blood inflow (r=0.4, p=0.000) and vascular resistance (r = -0.4, p=0.000). Subsequent comparison showed improved vascular function (p<0.05) in the participants with greater BDNF. In conclusion, these findings might suggest that improved vascular function in individuals with greater FC is mediated, at least partially, by an enhanced serum BDNF level. PMID:26285588

  2. The Complex of Ciliary Neurotrophic Factor-Ciliary Neurotrophic Factor Receptor α Up-Regulates Connexin43 and Intercellular Coupling in Astrocytes via the Janus Tyrosine Kinase/Signal Transducer and Activator of Transcription PathwayD⃞

    PubMed Central

    Ozog, Mark A.; Bernier, Suzanne M.; Bates, Dave C.; Chatterjee, Bishwanath; Lo, Cecilia W.; Naus, Christian C.G.

    2004-01-01

    Cytokines regulate numerous cell processes, including connexin expression and gap junctional coupling. In this study, we examined the effect of ciliary neurotrophic factor (CNTF) on connexin43 (Cx43) expression and intercellular coupling in astrocytes. Murine cortical astrocytes matured in vitro were treated with CNTF (20 ng/ml), soluble ciliary neurotrophic factor receptor α (CNTFRα) (200 ng/ml), or CNTF-CNTFRα. Although CNTF and CNTFRα alone had no effect on Cx43 expression, the heterodimer CNTF-CNTFRα significantly increased both Cx43 mRNA and protein levels. Cx43 immunostaining correlated with increased intercellular coupling as determined by dye transfer analysis. By using the pharmacological inhibitor α-cyano-(3,4-dihydroxy)-N-benzylcinnamide (AG490), the increase in Cx43 was found to be dependent on the Janus tyrosine kinase/signal transducer and activator of transcription (JAK/STAT) pathway. Immunocytochemical analysis revealed that CNTF-CNTFRα treatment produced nuclear localization of phosphorylated STAT3, whereas CNTF treatment alone did not. Transient transfection of constructs containing various sequences of the Cx43 promoter tagged to a LacZ reporter into ROS 17/2.8 cells confirmed that the promoter region between -838 to -1693 was deemed necessary for CNTF-CNTFRα to induce heightened expression. CNTF-CNTFRα did not alter Cx30 mRNA levels, suggesting selectivity of CNTF-CNTFRα for connexin signaling. Together in the presence of soluble receptor, CNTF activates the JAK/STAT pathway leading to enhanced Cx43 expression and intercellular coupling. PMID:15342787

  3. Neuroprotective and neurotrophic effects of long term lithium treatment in mouse brain.

    PubMed

    Riadh, Nciri; Allagui, Mohamed Salah; Bourogaa, Ezzedine; Vincent, Christian; Croute, Françoise; Elfeki, Abdelfattah

    2011-08-01

    Since the worldwide approval of lithium therapy in 1970, lithium has been used for its anti-manic, antidepressant, and anti-suicidal effects. The last decade has witnessed the following discoveries about its neuroprotective and neurotrophic properties, yet the therapeutic mechanisms at the cellular level remain not-fully defined. We have undertaken the present study to determine if chronic lithium treatment, at therapeutically relevant concentrations, exerts neurotrophic/neuroprotective effects in the mouse brain in vivo. For this purpose, 10 months aged mice were fed for 3 months on food pellets contained 1 g (L1 group) or 2 g (L2 group) lithium carbonate/kg, resulting in serum concentrations of 0.4 and 0.8 mM, respectively. The evaluation of lipid peroxidation level and the activities of catalase, superoxide-dismutase and glutathione-peroxidase showed that chronic Li administration, at therapeutic doses doesn't induce oxidative stress in brain tissue. No changes in the expression levels of molecular chaperones, namely, the HSP70, and HSP90 heat shock proteins and the GRP94 glucose-regulated protein were detected. Moreover, this treatment has caused (1) an increase in the relative brain weight (2) a delay in the age induced cerebral glucose impairment (3) an enhancement of the neurogenesis in hippocampus and enthorinal cortex highlighted by silver impregnation. Under these experimental conditions, no modifications were observed in expression levels of GSK3 and of its downstream target β-catenin proteins. These results suggested that chronic Li administration, at therapeutic doses, has a neuroprotective/neurotrophic properties and its therapeutic mechanism doesn't implicate GSK3 inactivation. PMID:21373826

  4. Inflammatory and neuropathic cold allodynia are selectively mediated by the neurotrophic factor receptor GFRα3.

    PubMed

    Lippoldt, Erika K; Ongun, Serra; Kusaka, Geoffrey K; McKemy, David D

    2016-04-19

    Tissue injury prompts the release of a number of proalgesic molecules that induce acute and chronic pain by sensitizing pain-sensing neurons (nociceptors) to heat and mechanical stimuli. In contrast, many proalgesics have no effect on cold sensitivity or can inhibit cold-sensitive neurons and diminish cooling-mediated pain relief (analgesia). Nonetheless, cold pain (allodynia) is prevalent in many inflammatory and neuropathic pain settings, with little known of the mechanisms promoting pain vs. those dampening analgesia. Here, we show that cold allodynia induced by inflammation, nerve injury, and chemotherapeutics is abolished in mice lacking the neurotrophic factor receptor glial cell line-derived neurotrophic factor family of receptors-α3 (GFRα3). Furthermore, established cold allodynia is blocked in animals treated with neutralizing antibodies against the GFRα3 ligand, artemin. In contrast, heat and mechanical pain are unchanged, and results show that, in striking contrast to the redundant mechanisms sensitizing other modalities after an insult, cold allodynia is mediated exclusively by a single molecular pathway, suggesting that artemin-GFRα3 signaling can be targeted to selectively treat cold pain. PMID:27051069

  5. Brain derived neurotrophic factor keeps pattern electroretinogram from dropping after superior colliculus lesion in mice

    PubMed Central

    Yang, Bin-Bin; Yang, Xu; Ding, Huai-Yu

    2016-01-01

    AIM To determine if brain-derived neurotrophic factor (BDNF) could offer protention to retinal ganglion cells following a superior colliculus (SC) lesion in mice using pattern electroretinogram (PERG) and optical coherence tomography (OCT) as a measures of ganglion cell response and retinal health. METHODS Seven C57BL/6J mice with BDNF protection were tested with PERG and OCT before and after SC lesions. RESULTS Compared with baseline PERG, the amplitude of PERG decreased 11.7% after SC lesions, but not significantly (P>0.05). Through fast Fourier transform (FFT) analysis of the PERGs before and after SC lesions, it was found that dominant frequency of PERGs stayed unchanged, suggesting that the ganglion cells of the retina remained relatively healthy inspite of damage to the ends of the ganglion cell axons. Also, OCT showed no changes in retinal thickness after lesions. CONCLUSION It was concluded that BDNF is essential component of normal retinal and helps retina keeping normal function. While retina lack of BDNF, ex vivo resource of BDNF provides protection to the sick retina. It implies that BDNF is a kind therapeutic neurotrophic factor to retina neurodegeneration diseases, such as glaucoma, age related macular degeneration. PMID:27158604

  6. APP-dependent glial cell line-derived neurotrophic factor gene expression drives neuromuscular junction formation.

    PubMed

    Stanga, Serena; Zanou, Nadège; Audouard, Emilie; Tasiaux, Bernadette; Contino, Sabrina; Vandermeulen, Gaëlle; René, Frédérique; Loeffler, Jean-Philippe; Clotman, Frédéric; Gailly, Philippe; Dewachter, Ilse; Octave, Jean-Noël; Kienlen-Campard, Pascal

    2016-05-01

    Besides its crucial role in the pathogenesis of Alzheimer's disease, the knowledge of amyloid precursor protein (APP) physiologic functions remains surprisingly scarce. Here, we show that APP regulates the transcription of the glial cell line-derived neurotrophic factor (GDNF). APP-dependent regulation of GDNF expression affects muscle strength, muscular trophy, and both neuronal and muscular differentiation fundamental for neuromuscular junction (NMJ) maturation in vivo In a nerve-muscle coculture model set up to modelize NMJ formation in vitro, silencing of muscular APP induces a 30% decrease in secreted GDNF levels and a 40% decrease in the total number of NMJs together with a significant reduction in the density of acetylcholine vesicles at the presynaptic site and in neuronal maturation. These defects are rescued by GDNF expression in muscle cells in the conditions where muscular APP has been previously silenced. Expression of GDNF in muscles of amyloid precursor protein null mice corrected the aberrant synaptic morphology of NMJs. Our findings highlight for the first time that APP-dependent GDNF expression drives the process of NMJ formation, providing new insights into the link between APP gene regulatory network and physiologic functions.-Stanga, S., Zanou, N., Audouard, E., Tasiaux, B., Contino, S., Vandermeulen, G., René, F., Loeffler, J.-P., Clotman, F., Gailly, P., Dewachter, I., Octave, J.-N., Kienlen-Campard, P. APP-dependent glial cell line-derived neurotrophic factor gene expression drives neuromuscular junction formation. PMID:26718890

  7. The intricacies of neurotrophic factor therapy for retinal ganglion cell rescue in glaucoma: a case for gene therapy

    PubMed Central

    Foldvari, Marianna; Chen, Ding Wen

    2016-01-01

    Regeneration of damaged retinal ganglion cells (RGC) and their axons is an important aspect of reversing vision loss in glaucoma patients. While current therapies can effectively lower intraocular pressure, they do not provide extrinsic support to RGCs to actively aid in their protection and regeneration. The unmet need could be addressed by neurotrophic factor gene therapy, where plasmid DNA, encoding neurotrophic factors, is delivered to retinal cells to maintain sufficient levels of neurotrophins in the retina. In this review, we aim to describe the intricacies in the design of the therapy including: the choice of neurotrophic factor, the site and route of administration and target cell populations for gene delivery. Furthermore, we also discuss the challenges currently being faced in RGC-related therapy development with special considerations to the existence of multiple RGC subtypes and the lack of efficient and representative in vitro models for rapid and reliable screening in the drug development process. PMID:27482199

  8. Reg-2, A Downstream Signaling Protein in the Ciliary Neurotrophic Factor Survival Pathway, Alleviates Experimental Autoimmune Encephalomyelitis.

    PubMed

    Jiang, Hong; Tian, Ke-Wei; Zhang, Fan; Wang, Beibei; Han, Shu

    2016-01-01

    Ciliary neurotrophic factor (CNTF), originally described as a neurocytokine that could support the survival of neurons, has been recently found to alleviate demyelination, prevent axon loss, and improve functional recovery in a rat model of acute experimental autoimmune encephalomyelitis (EAE). However, poor penetration into the brain parenchyma and unfavorable side effects limit the utility of CNTF. Here, we evaluated the therapeutic potential of a protein downstream of CNTF, regeneration gene protein 2 (Reg-2). Using multiple morphological, molecular biology, and electrophysiological methods to assess neuroinflammation, axonal loss, demyelination, and functional impairment, we observed that Reg-2 and CNTF exert similar effects in the acute phase of EAE. Both treatments attenuated axonal loss and demyelination, improved neuronal survival, and produced functional improvement. With a smaller molecular weight and improved penetration into the brain parenchyma, Reg-2 may be a useful substitute for CNTF therapy in EAE and multiple sclerosis (MS). PMID:27242448

  9. Reg-2, A Downstream Signaling Protein in the Ciliary Neurotrophic Factor Survival Pathway, Alleviates Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Jiang, Hong; Tian, Ke-Wei; Zhang, Fan; Wang, Beibei; Han, Shu

    2016-01-01

    Ciliary neurotrophic factor (CNTF), originally described as a neurocytokine that could support the survival of neurons, has been recently found to alleviate demyelination, prevent axon loss, and improve functional recovery in a rat model of acute experimental autoimmune encephalomyelitis (EAE). However, poor penetration into the brain parenchyma and unfavorable side effects limit the utility of CNTF. Here, we evaluated the therapeutic potential of a protein downstream of CNTF, regeneration gene protein 2 (Reg-2). Using multiple morphological, molecular biology, and electrophysiological methods to assess neuroinflammation, axonal loss, demyelination, and functional impairment, we observed that Reg-2 and CNTF exert similar effects in the acute phase of EAE. Both treatments attenuated axonal loss and demyelination, improved neuronal survival, and produced functional improvement. With a smaller molecular weight and improved penetration into the brain parenchyma, Reg-2 may be a useful substitute for CNTF therapy in EAE and multiple sclerosis (MS). PMID:27242448

  10. Enhanced brain-derived neurotrophic factor delivery by ultrasound and microbubbles promotes white matter repair after stroke.

    PubMed

    Rodríguez-Frutos, Berta; Otero-Ortega, Laura; Ramos-Cejudo, Jaime; Martínez-Sánchez, Patricia; Barahona-Sanz, Inés; Navarro-Hernanz, Teresa; Gómez-de Frutos, María Del Carmen; Díez-Tejedor, Exuperio; Gutiérrez-Fernández, María

    2016-09-01

    Ultrasound-targeted microbubble destruction (UTMD) has been shown to be a promising tool to deliver proteins to select body areas. This study aimed to analyze whether UTMD was able to deliver brain-derived neurotrophic factor (BDNF) to the brain, enhancing functional recovery and white matter repair, in an animal model of subcortical stroke induced by endothelin (ET)-1. UTMD was used to deliver BDNF to the brain 24 h after stroke. This technique was shown to be safe, given there were no cases of hemorrhagic transformation or blood brain barrier (BBB) leakage. UTMD treatment was associated with increased brain BDNF levels at 4 h after administration. Targeted ultrasound delivery of BDNF improved functional recovery associated with fiber tract connectivity restoration, increasing oligodendrocyte markers and remyelination compared to BDNF alone administration in an experimental animal model of white matter injury. PMID:27240161

  11. Ciliary neurotrophic factor improves diabetic parameters and hepatic steatosis and increases basal metabolic rate in db/db mice

    PubMed Central

    Sleeman, M. W.; Garcia, K.; Liu, R.; Murray, J. D.; Malinova, L.; Moncrieffe, M.; Yancopoulos, G. D.; Wiegand, S. J.

    2003-01-01

    Obesity plays a central role in the development of insulin resistance and type 2 diabetes. We therefore examined the effects of a modified form of ciliary neurotrophic factor [Axokine, which is hereafter referred to as ciliary neurotrophic factor (CNTF)Ax15], which uses a leptin-like mechanism to reduce body weight, in the db/db murine model of type 2 diabetes. In previous studies, weight loss produced by CNTF treatment could largely be attributed to its effects on food intake. In contrast, CNTFAx15 treatment of db/db mice caused significantly greater weight loss and marked improvements in diabetic parameters (e.g., levels of glucose, insulin, triglyceride, cholesterol, and nonesterified free fatty acids) than could be accounted for by reduced caloric intake alone. These beneficial effects, above and beyond those seen in animals controlled for either food restriction or body weight, correlated with the ability of CNTFAx15 to increase metabolic rate and energy expenditure and reduce hepatic steatosis while enhancing hepatic responsiveness to insulin. The hepatic effects were linked to rapid alterations in hepatic gene expression, most notably reduced expression of stearoyl-CoA desaturase 1, a rate-limiting enzyme in the synthesis of complex lipids that is also markedly suppressed by leptin in ob/ob mice. These observations further link the mechanisms of CNTF and leptin action, and they suggest important, beneficial effects for CNTF in diabetes that may be distinct from its ability to decrease food intake; instead, these effects may be more related to its influence on energy expenditure and hepatic gene expression. PMID:14610276

  12. Ciliary neurotrophic factor improves diabetic parameters and hepatic steatosis and increases basal metabolic rate in db/db mice.

    PubMed

    Sleeman, M W; Garcia, K; Liu, R; Murray, J D; Malinova, L; Moncrieffe, M; Yancopoulos, G D; Wiegand, S J

    2003-11-25

    Obesity plays a central role in the development of insulin resistance and type 2 diabetes. We therefore examined the effects of a modified form of ciliary neurotrophic factor [Axokine, which is hereafter referred to as ciliary neurotrophic factor (CNTF)Ax15], which uses a leptin-like mechanism to reduce body weight, in the db/db murine model of type 2 diabetes. In previous studies, weight loss produced by CNTF treatment could largely be attributed to its effects on food intake. In contrast, CNTFAx15 treatment of db/db mice caused significantly greater weight loss and marked improvements in diabetic parameters (e.g., levels of glucose, insulin, triglyceride, cholesterol, and nonesterified free fatty acids) than could be accounted for by reduced caloric intake alone. These beneficial effects, above and beyond those seen in animals controlled for either food restriction or body weight, correlated with the ability of CNTFAx15 to increase metabolic rate and energy expenditure and reduce hepatic steatosis while enhancing hepatic responsiveness to insulin. The hepatic effects were linked to rapid alterations in hepatic gene expression, most notably reduced expression of stearoyl-CoA desaturase 1, a rate-limiting enzyme in the synthesis of complex lipids that is also markedly suppressed by leptin in ob/ob mice. These observations further link the mechanisms of CNTF and leptin action, and they suggest important, beneficial effects for CNTF in diabetes that may be distinct from its ability to decrease food intake; instead, these effects may be more related to its influence on energy expenditure and hepatic gene expression. PMID:14610276

  13. REGULATION OF BRAIN-DERIVED NEUROTROPHIC FACTOR MESSENGER RNA LEVELS IN AVIAN HYPOTHALAMIC SLICE CULTURES. (R825294)

    EPA Science Inventory

    Mechanisms regulating the expression of brain-derived neurotrophic factor, a member of the neurotrophin family, have been extensively studied in the rat cerebral cortex, hippocampus and cerebellum. In contrast, little is known regarding the regulation of this growth factor in ...

  14. Dexamethasone and vitamin B12 synergistically promote peripheral nerve regeneration in rats by upregulating the expression of brain-derived neurotrophic factor

    PubMed Central

    Sun, Hongzhi; Yang, Tao; Li, Qing; Zhu, Zhitu; Wang, Lei; Bai, Guang; Li, Dongsheng; Li, Qiang

    2012-01-01

    Introduction Dexamethasone and vitamin B12 are currently used in the clinic to treat peripheral nerve damage but their mechanisms of action remain incompletely understood. In this study we hypothesized that dexamethasone and vitamin B12 promote the production of endogenous neurotrophic factors, thereby enhancing peripheral nerve repair. Material and methods Ninety-six adult male Wistar rats were employed to establish a sciatic nerve injury model. They were then randomly divided into 4 groups to be subjected to different treatment: saline (group A), dexamethasone (group B), vitamin B12 (group C), and dexamethasone combined with vitamin B12 (group D). The walking behavior of rats was evaluated by footprint analysis, and the nerve regeneration was assessed by electrophysiological analysis and ultrastructural examination. The expression of brain-derived neurotrophic factor (BDNF), glial cell-derived neurotrophic factor, NT-3 and IL-6 in the injured sciatic nerves was detected by immunohistochemical and RT-PCR analysis. Results Dexamethasone and vitamin B12 promoted the regeneration of myelinated nerve fibers and the proliferation of Schwann cells. Furthermore, dexamethasone and vitamin B12 promoted the recovery of sciatic functional index and sensory nerve conduction velocity, and upregulated BDNF expression in the injured sciatic nerves. Conclusions Dexamethasone and vitamin B12 promote peripheral nerve repair in a rat model of sciatic nerve injury through the upregulation of BDNF expression. These findings provide new insight into the neurotrophic effects of dexamethasone and vitamin B12 and support the application of these agents in clinical treatment of peripheral nerve injury. PMID:23185205

  15. Responses of serum neurotrophic factors to exercise in pregnant and postpartum women.

    PubMed

    Vega, Sandra Rojas; Kleinert, Jens; Sulprizio, Marion; Hollmann, Wildor; Bloch, Wilhelm; Strüder, Heiko K

    2011-02-01

    It was recently shown in humans that exercise affects the neurotrophic factors known to function as neurogenesis regulators. No data related to exercise and pregnancy, however, is yet available. Thus, we investigated the effects of acute exercise on pregnant women during late pregnancy and women postpartum, on the serum concentration of the brain-derived neurotrophic factor (BDNF), the insulin-like growth factor 1 (IGF-1), the vascular endothelial growth factor (VEGF), prolactin (PRL) and cortisol (COR). Twenty women with uncomplicated pregnancies underwent a graded submaximal exercise test during pregnancy (weeks 32-36 of gestation; T(1)) and postpartum (10-12 weeks after childbirth; T(2)). On two of these test days the women carried out an intensifying exercise test (25 W steps) on a cycle ergometer until a heart rate of 150 bpm was reached. Blood samples were taken in the rest period before beginning the exercise, immediately at the end of the exercise and after recovery periods of 5 and 10 min, respectively. Basal maternal IGF-1, PRL and COR were found to be higher during T(1) (p<.01), while the BDNF was higher during T(2) (p=.00). VEGF was not detectable in the serum of the pregnant women. During T(2), VEGF, which was found to be within the normal range before exercise, was at a higher level after exercise (p<.01). Exercise increased the BDNF and IGF-1 during T(1) and T(2) (p<.01). This study also shows that exercise increases the serum concentrations of IGF-1 and BDNF during pregnancy and postpartum as well as VEGF postpartum. Thus, exercise might be a beneficial lifestyle factor with therapeutic/public health implications i.e. with regard to maternal mood and cognitive performance. PMID:20692101

  16. Brain-derived neurotrophic factor prevents dendritic retraction of adult mouse retinal ganglion cells.

    PubMed

    Binley, Kate E; Ng, Wai S; Barde, Yves-Alain; Song, Bing; Morgan, James E

    2016-08-01

    We used cultured adult mouse retinae as a model system to follow and quantify the retraction of dendrites using diolistic labelling of retinal ganglion cells (RGCs) following explantation. Cell death was monitored in parallel by nuclear staining as 'labelling' with RGC and apoptotic markers was inconsistent and exceedingly difficult to quantify reliably. Nuclear staining allowed us to delineate a lengthy time window during which dendrite retraction can be monitored in the absence of RGC death. The addition of brain-derived neurotrophic factor (BDNF) produced a marked reduction in dendritic degeneration, even when application was delayed for 3 days after retinal explantation. These results suggest that the delayed addition of trophic factors may be functionally beneficial before the loss of cell bodies in the course of conditions such as glaucoma. PMID:27285957

  17. Cometin is a novel neurotrophic factor that promotes neurite outgrowth and neuroblast migration in vitro and supports survival of spiral ganglion neurons in vivo.

    PubMed

    Jørgensen, Jesper Roland; Fransson, Anette; Fjord-Larsen, Lone; Thompson, Lachlan H; Houchins, Jeffrey P; Andrade, Nuno; Torp, Malene; Kalkkinen, Nisse; Andersson, Elisabet; Lindvall, Olle; Ulfendahl, Mats; Brunak, Søren; Johansen, Teit E; Wahlberg, Lars U

    2012-01-01

    Neurotrophic factors are secreted proteins responsible for migration, growth and survival of neurons during development, and for maintenance and plasticity of adult neurons. Here we present a novel secreted protein named Cometin which together with Meteorin defines a new evolutionary conserved protein family. During early mouse development, Cometin is found exclusively in the floor plate and from E13.5 also in dorsal root ganglions and inner ear but apparently not in the adult nervous system. In vitro, Cometin promotes neurite outgrowth from dorsal root ganglion cells which can be blocked by inhibition of the Janus or MEK kinases. In this assay, additive effects of Cometin and Meteorin are observed indicating separate receptors. Furthermore, Cometin supports migration of neuroblasts from subventricular zone explants to the same extend as stromal cell derived factor 1a. Given the neurotrophic properties in vitro, combined with the restricted inner ear expression during development, we further investigated Cometin in relation to deafness. In neomycin deafened guinea pigs, two weeks intracochlear infusion of recombinant Cometin supports spiral ganglion neuron survival and function. In contrast to the control group receiving artificial perilymph, Cometin treated animals retain normal electrically-evoked brainstem response which is maintained several weeks after treatment cessation. Neuroprotection is also evident from stereological analysis of the spiral ganglion. Altogether, these studies show that Cometin is a potent new neurotrophic factor with therapeutic potential. PMID:21985865

  18. Three important components in the regeneration of the cavernous nerve: brain-derived neurotrophic factor, vascular endothelial growth factor and the JAK/STAT signaling pathway.

    PubMed

    Zhang, Hai-Yang; Jin, Xun-Bo; Lue, Tom F

    2011-03-01

    Retroperitoneal operations, such as radical prostatectomy, often damage the cavernous nerve, resulting in a high incidence of erectile dysfunction. Although improved nerve-sparing techniques have reduced the incidence of nerve injury, and the administration of phosphodiesterase type 5 inhibitors has revolutionized the treatment of erectile dysfunction, this problem remains a considerable challenge. In recent years, scientists have focused on brain-derived neurotrophic factor and vascular endothelial growth factor in the treatment of cavernous nerve injury in rat models. Results showed that both compounds were capable of enhancing the regeneration of the cavernous nerve and that activation of the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway played a major role in the process. PMID:21170078

  19. Time-Dependent Serum Brain-Derived Neurotrophic Factor Decline During Methamphetamine Withdrawal.

    PubMed

    Ren, Wenwei; Tao, Jingyan; Wei, Youdan; Su, Hang; Zhang, Jie; Xie, Ying; Guo, Jun; Zhang, Xiangyang; Zhang, Hailing; He, Jincai

    2016-02-01

    Methamphetamine (METH) is a widely abused illegal psychostimulant, which is confirmed to be neurotoxic and of great damage to human. Studies on the role of brain-derived neurotrophic factor (BDNF) in human METH addicts are limited and inconsistent. The purposes of this study are to compare the serum BDNF levels between METH addicts and healthy controls during early withdrawal, and explore the changes of serum BDNF levels during the first month after METH withdrawal.179 METH addicts and 90 age- and gender-matched healthy controls were recruited in this study. We measured serum BDNF levels at baseline (both METH addicts and healthy controls) and at 1 month after abstinence of METH (METH addicts only).Serum BDNF levels of METH addicts at baseline were significantly higher than controls (1460.28  ±  490.69 vs 1241.27  ±  335.52  pg/mL; F = 14.51, P < 0.001). The serum BDNF levels of 40 METH addicts were re-examined after 1 month of METH abstinence, which were significantly lower than that at baseline (1363.70  ±  580.59 vs 1621.41  ±  591.07  pg/mL; t = 2.26, P = .03), but showed no differences to the controls (1363.70  ±  580.59 vs 1241.27  ±  335.52  pg/mL; F = 2.29, P = 0.13).Our study demonstrated that serum BDNF levels were higher in METH addicts than controls during early withdrawal, and were time dependent decreased during the first month of abstinence. These findings may provide further evidence that increased serum BDNF levels may be associated with the pathophysiology of METH addiction and withdrawal and may be a protective response against the subsequent METH-induced neurotoxicity. Besides, these findings may also promote the development of medicine in the treatment of METH addiction and withdrawal. PMID:26844469

  20. Time-Dependent Serum Brain-Derived Neurotrophic Factor Decline During Methamphetamine Withdrawal

    PubMed Central

    Ren, Wenwei; Tao, Jingyan; Wei, Youdan; Su, Hang; Zhang, Jie; Xie, Ying; Guo, Jun; Zhang, Xiangyang; Zhang, Hailing; He, Jincai

    2016-01-01

    Abstract Methamphetamine (METH) is a widely abused illegal psychostimulant, which is confirmed to be neurotoxic and of great damage to human. Studies on the role of brain-derived neurotrophic factor (BDNF) in human METH addicts are limited and inconsistent. The purposes of this study are to compare the serum BDNF levels between METH addicts and healthy controls during early withdrawal, and explore the changes of serum BDNF levels during the first month after METH withdrawal. 179 METH addicts and 90 age- and gender-matched healthy controls were recruited in this study. We measured serum BDNF levels at baseline (both METH addicts and healthy controls) and at 1 month after abstinence of METH (METH addicts only). Serum BDNF levels of METH addicts at baseline were significantly higher than controls (1460.28 ± 490.69 vs 1241.27 ± 335.52 pg/mL; F = 14.51, P < 0.001). The serum BDNF levels of 40 METH addicts were re-examined after 1 month of METH abstinence, which were significantly lower than that at baseline (1363.70 ± 580.59 vs 1621.41 ± 591.07 pg/mL; t = 2.26, P = .03), but showed no differences to the controls (1363.70 ± 580.59 vs 1241.27 ± 335.52 pg/mL; F = 2.29, P = 0.13). Our study demonstrated that serum BDNF levels were higher in METH addicts than controls during early withdrawal, and were time dependent decreased during the first month of abstinence. These findings may provide further evidence that increased serum BDNF levels may be associated with the pathophysiology of METH addiction and withdrawal and may be a protective response against the subsequent METH-induced neurotoxicity. Besides, these findings may also promote the development of medicine in the treatment of METH addiction and withdrawal. PMID:26844469

  1. Treadmill Exercise Induced Functional Recovery after Peripheral Nerve Repair Is Associated with Increased Levels of Neurotrophic Factors

    PubMed Central

    Park, Jae-Sung; Höke, Ahmet

    2014-01-01

    Benefits of exercise on nerve regeneration and functional recovery have been reported in both central and peripheral nervous system disease models. However, underlying molecular mechanisms of enhanced regeneration and improved functional outcomes are less understood. We used a peripheral nerve regeneration model that has a good correlation between functional outcomes and number of motor axons that regenerate to evaluate the impact of treadmill exercise. In this model, the median nerve was transected and repaired while the ulnar nerve was transected and prevented from regeneration. Daily treadmill exercise resulted in faster recovery of the forelimb grip function as evaluated by grip power and inverted holding test. Daily exercise also resulted in better regeneration as evaluated by recovery of compound motor action potentials, higher number of axons in the median nerve and larger myofiber size in target muscles. Furthermore, these observations correlated with higher levels of neurotrophic factors, glial derived neurotrophic factor (GDNF), brain derived neurotrophic factor (BDNF) and insulin-like growth factor-1 (IGF-1), in serum, nerve and muscle suggesting that increase in muscle derived neurotrophic factors may be responsible for improved regeneration. PMID:24618564

  2. Differential expression of human placental neurotrophic factors in preterm and term deliveries.

    PubMed

    Dhobale, Madhavi V; Pisal, Hemlata R; Mehendale, Savita S; Joshi, Sadhana R

    2013-12-01

    Neurotrophic factors such as brain derived neurotrophic factor (BDNF) and nerve growth factor (NGF) are involved in development of the placenta and fetal brain. A series of human and animal studies in our department have shown that micronutrients (folic acid, vitamin B12) and omega 3 fatty acids like DHA are all interlinked in the one carbon cycle. Any alterations in one carbon components will lead to changes in methylation patterns that further affect the gene expression at critical periods of development resulting in complications during pregnancy. This may further contribute to risk for neurodevelopmental disorders in children born preterm. Therefore this study for the first time examines the mRNA levels from preterm and term placentae. A total number of 38 women delivering preterm (<37 weeks gestation) and 37 women delivering at term (=>37 weeks gestation) were recruited. The mRNA levels of BDNF and NGF were analyzed by real time quantitative polymerase chain reaction. Our results indicate that BDNF and NGF mRNA levels were lower in preterm group as compared to term group. There was a positive association of placental BDNF and NGF mRNA levels with cord plasma BDNF and NGF levels. The differential expression of BDNF and NGF gene in preterm placentae may also alter the vascular development in preterm deliveries. Our data suggests that the reduced mRNA levels of BDNF and NGF may possibly be a result of altered epigenetic mechanisms and may have an implication for altered fetal programming in children born preterm. PMID:24076518

  3. Brain-derived neurotrophic factor regulates cell motility in human colon cancer.

    PubMed

    Huang, Ssu-Ming; Lin, Chingju; Lin, Hsiao-Yun; Chiu, Chien-Ming; Fang, Chia-Wei; Liao, Kuan-Fu; Chen, Dar-Ren; Yeh, Wei-Lan

    2015-06-01

    Brain-derived neurotrophic factor (BDNF) is a potent neurotrophic factor that has been shown to affect cancer cell metastasis and migration. In the present study, we investigated the mechanisms of BDNF-induced cell migration in colon cancer cells. The migratory activities of two colon cancer cell lines, HCT116 and SW480, were found to be increased in the presence of human BDNF. Heme oxygenase-1 (HO)-1 is known to be involved in the development and progression of tumors. However, the molecular mechanisms that underlie HO-1 in the regulation of colon cancer cell migration remain unclear. Expression of HO-1 protein and mRNA increased in response to BDNF stimulation. The BDNF-induced increase in cell migration was antagonized by a HO-1 inhibitor and HO-1 siRNA. Furthermore, the expression of vascular endothelial growth factor (VEGF) also increased in response to BDNF stimulation, as did VEGF mRNA expression and transcriptional activity. The increase in BDNF-induced cancer cell migration was antagonized by a VEGF-neutralizing antibody. Moreover, transfection with HO-1 siRNA effectively reduced the increased VEGF expression induced by BDNF. The BDNF-induced cell migration was regulated by the ERK, p38, and Akt signaling pathways. Furthermore, BDNF-increased HO-1 and VEGF promoter transcriptional activity were inhibited by ERK, p38, and AKT pharmacological inhibitors and dominant-negative mutants in colon cancer cells. These results indicate that BDNF increases the migration of colon cancer cells by regulating VEGF/HO-1 activation through the ERK, p38, and PI3K/Akt signaling pathways. The results of this study may provide a relevant contribution to our understanding of the molecular mechanisms by which BDNF promotes colon cancer cell motility. PMID:25876647

  4. Scorpion venom heat-resistant peptide (SVHRP) enhances neurogenesis and neurite outgrowth of immature neurons in adult mice by up-regulating brain-derived neurotrophic factor (BDNF).

    PubMed

    Wang, Tao; Wang, Shi-Wei; Zhang, Yue; Wu, Xue-Fei; Peng, Yan; Cao, Zhen; Ge, Bi-Ying; Wang, Xi; Wu, Qiong; Lin, Jin-Tao; Zhang, Wan-Qin; Li, Shao; Zhao, Jie

    2014-01-01

    Scorpion venom heat-resistant peptide (SVHRP) is a component purified from Buthus martensii Karsch scorpion venom. Although scorpions and their venom have been used in Traditional Chinese Medicine (TCM) to treat chronic neurological disorders, the underlying mechanisms of these treatments remain unknown. We applied SVHRP in vitro and in vivo to understand its effects on the neurogenesis and maturation of adult immature neurons and explore associated molecular mechanisms. SVHRP administration increased the number of 5-bromo-2'-dexoxyuridine (BrdU)-positive cells, BrdU-positive/neuron-specific nuclear protein (NeuN)-positive neurons, and polysialylated-neural cell adhesion molecule (PSA-NCAM)-positive immature neurons in the subventricular zone (SVZ) and subgranular zone (SGZ) of hippocampus. Furthermore immature neurons incubated with SVHRP-pretreated astrocyte-conditioned medium exhibited significantly increased neurite length compared with those incubated with normal astrocyte-conditioned medium. This neurotrophic effect was further confirmed in vivo by detecting an increased average single area and whole area of immature neurons in the SGZ, SVZ and olfactory bulb (OB) in the adult mouse brain. In contrast to normal astrocyte-conditioned medium, higher concentrations of brain-derived neurotrophic factor (BDNF) but not nerve growth factor (NGF) or glial cell line-derived neurotrophic factor (GDNF) was detected in the conditioned medium of SVHRP-pretreated astrocytes, and blocking BDNF using anti-BDNF antibodies eliminated these SVHRP-dependent neurotrophic effects. In SVHRP treated mouse brain, more glial fibrillary acidic protein (GFAP)-positive cells were detected. Furthermore, immunohistochemistry revealed increased numbers of GFAP/BDNF double-positive cells, which agrees with the observed changes in the culture system. This paper describes novel effects of scorpion venom-originated peptide on the stem cells and suggests the potential therapeutic values of SVHRP

  5. Scorpion Venom Heat-Resistant Peptide (SVHRP) Enhances Neurogenesis and Neurite Outgrowth of Immature Neurons in Adult Mice by Up-Regulating Brain-Derived Neurotrophic Factor (BDNF)

    PubMed Central

    Zhang, Yue; Wu, Xue-Fei; Peng, Yan; Cao, Zhen; Ge, Bi-Ying; Wang, Xi; Wu, Qiong; Lin, Jin-Tao; Zhang, Wan-Qin; Li, Shao; Zhao, Jie

    2014-01-01

    Scorpion venom heat-resistant peptide (SVHRP) is a component purified from Buthus martensii Karsch scorpion venom. Although scorpions and their venom have been used in Traditional Chinese Medicine (TCM) to treat chronic neurological disorders, the underlying mechanisms of these treatments remain unknown. We applied SVHRP in vitro and in vivo to understand its effects on the neurogenesis and maturation of adult immature neurons and explore associated molecular mechanisms. SVHRP administration increased the number of 5-bromo-2’-dexoxyuridine (BrdU)-positive cells, BrdU- positive/neuron-specific nuclear protein (NeuN)-positive neurons, and polysialylated-neural cell adhesion molecule (PSA-NCAM)-positive immature neurons in the subventricular zone (SVZ) and subgranular zone (SGZ) of hippocampus. Furthermore immature neurons incubated with SVHRP-pretreated astrocyte-conditioned medium exhibited significantly increased neurite length compared with those incubated with normal astrocyte-conditioned medium. This neurotrophic effect was further confirmed in vivo by detecting an increased average single area and whole area of immature neurons in the SGZ, SVZ and olfactory bulb (OB) in the adult mouse brain. In contrast to normal astrocyte-conditioned medium, higher concentrations of brain-derived neurotrophic factor (BDNF) but not nerve growth factor (NGF) or glial cell line-derived neurotrophic factor (GDNF) was detected in the conditioned medium of SVHRP-pretreated astrocytes, and blocking BDNF using anti-BDNF antibodies eliminated these SVHRP-dependent neurotrophic effects. In SVHRP treated mouse brain, more glial fibrillary acidic protein (GFAP)-positive cells were detected. Furthermore, immunohistochemistry revealed increased numbers of GFAP/BDNF double-positive cells, which agrees with the observed changes in the culture system. This paper describes novel effects of scorpion venom-originated peptide on the stem cells and suggests the potential therapeutic values of

  6. Activation of transcription factors STAT1 and STAT5 in the mouse median eminence after systemic ciliary neurotrophic factor administration.

    PubMed

    Severi, Ilenia; Senzacqua, Martina; Mondini, Eleonora; Fazioli, Francesca; Cinti, Saverio; Giordano, Antonio

    2015-10-01

    Exogenously administered ciliary neurotrophic factor (CNTF) causes weight loss in obese rodents and humans through leptin-like activation of the Jak-STAT3 signaling pathway in hypothalamic arcuate neurons. Here we report for the first time that 40min after acute systemic treatment, rat recombinant CNTF (intraperitoneal injection of 0.3mg/kg of body weight) induced nuclear translocation of the tyrosine-phosphorylated forms of STAT1 and STAT5 in the mouse median eminence and other circumventricular organs, including the vascular organ of the lamina terminalis and the subfornical organ. In the tuberal hypothalamus of treated mice, specific nuclear immunostaining for phospo-STAT1 and phospho-STAT5 was detected in ependymal cells bordering the third ventricle floor and lateral recesses, and in median eminence cells. Co-localization studies documented STAT1 and STAT5 activation in median eminence β-tanycytes and underlying radial glia-like cells. A few astrocytes in the arcuate nucleus responded to CNTF by STAT5 activation. The vast majority of median eminence tanycytes and radial glia-like cells showing phospho-STAT1 and phospho-STAT5 immunoreactivity were also positive for phospho-STAT3. In contrast, STAT3 was the sole STAT isoform activated by CNTF in arcuate nucleus and median eminence neurons. Finally, immunohistochemical evaluation of STAT activation 20, 40, 80, and 120min from the injection demonstrated that cell activation was accompanied by c-Fos expression. Collectively, our findings show that CNTF activates STAT3, STAT1, and STAT5 in vivo. The distinctive activation pattern of these STAT isoforms in the median eminence may disclose novel targets and pathways through which CNTF regulates food intake. PMID:26133794

  7. Developmental Thyroid Hormone Insufficiency Reduces Expression of Brain-Derived Neurotrophic Factor (BDNF) in Adults But Not in Neonates

    EPA Science Inventory

    Brain-derived neurotrophic factor (BDNF) is a neurotrophin critical for many developmental and physiological aspects of CNS function. Severe hypothyroidism in the early neonatal period results in developmental and cognitive impairments and reductions in mRNA and protein expressio...

  8. Recombinant human ciliary neurotrophic factor reduces weight partly by regulating nuclear respiratory factor 1 and mitochondrial transcription factor A.

    PubMed

    Liu, Qing-Shan; Wang, Qiu-Juan; Du, Guan-Hua; Zhu, Shen-Yin; Gao, Mei; Zhang, Li; Zhu, Jun-Ming; Cao, Jian-Feng

    2007-06-01

    Ciliary neurotrophic factor (CNTF) can lead to weight loss by up-regulating energy metabolism and the expression of UCP-1 in mitochondria. To investigate the up-stream regulators of the expression of UCP-1, recombinant human CNTF (rhCNTF) (0.1, 0.3, 0.9 mg/kg/day s.c.) administered to KK-Ay mice for 30 days resulting in reductions in body weight and perirenal fat mass. In brown adipose tissues, the gene expressions of nuclear respiratory factor (NRF)-1, mitochondrial transcription factor A (TFam) and uncoupling protein (UCP)-1 were found up-regulated by rhCNTF. To the best of our knowledge, these effects represent new insights on the mechanisms of action of weight loss by rhCNTF. In addition, we also found that rhCNTF increased the activity of mitochondrial complex IV. The stimulation of NRF-1, TFam, UCP-1 and the enhanced activity of mitochondrial complex IV may be associated with remedying obesity. The result indicates that rhCNTF can enhance the expressions of NRF-1 and TFam, both of which can up-regulate the expression of UCP-1. PMID:17397829

  9. Subthalamic Nucleus Stimulation Increases Brain Derived Neurotrophic Factor in the Nigrostriatal System and Primary Motor Cortex

    PubMed Central

    Spieles-Engemann, Anne L.; Steece-Collier, Kathy; Behbehani, Michael M.; Collier, Timothy J.; Wohlgenant, Susan L.; Kemp, Christopher J.; Cole-Strauss, Allyson; Levine, Nathan D.; Gombash, Sara E.; Thompson, Valerie B.; Lipton, Jack W.; Sortwell, Caryl E.

    2011-01-01

    The mechanisms underlying the effects of long-term deep brain stimulation of the subthalamic nucleus (STN DBS) as a therapy for Parkinson’s disease (PD) remain poorly understood. The present study examined whether functionally effective, long-term STN DBS modulates glial cell line-derived neurotrophic factor (GDNF) and/or brain-derived neurotrophic factor (BDNF) in both unlesioned and unilateral 6-hydroxydopamine lesioned rats. Lesioned rats that received two weeks of continuous unilateral STN DBS exhibited significant improvements in parkinsonian motor behaviors in tests of forelimb akinesia and rearing activity. Unilateral STN DBS did not increase GDNF in the nigrostriatal system, primary motor cortex (M1), or hippocampus of unlesioned rats. In contrast, unilateral STN DBS increased BDNF protein 2–3 fold bilaterally in the nigrostriatal system with the location (substantia nigra vs. striatum) dependent upon lesion status. Further, BDNF protein was bilaterally increased in M1 cortex by as much as 2 fold regardless of lesion status. STN DBS did not impact cortical regions that receive less input from the STN. STN DBS also was associated with bilateral increases in BDNF mRNA in the substantia nigra (SN) and internal globus pallidus (GPi). The increase observed in GPi was completely blocked by pretreatment with 5-Methyl-10,11-dihydro-5 H-dibenzo[a,d]cyclohepten-5,10-imine (MK-801), suggesting that the activation of N-methyl-D-aspartate (NMDA) receptors was involved in this phenomenon. The upregulation of BDNF associated with long term STN DBS suggest that this therapy may exert pronounced and underappreciated effects on plasticity in the basal ganglia circuitry that may play a role in the symptomatic effects of this therapy as well as support the neuroprotective effect of stimulation documented in this rat model. PMID:22328911

  10. Conserved dopamine neurotrophic factor-transduced mesenchymal stem cells promote axon regeneration and functional recovery of injured sciatic nerve.

    PubMed

    Liu, Yi; Nie, Lin; Zhao, Hua; Zhang, Wen; Zhang, Yuan-Qiang; Wang, Shuai-Shuai; Cheng, Lei

    2014-01-01

    Peripheral nerve injury (PNI) is a common disease that often results in axonal degeneration and the loss of neurons, ultimately leading to limited nerve regeneration and severe functional impairment. Currently, there are no effective treatments for PNI. In the present study, we transduced conserved dopamine neurotrophic factor (CDNF) into mesenchymal stem cells (MSCs) in collagen tubes to investigate their regenerative effects on rat peripheral nerves in an in vivo transection model. Scanning electron microscopy of the collagen tubes demonstrated their ability to be resorbed in vivo. We observed notable overexpression of the CDNF protein in the distal sciatic nerve after application of CDNF-MSCs. Quantitative analysis of neurofilament 200 (NF200) and S100 immunohistochemistry showed significant enhancement of axonal and Schwann cell regeneration in the group receiving CDNF-MSCs (CDNF-MSCs group) compared with the control groups. Myelination thickness, axon diameter and the axon-to fiber diameter ratio (G-ratio) were significantly higher in the CDNF-MSCs group at 8 and 12 weeks after nerve transection surgery. After surgery, the sciatic functional index, target muscle weight, wet weight ratio of gastrocnemius muscle and horseradish peroxidase (HRP) tracing demonstrated functional recovery. Light and electron microscopy confirmed successful regeneration of the sciatic nerve. The greater numbers of HRP-labeled neuron cell bodies and increased sciatic nerve index values (SFI) in the CDNF-MSCs group suggest that CDNF exerts neuroprotective effects in vivo. We also observed higher target muscle weights and a significant improvement in muscle atrophism in the CDNF-MSCs group. Collectively, these findings indicate that CDNF gene therapy delivered by MSCs is capable of promoting nerve regeneration and functional recovery, likely because of the significant neuroprotective and neurotrophic effects of CDNF and the superior environment offered by MSCs and collagen tubes. PMID

  11. Conserved Dopamine Neurotrophic Factor-Transduced Mesenchymal Stem Cells Promote Axon Regeneration and Functional Recovery of Injured Sciatic Nerve

    PubMed Central

    Liu, Yi; Nie, Lin; Zhao, Hua; Zhang, Wen; Zhang, Yuan-Qiang; Wang, Shuai-Shuai; Cheng, Lei

    2014-01-01

    Peripheral nerve injury (PNI) is a common disease that often results in axonal degeneration and the loss of neurons, ultimately leading to limited nerve regeneration and severe functional impairment. Currently, there are no effective treatments for PNI. In the present study, we transduced conserved dopamine neurotrophic factor (CDNF) into mesenchymal stem cells (MSCs) in collagen tubes to investigate their regenerative effects on rat peripheral nerves in an in vivo transection model. Scanning electron microscopy of the collagen tubes demonstrated their ability to be resorbed in vivo. We observed notable overexpression of the CDNF protein in the distal sciatic nerve after application of CDNF-MSCs. Quantitative analysis of neurofilament 200 (NF200) and S100 immunohistochemistry showed significant enhancement of axonal and Schwann cell regeneration in the group receiving CDNF-MSCs (CDNF-MSCs group) compared with the control groups. Myelination thickness, axon diameter and the axon-to fiber diameter ratio (G-ratio) were significantly higher in the CDNF-MSCs group at 8 and 12 weeks after nerve transection surgery. After surgery, the sciatic functional index, target muscle weight, wet weight ratio of gastrocnemius muscle and horseradish peroxidase (HRP) tracing demonstrated functional recovery. Light and electron microscopy confirmed successful regeneration of the sciatic nerve. The greater numbers of HRP-labeled neuron cell bodies and increased sciatic nerve index values (SFI) in the CDNF-MSCs group suggest that CDNF exerts neuroprotective effects in vivo. We also observed higher target muscle weights and a significant improvement in muscle atrophism in the CDNF-MSCs group. Collectively, these findings indicate that CDNF gene therapy delivered by MSCs is capable of promoting nerve regeneration and functional recovery, likely because of the significant neuroprotective and neurotrophic effects of CDNF and the superior environment offered by MSCs and collagen tubes. PMID

  12. Local Effect of Heparin Binding Neurotrophic Factor Combined With Chitosan Entubulization on Sciatic Nerve Repair in Rats

    PubMed Central

    Mehrshad, Ali; Seddighnia, Ashkan; Shadabi, Mohammadreza; Najafpour, Alireza; Mohammadi, Rahim

    2016-01-01

    Objective: To assess the effect of on sciatic nerve regeneration in animal model of rat. Methods: Seventy-five male Wistar rats were divided into five experimental groups randomly (each group containing 15 animals): Sham operation group (SHAM), autograft group (AUTO), transected control (TC), chitosan conduit (CHIT) and heparin binding neurotrophic factor treated group (CHIT/HBNF). In AUTO group a segment of sciatic nerve was transected and reimplanted reversely. In SHAM group sciatic nerve was exposed and manipulated. In transected group left sciatic nerve was transected and stumps were fixed in adjacent muscle (TC). In treatment group defect was bridged using a chitosan conduit (CHIT) filled with 10 µL HBNF (CHIT/HBNF). Each group was subdivided into four subgroups of five animals each and nerve fibers were studied in a 12-week period. Results: Behavioral, functional, biomechanical, electrophysiological and gastrocnemius muscle mass findings and morphometric indices confirmed faster recovery of regenerated axons in treatment group than in CHIT group (P=0.001). Immunohistochemical reactions to S-100 in treatment group were more positive than that in CHIT group. Conclusion: Local administration of improved functional recovery and morphometric indices of sciatic nerve. It could be considered as an effective treatment for peripheral nerve repair in practice. PMID:27331064

  13. Resveratrol induces the expression of interleukin-10 and brain-derived neurotrophic factor in BV2 microglia under hypoxia.

    PubMed

    Song, Juhyun; Cheon, So Yeong; Jung, Wonsug; Lee, Won Taek; Lee, Jong Eun

    2014-01-01

    Microglia are the resident macrophages of the central nervous system (CNS) and play an important role in neuronal recovery by scavenging damaged neurons. However, overactivation of microglia leads to neuronal death that is associated with CNS disorders. Therefore, regulation of microglial activation has been suggested to be an important target for treatment of CNS diseases. In the present study, we investigated the beneficial effect of resveratrol, a natural phenol with antioxidant effects, in the microglial cell line, BV2, in a model of hypoxia injury. Resveratrol suppressed the mRNA expression of the pro-inflammatory molecule, tumor necrosis factor-α, and promoted the mRNA expression of the anti-inflammatory molecule, interleukin-10, in BV2 microglia under hypoxic conditions. In addition, resveratrol inhibited the activation of the transcription factor, nuclear factor kappa-light-chain enhancer of activated B cells (NF-κB), which is upstream in the control of inflammatory reactions in hypoxia-injured BV2 microglia. Moreover, resveratrol promoted the expression of brain-derived neurotrophic factor (BDNF) in BV2 microglia under hypoxic stress. Overall, resveratrol may promote the beneficial function of microglia in ischemic brain injury. PMID:25184950

  14. Effect of Brain-Derived Neurotrophic Factor Haploinsufficiency on Stress-Induced Remodeling of Hippocampal Neurons

    PubMed Central

    Magariños, A.M.; Li, C.J.; Toth, J. Gal; Bath, K.G.; Jing, D.; Lee, F.S.; McEwen, B.S.

    2010-01-01

    Chronic restraint stress (CRS) induces the remodeling (i.e., retraction and simplification) of the apical dendrites of hippocampal CA3 pyramidal neurons in rats, suggesting that intrahippocampal connectivity can be affected by a prolonged stressful challenge. Since the structural maintenance of neuronal dendritic arborizations and synaptic connectivity requires neurotrophic support, we investigated the potential role of brain derived neurotrophic factor (BDNF), a neurotrophin enriched in the hippocampus and released from neurons in an activity-dependent manner, as a mediator of the stress-induced dendritic remodeling. The analysis of Golgi-impregnated hippocampal sections revealed that wild type (WT) C57BL/6 male mice showed a similar CA3 apical dendritic remodeling in response to three weeks of CRS to that previously described for rats. Haploinsufficient BDNF mice (BDNF±) did not show such remodeling, but, even without CRS, they presented shorter and simplified CA3 apical dendritic arbors, like those observed in stressed WT mice. Furthermore, unstressed BDNF± mice showed a significant decrease in total hippocampal volume. The dendritic arborization of CA1 pyramidal neurons was not affected by CRS or genotype. However, only in WT mice, CRS induced changes in the density of dendritic spine shape subtypes in both CA1 and CA3 apical dendrites. These results suggest a complex role of BDNF in maintaining the dendritic and spine morphology of hippocampal neurons and the associated volume of the hippocampal formation. The inability of CRS to modify the dendritic structure of CA3 pyramidal neurons in BDNF± mice suggests an indirect, perhaps permissive, role of BDNF in mediating hippocampal dendritic remodeling. PMID:20095008

  15. Novel neuroprotective mechanisms of memantine: increase in neurotrophic factor release from astroglia and anti-inflammation by preventing microglial activation.

    PubMed

    Wu, Hung-Ming; Tzeng, Nian-Sheng; Qian, Li; Wei, Sung-Jen; Hu, Xiaoming; Chen, Shih-Heng; Rawls, Scott M; Flood, Patrick; Hong, Jau-Shyong; Lu, Ru-Band

    2009-09-01

    Memantine shows clinically relevant efficacy in patients with Alzheimer's disease and Parkinson's disease. Most in vivo and in vitro studies attribute the neuroprotective effects of memantine to the blockade of N-methyl-D-aspartate (NMDA) receptor on neurons. However, it cannot be excluded that mechanisms other than NMDA receptor blockade may contribute to the neuroprotective effects of this compound. To address this question, primary midbrain neuron-glia cultures and reconstituted cultures were used, and lipopolysaccharide (LPS), an endotoxin from bacteria, was used to produce inflammation-mediated dopaminergic (DA) neuronal death. Here, we show that memantine exerted both potent neurotrophic and neuroprotective effects on DA neurons in rat neuron-glia cultures. The neurotrophic effect of memantine was glia dependent, as memantine failed to show any positive effect on DA neurons in neuron-enriched cultures. More specifically, it seems to be that astroglia, not microglia, are the source of the memantine-elicited neurotrophic effects through the increased production of glial cell line-derived neurotrophic factor (GDNF). Mechanistic studies showed that GDNF upregulation was associated with histone hyperacetylation by inhibiting the cellular histone deacetylase activity. In addition, memantine also displays neuroprotective effects against LPS-induced DA neuronal damage through its inhibition of microglia activation showed by both OX-42 immunostaining and reduction of pro-inflammatory factor production, such as extracellular superoxide anion, intracellular reactive oxygen species, nitric oxide, prostaglandin E(2), and tumor necrosis factor-alpha. These results suggest that the neuroprotective effects of memantine shown in our cell culture studies are mediated in part through alternative novel mechanisms by reducing microglia-associated inflammation and by stimulating neurotrophic factor release from astroglia. PMID:19536110

  16. Affinity-based release of glial-derived neurotrophic factor from fibrin matrices enhances sciatic nerve regeneration†

    PubMed Central

    Wood, Matthew D.; Moore, Amy M.; Hunter, Daniel A.; Tuffaha, Sami; Borschel, Gregory H.; Mackinnon, Susan E.; Sakiyama-Elbert, Shelly E.

    2008-01-01

    Glial-derived neurotrophic factor (GDNF) promotes both sensory and motor neuron survival. The delivery of GDNF to the peripheral nervous system has been shown to enhance regeneration following injury. In this study we evaluated the effect of affinity-based delivery of GDNF from a fibrin matrix in a nerve guidance conduit on nerve regeneration in a 13 mm rat sciatic nerve defect. Seven experimental groups were evaluated which received GDNF or nerve growth factor (NGF) with the delivery system within the conduit, control groups excluding one or more components of the delivery system, and nerve isografts. Nerves were harvested 6 weeks after treatment for analysis by histomorphometry and electron microscopy. The use of the delivery system (DS) with either GDNF or NGF resulted in a higher frequency of nerve regeneration vs. control groups, as evidenced by a neural structure spanning the 13 mm gap. The GDNF DS and NGF DS groups were also similar to the nerve isograft group in measures of nerve fiber density, percent neural tissue and myelinated area measurements, but not in terms of total fiber counts. In addition, both groups contained a significantly greater percentage of larger diameter fibers, with GDNF DS having the largest in comparison to all groups, suggesting more mature neural content. The delivery of GDNF via the affinity-based delivery system can enhance peripheral nerve regeneration through a silicone conduit across a critical nerve gap and offers insight into potential future alternatives to the treatment of peripheral nerve injuries. PMID:19103514

  17. Neurotrophic factors for spinal cord repair: Which, where, how and when to apply, and for what period of time?

    PubMed

    Harvey, Alan R; Lovett, Sarah J; Majda, Bernadette T; Yoon, Jun H; Wheeler, Lachlan P G; Hodgetts, Stuart I

    2015-09-01

    A variety of neurotrophic factors have been used in attempts to improve morphological and behavioural outcomes after experimental spinal cord injury (SCI). Here we review many of these factors, their cellular targets, and their therapeutic impact on spinal cord repair in different, primarily rodent, models of SCI. A majority of studies report favourable outcomes but results are by no means consistent, thus a major aim of this review is to consider how best to apply neurotrophic factors after SCI to optimize their therapeutic potential. In addition to which factors are chosen, many variables need be considered when delivering trophic support, including where and when to apply a given factor or factors, how such factors are administered, at what dose, and for how long. Overall, the majority of studies have applied neurotrophic support in or close to the spinal cord lesion site, in the acute or sub-acute phase (0-14 days post-injury). Far fewer chronic SCI studies have been undertaken. In addition, comparatively fewer studies have administered neurotrophic factors directly to the cell bodies of injured neurons; yet in other instructive rodent models of CNS injury, for example optic nerve crush or transection, therapies are targeted directly at the injured neurons themselves, the retinal ganglion cells. The mode of delivery of neurotrophic factors is also an important variable, whether delivered by acute injection of recombinant proteins, sub-acute or chronic delivery using osmotic minipumps, cell-mediated delivery, delivery using polymer release vehicles or supporting bridges of some sort, or the use of gene therapy to modify neurons, glial cells or precursor/stem cells. Neurotrophic factors are often used in combination with cell or tissue grafts and/or other pharmacotherapeutic agents. Finally, the dose and time-course of delivery of trophic support should ideally be tailored to suit specific biological requirements, whether they relate to neuronal survival, axonal

  18. Modulatory effect of coffee fruit extract on plasma levels of brain-derived neurotrophic factor in healthy subjects.

    PubMed

    Reyes-Izquierdo, Tania; Nemzer, Boris; Shu, Cynthia; Huynh, Lan; Argumedo, Ruby; Keller, Robert; Pietrzkowski, Zb

    2013-08-28

    The present single-dose study was performed to assess the effect of whole coffee fruit concentrate powder (WCFC), green coffee caffeine powder (N677), grape seed extract powder (N31) and green coffee bean extract powder (N625) on blood levels of brain-derived neurotrophic factor (BDNF). Randomly assorted groups of fasted subjects consumed a single, 100mg dose of each material. Plasma samples were collected at time zero (T0) and at 30 min intervals afterwards, up to 120 min. A total of two control groups were included: subjects treated with silica dioxide (as placebo) or with no treatment. The collected data revealed that treatments with N31 and N677 increased levels of plasma BDNF by about 31% under these experimental conditions, whereas treatment with WCFC increased it by 143% (n 10), compared with baseline. These results indicate that WCFC could be used for modulation of BDNF-dependent health conditions. However, larger clinical studies are needed to support this possibility. PMID:23312069

  19. Vagal Nerve Stimulation Rapidly Activates Brain-Derived Neurotrophic Factor Receptor TrkB in Rat Brain

    PubMed Central

    Frazer, Alan

    2012-01-01

    Background Vagal nerve stimulation (VNS) has been approved for treatment-resistant depression. Many antidepressants increase expression of brain-derived neurotrophic factor (BDNF) in brain or activate, via phosphorylation, its receptor, TrkB. There have been no studies yet of whether VNS would also cause phosphorylation of TrkB. Methods Western blot analysis was used to evaluate the phosphorylation status of TrkB in the hippocampus of rats administered VNS either acutely or chronically. Acute effects of VNS were compared with those caused by fluoxetine or desipramine (DMI) whereas its chronic effects were compared with those of sertraline or DMI. Results All treatments, given either acutely or chronically, significantly elevated phosphorylation of tyrosines 705 and 816 on TrkB in the hippocampus. However, only VNS increased the phosphorylation of tyrosine 515, with both acute and chronic administration causing this effect. Pretreatment with K252a, a nonspecific tyrosine kinase inhibitor, blocked the phosphorylation caused by acute VNS at all three tyrosines. Downstream effectors of Y515, namely Akt and ERK, were also phosphorylated after acute treatment with VNS, whereas DMI did not cause this effect. Conclusion VNS rapidly activates TrkB phosphorylation and this effect persists over time. VNS-induced phosphorylation of tyrosine 515 is distinct from the effect of standard antidepressant drugs. PMID:22563458

  20. Effects of ciliary neurotrophic factor and leukemia inhibiting factor on oxytocin and vasopressin magnocellular neuron survival in rat and mouse hypothalamic organotypic cultures

    PubMed Central

    House, Shirley B.; Li, Congyu; Yue, Chunmei; Gainer, Harold

    2008-01-01

    Organotypic cultures of mouse and rat magnocellular neurons (MCNs) in the hypothalamo-neurohypophysial system (HNS) have served as important experimental models for the molecular and physiological study of this neuronal phenotype. However, it has been difficult to maintain significant numbers of the MCNs, particularly vasopressin MCNs, in these cultures for long periods. In this paper, we describe the use of the neurotrophic factors, leukemia inhibiting factor (LIF) and ciliary neurotrophic factor (CNTF) to rescue rat vasopressin (Avp)- and oxytocin (Oxt) – MCNs from axotomy-induced, programmed cell death in vitro. Quantitative data are presented for the efficacy of the LIF family of neurotrophic factors on the survival of MCNs in three nuclei, the paraventricular (PVN), supraoptic (SON), and accessory (ACC) nuclei in the mouse and rat hypothalamus. PMID:19118574

  1. Growth and turning properties of adult glial cell-derived neurotrophic factor coreceptor α1 nonpeptidergic sensory neurons.

    PubMed

    Guo, GuiFang; Singh, Vandana; Zochodne, Douglas W

    2014-09-01

    An overlapping population of adult primary sensory neurons that innervate the skin express the glial cell-derived neurotrophic factor coreceptor α1 (GFRα1), the lectin IB4, and the "regenerative brake" phosphatase and tensin homolog deleted on chromosome 10. Using an adapted turning and growth assay, we analyzed the growth cone behavior of adult immunoselected GFRα1 sensory neurons. These neurons had less robust baseline growth and reluctant responsiveness to individual growth factors but responded to synergistic types of input from glial cell-derived neurotrophic factor, hepatocyte growth factor, a phosphatase and tensin homolog deleted on chromosome 10 inhibitor, or a downstream Rho kinase inhibitor. Hepatocyte growth factor and the phosphatase and tensin homolog deleted on chromosome 10 inhibitor were associated with growth cone turning. A gradient of protein extracted from skin samples, a primary target of GFRα1 axons, replicated the impact of synergistic support. Within the skin, glial cell-derived neurotrophic factor was expressed within epidermal axons, indicating an autocrine role accompanying local hepatocyte growth factor synthesis. Taken together, our findings identify unique growth properties and plasticity of a distinct population of epidermal axons that are relevant to neurologic repair and skin reinnervation. PMID:25101700

  2. SOX11 MODULATES BRAIN-DERIVED NEUROTROPHIC FACTOR EXPRESSION IN AN EXON PROMOTER-SPECIFIC MANNER

    PubMed Central

    Salerno, Kathleen M.; Jing, Xiaotang; Diges, Charlotte M.; Cornuet, Pamela K.; Glorioso, Joseph C.; Albers, Kathryn M.

    2011-01-01

    Sox11 is a high mobility group (HMG) containing transcription factor that is significantly elevated in peripheral neurons in response to nerve injury. In vitro and in vivo studies support a central role for Sox11 in adult neuron growth and survival following injury. Brain-derived neurotrophic factor (BDNF) is a pleiotropic growth factor that has effects on neuronal survival, differentiation, synaptic plasticity and regeneration. BDNF transcription is elevated in the DRG following nerve injury in parallel with Sox11 allowing for the possible regulation by Sox11. To begin to assess the possible influence of Sox11 we used reverse transcriptase PCR assays to determine the relative expression of the nine (I-IXa) noncoding exons and one coding exon (exon IX) of the BDNF gene after sciatic nerve axotomy in the mouse. Exons with upstream promoter regions containing the Sox binding motif 5′-AACAAAG-3′ (I, IV, VII and VIII) were increased at 1d or 3d following axotomy. Exons 1 and IV showed the greatest increase and only exon 1 remained elevated at 3d. Luciferase assays showed that Sox11 could activate the most highly regulated exons, I and IV, and that this activation was reduced by mutation of putative Sox binding sites. Exon expression in injured DRG neurons had some overlap with Neuro2a cells that overexpress Sox11, showing elevation in exon IV and VII transcripts. These findings indicate cell type and contextual specificity of Sox11 in modulation of BDNF transcription. PMID:22331573

  3. Brain-derived neurotrophic factor is associated with age-related decline in hippocampal volume.

    PubMed

    Erickson, Kirk I; Prakash, Ruchika Shaurya; Voss, Michelle W; Chaddock, Laura; Heo, Susie; McLaren, Molly; Pence, Brandt D; Martin, Stephen A; Vieira, Victoria J; Woods, Jeffrey A; McAuley, Edward; Kramer, Arthur F

    2010-04-14

    Hippocampal volume shrinks in late adulthood, but the neuromolecular factors that trigger hippocampal decay in aging humans remains a matter of speculation. In rodents, brain-derived neurotrophic factor (BDNF) promotes the growth and proliferation of cells in the hippocampus and is important in long-term potentiation and memory formation. In humans, circulating levels of BDNF decline with advancing age, and a genetic polymorphism for BDNF has been related to gray matter volume loss in old age. In this study, we tested whether age-related reductions in serum levels of BDNF would be related to shrinkage of the hippocampus and memory deficits in older adults. Hippocampal volume was acquired by automated segmentation of magnetic resonance images in 142 older adults without dementia. The caudate nucleus was also segmented and examined in relation to levels of serum BDNF. Spatial memory was tested using a paradigm in which memory load was parametrically increased. We found that increasing age was associated with smaller hippocampal volumes, reduced levels of serum BDNF, and poorer memory performance. Lower levels of BDNF were associated with smaller hippocampi and poorer memory, even when controlling for the variation related to age. In an exploratory mediation analysis, hippocampal volume mediated the age-related decline in spatial memory and BDNF mediated the age-related decline in hippocampal volume. Caudate nucleus volume was unrelated to BDNF levels or spatial memory performance. Our results identify serum BDNF as a significant factor related to hippocampal shrinkage and memory decline in late adulthood. PMID:20392958

  4. Increased serum brain-derived neurotrophic factor (BDNF) levels in patients with narcolepsy.

    PubMed

    Klein, Anders B; Jennum, Poul; Knudsen, Stine; Gammeltoft, Steen; Mikkelsen, Jens D

    2013-06-01

    Narcolepsy is a lifelong sleep disorder characterized by excessive daytime sleepiness, sudden loss of muscle tone (cataplexy), fragmentation of nocturnal sleep and sleep paralysis. The symptoms of the disease strongly correlate with a reduction in hypocretin levels in CSF and a reduction in hypocretin neurons in hypothalamus in post-mortem tissue. Brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) are important for activity-dependent neuronal function and synaptic modulation and it is considered that these mechanisms are important in sleep regulation. We hypothesized that serum levels of these factors are altered in patients with narcolepsy compared to healthy controls without sleep disturbances. Polysomnography data was obtained and serum BDNF and NGF levels measured using ELISA, while hypocretin was measured using RIA. Serum BDNF levels were significantly higher in narcolepsy patients than in healthy controls (64.2±3.9 ng/ml vs. 47.3±2.6 ng/ml, P<0.01), while there were no significant differences in NGF levels. As expected, narcolepsy patients had higher BMI compared to controls, but BMI did not correlate with the serum BDNF levels. The change in BDNF levels was not related to disease duration and sleep parameters did not correlate with BDNF in narcolepsy patients. The mechanisms behind the marked increase in BDNF levels in narcolepsy patients remain unknown. PMID:23570723

  5. Edaravone Enhances Brain-Derived Neurotrophic Factor Production in the Ischemic Mouse Brain

    PubMed Central

    Okuyama, Satoshi; Morita, Mayu; Sawamoto, Atsushi; Terugo, Tsukasa; Nakajima, Mitsunari; Furukawa, Yoshiko

    2015-01-01

    Edaravone, a clinical drug used to treat strokes, protects against neuronal cell death and memory loss in the ischemic brains of animal models through its antioxidant activity. In the present study, we subcutaneously administrated edaravone to mice (3 mg/kg/day) for three days immediately after bilateral common carotid artery occlusion, and revealed through an immunohistochemical analysis that edaravone (1) accelerated increases in the production of brain-derived neurotrophic factor (BDNF) in the hippocampus; (2) increased the number of doublecortin-positive neuronal precursor cells in the dentate gyrus subgranular zone; and (3) suppressed the ischemia-induced inactivation of calcium-calmodulin-dependent protein kinase II in the hippocampus. We also revealed through a Western blotting analysis that edaravone (4) induced the phosphorylation of cAMP response element-binding (CREB), a transcription factor that regulates BDNF gene expression; and (5) induced the phosphorylation of extracellular signal-regulated kinases 1/2, an upstream signal factor of CREB. These results suggest that the neuroprotective effects of edaravone following brain ischemia were mediated not only by the elimination of oxidative stress, but also by the induction of BDNF production. PMID:25850013

  6. Serum levels of brain-derived neurotrophic factor in alcohol-dependent patients receiving high-dose baclofen.

    PubMed

    Geisel, Olga; Hellweg, Rainer; Müller, Christian A

    2016-06-30

    The neurotrophin brain-derived neurotrophic factor (BDNF) has been suggested to be involved in the development and maintenance of addictive and other psychiatric disorders. Also, interactions of γ-aminobutyric acid (GABA)-ergic compounds and BDNF have been reported. The objective of this study was to investigate serum levels of BDNF over time in alcohol-dependent patients receiving individually titrated high-dose treatment (30-270mg/d) with the GABA-B receptor agonist baclofen or placebo for up to 20 weeks. Serum levels of BDNF were measured in patients of the baclofen/placebo group at baseline (t0), 2 weeks after reaching individual high-dose of baclofen/placebo treatment (t1) and after termination of study medication (t2) in comparison to carefully matched healthy controls. No significant differences in serum levels of BDNF between the baclofen and the placebo group or healthy controls were found at t0, t1, or at t2. Based on these findings, it seems unlikely that baclofen exerts a direct effect on serum levels of BDNF in alcohol-dependent patients. Future studies are needed to further explore the mechanism of action of baclofen and its possible relationship to BDNF in alcohol use disorders. PMID:27107672

  7. Exogenous brain-derived neurotrophic factor relieves pain symptoms of diabetic rats by reducing excitability of dorsal root ganglion neurons.

    PubMed

    Li, Lei; Yu, Ting; Yu, Liling; Li, Haijun; Liu, Yongjuan; Wang, Dongqin

    2016-08-01

    Diabetic peripheral neuropathy (DPN) is a common complication of diabetes lacking of effective treatments. Enhanced excitability of dorsal root ganglion (DRG) neuron plays a crucial role in the progression of diabetic neuropathic hyperalgesia. Brain-derived neurotrophic factor (BDNF) is known as a neuromodulator of nociception, but whether and how BDNF modulates the excitability of DRG neurons in the development of DPN remain to be clarified. This study investigated the role of exogenous BDNF and its high-affinity tropomyosin receptor kinase B (TrkB) in rats with streptozotocin-induced diabetic neuropathic pain. The results showed that continued intrathecal administration of BDNF to diabetic rats dramatically alleviated mechanical and thermal hyperalgesia, as well as inhibited hyperexcitability of DRG neurons. These effects were blocked by pretreatment with TrkB Fc (a synthetic fusion protein consisting of the extracellular ligand-binding domain of the TrkB receptor). The expression of BDNF and TrkB was upregulated in the DRG of diabetic rats. Intrathecal administration of BDNF did not affect this upregulation. These data provide novel information that exogenous BDNF relieved pain symptoms of diabetic rats by reducing hyperexcitability of DRG neurons and might be the potential treatment of painful diabetic neuropathy. PMID:26441011

  8. Regulation of nociceptin/orphanin FQ gene expression by neuropoietic cytokines and neurotrophic factors in neurons and astrocytes.

    PubMed

    Buzas, B; Symes, A J; Cox, B M

    1999-05-01

    We have identified the gene encoding nociceptin/orphanin FQ (N/OFQ), the novel opioid-like neuropeptide, as responsive to ciliary neurotrophic factor (CNTF). N/OFQ mRNA levels were induced five- and ninefold by CNTF in striatal and cortical neurons. In primary astrocytes CNTF also increased N/OFQ mRNA levels. CNTF is a multifunctional cytokine that mediates the development and differentiation of both neurons and astrocytes and supports the survival of various neurons. CNTF is also an injury-induced factor in the brain playing a crucial role in astrogliosis. The mechanism by which CNTF elicits these effects is not well understood, but it is likely to involve regulation of specific genes. CNTF regulation of N/OFQ expression was sensitive to the kinase inhibitors H-7 and genistein but not to inhibition of protein synthesis. This pharmacological profile is consistent with CNTF activating the Janus protein tyrosine kinase (JAK)/ signal transducers and activators of transcription (STAT) pathway to induce N/OFQ transcription. In nuclear extracts of CNTF-treated striatal neurons DNA binding of STAT proteins was increased. Radioimmunoassays revealed elevated N/OFQ immunoreactivity in striatal neurons after CNTF treatment. Expression of the related proenkephalin gene was not affected by CNTF in either neuronal or glial cultures. Regulation of N/OFQ expression by CNTF might point to a possible function of N/OFQ during development and after neural injury. PMID:10217264

  9. The interleukin-1-induced increase of substance P in sympathetic ganglia is not mediated by ciliary neurotrophic factor.

    PubMed

    Ding, M; Hart, R P; Shadiack, A M; Jonakait, G M

    1994-08-15

    Interleukin-1 (IL-1) induction of substance P (SP) in cultured sympathetic ganglia requires a soluble intermediate molecule that is present in IL-1 conditioned medium (IL-1CM). One of the required intermediates is leukemia inhibitory factor (LIF; Shadiack et al., J Neurosci 13:2601-2609, 1993). In the present study we have examined the possibility that ciliary neurotrophic factor (CNTF) is another intermediate involved in the IL-1 induction of sympathetic SP. CNTF mimics the action of IL-1CM by raising both SP and choline acetyltransferase activity--actions that are blocked by a specific neutralizing antiserum for CNTF. However, IL-1CM and CNTF differ in their response to depolarizing agents: while KCl (40 mM) blocks the action of IL-1CM (and LIF), it enhances the action of CNTF. Furthermore, neither CNTF bioactivity nor CNTF protein is detected in IL-1CM. Neutralizing antiserum to CNTF fails to block the action of either IL-1 or IL-1CM, suggesting that neither a soluble nor a membrane-bound form of the molecule is active in direct response to IL-1 action. While Northern blots confirm the presence of both CNTF and CNTF receptor mRNA in neonatal ganglia, neither culturing nor IL-1 treatment alters these mRNA levels. These data taken together suggest that while CNTF is present and possibly active in sympathetic ganglia, it is not a mediator of the IL-1 induction of SP. PMID:7528814

  10. [Hematopoietic growth factor EPO has neuro-protective and neuro-trophic effects--review].

    PubMed

    Zhou, Zhuo-Yan; Yang, Mo; Fok, Tai-Fai

    2005-04-01

    Erythropoietin (EPO) is an acidic glycoprotein that was first detected as a hematopoietic factor and its synthesis is triggered in response to cellular hypoxia-sensing. EPO binds to type I cytokine receptors, which associate with the non-receptor tyrosine kinase Jak2, and thereby activate Stat 5a/5b, Ras/MAPK, and PI3-K/Akt signaling pathways. The recent discovery shows that there is a specific EPO/EPO-receptor system in the central nervous system (CNS), independently of the haematopoietic system. Hypoxia and anemia can up-regulate EPO/EPOR expressions in the CNS. Further studies demonstrate that EPO has substantial neuro-protective effects and acts as a neurotrophic factor on central cholinergic neurons, influencing their differentiation and regeneration. EPO also exerts neuro-protective activities in different models of brain damage in vivo and in vitro, such as hypoxia, cerebral ischaemia and sub-arachnoid haemorrhage. EPO may also be involved in synaptic plasticity via the inhibition or stimulation of various neurotransmitters. Therefore, human recombinant EPO that activate its receptors in the central nervous system might be utilized in the future clinical practice involving neuroprotection and brain repair. PMID:15854305

  11. Brain-derived Neurotrophic Factor Is Associated with Cognitive Impairment in Elderly Korean Individuals

    PubMed Central

    Lee, Sang Jun; Baek, Jun-Hyung; Kim, Young-Hoon

    2015-01-01

    Objective Brain-derived neurotrophic factor (BDNF) is a neurotrophin that is widely expressed in the mammalian brain and acts to regulate neuronal survival and influence cognitive processes. The present study measured serum BDNF levels to investigate the associations of the BDNF Val66Met and 5-hydroxytryptamine transporter linked promoter region (5-HTTLPR) polymorphisms with cognitive function in elderly Korean individuals. Methods Over 60 years, a total of 834 subjects were recruited for the present study. The subjects were classified into groups based on the degree of cognitive impairment (age-associated cognitive decline, mild cognitive impairment, and Alzheimer’s disease) and compared with normal controls in terms of a neuropsychological assessment and a clinical evaluation. Results Of the initial 834 study participants, 165 (59 controls and 106 subjects with cognitive impairments) completed the study. There was a significant increase in serum BDNF levels in subjects with cognitive impairments relative to the control group and the BDNF Val66Met polymorphism was significantly associated with cognitive function but not serum BDNF levels. The 5-HTTLPR polymorphism did not have any associations with cognitive impairment or serum BDNF levels. Conclusion The present findings suggest that BDNF may play a role in the pathophysiology of cognitive impairment and the BDNF Val66Met polymorphism may be an important factor in the susceptibility to these age-related deficits. PMID:26598587

  12. Brain-derived neurotrophic factor reduces amyloidogenic processing through control of SORLA gene expression.

    PubMed

    Rohe, Michael; Synowitz, Michael; Glass, Rainer; Paul, Steven M; Nykjaer, Anders; Willnow, Thomas E

    2009-12-01

    Sorting protein-related receptor with A-type repeats (SORLA) is a major risk factor in cellular processes leading to Alzheimer's disease (AD). It acts as sorting receptor for the amyloid precursor protein (APP) that regulates intracellular trafficking and processing into amyloidogenic-beta peptides (A beta). Overexpression of SORLA in neurons reduces while inactivation of gene expression (as in knock-out mouse models) accelerates amyloidogenic processing and senile plaque formation. The current study aimed at identifying molecular pathways that control SORLA gene transcription in vivo and that may contribute to low levels of receptor expression in the brain of patients with AD. Using screening approaches in primary neurons, we identified brain-derived neurotrophic factor (BDNF) as a major inducer of Sorla that activates receptor gene transcription through the ERK (extracellular regulated kinase) pathway. In line with a physiological role as regulator of Sorla, expression of the receptor is significantly impaired in mouse models with genetic (Bdnf(-/-)) or disease-related loss of BDNF activity in the brain (Huntington's disease). Intriguingly, exogenous application of BDNF reduced A beta production in primary neurons and in the brain of wild-type mice in vivo, but not in animals genetically deficient for Sorla. These findings demonstrate that the beneficial effects ascribed to BDNF in APP metabolism act through induction of Sorla that encodes a negative regulator of neuronal APP processing. PMID:20007471

  13. Panax notoginseng saponins improve recovery after spinal cord transection by upregulating neurotrophic factors.

    PubMed

    Wang, Bo; Li, Yu; Li, Xuan-Peng; Li, Yang

    2015-08-01

    Saponins extracted from Panax notoginseng are neuroprotective, but the mechanisms underlying this effect remain unclear. In the present study, we established a rat model of thoracic (T10) spinal cord transection, and injected Panax notoginseng saponins (100 mg/kg) or saline 30 minutes after injury. Locomotor functions were assessed using the Basso, Beattie, and Bresnahan (BBB) scale from 1 to 30 days after injury, and immunohistochemistry was carried out in the ventral horn of the spinal cord at 1 and 7 days to determine expression of nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF). Our results show that at 7-30 days post injury, the BBB score was higher in rats treated with Panax notoginseng saponins than in those that received saline. Furthermore, at 7 days, more NGF- and BDNF-immunoreactive neurons were observed in the ventral horn of the spinal cord of rats that had received Panax notoginseng saponins than in those that received saline. These results indicate that Panax notoginseng saponins caused an upregulation of NGF and BDNF in rats with spinal cord transection, and improved hindlimb motor function. PMID:26487862

  14. Effects of the neurotrophic factors BDNF, NT-3, and FGF2 on dissociated neurons of the cochlear nucleus.

    PubMed

    Rak, Kristen; Völker, Johannes; Frenz, Silke; Scherzad, Agmal; Schendzielorz, Philipp; Radeloff, Andreas; Jablonka, Sibylle; Hagen, Rudolf; Mlynski, Robert

    2014-08-20

    The cochlear nucleus is the first relay station for acoustic information in the auditory pathway and its cellular integrity is affected by hearing loss. Neurotrophic factors, which are known to regulate fundamental processes in the brain, are expressed in the cochlear nucleus and are regulated by the changes in the stimulation. The aim of this study was to evaluate the effect of the neurotrophins Brain derived neurotrophic factor (BDNF) and Neurotrophin 3 (NT-3) and the neurotrophic factor Fibroblast growth factor 2 (FGF2) on primary cultured cells of the mouse cochlear nucleus. No effect on overall cell growth was detected after 8 days in culture by the factors applied. NT-3 had a strong impact on enhancement of neuronal survival, whereas BDNF stimulated neuronal survival and axonal outgrowth. Axonal branching was negatively affected by the administration of BDNF. FGF2 did not show any effect. The results presented represent fundamental research on auditory neurons, but might be one step toward defining novel therapeutic strategies in the future to prevent cochlear nucleus degeneration induced by hearing loss. PMID:24978398

  15. Running exercise-induced up-regulation of hippocampal brain-derived neurotrophic factor is CREB-dependent

    PubMed Central

    Chen, Michael J.; Russo-Neustadt, Amelia A.

    2009-01-01

    The past decade has witnessed burgeoning evidence that antidepressant medications and physical exercise increase the expression of hippocampal brain-derived neurotrophic factor (BDNF). This phenomenon has gained widespread appeal because BDNF is one of the first macromolecules observed to play a central role not only in the treatment of mood disorders, but also in neuronal survival-, growth-, and plasticity-related signaling cascades. Thus, it has become critical to understand how BDNF synthesis is regulated. Much evidence exists that changes in BDNF expression result from the activation/phosphorylation of the transcription factor, cAMP-response-element binding protein (CREB) following the administration of antidepressant medications. Utilizing a mouse model genetically engineered with an inducible CREB repressor, our current study provides evidence that increases in BDNF expression and cellular survival signaling resulting from physical exercise are also dependent upon activation of this central transcription factor. The transcription and expression of hippocampal BDNF, as well as the activation of Akt, a key survival signaling molecule, were measured following acute exercise, and also following short-term treatment with the norepinephrine re-uptake inhibitor, reboxetine. We found that both interventions led to a marked increase in hippocampal BDNF mRNA, BDNF protein and Akt phosphorylation (as well as CREB phosphorylation) in wild-type mice. As expected, activation of the CREB repressor in mutant mice sharply decreased CREB phosphorylation. In addition, all measures noted above remained at baseline levels when mutant mice exercised or received reboxetine. Increases in BDNF and phospho-Akt were also prevented when mutant mice received a combination of exercise and antidepressant treatment. The results are discussed in the context of what is currently known about BDNF signaling. PMID:19294650

  16. Peripheral brain-derived neurotrophic factor is related to cardiovascular risk factors in active and inactive elderly men.

    PubMed

    Zembron-Lacny, A; Dziubek, W; Rynkiewicz, M; Morawin, B; Woźniewski, M

    2016-06-20

    Regular exercise plays an important preventive and therapeutic role in heart and vascular diseases, and beneficially affects brain function. In blood, the effects of exercise appear to be very complex and could include protection of vascular endothelial cells via neurotrophic factors and decreased oxidative stress. The purpose of this study was to identify the age-related changes in peripheral brain-derived neurotrophic factor (BDNF) and its relationship to oxidative damage and conventional cardiovascular disease (CVD) biomarkers, such as atherogenic index, C-reactive protein (hsCRP) and oxidized LDL (oxLDL), in active and inactive men. Seventeen elderly males (61-80 years) and 17 young males (20-24 years) participated in this study. According to the 6-min Åstrand-Rhyming bike test, the subjects were classified into active and inactive groups. The young and elderly active men had a significantly better lipoprotein profile and antioxidant status, as well as reduced oxidative damage and inflammatory state. The active young and elderly men had significantly higher plasma BDNF levels compared to their inactive peers. BDNF was correlated with VO2max (r=0.765, P<0.001). In addition, we observed a significant inverse correlation of BDNF with atherogenic index (TC/HDL), hsCRP and oxLDL. The findings demonstrate that a high level of cardiorespiratory fitness reflected in VO2max was associated with a higher level of circulating BDNF, which in turn was related to common CVD risk factors and oxidative damage markers in young and elderly men. PMID:27332774

  17. Peripheral brain-derived neurotrophic factor is related to cardiovascular risk factors in active and inactive elderly men

    PubMed Central

    Zembron-Lacny, A.; Dziubek, W.; Rynkiewicz, M.; Morawin, B.; Woźniewski, M.

    2016-01-01

    Regular exercise plays an important preventive and therapeutic role in heart and vascular diseases, and beneficially affects brain function. In blood, the effects of exercise appear to be very complex and could include protection of vascular endothelial cells via neurotrophic factors and decreased oxidative stress. The purpose of this study was to identify the age-related changes in peripheral brain-derived neurotrophic factor (BDNF) and its relationship to oxidative damage and conventional cardiovascular disease (CVD) biomarkers, such as atherogenic index, C-reactive protein (hsCRP) and oxidized LDL (oxLDL), in active and inactive men. Seventeen elderly males (61-80 years) and 17 young males (20-24 years) participated in this study. According to the 6-min Åstrand-Rhyming bike test, the subjects were classified into active and inactive groups. The young and elderly active men had a significantly better lipoprotein profile and antioxidant status, as well as reduced oxidative damage and inflammatory state. The active young and elderly men had significantly higher plasma BDNF levels compared to their inactive peers. BDNF was correlated with VO2max (r=0.765, P<0.001). In addition, we observed a significant inverse correlation of BDNF with atherogenic index (TC/HDL), hsCRP and oxLDL. The findings demonstrate that a high level of cardiorespiratory fitness reflected in VO2max was associated with a higher level of circulating BDNF, which in turn was related to common CVD risk factors and oxidative damage markers in young and elderly men. PMID:27332774

  18. Localized delivery of fibroblast growth factor–2 and brain-derived neurotrophic factor reduces spontaneous seizures in an epilepsy model

    PubMed Central

    Paradiso, Beatrice; Marconi, Peggy; Zucchini, Silvia; Berto, Elena; Binaschi, Anna; Bozac, Aleksandra; Buzzi, Andrea; Mazzuferi, Manuela; Magri, Eros; Mora, Graciela Navarro; Rodi, Donata; Su, Tao; Volpi, Ilaria; Zanetti, Lara; Marzola, Andrea; Manservigi, Roberto; Fabene, Paolo F.; Simonato, Michele

    2009-01-01

    A loss of neurons is observed in the hippocampus of many patients with epilepsies of temporal lobe origin. It has been hypothesized that damage limitation or repair, for example using neurotrophic factors (NTFs), may prevent the transformation of a normal tissue into epileptic (epileptogenesis). Here, we used viral vectors to locally supplement two NTFs, fibroblast growth factor–2 (FGF-2) and brain-derived neurotrophic factor (BDNF), when epileptogenic damage was already in place. These vectors were first characterized in vitro, where they increased proliferation of neural progenitors and favored their differentiation into neurons, and they were then tested in a model of status epilepticus-induced neurodegeneration and epileptogenesis. When injected in a lesioned hippocampus, FGF-2/BDNF expressing vectors increased neuronogenesis, embanked neuronal damage, and reduced epileptogenesis. It is concluded that reduction of damage reduces epileptogenesis and that supplementing specific NTFs in lesion areas represents a new approach to the therapy of neuronal damage and of its consequences. PMID:19366663

  19. Brain-derived neurotrophic and immunologic factors: beneficial effects of riboflavin on motor disability in murine model of multiple sclerosis

    PubMed Central

    Naghashpour, Mahshid; Amani, Reza; Sarkaki, Alireza; Ghadiri, Ata; Samarbafzadeh, Alireza; Jafarirad, Sima; Malehi, Amal Saki

    2016-01-01

    Objective(s): In the present study, C57BL/6 female mice (n=56) were used to explore the neuroprotective effects of riboflavin in motor disability of experimental autoimmune encephalomyelitis (EAE) as a model of multiple sclerosis. Materials and Methods: The animals were assigned into 7 groups: sham-operated 1 (SO1), healthy mice receiving PBS (phosphate buffer saline); sham-operated 2 (SO2), healthy mice receiving PBS and riboflavin; sham treatment 1 (ST1), EAE mice receiving water; sham treatment 2 (ST2), EAE mice receiving sodium acetate buffer; treatment 1 (T1), EAE mice receiving interferon beta-1a (INFβ-1a); treatment 2 (T2), EAE mice receiving riboflavin; treatment 3 (T3), EAE mice receiving INFβ-1a and riboflavin. After EAE induction, scoring was performed based on clinical signs. Upon detecting score 0.5, riboflavin at 10 mg/kg of body weight and/or INFβ-1a at 150 IU/g of body weight administration was started for two weeks. The brain and spinal cord levels of brain-derived neurotrophic factor (BDNF), interleukin-6 (IL-6), and interleukin-17A (IL-17A) were studied using real-time PCR and ELISA methods. Results: BDNF expression and protein levels were increased in the brain and spinal cord of the T3 group compared with the other groups (P<0.01). IL-6 and IL-17A expressions were increased in the brains of the T3 and T1 groups, respectively, compared to the other groups (P<0.01). The daily clinical score was reduced significantly by riboflavin in both effector and chronic phases of the disease compared with that of the controls (P<0.05). Conclusion: Our findings showed that riboflavin is capable of suppressing the neurological disability mediated by BDNF and IL-6. PMID:27279989

  20. Human Mesenchymal Stem Cells Genetically Engineered to Overexpress Brain-derived Neurotrophic Factor Improve Outcomes in Huntington's Disease Mouse Models.

    PubMed

    Pollock, Kari; Dahlenburg, Heather; Nelson, Haley; Fink, Kyle D; Cary, Whitney; Hendrix, Kyle; Annett, Geralyn; Torrest, Audrey; Deng, Peter; Gutierrez, Joshua; Nacey, Catherine; Pepper, Karen; Kalomoiris, Stefanos; D Anderson, Johnathon; McGee, Jeannine; Gruenloh, William; Fury, Brian; Bauer, Gerhard; Duffy, Alexandria; Tempkin, Theresa; Wheelock, Vicki; Nolta, Jan A

    2016-05-01

    Huntington's disease (HD) is a fatal degenerative autosomal dominant neuropsychiatric disease that causes neuronal death and is characterized by progressive striatal and then widespread brain atrophy. Brain-derived neurotrophic factor (BDNF) is a lead candidate for the treatment of HD, as it has been shown to prevent cell death and to stimulate the growth and migration of new neurons in the brain in transgenic mouse models. BDNF levels are reduced in HD postmortem human brain. Previous studies have shown efficacy of mesenchymal stem/stromal cells (MSC)/BDNF using murine MSCs, and the present study used human MSCs to advance the therapeutic potential of the MSC/BDNF platform for clinical application. Double-blinded studies were performed to examine the effects of intrastriatally transplanted human MSC/BDNF on disease progression in two strains of immune-suppressed HD transgenic mice: YAC128 and R6/2. MSC/BDNF treatment decreased striatal atrophy in YAC128 mice. MSC/BDNF treatment also significantly reduced anxiety as measured in the open-field assay. Both MSC and MSC/BDNF treatments induced a significant increase in neurogenesis-like activity in R6/2 mice. MSC/BDNF treatment also increased the mean lifespan of the R6/2 mice. Our genetically modified MSC/BDNF cells set a precedent for stem cell-based neurotherapeutics and could potentially be modified for other neurodegenerative disorders such as amyotrophic lateral sclerosis, Alzheimer's disease, and some forms of Parkinson's disease. These cells provide a platform delivery system for future studies involving corrective gene-editing strategies. PMID:26765769

  1. Human Mesenchymal Stem Cells Genetically Engineered to Overexpress Brain-derived Neurotrophic Factor Improve Outcomes in Huntington's Disease Mouse Models

    PubMed Central

    Pollock, Kari; Dahlenburg, Heather; Nelson, Haley; Fink, Kyle D; Cary, Whitney; Hendrix, Kyle; Annett, Geralyn; Torrest, Audrey; Deng, Peter; Gutierrez, Joshua; Nacey, Catherine; Pepper, Karen; Kalomoiris, Stefanos; D Anderson, Johnathon; McGee, Jeannine; Gruenloh, William; Fury, Brian; Bauer, Gerhard; Duffy, Alexandria; Tempkin, Theresa; Wheelock, Vicki; Nolta, Jan A

    2016-01-01

    Huntington's disease (HD) is a fatal degenerative autosomal dominant neuropsychiatric disease that causes neuronal death and is characterized by progressive striatal and then widespread brain atrophy. Brain-derived neurotrophic factor (BDNF) is a lead candidate for the treatment of HD, as it has been shown to prevent cell death and to stimulate the growth and migration of new neurons in the brain in transgenic mouse models. BDNF levels are reduced in HD postmortem human brain. Previous studies have shown efficacy of mesenchymal stem/stromal cells (MSC)/BDNF using murine MSCs, and the present study used human MSCs to advance the therapeutic potential of the MSC/BDNF platform for clinical application. Double-blinded studies were performed to examine the effects of intrastriatally transplanted human MSC/BDNF on disease progression in two strains of immune-suppressed HD transgenic mice: YAC128 and R6/2. MSC/BDNF treatment decreased striatal atrophy in YAC128 mice. MSC/BDNF treatment also significantly reduced anxiety as measured in the open-field assay. Both MSC and MSC/BDNF treatments induced a significant increase in neurogenesis-like activity in R6/2 mice. MSC/BDNF treatment also increased the mean lifespan of the R6/2 mice. Our genetically modified MSC/BDNF cells set a precedent for stem cell-based neurotherapeutics and could potentially be modified for other neurodegenerative disorders such as amyotrophic lateral sclerosis, Alzheimer's disease, and some forms of Parkinson's disease. These cells provide a platform delivery system for future studies involving corrective gene-editing strategies. PMID:26765769

  2. Effects of brain-derived neurotrophic factor on dopaminergic function and motor behavior during aging

    PubMed Central

    Boger, Heather A.; Mannangatti, Padmanabhan; Samuvel, Devadoss J.; Saylor, Alicia J.; Bender, Tara S.; McGinty, Jacqueline F.; Fortress, Ashley M.; Zaman, Vandana; Huang, Peng; Middaugh, Lawrence D.; Randall, Patrick K.; Jayanthi, Lankupalle D.; Rohrer, Baerbel; Helke, Kristi L.; Granholm, Ann-Charlotte; Ramamoorthy, Sammanda

    2010-01-01

    Brain-derived neurotrophic factor (BDNF) is critical in synaptic plasticity and in the survival and function of midbrain dopamine neurons. In the present study, we assessed the effects of a partial genetic deletion of BDNF on motor function and dopamine (DA) neurotransmitter measures by comparing (Bdnf+/−) with wildtype mice (WT) at different ages. Bdnf+/ and WT mice had similar body weights until 12 months of age; however, at 21 months, Bdnf+/− mice were significantly heavier than WT mice. Horizontal and vertical motor activity was reduced for Bdnf+/− compared to WT mice; but was not influenced by Age. Performance on an accelerating rotarod declined with age for both genotypes and was exacerbated for Bdnf+/− mice. Body weight did not correlate with any of the three behavioral measures studied. DA neurotransmitter markers indicated no genotypic difference in striatal tyrosine hydroxylase (TH), dopamine transporter (DAT), or vesicular monoamine transporter 2 (VMAT2) immunoreactivity at any age. However, DA transport via DAT (starting at 12 months) and VMAT2 (starting at 3 months) as well as KCl-stimulated DA release were reduced in Bdnf+/− mice and declined with age suggesting an increasingly important role for BDNF in the release and uptake of DA with the aging process. These findings suggest that a BDNF expression deficit becomes more critical to dopaminergic dynamics and related behavioral activities with increasing age. PMID:20860702

  3. Brain-derived neurotrophic factor regulates cholesterol metabolism for synapse development.

    PubMed

    Suzuki, Shingo; Kiyosue, Kazuyuki; Hazama, Shunsuke; Ogura, Akihiko; Kashihara, Megumi; Hara, Tomoko; Koshimizu, Hisatsugu; Kojima, Masami

    2007-06-13

    Brain-derived neurotrophic factor (BDNF) exerts multiple biological functions in the CNS. Although BDNF can control transcription and protein synthesis, it still remains open to question whether BDNF regulates lipid biosynthesis. Here we show that BDNF elicits cholesterol biosynthesis in cultured cortical and hippocampal neurons. Importantly, BDNF elicited cholesterol synthesis in neurons, but not in glial cells. Quantitative reverse transcriptase-PCR revealed that BDNF stimulated the transcription of enzymes in the cholesterol biosynthetic pathway. BDNF-induced cholesterol increases were blocked by specific inhibitors of cholesterol synthesis, mevastatin and zaragozic acid, suggesting that BDNF stimulates de novo synthesis of cholesterol rather than the incorporation of extracellular cholesterol. Because cholesterol is a major component of lipid rafts, we investigated whether BDNF would increase the cholesterol content in lipid rafts or nonraft membrane domains. Interestingly, the BDNF-mediated increase in cholesterol occurred in rafts, but not in nonrafts, suggesting that BDNF promotes the development of neuronal lipid rafts. Consistent with this notion, BDNF raised the level of the lipid raft marker protein caveolin-2 in rafts. Remarkably, BDNF increased the levels of presynaptic proteins in lipid rafts, but not in nonrafts. An electrophysiological study revealed that BDNF-dependent cholesterol biosynthesis plays an important role for the development of a readily releasable pool of synaptic vesicles. Together, these results suggest a novel role for BDNF in cholesterol metabolism and synapse development. PMID:17567802

  4. Ciliary neurotrophic factor has intrinsic and extrinsic roles in regulating B cell differentiation and bone structure.

    PubMed

    Askmyr, Maria; White, Kirby E; Jovic, Tanja; King, Hannah A; Quach, Julie M; Maluenda, Ana C; Baker, Emma K; Smeets, Monique F; Walkley, Carl R; Purton, Louise E

    2015-01-01

    The gp130 receptor and its binding partners play a central role in cytokine signalling. Ciliary neurotrophic factor (CNTF) is one of the cytokines that signals through the gp130 receptor complex. CNTF has previously been shown to be a negative regulator of trabecular bone remodelling and important for motor neuron development. Since haematopoietic cell maintenance and differentiation is dependent on the bone marrow (BM) microenvironment, where cells of the osteoblastic lineage are important regulators, we hypothesised that CNTF may also have important roles in regulating haematopoiesis. Analysis of haematopoietic parameters in male and female Cntf(-/-) mice at 12 and 24 weeks of age revealed altered B lymphopoiesis. Strikingly, the B lymphocyte phenotype differed based on sex, age and also the BM microenvironment in which the B cells develop. When BM cells from wildtype mice were transplanted into Cntf(-/-) mice, there were minimal effects on B lymphopoiesis or bone parameters. However, when Cntf(-/-) BM cells were transplanted into a wildtype BM microenvironment, there were changes in both haematopoiesis and bone parameters. Our data reveal that haematopoietic cell-derived CNTF has roles in regulating BM B cell lymphopoiesis and both trabecular and cortical bone, the latter in a sex-dependent manner. PMID:26487326

  5. The correlation between perceived social support, cortisol and brain derived neurotrophic factor levels in healthy women.

    PubMed

    Ma, Doy Yung; Chang, Wei Hung; Chi, Mei Hung; Tsai, Hsin Chun; Yang, Yen Kuang; Chen, Po See

    2016-05-30

    In this study, the role of brain derived neurotrophic factor (BDNF) in stress resilience was investigated. With a focus on healthy subjects, we explored whether plasma BDNF levels are correlated with the dexamethasone suppression test (DST) and subjectively perceived social support status. Moreover, we examined the possible interacting effect of DST status and perceived social support on BDNF levels. Seventy-two healthy volunteers, 44 females and 28 males, were recruited from the community and completed the perceived routine support subscale of Measurement of Support Function (PRS_MSF) questionnaire. Plasma BDNF levels and DST suppression rate with the low dose DST were measured. There was a significant positive correlation between BDNF and DST suppression rate in the female subjects. This was also true for the plasma BDNF levels and PRS_MSF in the female subjects. The positive correlation between BDNF and PRS_MSF was significant only in female subjects with low DST suppression rates. Plasma BDNF levels were associated with stress resilience in a sex-specific manner. Subjects' belief in social support might buffer the biological stress reactions. Differences in social perception and the biological stress response between men and women merits further investigation. PMID:27137977

  6. AMPA Receptor-Induced Local Brain-Derived Neurotrophic Factor Signaling Mediates Motor Recovery after Stroke

    PubMed Central

    Clarkson, Andrew N.; Overman, Justine J.; Zhong, Sheng; Mueller, Rudolf; Lynch, Gary; Carmichael, S. Thomas

    2015-01-01

    Stroke is the leading cause of adult disability. Recovery after stroke shares similar molecular and cellular properties with learning and memory. A main component of learning-induced plasticity involves signaling through AMPA receptors (AMPARs). We systematically tested the role of AMPAR function in motor recovery in a mouse model of focal stroke. AMPAR function controls functional recovery beginning 5 d after the stroke. Positive allosteric modulators of AMPARs enhance recovery of limb control when administered after a delay from the stroke. Conversely, AMPAR antagonists impair motor recovery. The contributions of AMPARs to recovery are mediated by release of brain-derived neurotrophic factor (BDNF) in periinfarct cortex, as blocking local BDNF function in periinfarct cortex blocks AMPAR-mediated recovery and prevents the normal pattern of motor recovery. In contrast to a delayed AMPAR role in motor recovery, early administration of AMPAR agonists after stroke increases stroke damage. These findings indicate that the role of glutamate signaling through the AMPAR changes over time in stroke: early potentiation of AMPAR signaling worsens stroke damage, whereas later potentiation of the same signaling system improves functional recovery. PMID:21389231

  7. Increased circulating concentrations of mesencephalic astrocyte-derived neurotrophic factor in children with type 1 diabetes.

    PubMed

    Galli, Emilia; Härkönen, Taina; Sainio, Markus T; Ustav, Mart; Toots, Urve; Urtti, Arto; Yliperttula, Marjo; Lindahl, Maria; Knip, Mikael; Saarma, Mart; Lindholm, Päivi

    2016-01-01

    Mesencephalic astrocyte-derived neurotrophic factor (MANF) was recently shown to be essential for the survival and proliferation of pancreatic β-cells in mice, where deletion of MANF resulted in diabetes. The current study aimed at determining whether the concentration of circulating MANF is associated with the clinical manifestation of human type 1 diabetes (T1D). MANF expression in T1D or MANF levels in serum have not been previously studied. We developed an enzyme-linked immunosorbent assay (ELISA) for MANF and measured serum MANF concentrations from 186 newly diagnosed children and adolescents and 20 adults with longer-term T1D alongside with age-matched controls. In healthy controls the mean serum MANF concentration was 7.0 ng/ml. High MANF concentrations were found in children 1-9 years of age close to the diagnosis of T1D. The increased MANF concentrations were not associated with diabetes-predictive autoantibodies and autoantibodies against MANF were extremely rare. Patients with conspicuously high MANF serum concentrations had lower C-peptide levels compared to patients with moderate MANF concentrations. Our data indicate that increased MANF concentrations in serum are associated with the clinical manifestation of T1D in children, but the exact mechanism behind the increase remains elusive. PMID:27356471

  8. Post-traumatic stress disorder risk and brain-derived neurotrophic factor Val66Met

    PubMed Central

    Zhang, Lei; Li, Xiao-Xia; Hu, Xian-Zhang

    2016-01-01

    Brain-derived neurotrophic factor (BDNF), which regulates neuronal survival, growth differentiation, and synapse formation, is known to be associated with depression and post-traumatic stress disorder (PTSD). However, the molecular mechanism for those mental disorders remains unknown. Studies have shown that BDNF is associated with PTSD risk and exaggerated startle reaction (a major arousal manifestation of PTSD) in United States military service members who were deployed during the wars in Iraq and Afghanistan. The frequency of the Met/Met in BDNF gene was greater among those with PTSD than those without PTSD. Among individuals who experienced fewer lifetime stressful events, the Met carriers have significantly higher total and startle scores on the PTSD Checklist than the Val/Val carriers. In addition, subjects with PTSD showed higher levels of BDNF in their peripheral blood plasma than the non-probable-PTSD controls. Increased BDNF levels and startle response were observed in both blood plasma and brain hippocampus by inescapable tail shock in rats. In this paper, we reviewed these data to discuss BDNF as a potential biomarker for PTSD risk and its possible roles in the onset of PTSD. PMID:27014593

  9. Peripheral Brain Derived Neurotrophic Factor Precursor Regulates Pain as an Inflammatory Mediator.

    PubMed

    Luo, Cong; Zhong, Xiao-Lin; Zhou, Fiona H; Li, Jia-Yi; Zhou, Pei; Xu, Jun-Mei; Song, Bo; Li, Chang-Qi; Zhou, Xin-Fu; Dai, Ru-Ping

    2016-01-01

    The precursor of brain derived neurotrophic factor (proBDNF), the unprocessed BDNF gene product, binds to its receptors and exerts the opposing biologic functions of mature BDNF. proBDNF is expressed in the peripheral tissues but the functions of peripheral proBDNF remain elusive. Here we showed that proBDNF and its predominant receptor, p75 pan-neurotrophin receptor were upregulated in the nerve fibers and inflammatory cells in the local tissue in inflammatory pain. Neutralization of proBDNF by polyclonal antibody attenuated pain in different models of inflammatory pain. Unilateral intra-plantar supplementation of proBDNF by injecting exogenous proBDNF or ectopic overexpression resulted in pain hypersensitivity and induced spinal phosphorylated extracellular signal-regulated kinase activation. Exogenous proBDNF injection induced the infiltration of inflammatory cells and the activation of proinflammatory cytokines, suggesting that inflammatory reaction contributed to the pro-algesic effect of proBDNF. Finally, we generated monoclonal anti-proBDNF antibody that could biologically block proBDNF. Administration of monoclonal Ab-proBDNF attenuated various types of inflammatory pain and surgical pain. Thus, peripheral proBDNF is a potential pain mediator and anti-proBDNF pretreatment may alleviate the development of inflammatory pain. PMID:27251195

  10. Aberrant striatal dopamine transmitter dynamics in brain-derived neurotrophic factor-deficient mice.

    PubMed

    Bosse, Kelly E; Maina, Francis K; Birbeck, Johnna A; France, Marion M; Roberts, Joseph J P; Colombo, Michelle L; Mathews, Tiffany A

    2012-02-01

    Brain-derived neurotrophic factor (BDNF) modulates the synaptic transmission of several monoaminergic neuronal systems, including forebrain dopamine-containing neurons. Recent evidence shows a strong correlation between neuropsychiatric disorders and BDNF hypofunction. The aim of the present study was to characterize the effect of low endogenous levels of BDNF on dopamine system function in the caudate-putamen using heterozygous BDNF (BDNF(+/-) ) mice. Apparent extracellular dopamine levels in the caudate-putamen, determined by quantitative microdialysis, were significantly elevated in BDNF(+/-) mice compared with wildtype controls (12 vs. 5 nM, respectively). BDNF(+/-) mice also had a potentiated increase in dopamine levels following potassium (120 mM)-stimulation (10-fold) relative to wildtype controls (6-fold). Slice fast-scan cyclic voltammetry revealed that BDNF(+/-) mice had reductions in both electrically evoked dopamine release and dopamine uptake rates in the caudate-putamen. Superfusion of BDNF led to partial recovery of the electrically stimulated dopamine release response in BDNF(+/-) mice. Conversely, tissue accumulation of L-3,4-dihydroxyphenylalanine, extracellular levels of dopamine metabolites, and spontaneous locomotor activity were unaltered. Together, this study indicates that endogenous BDNF influences dopamine system homeostasis by regulating the release and uptake dynamics of pre-synaptic dopamine transmission. PMID:21988371

  11. Brain-derived neurotrophic factor differentially modulates excitability of two classes of hippocampal output neurons.

    PubMed

    Graves, A R; Moore, S J; Spruston, N; Tryba, A K; Kaczorowski, C C

    2016-08-01

    Brain-derived neurotrophic factor (BDNF) plays an important role in hippocampus-dependent learning and memory. Canonically, this has been ascribed to an enhancing effect on neuronal excitability and synaptic plasticity in the CA1 region. However, it is the pyramidal neurons in the subiculum that form the primary efferent pathways conveying hippocampal information to other areas of the brain, and yet the effect of BDNF on these neurons has remained unexplored. We present new data that BDNF regulates neuronal excitability and cellular plasticity in a much more complex manner than previously suggested. Subicular pyramidal neurons can be divided into two major classes, which have different electrophysiological and morphological properties, different requirements for the induction of plasticity, and different extrahippocampal projections. We found that BDNF increases excitability in one class of subicular pyramidal neurons yet decreases excitability in the other class. Furthermore, while endogenous BDNF was necessary for the induction of synaptic plasticity in both cell types, BDNF enhanced intrinsic plasticity in one class of pyramidal neurons yet suppressed intrinsic plasticity in the other. Taken together, these data suggest a novel role for BDNF signaling, as it appears to dynamically and bidirectionally regulate the output of hippocampal information to different regions of the brain. PMID:27146982

  12. Sex and stress hormone influences on the expression and activity of brain-derived neurotrophic factor.

    PubMed

    Carbone, D L; Handa, R J

    2013-06-01

    The neurotrophin, brain-derived neurotrophic factor (BDNF), is recognized as a key component in the regulation of CNS ontogeny, homeostasis and adult neuroplasticity. The importance of BDNF in CNS development and function is well documented by numerous reports from animal studies linking abnormal BDNF signaling to metabolic disturbances and anxiety or depressive-like behavior. Despite the diverse roles for BDNF in nearly all aspects of CNS physiology, the regulation of BDNF expression, as well as our understanding of the signaling mechanisms associated with this neurotrophin, remains incomplete. However, links between sex hormones such as estradiol and testosterone, as well as endogenous and synthetic glucocorticoids (GCs), have emerged as important mediators of BDNF expression and function. Examples of such regulation include brain region-specific induction of Bdnf mRNA in response to estradiol. Additional studies have also documented regulation of the expression of the high-affinity BDNF receptor Tropomyosin-Related Kinase B by estradiol, thus implicating sex steroids not only in the regulation of BDNF expression, but also in mechanisms of signaling associated with it. In addition to gonadal steroids, further evidence also suggests functional interaction between BDNF and GCs, such as in the regulation of corticotrophin-releasing hormone and other important neuropeptides. In this review, we provide an overview of the roles played by selected sex or stress hormones in the regulation of BDNF expression and signaling in the CNS. PMID:23211562

  13. Involvement of brain-derived neurotrophic factor (BDNF) in MP4-induced autoimmune encephalomyelitis.

    PubMed

    Javeri, Sita; Rodi, Michael; Tary-Lehmann, Magdalena; Lehmann, Paul V; Addicks, Klaus; Kuerten, Stefanie

    2010-11-01

    The role of brain-derived neurotrophic factor (BDNF) in multiple sclerosis and experimental autoimmune encephalomyelitis (EAE) is still unclear. Here we investigate the clinical course, CNS histopathology and peripheral antigen-specific immunity in MP4-induced EAE of BDNF (-/+) mice. We demonstrate that these mice displayed less severe disease compared to BDNF (+/+) mice, reflected by decreased inflammation and demyelination. In correspondence to diminished frequencies of T and B cells in CNS infiltrates, the peripheral MP4-specific T(H)1/T(H)17 response was attenuated in BDNF (-/+), but not in wild-type animals. In contrast, immunization with ovalbumin triggered similar frequencies of IFN-γ- and IL-17-secreting T cells in both groups. The cytokine secretion and proliferative activity upon mitogen stimulation did not reveal any global defect of T cell function in BDNF (-/+) mice. By influencing the antigen-specific immune response in autoimmune encephalomyelitis, BDNF may support and maintain the disease in ways that go beyond its alleged neuroprotective role. PMID:20797911

  14. Peripheral Brain Derived Neurotrophic Factor Precursor Regulates Pain as an Inflammatory Mediator

    PubMed Central

    Luo, Cong; Zhong, Xiao-Lin; Zhou, Fiona H.; Li, Jia-yi; Zhou, Pei; Xu, Jun-Mei; Song, Bo; Li, Chang-Qi; Zhou, Xin-Fu; Dai, Ru-Ping

    2016-01-01

    The precursor of brain derived neurotrophic factor (proBDNF), the unprocessed BDNF gene product, binds to its receptors and exerts the opposing biologic functions of mature BDNF. proBDNF is expressed in the peripheral tissues but the functions of peripheral proBDNF remain elusive. Here we showed that proBDNF and its predominant receptor, p75 pan-neurotrophin receptor were upregulated in the nerve fibers and inflammatory cells in the local tissue in inflammatory pain. Neutralization of proBDNF by polyclonal antibody attenuated pain in different models of inflammatory pain. Unilateral intra-plantar supplementation of proBDNF by injecting exogenous proBDNF or ectopic overexpression resulted in pain hypersensitivity and induced spinal phosphorylated extracellular signal-regulated kinase activation. Exogenous proBDNF injection induced the infiltration of inflammatory cells and the activation of proinflammatory cytokines, suggesting that inflammatory reaction contributed to the pro-algesic effect of proBDNF. Finally, we generated monoclonal anti-proBDNF antibody that could biologically block proBDNF. Administration of monoclonal Ab-proBDNF attenuated various types of inflammatory pain and surgical pain. Thus, peripheral proBDNF is a potential pain mediator and anti-proBDNF pretreatment may alleviate the development of inflammatory pain. PMID:27251195

  15. Directed Evolution of Brain-Derived Neurotrophic Factor for Improved Folding and Expression in Saccharomyces cerevisiae

    PubMed Central

    Burns, Michael L.; Malott, Thomas M.; Metcalf, Kevin J.; Hackel, Benjamin J.; Chan, Jonah R.

    2014-01-01

    Brain-derived neurotrophic factor (BDNF) plays an important role in nervous system function and has therapeutic potential. Microbial production of BDNF has resulted in a low-fidelity protein product, often in the form of large, insoluble aggregates incapable of binding to cognate TrkB or p75 receptors. In this study, employing Saccharomyces cerevisiae display and secretion systems, it was found that BDNF was poorly expressed and partially inactive on the yeast surface and that BDNF was secreted at low levels in the form of disulfide-bonded aggregates. Thus, for the purpose of increasing the compatibility of yeast as an expression host for BDNF, directed-evolution approaches were employed to improve BDNF folding and expression levels. Yeast surface display was combined with two rounds of directed evolution employing random mutagenesis and shuffling to identify BDNF mutants that had 5-fold improvements in expression, 4-fold increases in specific TrkB binding activity, and restored p75 binding activity, both as displayed proteins and as secreted proteins. Secreted BDNF mutants were found largely in the form of soluble homodimers that could stimulate TrkB phosphorylation in transfected PC12 cells. Site-directed mutagenesis studies indicated that a particularly important mutational class involved the introduction of cysteines proximal to the native cysteines that participate in the BDNF cysteine knot architecture. Taken together, these findings show that yeast is now a viable alternative for both the production and the engineering of BDNF. PMID:25015885

  16. A meta-analytic review of the effects of exercise on brain-derived neurotrophic factor

    PubMed Central

    Szuhany, Kristin L.; Bugatti, Matteo; Otto, Michael W.

    2014-01-01

    Consistent evidence indicates that exercise improves cognition and mood, with preliminary evidence suggesting that brain-derived neurotrophic factor (BDNF) may mediate these effects. The aim of the current meta-analysis was to provide an estimate of the strength of the association between exercise and increased BDNF levels in humans across multiple exercise paradigms. We conducted a meta-analysis of 29 studies (N = 1,111 participants) examining the effect of exercise on BDNF levels in three exercise paradigms: (1) a single session of exercise, (2) a session of exercise following a program of regular exercise, and (3) resting BDNF levels following a program of regular exercise. Moderators of this effect were also examined. Results demonstrated a moderate effect size for increases in BDNF following a single session of exercise (Hedges’ g = 0.46, p < 0.001). Further, regular exercise intensified the effect of a session of exercise on BDNF levels (Hedges’ g = 0.58, p = 0.02). Finally, results indicated a small effect of regular exercise on resting BDNF levels (Hedges’ g = 0.28, p = 0.005). When analyzing results across paradigms, sex significantly moderated the effect of exercise on BDNF levels, such that studies with more women showed less BDNF change resulting from exercise. Effect size analysis supports the role of exercise as a strategy for enhancing BDNF activity in humans, but indicates that the magnitude of these effects may be lower in females relative to males. PMID:25455510

  17. Brain-derived neurotrophic factor into adult neocortex strengthens a taste aversion memory.

    PubMed

    Martínez-Moreno, Araceli; Rodríguez-Durán, Luis F; Escobar, Martha L

    2016-01-15

    Nowadays, it is known that brain derived neurotrophic-factor (BDNF) is a protein critically involved in regulating long-term memory related mechanisms. Previous studies from our group in the insular cortex (IC), a brain structure of the temporal lobe implicated in acquisition, consolidation and retention of conditioned taste aversion (CTA), demonstrated that BDNF is essential for CTA consolidation. Recent studies show that BDNF-TrkB signaling is able to mediate the enhancement of memory. However, whether BDNF into neocortex is able to enhance aversive memories remains unexplored. In the present work, we administrated BDNF in a concentration capable of inducing in vivo neocortical LTP, into the IC immediately after CTA acquisition in two different conditions: a "strong-CTA" induced by 0.2M lithium chloride i.p. as unconditioned stimulus, and a "weak-CTA" induced by 0.1M lithium chloride i.p. Our results show that infusion of BDNF into the IC converts a weak CTA into a strong one, in a TrkB receptor-dependent manner. The present data suggest that BDNF into the adult insular cortex is sufficient to increase an aversive memory-trace. PMID:26433146

  18. Post-traumatic stress disorder risk and brain-derived neurotrophic factor Val66Met.

    PubMed

    Zhang, Lei; Li, Xiao-Xia; Hu, Xian-Zhang

    2016-03-22

    Brain-derived neurotrophic factor (BDNF), which regulates neuronal survival, growth differentiation, and synapse formation, is known to be associated with depression and post-traumatic stress disorder (PTSD). However, the molecular mechanism for those mental disorders remains unknown. Studies have shown that BDNF is associated with PTSD risk and exaggerated startle reaction (a major arousal manifestation of PTSD) in United States military service members who were deployed during the wars in Iraq and Afghanistan. The frequency of the Met/Met in BDNF gene was greater among those with PTSD than those without PTSD. Among individuals who experienced fewer lifetime stressful events, the Met carriers have significantly higher total and startle scores on the PTSD Checklist than the Val/Val carriers. In addition, subjects with PTSD showed higher levels of BDNF in their peripheral blood plasma than the non-probable-PTSD controls. Increased BDNF levels and startle response were observed in both blood plasma and brain hippocampus by inescapable tail shock in rats. In this paper, we reviewed these data to discuss BDNF as a potential biomarker for PTSD risk and its possible roles in the onset of PTSD. PMID:27014593

  19. Sex and Stress Hormone Influences on the Expression and Activity of Brain-Derived Neurotrophic Factor

    PubMed Central

    Carbone, David L.; Handa, Robert J.

    2012-01-01

    The neurotrophin, brain-derived neurotrophic factor (BDNF), is recognized as a key component in the regulation of central nervous system ontogeny, homeostasis and adult neuroplasticity. The importance of BDNF in central nervous system development and function is well documented by numerous reports from animal studies linking abnormal BDNF signaling to metabolic disturbances and anxiety or depressive-like behavior. Despite the diverse roles for BDNF in nearly all aspects of central nervous system physiology, the regulation of BDNF expression, as well as our understanding of the signaling mechanisms associated with this neurotrophin, remains incomplete. However, links between sex hormones such as estradiol and testosterone, as well as endogenous and synthetic glucocorticoids, have emerged as important mediators of BDNF expression and function. Examples of such regulation include brain region-specific induction of Bdnf mRNA in response to estradiol. Additional studies have also documented regulation of the expression of the high-affinity BDNF receptor TrkB by estradiol, thus implicating sex steroids not only in the regulation of BDNF expression, but on mechanisms of signaling associated with it. In addition to gonadal steroids, further evidence also suggests functional interaction between BDNF and glucocorticoids, such as in the regulation of corticotrophin-releasing hormone and other important neuropeptides. In this review, we provide an overview of the roles played by selected sex or stress hormones in the regulation of BDNF expression and signaling in the central nervous system PMID:23211562

  20. Maternal separation produces alterations of forebrain brain-derived neurotrophic factor expression in differently aged rats

    PubMed Central

    Wang, Qiong; Shao, Feng; Wang, Weiwen

    2015-01-01

    Early life adversity, such as postnatal maternal separation (MS), play a central role in the development of psychopathologies during individual ontogeny. In this study, we investigated the effects of repeated MS (4 h per day from postnatal day (PND) 1–21) on the brain-derived neurotrophic factor (BDNF) expression in the medial prefrontal cortex (mPFC), the nucleus accumbens (NAc) and the hippocampus of male and female juvenile (PND 21), adolescent (PND 35) and young adult (PND 56) Wistar rats. The results indicated that MS increased BDNF in the CA1 and the dentate gyrus (DG) of adolescent rats as well as in the DG of young adult rats. However, the expression of BDNF in the mPFC in the young adult rats was decreased by MS. Additionally, in the hippocampus, there was decreased BDNF expression with age in both the MS and non separated rats. However, in the mPFC, the BDNF expression was increased with age in the non separated rats; nevertheless, the BDNF expression was significantly decreased in the MS young adult rats. In the NAc, the BDNF expression was increased with age in the male non-maternal separation (NMS) rats, and the young adult female MS rats had less BDNF expression than the adolescent female MS rats. The present study shows unique age-differently changes on a molecular level induced by MS and advances the use of MS as a valid animal model to detect the underlying neurobiological mechanisms of mental disorders. PMID:26388728

  1. Brain-derived neurotrophic factor promoter methylation and cortical thickness in recurrent major depressive disorder

    PubMed Central

    Na, Kyoung-Sae; Won, Eunsoo; Kang, June; Chang, Hun Soo; Yoon, Ho-Kyoung; Tae, Woo Suk; Kim, Yong-Ku; Lee, Min-Soo; Joe, Sook-Haeng; Kim, Hyun; Ham, Byung-Joo

    2016-01-01

    Recent studies have reported that methylation of the brain-derived neurotrophic factor (BDNF) gene promoter is associated with major depressive disorder (MDD). This study aimed to investigate the association between cortical thickness and methylation of BDNF promoters as well as serum BDNF levels in MDD. The participants consisted of 65 patients with recurrent MDD and 65 age- and gender-matched healthy controls. Methylation of BDNF promoters and cortical thickness were compared between the groups. The right medial orbitofrontal, right lingual, right lateral occipital, left lateral orbitofrontal, left pars triangularis, and left lingual cortices were thinner in patients with MDD than in healthy controls. Among the MDD group, right pericalcarine, right medical orbitofrontal, right rostral middle frontal, right postcentral, right inferior temporal, right cuneus, right precuneus, left frontal pole, left superior frontal, left superior temporal, left rostral middle frontal and left lingual cortices had inverse correlations with methylation of BDNF promoters. Higher levels of BDNF promoter methylation may be closely associated with the reduced cortical thickness among patients with MDD. Serum BDNF levels were significantly lower in MDD, and showed an inverse relationship with BDNF methylation only in healthy controls. Particularly the prefrontal and occipital cortices seem to indicate key regions in which BDNF methylation has a significant effect on structure. PMID:26876488

  2. Increased circulating concentrations of mesencephalic astrocyte-derived neurotrophic factor in children with type 1 diabetes

    PubMed Central

    Galli, Emilia; Härkönen, Taina; Sainio, Markus T.; Ustav, Mart; Toots, Urve; Urtti, Arto; Yliperttula, Marjo; Lindahl, Maria; Knip, Mikael; Saarma, Mart; Lindholm, Päivi

    2016-01-01

    Mesencephalic astrocyte-derived neurotrophic factor (MANF) was recently shown to be essential for the survival and proliferation of pancreatic β-cells in mice, where deletion of MANF resulted in diabetes. The current study aimed at determining whether the concentration of circulating MANF is associated with the clinical manifestation of human type 1 diabetes (T1D). MANF expression in T1D or MANF levels in serum have not been previously studied. We developed an enzyme-linked immunosorbent assay (ELISA) for MANF and measured serum MANF concentrations from 186 newly diagnosed children and adolescents and 20 adults with longer-term T1D alongside with age-matched controls. In healthy controls the mean serum MANF concentration was 7.0 ng/ml. High MANF concentrations were found in children 1–9 years of age close to the diagnosis of T1D. The increased MANF concentrations were not associated with diabetes-predictive autoantibodies and autoantibodies against MANF were extremely rare. Patients with conspicuously high MANF serum concentrations had lower C-peptide levels compared to patients with moderate MANF concentrations. Our data indicate that increased MANF concentrations in serum are associated with the clinical manifestation of T1D in children, but the exact mechanism behind the increase remains elusive. PMID:27356471

  3. Low-level laser therapy promotes dendrite growth via upregulating brain-derived neurotrophic factor expression

    NASA Astrophysics Data System (ADS)

    Meng, Chengbo; He, Zhiyong; Xing, Da

    2014-09-01

    Downregulation of brain-derived neurotrophic factor (BDNF) in the hippocampus occurs early in the progression of Alzheimer's disease (AD). Since BDNF plays a critical role in neuronal survival and dendrite growth, BDNF upregulation may contribute to rescue dendrite atrophy and cell loss in AD. Low-level laser therapy (LLLT) has been demonstrated to regulate neuronal function both in vitro and in vivo. In the present study, we found that LLLT rescued neurons loss and dendritic atrophy via the increase of both BDNF mRNA and protein expression. In addition, dendrite growth was improved after LLLT, characterized by upregulation of PSD95 expression, and the increase in length, branching, and spine density of dendrites in hippocampal neurons. Together, these studies suggest that upregulation of BDNF with LLLT can ameliorate Aβ-induced neurons loss and dendritic atrophy, thus identifying a novel pathway by which LLLT protects against Aβ-induced neurotoxicity. Our research may provide a feasible therapeutic approach to control the progression of Alzheimer's disease.

  4. Gene Transfer of Brain-derived Neurotrophic Factor (BDNF) Prevents Neurodegeneration Triggered by FXN Deficiency.

    PubMed

    Katsu-Jiménez, Yurika; Loría, Frida; Corona, Juan Carlos; Díaz-Nido, Javier

    2016-05-01

    Friedreich's ataxia is a predominantly neurodegenerative disease caused by recessive mutations that produce a deficiency of frataxin (FXN). Here, we have used a herpesviral amplicon vector carrying a gene encoding for brain-derived neurotrophic factor (BDNF) to drive its overexpression in neuronal cells and test for its effect on FXN-deficient neurons both in culture and in the mouse cerebellum in vivo. Gene transfer of BDNF to primary cultures of mouse neurons prevents the apoptosis which is triggered by the knockdown of FXN gene expression. This neuroprotective effect of BDNF is also observed in vivo in a viral vector-based knockdown mouse cerebellar model. The injection of a lentiviral vector carrying a minigene encoding for a FXN-specific short hairpin ribonucleic acid (shRNA) into the mouse cerebellar cortex triggers a FXN deficit which is accompanied by significant apoptosis of granule neurons as well as loss of calbindin in Purkinje cells. These pathological changes are accompanied by a loss of motor coordination of mice as assayed by the rota-rod test. Coinjection of a herpesviral vector encoding for BDNF efficiently prevents both the development of cerebellar neuropathology and the ataxic phenotype. These data demonstrate the potential therapeutic usefulness of neurotrophins like BDNF to protect FXN-deficient neurons from degeneration. PMID:26849417

  5. Brain-derived neurotrophic factor differentially modulates excitability of two classes of hippocampal output neurons

    PubMed Central

    Graves, A. R.; Moore, S. J.; Spruston, N.; Tryba, A. K.

    2016-01-01

    Brain-derived neurotrophic factor (BDNF) plays an important role in hippocampus-dependent learning and memory. Canonically, this has been ascribed to an enhancing effect on neuronal excitability and synaptic plasticity in the CA1 region. However, it is the pyramidal neurons in the subiculum that form the primary efferent pathways conveying hippocampal information to other areas of the brain, and yet the effect of BDNF on these neurons has remained unexplored. We present new data that BDNF regulates neuronal excitability and cellular plasticity in a much more complex manner than previously suggested. Subicular pyramidal neurons can be divided into two major classes, which have different electrophysiological and morphological properties, different requirements for the induction of plasticity, and different extrahippocampal projections. We found that BDNF increases excitability in one class of subicular pyramidal neurons yet decreases excitability in the other class. Furthermore, while endogenous BDNF was necessary for the induction of synaptic plasticity in both cell types, BDNF enhanced intrinsic plasticity in one class of pyramidal neurons yet suppressed intrinsic plasticity in the other. Taken together, these data suggest a novel role for BDNF signaling, as it appears to dynamically and bidirectionally regulate the output of hippocampal information to different regions of the brain. PMID:27146982

  6. Brain-derived neurotrophic factor rapidly increases NMDA receptor channel activity through Fyn-mediated phosphorylation.

    PubMed

    Xu, Fei; Plummer, Mark R; Len, Guo-Wei; Nakazawa, Takanobu; Yamamoto, Tadashi; Black, Ira B; Wu, Kuo

    2006-11-22

    Brain-derived neurotrophic factor (BDNF) is a potent modulator of hippocampal synaptic plasticity. Previously, we found that one of the targets of BDNF modulation is NR2B-containing NMDA receptors. Furthermore, exposure to the trophin rapidly increases NMDA receptor activity and enhances tyrosine phosphorylation of NR2B in cortical and hippocampal postsynaptic densities (PSDs), potentially linking receptor phosphorylation to synaptic plasticity. To define the specific NR2B residue(s) regulated by BDNF, we focused on tyrosine 1472, phosphorylation of which increases after LTP. BDNF rapidly increased phosphorylation in cortical PSDs. The tyrosine kinase Fyn is critical since BDNF-dependent phosphorylation was abolished in Fyn knockout mice. Single-channel patch clamp recordings showed that Fyn is required for the increase in NMDA receptor activity elicited by BDNF. Collectively, our results suggest that BDNF enhances phosphorylation of NR2B tyrosine 1472 through activation of Fyn, leading to alteration of NMDA receptor activity and increased synaptic transmission. PMID:17045972

  7. Brain-Derived neurotrophic factor levels in late-life depression and comorbid mild cognitive impairment: a longitudinal study

    PubMed Central

    Diniz, Breno Satler; Reynolds, Charles F.; Begley, Amy; Dew, Mary Amanda; Anderson, Stewart J.; Lotrich, Francis; Erickson, Kirk I.; Lopez, Oscar; Aizenstein, Howard; Sibille, Etienne L.; Butters, Meryl A.

    2014-01-01

    Changes in brain-derived neurotrophic factor (BDNF) level are implicated in the pathophysiology of cognitive decline in depression and neurodegenerative disorders in older adults. We aimed to evaluate the longitudinal association over two years between BDNF and persistent cognitive decline in individuals with remitted late-life depression and Mild Cognitive Impairment (LLD+MCI) compared to either individuals with remitted LLD and no cognitive decline (LLD+NCD) or never-depressed, cognitively normal, elderly control participants. We additionally evaluated the effect of double-blind, placebo-controlled donepezil treatment on BDNF levels in all of the remitted LLD participants (across the levels of cognitive function). We included 160 elderly participants in this study (72 LLD+NCD, 55 LLD+MCI and 33 never-depressed cognitively normal elderly participants). At the same visits, cognitive assessments were conducted and blood sampling to determine serum BDNF levels were collected at baseline assessment and after one and two years of follow-up. We utilized repeated measure, mixed effect models to assess: (1) the effects of diagnosis (LLD+MCI, LLD+NCD, and controls), time, and their interaction on BDNF levels; and (2) the effects of donepezil treatment (donepezil vs. placebo), time, baseline diagnosis (LLD+MCI vs. LLD+NCD), and interactions between these contrasts on BDNF levels. We found a significant effect of time on BDNF level (p=0.02) and a significant decline in BDNF levels over 2 years of follow-up in participants with LLD+MCI (p=0.004) and controls (p=0.04). We found no effect of donepezil treatment on BDNF level. The present results suggest that aging is an important factor related to decline in BDNF level. PMID:24290367

  8. Effects of aerobic exercise training on peripheral brain-derived neurotrophic factor and eotaxin-1 levels in obese young men

    PubMed Central

    Cho, Su Youn; Roh, Hee Tae

    2016-01-01

    [Purpose] The aim of the present study was to investigate the effects of aerobic exercise training on the levels of peripheral brain-derived neurotrophic factor and eotaxin-1 in obese young men. [Subjects and Methods] The subjects included sixteen obese young men with a body mass index greater than 25 kg/m2. They were randomly divided between control and exercise groups (n = 8 in each group). The exercise group performed treadmill exercise for 40 min, 3 times a week for 8 weeks at the intensity of 70% heart rate reserve. Blood collection was performed to examine the levels of serum glucose, plasma malonaldehyde, serum brain-derived neurotrophic factor, and plasma eotaxin-1 before and after the intervention (aerobic exercise training). [Results] Following the intervention, serum BDNF levels were significantly higher, while serum glucose, plasma MDA, and plasma eotaxin-1 levels were significantly lower than those prior to the intervention in the exercise group. [Conclusion] Aerobic exercise training can induce neurogenesis in obese individuals by increasing the levels of brain-derived neurotrophic factor and reducing the levels of eotaxin-1. Alleviation of oxidative stress is possibly responsible for such changes. PMID:27190482

  9. The Impacts of Swimming Exercise on Hippocampal Expression of Neurotrophic Factors in Rats Exposed to Chronic Unpredictable Mild Stress

    PubMed Central

    Dang, Rui-Li; Zhang, Li-Hong; Xue, Ying; Tang, Mi-Mi

    2014-01-01

    Depression is associated with stress-induced neural atrophy in limbic brain regions, whereas exercise has antidepressant effects as well as increasing hippocampal synaptic plasticity by strengthening neurogenesis, metabolism, and vascular function. A key mechanism mediating these broad benefits of exercise on the brain is induction of neurotrophic factors, which instruct downstream structural and functional changes. To systematically evaluate the potential neurotrophic factors that were involved in the antidepressive effects of exercise, in this study, we assessed the effects of swimming exercise on hippocampal mRNA expression of several classes of the growth factors (BDNF, GDNF, NGF, NT-3, FGF2, VEGF, and IGF-1) and peptides (VGF and NPY) in rats exposed to chronic unpredictable mild stress (CUMS). Our study demonstrated that the swimming training paradigm significantly induced the expression of BDNF and BDNF-regulated peptides (VGF and NPY) and restored their stress-induced downregulation. Additionally, the exercise protocol also increased the antiapoptotic Bcl-xl expression and normalized the CUMS mediated induction of proapoptotic Bax mRNA level. Overall, our data suggest that swimming exercise has antidepressant effects, increasing the resistance to the neural damage caused by CUMS, and both BDNF and its downstream neurotrophic peptides may exert a major function in the exercise related adaptive processes to CUMS. PMID:25477997

  10. The effect of regular Taekwondo exercise on Brain-derived neurotrophic factor and Stroop test in undergraduate student

    PubMed Central

    Kim, Youngil

    2015-01-01

    [Purpose] The purpose of this study was to investigate the effect of Taekwondo exercise on Brain-derived neurotrophic factor and the Stroop test in undergraduate students. [Methods] Fourteen male subjects participated in this study. They were separated into a Control group (N = 7) and an Exercise group (N = 7). Subjects participated in Taekwondo exercise training for 8 weeks. They underwent to Taekwondo exercise training for 85 minutes per day, 5 times a week at RPE of 11~15. The taekwondo exercise training comprised an aerobic exercise (20min) mode and a dynamic exercise (65min) mode. All data were analyzed by repeated measures two-way ANOVA. [Results] There were no significant differences in the physical characteristics of the subjects. Although weight and BMI showed a tendency to decreased in the exercise group (EG). Also, neurotrophic factors (BDNF, NGF, IGF-1) were not significantly different after 8 weeks in the two groups. However, BDNF and IGF-1 showed a tendency to increase in the exercise group (EG). Finally, the Stroop test (word, color) results were significantly different(p < .05) in the exercise group (EG). [Conclusion] These finding suggest that 8 weeks of regular Taekwondo exercise training may increase cognitive functions (Stroop test). However the training did not statistically affect neurotrophic factors (BDNF, NGF, IGF-1) in undergraduate students. PMID:26244125

  11. The trkB Tyrosine Protein Kinase Is a Receptor for Brain-Derived Neurotrophic Factor and Neurotrophin-3

    PubMed Central

    Klein, Rüdiger; Nanduri, Venkata; Jing, Shuqian; Lamballe, Fabienne; Tapley, Peter; Bryant, Sherri; Cordon-Cardo, Carlos; Jones, Kevin R.; Reichardt, Louis F.; Barbacid, Mariano

    2009-01-01

    Summary trkB is a tyrosine protein kinase gene highly related to trk, a proto-oncogene that encodes a receptor for nerve growth factor (NGF) and neurotrophin-3 (NT-3). trkB expression is confined to structures of the central and peripheral nervous systems, suggesting it also encodes a receptor for neurotrophic factors. Here we show that brain-derived neurotrophic factor (BDNF) and NT-3, but not NGF, can induce rapid phosphorylation on tyrosine of gp145trkB, one of the receptors encoded by trkB. BDNF and NT-3 can induce DNA synthesis in quiescent NIH 3T3 cells that express gp145trkB. Cotransfection of plasmids encoding gp145trkB and BDNF or NT-3 leads to transformation of recipient NIH 3T3 cells. In these assays, BDNF elicits a response at least two orders of magnitude higher than NT-3. Finally, 125I-NT-3 binds to NIH 3T3 cells expressing gp145trkB; binding can be competed by NT-3 and BDNF but not by NGF. These findings indicate that gp145trkB may function as a neurotrophic receptor for BDNF and NT-3. PMID:1649702

  12. The impacts of swimming exercise on hippocampal expression of neurotrophic factors in rats exposed to chronic unpredictable mild stress.

    PubMed

    Jiang, Pei; Dang, Rui-Li; Li, Huan-De; Zhang, Li-Hong; Zhu, Wen-Ye; Xue, Ying; Tang, Mi-Mi

    2014-01-01

    Depression is associated with stress-induced neural atrophy in limbic brain regions, whereas exercise has antidepressant effects as well as increasing hippocampal synaptic plasticity by strengthening neurogenesis, metabolism, and vascular function. A key mechanism mediating these broad benefits of exercise on the brain is induction of neurotrophic factors, which instruct downstream structural and functional changes. To systematically evaluate the potential neurotrophic factors that were involved in the antidepressive effects of exercise, in this study, we assessed the effects of swimming exercise on hippocampal mRNA expression of several classes of the growth factors (BDNF, GDNF, NGF, NT-3, FGF2, VEGF, and IGF-1) and peptides (VGF and NPY) in rats exposed to chronic unpredictable mild stress (CUMS). Our study demonstrated that the swimming training paradigm significantly induced the expression of BDNF and BDNF-regulated peptides (VGF and NPY) and restored their stress-induced downregulation. Additionally, the exercise protocol also increased the antiapoptotic Bcl-xl expression and normalized the CUMS mediated induction of proapoptotic Bax mRNA level. Overall, our data suggest that swimming exercise has antidepressant effects, increasing the resistance to the neural damage caused by CUMS, and both BDNF and its downstream neurotrophic peptides may exert a major function in the exercise related adaptive processes to CUMS. PMID:25477997

  13. Effects of aerobic exercise training on peripheral brain-derived neurotrophic factor and eotaxin-1 levels in obese young men.

    PubMed

    Cho, Su Youn; Roh, Hee Tae

    2016-04-01

    [Purpose] The aim of the present study was to investigate the effects of aerobic exercise training on the levels of peripheral brain-derived neurotrophic factor and eotaxin-1 in obese young men. [Subjects and Methods] The subjects included sixteen obese young men with a body mass index greater than 25 kg/m(2). They were randomly divided between control and exercise groups (n = 8 in each group). The exercise group performed treadmill exercise for 40 min, 3 times a week for 8 weeks at the intensity of 70% heart rate reserve. Blood collection was performed to examine the levels of serum glucose, plasma malonaldehyde, serum brain-derived neurotrophic factor, and plasma eotaxin-1 before and after the intervention (aerobic exercise training). [Results] Following the intervention, serum BDNF levels were significantly higher, while serum glucose, plasma MDA, and plasma eotaxin-1 levels were significantly lower than those prior to the intervention in the exercise group. [Conclusion] Aerobic exercise training can induce neurogenesis in obese individuals by increasing the levels of brain-derived neurotrophic factor and reducing the levels of eotaxin-1. Alleviation of oxidative stress is possibly responsible for such changes. PMID:27190482

  14. Zirconium oxide ceramic foam: a promising supporting biomaterial for massive production of glial cell line-derived neurotrophic factor*

    PubMed Central

    Liu, Zhong-wei; Li, Wen-qiang; Wang, Jun-kui; Ma, Xian-cang; Liang, Chen; Liu, Peng; Chu, Zheng; Dang, Yong-hui

    2014-01-01

    This study investigated the potential application of a zirconium oxide (ZrO2) ceramic foam culturing system to the production of glial cell line-derived neurotrophic factor (GDNF). Three sets of ZrO2 ceramic foams with different pore densities of 10, 20, and 30 pores per linear inch (PPI) were prepared to support a 3D culturing system. After primary astrocytes were cultured in these systems, production yields of GDNF were evaluated. The biomaterial biocompatibility, cell proliferation and activation of cellular signaling pathways in GDNF synthesis and secretion in the culturing systems were also assessed and compared with a conventional culturing system. In this study, we found that the ZrO2 ceramic foam culturing system was biocompatible, using which the GDNF yields were elevated and sustained by stimulated cell proliferation and activation of signaling pathways in astrocytes cultured in the system. In conclusion, the ZrO2 ceramic foam is promising for the development of a GDNF mass production device for Parkinson’s disease treatment. PMID:25471830

  15. Zirconium oxide ceramic foam: a promising supporting biomaterial for massive production of glial cell line-derived neurotrophic factor.

    PubMed

    Liu, Zhong-wei; Li, Wen-qiang; Wang, Jun-kui; Ma, Xian-cang; Liang, Chen; Liu, Peng; Chu, Zheng; Dang, Yong-hui

    2014-12-01

    This study investigated the potential application of a zirconium oxide (ZrO2) ceramic foam culturing system to the production of glial cell line-derived neurotrophic factor (GDNF). Three sets of ZrO2 ceramic foams with different pore densities of 10, 20, and 30 pores per linear inch (PPI) were prepared to support a 3D culturing system. After primary astrocytes were cultured in these systems, production yields of GDNF were evaluated. The biomaterial biocompatibility, cell proliferation and activation of cellular signaling pathways in GDNF synthesis and secretion in the culturing systems were also assessed and compared with a conventional culturing system. In this study, we found that the ZrO2 ceramic foam culturing system was biocompatible, using which the GDNF yields were elevated and sustained by stimulated cell proliferation and activation of signaling pathways in astrocytes cultured in the system. In conclusion, the ZrO2 ceramic foam is promising for the development of a GDNF mass production device for Parkinson's disease treatment. PMID:25471830

  16. Effects of brain-derived neurotrophic factor-pretreated neuron stem cell transplantation on Alzheimer’s disease model mice

    PubMed Central

    Li, Tong; Yu, Ying; Cai, Hongliu

    2015-01-01

    Alzheimer’s disease (AD) is a common case of dementia and its possible therapies, such as neuron stem cell (NSC) transplantation therapy, have been studied for years. In order to improve NSC transplantation effects, we were inspired to pretreat NSC using brain-derived neurotrophic factor (BDNF) before transplantation. The AD mouse model was constructed and effects of BDNF+NSC transplant group and traditional NSC transplant group were compared using the four indicators: conditions of learning and memory ability recovery tested by Morris Water Maze (MWM), number of basal forebrain cholinergic neurons, expression of synaptophysin, and number of acetylcholinesterase (ACHE)-positive fibers detected by chemical staining. Results showed all the four indicators were significantly lower in the AD model group than the control group (P < 0.05). Traditional NSC transplantation could improve these indicators to some extent but still possessed significant differences from the control group (P < 0.05). Especially, the BDNF+NSC transplant group showed significant improvements in the four indicators when compared with the AD model group (P < 0.05). Taken these data together, BDNF pretreatment improved the NSC transplantation effects, showing advantages over the traditional NSC transplantation. Our study could facilitate the application of stem cell transplantation therapy to AD treatment. PMID:26885166

  17. Variant brain-derived neurotrophic factor Val66Met polymorphism alters vulnerability to stress and response to antidepressants.

    PubMed

    Yu, Hui; Wang, Dong-Dong; Wang, Yue; Liu, Ting; Lee, Francis S; Chen, Zhe-Yu

    2012-03-21

    Brain-derived neurotrophic factor (BDNF) plays important roles in cell survival, neural plasticity, learning, and stress regulation. However, whether the recently found human BDNF Val66Met (BDNF(Met)) polymorphism could alter stress vulnerability remains controversial. More importantly, the molecular and structural mechanisms underlying the interaction between the BDNF(Met) polymorphism and stress are unclear. We found that heterozygous BDNF(+/Met) mice displayed hypothalamic-pituitary-adrenal axis hyperreactivity, increased depressive-like and anxiety-like behaviors, and impaired working memory compared with WT mice after 7 d restraint stress. Moreover, BDNF(+/Met) mice exhibited more prominent changes in BDNF levels and apical dendritic spine density in the prefrontal cortex and amygdala after stress, which correlated with the impaired working memory and elevated anxiety-like behaviors. Finally, the depressive-like behaviors in BDNF(+/Met) mice could be selectively rescued by acute administration of desipramine but not fluoxetine. These data indicate selective behavioral, molecular, and structural deficits resulting from the interaction between stress and the human genetic BDNF(Met) polymorphism. Importantly, desipramine but not fluoxetine has antidepressant effects on BDNF(+/Met) mice, suggesting that specific classes of antidepressant may be a more effective treatment option for depressive symptoms in humans with this genetic variant BDNF. PMID:22442074

  18. Effect of mesenchymal stem cell transplantation on brain-derived neurotrophic factor expression in rats with Tourette syndrome

    PubMed Central

    LIU, XIUMEI; WANG, XUEMING; LI, AIMIN; JIAO, XIAOLING

    2016-01-01

    The aim of the present study was to investigate the effect of bone marrow mesenchymal stem cell (MSC) transplantation on brain-derived neurotrophic factor (BDNF) expression in the striatum of Tourette syndrome (TS) rats. In addition, the possible mechanism of MSC transplantation in the treatment of TS was investigated. A total of 72 Wistar rats were randomly allocated into the control (sham surgery) group and the two experimental groups, including the TS+vehicle and TS+MSC. MSCs were co-cultured with 5-bromodeoxyuridine for 24 h for labeling prior to grafting. An autoimmune TS rat model was successfully established in the present study. Rat MSCs were cultured and expanded using density gradient centrifugation in vitro, identified by flow cytometry and then transplanted into the striata of the TS+MSC group rats. The mRNA and protein expression levels of BDNF were detected by RT-qPCR and ELISA, respectively. The results indicated that the stereotypic behavior of TS rats was reduced 7 days after MSC transplantation, while the mRNA and protein BDNF levels in the striatum increased, compared with the sham surgery group (P<0.05). In addition, the BDNF mRNA and protein expression level was lower in the striatum of TS+MSC transplantation, compared with that in TS+vehicle rats. In conclusion, intrastriatal transplantation of MSCs may provide relief from stereotypic TS behavior, since the BDNF level was reduced in TS rats after MSC transplantation. PMID:27073424

  19. Epigenetic mechanisms underlying the role of brain-derived neurotrophic factor in depression and response to antidepressants

    PubMed Central

    Duclot, Florian; Kabbaj, Mohamed

    2015-01-01

    Major depressive disorder (MDD) is a devastating neuropsychiatric disorder encompassing a wide range of cognitive and emotional dysfunctions. The prevalence of MDD is expected to continue its growth to become the second leading cause of disease burden (after HIV) by 2030. Despite an extensive research effort, the exact etiology of MDD remains elusive and the diagnostics uncertain. Moreover, a marked inter-individual variability is observed in the vulnerability to develop depression, as well as in response to antidepressant treatment, for nearly 50% of patients. Although a genetic component accounts for some cases of MDD, it is now clearly established that MDD results from strong gene and environment interactions. Such interactions could be mediated by epigenetic mechanisms, defined as chromatin and DNA modifications that alter gene expression without changing the DNA structure itself. Some epigenetic mechanisms have recently emerged as particularly relevant molecular substrates, promoting vulnerability or resilience to the development of depressive-like symptoms. Although the role of brain-derived neurotrophic factor (BDNF) in the pathophysiology of MDD remains unclear, its modulation of the efficacy of antidepressants is clearly established. Therefore, in this review, we focus on the epigenetic mechanisms regulating the expression of BDNF in humans and in animal models of depression, and discuss their role in individual differences in vulnerability to depression and response to antidepressant drugs. PMID:25568448

  20. Brain-derived Neurotrophic Factor Regulates Energy Expenditure Through the Central Nervous System in Obese Diabetic Mice

    PubMed Central

    Nonomura, Takeshi; Tsuchida, Atsushi; Ono-Kishino, Michiko; Nakagawa, Tsutomu; Noguchia, Hiroshi

    2001-01-01

    It has been previously demonstrated that brain-derived neurotrophic factor (BDNF) regulates glucose metabolism and energy expenditure in rodent diabetic models such as C57BL/KsJ-leprdb/leprdb (db/db) mice. Central administration of BDNF has been found to reduce blood glucose in db/db mice, suggesting that BDNF acts through the central nervous system. In the present study we have expanded these investigations to explore the effect of central administration of BDNF on energy metabolism. Intracerebroventricular administration of BDNF lowered blood glucose and increased pancreatic insulin content of db/db mice compared with vehicle-treated pellet pair-fed db/db mice. While body temperatures of the pellet pair-fed db/db mice given vehicle were reduced because of restricted food supply in this pair-feeding condition, BDNF treatment remarkably alleviated the reduction of body temperature suggesting the enhancement of thermogenesis. BDNF enhanced norepinephrine turnover and increased uncoupling protein-1 mRNA expression in the interscapular brown adipose tissue. Our evidence indicates that BDNF activates the sympathetic nervous system via the central nervous system and regulates energy expenditure in obese diabetic animals. PMID:12369708

  1. Kai-Xin-San, a Chinese Herbal Decoction Containing Ginseng Radix et Rhizoma, Polygalae Radix, Acori Tatarinowii Rhizoma, and Poria, Stimulates the Expression and Secretion of Neurotrophic Factors in Cultured Astrocytes

    PubMed Central

    Zhu, Kevin Yue; Xu, Sherry Li; Choi, Roy Chi-Yan; Yan, Artemis Lu; Dong, Tina Ting-Xia; Tsim, Karl Wah-Keung

    2013-01-01

    Kai-xin-san (KXS), a Chinese herbal decoction prescribed by Sun Simiao in Beiji Qianjin Yaofang about 1400 years ago, contains Ginseng Radix et Rhizoma, Polygalae Radix, Acori Tatarinowii Rhizoma, and Poria. In China, KXS has been used to treat stress-related psychiatric diseases with the symptoms of depression and forgetfulness. Although animal study has supported the antidepression function of KXS, the mechanism in cellular level is still unknown. Here, a chemically standardized water extract of KXS was applied onto cultured astrocytes in exploring the action mechanisms of KXS treatment, which significantly stimulated the expression and secretion of neurotrophic factors, including NGF, BDNF, and GDNF, in a dose-dependent manner: the stimulation was both in mRNA and protein levels. In addition, the water extracts of four individual herbs did not significantly stimulate the expression of neurotrophic factors, which could explain the optimized effect of KXS in a herbal decoction. The KXS-induced expression of neurotrophic factors did not depend on signaling mediated by estrogen receptor or protein kinase. The results suggested that the antidepressant-like action of KXS might be mediated by an increase of expression of neurotrophic factors in astrocytes, which fully supported the clinical usage of this decoction. PMID:24222781

  2. Kai-xin-san, a chinese herbal decoction containing ginseng radix et rhizoma, polygalae radix, acori tatarinowii rhizoma, and poria, stimulates the expression and secretion of neurotrophic factors in cultured astrocytes.

    PubMed

    Zhu, Kevin Yue; Xu, Sherry Li; Choi, Roy Chi-Yan; Yan, Artemis Lu; Dong, Tina Ting-Xia; Tsim, Karl Wah-Keung

    2013-01-01

    Kai-xin-san (KXS), a Chinese herbal decoction prescribed by Sun Simiao in Beiji Qianjin Yaofang about 1400 years ago, contains Ginseng Radix et Rhizoma, Polygalae Radix, Acori Tatarinowii Rhizoma, and Poria. In China, KXS has been used to treat stress-related psychiatric diseases with the symptoms of depression and forgetfulness. Although animal study has supported the antidepression function of KXS, the mechanism in cellular level is still unknown. Here, a chemically standardized water extract of KXS was applied onto cultured astrocytes in exploring the action mechanisms of KXS treatment, which significantly stimulated the expression and secretion of neurotrophic factors, including NGF, BDNF, and GDNF, in a dose-dependent manner: the stimulation was both in mRNA and protein levels. In addition, the water extracts of four individual herbs did not significantly stimulate the expression of neurotrophic factors, which could explain the optimized effect of KXS in a herbal decoction. The KXS-induced expression of neurotrophic factors did not depend on signaling mediated by estrogen receptor or protein kinase. The results suggested that the antidepressant-like action of KXS might be mediated by an increase of expression of neurotrophic factors in astrocytes, which fully supported the clinical usage of this decoction. PMID:24222781

  3. Intravitreal Ciliary Neurotrophic Factor Transiently Improves Cone-Mediated Function in a CNGB3−/− Mouse Model of Achromatopsia

    PubMed Central

    Marangoni, Dario; Vijayasarathy, Camasamudram; Bush, Ronald A.; Wei, Lisa L.; Wen, Rong; Sieving, Paul A.

    2015-01-01

    Purpose Ciliary neurotrophic factor (CNTF) was recently shown to augment cone function in CNGB3 mutant achromat dogs. However, testing CNTF-releasing implant in human CNGB3 achromats failed to show benefit. We evaluated the effects of CNTF protein on the retinal function in an additional achromatopsia model, the CNGB3−/− mouse. Methods Fifty-nine CNGB3−/− mice (postnatal day [PD] ± SD = 30 ± 7) received a unilateral intravitreal injection of 1 or 2 μg CNTF protein, and 15 wild-type (WT) mice (PD = 34 ± 3) received 1 μg CNTF. Retinal function was evaluated by flash ERG and photopic flicker ERG (fERG) at 7 and 14 days after treatment. Results Seven days post CNTF, the photopic b-wave Vmax was significantly increased in CNGB3−/− mice (P < 0.01), whereas it was reduced in WT mice (P < 0.05). Ciliary neurotrophic factor significantly increased the amplitude of photopic fERG and the photopic oscillatory potentials (OPs) in CNGB3−/− mice. Ciliary neurotrophic factor did not alter the scotopic a-wave in either CNGB3−/− or WT mice, but it increased the scotopic b-wave k (P < 0.01) in CNGB3−/− mice, indicating diminished scotopic sensitivity, and reduced the scotopic b-wave Vmax in WT mice (P < 0.05). No difference was found in ERG parameters between 1 or 2 μg CNTF. Fourteen days after CNTF injection the ERG changes in CNGB3−/− mice were lost. Conclusions Intravitreal bolus CNTF protein caused a small and transient improvement of cone-mediated function in CNGB3−/− mice, whereas it reduced rod-mediated function. The increase in photopic OPs and the lack of changes in scotopic a-wave suggest a CNTF effect on the inner retina. PMID:26567794

  4. Downregulation of miR-219 enhances brain-derived neurotrophic factor production in mouse dorsal root ganglia to mediate morphine analgesic tolerance by upregulating CaMKIIγ

    PubMed Central

    Hu, Xue-Ming; Cao, Shou-Bin; Zhang, Hai-Long; Lyu, Dong-Mei; Chen, Li-Ping; Xu, Heng; Pan, Zhi-Qiang

    2016-01-01

    Background Increasing evidence suggests that microRNAs are functionally involved in the initiation and maintenance of pain hypersensitivity, including chronic morphine analgesic tolerance, through the posttranscriptional regulation of pain-related genes. We have previously demonstrated that miR-219 regulates inflammatory pain in the spinal cord by targeting calcium/calmodulin-dependent protein kinase II gamma (CaMKIIγ). However, whether miR-219 regulates CaMKIIγ expression in the dorsal root ganglia to mediate morphine tolerance remains unclear. Results MiR-219 expression was downregulated and CaMKIIγ expression was upregulated in mouse dorsal root ganglia following chronic morphine treatment. The changes in miR-219 and CaMKIIγ expression closely correlated with the development of morphine tolerance, which was measured using the reduction of percentage of maximum potential efficiency to thermal stimuli. Morphine tolerance was markedly delayed by upregulating miR-219 expression using miR-219 mimics or downregulating CaMKIIγ expression using CaMKIIγ small interfering RNA. The protein and mRNA expression of brain-derived neurotrophic factor were also induced in dorsal root ganglia by prolonged morphine exposure in a time-dependent manner, which were transcriptionally regulated by miR-219 and CaMKIIγ. Scavenging brain-derived neurotrophic factor via tyrosine receptor kinase B-Fc partially attenuated morphine tolerance. Moreover, functional inhibition of miR-219 via miR-219-sponge in naive mice elicited thermal hyperalgesia and spinal neuronal sensitization, which were both suppressed by CaMKIIγ small interfering RNA or tyrosine receptor kinase B-Fc. Conclusions These results demonstrate that miR-219 contributes to the development of chronic tolerance to morphine analgesia in mouse dorsal root ganglia by targeting CaMKIIγ and enhancing CaMKIIγ-dependent brain-derived neurotrophic factor expression. PMID:27599867

  5. Brain-derived neurotrophic factor signaling is altered in the forebrain of Engrailed-2 knockout mice.

    PubMed

    Zunino, G; Messina, A; Sgadò, P; Baj, G; Casarosa, S; Bozzi, Y

    2016-06-01

    Engrailed-2 (En2), a homeodomain transcription factor involved in regionalization and patterning of the midbrain and hindbrain regions has been associated to autism spectrum disorders (ASDs). En2 knockout (En2(-/-)) mice show ASD-like features accompanied by a significant loss of GABAergic subpopulations in the hippocampus and neocortex. Brain-derived neurotrophic factor (BDNF) is a crucial factor for the postnatal development of forebrain GABAergic neurons, and altered GABA signaling has been hypothesized to underlie the symptoms of ASD. Here we sought to determine whether interneuron loss in the En2(-/-) forebrain might be related to altered expression of BDNF and its signaling receptors. We first evaluated the expression of different BDNF mRNA isoforms in the neocortex and hippocampus of wild-type (WT) and En2(-/-) mice. Quantitative RT-PCR showed a marked down-regulation of several splicing variants of BDNF mRNA in the neocortex but not hippocampus of adult En2(-/-) mice, as compared to WT controls. Accordingly, levels of mature BDNF protein were lower in the neocortex but not hippocampus of En2(-/-) mice, as compared to WT. Increased levels of phosphorylated TrkB and decreased levels of p75 receptor were also detected in the neocortex of mutant mice. Accordingly, the expression of low density lipoprotein receptor (LDLR) and RhoA, two genes regulated via p75 was significantly altered in forebrain areas of mutant mice. These data indicate that BDNF signaling alterations might be involved in the anatomical changes observed in the En2(-/-) forebrain and suggest a pathogenic role of altered BDNF signaling in this mouse model of ASD. PMID:26987954

  6. Chagas’ disease parasite-derived neurotrophic factor activates cholinergic gene expression in neuronal PC12 cells

    PubMed Central

    Akpan, Nsikan; Caradonna, Kacey; Chuenkova, Marina V.; PereiraPerrin, Mercio

    2008-01-01

    A parasite-derived neurotrophic factor (PDNF) produced by the Chagas’ disease parasite Trypanosoma cruzi binds nerve growth factor (NGF) receptor TrkA, increasing receptor autophosphorylation, activating phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK/Erk) pathways, and transcription factor CREB. The end-result is enhanced survival and neuritogenesis of various types of neurons. PDNF also enhances the expression and activity of tyrosine hydroxylase, a rate limiting enzyme in the synthesis of dopamine and other catecholamine neurotransmitters. It remains unknown, however, if PDNF alters expression and metabolism of acetylcholine (ACh), a neurotransmitter thought to play a role in Chagas’ disease progression. Here we demonstrate that PDNF stimulates mRNA and protein expression of choline acetyltransferase (ChAT) and vesicular acetylcholine transporter (VAChT), which are critical for synthesis and storage of ACh. Stimulation requires functional TrkA because it did not occur in cell mutants that lack the receptor and in TrkA-expressing wild-type cells treated with K252a, an inhibitor of TrkA kinase activity. It also requires TrkA-dependent PI3K and MAPK/Erk signaling pathways because PDNF stimulation of cholinergic transcripts is abolished by specific pharmacological inhibitors. Furthermore, the cholinergic actions of PDNF were reproduced by PDNF-expressing extracellular T. cruzi trypomastigotes at the start of host cell invasion. In contrast, host cells bearing intracellular T. cruzi showed decreased, rather than increased, cholinergic gene expression. These results suggest that T. cruzi invasion of the nervous system alters cholinergic gene expression and that could play a role in neuropathology, and/or lack thereof, in Chagas’ disease patients. PMID:18502403

  7. Chagas' disease parasite-derived neurotrophic factor activates cholinergic gene expression in neuronal PC12 cells.

    PubMed

    Akpan, Nsikan; Caradonna, Kacey; Chuenkova, Marina V; PereiraPerrin, Mercio

    2008-06-27

    A parasite-derived neurotrophic factor (PDNF) produced by the Chagas' disease parasite Trypanosoma cruzi binds nerve growth factor (NGF) receptor TrkA, increasing receptor autophosphorylation, and activating phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK/Erk) pathways, and transcription factor CREB. The end-result is enhanced survival and neuritogenesis of various types of neurons. PDNF also enhances the expression and activity of tyrosine hydroxylase, a rate limiting enzyme in the synthesis of dopamine and other catecholamine neurotransmitters. It remains unknown, however, if PDNF alters expression and metabolism of acetylcholine (ACh), a neurotransmitter thought to play a role in Chagas' disease progression. Here we demonstrate that PDNF stimulates mRNA and protein expression of choline acetyltransferase (ChAT) and vesicular acetylcholine transporter (VAChT), which are critical for synthesis and storage of ACh. Stimulation requires functional TrkA because it did not occur in cell mutants that lack the receptor and in TrkA-expressing wild-type cells treated with K252a, an inhibitor of TrkA kinase activity. It also requires TrkA-dependent PI3K and MAPK/Erk signaling pathways because PDNF stimulation of cholinergic transcripts is abolished by specific pharmacological inhibitors. Furthermore, the cholinergic actions of PDNF were reproduced by PDNF-expressing extracellular T. cruzi trypomastigotes at the start of host cell invasion. In contrast, host cells bearing intracellular T. cruzi showed decreased, rather than increased, cholinergic gene expression. These results suggest that T. cruzi invasion of the nervous system alters cholinergic gene expression and that could play a role in neuropathology, and/or lack thereof, in Chagas' disease patients. PMID:18502403

  8. A Standardized Chinese Herbal Decoction, Kai-Xin-San, Restores Decreased Levels of Neurotransmitters and Neurotrophic Factors in the Brain of Chronic Stress-Induced Depressive Rats

    PubMed Central

    Zhu, Kevin Yue; Mao, Qing-Qiu; Ip, Siu-Po; Choi, Roy Chi-Yan; Dong, Tina Ting-Xia; Lau, David Tai-Wai; Tsim, Karl Wah-Keung

    2012-01-01

    Kai-xin-san (KXS), a Chinese herbal decoction being prescribed by Sun Simiao in Beiji Qianjin Yaofang about 1400 years ago, contains Ginseng Radix et Rhizoma, Polygalae Radix, Acori tatarinowii Rhizoma, and Poria. KXS has been used to treat stress-related psychiatric disease with the symptoms of depression and forgetfulness in ancient China until today. However, the mechanism of its antidepression action is still unknown. Here, the chronic mild-stress-(CMS-) induced depressive rats were applied in exploring the action mechanisms of KXS treatment. Daily intragastric administration of KXS for four weeks significantly alleviated the CMS-induced depressive symptoms displayed by enhanced sucrose consumption. In addition, the expressions of those molecular bio-markers relating to depression in rat brains were altered by the treatment of KXS. These KXS-regulated brain biomarkers included: (i) the levels of dopamine, norepinephrine, and serotonin (ii) the transcript levels of proteins relating to neurotransmitter metabolism; (iii) the transcript levels of neurotrophic factors and their receptors. The results suggested that the anti-depressant-like action of KXS might be mediated by an increase of neurotransmitters and expression of neurotrophic factors and its corresponding receptors in the brain. Thus, KXS could serve as alternative medicine, or health food supplement, for patients suffering from depression. PMID:22973399

  9. Grafting of nigral tissue hibernated with tirilazad mesylate and glial cell line-derived neurotrophic factor.

    PubMed

    Petersen, A; Hansson, O; Emgård, M; Brundin, P

    2000-01-01

    Transplantation of embryonic ventral mesencephalon is a potential therapy for patients with Parkinson's disease. As only around 5-10% of embryonic dopaminergic neurons survive grafting into the adult striatum, it is considered necessary to use multiple donor embryos. To increase the survival of the grafted dopaminergic neurons, the clinical transplantation program in Lund currently employs the lipid peroxidation inhibitor, tirilazad mesylate, in all solutions used during tissue storage, preparation, and transplantation. However, the difficulty in obtaining a sufficient number of donor embryos still remains an important limiting factor for the clinical application of neural transplantation. In many clinical transplantation programs, it would be a great advantage if human nigral donor tissue could be stored for at least 1 week. This study was performed in order to investigate whether storage of embryonic tissue at 4 degrees C for 8 days can be applied clinically without creating a need to increase the number of donors. We compared the survival of freshly grafted rat nigral tissue, prepared according to the clinical protocol, with tissue transplanted after hibernation. Thus, in all groups tirilazad mesylate was omnipresent. One group of rats was implanted with fresh tissue and three groups with hibernated tissue with or without addition of glial cell line-derived neurotrophic factor (GDNF) in the hibernation medium and/or the final cell suspension. Earlier studies have suggested that GDNF improves the survival of hibernated nigral transplants. We found no statistically significant difference between the groups regarding graft survival after 3 weeks. However, there was a nonsignificant trend for fewer surviving dopaminergic neurons in grafts from hibernated tissue compared to fresh controls. Furthermore, we show that the addition of GDNF to the hibernation medium and/or to the final cell suspension does not significantly increase the survival of the dopaminergic

  10. Differential Activity-Dependent Secretion of Brain-Derived Neurotrophic Factor from Axon and Dendrite

    PubMed Central

    Matsuda, Naoto; Lu, Hui; Fukata, Yuko; Noritake, Jun; Gao, Hongfeng; Mukherjee, Sujay; Nemoto, Tomomi; Fukata, Masaki

    2009-01-01

    Brain-derived neurotrophic factor (BDNF) is essential for neuronal survival and differentiation during development and for synaptic function and plasticity in the mature brain. BDNF-containing vesicles are widely distributed and bidirectionally transported in neurons, and secreted BDNF can act on both presynaptic and postsynaptic cells. Activity-dependent BDNF secretion from neuronal cultures has been reported, but it remains unknown where the primary site of BDNF secretion is and whether neuronal activity can trigger BDNF secretion from axons and dendrites with equal efficacy. Using BDNF fused with pH-sensitive green fluorescent protein to visualize BDNF secretion, we found that BDNF-containing vesicles exhibited markedly different properties of activity-dependent exocytic fusion at the axon and dendrite of cultured hippocampal neurons. Brief spiking activity triggered a transient fusion pore opening, followed by immediate retrieval of vesicles without dilation of the fusion pore, resulting in very little BDNF secretion at the axon. On the contrary, the same brief spiking activity induced “full-collapse” vesicle fusion and substantial BDNF secretion at the dendrite. However, full vesicular fusion with BDNF secretion could occur at the axon when the neuron was stimulated by prolonged high-frequency activity, a condition neurons may encounter during epileptic discharge. Thus, activity-dependent axonal secretion of BDNF is highly restricted as a result of incomplete fusion of BDNF-containing vesicles, and normal neural activity induces BDNF secretion from dendrites, consistent with the BDNF function as a retrograde factor. Our study also revealed a novel mechanism by which differential exocytosis of BDNF-containing vesicles may regulate BDNF–TrkB signaling between connected neurons. PMID:19906967

  11. The brain-derived neurotrophic factor pathway, life stress, and chronic multi-site musculoskeletal pain

    PubMed Central

    Milaneschi, Yuri; Jansen, Rick; Elzinga, Bernet M; Dekker, Joost; Penninx, Brenda WJH

    2016-01-01

    Introduction Brain-derived neurotrophic factor (BDNF) disturbances and life stress, both independently and in interaction, have been hypothesized to induce chronic pain. We examined whether (a) the BDNF pathway (val66met genotype, gene expression, and serum levels), (b) early and recent life stress, and (c) their interaction are associated with the presence and severity of chronic multi-site musculoskeletal pain. Methods Cross-sectional data are from 1646 subjects of the Netherlands Study of Depression and Anxiety. The presence and severity of chronic multi-site musculoskeletal pain were determined using the Chronic Pain Grade (CPG) questionnaire. The BDNF val66met polymorphism, BDNF gene expression, and BDNF serum levels were measured. Early life stress before the age of 16 was assessed by calculating a childhood trauma index using the Childhood Trauma Interview. Recent life stress was assessed as the number of recent adverse life events using the List of Threatening Events Questionnaire. Results Compared to val66val, BDNF met carriers more often had chronic pain, whereas no differences were found for BDNF gene expression and serum levels. Higher levels of early and recent stress were both associated with the presence and severity of chronic pain (p < 0.001). No interaction effect was found for the BDNF pathway with life stress in the associations with chronic pain presence and severity. Conclusions This study suggests that the BDNF gene marks vulnerability for chronic pain. Although life stress did not alter the impact of BDNF on chronic pain, it seems an independent factor in the onset and persistence of chronic pain. PMID:27145806

  12. Muscle Ciliary Neurotrophic Factor Receptor α Promotes Axonal Regeneration and Functional Recovery Following Peripheral Nerve Lesion

    PubMed Central

    Lee, Nancy; Spearry, Rachel P.; Leahy, Kendra M.; Robitz, Rachel; Trinh, Dennis S.; Mason, Carter O.; Zurbrugg, Rebekah J.; Batt, Myra K.; Paul, Richard J.; Maclennan, A. John

    2014-01-01

    Ciliary neurotrophic factor (CNTF) administration maintains, protects, and promotes the regeneration of both motor neurons (MNs) and skeletal muscle in a wide variety of models. Expression of CNTF receptor α (CNTFRα), an essential CNTF receptor component, is greatly increased in skeletal muscle following neuromuscular insult. Together the data suggest that muscle CNTFRα may contribute to neuromuscular maintenance, protection, and/or regeneration in vivo. To directly address the role of muscle CNTFRα, we selectively-depleted it in vivo by using a “floxed” CNTFRα mouse line and a gene construct (mlc1f-Cre) that drives the expression of Cre specifically in skeletal muscle. The resulting mice were challenged with sciatic nerve crush. Counting of nerve axons and retrograde tracing of MNs indicated that muscle CNTFRα contributes to MN axonal regeneration across the lesion site. Walking track analysis indicated that muscle CNTFRα is also required for normal recovery of motor function. However, the same muscle CNTFRα depletion unexpectedly had no detected effect on the maintenance or regeneration of the muscle itself, even though exogenous CNTF has been shown to affect these functions. Similarly, MN survival and lesion-induced terminal sprouting were unaffected. Therefore, muscle CNTFRα is an interesting new example of a muscle growth factor receptor that, in vivo under physiological conditions, contributes much more to neuronal regeneration than to the maintenance or regeneration of the muscle itself. This novel form of muscle–neuron interaction also has implications in the therapeutic targeting of the neuromuscular system in MN disorders and following nerve injury. PMID:23504871

  13. Association of brain-derived neurotrophic factor and nerve growth factor gene polymorphisms with susceptibility to migraine

    PubMed Central

    Coskun, Salih; Varol, Sefer; Ozdemir, Hasan H; Agacayak, Elif; Aydın, Birsen; Kapan, Oktay; Camkurt, Mehmet Akif; Tunc, Saban; Cevik, Mehmet Ugur

    2016-01-01

    Migraine is one of the most common neurological diseases worldwide. Migraine pathophysiology is very complex. Genetic factors play a major role in migraine. Neurotrophic factors, such as brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF), play an important role in central nervous system functioning, development, and modulation of pain. This study investigates whether polymorphisms in the BDNF and NGF genes are associated with migraine disease in a Turkish case–control population. Overall, 576 subjects were investigated (288 patients with migraine and 288 healthy controls) for the following polymorphisms: rs6265(G/A), rs8192466(C/T), rs925946(G/T), rs2049046(A/T), and rs12273363(T/C) in the BDNF gene, and rs6330(C/T), rs11466112(C/T), rs11102930(C/A), and rs4839435(G/A) in the NGF gene using 5′-exonuclease allelic discrimination assays. We found no differences in frequency of the analyzed eight polymorphisms between migraine and control groups. However, the frequency of minor A alleles of rs6265 in BDNF gene was borderline significant in the patients compared with the healthy controls (P=0.049; odds ratios [ORs] [95% confidence intervals {CIs}] =0.723 [0.523–0.999]). Moreover, when the migraine patients were divided into two subgroups, migraine with aura (MA) and migraine without aura (MO), the minor TT genotype of rs6330 in NGF was significantly higher in MA patients than in MO patients (P=0.036) or healthy controls (P=0.026), and this disappeared after correction for multiple testing. Also, the rs6330*T minor allele was more common in the MA group than in the MO group or controls (P=0.011, ORs [95% CIs] =1.626 [1.117–2.365] or P=0.007, ORs [95% CIs] =1.610 [1.140–2.274], respectively). In conclusion, this is the first clinical study to evaluate the association between BDNF and NGF polymorphisms in migraine patients compared with health controls. Our findings suggest that the NGF rs6330*T minor allele might be nominated as a risk

  14. Population genetic study of the brain-derived neurotrophic factor (BDNF) gene

    PubMed Central

    Petryshen, TL; Sabeti, PC; Aldinger, KA; Fry, B; Fan, JB; Schaffner, SF; Waggoner, SG; Tahl, AR; Sklar, P

    2009-01-01

    Genetic variants in the brain-derived neurotrophic factor (BDNF) gene, predominantly the functional Val66Met polymorphism, have been associated with risk of bipolar disorder and other psychiatric disorders. However, not all studies support these findings, and overall the evidence for BDNF association with disease risk is weak. As differences in population genetic structure between patient samples could cause discrepant or spurious association results, we investigated this possibility by carrying out population genetic analyses of the BDNF genomic region. Substantial variation was detected in BDNF coding region SNP allele and haplotype frequencies between 58 global populations, with the derived Met allele of Val66Met ranging from 0–72% frequency across populations. FST analyses to assess diversity in the HapMap populations determined that the Val66Met FST value was at the 99.8th percentile among all SNPs in the genome. As the BDNF population genetic differences may be due to local selection, we performed the long-range haplotype (LRH) test for selection using 68 SNPs spanning the BDNF genomic region in 12 European-derived pedigrees. Evidence for positive selection was found for a high frequency Val-carrying haplotype, with a relative extended haplotype homozygosity (REHH) value above the 99th percentile compared to HapMap data (P=4.6 ×10−4). In conclusion, we observed considerable BDNF allele and haplotype diversity among global populations and evidence for positive selection at the BDNF locus. These phenomena can have a profound impact on detection of disease susceptibility genes and must be considered in gene association studies of BDNF. PMID:19255578

  15. Brain-derived neurotrophic factor mediates the suppression of alcohol self-administration by memantine.

    PubMed

    Jeanblanc, Jérôme; Coune, Fabien; Botia, Béatrice; Naassila, Mickaël

    2014-09-01

    Brain-derived neurotrophic factor (BDNF) within the striatum is part of a homeostatic pathway regulating alcohol consumption. Memantine, a non-competitive antagonist of N-methyl-D-aspartate receptors, induces expression of BDNF in several brain regions including the striatum. We hypothesized that memantine could decrease ethanol (EtOH) consumption via activation of the BNDF signalling pathway. Effects of memantine were evaluated in Long-Evans rats self-administering moderate or high amounts of EtOH 6, 30 and 54 hours after an acute injection (12.5 and 25 mg/kg). Motivation to consume alcohol was investigated through a progressive ratio paradigm. The possible role for BDNF in the memantine effect was tested by blockade of the TrkB receptor using the pharmacological agent K252a and by the BDNF scavenger TrkB-Fc. Candidate genes expression was also assessed by polymerase chain reaction array 4 and 28 hours after memantine injection. We found that memantine decreased EtOH self-administration and motivation to consume EtOH 6 and 30 hours post-injection. In addition, we found that inhibition or blockade of the BDNF signalling pathway prevented the early, but not the delayed decrease in EtOH consumption induced by memantine. Finally, Bdnf expression was differentially regulated between the early and delayed timepoints. These results demonstrate that an acute injection of memantine specifically reduces EtOH self-administration and motivation to consume EtOH for at least 30 hours. Moreover, we showed that BDNF was responsible for the early effect, but that the delayed effect was BDNF-independent. PMID:23414063

  16. Brain-derived neurotrophic factor gene-modified bone marrow mesenchymal stem cells

    PubMed Central

    HAN, ZHONG-MIN; HUANG, HE-MEI; WANG, FEI-FEI

    2015-01-01

    The present study aimed to investigate the effects of human brain-derived neurotrophic factor (hBDNF) on the differentiation of bone marrow mesenchymal stem cells (MSCs) into neuron-like cells. Lentiviral vectors carrying the hBDNF gene were used to modify the bone marrow stromal cells (BMSCs) of Sprague-Dawley (SD) rats. The rat BMSCs were isolated, cultured and identified. A lentivirus bearing hBDNF and enhanced green fluorescent protein (eGFP) genes was subcultured and used to infect the SD rat BMSCs. The expression of eGFP was observed under a fluorescence microscope to determine the infection rate and growth of the transfected cells. Methylthiazolyldiphenyl-tetrazolium bromide (MTT) was used to detect the proliferation rate of cells following transfection. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) and western blot analysis were used to detect the expression levels of hBDNF. Differentiation of neuron-like cells was induced in vitro and the differentiation rate of the induced neural-like cells was compared with that in control groups and analyzed statistically. In the cultured cells, flow cytometry demonstrated positive expression of cluster of differentiation (CD)90 and CD44, and negative expression of CD34 and CD45. The proliferation rate of the rat BMSCs increased following gene transfection. The expression of hBDNF-eGFP was detected in the BMSCs of the experimental group. The differentiation rate of hBDNF-modified cells into neuron-like cells in the experimental group was higher compared with that in empty plasmid and untransfected negative control groups. The difference was statistically significant (P<0.05). Thus, BDNF gene transfection is able to promote the differentiation of BMSCs into neuron-like cells. BDNF may play an important role in the differentiation of MSCs into neuron-like cells. PMID:25574226

  17. Association of Brain-Derived Neurotrophic Factor Gene Val66Met Polymorphism with Primary Dysmenorrhea

    PubMed Central

    Chen, Li-Fen; Shen, Horng-Der; Chao, Hsiang-Tai; Lin, Ming-Wei; Hsieh, Jen-Chuen

    2014-01-01

    Primary dysmenorrhea (PDM), the most prevalent menstrual cycle-related problem in women of reproductive age, is associated with negative moods. Whether the menstrual pain and negative moods have a genetic basis remains unknown. Brain-derived neurotrophic factor (BDNF) plays a key role in the production of central sensitization and contributes to chronic pain conditions. BDNF has also been implicated in stress-related mood disorders. We screened and genotyped the BDNF Val66Met polymorphism (rs6265) in 99 Taiwanese (Asian) PDMs (20–30 years old) and 101 age-matched healthy female controls. We found that there was a significantly higher frequency of the Met allele of the BDNF Val66Met polymorphism in the PDM group. Furthermore, BDNF Met/Met homozygosity had a significantly stronger association with PDM compared with Val carrier status. Subsequent behavioral/hormonal assessments of sub-groups (PDMs = 78, controls = 81; eligible for longitudinal multimodal neuroimaging battery studies) revealed that the BDNF Met/Met homozygous PDMs exhibited a higher menstrual pain score (sensory dimension) and a more anxious mood than the Val carrier PDMs during the menstrual phase. Although preliminary, our study suggests that the BDNF Val66Met polymorphism is associated with PDM in Taiwanese (Asian) people, and BDNF Met/Met homozygosity may be associated with an increased risk of PDM. Our data also suggest the BDNF Val66Met polymorphism as a possible regulator of menstrual pain and pain-related emotions in PDM. Absence of thermal hypersensitivity may connote an ethnic attribution. The presentation of our findings calls for further genetic and neuroscientific investigations of PDM. PMID:25383981

  18. Effects of multiparity on recognition memory, monoaminergic neurotransmitters, and brain-derived neurotrophic factor (BDNF)

    PubMed Central

    Macbeth, Abbe H.; Scharfman, Helen E.; MacLusky, Neil J.; Gautreaux, Claris; Luine., Victoria N.

    2008-01-01

    Recognition memory and anxiety were examined in nulliparous (NP: 0 litters) and multiparous (MP: 5–6 litters) middle-aged female rats (12 months old) to assess possible enduring effects of multiparity at least 3 months after last litter was weaned. MP females performed significantly better than NP females on the non-spatial memory task, object recognition, and the spatial memory task, object placement. Anxiety as measured on the elevated plus maze did not differ between groups. Monoaminergic activity and levels were measured in prefrontal cortex, CA1 hippocampus, CA3 hippocampus, and olfactory bulb (OB). NP and MP females differed in monoamine concentrations in the OB only, with MP females having significantly greater concentrations of dopamine and metabolite DOPAC, norepinephrine and metabolite MHPG, and the serotonin metabolite 5-HIAA, as compared to NP females. These results indicate a long-term change in OB neurochemistry as a result of multiparity. Brain-derived neurotrophic factor (BDNF) was also measured in hippocampus (CA1, CA3, dentate gyrus), and septum. MP females had higher BDNF levels in both CA1 and septum; as these regions are implicated in memory performance, elevated BDNF may underlie the observed memory task differences. Thus, MP females (experiencing multiple bouts of pregnancy, birth, and pup rearing during the first year of life) displayed enhanced memory task performance, but equal anxiety responses, as compared to NP females. These results are consistent with previous studies showing long-term changes in behavioral function in MP, as compared to NP, rats, and suggest that alterations in monoamines and a neurotrophin, BDNF, may contribute to the observed behavioral changes. PMID:17927990

  19. Acute aerobic exercise increases brain-derived neurotrophic factor levels in elderly with Alzheimer's disease.

    PubMed

    Coelho, Flávia Gomes de Melo; Vital, Thays Martins; Stein, Angelica Miki; Arantes, Franciel José; Rueda, André Veloso; Camarini, Rosana; Teodorov, Elizabeth; Santos-Galduróz, Ruth Ferreira

    2014-01-01

    Studies indicate the involvement of brain-derived neurotrophic factor (BDNF) in the pathogenesis of Alzheimer's disease (AD). Decreased BDNF levels may constitute a lack of trophic support and contribute to cognitive impairment in AD. The benefits of acute and chronic physical exercise on BDNF levels are well-documented in humans, however, exercise effects on BDNF levels have not been analyzed in older adults with AD. The aim of this study was to investigate the effects of acute aerobic exercise on BDNF levels in older adults with AD and to verify associations among BDNF levels, aerobic fitness, and level of physical activity. Using a controlled design, twenty-one patients with AD (76.3 ± 6.2 years) and eighteen healthy older adults (74.6 ± 4.7 years) completed an acute aerobic exercise. The outcomes included measures of BDNF plasma levels, aerobic fitness (treadmill grade, time to exhaustion, VO2, and maximal lactate) and level of physical activity (Baecke Questionnaire Modified for the Elderly). The independent t-test shows differences between groups with respect to the BDNF plasma levels at baseline (p = 0.04; t = 4.53; df = 37). In two-way ANOVA, a significant effect of time was found (p = 0.001; F = 13.63; df = 37), the aerobic exercise significantly increased BDNF plasma levels in AD patients and healthy controls. A significant correlation (p = 0.04; r = 0.33) was found between BDNF levels and the level of physical activity. The results of our study suggest that aerobic exercise increases BDNF plasma levels in patients with AD and healthy controls. In addition to that, BDNF levels had association with level of physical activity. PMID:24164734

  20. Perivascular Cells Increase Expression of Ciliary Neurotrophic Factor Following Partial Denervation of the Rat Neurohypophysis

    PubMed Central

    Lo, David; SunRhodes, Neil; Watt, John A.

    2008-01-01

    The expression of ciliary neurotrophic factor (CNTF) was investigated immunocytochemically during the axonal degeneration and collateral axonal sprouting response that follows partial denervation of the rat neurohypophysis. A significant increase in the number of CNTF-immunoreactive (CNTF-ir) cells was observed in the neurohypophysis of partially denervated animals compared to age-matched sham-operated controls by 5 days post-denervation, remaining elevated throughout the 30 day post denervation period. Stereometric assessment of the numbers of CNTF-ir cells within the partially denervated neurohypophysis demonstrated a 36% increase by 3 days following denervation reaching 130% of control values by 10 days post-lesion. The cell numbers remained elevated throughout the 30 days post-lesion period suggesting that CNTF may play a role in the neurosecretory axonal sprouting process known to occur between 10 and 30 days post-denervation. Subsequent preparations pairing anti-CNTF with antibodies against ED1, CR3, p75 low affinity neurotrophin receptor (p75LNGFR), and S100β, demonstrated that CNTF was exclusively localized in a phenotypically-distinct population of perivascular cells. The association of perivascular cells with phagocytic activity was confirmed by dual label fluorescence microscopy showing the colocalization of P75LNGFR-ir and OX-42-ir in cells expressing the ED-1 antigen. No increase in CNTF-ir was observed in non-injured animals in which heightened levels of neurosecretory activity were induced physiologically. These results suggest that increased CNTF-ir occurs in response to conditions which induce high levels of phagocytic activity by perivascular cells in the axotomized neurohypophysis which is sustained throughout a period in which axonal sprouting is known to occur in the partially denervated neurohypophysis. PMID:18805412

  1. Brain-derived neurotrophic factor Val66Met polymorphism and alcohol-related phenotypes.

    PubMed

    Nedic, Gordana; Perkovic, Matea Nikolac; Sviglin, Korona Nenadic; Muck-Seler, Dorotea; Borovecki, Fran; Pivac, Nela

    2013-01-10

    Alcoholism is a chronic psychiatric disorder affecting neural pathways that regulate motivation, stress, reward and arousal. Brain-derived neurotrophic factor (BDNF) regulates mood, response to stress and interacts with neurotransmitters and stress systems involved in reward pathways and addiction. Aim of the study was to evaluate the association between a single nucleotide polymorphism (BDNF Val66Met or rs6265) and alcohol related phenotypes in Caucasian patients. In ethnically homogenous Caucasian subjects of the Croatian origin, the BDNF Val66Met genotype distribution was determined in 549 male and 126 female patients with alcohol dependence and in 655 male and 259 female healthy non-alcoholic control subjects. Based on the structured clinical interview, additional detailed clinical interview, the Brown-Goodwin Scale, the Hamilton Rating Scale for Depression and the Clinical Global Impression scores, alcoholic patients were subdivided into those with or without comorbid depression, aggression, delirium tremens, withdrawal syndrome, early/late onset of alcohol abuse, prior suicidal attempt during lifetime, current suicidal behavior, and severity of alcohol dependence. The results showed no significant association between BDNF Val66Met variants and alcohol dependence and/or any of the alcohol related phenotypes in either Caucasian women, or men, with alcohol dependence. There are few limitations of the study. The overall study sample size was large (N=1589) but not well-powered to detect differences in BDNF Val66Met genotype distribution between studied groups. Healthy control women were older than female alcoholic patients. Only one BDNF polymorphism (rs6265) was studied. In conclusion, these data do not support the view that BDNF Val66Met polymorphism correlates with the specific alcohol related phenotypes in ethnically homogenous medication-free Caucasian subjects with alcohol dependence. PMID:23023098

  2. Brain-derived neurotrophic factor acutely inhibits AMPA-mediated currents in developing sensory relay neurons.

    PubMed

    Balkowiec, A; Kunze, D L; Katz, D M

    2000-03-01

    Brain-derived neurotrophic factor (BDNF) is expressed by many primary sensory neurons that no longer require neurotrophins for survival, indicating that BDNF may be used as a signaling molecule by the afferents themselves. Because many primary afferents also express glutamate, we investigated the possibility that BDNF modulates glutamatergic AMPA responses of newborn second-order sensory relay neurons. Perforated-patch, voltage-clamp recordings were made from dissociated neurons of the brainstem nucleus tractus solitarius (nTS), a region that receives massive primary afferent input from BDNF-containing neurons in the nodose and petrosal cranial sensory ganglia. Electrophysiological analysis was combined in some experiments with anterograde labeling of primary afferent terminals to specifically analyze responses of identified second-order neurons. Our data demonstrate that BDNF strongly inhibits AMPA-mediated currents in a large subset of nTS cells. Specifically, AMPA responses were either completely abolished or markedly inhibited by BDNF in 73% of postnatal day (P0) cells and in 82% of identified P5 second-order sensory relay neurons. This effect of BDNF is mimicked by NT-4, but not NGF, and blocked by the Trk tyrosine kinase inhibitor K252a, consistent with a requirement for TrkB receptor activation. Moreover, analysis of TrkB expression in culture revealed a close correlation between the percentage of nTS neurons in which BDNF inhibits AMPA currents and the percentage of neurons that exhibit TrkB immunoreactivity. These data document a previously undefined mechanism of acute modulation of AMPA responses by BDNF and indicate that BDNF may regulate glutamatergic transmission at primary afferent synapses. PMID:10684891

  3. Attenuated brain-derived neurotrophic factor and hypertrophic remodelling: the SABPA study.

    PubMed

    Smith, A J; Malan, L; Uys, A S; Malan, N T; Harvey, B H; Ziemssen, T

    2015-01-01

    Brain-derived neurotrophic factor (BDNF) has been linked to neurological pathologies, but its role in cardiometabolic disturbances is limited. We aimed to assess the association between serum BDNF levels and structural endothelial dysfunction (ED) as determined by cross-sectional wall area (CSWA) and albumin/creatinine ratio (ACR) in black Africans. Ambulatory blood pressure (BP) and ultrasound CSWA values were obtained from 82 males and 90 females. Fasting blood and 8 h overnight urine samples were collected to determine serum BDNF and cardiometabolic risk markers, that is, glycated haemoglobin (HbA1c), lipids, inflammation and ACR. BDNF median split × gender interaction effects for structural ED justified stratification of BDNF into low and high (⩽/>1.37 ng ml(-1)) gender groups. BDNF values (0.86-1.98 ng ml(-1)) were substantially lower than reference ranges (6.97-42.6 ng ml(-1)) in the African gender cohort, independent of age and body mass index. No relationship was revealed between BDNF and renal function and was opposed by an inverse relationship between BDNF and CSWA (r=-0.17; P=0.03) in the African cohort. Linear regression analyses revealed a positive relationship between systolic BP and structural remodelling in the total cohort and low-BDNF gender groups. In the high-BDNF females, HbA1C was associated with structural remodelling. Attenuated or possible downregulated BDNF levels were associated with hypertrophic remodelling, and may be a compensatory mechanism for the higher BP in Africans. In addition, metabolic risk and hypertrophic remodelling in women with high BDNF underpin different underlying mechanisms for impaired neurotrophin homeostasis in men and women. PMID:24898921

  4. Effects of brain derived neurotrophic factor Val66Met polymorphism in patients with cervical spondylotic myelopathy.

    PubMed

    Abode-Iyamah, Kingsley O; Stoner, Kirsten E; Grossbach, Andrew J; Viljoen, Stephanus V; McHenry, Colleen L; Petrie, Michael A; Dahdaleh, Nader S; Grosland, Nicole M; Shields, Richard K; Howard, Matthew A

    2016-02-01

    Cervical spondylotic myelopathy (CSM) is the leading cause of spinal cord related disability in the elderly. It results from degenerative narrowing of the spinal canal, which causes spinal cord compression. This leads to gait instability, loss of dexterity, weakness, numbness and urinary dysfunction. There has been indirect data that implicates a genetic component to CSM. Such a finding may contribute to the variety in presentation and outcome in this patient population. The Val66Met polymorphism, a mutation in the brain derived neurotrophic factor (BDNF) gene, has been implicated in a number of brain and psychological conditions, and here we investigate its role in CSM. Ten subjects diagnosed with CSM were enrolled in this prospective study. Baseline clinical evaluation using the modified Japanese Orthopaedic Association (mJOA) scale, Nurick and 36-Item Short Form Health Survey (SF-36) were collected. Each subject underwent objective testing with gait kinematics, as well as hand functioning using the Purdue Peg Board. Blood samples were analyzed for the BDNF Val66Met mutation. The prevalence of the Val66Met mutation in this study was 60% amongst CSM patients compared to 32% in the general population. Individuals with abnormal Met allele had worse baseline mJOA and Nurick scores. Moreover, baseline gait kinematics and hand functioning testing were worse compared to their wild type counterpart. BDNF Val66Met mutation has a higher prevalence in CSM compared to the general population. Those with BDNF mutation have a worse clinical presentation compared to the wild type counterpart. These findings suggest implication of the BDNF mutation in the development and severity of CSM. PMID:26461908

  5. Glucocorticoid Receptors, Brain-Derived Neurotrophic Factor, Serotonin and Dopamine Neurotransmission are Associated with Interferon-Induced Depression

    PubMed Central

    Udina, M; Navinés, R; Egmond, E; Oriolo, G; Langohr, K; Gimenez, D; Valdés, M; Gómez-Gil, E; Grande, I; Gratacós, M; Kapczinski, F; Artigas, F; Vieta, E; Solà, R

    2016-01-01

    Background: The role of inflammation in mood disorders has received increased attention. There is substantial evidence that cytokine therapies, such as interferon alpha (IFN-alpha), can induce depressive symptoms. Indeed, proinflammatory cytokines change brain function in several ways, such as altering neurotransmitters, the glucocorticoid axis, and apoptotic mechanisms. This study aimed to evaluate the impact on mood of initiating IFN-alpha and ribavirin treatment in a cohort of patients with chronic hepatitis C. We investigated clinical, personality, and functional genetic variants associated with cytokine-induced depression. Methods: We recruited 344 Caucasian outpatients with chronic hepatitis C, initiating IFN-alpha and ribavirin therapy. All patients were euthymic at baseline according to DSM-IV-R criteria. Patients were assessed at baseline and 4, 12, 24, and 48 weeks after treatment initiation using the Patient Health Questionnaire (PHQ), the Hospital Anxiety and Depression Scale (HADS), and the Temperament and Character Inventory (TCI). We genotyped several functional polymorphisms of interleukin-28 (IL28B), indoleamine 2,3-dioxygenase (IDO-1), serotonin receptor-1A (HTR1A), catechol-O-methyl transferase (COMT), glucocorticoid receptors (GCR1 and GCR2), brain-derived neurotrophic factor (BDNF), and FK506 binding protein 5 (FKBP5) genes. A survival analysis was performed, and the Cox proportional hazards model was used for the multivariate analysis. Results: The cumulative incidence of depression was 0.35 at week 24 and 0.46 at week 48. The genotypic distributions were in Hardy-Weinberg equilibrium. Older age (p = 0.018, hazard ratio [HR] per 5 years = 1.21), presence of depression history (p = 0.0001, HR = 2.38), and subthreshold depressive symptoms at baseline (p = 0.005, HR = 1.13) increased the risk of IFN-induced depression. So too did TCI personality traits, with high scores on fatigability (p = 0.0037, HR = 1.17), impulsiveness (p = 0.0200 HR = 1

  6. Effects of sex and chronic neonatal nicotine treatment on Na²⁺/K⁺/Cl⁻ co-transporter 1, K⁺/Cl⁻ co-transporter 2, brain-derived neurotrophic factor, NMDA receptor subunit 2A and NMDA receptor subunit 2B mRNA expression in the postnatal rat hippocampus.

    PubMed

    Damborsky, J C; Winzer-Serhan, U H

    2012-12-01

    Chronic exposure to nicotine during the first postnatal week in rats, a developmental period that corresponds to the third trimester of human gestation, results in sexually dimorphic long-term functional defects in the adult hippocampus. One potential cause could be the sex-specific differences in the maturation of GABA(A) receptor-mediated responses from excitatory to inhibitory, which depends on the expression of the Na(2+)/K(+)/Cl(-) co-transporter 1 (NKCC1) and the K(+)/Cl(-) co-transporter 2 (KCC2). In the rat hippocampus, this switch occurs during the first and second postnatal week in females and males, respectively, and is regulated by nicotinic receptor activation. Excitatory GABAergic signaling can increase brain-derived neurotrophic factor (BDNF) expression, which might exacerbate sex differences by impacting synaptogenesis. We hypothesized that chronic neonatal nicotine (CNN) exposure differentially regulates the expression of these co-transporters and BDNF in males and females. We use quantitative isotopic in situ hybridization to examine the expression of mRNAs for NKCC1, KCC2, BDNF, and NMDA receptor subunit 2A (NR2A) and NMDA receptor subunit 2B (NR2B) in the postnatal day (P) 5 and 8 rat hippocampi in both sexes that were either control-treated or with 6mg/kg/day nicotine in milk formula (CNN) via gastric intubation starting at P1. In line with prolonged GABAergic excitation, we found that at P5 males had significantly higher mRNA expression of NKCC1 and BDNF than females. CNN treatment resulted in a significant increase in KCC2 and BDNF mRNA expression in male but not female hippocampus (p<0.05). Males also had higher expression of NR2A and lower expression of NR2B at P5 compared to females (p<0.05). At P8, there were neither sex nor treatment effects on mRNA expression, indicating the end of a critical period for sensitivity to nicotine. These results suggest that differential maturation of GABA(A)R-mediated responses result in sex

  7. The mood stabilizers lithium and valproate selectively activate the promoter IV of brain-derived neurotrophic factor in neurons.

    PubMed

    Yasuda, S; Liang, M-H; Marinova, Z; Yahyavi, A; Chuang, D-M

    2009-01-01

    Brain-derived neurotrophic factor (BDNF) has been strongly implicated in the synaptic plasticity, neuronal survival and pathophysiology of depression. Lithium and valproic acid (VPA) are two primary mood-stabilizing drugs used to treat bipolar disorder. Treatment of cultured rat cortical neurons with therapeutic concentrations of LiCl or VPA selectively increased the levels of exon IV (formerly rat exon III)-containing BDNF mRNA, and the activity of BDNF promoter IV. Surprisingly, lithium- or VPA-responsive element(s) in promoter IV resides in a region upstream from the calcium-responsive elements (CaREs) responsible for depolarization-induced BDNF induction. Moreover, activation of BDNF promoter IV by lithium or VPA occurred in cortical neurons depolarized with KCl, and deletion of these three CaREs did not abolish lithium- or VPA-induced activation. Lithium and VPA are direct inhibitors of glycogen synthase kinase-3 (GSK-3) and histone deacetylase (HDAC), respectively. We showed that lithium-induced activation of promoter IV was mimicked by pharmacological inhibition of GSK-3 or short interfering RNA (siRNA)-mediated gene silencing of GSK-3alpha or GSK-3beta isoforms. Furthermore, treatment with other HDAC inhibitors, sodium butyrate and trichostatin A, or transfection with an HDAC1-specific siRNA also activated BDNF promoter IV. Our study demonstrates for the first time that GSK-3 and HDAC are respective initial targets for lithium and VPA to activate BDNF promoter IV, and that this BDNF induction involves a novel responsive region in promoter IV of the BDNF gene. Our results have strong implications for the therapeutic actions of these two mood stabilizers. PMID:17925795

  8. Neurotrophic Factor-α1 prevents stress-induced depression through enhancement of neurogenesis and is activated by rosiglitazone

    PubMed Central

    Cheng, Yong; Rodriguiz, Ramona M.; Murthy, Saravana R. K.; Senatorov, Vladimir; Thouennon, Erwan; Cawley, Niamh X.; Aryal, Dipendra K.; Ahn, Sohyun; Lecka-Czernik, Beata; Wetsel, William C.; Loh, Y. Peng

    2014-01-01

    Major depressive disorder is often linked to stress. Whereas short-term stress is without effect in mice, prolonged stress leads to depressive-like behavior, indicating that an allostatic mechanism exists in this difference. Here we demonstrate that mice after short-term (1h/day for 7days) chronic restraint stress (CRS), do not display depressive-like behavior. Analysis of the hippocampus of these mice showed increased levels of neurotrophic factor-α1(NF-α1) (also known as carboxypeptidase E, CPE), concomitant with enhanced fibroblast growth factor 2 (FGF2) expression, and an increase in neurogenesis in the dentate gyrus. In contrast, after prolonged (6h/day for 21days) CRS, mice show decreased hippocampal NF-α1 and FGF2 levels and depressive-like responses. In NF-α1-knock out mice, hippocampal FGF2 levels and neurogenesis are reduced. These mice exhibit depressive-like behavior which is reversed by FGF2 administration. Indeed, studies in cultured hippocampal neurons reveal that NF-α1 treatment directly up-regulates FGF2 expression through ERK-Sp1 signaling. Thus, during short-term CRS, hippocampal NF-α1 expression is up-regulated and it plays a key role in preventing the onset of depressive-like behavior through enhanced FGF2-mediated neurogenesis. To evaluate the therapeutic potential of this pathway, we examined, rosiglitazone, a PPARγ agonist, which has been shown to have antidepressant activity in rodents and humans. Rosiglitazone up-regulates FGF2 expression in a NF-α1-dependent manner in hippocampal neurons. Mice fed rosiglitazone show increased hippocampal NF-α1 levels and neurogenesis compared to controls; thereby indicating the antidepressant action of this drug. Development of drugs that activate the NF-α1/FGF2/neurogenesis pathway can offer a new approach to depression therapy. PMID:25330741

  9. Binding of neurotrophin-3 to its neuronal receptors and interactions with nerve growth factor and brain-derived neurotrophic factor.

    PubMed Central

    Rodríguez-Tébar, A; Dechant, G; Götz, R; Barde, Y A

    1992-01-01

    Neurotrophin-3 (NT-3) has low-affinity (Kd = 8 x 10(-10) M), as well as high-affinity receptors (Kd = 1.8 x 10(-11) M) on embryonic chick sensory neurons, the latter in surprisingly high numbers. Like the structurally related proteins nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF), NT-3 also binds to the low-affinity NGF receptor, a molecule that we suggest to designate low-affinity neurotrophin receptor (LANR). NT-3 dissociates from the LANR much more rapidly than BDNF, and more slowly than NGF. The binding of labelled NT-3 to the LANR can be reduced by half using a concentration of BDNF corresponding to the Kd of BDNF to the LANR. In contrast, the binding of NT-3 to its high-affinity neuronal receptors can only be prevented by BDNF or NGF when used at concentrations several thousand-fold higher than those corresponding to their Kd to their high-affinity neuronal receptors. Thus, specific high-affinity NT-3 receptors exist on sensory neurons that can readily discriminate between three structurally related ligands. These findings, including the remarkable property of the LANR to bind three related ligands with similar affinity, but different rate constants, are discussed. PMID:1547788

  10. Identification of ciliary neurotrophic factor (CNTF) residues essential for leukemia inhibitory factor receptor binding and generation of CNTF receptor antagonists.

    PubMed Central

    Di Marco, A; Gloaguen, I; Graziani, R; Paonessa, G; Saggio, I; Hudson, K R; Laufer, R

    1996-01-01

    Ciliary neurotrophic factor (CNTF) drives the sequential assembly of a receptor complex containing the ligand-specific alpha-receptor subunit (CNTFR alpha) and the signal transducers gp130 and leukemia inhibitory factor receptor-beta (LIFR). The D1 structural motif, located at the beginning of the D-helix of human CNTF, contains two amino acid residues, F152 and K155, which are conserved among all cytokines that signal through LIFR. The functional importance of these residues was assessed by alanine mutagenesis. Substitution of either F152 or K155 with alanine was found to specifically inhibit cytokine interaction with LIFR without affecting binding to CNTFR alpha or gp130. The resulting variants behaved as partial agonists with varying degrees of residual bioactivity in different cell-based assays. Simultaneous alanine substitution of both F152 and K155 totally abolished biological activity. Combining these mutations with amino acid substitutions in the D-helix, which enhance binding affinity for the CNTFR alpha, gave rise to a potent competitive CNTF receptor antagonist. This protein constitutes a new tool for studies of CNTF function in normal physiology and disease. Images Fig. 1 Fig. 6 PMID:8799186

  11. Brain-derived neurotrophic factor and nerve growth factor potentiate excitatory synaptic transmission in the rat visual cortex.

    PubMed Central

    Carmignoto, G; Pizzorusso, T; Tia, S; Vicini, S

    1997-01-01

    1. The effect of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) on excitatory synaptic transmission in the developing visual cortex was studied by whole-cell patch-clamp recordings from rat brain slices. 2. Both neurotrophins induced a rapid increase in the amplitude of impulse-evoked excitatory postsynaptic currents (EPSCs). BDNF also increased the frequency of spontaneous EPSCs. 3. Analysis of the currents revealed that alpha-amino-3-hydroxy-5-methyl-isoxazole propionic acid (AMPA) and N-methyl-D-aspartate (NMDA) receptor-mediated components contributing to the EPSC peak amplitude were equally potentiated by the neurotrophins. 4. When synaptic transmission was studied by minimal stimulation of intracortical afferents, neurotrophins induced a decrease in the occurrence of release failures. 5. A number of neurones were insensitive to the effects of the neurotrophins, possibly related to the considerable heterogeneity of neuronal types and to the uneven distribution of neurotrophin receptors in the visual cortex. 6. The probability of neurotransmitter release represents a rapidly modifiable synaptic feature by which neurotrophins can potentiate the efficacy of excitatory synaptic transmission in the visual cortex. PMID:9023775

  12. Brain-derived neurotrophic factor increases vascular endothelial growth factor expression and enhances angiogenesis in human chondrosarcoma cells.

    PubMed

    Lin, Chih-Yang; Hung, Shih-Ya; Chen, Hsien-Te; Tsou, Hsi-Kai; Fong, Yi-Chin; Wang, Shih-Wei; Tang, Chih-Hsin

    2014-10-15

    Chondrosarcomas are a type of primary malignant bone cancer, with a potent capacity for local invasion and distant metastasis. Brain-derived neurotrophic factor (BDNF) is commonly upregulated during neurogenesis. The aim of the present study was to examine the mechanism involved in BDNF-mediated vascular endothelial growth factor (VEGF) expression and angiogenesis in human chondrosarcoma cells. Here, we knocked down BDNF expression in chondrosarcoma cells and assessed their capacity to control VEGF expression and angiogenesis in vitro and in vivo. We found knockdown of BDNF decreased VEGF expression and abolished chondrosarcoma conditional medium-mediated angiogenesis in vitro as well as angiogenesis effects in vivo in the chick chorioallantoic membrane and Matrigel plug nude mouse models. In addition, in the xenograft tumor angiogenesis model, the knockdown of BDNF significantly reduced tumor growth and tumor-associated angiogenesis. BDNF increased VEGF expression and angiogenesis through the TrkB receptor, PLCγ, PKCα, and the HIF-1α signaling pathway. Finally, we analyzed samples from chondrosarcoma patients by immunohistochemical staining. The expression of BDNF and VEGF protein in 56 chondrosarcoma patients was significantly higher than in normal cartilage. In addition, the high level of BDNF expression correlated strongly with VEGF expression and tumor stage. Taken together, our results indicate that BDNF increases VEGF expression and enhances angiogenesis through a signal transduction pathway that involves the TrkB receptor, PLCγ, PKCα, and the HIF-1α. Therefore, BDNF may represent a novel target for anti-angiogenic therapy for human chondrosarcoma. PMID:25150213

  13. Artemin, a Glial Cell Line-Derived Neurotrophic Factor Family Member, Induces TRPM8-Dependent Cold Pain

    PubMed Central

    Lippoldt, Erika K.; Elmes, Russell R.; McCoy, Daniel D.; Knowlton, Wendy M.

    2013-01-01

    Chronic pain associated with injury or disease can result from dysfunction of sensory afferents whereby the threshold for activation of pain-sensing neurons (nociceptors) is lowered. Neurotrophic factors control nociceptor development and survival, but also induce sensitization through activation of their cognate receptors, attributable, in part, to the modulation of ion channel function. Thermal pain is mediated by channels of the transient receptor potential (TRP) family, including the cold and menthol receptor TRPM8. Although it has been shown that TRPM8 is involved in cold hypersensitivity, the molecular mechanisms underlying this pain modality are unknown. Using microarray analyses to identify mouse genes enriched in TRPM8 neurons, we found that the glial cell line-derived neurotrophic factor (GDNF) family receptor GFRα3 is expressed in a subpopulation of TRPM8 sensory neurons that have the neurochemical profile of cold nociceptors. Moreover, we found that artemin, the specific GFRα3 ligand that evokes heat hyperalgesia, robustly sensitized cold responses in a TRPM8-dependent manner in mice. In contrast, GFRα1 and GFRα2 are not coexpressed with TRPM8 and their respective ligands GDNF and neurturin did not induce cold pain, whereas they did evoke heat hyperalgesia. Nerve growth factor induced mild cold sensitization, consistent with TrkA expression in TRPM8 neurons. However, bradykinin failed to alter cold sensitivity even though its receptor expresses in a subset of TRPM8 neurons. These results show for the first time that only select neurotrophic factors induce cold sensitization through TRPM8 in vivo, unlike the broad range of proalgesic agents capable of promoting heat hyperalgesia. PMID:23884957

  14. Neurotrophic factors in women with crack cocaine dependence during early abstinence: the role of early life stress

    PubMed Central

    Viola, Thiago Wendt; Tractenberg, Saulo Gantes; Levandowski, Mateus Luz; Pezzi, Júlio Carlos; Bauer, Moisés Evandro; Teixeira, Antonio Lúcio; Grassi-Oliveira, Rodrigo

    2014-01-01

    Background Neurotrophic factors have been investigated in the pathophysiology of alcohol and drug dependence and have been related to early life stress driving developmental programming of neuroendocrine systems. Methods We conducted a follow-up study that aimed to assess the plasma levels of glial cell line–derived neurotrophic factor (GDNF), brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), neurotrophin-3 (NT3) and neurotrophin-4/5 (NT4/5) in crack users during 3 weeks of early abstinence in comparison with healthy controls. We performed a comprehensive clinical assessment in female inpatients with crack cocaine dependence (separated into 2 groups: participants with (CSA+) and without (CSA−) a history of childhood sexual abuse) and a group of nonuser control participants. Results Our sample included 104 women with crack cocaine dependence and 22 controls; of the women who used crack cocaine, 22 had a history of childhood sexual abuse and 82 did not. The GDNF plasma levels in the CSA+ group increased dramatically during 3 weeks of detoxification. In contrast, those in the CSA− group showed lower and stable levels of GDNF under the same conditions. Compared with the control group, BDNF plasma levels remained elevated and NGF levels were reduced during early abstinence. We found no differences in NT3 and NT4/5 between the patients and controls. However, within-group analyses showed that the CSA+ group exhibited higher levels of NT4/5 than the CSA− group at the end of detoxification. Limitations Some of the participants were using neuroleptics, mood stabilizers or antidepressants; our sample included only women; memory bias could not be controlled; and we did not investigate the possible confounding effects of other forms of stress during childhood. Conclusion This study supports the association between early life stress and peripheral neurotrophic factor levels in crack cocaine users. During early abstinence, plasmastic GDNF and NT4/5 were

  15. Smoking Habits and Neuropeptides: Adiponectin, Brain-derived Neurotrophic Factor, and Leptin Levels.

    PubMed

    Kim, Ki-Woong; Won, Yong Lim; Ko, Kyung Sun; Roh, Ji Won

    2014-06-01

    This study aimed to identify changes in the level of neuropeptides among current smokers, former smokers, and individuals who had never smoked, and how smoking habits affect obesity and metabolic syndrome (MetS). Neuropeptide levels, anthropometric parameters, and metabolic syndrome diagnostic indices were determined among male workers; 117 of these had never smoked, whereas 58 and 198 were former and current smokers, respectively. The total sample comprised 373 male workers. The results obtained from anthropometric measurements showed that current smokers attained significantly lower body weight, body mass index, waist circumference, and abdominal fat thickness values than former smokers and those who had never smoked. Current smokers' eating habits proved worse than those of non-smokers and individuals who had never smoked. The level of brain-derived neurotrophic factor (BDNF) in the neuropeptides in the case of former smokers was 23.6 ± 9.2 pg/ml, higher than that of current smokers (20.4 ± 6.1) and individuals who had never smoked (22.4 ± 5.8) (F = 6.520, p = 0.002). The level of adiponectin among former smokers was somewhat lower than that of current smokers, whereas leptin levels were higher among former smokers than current smokers; these results were not statistically significant. A relationship was found between adiponectin and triglyceride among non-smokers (odds ratio = 0.660, β value = -0.416, p < 0.01) and smokers (odds ratio = 0.827, β value = -0.190, p < 0.05). Further, waist circumference among non-smokers (odds ratio = 1.622, β value = 0.483, p < 0.001) and smokers (odds ratio = 1.895, β value = 0.639, p < 0.001) was associated with leptin. It was concluded that cigarette smoking leads to an imbalance of energy expenditure and appetite by changing the concentration of neuropeptides such as adiponectin, BDNF, leptin, and hsCRP, and influences food intake, body weight, the body mass index, blood pressure, and abdominal fat, which are risk

  16. Alcohol, Brain Derived Neurotrophic Factor and Obesity among People Living with HIV

    PubMed Central

    Míguez-Burbano, María José; Espinoza, Luis; Cook, Robert L.; Mayra, Mayra; Bueno, Diego; Lewis, John E.; Asthana, Deshratan

    2014-01-01

    Introduction In an expanding HAART era, obesity has become a health problem among persons living with HIV (PLWH). Whereas the rising level of obesity has been largely attributed to poor nutrition and exercise habits, differences in biological factors may explain why some individuals gain more weight than others. Thus, our main goal is to prospectively determine in PLWH whether plasma brain-derived neurotrophic factor (BDNF), and hazardous alcohol use (HAU), two overlooked but highly prevalent conditions among PLWH, correlate with an adverse anthropometric profile. Also to test whether these relationships varied in men and women Methods The Platelets mediating Alcohol and HIV Damage Study (PADS) is an ongoing multiethnic study of 400 PLWH receiving regular medical care in South Florida (37% females and 63% males). Semi-annual visits consisted of a medical exam, including anthropometrics to assess both general (body mass index: BMI) and central obesity (waist and hip circumferences). Participants also completed health history questionnaires, and provided a fasting blood sample to obtain BDNF and immune and biochemical assessments. Results A sizable proportion of participants met the National Institutes of Health definition of overweight (BMI = 25–29.9 kg/m2; 26%) and obese (BMI ≥ 30 kg/m2; 35%). Women were more likely to be obese than men (OR=4.9, 95% CI=2.9–8.2, p=0.0001). Compared to men, women also exhibited the highest mean plasma BDNF levels (9,959 ± 6,578 vs. 7,470 ± 6,068 pg/ml, p=0.0001). Additional analyses indicated that HAU, particularly heavy drinkers, had the smallest waist and hip circumferences if they were males, but the opposite if they were females. High BDNF levels were positively correlated with BMI. Linear regression analysis revealed that gender, BDNF, and HAU were the best predictors of BMI. Conclusion In summary, our findings offer novel insights into the relationships between BDNF, and alcohol use among overweight and obese PLWH. Our

  17. Gender differences in platelet brain derived neurotrophic factor in patients with cardiovascular disease and depression.

    PubMed

    Williams, Marlene S; Ngongang, Chelsea K; Ouyang, Pam; Betoudji, Fabrice; Harrer, Christine; Wang, Nae-Yuh; Ziegelstein, Roy C

    2016-07-01

    Women have a higher prevalence of depression compared to men. Serum levels of Brain-derived neurotrophic factor (BDNF) are decreased in depression. BDNF may also have a protective role in the pathogenesis of coronary artery disease (CAD) or events. We examined whether there are gender differences in BDNF levels in patients with stable CAD and comorbid depression. We enrolled 37 patients (17 women) with stable CAD with and without depression from a single medical center. All patients had depression assessment with the Beck Depression Inventory-II questionnaire. Both plasma and platelet BDNF were measured in all patients using a standard ELISA method. Platelet BDNF levels were higher than plasma BDNF levels in the entire group (5903.9 ± 1915.6 vs 848.5 ± 460.5 pg/ml, p < 0.001). Women had higher platelet BDNF levels than men (6954.2 ± 1685.6 vs. 5011.2 ± 1653.5 pg/ml, p < 0.001). Women without depression (BDI-II < 5, n = 8) had higher platelet BDNF than men without depression (n = 8, 7382.8 ± 1633.1 vs 4811.7 ± 1642.3 pg/ml, p = 0.007). Women with no or minimal depression (BDI < 14, n = 14) had higher platelet BDNF levels than men with no or minimal depression (n = 18, 6900.2 ± 1486.6 vs 4972.9 ± 1568.9 pg/ml, p = 0.001). The plasma BDNF levels were similar between men and women in all categories of depression. In conclusion, women with stable CAD have increased platelet BDNF levels when compared to men with stable CAD regardless of their level of depression. Sex specific differences in BDNF could possibly indicate differences in factors linking platelet activation and depression in men and women. PMID:27082490

  18. Brain Derived Neurotrophic Factor Contributes to the Cardiogenic Potential of Adult Resident Progenitor Cells in Failing Murine Heart

    PubMed Central

    Samal, Rasmita; Ameling, Sabine; Dhople, Vishnu; Sappa, Praveen Kumar; Wenzel, Kristin; Völker, Uwe; Felix, Stephan B.; Hammer, Elke; Könemann, Stephanie

    2015-01-01

    Aims Resident cardiac progenitor cells show homing properties when injected into the injured but not to the healthy myocardium. The molecular background behind this difference in behavior needs to be studied to elucidate how adult progenitor cells can restore cardiac function of the damaged myocardium. Since the brain derived neurotrophic factor (BDNF) moderates cardioprotection in injured hearts, we focused on delineating its regulatory role in the damaged myocardium. Methods and Results Comparative gene expression profiling of freshly isolated undifferentiated Sca-1 progenitor cells derived either from heart failure transgenic αMHC-CyclinT1/Gαq overexpressing mice or wildtype littermates revealed transcriptional variations. Bdnf expression was up regulated 5-fold during heart failure which was verified by qRT-PCR and confirmed at protein level. The migratory capacity of Sca-1 cells from transgenic hearts was improved by 15% in the presence of 25ng/ml BDNF. Furthermore, BDNF-mediated effects on Sca-1 cells were studied via pulsed Stable Isotope Labeling of Amino acids in Cell Culture (pSILAC) proteomics approach. After BDNF treatment significant differences between newly synthesized proteins in Sca-1 cells from control and transgenic hearts were observed for CDK1, SRRT, HDGF, and MAP2K3 which are known to regulate cell cycle, survival and differentiation. Moreover BDNF repressed the proliferation of Sca-1 cells from transgenic hearts. Conclusion Comparative profiling of resident Sca-1 cells revealed elevated BDNF levels in the failing heart. Exogenous BDNF (i) stimulated migration, which might improve the homing ability of Sca-1 cells derived from the failing heart and (ii) repressed the cell cycle progression suggesting its potency to ameliorate heart failure. PMID:25799225

  19. Association of brain-derived neurotrophic factor (BDNF) Val66Met polymorphism with early-onset bipolar disorder

    PubMed Central

    Nassan, Malik; Croarkin, Paul E; Luby, Joan L; Veldic, Marin; Joshi, Paramjit T; McElroy, Susan L; Post, Robert M; Walkup, John T; Cercy, Kelly; Geske, Jennifer; Wagner, Karen D; Cuellar-Barboza, Alfredo B; Casuto, Leah; Lavebratt, Catharina; Schalling, Martin; Jensen, Peter S; Biernacka, Joanna M; Frye, Mark A

    2015-01-01

    Objectives Brain-derived neurotrophic factor (BDNF) Val66Met (rs6265) functional polymorphism has been implicated in early-onset bipolar disorder. However, results of studies are inconsistent. We aimed to further explore this association. Methods DNA samples from the Treatment of Early Age Mania (TEAM) and Mayo Clinic Bipolar Disorder Biobank were investigated for association of rs6265 with early-onset bipolar disorder. Bipolar cases were classified as early onset with the definition of first manic or depressive episode at age ≤ 19 years (versus adult-onset cases at age > 19 years). After quality control, 69 TEAM early-onset bipolar disorder cases, 725 Mayo Clinic bipolar disorder cases (including 189 early onset cases), and 764 controls were included in the analysis of association, assessed with logistic regression assuming log-additive allele effects. Results Comparison of TEAM cases with controls suggested association of early-onset bipolar disorder with the rs6265 minor allele [odds ratio (OR) = 1.55, p = 0.04]. Although comparison of early-onset adult bipolar disorder cases from Mayo Clinic versus controls was not statistically significant, the OR estimate indicated the same direction of effect (OR = 1.21, p = 0.19). When the early-onset TEAM and Mayo Clinic early-onset adult groups were combined and compared with the control group, the association of the minor allele rs6265 was statistically significant (OR = 1.30, p = 0.04). Conclusions These preliminary analyses of a relatively small sample with early-onset bipolar disorder are suggestive that functional variation in BDNF is implicated in bipolar disorder risk and may have a more significant role in early-onset expression of the disorder. PMID:26528762

  20. Ciliary neurotrophic factor and stress stimuli activate the Jak-STAT pathway in retinal neurons and glia.

    PubMed

    Peterson, W M; Wang, Q; Tzekova, R; Wiegand, S J

    2000-06-01

    Ciliary neurotrophic factor (CNTF) is pleiotrophic for central, peripheral, and sensory neurons. In the mature retina, CNTF treatment enhances survival of retinal ganglion and photoreceptor cells exposed to otherwise lethal perturbation. To understand its mechanism of action in vivo, the adult rat retina was used as a model to investigate CNTF-mediated activation of Janus kinase/signal transducer and activator of transcription (Jak-STAT) and ras-mitogen activated protein kinase (ras-MAPK). Intravitreal injection of Axokine, an analog of CNTF, phosphorylates STAT3 and MAPK and produces delayed upregulation of total STAT3 and STAT1 protein in rat retina. Activated STAT3 is predominantly localized in nuclei of retinal Müller (glial) cells, ganglion cells, and astrocytes, but not in photoreceptors. Although CNTF alpha-receptor (CNTFRalpha) mRNA and protein are localized predominantly if not exclusively in retinal neurons, coincident CNTF-mediated STAT3 signaling was observed in both glia and neurons. CNTF-induced activation of Jak-STAT signaling prompted us to investigate STAT3 phosphorylation after a variety of stress-mediated, conditioning stimuli. We show that STAT3 is activated in the retina after exposure to subtoxic bright light, mechanical trauma, and systemic administration of the alpha(2)-adrenergic agonist xylazine, all of which have been shown previously to condition photoreceptors to resist light-induced degeneration. These results demonstrate that CNTF directly stimulates Jak-STAT and ras-MAPK cascades in vivo and strongly suggest that STAT3 signaling is an underlying component of neural responsiveness to stress stimuli. The observation that CNTF activates STAT3 in ganglion cells, but not in photoreceptors, suggests that Jak-STAT signaling influences neuronal survival via both direct and indirect modes of action. PMID:10818143

  1. Brain-Derived Neurotrophic Factor Regulates TRPC3/6 Channels and Protects Against Myocardial Infarction in Rodents

    PubMed Central

    Hang, Pengzhou; Zhao, Jing; Cai, Benzhi; Tian, Shanshan; Huang, Wei; Guo, Jing; Sun, Chuan; Li, Yue; Du, Zhimin

    2015-01-01

    Background: Brain-derived neurotrophic factor (BDNF) is associated with coronary artery diseases. However, its role and mechanism in myocardial infarction (MI) is not fully understood. Methods: Wistar rat and Kunming mouse model of MI were induced by the ligation of left coronary artery. Blood samples were collected from MI rats and patients. Plasma BDNF level, protein expression of BDNF, tropomyosin-related kinase B (TrkB) and its downstream transient receptor potential canonical (TRPC)3/6 channels were examined by enzyme-linked immunosorbent assay and Western blot. Infarct size, cardiac function and cardiomyocyte apoptosis were measured after intra-myocardium injection with recombinant human BDNF. Protective role of BDNF against cardiomyocyte apoptosis was confirmed by BDNF scavenger TrkB-Fc. The regulation of TRPC3/6 channels by BDNF was validated by pretreating with TRPC blocker (2-Aminoethyl diphenylborinate, 2-APB) and TRPC3/6 siRNAs. Results: Circulating BDNF was significantly enhanced in MI rats and patients. Protein expression of BDNF, TrkB and TRPC3/6 channels were upregulated in MI. 3 days post-MI, BDNF treatment markedly reduced the infarct size and serum lactate dehydrogenase activity. Meanwhile, echocardiography indicated that BDNF significantly improved cardiac function of MI mice. Furthermore, BDNF markedly inhibited cardiomyocyte apoptosis by upregulating Bcl-2 expression and downregulating caspase-3 expression and activity in ischemic myocardium. In neonatal rat ventricular myocytes, cell viability was dramatically increased by BDNF in hypoxia, which was restored by TrkB-Fc. Furthermore, protective role of BDNF against hypoxia-induced apoptosis was reversed by 2-APB and TRPC3/6 siRNAs. Conclusion: BDNF/TrkB alleviated cardiac ischemic injury and inhibited cardiomyocytes apoptosis by regulating TRPC3/6 channels, which provides a novel potential therapeutic candidate for MI. PMID:25892961

  2. Cellular mechanisms regulating activity-dependent release of native brain-derived neurotrophic factor from hippocampal neurons.

    PubMed

    Balkowiec, Agnieszka; Katz, David M

    2002-12-01

    Brain-derived neurotrophic factor (BDNF) plays a critical role in activity-dependent modifications of neuronal connectivity and synaptic strength, including establishment of hippocampal long-term potentiation (LTP). To shed light on mechanisms underlying BDNF-dependent synaptic plasticity, the present study was undertaken to characterize release of native BDNF from newborn rat hippocampal neurons in response to physiologically relevant patterns of electrical field stimulation in culture, including tonic stimulation at 5 Hz, bursting stimulation at 25 and 100 Hz, and theta-burst stimulation (TBS). Release was measured using the ELISA in situ technique, developed in our laboratory to quantify secretion of native BDNF without the need to first overexpress the protein to nonphysiological levels. Each stimulation protocol resulted in a significant increase in BDNF release that was tetrodotoxin sensitive and occurred in the absence of glutamate receptor activation. However, 100 Hz tetanus and TBS, stimulus patterns that are most effective in inducing hippocampal LTP, were significantly more effective in releasing native BDNF than lower-frequency stimulation. For all stimulation protocols tested, removal of extracellular calcium, or blockade of N-type calcium channels, prevented BDNF release. Similarly, depletion of intracellular calcium stores with thapsigargin and treatment with dantrolene, an inhibitor of calcium release from caffeine-ryanodine-sensitive stores, markedly inhibited activity-dependent BDNF release. Our results indicate that BDNF release can encode temporal features of hippocampal neuronal activity. The dual requirement for calcium influx through N-type calcium channels and calcium mobilization from intracellular stores strongly implicates a role for calcium-induced calcium release in activity-dependent BDNF secretion. PMID:12451139

  3. Astrocytes Promote Oligodendrogenesis after White Matter Damage via Brain-Derived Neurotrophic Factor

    PubMed Central

    Miyamoto, Nobukazu; Maki, Takakuni; Shindo, Akihiro; Liang, Anna C.; Maeda, Mitsuyo; Egawa, Naohiro; Itoh, Kanako; Lo, Evan K.; Lok, Josephine; Ihara, Masafumi

    2015-01-01

    Oligodendrocyte precursor cells (OPCs) in the adult brain contribute to white matter homeostasis. After white matter damage, OPCs compensate for oligodendrocyte loss by differentiating into mature oligodendrocytes. However, the underlying mechanisms remain to be fully defined. Here, we test the hypothesis that, during endogenous recovery from white matter ischemic injury, astrocytes support the maturation of OPCs by secreting brain-derived neurotrophic factor (BDNF). For in vitro experiments, cultured primary OPCs and astrocytes were prepared from postnatal day 2 rat cortex. When OPCs were subjected to chemical hypoxic stress by exposing them to sublethal CoCl2 for 7 d, in vitro OPC differentiation into oligodendrocytes was significantly suppressed. Conditioned medium from astrocytes (astro-medium) restored the process of OPC maturation even under the stressed conditions. When astro-medium was filtered with TrkB-Fc to remove BDNF, the BDNF-deficient astro-medium no longer supported OPC maturation. For in vivo experiments, we analyzed a transgenic mouse line (GFAPcre/BDNFwt/fl) in which BDNF expression is downregulated specifically in GFAP+ astrocytes. Both wild-type (GFAPwt/BDNFwt/fl mice) and transgenic mice were subjected to prolonged cerebral hypoperfusion by bilateral common carotid artery stenosis. As expected, compared with wild-type mice, the transgenic mice exhibited a lower number of newly generated oligodendrocytes and larger white matter damage. Together, these findings demonstrate that, during endogenous recovery from white matter damage, astrocytes may promote oligodendrogenesis by secreting BDNF. SIGNIFICANCE STATEMENT The repair of white matter after brain injury and neurodegeneration remains a tremendous hurdle for a wide spectrum of CNS disorders. One potentially important opportunity may reside in the response of residual oligodendrocyte precursor cells (OPCs). OPCs may serve as a back-up for generating mature oligodendrocytes in damaged white

  4. Brain-derived neurotrophic factor modulates immune reaction in mice with peripheral nerve xenotransplantation

    PubMed Central

    Yu, Xin; Lu, Laijin; Liu, Zhigang; Yang, Teng; Gong, Xu; Ning, Yubo; Jiang, Yanfang

    2016-01-01

    Background Brain-derived neurotrophic factor (BDNF) has been demonstrated to play an important role in survival, differentiation, and neurite outgrowth for many types of neurons. This study was designed to identify the role of BDNF during peripheral nerve xenotransplantation. Materials and methods A peripheral nerve xenotransplantation from rats to mice was performed. Intracellular cytokines were stained for natural killer (NK) cells, natural killer T (NKT) cells, T cells, and B cells and analyzed by flow cytometry in the spleen of the recipient mouse. Serum levels of related cytokines were quantified by cytometric bead array. Results Splenic NK cells significantly increased in the xenotransplanted mice (8.47±0.88×107 cells/mL) compared to that in the control mice (4.66±0.78×107 cells/mL, P=0.0003), which significantly reduced in the presence of BDNF (4.85±0.87×107 cells/mL, P=0.0004). In contrast, splenic NKT cell number was significantly increased in the mice with xenotransplantation plus BDNF (XT + BDNF) compared to that of control group or of mice receiving xenotransplantation only (XT only). Furthermore, the number of CD3+ T cells, CD3+CD4+ T cells, CD3+CD4− T cells, interferon-γ-producing CD3+CD4+ T cells, and interleukin (IL)-17-producing CD3+CD4+ T cells, as well as CD3−CD19+ B cells, was significantly higher in the spleen of XT only mice compared to the control mice (P<0.05), which was significantly reduced by BDNF (P<0.05). The number of IL-4-producing CD3+CD4+ T cells and CD3+CD4+CD25+Foxp3+ T cells was significantly higher in the spleen of XT + BDNF mice than that in the spleen of XT only mice (P<0.05). Serum levels of IL-6, TNF-α, interferon-γ, and IL-17 were decreased, while IL-4 and IL-10 were stimulated by BDNF following xenotransplantation. Conclusion BDNF reduced NK cells but increased NKT cell accumulation in the spleen of xenotransplanted mice. BDNF modulated the number of splenic T cells and its subtype cells in the mice following

  5. Brain-Derived Neurotrophic Factor Stimulates Production of Prostacyclin in Cerebral Arteries

    PubMed Central

    Santhanam, Anantha Vijay R.; Smith, Leslie A.; Katusic, Zvonimir S.

    2009-01-01

    Background The role of Brain Derived Neurotrophic Factor (BDNF) and its receptor, tropomyosin receptor kinase B (TrkB), in control of cerebral circulation is poorly understood. The present study was designed to investigate the cerebral vascular effects of BDNF in vivo. Methods Replication incompetent adenovirus encoding either rat BDNF (AdBDNF) or green fluorescent protein (AdGFP) was injected intracisternally into rabbits. Forty eight hours later, animals were euthanized. Plasma and cerebrospinal fluid (CSF) levels of BDNF were measured by ELISA, vasomotor function of isolated basilar arteries was studied in organ chambers, protein expression in the basilar arteries was studied by Western blotting, prostanoid levels measured by ELISA and cyclic adenosine 3′,5′-monophosphate (cyclic AMP) levels were measured by radioimmunoassay. Results The levels of BDNF in the CSF were significantly elevated in AdBDNF-treated rabbits as compared to AdGFP-treated rabbits (37 ± 5 ng/ml vs. 0.006 ± 0.003 ng/ml, respectively, P<0.05, n=14). Western blotting studies revealed that in basilar arteries AdBDNF increased protein expression of prostacyclin (PGI2) synthase, while expression of endothelial nitric oxide synthase (eNOS) and phosphorylated (Ser 1177) eNOS remained unchanged. During incubation with arachidonic acid (1 μmol/L), PGI2 production and levels of cyclic AMP were significantly elevated only in AdBDNF-treated rabbit basilar arteries (P<0.05, n=6). Relaxations to acetylcholine (10−9 to 10−5 mol/L) and arachidonic acid (10−9 to 10−5 mol/L) were significantly potentiated in basilar arteries from rabbits injected with AdBDNF. Potentiation of relaxations to acetylcholine in AdBDNF-treated basilar arteries was inhibited by the non-selective cyclooxygenase inhibitor, indomethacin (10−5 mol/l, P<0.05, n=6) and constitutive phospholipase A2 inhibitor, AACOCF3 (2 × 10−5 mol/L, P<0.05, n=5). Conclusion Our results demonstrate that in cerebral arteries, BDNF

  6. Tooth pulp inflammation increases brain-derived neurotrophic factor expression in rodent trigeminal ganglion neurons.

    PubMed

    Tarsa, L; Bałkowiec-Iskra, E; Kratochvil, F J; Jenkins, V K; McLean, A; Brown, A L; Smith, J A; Baumgartner, J C; Balkowiec, A

    2010-06-01

    Nociceptive pathways with first-order neurons located in the trigeminal ganglion (TG) provide sensory innervation to the head, and are responsible for a number of common chronic pain conditions, including migraines, temporomandibular disorders and trigeminal neuralgias. Many of those conditions are associated with inflammation. Yet, the mechanisms of chronic inflammatory pain remain poorly understood. Our previous studies show that the neurotrophin brain-derived neurotrophic factor (BDNF) is expressed by adult rat TG neurons, and released from cultured newborn rat TG neurons by electrical stimulation and calcitonin gene-related peptide (CGRP), a well-established mediator of trigeminal inflammatory pain. These data suggest that BDNF plays a role in activity-dependent plasticity at first-order trigeminal synapses, including functional changes that take place in trigeminal nociceptive pathways during chronic inflammation. The present study was designed to determine the effects of peripheral inflammation, using tooth pulp inflammation as a model, on regulation of BDNF expression in TG neurons of juvenile rats and mice. Cavities were prepared in right-side maxillary first and second molars of 4-week-old animals, and left open to oral microflora. BDNF expression in right TG was compared with contralateral TG of the same animal, and with right TG of sham-operated controls, 7 and 28 days after cavity preparation. Our ELISA data indicate that exposing the tooth pulp for 28 days, with confirmed inflammation, leads to a significant upregulation of BDNF in the TG ipsilateral to the affected teeth. Double-immunohistochemistry with antibodies against BDNF combined with one of nociceptor markers, CGRP or transient receptor potential vanilloid type 1 (TRPV1), revealed that BDNF is significantly upregulated in TRPV1-immunoreactive (IR) neurons in both rats and mice, and CGRP-IR neurons in mice, but not rats. Overall, the inflammation-induced upregulation of BDNF is stronger in mice

  7. Brain-derived neurotrophic factor: subcellular compartmentalization and interneuronal transfer as visualized with anti-peptide antibodies.

    PubMed Central

    Wetmore, C; Cao, Y H; Pettersson, R F; Olson, L

    1991-01-01

    The recent cloning of a second member of the nerve growth factor family, brain-derived neurotrophic factor (BDNF), has prompted investigation into the cells that express this factor's mRNA and protein. In the present study, antibodies raised against unique peptide sequences within the porcine BDNF protein detect BDNF-like immunoreactivity in neurons in rat hippocampal and cortical areas consistent with the distribution of BDNF mRNA as detected with in situ hybridization. Within these neurons, BDNF-like immunoreactivity was observed in the cytoplasm, dendrites, and nuclei. In addition, BDNF immunoreactivity was observed in the cytoplasm of cholinergic neurons that do not express detectable levels of BDNF mRNA. Thus, anti-peptide antibodies can be used to detect this neurotrophic factor protein in cytoplasmic sites of synthesis and in areas of probable action. We propose that one form of the BDNF protein enters the nucleus and may directly influence transcription, while another fraction of the protein is transported out of the synthesizing cell and can be detected, after retrograde axonal transport, in cytoplasmic granules in the perikarya of cholinergic neurons. These basal forebrain cholinergic neurons project to regions enriched in BDNF-synthesizing cells and are known to be responsive to BDNF in vitro. Our data provide information regarding the cellular distribution of BDNF protein in vivo and suggest a dendro-axonic interneuronal transfer of BDNF as well as an additional, intracellular signaling pathway not previously thought to occur in postmitotic neurons in brain. Images PMID:1946410

  8. NG2 expression in microglial cells affects the expression of neurotrophic and proinflammatory factors by regulating FAK phosphorylation

    PubMed Central

    Zhu, Lie; Su, Qing; Jie, Xiang; Liu, Antang; Wang, Hui; He, Beiping; Jiang, Hua

    2016-01-01

    Neural/glial antigen 2 (NG2), a chondroitin sulfate proteoglycan, is significantly upregulated in a subset of glial cells in the facial motor nucleus (FMN) following CNS injury. NG2 is reported to promote the resulting inflammatory reaction, however, the mechanism by which NG2 mediates these effects is yet to be determined. In this study, we examined the changes in NG2 expressing microglial cells in the FMN in response to facial nerve axotomy (FNA) in mice. Our findings indicated that NG2 expression was progressively induced and upregulated specifically in the ipsilateral facial nucleus following FNA. To further investigate the effects of NG2 expression, in vivo studies in NG2-knockout mice and in vitro studies in rat microglial cells transfected with NG2 shRNAs were performed. Abolition of NG2 expression both in vitro and in vivo resulted in increased expression of neurotrophic factors (nerve growth factor and glial derived neurotrophic factor), decreased expression of inflammatory mediators (tumor necrosis factor-α and interleukin-1β) and decreased apoptosis in the ipsilateral facial nucleus in response to FNA. Furthermore, we demonstrated the role of FAK in these NG2-induced effects. Taken together, our findings suggest that NG2 expression mediates inflammatory reactions and neurodegeneration in microglial cells in response to CNS injury, potentially by regulating FAK phosphorylation. PMID:27306838

  9. The pharmacology of neurotrophic treatment with Cerebrolysin: brain protection and repair to counteract pathologies of acute and chronic neurological disorders.

    PubMed

    Masliah, E; Díez-Tejedor, E

    2012-04-01

    Neurotrophic factors are considered as part of the therapeutic strategy for neurological disorders like dementia, stroke and traumatic brain injury. Cerebrolysin is a neuropeptide preparation which mimics the action of endogenous neurotrophic factors on brain protection and repair. In dementia models, Cerebrolysin decreases β-amyloid deposition and microtubule-associated protein tau phosphorylation by regulating glycogen synthase kinase-3β and cyclin-dependent kinase 5 activity, increases synaptic density and restores neuronal cytoarchitecture. These effects protect integrity of the neuronal circuits and thus result in improved cognitive and behavioral performance. Furthermore, Cerebrolysin enhances neurogenesis in the dentate gyrus, the basis for neuronal replacement therapy in neurodegenerative diseases. Experimental studies in stroke animal models have shown that Cerebrolysin stabilizes the structural integrity of cells by inhibition of calpain and reduces the number of apoptotic cells after ischemic lesion. Cerebrolysin induces restorative processes, decreases infarct volume and edema formation and promotes functional recovery. Stroke-induced neurogenesis in the subventricular zone was also promoted by Cerebrolysin, thus supporting the brain's self-repair after stroke. Both, traumatic brain and spinal cord injury conditions stimulate the expression of natural neurotrophic factors to promote repair and regeneration processes -axonal regeneration, neuronal plasticity and neurogenesis- that is considered to be crucial for the future recovery. Neuroprotective effects of Cerebrolysin on experimentally induced traumatic spinal cord injury have shown that Cerebrolysin prevents apoptosis of lesioned motoneurons and promotes functional recovery. This section summarizes the most relevant data on the pharmacology of Cerebrolysin obtained from in vitro assays (biochemical and cell cultures) and in vivo animal models of acute and chronic neurological disorders. PMID

  10. Intracerebroventricular administration of α-ketoisocaproic acid decreases brain-derived neurotrophic factor and nerve growth factor levels in brain of young rats.

    PubMed

    Wisniewski, Miriam S W; Carvalho-Silva, Milena; Gomes, Lara M; Zapelini, Hugo G; Schuck, Patrícia F; Ferreira, Gustavo C; Scaini, Giselli; Streck, Emilio L

    2016-04-01

    Maple syrup urine disease (MSUD) is an inherited aminoacidopathy resulting from dysfunction of the branched-chain keto acid dehydrogenase complex, leading to accumulation of the branched-chain amino acids (BCAA) leucine, isoleucine and valine as well as their corresponding transaminated branched-chain α-ketoacids. This disorder is clinically characterized by ketoacidosis, seizures, coma, psychomotor delay and mental retardation whose pathophysiology is not completely understood. Recent studies have shown that oxidative stress may be involved in neuropathology of MSUD. However, the effect of accumulating α-ketoacids in MSUD on neurotrophic factors has not been investigated. Thus, the objective of the present study was to evaluate the effects of acute intracerebroventricular administration of α-ketoisocaproic acid (KIC) on brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) levels in the brains of young male rats. Ours results showed that intracerebroventricular administration of KIC decreased BDNF levels in hippocampus, striatum and cerebral cortex, without induce a detectable change in pro-BDNF levels. Moreover, NGF levels in the hippocampus were reduced after intracerebroventricular administration of KIC. In conclusion, these data suggest that the effects of KIC on demyelination and memory processes may be mediated by reduced trophic support of BDNF and NGF. Moreover, lower levels of BDNF and NGF are consistent with the hypothesis that a deficit in this neurotrophic factor may contribute to the structural and functional alterations of brain underlying the psychopathology of MSUD, supporting the hypothesis of a neurodegenerative process in MSUD. PMID:26586008

  11. Combination effects of epidermal growth factor and glial cell line-derived neurotrophic factor on the in vitro developmental potential of porcine oocytes.

    PubMed

    Valleh, Mehdi Vafaye; Rasmussen, Mikkel Aabech; Hyttel, Poul

    2016-06-01

    The developmental potential of in vitro matured porcine oocytes is still lower than that of oocytes matured and fertilized in vivo. Major problems that account for the lower efficiency of in vitro production include the improper nuclear and cytoplasmic maturation of oocytes. With the aim of improving this issue, the single and combined effects of epidermal growth factor (EGF) and glial cell line-derived neurotrophic factor (GDNF) on oocyte developmental competence were investigated. Porcine cumulus-oocyte cell complexes (COCs) were matured in serum-free medium supplemented with EGF (0, 10 or 50 ng/ml) and/or GDNF (0, 10 or 50 ng/ml) for 44 h, and subsequently subjected to fertilization and cultured for 7 days in vitro. The in vitro-formed blastocysts derived from selected growth factor groups (i.e. EGF = 50 ng/ml; GDNF = 50 ng/ml; EGF = 50 ng/ml + GDNF = 50 ng/ml) were also used for mRNA expression analysis, or were subjected to Hoechst staining. The results showed that the addition of EGF and/or GDNF during oocyte maturation dose dependently enhanced oocyte developmental competence. Compared with the embryos obtained from control or single growth factor-treated oocytes, treatment with the combination of EGF and GDNF was shown to significantly improve oocyte competence in terms of blastocyst formation, blastocyst cell number and blastocyst hatching rate (P < 0.05), and also simultaneously induced the expression of BCL-xL and TERT and suppressed the expression of caspase-3 in resulting blastocysts (P < 0.05). These results suggest that both GDNF and EGF may play an important role in the regulation of porcine in vitro oocyte maturation and the combination of these growth factors could promote oocyte competency and blastocyst quality. PMID:26350562

  12. The brain-derived neurotrophic factor Val66Met polymorphism moderates early deprivation effects on attention problems.

    PubMed

    Gunnar, Megan R; Wenner, Jennifer A; Thomas, Kathleen M; Glatt, Charles E; McKenna, Morgan C; Clark, Andrew G

    2012-11-01

    Adverse early care is associated with attention regulatory problems, but not all so exposed develop attention problems. In a sample of 612 youth (girls = 432, M = 11.82 years, SD = 1.5) adopted from institutions (e.g., orphanages) in 25 countries, we examined whether the Val66Met polymorphism of the brain-derived neurotrophic factor gene moderates attention problems associated with the duration of institutional care. Parent-reported attention problem symptoms were collected using the MacArthur Health and Behavior Questionnaire. DNA was genotyped for the brain-derived neurotrophic factor Val66Met (rs6265) single nucleotide polymorphism. Among youth from Southeast (SE) Asia, the predominant genotype was valine/methionine (Val/Met), whereas among youth from Russia/Europe and Caribbean/South America, the predominant genotype was Val/Val. For analysis, youth were grouped as carrying Val/Val or Met/Met alleles. Being female, being from SE Asia, and being younger when adopted were associated with fewer attention regulatory problem symptoms. Youth carrying at least one copy of the Met allele were more sensitive to the duration of deprivation, yielding an interaction that followed a differential susceptibility pattern. Thus, youth with Val/Met or Met/Met genotypes exhibited fewer symptoms than Val/Val genotypes when adoption was very early and more symptoms when adoption occurred later in development. Similar patterns were observed when SE Asian youth and youth from other parts of the world were analyzed separately. PMID:23062292

  13. Neurorestoration induced by the HDAC inhibitor sodium valproate in the lactacystin model of Parkinson’s is associated with histone acetylation and up-regulation of neurotrophic factors

    PubMed Central

    Harrison, Ian F; Crum, William R; Vernon, Anthony C; Dexter, David T

    2015-01-01

    Background and Purpose Histone hypoacetylation is associated with Parkinson's disease (PD), due possibly to an imbalance in the activities of enzymes responsible for histone (de)acetylation; correction of which may be neuroprotective/neurorestorative. This hypothesis was tested using the anti-epileptic drug sodium valproate, a known histone deacetylase inhibitor (HDACI), utilizing a delayed-start study design in the lactacystin rat model of PD. Experimental Approach The irreversible proteasome inhibitor lactacystin was unilaterally injected into the substantia nigra of Sprague–Dawley rats that subsequently received valproate for 28 days starting 7 days after lactacystin lesioning. Longitudinal motor behavioural testing, structural MRI and post-mortem assessment of nigrostriatal integrity were used to track changes in this model of PD and quantify neuroprotection/restoration. Subsequent cellular and molecular analyses were performed to elucidate the mechanisms underlying valproate's effects. Key Results Despite producing a distinct pattern of structural re-modelling in the healthy and lactacystin-lesioned brain, delayed-start valproate administration induced dose-dependent neuroprotection/restoration against lactacystin neurotoxicity, characterized by motor deficit alleviation, attenuation of morphological brain changes and restoration of dopaminergic neurons in the substantia nigra. Molecular analyses revealed that valproate alleviated lactacystin-induced histone hypoacetylation and induced up-regulation of brain neurotrophic/neuroprotective factors. Conclusions and Implications The histone acetylation and up-regulation of neurotrophic/neuroprotective factors associated with valproate treatment culminate in a neuroprotective and neurorestorative phenotype in this animal model of PD. As valproate induced structural re-modelling of the brain, further research is required to determine whether valproate represents a viable candidate for disease treatment; however

  14. Gray Matter Volume in Adolescent Anxiety: An Impact of the Brain-Derived Neurotrophic Factor Val[superscript 66]Met Polymorphism?

    ERIC Educational Resources Information Center

    Mueller, Sven C.; Aouidad, Aveline; Gorodetsky, Elena; Goldman, David; Pine, Daniel S.; Ernst, Monique

    2013-01-01

    Objective: Minimal research links anxiety disorders in adolescents to regional gray matter volume (GMV) abnormalities and their modulation by genetic factors. Prior research suggests that a brain-derived neurotrophic factor (BNDF) Val[superscript 66]Met polymorphism may modulate such brain morphometry profiles. Method: Using voxel-based…

  15. Peripheral blood brain-derived neurotrophic factor in bipolar disorder: a comprehensive systematic review and meta-analysis.

    PubMed

    Munkholm, K; Vinberg, M; Kessing, L V

    2016-02-01

    Peripheral blood brain-derived neurotrophic factor (BDNF) has been proposed as a potential biomarker related to disease activity and neuroprogression in bipolar disorder, speculated to mirror alterations in brain expression of BDNF. The research area is rapidly evolving; however, recent investigations have yielded conflicting results with substantial variation in outcomes, highlighting the need to critically assess the state of current evidence. The aims of the study were to investigate differences in peripheral blood BDNF concentrations between bipolar disorder patients and healthy control subjects and between affective states in bipolar disorder patients, including assessment of the effect of treatment of acute episodes on BDNF levels. A systematic review of English language studies without considering publication status was conducted in PubMed (January 1950-November 2014), Embase (1974-November 2014) and PsycINFO (1806-November 2014), and 35 studies comprising a total of 3798 participants were included in the meta-analysis. The results indicated that crude peripheral blood BDNF levels may be lower in bipolar disorder patients overall (Hedges' g=-0.28, 95% CI: -0.51 to -0.04, P=0.02) and in serum of manic (g=-0.77, 95% CI: -1.36 to -0.18, P=0.01) and depressed (g=-0.87, 95% CI: -1.42 to -0.32, P=0.002) bipolar disorder patients compared with healthy control subjects. No differences in peripheral BDNF levels were observed between affective states overall. Longer illness duration was associated with higher BDNF levels in bipolar disorder patients. Relatively low study quality, substantial unexplained between-study heterogeneity, potential bias in individual studies and indications of publication bias, was observed and studies were overall underpowered. It could thus not be excluded that identified differences between groups were due to factors not related to bipolar disorder. In conclusion, limitations in the evidence base prompt tempered conclusions regarding the

  16. Plasma Brain-Derived Neurotrophic Factor and Reverse Dipping Pattern of Nocturnal Blood Pressure in Patients with Cardiovascular Risk Factors

    PubMed Central

    Kadoya, Manabu; Koyama, Hidenori; Kanzaki, Akinori; Kurajoh, Masafumi; Hatayama, Miki; Shiraishi, Jun; Okazaki, Hirokazu; Shoji, Takuhito; Moriwaki, Yuji; Yamamoto, Tetsuya; Inaba, Masaaki; Namba, Mitsuyoshi

    2014-01-01

    Context Basic studies have shown that brain-derived neurotrophic factor (BDNF) has critical roles in the survival, growth, maintenance, and death of central and peripheral neurons, while it is also involved in regulation of the autonomic nervous system. Furthermore, recent clinical studies have suggested potential role of plasma BDNF in the circulatory system. Objective We investigated the mutual relationships among plasma BDNF, patterns of nocturnal blood pressure changes (dippers, non-dippers, extra-dippers, and reverse-dippers), and cardiac autonomic function as determined by heart rate variability (HRV). Design This was a cross-sectional study of patients registered in the Hyogo Sleep Cardio-Autonomic Atherosclerosis (HSCAA) Study from October 2010 to November 2012. Patients Two-hundred fifty patients with 1 or more cardiovascular risk factor(s) (obesity, smoking, presence of cardiovascular event history, hypertension, dyslipidemia, diabetes mellitus, chronic kidney disease) were enrolled. Results Plasma BDNF levels (natural logarithm transformed) were significantly (p = 0.001) lower in reverse-dipper patients (7.18±0.69 pg/ml, mean ± SD, n = 36) as compared to dippers (7.86±0.86 pg/ml, n = 100). Multiple logistic regression analysis showed that BDNF (odds ratios: 0.417, 95% confidence interval: 0.228–0.762, P = 0.004) was the sole factor significantly and independently associated with the reverse-dippers as compared with dippers. Furthermore, plasma BDNF level was significantly and positively correlated with the time-domain (SDNN, SDANN5, CVRR) and frequency-domain (LF) of HRV parameters. Finally, multiple logistic regression analyses showed that the relationship between plasma BDNF and the reverse-dippers was weakened, yet remained significant or borderline significant even after adjusting for HRV parameters. Conclusions Low plasma BDNF was independently associated with patients showing a reverse-dipper pattern of nocturnal blood pressure

  17. Knockdown of brain-derived neurotrophic factor in specific brain sites precipitates behaviors associated with depression and reduces neurogenesis

    PubMed Central

    Taliaz, D; Stall, N; Dar, D E; Zangen, A

    2009-01-01

    Depression has been associated with reduced expression of brain-derived neurotrophic factor (BDNF) in the hippocampus. In addition, animal studies suggest an association between reduced hippocampal neurogenesis and depressive-like behavior. These associations were predominantly established based on responses to antidepressant drugs and alterations in BDNF levels and neurogenesis in depressive patients or animal models for depressive behavior. Nevertheless, there is no direct evidence that the actual reduction of the BDNF protein in specific brain sites can induce depressive-like behaviors or affect neurogenesis in vivo. Using BDNF knockdown by RNA interference and lentiviral vectors injected into specific subregions of the hippocampus we show that a reduction in BDNF expression in the dentate gyrus, but not the CA3, reduces neurogenesis and affects behaviors associated with depression. Moreover, we show that BDNF has a critical function in neuronal differentiation, but not proliferation in vivo. Finally, we found that a specific BDNF knockdown in the ventral subiculum induces anhedonic-like behavior. These findings provide substantial support for the neurotrophic hypothesis of depression and specify anatomical and neurochemical targets for potential antidepressant interventions. Moreover, the specific effect of BDNF reduction on neuronal differentiation has broader implications for the study of neurodevelopment and neurodegenerative diseases. PMID:19621014

  18. Assessment of oxidative stress parameters of brain-derived neurotrophic factor heterozygous mice in acute stress model

    PubMed Central

    Hacioglu, Gulay; Senturk, Ayse; Ince, Imran; Alver, Ahmet

    2016-01-01

    Objective(s): Exposing to stress may be associated with increased production of reactive oxygen species (ROS). Therefore, high level of oxidative stress may eventually give rise to accumulation of oxidative damage and development of numerous neurodegenerative diseases. It has been presented that brain-derived neurotrophic factor (BDNF) supports neurons against various neurodegenerative conditions. Lately, there has been growing evidence that changes in the cerebral neurotrophic support and especially in the BDNF expression and its engagement with ROS might be important in various disorders and neurodegenerative diseases. Hence, we aimed to investigate protective effects of BDNF against stress-induced oxidative damage. Materials and Methods: Five- to six-month-old male wild-type and BDNF knock-down mice were used in this study. Activities of catalase (CAT) and superoxide dismutase (SOD) enzymes, and the amount of malondialdehyde (MDA) were assessed in the cerebral homogenates of studied groups in response to acute restraint stress. Results: Exposing to acute physiological stress led to significant elevation in the markers of oxidative stress in the cerebral cortexes of experimental groups. Conclusion: As BDNF-deficient mice were observed to be more susceptible to stress-induced oxidative damage, it can be suggested that there is a direct interplay between oxidative stress indicators and BDNF levels in the brain. PMID:27279982

  19. Tumor necrosis factor-α increases brain-derived neurotrophic factor expression in trigeminal ganglion neurons in an activity-dependent manner.

    PubMed

    Bałkowiec-Iskra, E; Vermehren-Schmaedick, A; Balkowiec, A

    2011-04-28

    Many chronic trigeminal pain conditions, such as migraine or temporo-mandibular disorders, are associated with inflammation within peripheral endings of trigeminal ganglion (TG) sensory neurons. A critical role in mechanisms of neuroinflammation is attributed to proinflammatory cytokines, such as interleukin-1β and tumor necrosis factor-α (TNFα) that also contribute to mechanisms of persistent neuropathic pain resulting from nerve injury. However, the mechanisms of cytokine-mediated synaptic plasticity and nociceptor sensitization are not completely understood. In the present study, we examined the effects of TNFα on neuronal expression of brain-derived neurotrophic factor (BDNF), whose role in synaptic plasticity and sensitization of nociceptive pathways is well documented. We show that 4- and 24-h treatment with TNFα increases BDNF mRNA and protein, respectively, in neuron-enriched dissociated cultures of rat TG. TNFα increases the phosphorylated form of the cyclic AMP-responsive element binding protein (CREB), a transcription factor involved in regulation of BDNF expression in neurons, and activates transcription of BDNF exon IV (former exon III) and, to a lesser extent, exon VI (former exon IV), but not exon I. TNFα-mediated increase in BDNF expression is accompanied by increase in calcitonin gene-related peptide (CGRP), which is consistent with previously published studies, and indicates that both peptides are similarly regulated in TG neurons by inflammatory mediators. The effect of TNFα on BDNF expression is dependent on sodium influx through TTX-sensitive channels and on p38-mitogen-activated protein kinase. Moreover, electrical stimulation and forskolin, known to increase intracellular cAMP, potentiate the TNFα-mediated upregulation of BDNF expression. This study provides new evidence for a direct action of proinflammatory cytokines on TG primary sensory neurons, and reveals a mechanism through which TNFα stimulates de novo synthesis of BDNF in

  20. Streptococcus pneumoniae infection regulates expression of neurotrophic factors in the olfactory bulb and cultured olfactory ensheathing cells.

    PubMed

    Ruiz-Mendoza, S; Macedo-Ramos, H; Santos, F A; Quadros-de-Souza, L C; Paiva, M M; Pinto, T C A; Teixeira, L M; Baetas-da-Cruz, W

    2016-03-11

    Streptococcus pneumoniae is the causative agent of numerous diseases including severe invasive infections such as bacteremia and meningitis. It has been previously shown that strains of S. pneumoniae that are unable to survive in the bloodstream may colonize the CNS. However, information on cellular components and pathways involved in the neurotropism of these strains is still scarce. The olfactory system is a specialized tissue in which olfactory receptor neurons (ORNs) are interfacing with the external environment through several microvilli. Olfactory ensheathing cells (OECs) which also form the glial limiting membrane at the surface of the olfactory bulb (OB) are the only cells that ensheathe the ORNs axons. Since previous data from our group showed that OECs may harbor S. pneumoniae, we decided to test whether infection of the OB or OEC cultures modulates the expression levels of neurotrophic factor's mRNA and its putative effects on the activation and viability of microglia. We observed that neurotrophin-3 (NT-3) and glial cell-line-derived neurotrophic factor (GDNF) expression was significantly higher in the OB from uninfected mice than in infected mice. A similar result was observed when we infected OEC cultures. Brain-derived neurotrophic factor (BNDF) expression was significantly lower in the OB from infected mice than in uninfected mice. In contrast, in vitro infection of OECs resulted in a significant increase of BDNF mRNA expression. An upregulation of high-mobility group box 1 (HMGB1) expression was observed in both OB and OEC cultures infected with S. pneumoniae. Moreover, we found that conditioned medium from infected OEC cultures induced the expression of the pro-apoptotic protein cleaved-caspase-3 and an apparently continuous nuclear factor-kappa B (NF-κB) p65 activation in the N13 microglia. Altogether, our data suggest the possible existence of an OEC-pathogen molecular interface, through which the OECs could interfere on the activation and

  1. Relationship of serum brain-derived neurotrophic factor (BDNF) and health-related lifestyle in healthy human subjects.

    PubMed

    Chan, Ka Lok; Tong, Kai Yu; Yip, Shea Ping

    2008-12-12

    The associations between serum brain-derived neurotrophic factor (BDNF) levels and several health-related lifestyle factors were evaluated in 85 healthy human subjects. Results showed that the frequency of fruit intake, exercise and television watching were associated with serum BDNF level. There was a higher serum BDNF level from the group with fruit intake five to six times per week. Subjects with moderate frequency of exercise (1-30 times of 30 min exercise per month) showed higher serum BDNF level than the group with exercise more than 30 times per month. There was a significant positive correlation between serum BDNF and the daily average watching television time in the younger age group (18-35). The result of this study supports the need for larger studies with different health-related lifestyle in healthy subjects or subjects with disorders. PMID:18852019

  2. Dose-dependent neuroprotective effect of ciliary neurotrophic factor delivered via tetracycline-regulated lentiviral vectors in the quinolinic acid rat model of Huntington's disease.

    PubMed

    Régulier, E; Pereira de Almeida, L; Sommer, B; Aebischer, P; Déglon, N

    2002-11-01

    The ability to regulate gene expression constitutes a prerequisite for the development of gene therapy strategies aimed at the treatment of neurologic disorders. In the present work, we used tetracycline (Tet)-regulated lentiviral vectors to investigate the dose-dependent neuroprotective effect of human ciliary neurotrophic factor (CNTF) in the quinolinic acid (QA) model of Huntington's disease (HD). The Tet system was split in two lentiviruses, the first one containing the CNTF or green fluorescent protein (GFP) cDNAs under the control of the Tet-response element (TRE) and a second vector encoding the transactivator (tTA). Preliminary coinfection study demonstrated that 63.8% +/- 2.0% of infected cells contain at least two viral copies. Adult rats were then injected with CNTF- and GFP-expressing viral vectors followed 3 weeks later by an intrastriatal administration of QA. A significant reduction of apomorphine-induced rotations was observed in the CNTF-on group. In contrast, GFP-treated animals or CNTF-off rats displayed an ipsilateral turning behavior in response to apomorphine. A selective sparing of DARPP-32-, choline acetyltransferase (ChAT)-, and NADPH-d-positive neurons was observed in the striatum of CNTF-on rats compared to GFP animals and CNTF-off group. Enzyme-linked immunosorbent assay (ELISA) performed on striatal samples of rats sacrificed at the same time point indicated that this neuroprotective effect was associated with the production of 15.5 +/- 4.7 ng CNTF per milligram of protein whereas the residual CNTF expression in the off state (0.54 +/- 0.02 ng/mg of protein) was not sufficient to protect against QA toxicity. These results establish the proof of principle of neurotrophic factor dosing for neurodegenerative diseases and demonstrate the feasibility of lentiviral-mediated tetracycline-regulated gene transfer in the brain. PMID:12427308

  3. The Effect of Recombinant Erythropoietin on Plasma Brain Derived Neurotrophic Factor Levels in Patients with Affective Disorders: A Randomised Controlled Study

    PubMed Central

    Vinberg, Maj; Miskowiak, Kamilla; Hoejman, Pernille; Pedersen, Maria; Kessing, Lars Vedel

    2015-01-01

    The study aims to investigate the effect of repeated infusions of recombinant erythropoietin (EPO) on plasma brain derived neurotrophic factor (BDNF) levels in patients with affective disorders. In total, 83 patients were recruited: 40 currently depressed patients with treatment-resistant depression (TRD) (Hamilton Depression Rating Scale-17 items (HDRS-17) score >17) (study 1) and 43 patients with bipolar disorder (BD) in partial remission (HDRS-17 and Young Mania Rating Scale (YMRS) ≤ 14) (study 2). In both studies, patients were randomised to receive eight weekly EPO (Eprex; 40,000 IU) or saline (0.9% NaCl) infusions in a double-blind, placebo-controlled, parallel—group design. Plasma BDNF levels were measured at baseline and at weeks 5, 9 and at follow up, week 14. In contrast with our hypothesis, EPO down regulated plasma BDNF levels in patients with TRD (mean reduction at week 9 (95% CI): EPO 10.94 ng/l (4.51-21.41 ng/l); mean increase at week 9: Saline 0.52 ng/l, p=0.04 (-5.88-4.48 ng/l) p=0.04, partial ŋ2=0.12). No significant effects were found on BDNF levels in partially remitted patients with BD (p=0.35). The present effects of EPO on BDNF levels in patients with TRD point to a role of neurotrophic factors in the potential effects of EPO seen in TRD and BD. The neurobiological mechanisms underlying these effects and the interaction between EPO and peripheral levels on BDNF need to be further elucidated in human studies including a broad range of biomarkers. Trial Registration ClinicalTrials.gov: NCT00916552. PMID:26011424

  4. Brain-Derived Neurotrophic Factor Inhibits Calcium Channel Activation, Exocytosis, and Endocytosis at a Central Nerve Terminal

    PubMed Central

    Baydyuk, Maryna; Wu, Xin-Sheng; He, Liming

    2015-01-01

    Brain-derived neurotrophic factor (BDNF) is a neurotrophin that regulates synaptic function and plasticity and plays important roles in neuronal development, survival, and brain disorders. Despite such diverse and important roles, how BDNF, or more generally speaking, neurotrophins affect synapses, particularly nerve terminals, remains unclear. By measuring calcium currents and membrane capacitance during depolarization at a large mammalian central nerve terminal, the rat calyx of Held, we report for the first time that BDNF slows down calcium channel activation, including P/Q-type channels, and inhibits exocytosis induced by brief depolarization or single action potentials, inhibits slow and rapid endocytosis, and inhibits vesicle mobilization to the readily releasable pool. These presynaptic mechanisms may contribute to the important roles of BDNF in regulating synapses and neuronal circuits and suggest that regulation of presynaptic calcium channels, exocytosis, and endocytosis are potential mechanisms by which neurotrophins achieve diverse neuronal functions. PMID:25788684

  5. New insight in expression, transport, and secretion of brain-derived neurotrophic factor: Implications in brain-related diseases

    PubMed Central

    Adachi, Naoki; Numakawa, Tadahiro; Richards, Misty; Nakajima, Shingo; Kunugi, Hiroshi

    2014-01-01

    Brain-derived neurotrophic factor (BDNF) attracts increasing attention from both research and clinical fields because of its important functions in the central nervous system. An adequate amount of BDNF is critical to develop and maintain normal neuronal circuits in the brain. Given that loss of BDNF function has been reported in the brains of patients with neurodegenerative or psychiatric diseases, understanding basic properties of BDNF and associated intracellular processes is imperative. In this review, we revisit the gene structure, transcription, translation, transport and secretion mechanisms of BDNF. We also introduce implications of BDNF in several brain-related diseases including Alzheimer’s disease, Huntington’s disease, depression and schizophrenia. PMID:25426265

  6. Intraspinal Rewiring of the Corticospinal Tract Requires Target-Derived Brain-Derived Neurotrophic Factor and Compensates Lost Function after Brain Injury

    ERIC Educational Resources Information Center

    Ueno, Masaki; Hayano, Yasufumi; Nakagawa, Hiroshi; Yamashita, Toshihide

    2012-01-01

    Brain injury that results in an initial behavioural deficit is frequently followed by spontaneous recovery. The intrinsic mechanism of this functional recovery has never been fully understood. Here, we show that reorganization of the corticospinal tract induced by target-derived brain-derived neurotrophic factor is crucial for spontaneous recovery…

  7. Localization and expression of ciliary neurotrophic factor (CNTF) in postmortem sciatic nerve from patients with motor neuron disease and diabetic neuropathy

    SciTech Connect

    Lee, D.A.; Gross, L.; Wittrock, D.A.; Windebank, A.J.

    1996-08-01

    Ciliary neurotrophic factor (CNTF) is thought to play an important role in the maintenance of the mature motor system. The factor is found most abundantly in myelinating Schwann cells in the adult sciatic nerve. Lack of neuronal growth factors has been proposed as one possible etiology of amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA). Growth factor replacement therapies are currently being evaluated as a treatment for motor neuron disease. In this report we determined whether the expression of CNTF in sciatic nerve differed in patients with motor neuron disease compared to controls or patients with another form of axonopathy. We identified 8 patients (7 with ALS and 1 with SMA) with motor neuron disease and 6 patients with diabetic motor neuropathy who had autopsy material available. Immunoperoxidase staining showed reduced CNTF expression in nerves of patients with motor neuron disease but not in patients with diabetic motor neuropathy. Decreased CNTF appears be associated with primary motor neuron disease rather than a generalized process of axon loss. This result supports suggestions that CNTF deficiency may be an important factor in the development of motor neuron disease. 20 refs., 4 figs., 1 tab.

  8. Strength training reduces circulating interleukin-6 but not brain-derived neurotrophic factor in community-dwelling elderly individuals.

    PubMed

    Forti, Louis Nuvagah; Njemini, Rose; Beyer, Ingo; Eelbode, Elke; Meeusen, Romain; Mets, Tony; Bautmans, Ivan

    2014-01-01

    Ageing is associated with a chronic low-grade inflammatory profile (CLIP). Physical exercise could circumvent the deleterious effects of CLIP by influencing circulating inflammatory mediators and neurotrophic growth factors. This study aimed at assessing whether 12 weeks of progressive strength training (PST) influences circulating brain-derived neurotrophic factor (BDNF), interleukin (IL)-6 and IL-10 in elderly individuals. Forty community-dwelling persons aged 62-72 years participated. Twenty participants were assigned to 12-week PST (70-80 % of maximal strength, three times per week). Matched control individuals (n = 20) maintained daily activity levels. Serum was collected for BDNF, IL-6 and IL-10 assay from all participants before and after 12 weeks (for PST subjects 24-48 h after the last training). In PST, muscle strength was significantly improved (+49 % for leg extension, p = 0.039), and basal IL-6 levels significantly reduced (p = 0.001), which remained unchanged in control (p = 0.117). No significant change in BDNF was observed in PST subjects (p = 0.147) or control (p = 0.563). IL-10 was below the detection limit in most subjects. Gender and health status did not influence the results. Our results show that after 12-week PST, muscle performance improved significantly, and basal levels of IL-6 were significantly decreased in older subjects. However, serum BDNF was not altered. The lack of an observable change in BDNF might be due to a short-lived BDNF response, occurring acutely following exercise, which might have been washed out when sampling. Furthermore, blood levels of BDNF may not reflect parallel increases that occur locally in the brain and muscle. These hypotheses need confirmation by further studies. PMID:25128203

  9. Glial cell line-derived neurotrophic factor promotes barrier maturation and wound healing in intestinal epithelial cells in vitro.

    PubMed

    Meir, Michael; Flemming, Sven; Burkard, Natalie; Bergauer, Lisa; Metzger, Marco; Germer, Christoph-Thomas; Schlegel, Nicolas

    2015-10-15

    Recent data suggest that neurotrophic factors from the enteric nervous system are involved in intestinal epithelial barrier regulation. In this context the glial cell line-derived neurotrophic factor (GDNF) was shown to affect gut barrier properties in vivo directly or indirectly by largely undefined processes in a model of inflammatory bowel disease (IBD). We further investigated the potential role and mechanisms of GDNF in the regulation of intestinal barrier functions. Immunostaining of human gut specimen showed positive GDNF staining in enteric neuronal plexus and in enterocytes. In Western blots of the intestinal epithelial cell lines Caco2 and HT29B6, significant amounts of GDNF were detected, suggesting that enterocytes represent an additional source of GDNF. Application of recombinant GDNF on Caco2 and HT29B6 cells for 24 h resulted in significant epithelial barrier stabilization in monolayers with immature barrier functions. Wound-healing assays showed a significantly faster closure of the wounded areas after GDNF application. GDNF augmented cAMP levels and led to significant inactivation of p38 MAPK in immature cells. Activation of p38 MAPK signaling by SB-202190 mimicked GDNF-induced barrier maturation, whereas the p38 MAPK activator anisomycin blocked GDNF-induced effects. Increasing cAMP levels had adverse effects on barrier maturation, as revealed by permeability measurements. However, increased cAMP augmented the proliferation rate in Caco2 cells, and GDNF-induced proliferation of epithelial cells was abrogated by the PKA inhibitor H89. Our data show that enterocytes represent an additional source of GDNF synthesis. GDNF contributes to wound healing in a cAMP/PKA-dependent manner and promotes barrier maturation in immature enterocytes cells by inactivation of p38 MAPK signaling. PMID:26294673

  10. Eicosanoid receptor subtype-mediated opposing regulation of TLR-stimulated expression of astrocyte glial-derived neurotrophic factor

    PubMed Central

    Li, Xianwu; Cudaback, Eiron; Breyer, Richard M.; Montine, Kathleen S.; Keene, C. Dirk; Montine, Thomas J.

    2012-01-01

    A major therapeutic target for Parkinson's disease (PD) is providing increased glial-derived neurotrophic factor (GDNF) to dopaminergic neurons. We tested the hypothesis that innate immune activation increases astrocyte GDNF production and that this is regulated by specific eicosanoid receptors. Innate immune-activated primary murine astrocytes were assayed for GDNF expression and secretion. Controls were agent vehicle exposure and wild-type mice. Rank order for up to 10-fold selectively increased GDNF expression was activators of TLR3 > TLR2 or TLR4 > TLR9. TLR3 activator-stimulated GDNF expression was selectively JNK-dependent, followed cyclooxygenase (COX)-2, was coincident with membranous PGE2 synthase, and was not significantly altered by a nonspecific COX- or a COX-2-selective inhibitor. Specific eicosanoid receptors had opposing effects on TLR3 activator-induced GDNF expression: ∼60% enhancement by blocking or ablating of PGE2 receptor subtype 1 (EP1), ∼30% enhancement by activating PGF2α receptor or thromboxane receptor, or ∼15% enhancement by activating EP4. These results demonstrate functionally antagonistic eicosanoid receptor subtype regulation of innate immunity-induced astrocyte GDNF expression and suggest that selective inhibition of EP1 signaling might be a means to augment astrocyte GDNF secretion in the context of innate immune activation in diseased regions of brain in PD.—Li, X., Cudaback, E., Breyer, R. M., Montine, K. S., Keene, C. D., Montine, T. J. Eicosanoid receptor subtype-mediated opposing regulation of Toll-like receptor-stimulated expression of astrocyte glial-derived neurotrophic factor. PMID:22499581

  11. Microglia-Mediated Neuroinflammation and Neurotrophic Factor-Induced Protection in the MPTP Mouse Model of Parkinson’s Disease-Lessons from Transgenic Mice

    PubMed Central

    Machado, Venissa; Zöller, Tanja; Attaai, Abdelraheim; Spittau, Björn

    2016-01-01

    Parkinson’s disease (PD) is a neurodegenerative disease characterised by histopathological and biochemical manifestations such as loss of midbrain dopaminergic (DA) neurons and decrease in dopamine levels accompanied by a concomitant neuroinflammatory response in the affected brain regions. Over the past decades, the use of toxin-based animal models has been crucial to elucidate disease pathophysiology, and to develop therapeutic approaches aimed to alleviate its motor symptoms. Analyses of transgenic mice deficient for cytokines, chemokine as well as neurotrophic factors and their respective receptors in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of PD have broadened the current knowledge of neuroinflammation and neurotrophic support. Here, we provide a comprehensive review that summarises the contribution of microglia-mediated neuroinflammation in MPTP-induced neurodegeneration. Moreover, we highlight the contribution of neurotrophic factors as endogenous and/or exogenous molecules to slow the progression of midbrain dopaminergic (mDA) neurons and further discuss the potential of combined therapeutic approaches employing neuroinflammation modifying agents and neurotrophic factors. PMID:26821015

  12. Growth factors for the treatment of ischemic brain injury (growth factor treatment).

    PubMed

    Larpthaveesarp, Amara; Ferriero, Donna M; Gonzalez, Fernando F

    2015-01-01

    In recent years, growth factor therapy has emerged as a potential treatment for ischemic brain injury. The efficacy of therapies that either directly introduce or stimulate local production of growth factors and their receptors in damaged brain tissue has been tested in a multitude of models for different Central Nervous System (CNS) diseases. These growth factors include erythropoietin (EPO), vascular endothelial growth factor (VEGF), brain-derived neurotrophic factor (BDNF), and insulin-like growth factor (IGF-1), among others. Despite the promise shown in animal models, the particular growth factors that should be used to maximize both brain protection and repair, and the therapeutic critical period, are not well defined. We will review current pre-clinical and clinical evidence for growth factor therapies in treating different causes of brain injury, as well as issues to be addressed prior to application in humans. PMID:25942688

  13. Transcriptional Regulation of Brain-Derived Neurotrophic Factor (BDNF) by Methyl CpG Binding Protein 2 (MeCP2): a Novel Mechanism for Re-Myelination and/or Myelin Repair Involved in the Treatment of Multiple Sclerosis (MS).

    PubMed

    KhorshidAhmad, Tina; Acosta, Crystal; Cortes, Claudia; Lakowski, Ted M; Gangadaran, Surendiran; Namaka, Michael

    2016-03-01

    Multiple sclerosis (MS) is a chronic progressive, neurological disease characterized by the targeted immune system-mediated destruction of central nervous system (CNS) myelin. Autoreactive CD4+ T helper cells have a key role in orchestrating MS-induced myelin damage. Once activated, circulating Th1-cells secrete a variety of inflammatory cytokines that foster the breakdown of blood-brain barrier (BBB) eventually infiltrating into the CNS. Inside the CNS, they become reactivated upon exposure to the myelin structural proteins and continue to produce inflammatory cytokines such as tumor necrosis factor α (TNFα) that leads to direct activation of antibodies and macrophages that are involved in the phagocytosis of myelin. Proliferating oligodendrocyte precursors (OPs) migrating to the lesion sites are capable of acute remyelination but unable to completely repair or restore the immune system-mediated myelin damage. This results in various permanent clinical neurological disabilities such as cognitive dysfunction, fatigue, bowel/bladder abnormalities, and neuropathic pain. At present, there is no cure for MS. Recent remyelination and/or myelin repair strategies have focused on the role of the neurotrophin brain-derived neurotrophic factor (BDNF) and its upstream transcriptional repressor methyl CpG binding protein (MeCP2). Research in the field of epigenetic therapeutics involving histone deacetylase (HDAC) inhibitors and lysine acetyl transferase (KAT) inhibitors is being explored to repress the detrimental effects of MeCP2. This review will address the role of MeCP2 and BDNF in remyelination and/or myelin repair and the potential of HDAC and KAT inhibitors as novel therapeutic interventions for MS. PMID:25579386

  14. Chronic administration of branched-chain amino acids impairs spatial memory and increases brain-derived neurotrophic factor in a rat model.

    PubMed

    Scaini, Giselli; Comim, Clarissa M; Oliveira, Giovanna M T; Pasquali, Matheus A B; Quevedo, João; Gelain, Daniel P; Moreira, José Cláudio F; Schuck, Patrícia F; Ferreira, Gustavo C; Bogo, Maurício R; Streck, Emilio L

    2013-09-01

    Maple syrup urine disease (MSUD) is a neurometabolic disorder that leads to the accumulation of branched-chain amino acids (BCAAs) and their α-keto branched-chain by-products. Because the neurotoxic mechanisms of MSUD are poorly understood, this study aimed to evaluate the effects of chronic administration of a BCAA pool (leucine, isoleucine and valine). This study examined the effects of BCAA administration on spatial memory and the levels of brain-derived neurotrophic factor (BNDF). We examined both pro-BDNF and bdnf mRNA expression levels after administration of BCAAs. Furthermore, this study examined whether antioxidant treatment prevented the alterations induced by BCAA administration. Our results demonstrated an increase in BDNF in the hippocampus and cerebral cortex, accompanied by memory impairment in spatial memory tasks. Additionally, chronic administration of BCAAs did not induce a detectable change in pro-BDNF levels. Treatment with N-acetylcysteine and deferoxamine prevented both the memory deficit and the increase in the BDNF levels induced by BCAA administration. In conclusion, these results suggest that when the brain is chronically exposed to high concentrations of BCAA (at millimolar concentrations) an increase in BDNF levels occurs. This increase in BDNF may be related to the impairment of spatial memory. In addition, we demonstrated that antioxidant treatment prevented the negative consequences related to BCAA administration, suggesting that oxidative stress might be involved in the pathophysiological mechanism(s) underlying the brain damage observed in MSUD. PMID:23109061

  15. Ginkgo biloba and vitamin E ameliorate haloperidol-induced vacuous chewingmovement and brain-derived neurotrophic factor expression in a rat tardive dyskinesia model.

    PubMed

    Shi, Jing; Tan, Yun Long; Wang, Zhi Ren; An, Hui Mei; Li, Jia; Wang, Yue Chan; Lv, Meng Han; Yan, Shao Xiao; Wu, Jing Qin; Soares, Jair C; Yang, Fu De; Zhang, Xiang Yang

    2016-09-01

    Neurodegeneration may be involved in the development of tardive dyskinesia (TD), and low levels of brain-derived neurotrophic factor (BDNF) may play a role. Ginkgo biloba (EGb761), a potent antioxidant, may have neuroprotective effects. We hypothesized that there would be decreased BDNF expression in TD, but that treatment with EGb761 would increase BDNF expression and reduce TD manifestations in a rat model. Forty rats were treated with haloperidol (2mg/kg/day via intraperitoneal injections) for 5weeks. EGb761 (50mg/kg/day) and vitamin E (20mg/kg/day) were then administered by oral gavage for another 5weeks, and we compared the effects of treatment with EGb761 or vitamin E on haloperidol-induced vacuous chewing movements (VCMs) and BDNF expression in four brain regions: prefrontal cortex (PFC), striatum (ST), substantia nigra (SNR), and globus pallidus (GP). Our results showed that haloperidol administration led to a progressive increase in VCMs, but both EGb761 and vitamin E significantly decreased VCMs. Haloperidol also decreased BDNF expression in all four brain regions, but both EGb761 and vitamin E administration significantly increased BDNF expression. Our results showed that both EGb761 and VE treatments exerted similar positive effects in a rat model of TD and increased BDNF expression levels in the four tested brain regions, suggesting that both EGb761 and vitamin E improve TD symptoms, possibly by enhancing BDNF in the brain and/or via their free radical-scavenging actions. PMID:27264436

  16. Novel Neuroprotective Mechanisms of Memantine: Increase in Neurotrophic Factor Release from Astroglia and Anti-Inflammation by Preventing Microglial Over-Activation

    PubMed Central

    Wu, Hung-Ming; Tzeng, Nian-Sheng; Qian, Li; Wei, Sung-Jen; Hu, Xiaoming; Rawls, Scott M.; Flood, Patrick; Hong, Jau-Shyong; Lu, Ru-band

    2013-01-01

    Memantine provides clinically relevant efficacy in patients with Alzheimer's disease and Parkinson’s diseases. In addition to blockade of N-methyl-D-aspartate receptor on neurons, memantine has neurotrophic and neuroprotective effects in in vivo and in vitro studies, however, the mechanism underlying these effects remains unclear. To address this question, primary midbrain neuron-glia cultures and reconstituted cultures were used, and lipopolysaccharide (LPS), an endotoxin from bacteria, was used to produce inflammation-mediated dopaminegic neuronal death. Here, we show that memantine exerted both potent neurotrophic and neuroprotective effects on dopaminergic neurons in rat neuron-glia cultures. The neurotrophic effect of memantine was glia-dependent, since memantine failed to show any positive effect on dopaminergic neurons in neuron-enriched cultures. More specifically, it appears that astroglia, not microglia, are the source of the memantine-elicited neurotrophic effects through the increased production of GDNF. Mechanistic studies revealed that GDNF upregulaton was associated with histone hyperacetylation by inhibiting the cellular histone deacetylase activity. In addition, memantine also displays neuroprotective effects against LPS-induced dopaminergic neuronal damage through its inhibition of microglia over-activation revealed by both OX-42 immunostaining and by the reduction of pro-inflammatory factors production such as extracelluar superoxide anion, intracellular reactive oxygen species, nitric oxide, prostaglandin E2, and tumor necrosis factor-α. These results suggest that memantine therapy for neurodegenerative diseases acts in part through alternative novel mechanisms by reducing microglia-associated inflammation and stimulating the release of neurotrophic factors from astroglia. PMID:19536110

  17. A Lack of Correlation between Brain-Derived Neurotrophic Factor Serum Level and Verbal Memory Performance in Healthy Polish Population

    PubMed Central

    Wilkosc, Monika; Markowska, Anita; Zajac-Lamparska, Ludmila; Skibinska, Maria; Szalkowska, Agnieszka; Araszkiewicz, Aleksander

    2016-01-01

    Brain derived neurotrophic factor (BDNF) is considered to be connected with memory and learning through the processes of long term synaptic potentiation and synaptic plasticity. The aim of the study was to examine the relationship between precursor BDNF (proBNDF) and mature BDNF (mBDNF) serum levels and performance on Rey Auditory-Verbal Learning Test (RAVLT) in 150 healthy volunteers. In addition, we have verified the relationships between serum concentration of both forms of BDNF and RAVLT with sociodemographic and lifestyle factors.We found no strong evidence for the correlation of proBDNF and mBDNF serum levels with performance on RAVLT in healthy Polish population in early and middle adulthood. We observed the mBDNF serum concentration to be higher in women compared with men. Moreover, we revealed higher mBDNF level to be connected with lower body mass index (BMI). In turn, the results of RAVLT correlated with sociodemographic and lifestyle factors, such as: age, education, gender, BMI and smoking. PMID:27242447

  18. A Lack of Correlation between Brain-Derived Neurotrophic Factor Serum Level and Verbal Memory Performance in Healthy Polish Population.

    PubMed

    Wilkosc, Monika; Markowska, Anita; Zajac-Lamparska, Ludmila; Skibinska, Maria; Szalkowska, Agnieszka; Araszkiewicz, Aleksander

    2016-01-01

    Brain derived neurotrophic factor (BDNF) is considered to be connected with memory and learning through the processes of long term synaptic potentiation and synaptic plasticity. The aim of the study was to examine the relationship between precursor BDNF (proBNDF) and mature BDNF (mBDNF) serum levels and performance on Rey Auditory-Verbal Learning Test (RAVLT) in 150 healthy volunteers. In addition, we have verified the relationships between serum concentration of both forms of BDNF and RAVLT with sociodemographic and lifestyle factors.We found no strong evidence for the correlation of proBDNF and mBDNF serum levels with performance on RAVLT in healthy Polish population in early and middle adulthood. We observed the mBDNF serum concentration to be higher in women compared with men. Moreover, we revealed higher mBDNF level to be connected with lower body mass index (BMI). In turn, the results of RAVLT correlated with sociodemographic and lifestyle factors, such as: age, education, gender, BMI and smoking. PMID:27242447

  19. Ciliary Neurotrophic Factor Promotes the Migration of Corneal Epithelial Stem/progenitor Cells by Up-regulation of MMPs through the Phosphorylation of Akt.

    PubMed

    Chen, Jialin; Chen, Peng; Backman, Ludvig J; Zhou, Qingjun; Danielson, Patrik

    2016-01-01

    The migration of limbal epithelial stem cells is important for the homeostasis and regeneration of corneal epithelium. Ciliary neurotrophic factor (CNTF) has been found to promote corneal epithelial wound healing by activating corneal epithelial stem/progenitor cells. However, the possible effect of CNTF on the migration of corneal epithelial stem/progenitor cells is not clear. This study found the expression of CNTF in mouse corneal epithelial stem/progenitor cells (TKE2) to be up-regulated after injury, on both gene and protein level. CNTF promoted migration of TKE2 in a dose-dependent manner and the peak was seen at 10 ng/ml. The phosphorylation level of Akt (p-Akt), and the expression of MMP3 and MMP14, were up-regulated after CNTF treatment both in vitro and in vivo. Akt and MMP3 inhibitor treatment delayed the migration effect by CNTF. Finally, a decreased expression of MMP3 and MMP14 was observed when Akt inhibitor was applied both in vitro and in vivo. This study provides new insights into the role of CNTF on the migration of corneal epithelial stem/progenitor cells and its inherent mechanism of Up-regulation of matrix metalloproteinases through the Akt signalling pathway. PMID:27174608

  20. Ciliary Neurotrophic Factor Promotes the Migration of Corneal Epithelial Stem/progenitor Cells by Up-regulation of MMPs through the Phosphorylation of Akt

    PubMed Central

    Chen, Jialin; Chen, Peng; Backman, Ludvig J.; Zhou, Qingjun; Danielson, Patrik

    2016-01-01

    The migration of limbal epithelial stem cells is important for the homeostasis and regeneration of corneal epithelium. Ciliary neurotrophic factor (CNTF) has been found to promote corneal epithelial wound healing by activating corneal epithelial stem/progenitor cells. However, the possible effect of CNTF on the migration of corneal epithelial stem/progenitor cells is not clear. This study found the expression of CNTF in mouse corneal epithelial stem/progenitor cells (TKE2) to be up-regulated after injury, on both gene and protein level. CNTF promoted migration of TKE2 in a dose-dependent manner and the peak was seen at 10 ng/ml. The phosphorylation level of Akt (p-Akt), and the expression of MMP3 and MMP14, were up-regulated after CNTF treatment both in vitro and in vivo. Akt and MMP3 inhibitor treatment delayed the migration effect by CNTF. Finally, a decreased expression of MMP3 and MMP14 was observed when Akt inhibitor was applied both in vitro and in vivo. This study provides new insights into the role of CNTF on the migration of corneal epithelial stem/progenitor cells and its inherent mechanism of Up-regulation of matrix metalloproteinases through the Akt signalling pathway. PMID:27174608

  1. Calorie restriction improves cognitive decline via up-regulation of brain-derived neurotrophic factor: tropomyosin-related kinase B in hippocampus ofobesity-induced hypertensive rats.

    PubMed

    Kishi, Takuya; Hirooka, Yoshitaka; Nagayama, Tomomi; Isegawa, Kengo; Katsuki, Masato; Takesue, Ko; Sunagawa, Kenji

    2015-01-01

    In metabolic syndrome (MetS), previous studies have suggested that cognitive decline is worsened. Among the factors associated with cognition, decreased brain-derived neurotrophic factor (BDNF) in the hippocampus causes cognitive decline. We previously reported that exercise training with calorie restriction yielded protection against cognitive decline via BDNF in the hippocampus of hypertensive rats. The aim of the present study was to determine whether or not calorie restriction results in protection against cognitive decline via BDNF and its receptor tropomyosin-related kinase B (TrkB) in the hippocampus of MetS model rats. We divided dietary-induced obesity-prone and hypertensive rats (OP), as metabolic syndrome model rats, into three groups, fed with a high fat diet (HF), treated with calorie restriction (CR) plus vehicle, and treated with CR and ANA-12 (a TrkB antagonist) (CR+A). After treatment for 28 days, body weight, insulin, fasting blood glucose, adiponectin, systolic blood pressure, and oxidative stress in the hippocampus were significantly lower, and BDNF expression in the hippocampus was significantly higher in CR and CR+A than in HF. Cognitive performance determined by the Morris water maze test was significantly higher in CR than in HF, whereas the benefit was attenuated in CR+A. In conclusion, calorie restriction protects against cognitive decline via up-regulation of BDNF/TrkB through an antioxidant effect in the hippocampus of dietary-induced obesity rats. PMID:25503654

  2. Acute running stimulates hippocampal dopaminergic neurotransmission in rats, but has no influence on brain-derived neurotrophic factor

    PubMed Central

    Goekint, Maaike; Bos, Inge; Heyman, Elsa; Michotte, Yvette; Sarre, Sophie

    2012-01-01

    Hippocampal brain-derived neurotrophic factor (BDNF) protein is increased with exercise in rats. Monoamines seem to play a role in the regulation of BDNF, and monoamine neurotransmission is known to increase with exercise. The purpose of this study was to examine the influence of acute exercise on monoaminergic neurotransmission and BDNF protein concentrations. Hippocampal microdialysis was performed in rats that were subjected to 60 min of treadmill running at 20 m/min or rest. Two hours postexercise, the rats were killed, and the hippocampus was dissected. In experiments without microdialysis, hippocampus and serum samples were collected immediately after exercise. Exercise induced a twofold increase in hippocampal dopamine release. Noradrenaline and serotonin release were not affected. Hippocampal BDNF levels were not influenced, whether they were measured immediately or 2 h after the exercise protocol. Serum BDNF levels did not change either, but serum BDNF was negatively correlated to peripheral corticosterone concentrations, indicating a possible inhibitory reaction to the stress of running. Sixty minutes of exercise enhances dopamine release in the hippocampus of the rat in vivo. However, this increase is not associated with changes in BDNF protein levels immediately nor 2 h after the acute exercise bout. An increased corticosterone level might be the contributing factor for the absence of changes in BDNF. PMID:22134693

  3. Brain derived neurotrophic factor gene (BDNF) and personality traits: the modifying effect of season of birth and sex.

    PubMed

    Kazantseva, A; Gaysina, D; Kutlumbetova, Yu; Kanzafarova, R; Malykh, S; Lobaskova, M; Khusnutdinova, E

    2015-01-01

    Personality traits are complex phenotypes influenced by interactions of multiple genetic variants of small effect and environmental factors. It has been suggested that the brain derived neurotrophic factor gene (BDNF) is involved in personality traits. Season of birth (SOB) has also been shown to affect personality traits due to its influences on brain development during prenatal and early postnatal periods. The present study aimed to investigate the effects of BDNF on personality traits; and the modifying effects of SOB and sex on associations between BDNF and personality traits. A sample of 1018 young adults (68% women; age range 17-25years) of Caucasian origin from the Russian Federation was assessed on personality traits (Novelty Seeking, Harm Avoidance, Reward Dependence, Persistence, Self-directedness, Cooperativeness, Self-transcendence) with the Temperament and Character Inventory-125 (TCI-125). Associations between personality traits and 12 BDNF SNPs were tested using linear regression models. The present study demonstrated the effect of rs11030102 on Persistence in females only (PFDR=0.043; r(2)=1.3%). There were significant interaction effects between Val66Met (rs6265) and SOB (PFDR=0.048, r(2)=1.4%), and between rs2030323 and SOB (PFDR=0.042, r(2)=1.3%), on Harm Avoidance. Our findings provide evidence for the modifying effect of SOB on the association between BDNF and Harm Avoidance, and for the modifying effect of sex on the association between BDNF and Persistence. PMID:25132151

  4. Epigenetic and epistatic interactions between serotonin transporter and brain-derived neurotrophic factor genetic polymorphism: insights in depression.

    PubMed

    Ignácio, Z M; Réus, G Z; Abelaira, H M; Quevedo, J

    2014-09-01

    Epidemiological studies have shown significant results in the interaction between the functions of brain-derived neurotrophic factor (BDNF) and 5-HT in mood disorders, such as major depressive disorder (MDD). The latest research has provided convincing evidence that gene transcription of these molecules is a target for epigenetic changes, triggered by stressful stimuli that starts in early childhood and continues throughout life, which are subsequently translated into structural and functional phenotypes culminating in depressive disorders. The short variants of 5-HTTLPR and BDNF-Met are seen as forms which are predisposed to epigenetic aberrations, which leads individuals to a susceptibility to environmental adversities, especially when subjected to stress in early life. Moreover, the polymorphic variants also feature epistatic interactions in directing the functional mechanisms elicited by stress and underlying the onset of depressive disorders. Also emphasized are works which show some mediators between stress and epigenetic changes of the 5-HTT and BDNF genes, such as the hypothalamic-pituitary-adrenal (HPA) axis and the cAMP response element-binding protein (CREB), which is a cellular transcription factor. Both the HPA axis and CREB are also involved in epistatic interactions between polymorphic variants of 5-HTTLPR and Val66Met. This review highlights some research studying changes in the epigenetic patterns intrinsic to genes of 5-HTT and BDNF, which are related to lifelong environmental adversities, which in turn increases the risks of developing MDD. PMID:24972302

  5. Brain-derived neurotrophic factor is required for normal development of the central respiratory rhythm in mice.

    PubMed

    Balkowiec, A; Katz, D M

    1998-07-15

    1. Molecular mechanisms underlying maturation of the central respiratory rhythm are largely unknown. Previously, we found that brain-derived neurotrophic factor (BDNF) is required for expression of normal breathing behaviour in newborn mice, raising the possibility that maturation of central respiratory output is dependent on BDNF. 2. Respiratory activity was recorded in vitro from cervical ventral roots (C1 or C4) using the isolated brainstem-spinal cord preparation from postnatal day (P) 0.5-2.0 and P4.5 wild-type mice and mice lacking functional bdnf alleles. 3. Loss of one or both bdnf alleles resulted in an approximately 50% depression of central respiratory frequency compared with wild-type controls. In addition, respiratory cycle length variability was 214% higher in bdnf null (bdnf-/-) animals compared with controls at P4.5. In contrast, respiratory burst duration was unaffected by bdnf gene mutation. 4. These derangements of central respiratory rhythm paralleled the ventilatory depression and irregular breathing characteristic of bdnf mutants in vivo, indicating that central deficits can largely account for the abnormalities in resting ventilation produced by genetic loss of BDNF. BDNF is thus the first growth factor identified that is required for normal development of the central respiratory rhythm, including the stabilization of central respiratory output that occurs after birth. PMID:9706001

  6. Brain-derived neurotrophic factor is required for normal development of the central respiratory rhythm in mice

    PubMed Central

    Balkowiec, Agnieszka; Katz, David M

    1998-01-01

    Molecular mechanisms underlying maturation of the central respiratory rhythm are largely unknown. Previously, we found that brain-derived neurotrophic factor (BDNF) is required for expression of normal breathing behaviour in newborn mice, raising the possibility that maturation of central respiratory output is dependent on BDNF. Respiratory activity was recorded in vitro from cervical ventral roots (C1 or C4) using the isolated brainstem–spinal cord preparation from postnatal day (P) 0.5–2.0 and P4.5 wild-type mice and mice lacking functional bdnf alleles. Loss of one or both bdnf alleles resulted in an approximately 50 % depression of central respiratory frequency compared with wild-type controls. In addition, respiratory cycle length variability was 214 % higher in bdnf null (bdnf−/−) animals compared with controls at P4.5. In contrast, respiratory burst duration was unaffected by bdnf gene mutation. These derangements of central respiratory rhythm paralleled the ventilatory depression and irregular breathing characteristic of bdnf mutants in vivo, indicating that central deficits can largely account for the abnormalities in resting ventilation produced by genetic loss of BDNF. BDNF is thus the first growth factor identified that is required for normal development of the central respiratory rhythm, including the stabilization of central respiratory output that occurs after birth. PMID:9706001

  7. Brain-derived neurotrophic factor functions as a metabotrophin to mediate the effects of exercise on cognition

    PubMed Central

    Gomez-Pinilla, Fernando; Vaynman, Shoshanna; Ying, Zhe

    2009-01-01

    Brain-derived neurotrophic factor (BDNF) has been shown to mediate the effects of exercise on synaptic plasticity and cognitive function, in a process in which energy metabolism probably plays an important role. The purpose of the present study was to examine the influence of exercise on rat hippocampal expression of molecules involved in the regulation of energy management and cognitive function, and to determine the role of BDNF in these events. One week of voluntary exercise that enhanced learning and memory performance elevated the expression of molecular systems involved in the metabolism of energy [AMP-activated protein kinase (AMPK), ubiquitous mitochondrial creatine kinase (uMtCK) and uncoupling protein 2] and molecules that work at the interface of energy and synaptic plasticity [BDNF, insulin-like growth factor I (IGF-I) and ghrelin]. The levels of BDNF mRNA were associated with the mRNA levels of AMPK, uMtCK, IGF-I and ghrelin. Inhibiting the action of BDNF during exercise abolished an exercise-mediated enhancement in spatial learning and increased the expression of all of the molecular systems studied. BDNF blocking also disrupted the association between learning speed and levels of AMPK, uMtCK, ghrelin and IGF-I mRNAs. These findings suggest that the effects of exercise on synaptic plasticity and cognitive function involve elements of energy metabolism, and that BDNF seems to work at the interface between the two processes as a metabotrophin. PMID:19046371

  8. Effect of Locally Administered Ciliary Neurotrophic Factor on the Survival of Transected and Repaired Adult Sheep Facial Nerve

    PubMed Central

    Al Abri, Rashid; Kolethekkat, Arif Ali; Kelleher, Michael O.; Myles, Lynn M.; Glasby, Michael A.

    2014-01-01

    Objective to determine whether the administration of Ciliary Neurotrophic Factor (CNTF) at the site of repaired facial nerve enhances regeneration in the adult sheep model. Methods Ten adult sheep were divided into 2 groups: control and study group (CNTF group). In the CNTF group, the buccal branch of the facial nerve was transected and then repaired by epineural sutures. CNTF was injected over the left depressor labii maxillaris muscle in the vicinity of the transected and repaired nerve for 28 days under local anesthesia. In the CNTF group, the sheep were again anesthetized after nine months and the site of facial nerve repair was exposed. Detailed electrophysiological, tension experiments and morphometric studies were carried out and then analyzed statistically. Results The skin CV min, refractory period, Jitter and tension parameters were marginally raised in the CNTF group than the control but the difference was statistically insignificant between the two groups. Morphometric indices also did not show any significant changes in the CNTF group. Conclusion CNTF has no profound effect on neuronal regeneration of adult sheep animal model. Keywords CNTF; Neurtrophic factors; Sheep; Facial nerve; Regeneration. PMID:24936272

  9. Brain-derived neurotrophic factor (BDNF) is required for the enhancement of hippocampal neurogenesis following environmental enrichment.

    PubMed

    Rossi, Chiara; Angelucci, Andrea; Costantin, Laura; Braschi, Chiara; Mazzantini, Mario; Babbini, Francesco; Fabbri, Maria Elena; Tessarollo, Lino; Maffei, Lamberto; Berardi, Nicoletta; Caleo, Matteo

    2006-10-01

    Neurogenesis continues to occur in the adult mammalian hippocampus and is regulated by both genetic and environmental factors. It is known that exposure to an enriched environment enhances the number of newly generated neurons in the dentate gyrus. However, the mechanisms by which enriched housing produces these effects are poorly understood. To test a role for neurotrophins, we used heterozygous knockout mice for brain-derived neurotrophic factor (BDNF+/-) and mice lacking neurotrophin-4 (NT-4-/-) together with their wild-type littermates. Mice were either reared in standard laboratory conditions or placed in an enriched environment for 8 weeks. Animals received injections of the mitotic marker bromodeoxyuridine (BrdU) to label newborn cells. Enriched wild-type and enriched NT-4-/- mice showed a two-fold increase in hippocampal neurogenesis as assessed by stereological counting of BrdU-positive cells in the dentate gyrus and double labelling for BrdU and the neuronal marker NeuN. Remarkably, this enhancement of hippocampal neurogenesis was not seen in enriched BDNF+/- mice. Failure to up-regulate BDNF accompanied the lack of a neurogenic response in enriched BDNF heterozygous mice. We conclude that BDNF but not NT-4 is required for the environmental induction of neurogenesis. PMID:17040481

  10. Effect of yoga on pain, brain-derived neurotrophic factor, and serotonin in premenopausal women with chronic low back pain.

    PubMed

    Lee, Moseon; Moon, Woongjoon; Kim, Jaehee

    2014-01-01

    Background. Serotonin and brain-derived neurotrophic factor (BDNF) are known to be modulators of nociception. However, pain-related connection between yoga and those neuromodulators has not been investigated. Therefore, we aimed to evaluate the effect of yoga on pain, BDNF, and serotonin. Methods. Premenopausal women with chronic low back pain practiced yoga three times a week for 12 weeks. At baseline and after 12 weeks, back pain intensity was measured using visual analogue scale (VAS), and serum BDNF and serotonin levels were evaluated. Additionally, back flexibility and level of depression were assessed. Results. After 12-week yoga, VAS decreased in the yoga group (P < 0.001), whereas it increased (P < 0.05) in the control group. Back flexibility was improved in the yoga group (P < 0.01). Serum BDNF increased in the yoga group (P < 0.01), whereas it tended to decrease in the control group (P = 0.05). Serum serotonin maintained in the yoga group, while it reduced (P < 0.01) in the control group. The depression level maintained in the yoga group, whereas it tended to increase in the control group (P = 0.07). Conclusions. We propose that BDNF may be one of the key factors mediating beneficial effects of yoga on chronic low back pain. PMID:25120574

  11. The Role of Brain-Derived Neurotrophic Factor in Comorbid Depression: Possible Linkage with Steroid Hormones, Cytokines, and Nutrition

    PubMed Central

    Numakawa, Tadahiro; Richards, Misty; Nakajima, Shingo; Adachi, Naoki; Furuta, Miyako; Odaka, Haruki; Kunugi, Hiroshi

    2014-01-01

    Increasing evidence demonstrates a connection between growth factor function (including brain-derived neurotrophic factor, BDNF), glucocorticoid levels (one of the steroid hormones), and the pathophysiology of depressive disorders. Because both BDNF and glucocorticoids regulate synaptic function in the central nervous system, their functional interaction is of major concern. Interestingly, alterations in levels of estrogen, another steroid hormone, may play a role in depressive-like behavior in postpartum females with fluctuations of BDNF-related molecules in the brain. BDNF and cytokines, which are protein regulators of inflammation, stimulate multiple intracellular signaling cascades involved in neuropsychiatric illness. Pro-inflammatory cytokines may increase vulnerability to depressive symptoms, such as the increased risk observed in patients with cancer and/or autoimmune diseases. In this review, we discuss the possible relationship between inflammation and depression, in addition to the cross-talk among cytokines, BDNF, and steroids. Further, since nutritional status has been shown to affect critical pathways involved in depression through both BDNF function and the monoamine system, we also review current evidence surrounding diet and supplementation (e.g., flavonoids) on BDNF-mediated brain functions. PMID:25309465

  12. [Brain-derived and ciliary neurotrophic factors in patients with multiple sclerosis].

    PubMed

    Trushnikova, T N; Medvedeva, E L; Baĭdina, T V; Danilova, M A

    2014-01-01

    Objective. To study serum concentrations of BDNF and CNTF in patients with multiple sclerosis (MS) and compare them to clinical characteristics of MS. Material and methods. We examined 43 patients with confirmed diagnosis of MS according to McDonald's criteria with remitting type of disease course. Patients were in a stable condition and did not receive hormone treatment during the last 30 days. Serum concentrations of BDNF and CNTF were measured using ELISA. Results. Mean serum BDNF concentration was 7.9 (5.21; 14.7) ng/ml that was significantly lower (p=0.0001) compared to control values and was correlated with depression severity (r= -0.31, p=0.04) and physical asthenia (r= -0.32, p=0.04). CNTF concentration was 69.9 (31.2; 123.3) pg/ml (CNTF was not found in healthy people) and was correlated with the results of cognitive function assessment (the PASAT test) (r= -0.30, p=0.046). Conclusion. The difference in BDNF and CNTF serum concentrations between MS patients and healthy people and correlations with some clinical characteristics of MS provide evidence for the involvement of these factors in MS pathogenesis. PMID:25591532

  13. Peptidergic Agonists of Activity-Dependent Neurotrophic Factor Protect Against Prenatal Alcohol-Induced Neural Tube Defects and Serotonin Neuron Loss

    PubMed Central

    Zhou, Feng C.; Fang, Yuan; Goodlett, Charles

    2009-01-01

    Introduction Prenatal alcohol exposure via maternal liquid diet consumption by C57BL/6 (B6) mice causes conspicuous midline neural tube deficit (dysraphia) and disruption of genesis and development of serotonin (5-HT) neurons in the raphe nuclei, together with brain growth retardation. The current study tested the hypothesis that concurrent treatment with either an activity-dependent neurotrophic factor (ADNF) agonist peptide [SALLRSIPA, (SAL)] or an activity-dependent neurotrophic protein (ADNP) agonist peptide [NAPVSIPQ, (NAP)] would protect against these alcohol-induced deficits in brain development. Methods Timed-pregnant B6 dams consumed alcohol from embryonic day 7 (E7, before the onset of neurulation) until E15. Fetuses were obtained on E15 and brain sections processed for 5-HT immunocytochemistry, for evaluation of morphologic development of the brainstem raphe and its 5-HT neurons. Additional groups were treated either with SAL or NAP daily from E7 to E15 to assess the potential protective effects of these peptides. Measures of incomplete occlusion of the ventral canal and the frequency and extent of the openings in the rhombencephalon were obtained to assess fetal dysraphia. Counts of 5-HT-immunostained neurons were also obtained in the rostral and caudal raphe. Results Prenatal alcohol exposure resulted in abnormal openings along the midline and delayed closure of ventral canal in the brainstem. This dysraphia was associated with reductions in the number of 5-HT neurons both in the rostral raphe nuclei (that gives rise to ascending 5-HT projections) and in the caudal raphe (that gives rise to the descending 5-HT projections). Concurrent treatment of the alcohol-consuming dams with SAL prevented dysraphia and protected against the alcohol-induced reductions in 5-HT neurons in both the rostral and caudal raphe. NAP was less effective in protecting against dysraphia and did not protect against 5-HT loss in the rostral raphe, but did protect against loss in

  14. Efficient transduction of feline neural progenitor cells for delivery of glial cell line-derived neurotrophic factor using a feline immunodeficiency virus-based lentiviral construct.

    PubMed

    You, X Joann; Gu, Ping; Wang, Jinmei; Song, Tianran; Yang, Jing; Liew, Chee Gee; Klassen, Henry

    2011-01-01

    Work has shown that stem cell transplantation can rescue or replace neurons in models of retinal degenerative disease. Neural progenitor cells (NPCs) modified to overexpress neurotrophic factors are one means of providing sustained delivery of therapeutic gene products in vivo. To develop a nonrodent animal model of this therapeutic strategy, we previously derived NPCs from the fetal cat brain (cNPCs). Here we use bicistronic feline lentiviral vectors to transduce cNPCs with glial cell-derived neurotrophic factor (GDNF) together with a GFP reporter gene. Transduction efficacy is assessed, together with transgene expression level and stability during induction of cellular differentiation, together with the influence of GDNF transduction on growth and gene expression profile. We show that GDNF overexpressing cNPCs expand in vitro, coexpress GFP, and secrete high levels of GDNF protein-before and after differentiation-all qualities advantageous for use as a cell-based approach in feline models of neural degenerative disease. PMID:20936061

  15. Effects of brain‑derived neurotrophic factor and neurotrophin‑3 on the neuronal differentiation of rat adipose‑derived stem cells.

    PubMed

    Ji, Wenchen; Zhang, Xiaowei; Ji, Le; Wang, Kunzheng; Qiu, Yusheng

    2015-10-01

    Tissue engineering is a promising method that may be used to treat spinal cord injury (SCI). The underlying repair mechanism of tissue engineering involves the stable secretion of neurotrophins from seed cells, which eventually differentiate into neurons; therefore, the selection of appropriate seed cells, which stably secrete neurotrophins that easily differentiate into neurons requires investigation. Adipose‑derived stem cells (ADSCs), which are adult SCs, are advantageous due to convenience sampling and easy expansion; therefore, ADSCs are currently the most popular type of seed cell. Brain‑derived neurotrophic factor (BDNF) and neurotrophin‑3 (NT‑3) possess superior properties, when compared with other neurotrophic factors, in the maintenance of neuronal survival and promotion of SC differentiation into neurons. The present study used two lentiviruses, which specifically express BDNF and NT‑3 [Lenti‑BDNF‑green fluorescent protein (GFP), Lenti‑NT‑3‑red fluorescent protein (RFP)], to transfect third‑generation ADSCs. Three types of seed cell were obtained: i) Seed cells overexpressing BDNF (ADSC/Lenti‑BDNF‑GFP); ii) seed cells overexpressing NT‑3 (ADSC/Lenti‑NT‑3‑RFP); and iii) seed cells overexpressing BDNF and NT‑3 (ADSC/Lenti‑BDNF‑GFP and NT‑3‑RFP). The transfected cells were then induced to differentiate into neurons and were divided into a further four groups: i) The BDNF and NT‑3 co‑overexpression group; ii) the BDNF overexpression group; iii) the NT‑3 overexpression group; and iv) the control group, which consisted of untransfected ADSCs. The results of the present study demonstrate that BDNF and NT‑3 expression was higher 10 days after induction, as detected by reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) and western blotting. Neuron‑specific enolase is a neuronal marker, the expression of which was highest in the BDNF and NT‑3 co‑overexpression group, followed by the

  16. No association of brain-derived neurotrophic factor Val66Met polymorphism with anorexia nervosa in Japanese.

    PubMed

    Ando, Tetsuya; Ishikawa, Toshio; Hotta, Mari; Naruo, Tetsuro; Okabe, Kenjiro; Nakahara, Toshihiro; Takii, Masato; Kawai, Keisuke; Mera, Takashi; Nakamoto, Chiemi; Takei, Michiko; Yamaguchi, Chikara; Nagata, Toshihiko; Okamoto, Yuri; Ookuma, Kazuyoshi; Koide, Masanori; Yamanaka, Takao; Murata, Shiho; Tamura, Naho; Kiriike, Nobuo; Ichimaru, Yuhei; Komaki, Gen

    2012-01-01

    The Met66 allele of the Val66Met polymorphism in the brain-derived neurotrophic factor (BDNF) gene has been reported to be associated with anorexia nervosa (AN), and also lower minimum body mass index (BMI) and higher harm avoidance in AN. We genotyped the Val66Met polymorphism (rs6265) in 689 AN cases and 573 control subjects. There were no significant differences in the genotype or allele frequencies of the Val66Met between AN and control subjects (allele wise, odds ratio = 0.920, 95% CI 0.785-1.079, P = 0.305). No difference was found in minimum BMIs related to Val66Met in AN (one-way ANOVA, P > 0.05). Harm avoidance scores on the Temperament and Character Inventory were lower in the Met66 allele carriers (P = 0.0074) contrary to the previous report. Thus we were unable to replicate the previous findings that the Met66 allele of the BDNF is associated with AN and that the minimum BMI is lower or the harm avoidance score is higher in AN patients with the Met66 allele. PMID:22127997

  17. Preservation of general intelligence following traumatic brain injury: contributions of the Met66 brain-derived neurotrophic factor.

    PubMed

    Barbey, Aron K; Colom, Roberto; Paul, Erick; Forbes, Chad; Krueger, Frank; Goldman, David; Grafman, Jordan

    2014-01-01

    Brain-derived neurotrophic factor (BDNF) promotes survival and synaptic plasticity in the human brain. The Val66Met polymorphism of the BDNF gene interferes with intracellular trafficking, packaging, and regulated secretion of this neurotrophin. The human prefrontal cortex (PFC) shows lifelong neuroplastic adaption implicating the Val66Met BDNF polymorphism in the recovery of higher-order executive functions after traumatic brain injury (TBI). In this study, we examined the effect of this BDNF polymorphism on the preservation of general intelligence following TBI. We genotyped a sample of male Vietnam combat veterans (n = 156) consisting of a frontal lobe lesion group with focal penetrating head injuries for the Val66Met BDNF polymorphism. Val/Met did not differ from Val/Val genotypes in general cognitive ability before TBI. However, we found substantial average differences between these groups in general intelligence (≈ half a standard deviation or 8 IQ points), verbal comprehension (6 IQ points), perceptual organization (6 IQ points), working memory (8 IQ points), and processing speed (8 IQ points) after TBI. These results support the conclusion that Val/Met genotypes preserve general cognitive functioning, whereas Val/Val genotypes are largely susceptible to TBI. PMID:24586380

  18. Huntingtin-associated Protein-1 Interacts with Pro-brain-derived Neurotrophic Factor and Mediates Its Transport and Release*

    PubMed Central

    Wu, Linda Lin-yan; Fan, Yongjun; Li, Shihua; Li, Xiao-Jiang; Zhou, Xin-Fu

    2010-01-01

    Brain-derived neurotrophic factor (BDNF) plays a pivotal role in brain development and synaptic plasticity. It is synthesized as a precursor (pro-BDNF), sorted into the secretory pathway, transported along dendrites and axons, and released in an activity-dependent manner. Mutant Huntingtin with expanded polyglutamine (polyQ) and the V66M polymorphism of BDNF reduce the dendritic distribution and axonal transport of BDNF. However, the mechanism underlying this defective transport remains unclear. Here, we report that Huntingtin-associated protein-1 (HAP1) interacts with the prodomain of BDNF and that the interaction was reduced in the presence of polyQ-expanded Huntingtin and BDNF V66M. Consistently, there was reduced coimmunoprecipitation of pro-BDNF with HAP1 in the brain homogenate of Huntington disease. Pro-BDNF distribution in the neuronal processes and its accumulation in the proximal and distal segments of crushed sciatic nerve and the activity-dependent release of pro-BDNF were abolished in HAP1−/− mice. These results suggest that HAP1 may participate in axonal transport and activity-dependent release of pro-BDNF by interacting with the BDNF prodomain. Accordingly, the decreased interaction between HAP1 and pro-BDNF in Huntington disease may reduce the release and transport of BDNF. PMID:19996106

  19. Ciliary neurotrophic factor (CNTF): New facets of an old molecule for treating neurodegenerative and metabolic syndrome pathologies.

    PubMed

    Pasquin, Sarah; Sharma, Mukut; Gauchat, Jean-François

    2015-10-01

    Ciliary neurotrophic factor (CNTF) is the most extensively studied member of the cytokine family that signal through intracellular chains of the gp130/LIFRβ receptor. The severe phenotype in patients suffering from mutations inactivating LIFRβ indicates that members of this cytokine family play key, non-redundant roles during development. Accordingly, three decades of research has revealed potent and promising trophic and regulatory activities of CNTF in neurons, oligodendrocytes, muscle cells, bone cells, adipocytes and retinal cells. These findings led to clinical trials to test the therapeutic potential of CNTF and CNTF derivatives for treating neurodegenerative and metabolic diseases. Promising results have encouraged continuation of studies for treating retinal degenerative diseases. Results of some clinical trials showed that side-effects may limit the systemically administrated doses of CNTF. Therefore, therapies being currently tested rely on local delivery of CNTF using encapsulated cytokine-secreting implants. Since the side effects of CNTF might be linked to its ability to activate the alternative IL6Rα-LIFRβ-gp130 receptor, CNTFR-specific mutants of CNTF have been developed that bind to the CNTFRα-LIFRβ-gp130 receptor. These developments may prove to be a breakthrough for therapeutic applications of systemically administered CNTF in pathologies such as multiple sclerosis or Alzheimer's disease. The "designer cytokine approach" offers future opportunities to further enhance specificity by conjugating mutant CNTF with modified soluble CNTFRα to target therapeutically relevant cells that express gp130-LIFRβ and a specific cell surface marker. PMID:26187860

  20. Effects of music aerobic exercise on depression and brain-derived neurotrophic factor levels in community dwelling women.

    PubMed

    Yeh, Shu-Hui; Lin, Li-Wei; Chuang, Yu Kuan; Liu, Cheng-Ling; Tsai, Lu-Jen; Tsuei, Feng-Shiou; Lee, Ming-Tsung; Hsiao, Chiu-Yueh; Yang, Kuender D

    2015-01-01

    A randomized clinical trial was utilized to compare the improvement of depression and brain-derived neurotrophic factor (BDNF) levels between community women with and without music aerobic exercise (MAE) for 12 weeks. The MAE group involved 47 eligible participants, whereas the comparison group had 59 participants. No significant differences were recorded in the demographic characteristics between the participants in the MAE group and the comparison group. Forty-one participants in the MAE group and 26 in the comparison group completed a pre- and posttest. The MAE group displayed significant improvement in depression scores (p = 0.016), decreased depression symptoms in crying (p = 0.03), appetite (p = 0.006), and fatigue (p = 0.011). The BDNF levels of the participants significantly increased after the 12-week MAE (p = 0.042). The parallel comparison group revealed no significant changes in depression scores or BDNF levels. In summary, the 12-week MAE had a significant impact on the enhancement of BDNF levels and improvement of depression symptoms. Middle-aged community women are encouraged to exercise moderately to improve their depression symptoms and BDNF levels. PMID:26075212

  1. Correlation between Peripheral Levels of Brain-Derived Neurotrophic Factor and Hippocampal Volume in Children and Adolescents with Bipolar Disorder.

    PubMed

    Lauxen Peruzzolo, Tatiana; Anes, Mauricio; Kohmann, Andre de Moura; Souza, Ana Claudia Mércio Loredo; Rodrigues, Ramiro Borges; Brun, Juliana Basso; Peters, Roberta; de Aguiar, Bianca Wollenhaupt; Kapczinski, Flavio; Tramontina, Silzá; Rohde, Luis Augusto Paim; Zeni, Cristian Patrick

    2015-01-01

    Pediatric bipolar disorder (PBD) is a serious mental disorder that affects the development and emotional growth of affected patients. The brain derived neurotrophic factor (BDNF) is recognized as one of the possible markers of the framework and its evolution. Abnormalities in BDNF signaling in the hippocampus could explain the cognitive decline seen in patients with TB. Our aim with this study was to evaluate possible changes in hippocampal volume in children and adolescents with BD and associate them to serum BDNF. Subjects included 30 patients aged seven to seventeen years from the ProCAB (Program for Children and Adolescents with Bipolar Disorder). We observed mean right and left hippocampal volumes of 41910.55 and 41747.96 mm(3), respectively. No statistically significant correlations between peripheral BDNF levels and hippocampal volumes were found. We believe that the lack of correlation observed in this study is due to the short time of evolution of BD in children and adolescents. Besides studies with larger sample sizes to confirm the present findings and longitudinal assessments, addressing brain development versus a control group and including drug-naive patients in different mood states may help clarify the role of BDNF in the brain changes consequent upon BD. PMID:26075097

  2. The serum brain-derived neurotrophic factor concentration prior to initiation of an in vitro fertilization cycle predicts outcome.

    PubMed

    Ramer, Ilana; Kanninen, Tomi T; Sisti, Giovanni; Witkin, Steven S; Spandorfer, Steven D

    2016-08-01

    Our objective was to determine if the concentration of circulating brain-derived neurotrophic factor (BDNF) prior to cycle initiation predicts outcome in women undergoing in vitro fertilization (IVF). Stored serum samples from 226 women - 54 with a live birth, 45 with a spontaneous abortion, 38 with a biochemical pregnancy, 54 who did not become pregnant and 35 with an ectopic pregnancy- were retrospectively blindly tested for BDNF by ELISA. The median serum concentration of BDNF was highest in women with an extrauterine ectopic pregnancy (7.3ng/ml), intermediate in women whose embryos did not implant (5.5ng/ml) and lowest in women with a spontaneous abortion (4.2ng/ml), biochemical pregnancy (3.8ng/ml) or a live birth (3.6ng/ml) (P<0.0001). Among women with a positive pregnancy test an elevated BDNF level predicted an ectopic pregnancy with a sensitivity of 0.853 (0.689, 0.950) and a specificity of 0.949 (0.897, 0.979). We conclude that elevated BDNF in serum obtained before IVF cycle initiation is predictive of an extrauterine pregnancy. PMID:27179717

  3. An Antioxidant Dietary Supplement Improves Brain-Derived Neurotrophic Factor Levels in Serum of Aged Dogs: Preliminary Results

    PubMed Central

    Sechi, Sara; Chiavolelli, Francesca; Spissu, Nicoletta; Di Cerbo, Alessandro; Canello, Sergio; Guidetti, Gianandrea; Fiore, Filippo; Cocco, Raffaella

    2015-01-01

    Biological aging is characterized by a progressive accumulation of oxidative damage and decreased endogenous antioxidant defense mechanisms. The production of oxidants by normal metabolism damages proteins, lipids, and nucleotides, which may contribute to cognitive impairment. In this study 36 dogs were randomly divided into four groups and fed croquettes of different compositions for 6 months. We monitored derivatives of reactive oxygen metabolites (dROMs) and biological antioxidant potential (BAP) levels in dogs' plasma samples as well as brain-derived neurotrophic factor (BDNF) serum levels at the beginning and at the end of the dietary regime. Our results showed that a dietary regime, enriched with antioxidants, induced a significant decrease of plasma levels of dROMs (p < 0.005) and a significant increase in BDNF serum levels (p < 0.005) after six months. Thus, we hypothesized a possible role of the diet in modulating pro- and antioxidant species as well as BDNF levels in plasma and serum, respectively. In conclusion the proposed diet enriched with antioxidants might be considered a valid alternative and a valuable strategy to counteract aging-related cognitive decline in elderly dogs. PMID:26464952

  4. Brain-derived neurotrophic factor val66met polymorphism and hippocampal activation during episodic encoding and retrieval tasks.

    PubMed

    Dennis, Nancy A; Cabeza, Roberto; Need, Anna C; Waters-Metenier, Sheena; Goldstein, David B; LaBar, Kevin S

    2011-09-01

    Brain-derived neurotrophic factor (BDNF) is a neurotrophin which has been shown to regulate cell survival and proliferation, as well as synaptic growth and hippocampal long-term potentiation. A naturally occurring single nucleotide polymorphism in the human BDNF gene (val66met) has been associated with altered intercellular trafficking and regulated secretion of BDNF in met compared to val carriers. Additionally, previous studies have found a relationship between the BDNF val66met genotype and functional activity in the hippocampus during episodic and working memory tasks in healthy young adults. Specifically, studies have found that met carriers exhibit both poorer performance and reduced neural activity within the medial temporal lobe (MTL) when performing episodic memory tasks. However, these studies have not been well replicated and have not considered the role of behavioral differences in the interpretation of neural differences. The current study sought to control for cognitive performance in investigating the role of the BDNF val66met genotype on neural activity associated with episodic memory. Across item and relational memory tests, met carriers exhibited increased MTL activation during both encoding and retrieval stages, compared to noncarriers. The results suggest that met carriers are able to recruit MTL activity to support successful memory processes, and reductions in cognitive performance observed in prior studies are not a ubiquitous effect associated with variants of the BDNF val66met genotype. PMID:20865733

  5. Essential role of brain-derived neurotrophic factor in the regulation of serotonin transmission in the basolateral amygdala

    PubMed Central

    Daftary, Shabrine S.; Calderon, German; Rios, Maribel

    2012-01-01

    Human and animal model studies have linked brain-derived neurotrophic factor (BDNF) with the etiology of anxiety disorders. This pleiotropic neurotrophin and its receptor, TrkB, promote neuronal survival, differentiation and synaptic plasticity. Here we interrogated the role of BDNF in serotonergic neurotransmission in the basolateral amygdala (BLA), a limbic brain region associated with the neurobiology of anxiety. We found that both GABAergic and pyramidal projection neurons in the wild-type BLA contained TrkB receptors. Examination of BDNF2L/2LCk-cre mutant mice with brain-selective depletion of BDNF revealed mild decreases in serotonin content in the BLA. Notably, whole cell recordings in BLA pyramidal cells uncovered significant alterations in 5-HT2-mediated regulation of GABAergic and glutamatergic transmission in BDNF2L/2LCk-Cre mutant mice that result in a hyperexcitable circuit. These changes were associated with decreased expression of 5-HT2 receptors. Collectively, the results indicate a required role of BDNF in serotonin transmission in the BLA. Furthermore, they suggest a mechanism underlying the reported increase in anxiety-like behavior elicited by perturbed BDNF signaling. PMID:22917617

  6. Non-viral liposome-mediated transfer of brain-derived neurotrophic factor across the blood-brain barrier

    PubMed Central

    Xing, Ying; Wen, Chun-yan; Li, Song-tao; Xia, Zong-xin

    2016-01-01

    Brain-derived neurotrophic factor (BDNF) plays an important role in the repair of central nervous system injury, but cannot directly traverse the blood-brain barrier. Liposomes are a new type of non-viral vector, able to carry macromolecules across the blood-brain barrier and into the brain. Here, we investigate whether BDNF could be transported across the blood-brain barrier by tail-vein injection of liposomes conjugated to transferrin (Tf) and polyethylene glycol (PEG), and carrying BDNF modified with cytomegalovirus promoter (pCMV) or glial fibrillary acidic protein promoter (pGFAP) (Tf-pCMV-BDNF-PEG and Tf-pGFAP-BDNF-PEG, respectively). Both liposomes were able to traverse the blood-brain barrier, and BDNF was mainly expressed in the cerebral cortex. BDNF expression in the cerebral cortex was higher in the Tf-pGFAP-BDNF-PEG group than in the Tf-pCMV-BDNF-PEG group. This study demonstrates the successful construction of a non-virus targeted liposome, Tf-pGFAP-BDNF-PEG, which crosses the blood-brain barrier and is distributed in the cerebral cortex. Our work provides an experimental basis for BDNF-related targeted drug delivery in the brain. PMID:27212923

  7. Peripheral orthopaedic surgery down-regulates hippocampal brain-derived neurotrophic factor and impairs remote memory in mouse.

    PubMed

    Fidalgo, A R; Cibelli, M; White, J P M; Nagy, I; Noormohamed, F; Benzonana, L; Maze, M; Ma, D

    2011-09-01

    Peripheral orthopaedic surgery induces a profound inflammatory response. This includes a substantial increase in cytokines and, especially, in the level of interleukin (IL)-1β in the hippocampus, which has been shown to impair hippocampal-dependent memory in mice. We have employed two tests of contextual remote memory to demonstrate that the inflammatory response to surgical insult in mice also results in impairment of remote memory associated with prefrontal cortex (PFC). We have also found that, under the conditions presented in the social interaction test, peripheral orthopaedic surgery does not increase anxiety-like behaviour in our animal model. Although such surgery induces an increase in the level of IL-1β in the hippocampus, it fails to do so in the PFC. Peripheral orthopaedic surgery also results in a reduction in the level of hippocampal brain-derived neurotrophic factor (BDNF) and this may contribute, in part, to the memory impairment found after such surgery. Our data suggest that a reduction in the level of hippocampal BDNF and an increase in the level of hippocampal IL-1β following surgery may affect the transference of fear memory in the mouse brain. PMID:21699962

  8. Brain-derived neurotrophic factor (BDNF) and its precursor (proBDNF) in genetically defined fear-induced aggression.

    PubMed

    Ilchibaeva, Tatiana V; Kondaurova, Elena M; Tsybko, Anton S; Kozhemyakina, Rimma V; Popova, Nina K; Naumenko, Vladimir S

    2015-09-01

    The brain-derived neurotrophic factor (BDNF), its precursor (proBDNF) and BDNF mRNA levels were studied in the brain of wild rats selectively bred for more than 70 generations for either high level or for the lack of affective aggressiveness towards man. Significant increase of BDNF mRNA level in the frontal cortex and increase of BDNF level in the hippocampus of aggressive rats was revealed. In the midbrain and hippocampus of aggressive rats proBDNF level was increased, whereas BDNF/proBDNF ratio was reduced suggesting the prevalence and increased influence of proBDNF in highly aggressive rats. In the frontal cortex, proBDNF level in aggressive rats was decreased. Thus, considerable structure-specific differences in BDNF and proBDNF levels as well as in BDNF gene expression between highly aggressive and nonaggressive rats were shown. The data suggested the implication of BDNF and its precursor proBDNF in the mechanism of aggressiveness and in the creation of either aggressive or nonaggressive phenotype. PMID:25934485

  9. Brain-derived neurotrophic factor and neurotrophin receptors modulate glutamate-induced phase shifts of the suprachiasmatic nucleus

    PubMed Central

    Michel, S.; Clark, J. P.; Ding, J. M.; Colwell, C. S.

    2008-01-01

    Light information reaches the suprachiasmatic nucleus (SCN) through a subpopulation of retinal ganglion cells. Previous work raised the possibility that brain-derived neurotrophic factor (BDNF) and its high-affinity tropomyosin-related receptor kinase may be important as modulators of this excitatory input into the SCN. In order to test this possibility, we used whole-cell patch-clamp methods to measure spontaneous excitatory currents in mouse SCN neurons. We found that the amplitude and frequency of these currents were increased by BDNF and decreased by the neurotrophin receptor inhibitor K252a. The neurotrophin also increased the magnitude of currents evoked by application of N-methyl-D-aspartate and amino-methyl proprionic acid. Next, we measured the rhythms in action potential discharge from the SCN brain slice preparation. We found that application of K252a dramatically reduced the magnitude of phase shifts of the electrical activity rhythm generated by the application of glutamate. By itself, BDNF caused phase shifts that resembled those produced by glutamate and were blocked by K252a. The results demonstrate that BDNF and neurotrophin receptors can enhance glutamatergic synaptic transmission within a subset of SCN neurons and potentiate glutamate-induced phase shifts of the circadian rhythm of neural activity in the SCN. PMID:16930436

  10. Focal release of neurotrophic factors by biodegradable microspheres enhance motor and sensory axonal regeneration in vitro and in vivo.

    PubMed

    Santos, Daniel; Giudetti, Guido; Micera, Silvestro; Navarro, Xavier; Del Valle, Jaume

    2016-04-01

    Neurotrophic factors (NTFs) promote nerve regeneration and neuronal survival after peripheral nerve injury. However, drawbacks related with administration and bioactivity during long periods limit their therapeutic application. In this study, PLGA microspheres (MPs) were used to locally release different NTFs and evaluate whether they accelerate axonal regeneration in comparison with free NTFs or controls. ELISA, SEM, UV/visible light microscopy, organotypic cultures of DRG explants and spinal cord slices were used to characterize MP properties and the bioactivity of the released NTFs. Results of organotypic cultures showed that encapsulated NTFs maintain longer bioactivity and enhance neurite regeneration of both sensory and motor neurons compared with free NTFs. For in vivo assays, the rat sciatic nerve was transected and repaired with a silicone tube filled with collagen gel or collagen mixed with PBS encapsulated MPs (control groups) and with free or encapsulated NGF, BDNF, GDNF or FGF-2. After 20 days, a retrotracer was applied to the regenerated nerve to quantify motor and sensory axonal regeneration. NTF encapsulation in MPs improved regeneration of both motor and sensory axons, as evidenced by increased numbers of retrolabeled neurons. Hence, our results show that slow release of NTFs with PLGA MP enhance nerve regeneration. PMID:26854135

  11. Collagen scaffolds combined with collagen-binding ciliary neurotrophic factor facilitate facial nerve repair in mini-pigs.

    PubMed

    Lu, Chao; Meng, Danqing; Cao, Jiani; Xiao, Zhifeng; Cui, Yi; Fan, Jingya; Cui, Xiaolong; Chen, Bing; Yao, Yao; Zhang, Zhen; Ma, Jinling; Pan, Juli; Dai, Jianwu

    2015-05-01

    The preclinical studies using animal models play a very important role in the evaluation of facial nerve regeneration. Good models need to recapitulate the distance and time for axons to regenerate in humans. Compared with the most used rodent animals, the structure of facial nerve in mini-pigs shares more similarities with humans in microanatomy. To evaluate the feasibility of repairing facial nerve defects by collagen scaffolds combined with ciliary neurotrophic factor (CNTF), 10-mm-long gaps were made in the buccal branch of mini-pigs' facial nerve. Three months after surgery, electrophysiological assessment and histological examination were performed to evaluate facial nerve regeneration. Immunohistochemistry and transmission electron microscope observation showed that collagen scaffolds with collagen binding (CBD)-CNTF could promote better axon regeneration, Schwann cell migration, and remyelination at the site of implant device than using scaffolds alone. Electrophysiological assessment also showed higher recovery rate in the CNTF group. In summary, combination of collagen scaffolds and CBD-CNTF showed promising effects on facial nerve regeneration in mini-pig models. PMID:25098760

  12. Brain-Derived Neurotrophic Factor in Arterial Baroreceptor Pathways: Implications for Activity-Dependent Plasticity at Baroafferent Synapses

    PubMed Central

    Martin, Jessica L.; Jenkins, Victoria K.; Hsieh, Hui-ya; Balkowiec, Agnieszka

    2008-01-01

    Functional characteristics of the arterial baroreceptor reflex change throughout ontogenesis, including perinatal adjustments of the reflex gain and adult resetting during hypertension. However, the cellular mechanisms that underlie these functional changes are not completely understood. Here, we provide evidence that brain-derived neurotrophic factor (BDNF), a neurotrophin with a well-established role in activity-dependent neuronal plasticity, is abundantly expressed in vivo by a large subset of developing and adult rat baroreceptor afferents. Immunoreactivity to BDNF is present in the cell bodies of baroafferent neurons in the nodose ganglion (NG), their central projections in the solitary tract, and terminal-like structures in the lower brainstem nucleus tractus solitarius (NTS). Using ELISA in situ combined with electrical field stimulation, we show that native BDNF is released from cultured newborn NG neurons in response to patterns that mimic the in vivo activity of baroreceptor afferents. In particular, high-frequency bursting patterns of baroreceptor firing, which are known to evoke plastic changes at baroreceptor synapses, are significantly more effective at releasing BDNF than tonic patterns of the same average frequency. Together, our study indicates that BDNF expressed by first-order baroreceptor neurons is a likely mediator of both developmental and post-developmental modifications at first-order synapses in arterial baroreceptor pathways. PMID:19054281

  13. Brain-derived neurotrophic factor in arterial baroreceptor pathways: implications for activity-dependent plasticity at baroafferent synapses.

    PubMed

    Martin, Jessica L; Jenkins, Victoria K; Hsieh, Hui-ya; Balkowiec, Agnieszka

    2009-01-01

    Functional characteristics of the arterial baroreceptor reflex change throughout ontogenesis, including perinatal adjustments of the reflex gain and adult resetting during hypertension. However, the cellular mechanisms that underlie these functional changes are not completely understood. Here, we provide evidence that brain-derived neurotrophic factor (BDNF), a neurotrophin with a well-established role in activity-dependent neuronal plasticity, is abundantly expressed in vivo by a large subset of developing and adult rat baroreceptor afferents. Immunoreactivity to BDNF is present in the cell bodies of baroafferent neurons in the nodose ganglion, their central projections in the solitary tract, and terminal-like structures in the lower brainstem nucleus tractus solitarius. Using ELISA in situ combined with electrical field stimulation, we show that native BDNF is released from cultured newborn nodose ganglion neurons in response to patterns that mimic the in vivo activity of baroreceptor afferents. In particular, high-frequency bursting patterns of baroreceptor firing, which are known to evoke plastic changes at baroreceptor synapses, are significantly more effective at releasing BDNF than tonic patterns of the same average frequency. Together, our study indicates that BDNF expressed by first-order baroreceptor neurons is a likely mediator of both developmental and post-developmental modifications at first-order synapses in arterial baroreceptor pathways. PMID:19054281

  14. Calcitonin Gene-Related Peptide Enhances Release of Native Brain-Derived Neurotrophic Factor from Trigeminal Ganglion Neurons

    PubMed Central

    Buldyrev, Ilya; Tanner, Nathan M.; Hsieh, Hui-ya; Dodd, Emily G.; Nguyen, Loi T.; Balkowiec, Agnieszka

    2008-01-01

    Activity-dependent plasticity in nociceptive pathways has been implicated in pathomechanisms of chronic pain syndromes. Calcitonin gene-related peptide (CGRP), which is expressed by trigeminal nociceptors, has recently been identified as a key player in the mechanism of migraine headaches. Here we show that CGRP is co-expressed with brain-derived neurotrophic factor (BDNF) in a large subset of adult rat trigeminal ganglion neurons in vivo. Using ELISA in situ, we show that CGRP (1–1000 nM) potently enhances BDNF release from cultured trigeminal neurons. The effect of CGRP is dose–dependent and abolished by pretreatment with CGRP receptor antagonist, CGRP(8–37). Intriguingly, CGRP-mediated BDNF release, unlike BDNF release evoked by physiological patterns of electrical stimulation, is independent of extracellular calcium. Depletion of intracellular calcium stores with thapsigargin blocks the CGRP-mediated BDNF release. Using transmission electron microscopy, our study also shows that BDNF-immunoreactivity is present in dense core vesicles of unmyelinated axons and axon terminals in the subnucleus caudalis of the spinal trigeminal nucleus, the primary central target of trigeminal nociceptors. Together, these results reveal a previously unknown role for CGRP in regulating BDNF availability, and point to BDNF as a candidate mediator of trigeminal nociceptive plasticity. PMID:17064360

  15. Calcitonin gene-related peptide enhances release of native brain-derived neurotrophic factor from trigeminal ganglion neurons.

    PubMed

    Buldyrev, Ilya; Tanner, Nathan M; Hsieh, Hui-ya; Dodd, Emily G; Nguyen, Loi T; Balkowiec, Agnieszka

    2006-12-01

    Activity-dependent plasticity in nociceptive pathways has been implicated in pathomechanisms of chronic pain syndromes. Calcitonin gene-related peptide (CGRP), which is expressed by trigeminal nociceptors, has recently been identified as a key player in the mechanism of migraine headaches. Here we show that CGRP is coexpressed with brain-derived neurotrophic factor (BDNF) in a large subset of adult rat trigeminal ganglion neurons in vivo. Using ELISA in situ, we show that CGRP (1-1000 nM) potently enhances BDNF release from cultured trigeminal neurons. The effect of CGRP is dose-dependent and abolished by pretreatment with CGRP receptor antagonist, CGRP(8-37). Intriguingly, CGRP-mediated BDNF release, unlike BDNF release evoked by physiological patterns of electrical stimulation, is independent of extracellular calcium. Depletion of intracellular calcium stores with thapsigargin blocks the CGRP-mediated BDNF release. Using transmission electron microscopy, our study also shows that BDNF-immunoreactivity is present in dense core vesicles of unmyelinated axons and axon terminals in the subnucleus caudalis of the spinal trigeminal nucleus, the primary central target of trigeminal nociceptors. Together, these results reveal a previously unknown role for CGRP in regulating BDNF availability, and point to BDNF as a candidate mediator of trigeminal nociceptive plasticity. PMID:17064360

  16. Exercise-induced neuroprotection in the spastic Han Wistar rat: the possible role of brain-derived neurotrophic factor.

    PubMed

    Van Kummer, Brooke H; Cohen, Randy W

    2015-01-01

    Moderate aerobic exercise has been shown to enhance motor skills and protect the nervous system from neurodegenerative diseases, like ataxia. Our lab uses the spastic Han Wistar rat as a model of ataxia. Mutant rats develop forelimb tremor and hind limb rigidity and have a decreased lifespan. Our lab has shown that exercise reduced Purkinje cell degeneration and delayed motor dysfunction, significantly increasing lifespan. Our study investigated how moderate exercise may mediate neuroprotection by analyzing brain-derived neurotrophic factor (BDNF) and its receptor TrkB. To link BDNF to exercise-induced neuroprotection, mutant and normal rats were infused with the TrkB antagonist K252a or vehicle into the third ventricle. During infusion, rats were subjected to moderate exercise regimens on a treadmill. Exercised mutants receiving K252a exhibited a 21.4% loss in Purkinje cells compared to their controls. Cerebellar TrkB expression was evaluated using non-drug-treated mutants subjected to various treadmill running regimens. Running animals expressed three times more TrkB than sedentary animals. BDNF was quantified via Sandwich ELISA, and cerebellar expression was found to be 26.6% greater in mutant rats on 7-day treadmill exercise regimen compared to 30 days of treadmill exercise. These results suggest that BDNF is involved in mediating exercise-induced neuroprotection. PMID:25710032

  17. Acute high-intensity exercise-induced cognitive enhancement and brain-derived neurotrophic factor in young, healthy adults.

    PubMed

    Hwang, Jungyun; Brothers, R Matthew; Castelli, Darla M; Glowacki, Elizabeth M; Chen, Yen T; Salinas, Mandy M; Kim, Jihoon; Jung, Yeonhak; Calvert, Hannah G

    2016-09-01

    Acute exercise can positively impact cognition. The present study examined the effect of acute high-intensity aerobic exercise on prefrontal-dependent cognitive performance and brain-derived neurotrophic factor (BDNF). Fifty-eight young adults were randomly assigned to one of two experimental groups: (a) an acute bout of high-intensity exercise (n=29) or (b) a non-exercise control (n=29). Participants in the exercise group improved performance on inhibitory control in Stroop interference and on cognitive flexibility in Trail Making Test (TMT) Part-B compared with participants in the control group and increased BDNF immediately after exercise. There was a significant relationship between BDNF and TMT Part-B on the pre-post change following exercise. These findings provide support for the association between improved prefrontal-dependent cognitive performance and increased BDNF in response to acute exercise. We conclude that the changes in BDNF concentration may be partially responsible for prefrontal-dependent cognitive functioning following an acute bout of exercise. PMID:27450438

  18. Functional Multipotency of Stem Cells: A Conceptual Review of Neurotrophic Factor-Based Evidence and Its Role in Translational Research

    PubMed Central

    Teng, Yang D; Yu, Dou; Ropper, Alexander E; Li, Jianxue; Kabatas, Serdar; Wakeman, Dustin R; Wang, Junmei; Sullivan, Maryrose P; Redmond, D. Eugene; Langer, Robert; Snyder, Evan Y; Sidman, Richard L

    2011-01-01

    We here propose an updated concept of stem cells (SCs), with an emphasis on neural stem cells (NSCs). The conventional view, which has touched principally on the essential property of lineage multipotency (e.g., the ability of NSCs to differentiate into all neural cells), should be broadened to include the emerging recognition of biofunctional multipotency of SCs to mediate systemic homeostasis, evidenced in NSCs in particular by the secretion of neurotrophic factors. Under this new conceptual context and taking the NSC as a leading example, one may begin to appreciate and seek the “logic” behind the wide range of molecular tactics the NSC appears to serve at successive developmental stages as it integrates into and prepares, modifies, and guides the surrounding CNS micro- and macro-environment towards the formation and self-maintenance of a functioning adult nervous system. We suggest that embracing this view of the “multipotency” of the SCs is pivotal for correctly, efficiently, and optimally exploiting stem cell biology for therapeutic applications, including reconstitution of a dysfunctional CNS. PMID:22654717

  19. Brain-derived neurotrophic factor-deficient mice develop aggressiveness and hyperphagia in conjunction with brain serotonergic abnormalities

    PubMed Central

    Lyons, W. Ernest; Mamounas, Laura A.; Ricaurte, George A.; Coppola, Vincenzo; Reid, Susan W.; Bora, Susan H.; Wihler, Cornelia; Koliatsos, Vassilis E.; Tessarollo, Lino

    1999-01-01

    Brain-derived neurotrophic factor (BDNF) has trophic effects on serotonergic (5-HT) neurons in the central nervous system. However, the role of endogenous BDNF in the development and function of these neurons has not been established in vivo because of the early postnatal lethality of BDNF null mice. In the present study, we use heterozygous BDNF+/− mice that have a normal life span and show that these animals develop enhanced intermale aggressiveness and hyperphagia accompanied by significant weight gain in early adulthood; these behavioral abnormalities are known to correlate with 5-HT dysfunction. Forebrain 5-HT levels and fiber density in BDNF+/− mice are normal at an early age but undergo premature age-associated decrements. However, young adult BDNF+/− mice show a blunted c-fos induction by the specific serotonin releaser-uptake inhibitor dexfenfluramine and alterations in the expression of several 5-HT receptors in the cortex, hippocampus, and hypothalamus. The heightened aggressiveness can be ameliorated by the selective serotonin reuptake inhibitor fluoxetine. Our results indicate that endogenous BDNF is critical for the normal development and function of central 5-HT neurons and for the elaboration of behaviors that depend on these nerve cells. Therefore, BDNF+/− mice may provide a useful model to study human psychiatric disorders attributed to dysfunction of serotonergic neurons. PMID:10611369

  20. Sorting protein-related receptor SorLA controls regulated secretion of glial cell line-derived neurotrophic factor.

    PubMed

    Geng, Zhao; Xu, Feng-Yi; Huang, Shu-Hong; Chen, Zhe-Yu

    2011-12-01

    Glial cell line-derived neurotrophic factor (GDNF), after secreted from cells, plays a critical role in central and peripheral neuron survival and function. The secretion of GDNF can be either constitutive or regulated by physiological stimuli; however, the detailed mechanism driving GDNF secretion is still unknown. Here, we report that sorting protein-related receptor with A-type repeats (SorLA), a member of the mammal Vps10p domain receptor, interacts with GDNF and is localized to GDNF-containing vesicles. Overexpression of SorLA significantly increases, and knockdown of SorLA by siRNA decreases, the regulated secretion of GDNF in PC12 and MN9D cells but has no effect on GDNF constitutive secretion. In addition, overexpression of a truncated form of SorLA also impairs GDNF-regulated secretion. Finally, we found that the prodomain of GDNF mediates the interaction of GDNF with SorLA under acidic conditions. Moreover, overexpression of SorLA could enhance the regulated secretion of the GDNF prodomain-GFP fusion protein, suggesting that the prodomain of GDNF is responsible for its regulated secretion. Together, these findings will advance our understanding of the molecular mechanism underlying GDNF-regulated secretion. PMID:21994944

  1. Association of the Brain-derived Neurotrophic Factor Gene and Clinical Features of Bipolar Disorder in Korea

    PubMed Central

    Min, Hye Ji; Cho, Hyun-Sang; Kim, Se Joo; Seok, Jeong-Ho; Lee, Eun

    2012-01-01

    Objective Brain-derived neurotrophic factor (BDNF) plays an important role in cell survival, differentiation, and cell death as well as in neural plasticity. Recent studies have suggested that BDNF is involved in the pathogenesis of bipolar disorder. The aim of this study was to investigate the association of the genetic variations of the BDNF gene with bipolar disorder in Korea. We also studied the possible association of these genetic variants with clinical features. Methods The allelic and genotypic distributions of Val66Met polymorphism of the BDNF gene were analyzed using a polymerase chain reaction-based method in 184 bipolar patients and 214 controls. Analysis was performed to investigate an association of the Val66Met polymorphism of the BDNF gene and the clinical features in bipolar patients. Results No significant difference was found between bipolar patients and controls in the genotype and allele frequencies for the investigated BDNF polymorphism. However, the age of onset of bipolar disorder among the Val/Val (25.57), Val/Met (30.42) and Met/Met (32.45) genotype groups were significantly different (p=0.037). Conclusion This study suggests that Val66Met polymorphisms are unlikely to contribution to the genetic predisposition to bipolar disorder as a whole. But Val66Met polymorphism may be associated with age of onset of the disorder, further studies designed to investigate the relationship in a larger population may be warranted. PMID:23430274

  2. Childhood atopic dermatitis-Brain-derived neurotrophic factor correlates with serum eosinophil cationic protein and disease severity.

    PubMed

    Fölster-Holst, R; Papakonstantinou, E; Rüdrich, U; Buchner, M; Pite, H; Gehring, M; Kapp, A; Weidinger, S; Raap, U

    2016-07-01

    Several studies have shown that neurotrophins including brain-derived neurotrophic factor (BDNF) play a role in chronic inflammatory skin diseases such as atopic dermatitis (AD). BDNF is increased in the serum samples of adults with AD. Interestingly, eosinophils of these patients can release and produce BDNF. We analyzed BDNF serum levels with ELISA and their correlation with SCORAD score, eosinophil cationic protein (ECP), total IgE, IL-4, IL-13 and IL-31 in children with AD (n = 56) compared to nonatopic healthy children (n = 25). In addition, we analyzed FLG loss-of-function mutations in 17 children with AD and their connection to BDNF. BDNF serum levels were significantly higher in children with AD. Further, BDNF correlated with disease activity, serum ECP, and total IgE serum levels in AD. There was no difference in BDNF levels of filaggrin-positive or filaggrin-negative children with AD, and there was no correlation of BDNF with IL-31 and Th2 cytokines including IL-4 and IL-13. Together, our data add new insights into the pathophysiology of AD, suggesting that serum BDNF which correlates with disease severity contributes to the regulation of inflammation in an eosinophil-, but not Th2-dependent manner. PMID:27087278

  3. Brain-derived neurotrophic factor in the anterior cingulate cortex is involved in the formation of fear memory.

    PubMed

    Li, Qing-Qing; Li, Bao-Ming

    2015-10-25

    Brain-derived neurotrophic factor (BDNF), a small dimeric secretory protein, plays a vital role in activity-dependent synaptic plasticity, learning and memory. It has been shown that BDNF in the hippocampus and amygdala participates in the formation of fear memory. However, little is known about the functional role of BDNF in the anterior cingulate cortex (ACC). To address this question, we examined the mRNA and protein levels of BDNF in the ACC of rats at various time points after fear conditioning, using quantitative real-time PCR and enzyme-linked immunosorbent assay (ELISA). The results showed that BDNF exhibited a temporally specific increase in both mRNA and protein levels after CS (tone) and US (foot shock) was paired. Such increase did not occur after the animals were exposed to CS or US alone. When BDNF antibody was locally infused into the ACC prior to CS-US pairing, both contextual and auditory fear memories were severely impaired. Taken together, these results suggest that BDNF in the ACC is required for the formation of fear memory. PMID:26490062

  4. Effects of Music Aerobic Exercise on Depression and Brain-Derived Neurotrophic Factor Levels in Community Dwelling Women

    PubMed Central

    Yeh, Shu-Hui; Lin, Li-Wei; Chuang, Yu Kuan; Liu, Cheng-Ling; Tsai, Lu-Jen; Tsuei, Feng-Shiou; Lee, Ming-Tsung; Hsiao, Chiu-Yueh; Yang, Kuender D.

    2015-01-01

    A randomized clinical trial was utilized to compare the improvement of depression and brain-derived neurotrophic factor (BDNF) levels between community women with and without music aerobic exercise (MAE) for 12 weeks. The MAE group involved 47 eligible participants, whereas the comparison group had 59 participants. No significant differences were recorded in the demographic characteristics between the participants in the MAE group and the comparison group. Forty-one participants in the MAE group and 26 in the comparison group completed a pre- and posttest. The MAE group displayed significant improvement in depression scores (p = 0.016), decreased depression symptoms in crying (p = 0.03), appetite (p = 0.006), and fatigue (p = 0.011). The BDNF levels of the participants significantly increased after the 12-week MAE (p = 0.042). The parallel comparison group revealed no significant changes in depression scores or BDNF levels. In summary, the 12-week MAE had a significant impact on the enhancement of BDNF levels and improvement of depression symptoms. Middle-aged community women are encouraged to exercise moderately to improve their depression symptoms and BDNF levels. PMID:26075212

  5. Non-viral liposome-mediated transfer of brain-derived neurotrophic factor across the blood-brain barrier.

    PubMed

    Xing, Ying; Wen, Chun-Yan; Li, Song-Tao; Xia, Zong-Xin

    2016-04-01

    Brain-derived neurotrophic factor (BDNF) plays an important role in the repair of central nervous system injury, but cannot directly traverse the blood-brain barrier. Liposomes are a new type of non-viral vector, able to carry macromolecules across the blood-brain barrier and into the brain. Here, we investigate whether BDNF could be transported across the blood-brain barrier by tail-vein injection of liposomes conjugated to transferrin (Tf) and polyethylene glycol (PEG), and carrying BDNF modified with cytomegalovirus promoter (pCMV) or glial fibrillary acidic protein promoter (pGFAP) (Tf-pCMV-BDNF-PEG and Tf-pGFAP-BDNF-PEG, respectively). Both liposomes were able to traverse the blood-brain barrier, and BDNF was mainly expressed in the cerebral cortex. BDNF expression in the cerebral cortex was higher in the Tf-pGFAP-BDNF-PEG group than in the Tf-pCMV-BDNF-PEG group. This study demonstrates the successful construction of a non-virus targeted liposome, Tf-pGFAP-BDNF-PEG, which crosses the blood-brain barrier and is distributed in the cerebral cortex. Our work provides an experimental basis for BDNF-related targeted drug delivery in the brain. PMID:27212923

  6. Role of two sequence motifs of mesencephalic astrocyte-derived neurotrophic factor in its survival-promoting activity

    PubMed Central

    Mätlik, K; Yu, Li-ying; Eesmaa, A; Hellman, M; Lindholm, P; Peränen, J; Galli, E; Anttila, J; Saarma, M; Permi, P; Airavaara, M; Arumäe, U

    2015-01-01

    Mesencephalic astrocyte-derived neurotrophic factor (MANF) is a prosurvival protein that protects the cells when applied intracellularly in vitro or extracellularly in vivo. Its protective mechanisms are poorly known. Here we studied the role of two short sequence motifs within the carboxy-(C) terminal domain of MANF in its neuroprotective activity: the CKGC sequence (a CXXC motif) that could be involved in redox reactions, and the C-terminal RTDL sequence, an endoplasmic reticulum (ER) retention signal. We mutated these motifs and analyzed the antiapoptotic effect and intracellular localization of these mutants of MANF when overexpressed in cultured sympathetic or sensory neurons. As an in vivo model for studying the effect of these mutants after their extracellular application, we used the rat model of cerebral ischemia. Even though we found no evidence for oxidoreductase activity of MANF, the mutation of CXXC motif completely abolished its protective effect, showing that this motif is crucial for both MANF's intracellular and extracellular activity. The RTDL motif was not needed for the neuroprotective activity of MANF after its extracellular application in the stroke model in vivo. However, in vitro the deletion of RTDL motif inactivated MANF in the sympathetic neurons where the mutant protein localized to Golgi, but not in the sensory neurons where the mutant localized to the ER, showing that intracellular MANF protects these peripheral neurons in vitro only when localized to the ER. PMID:26720341

  7. The Impact of Aerobic Exercise on Brain-Derived Neurotrophic Factor and Neurocognition in Individuals With Schizophrenia: A Single-Blind, Randomized Clinical Trial.

    PubMed

    Kimhy, David; Vakhrusheva, Julia; Bartels, Matthew N; Armstrong, Hilary F; Ballon, Jacob S; Khan, Samira; Chang, Rachel W; Hansen, Marie C; Ayanruoh, Lindsey; Lister, Amanda; Castrén, Eero; Smith, Edward E; Sloan, Richard P

    2015-07-01

    Individuals with schizophrenia display substantial neurocognitive deficits for which available treatments offer only limited benefits. Yet, findings from studies of animals, clinical and nonclinical populations have linked neurocognitive improvements to increases in aerobic fitness (AF) via aerobic exercise training (AE). Such improvements have been attributed to up-regulation of brain-derived neurotrophic factor (BDNF). However, the impact of AE on neurocognition, and the putative role of BDNF, have not been investigated in schizophrenia. Employing a proof-of-concept, single-blind, randomized clinical trial design, 33 individuals with schizophrenia were randomized to receive standard psychiatric treatment (n = 17; "treatment as usual"; TAU) or attend a 12-week AE program (n = 16) utilizing active-play video games (Xbox 360 Kinect) and traditional AE equipment. Participants completed assessments of AF (indexed by VO2 peak ml/kg/min), neurocognition (MATRICS Consensus Cognitive Battery), and serum-BDNF before and after and 12-week period. Twenty-six participants (79%) completed the study. At follow-up, the AE participants improved their AF by 18.0% vs a -0.5% decline in the TAU group (P = .002) and improved their neurocognition by 15.1% vs -2.0% decline in the TAU group (P = .031). Hierarchical multiple regression analyses indicated that enhancement in AF and increases in BDNF predicted 25.4% and 14.6% of the neurocognitive improvement variance, respectively. The results indicate AE is effective in enhancing neurocognitive functioning in people with schizophrenia and provide preliminary support for the impact of AE-related BDNF up-regulation on neurocognition in this population. Poor AF represents a modifiable risk factor for neurocognitive dysfunction in schizophrenia for which AE training offer a safe, nonstigmatizing, and side-effect-free intervention. PMID:25805886

  8. Upregulation of p‑Akt by glial cell line‑derived neurotrophic factor ameliorates cell apoptosis in the hippocampus of rats with streptozotocin‑induced diabetic encephalopathy.

    PubMed

    Cui, Weigang; Zhang, Yinghua; Lu, Derong; Ren, Mingxin; Yuan, Guoyan

    2016-01-01

    The loss of neurotrophic factor support has been shown to contribute to the development of the central nervous system. Glial cell line‑derived neurotrophic factor (GDNF), a potent neurotrophic factor, is closely associated with apoptosis and exerts neuroprotective effects on numerous populations of cells. However, the underlying mechanisms of these protective effects remain unknown. In the present study, a significant increase in Bax levels and DNA fragmentation was observed in the hippocampus obtained from the brains of diabetic rats 60 days after diabetes had been induced. The apoptotic changes were correlated with the loss of GDNF/Akt signaling. GDNF administration was found to reverse the diabetes‑induced Bax and DNA fragmentation changes. This was associated with an improvement in the level of p‑Akt/Akt. In addition, combination of GDNF with a specific inhibitor of the phosphoinositide 3‑kinase (PI3K)/Akt pathway, Wortmannin, significantly abrogated the effects of GDNF on the levels of p‑Akt/Akt, Bax and DNA fragmentation. However, a p38 mitogen‑activated proten kinase (MAPK) inhibitor, SB203580, had no effect on the expression of p‑Akt/Akt, Bax or DNA fragmentation. These results demonstrate the pivotal role of GDNF as well as the PI3K/Akt pathway, but not the MAPK pathway, in the prevention of diabetes‑induced neuronal apoptosis in the hippocampus. PMID:26549420

  9. Increased neurotrophic factor levels in ventral mesencephalic cultures do not explain the protective effect of osteopontin and the synthetic 15-mer RGD domain against MPP+ toxicity.

    PubMed

    Broom, Lauren; Jenner, Peter; Rose, Sarah

    2015-01-01

    The synthetic 15-mer arginine-glycine-aspartic acid (RGD) domain of osteopontin (OPN) is protective in vitro and in vivo against dopaminergic cell death and this protective effect may be mediated through interaction with integrin receptors to regulate neurotrophic factor levels. We now examine this concept in rat primary ventral mesencephalic (VM) cultures. 1-Methyl-4-phenylpyridinium (MPP+) exposure reduced tyrosine hydroxylase (TH)-positive cell number and activated glial cells as shown by increased glial fibrillary acidic protein (GFAP), oxycocin-42 (OX-42) and ectodermal dysplasia 1 (ED-1) immunoreactivity. Both OPN and the RGD domain of OPN were equally protective against MPP+ toxicity in VM cultures and both increased glial-derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF) levels. The effects of OPN and the RGD domain were accompanied by a decrease in numbers of activated microglia but with no change in astrocyte number. However, full-length OPN and the RGD domain of OPN remained protective against MPP+ toxicity in the presence of a GDNF neutralising antibody. This suggests that increased GDNF levels do not underlie the protective effect observed with OPN. Rather, OPN's protective effect may be mediated through decreased glial cell activation. PMID:25218309

  10. (1)H-, (13)C- and (15)N-NMR assignment of the N-terminal domain of human cerebral dopamine neurotrophic factor (CDNF).

    PubMed

    Latgé, Cristiane; Cabral, Kátia M S; Almeida, Marcius S; Foguel, Débora

    2013-04-01

    Parkinson's disease (PD) is a neurodegenerative disorder that is caused by the death of midbrain dopaminergic neurons. Current therapies for PD do not halt the neurodegeneration nor repair the affected neurons. Therefore, search for novel neurotrophic factors (NTF) for midbrain dopaminergic neurons, which could be used in novel therapeutic approaches, is highly wanted. In 2007, a potent NTF for dopaminergic neurons was described as the conserved dopamine neurotrophic factor (CDNF). Single doses of this protein protect and restore dopaminergic neurons in experimental models of PD. CDNF has two domains; an N-terminal saposin-like domain, which may bind to membranes; and a presumably intrinsically unstructured C-terminal which contains an internal cysteine bridge in a CXXC motif similar to that of thiol/disulphide oxidoreductases and isomerases, and may thus reduce the endoplasmic reticulum stress caused by incorrectly folded proteins. We show for the first time the nuclear magnetic resonance assignment of N-terminal domain of recombinant CDNF (residues 1-105) by solution 2D and 3D NMR spectroscopy. We were able to obtain a nearly complete resonance assignment, which is the first step toward the solution structure determination of this neurotrophic factor. PMID:22528768

  11. Glial cell line-derived neurotrophic factor protects against high-fat diet-induced hepatic steatosis by suppressing hepatic PPAR-γ expression.

    PubMed

    Mwangi, Simon Musyoka; Peng, Sophia; Nezami, Behtash Ghazi; Thorn, Natalie; Farris, Alton B; Jain, Sanjay; Laroui, Hamed; Merlin, Didier; Anania, Frank; Srinivasan, Shanthi

    2016-01-15

    Glial cell line-derived neurotrophic factor (GDNF) protects against high-fat diet (HFD)-induced hepatic steatosis in mice, however, the mechanisms involved are not known. In this study we investigated the effects of GDNF overexpression and nanoparticle delivery of GDNF in mice on hepatic steatosis and fibrosis and the expression of genes involved in the regulation of hepatic lipid uptake and de novo lipogenesis. Transgenic overexpression of GDNF in liver and other metabolically active tissues was protective against HFD-induced hepatic steatosis. Mice overexpressing GDNF had significantly reduced P62/sequestosome 1 protein levels suggestive of accelerated autophagic clearance. They also had significantly reduced peroxisome proliferator-activated receptor-γ (PPAR-γ) and CD36 gene expression and protein levels, and lower expression of mRNA coding for enzymes involved in de novo lipogenesis. GDNF-loaded nanoparticles were protective against short-term HFD-induced hepatic steatosis and attenuated liver fibrosis in mice with long-standing HFD-induced hepatic steatosis. They also suppressed the liver expression of steatosis-associated genes. In vitro, GDNF suppressed triglyceride accumulation in Hep G2 cells through enhanced p38 mitogen-activated protein kinase-dependent signaling and inhibition of PPAR-γ gene promoter activity. These results show that GDNF acts directly in the liver to protect against HFD-induced cellular stress and that GDNF may have a role in the treatment of nonalcoholic fatty liver disease. PMID:26564715

  12. The Three-Dimensional Culture System with Matrigel and Neurotrophic Factors Preserves the Structure and Function of Spiral Ganglion Neuron In Vitro

    PubMed Central

    Sun, Gaoying; Liu, Wenwen; Fan, Zhaomin; Zhang, Daogong; Han, Yuechen; Xu, Lei; Qi, Jieyu; Zhang, Shasha; Gao, Bradley T.; Bai, Xiaohui; Li, Jianfeng; Chai, Renjie; Wang, Haibo

    2016-01-01

    Whole organ culture of the spiral ganglion region is a resourceful model system facilitating manipulation and analysis of live sprial ganglion neurons (SGNs). Three-dimensional (3D) cultures have been demonstrated to have many biomedical applications, but the effect of 3D culture in maintaining the SGNs structure and function in explant culture remains uninvestigated. In this study, we used the matrigel to encapsulate the spiral ganglion region isolated from neonatal mice. First, we optimized the matrigel concentration for the 3D culture system and found the 3D culture system protected the SGNs against apoptosis, preserved the structure of spiral ganglion region, and promoted the sprouting and outgrowth of SGNs neurites. Next, we found the 3D culture system promoted growth cone growth as evidenced by a higher average number and a longer average length of filopodia and a larger growth cone area. 3D culture system also significantly elevated the synapse density of SGNs. Last, we found that the 3D culture system combined with neurotrophic factors had accumulated effects in promoting the neurites outgrowth compared with 3D culture or NFs treatment only groups. Together, we conclude that the 3D culture system preserves the structure and function of SGN in explant culture. PMID:27057364

  13. Deconstructing brain-derived neurotrophic factor actions in adult brain circuits to bridge an existing informational gap in neuro-cell biology.

    PubMed

    Bowling, Heather; Bhattacharya, Aditi; Klann, Eric; Chao, Moses V

    2016-03-01

    Brain-derived neurotrophic factor (BDNF) plays an important role in neurodevelopment, synaptic plasticity, learning and memory, and in preventing neurodegeneration. Despite decades of investigations into downstream signaling cascades and changes in cellular processes, the mechanisms of how BDNF reshapes circuits in vivo remain unclear. This informational gap partly arises from the fact that the bulk of studies into the molecular actions of BDNF have been performed in dissociated neuronal cultures, while the majority of studies on synaptic plasticity, learning and memory were performed in acute brain slices or in vivo. A recent study by Bowling-Bhattacharya et al., measured the proteomic changes in acute adult hippocampal slices following treatment and reported changes in proteins of neuronal and non-neuronal origin that may in concert modulate synaptic release and secretion in the slice. In this paper, we place these findings into the context of existing literature and discuss how they impact our understanding of how BDNF can reshape the brain. PMID:27127458

  14. Deconstructing brain-derived neurotrophic factor actions in adult brain circuits to bridge an existing informational gap in neuro-cell biology

    PubMed Central

    Bowling, Heather; Bhattacharya, Aditi; Klann, Eric; Chao, Moses V.

    2016-01-01

    Brain-derived neurotrophic factor (BDNF) plays an important role in neurodevelopment, synaptic plasticity, learning and memory, and in preventing neurodegeneration. Despite decades of investigations into downstream signaling cascades and changes in cellular processes, the mechanisms of how BDNF reshapes circuits in vivo remain unclear. This informational gap partly arises from the fact that the bulk of studies into the molecular actions of BDNF have been performed in dissociated neuronal cultures, while the majority of studies on synaptic plasticity, learning and memory were performed in acute brain slices or in vivo. A recent study by Bowling-Bhattacharya et al., measured the proteomic changes in acute adult hippocampal slices following treatment and reported changes in proteins of neuronal and non-neuronal origin that may in concert modulate synaptic release and secretion in the slice. In this paper, we place these findings into the context of existing literature and discuss how they impact our understanding of how BDNF can reshape the brain. PMID:27127458

  15. Antagonist Targeting microRNA-155 Protects against Lithium-Pilocarpine-Induced Status Epilepticus in C57BL/6 Mice by Activating Brain-Derived Neurotrophic Factor

    PubMed Central

    Cai, Zhengxu; Li, Song; Li, Sheng; Song, Fan; Zhang, Zhen; Qi, Guanhua; Li, Tianbai; Qiu, Juanjuan; Wan, Jiajia; Sui, Hua; Guo, Huishu

    2016-01-01

    Epilepsy is a severe brain disorder affecting numerous patients. Recently, it is inferred that modulation of microRNA-155 (miR-155) could serve as a promising treatment of mesial temporal lobe epilepsy. In the current study, the therapeutic potential of miR-155 antagonist against temporal lobe epilepsy (TLE) was evaluated and the underlying mechanism involved in this regulation was explored. TLE model was induced by lithium-pilocarpine method. The effect of miR-155 antagonist on epilepticus symptoms of TLE mice was assessed using Racine classification and electroencephalogram (EEG) recordings. The expression of brain-derived neurotrophic factor (BDNF) and its association with miR-155 were also assessed with a series of experiments. Our results showed that level of miR-155 was significantly up-regulated after induction of TLE model. Based on the results of EEG and behavior analyses, seizures in mice were alleviated by miR-155 antagonist. Moreover, administration of miR-155 antagonist also significantly increased the level of BDNF. The results of dual luciferase assay and Western blotting showed that miR-155 antagonist exerted its action on status epilepticus by directly regulating the activity of BDNF. Taken all the information together, our results demonstrated that miR-155 antagonist might firstly induce the expression of BDNF, which then contributed to the alleviation of epilepsy in the current study. PMID:27303295

  16. Beyond the Hypothesis of Serum Anticholinergic Activity in Alzheimer's Disease: Acetylcholine Neuronal Activity Modulates Brain-Derived Neurotrophic Factor Production and Inflammation in the Brain.

    PubMed

    Hachisu, Mitsugu; Konishi, Kimiko; Hosoi, Misa; Tani, Masayuki; Tomioka, Hiroi; Inamoto, Atsuko; Minami, Sousuke; Izuno, Takuji; Umezawa, Kaori; Horiuchi, Kentaro; Hori, Koji

    2015-01-01

    The brain of Alzheimer's disease (AD) patients is characterized by neurodegeneration, especially an acetylcholine (ACh) neuronal deficit with accumulation of β-amyloid protein, which leads to oxygen stress and inflammation. The active oxygen directly damages the neuron by increasing intracellular Ca(2+). The inflammation is due to activation of the microglia, thereby producing cytokines which inhibit the production of brain-derived neurotrophic factor (BDNF). As the BDNF acts by neuronal protection, synaptogenesis and neurogenesis, the reduction of BDNF in the brain of AD patients worsens the symptoms of AD. On the other hand, treatment of AD patients with a cholinesterase inhibitor enhances ACh activity and inhibits inflammation. Then the expression of BDNF is restored and neuroprotection reestablished. However, there are several reports which showed controversial results concerning the relationship between BDNF and AD. We speculate that BDNF is related to some neurocognitive process and reflects neuronal activity in other neurodegenerative and neuropsychiatric disorders and that in the mild cognitive impairment stage, BDNF and choline acetyltransferase (ChAT) activities are hyperactivated because of a compensatory mechanism of AD pathology. In contrast, in the mild stage of AD, BDNF and ChAT activity are downregulated. PMID:26138497

  17. Serum brain-derived neurotrophic factor (BDNF) levels in patients with panic disorder: as a biological predictor of response to group cognitive behavioral therapy.

    PubMed

    Kobayashi, Keisuke; Shimizu, Eiji; Hashimoto, Kenji; Mitsumori, Makoto; Koike, Kaori; Okamura, Naoe; Koizumi, Hiroki; Ohgake, Shintaro; Matsuzawa, Daisuke; Zhang, Lin; Nakazato, Michiko; Iyo, Masaomi

    2005-06-01

    Little is known about biological predictors of treatment response in panic disorder. Our previous studies show that the brain-derived neurotrophic factor (BDNF) may play a role in the pathophysiology of major depressive disorders and eating disorders. Assuming that BDNF may be implicated in the putative common etiologies of depression and anxiety, the authors examined serum BDNF levels of the patients with panic disorder, and its correlation with therapeutic response to group cognitive behavioral therapy (CBT). Group CBT (10 consecutive 1 h weekly sessions) was administered to the patients with panic disorder after consulting the panic outpatient special service. Before treatment, serum concentrations of BDNF and total cholesterol were measured. After treatment, we defined response to therapy as a 40% reduction from baseline on Panic Disorder Severity Scale (PDSS) score as described by [Barlow, D.H., Gorman, J.M., Shear, M.K., Woods, S.W., 2000. Cognitive-behavioral therapy, imipramine, or their combination for panic disorder: A randomized controlled trial. JAMA. 283, 2529-2536]. There were 26 good responders and 16 poor responders. 31 age- and sex-matched healthy normal control subjects were also recruited in this study. The serum BDNF levels of the patients with poor response (25.9 ng/ml [S.D. 8.7]) were significantly lower than those of the patients with good response (33.7 ng/ml [S.D. 7.5]). However, there were no significant differences in both groups of the patients, compared to the normal controls (29.1 ng/ml [S.D. 7.1]). No significant differences of other variables including total cholesterol levels before treatment were detected between good responders and poor responders. These results suggested that BDNF might contribute to therapeutic response of panic disorder. A potential link between an increased risk of secondary depression and BDNF remains to be investigated in the future. PMID:15905010

  18. Accelerated recovery from acute brain injuries: clinical efficacy of neurotrophic treatment in stroke and traumatic brain injuries.

    PubMed

    Bornstein, N; Poon, W S

    2012-04-01

    Stroke is one of the most devastating vascular diseases in the world as it is responsible for almost five million deaths per year. Almost 90% of all strokes are ischemic and mainly due to atherosclerosis, cardiac embolism and small-vessel disease. Intracerebral or subarachnoid hemorrhage can lead to hemorrhagic stroke, which usually has the poorest prognosis. Cerebrolysin is a peptide preparation which mimics the action of a neurotrophic factor, protecting stroke-injured neurons and promoting neuroplasticity and neurogenesis. Cerebrolysin has been widely studied as a therapeutic tool for both ischemic and hemorrhagic stroke, as well as traumatic brain injury. In ischemic stroke, Cerebrolysin given as an adjuvant therapy to antiplatelet and rheologically active medication resulted in accelerated improvement in global, neurological and motor functions, cognitive performance and activities of daily living. Cerebrolysin was also safe and well tolerated when administered in patients suffering from hemorrhagic stroke. Traumatic brain injury leads to transient or chronic impairments in physical, cognitive, emotional and behavioral functions. This is associated with deficits in the recognition of basic emotions, the capacity to interpret the mental states of others, and executive functioning. Pilot clinical studies with adjuvant Cerebrolysin in the acute and postacute phases of the injury have shown faster recovery, which translates into an earlier onset of rehabilitation and shortened hospitalization time. PMID:22514794

  19. Influence of brain-derived neurotrophic factor (BDNF) on serotonin neurotransmission in the hippocampus of adult rodents.

    PubMed

    Benmansour, Saloua; Deltheil, Thierry; Piotrowski, Jonathan; Nicolas, Lorelei; Reperant, Christelle; Gardier, Alain M; Frazer, Alan; David, Denis J

    2008-06-10

    Whereas SSRIs produce rapid blockade of the serotonin transporter (SERT) in vitro and in vivo, the onset of an observable clinical effect takes longer to occur and a variety of pharmacological effects caused by antidepressants have been speculated to be involved either in initiating antidepressant effects and/or enhancing their effects on serotonergic transmission so as to cause clinical improvement. Among such secondary factors is increased activity of brain-derived neurotrophic factor (BDNF), which requires the Tropomyosine-related kinase B receptor (TrkB) for its effects. To begin an analysis of the influence of BDNF on serotonergic activity, we studied the acute effects of BDNF on SERT activity. A single BDNF injection (either intracerebroventricularly or directly into the CA3 region of hippocampus) decreased the signal amplitude and clearance rate produced by exogenously applied 5-HT compared to what was measured in control rats, shown using in vivo chronoamperometry. It also reduced the ability of a locally applied SSRI to block the clearance of 5-HT. In awake freely moving mice, acute intrahippocampal injection of BDNF decreased extracellular levels of 5-HT in the hippocampus, as measured using microdialysis. In addition, perfusion with BDNF decreased KCl-evoked elevations of 5-HT. These effects of BDNF were blocked by the non-selective antagonist of TrkB receptors, K252a. Overall, it may be inferred that in the hippocampus, through TrkB activation, a single injection of BDNF enhances SERT function. Such acute effects of BDNF would be expected to counter early effects of SSRIs, which might, in part, account for some delay in therapeutic effect. PMID:18474368

  20. Sodium Benzoate, a Metabolite of Cinnamon and a Food Additive, Upregulates Ciliary Neurotrophic Factor in Astrocytes and Oligodendrocytes.

    PubMed

    Modi, Khushbu K; Jana, Malabendu; Mondal, Susanta; Pahan, Kalipada

    2015-11-01

    Ciliary neurotrophic factor (CNTF) is a promyelinating trophic factor that plays an important role in multiple sclerosis (MS). However, mechanisms by which CNTF expression could be increased in the brain are poorly understood. Recently we have discovered anti-inflammatory and immunomodulatory activities of sodium benzoate (NaB), a metabolite of cinnamon and a widely-used food additive. Here, we delineate that NaB is also capable of increasing the mRNA and protein expression of CNTF in primary mouse astrocytes and oligodendrocytes and primary human astrocytes. Accordingly, oral administration of NaB and cinnamon led to the upregulation of astroglial and oligodendroglial CNTF in vivo in mouse brain. Induction of experimental allergic encephalomyelitis, an animal model of MS, reduced the level of CNTF in the brain, which was restored by oral administration of cinnamon. While investigating underlying mechanisms, we observed that NaB induced the activation of protein kinase A (PKA) and H-89, an inhibitor of PKA, abrogated NaB-induced expression of CNTF. The activation of cAMP response element binding (CREB) protein by NaB, the recruitment of CREB and CREB-binding protein to the CNTF promoter by NaB and the abrogation of NaB-induced expression of CNTF in astrocytes by siRNA knockdown of CREB suggest that NaB increases the expression of CNTF via the activation of CREB. These results highlight a novel myelinogenic property of NaB and cinnamon, which may be of benefit for MS and other demyelinating disorders. PMID:26399250

  1. Ciliary neurotrophic factor promotes the activation of corneal epithelial stem/progenitor cells and accelerates corneal epithelial wound healing.

    PubMed

    Zhou, Qingjun; Chen, Peng; Di, Guohu; Zhang, Yangyang; Wang, Yao; Qi, Xia; Duan, Haoyun; Xie, Lixin

    2015-05-01

    Ciliary neurotrophic factor (CNTF), a well-known neuroprotective cytokine, has been found to play an important role in neurogenesis and functional regulations of neural stem cells. As one of the most innervated tissue, however, the role of CNTF in cornea epithelium remains unclear. This study was to explore the roles and mechanisms of CNTF in the activation of corneal epithelial stem/progenitor cells and wound healing of both normal and diabetic mouse corneal epithelium. In mice subjecting to mechanical removal of corneal epithelium, the corneal epithelial stem/progenitor cell activation and wound healing were promoted by exogenous CNTF application, while delayed by CNTF neutralizing antibody. In cultured corneal epithelial stem/progenitor cells, CNTF enhanced the colony-forming efficiency, stimulated the mitogenic proliferation, and upregulated the expression levels of corneal epithelial stem/progenitor cell-associated transcription factors. Furthermore, the promotion of CNTF on the corneal epithelial stem/progenitor cell activation and wound healing was mediated by the activation of STAT3. Moreover, in diabetic mice, the content of CNTF in corneal epithelium decreased significantly when compared with that of normal mice, and the supplement of CNTF promoted the diabetic corneal epithelial wound healing, accompanied with the advanced activation of corneal epithelial stem/progenitor cells and the regeneration of corneal nerve fibers. Thus, the capability of expanding corneal epithelial stem/progenitor cells and promoting corneal epithelial wound healing and nerve regeneration indicates the potential application of CNTF in ameliorating limbal stem cell deficiency and treating diabetic keratopathy. PMID:25546438

  2. A neuroprotective role of glial cell line-derived neurotrophic factor following moderate spinal cord contusion injury.

    PubMed

    Iannotti, Christopher; Ping Zhang, Y; Shields, Christopher B; Han, Yingchun; Burke, Darlene A; Xu, Xiao-Ming

    2004-10-01

    The present study investigated neuroprotective effects of glial cell line-derived neurotrophic factor (GDNF), a distant member of the transforming growth factor-beta (TGF-beta) superfamily, following moderate contusive spinal cord injury (SCI) in adult rats. A T11 spinal cord contusion injury was made using an Infinite Horizon impactor (IH; impact force=150 kDyn) and recombinant human GDNF at two concentrations (rhGDNF; 1 or 5 microg/microl), or saline vehicle was delivered intrathecally for 28 days using an Alzet miniosmotic pump. We demonstrated that, at 7 weeks postinjury, GDNF infusion significantly reduced the total lesion volume by 34-42% (assessed stereologically) and increased the percentage of white matter sparing by 10-13% (measured at the injury epicenter), as compared to the vehicle infusion. Retrograde tracing revealed that GDNF infusion resulted in a significant increase in the number of FluoroGold (FG)-labeled neurons in propriospinal regions as well as in two supraspinal regions, that is, the medullary and pontine reticular formation, and the lateral vestibular nucleus. Immunofluorescent staining confirmed that the spared white matter contained neurofilament-positive axons. However, transcranial magnetic motor-evoked potential (tcMMEP) assessment revealed no significant difference in onset latency and amplitude between the GDNF- and vehicle-infused groups. These results suggest that GDNF has a strong neuroprotective effect on white matter sparing and the sparing of a subset of proprio- and supraspinal axons following injury. However, a return of tcMMEPs requires the sparing and/or myelination of axons in a defined region of the white matter which was either not spared or remyelinated at this level of injury severity. PMID:15380482

  3. Brain Derived Neurotrophic Factor and Cognitive Status: The Delicate Balance Among People Living with HIV, with and without Alcohol Abuse

    PubMed Central

    Míguez-Burbano, María José; Espinoza, Luis; Whitehead, Nicole Ennis; Bryant, Vaughn E.; Vargas, Mayra; Cook, Robert L.; Quiros, Clery; Lewis, John E.; Deshratan, Asthana

    2015-01-01

    Introduction The advent of combination antiretroviral therapy(cART) has lead to a significant reduction in morbidity and mortality among people living with HIV(PLWH). However, HIV-associated neurocognitive disorders (HAND) still remain a significant problem. One possible mechanism for the persistence of these disorders is through the effect of HIV on brain-derived neurotrophic factor (BDNF). BDNF is influenced by various factors including hazardous alcohol use (HAU), which is prevalent among PLWH. This study attempts to elucidate the relationships between HAU, BDNF and HAND. Methods Cross-sectional analyses were conducted on a sample of 199 hazardous alcohol users and 198 non-HAU living with HIV. Members of each group were matched according to sociodemographic characteristics and CD4 count. Research procedures included validated questionnaires, neuropsychological assessments and a blood sample to obtain BDNF and immune measurements. Results Hazardous alcohol users showed either significantly lower or significantly higher BDNF levels compared to the Non-hazardous (OR=1,4; 95% CI: 1–2.1, p = 0.003). Therefore, for additional analyses, subjects were categorized based on BDNF values in: Group 1 < 4000, Group 2: 4001–7,999 (reference group), and Group 3 for those >8,000 pg/mL. Groups 1 and 3 performed significantly worse than those in Group 2 in the domains of processing speed, auditory-verbal and visuospatial learning and memory. Multivariate analyses confirmed that HAU and BDNF are significant contributors of HAND. Conclusion Our findings offer novel insights into the relationships between BDNF, and alcohol use among PLWH. Our results also lend support to expanding clinical movement to use BDNF as an intervention target for PLWH, in those with evidence of deficiencies, and highlight the importance of including HAU at the inception of clinical trials. PMID:25053366

  4. DNA methyltransferase 3, a target of microRNA-29c, contributes to neuronal proliferation by regulating the expression of brain-derived neurotrophic factor.

    PubMed

    Yang, Guoshuai; Song, Yanmin; Zhou, Xiaoyan; Deng, Yidong; Liu, Tao; Weng, Guohu; Yu, Dan; Pan, Suyue

    2015-07-01

    Alzheimer's disease (AD), the most common form of dementia in the aged population, presents an increasing clinical challenge in terms of diagnosis and treatment. Neurodegeneration is one of the hallmarks of AD, which consequently induces cognitive impairment. Brain-derived neurotrophic factor (BDNF), a neuroprotective factor, has been implicated in neuronal survival and proliferation. The epigenetic mechanism of BDNF methylation may be responsible for the reduced expression of BDNF in patients with AD. DNA methyltransferase may contribute to the methylation of BDNF, which is involved in neuroprotection in AD. In addition, epigenetic modifications, including a combination of microRNAs (miRNAs/miRs) and DNA methylation, have been suggested as regulatory mechanisms in the control of neuronal survival. In the present study, the expression of miR-29c was determined in the cerebrospinal fluid (CSF) of patients with AD and of healthy control individuals. A marked decrease in the expression of miR-29c was observed in the AD group compared with the normal control group, accompanied by a decreased in the expression of BDNF. Additionally, a significant increase in the expression of DNA methyltransferase 3 (DNMT3) was observed in the CSF from the patients with AD. Correlation analysis revealed that the expression of miR-29c was positively correlated with BDNF and negatively correlated with DNMT3 protein in the CSF of patients with AD. In addition, the regulatory association between miR-29c, DNMT3 and BDNF were also examined in vitro. It was demonstrated that miR-29c directly targeted DNMT3 and contributed to neuronal proliferation by regulating the expression of BDNF, at least partially, through enhancing the activity of the tyrosine receptor kinase B/extracellular signal-regulated kinase signaling pathway. In conclusion, the present study suggested that miR-29c may be a promising potential therapeutic target in the treatment of AD. PMID:25815896

  5. MATERNAL DEPRIVATION AND ADOLESCENT CANNABINOID EXPOSURE IMPACT HIPPOCAMPAL ASTROCYTES, CB1 RECEPTORS AND BRAIN-DERIVED NEUROTROPHIC FACTOR IN A SEXUALLY DIMORPHIC FASHION

    PubMed Central

    LÓPEZ-GALLARDO, M.; LÓPEZ-RODRÍGUEZ, A. B.; LLORENTE-BERZAL, Á.; ROTLLANT, D.; MACKIE, K.; ARMARIO, A.; NADAL, R.; VIVEROS, M.-P.

    2013-01-01

    We have recently reported that early maternal deprivation (MD) for 24 h [postnatal day (PND) 9–10] and/or an adolescent chronic treatment with the cannabinoid agonist CP-55,940 (CP) [0.4 mg/kg, PND 28–42] in Wistar rats induced, in adulthood, diverse sex-dependent long-term behavioral and physiological modifications. Here we show the results obtained from investigating the immunohistochemical analysis of CB1 cannabinoid receptors, glial fibrillary acidic protein (GFAP) positive (+) cells and brain-derived neurotrophic factor (BDNF) expression in the hippocampus of the same animals. MD induced, in males, a significant increase in the number of GFAP+ cells in CA1 and CA3 areas and in the polymorphic layer of the dentate gyrus (DG), an effect that was attenuated by CP in the two latter regions. Adolescent cannabinoid exposure induced, in control non-deprived males, a significant increase in the number of GFAP+ cells in the polymorphic layer of the DG. MD induced a decrease in CB1 expression in both sexes, and this effect was reversed in males by the cannabinoid treatment. In turn, the drug “per se” induced, in males, a general decrease in CB1 immunoreactivity, and the opposite effect was observed in females. Cannabinoid exposure tended to reduce BDNF expression in CA1 and CA3 of females, whereas MD counteracted this trend and induced an increase of BDNF in females. As a whole, the present results show sex-dependent long-term effects of both MD and juvenile cannabinoid exposure as well as functional interactions between the two treatments. PMID:22001306

  6. Brain-derived neurotrophic factor, acting at the spinal cord level, participates in bladder hyperactivity and referred pain during chronic bladder inflammation.

    PubMed

    Frias, B; Allen, S; Dawbarn, D; Charrua, A; Cruz, F; Cruz, C D

    2013-03-27

    Brain-derived neurotrophic factor (BDNF) is a neurotrophin (NT) known to participate in chronic somatic pain. A recent study has indicated that BDNF may participate in chronic cystitis at the peripheral level. However, the principal site of action for this NT is the central nervous system, most notably the spinal cord. The effects of centrally-acting BDNF on bladder function in normal animals and its central role during chronic cystitis are presently unknown. The present study was undertaken to clarify this issue. For that purpose, control non-inflamed animals were intrathecally injected with BDNF, after which bladder function was evaluated. This treatment caused short-lasting bladder hyperactivity; whereas chronic intrathecal administration of BDNF did not elicit this effect. Cutaneous sensitivity was assessed by mechanical allodynia as an internal control of BDNF action. To ascertain the role of BDNF in bladder inflammation, animals with cyclophosphamide-induced cystitis received intrathecal injections of either a general Trk receptor antagonist or a BDNF scavenger. Blockade of Trk receptors or BDNF sequestration notably improved bladder function. In addition, these treatments also reduced referred pain, typically observed in rats with chronic cystitis. Reduction of referred pain was accompanied by a decrease in the spinal levels of extracellular signal-regulated kinase (ERK) phosphorylation, a marker of increased sensory barrage in the lumbosacral spinal cord, and spinal BDNF expression. Results obtained here indicate that BDNF, acting at the spinal cord level, contributes to bladder hyperactivity and referred pain, important hallmarks of chronic cystitis. In addition, these data also support the development of BDNF modulators as putative therapeutic options for the treatment of chronic bladder inflammation. PMID:23313710

  7. [Influence of cortical neurotrophic factors on the neurocytokine production system in acute hemorrhagic stroke].

    PubMed

    Kul'chikov, A E; Kositsyn, N S; Svinov, M M; Vasil'eva, I G; Makarenko, A N

    2009-01-01

    The mechanism of therapeutic action of cortical neurotropic factors (CNTF) was studied in hemorrhagic stroke. In intracerebral hemorrhage, CNTFs were shown to elevate the level of nerve growth factor mRNA and at the same time, produce no effect on its level in intact animals. The neuroactivating action of CNTF in the acute phase of hemorrhagic stroke was achieved by intranasal administration due to the retrograde axon transport of CNTF molecules along the olfactory nerve fibers to the brain, by passing the blood-brain barrier. It was ascertained that the molecules of tritium-labeled CHTF accumulated in the central nervous system following 20 minutes and the level of label accumulation is proportionally increased after 120 minutes. The pattern of accumulation of the intranasally administered label in the olfactory tract and olfactory bulb proves CNTF transportation along these structures of the nervous system. Therefore, when intranasally administered, CNTFs are able to transport to the central nervous system along the olfactory tract and to enhance the expression of nerve growth factor mRNA in hemorrhagic stroke. PMID:19919011

  8. Peripheral brain-derived neurotrophic factor in autism spectrum disorder: a systematic review and meta-analysis

    PubMed Central

    Zheng, Zhen; Zhang, Li; Zhu, Tingting; Huang, Jichong; Qu, Yi; Mu, Dezhi

    2016-01-01

    Brain-derived neurotrophic factor (BDNF) regulates neuronal survival and growth and promotes synaptic plasticity. Recently, researchers have begun to explore the relationship between peripheral BDNF levels and autism spectrum disorder (ASD), but the findings are inconsistent. We undertook the first systematic review and meta-analysis of studies examining peripheral BDNF levels in ASD compared with healthy controls. The PubMed, Embase, and Cochrane Library databases were searched for studies published before February 2016. Fourteen studies involving 2,707 participants and 1,131 incident cases were included. The meta-analysis provided evidence of higher peripheral BDNF levels in ASD compared with controls [standardized mean difference (SMD) = 0.63, 95% confidence interval (95% CI) = 0.18–1.08; P = 0.006]. Subgroup analyses revealed higher BDNF levels in ASD compared with controls for both serum [SMD = 0.58, 95% CI = 0.11–1.04; P = 0.02] and plasma [SMD = 1.27, 95% CI = 0.92–1.61; P < 0.001]. Studies of childhood yielded similar cumulative effect size [SMD = 0.78, 95% CI = 0.31–1.26; P = 0.001], while this was not true for the studies of adulthood [SMD = 0.04, 95% CI = −1.72–1.80; P = 0.97]. This meta-analysis suggests that peripheral BDNF levels are a potential biomarker of ASD. PMID:27506602

  9. Postnatal Expression of Neurotrophic Factors Accessible to Spiral Ganglion Neurons in the Auditory System of Adult Hearing and Deafened Rats

    PubMed Central

    Bailey, Erin M.

    2014-01-01

    Spiral ganglion neurons (SGNs) receive input from cochlear hair cells and project from the cochlea to the cochlear nucleus. After destruction of hair cells with aminoglycoside antibiotics or noise, SGNs gradually die. It has been assumed that SGN death is attributable to loss of neurotrophic factors (NTFs) derived from hair cells or supporting cells in the organ of Corti (OC). We used quantitative PCR (qPCR) to assay NTF expression—neurotrophin-3 (NT-3), BDNF, GDNF, neurturin, artemin, and CNTF—in the OC and cochlear nucleus at various ages from postnatal day 0 (P0) to P90 in control hearing and neonatally deafened rats. NT-3, neurturin, and CNTF were most abundant in the postnatal hearing OC; CNTF and neurturin most abundant in the cochlear nucleus. In the OC, NT-3 and CNTF showed a postnatal increase in expression approximately concomitant with hearing onset. In rats deafened by daily kanamycin injections (from P8 to P16), surviving inner hair cells were evident at P16 but absent by P19, with most postsynaptic boutons lost before P16. NT-3 and CNTF, which normally increase postnatally, had significantly reduced expression in the OC of deafened rats, although CNTF was expressed throughout the time that SGNs were dying. In contrast, neurturin expression was constant, unaffected by deafening or by age. CNTF and neurturin expression in the cochlear nucleus was unaffected by deafening or age. Thus, NTFs other than NT-3 are available to SGNs even as they are dying after deafening, apparently conflicting with the hypothesis that SGN death is attributable to lack of NTFs. PMID:25253857

  10. Opposite effects of a high-fat diet and calorie restriction on ciliary neurotrophic factor signaling in the mouse hypothalamus

    PubMed Central

    Severi, Ilenia; Perugini, Jessica; Mondini, Eleonora; Smorlesi, Arianna; Frontini, Andrea; Cinti, Saverio; Giordano, Antonio

    2013-01-01

    In the mouse hypothalamus, ciliary neurotrophic factor (CNTF) is mainly expressed by ependymal cells and tanycytes of the ependymal layer covering the third ventricle. Since exogenously administered CNTF causes reduced food intake and weight loss, we tested whether endogenous CNTF might be involved in energy balance regulation. We thus evaluated CNTF production and responsiveness in the hypothalamus of mice fed a high-fat diet (HFD), of ob/ob obese mice, and of mice fed a calorie restriction (CR) regimen. RT-PCR showed that CNTF mRNA increased significantly in HFD mice and decreased significantly in CR animals. Western blotting confirmed that CNTF expression was higher in HFD mice and reduced in CR mice, but high interindividual variability blunted the significance of these differences. By immunohistochemistry, hypothalamic tuberal and mammillary region tanycytes stained strongly for CNTF in HFD mice, whereas CR mice exhibited markedly reduced staining. RT-PCR and Western blotting disclosed that changes in CNTF expression were paralleled by changes in the expression of its specific receptor, CNTF receptor α (CNTFRα). Injection of recombinant CNTF and detection of phospho-signal transducer and activator of transcription 3 (P-STAT3) showed that CNTF responsiveness by the ependymal layer, mainly by tanycytes, was higher in HFD than CR mice. In addition, in HFD mice CNTF administration induced distinctive STAT3 signaling in a large neuron population located in the dorsomedial and ventromedial nuclei, perifornical area and mammillary body. The hypothalamic expression of CNTF and CNTFRα did not change in the hyperphagic, leptin-deficient ob/ob obese mice; accordingly, P-STAT3 immunoreactivity in CNTF-treated ob/ob mice was confined to ependymal layer and arcuate neurons. Collectively, these data suggest that hypothalamic CNTF is involved in controlling the energy balance and that CNTF signaling plays a role in HFD obese mice at specific sites. PMID:24409114

  11. Ciliary Neurotrophic Factor Stimulates Muscle Glucose Uptake by a PI3-Kinase–Dependent Pathway That Is Impaired With Obesity

    PubMed Central

    Steinberg, Gregory R.; Watt, Matthew J.; Ernst, Matthias; Birnbaum, Morris J.; Kemp, Bruce E.; Jørgensen, Sebastian Beck

    2009-01-01

    OBJECTIVE Ciliary neurotrophic factor (CNTF) reverses muscle insulin resistance by increasing fatty acid oxidation through gp130-LIF receptor signaling to the AMP-activated protein kinase (AMPK). CNTF also increases Akt signaling in neurons and adipocytes. Because both Akt and AMPK regulate glucose uptake, we investigated muscle glucose uptake in response to CNTF signaling in lean and obese mice. RESEARCH DESIGN AND METHODS Mice were injected intraperitoneally with saline or CNTF, and blood glucose was monitored. The effects of CNTF on skeletal muscle glucose uptake and AMPK/Akt signaling were investigated in incubated soleus and extensor digitorum longus (EDL) muscles from muscle-specific AMPKα2 kinase-dead, gp130ΔSTAT, and lean and obese ob/ob and high-fat–fed mice. The effect of C2-ceramide on glucose uptake and gp130 signaling was also examined. RESULTS CNTF reduced blood glucose and increased glucose uptake in isolated muscles in a time- and dose-dependent manner with maximal effects after 30 min with 100 ng/ml. CNTF increased Akt-S473 phosphorylation in soleus and EDL; however, AMPK-T172 phosphorylation was only increased in soleus. Incubation of muscles from AMPK kinase dead (KD) and wild-type littermates with the PI3-kinase inhibitor LY-294002 demonstrated that PI3-kinase, but not AMPK, was essential for CNTF-stimulated glucose uptake. CNTF-stimulated glucose uptake and Akt phosphorylation were substantially reduced in obesity (high-fat diet and ob/ob) despite normal induction of gp130/AMPK signaling—effects also observed when treating myotubes with C2-ceramide. CONCLUSIONS CNTF acutely increases muscle glucose uptake by a mechanism involving the PI3-kinase/Akt pathway that does not require AMPK. CNTF-stimulated glucose uptake is impaired in obesity-induced insulin resistance and by ceramide. PMID:19136654

  12. The neuroprotective effects of preconditioning exercise on brain damage and neurotrophic factors after focal brain ischemia in rats.

    PubMed

    Otsuka, Shotaro; Sakakima, Harutoshi; Sumizono, Megumi; Takada, Seiya; Terashi, Takuto; Yoshida, Yoshihiro

    2016-04-15

    Preconditioning exercise can exert neuroprotective effects after stroke. However, the mechanism underlying these neuroprotective effects by preconditioning exercise remains unclear. We investigated the neuroprotective effects of preconditioning exercise on brain damage and the expression levels of the midkine (MK) and brain-derived neurotrophic factor (BDNF) after brain ischemia. Animals were assigned to one of 4 groups: exercise and ischemia (Ex), no exercise and ischemia (No-Ex), exercise and no ischemia (Ex-only), and no exercise and intact (Control). Rats ran on a treadmill for 30 min once a day at a speed of 25 m/min for 5 days a week for 3 weeks. After the exercise program, stroke was induced by a 60 min left middle cerebral artery occlusion using an intraluminal filament. The infarct volume, motor function, neurological deficits, and the cellular expressions levels of MK, BDNF, GFAP, PECAM-1, caspase 3, and nitrotyrosine (NT) were evaluated 48 h after the induction of ischemia. The infarct volume, neurological deficits and motor function in the Ex group were significantly improved compared to that of the No-Ex group. The expression levels of MK, BDNF, GFAP, and PECAM-1 were enhanced in the Ex group compared to the expression levels in the No-Ex group after brain ischemia, while the expression levels of activated caspase 3 and NT were reduced in the area surrounding the necrotic lesion. Our findings suggest that preconditioning exercise reduced the infract volume and ameliorated motor function, enhanced expression levels of MK and BDNF, increased astrocyte proliferation, increased angiogenesis, and reduced neuronal apoptosis and oxidative stress. PMID:26808606

  13. Expression of Brain-derived Neurotrophic Factor and Tyrosine Kinase B in Cerebellum of Poststroke Depression Rat Model

    PubMed Central

    Li, Yun; Peng, Chun; Guo, Xu; You, Jun-Jie; Yadav, Harishankar Prasad

    2015-01-01

    Background: The pathophysiology of poststroke depression (PSD) remains elusive because of its proposed multifactorial nature. Accumulating evidence suggests that brain-derived neurotrophic factor (BDNF) plays a key role in the pathophysiology of depression and PSD. And the cerebellar dysfunction may be important in the etiology of depression; it is not clear whether it also has a major effect on the risk of PSD. This study aimed to explore the expression of BDNF and high-affinity receptors tyrosine kinase B (TrkB) in the cerebellum of rats with PSD. Methods: The rat models with focal cerebral ischemic were made using a thread embolization method. PSD rat models were established with comprehensive separate breeding and unpredicted chronic mild stress (UCMS) on this basis. A normal control group, depression group, and a stroke group were used to compare with the PSD group. Thirteen rats were used in each group. Immunohistochemistry and reverse transcription-polymerase chain reaction (RT-PCR) for detecting the expression of BDNF and TrkB protein and mRNA in the cerebellum were used at the 29th day following the UCMS. Results: Compared with the normal control group and the stroke group, the number of BDNF immunoreactive (IR) positive neurons was less in the PSD group (P < 0.05). Furthermore, the number of TrkB IR positive cells was significantly less in the PSD group than that in the normal control group (P < 0.05). The gene expression of BDNF and TrkB in the cerebellum of PSD rats also decreased compared to the normal control group (P < 0.05). Conclusions: These findings suggested a possible association between expression of BDNF and TrkB in the cerebellum and the pathogenesis of PSD. PMID:26521792

  14. The role of brain-derived neurotrophic factor in learned fear processing: an awake rat fMRI study.

    PubMed

    Harris, A P; Lennen, R J; Brydges, N M; Jansen, M A; Pernet, C R; Whalley, H C; Marshall, I; Baker, S; Basso, A M; Day, M; Holmes, M C; Hall, J

    2016-02-01

    Brain-derived neurotrophic factor (BDNF) signaling is implicated in the etiology of many psychiatric disorders associated with altered emotional processing. Altered peripheral (plasma) BDNF levels have been proposed as a biomarker for neuropsychiatric disease risk in humans. However, the relationship between peripheral and central BDNF levels and emotional brain activation is unknown. We used heterozygous BDNF knockdown rats (BDNF(+/-)) to examine the effects of genetic variation in the BDNF gene on peripheral and central BDNF levels and emotional brain activation as assessed by awake functional magnetic resonance imaging (fMRI). BDNF(+/-) and control rats were trained to associate a flashing light (conditioned stimulus; CS) with foot-shock, and brain activation in response to the CS was measured 24 h later in awake rats using fMRI. Central and peripheral BDNF levels were decreased in BDNF(+/-) rats compared with control rats. Activation of fear circuitry (amygdala, periaqueductal gray, granular insular) was seen in control animals; however, activation of this circuitry was absent in BDNF(+/-) animals. Behavioral experiments confirmed impaired conditioned fear responses in BDNF(+/-) rats, despite intact innate fear responses. These data confirm a positive correlation [r = 0.86, 95% confidence interval (0.55, 0.96); P = 0.0004] between peripheral and central BDNF levels and indicate a functional relationship between BDNF levels and emotional brain activation as assessed by fMRI. The results demonstrate the use of rodent fMRI as a sensitive tool for measuring brain function in preclinical translational studies using genetically modified rats and support the use of peripheral BDNF as a biomarker of central affective processing. PMID:26586578

  15. Brain-derived neurotrophic factor enhances cholinergic contraction of longitudinal muscle of rabbit intestine via activation of phospholipase C

    PubMed Central

    Al-Qudah, M.; Anderson, C. D.; Mahavadi, S.; Bradley, Z. L.; Akbarali, H. I.; Murthy, K. S.

    2013-01-01

    Brain-derived neurotrophic factor (BDNF) belongs to the neurotrophin family of proteins best known for its role in neuronal survival, differentiation, migration, and synaptic plasticity in central and peripheral neurons. BDNF is also widely expressed in nonneuronal tissues including the gastrointestinal tract. The role of BDNF in intestinal smooth muscle contractility is not well defined. The aim of this study was to identify the role of BDNF in carbachol (CCh)- and substance P (SP)-induced contraction of intestinal longitudinal smooth muscle. BDNF, selective tropomyosin-related kinase B (TrkB) receptor agonists, and pharmacological inhibitors of signaling pathways were examined for their effects on contraction of rabbit intestinal longitudinal muscle strips induced by CCh and SP. BDNF activation of intracellular signaling pathways was examined by Western blot in homogenates of muscle strips and isolated muscle cells. One-hour preincubation with BDNF enhanced intestinal muscle contraction induced by CCh but not by SP. The selective synthetic TrkB agonists LM 22A4 and 7,8-dihydroxyflavone produced similar effects to BDNF. The Trk antagonist K-252a, a TrkB antibody but not p75NTR antibody, blocked the effect of BDNF. The enhancement of CCh-induced contraction by BDNF was blocked by the phospholipase C (PLC) antagonist U73122, but not by ERK1/2 or Akt antagonists. Direct measurement in muscle strips and isolated muscle cells showed that BDNF caused phosphorylation of TrkB receptors and PLC-γ, but not ERK1/2 or Akt. We conclude that exogenous BDNF augments the CCh-induced contraction of longitudinal muscle from rabbit intestine by activating TrkB receptors and subsequent PLC activation. PMID:24356881

  16. UPREGULATION OF BRAIN-DERIVED NEUROTROPHIC FACTOR EXPRESSION IN NODOSE GANGLIA AND THE LOWER BRAINSTEM OF HYPERTENSIVE RATS

    PubMed Central

    Vermehren-Schmaedick, Anke; Jenkins, Victoria K.; Hsieh, Hui-ya; Brown, Alexandra L.; Page, Mollie P.; Brooks, Virginia L.; Balkowiec, Agnieszka

    2014-01-01

    Hypertension leads to structural and functional changes at baroreceptor synapses in the medial nucleus tractus solitarius (NTS), but the underlying molecular mechanisms remain unknown. Our previous studies show that brain-derived neurotrophic factor (BDNF) is abundantly expressed by rat nodose ganglion (NG) neurons, including baroreceptor afferents and their central terminals in the medial NTS. We hypothesized that hypertension leads to upregulation of BDNF expression in NG neurons. To test this hypothesis, we used two mechanistically distinct models of hypertension: the spontaneously hypertensive rat (SHR) and the deoxycorticosterone acetate (DOCA)-salt rat. Young adult SHRs, whose blood pressure was significantly elevated compared to age-matched Wistar-Kyoto (WKY) control rats, exhibited dramatic upregulation of BDNF mRNA and protein in the NG. BDNF transcripts from exon 4, known to be regulated by activity, and exon 9 (protein-coding region) showed the largest increases. Electrical stimulation of dispersed NG neurons with patterns that mimic baroreceptor activity during blood pressure elevations led to increases in BDNF mRNA that were also mediated through promoter 4. The increase in BDNF content of the NG in vivo was associated with a significant increase in the percentage of BDNF-immunoreactive NG neurons. Moreover, upregulation of BDNF in cell bodies of NG neurons was accompanied by a significant increase in BDNF in the NTS region, the primary central target of NG afferents. A dramatic increase in BDNF in the NG was also detected in DOCA-salt hypertensive rats. Together, our study identifies BDNF as a candidate molecular mediator of activity-dependent changes at baroafferent synapses during hypertension. PMID:23172808

  17. Upregulation of brain-derived neurotrophic factor expression in nodose ganglia and the lower brainstem of hypertensive rats.

    PubMed

    Vermehren-Schmaedick, Anke; Jenkins, Victoria K; Hsieh, Hui-ya; Brown, Alexandra L; Page, Mollie P; Brooks, Virginia L; Balkowiec, Agnieszka

    2013-02-01

    Hypertension leads to structural and functional changes at baroreceptor synapses in the medial nucleus tractus solitarius (NTS), but the underlying molecular mechanisms remain unknown. Our previous studies show that brain-derived neurotrophic factor (BDNF) is abundantly expressed by rat nodose ganglion (NG) neurons, including baroreceptor afferents and their central terminals in the medial NTS. We hypothesized that hypertension leads to upregulation of BDNF expression in NG neurons. To test this hypothesis, we used two mechanistically distinct models of hypertension, the spontaneously hypertensive rat (SHR) and the deoxycorticosterone acetate (DOCA)-salt rat. Young adult SHRs, whose blood pressure was significantly elevated compared with age-matched Wistar-Kyoto (WKY) control rats, exhibited dramatic upregulation of BDNF mRNA and protein in the NG. BDNF transcripts from exon 4, known to be regulated by activity, and exon 9 (protein-coding region) showed the largest increases. Electrical stimulation of dispersed NG neurons with patterns that mimic baroreceptor activity during blood pressure elevations led to increases in BDNF mRNA that were also mediated through promoter 4. The increase in BDNF content of the NG in vivo was associated with a significant increase in the percentage of BDNF-immunoreactive NG neurons. Moreover, upregulation of BDNF in cell bodies of NG neurons was accompanied by a significant increase in BDNF in the NTS region, the primary central target of NG afferents. A dramatic increase in BDNF in the NG was also detected in DOCA-salt hypertensive rats. Together, our study identifies BDNF as a candidate molecular mediator of activity-dependent changes at baroafferent synapses during hypertension. PMID:23172808

  18. Activity-dependent release of endogenous brain-derived neurotrophic factor from primary sensory neurons detected by ELISA in situ.

    PubMed

    Balkowiec, A; Katz, D M

    2000-10-01

    To define activity-dependent release of endogenous brain-derived neurotrophic factor (BDNF), we developed an in vitro model using primary sensory neurons and a modified ELISA, termed ELISA in situ. Dissociate cultures of nodose-petrosal ganglion cells from newborn rats were grown in wells precoated with anti-BDNF antibody to capture released BDNF, which was subsequently detected using conventional ELISA. Conventional ELISA alone was unable to detect any increase in BDNF concentration above control values following chronic depolarization with 40 mM KCl for 72 hr. However, ELISA in situ demonstrated a highly significant increase in BDNF release, from 65 pg/ml in control to 228 pg/ml in KCl-treated cultures. The efficacy of the in situ assay appears to be related primarily to rapid capture of released BDNF that prevents BDNF binding to the cultured cells. We therefore used this approach to compare BDNF release from cultures exposed for 30 min to either continuous depolarization with elevated KCl or patterned electrical field stimulation (50 biphasic rectangular pulses of 25 msec, at 20 Hz, every 5 sec). Short-term KCl depolarization was completely ineffective at evoking any detectable release of BDNF, whereas patterned electrical stimulation increased extracellular BDNF levels by 20-fold. In addition, the magnitude of BDNF release was dependent on stimulus pattern, with high-frequency bursts being most effective. These data indicate that the optimal stimulus profile for BDNF release resembles that of other neuroactive peptides. Moreover, our findings demonstrate that BDNF release can encode temporal features of presynaptic neuronal activity. PMID:11007900

  19. Effect of dietary fat and the circadian clock on the expression of brain-derived neurotrophic factor (BDNF).

    PubMed

    Genzer, Yoni; Dadon, Maayan; Burg, Chen; Chapnik, Nava; Froy, Oren

    2016-07-15

    Brain-derived neurotrophic factor (BDNF) is the most abundant neurotrophin in the brain and its decreased levels are associated with the development of obesity and neurodegeneration. Our aim was to test the effect of dietary fat, its timing and the circadian clock on the expression of BDNF and associated signaling pathways in mouse brain and liver. Bdnf mRNA oscillated robustly in brain and liver, but with a 12-h shift between the tissues. Brain and liver Bdnf mRNA showed a 12-h phase shift when fed ketogenic diet (KD) compared with high-fat diet (HFD) or low-fat diet (LFD). Brain or liver Bdnf mRNA did not show the typical phase advance usually seen under time-restricted feeding (RF). Clock knockdown in HT-4 hippocampal neurons led to 86% up-regulation of Bdnf mRNA, whereas it led to 60% down-regulation in AML-12 hepatocytes. Dietary fat in mice or cultured hepatocytes and hippocampal neurons led to increased Bdnf mRNA expression. At the protein level, HFD increased the ratio of the mature BDNF protein (mBDNF) to its precursor (proBDNF). In the liver, RF under LFD or HFD reduced the mBDNF/proBDNF ratio. In the brain, the two signaling pathways related to BDNF, mTOR and AMPK, showed reduced and increased levels, respectively, under timed HFD. In the liver, the reverse was achieved. In summary, Bdnf expression is mediated by the circadian clock and dietary fat. Although RF does not affect its expression phase, in the brain, when combined with high-fat diet, it leads to a unique metabolic state in which AMPK is activated, mTOR is down-regulated and the levels of mBDNF are high. PMID:27113028

  20. The neurotrophic factor pleiotrophin modulates amphetamine-seeking behaviour and amphetamine-induced neurotoxic effects: evidence from pleiotrophin knockout mice.

    PubMed

    Gramage, Esther; Putelli, Alessia; Polanco, Maria J; González-Martín, Carmen; Ezquerra, Laura; Alguacil, Luis F; Pérez-Pinera, Pablo; Deuel, Thomas F; Herradón, Gonzalo

    2010-10-01

    Pleiotrophin (PTN), a neurotrophic factor with important roles in survival and differentiation of dopaminergic neurons, is up-regulated in the nucleus accumbens after amphetamine administration suggesting that PTN could modulate amphetamine-induced pharmacological or neuroadaptative effects. To test this hypothesis, we have studied the effects of amphetamine administration in PTN genetically deficient (PTN -/-) and wild type (WT, +/+) mice. In conditioning studies, we found that amphetamine induces conditioned place preference in both PTN -/- and WT (+/+) mice. When these mice were re-evaluated after a 5-day period without amphetamine administration, we found that WT (+/+) mice did not exhibit amphetamine-seeking behaviour, whereas, PTN -/- mice still showed a robust drug-seeking behaviour. In immunohystochemistry studies, we found that amphetamine (10 mg/kg, four times, every 2 hours) causes a significant increase of glial fibrillary acidic protein positive cells in the striatum of amphetamine-treated PTN -/- mice compared with WT mice 4 days after last administration of the drug, suggesting an enhanced amphetamine-induced astrocytosis in the absence of endogenous PTN. Interestingly, we found in concomitant in vitro studies that PTN (3 µM) limits amphetamine (1 mM)-induced loss of viability of PC12 cell cultures, effect that could be related to the ability of PTN to induce the phosphorylation of Akt and ERK1/2. To test this possibility, we used specific Akt and ERK1/2 inhibitors uncovering for the first time that PTN-induced protective effects against amphetamine-induced toxicity in PC12 cells are mediated by the ERK1/2 signalling pathway. The data suggest an important role of PTN to limit amphetamine-induced neurotoxic and rewarding effects. PMID:20192945

  1. Protecting Neural Structures and Cognitive Function During Prolonged Space Flight by Targeting the Brain Derived Neurotrophic Factor Molecular Network

    NASA Technical Reports Server (NTRS)

    Schmidt, M. A.; Goodwin, T. J.

    2014-01-01

    Brain derived neurotrophic factor (BDNF) is the main activity-dependent neurotrophin in the human nervous system. BDNF is implicated in production of new neurons from dentate gyrus stem cells (hippocampal neurogenesis), synapse formation, sprouting of new axons, growth of new axons, sprouting of new dendrites, and neuron survival. Alterations in the amount or activity of BDNF can produce significant detrimental changes to cortical function and synaptic transmission in the human brain. This can result in glial and neuronal dysfunction, which may contribute to a range of clinical conditions, spanning a number of learning, behavioral, and neurological disorders. There is an extensive body of work surrounding the BDNF molecular network, including BDNF gene polymorphisms, methylated BDNF gene promoters, multiple gene transcripts, varied BDNF functional proteins, and different BDNF receptors (whose activation differentially drive the neuron to neurogenesis or apoptosis). BDNF is also closely linked to mitochondrial biogenesis through PGC-1alpha, which can influence brain and muscle metabolic efficiency. BDNF AS A HUMAN SPACE FLIGHT COUNTERMEASURE TARGET Earth-based studies reveal that BDNF is negatively impacted by many of the conditions encountered in the space environment, including oxidative stress, radiation, psychological stressors, sleep deprivation, and many others. A growing body of work suggests that the BDNF network is responsive to a range of diet, nutrition, exercise, drug, and other types of influences. This section explores the BDNF network in the context of 1) protecting the brain and nervous system in the space environment, 2) optimizing neurobehavioral performance in space, and 3) reducing the residual effects of space flight on the nervous system on return to Earth

  2. Brain-derived neurotrophic factor as an indicator of chemical neurotoxicity: an animal-free CNS cell culture model.

    PubMed

    Woehrling, Elizabeth K; Hill, Eric J; Nagel, David; Coleman, Michael D

    2013-12-01

    Recent changes to the legislation on chemicals and cosmetics testing call for a change in the paradigm regarding the current 'whole animal' approach for identifying chemical hazards, including the assessment of potential neurotoxins. Accordingly, since 2004, we have worked on the development of the integrated co-culture of post-mitotic, human-derived neurons and astrocytes (NT2.N/A), for use as an in vitro functional central nervous system (CNS) model. We have used it successfully to investigate indicators of neurotoxicity. For this purpose, we used NT2.N/A cells to examine the effects of acute exposure to a range of test chemicals on the cellular release of brain-derived neurotrophic factor (BDNF). It was demonstrated that the release of this protective neurotrophin into the culture medium (above that of control levels) occurred consistently in response to sub-cytotoxic levels of known neurotoxic, but not non-neurotoxic, chemicals. These increases in BDNF release were quantifiable, statistically significant, and occurred at concentrations below those at which cell death was measureable, which potentially indicates specific neurotoxicity, as opposed to general cytotoxicity. The fact that the BDNF immunoassay is non-invasive, and that NT2.N/A cells retain their functionality for a period of months, may make this system useful for repeated-dose toxicity testing, which is of particular relevance to cosmetics testing without the use of laboratory animals. In addition, the production of NT2.N/A cells without the use of animal products, such as fetal bovine serum, is being explored, to produce a fully-humanised cellular model. PMID:24512234

  3. Intranasal administration of glial-derived neurotrophic factor (GDNF) rapidly and significantly increases whole-brain GDNF level in rats.

    PubMed

    Bender, T S; Migliore, M M; Campbell, R B; John Gatley, S; Waszczak, B L

    2015-09-10

    Previous studies have shown that glial cell line-derived neurotrophic factor (GDNF) exerts significant neuroprotective effects on substantia nigra (SN) neurons in the rat 6-hydroxydopamine (6-OHDA) model of Parkinson's disease (PD). In this study we used enzyme-linked immunosorbent assay (ELISA) to determine GDNF brain levels and distribution to target regions (i.e. striatum and SN) following intranasal administration of GDNF at different time points after administration. Brain levels increased significantly within 1h following a single 50-μg dose of GDNF in a liposomal formulation, returning to baseline by 24h. In a second study, different doses of GDNF (10-150 μg) in phosphate-buffered saline (PBS) were studied at the 1-h time point. Dose-dependent increases in brain GDNF levels were observed with apparent saturation of uptake at doses above 100 μg. Liposomes delivered 10-fold more GDNF to brain than PBS despite yielding similar neuroprotective efficacy in the 6-OHDA model, suggesting incomplete release of GDNF from liposomes in tissue. In a third study, autoradiography was performed on brain sections taken 1h after intranasal (125)I-labeled GDNF. Radioactivity was detected throughout the brain along the rostral-to-caudal axis, indicating that nasally administered GDNF can reach target areas. Collectively, these results demonstrate that intranasal administration of GDNF in liposomes or PBS achieves significant increases in GDNF in target brain areas, supporting use of intranasal administration as a non-invasive means of delivering GDNF to the brain to protect dopamine neurons and arrest disease progression in PD. PMID:26166725

  4. Brain Derived Neurotrophic Factor Modification of Epileptiform Burst Discharges in a Temporal Lobe Epilepsy Model

    PubMed Central

    Eftekhari, Sanaz; Mehrabi, Soraya; Karimzadeh, Fariba; Joghataei, Mohammad-Taghi; Khaksarian, Mojtaba; Hadjighassem, Mahmoud Reza; Katebi, Majid; Soleimani, Mansooreh

    2016-01-01

    Introduction: Transforming Growth Factor-Beta 1 (TGF-β1) is a pleiotropic cytokine with potent anti-inflammatory property, which has been considered as an essential risk factor in the inflammatory process of Ischemic Stroke (IS), by involving in the pathophysiological progression of hypertension, atherosclerosis, and lipid metabolisms. -509C/T TGF-β1 gene polymorphism has been found to be associated with the risk of IS. The aim of this meta-analysis was to provide a relatively comprehensive account of the relation between -509C/T gene polymorphisms of TGF-β1 and susceptibility to IS. Methods: Male Wistar rats were divided into sham (receiving phosphate buffered saline within dorsal hippocampus), pilocarpine (epileptic model of TLE), single injection BDNF (epileptic rats which received single high dose of BDBF within dorsal hippocampus), and multiple injections BDNF (epileptic rats which received BDNF in days 10, 11, 12, and 13 after induction of TLE) groups. Their electrocorticogram was recorded and amplitude, frequency, and duration of spikes were evaluated. Results: Amplitude and frequency of epileptiform burst discharges were significantly decreased in animals treated with BDNF compared to pilocarpine group. Conclusion: Our findings suggested that BDNF may modulate the epileptic activity in the animal model of TLE. In addition, it may have therapeutic effect for epilepsy. More studies are necessary to clarify the exact mechanisms of BDNF effects. PMID:27303606

  5. Reduced serum concentrations of brain-derived neurotrophic factor (BDNF) in transsexual Brazilian men.

    PubMed

    Fontanari, Anna Martha Vaitses; Costa, Angelo Brandelli; Aguiar, Bianca; Tusset, Cíntia; Andreazza, Tahiana; Schneider, Maiko; da Rosa, Eduarda Dias; Soll, Bianca Machado Borba; Schwarz, Karine; da Silva, Dhiordan Cardoso; Borba, André Oliveira; Mueller, Andressa; Massuda, Raffael; Lobato, Maria Inês Rodrigues

    2016-09-01

    Serum BDNF levels are significantly decreased in transsexual Brazilian women when compared to cis-sexual men. Since transsexual men are also exposed to chronic social stress and have a high prevalence of associated psychopathologies, it is plausible to inquire if BDNF serum levels are altered in transsexual men as well. Therefore, our objective was to evaluate differences in BDNF serum level of transsexual men when compared to cis-sexual men and women. Our sample comprises 27 transsexual men, 31 cis-sexual women and 30 cis-sexual men recruited between 2011 and 2015. We observed that BDNF serum concentration is decreased in transsexual men comparing to cis-sexual men and women. Cross-sex hormone treatment, chronic social stress or long-term gender dysphoria (GD) could explain the variation found in BDNF serum levels. PMID:27473941

  6. Tricyclic Antidepressant Amitriptyline-induced Glial Cell Line-derived Neurotrophic Factor Production Involves Pertussis Toxin-sensitive Gαi/o Activation in Astroglial Cells*

    PubMed Central

    Hisaoka-Nakashima, Kazue; Miyano, Kanako; Matsumoto, Chie; Kajitani, Naoto; Abe, Hiromi; Okada-Tsuchioka, Mami; Yokoyama, Akinobu; Uezono, Yasuhito; Morioka, Norimitsu; Nakata, Yoshihiro; Takebayashi, Minoru

    2015-01-01

    Further elaborating the mechanism of antidepressants, beyond modulation of monoaminergic neurotransmission, this study sought to elucidate the mechanism of amitriptyline-induced production of glial cell line-derived neurotrophic factor (GDNF) in astroglial cells. Previous studies demonstrated that an amitriptyline-evoked matrix metalloproteinase (MMP)/FGF receptor (FGFR)/FGFR substrate 2α (FRS2α)/ERK cascade is crucial for GDNF production, but how amitriptyline triggers this cascade remains unknown. MMP is activated by intracellular mediators such as G proteins, and this study sought to clarify the involvement of G protein signaling in amitriptyline-evoked GDNF production in rat C6 astroglial cells (C6 cells), primary cultured rat astrocytes, and normal human astrocytes. Amitriptyline-evoked GDNF mRNA expression and release were inhibited by pertussis toxin (PTX), a Gαi/o inhibitor, but not by NF449, a Gαs inhibitor, or YM-254890, a Gαq inhibitor. The activation of the GDNF production cascade (FGFR/FRS2α/ERK) was also inhibited by PTX. Deletion of Gαο1 and Gαi3 by RNAi demonstrated that these G proteins play important roles in amitriptyline signaling. G protein activation was directly analyzed by electrical impedance-based biosensors (CellKeyTM assay), using a label-free (without use of fluorescent proteins/probes or radioisotopes) and real time approach. Amitriptyline increased impedance, indicating Gαi/o activation that was suppressed by PTX treatment. The impedance evoked by amitriptyline was not affected by inhibitors of the GDNF production cascade. Furthermore, FGF2 treatment did not elicit any effect on impedance, indicating that amitriptyline targets PTX-sensitive Gαi/o upstream of the MMP/FGFR/FRS2α/ERK cascade. These results suggest novel targeting for the development of antidepressants. PMID:25869129

  7. Brain-Derived Neurotrophic Factor and Antidepressive Effect of Electroconvulsive Therapy: Systematic Review and Meta-Analyses of the Preclinical and Clinical Literature

    PubMed Central

    Polyakova, M.; Schroeter, M. L.; Elzinga, B. M.; Holiga, S.; Schoenknecht, P.; de Kloet, E. R.; Molendijk, M. L.

    2015-01-01

    Emerging data suggest that Electro-Convulsive Treatment (ECT) may reduce depressive symptoms by increasing the expression of Brain-Derived Neurotrophic Factor (BDNF). Yet, conflicting findings have been reported. For this reason we performed a systematic review and meta-analysis of the preclinical and clinical literature on the association between ECT treatment (ECS in animals) and changes in BDNF concentrations and their effect on behavior. In addition, regional brain expression of BDNF in mouse and human brains were compared using Allen Brain Atlas. ECS, over sham, increased BDNF mRNA and protein in animal brain (effect size [Hedge’s g]: 0.38―0.54; 258 effect-size estimates, N = 4,284) but not in serum (g = 0.06, 95% CI = -0.05―0.17). In humans, plasma but not serum BDNF increased following ECT (g = 0.72 vs. g = 0.14; 23 effect sizes, n = 281). The gradient of the BDNF increment in animal brains corresponded to the gradient of the BDNF gene expression according to the Allen brain atlas. Effect-size estimates were larger following more ECT sessions in animals (r = 0.37, P < .0001) and in humans (r = 0.55; P = 0.05). There were some indications that the increase in BDNF expression was associated with behavioral changes in rodents, but not in humans. We conclude that ECS in rodents and ECT in humans increase BDNF concentrations but this is not consistently associated with changes in behavior. PMID:26529101

  8. Essential oil of Syzygium aromaticum reverses the deficits of stress-induced behaviors and hippocampal p-ERK/p-CREB/brain-derived neurotrophic factor expression.

    PubMed

    Liu, Bin-Bin; Luo, Liu; Liu, Xiao-Long; Geng, Di; Li, Cheng-Fu; Chen, Shao-Mei; Chen, Xue-Mei; Yi, Li-Tao; Liu, Qing

    2015-02-01

    Syzygium aromaticum has been widely used in traditional medicine. Our study investigated the safety and antidepressant-like effects of the essential oil of S. aromaticum after acute or long-term treatment. Using GC-MS, a total of eight volatile constituents were identified in the essential oil of S. aromaticum. The single LD50 was approximately 4500 mg/kg based on a 24-h acute oral toxicity study. In a long-term repeated toxicity study of this essential oil (100, 200, and 400 mg/kg, p. o.), only 400 mg/kg induced a significant decrease in body weight. In addition, no significant changes in relative organ weights and histopathological analysis were observed in all doses of essential oil-treated mice compared with the control group. Furthermore, acute S. aromaticum essential oil administration by gavage exerted antidepressant-like effects in the forced swimming test (200 mg/kg, p < 0.05) and tail suspension test (100 and 200 mg/kg, p < 0.05). Long-term S. aromaticum essential oil treatment via gavage significantly increased sucrose preference (50 mg/kg, p < 0.05; 100 and 200 mg/kg, p < 0.01) as well as elevated the protein levels of hippocampal p-ERK, p-CREB, and brain-derived neurotrophic factor in mice exposed to chronic unpredictable mild stress. These results confirmed the safety of the essential oil of S. aromaticum and suggested that its potent antidepressant-like property might be attributed to the improvement in the hippocampal pERK1/2-pCREB-BDNF pathway in rats exposed to chronic unpredictable mild stress. PMID:25590367

  9. Tricyclic Antidepressant Amitriptyline-induced Glial Cell Line-derived Neurotrophic Factor Production Involves Pertussis Toxin-sensitive Gαi/o Activation in Astroglial Cells.

    PubMed

    Hisaoka-Nakashima, Kazue; Miyano, Kanako; Matsumoto, Chie; Kajitani, Naoto; Abe, Hiromi; Okada-Tsuchioka, Mami; Yokoyama, Akinobu; Uezono, Yasuhito; Morioka, Norimitsu; Nakata, Yoshihiro; Takebayashi, Minoru

    2015-05-29

    Further elaborating the mechanism of antidepressants, beyond modulation of monoaminergic neurotransmission, this study sought to elucidate the mechanism of amitriptyline-induced production of glial cell line-derived neurotrophic factor (GDNF) in astroglial cells. Previous studies demonstrated that an amitriptyline-evoked matrix metalloproteinase (MMP)/FGF receptor (FGFR)/FGFR substrate 2α (FRS2α)/ERK cascade is crucial for GDNF production, but how amitriptyline triggers this cascade remains unknown. MMP is activated by intracellular mediators such as G proteins, and this study sought to clarify the involvement of G protein signaling in amitriptyline-evoked GDNF production in rat C6 astroglial cells (C6 cells), primary cultured rat astrocytes, and normal human astrocytes. Amitriptyline-evoked GDNF mRNA expression and release were inhibited by pertussis toxin (PTX), a Gα(i/o) inhibitor, but not by NF449, a Gα(s) inhibitor, or YM-254890, a Gαq inhibitor. The activation of the GDNF production cascade (FGFR/FRS2α/ERK) was also inhibited by PTX. Deletion of Gα(ο1) and Gα(i3) by RNAi demonstrated that these G proteins play important roles in amitriptyline signaling. G protein activation was directly analyzed by electrical impedance-based biosensors (CellKey(TM) assay), using a label-free (without use of fluorescent proteins/probes or radioisotopes) and real time approach. Amitriptyline increased impedance, indicating Gα(i/o) activation that was suppressed by PTX treatment. The impedance evoked by amitriptyline was not affected by inhibitors of the GDNF production cascade. Furthermore, FGF2 treatment did not elicit any effect on impedance, indicating that amitriptyline targets PTX-sensitive Gα(i/o) upstream of the MMP/FGFR/FRS2α/ERK cascade. These results suggest novel targeting for the development of antidepressants. PMID:25869129

  10. Increased levels of messenger RNAs for neurotrophic factors in the brain during kindling epileptogenesis.

    PubMed

    Ernfors, P; Bengzon, J; Kokaia, Z; Persson, H; Lindvall, O

    1991-07-01

    Kindling, induced by repeated subconvulsive electrical or chemical stimulations leads to progressive and permanent amplification of seizure activity, culminating in generalized seizures. We report that kindling induced by electrical stimulation in the ventral hippocampus leads to a marked and transient increase in mRNA for NGF and BDNF in the dentate gyrus, the parietal cortex, and the piriform cortex. BDNF mRNA increased also in the pyramidal layer of hippocampus and in the amygdaloid complex. No change was seen in the level of HDNF/NT-3 mRNA. The increased expression of NGF and BDNF mRNAs was not influenced by pretreatment with the NMDA receptor antagonist MK801, but was partially blocked by the quisqualate, AMPA receptor antagonist NBQX. The presumed subsequent increase of the trophic factors themselves may be important for kindling-associated plasticity in specific neuronal systems in the hippocampus, which could promote hyperexcitability and contribute to the development of epileptic syndromes. PMID:1829904

  11. Ciliary neurotrophic factor activates leptin-like pathways and reduces body fat, without cachexia or rebound weight gain, even in leptin-resistant obesity

    PubMed Central

    Lambert, P. D.; Anderson, K. D.; Sleeman, M. W.; Wong, V.; Tan, J.; Hijarunguru, A.; Corcoran, T. L.; Murray, J. D.; Thabet, K. E.; Yancopoulos, G. D.; Wiegand, S. J.

    2001-01-01

    Ciliary Neurotrophic Factor (CNTF) was first characterized as a trophic factor for motor neurons in the ciliary ganglion and spinal cord, leading to its evaluation in humans suffering from motor neuron disease. In these trials, CNTF caused unexpected and substantial weight loss, raising concerns that it might produce cachectic-like effects. Countering this possibility was the suggestion that CNTF was working via a leptin-like mechanism to cause weight loss, based on the findings that CNTF acts via receptors that are not only related to leptin receptors, but also similarly distributed within hypothalamic nuclei involved in feeding. However, although CNTF mimics the ability of leptin to cause fat loss in mice that are obese because of genetic deficiency of leptin (ob/ob mice), CNTF is also effective in diet-induced obesity models that are more representative of human obesity, and which are resistant to leptin. This discordance again raised the possibility that CNTF might be acting via nonleptin pathways, perhaps more analogous to those activated by cachectic cytokines. Arguing strongly against this possibility, we now show that CNTF can activate hypothalamic leptin-like pathways in diet-induced obesity models unresponsive to leptin, that CNTF improves prediabetic parameters in these models, and that CNTF acts very differently than the prototypical cachectic cytokine, IL-1. Further analyses of hypothalamic signaling reveals that CNTF can suppress food intake without triggering hunger signals or associated stress responses that are otherwise associated with food deprivation; thus, unlike forced dieting, cessation of CNTF treatment does not result in binge overeating and immediate rebound weight gain. PMID:11259650

  12. Ciliary Neurotrophic Factor Induces Genes Associated with Inflammation and Gliosis in the Retina: A Gene Profiling Study of Flow-Sorted, Müller Cells

    PubMed Central

    Dudley, V. Joseph; Brooks, Matthew; Swaroop, Anand; Sarthy, Vijay P.

    2011-01-01

    Background Ciliary neurotrophic factor (CNTF), a member of the interleukin-6 cytokine family, has been implicated in the development, differentiation and survival of retinal neurons. The mechanisms of CNTF action as well as its cellular targets in the retina are poorly understood. It has been postulated that some of the biological effects of CNTF are mediated through its action via retinal glial cells; however, molecular changes in retinal glia induced by CNTF have not been elucidated. We have, therefore, examined gene expression dynamics of purified Müller (glial) cells exposed to CNTF in vivo. Methodology/Principal Findings Müller cells were flow-sorted from mgfap-egfp transgenic mice one or three days after intravitreal injection of CNTF. Microarray analysis using RNA from purified Müller cells showed differential expression of almost 1,000 transcripts with two- to seventeen-fold change in response to CNTF. A comparison of transcriptional profiles from Müller cells at one or three days after CNTF treatment showed an increase in the number of transcribed genes as well as a change in the expression pattern. Ingenuity Pathway Analysis showed that the differentially regulated genes belong to distinct functional types such as cytokines, growth factors, G-protein coupled receptors, transporters and ion channels. Interestingly, many genes induced by CNTF were also highly expressed in reactive Müller cells from mice with inherited or experimentally induced retinal degeneration. Further analysis of gene profiles revealed 20–30% overlap in the transcription pattern among Müller cells, astrocytes and the RPE. Conclusions/Significance Our studies provide novel molecular insights into biological functions of Müller glial cells in mediating cytokine response. We suggest that CNTF remodels the gene expression profile of Müller cells leading to induction of networks associated with transcription, cell cycle regulation and inflammatory response. CNTF also appears to

  13. Amphibian larvae and zinc sulphate: a suitable model to study the role of brain-derived neurotrophic factor (BDNF) in the neuronal turnover of the olfactory epithelium.

    PubMed

    Yovanovich, Carola A M; Jungblut, Lucas D; Heer, Tamara; Pozzi, Andrea G; Paz, Dante A

    2009-04-01

    The vertebrate olfactory system has fascinated neurobiologists over the last six decades because of its ability to replace its neurons and synaptic connections continuously throughout adult life, under both physiological and pathological conditions. Among the factors that are proposed to be involved in this regenerative potential, brain-derived neurotrophic factor (BDNF) is a candidate for having an important role in the neuronal turnover in the olfactory epithelium (OE) because of its well-documented neurogenic and trophic effects throughout the nervous system. The aim of the present study was to generate a suitable model to study the participation of BDNF in the recovery of the OE after injury in vivo. We developed an experimental design in which the OE of Rhinella arenarum tadpoles could be easily and selectively damaged by immersing the animals in ZnSO(4) solutions of various concentrations for differing time periods. Image analysis of histological sections showed that different combinations of each of these conditions produced statistically different degrees of injury to the olfactory tissue. We also observed that the morphology of the OE was restored within a few days of recovery after ZnSO(4) treatment. Immunohistochemical analysis of BDNF was performed with an antiserum whose specificity was confirmed by Western blotting, and which showed drastic changes in the abundance and distribution pattern of this neurotrophin in the damaged olfactory system. Our results thus suggest that BDNF is involved in the regeneration of the OE of amphibian larvae, and that our approach is suitable for further investigations of this topic. PMID:19221803

  14. Glial cell line-derived neurotrophic factor reverses alcohol-induced allostasis of the mesolimbic dopaminergic system: implications for alcohol reward and seeking

    PubMed Central

    Barak, Segev; Carnicella, Sebastien; Yowell, Quinn V.; Ron, Dorit

    2011-01-01

    We previously showed that infusion of glial cell line-derived neurotrophic factor (GDNF) into the ventral tegmental area (VTA) rapidly reduces alcohol intake and relapse (Carnicella et al., 2008; Carnicella et al., 2009a), and increases dopamine (DA) levels in the nucleus accumbens (NAc) of alcohol-naïve rats (Wang et al., 2010). Withdrawal from excessive alcohol intake is associated with a reduction in NAc DA levels, whereas drug-induced increases in NAc DA levels are associated with reward. We therefore tested whether GDNF in the VTA reverses alcohol withdrawal-associated DA deficiency and/or possesses rewarding properties. Rats were trained for 7 weeks to consume high levels of alcohol (5.47 ± 0.37 g/kg/24-hrs) in intermittent access to 20% alcohol in a 2-bottle choice procedure. Using in vivo microdialysis, we show that 24-hrs withdrawal from alcohol causes a substantial reduction in NAc DA overflow, which was reversed by intra-VTA GDNF infusion. Using conditioned place preference (CPP) paradigm, we observed that GDNF on its own does not induce CPP, suggesting that the growth factor is not rewarding. However, GDNF blocked acquisition and expression of alcohol-CPP. In addition, GDNF induced a downward shift in the dose-response curve for operant self-administration of alcohol, further suggesting that GDNF suppresses, rather than substitutes for, the reinforcing effects of alcohol. Our findings suggest that GDNF reduces alcohol-drinking behaviors by reversing an alcohol-induced allostatic DA deficiency in the mesolimbic system. In addition, as it lacks abuse liability, the study further highlights GDNF as a promising target for treatment of alcohol use/abuse disorders. PMID:21734280

  15. Brain-derived neurotrophic factor facilitates in vivo internalization of tetanus neurotoxin C-terminal fragment fusion proteins in mature mouse motor nerve terminals.

    PubMed

    Roux, Sylvie; Saint Cloment, Cécile; Curie, Thomas; Girard, Emmanuelle; Miana Mena, Francisco-Javier; Barbier, Julien; Osta, Rosario; Molgó, Jordi; Brûlet, Philippe

    2006-09-01

    In a previous study it was reported that fusion proteins composed of the atoxic C-terminal fragment of tetanus toxin (TTC) and green fluorescent protein or beta-galactosidase (GFP-TTC and beta-gal-TTC, respectively) rapidly cluster at motor nerve terminals of the mouse neuromuscular junction (NMJ). Because this traffic involves presynaptic activity, probably via the secretion of active molecules, we examined whether it is affected by brain-derived neurotrophic factor (BDNF). Quantitative confocal microscopy and a fluorimetric assay for beta-gal activity revealed that co-injecting BDNF and the fusion proteins significantly increased the kinetics and amount of the proteins' localization at the NMJ and their internalization by motor nerve terminals. The observed increases were independent of synaptic vesicle recycling because BDNF did not affect spontaneous quantal acetylcholine release. In addition, injecting anti-BDNF antibody shortly before injecting GFP-TTC, and before co-injecting GFP-TTC and BDNF, significantly reduced the fusion protein's localization at the NMJ. Co-injecting GFP-TTC with neurotrophin-4 (NT-4) or glial-derived neurotrophic factor (GDNF), but not with nerve growth factor, neurotrophin-3 or ciliary neurotrophic factor, also significantly increased the fusion protein's localization at the NMJ. Thus, TTC probes may use for their neuronal internalization endocytic pathways normally stimulated by BDNF, NT-4 and GDNF binding. Different tyrosine kinase receptors with similar signalling pathways are activated by BDNF/NT-4 and GDNF binding. Thus, activated components of these signalling pathways may be involved in the TTC probes' internalization, perhaps by facilitating localization of receptors of TTC in specific membrane microdomains or by recruiting various factors needed for internalization of TTC. PMID:17004918

  16. Rapid transient isoform-specific neuregulin1 transcription in motor neurons is regulated by neurotrophic factors and axon-target interactions.

    PubMed

    Wang, Jiajing; Hmadcha, Abdelkrim; Zakarian, Vaagn; Song, Fei; Loeb, Jeffrey A

    2015-09-01

    The neuregulins (NRGs) are a family of alternatively spliced factors that play important roles in nervous system development and disease. In motor neurons, NRG1 expression is regulated by activity and neurotrophic factors, however, little is known about what controls isoform-specific transcription. Here we show that NRG1 expression in the chick embryo increases in motor neurons that have extended their axons and that limb bud ablation before motor axon outgrowth prevents this induction, suggesting a trophic role from the developing limb. Consistently, NRG1 induction after limb bud ablation can be rescued by adding back the neurotrophic factors BDNF and GDNF. Mechanistically, BDNF induces a rapid and transient increase in type I and type III NRG1 mRNAs that peak at 4h in rat embryonic ventral spinal cord cultures. Blocking MAPK or PI3K signaling or blocking transcription with Actinomycin D blocks BDNF induced NRG1 gene induction. BDNF had no effect on mRNA degradation, suggesting that transcriptional activation rather than message stability is important. Furthermore, BDNF activates a reporter construct that includes 700bp upstream of the type I NRG1 start site. Protein synthesis is also required for type I NRG1 mRNA transcription as cycloheximide produced a super-induction of type I, but not type III NRG1 mRNA, possibly through a mechanism involving sustained activation of MAPK and PI3K. These results reveal the existence of highly responsive, transient transcriptional regulatory mechanisms that differentially modulate NRG1 isoform expression as a function of extracellular and intracellular signaling cascades and mediated by neurotrophic factors and axon-target interactions. PMID:25913151

  17. Altered neuronal responses and regulation of neurotrophic proteins in the medial septum following fimbria-fornix transection in CNTF- and leukaemia inhibitory factor-deficient mice.

    PubMed

    Naumann, Thomas; Steup, Andreas; Schnell, Oliver; Schubert, Klaus Oliver; Zhi, Qixia; Guijarro, Christian; Kirsch, Matthias; Hofmann, Hans-Dieter

    2006-10-01

    Degeneration of axotomized GABAergic septohippocampal neurones has been shown to be enhanced in ciliary neurotrophic factor (CNTF)-deficient mice following fimbria-fornix transection (FFT), indicating a neuroprotective function of endogenous CNTF. Paradoxically, however, the cholinergic population of septohippocampal neurones was more resistant to axotomy in these mutants. As leukaemia inhibitory factor (LIF) has been identified as a potential neuroprotective factor for the cholinergic medial septum (MS) neurones, FFT-induced responses were compared in CNTF(-/-), LIF(-/-) and CNTF/LIF double knockout mice. In CNTF(-/-) mice, FFT-induced cholinergic degeneration was confirmed to be attenuated as compared with wildtype mice. The expression of both LIF and LIF receptor beta was increased in the MS providing a possible explanation for the enhanced neuronal resistance to FFT in these animals. However, ablation of the LIF gene also produced paradoxical effects; following FFT in LIF(-/-) mice no loss of GABAergic or cholinergic MS neurones was detectable during the first postlesional week, suggesting that other efficient neuroprotective mechanisms are activated in these animals. In fact, enhanced activation of astrocytes, a source of neurotrophic proteins, was indicated by increased up-regulation of glial fibrillary acidic protein and vimentin expression. In addition, mRNA levels for neurotrophin signalling components (e.g. nerve growth factor, p75(NTR)) were differentially regulated. The positive effect on axotomized cholinergic neurones seen in CNTF(-/-) and LIF(-/-) mice as well as the increased up-regulation of astrogliose markers was abolished in CNTF/LIF double knockout animals. Our results indicate that endogenous CNTF and LIF are involved in the regulation of neuronal survival following central nervous system lesion and are integrated into a network of neurotrophic signals that mutually influence their expression and function. PMID:17074046

  18. Cytokine-Like Factor 1, an Essential Facilitator of Cardiotrophin-Like Cytokine:Ciliary Neurotrophic Factor Receptor α Signaling and sorLA-Mediated Turnover

    PubMed Central

    Kristensen, Anders Mejer; Pallesen, Lone Tjener; Bauer, Johannes; Vægter, Christian Bjerggaard; Nielsen, Morten Schallburg; Madsen, Peder

    2016-01-01

    Cardiotrophin-like cytokine:cytokine-like factor-1 (CLC:CLF-1) is a heterodimeric neurotropic cytokine that plays a crucial role during neuronal development. Mice lacking CLC:CLF-1 die soon after birth due to a suckling defect and show reduced numbers of motor neurons. Humans carrying mutations in CLC:CLF-1 develop similar disorders, known as Sohar-Crisponi or cold-induced sweating syndrome, and have a high risk of early death. It is well known that CLC binds the ciliary neurotrophic factor receptor α (CNTFRα) and is a prerequisite for signaling through the gp130/leukemia inhibitory factor receptor β (LIFRβ) heterodimer, whereas CLF-1 serves to promote the cellular release of CLC. However, the precise role of CLF-1 is unclear. Here, we report that CLF-1, based on its binding site for CLC and on two additional and independent sites for CNTFRα and sorLA, is a key player in CLC and CNTFRα signaling and turnover. The site for CNTFRα enables CLF-1 to promote CLC:CNTFRα complex formation and signaling. The second site establishes a link between the endocytic receptor sorLA and the tripartite CLC:CLF-1:CNTFRα complex and allows sorLA to downregulate the CNTFRα pool in stimulated cells. Finally, sorLA may bind and concentrate the tripartite soluble CLC:CLF-1:CNTFRα complex on cell membranes and thus facilitate its signaling through gp130/LIFRβ. PMID:26858303

  19. Cytokine-Like Factor 1, an Essential Facilitator of Cardiotrophin-Like Cytokine:Ciliary Neurotrophic Factor Receptor α Signaling and sorLA-Mediated Turnover.

    PubMed

    Larsen, Jakob Vejby; Kristensen, Anders Mejer; Pallesen, Lone Tjener; Bauer, Johannes; Vægter, Christian Bjerggaard; Nielsen, Morten Schallburg; Madsen, Peder; Petersen, Claus Munck

    2016-04-15

    Cardiotrophin-like cytokine:cytokine-like factor-1 (CLC:CLF-1) is a heterodimeric neurotropic cytokine that plays a crucial role during neuronal development. Mice lacking CLC:CLF-1 die soon after birth due to a suckling defect and show reduced numbers of motor neurons. Humans carrying mutations in CLC:CLF-1 develop similar disorders, known as Sohar-Crisponi or cold-induced sweating syndrome, and have a high risk of early death. It is well known that CLC binds the ciliary neurotrophic factor receptor α (CNTFRα) and is a prerequisite for signaling through the gp130/leukemia inhibitory factor receptor β (LIFRβ) heterodimer, whereas CLF-1 serves to promote the cellular release of CLC. However, the precise role of CLF-1 is unclear. Here, we report that CLF-1, based on its binding site for CLC and on two additional and independent sites for CNTFRα and sorLA, is a key player in CLC and CNTFRα signaling and turnover. The site for CNTFRα enables CLF-1 to promote CLC:CNTFRα complex formation and signaling. The second site establishes a link between the endocytic receptor sorLA and the tripartite CLC:CLF-1:CNTFRα complex and allows sorLA to downregulate the CNTFRα pool in stimulated cells. Finally, sorLA may bind and concentrate the tripartite soluble CLC:CLF-1:CNTFRα complex on cell membranes and thus facilitate its signaling through gp130/LIFRβ. PMID:26858303

  20. BBB-Permeable, Neuroprotective, and Neurotrophic Polysaccharide, Midi-GAGR.

    PubMed

    Makani, Vishruti; Jang, Yong-Gil; Christopher, Kevin; Judy, Wesley; Eckstein, Jacob; Hensley, Kenneth; Chiaia, Nicolas; Kim, Dong-Shik; Park, Joshua

    2016-01-01

    An enormous amount of efforts have been poured to find an effective therapeutic agent for the treatment of neurodegenerative diseases including Alzheimer's disease (AD). Among those, neurotrophic peptides that regenerate neuronal structures and increase neuron survival show a promise in slowing neurodegeneration. However, the short plasma half-life and poor blood-brain-barrier (BBB)-permeability of neurotrophic peptides limit their in vivo efficacy. Thus, an alternative neurotrophic agent that has longer plasma half-life and better BBB-permeability has been sought for. Based on the recent findings of neuroprotective polysaccharides, we searched for a BBB-permeable neuroprotective polysaccharide among natural polysaccharides that are approved for human use. Then, we discovered midi-GAGR, a BBB-permeable, long plasma half-life, strong neuroprotective and neurotrophic polysaccharide. Midi-GAGR is a 4.7kD cleavage product of low acyl gellan gum that is approved by FDA for human use. Midi-GAGR protected rodent cortical neurons not only from the pathological concentrations of co-/post-treated free reactive radicals and Aβ42 peptide but also from activated microglial cells. Moreover, midi-GAGR showed a good neurotrophic effect; it enhanced neurite outgrowth and increased phosphorylated cAMP-responsive element binding protein (pCREB) in the nuclei of primary cortical neurons. Furthermore, intra-nasally administered midi-GAGR penetrated the BBB and exerted its neurotrophic effect inside the brain for 24 h after one-time administration. Midi-GAGR appears to activate fibroblast growth factor receptor 1 (FGFR1) and its downstream neurotrophic signaling pathway for neuroprotection and CREB activation. Additionally, 14-day intranasal administration of midi-GAGR not only increased neuronal activity markers but also decreased hyperphosphorylated tau, a precursor of neurofibrillary tangle, in the brains of the AD mouse model, 3xTg-AD. Taken together, midi-GAGR with good BBB

  1. BBB-Permeable, Neuroprotective, and Neurotrophic Polysaccharide, Midi-GAGR

    PubMed Central

    Makani, Vishruti; Jang, Yong-gil; Christopher, Kevin; Judy, Wesley; Eckstein, Jacob; Hensley, Kenneth; Chiaia, Nicolas; Kim, Dong-Shik; Park, Joshua

    2016-01-01

    An enormous amount of efforts have been poured to find an effective therapeutic agent for the treatment of neurodegenerative diseases including Alzheimer’s disease (AD). Among those, neurotrophic peptides that regenerate neuronal structures and increase neuron survival show a promise in slowing neurodegeneration. However, the short plasma half-life and poor blood-brain-barrier (BBB)-permeability of neurotrophic peptides limit their in vivo efficacy. Thus, an alternative neurotrophic agent that has longer plasma half-life and better BBB-permeability has been sought for. Based on the recent findings of neuroprotective polysaccharides, we searched for a BBB-permeable neuroprotective polysaccharide among natural polysaccharides that are approved for human use. Then, we discovered midi-GAGR, a BBB-permeable, long plasma half-life, strong neuroprotective and neurotrophic polysaccharide. Midi-GAGR is a 4.7kD cleavage product of low acyl gellan gum that is approved by FDA for human use. Midi-GAGR protected rodent cortical neurons not only from the pathological concentrations of co-/post-treated free reactive radicals and Aβ42 peptide but also from activated microglial cells. Moreover, midi-GAGR showed a good neurotrophic effect; it enhanced neurite outgrowth and increased phosphorylated cAMP-responsive element binding protein (pCREB) in the nuclei of primary cortical neurons. Furthermore, intra-nasally administered midi-GAGR penetrated the BBB and exerted its neurotrophic effect inside the brain for 24 h after one-time administration. Midi-GAGR appears to activate fibroblast growth factor receptor 1 (FGFR1) and its downstream neurotrophic signaling pathway for neuroprotection and CREB activation. Additionally, 14-day intranasal administration of midi-GAGR not only increased neuronal activity markers but also decreased hyperphosphorylated tau, a precursor of neurofibrillary tangle, in the brains of the AD mouse model, 3xTg-AD. Taken together, midi-GAGR with good BBB

  2. Effect of curcumin on serum brain-derived neurotrophic factor levels in women with premenstrual syndrome: A randomized, double-blind, placebo-controlled trial.

    PubMed

    Fanaei, Hamed; Khayat, Samira; Kasaeian, Amir; Javadimehr, Mani

    2016-04-01

    Premenstrual syndrome (PMS) is a variety of physical, mental, and behavioral symptoms that start during the late luteal phase of the menstrual cycle, and the symptoms disappear after the onset of menses. Serum brain-derived neurotrophic factor (BDNF) levels during luteal phase in women associated with PMS have more alterations than women not suffering from PMS. In this regard, altered luteal BDNF levels in women with PMS might play a role in a set of psychological and somatic symptoms of the PMS. Studies of last decade revealed neuroprotective effects of curcumin and its ability to increase BDNF levels. In the present study, we evaluated the effect of curcumin on serum BDNF level and PMS symptoms severity in women with PMS. Present study is a Randomized, Double-Blinded, Placebo-Controlled Clinical Trial. Curcumin treatment was given for three successive menstrual cycles and each cycle ran 10 days. After having identified persons with PMS, participants were randomly allocated into placebo (n=35) and curcumin (n=35) groups. Each sample in placebo and curcumin groups received two capsules daily for seven days before menstruation and for three days after menstruation for three successive menstrual cycles. Participants noted the severity of the symptoms mentioned in the daily record questionnaire. Self-report was used to determine menstrual cycle phase of participants. At the fourth day of each menstrual cycle venous blood samples were collected for BDNF measurement by ELISA method. Before intervention, BDNF levels and mean scores of PMS symptoms (mood, behavioral and physical symptoms) between two groups showed no significant differences. But in curcumin group first, second and third cycles after interventions BDNF levels were significantly higher and mean scores of PMS symptoms were significantly less than placebo group. Based on our results part of these beneficial effects of curcumin may be mediated through enhancing serum BDNF levels in women with PMS. PMID

  3. Sex differences in stress-induced social withdrawal: role of brain derived neurotrophic factor in the bed nucleus of the stria terminalis

    PubMed Central

    Greenberg, Gian D.; Laman-Maharg, Abigail; Campi, Katharine L.; Voigt, Heather; Orr, Veronica N.; Schaal, Leslie; Trainor, Brian C.

    2014-01-01

    Depression and anxiety disorders are more common in women than men, and little is known about the neurobiological mechanisms that contribute to this disparity. Recent data suggest that stress-induced changes in neurotrophins have opposing effects on behavior by acting in different brain networks. Social defeat has been an important approach for understanding neurotrophin action, but low female aggression levels in rats and mice have limited the application of these methods primarily to males. We examined the effects of social defeat in monogamous California mice (Peromyscus californicus), a species in which both males and females defend territories. We demonstrate that defeat stress increases mature brain-derived neurotrophic factor (BDNF) protein but not mRNA in the bed nucleus of the stria terminalis (BNST) in females but not males. Changes in BDNF protein were limited to anterior subregions of the BNST, and there were no changes in the adjacent nucleus accumbens (NAc). The effects of defeat on social withdrawal behavior and BDNF were reversed by chronic, low doses of the antidepressant sertraline. However, higher doses of sertraline restored social withdrawal and elevated BDNF levels. Acute treatment with a low dose of sertraline failed to reverse the effects of defeat. Infusions of the selective tyrosine-related kinase B receptor (TrkB) antagonist ANA-12 into the anterior BNST specifically increased social interaction in stressed females but had no effect on behavior in females naïve to defeat. These results suggest that stress-induced increases in BDNF in the anterior BNST contribute to the exaggerated social withdrawal phenotype observed in females. PMID:24409132

  4. Activation of the cardiac ciliary neurotrophic factor receptor reverses left ventricular hypertrophy in leptin-deficient and leptin-resistant obesity

    PubMed Central

    Raju, Shubha V. Y.; Zheng, Meizi; Schuleri, Karl H.; Phan, Alexander C.; Bedja, Djahida; Saraiva, Roberto M.; Yiginer, Omer; Vandegaer, Koenraad; Gabrielson, Kathleen L.; O’Donnell, Christopher P.; Berkowitz, Dan E.; Barouch, Lili A.; Hare, Joshua M.

    2006-01-01

    Disruption of the leptin signaling pathway within the heart causes left ventricular hypertrophy (LVH). Because human obesity is a syndrome of leptin resistance, which is not amenable to leptin treatment, the identification of parallel signal transduction pathways is of potential therapeutic value. Ciliary neurotrophic factor (CNTF), which acts parallel to leptin in the hypothalamus, is not previously recognized to have cardiac activity. We hypothesized that CNTF receptors are present on cardiomyocytes and their activation reverses LVH in both leptin-deficient ob/ob and leptin-resistant db/db mice. The localization of CNTF receptors (CNTFRα) to the sarcolemma in C57BL/6, ob/ob and db/db was confirmed in situ with immunohistochemistry, and immunoblotting (60 and 40 kDa) on isolated myocytes. ob/ob mice were randomly assigned to receive s.c. recombinant CNTF (CNTFAx15; 0.1 mg·kg−1 per day; n = 11) calorie-restriction (n = 9), or feeding ad libitum (n = 11). db/db mice were allocated to three similar groups (n = 8, 7, and 8, respectively) plus a leptin group (1 mg·kg−1 per day; n = 7). Echocardiography showed that CNTFAx15 reduced cardiac hypertrophy [posterior wall thickness decreased by 29 ± 8% (P < 0.01) in ob/ob and by 21 ± 3% in db/db mice (P < 0.01)], which was consistent with the reduction of myocyte width. Western blotting showed that leptin and CNTFAx15 activated Stat3 and ERK1/2 pathway in cultured adult mice cardiomyocytes and cardiac tissue from in ob/ob and db/db mice. Together, these findings support the role of a previously undescribed signaling pathway in obesity-associated cardiac hypertrophy and have therapeutic implications for patients with obesity-related cardiovascular disease and other causes of LVH. PMID:16537512

  5. Ciliary neurotrophic factor prevents acute lipid-induced insulin resistance by attenuating ceramide accumulation and phosphorylation of c-Jun N-terminal kinase in peripheral tissues.

    PubMed

    Watt, Matthew J; Hevener, Andrea; Lancaster, Graeme I; Febbraio, Mark A

    2006-05-01

    Ciliary neurotrophic factor (CNTF) is a member of the gp130 receptor cytokine family recently identified as an antiobesity agent in rodents and humans by mechanisms that remain unclear. We investigated the impact of acute CNTF treatment on insulin action in the presence of lipid oversupply. To avoid confounding effects of long-term high-fat feeding or genetic manipulation on whole-body insulin sensitivity, we performed a 2-h Intralipid infusion (20% heparinized Intralipid) with or without recombinant CNTF pretreatment (Axokine 0.3 mg/kg), followed by a 2-h hyperinsulinemic-euglycemic clamp (12 mU/kg.min) in fasted, male Wistar rats. Acute Intralipid infusion increased plasma free fatty acid levels from 1.0 +/- 0.1 to 2.5 +/- 0.3 mM, which subsequently caused reductions in skeletal muscle (insulin-stimulated glucose disposal rate) and liver (hepatic glucose production) insulin sensitivity by 30 and 45%, respectively. CNTF pretreatment completely prevented the lipid-mediated reduction in insulin-stimulated glucose disposal rate and the blunted suppression of hepatic glucose production by insulin. Although lipid infusion increased triacylglycerol and ceramide accumulation and phosphorylation of mixed linage kinase 3 and c-Jun N-terminal kinase 1 in skeletal muscle, CNTF pretreatment prevented these lipid-induced effects. Alterations in hepatic and muscle insulin signal transduction as well as phosphorylation of c-Jun N-terminal kinase 1/2 paralleled alterations in insulin sensitivity. These data support the use of CNTF as a potential therapeutic means to combat lipid-induced insulin resistance. PMID:16396984

  6. Gender-specific Associations of the Brain-derived Neurotrophic Factor Val66Met Polymorphism with Neurocognitive and Clinical Features in Schizophrenia

    PubMed Central

    Kim, Sung-Wan; Lee, Ju-Yeon; Kang, Hee-Ju; Kim, Seon-Young; Bae, Kyung-Yeol; Kim, Jae-Min; Shin, Il-Seon; Yoon, Jin-Sang

    2016-01-01

    Objective To explore associations of the brain-derived neurotrophic factor (BDNF) Val66Met polymorphism with cognitive functioning and psychopathology in patients with schizophrenia. Methods We included 133 subjects meeting the DSM-IV criteria for schizophrenia who were in the post-acute stage of the disease. BDNF Val66Met genotypes were identified via polymerase chain reaction. The computerized neurocognitive function battery, Positive and Negative Syndrome Scale (PANSS), Calgary Depression Scale for Schizophrenia (CDSS), Social and Occupational Functioning Scale (SOFAS), and the Subjective Well-being under Neuroleptic Treatment (SWN-K) were administered. Gender-stratified sub-analysis was also conducted to identify gender-specific patterns in the findings. Results In male patients, no significant difference in any measure by BDNF genotype was evident. In female patients, scores on the CDSS and total PANSS and all subscales were significantly higher in valine (Val) carriers. In addition, scores on the SOFAS and SWN-K were significantly lower in Val carriers. In terms of neurocognitive measures, female patients with the Val allele had significantly poorer reaction times and fewer correct responses on the Continuous Performance Test (CPT) and the Trail Making Test (Parts A and B). After adjustment of PANSS total scores and log-transformed CDSS scores, CPT outcomes were significantly poorer in female patients with than in those without the Val allele. Conclusion Gender-specific associations of the Val allele with poor neurocognitive function and more severe psychopathology were evident. Further studies are required to explore the mechanisms of these differences and the potential utility of the BDNF genotype as a predictor of outcome in patients with schizophrenia. PMID:27489381

  7. Distinction Between Cell Proliferation and Apoptosis Signals Regulated by Brain-Derived Neurotrophic Factor in Human Periodontal Ligament Cells and Gingival Epithelial Cells.

    PubMed

    Kashiwai, Kei; Kajiya, Mikihito; Matsuda, Shinji; Ouhara, Kazuhisa; Takeda, Katsuhiro; Takata, Takashi; Kitagawa, Masae; Fujita, Tsuyoshi; Shiba, Hideki; Kurihara, Hidemi

    2016-07-01

    Previously, we reported that brain-derived neurotrophic factor (BDNF) enhances periodontal tissue regeneration by inducing periodontal ligament cell proliferation in vivo. In addition, the down growth of gingival epithelial cells, which comprises a major obstacle to the regeneration, was not observed. However, the underlying molecular mechanism is still unclear. Therefore, this study aimed to investigate the effect of BDNF on cell proliferation and apoptosis in human periodontal ligament (HPL) cells and human gingival epithelial cells (OBA9 cells) and to explore the molecular mechanism in vitro. HPL cells dominantly expressed a BDNF receptor, TrkB, and BDNF increased cell proliferation and ERK phosphorylation. However, its proliferative effect was diminished by a MEK1/2 inhibitor (U0126) and TrkB siRNA transfection. Otherwise, OBA9 cells showed a higher expression level of p75, which is a pan-neurotrophin receptor, than that of HPL cells. BDNF facilitated not cell proliferation but cell apoptosis and JNK phosphorylation in OBA9 cells. A JNK inhibitor (SP600125) and p75 siRNA transfection attenuated the BDNF-induced cell apoptosis. Moreover, OBA9 cells pretreated with SP600125 or p75 siRNA showed cell proliferation by BDNF stimulation, though it was reduced by U0126 and TrkB siRNA. Interestingly, overexpression of p75 in HPL cells upregulated cell apoptosis and JNK phosphorylation by BDNF treatment. These results indicated that TrkB-ERK signaling regulates BDNF-induced cell proliferation, whereas p75-JNK signaling plays roles in cell apoptotic and cytostatic effect of BDNF. Overall, BDNF activates periodontal ligament cells proliferation and inhibits the gingival epithelial cells growth via the distinct pathway. J. Cell. Biochem. 117: 1543-1555, 2016. © 2015 Wiley Periodicals, Inc. PMID:26581032

  8. Brain-derived neurotrophic factor enhances GABA release probability and nonuniform distribution of N- and P/Q-type channels on release sites of hippocampal inhibitory synapses.

    PubMed

    Baldelli, Pietro; Hernandez-Guijo, Jesus-Miguel; Carabelli, Valentina; Carbone, Emilio

    2005-03-30

    Long-lasting exposures to brain-derived neurotrophic factor (BDNF) accelerate the functional maturation of GABAergic transmission in embryonic hippocampal neurons, but the molecular bases of this phenomenon are still debated. Evidence in favor of a postsynaptic site of action has been accumulated, but most of the data support a presynaptic site effect. A crucial issue is whether the enhancement of evoked IPSCs (eIPSCs) induced by BDNF is attributable to an increase in any of the elementary parameters controlling neurosecretion, namely the probability of release, the number of release sites, the readily releasable pool (RRP), and the quantal size. Here, using peak-scaled variance analysis of miniature IPSCs, multiple probability fluctuation analysis, and cumulative amplitude analysis of action potential-evoked postsynaptic currents, we show that BDNF increases release probability and vesicle replenishment with little or no effect on the quantal size, the number of release sites, the RRP, and the Ca2+ dependence of eIPSCs. BDNF treatment changes markedly the distribution of Ca2+ channels controlling neurotransmitter release. It enhances markedly the contribution of N- and P/Q-type channels, which summed to >100% ("supra-additivity"), and deletes the contribution of R-type channels. BDNF accelerates the switch of presynaptic Ca2+ channel distribution from "segregated" to "nonuniform" distribution. This maturation effect was accompanied by an uncovered increased control of N-type channels on paired-pulse depression, otherwise dominated by P/Q-type channels in untreated neurons. Nevertheless, BDNF preserved the fast recovery from depression associated with N-type channels. These novel presynaptic BDNF actions derive mostly from an enhanced overlapping and better colocalization of N- and P/Q-type channels to vesicle release sites. PMID:15800191

  9. Sex-specific disruptions in spatial memory and anhedonia in a "two hit" rat model correspond with alterations in hippocampal brain-derived neurotrophic factor expression and signaling.

    PubMed

    Hill, Rachel A; Klug, Maren; Kiss Von Soly, Szerenke; Binder, Michele D; Hannan, Anthony J; van den Buuse, Maarten

    2014-10-01

    Post-mortem studies have demonstrated reduced expression of brain-derived neurotrophic factor (BDNF) in the hippocampus of schizophrenia and major depression patients. The "two hit" hypothesis proposes that two or more major disruptions at specific time points during development are involved in the pathophysiology of these mental illnesses. However, the role of BDNF in these "two hit" effects is unclear. Our aim was to behaviorally characterize a "two hit" rat model of developmental stress accompanied by an in-depth assessment of BDNF expression and signalling. Wistar rats were exposed to neonatal maternal separation (MS) stress and/or adolescent/young-adult corticosterone (CORT) treatment. In adulthood, models of cognitive and negative symptoms of mental illness were analyzed. The hippocampus was then dissected into dorsal (DHP) and ventral (VHP) regions and analyzed by qPCR for exon-specific BDNF gene expression or by Western blot for BDNF protein expression and downstream signaling. Male "two hit" rats showed marked disruptions in short-term spatial memory (Y-maze) which were absent in females. However, female "two hit" rats showed signs of anhedonia (sucrose preference test), which were absent in males. Novel object recognition and anxiety (elevated plus maze) were unchanged by either of the two "hits". In the DHP, MS caused a male-specific increase in BDNF Exons I, II, IV, VII, and IX mRNA but a decrease in mature BDNF and phosphorylated TrkB (pTrkB) protein expression in adulthood. In the VHP, BDNF transcript expression was unchanged; however, in female rats only, MS significantly decreased mature BDNF and pTrkB protein expression in adulthood. These data demonstrate that MS causes region-specific and sex-specific long-term effects on BDNF expression and signaling and, importantly, mRNA expression does not always infer protein expression. Alterations to BDNF signaling may mediate the sex-specific effects of developmental stress on anhedonic behaviors. PMID

  10. Amantadine alleviates postoperative cognitive dysfunction possibly by increasing glial cell line-derived neurotrophic factor in rats

    PubMed Central

    Zhang, Junfeng; Tan, Hongying; Jiang, Wei; Zuo, Zhiyi

    2014-01-01

    Background Postoperative cognitive dysfunction is a clinical entity that is associated with poor outcome. We determined the effectiveness of amantadine in reducing surgery-induced cognitive impairment and the role of glial cell line-derived neurotrophic factor (GDNF) in this effect. Methods Four-month old male Fischer 344 rats were subjected to right carotid exposure under intravenous anesthesia. Some rats received intraperitoneal injection of 25 mg/kg/day amantadine for three days with the first dose at 15 min before the surgery or intracerebroventricular injection of GDNF or an anti-GDNF antibody at the end of surgery. One week later, rats were started to be tested by Barnes maze and fear conditioning. Hippocampus was harvested at 6 h, 24 h or 10 days after the surgery for biochemical analysis. C8-B4 cells, a microglial cell line, were pretreated with 1 ng/ml GDNF for 30 min before being exposed to 5 ng/ml lipopolysaccharide for 2 h. Results Surgery increased the time to identify the target box in the Barnes maze when tested 1 day [22 (median) (11–66) (interquartile range) of control group vs. 158 (29–180) of surgery group, n = 15, P = 0.022) or 8 days after the training sessions and reduced context-related freezing behavior in the fear conditioning test. These effects were attenuated by amantadine (25 (14–90), n = 15, P = 0.029 compared with surgery group at 1 day after the training sessions in Barnes maze) and intracerebroventricular GDNF. Amantadine increased GDNF that was co-localized with glial fibrillary acidic protein, an astrocytic marker, in the hippocampus. Intracerebroventricular injection of an anti-GDNF antibody but not the denatured antibody blocked the effects of amantadine on cognition. Surgery induced neuroinflammation that was inhibited by amantadine. Lipopolysaccharide increased interleukin 1β production from C8-B4 cells. This effect was inhibited by GDNF. Conclusions Our results suggest that amantadine attenuated surgery

  11. Toll like receptor-2 regulates production of glial-derived neurotrophic factors in murine intestinal smooth muscle cells.

    PubMed

    Brun, Paola; Gobbo, Serena; Caputi, Valentina; Spagnol, Lisa; Schirato, Giulia; Pasqualin, Matteo; Levorato, Elia; Palù, Giorgio; Giron, Maria Cecilia; Castagliuolo, Ignazio

    2015-09-01

    those from WT-EGCs or WT-MΦ/DCs corrected the altered neuronal phenotype of TLR2(-/-) mice. Supplementation of TLR2(-/-) neuronal cultures with GDNF recapitulated the WT-SMC co-culture effect whereas the knockdown of GDNF expression in WT-SMCs using shRNA interference abolished the effect on TLR2(-/-) neurons. These data revealed that by exploiting the repertoire of TLRs to decode gut-microbial signals, intestinal SMCs elaborate a cocktail of neurotrophic factors that in turn supports neuronal phenotype. In this view, the SMCs represent an attractive target for novel therapeutic strategies. PMID:25823690

  12. Brain-derived neurotrophic factor is required for axonal growth of selective groups of neurons in the arcuate nucleus

    PubMed Central

    Liao, Guey-Ying; Bouyer, Karine; Kamitakahara, Anna; Sahibzada, Niaz; Wang, Chien-Hua; Rutlin, Michael; Simerly, Richard B.; Xu, Baoji

    2015-01-01

    Objective Brain-derived neurotrophic factor (BDNF) is a potent regulator of neuronal development, and the Bdnf gene produces two populations of transcripts with either a short or long 3′ untranslated region (3′ UTR). Deficiencies in BDNF signaling have been shown to cause severe obesity in humans; however, it remains unknown how BDNF signaling impacts the organization of neuronal circuits that control energy balance. Methods We examined the role of BDNF on survival, axonal projections, and synaptic inputs of neurons in the arcuate nucleus (ARH), a structure critical for the control of energy balance, using Bdnfklox/klox mice, which lack long 3′ UTR Bdnf mRNA and develop severe hyperphagic obesity. Results We found that a small fraction of neurons that express the receptor for BDNF, TrkB, also expressed proopiomelanocortin (POMC) or neuropeptide Y (NPY)/agouti-related protein (AgRP) in the ARH. Bdnfklox/klox mice had normal numbers of POMC, NPY, and TrkB neurons in the ARH; however, retrograde labeling revealed a drastic reduction in the number of ARH axons that project to the paraventricular hypothalamus (PVH) in these mice. In addition, fewer POMC and AgRP axons were found in the dorsomedial hypothalamic nucleus (DMH) and the lateral part of PVH, respectively, in Bdnfklox/klox mice. Using immunohistochemistry, we examined the impact of BDNF deficiency on inputs to ARH neurons. We found that excitatory inputs onto POMC and NPY neurons were increased and decreased, respectively, in Bdnfklox/klox mice, likely due to a compensatory response to marked hyperphagia displayed by the mutant mice. Conclusion This study shows that the majority of TrkB neurons in the ARH are distinct from known neuronal populations and that BDNF plays a critical role in directing projections from these neurons to the DMH and PVH. We propose that hyperphagic obesity due to BDNF deficiency is in part attributable to impaired axonal growth of TrkB-expressing ARH neurons. PMID:26042201

  13. Brain-Derived Neurotrophic Factor (BDNF) protein levels in anxiety disorders: systematic review and meta-regression analysis

    PubMed Central

    Suliman, Sharain; Hemmings, Sian M. J.; Seedat, Soraya

    2013-01-01

    Background: Brain-Derived Neurotrophic Factor (BDNF) is a neurotrophin that is involved in the synaptic plasticity and survival of neurons. BDNF is believed to be involved in the pathogenesis of several neuropsychiatric disorders. As findings of BDNF levels in anxiety disorders have been inconsistent, we undertook to conduct a systematic review and meta-analysis of studies that assessed BDNF protein levels in these disorders. Methods: We conducted the review using electronic databases and searched reference lists of relevant articles for any further studies. Studies that measured BDNF protein levels in any anxiety disorder and compared these to a control group were included. Effect sizes of the differences in BDNF levels between anxiety disorder and control groups were calculated. Results: Eight studies with a total of 1179 participants were included. Initial findings suggested that BDNF levels were lower in individuals with any anxiety disorder compared to those without [Standard Mean Difference (SMD) = −0.94 (−1.75, −0.12), p ≤ 0.05]. This was, however, dependent on source of BDNF protein [plasma: SMD = −1.31 (−1.69, −0.92), p ≤ 0.01; serum: SMD = −1.06 (−2.27, 0.16), p ≥ 0.01] and type of anxiety disorder [PTSD: SMD = −0.05 (−1.66, 1.75), p ≥ 0.01; OCD: SMD = −2.33 (−4.21, −0.45), p ≤ 0.01]. Conclusion: Although BDNF levels appear to be reduced in individuals with an anxiety disorder, this is not consistent across the various anxiety disorders and may largely be explained by the significantly lowered BDNF levels found in OCD. Results further appear to be mediated by differences in sampling methods. Findings are, however, limited by the lack of research in this area, and given the potential for BDNF as a biomarker of anxiety disorders, it would be useful to clarify the relationship further. PMID:23908608

  14. Estrogen and brain-derived neurotrophic factor (BDNF) in hippocampus: complexity of steroid hormone-growth factor interactions in the adult CNS.

    PubMed Central

    Scharfman, Helen E.; MacLusky, Neil J.

    2007-01-01

    In the CNS, there are widespread and diverse interactions between growth factors and estrogen. Here we examine the interactions of estrogen and brain-derived neurotrophic factor (BDNF), two molecules that have historically been studied separately, despite the fact that they seem to share common targets, effects, and mechanisms of action. The demonstration of an estrogen-sensitive response element on the BDNF gene provided an impetus to explore a direct relationship between estrogen and BDNF, and predicted that the effects of estrogen, at least in part, might be due to the induction of BDNF. This hypothesis is discussed with respect to the hippocampus, where substantial evidence has accumulated in favor of it, but alternate hypotheses are also raised. It is suggested that some of the interactions between estrogen and BDNF, as well as the controversies and implications associated with their respective actions, may be best appreciated in light of the ability of BDNF to induce neuropeptide Y (NPY) synthesis in hippocampal neurons. Taken together, this tri-molecular cascade, estrogen-BDNF-NPY, may be important in understanding the hormonal regulation of hippocampal function. It may also be relevant to other regions of the CNS where estrogen is known to exert profound effects, such as amygdala and hypothalamus; and may provide greater insight into neurological disorders and psychiatric illness, including Alzheimer’s disease, depression and epilepsy. PMID:17055560

  15. Evaluation of the brain-derived neurotrophic factor, nerve growth factor and memory in adult rats survivors of the neonatal meningitis by Streptococcus agalactiae.

    PubMed

    Barichello, Tatiana; Lemos, Joelson C; Generoso, Jaqueline S; Carradore, Mirelle M; Moreira, Ana Paula; Collodel, Allan; Zanatta, Jessiele R; Valvassori, Samira S; Quevedo, João

    2013-03-01

    Streptococcus agalactiae (GBS) is a major cause of severe morbidity and mortality in neonates and young infants, causing sepsis, pneumonia and meningitis. The survivors from this meningitis can suffer serious long-term neurological consequences, such as, seizures, hearing loss, learning and memory impairments. Neurotrophins, such as nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) control the neuronal cell death during the brain development and play an important role in neuronal differentiation, survival and growth of neurons. Neonate Wistar rats, received either 10μL of sterile saline as a placebo or an equivalent volume of GBS suspension at a concentration of 1×10(6)cfu/mL. Sixty days after induction of meningitis, the animals underwent behavioral tests, after were killed and the hippocampus and cortex were retired for analyze of the BDNF and NGF levels. In the open-field demonstrated no difference in motor, exploratory activity and habituation memory between the groups. The step-down inhibitory avoidance, when we evaluated the long-term memory at 24h after training session, we found that the meningitis group had a decrease in aversive memory when compared with the long-term memory test of the sham group. BDNF levels decreased in hippocampus and cortex; however the NGF levels decreased only in hippocampus. These findings suggest that the meningitis model could be a good research tool for the study of the biological mechanisms involved in the behavioral alterations secondary to GBS meningitis. PMID:22683802

  16. Serum brain-derived neurotrophic factor, vascular endothelial growth factor and leptin levels in patients with a diagnosis of severe major depressive disorder with melancholic features

    PubMed Central

    Sarandöl, Emre; Kırhan, Emine; Özkaya, Güven; Kırlı, SelcÇuk

    2012-01-01

    Objective: Brain-derived neurotrophic factor (BDNF), vascular endothelial growth factor (VEGF) and leptin have been hypothesized to be involved in the neurobiology of depression. The aim of this study was to investigate BDNF, VEGF and leptin levels in patients with severe melancholic depression. Methods: A total of 40 drug-free patients with major depressive disorder (MDD) with melancholic features and 40 healthy controls were included in the study. Demographic information, psychiatric evaluation and physical examination were documented for both groups. Serum BDNF, VEGF levels were determined by enzyme-linked immunosorbent assay and leptin with radioimmunoassay methods. The Hamilton Depression Rating Scale and Hamilton Anxiety Rating Scale were applied to the patients. Results: There were no significant differences in serum BDNF, VEGF and leptin levels between the patient and control groups. There was a negative correlation between BDNF levels and the number of depressive episodes. It was noted that VEGF levels decreased with increasing severity of depression. Conclusions: These findings suggest that BDNF levels might be associated with the recurrence of depression and VEGF levels might be a determinant of the severity of depression. PMID:23983958

  17. Glial Cell Line-Derived Neurotrophic Factor Family Members Reduce Microglial Activation via Inhibiting p38MAPKs-Mediated Inflammatory Responses

    PubMed Central

    Rickert, Uta; Grampp, Steffen; Wilms, Henrik; Spreu, Jessica; Knerlich-Lukoschus, Friederike; Held-Feindt, Janka; Lucius, Ralph

    2014-01-01

    Previous studies have shown that glial cell line-derived neurotrophic factor (GDNF) family ligands (GFL) are potent survival factors for dopaminergic neurons and motoneurons with therapeutic potential for Parkinson's disease. However, little is known about direct influences of the GFL on microglia function, which are known to express part of the GDNF receptor system. Using RT-PCR and immunohistochemistrym we investigated the expression of the GDNF family receptor alpha 1 (GFR alpha) and the coreceptor transmembrane receptor tyrosine kinase (RET) in rat microglia in vitro as well as the effect of GFL on the expression of proinflammatory molecules in LPS activated microglia. We could show that GFL are able to regulate microglia functions a