Science.gov

Sample records for neutral beam injectors

  1. Progress of beam diagnosis system for EAST neutral beam injector

    NASA Astrophysics Data System (ADS)

    Xu, Y. J.; Hu, C. D.; Yu, L.; Liang, L. Z.; Zhang, W. T.; Chen, Y.; Li, X.

    2016-02-01

    Neutral beam injection has been recognized as one of the most effective means for plasma heating. According to the research plan of the EAST physics experiment, two sets of neutral beam injector (NBI) were built and operational in 2014. The paper presents the development of beam diagnosis system for EAST NBI and the latest experiment results obtained on the test-stand and EAST-NBI-1 and 2. The results show that the optimal divergence angle is (0.62°, 1.57°) and the full energy particle is up to 77%. They indicate that EAST NBI work properly and all targets reach or almost reach the design targets. All these lay a solid foundation for the achievement of high quality plasma heating for EAST.

  2. Negative ion based neutral beam injector for JT-60U

    NASA Astrophysics Data System (ADS)

    Okumura, Y.; Araki, M.; Hanada, M.; Inoue, T.; Kunieda, S.; Kuriyama, M.; Matsuoka, M.; Mizuno, M.; Ohara, Y.; Tanaka, M.; Watanabe, K.

    1992-10-01

    A 500 keV, 10 MW neutral beam injector is to be constructed in JT-60 Upgrade for the experiments of current drive and heating of heat density core plasmas. This is the first neutral beam injector in the world using negative ions as the primary ions. In the design, D- ion beams of 44 A, 500 keV are produced by two ion sources (22 A/each ion source) and neutralized in a long gas neutralizer. The total system efficiency is about 40%. The ion source is a cesium-seeded multicusp volume source having a three stage electrostatic accelerator. To reduce the stripping loss of D- ions in the accelerator, the ion source should be operated at a low pressure of 0.3 Pa with a current density of 13 mA/cm2. The first test of the full-size negative ion source is scheduled from middle of 1993.

  3. Electrostatic steering and beamlet aiming in large neutral beam injectors

    SciTech Connect

    Veltri, P. Chitarin, G.; Marcuzzi, D.; Sartori, E.; Serianni, G.; Sonato, P.; Cavenago, M.

    2015-04-08

    Neutral beam injection is the main method for plasma heating in magnetic confinement fusion devices. In high energy injector (E>100 keV/amu), neutrals are obtained with reasonable efficiency by conversion of negative ions (H- or D-) via electron detachment reactions. In the case of ITER injectors, which shall operate at 1 MeV, a total ion current of ∼ 40 A is required to satisfy the heating power demand. Gridded electrodes are therefore used in the accelerator, so that 1280 negative ion beamlets are accelerated together. A carefully designed aiming system is required to control the beamlet trajectories, and to deliver their power on a focal point located several meters away from the beam source. In nowadays injectors, the aiming is typically obtained by aperture offset technique or by grid shaping. This paper discuss an alternative concept of beamlets aiming, based on an electrostatic ”steerer” to be placed at the end of the accelerator. A feasibility study of this component is also presented, and its main advantages and drawbacks with respect to other methods are discussed.

  4. Cryosorption Pumps for a Neutral Beam Injector Test Facility

    SciTech Connect

    Dremel, M.; Mack, A.; Day, C.; Jensen, H.

    2006-04-27

    We present the experiences of the manufacturing and the operating of a system of two identical cryosorption pumps used in a neutral beam injector test facility for fusion reactors. Calculated and measured heat loads of the cryogenic liquid helium and liquid nitrogen circuits of the cryosorption pumps are discussed. The design calculations concerning the thermo-hydraulics of the helium circuit are compared with experiences from the operation of the cryosorption pumps. Both cryopumps are integrated in a test facility of a neutral beam injector that will be used to heat the plasma of a nuclear fusion reactor with a beam of deuterium or hydrogen molecules. The huge gas throughput into the vessel of the test facility results in challenging needs on the cryopumping system.The developed cryosorption pumps are foreseen to pump a hydrogen throughput of 20 - 30 mbar{center_dot}l/s. To establish a mean pressure of several 10-5 mbar in the test vessel a pumping speed of about 350 m3/s per pump is needed. The pressure conditions must be maintained over several hours pumping without regeneration of the cryopanels, which necessitates a very high pumping capacity. A possibility to fulfill these requirements is the use of charcoal coated cryopanels to pump the gasloads by adsorption. For the cooling of the cryopanels, liquid helium at saturation pressure is used and therefore a two-phase forced flow in the cryopump system must be controlled.

  5. Neutral beam injectors for the Big Dee vessel

    SciTech Connect

    Doll, D.W.; Bailey, E.; Colleraine, A.; Fasolo, J.; Hager, R.; Peuron, A.; Rawls, J.; Sanchez, H.

    1983-12-01

    The four neutral beam injectors built for Doublet III will be modified to reoptimize beam transmission into the Big Dee vessel. All beamline components will be remounted 90/sup 0/ to their original position in the cylindrical vacuum vessel. This will permit optimum alignment with the available port opening. While these modifications are being incorporated into the disassembled injectors, it is planned that improvements and upgrading features will be added at the least possible cost. The calorimeter will be replaced by two independently driven calorimeters, thus decoupling the operation of the two ion sources. The beam path is being opened up to accommodate a long pulse (cw) source and all beam absorbing surfaces are being increased in size to withstand up to 5 s of operation with heat fluxes up to 700 W/cm/sup 2/. By opening up the apertures along the beam trajectory, an increase in power transmission into the plasma of 33% is realized compared with the present Doublet III performance.

  6. Physics design of the injector source for ITER neutral beam injector (invited)

    SciTech Connect

    Antoni, V.; Agostinetti, P.; Aprile, D.; Chitarin, G.; Fonnesu, N.; Marconato, N.; Pilan, N.; Sartori, E.; Serianni, G. Veltri, P.; Cavenago, M.

    2014-02-15

    Two Neutral Beam Injectors (NBI) are foreseen to provide a substantial fraction of the heating power necessary to ignite thermonuclear fusion reactions in ITER. The development of the NBI system at unprecedented parameters (40 A of negative ion current accelerated up to 1 MV) requires the realization of a full scale prototype, to be tested and optimized at the Test Facility under construction in Padova (Italy). The beam source is the key component of the system and the design of the multi-grid accelerator is the goal of a multi-national collaborative effort. In particular, beam steering is a challenging aspect, being a tradeoff between requirements of the optics and real grids with finite thickness and thermo-mechanical constraints due to the cooling needs and the presence of permanent magnets. In the paper, a review of the accelerator physics and an overview of the whole R and D physics program aimed to the development of the injector source are presented.

  7. Thermal effects in high power cavities for photoneutralization of D- beams in future neutral beam injectors

    NASA Astrophysics Data System (ADS)

    Fiorucci, Donatella; Feng, Jiatai; Pichot, Mikhaël; Chaibi, Walid

    2015-04-01

    Photoneutralization may represent a key issue in the neutral beam injectors for future fusion reactors. In fact, photodetachment based neutralization combined with an energy recovery system increase the injector overall efficiency up to 60%. This is the SIPHORE injector concept in which photoneutralization is realized in a refolded cavity [1]. However, about 1 W of the several megaWatts intracavity power is absorbed by the mirrors coatings and gives rise to important thermoelastic distortions. This is expected to change the optical behavior of the mirrors and reduce the enhancement factor of the cavity. In this paper, we estimate these effects and we propose a thermal system to compensate it.

  8. Negative hydrogen ion source for TOKAMAK neutral beam injector (invited)

    NASA Astrophysics Data System (ADS)

    Okumura, Y.; Fujiwara, Y.; Kashiwagi, M.; Kitagawa, T.; Miyamoto, K.; Morishita, T.; Hanada, M.; Takayanagi, T.; Taniguchi, M.; Watanabe, K.

    2000-02-01

    Intense negative ion source producing multimegawatt hydrogen/deuterium negative ion beams has been developed for the neutral beam injector (NBI) in TOKAMAK thermonuclear fusion machines. Negative ions are produced in a cesium seeded multi-cusp plasma generator via volume and surface processes, and accelerated with a multistage electrostatic accelerator. The negative ion source for JT-60U has produced 18.5 A/360 keV (6.7 MW) H- and 14.3 A/380 keV (5.4 MW) D- ion beams at average current densities of 11 mA/cm2 (H-) and 8.5 mA/cm2 (D-). A high energy negative ion source has been developed for the next generation TOKAMAK such as the International Thermonuclear Experimental Reactor (ITER). The source has demonstrated to accelerate negative ions up to 1 MeV, the energy required for ITER. Higher negative ion current density of more than 20 mA/cm2 was obtained in the ITER concept sources. It was confirmed that the consumption rate of cesium is small enough to operate the source for a half year in ITER-NBI without maintenance.

  9. The Timing System of the Neutral Beam Injector on EAST

    NASA Astrophysics Data System (ADS)

    Sheng, Peng; Hu, Chundong; Zhao, Yuanzhe; Cui, Qinglong; Zhang, Xiaodan; Wu, Deyun; Zhang, Rui; Lin, Yulian

    2015-05-01

    In order to synchronize the elements of the EAST Neutral Beam Injector (NBI) spatially located in several places, a distributed Timing System (TS) is developed in this paper. The timing system provides a clock reference for synchronization and an interlock protection of the EAST NBI system. It sends timing signals to field devices, controls the pulse widths of the timing sequences, and provides a sampling clock for the Data Acquisition System (DAS). The timing system also generates analog waveforms to control power supplies and gas supplies according to the operator's configuration. The timing system is developed on a PXI (PCI eXtensions for Instrumentation) platform consisting of a LabVIEW workstation and a timing control terminal. The timing control terminal consists of a timing node and several control interface crates. Two timing nodes are configured in one beam line. Each node is responsible for the timing sequence, analog generation and feedback control for one ion source. The architecture and implementation of the timing system are presented in this paper.

  10. Physics design of the injector source for ITER neutral beam injector (invited).

    PubMed

    Antoni, V; Agostinetti, P; Aprile, D; Cavenago, M; Chitarin, G; Fonnesu, N; Marconato, N; Pilan, N; Sartori, E; Serianni, G; Veltri, P

    2014-02-01

    Two Neutral Beam Injectors (NBI) are foreseen to provide a substantial fraction of the heating power necessary to ignite thermonuclear fusion reactions in ITER. The development of the NBI system at unprecedented parameters (40 A of negative ion current accelerated up to 1 MV) requires the realization of a full scale prototype, to be tested and optimized at the Test Facility under construction in Padova (Italy). The beam source is the key component of the system and the design of the multi-grid accelerator is the goal of a multi-national collaborative effort. In particular, beam steering is a challenging aspect, being a tradeoff between requirements of the optics and real grids with finite thickness and thermo-mechanical constraints due to the cooling needs and the presence of permanent magnets. In the paper, a review of the accelerator physics and an overview of the whole R&D physics program aimed to the development of the injector source are presented. PMID:24593568

  11. Performance of Doublet III neutral beam injector cryopumping system

    SciTech Connect

    Langhorn, A.R.; Kim, J.; Tupper, M.L.; Williams, J.P.; Fasolo, J.

    1984-04-01

    The Doublet III neutral beam injector system is based on three beamlines; each beamline employs two 80 kV/80 A hydrogen ion sources. Two liquid helium (LHe) cooled cryopanel arrays were designed as an integral part of the beamline in order to provide high differential pumping of hydrogen gas along the beamline. The cryopanel arrays consist of a front (nearer to the torus) disk panel (3 m/sup 2/ each side) with liquid nitrogen (LN/sub 2/) cooled chevrons and a rear cylindrical panel of modified Santeler panels (8 m/sup 2/) which also employs LN/sub 2/ cooled surfaces shielding LHe cooled surfaces. These cryopanels are piped in series. The LHe delivery is based on a closed-loop, forced-flow scheme intended for variable panel temperatures (3.7 to 4.3 K). It uses small tubes for mechanical flexibility and thermal resiliency providing ease of economic defrosting. The cryogenic system consists of a liquefier (100 l/h), a large Dewar, a heat exchanger, and a liquid ring pump. Three beamlines are serviced simultaneously by the system. Pumping speeds measured locally at ionization gauges, were well in excess of the 1.4 x 10/sup 6/ l/s design goal.

  12. Neutral beam injector performance on the PLT and PDX tokamaks

    SciTech Connect

    Schilling, G.; Ashcroft, D.L.; Eubank, H.P.; Grisham, L.R.; Kozub, T.A.; Kugel, H.W.; Rossmassler, J.; Williams, M.D.

    1981-02-01

    An overall injector system description is presented first, and this will be followed by a detailed discussion of those problems unique to multiple injector operation on the tokamaks, i.e., power transmission, conditioning, reliability, and failures.

  13. Neutron and gamma ray streaming calculations for the ETF neutral beam injectors

    NASA Astrophysics Data System (ADS)

    Lillie, R. A.; Santoro, R. T.; Alsmiller, R. G., Jr.; Barnes, J. M.

    1981-02-01

    Two dimensional radiation transport methods were used to estimate the effects of neutron and gamma ray streaming on the performance of the engineering test facility neutral beam injectors. The calculations take into account the spatial, angular, and spectral distributions of the radiation entering the injector duct. The instantaneous nuclear heating rate averaged over the length of the cryopumping panel in the injector is 7.5 x 10(+3) MW/m(3) which implies a total heat load of 2.2 x 10(+4) MW. The instantaneous dose rate to the ion gun insulators was estimated to be 3200 rad/s. The radial dependence of the instantaneous dose equivalent rate in the neutral beam injector duct shield was also calculated.

  14. Neutral beam injector for 475 keV MARS sloshing ions

    SciTech Connect

    Goebel, D.M.; Hamilton, G.W.

    1984-03-01

    A neutral beam injector system which produces 5 MW of 475 keV D/sup 0/ neutrals continuously on target has been designed. The beamline is intended to produce the sloshing ion distribution required in the end plug region of the conceptual MARS tandem mirror commercial reactor. The injector design utilizes the LBL self-extraction negative ion source and Transverse Field Focusing (TFF) accelerator to generate a long, ribbon ion beam. A laser photodetachment neutralizer strips over 90% of the negative ions. Magnetic and neutron shield designs are included to exclude the fringe fields of the end plug and provide low activation by the neutron flux from the target plasma. The use of a TFF accelerator and photodetachment neutralizer produce a total system electrical efficiency of about 63% for this design.

  15. Neutral beam injector for 475 keV MARS sloshing ions

    SciTech Connect

    Goebel, D.M.; Hamilton, G.W.

    1983-12-13

    A neutral beam injector system which produces 5 MW of 475 keV D/sup 0/ neutrals continuously on target has been designed. The beamline is intended to produce the sloshing ion distribution required in the end plug region of the conceptual MARS tandem mirror commercial reactor. The injector design utilizes the LBL self-extraction negative ion source and Transverse Field Focusing (TFF) accelerator to generate a long, ribbon ion beam. A laser photodetachment neutralizer strips over 90% of the negative ions. Magnetic and neutron shield designs are included to exclude the fringe fields of the end plug and provide low activation by the neutron flux from the target plasma. The use of a TFF accelerator and photodetachment neutralizer produces a total system electrical efficiency of about 63% for this design.

  16. Thermal effects in high power cavities for photoneutralization of D{sup −} beams in future neutral beam injectors

    SciTech Connect

    Fiorucci, Donatella; Feng, Jiatai; Pichot, Mikhaël; Chaibi, Walid

    2015-04-08

    Photoneutralization may represent a key issue in the neutral beam injectors for future fusion reactors. In fact, photodetachment based neutralization combined with an energy recovery system increase the injector overall efficiency up to 60%. This is the SIPHORE injector concept in which photoneutralization is realized in a refolded cavity [1]. However, about 1 W of the several megaWatts intracavity power is absorbed by the mirrors coatings and gives rise to important thermoelastic distortions. This is expected to change the optical behavior of the mirrors and reduce the enhancement factor of the cavity. In this paper, we estimate these effects and we propose a thermal system to compensate it.

  17. Modified 180/sup 0/ separation magnet for DIII-Big Dee neutral beam injectors

    SciTech Connect

    Hong, R.; Colleraine, A.P.; Fasolo, J.; Kim, J.; Phillips, J.

    1985-07-01

    Neutral beam injection systems for heating the plasma of a fusion research device utilize a deflection magnet to separate the unneutralized residual ions from the neutral particles and steer them into an ion dump. Performance of the separation magnet is crucial in that its failure will cause serious damage to beamline components. A technique using wire orbit simulations was successfully applied to test the performance of the modified 180/sup 0/ separation magnet for DIII-Big Dee neutral beam injectors. It simulated the stable ion trajectories, and showed the fringe field effects and the proper range of operating magnet field strength to be determined.

  18. Overview of the negative ion based neutral beam injectors for ITER

    NASA Astrophysics Data System (ADS)

    Schunke, B.; Boilson, D.; Chareyre, J.; Choi, C.-H.; Decamps, H.; El-Ouazzani, A.; Geli, F.; Graceffa, J.; Hemsworth, R.; Kushwah, M.; Roux, K.; Shah, D.; Singh, M.; Svensson, L.; Urbani, M.

    2016-02-01

    The ITER baseline foresees 2 Heating Neutral Beams (HNB's) based on 1 MeV 40 A D- negative ion accelerators, each capable of delivering 16.7 MW of deuterium atoms to the DT plasma, with an optional 3rd HNB injector foreseen as a possible upgrade. In addition, a dedicated diagnostic neutral beam will be injecting ≈22 A of H0 at 100 keV as the probe beam for charge exchange recombination spectroscopy. The integration of the injectors into the ITER plant is nearly finished necessitating only refinements. A large number of components have passed the final design stage, manufacturing has started, and the essential test beds—for the prototype route chosen—will soon be ready to start.

  19. Overview of the negative ion based neutral beam injectors for ITER.

    PubMed

    Schunke, B; Boilson, D; Chareyre, J; Choi, C-H; Decamps, H; El-Ouazzani, A; Geli, F; Graceffa, J; Hemsworth, R; Kushwah, M; Roux, K; Shah, D; Singh, M; Svensson, L; Urbani, M

    2016-02-01

    The ITER baseline foresees 2 Heating Neutral Beams (HNB's) based on 1 MeV 40 A D(-) negative ion accelerators, each capable of delivering 16.7 MW of deuterium atoms to the DT plasma, with an optional 3rd HNB injector foreseen as a possible upgrade. In addition, a dedicated diagnostic neutral beam will be injecting ≈22 A of H(0) at 100 keV as the probe beam for charge exchange recombination spectroscopy. The integration of the injectors into the ITER plant is nearly finished necessitating only refinements. A large number of components have passed the final design stage, manufacturing has started, and the essential test beds-for the prototype route chosen-will soon be ready to start. PMID:26932111

  20. Status of PRIMA, the test facility for ITER neutral beam injectors

    NASA Astrophysics Data System (ADS)

    Sonato, P.; Antoni, V.; Bigi, M.; Chitarin, G.; Luchetta, A.; Marcuzzi, D.; Pasqualotto, R.; Pomaro, N.; Serianni, G.; Toigo, V.; Zaccaria, P.; ITER International Team

    2013-02-01

    The ITER project requires additional heating by two neutral beam injectors, each accelerating to 1MV a 40A beam of negative deuterons, delivering to the plasma about 17MW up to one hour. As these requirements have never been experimentally met, it was decided to build a test facility, PRIMA (Padova Research on ITER Megavolt Accelerator), in Italy, including a full-size negative ion source, SPIDER, and a prototype of the whole ITER injector, MITICA, aiming to develop the heating injectors to be installed in ITER. The Japan and the India Domestic Agencies participate in the PRIMA enterprise; European laboratories, such as KIT-Karlsruhe, IPP-Garching, CCFE-Culham, CEA-Cadarache and others are also cooperating. In the paper the main requirements are discussed and the design of the main components and systems are described.

  1. Gas utilization in TFTR (Tokamak Fusion Test Reactor) neutral beam injectors

    SciTech Connect

    Kamperschroer, J.H.; Gammel, G.M.; Kugel, H.W.; Grisham, L.R.; Stevenson, T.N.; von Halle, A.; Williams, M.D.

    1987-08-01

    Measurements of gas utilization in a test TFTR neutral beam injector have been performed to study the feasibility of running tritium neutral beams with existing ion sources. Gas consumption is limited by the restriction of 50,000 curies of T/sub 2/ allowed on site. It was found that the gas efficiency of the present long-pulse ion sources is higher than it was with previous short-pulse sources. Gas efficiencies were studied over the range of 35 to 55%. At the high end of this range the neutral fraction of the beam fell below that predicted by room temperature molecular gas flow. This is consistent with observations made on the JET injectors, where it has been attributed to beam heating of the neutralizer gas and a concomitant increase in conductance. It was found that a working gas isotope exchange from H/sub 2/ to D/sub 2/ could be accomplished on the first beam shot after changing the gas supply, without any intermediate preconditioning. The mechanism believed responsible for this phenomenon is heating of the plasma generator walls by the arc and a resulting thermal desorption of all previously adsorbed and implanted gas. Finally, it was observed that an ion source conditioned to 120 kV operation could produce a beam pulse after a waiting period of fourteen hours by preceding the beam extraction with several hi-pot/filament warm-up pulses, without any gas consumption. 18 refs., 7 figs., 2 tabs.

  2. Modeling and simulation of a beam emission spectroscopy diagnostic for the ITER prototype neutral beam injector

    SciTech Connect

    Barbisan, M. Zaniol, B.; Pasqualotto, R.

    2014-11-15

    A test facility for the development of the neutral beam injection system for ITER is under construction at Consorzio RFX. It will host two experiments: SPIDER, a 100 keV H{sup −}/D{sup −} ion RF source, and MITICA, a prototype of the full performance ITER injector (1 MV, 17 MW beam). A set of diagnostics will monitor the operation and allow to optimize the performance of the two prototypes. In particular, beam emission spectroscopy will measure the uniformity and the divergence of the fast particles beam exiting the ion source and travelling through the beam line components. This type of measurement is based on the collection of the H{sub α}/D{sub α} emission resulting from the interaction of the energetic particles with the background gas. A numerical model has been developed to simulate the spectrum of the collected emissions in order to design this diagnostic and to study its performance. The paper describes the model at the base of the simulations and presents the modeled H{sub α} spectra in the case of MITICA experiment.

  3. Detailed electrical characterization of the TARA neutral beam injector system

    SciTech Connect

    Gaudreau, M.P.J.; Shuster, M.S.; Berkman, V.J.; Torti, R.P.; Horne, S.F.; Coleman, J.W.

    1985-11-01

    Extensive use of modern automatic control, data acquisition and state of the art power supply technology has enabled detailed electrical characterization and optimization of the TARA ion source operating point. The TARA ion sources and power supplies are parameterized empirically and/or modeled theoretically. The sources are characterized in the basic three dimensional space: filament power, arc power, and gas pressure. Filament warm-up rate, arc voltage to current ratio, arc and filament power supply ripple, and beam current parameter subspace are also investigated. Characterization is done in terms of small and large signals, frequency response, hysteresis and linearity to enable optimal source stability in a fully regulated environment. Discharge density regulation with the filament power highly regulated has been achieved through power supply feedback on the arc current or a Langmuir probe in the discharge. Dynamic divergence correction by feedback from secondary emission detectors in the source beamline is discussed. 4 refs., 36 figs.

  4. Performance of positive ion based high power ion source of EAST neutral beam injector.

    PubMed

    Hu, Chundong; Xie, Yahong; Xie, Yuanlai; Liu, Sheng; Xu, Yongjian; Liang, Lizhen; Jiang, Caichao; Li, Jun; Liu, Zhimin

    2016-02-01

    The positive ion based source with a hot cathode based arc chamber and a tetrode accelerator was employed for a neutral beam injector on the experimental advanced superconducting tokamak (EAST). Four ion sources were developed and each ion source has produced 4 MW @ 80 keV hydrogen beam on the test bed. 100 s long pulse operation with modulated beam has also been tested on the test bed. The accelerator was upgraded from circular shaped to diamond shaped in the latest two ion sources. In the latest campaign of EAST experiment, four ion sources injected more than 4 MW deuterium beam with beam energy of 60 keV into EAST. PMID:26932029

  5. Temporal behavior of neutral particle fluxes in TFTR (Tokamak Fusion Test Reactor) neutral beam injectors

    SciTech Connect

    Kamperschroer, J.H.; Gammel, G.M.; Roquemore, A.L.; Grisham, L.R.; Kugel, H.W.; Medley, S.S.; O'Connor, T.E.; Stevenson, T.N.; von Halle, A.; Williams, M.D.

    1989-09-01

    Data from an E {parallel} B charge exchange neutral analyzer (CENA), which views down the axis of a neutral beamline through an aperture in the target chamber calorimeter of the TFTR neutral beam test facility, exhibit two curious effects. First, there is a turn-on transient lasting tens of milliseconds having a magnitude up to three times that of the steady-state level. Second, there is a 720 Hz, up to 20% peak-to-peak fluctuation persisting the entire pulse duration. The turn-on transient occurs as the neutralizer/ion source system reaches a new pressure equilibrium following the effective ion source gas throughput reduction by particle removal as ion beam. Widths of the transient are a function of the gas throughput into the ion source, decreasing as the gas supply rate is reduced. Heating of the neutalizer gas by the beam is assumed responsible, with gas temperature increasing as gas supply rate is decreased. At low gas supply rates, the transient is primarliy due to dynamic changes in the neutralizer line density and/or beam species composition. Light emission from the drift duct corroborate the CENA data. At high gas supply rates, dynamic changes in component divergence and/or spatial profiles of the source plasma are necessary to explain the observations. The 720 Hz fluctuation is attributed to a 3% peak-to-peak ripple of 720 Hz on the arc power supply amplified by the quadratic relationship between beam divergence and beam current. Tight collimation by CENA apertures cause it to accept a very small part of the ion source's velocity space, producing a signal linearly proportional to beam divergence. Estimated fluctuations in the peak power density delivered to the plasma under these conditions are a modest 3--8% peak to peak. The efffects of both phenomena on the injected neutral beam can be ameliorated by careful operion of the ion sources. 21 refs., 11 figs., 2 tabs.

  6. Nucleonic analysis of a preliminary design for the ETF neutral-beam-injector duct shielding

    SciTech Connect

    Urban, W.T.; Seed, T.J.; Dudziak, D.J.

    1980-01-01

    A nucleonic analysis of the Engineering Test Facility Neutral-Beam-Injector duct shielding has been made using a hybrid Monte Carlo/discrete-ordinates method. This method used Monte Carlo to determine internal and external boundary surface sources for a subsequent discrete-ordinates calculation of the neutron and gamma-ray transport through the shield. The analysis also included determination of the energy and angular distribution of neutrons and gamma rays entering the duct from the torus plasma chamber. Confidence in the hybrid method and the results obtained were provided through a comparison with three-dimensional Monte Carlo results.

  7. Instrumentation and control of the Doublet III Neutral Beam Injector System

    SciTech Connect

    Kohli, J.C.; Moore, C.D.; Drobnis, D.D.; Elischer, V.P.; Kilgore, R.; Uber, D.

    1980-03-01

    The hardware and software required for the operation of the Doublet III Neutral Beam Injector System (NBIS) are described. Development and implementation of this Instrumentation and Control System was divided between the major participants - General Atomic Company and Lawrence Berkeley Laboratory. The subdivision of responsibilities and the coordination of the participants' activities are described with reference to hardware and software requirements in support of the entire system. Included are a description of the operators' consoles, the interlock system and the CAMAC system. One feature of the control software is source modeling. This feature includes feedback on a shot to shot basis and adaptive control. Adaptive control permits the computer system to automatically adjust parameters after a shot, and to control the system to automatically compensate for time varying NBIS components. The Neutral Beam Power Supply features power supply modeling, fiber optic transmission of analog signals and digital control of power supply power-up/interlocks.

  8. Numerical study of beam propagation and plasma properties in the neutralizer and the E-RID of the ITER Neutral Beam Injector

    NASA Astrophysics Data System (ADS)

    Lifschitz, A. F.; Revel, A.; Caillault, L.; Minea, T.

    2014-04-01

    Non-ohmic heating will be used in the experimental nuclear fusion reactor ITER to reach thermonuclear temperatures. Two heating mechanism will be implemented, i.e. microwaves resonant with ion and electron cyclotron frequencies and energetic neutral beam injection, which contributes also to the current drive. Each one of the two neutral beam injector planned for ITER will deliver 16 MW of 1 MeV D0 beam. In the injector, negative ions D- coming from a 40 A negative ion source are electrostatically accelerated to 1 MeV, and stripped of their extra electron by collision with a target gas in a structure known as the neutralizer. Residual charged particles are deflected after the neutralizer in an electrostatic ion dump (E-RID). The ionization of the deuterium buffer gas filling the neutralizer induced by the D- beam creates a rarefied plasma which is expected to efficiently screens the Coulomb repulsion of the beam. Moreover, this plasma can eventually escape from the neutralizer and move back in the accelerator, towards the accelerating grids and the negative ion source. The transport of the beam through the neutralizer and the RID and the related plasma properties were studied using a 3D electrostatic particle-in-cell code called OBI-3 (Orsay Beam Injector 3 dimensional). Particle-particle and particle-wall collisions are treated using the Monte Carlo collision approach. Simulations show that the secondary plasma effectively screens the beam space charge preventing beam transverse expansion. Plasma ions created in the neutralizer form an upstream current with a magnitude of ˜0.5% of the negative ion current. Gas breakdown leading to arc formation in the RID was not observed. Finally, results for the propagation of non-ideal beams coming from simulations of the extraction and consecutive acceleration taken from Revel et al 2013 Nucl. Fusion 53 073027 are presented.

  9. Modeling activities on the negative-ion-based Neutral Beam Injectors of the Large Helical Device

    SciTech Connect

    Agostinetti, P.; Antoni, V.; Chitarin, G.; Pilan, N.; Serianni, G.; Veltri, P.; Cavenago, M.; Nakano, H.; Takeiri, Y.; Tsumori, K.

    2011-09-26

    At the National Institute for Fusion Science (NIFS) large-scaled negative ion sources have been widely used for the Neutral Beam Injectors (NBIs) mounted on the Large Helical Device (LHD), which is the world-largest superconducting helical system. These injectors have achieved outstanding performances in terms of beam energy, negative-ion current and optics, and represent a reference for the development of heating and current drive NBIs for ITER.In the framework of the support activities for the ITER NBIs, the PRIMA test facility, which includes a RF-drive ion source with 100 keV accelerator (SPIDER) and a complete 1 MeV Neutral Beam system (MITICA) is under construction at Consorzio RFX in Padova.An experimental validation of the codes has been undertaken in order to prove the accuracy of the simulations and the soundness of the SPIDER and MITICA design. To this purpose, the whole set of codes have been applied to the LHD NBIs in a joint activity between Consorzio RFX and NIFS, with the goal of comparing and benchmarking the codes with the experimental data. A description of these modeling activities and a discussion of the main results obtained are reported in this paper.

  10. Design of Main Control Console Software in EAST Neutral Beam Injector's Control System for the First Beam Line

    NASA Astrophysics Data System (ADS)

    Wu, De-Yun; Hu, Chun-Dong; Sheng, Peng; Zhao, Yuan-Zhe; Zhang, Xiao-Dan; Cui, Qing-Long

    2013-10-01

    Neutral beam injector is one of the main plasma heating and plasma current driving methods for experimental advanced superconducting tokomaks (EAST). In order to realize visual operation of EAST neutral beam injector's control system (NBICS), main control console (MCC) is developed to work as the human-machine interface between the NBICS and physical operator. It can meet the requirements of visual control of NBICS by providing a user graphic interface. With the specific algorithms, the setup of power supply sequence is relatively independent and simple. Displaying the real-time feedback of the subsystems provides a reference for operators to monitor the status of the system. The MCC software runs on a Windows system and uses C++ language code while using client/server (C/S) mode, multithreading and cyclic redundancy check technology. The experimental results have proved that MCC provides a stability and reliability operation of NBICS and works as an effective man-machine interface at the same time.

  11. SIPHORE: Conceptual Study of a High Efficiency Neutral Beam Injector Based on Photo-detachment for Future Fusion Reactors

    SciTech Connect

    Simonin, A.; Christin, L.; Esch, H. de; Garibaldi, P.; Grand, C.; Villecroze, F.; Blondel, C.; Delsart, C.; Drag, C.; Vandevraye, M.; Brillet, A.; Chaibi, W.

    2011-09-26

    An innovative high efficiency neutral beam injector concept for future fusion reactors is under investigation (simulation and R and D) between several laboratories in France, the goal being to perform a feasibility study for the neutralization of intense high energy (1 MeV) negative ion (NI) beams by photo-detachment.The objective of the proposed project is to put together the expertise of three leading groups in negative ion quantum physics, high power stabilized lasers and neutral beam injectors to perform studies of a new injector concept called SIPHORE (SIngle gap PHOto-neutralizer energy REcovery injector), based on the photo-detachment of negative ions and energy recovery of unneutralised ions; the main feature of SIPHORE being the relevance for the future Fusion reactors (DEMO), where high injector efficiency (up to 70-80%), technological simplicity and cost reduction are key issues to be addressed.The paper presents the on-going developments and simulations around this project, such as, a new concept of ion source which would fit with this injector topology and which could solve the remaining uniformity issue of the large size ion source, and, finally, the presentation of the R and D program in the laboratories (LAC, ARTEMIS) around the photo-neutralization for Siphore.

  12. Cavity Ringdown Technique for negative-hydrogen-ion measurement in ion source for neutral beam injector

    NASA Astrophysics Data System (ADS)

    Nakano, H.; Tsumori, K.; Shibuya, M.; Geng, S.; Kisaki, M.; Ikeda, K.; Nagaoka, K.; Osakabe, M.; Takeiri, Y.; Kaneko, O.

    2016-03-01

    The Cavity Ringdown Technique (CRD) is applied for negative hydrogen ion (H-) density measurement in H- source for the neutral beam injector. The CRD is one of the laser absorption techniques. Nd:YAG pulse laser was utilized for negative-hydrogen-ion photodetachment. The H- density related to extracted H- beam was successfully observed by a fixed position CRD. A two-dimensional movable CRD has been developed to measure the H- density profile. Measured profiles were consistent with expected profiles from the H- production area in pure hydrogen and cesium seeded plasmas. By applying absorption saturation in the optical cavity, negative hydrogen ion temperature was evaluated and was confirmed as being a similar value measured with other diagnostics.

  13. Improvement of a plasma uniformity of the 2nd ion source of KSTAR neutral beam injector

    NASA Astrophysics Data System (ADS)

    Jeong, S. H.; Kim, T. S.; Lee, K. W.; Chang, D. H.; In, S. R.; Bae, Y. S.

    2014-02-01

    The 2nd ion source of KSTAR (Korea Superconducting Tokamak Advanced Research) NBI (Neutral Beam Injector) had been developed and operated since last year. A calorimetric analysis revealed that the heat load of the back plate of the ion source is relatively higher than that of the 1st ion source of KSTAR NBI. The spatial plasma uniformity of the ion source is not good. Therefore, we intended to identify factors affecting the uniformity of a plasma density and improve it. We estimated the effects of a direction of filament current and a magnetic field configuration of the plasma generator on the plasma uniformity. We also verified that the operation conditions of an ion source could change a uniformity of the plasma density of an ion source.

  14. Improvement of a plasma uniformity of the 2nd ion source of KSTAR neutral beam injector.

    PubMed

    Jeong, S H; Kim, T S; Lee, K W; Chang, D H; In, S R; Bae, Y S

    2014-02-01

    The 2nd ion source of KSTAR (Korea Superconducting Tokamak Advanced Research) NBI (Neutral Beam Injector) had been developed and operated since last year. A calorimetric analysis revealed that the heat load of the back plate of the ion source is relatively higher than that of the 1st ion source of KSTAR NBI. The spatial plasma uniformity of the ion source is not good. Therefore, we intended to identify factors affecting the uniformity of a plasma density and improve it. We estimated the effects of a direction of filament current and a magnetic field configuration of the plasma generator on the plasma uniformity. We also verified that the operation conditions of an ion source could change a uniformity of the plasma density of an ion source. PMID:24593593

  15. High current H- ion sources for the large helical device neutral beam injector

    NASA Astrophysics Data System (ADS)

    Oka, Y.; Tsumori, K.; Takeiri, Y.; Kaneko, O.; Osakabe, M.; Asano, E.; Kawamoto, T.; Akiyama, R.

    1998-02-01

    Two large helical device-neutral beam injector (LHD-NBI) ion sources were fabricated and tested in the test stand for producing a beam of 180 keV×40 A with H- ions. They are Cesiated multicusp ion sources with a rectangular discharge chamber and a single stage multihole accelerator. These are scaled up from the 16 A H- ion sources in the National Institute for Fusion Science (NIFS). A plasma source with a high aspect ratio was operated stably with an arc power up to ˜300 kW for 10 s, after balancing of the electron emission from the filaments was made. A satisfactorily dense and uniform plasma without mode flip was produced. Electrons accompanied by H- ions were reduced by an extraction grid with the electron trap, instead of straight holes. The electron beam component caused by the stripping of electrons from H- ions was detected with an array of calorimeters at the bottom of the connecting duct. At the first stage of the test, one of the five segment grids of the accelerator was installed. An H- ion current of 5.5 A with a current density of 27.5 mA/cm2 for 0.6 s was obtained with an arc power of 135 kW with Cs introduction. A high arc power efficiency for H- ions was observed. The intense cusp field is considered to be the important factor to improve this. The beam divergence angle at 10.4 m downstream was ˜10 mrad. Since these results satisfied our design, a full segment accelerator was tested in the next stage. Beam conditioning for five segment grids is underway. So far, an H- current of 21.0 A has been obtained at 106 keV for 0.6 s. As a result, we had good prospects for achieving the full specification of LHD-NBI ion sources, especially for achieving higher current and focused beam as well as for long pulse. The neutral beam injection experiment for the LHD is scheduled to start in the middle of 1998.

  16. Development of a large volume negative-ion source for ITER neutral beam injector

    NASA Astrophysics Data System (ADS)

    Watanabe, K.; Amemiya, T.; Hanada, M.; Iga, T.; Imai, T.; Inoue, T.; Kashiwagi, M.; Kuriyama, M.; Morishita, T.; Okumura, Y.; Takayanagi, T.; Yamamoto, T.

    2002-02-01

    Development of the negative-ion sources has been conducted to realize a high power neutral beam injector for International Thermonuclear Experimental Reactor (ITER). A high negative-ion current density of 31 mA/cm2 (H-) at a very low pressure of 0.1 Pa has been produced in a cesium seeded multicusp plasma generator which has the same concept of the ITER source. For a vacuum insulated accelerator, a voltage holding experiment of long distance vacuum gaps up to ˜1.8 m has been performed. It was clarified that the transition region of product pressure distance (pd) from the vacuum breakdown to the gas discharge is about 0.2 Pa m which is high enough from the operating region of the ITER source. A prototype vacuum insulated accelerator was fabricated based on the experiment and tested. A high-energy H- beam acceleration up to 970 keV, 37 mA, and 1 s has been successfully demonstrated.

  17. Development of Distributed Control System for Neutral Beam Injector on EAST

    NASA Astrophysics Data System (ADS)

    Sheng, Peng; Hu, Chundong; Cui, Qinglong; Zhao, Yuanzhe; Zhang, Xiaodan; Zhang, Rui; Lin, Yulian; Yu, Shan; Gao, Yangyang

    2015-07-01

    A distributed control system of Neutral Beam Injector (NBI) on the Experimental Advanced Superconducting Tokamak (EAST-NBI) is briefly presented in this paper. The control system is developed in accordance with the experimental operational characteristics of the EAST-NBI. The NBI control system (NBICS), which is based on the computer network technologies and classified according to the control levels, consists of three levels: a remote monitoring layer, a server control layer, and a field control layer. The 3-layer architecture is capable of extending the system functions and upgrading devices. The timing system provides the reference clock of the synchronization and interlock for the EAST-NBI system. An interlock system ensures the safety of the experiment operators and field devices. Both of the ion sources of the beamline are designed to operate independently. This lays an important foundation for developing a control system for the second beamline on EAST. Experimental results demonstrate that the NBICS meets functional requirements of the EAST-NBI control, and makes experimental operations visual and automatic. supported by the National Magnetic Confinement Fusion Science Program of China (No. 2013GB101001)

  18. Analysis of Effects of the Arc Voltage on Arc Discharges in a Cathode Ion Source of Neutral Beam Injector

    NASA Astrophysics Data System (ADS)

    Chen, Yuqian; Hu, Chundong; Xie, Yahong

    2016-04-01

    A hot cathode bucket ion source is used for the EAST (experimental advanced superconducting tokamak) neutral beam injector. The thermal electrons emitted from the surface of the cathode are extracted and accelerated by the electric field formed by the arc voltage, which is applied between the arc chamber of the ion source and the cathode. This paper analyzes the effects of arc voltage on the arc discharge in a hot cathode high current ion source. supported by the National Magnetic Confinement Fusion Science Program of China (No. 2013GB101000) and National Natural Science Foundation of China (No. 11405207)

  19. Multiple track Doppler-shift spectroscopy system for TFTR neutral beam injectors

    SciTech Connect

    Kamperschroer, J.H.; Kugel, H.W.; Reale, M.A.; Hayes, S.L.; Johnson, G.A.; Lowrance, J.L.; Shah, P.A.; Sichta, P.; Sleaford, B.W.; Williams, M.D.; Zucchino, P.M.

    1986-09-01

    A Doppler-shift spectroscopy system has been installed on the TFTR neutral beam injection system to measure species composition during both conditioning and injection pulses. Two intensified vidicon detectors and two spectrometers are utilized in a system capable of resolving data from up to twelve ion sources simultaneously. By imaging the light from six ion sources onto one detector, a cost-effective system has been achieved. Fiber optics are used to locate the diagnostic in an area remote from the hazards of the tokamak test cell allowing continuous access, and eliminating the need for radiation shielding of electronic components. Automatic hardware arming and interactive data analysis allow beam composition to be computed between tokamak shots for use in analyzing plasma heating experiments. Measurements have been made using lines of sight into both the neutralizer and the drift duct. Analysis of the data from the drift duct is both simpler and more accurate since only neutral particles are present in the beam at this location. Comparison of the data taken at these two locations reveals the presence of partially accelerated particles possessing an estimated 1/e half-angle divergence of 15/sup 0/ and accounting for up to 30% of the extracted power.

  20. Design of Experimental Data Publishing Software for Neutral Beam Injector on EAST

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Hu, Chundong; Sheng, Peng; Zhao, Yuanzhe; Zhang, Xiaodan; Wu, Deyun

    2015-02-01

    Neutral Beam Injection (NBI) is one of the most effective means for plasma heating. Experimental Data Publishing Software (EDPS) is developed to publish experimental data to get the NBI system under remote monitoring. In this paper, the architecture and implementation of EDPS including the design of the communication module and web page display module are presented. EDPS is developed based on the Browser/Server (B/S) model, and works under the Linux operating system. Using the data source and communication mechanism of the NBI Control System (NBICS), EDPS publishes experimental data on the Internet.

  1. Development of a plasma generator for a long pulse ion source for neutral beam injectors

    SciTech Connect

    Watanabe, K.; Dairaku, M.; Tobari, H.; Kashiwagi, M.; Inoue, T.; Hanada, M.; Jeong, S. H.; Chang, D. H.; Kim, T. S.; Kim, B. R.; Seo, C. S.; Jin, J. T.; Lee, K. W.; In, S. R.; Oh, B. H.; Kim, J.; Bae, Y. S.

    2011-06-15

    A plasma generator for a long pulse H{sup +}/D{sup +} ion source has been developed. The plasma generator was designed to produce 65 A H{sup +}/D{sup +} beams at an energy of 120 keV from an ion extraction area of 12 cm in width and 45 cm in length. Configuration of the plasma generator is a multi-cusp bucket type with SmCo permanent magnets. Dimension of a plasma chamber is 25 cm in width, 59 cm in length, and 32.5 cm in depth. The plasma generator was designed and fabricated at Japan Atomic Energy Agency. Source plasma generation and beam extraction tests for hydrogen coupling with an accelerator of the KSTAR ion source have been performed at the KSTAR neutral beam test stand under the agreement of Japan-Korea collaborative experiment. Spatial uniformity of the source plasma at the extraction region was measured using Langmuir probes and {+-}7% of the deviation from an averaged ion saturation current density was obtained. A long pulse test of the plasma generation up to 200 s with an arc discharge power of 70 kW has been successfully demonstrated. The arc discharge power satisfies the requirement of the beam production for the KSTAR NBI. A 70 keV, 41 A, 5 s hydrogen ion beam has been extracted with a high arc efficiency of 0.9 -1.1 A/kW at a beam extraction experiment. A deuteron yield of 77% was measured even at a low beam current density of 73 mA/cm{sup 2}.

  2. Development of a plasma generator for a long pulse ion source for neutral beam injectors

    NASA Astrophysics Data System (ADS)

    Watanabe, K.; Dairaku, M.; Tobari, H.; Kashiwagi, M.; Inoue, T.; Hanada, M.; Jeong, S. H.; Chang, D. H.; Kim, T. S.; Kim, B. R.; Seo, C. S.; Jin, J. T.; Lee, K. W.; In, S. R.; Oh, B. H.; Kim, J.; Bae, Y. S.

    2011-06-01

    A plasma generator for a long pulse H+/D+ ion source has been developed. The plasma generator was designed to produce 65 A H+/D+ beams at an energy of 120 keV from an ion extraction area of 12 cm in width and 45 cm in length. Configuration of the plasma generator is a multi-cusp bucket type with SmCo permanent magnets. Dimension of a plasma chamber is 25 cm in width, 59 cm in length, and 32.5 cm in depth. The plasma generator was designed and fabricated at Japan Atomic Energy Agency. Source plasma generation and beam extraction tests for hydrogen coupling with an accelerator of the KSTAR ion source have been performed at the KSTAR neutral beam test stand under the agreement of Japan-Korea collaborative experiment. Spatial uniformity of the source plasma at the extraction region was measured using Langmuir probes and ±7% of the deviation from an averaged ion saturation current density was obtained. A long pulse test of the plasma generation up to 200 s with an arc discharge power of 70 kW has been successfully demonstrated. The arc discharge power satisfies the requirement of the beam production for the KSTAR NBI. A 70 keV, 41 A, 5 s hydrogen ion beam has been extracted with a high arc efficiency of 0.9 -1.1 A/kW at a beam extraction experiment. A deuteron yield of 77% was measured even at a low beam current density of 73 mA/cm2.

  3. European contributions to the beam source design and R&D of the ITER neutral beam injectors

    NASA Astrophysics Data System (ADS)

    Massmann, P.; Bayetti, P.; Bucalossi, J.; Desgranges, C.; Di Pietro, E.; Frank, P.; Fumelli, M.; Fujiwara, Y.; Hanada, M.; Heinemann, B.; Hemsworth, R. S.; Inoue, T.; Jacquot, C.; Kraus, W.; Okumura, Y.; Probst, F.; Simonin, A.; Speth, E.; Trainham, R.; Vollmer, O.

    2000-03-01

    The article reports on the progress made by the ITER European Home Team in strong interaction with the ITER Joint Central Team and the Japan Atomic Energy Research Institute regarding several key aspects of the beam source for the ITER injectors: (1) Integration of the SINGAP accelerator into the ITER injector design. This is a substantially simpler concept than the multiaperture, multigap (MAMuG) accelerator of the ITER NBI reference design that has the potential for significant cost savings and that avoids some of the weaknesses of the reference design such as the need for intermediate high voltage potentials from the high voltage power supply and pressurized gas insulation. (2) High energy negative ion acceleration using a SINGAP accelerator. (3) Long pulse (i.e. >1000 s) negative ion source operation in deuterium. (4) RF source development, which could reduce the scheduled maintenance of the ITER injectors (as it uses no filaments), and simplify the transmission line and the auxiliary power supplies for the ion source.

  4. Development progresses of radio frequency ion source for neutral beam injector in fusion devices

    NASA Astrophysics Data System (ADS)

    Chang, D. H.; Jeong, S. H.; Kim, T. S.; Park, M.; Lee, K. W.; In, S. R.

    2014-02-01

    A large-area RF (radio frequency)-driven ion source is being developed in Germany for the heating and current drive of an ITER device. Negative hydrogen ion sources are the major components of neutral beam injection systems in future large-scale fusion experiments such as ITER and DEMO. RF ion sources for the production of positive hydrogen (deuterium) ions have been successfully developed for the neutral beam heating systems at IPP (Max-Planck-Institute for Plasma Physics) in Germany. The first long-pulse ion source has been developed successfully with a magnetic bucket plasma generator including a filament heating structure for the first NBI system of the KSTAR tokamak. There is a development plan for an RF ion source at KAERI to extract the positive ions, which can be applied for the KSTAR NBI system and to extract the negative ions for future fusion devices such as the Fusion Neutron Source and Korea-DEMO. The characteristics of RF-driven plasmas and the uniformity of the plasma parameters in the test-RF ion source were investigated initially using an electrostatic probe.

  5. Development progresses of radio frequency ion source for neutral beam injector in fusion devices.

    PubMed

    Chang, D H; Jeong, S H; Kim, T S; Park, M; Lee, K W; In, S R

    2014-02-01

    A large-area RF (radio frequency)-driven ion source is being developed in Germany for the heating and current drive of an ITER device. Negative hydrogen ion sources are the major components of neutral beam injection systems in future large-scale fusion experiments such as ITER and DEMO. RF ion sources for the production of positive hydrogen (deuterium) ions have been successfully developed for the neutral beam heating systems at IPP (Max-Planck-Institute for Plasma Physics) in Germany. The first long-pulse ion source has been developed successfully with a magnetic bucket plasma generator including a filament heating structure for the first NBI system of the KSTAR tokamak. There is a development plan for an RF ion source at KAERI to extract the positive ions, which can be applied for the KSTAR NBI system and to extract the negative ions for future fusion devices such as the Fusion Neutron Source and Korea-DEMO. The characteristics of RF-driven plasmas and the uniformity of the plasma parameters in the test-RF ion source were investigated initially using an electrostatic probe. PMID:24593580

  6. The giant ion sources of neutral-beam injectors for fusion

    SciTech Connect

    Kunkel, W.B.

    1989-07-01

    All large tokamak fusion experiments today use auxiliary heating by multi-megawatt beams of neutral isotopes of hydrogen injected with energies in the neighborhood of 100 keV per atom. This requires reliable operation of large ion sources, each delivering many tens of amperes of protons or deuterons, and soon even tritons. For meaningful experiments these sources must operate with pulse durations measured in seconds, although the duty factor may still be small. It is remarkable that the successful sources developed in Europe, Japan and the US are all very similar in basic design: the plasma is produced by diffuse low-pressure high-current discharges in magnetic multipole buckets'' was distributed thermionically emitting cathodes. This paper briefly reviews the principal considerations and the basic physics of these sources, and summarizes the collective experience to date and describes the impressive recent performance of the US Common Long Pulse Source, as a specific example. 20 refs., 6 figs., 2 tabs.

  7. Analysis of secondary particle behavior in multiaperture, multigrid accelerator for the ITER neutral beam injector.

    PubMed

    Mizuno, T; Taniguchi, M; Kashiwagi, M; Umeda, N; Tobari, H; Watanabe, K; Dairaku, M; Sakamoto, K; Inoue, T

    2010-02-01

    Heat load on acceleration grids by secondary particles such as electrons, neutrals, and positive ions, is a key issue for long pulse acceleration of negative ion beams. Complicated behaviors of the secondary particles in multiaperture, multigrid (MAMuG) accelerator have been analyzed using electrostatic accelerator Monte Carlo code. The analytical result is compared to experimental one obtained in a long pulse operation of a MeV accelerator, of which second acceleration grid (A2G) was removed for simplification of structure. The analytical results show that relatively high heat load on the third acceleration grid (A3G) since stripped electrons were deposited mainly on A3G. This heat load on the A3G can be suppressed by installing the A2G. Thus, capability of MAMuG accelerator is demonstrated for suppression of heat load due to secondary particles by the intermediate grids. PMID:20192410

  8. Analysis of secondary particle behavior in multiaperture, multigrid accelerator for the ITER neutral beam injector

    SciTech Connect

    Mizuno, T.; Taniguchi, M.; Kashiwagi, M.; Umeda, N.; Tobari, H.; Watanabe, K.; Dairaku, M.; Sakamoto, K.; Inoue, T.

    2010-02-15

    Heat load on acceleration grids by secondary particles such as electrons, neutrals, and positive ions, is a key issue for long pulse acceleration of negative ion beams. Complicated behaviors of the secondary particles in multiaperture, multigrid (MAMuG) accelerator have been analyzed using electrostatic accelerator Monte Carlo code. The analytical result is compared to experimental one obtained in a long pulse operation of a MeV accelerator, of which second acceleration grid (A2G) was removed for simplification of structure. The analytical results show that relatively high heat load on the third acceleration grid (A3G) since stripped electrons were deposited mainly on A3G. This heat load on the A3G can be suppressed by installing the A2G. Thus, capability of MAMuG accelerator is demonstrated for suppression of heat load due to secondary particles by the intermediate grids.

  9. The development of the radio frequency driven negative ion source for neutral beam injectors (invited).

    PubMed

    Kraus, W; Fantz, U; Franzen, P; Fröschle, M; Heinemann, B; Riedl, R; Wünderlich, D

    2012-02-01

    Large and powerful negative hydrogen ion sources are required for the neutral beam injection (NBI) systems of future fusion devices. Simplicity and maintenance-free operation favors RF sources, which are developed intensively at the Max-Planck-Institut für Plasmaphysik (IPP) since many years. The negative hydrogen ions are generated by caesium-enhanced surface conversion of atoms and positive ions on the plasma grid surface. With a small scale prototype the required high ion current density and the low fraction of co-extracted electrons at low pressure as well as stable pulses up to 1 h could be demonstrated. The modular design allows extension to large source dimensions. This has led to the decision to choose RF sources for the NBI of the international fusion reactor, ITER. As an intermediate step towards the full size ITER source at IPP, the development will be continued with a half-size source on the new ELISE testbed. This will enable to gain experience for the first time with negative hydrogen ion beams from RF sources of these dimensions. PMID:22380261

  10. The development of the radio frequency driven negative ion source for neutral beam injectors (invited)

    SciTech Connect

    Kraus, W.; Fantz, U.; Franzen, P.; Froeschle, M.; Heinemann, B.; Riedl, R.; Wuenderlich, D.

    2012-02-15

    Large and powerful negative hydrogen ion sources are required for the neutral beam injection (NBI) systems of future fusion devices. Simplicity and maintenance-free operation favors RF sources, which are developed intensively at the Max-Planck-Institut fuer Plasmaphysik (IPP) since many years. The negative hydrogen ions are generated by caesium-enhanced surface conversion of atoms and positive ions on the plasma grid surface. With a small scale prototype the required high ion current density and the low fraction of co-extracted electrons at low pressure as well as stable pulses up to 1 h could be demonstrated. The modular design allows extension to large source dimensions. This has led to the decision to choose RF sources for the NBI of the international fusion reactor, ITER. As an intermediate step towards the full size ITER source at IPP, the development will be continued with a half-size source on the new ELISE testbed. This will enable to gain experience for the first time with negative hydrogen ion beams from RF sources of these dimensions.

  11. Development of a radio frequency ion source with multi-helicon plasma injectors for neutral beam injection system of Versatile Experiment Spherical Torus.

    PubMed

    Choe, Kyumin; Jung, Bongki; Chung, Kyoung-Jae; Hwang, Y S

    2014-02-01

    Despite of high plasma density, helicon plasma has not yet been applied to a large area ion source such as a driver for neutral beam injection (NBI) system due to intrinsically poor plasma uniformity in the discharge region. In this study, a radio-frequency (RF) ion source with multi-helicon plasma injectors for high plasma density with good uniformity has been designed and constructed for the NBI system of Versatile Experiment Spherical Torus at Seoul National University. The ion source consists of a rectangular plasma expansion chamber (120 × 120 × 120 mm(3)), four helicon plasma injectors with annular permanent magnets and RF power system. Main feature of the source is downstream plasma confinement in the cusp magnetic field configuration which is generated by arranging polarities of permanent magnets in the helicon plasma injectors. In this paper, detailed design of the multi-helicon plasma injector and plasma characteristics of the ion source are presented. PMID:24593595

  12. Development of a radio frequency ion source with multi-helicon plasma injectors for neutral beam injection system of Versatile Experiment Spherical Torus

    SciTech Connect

    Choe, Kyumin; Jung, Bongki; Chung, Kyoung-Jae; Hwang, Y. S.

    2014-02-15

    Despite of high plasma density, helicon plasma has not yet been applied to a large area ion source such as a driver for neutral beam injection (NBI) system due to intrinsically poor plasma uniformity in the discharge region. In this study, a radio-frequency (RF) ion source with multi-helicon plasma injectors for high plasma density with good uniformity has been designed and constructed for the NBI system of Versatile Experiment Spherical Torus at Seoul National University. The ion source consists of a rectangular plasma expansion chamber (120 × 120 × 120 mm{sup 3}), four helicon plasma injectors with annular permanent magnets and RF power system. Main feature of the source is downstream plasma confinement in the cusp magnetic field configuration which is generated by arranging polarities of permanent magnets in the helicon plasma injectors. In this paper, detailed design of the multi-helicon plasma injector and plasma characteristics of the ion source are presented.

  13. Characteristics of long-pulse negative-ion source in the neutral beam injector of Large Helical Device

    NASA Astrophysics Data System (ADS)

    Takeiri, Y.; Ikeda, K.; Oka, Y.; Tsumori, K.; Osakabe, M.; Nagaoka, K.; Kaneko, O.; Asano, E.; Kondo, T.; Sato, M.; Shibuya, M.; Komada, S.

    2006-03-01

    The injection duration has been extended beyond 100 s with a high-power hydrogen negative-ion source in a negative-ion-based neutral beam injector of the Large Helical Device superconducting fusion machine. The ion source is a cesium-seeded source with a thermally insulated plasma grid (PG), and optimized for a short-pulse operation of 2-3 s. The negative-ion production efficiency is strongly dependent on the PG temperature, and in the long-pulse operation it exceeds an appropriate temperature range of 200-300 °C, at which the optimum cesium coverage is formed on the PG surface. By making the PG temperature rise slower with a reduced arc power, the injection duration was extended to 110 s with an injection power of 110 kW. To extend the injection duration further with a higher injection power, stainless-steel cooling tubes have been mechanically attached to the PG for suppression of the PG temperature rise in the long-pulse operation. As a result, a long-pulse injection with an injection power of 200 kW was extended to 128 s until it was manually stopped due to the plasma collapse. However, the beam duration could be limited to around 3 min because the PG temperature rise was not saturated due to a low thermal conductivity with the thickness of the stainless-steel tube determined so that the short-pulse operation is also possible. On the other hand, the longitudinal beam distribution in a grid area of 25×125cm2 is observed to be more uniform than that with the uncooled PG. The temperature distribution of the individual grid parts becomes more uniform with the cooled PG, which should contribute to the improvement of the beam uniformity.

  14. First plasma of megawatt high current ion source for neutral beam injector of the experimental advanced superconducting tokamak on the test bed

    SciTech Connect

    Hu Chundong; Xie Yahong; Liu Sheng; Xie Yuanlai; Jiang Caichao; Song Shihua; Li Jun; Liu Zhimin

    2011-02-15

    High current ion source is the key part of the neutral beam injector. In order to develop the project of 4 MW neutral beam injection for the experimental advanced superconducting tokamak (EAST) on schedule, the megawatt high current ion source is prestudied in the Institute of Plasma Physics in China. In this paper, the megawatt high current ion source test bed and the first plasma are presented. The high current discharge of 900 A at 2 s and long pulse discharge of 5 s at 680 A are achieved. The arc discharge characteristic of high current ion source is analyzed primarily.

  15. Analyses of high power negative ion accelerators for ITER neutral beam injector (invited).

    PubMed

    Kashiwagi, M; Taniguchi, M; Dairaku, M; Grisham, L R; Hanada, M; Mizuno, T; Tobari, H; Umeda, N; Watanabe, K; Sakamoto, K; Inoue, T

    2010-02-01

    In JAEA, research and developments to realize high power accelerator (1 MeV, 40 AD(-) ion beams for 3600 s) for ITER have been carried out experimentally and numerically utilizing a five stage MAMuG (Multiaperture, Multigrid) accelerator. In this paper, the extension of the gap length, which is required to improve the voltage holding capability, is examined in two dimensional beam optics analyses and also from view point of stripping loss of ions. In order to suppress excess power loadings due to the direct interception of negative ions, which is issued in long pulse tests, the beamlet deflection is analyzed in three dimensional multibeamlet analyses. The necessary modifications shown above are applied to the MAMuG accelerator for coming long pulse tests in JAEA and ITER. PMID:20192419

  16. Analyses of high power negative ion accelerators for ITER neutral beam injector (invited)a)

    NASA Astrophysics Data System (ADS)

    Kashiwagi, M.; Taniguchi, M.; Dairaku, M.; Grisham, L. R.; Hanada, M.; Mizuno, T.; Tobari, H.; Umeda, N.; Watanabe, K.; Sakamoto, K.; Inoue, T.

    2010-02-01

    In JAEA, research and developments to realize high power accelerator (1 MeV, 40 AD- ion beams for 3600 s) for ITER have been carried out experimentally and numerically utilizing a five stage MAMuG (Multiaperture, Multigrid) accelerator. In this paper, the extension of the gap length, which is required to improve the voltage holding capability, is examined in two dimensional beam optics analyses and also from view point of stripping loss of ions. In order to suppress excess power loadings due to the direct interception of negative ions, which is issued in long pulse tests, the beamlet deflection is analyzed in three dimensional multibeamlet analyses. The necessary modifications shown above are applied to the MAMuG accelerator for coming long pulse tests in JAEA and ITER.

  17. Progress and future developments of high current ion source for neutral beam injector in the ASIPP

    SciTech Connect

    Hu, Chundong; Xie, Yahong Xie, Yuanlai; Liu, Sheng; Liu, Zhimin; Xu, Yongjian; Liang, Lizhen; Sheng, Peng; Jiang, Caichao

    2015-04-08

    A high current hot cathode bucket ion source, which based on the US long pulse ion source is developed in Institute of Plasma Physics, Chinese Academy of Sciences. The ion source consists of a bucket plasma generator with multi-pole cusp fields and a set of tetrode accelerator with slit apertures. So far, four ion sources are developed and conditioned on the ion source test bed. 4 MW hydrogen beam with beam energy of 80 keV is extracted. In Aug. 2013, EAST NBI 1 with two ion source installed on the EAST, and achieved H-mode plasma with NBI injection for the first time. In order to achieve stable long pulse operation of high current ion source and negative ion source research, the RF ion source with 200 mm diameter and 120 mm depth driver is designed and developed. The first RF plasma generated with 2 kW power of 1 MHz frequency. More of the RF plasma tests and negative source relative research need to do in the future.

  18. Non-ideal operating conditions of the ion source prototype for the ITER neutral beam injector due to thermal deformation of the support structure

    SciTech Connect

    Sartori, E. Pavei, M.; Marcuzzi, D.; Zaccaria, P.

    2014-02-15

    The beam formation and acceleration of the ITER neutral beam injector will be studied in the full-scale ion source, Source for Production of Ions of Deuterium Extracted from a RF plasma (SPIDER). It will be able to sustain 40 A deuterium ion beam during 1-h pulses. The operating conditions of its multi-aperture electrodes will diverge from ideality, as a consequence of inhomogeneous heating and thermally induced deformations in the support structure of the extraction and acceleration grids, which operate at different temperatures. Meeting the requirements on the aperture alignment and distance between the grids with such a large number of apertures (1280) and the huge support structures constitute a challenge. Examination of the structure thermal deformation in transient and steady conditions has been carried out, evaluating their effect on the beam performance: the paper describes the analyses and the solutions proposed to mitigate detrimental effects.

  19. Non-ideal operating conditions of the ion source prototype for the ITER neutral beam injector due to thermal deformation of the support structure

    NASA Astrophysics Data System (ADS)

    Sartori, E.; Pavei, M.; Marcuzzi, D.; Zaccaria, P.

    2014-02-01

    The beam formation and acceleration of the ITER neutral beam injector will be studied in the full-scale ion source, Source for Production of Ions of Deuterium Extracted from a RF plasma (SPIDER). It will be able to sustain 40 A deuterium ion beam during 1-h pulses. The operating conditions of its multi-aperture electrodes will diverge from ideality, as a consequence of inhomogeneous heating and thermally induced deformations in the support structure of the extraction and acceleration grids, which operate at different temperatures. Meeting the requirements on the aperture alignment and distance between the grids with such a large number of apertures (1280) and the huge support structures constitute a challenge. Examination of the structure thermal deformation in transient and steady conditions has been carried out, evaluating their effect on the beam performance: the paper describes the analyses and the solutions proposed to mitigate detrimental effects.

  20. Arc discharge regulation of a megawatt hot cathode bucket ion source for the experimental advanced superconducting tokamak neutral beam injector

    SciTech Connect

    Xie Yahong; Hu Chundong; Liu Sheng; Jiang Caichao; Li Jun; Liang Lizhen; Collaboration: NBI Team

    2012-01-15

    Arc discharge of a hot cathode bucket ion source tends to be unstable what attributes to the filament self-heating and energetic electrons backstreaming from the accelerator. A regulation method, which based on the ion density measurement by a Langmuir probe, is employed for stable arc discharge operation and long pulse ion beam generation. Long pulse arc discharge of 100 s is obtained based on this regulation method of arc power. It establishes a foundation for the long pulse arc discharge of a megawatt ion source, which will be utilized a high power neutral beam injection device.

  1. High energy, high current neutral beam injector operation with single stage and two-stage multi-aperture extraction systems

    NASA Astrophysics Data System (ADS)

    Becherer, R.; Desmons, M.; Fumelli, M.; Raimbault, P.; Valckx, F. P. G.

    1982-12-01

    Neutral beam development for JET injections at FAR laboratory has led to the study of properties of a single stage (triode) and a two-stage (tetrode) multi-aperture extraction system at ion beam powers exceeding the megawatt level and up to 80 keV beam energy. The results of the experimental measurements and of a numerical study of the beam optical qualities and grid power loadings of these systems are presented. Grid power loading levels of less than 1% of the high-voltage drain power were measured in both the triode and the tetrode accelerators. This would allow long pulse operation (10 s with water-cooling) as required for JET. The beam divergence angle (α ≅ 0.7°) and the transmission characteristics were almostidentical. At the same energy, higher current densities, at optimum perveance, were obtained with the triode at a lower electric field stress on the high-voltage gap. The triode offers the additional advantage of being simpler from the mechanical and electrical points of view. Operation of the injection line with an electrostatic beam dump associated with a grounded source is also demonstrated for a 25 ion beam up to 60 keV.

  2. The development of the radio frequency driven negative ion source for neutral beam injectors (invited)a)

    NASA Astrophysics Data System (ADS)

    Kraus, W.; Fantz, U.; Franzen, P.; Fröschle, M.; Heinemann, B.; Riedl, R.; Wünderlich, D.

    2012-02-01

    Large and powerful negative hydrogen ion sources are required for the neutral beam injection (NBI) systems of future fusion devices. Simplicity and maintenance-free operation favors RF sources, which are developed intensively at the Max-Planck-Institut für Plasmaphysik (IPP) since many years. The negative hydrogen ions are generated by caesium-enhanced surface conversion of atoms and positive ions on the plasma grid surface. With a small scale prototype the required high ion current density and the low fraction of co-extracted electrons at low pressure as well as stable pulses up to 1 h could be demonstrated. The modular design allows extension to large source dimensions. This has led to the decision to choose RF sources for the NBI of the international fusion reactor, ITER. As an intermediate step towards the full size ITER source at IPP, the development will be continued with a half-size source on the new ELISE testbed. This will enable to gain experience for the first time with negative hydrogen ion beams from RF sources of these dimensions.

  3. Targets for high power neutral beams

    SciTech Connect

    Kim, J.

    1980-01-01

    Stopping high-power, long-pulse beams is fast becoming an engineering challenge, particularly in neutral beam injectors for heating magnetically confined plasmas. A brief review of neutral beam target technology is presented along with heat transfer calculations for some selected target designs.

  4. Steady-state operation of a large-area high-power RF ion source for the neutral beam injector

    NASA Astrophysics Data System (ADS)

    Chang, Doo-Hee; Park, Min; Jeong, Seung Ho; Kim, Tae-Seong; Lee, Kwang Won; In, Sang Ryul

    2014-10-01

    A large-area high-power RF-driven ion source is being developed in Germany for the heating and current drive (H&CD) of an ITER device. Negative hydrogen ion sources are the major components of neutral beam injection systems in future large-scale fusion devices such as an the ITER and the DEMO. The first and the second long-pulse ion sources (LPIS-1 and LPIS-2) have been successfully developed with a magnetic-bucket plasma generator, including a filament heating structure for the first NBI (NBI-1) system of the KSTAR tokamak. A development plan exists for a large-area high-power RF ion source for steady-state operation (more than 300 seconds) at the Korea Atomic Energy Research Institute (KAERI) to extract positive ions, which can be used for the NBI heating and current drive systems, and to extract negative ions for future fusion devices such as a Fusion Neutron Source and Korea — DEMO. The RF ion source consists of a driver region, including a helical antenna and a discharge chamber, and an expansion region (magnetic bucket of the prototype LPIS-1). RF power can be transferred at up to 10 kW with a fixed frequency of 2 MHz through an optimized RF matching system. An actively water-cooled Faraday shield is located inside the driver region of the ion source for stable and steady-state operation of the RF discharge. The uniformities of the plasma parameters are measured at the lowest area of the expansion bucket by using two RF-compensated electrostatic probes along the directions of the short and the long dimensions of the expansion region.

  5. Final design of the beam source for the MITICA injector.

    PubMed

    Marcuzzi, D; Agostinetti, P; Dalla Palma, M; De Muri, M; Chitarin, G; Gambetta, G; Marconato, N; Pasqualotto, R; Pavei, M; Pilan, N; Rizzolo, A; Serianni, G; Toigo, V; Trevisan, L; Visentin, M; Zaccaria, P; Zaupa, M; Boilson, D; Graceffa, J; Hemsworth, R S; Choi, C H; Marti, M; Roux, K; Singh, M J; Masiello, A; Froeschle, M; Heinemann, B; Nocentini, R; Riedl, R; Tobari, H; de Esch, H P L; Muvvala, V N

    2016-02-01

    The megavolt ITER injector and concept advancement experiment is the prototype and the test bed of the ITER heating and current drive neutral beam injectors, currently in the final design phase, in view of the installation in Padova Research on Injector Megavolt Accelerated facility in Padova, Italy. The beam source is the key component of the system, as its goal is the generation of the 1 MeV accelerated beam of deuterium or hydrogen negative ions. This paper presents the highlights of the latest developments for the finalization of the MITICA beam source design, together with a description of the most recent analyses and R&D activities carried out in support of the design. PMID:26932037

  6. Neutral beam monitoring

    DOEpatents

    Fink, Joel H.

    1981-08-18

    Method and apparatus for monitoring characteristics of a high energy neutral beam. A neutral beam is generated by passing accelerated ions through a walled cell containing a low energy neutral gas, such that charge exchange neutralizes the high energy ion beam. The neutral beam is monitored by detecting the current flowing through the cell wall produced by low energy ions which drift to the wall after the charge exchange. By segmenting the wall into radial and longitudinal segments various beam conditions are further identified.

  7. ALEX neutral beam probe

    SciTech Connect

    Pourrezaei, K.

    1982-01-01

    A neutral beam probe capable of measuring plasma space potential in a fully 3-dimensional magnetic field geometry has been developed. This neutral beam was successfully used to measure an arc target plasma contained within the ALEX baseball magnetic coil. A computer simulation of the experiment was performed to refine the experimental design and to develop a numerical model for scaling the ALEX neutral beam probe to other cases of fully 3-dimensional magnetic field. Based on this scaling a 30 to 50 keV neutral cesium beam probe capable of measuring space potential in the thermal barrier region of TMX Upgrade was designed.

  8. Development of a low-energy and high-current pulsed neutral beam injector with a washer-gun plasma source for high-beta plasma experiments.

    PubMed

    Ii, Toru; Gi, Keii; Umezawa, Toshiyuki; Asai, Tomohiko; Inomoto, Michiaki; Ono, Yasushi

    2012-08-01

    We have developed a novel and economical neutral-beam injection system by employing a washer-gun plasma source. It provides a low-cost and maintenance-free ion beam, thus eliminating the need for the filaments and water-cooling systems employed conventionally. In our primary experiments, the washer gun produced a source plasma with an electron temperature of approximately 5 eV and an electron density of 5 × 10(17) m(-3), i.e., conditions suitable for ion-beam extraction. The dependence of the extracted beam current on the acceleration voltage is consistent with space-charge current limitation, because the observed current density is almost proportional to the 3/2 power of the acceleration voltage below approximately 8 kV. By optimizing plasma formation, we successfully achieved beam extraction of up to 40 A at 15 kV and a pulse length in excess of 0.25 ms. Its low-voltage and high-current pulsed-beam properties enable us to apply this high-power neutral beam injection into a high-beta compact torus plasma characterized by a low magnetic field. PMID:22938291

  9. Development of a low-energy and high-current pulsed neutral beam injector with a washer-gun plasma source for high-beta plasma experiments

    NASA Astrophysics Data System (ADS)

    Ii, Toru; Gi, Keii; Umezawa, Toshiyuki; Asai, Tomohiko; Inomoto, Michiaki; Ono, Yasushi

    2012-08-01

    We have developed a novel and economical neutral-beam injection system by employing a washer-gun plasma source. It provides a low-cost and maintenance-free ion beam, thus eliminating the need for the filaments and water-cooling systems employed conventionally. In our primary experiments, the washer gun produced a source plasma with an electron temperature of approximately 5 eV and an electron density of 5 × 1017 m-3, i.e., conditions suitable for ion-beam extraction. The dependence of the extracted beam current on the acceleration voltage is consistent with space-charge current limitation, because the observed current density is almost proportional to the 3/2 power of the acceleration voltage below approximately 8 kV. By optimizing plasma formation, we successfully achieved beam extraction of up to 40 A at 15 kV and a pulse length in excess of 0.25 ms. Its low-voltage and high-current pulsed-beam properties enable us to apply this high-power neutral beam injection into a high-beta compact torus plasma characterized by a low magnetic field.

  10. Neutral beam development plan

    SciTech Connect

    Staten, H S

    1980-08-01

    The national plan is presented for developing advanced injection systems for use on upgrades of existing experiments, and use on future facilities such as ETF, to be built in the late 1980's or early 90's where power production from magnetic fusion will move closer to a reality. Not only must higher power and longer pulse length systems be developed , but they must operate reliably; they must be a tool for the experimenter, not the experiment itself. Neutral beam systems handle large amounts of energy and as such, they often are as complicated as the plasma physics experiment itself. This presents a significant challenge to the neutral beam developer.

  11. Neutral particle beam intensity controller

    DOEpatents

    Dagenhart, W.K.

    1984-05-29

    The neutral beam intensity controller is based on selected magnetic defocusing of the ion beam prior to neutralization. The defocused portion of the beam is dumped onto a beam dump disposed perpendicular to the beam axis. Selective defocusing is accomplished by means of a magnetic field generator disposed about the neutralizer so that the field is transverse to the beam axis. The magnetic field intensity is varied to provide the selected partial beam defocusing of the ions prior to neutralization. The desired focused neutral beam portion passes along the beam path through a defining aperture in the beam dump, thereby controlling the desired fraction of neutral particles transmitted to a utilization device without altering the kinetic energy level of the desired neutral particle fraction. By proper selection of the magnetic field intensity, virtually zero through 100% intensity control of the neutral beam is achieved.

  12. Neutral particle beam intensity controller

    DOEpatents

    Dagenhart, William K.

    1986-01-01

    A neutral beam intensity controller is provided for a neutral beam generator in which a neutral beam is established by accelerating ions from an ion source into a gas neutralizer. An amplitude modulated, rotating magnetic field is applied to the accelerated ion beam in the gas neutralizer to defocus the resultant neutral beam in a controlled manner to achieve intensity control of the neutral beam along the beam axis at constant beam energy. The rotating magnetic field alters the orbits of ions in the gas neutralizer before they are neutralized, thereby controlling the fraction of neutral particles transmitted out of the neutralizer along the central beam axis to a fusion device or the like. The altered path or defocused neutral particles are sprayed onto an actively cooled beam dump disposed perpendicular to the neutral beam axis and having a central open for passage of the focused beam at the central axis of the beamline. Virtually zero therough 100% intensity control is achieved by varying the magnetic field strength without altering the ion source beam intensity or its species yield.

  13. Numerical determination of injector design for high beam quality

    SciTech Connect

    Boyd, J.K.

    1985-10-15

    The performance of a free electron laser strongly depends on the electron beam quality or brightness. The electron beam is transported into the free electron laser after it has been accelerated to the desired energy. Typically the maximum beam brightness produced by an accelerator is constrained by the beam brightness deliverd by the accelerator injector. Thus it is important to design the accelerator injector to yield the required electron beam brightness. The DPC (Darwin Particle Code) computer code has been written to numerically model accelerator injectors. DPC solves for the transport of a beam from emission through acceleration up to the full energy of the injector. The relativistic force equation is solved to determine particle orbits. Field equations are solved for self consistent electric and magnetic fields in the Darwin approximation. DPC has been used to investigate the beam quality consequences of A-K gap, accelerating stress, electrode configuration and axial magnetic field profile.

  14. Diagnostics of the ITER neutral beam test facility

    SciTech Connect

    Pasqualotto, R.; Serianni, G.; Agostini, M.; Brombin, M.; Dalla Palma, M.; Gazza, E.; Pomaro, N.; Rizzolo, A.; Spolaore, M.; Zaniol, B.; Sonato, P.; De Muri, M.; Croci, G.; Gorini, G.

    2012-02-15

    The ITER heating neutral beam (HNB) injector, based on negative ions accelerated at 1 MV, will be tested and optimized in the SPIDER source and MITICA full injector prototypes, using a set of diagnostics not available on the ITER HNB. The RF source, where the H{sup -}/D{sup -} production is enhanced by cesium evaporation, will be monitored with thermocouples, electrostatic probes, optical emission spectroscopy, cavity ring down, and laser absorption spectroscopy. The beam is analyzed by cooling water calorimetry, a short pulse instrumented calorimeter, beam emission spectroscopy, visible tomography, and neutron imaging. Design of the diagnostic systems is presented.

  15. BEAMS3D Neutral Beam Injection Model

    SciTech Connect

    Lazerson, Samuel

    2014-04-14

    With the advent of applied 3D fi elds in Tokamaks and modern high performance stellarators, a need has arisen to address non-axisymmetric effects on neutral beam heating and fueling. We report on the development of a fully 3D neutral beam injection (NBI) model, BEAMS3D, which addresses this need by coupling 3D equilibria to a guiding center code capable of modeling neutral and charged particle trajectories across the separatrix and into the plasma core. Ionization, neutralization, charge-exchange, viscous velocity reduction, and pitch angle scattering are modeled with the ADAS atomic physics database [1]. Benchmark calculations are presented to validate the collisionless particle orbits, neutral beam injection model, frictional drag, and pitch angle scattering effects. A calculation of neutral beam heating in the NCSX device is performed, highlighting the capability of the code to handle 3D magnetic fields.

  16. NEUTRAL-BEAM INJECTION

    SciTech Connect

    Kunkel, W.B.

    1980-06-01

    The emphasis in the preceding chapters has been on magnetic confinement of high temperature plasmas. The question of production and heating of such plasmas has been dealt with relatively more briefly. It should not be inferred, however, that these matters must therefore be either trivial or unimportant. A review of the history reveals that in the early days all these aspects of the controlled fusion problem were considered to be on a par, and were tackled simultaneously and with equal vigor. Only the confinement problem turned out to be much more complex than initially anticipated, and richer in challenge to the plasma physicist than the questions of plasma production and heating. On the other hand, the properties of high-temperature plasmas and plasma confinement can only be studied experimentally after the problems of production and of heating to adequate temperatures are solved. It is the purpose of this and the next chapter to supplement the preceding discussions with more detail on two important subjects: neutral-beam injection and radio-frequency heating. These are the major contenders for heating in present and future tokamak and mirror fusion experiments, and even in several proposed reactors. For neutral beams we emphasize here the technology involved, which has undergone a rather remarkable development. The physics of particle and energy deposition in the plasma, and the discussion of the resulting effects on the confined plasma, have been included in previous chapters, and some experimental results are quoted there. Other heating processes of relevance to fusion are mentioned elsewhere in this book, in connection with the experiments where they are used: i.e. ohmic heating, adiabatic compression heating, and alpha-particle heating in Chapter 3 by H.P. Furth; more ohmic heating in Chapter 7, and shock-implosion heating, laser heating, and relativistic-electron beam heating in Chapter 8, both by W. E. Quinn. These methods are relatively straightforward in

  17. Doubling Main Injector beam intensity using RF barrier

    SciTech Connect

    King-Yuen Ng

    2002-09-30

    Using rf barriers, 12 booster batches can be injected into the Fermilab Main Injector continuously, thus doubling the usual beam intensity. After that, adiabatic capture of the beam into 53 MHz buckets can be accomplished in about 10 ms. The beam loading voltages in the rf cavities are small and they can be eliminated by a combination of counterphasing and mechanical shorts.

  18. Photodetachment process for beam neutralization

    DOEpatents

    Fink, Joel H. [Livermore, CA; Frank, Alan M. [Livermore, CA

    1979-02-20

    A process for neutralization of accelerated ions employing photo-induced charge detachment. The process involves directing a laser beam across the path of a negative ion beam such as to effect photodetachment of electrons from the beam ions. The frequency of the laser beam employed is selected to provide the maximum cross-section for the photodetachment process.

  19. Photodetachment process for beam neutralization

    DOEpatents

    Fink, J.H.; Frank, A.M.

    1979-02-20

    A process for neutralization of accelerated ions employing photo-induced charge detachment is disclosed. The process involves directing a laser beam across the path of a negative ion beam such as to effect photodetachment of electrons from the beam ions. The frequency of the laser beam employed is selected to provide the maximum cross-section for the photodetachment process. 2 figs.

  20. An electron beam injector for pulse compression experiments

    SciTech Connect

    Wang, J.G.; Boggasch, E.; Kehne, D.; Reiser, M.; Shea, T.; Wang, D.X.

    1990-01-01

    An electron beam injector has been constructed to study the physics of longitudal pulse compression in the University of Maryland electron beam transport experiment. The injector consists of a variable-perveance gridded electron gun followed by three matching lenses and one induction linac module. It produces a 50 ns, 40 mA electron pulse with a 2.5 to 7.5 keV, quadratically time-dependent energy shear. This beam will be injected into the existing 5-m long periodic transport channel with 38 short solenoid lenses. With the given beam parameters and initial conditions the pulse will be compressed by a factor of 4 to 5 before reaching the end of the existing solenoid channel. This paper reports on the design features and the measured general performance characteristics of the injector system including its mechanical, electrical, and beam-optical properties.

  1. Fermilab main injector: High intensity operation and beam loss control

    NASA Astrophysics Data System (ADS)

    Brown, Bruce C.; Adamson, Philip; Capista, David; Chou, Weiren; Kourbanis, Ioanis; Morris, Denton K.; Seiya, Kiyomi; Wu, Guan Hong; Yang, Ming-Jen

    2013-07-01

    From 2005 through 2012, the Fermilab Main Injector provided intense beams of 120 GeV protons to produce neutrino beams and antiprotons. Hardware improvements in conjunction with improved diagnostics allowed the system to reach sustained operation at 400 kW beam power. Transmission was very high except for beam lost at or near the 8 GeV injection energy where 95% beam transmission results in about 1.5 kW of beam loss. By minimizing and localizing loss, residual radiation levels fell while beam power was doubled. Lost beam was directed to either the collimation system or to the beam abort. Critical apertures were increased while improved instrumentation allowed optimal use of available apertures. We will summarize the improvements required to achieve high intensity, the impact of various loss control tools and the status and trends in residual radiation in the Main Injector.

  2. Electron beam diagnostics for a superconducting radio frequency photoelectron injector

    NASA Astrophysics Data System (ADS)

    Kamps, Thorsten; Arnold, Andre; Boehlick, Daniel; Dirsat, Marc; Klemz, Guido; Lipka, Dirk; Quast, Torsten; Rudolph, Jeniffa; Schenk, Mario; Staufenbiel, Friedrich; Teichert, Jochen; Will, Ingo

    2008-09-01

    A superconducting radio frequency (SRF) photoelectron injector is currently under construction by a collaboration of BESSY, DESY, FZD, and MBI. The project aims at the design and setup of a continuous-wave SRF injector including a diagnostics beamline for the ELBE free electron laser (FEL) and to address R&D issues on low emittance injectors for future light sources such as the BESSY FEL. Of critical importance for the injector performance is the control of the electron beam parameters. For this reason a compact diagnostics beamline is under development, serving a multitude of operation settings. In this paper the layout and the rationale of the diagnostics beamline are described. Furthermore detailed information on specific components is given, together with results from laboratory tests and data taking.

  3. Radiation Safety System for SPIDER Neutral Beam Accelerator

    NASA Astrophysics Data System (ADS)

    Sandri, S.; Coniglio, A.; D'Arienzo, M.; Poggi, C.

    2011-12-01

    SPIDER (Source for Production of Ion of Deuterium Extracted from RF Plasma only) and MITICA (Megavolt ITER Injector Concept Advanced) are the ITER neutral beam injector (NBI) testing facilities of the PRIMA (Padova Research Injector Megavolt Accelerated) Center. Both injectors accelerate negative deuterium ions with a maximum energy of 1 MeV for MITICA and 100 keV for SPIDER with a maximum beam current of 40 A for both experiments. The SPIDER facility is classified in Italy as a particle accelerator. At present, the design of the radiation safety system for the facility has been completed and the relevant reports have been presented to the Italian regulatory authorities. Before SPIDER can operate, approval must be obtained from the Italian Regulatory Authority Board (IRAB) following a detailed licensing process. In the present work, the main project information and criteria for the SPIDER injector source are reported together with the analysis of hypothetical accidental situations and safety issues considerations. Neutron and photon nuclear analysis is presented, along with special shielding solutions designed to meet Italian regulatory dose limits. The contribution of activated corrosion products (ACP) to external exposure of workers has also been assessed. Nuclear analysis indicates that the photon contribution to worker external exposure is negligible, and the neutron dose can be considered by far the main radiation protection issue. Our results confirm that the injector has no important radiological impact on the population living around the facility.

  4. Radiation Safety System for SPIDER Neutral Beam Accelerator

    SciTech Connect

    Sandri, S.; Poggi, C.; Coniglio, A.; D'Arienzo, M.

    2011-12-13

    SPIDER (Source for Production of Ion of Deuterium Extracted from RF Plasma only) and MITICA (Megavolt ITER Injector Concept Advanced) are the ITER neutral beam injector (NBI) testing facilities of the PRIMA (Padova Research Injector Megavolt Accelerated) Center. Both injectors accelerate negative deuterium ions with a maximum energy of 1 MeV for MITICA and 100 keV for SPIDER with a maximum beam current of 40 A for both experiments. The SPIDER facility is classified in Italy as a particle accelerator. At present, the design of the radiation safety system for the facility has been completed and the relevant reports have been presented to the Italian regulatory authorities. Before SPIDER can operate, approval must be obtained from the Italian Regulatory Authority Board (IRAB) following a detailed licensing process. In the present work, the main project information and criteria for the SPIDER injector source are reported together with the analysis of hypothetical accidental situations and safety issues considerations. Neutron and photon nuclear analysis is presented, along with special shielding solutions designed to meet Italian regulatory dose limits. The contribution of activated corrosion products (ACP) to external exposure of workers has also been assessed. Nuclear analysis indicates that the photon contribution to worker external exposure is negligible, and the neutron dose can be considered by far the main radiation protection issue. Our results confirm that the injector has no important radiological impact on the population living around the facility.

  5. EDITORIAL: Negative ion based neutral beam injection

    NASA Astrophysics Data System (ADS)

    Hemsworth, R. S.

    2006-06-01

    It is widely recognized that neutral beam injection (NBI), i.e. the injection of high energy, high power, beams of H or D atoms, is a flexible and reliable system that has been the main heating system on a large variety of fusion devices, and NBI has been chosen as one of the three heating schemes of the International Tokomak Reactor (ITER). To date, all the NBI systems but two have been based on the neutralization (in a simple gas target) of positive hydrogen or deuterium ions accelerated to <100 keV/nucleon. Above that energy the neutralization of positive ions falls to unacceptably low values, and higher energy neutral beams have to be created by the neutralization of accelerated negative ions (in a simple gas target), as this remains high (approx60%) up to >1 MeV/nucleon. Unfortunately H- and D- are difficult to create, and the very characteristic that makes them attractive, the ease with which the electron is detached from the ion, means that it is difficult to create high concentrations or fluxes of them, and it is difficult to avoid substantial, collisional, losses in the extraction and acceleration processes. However, there has been impressive progress in negative ion sources and accelerators over the past decade, as demonstrated by the two pioneering, operational, multi-megawatt, negative ion based, NBI systems at LHD (180 keV, H0) and JT-60U (500 keV, D0), both in Japan. Nevertheless, the system proposed for ITER represents a substantial technological challenge as an increase is required in beam energy, to 1 MeV, D0, accelerated ion (D-) current, to 40 A, accelerated current density, 200 A m-2 of D-, and pulse length, to 1 h. At the Fourth IAEA Technical Meeting on Negative Ion Based Neutral Beam Injectors, hosted by the Consorzio RFX, Padova, Italy, 9-11 May 2005, the status of the R&D aimed at the realization of the injectors for ITER was presented. Because of the importance of this development to the success of the ITER project, participants at that

  6. Commissioning of heating neutral beams for COMPASS-D tokamak

    SciTech Connect

    Deichuli, P.; Davydenko, V.; Belov, V.; Gorbovsky, A.; Dranichnikov, A.; Ivanov, A.; Sorokin, A.; Mishagin, V.; Abdrashitov, A.; Kolmogorov, V.; Kondakov, A.

    2012-02-15

    Two neutral beam injectors have been developed for plasma heating on COMPASS-D tokamak (Institute of Plasma Physics, Prague). The 4-electrodes multihole ion-optical system with beam focusing was chosen to provide the low divergence 300 kW power in both deuterium and hydrogen atoms. The accelerating voltage is 40 kV at extracted ion current up to 15 A. The power supply system provides the continuous and modulated mode of the beam injection at a maximal pulse length 300 ms. The optimal arrangement of the cryopanels and the beam duct elements provides sufficiently short-length beamline which reduces the beam losses. The evolution of the impurities and molecular fraction content is studied in the process of the high voltage conditioning of the newly made ion sources. Two injectors of the same type have been successfully tested and are ready for operation at tokamak in IPP, Prague.

  7. Beam quality of the ATA (Advanced Test Accelerator) injector

    SciTech Connect

    Boyd, J.K.; Caporaso, G.J.; Cole, A.G.; Weir, J.T.

    1987-01-01

    The beam quality of the ATA injector has been experimentally measured using a magnetic collimator. These measurements have been performed for a variety of magnetic field profiles, including field strengths where the collimator is shorter than a cyclotron wavelength. The experimental currents transmitted through the collimator have been predicted numerically. The numerical predictions and experimental data are in good agreement.

  8. Transient Beam Dynamics in the LBL 2 MV Injector

    SciTech Connect

    Henestroza, E; Grote, D

    1999-12-07

    A driver-scale injector for the Heavy Ion Fusion Accelerator project has been built at LBL. This machine has exceeded the design goals of high voltage (> 2 MV), high current (> 0.8 A of K{sup +}) and low normalized emittance (< 1 {pi} mm-mr). The injector consists of a 750 keV gun pre-injector followed by an electrostatic quadrupole accelerator (ESQ) which provides strong (alternating gradient) focusing for the space-charge dominated beam, and simultaneously accelerates the ions to 2 MeV. A matching section is being built to match the beam to the electrostatic accelerator ELISE. The gun preinjector, designed to hold up to 1 MV with minimal breakdown risks, consists of a hot aluminosilicate source with a large curved emitting surface surrounded by a thick ''extraction electrode''. During beam turn-on the voltage at the source is biased from a negative potential, enough to reverse the electric field on the emitting surface and avoid emission, to a positive potential to start extracting the beam; it stays constant for about 1 {micro}s, and is reversed to turn-off the emission. Since the Marx voltage applied on the accelerating quadrupoles and the main pre-injector gap is a long, constant pulse (several {micro}s), the transient behavior is dominated by the extraction pulser voltage time profile. The transient longitudinal dynamics of the beam in the injector was simulated by running the Particle in Cell codes GYMNOS and WARP3d in a time dependent mode. The generalization and its implementation in WAIW3d of a method proposed by Lampel and Tiefenback to eliminate transient oscillations in a one-dimensional planar diode will be presented.

  9. BEAMS3D Neutral Beam Injection Model

    NASA Astrophysics Data System (ADS)

    McMillan, Matthew; Lazerson, Samuel A.

    2014-09-01

    With the advent of applied 3D fields in Tokamaks and modern high performance stellarators, a need has arisen to address non-axisymmetric effects on neutral beam heating and fueling. We report on the development of a fully 3D neutral beam injection (NBI) model, BEAMS3D, which addresses this need by coupling 3D equilibria to a guiding center code capable of modeling neutral and charged particle trajectories across the separatrix and into the plasma core. Ionization, neutralization, charge-exchange, viscous slowing down, and pitch angle scattering are modeled with the ADAS atomic physics database. Elementary benchmark calculations are presented to verify the collisionless particle orbits, NBI model, frictional drag, and pitch angle scattering effects. A calculation of neutral beam heating in the NCSX device is performed, highlighting the capability of the code to handle 3D magnetic fields. Notice: this manuscript has been authored by Princeton University under Contract Number DE-AC02-09CH11466 with the US Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.

  10. Particle beam injector system and method

    DOEpatents

    Guethlein, Gary

    2013-06-18

    Methods and devices enable coupling of a charged particle beam to a radio frequency quadrupole accelerator. Coupling of the charged particle beam is accomplished, at least in-part, by relying on of sensitivity of the input phase space acceptance of the radio frequency quadrupole to the angle of the input charged particle beam. A first electric field across a beam deflector deflects the particle beam at an angle that is beyond the acceptance angle of the radio frequency quadrupole. By momentarily reversing or reducing the established electric field, a narrow portion of the charged particle beam is deflected at an angle within the acceptance angle of the radio frequency quadrupole. In another configuration, beam is directed at an angle within the acceptance angle of the radio frequency quadrupole by the first electric field and is deflected beyond the acceptance angle of the radio frequency quadrupole due to the second electric field.

  11. Low energy, high power hydrogen neutral beam for plasma heating

    NASA Astrophysics Data System (ADS)

    Deichuli, P.; Davydenko, V.; Ivanov, A.; Korepanov, S.; Mishagin, V.; Smirnov, A.; Sorokin, A.; Stupishin, N.

    2015-11-01

    A high power, relatively low energy neutral beam injector was developed to upgrade of the neutral beam system of the gas dynamic trap device and C2-U experiment. The ion source of the injector produces a proton beam with the particle energy of 15 keV, current of up to 175 A, and pulse duration of a few milliseconds. The plasma emitter of the ion source is produced by superimposing highly ionized plasma jets from an array of four arc-discharge plasma generators. A multipole magnetic field produced with permanent magnets at the periphery of the plasma box is used to increase the efficiency and improve the uniformity of the plasma emitter. Multi-slit grids with 48% transparency are fabricated from bronze plates, which are spherically shaped to provide geometrical beam focusing. The focal length of the Ion Optical System (IOS) is 3.5 m and the initial beam diameter is 34 cm. The IOS geometry and grid potentials were optimized numerically to ensure accurate beam formation. The measured angular divergences of the beam are ±0.01 rad parallel to the slits and ±0.03 rad in the transverse direction.

  12. Low energy, high power hydrogen neutral beam for plasma heating.

    PubMed

    Deichuli, P; Davydenko, V; Ivanov, A; Korepanov, S; Mishagin, V; Smirnov, A; Sorokin, A; Stupishin, N

    2015-11-01

    A high power, relatively low energy neutral beam injector was developed to upgrade of the neutral beam system of the gas dynamic trap device and C2-U experiment. The ion source of the injector produces a proton beam with the particle energy of 15 keV, current of up to 175 A, and pulse duration of a few milliseconds. The plasma emitter of the ion source is produced by superimposing highly ionized plasma jets from an array of four arc-discharge plasma generators. A multipole magnetic field produced with permanent magnets at the periphery of the plasma box is used to increase the efficiency and improve the uniformity of the plasma emitter. Multi-slit grids with 48% transparency are fabricated from bronze plates, which are spherically shaped to provide geometrical beam focusing. The focal length of the Ion Optical System (IOS) is 3.5 m and the initial beam diameter is 34 cm. The IOS geometry and grid potentials were optimized numerically to ensure accurate beam formation. The measured angular divergences of the beam are ±0.01 rad parallel to the slits and ±0.03 rad in the transverse direction. PMID:26628137

  13. Low energy, high power hydrogen neutral beam for plasma heating

    SciTech Connect

    Deichuli, P.; Davydenko, V.; Ivanov, A. Mishagin, V.; Sorokin, A.; Stupishin, N.; Korepanov, S.; Smirnov, A.

    2015-11-15

    A high power, relatively low energy neutral beam injector was developed to upgrade of the neutral beam system of the gas dynamic trap device and C2-U experiment. The ion source of the injector produces a proton beam with the particle energy of 15 keV, current of up to 175 A, and pulse duration of a few milliseconds. The plasma emitter of the ion source is produced by superimposing highly ionized plasma jets from an array of four arc-discharge plasma generators. A multipole magnetic field produced with permanent magnets at the periphery of the plasma box is used to increase the efficiency and improve the uniformity of the plasma emitter. Multi-slit grids with 48% transparency are fabricated from bronze plates, which are spherically shaped to provide geometrical beam focusing. The focal length of the Ion Optical System (IOS) is 3.5 m and the initial beam diameter is 34 cm. The IOS geometry and grid potentials were optimized numerically to ensure accurate beam formation. The measured angular divergences of the beam are ±0.01 rad parallel to the slits and ±0.03 rad in the transverse direction.

  14. Plasma/Neutral-Beam Etching Apparatus

    NASA Technical Reports Server (NTRS)

    Langer, William; Cohen, Samuel; Cuthbertson, John; Manos, Dennis; Motley, Robert

    1989-01-01

    Energies of neutral particles controllable. Apparatus developed to produce intense beams of reactant atoms for simulating low-Earth-orbit oxygen erosion, for studying beam-gas collisions, and for etching semiconductor substrates. Neutral beam formed by neutralization and reflection of accelerated plasma on metal plate. Plasma ejected from coaxial plasma gun toward neutralizing plate, where turned into beam of atoms or molecules and aimed at substrate to be etched.

  15. Design and Fabrication of the Lithium Beam Ion Injector for NDCX-II

    SciTech Connect

    Takakuwa, J.

    2011-03-01

    A 130 keV injector is developed for the NDCX-II facility. It consists of a 10.9 cm diameter lithium doped alumina-silicate ion source heated to {approx}1300 C and 3 electrodes. Other components include a segmented Rogowski coil for current and beam position monitoring, a gate valve, pumping ports, a focusing solenoid, a steering coil and space for inspection and maintenance access. Significant design challenges including managing the 3-4 kW of power dissipation from the source heater, temperature uniformity across the emitter surface, quick access for frequent ion source replacement, mechanical alignment with tight tolerance, and structural stabilization of the cantilevered 27-inch OD graded HV ceramic column. The injector fabrication is scheduled to complete by May 2011, and assembly and installation is scheduled to complete by the beginning of July. The Neutralized Drift Compression eXperiment (NDCX-II) is for the study of high energy density physics and inertial fusion energy research utilizing a lithium ion (Li+) beam with a current of 93 mA and a pulse length of 500 ns (compressed to 1 ns at the target). The injector is one of the most complicated sections of the NDCX-II accelerator demanding significant design and fabrication resources. It needs to accommodate a relatively large ion source (10.9 cm), a high heat load (3-4 kW) and specific beam optics developed from the physics model. Some specific design challenges are noted in this paper.

  16. Ion-beam Plasma Neutralization Interaction Images

    SciTech Connect

    Igor D. Kaganovich; Edward Startsev; S. Klasky; Ronald C. Davidson

    2002-04-09

    Neutralization of the ion beam charge and current is an important scientific issue for many practical applications. The process of ion beam charge and current neutralization is complex because the excitation of nonlinear plasma waves may occur. Computer simulation images of plasma neutralization of the ion beam pulse are presented.

  17. Kinetic Simulations of Ion Beam Neutralization

    SciTech Connect

    Wang, Joseph

    2010-05-21

    Ion beam emission/neutralization is one of the most fundamental problems in spacecraft plasma interactions and electric propulsion. Although ion beam neutralization is readily achieved in experiments, the understanding of the underlying physical process remains at a rather primitive level. No theoretical or simulation models have convincingly explained the detailed neutralization mechanism, and no conclusions have been reached. This paper presents a fully kinetic simulation of ion beam neutralization and plasma beam propagation and discusses the physics of electron-ion coupling and the resulting propagation of a neutralized mesothermal plasma.

  18. Concepts for the magnetic design of the MITICA neutral beam test facility ion accelerator

    SciTech Connect

    Chitarin, G.; Agostinetti, P.; Marconato, N.; Marcuzzi, D.; Sartori, E.; Serianni, G.; Sonato, P.

    2012-02-15

    The megavolt ITER injector concept advancement neutral injector test facility will be constituted by a RF-driven negative ion source and by an electrostatic Accelerator, designed to produce a negative Ion with a specific energy up to 1 MeV. The beam is then neutralized in order to obtain a focused 17 MW neutral beam. The magnetic configuration inside the accelerator is of crucial importance for the achievement of a good beam efficiency, with the early deflection of the co-extracted and stripped electrons, and also of the required beam optic quality, with the correction of undesired ion beamlet deflections. Several alternative magnetic design concepts have been considered, comparing in detail the magnetic and beam optics simulation results, evidencing the advantages and drawbacks of each solution both from the physics and engineering point of view.

  19. Heavy ion linac as a high current proton beam injector

    NASA Astrophysics Data System (ADS)

    Barth, Winfried; Adonin, Aleksey; Appel, Sabrina; Gerhard, Peter; Heilmann, Manuel; Heymach, Frank; Hollinger, Ralph; Vinzenz, Wolfgang; Vormann, Hartmut; Yaramyshev, Stepan

    2015-05-01

    A significant part of the experimental program at Facility for Antiproton and Ion Research (FAIR) is dedicated to pbar physics requiring a high number of cooled pbars per hour. The primary proton beam has to be provided by a 70 MeV proton linac followed by two synchrotrons. The new FAIR proton linac will deliver a pulsed proton beam of up to 35 mA of 36 μ s duration at a repetition rate of 4 Hz (maximum). The GSI heavy ion linac (UNILAC) is able to deliver world record uranium beam intensities for injection into the synchrotrons, but it is not suitable for FAIR relevant proton beam operation. In an advanced machine investigation program it could be shown that the UNILAC is able to provide for sufficient high intensities of CH3 beam, cracked (and stripped) in a supersonic nitrogen gas jet into protons and carbon ions. This advanced operational approach will result in up to 3 mA of proton intensity at a maximum beam energy of 20 MeV, 1 0 0 μ s pulse duration and a repetition rate of up to 2.7 Hz delivered to the synchrotron SIS18. Recent linac beam measurements will be presented, showing that the UNILAC is able to serve as a proton FAIR injector for the first time, while the performance is limited to 25% of the FAIR requirements.

  20. Environmental assessment -- Proposed neutrino beams at the Main Injector project

    SciTech Connect

    1997-12-01

    The US Department of Energy (DOE) proposes to build a beamline on the Fermi National Accelerator Laboratory (Fermilab) site to accommodate an experimental research program in neutrino physics. The proposed action, called Neutrino Beams at the Main Injector (NuMI), is to design, construct, operate and decommission a facility for producing and studying a high flux beam of neutrinos in the energy range of 1 to 40 GeV (1 GeV is one billion or 10{sup 9} electron volts). The proposed facility would initially be dedicated to two experiments, COSMOS (Cosmologically Significant Mass Oscillations) and MINOS (Main Injector Neutrino Oscillation Search). The neutrino beam would pass underground from Fermilab to northern Minnesota. A tunnel would not be built in this intervening region because the neutrinos easily pass through the earth, not interacting, similar to the way that light passes through a pane of glass. The beam is pointed towards the MINOS detector in the Soudan Underground Laboratory in Minnesota. Thus, the proposed project also includes construction, operation and decommissioning of the facility located in the Soudan Underground Laboratory in Minnesota that houses this MINOS detector. This environmental assessment (EA) has been prepared by the US Department of Energy (DOE) in accordance with the DOE`s National Environmental Policy Act (NEPA) Implementing Procedures (10 CFR 1021). This EA documents DOE`s evaluation of potential environmental impacts associated with the proposed construction and operation of NuMI at Fermilab and its far detector facility located in the Soudan Underground Laboratory in Minnesota. Any future use of the facilities on the Fermilab site would require the administrative approval of the Director of Fermilab and would undergo a separate NEPA review. Fermilab is a Federal high-energy physics research laboratory in Batavia, Illinois operated on behalf of the DOE by Universities Research Association, Inc.

  1. Developing high brightness and high current beams for HIF injectors

    SciTech Connect

    Ahle, Larry; Grote, Dave; Kwan, Joe

    2002-05-24

    The US Heavy Ion Fusion Virtual National Laboratory is continuing research into ion sources and injectors that simultaneously provide high current (0.5-1.0 Amps) and high brightness (normalized emittance better than 1.0 {pi}-mm-mr). The central issue of focus is whether to continue pursuing the traditional approach of large surface ionization sources or to adopt a multiaperture approach that transports many smaller ''beamlets'' separately at low energies before allowing them to merge. For the large surface source concept, the recent commissioning of the 2-MeV injector for the High Current eXperiment has increased our understanding of the beam quality limitations for these sources. We have also improved our techniques for fabricating large diameter aluminosilicate sources to improve lifetime and emission uniformity. For the multiaperture approach, we are continuing to study the feasibility of small surface sources and a RF induced plasma source in preparation for beamlet merging experiments, while continuing to run computer simulations for better understanding of this alternate concept. Experiments into both architectures will be performed on a newly commissioned ion source test stand at LLNL called STS-500. This stand test provides a platform for testing a variety of ion sources and accelerating structures with 500 kV, 17-microsecond pulses. Recent progress in these areas will be discussed as well as plans for future experiments.

  2. Comments on Injector Proton Beam Study in Run 2014

    SciTech Connect

    Zhang, S. Y.

    2014-09-15

    During the entire period of injector proton study in run 2014, it seems that the beam transverse emittance out of Booster is larger than that in run 2013. The emittance measured at the BtA transfer line and also the transmission from Booster late to AGS late are presented for this argument. In addition to this problem, it seems that the multiturn Booster injection, which defines the transverse emittance, needs more attention. Moreover, for high intensity operations, the space charge effect may be already relevant in RHIC polarized proton runs. With the RHIC proton intensity improvement in the next several years, higher Booster input intensity is needed, therefore, the space charge effect at the Booster injection and early ramp may become a new limiting factor.

  3. BEAM EMITTANCE DIAGNOSTIC FOR THE DARHT SECOND AXIS INJECTOR

    SciTech Connect

    Bartsch, R. R.; Ekdahl, C. A.; Rose, E. A.; Custer, D. M.; Ridlon, R. N.

    2001-01-01

    Low beam emittance is key to achieving the required spot size at the output focus of the DARHT Second Axis. The nominal electron beam parameters at the output of the injector are 2 kA, 4.6 MeV, 2-microsecond pulse width and an rms radius less than 1 cm. Emittance is measured by bringing the beam to a focus in which the emittance is a dominant influence in determining the spot size. The spot size is measured from Cerenkov or optical transition radiation (OTR) generated from a target intercepted by the beam. The current density in the focused DARHT beam would melt this target in less than 1/2 microsec. To prevent this we have designed a DC magnetic transport system that defocuses the beam on the emittance target to prevent overheating, and uses a 125-ns half period pulsed solenoid to selectively focus the beam for short times during the beam pulse. During the development of the fast-focusing portion of this diagnostic it has been determined that the focusing pulse must rapidly sweep through the focus at the target to an over-focused condition to avoid target damage due to overheating. The fast focus produces {approx}1 kilogauss field over an effective length of {approx}50 cm to bring the beam to a focus on the target. The fast focus field is generated with a 12-turn coil located inside the beam-transport vacuum chamber with the entire fast coil structure within the bore of a D.C. magnet. The pulsed coil diameter of {approx}15 cm is dictated by the return current path at the nominal vacuum wall. Since the drive system is to use 40 kV to 50 kV technology and much of the inductance is in the drive and feed circuit, the coil design has three 120 degree segments. The coil, driver and feed system design, as well as beam envelope calculations and target heating calculations are presented below. Operation of the OTR imaging system will be discussed in separate publication (Ref. 1).

  4. BEAM EMITTANCE DIAGNOSTIC FOR THE DARHT SECOND AXIS INJECTOR

    SciTech Connect

    R. BARTSCH; C. EKDAHL; ET AL

    2001-06-01

    Low beam emittance is key to achieving the required spot size at the output focus of the DARHT Second Axis. The nominal electron beam parameters at the output of the injector are 2 kA, 4.6 MeV, 2-microsecond pulse width and an rms radius less than 1 cm. Emittance is measured by bringing the beam to a focus in which the emittance is a dominant influence in determining the spot size. The spot size is measured from Cerenkov or optical transition radiation (OTR) generated from a target intercepted by the beam. The current density in the focused DARHT beam would melt this target in less than 1/2 microsec. To prevent this we have designed a DC magnetic transport system that defocuses the beam on the emittance target to prevent overheating, and uses a 125-ns half period pulsed solenoid to selectively focus the beam for short times during the beam pulse. During the development of the fast-focusing portion of this diagnostic it has been determined that the focusing pulse must rapidly sweep through the focus at the target to an over-focused condition to avoid target damage due to overheating. The fast focus produces {approx}1 kilogauss field over an effective length of {approx}50 cm to bring the beam to a focus on the target. The fast focus field is generated with a 12-turn coil located inside the beam-transport vacuum chamber with the entire fast coil structure within the bore of a D.C. magnet. The pulsed coil diameter of {approx}15 cm is dictated by the return current path at the nominal vacuum wall. Since the drive system is to use 40 kV to 50 kV technology and much of the inductance is in the drive and feed circuit, the coil design has three 120 degree segments. The coil, driver and feed system design, as well as beam envelope calculations and target heating calculations are presented below. Operation of the OTR imaging system will be discussed in separate publication (Ref. 1).

  5. Neutral particle beams for space defense

    NASA Astrophysics Data System (ADS)

    Botwin, Robert; Favale, Anthony

    Neutral particle beam (NPB) weapons direct highly focused high energy streams of electrically neutral atomic particles traveling at nearly the speed of light, escaping deflection from the earth's magnetic field and acting on the subatomic structure of a target, destroying it from within. The beam's brief contact with a reentry vehicle produces a nuclear reaction in the latter that yields particle emissions; by detecting and identifying those particles, it becomes possible to effectively distinguish warheads from decoys. Attention is given to the NPB program roles to be played by the Beam Experiment Aboard Rocket and Neutral Particle Beam Integrated Space Experiment projects.

  6. Neutral Beam Ion Confinement in NSTX

    SciTech Connect

    D.S. Darrow; E.D. Fredrickson; S.M. Kaye; S.S. Medley; and A.L. Roquemore

    2001-07-24

    Neutral-beam (NB) heating in the National Spherical Torus Experiment (NSTX) began in September 2000 using up to 5 MW of 80 keV deuterium (D) beams. An initial assessment of beam ion confinement has been made using neutron detectors, a neutral particle analyzer (NPA), and a Faraday cup beam ion loss probe. Preliminary neutron results indicate that confinement may be roughly classical in quiescent discharges, but the probe measurements do not match a classical loss model. MHD activity, especially reconnection events (REs) causes substantial disturbance of the beam ion population.

  7. Location of Maximum Credible Beam Losses in LCLS Injector

    SciTech Connect

    Mao, Stan

    2010-12-13

    The memo describes the maximum credible beam the LCLS injector can produce and lose at various locations along the beamline. The estimation procedure is based upon three previous reports [1, 2, 3]. While specific numbers have been updated to accurately reflect the present design parameters, the conclusions are very similar to those given in Ref 1. The source of the maximum credible beam results from the explosive electron emission from the photocathode if the drive laser intensity exceeds the threshold for plasma production. In this event, the gun's RF field can extract a large number of electrons from this plasma which are accelerated out of the gun and into the beamline. This electron emission persists until it has depleted the gun of all its energy. Hence the number of electrons emitted per pulse is limited by the amount of stored RF energy in the gun. It needs to be emphasized that this type of emission is highly undesirable, as it causes permanent damage to the cathode.

  8. An autoneutralizing neutral molecular beam gun

    SciTech Connect

    Delmore, J.E.; Appelhans, A.D.; Dahl, D.A. )

    1990-01-01

    A high-energy (up to 28 keV) neutral molecular beam gun has been developed and put into routine use that takes advantage of the autoneutralization properties of the sulfur hexafluoride anion for the production of high-energy sulfur hexafluoride neutral molecules. The anions are produced in an electron-capture source, accelerated, and focused in a lens assembly designed to minimize residence time, allowed to drift at their terminal velocity for a suitable distance during which up to 30% auto-eject an electron, and all remaining charged particles are electrostatically skimmed, resulting in a focused neutral beam. Rasterable neutral beams focused to a 5-mm spot size up to 3 m from the source have been produced with beam currents up to 40 pA equivalent. Spot sizes of 1 mm can be produced with intensity levels of a few picoamperes equivalent.

  9. Kinetic Simulations of Ion Beam Neutralization

    SciTech Connect

    Chang, O.; Wang, J.

    2011-05-20

    Full particle PIC simulations are performed to study the neutralization of an ion beam in the cohesionless, mesothermal regime. Simulations further confirmed that neutralization is achieved through interactions between the trapped electrons and the potential well established by the propagation of the beam front along the beam direction and is not through plasma instabilities as previous studies suggested. In the transverse direction, the process is similar to that of the expansion of mesothermal plasma into vacuum. Parametric simulations are also performed to investigate the effects of beam radius and domain boundary condition on the neutralization process. The results suggests that, while the qualitative behavior may be similar in ground tests, quantitative parameters such as the beam potential will be affected significantly by the vacuum chamber because of the limits imposed on the expansion process by the finite chamber space.

  10. Installation Status of the Electron Beam Profiler for the Fermilab Main Injector

    SciTech Connect

    Thurman-Keup, R.; Alvarez, M.; Fitzgerald, J.; Lundberg, C.; Prieto, P.; Roberts, M.; Zagel, J.; Blokland, W.

    2015-11-06

    The planned neutrino program at Fermilab requires large proton beam intensities in excess of 2 MW. Measuring the transverse profiles of these high intensity beams is challenging and often depends on non-invasive techniques. One such technique involves measuring the deflection of a probe beam of electrons with a trajectory perpendicular to the proton beam. A device such as this is already in use at the Spallation Neutron Source at ORNL and the installation of a similar device is underway in the Main Injector at Fermilab. The present installation status of the electron beam profiler for the Main Injector will be discussed together with some simulations and test stand results.

  11. Focusing and neutralization of intense beams

    SciTech Connect

    Yu, Simon S.; Anders, Andre; Bieniosek, F.M.; Eylon, Shmuel; Henestroza, Enrique; Roy, Prabir; Shuman, Derek; Waldron, William; Sharp, William; Rose, Dave; Welch, Dale; Efthimion, Philip; Gilson, Eric

    2003-05-01

    In heavy ion inertial confinement fusion systems, intense beams of ions must be transported from the exit of the final focus magnet system through the target chamber to hit millimeter spot sizes on the target. Effective plasma neutralization of intense ion beams through the target chamber is essential for the viability of an economically competitive heavy ion fusion power plant. The physics of neutralized drift has been studied extensively with PIC simulations. To provide quantitative comparisons of theoretical predictions with experiment, the Heavy Ion Fusion Virtual National Laboratory has completed the construction and has begun experimentation with the NTX (Neutralized Transport Experiment) as shown in Figure 1. The experiment consists of 3 phases, each with physics issues of its own. Phase 1 is designed to generate a very high brightness potassium beam with variable perveance, using a beam aperturing technique. Phase 2 consists of magnetic transport through four pulsed quadrupoles. Here, beam tuning as well as the effects of phase space dilution through higher order nonlinear fields must be understood. In Phase 3, a converging ion beam at the exit of the magnetic section is transported through a drift section with plasma sources for beam neutralization, and the final spot size is measured under various conditions of neutralization. In this paper, we present first results from all 3 phases of the experiment.

  12. Semiconductor etching by hyperthermal neutral beams

    NASA Technical Reports Server (NTRS)

    Minton, Timothy K. (Inventor); Giapis, Konstantinos P. (Inventor)

    1999-01-01

    An at-least dual chamber apparatus and method in which high flux beams of fast moving neutral reactive species are created, collimated and used to etch semiconductor or metal materials from the surface of a workpiece. Beams including halogen atoms are preferably used to achieve anisotropic etching with good selectivity at satisfactory etch rates. Surface damage and undercutting are minimized.

  13. Neutralized transport of high intensity beams

    SciTech Connect

    Henestroza, E.; Yu, S.S.; Eylon, S.; Roy, P.K.; Anders, A.; Sharp, W.; Efthimion, P.; Gilson, E.; Welch, D.; Rose, D.

    2003-05-01

    The NTX experiment at the Heavy Ion Fusion Virtual National Laboratory is exploring the performance of neutralized final focus systems for high perveance heavy ion beams. A converging ion beam at the exit of the final focus magnetic system is injected into a neutralized drift section. The neutralization is provided by a metal arc source and an RF plasma source. Effects of a ''plasma plug'', where electrons are extracted from a localized plasma in the upstream end of the drift section, and are then dragged along by the ion potential, as well as the ''volumetric plasma'', where neutralization is provided by the plasma laid down along the ion path, are both studied and their relative effects on the beam spot size are compared. Comparisons with 3-D PIC code predictions will also be presented.

  14. TPX/TFTR Neutral Beam energy absorbers

    SciTech Connect

    Dahlgren, F.; Wright, K.; Kamperschroer, J.; Grisham, L.; Lontai, L.; Peters, C.; VonHalle, A.

    1993-11-01

    The present beam energy absorbing surfaces on the TFTR Neutral Beams such as Ion Dumps, Calorimeters, beam defining apertures, and scrapers, are simple water cooled copper plates which wee designed to absorb (via their thermal inertia) the incident beam power for two seconds with a five minute coal down interval between pulses. These components are not capable of absorbing the anticipated beam power loading for 1000 second TPX pulses and will have to be replaced with an actively cooled design. While several actively cooled energy absorbing designs were considered,, the hypervapotron elements currently being used on the JET beamlines were chosen due to their lower cooling water demands and reliable performance on JET.

  15. Neutral particle beam sensing and steering

    DOEpatents

    Maier, II, William B.; Cobb, Donald D.; Robiscoe, Richard T.

    1991-01-01

    The direction of a neutral particle beam (NPB) is determined by detecting Ly.alpha. radiation emitted during motional quenching of excited H(2S) atoms in the beam during movement of the atoms through a magnetic field. At least one detector is placed adjacent the beam exit to define an optical axis that intercepts the beam at a viewing angle to include a volume generating a selected number of photons for detection. The detection system includes a lens having an area that is small relative to the NPB area and a pixel array located in the focal plane of the lens. The lens viewing angle and area pixel array are selected to optimize the beam tilt sensitivity. In one embodiment, two detectors are placed coplanar with the beam axis to generate a difference signal that is insensitive to beam variations other than beam tilt.

  16. Beam based measurements of hysteresis effects in Fermilab main injector magnets

    SciTech Connect

    Bruce C. Brown and David P Capista

    2003-05-27

    Operation of the Fermilab Main Injector is sensitive to magnetic field differences due to hysteretic effects. Measurements using the beam are reported with various current ramps. This will provide magnetic field information for accelerator operations with better ramp control than is available from magnet test facility data. This makes possible improved low field reproducibility with mixed 120 GeV and 150 GeV operation of the Main Injector.

  17. Spatial calibration of a tokamak neutral beam diagnostic using in situ neutral beam emission.

    PubMed

    Chrystal, C; Burrell, K H; Grierson, B A; Pace, D C

    2015-10-01

    Neutral beam injection is used in tokamaks to heat, apply torque, drive non-inductive current, and diagnose plasmas. Neutral beam diagnostics need accurate spatial calibrations to benefit from the measurement localization provided by the neutral beam. A new technique has been developed that uses in situ measurements of neutral beam emission to determine the spatial location of the beam and the associated diagnostic views. This technique was developed to improve the charge exchange recombination (CER) diagnostic at the DIII-D tokamak and uses measurements of the Doppler shift and Stark splitting of neutral beam emission made by that diagnostic. These measurements contain information about the geometric relation between the diagnostic views and the neutral beams when they are injecting power. This information is combined with standard spatial calibration measurements to create an integrated spatial calibration that provides a more complete description of the neutral beam-CER system. The integrated spatial calibration results are very similar to the standard calibration results and derived quantities from CER measurements are unchanged within their measurement errors. The methods developed to perform the integrated spatial calibration could be useful for tokamaks with limited physical access. PMID:26520957

  18. Spatial calibration of a tokamak neutral beam diagnostic using in situ neutral beam emission

    SciTech Connect

    Chrystal, C.; Burrell, K. H.; Pace, D. C.; Grierson, B. A.

    2015-10-15

    Neutral beam injection is used in tokamaks to heat, apply torque, drive non-inductive current, and diagnose plasmas. Neutral beam diagnostics need accurate spatial calibrations to benefit from the measurement localization provided by the neutral beam. A new technique has been developed that uses in situ measurements of neutral beam emission to determine the spatial location of the beam and the associated diagnostic views. This technique was developed to improve the charge exchange recombination (CER) diagnostic at the DIII-D tokamak and uses measurements of the Doppler shift and Stark splitting of neutral beam emission made by that diagnostic. These measurements contain information about the geometric relation between the diagnostic views and the neutral beams when they are injecting power. This information is combined with standard spatial calibration measurements to create an integrated spatial calibration that provides a more complete description of the neutral beam-CER system. The integrated spatial calibration results are very similar to the standard calibration results and derived quantities from CER measurements are unchanged within their measurement errors. The methods developed to perform the integrated spatial calibration could be useful for tokamaks with limited physical access.

  19. Spatial calibration of a tokamak neutral beam diagnostic using in situ neutral beam emission

    NASA Astrophysics Data System (ADS)

    Chrystal, C.; Burrell, K. H.; Grierson, B. A.; Pace, D. C.

    2015-10-01

    Neutral beam injection is used in tokamaks to heat, apply torque, drive non-inductive current, and diagnose plasmas. Neutral beam diagnostics need accurate spatial calibrations to benefit from the measurement localization provided by the neutral beam. A new technique has been developed that uses in situ measurements of neutral beam emission to determine the spatial location of the beam and the associated diagnostic views. This technique was developed to improve the charge exchange recombination (CER) diagnostic at the DIII-D tokamak and uses measurements of the Doppler shift and Stark splitting of neutral beam emission made by that diagnostic. These measurements contain information about the geometric relation between the diagnostic views and the neutral beams when they are injecting power. This information is combined with standard spatial calibration measurements to create an integrated spatial calibration that provides a more complete description of the neutral beam-CER system. The integrated spatial calibration results are very similar to the standard calibration results and derived quantities from CER measurements are unchanged within their measurement errors. The methods developed to perform the integrated spatial calibration could be useful for tokamaks with limited physical access.

  20. Injector Beam Dynamics for a High-Repetition Rate 4th-Generation Light Source

    SciTech Connect

    Papadopoulos, C. F.; Corlett, J.; Emma, P.; Filippetto, D.; Penn, G.; Qiang, J.; Reinsch, M.; Sannibale, F.; Steier, C.; Venturini, M.; Wells, R.

    2013-05-20

    We report on the beam dynamics studies and optimization methods for a high repetition rate (1 MHz) photoinjector based on a VHF normal conducting electron source. The simultaneous goals of beamcompression and reservation of 6-dimensional beam brightness have to be achieved in the injector, in order to accommodate a linac driven FEL light source. For this, a parallel, multiobjective optimization algorithm is used. We discuss the relative merits of different injector design points, as well as the constraints imposed on the beam dynamics by technical considerations such as the high repetition rate.

  1. TPX Neutral Beam Injection System design

    SciTech Connect

    von Halle, A.; Bowen, O.N.; Edwards, J.W.

    1993-11-01

    The existing Tokamak Fusion Test Reactor Neutral Beam system is proposed to be modified for long pulse operation on the Tokamak Physics Experiment (TPX). Day one of TPX will call for one TFTR beamline modified for 1000 second pulse lengths oriented co-directional to the plasma current. The system design will be capable of accommodating an additional co-directional and a single counter directional beamline. For the TPX conceptual design, every attempt was made to use existing Neutral Beam hardware, plant facilities, auxiliary systems, service infrastructure, and control systems. This paper describes the moderate modifications required to the power systems, the ion sources, and the beam impinged surfaces of the ion dumps, the calorimeters, the various beam scrapers, and the neutralizers. Also described are the minimal modifications required to the vacuum, cryogenic, and gas systems and the major modification of replacing the beamline-torus duct in its entirety. Operational considerations for Neutral Beam subsystems over 1000 second pulse lengths will be explored including proposed operating scenarios for full steady state operation.

  2. Confinement of Neutral Beam Ions in the National Spherical Torus Experiment

    SciTech Connect

    D.S. Darrow; S.S. Medley; A.L. Roquemore; A. Rosenberg

    2001-12-18

    The loss of neutral-beam ions to the wall has been measured in the National Spherical Torus Experiment (NSTX) by means of thermocouples, an infrared (IR) camera, and a Faraday cup probe. The losses tend to exhibit the expected dependences on plasma current, tangency radius of the injector, and plasma outer gap. However, the thermocouples and the Faraday cups indicate substantially different levels of loss and this difference has yet to be understood.

  3. Intense diagnostic neutral beam development for ITER

    SciTech Connect

    Rej, D.J.; Henins, I.; Fonck, R.J.; Kim, Y.J.

    1992-05-01

    For the next-generation, burning tokamak plasmas such as ITER, diagnostic neutral beams and beam spectroscopy will continue to be used to determine a variety of plasma parameters such as ion temperature, rotation, fluctuations, impurity content, current density profile, and confined alpha particle density and energy distribution. Present-day low-current, long-pulse beam technology will be unable to provide the required signal intensities because of higher beam attenuation and background bremsstrahlung radiation in these larger, higher-density plasmas. To address this problem, we are developing a short-pulse, intense diagnostic neutral beam. Protons or deuterons are accelerated using magnetic-insulated ion-diode technology, and neutralized in a transient gas cell. A prototype 25-kA, 100-kV, 1-{mu}s accelerator is under construction at Los Alamos. Initial experiments will focus on ITER-related issues of beam energy distribution, current density, pulse length, divergence, propagation, impurity content, reproducibility, and maintenance.

  4. Intense diagnostic neutral beam development for ITER

    SciTech Connect

    Rej, D.J.; Henins, I. ); Fonck, R.J.; Kim, Y.J. . Dept. of Nuclear Engineering and Engineering Physics)

    1992-01-01

    For the next-generation, burning tokamak plasmas such as ITER, diagnostic neutral beams and beam spectroscopy will continue to be used to determine a variety of plasma parameters such as ion temperature, rotation, fluctuations, impurity content, current density profile, and confined alpha particle density and energy distribution. Present-day low-current, long-pulse beam technology will be unable to provide the required signal intensities because of higher beam attenuation and background bremsstrahlung radiation in these larger, higher-density plasmas. To address this problem, we are developing a short-pulse, intense diagnostic neutral beam. Protons or deuterons are accelerated using magnetic-insulated ion-diode technology, and neutralized in a transient gas cell. A prototype 25-kA, 100-kV, 1-{mu}s accelerator is under construction at Los Alamos. Initial experiments will focus on ITER-related issues of beam energy distribution, current density, pulse length, divergence, propagation, impurity content, reproducibility, and maintenance.

  5. Efficient laser production of energetic neutral beams

    NASA Astrophysics Data System (ADS)

    Mollica, F.; Antonelli, L.; Flacco, A.; Braenzel, J.; Vauzour, B.; Folpini, G.; Birindelli, G.; Schnuerer, M.; Batani, D.; Malka, V.

    2016-03-01

    Laser-driven ion acceleration by intense, ultra-short, laser pulse has received increasing attention in recent years, and the availability of much compact and versatile ions sources motivates the study of laser-driven sources of energetic neutral atoms. We demonstrate the production of a neutral and directional beam of hydrogen and carbon atoms up to 200 keV per nucleon, with a peak flow of 2.7× {{10}13} atom s-1. Laser accelerated ions are neutralized in a pulsed, supersonic argon jet with tunable density between 1.5× {{10}17} cm-3and 6× {{10}18} cm-3. The neutralization efficiency has been measured by a time-of-flight detector for different argon densities. An optimum is found, for which complete neutralization occurs. The neutralization rate can be explained only at high areal densities (>1× {{10}17} cm-2) by single electron charge transfer processes. These results suggest a new perspective for the study of neutral production by laser and open discussion of neutralization at a lower density.

  6. Tandem mirror experiment-upgrade neutral beam test stand: a powerful tool for development and quality assurance

    SciTech Connect

    Hibbs, S.M.; Kane, R.J.; Kerr, R.G.; Poulsen, P.

    1983-12-02

    During construction of the Tandem Mirror Experiment-Upgrade (TMX-U), we assembled a test stand to develop electronics for the neutral beam system. In the first six months of test stand use we operated a few neutral beam injector modules and directed considerable effort toward improving the electronic system. As system development progressed, our focus turned toward improving the injector modules themselves. The test stand has proved to be the largest single contributor to the successful operation of neutral beams on TMX-U, primarily because it provides quality assurance andd development capability in conjunction with the scheduled activities of the main experiment. This support falls into five major categories: (1) electronics development, (2) operator training, (3) injector module testing and characterization, (4) injector module improvements, and (5) physics improvements (through areas affected by injector operation). Normal day-to-day operation of the test stand comes under the third category, testing and characterization, and comprises our final quality assurance activity for newly assembled or repaired modules before they are installed on TMX-U.

  7. Particle reflection and TFTR neutral beam diagnostics

    SciTech Connect

    Kamperschroer, J.H.; Grisham, L.R.; Kugel, H.W.; O`Connor, T.E.; Newman, R.A.; Stevenson, T.N.; von Halle, A.; Williams, M.D.

    1992-04-01

    Determination of two critical neutral beam parameters, power and divergence, are affected by the reflection of a fraction of the incident energy from the surface of the measuring calorimeter. On the TFTR Neutral Beam Test Stand, greater than 30% of the incident power directed at the target chamber calorimeter was unaccounted for. Most of this loss is believed due to reflection from the surface of the flat calorimeter, which was struck at a near grazing incidence (12{degrees}). Beamline calorimeters, of a ``V``-shape design, while retaining the beam power, also suffer from reflection effects. Reflection, in this latter case, artificially peaks the power toward the apex of the ``V``, complicating the fitting technique, and increasing the power density on axis by 10 to 20%; an effect of import to future beamline designers. Agreement is found between measured and expected divergence values, even with 24% of the incident energy reflected.

  8. Particle reflection and TFTR neutral beam diagnostics

    SciTech Connect

    Kamperschroer, J.H.; Grisham, L.R.; Kugel, H.W.; O'Connor, T.E.; Newman, R.A.; Stevenson, T.N.; von Halle, A.; Williams, M.D.

    1992-04-01

    Determination of two critical neutral beam parameters, power and divergence, are affected by the reflection of a fraction of the incident energy from the surface of the measuring calorimeter. On the TFTR Neutral Beam Test Stand, greater than 30% of the incident power directed at the target chamber calorimeter was unaccounted for. Most of this loss is believed due to reflection from the surface of the flat calorimeter, which was struck at a near grazing incidence (12{degrees}). Beamline calorimeters, of a V''-shape design, while retaining the beam power, also suffer from reflection effects. Reflection, in this latter case, artificially peaks the power toward the apex of the V'', complicating the fitting technique, and increasing the power density on axis by 10 to 20%; an effect of import to future beamline designers. Agreement is found between measured and expected divergence values, even with 24% of the incident energy reflected.

  9. Quasi-steady carbon plasma source for neutral beam injector

    NASA Astrophysics Data System (ADS)

    Koguchi, H.; Sakakita, H.; Kiyama, S.; Shimada, T.; Sato, Y.; Hirano, Y.

    2014-02-01

    Carbon plasma is successfully sustained during 1000 s without any carrier gas in the bucket type ionization chamber with cusp magnetic field. Every several seconds, seed plasmas having ˜3 ms duration time are injected into the ionization chamber by a shunting arch plasma gun. The weakly ionized carbon plasma ejected from the shunting arch is also ionized by 2.45 GHz microwave at the electron cyclotron resonance surface and the plasma can be sustained even in the interval of gun discharges. Control of the gun discharge interval allows to keep high pressure and to sustain the plasma for long duration.

  10. Quasi-steady carbon plasma source for neutral beam injector.

    PubMed

    Koguchi, H; Sakakita, H; Kiyama, S; Shimada, T; Sato, Y; Hirano, Y

    2014-02-01

    Carbon plasma is successfully sustained during 1000 s without any carrier gas in the bucket type ionization chamber with cusp magnetic field. Every several seconds, seed plasmas having ∼3 ms duration time are injected into the ionization chamber by a shunting arch plasma gun. The weakly ionized carbon plasma ejected from the shunting arch is also ionized by 2.45 GHz microwave at the electron cyclotron resonance surface and the plasma can be sustained even in the interval of gun discharges. Control of the gun discharge interval allows to keep high pressure and to sustain the plasma for long duration. PMID:24593646

  11. Quasi-steady carbon plasma source for neutral beam injector

    SciTech Connect

    Koguchi, H. Sakakita, H.; Kiyama, S.; Shimada, T.; Sato, Y.; Hirano, Y.

    2014-02-15

    Carbon plasma is successfully sustained during 1000 s without any carrier gas in the bucket type ionization chamber with cusp magnetic field. Every several seconds, seed plasmas having ∼3 ms duration time are injected into the ionization chamber by a shunting arch plasma gun. The weakly ionized carbon plasma ejected from the shunting arch is also ionized by 2.45 GHz microwave at the electron cyclotron resonance surface and the plasma can be sustained even in the interval of gun discharges. Control of the gun discharge interval allows to keep high pressure and to sustain the plasma for long duration.

  12. Time-dependent beam focusing at the DARHT-II injector diode

    SciTech Connect

    Eylon, S.; Henestroza, E.; Fawley, W.; Yu, S.

    1999-07-30

    The injector for the second axis of the Dual-Axis Radiographic Hydrotest Facility (DARHT) is being designed and constructed at LBNL. The injector consists of a single gap diode extracting 2{micro}s, 2kA, 3.2 MeV electron beam from a 6.5 inches diameter thermionic dispenser cathode. The injector is powered through a ceramic column by a Marx generator. We also investigated the possibility of extracting a beam current of 4 kA. The focusing system for the electron beam consists of a Pierce electrostatic focusing electrode at the cathode and three solenoidal focusing magnets positioned between the anode and induction accelerator input. The off-energy components (beam-head) during the 400 ns energy rise time are overfocused, leading to beam envelope mismatch and growth resulting in the possibility of beam hitting the accelerator tube walls. The anode focusing magnets can be tuned to avoid the beam spill in the 2kA case. To allow beam-head control for the 4kA case we are considering the introduction of time-varying magnetic focusing field along the accelerator axis generated by a single-loop solenoid magnet positioned in the anode beam tube. We will present the beam-head dynamics calculations as well as the solenoid design and preliminary feasibility test results.

  13. BEAM DYNAMICS SIMULATIONS FOR A DC GUN BASED INJECTOR FOR PERL.

    SciTech Connect

    ZHOU,F.; BEN-ZVI,I.; WANG,X.J.

    2001-06-18

    The National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory (BNL) is considering an upgrade based on the Photoinjected Energy Recovering Linac (PERL). The various injector schemes for this machine are being extensively investigated at BNL. One of the possible options is photocathode DC gun. The schematic layout of a PERL DC gun based injector and its preliminary beam dynamics are presented in this paper. The transverse and longitudinal emittance of photo-electron beam were optimized for a DC field 500 kV.

  14. Beam manipulation and compression using broadband rf systems in the Fermilab Main Injector and Recycler

    SciTech Connect

    G William Foster et al.

    2004-07-09

    A novel method for beam manipulation, compression, and stacking using a broad band RF system in circular accelerators is described. The method uses a series of linear voltage ramps in combination with moving barrier pulses to azimuthally compress, expand, or cog the beam. Beam manipulations can be accomplished rapidly and, in principle, without emittance growth. The general principle of the method is discussed using beam dynamics simulations. Beam experiments in the Fermilab Recycler Ring convincingly validate the concept. Preliminary experiments in the Fermilab Main Injector to investigate its potential for merging two ''booster batches'' to produce high intensity proton beams for neutrino and antiproton production are described.

  15. Neutralization efficiency estimation in a neutral beam source based on inductively coupled plasma

    NASA Astrophysics Data System (ADS)

    Vozniy, O. V.; Yeom, G. Y.

    2009-01-01

    This study examined the optimal conditions of neutral beam generation to maintain a high degree of neutralization and focusing during beam energy variation for a neutral beam source based on inductively coupled plasma with a three-grid ion beam acceleration system. The neutral beam energy distribution was estimated by measuring the energy profiles of ions that "survived" the neutralization after reflection. The energy measurements of the primary and reflected ions showed narrow distribution functions, each with only one peak. At higher beam energies, both the ratio of the ion energy loss to the primary energy and the degree of energy divergence decreased, confirming the precise alignment of the neutral beam. The neutralization efficiency of the neutral beam source with a three-grid acceleration system was found to be affected mainly by the beam angle divergence rather than by the particle translation energy.

  16. Neutralization efficiency estimation in a neutral beam source based on inductively coupled plasma

    SciTech Connect

    Vozniy, O. V.; Yeom, G. Y.

    2009-01-01

    This study examined the optimal conditions of neutral beam generation to maintain a high degree of neutralization and focusing during beam energy variation for a neutral beam source based on inductively coupled plasma with a three-grid ion beam acceleration system. The neutral beam energy distribution was estimated by measuring the energy profiles of ions that 'survived' the neutralization after reflection. The energy measurements of the primary and reflected ions showed narrow distribution functions, each with only one peak. At higher beam energies, both the ratio of the ion energy loss to the primary energy and the degree of energy divergence decreased, confirming the precise alignment of the neutral beam. The neutralization efficiency of the neutral beam source with a three-grid acceleration system was found to be affected mainly by the beam angle divergence rather than by the particle translation energy.

  17. Doppler-shifted neutral beam line shape and beam transmission

    SciTech Connect

    Kamperschroer, J.H.; Grisham, L.R.; Kokatnur, N.; Lagin, L.J.; Newman, R.A.; O`Connor, T.E.; Stevenson, T.N.; von Halle, A.

    1994-04-01

    Analysis of Doppler-shifted Balmer-{alpha} line emission from the TFTR neutral beam injection systems has revealed that the line shape is well approximated by the sum of two Gaussians, or, alternatively, by a Lorentzian. For the sum of two Gaussians, the broad portion of the distribution contains 40% of the beam power and has a divergence five times that of the narrow part. Assuming a narrow 1/e- divergence of 1.3{degrees} (based on fits to the beam shape on the calorimeter), the broad part has a divergence of 6.9{degrees}. The entire line shape is also well approximated by a Lorentzian with a half-maximum divergence of 0.9{degrees}. Up to now, fusion neutral beam modelers have assumed a single Gaussian velocity distribution, at the extraction plane, in each direction perpendicular to beam propagation. This predicts a beam transmission efficiency from the ion source to the calorimeter of 97%. Waterflow calorimetry data, however, yield a transmission efficiency of {approximately}75%, a value in rough agreement with predictions of the Gaussian or Lorentzian models presented here. The broad wing of the two Gaussian distribution also accurately predicts the loss in the neutralizer. An average angle of incidence for beam loss at the exit of the neutralizer is 2.2{degrees}, rather than the 4.95{degrees} subtended by the center of the ion source. This average angle of incidence, which is used in computing power densities on collimators, is shown to be a function of beam divergence.

  18. The Neutralization of Ion-Rocket Beams

    NASA Technical Reports Server (NTRS)

    Kaufman, Harold R.

    1961-01-01

    The experimental ion-beam behavior obtained without neutralizers is compared with both simple collision theory and plasma-wave theory. This comparison indicates that plasma waves play an important part in beam behavior, although the present state of plasma-wave theory does not permit more than a qualitative comparison. The theories of immersed-emitter and electron-trap neutralizer operation are discussed; and, to the extent permitted by experimental data, the theory is compared with experimental results. Experimental data are lacking completely at the present time for operation in space. The results that might be expected in space and the means of simulating such operation in Earth-bound facilities, however, are discussed.

  19. Electron Cloud in Steel Beam Pipe vs Titanium Nitride Coated and Amorphous Carbon Coated Beam Pipes in Fermilab's Main Injector

    SciTech Connect

    Backfish, Michael

    2013-04-01

    This paper documents the use of four retarding field analyzers (RFAs) to measure electron cloud signals created in Fermilab’s Main Injector during 120 GeV operations. The first data set was taken from September 11, 2009 to July 4, 2010. This data set is used to compare two different types of beam pipe that were installed in the accelerator. Two RFAs were installed in a normal steel beam pipe like the rest of the Main Injector while another two were installed in a one meter section of beam pipe that was coated on the inside with titanium nitride (TiN). A second data run started on August 23, 2010 and ended on January 10, 2011 when Main Injector beam intensities were reduced thus eliminating the electron cloud. This second run uses the same RFA setup but the TiN coated beam pipe was replaced by a one meter section coated with amorphous carbon (aC). This section of beam pipe was provided by CERN in an effort to better understand how an aC coating will perform over time in an accelerator. The research consists of three basic parts: (a) continuously monitoring the conditioning of the three different types of beam pipe over both time and absorbed electrons (b) measurement of the characteristics of the surrounding magnetic fields in the Main Injector in order to better relate actual data observed in the Main Injector with that of simulations (c) measurement of the energy spectrum of the electron cloud signals using retarding field analyzers in all three types of beam pipe.

  20. Neutral beam source commercialization study. Final report

    SciTech Connect

    King, H.J.

    1980-06-01

    The basic tasks of this Phase II project were to: generate a set of design drawings suitable for quantity production of sources of this design; fabricate a functional neutral beam source incorporating as many of the proposed design changes as proved feasible; and document the procedures and findings developed during the contract. These tasks have been accomplished and represent a demonstrated milestone in the industrialization of this complete device.

  1. Plasma heating with multi-MeV neutral impurity beams

    SciTech Connect

    Grisham, L.R.; Post, D.E.; Eubank, H.P.; Firestone, M.; Mikkelsen, D.R.; Singer, C.E.; Weisheit, J.

    1981-03-01

    The utility of neutral beams of A greater than or equal to 6 AMU formed from negative ions, accelerated to approx. 1 MeV/AMU and neutralized, is explored for heating toroidally confined plasmas. Such beams offer the promise of significant advantages relative to conventional neutral beams based upon positive or negative hydrogen ions at 100 to 200 keV/AMU.

  2. Impedance budget and beam stability analysis of the Fermilab Main Injector

    SciTech Connect

    Martens, M.A.; Ng, K.Y.

    1993-05-01

    The impedance budget of the Fermilab Main Injector (MI) is estimated, which includes the contributions from the resistive walls, bellows, rf cavities, steps, Lambertsons, etc. Beam stability during ramping and bunch coalescence is analyzed. The transverse resistive-wall coupled bunch growth is found to be somewhat worse than the situation in the Main Ring (MR).

  3. Beam-based calibrations of the BPM offset at C-ADS Injector II

    NASA Astrophysics Data System (ADS)

    Chen, Wei-Long; Wang, Zhi-Jun; Feng, Chi; Dou, Wei-Ping; Tao, Yue; Jia, Huan; Wang, Wang-Sheng; Liu, Shu-Hui; He, Yuan

    2016-07-01

    Beam-based BPM offset calibration was carried out for Injector II at the C-ADS demonstration facility at the Institute of Modern Physics (IMP), Chinese Academy of Science (CAS). By using the steering coils integrated in the quadrupoles, the beam orbit can be effectively adjusted and BPM positions recorded at the Medium Energy Beam Transport of the Injector II Linac. The studies were done with a 2 mA, 2.1 MeV proton beam in pulsed mode. During the studies, the “null comparison method” was applied for the calibration. This method is less sensitive to errors compared with the traditional transmission matrix method. In addition, the quadrupole magnet’s center can also be calibrated with this method. Supported by National Natural Science Foundation of China (91426303, 11525523)

  4. Beam optimization of helium injector for coupled RFQ-SFRFQ linac

    NASA Astrophysics Data System (ADS)

    Xia, W. L.; Wang, Z.; Lu, Y. R.; Chen, J.; Zhao, J.; Ren, H. T.; Zhu, K.; Peng, S. X.; Chen, J. E.

    2014-08-01

    The coupled RFQ-SFRFQ (CRS) cavity designed in Peking University is a new type linac that coupled radio frequency quadrupole (RFQ) and separated function radio frequency quadrupole (SFRFQ) structure into a single cavity. An upgraded helium injector for the CRS cavity consisting of a 2.45 GHz permanent magnet electron cyclotron resonance (ECR) ion source and a 1.16 m low energy beam transport (LEBT) has been constructed and tested. The beam conditions of the injector were carefully optimized to satisfy the requirements of the CRS linac, the corresponding control system and a two-dimension scanner code CRSv1.0 were developed for optimizing the beam transmission from LEBT section to the entrance of the CRS cavity. The beam transmission efficiency has reached to approximately 87.5% as well as the optimized operating parameters were obtained by means of the scanner code.

  5. 2.5 MV, 4kA, 2μs Electron Beam Injector for DARHT

    NASA Astrophysics Data System (ADS)

    Henestroza, E.; Yu, S.; Eylon, S.; Carlsten, B.

    1997-05-01

    An injector design for the long pulse option for the second axis of the Dual-Axis Radiographic Hydrotest Facility (DARHT) has been studied. This design is based on the LBNL Heavy Ion Fusion Injector technology. The proposed injector consists of a single gap diode extracting electrons from a thermionic source and powered through a high voltage ceramic insulator column by a Marx generator. The key issues in the design are the control of beam quality to meet the DARHT 2nd axis final focus requirements, to minimize high-voltage breakdown risks, and to fit the injector structure within the available space. We will present the injector conceptual design as well as beam dynamics simulations in the diode and in the injector-main-accelerator interface.

  6. Upgrade of Doublet III neutral beam injection to long pulse operation

    SciTech Connect

    Doll, D. W.; McColl, D. B.; Pipkins, J. F.

    1981-10-01

    Long pulse physics questions have been raised for auxiliary heated plasma discharges in Tokamaks. A one-second pulse encloses present experiments and is adequate for studying quasi-steady-state operation, whereas, a 5 to 10 second pulse may be required to examine impurity effects of plasma-wall interaction and current profile relaxation. In order to sustain heating in the multi-second pulse range, neutral beam devices must be capable of the same pulse durations. By upgrading the beam collimators, and ion source components, the Doublet III neutral beam injectors can be made to operate with pulses up to 5 seconds in duration with the interpulse period extended to maintain approximately the same duty factor. The scope of the upgrading includes (1) exchanging the accelerator section of the ion source with one having actively cooled tubular grids, and (2) removing or replacing collimators where necessary to stay below 600/sup 0/C peak temperature. An actively cooled ion dump is necessary for pulses substantially longer than 5 seconds. Effects of drift duct choking and induced eddy currents in the cryopanels were examined and found to have a negligible effect on operating the neutral beam injectors up to 5 second pulse duration.

  7. Neutral Beam Ion Loss Modeling for NSTX

    SciTech Connect

    D. Mikkelsen; D.S. Darrow; L. Grisham; R. Akers; S. Kaye

    1999-06-01

    A numerical model, EIGOL, has been developed to calculate the loss rate of neutral beam ions from NSTX and the resultant power density on the plasma facing components. This model follows the full gyro-orbit of the beam ions, which can be a significant fraction of the minor radius. It also includes the three-dimensional structure of the plasma facing components inside NSTX. Beam ion losses from two plasma conditions have been compared: {beta} = 23%, q{sub 0} = 0.8, and {beta} = 40%, q{sub 0} = 2.6. Global losses are computed to be 4% and 19%, respectively, and the power density on the rf antenna is near the maximum tolerable levels in the latter case.

  8. Narrowband beam loading compensation in the Fermilab Main Injector accelerating cavities

    SciTech Connect

    Joseph E. Dey; John S. Reid and James Steimel

    2001-07-12

    A narrowband beam loading compensation system was installed for the Main Injector Accelerating Cavities. This feedback operates solely on the fundamental resonant mode of the cavity. This paper describes modifications to the high level Radio Frequency system required to make the system operational. These modifications decreased the effect of steady-state beam loading by a factor of 10 and improved the reliability of paraphasing for coalescing.

  9. Generation and acceleration of high intensity beams in the SLC injector

    SciTech Connect

    Ross, M.C.; Browne, M.J.; Clendenin, J.E.; Jobe, R.K.; Seeman, J.T.; Sheppard, J.C.; Stiening, R.F.

    1985-04-01

    A new gun pulser and substantially increased focusing have been added to the first 100 m of the SLAC linac in order to provide a pair of intense electron bunches to the SLC damping ring. Each bunch from this injector must have 5 x 10/sup 10/ electrons, an invariant emittance ..gamma..epsilon less than or equal to 1.8 x 10/sup -3/ m-rad and the pair must have an energy spread of less than 2%. Wakefield instabilities present in earlier versions of this injector have been controlled by reducing the transverse beam dimension by a factor of 3.

  10. The upgraded data acquisition system for beam loss monitoring at the Fermilab Tevatron and Main Injector

    SciTech Connect

    Baumbaugh, A.; Briegel, C.; Brown, B.C.; Capista, D.; Drennan, C.; Fellenz, B.; Knickerbocker, K.; Lewis, J.D.; Marchionni, A.; Needles, C.; Olson, M.; /Fermilab

    2011-11-01

    A VME-based data acquisition system for beam-loss monitors has been developed and is in use in the Tevatron and Main Injector accelerators at the Fermilab complex. The need for enhanced beam-loss protection when the Tevatron is operating in collider-mode was the main driving force for the new design. Prior to the implementation of the present system, the beam-loss monitor system was disabled during collider operation and protection of the Tevatron magnets relied on the quench protection system. The new Beam-Loss Monitor system allows appropriate abort logic and thresholds to be set over the full set of collider operating conditions. The system also records a history of beam-loss data prior to a beam-abort event for post-abort analysis. Installation of the Main Injector system occurred in the fall of 2006 and the Tevatron system in the summer of 2007. Both systems were fully operation by the summer of 2008. In this paper we report on the overall system design, provide a description of its normal operation, and show a number of examples of its use in both the Main Injector and Tevatron.

  11. Key elements of space charge compensation on a low energy high intensity beam injector

    SciTech Connect

    Peng Shixiang; Lu Pengnan; Ren Haitao; Zhao Jie; Chen Jia; Xu Yuan; Guo Zhiyu; Chen Jia'er; Zhao Hongwei; Sun Liangting

    2013-03-15

    Space charge effect (SCE) along the beam line will decrease beam quality. Space charge compensation (SCC) with extra gas injection is a high-efficiency method to reduce SCE. In this paper, we will report the experimental results on the beam profile, potential distribution, beam emittance, and beam transmission efficiency of a 35 keV/90 mA H{sup +} beam and a 40 keV/10 mA He{sup +} beam compensated by Ar/Kr. The influence of gas type, gas flow, and injection location will be discussed. Emphasis is laid on the consideration of SCC when designing and commissioning a high intensity ion beam injector. Based on measured data, a new definition of space charge compensation degree is proposed.

  12. Key elements of space charge compensation on a low energy high intensity beam injector.

    PubMed

    Peng, Shixiang; Lu, Pengnan; Ren, Haitao; Zhao, Jie; Chen, Jia; Xu, Yuan; Guo, Zhiyu; Chen, Jia'er; Zhao, Hongwei; Sun, Liangting

    2013-03-01

    Space charge effect (SCE) along the beam line will decrease beam quality. Space charge compensation (SCC) with extra gas injection is a high-efficiency method to reduce SCE. In this paper, we will report the experimental results on the beam profile, potential distribution, beam emittance, and beam transmission efficiency of a 35 keV∕90 mA H(+) beam and a 40 keV∕10 mA He(+) beam compensated by Ar∕Kr. The influence of gas type, gas flow, and injection location will be discussed. Emphasis is laid on the consideration of SCC when designing and commissioning a high intensity ion beam injector. Based on measured data, a new definition of space charge compensation degree is proposed. PMID:23556812

  13. Beam loss by collimation in a neutralizer duct

    SciTech Connect

    Hamilton, G.W.; Willmann, P.A.

    1980-04-03

    Beam fractions lost by collimation in a neutralizer duct are computed in x-x' phase space by using three examples of slab beam distributions under a broad range of duct dimensions, beam half-widths, and beam divergences. The results can be used to design compact neutralizers and to specify beam requirements. The computer code ILOST can be used under a broad range of beam conditions to compute the fraction lost by collimation.

  14. Improving ion beam injector performance by augmenting capacitance of vacuum diode

    SciTech Connect

    Goerz, D. A., LLNL

    1998-06-24

    The recirculating induction accelerator is a new class of particle accelerator being developed at LLNL as a reduced-cost driver for heavy-ion beam driven inertial fusion energy. Ongoing research and development of advanced beam control technologies for the recirculator system requires a very stable and reproducible ion beam source. The injector pulse modulator must be capable of producing very precise high-voltage pulses in order to reduce the current modulation instability and achieve the required beam reproducibility. Computer modeled simulations of beam dynamics have established that errors greater than 0.1 percent in the flatness of the 120 kV injector pulse can create intolerable energy deviations. The pulse modulator that was developed to satisfy the stringent requirements is described in the accompanying paper by Wilson [1]. A crucial aspect of the overall solution is a modification made to the vacuum diode apparatus, whereby high-voltage capacitors were added in close proximity to the thermionic potassium-ion emitter. This paper discusses the rationale for augmenting the normally small capacitance of the injector diode, and presents design information, including an illustrated layout, electrostatic field modeling results, and data on ceramic capacitors operating at elevated levels.

  15. TFTR neutral-beam power system

    SciTech Connect

    Winje, R.A.

    1982-10-01

    The TFTR Neutral Beam Power System (NBPS) consists of the accelerator grid power supply and the auxiliary power supplies required to operate the TFTR 120-keV ion sources. The current configuration of the NBPS including the 11-MVA accelerator grid power supply and the Arc and Filament power supplies isolated for operation at accelerator grid voltages up to 120 kV, is described. The prototype NBPS has been assembled at the Princeton Plasma Physics Laboratory and has been operated. The results of the initial operation and the description and resolution of some of the technical problems encountered during the commissioning tests are presented.

  16. Neutral-beam development plan, FY 1982-1987

    SciTech Connect

    Not Available

    1981-09-01

    The following chapters are included: (1) status of BNL negative ion source development, (2) source development program plan, (3) status of beam transport and acceleration, (4) accelerator development program plan, (5) neutralizer concepts, (6) neutralization program plan, (7) neutral beam systems, (8) test facilities, (9) program milestones and time schedules, (10) organization and Grumman participation, and (11) funding tables. (MOW)

  17. Neutral Beam Power System for TPX

    SciTech Connect

    Ramakrishnan, S.; Bowen, O.N.; O`Conner, T.; Edwards, J.; Fromm, N.; Hatcher, R.; Newman, R.; Rossi, G.; Stevenson, T.; von Halle, A.

    1993-11-01

    The Tokamak Physics Experiment (TPX) will utilize to the maximum extent the existing Tokamak Fusion Test Reactor (TFTR) equipment and facilities. This is particularly true for the TFTR Neutral Beam (NB) system. Most of the NB hardware, plant facilities, auxiliary sub-systems, power systems, service infrastructure, and control systems can be used as is. The major changes in the NB hardware are driven by the new operating duty cycle. The TFTR Neutral Beam was designed for operation of the Sources for 2 seconds every 150 seconds. The TPX requires operation for 1000 seconds every 4500 seconds. During the Conceptual Design Phase of TPX every component of the TFTR NB Electrical Power System was analyzed to verify whether the equipment can meet the new operational requirements with our without modifications. The Power System converts 13.8 kV prime power to controlled pulsed power required at the NB sources. The major equipment involved are circuit breakers, auto and rectifier transformers surge suppression components, power tetrodes, HV Decks, and HVDC power transmission to sources. Thermal models were developed for the power transformers to simulate the new operational requirements. Heat runs were conducted for the power tetrodes to verify capability. Other components were analyzed to verify their thermal limitations. This paper describes the details of the evaluation and redesign of the electrical power system components to meet the TPX operational requirements.

  18. Magnetically operated beam dump for dumping high power beams in a neutral beamline

    DOEpatents

    Dagenhart, W.K.

    1984-01-27

    It is an object of this invention to provide a beam dump system for a neutral beam generator which lowers the time-averaged power density of the beam dump impingement surface. Another object of this invention is to provide a beam dump system for a neutral particle beam based on reionization and subsequent magnetic beam position modulation of the beam onto a beam dump surface to lower the time-averaged power density of the beam dump ion impingement surface.

  19. Optimizing the CEBAF Injector for Beam Operation with a Higher Voltage Electron Gun

    SciTech Connect

    F.E. Hannon, A.S. Hofler, R. Kazimi

    2011-03-01

    Recent developments in the DC gun technology used at CEBAF have allowed an increase in operational voltage from 100kV to 130kV. In the near future this will be extended further to 200kV with the purchase of a new power supply. The injector components and layout at this time have been designed specifically for 100kV operation. It is anticipated that with an increase in gun voltage and optimization of the layout and components for 200kV operation, that the electron bunch length and beam brightness can be improved upon. This paper explores some upgrade possibilities for a 200kV gun CEBAF injector through beam dynamic simulations.

  20. International Thermonuclear Experimental Reactor (ITER) neutral beam design

    SciTech Connect

    Myers, T.J.; Brook, J.W.; Spampinato, P.T.; Mueller, J.P.; Luzzi, T.E.; Sedgley, D.W. . Space Systems Div.)

    1990-10-01

    This report discusses the following topics on ITER neutral beam design: ion dump; neutralizer and module gas flow analysis; vacuum system; cryogenic system; maintainability; power distribution; and system cost.

  1. Angular-divergence calculation for Experimental Advanced Superconducting Tokamak neutral beam injection ion source based on spectroscopic measurements

    SciTech Connect

    Chi, Yuan; Hu, Chundong; Zhuang, Ge

    2014-02-15

    Calorimetric method has been primarily applied for several experimental campaigns to determine the angular divergence of high-current ion source for the neutral beam injection system on the Experimental Advanced Superconducting Tokamak (EAST). A Doppler shift spectroscopy has been developed to provide the secondary measurement of the angular divergence to improve the divergence measurement accuracy and for real-time and non-perturbing measurement. The modified calculation model based on the W7AS neutral beam injectors is adopted to accommodate the slot-type accelerating grids used in the EAST's ion source. Preliminary spectroscopic experimental results are presented comparable to the calorimetrically determined value of theoretical calculation.

  2. New beam-charge interlock system for radiation safety at the KEKB injector linac

    NASA Astrophysics Data System (ADS)

    Suwada, T.; Kadokura, E.; Satoh, M.; Furukawa, K.

    2008-02-01

    A new beam-charge interlock system is under development for radiation safety and machine protection at the KEKB injector linac. A hardware-based interlock system is required instead of the present software-based interlock system in order to boost its reliability. This system restricts the integrated amount of beam charges delivered to four different storage rings. The beam charges are measured using wall-current monitors and detection electronics at six locations along the linac. The detection electronics independently transmits a beam-abort request through a twisted hardwire cable directly to the safety control system of the linac, when the integrated amount of beam charges exceeds a certain threshold level prescribed for each location. We describe the characteristics and performance of the new beam-charge interlock system along with the details of the experimental tests.

  3. Studies of multipass beam breakup and energy recovery using the CEBAF injector linac

    SciTech Connect

    Sereno, N.S.; Cardman, L.S.; Krafft, G.A.; Sinclair, C.K.; Bisognano, J.J.

    1993-06-01

    Beam breakup (BBU) instabilities in superconducting linacs are a significant issue due to the potentially high Q values of the cavity higher order modes (HOMs). The CEBAF accelerator, which employs high CW current and 5-pass recirculation through two superconducting linacs, poses unique instability problems. An experimental investigation of multipass BBU along with energy recovery has been completed using a single recirculation through the CEBAF injector linac. Experimental results are compared with computer simulation of multipass BBU.

  4. Drift compression of an intense neutralized ion beam

    SciTech Connect

    Roy, P.K.; Yu, S.S.; Henestroza, E.; Anders, A.; Bieniosek, F.M.; Coleman, J.; Eylon, S.; Greenway, W.G.; Leitner, M.; Logan, B.G.; Waldron, W.L.; Welch, D.R.; Thoma, C.; Sefkow, A.B.; Gilson, E.P.; Efthimion, P.C.; Davidson, R.C.

    2004-10-25

    Longitudinal compression of a tailored-velocity, intense neutralized ion beam has been demonstrated. The compression takes place in a 1-2 m drift section filled with plasma to provide space-charge neutralization. An induction cell produces a head-to-tail velocity ramp that longitudinally compresses the neutralized beam, enhancing the beam peak current by a factor of 50 and producing a pulse duration of about 3 ns. this measurement has been confirmed independently with two different diagnostic systems.

  5. A preliminary model of ion beam neutralization. [in thruster plasmas

    NASA Technical Reports Server (NTRS)

    Parks, D. E.; Katz, I.

    1979-01-01

    A theoretical model of neutralized thruster ion beam plasmas has been developed. The basic premise is that the beam forms an electrostatic trap for the neutralizing electrons. A Maxwellian spectrum of electron energies is maintained by collisions between trapped electrons and by collective randomization of velocities of electrons injected from the neutralizer into the surrounding plasma. The theory contains the observed barometric law relationship between electron density and electron temperatures and ion beam spreading in good agreement with measured results.

  6. TFTR neutral-beam test facility

    SciTech Connect

    Turitzin, N.M.; Newman, R.A.

    1981-11-01

    TFTR Neutral Beam System will have thirteen discharge ion sources, each with its own power supply. Twelve of these will be utilized for supplemental heating of the TFTR tokamak plasma, while the thirteenth will be dedicated to an off-machine test chamber for source development and/or conditioning. A test installation for one source was set up using prototype equipment to discover and correct possible deficiencies, and to properly coordinate the equipment. This test facility represents the first opportunity for assembling an integrated system of hardware supplied by diverse vendors, each of whom designed and built his equipment to performance specifications. For the installation and coordination of the different portions of the total system, particular attention was given to personnel safety and safe equipment operation. This paper discusses various system components, their characteristics, interconnection and control. Results of the recently initiated test phase will be reported at a later date.

  7. Collimation system design for beam loss localization with slipstacking injection in the Fermilab Main Injector

    SciTech Connect

    Drozhdin, A.I.; Brown, B.C.; Johnson, D.E.; Koba, K.; Kourbanis, I.; Mokhov, N.V.; Rakhno, I.L.; Sidorov, V.I.; /Fermilab

    2007-06-01

    Results of modeling with the 3-D STRUCT and MARS15 codes of beam loss localization and related radiation effects are presented for the slipstacking injection to the Fermilab Main Injector. Simulations of proton beam loss are done using multi-turn tracking with realistic accelerator apertures, nonlinear fields in the accelerator magnets and time function of the RF manipulations to explain the results of beam loss measurements. The collimation system consists of one primary and four secondary collimators. It intercepts a beam power of 1.6 kW at a scraping rate of 5% of 5.5E+13 ppp, with a beam loss rate in the ring outside the collimation region of 1 W/m or less. Based on thorough energy deposition and radiation modeling, a corresponding collimator design was developed that satisfies all the radiation and engineering constraints.

  8. Neutral beam dump with cathodic arc titanium gettering

    SciTech Connect

    Smirnov, A.; Korepanov, S. A.; Putvinski, S.; Krivenko, A. S.; Murakhtin, S. V.; Savkin, V. Ya.

    2011-03-15

    An incomplete neutral beam capture can degrade the plasma performance in neutral beam driven plasma machines. The beam dumps mitigating the shine-through beam recycling must entrap and retain large particle loads while maintaining the beam-exposed surfaces clean of the residual impurities. The cathodic arc gettering, which provides high evaporation rate coupled with a fast time response, is a powerful and versatile technique for depositing clean getter films in vacuum. A compact neutral beam dump utilizing the titanium arc gettering was developed for a field-reversed configuration plasma sustained by 1 MW, 20-40 keV neutral hydrogen beams. The titanium evaporator features a new improved design. The beam dump is capable of handling large pulsed gas loads, has a high sorption capacity, and is robust and reliable. With the beam particle flux density of 5 x 10{sup 17} H/(cm{sup 2}s) sustained for 3-10 ms, the beam recycling coefficient, defined as twice the ratio of the hydrogen molecular flux leaving the beam dump to the incident flux of high-energy neutral atoms, is {approx}0.7. The use of the beam dump allows us to significantly reduce the recycling of the shine-through neutral beam as well as to improve the vacuum conditions in the machine.

  9. Requirements for neutral beam current drive in tokamaks

    SciTech Connect

    Dory, R.A.

    1988-01-01

    This paper contains viewgraphs on the use of neutral beam current drive in future tokamaks. Current profiles, slowing down distributions, beam destabilization of alfven waves and plasma parameters are some items covered in this paper. (DWL)

  10. The influence of stray magnetic fields on ion beam neutralization

    NASA Technical Reports Server (NTRS)

    Feng, Y.-C.; Wilbur, P. J.

    1982-01-01

    An experimental investigation is described of a comparison between the ion beam neutralization characteristics of a local neutralizer (within approximately 5 cm of the beam edge) and those associated with a distant one (approximately 1 meter away from the thruster). The influence of magnetic fields in the vicinity of the neutralizer cathode orifice which are either parallel or normal to the neutralizer axis is assessed. The plasma property profiles which reflect the influence of the magnetic fields are measured. The results suggest that magnetic fields at the region of a neutralizer cathode orifice influence its ability to couple to the ion beam. They reveal that there is a potential jump from the neutralizer cathode orifice to the plasma which exists close to the orifice. This potential drop is found to increase as the axial component of magnetic flux density increases. A magnetic field perpendicular to the neutralizer axis induces a potential rise a few centimeters downstream from the neutralizer cathode.

  11. Beam dynamics simulations of the injector for a compact THz source

    NASA Astrophysics Data System (ADS)

    Li, Ji; Pei, Yuan-Ji; Shang, Lei; Feng, Guang-Yao; Hu, Tong-Ning; Chen, Qu-Shan; Li, Cheng-Long

    2014-08-01

    Terahertz radiation has broad application prospects due to its ability to penetrate deep into many organic materials without the damage caused by ionizing radiations. A free electron laser (FEL)-based THz source is the best choice to produce high-power radiation. In this paper, a 14 MeV injector is introduced for generating high-quality beam for FEL, is composed of an EC-ITC RF gun, compensating coils and a travelling-wave structure. Beam dynamics simulations have been done with ASTRA code to verify the design and to optimize parameters. Simulations of the operating mode at 6 MeV have also been executed.

  12. Progress in the realization of the PRIMA neutral beam test facility

    NASA Astrophysics Data System (ADS)

    Toigo, V.; Boilson, D.; Bonicelli, T.; Piovan, R.; Hanada, M.; Chakraborty, A.; Agarici, G.; Antoni, V.; Baruah, U.; Bigi, M.; Chitarin, G.; Dal Bello, S.; Decamps, H.; Graceffa, J.; Kashiwagi, M.; Hemsworth, R.; Luchetta, A.; Marcuzzi, D.; Masiello, A.; Paolucci, F.; Pasqualotto, R.; Patel, H.; Pomaro, N.; Rotti, C.; Serianni, G.; Simon, M.; Singh, M.; Singh, N. P.; Svensson, L.; Tobari, H.; Watanabe, K.; Zaccaria, P.; Agostinetti, P.; Agostini, M.; Andreani, R.; Aprile, D.; Bandyopadhyay, M.; Barbisan, M.; Battistella, M.; Bettini, P.; Blatchford, P.; Boldrin, M.; Bonomo, F.; Bragulat, E.; Brombin, M.; Cavenago, M.; Chuilon, B.; Coniglio, A.; Croci, G.; Dalla Palma, M.; D'Arienzo, M.; Dave, R.; De Esch, H. P. L.; De Lorenzi, A.; De Muri, M.; Delogu, R.; Dhola, H.; Fantz, U.; Fellin, F.; Fellin, L.; Ferro, A.; Fiorentin, A.; Fonnesu, N.; Franzen, P.; Fröschle, M.; Gaio, E.; Gambetta, G.; Gomez, G.; Gnesotto, F.; Gorini, G.; Grando, L.; Gupta, V.; Gutierrez, D.; Hanke, S.; Hardie, C.; Heinemann, B.; Kojima, A.; Kraus, W.; Maeshima, T.; Maistrello, A.; Manduchi, G.; Marconato, N.; Mico, G.; Moreno, J. F.; Moresco, M.; Muraro, A.; Muvvala, V.; Nocentini, R.; Ocello, E.; Ochoa, S.; Parmar, D.; Patel, A.; Pavei, M.; Peruzzo, S.; Pilan, N.; Pilard, V.; Recchia, M.; Riedl, R.; Rizzolo, A.; Roopesh, G.; Rostagni, G.; Sandri, S.; Sartori, E.; Sonato, P.; Sottocornola, A.; Spagnolo, S.; Spolaore, M.; Taliercio, C.; Tardocchi, M.; Thakkar, A.; Umeda, N.; Valente, M.; Veltri, P.; Yadav, A.; Yamanaka, H.; Zamengo, A.; Zaniol, B.; Zanotto, L.; Zaupa, M.

    2015-08-01

    The ITER project requires additional heating by two neutral beam injectors, each accelerating to 1 MV a 40 A beam of negative deuterium ions, to deliver to the plasma a power of about 17 MW for one hour. As these requirements have never been experimentally met, it was recognized as necessary to setup a test facility, PRIMA (Padova Research on ITER Megavolt Accelerator), in Italy, including a full-size negative ion source, SPIDER, and a prototype of the whole ITER injector, MITICA, aiming to develop the heating injectors to be installed in ITER. This realization is made with the main contribution of the European Union, through the Joint Undertaking for ITER (F4E), the ITER Organization and Consorzio RFX which hosts the Test Facility. The Japanese and the Indian ITER Domestic Agencies (JADA and INDA) participate in the PRIMA enterprise; European laboratories, such as IPP-Garching, KIT-Karlsruhe, CCFE-Culham, CEA-Cadarache and others are also cooperating. Presently, the assembly of SPIDER is on-going and the MITICA design is being completed. The paper gives a general overview of the test facility and of the status of development of the MITICA and SPIDER main components at this important stage of the overall development; then it focuses on the latest and most critical issues, regarding both physics and technology, describing the identified solutions.

  13. Neutral Beam Ion Loss Modelling for NSTX

    NASA Astrophysics Data System (ADS)

    Darrow, D. S.; Akers, R.; Kaye, S. M.; Mikkelsen, D. R.

    1999-11-01

    The loss of 80 keV D neutral beam ions to the walls has been modeled for a range of plasma conditions in NSTX using the EIGOL code[1]. Initial results of the code are in reasonable agreement with those from the LOCUST code[2]. Both codes predict loss fractions of 20% for a discharge with β_T=40% and q_0=2.6. Losses are strongly concentrated on the front face and edges of the high-harmonic fast wave antenna as it projects farther inward than other internal structures at the midplane. The edges of the passive stabilizer plates near the midplane are also subject to a large flux of lost beam ions under some conditions. The dependence of the loss upon the plasma density profile, I_p, and BT will be presented. [1] D. S. Darrow, et al., in Proceedings of the 26th EPS Conference on Controlled Fusion and Plasma Physics, Maastricht, The Netherlands, 14-18 June 1999. [2] R. Akers, et al., ibid.

  14. Conceptual Design of Neutral Beam Injection System for EAST

    NASA Astrophysics Data System (ADS)

    Hu, Chundong; NBI Team

    2012-06-01

    Neutral beam injection (NBI) system with two neutral beam injections will be constructed on the Experimental Advanced Superconducting Tokamak (EAST) in two stages for high power auxiliary plasmas heating and non-inductive current drive. Each NBI can deliver 2~4 MW beam power with 50~80 keV beam energy in 10~100 s pulse length. Each elements of the NBI system are presented in this contribution.

  15. RAMI Analyses of Heating Neutral Beam and Diagnostic Neutral Beam Systems for ITER

    NASA Astrophysics Data System (ADS)

    Chang, D. H.; Lee, S.; Hemsworth, R.; van Houtte, D.; Okayama, K.; Sagot, F.; Schunke, B.; Svensson, L.

    2011-09-01

    A RAMI (Reliability, Availability, Maintainability, Inspectability) analysis has been performed for the heating (& current drive) neutral beam (HNB) and diagnostic neutral beam (DNB) systems of the ITER device [1-3]. The objective of these analyses is to implement RAMI engineering requirements for design and testing to prepare a reliability-centred plan for commissioning, operation, and maintenance of the system in the framework of technical risk control to support the overall ITER Project. These RAMI requirements will correspond to the RAMI targets for the ITER project and the compensating provisions to reach them as deduced from the necessary actions to decrease the risk level of the function failure modes. The RAMI analyses results have to match with the procurement plan of the systems.

  16. Design of a 1-MV induction injector for the Relativistic Klystron Two-Beam Accelerator

    SciTech Connect

    Anderson, D.E.; Eylon, S.; Lidia, S.; Reginato, L.; Vanecek, D.; Yu, S.; Houck, T.; Westenskow, G.A.; Henestroza, E.

    1997-05-01

    A Relativistic Klystron Two-Beam Accelerator (RK-TBA) is envisioned as a rf power source upgrade of the Next Linear Collider. Construction of a prototype, called the RTA, based on the RK-TBA concept has commenced at the Lawrence Berkeley National Laboratory. This prototype will be used to study physics, engineering, and costing issues involved in the application of the RK-TBA concept to linear colliders. The first half of the injector, a 1 MeV, 1.2 kA, 300 ns induction electron gun, has been built and is presently being tested. The design of the injector cells and the pulsed power drive units are presented in this paper.

  17. Gas Flow Measurements of a Novel Geometry for Neutral Beam Neutralizers.

    NASA Astrophysics Data System (ADS)

    Pirkle, David Ross

    The gas flow characteristics of a novel geometry (pumped neutralizer) for decreasing the flow of gas from neutral beam neutralizers were measured and compared with a conventional (passive) neutralizer. A passive neutralizer is typically a duct attached to the ion source. For the pumped neutralizer the top and bottom surfaces of the duct are replaced by a Venetian blind geometry which opens into ballast vacuum pumping volumes. With guidance from a Monte Carlo program which models gas flow at low pressure, a one-half scale model with pumped neutralizer geometry was built and compared to a passive neutralizer with comparable dimensions. With the vanes on the pumped neutralizer opened to 55 degrees, the line density of the pumped neutralizer was 1.6 times less than the passive neutralizer. The amount of gas flowing from the exit of the pumped neutralizer was from 2 to 5 times less than the amount flowing from the pumped neutralizer. Hence, the pumped neutralizer geometry appears to be a promising method of limiting the flow of gas from neutral beam gas cell neutralizers.

  18. Intense ion beam neutralization using underdense background plasma

    SciTech Connect

    Berdanier, William; Roy, Prabir K.; Kaganovich, Igor

    2015-01-15

    Producing an overdense background plasma for neutralization purposes with a density that is high compared to the beam density is not always experimentally possible. We show that even an underdense background plasma with a small relative density can achieve high neutralization of intense ion beam pulses. Using particle-in-cell simulations, we show that if the total plasma electron charge is not sufficient to neutralize the beam charge, electron emitters are necessary for effective neutralization but are not needed if the plasma volume is so large that the total available charge in the electrons exceeds that of the ion beam. Several regimes of possible underdense/tenuous neutralization plasma densities are investigated with and without electron emitters or dense plasma at periphery regions, including the case of electron emitters without plasma, which does not effectively neutralize the beam. Over 95% neutralization is achieved for even very underdense background plasma with plasma density 1/15th the beam density. We compare results of particle-in-cell simulations with an analytic model of neutralization and find close agreement with the particle-in-cell simulations. Further, we show experimental data from the National Drift Compression experiment-II group that verifies the result that underdense plasma can neutralize intense heavy ion beams effectively.

  19. Design and performance of the traveling-wave beam chopper for the SSRL injector

    SciTech Connect

    Borland, M.; Weaver, J.N.; Baltay, M.; Emery, L.; Fisher, A.S.; Golceff, P.; Hettel, R.; Morales, H.; Sebek, J.; Wiedemann, H.; Youngman, B. . Stanford Synchrotron Radiation Lab.); Anderson, R. ); Miller, R.H. )

    1991-05-01

    A pulsed, split-parallel plate chopper has been designed built, and installed as part of the preinjector of the SSRL Injector. Its function is to allow the linear accelerator three consecutive S-band bunches from the long bunch train provided by a RF gun. A permanent magnet deflector (PMD) at the chopper entrance deflects the beam into an absorber when the chopper pulse is off. The beam is swept across a pair of slits at the beam output end when a 7 kV, 10-ns rise-time pulse passes in the opposite direction through the 75 {Omega} stripline formed by the deflecting plates. Bunches exiting the slits have their trajectories corrected by another PMD, and enter the linac. Beam tests demonstrate that the chopper functions as expected. 9 refs., 5 figs.

  20. A PARMELA model of the CEBAF injector valid over a wide range of beam parameters

    SciTech Connect

    Yuhong Zhang; Kevin Beard; Jay Benesch; Yu-Chiu Chao; Arne Freyberger; Joseph Grames; Reza Kazimi; Geoffrey Krafft; Rui Li; Nikolitsa Merminga; Benard Poelker; Byung Yunn

    2004-07-01

    A PARMELA model of the CEBAF injector valid over a wide range of beam parameters Yuhong Zhang, Kevin Beard, Jay Benesch, Yu-Chiu Chao, Arne Freyberger, Joseph Grames, Reza Kazimi, Geoff Krafft, Rui Li, Lia Merminga, Matt Poelker, Michael Tiefenback, Byung Yunn Thomas Jefferson National Accelerator Facility 12000 Jefferson Avenue, Newport News, VA 23606 USA An earlier PARMELA model of the Jefferson Lab CEBAF photoinjector was recently revised. The initial phase space distribution of an electron bunch was determined by measuring spot size and pulselength of the driver laser and by beam emittance measurements. The improved model has been used for simulations of the simultaneous delivery of the Hall A beam required for a hypernuclear experiment, and the Hall C beam required for the G0 parity violation experiment.

  1. Plasma heating with multi-MeV neutral atom beams

    SciTech Connect

    Grisham, L.R.; Post, D.E.; Mikkelsen, D.R.; Eubank, H.P.

    1981-10-01

    We explore the utility and feasibility of neutral beams of greater than or equal to 6 AMU formed from negative ions, and also of D/sup 0/ formed from D/sup -/. The negative ions would be accelerated to approx. 1 to 2 MeV/AMU and neutralized, whereupon the neutral atoms would be used to heat and, perhaps, to drive current in magnetically confined plasmas. Such beams appear feasible and offer the promise of significant advantages relative to conventional neutral beams based on positive deuterium ions at approx. 150 keV.

  2. Modelling neutral beams in fusion devices: Beamlet-based model for fast particle simulations

    NASA Astrophysics Data System (ADS)

    Asunta, O.; Govenius, J.; Budny, R.; Gorelenkova, M.; Tardini, G.; Kurki-Suonio, T.; Salmi, A.; Sipilä, S.

    2015-03-01

    Neutral beam injection (NBI) will be one of the main sources of heating and non-inductive current drive in ITER. Due to high level of injected power the beam induced heat loads present a potential threat to the integrity of the first wall of the device, particularly in the presence of non-axisymmetric perturbations of the magnetic field. Neutral beam injection can also destabilize Alfvén eigenmodes and energetic particle modes, and act as a source of plasma rotation. Therefore, reliable and accurate simulation of NBI is important for making predictions for ITER, as well as for any other current or future fusion device. This paper introduces a new beamlet-based neutral beam ionization model called BBNBI. It takes into account the fine structure of the injector, follows the injected neutrals until ionization, and generates a source ensemble of ionized NBI test particles for slowing down calculations. BBNBI can be used as a stand-alone model but together with the particle following code ASCOT it forms a complete and sophisticated tool for simulating neutral beam injection. The test particle ensembles from BBNBI are found to agree well with those produced by PENCIL for JET, and those produced by NUBEAM both for JET and ASDEX Upgrade plasmas. The first comprehensive comparisons of beam slowing down profiles of interest from BBNBI + ASCOT with results from PENCIL and NUBEAM/TRANSP, for both JET and AUG, are presented. It is shown that, for an axisymmetric plasma, BBNBI + ASCOT and NUBEAM agree remarkably well. Together with earlier 3D studies, these results further validate using BBNBI + ASCOT also for studying phenomena that require particle following in a truly three-dimensional geometry.

  3. Experimental Studies of Ion Beam Neutralization: Preliminary Results

    SciTech Connect

    Ding, N.; Polansky, J.; Downey, R.; Wang, J.

    2011-05-20

    A testing platform is designed to study ion beam neutralization in the mesothermal, collisionless region. In the experimental setup, argon neutrals were ionized in a microwave cavity and accelerated by a plasma lens system which was biased to 2500 V above the system ground. Electrons were boiled off from two hot tungsten filaments to neutralize the ion beam. The plasma is diagnosed using Langmuir probe and Faraday probe. A 3-D traversing system and a complete data acquisition loop were developed to efficiently measure 3-D beam profile. Preliminary measurements of beam profiles are presented for different operating conditions.

  4. Space Charge Neutralization in the ITER Negative Ion Beams

    SciTech Connect

    Surrey, Elizabeth

    2007-08-10

    A model of the space charge neutralization of negative ion beams, developed from the model due to Holmes, is applied to the ITER heating and diagnostic beams. The Holmes model assumed that the plasma electron temperature was derived from the stripped electrons. This is shown to be incorrect for the ITER beams and the plasma electron temperature is obtained from the average creation energy upon ionization. The model shows that both ITER beams will be fully space charge compensated in the drift distance between the accelerator and the neutralizer. Inside the neutralizer, the plasma over compensates the space charge to the extent that a significant focusing force is predicted. At a certain position in the neutraliser this force balances the defocusing force due to the ions' transverse energy. Under these conditions the beam distribution function can change from Gaussian to Bennett and evidence of such a distribution observed in a multi-aperture, neutralized negative ion beam is presented.

  5. Neutral beam processing of semiconductor materials

    SciTech Connect

    Cross, J.; Hoffbauer, M.

    1996-09-01

    This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The most important challenge facing the US and global microelectronics industry is to identify and develop the next generation of processing technology to produce device structures with dimensions substantially less than 0.25 microns. This project sought to develop controlled, contamination-free etching techniques that are more selective and less damaging than current methods, which are based on inducing surface chemical reactions by rather crude ion-damage mechanisms. The use of non-charged particle etching and cleaning processes in the production of memory and microprocessor chips has been identified by The National Technology Roadmap for Semiconductors as a new manufacturing technique that may aid in the quest for feature sizes of 0.1 micron and lower. The Hyperthermal Neutral Beam Facility at Los Alamos has demonstrated significant improvement over ion-assisted etching in experiments using energetic oxygen and chlorine atoms.

  6. The production of low-energy neutral oxygen beams by grazing-incidence neutralization

    NASA Technical Reports Server (NTRS)

    Albridge, R. G.; Haglund, R. F.; Tolk, N. H.; Daech, A. F.

    1987-01-01

    The Vanderbilt University neutral oxygen facility produces beams of low-energy neutral oxygen atoms by means of grazing-incidence collisions between ion beams and metal surfaces. Residual ions are reflected by applied electric fields. This method can utilize initial ion beams of either O(+) or O2(+) since a very large percentage of molecular oxygen ions are dissociated when they undergo grazing-incidence neutralization. The method of neutralization is applicable to low-energy beams and to all ions. Particular emphasis is on O and N2 beams for simulation of the low Earth orbit space environment. Since the beam is a pure O-neutral beam and since measurements of the interaction of the beam with solid surfaces are made spectroscopically, absolute reaction rates can be determined. The technique permits the beams to be used in conjunction with electron and photon irradiation for studies of synergistic effects. Comparisons of optical spectra of Kapton excited by 2.5-keV O, O(+), and O2(+) show significant differences. Optical spectra of Kapton excited by neutral oxygen beams of less than 1 keV have been recorded.

  7. First-principles simulation and comparison with beam tests for transverse instabilities and damper performance in the Fermilab Main Injector

    SciTech Connect

    Nicklaus, Dennis; Foster, G.William; Kashikhin, Vladimir; /Fermilab

    2005-05-01

    An end-to-end performance calculation and comparison with beam tests was performed for the bunch-by-bunch digital transverse damper in the Fermilab Main Injector. Time dependent magnetic wakefields responsible for ''Resistive Wall'' transverse instabilities in the Main Injector were calculated with OPERA-2D using the actual beam pipe and dipole magnet lamination geometry. The leading order dipole component was parameterized and used as input to a bunch-by-bunch simulation which included the filling pattern and injection errors experienced in high-intensity operation of the Main Injector. The instability growth times, and the spreading of the disturbance due to newly misinjected batches was compared between simulations and beam data collected by the damper system. Further simulation models the effects of the damper system on the beam.

  8. Neutral-beam systems for magnetic-fusion reactors

    SciTech Connect

    Fink, J. H.

    1981-08-10

    Neutral beams for magnetic fusion reactors are at an early stage of development, and require considerable effort to make them into the large, reliable, and efficient systems needed for future power plants. To optimize their performance to establish specific goals for component development, systematic analysis of the beamlines is essential. Three ion source characteristics are discussed: arc-cathode life, gas efficiency, and beam divergence, and their significance in a high-energy neutral-beam system is evaluated.

  9. Studies of Ion Beam Charge Neutralization by Ferroelectric Plasma Sources

    NASA Astrophysics Data System (ADS)

    Stepanov, A.; Gilson, E. P.; Grisham, L.; Davidson, R. C.

    2013-10-01

    Space-charge forces limit the possible transverse compression of high perveance ion beams that are used in ion-beam-driven high energy density physics applications; the minimum radius to which a beam can be focused is an increasing function of perveance. The limit can be overcome if a plasma is introduced in the beam path between the focusing element and the target in order to neutralize the space charge of the beam. This concept has been implemented on the Neutralized Drift Compression eXperiment (NDCX) at LBNL using Ferroelectric Plasma Sources (FEPS). In our experiment at PPPL, we propagate a perveance-dominated ion beam through a FEPS to study the effect of the neutralizing plasma on the beam envelope and its evolution in time. A 30-60 keV space-charge-dominated Argon beam is focused with an Einzel lens into a FEPS located at the beam waist. The beam is intercepted downstream from the FEPS by a movable Faraday cup that provides time-resolved 2D current density profiles of the beam spot on target. We report results on: (a) dependence of charge neutralization on FEPS plasma density; (b) effects on beam emittance, and (c) time evolution of the beam envelope after the FEPS pulse. Research supported by the U.S. Department of Energy.

  10. Preliminary design of the beam position detectors for the Fermilab Main Injector

    SciTech Connect

    Barsotti, E. Jr.; Crisp, J. )

    1994-10-10

    The progress of the design of the 204 detectors required for the Fermilab Main Injector (FMI), Beam Position Monitor (BPM), system is described. To conserve space, the detectors will be located inside the quadrupole magnets. The output from four striplines shorted at one end will be combined to form either horizontal or vertical detectors. Commercially available software was used to select the geometry of the striplines for desired characteristic impedance, linearity, and output power. Prototype measurements are shown to agree with simulation and mechanical issues are discussed.

  11. Neutralization tests on the SERT II spacecraft. [of ion beams

    NASA Technical Reports Server (NTRS)

    Kerslake, W. R.; Domitz, S.

    1979-01-01

    Orbit precession returned the SERT II spacecraft to continuous sunlight in January 1979 for the first time since early 1972, and new experiments were planned and conducted. Neutralization of an ion beam was accomplished by a second neutralizer cathode located 1 meter away. Plasma potential measurements were made of the plasma surrounding the ion beam and connecting the beam to the second neutralizer. When the density of the connecting plasma was increased by turning on the main discharge of a neighboring ion thruster, the neutralization of the ion beam occurred with improved (lower) coupling voltage. These and other tests reported should aid in the future design of spacecraft using electric thruster systems. Data taken indicate that cross neutralization of ion thrusters in a multiple thruster array should occur readily.

  12. Using neutral beams as a light ion beam probe (invited)

    SciTech Connect

    Chen, Xi; Heidbrink, W. W.; Van Zeeland, M. A.; Pace, D. C.; Petty, C. C.; Fisher, R. K.; Kramer, G. J.; Nazikian, R.; Austin, M. E.; Hanson, J. M.; Zeng, L.

    2014-11-15

    By arranging the particle first banana orbits to pass near a distant detector, the light ion beam probe (LIBP) utilizes orbital deflection to probe internal fields and field fluctuations. The LIBP technique takes advantage of (1) the in situ, known source of fast ions created by beam-injected neutral particles that naturally ionize near the plasma edge and (2) various commonly available diagnostics as its detector. These born trapped particles can traverse the plasma core on their inner banana leg before returning to the plasma edge. Orbital displacements (the forces on fast ions) caused by internal instabilities or edge perturbing fields appear as modulated signal at an edge detector. Adjustments in the q-profile and plasma shape that determine the first orbit, as well as the relative position of the source and detector, enable studies under a wide variety of plasma conditions. This diagnostic technique can be used to probe the impact on fast ions of various instabilities, e.g., Alfvén eigenmodes (AEs) and neoclassical tearing modes, and of externally imposed 3D fields, e.g., magnetic perturbations. To date, displacements by AEs and by externally applied resonant magnetic perturbation fields have been measured using a fast ion loss detector. Comparisons with simulations are shown. In addition, nonlinear interactions between fast ions and independent AE waves are revealed by this technique.

  13. Neoclassical electron transport in tokamaks with neutral-beam injection

    SciTech Connect

    Helander, P.; Akers, R.J.

    2005-04-15

    The collisional interaction between neutral-beam ions and bulk plasma electrons leads to convective transport of particles and energy similar to the well-known Ware pinch. These transport fluxes are calculated, and it is found that the particle flux is outward when the neutral beams are in the same direction as the plasma current and inward otherwise, while the opposite holds for the electron heat transport. This effectively shifts the neutral-beam fueling profile approximately one fast-ion banana width outward during coinjection and inward during counterinjection, and could help to explain why very different plasma behavior is sometimes observed when the direction of the plasma current is reversed.

  14. Beam dynamic design of a high intensity injector for proton linac

    NASA Astrophysics Data System (ADS)

    Dou, Wei-Ping; Wang, Zhi-Jun; Jia, Fang-Jian; He, Yuan; Wang, Zhi; Lu, Yuan-Rong

    2016-08-01

    A compact room-temperature injector is designed to accelerate 100 mA proton beam from 45 keV to 4.06 MeV for the proposed high intensity proton linac at State Key Lab of Nuclear Physics and Technology in Peking university. The main feature is that the Radio Frequency Quadruple (RFQ) and the Drift Tube linac (DTL) sections are merged in one piece at the total length of 276 cm. The beam is matched in transverse directions with an compact internal doublet instead of an external matching section in between. The design has reached a high average accelerating gradient up to 1.55 MV/m with transmission efficiency of 95.9% at the consideration of high duty factor operation. The operation frequency is chose to be 200 MHz due to the already available RF power source. The injector combines a 150 cm long 4-vanes RFQ internal section from 45 keV to 618 keV with a 126 cm long H-type DTL section to 4.06 MeV. In general the design satisfy the challenges of the project requirements. And the details are presented in this paper.

  15. A microwave plasma cathode electron gun for ion beam neutralization

    NASA Astrophysics Data System (ADS)

    Fusellier, C.; Wartski, L.; Aubert, J.; Schwebel, C.; Coste, Ph.; Chabrier, A.

    1998-02-01

    It is well known that there exist two distinct types of ion beam neutralization, viz., charge and current neutralization. We have designed and studied a versatile and compact microwave plasma (MP) cathode electron gun dedicated to charge as well as current neutralization. Unlike the conventional hot cathode neutralizer, this MP cathode allows operation of the electron gun in a reactive gaseous environment when it is eventually associated with an electron cyclotron resonance (ECR) ion gun. Charge neutralization can be easily carried out by extracting from the MP cathode through a 1 mm diameter hole, a 35 mA electron beam under a 20 V voltage; the MP cathode being fed with a 75 W microwave power at 2.45 GHz. Higher beam intensities could be obtained using a multiaperture thin plate. Electron beam intensities as high as 300 mA and energies of 2 keV needed for current neutralization, e.g., when an ion beam impinges onto a thick dielectric surface, are obtained via a two-stage arrangement including an anodic chamber associated with a set of three monoaperture plates for the electron beam extraction. Transport of 200-2000 eV electron beams is ensured using focusing optics composed of three aligned tubes 6 cm in diameter and unsymmetrically polarized.

  16. Study on transient beam loading compensation for China ADS proton linac injector II

    NASA Astrophysics Data System (ADS)

    Gao, Zheng; He, Yuan; Wang, Xian-Wu; Chang, Wei; Zhang, Rui-Feng; Zhu, Zheng-Long; Zhang, Sheng-Hu; Chen, Qi; Powers, Tom

    2016-05-01

    Significant transient beam loading effects were observed during beam commissioning tests of prototype II of the injector for the accelerator driven sub-critical (ADS) system, which took place at the Institute of Modern Physics, Chinese Academy of Sciences, between October and December 2014. During these tests experiments were performed with continuous wave (CW) operation of the cavities with pulsed beam current, and the system was configured to make use of a prototype digital low level radio frequency (LLRF) controller. The system was originally operated in pulsed mode with a simple proportional plus integral and deviation (PID) feedback control algorithm, which was not able to maintain the desired gradient regulation during pulsed 10 mA beam operations. A unique simple transient beam loading compensation method which made use of a combination of proportional and integral (PI) feedback and feedforward control algorithm was implemented in order to significantly reduce the beam induced transient effect in the cavity gradients. The superconducting cavity field variation was reduced to less than 1.7% after turning on this control algorithm. The design and experimental results of this system are presented in this paper. Supported by National Natural Science Foundation of China (91426303, 11525523)

  17. 6 Batch Injection and Slipped Beam Tune Measurements in Fermilab?s Main Injector

    SciTech Connect

    Scott, D.J.; Capista, D.; Kourbanis, I.; Seiya, K.; Yan, M.-J.; /Fermilab

    2012-05-01

    During NOVA operations it is planned to run the Fermilab Recycler in a 12 batch slip stacking mode. In preparation for this, measurements of the tune during a six batch injection and then as the beam is decelerated by changing the RF frequency have been carried out in the Main Injector. The coherent tune shifts due to the changing beam intensity were measured and compared well with the theoretically expected tune shift. The tune shifts due to changing RF frequency, required for slip stacking, also compare well with the linear theory, although some nonlinear affects are apparent at large frequency changes. These results give us confidence that the expected tunes shifts during 12 batch slip stacking Recycler operations can be accommodated.

  18. Neutralization of a fast negative-ion beam

    SciTech Connect

    Schlachter, A.S.; Mowat, J.R.; Stearns, J.W.; Gohil, P.; Pyle, R.V.

    1986-01-01

    Neutralization of a fast negative-ion beam, primarily H/sup -/, is discussed in terms of competing one- and two-electron detachment processes in a variety of media: gas (vapor), plasma, liquid sheet, solid foil.

  19. Automation of neutral beam source conditioning with artificial intelligence techniques

    SciTech Connect

    Johnson, R.R.; Canales, T.W.; Lager, D.L.

    1985-01-01

    This paper describes a system that automates neutral beam source conditioning. The system achieves this with artificial intelligence techniques. The architecture of the system is presented followed by a description of its performance.

  20. Calculation of neutral beam deposition accounting for excited states

    SciTech Connect

    Gianakon, T.A.

    1992-09-01

    Large-scale neutral-beam auxillary heating of plasmas has led to new plasma operational regimes which are often dominated by fast ions injected via the absorption of an energetic beam of hydrogen neutrals. An accurate simulation of the slowing down and transport of these fast ions requires an intimate knowledge of the hydrogenic neutral deposition on each flux surface of the plasma. As a refinement to the present generation of transport codes, which base their beam deposition on ground-state reaction rates, a new set of routines, based on the excited states of hydrogen, is presented as mechanism for computing the attenuation and deposition of a beam of energetic neutrals. Additionally, the numerical formulations for the underlying atomic physics for hydrogen impacting on the constiuent plasma species is developed and compiled as a numerical database. Sample results based on this excited state model are compared with the ground-state model for simple plasma configurations.

  1. Neutral beam species measurements using in situ Rutherford backscatter spectrometry

    SciTech Connect

    Kugel, H.W.; Kaita, R.; Gammel, G.; Williams, M.D.

    1984-12-01

    This work describes a new in situ method for measuring the neutral particle fractions in high power deuterium neutral beams, used to heat magnetically confined fusion plasmas. Deuterium beams, of variable energies, pulse lengths, and powers up to 47 keV, 100 msec, 1.6 MW, were Rutherford backscattered at 135/sup 0/ from TiC inner neutral beam armor of the PDX, and detected using an electrostatic analyzer with microchannel plates. Complete energy scans were made every 20 msec and data were obtained simultaneously from five different positions across the beam profile. The neutral particle fractions were measured to be D/sup 0/(E):D/sup 0/(E/2):D/sup 0/(E/3)=53:32:15. The corresponding neutral power fractions were P/sup 0/(E):P/sup 0/(E/2):P/sup 0/(E/3)=72:21:7, and the associated ionic fractions at the output of the ion source were D/sub 1//sup +/(E):D/sub 2//sup +/(E):D/sub 3//sup +/(E)=74:20:6. The measured neutral particle fractions were relatively constant over more than 70% of the beam power distribution. A decrease in the yield of the full energy component in the outer regions of the beam was observed. Other possible experimental configurations and geometries are discussed.

  2. Energy spectrum of neutrals formed in an ion accelerator

    SciTech Connect

    Fink, J.H.

    1982-03-15

    This work presents an estimate of the energy distribution of the neutrals formed in the ion beam accelerator. However it does not determine the fraction of those neutrals which leave the neutral beam injector and go on into the reactor. To do that, more details of the beam line performance are needed.

  3. Dynamics of ion beam charge neutralization by ferroelectric plasma sources

    NASA Astrophysics Data System (ADS)

    Stepanov, Anton D.; Gilson, Erik P.; Grisham, Larry R.; Kaganovich, Igor D.; Davidson, Ronald C.

    2016-04-01

    Ferroelectric Plasma Sources (FEPSs) can generate plasma that provides effective space-charge neutralization of intense high-perveance ion beams, as has been demonstrated on the Neutralized Drift Compression Experiment NDCX-I and NDCX-II. This article presents experimental results on charge neutralization of a high-perveance 38 keV Ar+ beam by a plasma produced in a FEPS discharge. By comparing the measured beam radius with the envelope model for space-charge expansion, it is shown that a charge neutralization fraction of 98% is attainable with sufficiently dense FEPS plasma. The transverse electrostatic potential of the ion beam is reduced from 15 V before neutralization to 0.3 V, implying that the energy of the neutralizing electrons is below 0.3 eV. Measurements of the time-evolution of beam radius show that near-complete charge neutralization is established ˜5 μs after the driving pulse is applied to the FEPS and can last for 35 μs. It is argued that the duration of neutralization is much longer than a reasonable lifetime of the plasma produced in the sub-μs surface discharge. Measurements of current flow in the driving circuit of the FEPS show the existence of electron emission into vacuum, which lasts for tens of μs after the high voltage pulse is applied. It is argued that the beam is neutralized by the plasma produced by this process and not by a surface discharge plasma that is produced at the instant the high-voltage pulse is applied.

  4. Dynamics of ion beam charge neutralization by ferroelectric plasma sources

    DOE PAGESBeta

    Stepanov, Anton D.; Gilson, Erik P.; Grisham, Larry R.; Kaganovich, Igor D.; Davidson, Ronald C.

    2016-04-27

    Ferroelectric Plasma Sources (FEPSs) can generate plasma that provides effective space-charge neutralization of intense high-perveance ion beams, as has been demonstrated on the Neutralized Drift Compression Experiment NDCX-I and NDCX-II. This article presents experimental results on charge neutralization of a high-perveance 38 keV Ar+ beam by a plasma produced in a FEPS discharge. By comparing the measured beam radius with the envelope model for space-charge expansion, it is shown that a charge neutralization fraction of 98% is attainable with sufficiently dense FEPS plasma. The transverse electrostatic potential of the ion beam is reduced from 15V before neutralization to 0.3 V,more » implying that the energy of the neutralizing electrons is below 0.3 eV. Measurements of the time-evolution of beam radius show that near-complete charge neutralization is established similar to –5 μs after the driving pulse is applied to the FEPS and can last for 35 μs. It is argued that the duration of neutralization is much longer than a reasonable lifetime of the plasma produced in the sub-mu s surface discharge. Measurements of current flow in the driving circuit of the FEPS show the existence of electron emission into vacuum, which lasts for tens of mu s after the high voltage pulse is applied. Lastly, it is argued that the beam is neutralized by the plasma produced by this process and not by a surface discharge plasma that is produced at the instant the high-voltage pulse is applied.« less

  5. GYMNOS Modeling of Electron Beam Dynamics for the Injector and Final Focus Regions of the ETA-II Accelerator

    NASA Astrophysics Data System (ADS)

    Kueny, C. S.; Wang, L.-F.; Chen, Y.-J.; Hewett, D. W.

    1999-11-01

    The 2-D axisymmetric PIC code GYMNOS has been used to model electron beam dynamics in the ETA-II accelerator at LLNL. Experiments on ETA-II seek to produce a high-brightness, low-emittance electron beam and deliver it to an X-ray converter target. These experiments are relevant to the DARHT II (Dual Axis Radiography Hydrodynamic Test) and AHF (Advanced Hydrotest Facility) projects, which will provide X-ray radiography diagnostics as part of the US Science-Based Stockpile Stewardship Program. We present simulations of both the ETA-II injector which produces the initial beam, and of the target region where X-ray generation occurs. GYMNOS employs the Embedded Curved Boundary (ECB) model to provide accurate beam modeling near the injector cathode and the target surfaces, and was recently upgraded with a non-uniform mesh to efficiently model the beam over a range of spatial scales. Modeling of the ETA-II injector has provided guidance on experimental parameters necessary for producing a high-quality beam for transport through the accelerator. Simulations of the target region have modeled the effects of backstreaming ions and backscattered electrons on beam dynamics, and investigated possible measures to minimize degradation in beam quality and final spot size.

  6. Fokker-Planck/Transport model for neutral beam driven tokamaks

    SciTech Connect

    Killeen, J.; Mirin, A.A.; McCoy, M.G.

    1980-01-01

    The application of nonlinear Fokker-Planck models to the study of beam-driven plasmas is briefly reviewed. This evolution of models has led to a Fokker-Planck/Transport (FPT) model for neutral-beam-driven Tokamaks, which is described in detail. The FPT code has been applied to the PLT, PDX, and TFTR Tokamaks, and some representative results are presented.

  7. Nonlinear transient neutralization theory of ion beams with dissipation

    NASA Technical Reports Server (NTRS)

    Wilhelm, H. E.

    1975-01-01

    An analytical theory of nonlinear neutralization waves generated by injection of electrons from a grid in the direction of a homogeneous ion beam of uniform velocity and infinite extension is presented. The electrons are assumed to interact with the ions through the self-consistent space charge field and by strong collective interactions. The associated nonlinear boundary-value problem is solved in closed form by means of a von Mises transformation. It is shown that the electron gas moves into the ion space in the form of a discontinuous neutralization wave. This periodic wave structure is damped out by intercomponent momentum transfer, i.e., after a few relaxation lengths a quasi-neutral beam results. The relaxation scale in space agrees with neutralization experiments of rarefied ion beams, if the collective momentum transfer between the electron and ion streams is assumed to be of the Buneman type.

  8. Studies on Neutral Beam Injection into the SSPX Spheromak Plasma

    SciTech Connect

    Jayakumar, R; Pearlstein, L D; Casper, T A; Fowler, T K; Hill, D N; Hudson, B; McLean, H; Moller, J

    2007-10-19

    In the Sustained Spheromak Physics Experiment, (SSPX) ['Improved operation of the SSPX spheromak', R.D. Wood, D.N. Hill, E.B. Hooper, S. Woodruff1, H.S. McLean and B.W. Stallard, Nucl. Fusion 45 1582-1588 (2005)], plasmas with core electron temperatures reaching up to 500 eV at densities of 10{sup 20}/m{sup 3} have been sustained for several milliseconds, making them suitable as targets for neutral beam injection. High performance and further progress in understanding Spheromak plasma physics are expected if neutral beams are injected into the plasma. This paper presents the results of numerical 1.5 D modeling of the plasma to calculate neutral beam current drive and ion and electron heating. The results are presented for varying initial conditions of density, temperatures and profiles and beam energy, injection angle and power. Current drive efficiency (Ampere/Watt of absorbed power) of up to 0.08 can be achieved with best performance SSPX shots as target. Analyses of neutral beam heating indicate that ion temperatures of up to 1.5 keV and electron temperatures of up to 750 eV can be obtained with injection of about 1 MW of neutral beam for 5-10 ms and with diffusivities typically observed in SSPX. Injection targeting near the magnetic axis appears to be the best for heating and current drive. Effect of the current drive and evolution of SSPX equilibrium are discussed.

  9. INJECTOR PARTICLE SIMULATION AND BEAM TRANSPORT IN A COMPACT LINEAR PROTON ACCELERATOR

    SciTech Connect

    Blackfield, D T; Chen, Y J; Harris, J; Nelson, S; Paul, A; Poole, B

    2007-06-18

    A compact Dielectric Wall Accelerator (DWA), with field gradient up to 100 MW/m is being developed to accelerate proton bunches for use in cancer therapy treatment. The injector must create a proton pulse up to several hundred picoseconds, which is then shaped and accelerated with energies up to 250 MeV. The Particle-In-Cell (PIC) code LSP is used to model several aspects of this design. First, we use LSP to obtain the voltage waveform in the A-K gap that will produce a proton bunch with the requisite charge. We then model pulse compression and shaping in the section between the A-K gap and the DWA. We finally use LSP to model the beam transport through the DWA.

  10. Facility for intense diagnostic neutral beam (IDNB) development

    SciTech Connect

    Kasik, R.J.; Hinckley, W.B.; Bartsch, R.R.; Rej, D.J.; Henins, I.; Greenly, J.B.

    1993-08-01

    An intense, pulsed neutral beam source is under development for use as a probe beam on hot, burning plasmas such as in the international thermonuclear experimental reactor (ITER) which is presently in the planning stage. A pulsed, neutral hydrogen beam of 10s of kilo amperes of current can have an alpha particle, charge-exchange-recombination-spectroscopy (alpha-CHERS) signal-to-noise ratio of {approximately} 10. This beam would allow the measurement, on a single pulse of a few hundred nanoseconds duration, of the local alpha particle distribution function as well as other features of the tokamak plasma such as current density profile, impurity density, and microturbulence spectrum. The cross-sections for the CHERS diagnostic dictate operation with proton energies greater than {approximately}50keV. A pulsed neutral hydrogen source of this voltage and intensity can be achieved by neutralizing the ion flux from a magnetized ion-diode. The cross-sections for attachment and stripping, when coupled with scaling from Child-Langmiur, space-charge-limited, ion-current flow imply operation below - 100keV for maximum neutral fluence. The development of a flashover-anode, ion source for forthcoming evaluation of a neutralizing section is described below. This source operates in the accelerator voltage range 70 to 100keV. Eventually, the flashover-anode, magnetized ion-diode will be replaced with a plasma-anode, magnetized ion-diode.

  11. Multiple beam envelope equations for electron injectors using a bunch segmentation model

    NASA Astrophysics Data System (ADS)

    Mizuno, A.; Dewa, H.; Taniuchi, T.; Tomizawa, H.; Hanaki, H.; Hotta, E.

    2012-06-01

    A new semianalytical method of investigating the beam dynamics for electron injectors was developed. In this method, a short bunched electron beam is assumed to be an ensemble of several segmentation pieces in both the longitudinal and the transverse directions. The trajectory of each electron in the segmentation pieces is solved by the beam envelope equations while taking into account the space charge fields produced by all the pieces, the electromagnetic fields of an rf cavity, and the image charge fields at a cathode surface. The shape of the entire bunch is consequently calculated, and thus the emittances can be obtained from weighted mean values of the solutions for the obtained electron trajectories. The advantage of this method is its unique assumption for the beam parameters. We assume that each segmentation slice is not warped in the calculations. Although if the beam energy is low and the charge density is large, this condition is not satisfied, in practice, this condition is usually satisfied. We have performed beam dynamics calculations to obtain traces in free space and in the BNL-type rf gun cavity by comparing the analytical solutions with those obtained by simulation. In most cases, the emittances obtained by the simulation become closer to those obtained analytically with increasing the number of particles used in the simulation. Therefore, the analytically obtained emittances are expected to coincide with converged values obtained by the simulation. The applicable range of the analytical method for the BNL-type rf gun cavity is under 0.5 nC per bunch. This range is often used in recently built x-ray free electron laser facilities.

  12. Neutral beam system for the C-2-Upgrade Field Reversed Configuration Experiment

    NASA Astrophysics Data System (ADS)

    Korepanov, Sergey; Smirnov, Artem; Clary, Ryan; Dunaevsky, Alexandr; Isakov, Ivan; Magee, Richard; Matvienko, Vasily; van Drie, Alan; Deichuli, Petr; Ivanov, Alexandr; Pirogov, Konstantin; Sorokin, Aleksey; Stupishin, Nickolay; Vakhrushev, Roman; TAE Team; Budker Team

    2015-11-01

    In the C-2 field-reversed configuration (FRC) experiment, tangential neutral beam injection (NBI), coupled with electrically-biased plasma guns at the plasma ends and advanced surface conditioning, led to dramatic reductions in turbulence-driven losses. Under such conditions, highly reproducible, macroscopically stable, hot FRCs with a significant fast-ion population, total plasma temperature of ~ 1 keV and record lifetimes were achieved. To further improve the FRC sustainment and provide a better coupling with beams, the C-2 device has been upgraded with a new NBI system, which can deliver up to a total of 10 MW of hydrogen beam power (15 keV, 8 ms pulse), by far the largest ever used in compact toroid plasma experiments. The NBI system consists of six positive-ion based injectors featuring flexible, modular design. This presentation will provide an overview of the C-2U NBI system, including: 1) NBI test facility, beam characterization, and acceptance tests, 2) integration with the machine and operating experience, 3) improvements in plasma performance with increased beam power.

  13. ALCBEAM - Neutral beam formation and propagation code for beam-based plasma diagnostics

    NASA Astrophysics Data System (ADS)

    Bespamyatnov, I. O.; Rowan, W. L.; Liao, K. T.

    2012-03-01

    ALCBEAM is a new three-dimensional neutral beam formation and propagation code. It was developed to support the beam-based diagnostics installed on the Alcator C-Mod tokamak. The purpose of the code is to provide reliable estimates of the local beam equilibrium parameters: such as beam energy fractions, density profiles and excitation populations. The code effectively unifies the ion beam formation, extraction and neutralization processes with beam attenuation and excitation in plasma and neutral gas and beam stopping by the beam apertures. This paper describes the physical processes interpreted and utilized by the code, along with exploited computational methods. The description is concluded by an example simulation of beam penetration into plasma of Alcator C-Mod. The code is successfully being used in Alcator C-Mod tokamak and expected to be valuable in the support of beam-based diagnostics in most other tokamak environments. Program summaryProgram title: ALCBEAM Catalogue identifier: AEKU_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEKU_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 66 459 No. of bytes in distributed program, including test data, etc.: 7 841 051 Distribution format: tar.gz Programming language: IDL Computer: Workstation, PC Operating system: Linux RAM: 1 GB Classification: 19.2 Nature of problem: Neutral beams are commonly used to heat and/or diagnose high-temperature magnetically-confined laboratory plasmas. An accurate neutral beam characterization is required for beam-based measurements of plasma properties. Beam parameters such as density distribution, energy composition, and atomic excited populations of the beam atoms need to be known. Solution method: A neutral beam is initially formed as an ion beam which is extracted from

  14. Rare-earth neutral metal injection into an electron beam ion trap plasma

    SciTech Connect

    Magee, E. W. Beiersdorfer, P.; Brown, G. V.; Hell, N.

    2014-11-15

    We have designed and implemented a neutral metal vapor injector on the SuperEBIT high-energy electron beam ion trap at the Lawrence Livermore National Laboratory. A horizontally directed vapor of a europium metal is created using a thermal evaporation technique. The metal vapor is then spatially collimated prior to injection into the trap. The source's form and quantity constraints are significantly reduced making plasmas out of metal with vapor pressures ≤10{sup −7} Torr at ≥1000 °C more obtainable. A long pulsed or constant feed metal vapor injection method adds new flexibility by varying the timing of injection and rate of material being introduced into the trap.

  15. CEBAF injector achieved world's best beam quality for three simultaneous beam with a wide range of bunch charges

    SciTech Connect

    Reza Kazimi; Kevin Beard; Jay Benesch; Arne Freyberger; Joseph Grames; Tommy Hiatt; a. hutton; Geoffrey Krafft; Nikolitsa Merminga; B. Poelker; M. Spata; Michael Tiefenback; Byung Yunn; Yuhong Zhang

    2004-07-01

    The CEBAF accelerator provides interleaved 499 MHz electron beams, spanning 5 decades in beam intensity (a few nA to 200 {micro}A), to three experimental halls simultaneously. The physics program became more challenging when the G{sup 0} experiment was approved, requiring more than six times higher bunch charge than is routine. This experiment requires up to 8 million electrons per bunch at a reduced repetition rate of 31 MHz, while the lowest current hall simultaneously receives 100 electrons per bunch. A bunch destined for one hall may experience significant space charge forces, while the next bunch may have negligible space charge. This disparity in beam intensity must be maintained while delivering ''best ever'' values in rms beam quality, including relative energy spread (< 2.5 x 10{sup -5}) and normalized transverse emittance (< 1 mm-mrad). Space charge difficulties emerge in the 10 m long, 100 keV section of the CEBAF injector during initial bunch formation and spin manipulation. A series of changes was introduced to meet the new requirements, including adding new magnets, replacing photoinjector lasers, modifying typical laser parameters, stabilizing RF systems, and changing standard operating procedures. In this paper, we discuss these modifications in detail, including the agreement between the experimental results and detailed simulations.

  16. Measuring correlations between beam loss and residual radiation in the Fermilab Main Injector

    SciTech Connect

    Brown, Bruce C.; Wu, Guan Hong; /Fermilab

    2010-09-01

    In order to control beam loss for high intensity operation of the Fermilab Main Injector, electronics has been implemented to provide detailed loss measurements using gas-filled ionization monitors. Software to enhance routine operation and studies has been developed and losses are logged for each acceleration cycle. A systematic study of residual radiation at selected locations in the accelerator tunnel have been carried out by logging residual radiation at each of 142 bar-coded locations. We report on fits of the residual radiation measurements to half-life weighted sums of the beam loss data using a few characteristic lifetimes. The data are now available over a multi-year period including residual radiation measurements repeated multiple times during three extended facility shutdown periods. Measurement intervals of a few weeks combined with variable delays between beam off time and the residual measurement permits sensitivity to lifetimes from hours to years. The results allow planning for work in radiation areas to be based on calibrated analytic models.

  17. TFTR neutral beam control and monitoring for DT operations

    SciTech Connect

    O`Connor, T.; Kamperschroer, J.; Chu, J.

    1995-12-31

    Record fusion power output has recently been obtained in TFTR with the injection of deuterium and tritium neutral beams. This significant achievement was due in part to the controls, software, and data processing capabilities added to the neutral beam system for DT operations. Chief among these improvements was the addition of SUN workstations and large dynamic data storage to the existing Central Instrumentation Control and Data Acquisition (CICADA) system. Essentially instantaneous look back over the recent shot history has been provided for most beam waveforms and analysis results. Gas regulation controls allowing remote switchover between deuterium and tritium were also added. With these tools, comparison of the waveforms and data of deuterium and tritium for four test conditioning pulses quickly produced reliable tritium setpoints. Thereafter, all beam conditioning was performed with deuterium, thus saving the tritium supply for the important DT injection shots. The lookback capability also led to modifications of the gas system to improve reliability and to control ceramic valve leakage by backbiasing. Other features added to improve the reliability and availability of DT neutral beam operations included master beamline controls and displays, a beamline thermocouple interlock system, a peak thermocouple display, automatic gas inventory and cryo panel gas loading monitoring, beam notching controls, a display of beam/plasma interlocks, and a feedback system to control beam power based on plasma conditions.

  18. Instrumentation system for long-pulse MFTF neutral beams

    SciTech Connect

    Risch, D.M.

    1981-09-30

    The instrumentation system for long pulse neutral beams for MFTFS consists of monitoring and protective circuitry. Global synchronization of high speed monitoring data across twenty-four neutral beams is achieved via an experiment wide fiber optic timing system. Fiber optics are also used as a means of isolating signals at elevated voltages. An excess current monitor, interrupt monitor, sparkdown detector, spot detector and gradient grid ratio detector form the primary protection for the neutral beam source. A unique hierarchical interlocking scheme allows other protective devices to be factored into the shutdown circuitry of the power supply so that the initiating cause of a shutdown can be isolated and even allows some non-critical devices to be safely ignored for a period of time.

  19. Hyperthermal neutral beam sources for material processing (invited)

    SciTech Connect

    Yoo, S. J.; Kim, D. C.; Joung, M.; Kim, J. S.; Lee, B. J.; Oh, K. S.; Kim, K. U.; Kim, Y. H.; Kim, Y. W.; Choi, S. W.; Son, H. J.; Park, Y. C.; Jang, J.-N.; Hong, M. P.

    2008-02-15

    Hyperthermal neutral beams have a great potential for material processes, especially for etching and thin film deposition for semiconductor and display fabrication as well as deposition for various thin film applications. Plasma-induced damage during plasma etching is a serious problem for manufacturing deep submicron semiconductor devices and is expected to be a problem for future nanoscale devices. Thermal and plasma-induced damage is also problematic for thin film depositions such as transparent conductive oxide films on organic light emitting diodes or flexible displays due to high temperature processes in plasma environments. These problems can be overcome by damage-free and low-temperature processes with hyperthermal neutral beams. We will present the status of the hyperthermal neutral beam development and the applications, especially, in semiconductor and display fabrication and introduce potential applications of thin film growing for optoelectronic devices such as light emitting diodes.

  20. Ferroelectric Plasma Source for Heavy Ion Beam ChargeNeutralization

    SciTech Connect

    Efthimion, Philip C.; Gilson, Erik P.; Grisham, Larry; Davidson,Ronald C.; Yu, Simon; Waldron, William; Logan, B. Grant

    2005-10-01

    Plasmas are employed as a source of unbound electrons for charge neutralizing heavy ion beams to allow them to focus to a small spot size. Calculations suggest that plasma at a density of 1-100 times the ion beam density and at a length {approx} 0.1-1 m would be suitable. To produce one-meter plasma, large-volume plasma sources based upon ferroelectric ceramics are being developed. These sources have the advantage of being able to increase the length of the plasma and operate at low neutral pressures. The source utilizes the ferroelectric ceramic BaTiO{sub 3} to form metal plasma. The drift tube inner surface of the Neutralized Drift Compression Experiment (NDCX) will be covered with ceramic, and high voltage ({approx} 1-5 kV) applied between the drift tube and the front surface of the ceramic by placing a wire grid on the front surface. A prototype ferroelectric source 20 cm long has produced plasma densities of 5 x 10{sup 11} cm{sup -3}. The source was integrated into the previous Neutralized Transport Experiment (NTX), and successfully charge neutralized the K{sup +} ion beam. Presently, the one-meter source is being fabricated. The source is being characterized and will be integrated into NDCX for charge neutralization experiments.

  1. Equilibrium and Stability Measurements via Neutral Beam Spectroscopy

    NASA Astrophysics Data System (ADS)

    Reinecke, E. A.; Fonck, R. J.; Lewicki, B. T.; Olig, A. D.; Thorson, T. A.

    2000-10-01

    An optical neutral beam spectroscopy system is being designed to provide plasma density, local temperature, internal structure of large-scale MHD instabilities, and magnetic field structure for the PEGASUS Toroidal Experiment. Time resolved, spatially localized measurements of the plasma density are determined by the intensity gradient of the beam fluorescence. Ratios of line intensities of a helium beam provide the electron temperature profile. Spectrally resolved measurements of the charge-exchange recombination emission of impurities determine the local ion temperature. Plasma stability is studied with localized MHD measurements via the beam emission spectroscopy (BES) technique. Motional Stark broadening of deuterium beam emission provide the magnitude (mod-B) and direction of the total field by analyzing the amplitude and phase delay of an oscillating spectral linewidth driven by a rotating polarizer. Present efforts are focused on refurbishing the beam hardware (25 kV, 4 A) and exploring the feasibility of a compact pencil beam.

  2. MHD Induced Neutral Beam Ion Loss from NSTX Plasmas

    SciTech Connect

    D.S. Darrow, E.D. Fredrickson, N.N. Gorelenkov, A.L. Roquemore, and K. Shinohara

    2007-12-13

    Bursts of ~60 kHz activity on Mirnov coils occur frequently in NSTX plasmas and these are accompanied by bursts of neutral beam ion loss over a range in pitch angles. These losses have been measured with a scintillator type loss probe imaged with a high speed (>10,000 frames/s) video camera, giving the evolution of the energy and pitch angle distributions of the lost neutral beam ions over the course of the events. The instability occurs below the TAE frequency in NSTX (~100 kHz) in high beta plasmas and may be a beta driven Alfvén acoustic (BAAE) mode.

  3. Beam tests of beampipe coatings for electron cloud mitigation in Fermilab Main Injector

    SciTech Connect

    Backfish, Michael; Eldred, Jeffrey; Tan, Cheng Yang; Zwaska, Robert

    2015-10-26

    Electron cloud beam instabilities are an important consideration in virtually all high-energy particle accelerators and could pose a formidable challenge to forthcoming high-intensity accelerator upgrades. Dedicated tests have shown beampipe coatings dramatically reduce the density of electron cloud in particle accelerators. In this work, we evaluate the performance of titanium nitride, amorphous carbon, and diamond-like carbon as beampipe coatings for the mitigation of electron cloud in the Fermilab Main Injector. Altogether our tests represent 2700 ampere-hours of proton operation spanning five years. Three electron cloud detectors, retarding field analyzers, are installed in a straight section and allow a direct comparison between the electron flux in the coated and uncoated stainless steel beampipe. We characterize the electron flux as a function of intensity up to a maximum of 50 trillion protons per cycle. Each beampipe material conditions in response to electron bombardment from the electron cloud and we track the changes in these materials as a function of time and the number of absorbed electrons. Contamination from an unexpected vacuum leak revealed a potential vulnerability in the amorphous carbon beampipe coating. We measure the energy spectrum of electrons incident on the stainless steel, titanium nitride and amorphous carbon beampipes. We find the electron cloud signal is highly sensitive to stray magnetic fields and bunch-length over the Main Injector ramp cycle. In conclusion, we conduct a complete survey of the stray magnetic fields at the test station and compare the electron cloud signal to that in a field-free region.

  4. Beam Tests of Beampipe Coatings for Electron Cloud Mitigation in Fermilab Main Injector

    NASA Astrophysics Data System (ADS)

    Backfish, Michael; Eldred, Jeffrey; Tan, Cheng-Yang; Zwaska, Robert

    2016-04-01

    Electron cloud beam instabilities are an important consideration in virtually all high-energy particle accelerators and could pose a formidable challenge to forthcoming high-intensity accelerator upgrades. Dedicated tests have shown beampipe coatings dramatically reduce the density of electron cloud in particle accelerators. In this work, we evaluate the performance of titanium nitride, amorphous carbon, and diamond-like carbon as beampipe coatings for the mitigation of electron cloud in the Fermilab Main Injector. Altogether our tests represent 2700 ampere-hours of proton operation spanning five years. Three electron cloud detectors, retarding field analyzers, are installed in a straight section and allow a direct comparison between the electron flux in the coated and uncoated stainless steel beampipe. We characterize the electron flux as a function of intensity up to a maximum of 50 trillion protons per cycle. Each beampipe material conditions in response to electron bombardment from the electron cloud and we track the changes in these materials as a function of time and the number of absorbed electrons. Contamination from an unexpected vacuum leak revealed a potential vulnerability in the amorphous carbon beampipe coating. We measure the energy spectrum of electrons incident on the stainless steel, titanium nitride and amorphous carbon beampipes. We find the electron cloud signal is highly sensitive to stray magnetic fields and bunch-length over the Main Injector ramp cycle. We conduct a complete survey of the stray magnetic fields at the test station and compare the electron cloud signal to that in a field-free region.

  5. Beam tests of beampipe coatings for electron cloud mitigation in Fermilab Main Injector

    DOE PAGESBeta

    Backfish, Michael; Eldred, Jeffrey; Tan, Cheng Yang; Zwaska, Robert

    2015-10-26

    Electron cloud beam instabilities are an important consideration in virtually all high-energy particle accelerators and could pose a formidable challenge to forthcoming high-intensity accelerator upgrades. Dedicated tests have shown beampipe coatings dramatically reduce the density of electron cloud in particle accelerators. In this work, we evaluate the performance of titanium nitride, amorphous carbon, and diamond-like carbon as beampipe coatings for the mitigation of electron cloud in the Fermilab Main Injector. Altogether our tests represent 2700 ampere-hours of proton operation spanning five years. Three electron cloud detectors, retarding field analyzers, are installed in a straight section and allow a direct comparisonmore » between the electron flux in the coated and uncoated stainless steel beampipe. We characterize the electron flux as a function of intensity up to a maximum of 50 trillion protons per cycle. Each beampipe material conditions in response to electron bombardment from the electron cloud and we track the changes in these materials as a function of time and the number of absorbed electrons. Contamination from an unexpected vacuum leak revealed a potential vulnerability in the amorphous carbon beampipe coating. We measure the energy spectrum of electrons incident on the stainless steel, titanium nitride and amorphous carbon beampipes. We find the electron cloud signal is highly sensitive to stray magnetic fields and bunch-length over the Main Injector ramp cycle. In conclusion, we conduct a complete survey of the stray magnetic fields at the test station and compare the electron cloud signal to that in a field-free region.« less

  6. Beam Tests of Beampipe Coatings for Electron Cloud Mitigation in Fermilab Main Injector

    SciTech Connect

    Backfish, Michael; Eldred, Jeffrey; Tan, Cheng Yang; Zwaska, Robert

    2015-07-26

    Electron cloud beam instabilities are an important consideration in virtually all high-energy particle accelerators and could pose a formidable challenge to forthcoming high-intensity accelerator upgrades. Dedicated tests have shown beampipe coatings dramatically reduce the density of electron cloud in particle accelerators. In this work, we evaluate the performance of titanium nitride, amorphous carbon, and diamond-like carbon as beampipe coatings for the mitigation of electron cloud in the Fermilab Main Injector. Altogether our tests represent 2700 ampere-hours of proton operation spanning five years. Three electron cloud detectors, retarding field analyzers, are installed in a straight section and allow a direct comparison between the electron flux in the coated and uncoated stainless steel beampipe. We characterize the electron flux as a function of intensity up to a maximum of 50 trillion protons per cycle. Each beampipe material conditions in response to electron bombardment from the electron cloud and we track the changes in these materials as a function of time and the number of absorbed electrons. Contamination from an unexpected vacuum leak revealed a potential vulnerability in the amorphous carbon beampipe coating. We measure the energy spectrum of electrons incident on the stainless steel, titanium nitride and amorphous carbon beampipes. We find the electron cloud signal is highly sensitive to stray magnetic fields and bunch-length over the Main Injector ramp cycle. We conduct a complete survey of the stray magnetic fields at the test station and compare the electron cloud signal to that in a field-free region.

  7. Neutral Beam Injection for Plasma and Magnetic FieldDiagnostics

    SciTech Connect

    Vainionpaa, Jaakko Hannes; Leung, Ka Ngo; Kwan, Joe W.; Levinton,Fred

    2007-08-01

    At the Lawrence Berkeley National Laboratory (LBNL) adiagnostic neutral beam injection system for measuring plasma parameters,flow velocity, and local magnetic field is being developed. High protonfraction and small divergence is essential for diagnostic neutral beams.In our design, a neutral hydrogen beam with an 8 cm x 11 cm (or smaller)elliptical beam spot at 2.5 m from the end of the extraction column isproduced. The beam will deliver up to 5 A of hydrogen beam to the targetwith a pulse width of ~;1 s, once every 1 - 2 min. The H1+ ion species ofthe hydrogen beamwill be over 90 percent. For this application, we havecompared two types of RF driven multicusp ion sources operating at 13.56MHz. The first one is an ion source with an external spiral antennabehind a dielectric RF-window. The second one uses an internal antenna insimilar ion source geometry. The source needs to generate uniform plasmaover a large (8 cm x 5 cm) extraction area. We expect that the ion sourcewith internal antenna will be more efficient at producing the desiredplasma density but might have the issue of limited antenna lifetime,depending on the duty factor. For both approaches there is a need forextra shielding to protect the dielectric materials from the backstreaming electrons. The source walls will be made of insulator materialsuch as quartz that has been observed to generate plasma with higheratomic fraction than sources with metal walls. The ion beam will beextracted and accelerated by a set of grids with slits, thus forming anarray of 6 sheet-shaped beamlets. The multiple grid extraction will beoptimized using computer simulation programs. Neutralization of the beamwill be done in neutralization chamber, which has over 70 percentneutralization efficiency.

  8. Measurement of neutral beam profiles at DIII-D

    SciTech Connect

    Chiu, H.

    1998-06-01

    The neutral beam systems of DIII-D, a National Fusion Facility at General Atomics, are used both for heating the plasma, and as tools for plasma diagnostics. The spatial distribution (profile) and energy of the beam is used in the absolute calibration of both the Charge Exchange Recombination (CER) and Motional Stark Effect (MSE) diagnostics. In the past, the beam spatial profile used in these calibrations was derived from beam divergence calculations and IR camera observations on the tokamak centerpost target tiles. Two experimental methods are now available to better determine the beam profile. In one method, the Doppler shifted D{sub {alpha}} light from the energetic neutrals are measured, and the full-width at half-maximum (FWHM) of the beam can be inferred from the measured divergence of the D{sub {alpha}} light intensity. The other method for determining the beam profile uses the temperature gradients measured by the thermocouples mounted on the calorimeter. A new iterative fitting routine for the measured thermocouple data has been developed to fit theoretical models on the dispersion of the beam. The results of both methods are compared, and used to provide a new experimental verification of the beam profile.

  9. Optics of ion beams for the neutral beam injection system on HL-2A Tokamak

    SciTech Connect

    Zou, G. Q.; Lei, G. J.; Cao, J. Y.; Duan, X. R.

    2012-07-15

    The ion beam optics for the neutral beam injection system on HL-2A Tokomak is studied by two- dimensional numerical simulation program firstly, where the emitting surface is taken at 100 Debye lengths from the plasma electrode. The mathematical formulation, computation techniques are described. Typical ion orbits, equipotential contours, and emittance diagram are shown. For a fixed geometry electrode, the effect of plasma density, plasma potential and plasma electron temperature on ion beam optics is examined, and the calculation reliability is confirmed by experimental results. In order to improve ion beam optics, the application of a small pre-acceleration voltage ({approx}100 V) between the plasma electrode and the arc discharge anode is reasonable, and a lower plasma electron temperature is desired. The results allow optimization of the ion beam optics in the neutral beam injection system on HL-2A Tokomak and provide guidelines for designing future neutral beam injection system on HL-2M Tokomak.

  10. Optics of ion beams for the neutral beam injection system on HL-2A Tokamak.

    PubMed

    Zou, G Q; Lei, G J; Cao, J Y; Duan, X R

    2012-07-01

    The ion beam optics for the neutral beam injection system on HL-2A Tokomak is studied by two- dimensional numerical simulation program firstly, where the emitting surface is taken at 100 Debye lengths from the plasma electrode. The mathematical formulation, computation techniques are described. Typical ion orbits, equipotential contours, and emittance diagram are shown. For a fixed geometry electrode, the effect of plasma density, plasma potential and plasma electron temperature on ion beam optics is examined, and the calculation reliability is confirmed by experimental results. In order to improve ion beam optics, the application of a small pre-acceleration voltage (∼100 V) between the plasma electrode and the arc discharge anode is reasonable, and a lower plasma electron temperature is desired. The results allow optimization of the ion beam optics in the neutral beam injection system on HL-2A Tokomak and provide guidelines for designing future neutral beam injection system on HL-2M Tokomak. PMID:22852685

  11. An rf separated kaon beam from the Main Injector: Superconducting aspects

    SciTech Connect

    D.A. Edwards

    1998-11-01

    ThE report is intended to focus on the superconducting aspects of a potential separated kaon beam facility for the Main Injector, and most of this document reflects that emphasis. However, the RF features cannot be divorced from the overall beam requirements, and so the next section is devoted to the latter subject. The existing optics design that meets the needs of the two proposed experiments is outliied, and its layout at Fermilab is shown. The frequency and deflection gradient choices present implementation dMiculties, and the section closes with some commentary on these issues. Sec. 3 provides an introduction to cavity design considerations, and, in particular carries forward the discussion of resonator shape and frequency selection. The R&D program is the subject of Sec. 4. Provisional parameter choices will be summarized. Initial steps toward cavity fabrication based `on copper models have been taken. The next stages in cavity fabrication will be reviewed in some detail. The infrastructure needs and availability will be discussed. Sec. 5 discusses what maybe characterized as the in~edlents of a point design. At this writing, some aspects are clear and some are not. The basic systems are reasonably clear and are described. The final section presents a cost and schedule estimate for both the Ft&D and production phase. Some supporting material and elaboration is provided in the Appendices.

  12. Fast ion profiles during neutral beam and lower hybrid heating

    SciTech Connect

    Heidbrink, W.W.; Strachan, J.D.; Bell, R.E.; Cavallo, A.; Motley, R.; Schilling, G.; Stevens, J.; Wilson, J.R.

    1985-07-01

    Profiles of the d(d,p)t fusion reaction are measured in the PLT tokamak using an array of collimated 3 MeV proton detectors. During deuterium neutral beam injection, the emission profile indicates that the beam deposition is at least as narrow as predicted by a bounce-averaged Fokker-Planck code. The fast ion tail formed by lower hybrid waves (at densities above the critical density for current drive) also peaks strongly near the magnetic axis.

  13. National negative-ion-based neutral-beam development plan

    SciTech Connect

    Cooper, W.S.; Pyle, R.V.

    1983-08-01

    The plan covers facilities required, program milestones, and decision points. It includes identification of applications, experiments, theoretical research areas, development of specific technologies and reactor development and demonstration facilities required to bring about the successful application of negative-ion-based neutral beams. Particular emphasis is placed on those activities leading to use on existing plasma confinement experiments or their upgrades.

  14. H sup minus beam characterization using laser-induced neutralization

    SciTech Connect

    Yuan, V.W.; Garcia, R.; Johnson, K.F.; Saadatmand, K.; Sander, O.R.; Sandoval, D.; Shinas, M.

    1991-01-01

    The Laser-induced neutralization techniques, LINDA, is important as a noninterceptive diagnostic for quantitatively measuring beam emittance values. It is also valuable for its capability to characterize, both quantitatively and qualitatively, the performance and match of linac components. In this paper we present LINDA experimental results that show how the output beam of a radio-frequency quadrupole (RFQ) and drift-tube linac (DTL) combination changes with the variation of RFQ-DTL relative phase and of DTL cavity power. We also present results showing the effect of a longitudinal buncher on beam emissions. 2 refs., 4 figs.

  15. Plasma neutralization models for intense ion beam transport in plasma

    SciTech Connect

    Kaganovich, Igor D.; Startsev, Edward A.; Davidson, Ronald C.; O'Rourke, Sean; Lee, Edward P.

    2003-05-01

    Plasma neutralization of an intense ion pulse is of interest for many applications, including plasma lenses, heavy ion fusion, cosmic ray propagation, etc. An analytical electron fluid model has been developed based on the assumption of long charge bunches (l{sub b} >> r{sub b}). Theoretical predictions are compared with the results of calculations utilizing a particle-in-cell (PIC) code. The cold electron fluid results agree well with the PIC simulations for ion beam propagation through a background plasma. The analytical predictions for the degree of ion beam charge and current neutralization also agree well with the results of the numerical simulations. The model predicts very good charge neutralization (>99%) during quasi-steady-state propagation, provided the beam pulse duration {tau}{sub b} is much longer than the electron plasma period 2{pi}/{omega}{sub p}, where {omega}{sub p} = (4{pi}e{sup 2}n{sub p}/m){sup 1/2} is the electron plasma frequency, and n{sub p} is the background plasma density. In the opposite limit, the beam pulse excites large-amplitude plasma waves. The analytical formulas derived in this paper can provide an important benchmark for numerical codes, and provide scaling relations for different beam and plasma parameters.

  16. TFTR (Tokamak Fusion Test Reactor) neutral beam injected power measurement

    SciTech Connect

    Kamperschroer, J.H.; Grisham, L.R.; Dudek, L.E.; Gammel, G.M.; Johnson, G.A.; Kugel, H.W.; Lagin, L.; O'Connor, T.E.; Shah, P.A.; Sichta, P.

    1989-05-01

    Energy flow within TFTR neutral beamlines is measured with a waterfall calorimetry system capable of simultaneously measuring the energy deposited within four heating beamlines (three ion sources each), or of measuring the energy deposited in a separate neutral beam test stand. Of the energy extracted from the ion source in the well instrumented test stand, 99.5 +- 3.5% can be accounted for. When the ion deflection magnet is energized, however, 6.5% of the extracted energy is lost. This loss is attributed to a spray of devious particles onto unmonitored surfaces. A 30% discrepancy is also observed between energy measurements on the internal beamline calorimeter and energy measurements on a calorimeter located in the test stand target chamber. Particle reflection from the flat plate calorimeter in the target chamber, which the incident beam strikes at a near-grazing angle of 12/degree/, is the primary loss of this energy. A slight improvement in energy accountability is observed as the beam pulse length is increased. This improvement is attributed to systematic error in the sensitivity of the energy measurement to small fluctuations on the supply water temperature. An overall accuracy of 15% is estimated for the total power injected into TFTR. Contributions to this error are uncertainties in the beam neutralization efficiency, reionization and beam scrape-off in the drift duct, and fluctuations in the temperature of the supply water. 28 refs., 9 figs., 1 tab.

  17. Emittance Analysis of the DIII-D Neutral Beam Source

    NASA Astrophysics Data System (ADS)

    Lopez, N. A.; Crowley, B.

    2014-10-01

    In a high powered neutral beam system ions are extracted from a low temperature plasma, through apertures in the arc chamber, by application of a potential to an external electrode. It has been determined that to increase the beam energy of the DIII-D neutral beam system beyond 95 keV the accelerator must be reconfigured to avoid excessive electrical breakdown in the grid gaps. Deciding exactly what modifications are to be made requires modeling and experimental effort. A basic problem is to find a geometry with which the extracted beam is intense, low divergence, free of aberrations, and does not strike the focusing electrodes. We present the results of modeling proposed reconfigurations to the accelerator geometry and source conditions. The quality of the beam produced from the various accelerator configurations is quantified through metrics such as the beam emittance and the average divergence per beamlet. By comparing the beam quality and power delivered for each proposed reconfiguration an optimal design is selected and recommended. Work supported in part by the National Undergraduate Fellowship Program in Plasma Physics and Fusion Energy Sciences and the US DOE under DE-FG02-94ER54235, DE-FC02-04ER54698.

  18. Plasma-parameter measurements using neutral-particle-beam attenuation

    SciTech Connect

    Foote, J H; Molvik, A W; Turner, W C

    1982-07-07

    Intense and energetic neutral-particle-beam injection used for fueling or heating magnetically confined, controlled-fusion experimental plasmas can also provide diagnostic measurements of the plasmas. The attenuation of an atomic beam (mainly from charge-exchange and ionization interactions) when passing through a plasma gives the plasma line density. Orthogonal arrays of highly collimated detectors of the secondary-electron-emission type have been used in magnetic-mirror experiments to measure neutral-beam attenuation along chords through the plasma volume at different radial and axial positions. The radial array is used to infer the radial plasma-density profile; the axial array, to infer the axial plasma-density profile and the ion angular distribution at the plasma midplane.

  19. The Neutral Beam Test Facility and Radiation Effects Facility at Brookhaven National Laboratory

    SciTech Connect

    McKenzie-Wilson, R.B.

    1990-01-01

    As part of the Strategic Defense Initiative (SDI) Brookhaven National Laboratory (BNL) has constructed a Neutral Beam Test Facility (NBTF) and a Radiation Effects Facility (REF). These two facilities use the surplus capacity of the 200-MeV Linac injector for the Alternating Gradient Synchrotron (AGS). The REF can be used to simulate radiation damage effects in space from both natural and man made radiation sources. The H{sup {minus}} beam energy, current and dimensions can be varied over a wide range leading to a broad field of application. The NBTF has been designed to carry out high precision experiments and contains an absolute reference target system for the on-line calibration of measurements carried out in the experimental hall. The H{sup {minus}} beam energy, current and dimensions can also be varied over a wide range but with tradeoffs depending on the required accuracy. Both facilities are fully operational and will be described together with details of the associated experimental programs.

  20. Neutralization of beam-emitting spacecraft by plasma injection

    NASA Technical Reports Server (NTRS)

    Sasaki, S.; Kawashima, N.; Kuriki, K.; Yanagisawa, M.; Obayashi, T.; Roberts, W. T.; Reasoner, D. L.; Taylor, W. W. L.

    1987-01-01

    An impulsive plasma injection has been used to study charge neutralization of the Space Shuttle Orbiter while it was emitting an electron beam into space. This investigation was performed by Space Experiments with Particle Accelerators on Spacelab-1. A plasma consisting of 10 to the 19th argon ion-electron pairs was injected into space for 1 ms while an electron beam was also being emitted into space. The electron beam energy and current were as high as 5 keV and 300 mA. While the orbiter potential was positive before the plasma injection and began to decrease during the plasma injection, it was near zero for 6 to 20 ms after the plasma injection. The recovery time to the initial level of charging varied from 10 to 100 ms. In a laboratory test in a large space chamber using the same flight hardware, the neutralization time was 8-17 ms and the recovery time was 11-20 ms. The long duration of the neutralization effect in space can be explained by a model of diffusion of the cold plasma which is produced near the Orbiter by charge exchange between the neutral argon atoms and the energetic argon ions during plasma injection.

  1. Long Plasma Source for Heavy Ion Beam Charge Neutralization

    SciTech Connect

    Efthimion, P.C.; Gilson, E.P.; Grisham, L.; Davidson, R.C.; Logan, B.G.; Seidl, P.A.; Waldron, W.

    2008-06-01

    Plasmas are a source of unbound electrons for charge neutralizing intense heavy ion beams to focus them to a small spot size and compress their axial length. The plasma source should operate at low neutral pressures and without strong externally-applied fields. To produce long plasma columns, sources based upon ferroelectric ceramics with large dielectric coefficients have been developed. The source utilizes the ferroelectric ceramic BaTiO{sub 3} to form metal plasma. The drift tube inner surface of the Neutralized Drift Compression Experiment (NDCX) is covered with ceramic material. High voltage ({approx} 8 kV) is applied between the drift tube and the front surface of the ceramics. A BaTiO{sub 3} source comprised of five 20-cm-long sources has been tested and characterized, producing relatively uniform plasma in the 5 x 10{sup 10} cm{sup -3} density range. The source was integrated into the NDCX device for charge neutralization and beam compression experiments, and yielded current compression ratios {approx} 120. Present research is developing multi-meter-long and higher density sources to support beam compression experiments for high energy density physics applications.

  2. Neutral particle beam scoring system proof-of-principle experiment

    SciTech Connect

    Tichenor, D.A.; Pontau, A.E.; Antolak, A.J.

    1986-10-01

    A method of scoring a ground-based neutral particle beam pointing experiment is described. Beam scoring in this context means performing beam direction measurements in the near field (tens of meters) sufficient to determine whether energy would be concentrated on a far-field target as desired in a pointing experiment. The principle of operation is to impress a high-resolution spatial modulation on the beam by inserting an array of shadow wires into the beam upstream of the steering magnet. At the downstream end of the beam line the shadows are detected using one or more scintillation screens and video cameras. Beam direction is determined by measuring the location of the shadows at a known distance downstream of the point of steering. A proof-of-principle experiment demonstrates that: (1) wire shadows can be created in a 50 MeV beam and propagate over the distances required; (2) images of sufficient brightness and resolution can be formed on scintillating screens excited by 50 MeV protons; and (3) CCD array cameras can operate in the radiation environment created near the beam line.

  3. Neutral beam heating of detached plasmas in TFTR

    SciTech Connect

    Bush, C.E.; Strachan, J.D.; Schivell, J.; Mansfield, D.K.; Taylor, G.; Grek, B.; Budny, R.; McNeill, D.H.; Bell, M.G.; Boody, F.P.

    1989-05-01

    Detached plasmas on TFTR have been heated with neutral beam auxiliary power for the first time. At beam powers above 2 MW the detached plasmas in TFTR expand and reattach to the limiters. Deuterium and/or impurity gas puffing can be used to maintain plasmas in the detached state at powers of over 5 MW. Transient events were observed in a number of these plasmas, including a confinement-related delay in evolution of the edge emissivity and some phenomena which appear similar to those seen in the H-mode. 16 refs., 5 figs.

  4. Fast ion confinement and stability in a neutral beam injected reversed field pinch

    SciTech Connect

    Anderson, J. K.; Almagri, A. F.; Den Hartog, D. J.; Eilerman, S.; Forest, C. B.; Koliner, J. J.; Mirnov, V. V.; Morton, L. A.; Nornberg, M. D.; Parke, E.; Reusch, J. A.; Sarff, J. S.; Waksman, J.; Belykh, V.; Davydenko, V. I.; Ivanov, A. A.; Polosatkin, S. V.; Tsidulko, Y. A.; Lin, L.; Liu, D.; and others

    2013-05-15

    The behavior of energetic ions is fundamentally important in the study of fusion plasmas. While well-studied in tokamak, spherical torus, and stellarator plasmas, relatively little is known in reversed field pinch plasmas about the dynamics of fast ions and the effects they cause as a large population. These studies are now underway in the Madison Symmetric Torus with an intense 25 keV, 1 MW hydrogen neutral beam injector (NBI). Measurements of the time-resolved fast ion distribution via a high energy neutral particle analyzer, as well as beam-target neutron flux (when NBI fuel is doped with 3–5% D{sub 2}) both demonstrate that at low concentration the fast ion population is consistent with classical slowing of the fast ions, negligible cross-field transport, and charge exchange as the dominant ion loss mechanism. A significant population of fast ions develops; simulations predict a super-Alfvénic ion density of up to 25% of the electron density with both a significant velocity space gradient and a sharp radial density gradient. There are several effects on the background plasma including enhanced toroidal rotation, electron heating, and an altered current density profile. The abundant fast particles affect the plasma stability. Fast ions at the island of the core-most resonant tearing mode have a stabilizing effect, and up to 60% reduction in the magnetic fluctuation amplitude is observed during NBI. The sharp reduction in amplitude, however, has little effect on the underlying magnetic island structure. Simultaneously, beam driven instabilities are observed as repetitive ∼50 μs bursts which coincide with fast particle redistribution; data indicate a saturated core fast ion density well below purely classical predictions.

  5. Neutron measurements from beam-target reactions at the ELISE neutral beam test facility

    SciTech Connect

    Xufei, X. Fan, T.; Nocente, M.; Gorini, G.; Bonomo, F.; Franzen, P.; Fröschle, M.; Grosso, G.; Tardocchi, M.; Grünauer, F.; Pasqualotto, R.

    2014-11-15

    Measurements of 2.5 MeV neutron emission from beam-target reactions performed at the ELISE neutral beam test facility are presented in this paper. The measurements are used to study the penetration of a deuterium beam in a copper dump, based on the observation of the time evolution of the neutron counting rate from beam-target reactions with a liquid scintillation detector. A calculation based on a local mixing model of deuterium deposition in the target up to a concentration of 20% at saturation is used to evaluate the expected neutron yield for comparison with data. The results are of relevance to understand neutron emission associated to beam penetration in a solid target, with applications to diagnostic systems for the SPIDER and MITICA Neutral Beam Injection prototypes.

  6. Conceptual design for the ZEPHYR neutral-beam injection system

    SciTech Connect

    Cooper, W.S.; Elischer, V.P.; Goldberg, D.A.; Hopkins, D.B.; Jacobson, V.L.; Lou, K.H.; Tanabe, J.T.

    1981-03-01

    In June 1980, the Lawrence Berkeley Laboratory began a conceptual design study for a neutral beam injection system for the ZEPHYR ignition tokamak proposed by the Max-Planck-Institut fur Plasmaphysik in Garching, Germany. The ZEPHYR project was cancelled, and the LBL design effort concluded prematurely in January 1981. This report describes the conceptual design as it existed at that time, and gives brief consideration to a schedule, but does not deal with costs.

  7. Toroidal midplane neutral beam armor and plasma limiter

    DOEpatents

    Kugel, Henry W.; Hand Jr, Samuel W.; Ksayian, Haig

    1986-02-04

    For use in a tokamak fusion reactor having a midplane magnetic coil on the inner wall of an evacuated toriodal chamber within which a neutral beam heated, fusing plasma is magnetically confined, a neutral beam armor shield and plasma limiter is provided on the inner wall of the toroidal chamber to shield the midplane coil from neutral beam shine-thru and plasma deposition. The armor shield/plasma limiter forms a semicircular enclosure around the midplane coil with the outer surface of the armor shield/plasma limiter shaped to match, as closely as practical, the inner limiting magnetic flux surface of the toroidally confined, indented, bean-shaped plasma. The armor shield/plasma limiter includes a plurality of semicircular graphite plates each having a pair of coupled upper and lower sections with each plate positioned in intimate contact with an adjacent plate on each side thereof so as to form a closed, planar structure around the entire outer periphery of the circular midplane coil. The upper and lower plate sections are adapted for coupling to heat sensing thermocouples and to a circulating water conduit system for cooling the armor shield/plasma limiter.The inner center portion of each graphite plate is adapted to receive and enclose a section of a circular diagnostic magnetic flux loop so as to minimize the power from the plasma confinement chamber incident upon the flux loop.

  8. Toroidal midplane neutral beam armor and plasma limiter

    DOEpatents

    Kugel, Henry W.; Hand, Jr, Samuel W.; Ksayian, Haig

    1986-01-01

    For use in a tokamak fusion reactor having a midplane magnetic coil on the inner wall of an evacuated toriodal chamber within which a neutral beam heated, fusing plasma is magnetically confined, a neutral beam armor shield and plasma limiter is provided on the inner wall of the toroidal chamber to shield the midplane coil from neutral beam shine-thru and plasma deposition. The armor shield/plasma limiter forms a semicircular enclosure around the midplane coil with the outer surface of the armor shield/plasma limiter shaped to match, as closely as practical, the inner limiting magnetic flux surface of the toroidally confined, indented, bean-shaped plasma. The armor shield/plasma limiter includes a plurality of semicircular graphite plates each having a pair of coupled upper and lower sections with each plate positioned in intimate contact with an adjacent plate on each side thereof so as to form a closed, planar structure around the entire outer periphery of the circular midplane coil. The upper and lower plate sections are adapted for coupling to heat sensing thermocouples and to a circulating water conduit system for cooling the armor shield/plasma limiter.The inner center portion of each graphite plate is adapted to receive and enclose a section of a circular diagnostic magnetic flux loop so as to minimize the power from the plasma confinement chamber incident upon the flux loop.

  9. RF plasma source for heavy ion beam charge neutralization

    SciTech Connect

    Efthimion, Philip C.; Gilson, Erik; Grisham, Larry; Davidson, Ronald C.; Yu, Simon S.; Logan, B. Grant

    2003-05-01

    Highly ionized plasmas are being used as a medium for charge neutralizing heavy ion beams in order to focus the ion beam to a small spot size. A radio frequency (RF) plasma source has been built at the Princeton Plasma Physics Laboratory (PPPL) in support of the joint Neutralized Transport Experiment (NTX) at the Lawrence Berkeley National Laboratory (LBNL) to study ion beam neutralization with plasma. The goal is to operate the source at pressures {approx} 10{sup -5} Torr at full ionization. The initial operation of the source has been at pressures of 10{sup -4}-10{sup -1} Torr and electron densities in the range of 10{sup 8}-10{sup 11} cm{sup -3}. Recently, pulsed operation of the source has enabled operation at pressures in the 10{sup -6} Torr range with densities of 10{sup 11} cm{sup -3}. Near 100% ionization has been achieved. The source has been integrated with the NTX facility and experiments have begun.

  10. Study of beam loading and its compensation in the Compact Ultrafast Terahertz Free-Electron Laser injector linac

    SciTech Connect

    Lal, Shankar Pant, K. K.

    2014-12-15

    The RF properties of an accelerating structure, and the pulse structure and charge per bunch in the electron beam propagating through it are important parameters that determine the impact of beam loading in the structure. The injector linac of the Compact Ultrafast Terahertz Free-Electron Laser (CUTE-FEL) has been operated with two different pulse structures during initial commissioning experiments and the effect of beam loading on the accelerated electron beam parameters has been studied analytically for these two pulse structures. This paper discusses the analytical study of beam loading in a Standing Wave, Plane Wave Transformer linac employed in the CUTE-FEL setup, and a possible technique for its compensation for the electron beam parameters of the CUTE-FEL. A parametric study has been performed to study beam loading for different beam currents and to optimize injection time of the electron beam to compensate beam loading. Results from the parametric study have also been used to explain previously observed results from acceleration experiments in the CUTE-FEL setup.