Two-dimensional expansion of a condensed dense Bose gas
NASA Astrophysics Data System (ADS)
Annibale, E. S.; Gammal, A.; Ziegler, K.
2015-07-01
We study the expansion dynamics of a condensate in a strongly interacting Bose gas in the presence of an obstacle. Our focus is on the generation of shock waves after the Bose gas has passed the obstacle. The strongly interacting Bose gas is described in the slave-boson representation. A saddle-point approximation provides a nonlinear equation of motion for the macroscopic wave function, analogous to the Gross-Pitaevskii equation of a weakly interacting Bose gas but with different nonlinearity. We compare the results with the Gross-Pitaevskii dynamics of a weakly interacting Bose gas and find a similar behavior with a slower behavior of the strongly interacting system.
Excitation picture of an interacting Bose gas
Kira, M.
2014-12-15
Atomic Bose–Einstein condensates (BECs) can be viewed as macroscopic objects where atoms form correlated atom clusters to all orders. Therefore, the presence of a BEC makes the direct use of the cluster-expansion approach–lucrative e.g. in semiconductor quantum optics–inefficient when solving the many-body kinetics of a strongly interacting Bose. An excitation picture is introduced with a nonunitary transformation that describes the system in terms of atom clusters within the normal component alone. The nontrivial properties of this transformation are systematically studied, which yields a cluster-expansion friendly formalism for a strongly interacting Bose gas. Its connections and corrections to the standard Hartree–Fock–Bogoliubov approach are discussed and the role of the order parameter and the Bogoliubov excitations are identified. The resulting interaction effects are shown to visibly modify number fluctuations of the BEC. Even when the BEC has a nearly perfect second-order coherence, the BEC number fluctuations can still resolve interaction-generated non-Poissonian fluctuations. - Highlights: • Excitation picture expresses interacting Bose gas with few atom clusters. • Semiconductor and BEC many-body investigations are connected with cluster expansion. • Quantum statistics of BEC is identified in terms of atom clusters. • BEC number fluctuations show extreme sensitivity to many-body correlations. • Cluster-expansion friendly framework is established for an interacting Bose gas.
Stability of a unitary Bose gas.
Fletcher, Richard J; Gaunt, Alexander L; Navon, Nir; Smith, Robert P; Hadzibabic, Zoran
2013-09-20
We study the stability of a thermal (39)K Bose gas across a broad Feshbach resonance, focusing on the unitary regime, where the scattering length a exceeds the thermal wavelength λ. We measure the general scaling laws relating the particle-loss and heating rates to the temperature, scattering length, and atom number. Both at unitarity and for positive a<λ we find agreement with three-body theory. However, for a<0 and away from unitarity, we observe significant four-body decay. At unitarity, the three-body loss coefficient, L(3) proportional λ(4), is 3 times lower than the universal theoretical upper bound. This reduction is a consequence of species-specific Efimov physics and makes (39)K particularly promising for studies of many-body physics in a unitary Bose gas. PMID:24093273
Clock shifts in the Unitary Bose Gas
NASA Astrophysics Data System (ADS)
Fletcher, Richard; Man, Jay; Lopes, Raphael; Navon, Nir; Smith, Robert; Hadzibabic, Zoran
2016-05-01
Clock shifts are interaction-induced changes in the transition frequency between atomic spin states. So-called because of their importance as systematic errors in atomic clocks, they reveal details of both the interaction energy within a gas and the particle correlations. In this work, we employ a RF-injection technique to rapidly project a thermal Bose gas into the unitary regime on a timescale much shorter than three-body losses. Working with a two-state system, one of which exhibits strong intrastate interactions, we carry out Ramsey spectroscopy to extract the variation in the clock shift across a Feshbach resonance. Thanks to the relationship between these shifts and particle correlations, we use our measurements to infer the contact as a function of both interaction strength and degeneracy. This quantity plays a central role in the many-body physics of strongly correlated systems, offering a link between few-body and thermodynamic behaviour.
Phase ordering kinetics of the Bose gas
Damle, K.; Majumdar, S.N.; Sachdev, S.
1996-12-01
We study the approach to equilibrium of a Bose gas to a superfluid state. We point out that dynamic scaling, characteristic of far from equilibrium phase-ordering systems, should hold. We stress the importance of a nondissipative Josephson precession term in driving the system to a new universality class. A model of coarsening in dimension {ital d}=2, involving a quench between two temperatures below the equilibrium superfluid transition temperature ({ital T}{sub {ital c}}), is exactly solved and demonstrates the relevance of the Josephson term. Numerical results on quenches from above {ital T}{sub {ital c}} in {ital d}=2,3 provide evidence for the scaling picture postulated. {copyright} {ital 1996 The American Physical Society.}
Calorimetry of a Bose-Einstein-condensed photon gas.
Damm, Tobias; Schmitt, Julian; Liang, Qi; Dung, David; Vewinger, Frank; Weitz, Martin; Klaers, Jan
2016-01-01
Phase transitions, as the condensation of a gas to a liquid, are often revealed by a discontinuous behaviour of thermodynamic quantities. For liquid helium, for example, a divergence of the specific heat signals the transition from the normal fluid to the superfluid state. Apart from liquid helium, determining the specific heat of a Bose gas has proven to be a challenging task, for example, for ultracold atomic Bose gases. Here we examine the thermodynamic behaviour of a trapped two-dimensional photon gas, a system that allows us to spectroscopically determine the specific heat and the entropy of a nearly ideal Bose gas from the classical high temperature to the Bose-condensed quantum regime. The critical behaviour at the phase transition is clearly revealed by a cusp singularity of the specific heat. Regarded as a test of quantum statistical mechanics, our results demonstrate a quantitative agreement with its predictions at the microscopic level. PMID:27090978
Calorimetry of a Bose-Einstein-condensed photon gas
NASA Astrophysics Data System (ADS)
Damm, Tobias; Schmitt, Julian; Liang, Qi; Dung, David; Vewinger, Frank; Weitz, Martin; Klaers, Jan
2016-04-01
Phase transitions, as the condensation of a gas to a liquid, are often revealed by a discontinuous behaviour of thermodynamic quantities. For liquid helium, for example, a divergence of the specific heat signals the transition from the normal fluid to the superfluid state. Apart from liquid helium, determining the specific heat of a Bose gas has proven to be a challenging task, for example, for ultracold atomic Bose gases. Here we examine the thermodynamic behaviour of a trapped two-dimensional photon gas, a system that allows us to spectroscopically determine the specific heat and the entropy of a nearly ideal Bose gas from the classical high temperature to the Bose-condensed quantum regime. The critical behaviour at the phase transition is clearly revealed by a cusp singularity of the specific heat. Regarded as a test of quantum statistical mechanics, our results demonstrate a quantitative agreement with its predictions at the microscopic level.
Hydrodynamic Modes in a Trapped Bose Gas above the Bose-Einstein Transition
Griffin, A.; Wu, W.; Stringari, S.
1997-03-01
We discuss the collective modes of a trapped Bose gas in the hydrodynamic regime where atomic collisions ensure local thermal equilibrium for the distribution function. Starting from the conservation laws, in the linearized limit we derive a closed equation for the velocity fluctuations in a trapped Bose gas above the Bose-Einstein transition temperature. Explicit solutions for a parabolic trap are given. We find that the surface modes above the transition have the same dispersion relation as the one recently obtained by Stringari for the oscillations of the condensate at T=0 within the Thomas-Fermi approximation. Results are also given for the monopole {open_quotes}breathing{close_quote}{close_quote} mode as well as for the m=0 excitations which result from the coupling of the monopole and quadrupole modes in an anisotropic parabolic well. {copyright} {ital 1997} {ital The American Physical Society}
Hydrodynamics of a unitary Bose gas
NASA Astrophysics Data System (ADS)
Man, Jay; Fletcher, Richard; Lopes, Raphael; Navon, Nir; Smith, Rob; Hadzibabic, Zoran
2016-05-01
In general, normal-phase Bose gases are well described by modelling them as ideal gases. In particular, hydrodynamic flow is usually not observed in the expansion dynamics of normal gases, and is more readily observable in Bose-condensed gases. However, by preparing strongly-interacting clouds, we observe hydrodynamic behaviour in normal-phase Bose gases, including the `maximally' hydrodynamic unitary regime. We avoid the atom losses that often hamper experimental access of this regime by using radio-frequency injection, which switches on interactions much faster than trap or loss timescales. At low phase-space densities, we find excellent agreement with a collisional model based on the Boltzmann equation. At higher phase-space densities our results show a deviation from this model in the vicinity of an Efimov resonance, which cannot be accounted for by measured losses.
Finite-temperature stability of a trapped dipolar Bose gas
Bisset, R. N.; Baillie, D.; Blakie, P. B.
2011-06-15
We calculate the stability diagram for a trapped normal Bose gas with dipole-dipole interactions. Our study characterizes the roles of trap geometry, temperature, and short-range interactions on the stability. We predict a robust double instability feature in oblate trapping geometries arising from the interplay of thermal gas saturation and the anisotropy of the interaction. Our results are relevant to current experiments with polar molecules and will be useful in developing strategies to obtain a polar molecule Bose-Einstein condensate.
Bose gas in a single-beam optical dipole trap
Simon, Lena; Strunz, Walter T.
2010-06-15
We study an ultracold Bose gas in an optical dipole trap consisting of one single focused laser beam. An analytical expression for the corresponding density of states beyond the usual harmonic approximation is obtained. We are thus able to discuss the existence of a critical temperature for Bose-Einstein condensation and find that the phase transition must be enabled by a cutoff near the threshold. Moreover, we study the dynamics of evaporative cooling and observe significant deviations from the findings for the well-established harmonic approximation. Furthermore, we investigate Bose-Einstein condensates in such a trap in Thomas-Fermi approximation and determine analytical expressions for chemical potential, internal energy, and Thomas-Fermi radii beyond the usual harmonic approximation.
Casimir force induced by an imperfect Bose gas.
Napiórkowski, Marek; Piasecki, Jarosław
2011-12-01
We present a study of the Casimir effect in an imperfect (mean-field) Bose gas contained between two infinite parallel plane walls. The derivation of the Casimir force follows from the calculation of the excess grand-canonical free energy density under periodic, Dirichlet, and Neumann boundary conditions with the use of the steepest descent method. In the one-phase region, the force decays exponentially fast when distance D between the walls tends to infinity. When the Bose-Einstein condensation point is approached, the decay length in the exponential law diverges with critical exponent ν(IMP) = 1, which differs from the perfect gas case where ν(P) = 1/2. In the two-phase region, the Casimir force is long range and decays following the power law D(-3), with the same amplitude as in the perfect gas. PMID:22304038
Landau damping in a collisionless dipolar Bose gas
NASA Astrophysics Data System (ADS)
Natu, Stefan S.; Wilson, Ryan M.
2013-12-01
We present a theory for the Landau damping of low-energy quasiparticles in a collisionless, quasi-two-dimensional dipolar Bose gas and produce expressions for the damping rate in uniform and nonuniform systems. Using simple energy-momentum conservation arguments, we show that in the homogeneous system, the nature of the low-energy dispersion in a dipolar Bose gas severely inhibits Landau damping of long wavelength excitations. For a gas with contact and dipolar interactions, the damping rate for phonons tends to decrease with increasing dipolar interactions; for strong dipole-dipole interactions, phonons are virtually undamped over a broad range of temperature. The damping rate for maxon-roton excitations is found to be significantly larger than the damping rate for phonons.
Neutral gas dynamics in fireballs
Stenzel, R. L.; Ionita, C.; Schrittwieser, R.
2011-06-01
Fireballs are local discharge phenomena on positively biased electrodes in partially ionized plasmas. Electrons, energized at a double layer, heat neutral gas which expands. The gas pressure exceeds the plasma pressure, hence becomes important to the stability and transport in fireballs. The flow of gas moves the electrode and sensors similar to a mica pendulum. Flow speed and directions are measured. A fireball gun has been developed to partially collimate the flow of hot gas and heat objects in its path. New applications of fireballs are suggested.
Gas cell neutralizers (Fundamental principles)
Fuehrer, B.
1985-06-01
Neutralizing an ion-beam of the size and energy levels involved in the neutral-particle-beam program represents a considerable extension of the state-of-the-art of neutralizer technology. Many different mediums (e.g., solid, liquid, gas, plasma, photons) can be used to strip the hydrogen ion of its extra electron. A large, multidisciplinary R and D effort will no doubt be required to sort out all of the ''pros and cons'' of these various techniques. The purpose of this particular presentation is to discuss some basic configurations and fundamental principles of the gas type of neutralizer cell. Particular emphasis is placed on the ''Gasdynamic Free-Jet'' neutralizer since this configuration has the potential of being much shorter than other type of gas cells (in the beam direction) and it could operate in nearly a continuous mode (CW) if necessary. These were important considerations in the ATSU design which is discussed in some detail in the second presentation entitled ''ATSU Point Design''.
Numerical Analysis of Quantum Transport Equation for Bose Gas in One Dimensional Optical Lattice
NASA Astrophysics Data System (ADS)
Kuwahara, Yukiro; Nakamura, Yusuke; Yamanaka, Yoshiya
The quantum transport equation and the correction of the quasiparticle energy are derived by imposing the renormalization conditions on the improved time-dependent on-shell self-energy in nonequilibrium Thermo Field Dynamics. They are numerically analyzed for the one dimensional system of cold neutral atomic Bose gas confined by a combined harmonic and optical lattice potentials. The analysis indicates that the correction of the quaisparticle energy plays a crucial role in the thermal relaxation processes described by the quantum transport equation.
Bose gas in disordered, finite-layered systems
NASA Astrophysics Data System (ADS)
Fortes, Mauricio; Barragán, V. E.; Salas, P.; Solís, M. A.
2015-03-01
Disorder effects in the thermodynamic properties of a Bose gas are analyzed. The gas is confined within a layered box of size L in the z-direction and infinite in the other two directions. The layers are first modeled by a periodic array of M Dirac delta-functions of equal intensity. We investigate the effects on the specific heat, energy and entropy when a random set of vacancies is introduced in the layered array. A dramatic increase in the maximum of the specific heat is observed when the system has a 0 . 1 to 0 . 2 fraction of random vacancies compared to the original, periodic array and this maximum, which is reminiscent of a Bose-Einstein condensation for an infinite array, occurs at a higher temperature. We acknowledge support from Grant UNAM-PAPIIT IN111613.
Cooling of a One-Dimensional Bose Gas
NASA Astrophysics Data System (ADS)
Rauer, B.; Grišins, P.; Mazets, I. E.; Schweigler, T.; Rohringer, W.; Geiger, R.; Langen, T.; Schmiedmayer, J.
2016-01-01
We experimentally study the dynamics of a degenerate one-dimensional Bose gas that is subject to a continuous outcoupling of atoms. Although standard evaporative cooling is rendered ineffective by the absence of thermalizing collisions in this system, we observe substantial cooling. This cooling proceeds through homogeneous particle dissipation and many-body dephasing, enabling the preparation of otherwise unexpectedly low temperatures. Our observations establish a scaling relation between temperature and particle number, and provide insights into equilibration in the quantum world.
Fermion-fermion interaction in a dilute gas-mixture Bose condensate
Mogilyuk, T. I.
2011-11-15
A mixture of a one-component Bose gas and two-component Fermi gas is considered at temperatures at which the Bose gas is completely condensed. Two fermions in such a mixture can interact with each other exchanging bosons from the condensate or supercondensate. The interaction potential, a change in the effective mass, the decay, and fermion spectrum are calculated in this quantum Fermi-Bose mixture.
Dynamics of impurities in ultracold Bose gas
NASA Astrophysics Data System (ADS)
Shchadilova, Yulia; Grusdt, Fabian; Rubtsov, Alexey; Demler, Eugene
2015-05-01
A system of an impurity immersed in a Bose-Einstein condensate (BEC) exhibits the polaronic effect, which is known to be an ubiquitous phenomenon in a wide range of physical systems including semiconductors, doped Mott insulators, and high-Tc superconductors. Recent analysis of the BEC-polaron problem showed that existing analytical approaches do not provide reliable results in the experimentally relevant range of parameters when tested against Monte Carlo (MC) simulations. In this contribution we demonstrate that the description of polarons at finite momentum can be done by employing an analytical class of wavefunctions based on the correlated Gaussian ansatz (CGWs). We show that CGWs show excellent agreement with known MC results for the polaron binding energy for a wide range of interactions. We discuss the properties of the polarons and atomic mixtures in systems of ultracold atoms in which polaronic effects can be observed with current experimental technology. Our CGWs predicts a specific pattern of correlations between host atoms that can be measured in time-of-flight experiments. Department of Physics, Harvard University.
Percolation analysis of a disordered spinor Bose gas
NASA Astrophysics Data System (ADS)
Nabi, Sk Noor; Basu, Saurabh
2016-06-01
We study the effects of an on-site disorder potential in a gas of spinor (spin-1) ultracold atoms loaded in an optical lattice corresponding to both ferromagnetic and antiferromagnetic spin-dependent interactions. Starting with a disordered spinor Bose–Hubbard model (SBHM) on a two-dimensional square lattice, we observe the appearance of a Bose glass phase using the fraction of the lattice sites having finite superfluid order parameter and non integer local densities as an indicator. A precise distinction between three different types of phases namely, superfluid, Mott insulator and Bose glass is done via a percolation analysis thereby demonstrating that a reliable enumeration of phases is possible at particular values of the parameters of the SBHM. Finally, we present the phase diagram based on the above information for both antiferromagnetic and ferromagnetic interactions.
Anisotropic superfluidity in a dipolar Bose gas
Ticknor, Christopher; Wilson, Ryan M; Bohn, John L
2010-11-04
A quintessential feature of superfluidity is the ability to support dissipationless flow, for example, when an object moves through a superfluid and experiences no drag. This, however, only occurs when the object is moving below a certain critical velocity; when it exceeds this critical velocity it dissipates energy into excitations of the superfluid, resulting in a net drag force on the object and the breakdown of superfluid flow. In many superfluids, such as dilute Bose-Einstein condensates (BECs) of atoms with contact interactions, this critical velocity is simply the speed of sound in the system, where the speed of sound is set by the density and the s-wave scattering length of the atoms. However, for other superfluids, such as liquid {sup 4}He, this is not the case. In {sup 4}He, the critical velocity is set by a roton mode, corresponding to a peak in the static structure factor of the system at some finite, non-zero momentum, with a characteristic velocity that is considerably less than the speed of sound in the liquid. This feature has been verified experimentally via measurements of ion-drift velocity in the fluid, thereby providing insight into the detailed structure of the system. Interestingly, a roton-like feature was predicted to exist in the dispersion relation of a quasi-two-dimensional (q2D) dipolar BEC (DBEC) [16], or a BEC with dipole-dipole interactions. However, unlike the dispersion of {sup 4}He, the disperSion of a DBEC is highly tunable as a function of the condensate density or dipole-dipole interaction (ddi) strength. Additionally, the DBEC is set apart from liquid {sup 4}He in that its interactions depend on how the dipoles are oriented in space. Thus, the DBEC provides an ideal system to study the effects that anisotropies have on the bulk properties of a superfluid, such as the critical velocity. Here we consider a DBEC in a quasi-two-dimensional (q2D) geometry and allow for the dipoles to be polarized at a nonzero angle into the plane
Non-neutral theory of biodiversity: Bose-Einstein condensation in ecosystems
NASA Astrophysics Data System (ADS)
Bianconi, Ginestra; Ferretti, Luca; Franz, Silvio
2010-03-01
We present a non-neutral stochastic model for the dynamics taking place in a meta- community ecosystems in presence of migration. The model provides a framework for describing the emergence of multiple ecological scenarios and behaves in two extreme limits either as the unified neutral theory of biodiversity or as the Bak-Sneppen model. Interestingly, the model shows a condensation phase transition where one species becomes the dominant one, the diversity in the ecosystems is strongly reduced and the ecosystem is non-stationary. This phase transition can be mapped to a Bose- Einsetin condensation and extend the principle of competitive exclusion to open ecosystems. These framework might be relevant for the study of the impact of invasive species in native ecologies.
Cooling of a One-Dimensional Bose Gas.
Rauer, B; Grišins, P; Mazets, I E; Schweigler, T; Rohringer, W; Geiger, R; Langen, T; Schmiedmayer, J
2016-01-22
We experimentally study the dynamics of a degenerate one-dimensional Bose gas that is subject to a continuous outcoupling of atoms. Although standard evaporative cooling is rendered ineffective by the absence of thermalizing collisions in this system, we observe substantial cooling. This cooling proceeds through homogeneous particle dissipation and many-body dephasing, enabling the preparation of otherwise unexpectedly low temperatures. Our observations establish a scaling relation between temperature and particle number, and provide insights into equilibration in the quantum world. PMID:26849577
Equilibrium state of a trapped two-dimensional Bose gas
Rath, Steffen P.; Yefsah, Tarik; Guenter, Kenneth J.; Cheneau, Marc; Desbuquois, Remi; Dalibard, Jean; Holzmann, Markus; Krauth, Werner
2010-07-15
We study experimentally and numerically the equilibrium density profiles of a trapped two-dimensional {sup 87}Rb Bose gas and investigate the equation of state of the homogeneous system using the local density approximation. We find a clear discrepancy between in situ measurements and quantum Monte Carlo simulations, which we attribute to a nonlinear variation of the optical density of the atomic cloud with its spatial density. However, good agreement between experiment and theory is recovered for the density profiles measured after time of flight, taking advantage of their self-similarity in a two-dimensional expansion.
Universal Loss Dynamics in a Unitary Bose Gas
NASA Astrophysics Data System (ADS)
Eismann, Ulrich; Khaykovich, Lev; Laurent, Sébastien; Ferrier-Barbut, Igor; Rem, Benno S.; Grier, Andrew T.; Delehaye, Marion; Chevy, Frédéric; Salomon, Christophe; Ha, Li-Chung; Chin, Cheng
2016-04-01
The low-temperature unitary Bose gas is a fundamental paradigm in few-body and many-body physics, attracting wide theoretical and experimental interest. Here, we present experiments performed with unitary 133Cs and 7Li atoms in two different setups, which enable quantitative comparison of the three-body recombination rate in the low-temperature domain. We develop a theoretical model that describes the dynamic competition between two-body evaporation and three-body recombination in a harmonically trapped unitary atomic gas above the condensation temperature. We identify a universal "magic" trap depth where, within some parameter range, evaporative cooling is balanced by recombination heating and the gas temperature stays constant. Our model is developed for the usual three-dimensional evaporation regime as well as the two-dimensional evaporation case, and it fully supports our experimental findings. Combined 133Cs and 7Li experimental data allow investigations of loss dynamics over 2 orders of magnitude in temperature and 4 orders of magnitude in three-body loss rate. We confirm the 1 /T2 temperature universality law. In particular, we measure, for the first time, the Efimov inelasticity parameter η*=0.098 (7 ) for the 47.8-G d -wave Feshbach resonance in 133Cs. Our result supports the universal loss dynamics of trapped unitary Bose gases up to a single parameter η*.
Condensing Magnons in a Degenerate Ferromagnetic Spinor Bose Gas
NASA Astrophysics Data System (ADS)
Fang, Fang; Olf, Ryan; Wu, Shun; Kadau, Holger; Stamper-Kurn, Dan M.
2016-03-01
We observe the quasicondensation of magnon excitations within an F =1 87Rb spinor Bose-Einstein condensed gas. Magnons are pumped into a ferromagnetically ordered gas, allowed to equilibrate to a nondegenerate distribution, and then cooled evaporatively at near-constant net longitudinal magnetization, whereupon they condense. The critical magnon number, spatial distribution, and momentum distribution indicate that magnons condense in a potential that is uniform within the volume of the ferromagnetic condensate. The macroscopic transverse magnetization produced by the degenerate magnon gas remains inhomogeneous within the ˜10 s equilibration time accessed in our experiment, and includes signatures of Mermin-Ho spin textures that appear as phase singularities in the magnon quasicondensate wave function.
Condensing Magnons in a Degenerate Ferromagnetic Spinor Bose Gas.
Fang, Fang; Olf, Ryan; Wu, Shun; Kadau, Holger; Stamper-Kurn, Dan M
2016-03-01
We observe the quasicondensation of magnon excitations within an F=1 ^{87}Rb spinor Bose-Einstein condensed gas. Magnons are pumped into a ferromagnetically ordered gas, allowed to equilibrate to a nondegenerate distribution, and then cooled evaporatively at near-constant net longitudinal magnetization, whereupon they condense. The critical magnon number, spatial distribution, and momentum distribution indicate that magnons condense in a potential that is uniform within the volume of the ferromagnetic condensate. The macroscopic transverse magnetization produced by the degenerate magnon gas remains inhomogeneous within the ∼10 s equilibration time accessed in our experiment, and includes signatures of Mermin-Ho spin textures that appear as phase singularities in the magnon quasicondensate wave function. PMID:26991184
Localization of weakly interacting Bose gas in quasiperiodic potential
NASA Astrophysics Data System (ADS)
Ray, Sayak; Pandey, Mohit; Ghosh, Anandamohan; Sinha, Subhasis
2016-01-01
We study the localization properties of weakly interacting Bose gas in a quasiperiodic potential. The Hamiltonian of the non-interacting system reduces to the well known ‘Aubry-André model’, which shows the localization transition at a critical strength of the potential. In the presence of repulsive interaction we observe multi-site localization and obtain a phase diagram of the dilute Bose gas by computing the superfluid fraction and the inverse participation ratio. We construct a low-dimensional classical Hamiltonian map and show that the onset of localization is manifested by the chaotic phase space dynamics. The level spacing statistics also identify the transition to localized states resembling a Poisson distribution that are ubiquitous for both non-interacting and interacting systems. We also study the quantum fluctuations within the Bogoliubov approximation and compute the quasiparticle energy spectrum. Enhanced quantum fluctuation and multi-site localization phenomenon of non-condensate density are observed above the critical coupling of the potential. We briefly discuss the effect of the trapping potential on the localization of matter wave.
NASA Astrophysics Data System (ADS)
Mir Mehedi, Faruk; Md. Sazzad, Hossain; Md. Muktadir, Rahman
2016-02-01
The changes in characteristics of Bose condensation of ideal Bose gas due to an external generic power law potential U=\\sumi=1dci\\vert xi/ai\\vertni are studied carefully. Detailed calculation of Kim et al. (J. Phys. Condens. Matter 11 (1999) 10269) yielded the hierarchy of condensation transitions with changing fractional dimensionality. In this manuscript, some theorems regarding specific heat at constant volume CV are presented. Careful examination of these theorems reveal the existence of hidden hierarchy of the condensation transition in trapped systems as well.
Postquench dynamics and prethermalization in a resonant Bose gas
NASA Astrophysics Data System (ADS)
Yin, Xiao; Radzihovsky, Leo
2016-03-01
We explore the dynamics of a resonant Bose gas following its quench to a strongly interacting regime near a Feshbach resonance. For such deep quenches, we utilize a self-consistent dynamic field approximation and find that after an initial regime of many-body Rabi-type oscillations between the condensate and finite-momentum quasiparticle pairs, at long times, the gas reaches a prethermalized nonequilibrium steady state. We explore the resulting state through its broad stationary momentum distribution function, that exhibits a power-law high-momentum tail. We study the dynamics and steady-state form of the associated enhanced depletion, quench-rate-dependent excitation energy, Tan's contact, structure function, and radio-frequency spectroscopy. We find these predictions to be in a qualitative agreement with recent experiments.
How many is different? Answer from ideal Bose gas
NASA Astrophysics Data System (ADS)
Park, Jeong-Hyuck
2014-03-01
How many H2O molecules are needed to form water? While the precise answer is not known, it is clear that the answer should be a finite number rather than infinity. We revisit with care the ideal Bose gas confined in a cubic box which is discussed in most statistical physics textbooks. We show that the isobar of the ideal gas zigzags on the temperature-volume plane featuring a boiling-like discrete phase transition, provided the number of particles is equal to or greater than a particular value: 7616. This demonstrates for the first time how a finite system can feature a mathematical singularity and realize the notion of 'Emergence', without resorting to the thermodynamic limit.
Bose gas with generalized dispersion relation plus an energy gap
NASA Astrophysics Data System (ADS)
Solis, M. A.; Martinez, J. G.; Garcia, J.
We report the critical temperature, the condensed fraction, the internal energy and the specific heat for a d-dimensional Bose gas with a generalized dispersion relation plus an energy gap, i.e., ɛ =ɛ0 for k = 0 and ɛ =ɛ0 + Δ +csks , for k > 0 , where ℏk is the particle momentum, ɛ0 the lowest particle energy, cs a constant with dimension of energy multiplied by a length to the power s > 0 . When Δ > 0 , a Bose-Einstein critical temperature Tc ≠ 0 exists for any d / s >= 0 at which the internal energy shows a peak and the specific heat shows a jump. The critical temperature and the specific heat jump increase as functions of the gap but they decrease as functions of d / s . Thermodynamic properties are ɛ0 independent since this is just a reference energy. For Δ = 0 we recover the results reported in Ref. [1]. V. C. Aguilera-Navarro, M. de Llano y M. A. Solís, Eur. J. Phys. 20, 177 (1999). We acknowledge partial support from Grants PAPIIT IN111613 and CONACyT 221030.
Quantum dew: Formation of quantum liquid in a nonequilibrium Bose gas
Khlebnikov, S.; Tkachev, I.; TH Division, CERN, CH-1211 Geneva 23, Switzerland,; Institute for Nuclear Research, Russian Academy of Sciences, Moscow 117312, Russia
2000-04-15
We consider phase separation in a nonequilibrium Bose gas with an attractive interaction between particles. Using numerical integrations on a lattice, we show that the system evolves into a state that contains drops of a Bose-Einstein condensate suspended in uncondensed gas. When the initial gas is sufficiently rarefied, the rate of formation of this quantum dew scales with the initial density as expected for a process governed by two-particle collisions. (c) 2000 The American Physical Society.
Bose-Einstein correlations between two neutral pions from photoproduction below 1.2 GeV
NASA Astrophysics Data System (ADS)
He, Qinghua; Hashimoto, Ryo; Ishikawa, Takatsugu; Masumoto, Shinichi; Miyabe, Manabu; Muramatsu, Norihito; Shimizu, Hajime; Tajima, Yasuhisa; Tsuchikawa, Yusuke; Yamazaki, Hirohito; Yamazaki, Ryuji; Forest Collaboration
2014-09-01
For the first time, we studied the space-time properties of the excited nucleons in the non-perturbative QCD region, via Bose-Einstein correlations (BEC) between two neutral pions from photoproduction off the proton/deuteron at incident photon energies below 1.2 GeV. In order to measure the Bose-Einstein correlations of two pions, an event mixing technique was developed and proved to be effective. The experiment was carried out at the Research Center for Electron Photon Science (ELPH) at Tohoku University. A 4 π electromagnetic calorimeter complex, named FOREST, was employed to detect neutral pions decaying into photons as well as some charged particles in the final state. In this work, we present the results of the spatial extension of the reaction region obtained from the BEC analysis. In addition, the BEC analysis provides useful information about the underlying mechanism of double neutral pion photoproduction. Preliminary results related to this study will be given.
Finite Temperature Response of a 2D Dipolar Bose Gas at Different Dipolar Tilt Angles
NASA Astrophysics Data System (ADS)
Shen, Pengtao; Quader, Khandker
We calculate finite temperature (T) response of a 2D Bose gas, subject to dipolar interaction, within the random phase approximation (RPA). We evaluate the appropriate 2D finite-T pair bubble diagram needed in RPA, and explore ranges of density and temperature for various dipolar tilt angles. We find the system to exhibit a collapse transition and a finite momentum instability, signaling a density wave or striped phase. We construct phase diagrams depicting these instabilities and resulting phases, including a normal Bose gas phase. We also consider the finite-T response of a quasi-2D dipolar Bose gas. We discuss how our results may apply to ultracold dense Bose gas of polar molecules, such as 41K87Rb, that has been realized experimentally. Acknowledge partial support from Institute for Complex Adaptive Matter (ICAM).
Surface Region of Superfluid Helium as an Inhomogeneous Bose-Condensed Gas
NASA Astrophysics Data System (ADS)
Griffin, A.; Stringari, S.
1996-01-01
We present arguments that the low density surface region of self-bounded superfluid 4He systems is an inhomogeneous dilute Bose gas, with almost all of the atoms occupying the same single-particle state at T = 0. Numerical evidence for this complete Bose-Einstein condensation was first given by the many-body variational calculations of 4He droplets by Lewart, Pandharipande, and Pieper in 1988 [Phys. Rev. B 37, 4950 (1988)]. We show that the low density surface region can be treated rigorously using a generalized Gross-Pitaevskii equation for the Bose order parameter.
One-dimensional Bose gas in optical lattices of arbitrary strength
NASA Astrophysics Data System (ADS)
Astrakharchik, Grigory E.; Krutitsky, Konstantin V.; Lewenstein, Maciej; Mazzanti, Ferran
2016-02-01
One-dimensional Bose gas with contact interaction in optical lattices at zero temperature is investigated by means of the exact diffusion Monte Carlo algorithm. The results obtained from the fundamental continuous model are compared with those obtained from the lattice (discrete) Bose-Hubbard model, using exact diagonalization, and from the quantum sine-Gordon model. We map out the complete phase diagram of the continuous model and determine the regions of applicability of the Bose-Hubbard model. Various physical quantities characterizing the systems are calculated, and it is demonstrated that the sine-Gordon model used for shallow lattices is inaccurate.
Critical Velocity of a Superfluid Bose Gas Flowing in a Random Potential
NASA Astrophysics Data System (ADS)
Haga, Taiki
2016-05-01
We investigate the critical velocity of a weakly interacting Bose gas flowing in a random potential. By applying the Bogoliubov theory to a disordered Bose system with a steady flow, we determine the critical velocity for weak and moderate disorder. We also calculate the superfluid density and the condensate density as a function of the disorder strength and the flow velocity, and their behaviors near the critical velocity are discussed.
Interacting Bose gas confined in a Kronig-Penney potential
NASA Astrophysics Data System (ADS)
Rodríguez, O. A.; Solís, M. A.
We analyze the effect of the 1D periodic Kronig-Penney potential, composed of barriers of width b and separated a distance a, over an interacting Bose gas. At T = 0 , the Gross-Pitaevskii equation is solved analytically in terms of the Jacobi elliptic functions for repulsive or attractive interaction between bosons. By applying the boundary conditions for periodic solutions as well as the normalization of the wave function, we arrive to a set of nonlinear equations from which we obtain the density profile and the chemical potential of the condensate as a function of the particle momentum. The profiles for attractive and repulsive interactions are compared with that of the non-interacting case. For attractive interaction we are able to observe a pronounced spatial localization in the middle of every two barriers. We reproduce the well known results when the Kronig-Penney potential becomes a Dirac Comb. We acknowledge partial support from Grants PAPIIT IN111613 and CONACyT 221030.
Cooling into the spin-nematic state for a spin-1 Bose gas in an optical lattice
Chung, M.-C.; Yip Sungkit
2009-05-15
The possibility of adiabatically cooling a spin-1 polar Bose gas to a spin-nematic phase is theoretically discussed. The relation between the order parameter of the final spin-nematic phase and the starting temperature of the spinor Bose gas is obtained both using the mean-field approach for high temperature and spin-wave approach for low temperature. We find that there exists a good possibility to reach the spin-nematic ordering starting with spinor antiferromagnetic Bose gases.
Two-state Bogoliubov theory of a molecular Bose gas
NASA Astrophysics Data System (ADS)
Peden, Brandon M.; Wilson, Ryan M.; McLanahan, Maverick L.; Hall, Jesse; Rittenhouse, Seth T.
2015-12-01
We present an analytic Bogoliubov description of a Bose-Einstein condensate of polar molecules trapped in a quasi-two-dimensional geometry and interacting via internal state-dependent dipole-dipole interactions. We derive the mean-field ground-state energy functional, and we derive analytic expressions for the dispersion relations, Bogoliubov amplitudes, and static structure factors. This method can be applied to any homogeneous, two-component system with linear coupling and direct, momentum-dependent interactions. The properties of the mean-field ground state, including polarization and stability, are investigated, and we identify three distinct instabilities: a density-wave rotonization that occurs when the gas is fully polarized, a spin-wave rotonization that occurs near zero polarization, and a mixed instability at intermediate fields. The nature of these instabilities is clarified by means of the real-space density-density correlation functions, which characterize the spontaneous fluctuations of the ground state, and the momentum-space structure factors, which characterize the response of the system to external perturbations. We find that the gas is susceptible to both density-wave and spin-wave responses in the polarized limit but only a spin-wave response in the zero-polarization limit. These results are relevant for experiments with rigid rotor molecules such as RbCs, Λ -doublet molecules such as ThO that have an anomalously small zero-field splitting, and doublet-Σ molecules such as SrF where two low-lying opposite-parity states can be tuned to zero splitting by an external magnetic field.
Neutral gas heating in helium microplasmas
NASA Astrophysics Data System (ADS)
Jugroot, M.
2009-01-01
The present study details a self-consistent model of charged and neutral particle dynamics which is applied to atmospheric small-space (200 μm) discharges in helium. Hydrodynamic transport equations of the self-consistent and time-dependant model are described with an emphasis on the different terms involved in the close coupling among charged species, neutral species, and the electric field. Those equations are solved by two-dimensional numerical schemes for both species transport and electric field. The microplasmas are studied from an initial cloud until the stages of charged particle overamplification in small spaces, where transients are particularly important. Gas heating, neutral depletion initiation, and electric field reversal are observed, highlighting the close interaction between neutral gas and charged species in governing the evolution of the microplasma.
Bragg Spectroscopy of Excitations of a Quantum Bose Gas in a Lattice
NASA Astrophysics Data System (ADS)
Du, Xu
2005-03-01
We have measured the excitation spectrum of a quantum degenerate Bose gas in an optical lattice with Bragg spectroscopy. We begin each cycle of the experiment by producing a magnetically trapped ^87Rb Bose condensate. We then superimpose a three-dimensional optical lattice of cubic symmetry onto the condensate. We turn the lattice potential on adiabatically, so that the gas temperature remains very close to zero. This provides an experimental realization of the Bose-Hubbard model, which exhibits a quantum phase transition between a superfluid and an insulating state. We find that in the superfluid state, the resonant excitation energy in the phonon-like regime decreases with increasing lattice strength. In the insulating regime, we observe the appearance of a sharp increase in the excitation rate at non-zero frequencies, which we interpret as a measurement of the gap in the insulating state of the gas.
Single-particle spectral density of a Bose gas in the two-fluid hydrodynamic regime
Arahata, Emiko; Nikuni, Tetsuro; Griffin, Allan
2011-11-15
In Bose superfluids, the single-particle Green's function can be directly related to the superfluid velocity-velocity correlation function in the hydrodynamic regime. An explicit expression for the single-particle spectral density was originally written down by Hohenberg and Martin in 1965, starting from the two-fluid equations for a superfluid. We give a simple derivation of their results. Using these results, we calculate the relative weights of first and second sound modes in the single-particle spectral density as a function of temperature in a uniform Bose gas. We show that the second sound mode makes a dominant contribution to the single-particle spectrum in a relatively high-temperature region. We also discuss the possibility of experimental observation of the second sound mode in a Bose gas by photoemission spectroscopy.
Phases of a polar spin-1 Bose gas in a magnetic field
NASA Astrophysics Data System (ADS)
Kis-Szabó, Krisztián; Szépfalusy, Péter; Szirmai, Gergely
2007-05-01
The two Bose Einstein condensed phases of a polar spin-1 gas at nonzero magnetizations and temperatures are investigated. The Hugenholtz Pines theorem is generalized to this system. Crossover to a quantum phase transition is also studied. Results are discussed in a mean field approximation.
Compression as a Tool to Detect Bose Glass in a Cold Atomic Gas
NASA Astrophysics Data System (ADS)
Delande, Dominique; Zakrzewski, Jakub
2009-02-01
We suggest that measuring the variation of the radius of an atomic cloud when the harmonic trap confinement is varied makes it possible to monitor the disappearance of the insulating Mott phase of an ultracold atomic gas trapped in a disordered optical lattice. This paves the way for an unambiguous identification of a Bose glass phase in the system.
Compression as a Tool to Detect Bose Glass in a Cold Atomic Gas
Delande, Dominique; Zakrzewski, Jakub
2009-02-27
We suggest that measuring the variation of the radius of an atomic cloud when the harmonic trap confinement is varied makes it possible to monitor the disappearance of the insulating Mott phase of an ultracold atomic gas trapped in a disordered optical lattice. This paves the way for an unambiguous identification of a Bose glass phase in the system.
Effect of impurities on the transition temperature of a dilute dipolar trapped Bose gas
NASA Astrophysics Data System (ADS)
Yavari, H.; Afsaneh, E.
2013-01-01
By using a two-fluid model the effect of impurities on the transition temperature of a dipolar trapped Bose gas is investigated. By treating Gaussian spatial correlation for impurities from the interaction modified spectra of the system, the formula for the shift of the transition temperature is derived. The shift of the transition temperature contains essentially three contributions due to contact, dipole-dipole, and impurity interactions. Applying our results to dipolar Bose gases shows that the shift of the transition temperature due to impurities could be measured for an isotropic trap (dipole-dipole contribution is zero) and the Feshbach resonance technique (contact potential contribution is negligible).
Equation of state and contact of a strongly interacting Bose gas in the normal state
Liu, Xia -Ji; Mulkerin, Brendan; He, Lianyi; Hu, Hui
2015-04-27
Here, we theoretically investigate the equation of state and Tan's contact of a nondegenerate three-dimensional Bose gas near a broad Feshbach resonance, within the framework of large-N expansion. Our results agree with the path-integral Monte Carlo simulations in the weak-coupling limit and recover the second-order virial expansion predictions at strong interactions and high temperatures. At resonance, we find that the chemical potential and energy are significantly enhanced by the strong repulsion, while the entropy does not change significantly. With increasing temperature, the two-body contact initially increases and then decreases like T–1 at large temperature, and therefore exhibits a peak structuremore » at about 4Tc0, where Tc0 is the Bose-Einstein condensation temperature of an ideal, noninteracting Bose gas. These results may be experimentally examined with a nondegenerate unitary Bose gas, where the three-body recombination rate is substantially reduced. In particular, the nonmonotonic temperature dependence of the two-body contact could be inferred from the momentum distribution measurement.« less
Equation of state and contact of a strongly interacting Bose gas in the normal state
Liu, Xia -Ji; Mulkerin, Brendan; He, Lianyi; Hu, Hui
2015-04-27
Here, we theoretically investigate the equation of state and Tan's contact of a nondegenerate three-dimensional Bose gas near a broad Feshbach resonance, within the framework of large-N expansion. Our results agree with the path-integral Monte Carlo simulations in the weak-coupling limit and recover the second-order virial expansion predictions at strong interactions and high temperatures. At resonance, we find that the chemical potential and energy are significantly enhanced by the strong repulsion, while the entropy does not change significantly. With increasing temperature, the two-body contact initially increases and then decreases like T^{–1} at large temperature, and therefore exhibits a peak structure at about 4T_{c0}, where T_{c0} is the Bose-Einstein condensation temperature of an ideal, noninteracting Bose gas. These results may be experimentally examined with a nondegenerate unitary Bose gas, where the three-body recombination rate is substantially reduced. In particular, the nonmonotonic temperature dependence of the two-body contact could be inferred from the momentum distribution measurement.
Gas Flow Measurements of a Novel Geometry for Neutral Beam Neutralizers.
NASA Astrophysics Data System (ADS)
Pirkle, David Ross
The gas flow characteristics of a novel geometry (pumped neutralizer) for decreasing the flow of gas from neutral beam neutralizers were measured and compared with a conventional (passive) neutralizer. A passive neutralizer is typically a duct attached to the ion source. For the pumped neutralizer the top and bottom surfaces of the duct are replaced by a Venetian blind geometry which opens into ballast vacuum pumping volumes. With guidance from a Monte Carlo program which models gas flow at low pressure, a one-half scale model with pumped neutralizer geometry was built and compared to a passive neutralizer with comparable dimensions. With the vanes on the pumped neutralizer opened to 55 degrees, the line density of the pumped neutralizer was 1.6 times less than the passive neutralizer. The amount of gas flowing from the exit of the pumped neutralizer was from 2 to 5 times less than the amount flowing from the pumped neutralizer. Hence, the pumped neutralizer geometry appears to be a promising method of limiting the flow of gas from neutral beam gas cell neutralizers.
On the ground state energy of the δ-function Bose gas
NASA Astrophysics Data System (ADS)
Tracy, Craig A.; Widom, Harold
2016-07-01
The weak coupling asymptotics, to order {(c/ρ )}2, of the ground state energy of the delta-function Bose gas is derived. Here 2c≥slant 0 is the delta-function potential amplitude and ρ the density of the gas in the thermodynamic limit. The analysis uses the electrostatic interpretation of the Lieb–Liniger integral equation. Dedicated to Professor Tony Guttmann on the occasion of his 70th birthday.
Stability spectroscopy of rotons in a dipolar Bose gas
NASA Astrophysics Data System (ADS)
Corson, John P.; Wilson, Ryan M.; Bohn, John L.
2013-05-01
We study the stability of a quasi-one-dimensional dipolar Bose-Einstein condensate that is perturbed by a weak lattice potential along its axis. Our numerical simulations demonstrate that systems exhibiting a roton-maxon structure destabilize readily when the lattice wavelength equals either half the roton wavelength or a low roton subharmonic. We apply perturbation theory to the Gross-Pitaevskii and Bogoliubov-de Gennes equations to illustrate the mechanisms behind the instability threshold. The features of our stability diagram may be used as a direct measurement of the roton wavelength for quasi-one-dimensional geometries.
Decay of superfluid currents in the interacting one-dimensional Bose gas
Cherny, Alexander Yu.; Caux, Jean-Sebastien; Brand, Joachim
2009-10-15
We examine the superfluid properties of a one-dimensional (1D) Bose gas in a ring trap based on the model of Lieb and Liniger. While the 1D Bose gas has nonclassical rotational inertia and exhibits quantization of velocities, the metastability of currents depends sensitively on the strength of interactions in the gas: the stronger the interactions, the faster the current decays. It is shown that the Landau critical velocity is zero in the thermodynamic limit due to the first supercurrent state, which has zero energy and finite probability of excitation. We calculate the energy dissipation rate of ring currents in the presence of weak defects, which should be observable on experimental time scales.
Semiclassical and quantum description of an ideal Bose gas in a uniform gravitational field
NASA Astrophysics Data System (ADS)
Bhaduri, Rajat K.; van Dijk, Wytse
2016-07-01
We consider an ideal Bose gas contained in a cylinder in three spatial dimensions, subjected to a uniform gravitational field. It has been claimed by some authors that there is discrepancy between the semiclassical and quantum calculations in the thermal properties of such a system. To check this claim, we calculate the heat capacity and isothermal compressibility of this system semiclassically as well as from the quantum spectrum of the density of states. The quantum calculation is done for a finite number of particles. We find good agreement between the two calculations when the number of particles are taken to be large. We also find that this system has the same thermal properties as an ideal five dimensional Bose gas.
Attractive Bose gas in two dimensions: An analytical study of its fragmentation and collapse
NASA Astrophysics Data System (ADS)
Tsatsos, Marios C.
2014-04-01
An attractive Bose-Einstein condensate in two spatial dimensions is expected to collapse for supercritical values of the interaction strength. Moreover, it is known that for nonzero quanta of angular momentum and infinitesimal attraction the gas prefers to fragment and distribute its angular momentum over different orbitals. In this work we examine the two-dimensional trapped Bose gas for finite values of attraction and describe the ground state in connection to its angular momentum by theoretical methods that go beyond the standard Gross-Pitaevskii theory. By applying the best-mean-field approach over a variational ansatz whose accuracy has been checked numerically, we derive analytical relations for the energy, the fragmentation of the ground states, and the critical (for collapse) value of the attraction strength as a function of the total angular momentum L.
Universal Behavior of the BEC Critical Temperature for a Multi-slab Ideal Bose Gas
NASA Astrophysics Data System (ADS)
Rodríguez, O. A.; Solís, M. A.
2016-05-01
For an ideal Bose gas within a multi-slab periodic structure, we discuss the effect of the spatial distribution of the gas on its Bose-Einstein condensation critical temperature T_c, as well as on the origin of its dimensional crossover observed in the specific heat. The multi-slabs structure is generated by applying a Kronig-Penney potential to the gas in the perpendicular direction to the slabs of width b and separated by a distance a, and allowing the particles to move freely in the other two directions. We found that T_c decreases continuously as the potential barrier height increases, becoming inversely proportional to the square root of the barrier height when it is large enough. This behavior is universal as it is independent of the width and spacing of the barriers. The specific heat at constant volume shows a crossover from 3D to 2D when the height of the potential or the barrier width increases, in addition to the well-known peak related to the Bose-Einstein condensation. These features are due to the trapping of the bosons by the potential barriers and can be characterized by the energy difference between the energy bands below the potential height.
Conserving and gapless approximations for an inhomogeneous Bose gas at finite temperatures
Griffin, A.
1996-04-01
We derive and discuss the equations of motion for the condensate and its fluctuations for a dilute, weakly interacting Bose gas in an external potential within the self-consistent Hartree-Fock-Bogoliubov (HFB) approximation. Account is taken of the depletion of the condensate and the anomalous Bose correlations, which are important at finite temperatures. We give a critical analysis of the self-consistent HFB approximation in terms of the Hohenberg-Martin classification of approximations (conserving vs gapless) and point out that the Popov approximation to the full HFB gives a gapless single-particle spectrum at all temperatures. The Beliaev second-order approximation is discussed as the spectrum generated by functional differentiation of the HFB single-particle Green{close_quote}s function. We emphasize that the problem of determining the excitation spectrum of a Bose-condensed gas (homogeneous or inhomogeneous) is difficult because of the need to satisfy several different constraints. {copyright} {ital 1996 The American Physical Society.}
Quantum criticality of a Bose gas in an optical lattice near the Mott transition
NASA Astrophysics Data System (ADS)
Rançon, A.; Dupuis, N.
2012-01-01
We derive the equation of state of bosons in an optical lattice in the framework of the Bose-Hubbard model. Near the density-driven Mott transition, the expression of the pressure P(μ,T) versus chemical potential and temperature is similar to that of a dilute Bose gas but with renormalized mass m* and scattering length a*. Here m* is the mass of the elementary excitations at the quantum critical point governing the transition from the superfluid phase to the Mott-insulating phase, while a* is related to their effective interaction at low energy. We use a nonperturbative renormalization-group approach to compute these parameters as a function of the ratio t/U between hopping amplitude and on-site repulsion.
Isobars of an ideal Bose gas within the grand canonical ensemble
NASA Astrophysics Data System (ADS)
Jeon, Imtak; Kim, Sang-Woo; Park, Jeong-Hyuck
2011-08-01
We investigate the isobar of an ideal Bose gas confined in a cubic box within the grand canonical ensemble for a large yet finite number of particles, N. After solving the equation of the spinodal curve, we derive precise formulas for the supercooling and the superheating temperatures that reveal an N-1/3 or N-1/4 power correction to the known Bose-Einstein condensation temperature in the thermodynamic limit. Numerical computations confirm the accuracy of our analytical approximation, and further show that the isobar zigzags on the temperature-volume plane if N≥14393. In particular, for the Avogadro’s number of particles, the volume expands discretely about 105 times. Our results quantitatively agree with a previous study on the canonical ensemble within 0.1% error.
Probing superfluidity in a quasi two-dimensional Bose gas through its local dynamics
NASA Astrophysics Data System (ADS)
De Rossi, Camilla; Dubessy, Romain; Merloti, Karina; de Goër de Herve, Mathieu; Badr, Thomas; Perrin, Aurélien; Longchambon, Laurent; Perrin, Hélène
2016-06-01
We report direct evidence of superfluidity in a quasi two-dimensional Bose gas by observing its dynamical response to a collective excitation, the scissors mode. Relying on a novel local average analysis, we are able to probe inhomogeneous clouds and reveal their local dynamics. We identify in this way the superfluid and thermal phases inside the gas and locate the boundary at which the Berezinskii–Kosterlitz–Thouless crossover occurs. This new analysis also allows to evidence the coupling of the two fluids which induces at finite temperatures damping rates larger than the usual Landau damping.
Spin waves in a spin-1 normal Bose gas
Natu, Stefan S.; Mueller, Erich J.
2010-05-15
We present a theory of spin waves in a noncondensed gas of spin-1 bosons and provide both analytic calculations of the linear theory and full numerical simulations of the nonlinear response. We highlight the role of spin-dependent contact interactions in the dynamics of a thermal gas. Although these interactions are small compared to the thermal energy, they set the scale for low-energy, long-wavelength spin waves. In particular, we find that the polar state of {sup 87}Rb is unstable to collisional mixing of magnetic sublevels even in the normal state. We augment our analytic calculations by providing full numerical simulations of a trapped gas, explicitly demonstrating this instability. Further, we show that for strong antiferromagnetic interactions, the polar gas is unstable. Finally, we explore coherent population dynamics in a collisionless transversely polarized gas.
Entanglement pre-thermalization in a one-dimensional Bose gas
NASA Astrophysics Data System (ADS)
Kaminishi, Eriko; Mori, Takashi; Ikeda, Tatsuhiko N.; Ueda, Masahito
2015-12-01
An isolated quantum system often shows relaxation to a quasi-stationary state before reaching thermal equilibrium. Such a pre-thermalized state was observed in recent experiments in a one-dimensional Bose gas after it had been coherently split into two. Although the existence of local conserved quantities is usually considered to be the key ingredient of pre-thermalization, the question of whether non-local correlations between the subsystems can influence pre-thermalization of the entire system has remained unanswered. Here we study the dynamics of coherently split one-dimensional Bose gases and find that the initial entanglement combined with energy degeneracy due to parity and translation invariance strongly affects the long-term behaviour of the system. The mechanism of this entanglement pre-thermalization is quite general and not restricted to one-dimensional Bose gases. In view of recent experiments with a small and well-defined number of ultracold atoms, our predictions based on exact few-body calculations could be tested in experiments.
Ground state and excitations of a Bose gas: From a harmonic trap to a double well
Japha, Y.; Band, Y. B.
2011-09-15
We determine the low-energy properties of a trapped Bose gas split in two by a potential barrier over the whole range of barrier heights and asymmetry between the wells. For either weak or strong coupling between the wells, our two-mode theory yields a two-site Bose-Hubbard Hamiltonian with the tunneling, interaction, and bias parameters calculated simply using an explicit form of two mode functions. When the potential barrier is relatively low, most of the particles occupy the condensate mode and our theory reduces to a two-mode version of the Bogoliubov theory, which gives a satisfactory estimate of the spatial shape and energy of the lowest collective excitation. When the barrier is high, our theory generalizes the standard two-site Bose-Hubbard model into the case of asymmetric modes, and correctly predicts a full separation of the modes in the limit of strong separation of the wells. We provide explicit analytic forms for the number squeezing and coherence as a function of particle number and temperature. We compare our theory to other two-mode theories for bosons in a double well and discuss their validity in different parameter regimes.
Higher-order local and non-local correlations for 1D strongly interacting Bose gas
NASA Astrophysics Data System (ADS)
Nandani, EJKP; Römer, Rudolf A.; Tan, Shina; Guan, Xi-Wen
2016-05-01
The correlation function is an important quantity in the physics of ultracold quantum gases because it provides information about the quantum many-body wave function beyond the simple density profile. In this paper we first study the M-body local correlation functions, g M , of the one-dimensional (1D) strongly repulsive Bose gas within the Lieb–Liniger model using the analytical method proposed by Gangardt and Shlyapnikov (2003 Phys. Rev. Lett. 90 010401; 2003 New J. Phys. 5 79). In the strong repulsion regime the 1D Bose gas at low temperatures is equivalent to a gas of ideal particles obeying the non-mutual generalized exclusion statistics with a statistical parameter α =1-2/γ , i.e. the quasimomenta of N strongly interacting bosons map to the momenta of N free fermions via {k}i≈ α {k}iF with i=1,\\ldots ,N. Here γ is the dimensionless interaction strength within the Lieb–Liniger model. We rigorously prove that such a statistical parameter α solely determines the sub-leading order contribution to the M-body local correlation function of the gas at strong but finite interaction strengths. We explicitly calculate the correlation functions g M in terms of γ and α at zero, low, and intermediate temperatures. For M = 2 and 3 our results reproduce the known expressions for g 2 and g 3 with sub-leading terms (see for instance (Vadim et al 2006 Phys. Rev. A 73 051604(R); Kormos et al 2009 Phys. Rev. Lett. 103 210404; Wang et al 2013 Phys. Rev. A 87 043634). We also express the leading order of the short distance non-local correlation functions < {{{\\Psi }}}\\dagger ({x}1)\\cdots {{{\\Psi }}}\\dagger ({x}M){{\\Psi }}({y}M)\\cdots {{\\Psi }}({y}1)> of the strongly repulsive Bose gas in terms of the wave function of M bosons at zero collision energy and zero total momentum. Here {{\\Psi }}(x) is the boson annihilation operator. These general formulas of the higher-order local and non-local correlation functions of the 1D Bose gas provide new insights into the
Path-Integral Monte Carlo and the Squeezed Trapped Bose-Einstein Gas
Fernandez, Juan Pablo; Mullin, William J.
2006-09-07
Bose-Einstein condensation has been experimentally found to take place in finite trapped systems when one of the confining frequencies is increased until the gas becomes effectively two-dimensional (2D). We confirm the plausibility of this result by performing path-integral Monte Carlo (PIMC) simulations of trapped Bose gases of increasing anisotropy and comparing them to the predictions of finite-temperature many-body theory. PIMC simulations provide an essentially exact description of these systems; they yield the density profile directly and provide two different estimates for the condensate fraction. For the ideal gas, we find that the PIMC column density of the squeezed gas corresponds quite accurately to that of the exact analytic solution and, moreover, is well mimicked by the density of a 2D gas at the same temperature; the two estimates for the condensate fraction bracket the exact result. For the interacting case, we find 2D Hartree-Fock solutions whose density profiles coincide quite well with the PIMC column densities and whose predictions for the condensate fraction are again bracketed by the PIMC estimates.
Phase transition to Bose-Einstein condensation for a bosonic gas confined in a combined trap
Lue Baolong; Xiong Hongwei; Tan Xinzhou; Wang Bing; Cao Lijuan
2010-11-15
We present a study of phase transition to macroscopic superfluidity for an ultracold bosonic gas confined in a combined trap formed by a one-dimensional optical lattice and a harmonic potential, focusing on the critical temperature of this system and the interference patterns of the Bose gas released from the combined trap. Based on a semiclassical energy spectrum, we develop an analytic approximation for the critical temperature T{sub c}, and compare the analytic results with that obtained by numerical computations. For finite temperatures below T{sub c}, we calculate the interference patterns for both the normal gas and the superfluid gas. The total interference pattern shows a feature of 'peak on a peak'. As a comparison, we also present the experimentally observed interference patterns of {sup 87}Rb atoms released from a one-dimensional optical lattice system in accord with our theoretical model. Our observations are consistent with the theoretical results.
Non-equilibrium scale invariance and shortcuts to adiabaticity in a one-dimensional Bose gas.
Rohringer, W; Fischer, D; Steiner, F; Mazets, I E; Schmiedmayer, J; Trupke, M
2015-01-01
We present experimental evidence for scale invariant behaviour of the excitation spectrum in phase-fluctuating quasi-1d Bose gases after a rapid change of the external trapping potential. Probing density correlations in free expansion, we find that the temperature of an initial thermal state scales with the spatial extension of the cloud as predicted by a model based on adiabatic rescaling of initial eigenmodes with conserved quasiparticle occupation numbers. Based on this result, we demonstrate that shortcuts to adiabaticity for the rapid expansion or compression of the gas do not induce additional heating. PMID:25867640
Non-equilibrium scale invariance and shortcuts to adiabaticity in a one-dimensional Bose gas
Rohringer, W.; Fischer, D.; Steiner, F.; Mazets, I. E.; Schmiedmayer, J.; Trupke, M.
2015-01-01
We present experimental evidence for scale invariant behaviour of the excitation spectrum in phase-fluctuating quasi-1d Bose gases after a rapid change of the external trapping potential. Probing density correlations in free expansion, we find that the temperature of an initial thermal state scales with the spatial extension of the cloud as predicted by a model based on adiabatic rescaling of initial eigenmodes with conserved quasiparticle occupation numbers. Based on this result, we demonstrate that shortcuts to adiabaticity for the rapid expansion or compression of the gas do not induce additional heating. PMID:25867640
Dynamical correlation functions of the 1D Bose gas (Lieb Liniger model)
NASA Astrophysics Data System (ADS)
Caux, Jean-Sebastien; Calabrese, Pasquale
2007-03-01
The momentum- and frequency-dependent correlation functions (one-body and density-density) of the one-dimensional interacting Bose gas (Lieb-Liniger model) are obtained for any value (repulsive or attractive) of the interaction parameter. In the repulsive regime, we use the Algebraic Bethe Ansatz and the ABACUS method to reconstruct the correlators to high accuracy for systems with finite but large numbers of particles. For attractive interactions, the correlations are computed analytically. Our results are discussed, with particular emphasis on their applications to quasi-one-dimensional atomic gases.
Critical velocity for vortex nucleation in a finite-temperature Bose gas
NASA Astrophysics Data System (ADS)
Stagg, G. W.; Pattinson, R. W.; Barenghi, C. F.; Parker, N. G.
2016-02-01
We use classical field simulations of the homogeneous Bose gas to study the breakdown of superflow due to vortex nucleation past a cylindrical obstacle at finite temperature. Thermal fluctuations modify the vortex nucleation from the obstacle, turning antiparallel vortex lines (which would be nucleated at zero temperature) into wiggly lines, vortex rings, and even vortex tangles. We find that the critical velocity for vortex nucleation decreases with increasing temperature and scales with the speed of sound of the condensate, becoming zero at the critical temperature for condensation.
Cooperative scattering measurement of coherence in a spatially modulated Bose gas
Lu Bo; Vogt, Thibault; Liu Xinxing; Xu Xu; Zhou Xiaoji; Chen Xuzong
2011-05-15
Correlations of a Bose gas released from an optical lattice are measured using superradiant scattering. Conditions are chosen so that, after initial incident light pumping at the Bragg angle for diffraction, superradiant scattering into the Bragg diffracted mode is preponderant due to matter-wave amplification and mode competition. A temporal analysis of the superradiant scattering gain reveals periodical oscillations and damping due to the initial lack of coherence between lattice sites. Such damping is used for characterizing first-order spatial correlations in our system with a precision of one lattice period.
Superradiant Raman scattering in an ultracold Bose gas at finite temperature
NASA Astrophysics Data System (ADS)
Uys, H.; Meystre, P.
2008-06-01
We study superradiant Raman scattering from an ultracold, but finite, temperature Bose gas in a harmonic trap. Numerical simulations indicate the existence of distinct time scales associated with the decoherence of the condensed versus thermal fractions, and the concomitant preferred scattering from atoms in low-lying trap states in the regime where superradiance takes place on a time scale comparable to an inverse trap frequency. As a consequence the scattered atoms experience a modest reduction in temperature as compared to the unscattered atoms.
Finite Size Effect on the Specific Heat of a Bose Gas in Multi-filament Cables
NASA Astrophysics Data System (ADS)
Guijarro, G.; Solís, M. A.
2016-05-01
The specific heat for an ideal Bose gas confined in semi-infinite multi-filament cables is analyzed. We start with a Bose gas inside a semi-infinite tube of impenetrable walls and finite rectangular cross section. The internal filament structure is created by applying to the gas two, mutually perpendicular, finite Kronig-Penney delta potentials along the tube cross section, while particles are free to move perpendicular to the cross section. The energy spectrum accessible to the particles is obtained and introduced into the grand potential to calculate the specific heat of the system as a function of temperature for different values of the periodic structure parameters such as the cross-section area, the wall impenetrability, and the number of filaments. The specific heat as a function of temperature shows at least two maxima and one minimum. The main difference with respect to the infinite case is that the peak associated with the BE condensation becomes a smoothed maximum, namely there is not a jump in the specific heat derivative, whose temperature no longer represents a critical point.
Density fluctuations in a quasi-one-dimensional Bose gas as observed in free expansion
NASA Astrophysics Data System (ADS)
Gawryluk, Krzysztof; Gajda, Mariusz; Brewczyk, Mirosław
2015-10-01
We study, within the framework of the classical-field approximation, the density correlations of a weakly interacting expanding Bose gas for the whole range of temperatures across the Bose-Einstein condensation threshold. We focus on elongated quasi-one-dimensional systems where there is a huge discrepancy between the existing theory and experimental results [A. Perrin et al., Nat. Phys. 8, 195 (2012), 10.1038/nphys2212]. We find that the density correlation function is not reduced for temperatures below the critical one as it is predicted for the ideal gas or for a weakly interacting system within the Bogoliubov approximation. This behavior of the density correlations agrees with the above-mentioned experiment with the elongated system. Although the system was much larger than that studied here, we believe that the behavior of the density correlation function found there is quite generic. Our theoretical study indicates also large density fluctuations in the trap in the quasicondensate regime where only phase fluctuations were expected. We argue that the enhanced density fluctuations can originate in the presence of interactions in the system, or more precisely in the presence of spontaneous dark solitons in the elongated gas at thermal equilibrium.
Strong correlation effects in a two-dimensional Bose gas with quartic dispersion
NASA Astrophysics Data System (ADS)
Radić, Juraj; Natu, Stefan S.; Galitski, Victor
2015-06-01
Motivated by the fundamental question of the fate of interacting bosons in flat bands, we consider a two-dimensional Bose gas at zero temperature with an underlying quartic single-particle dispersion in one spatial direction. This type of band structure can be realized using the NIST scheme of spin-orbit coupling [Y.-J. Lin, K. Jiménez-Garcia, and I. B. Spielman, Nature (London) 471, 83 (2011), 10.1038/nature09887], in the regime where the lower-band dispersion has the form ɛk˜kx4/4 +ky2+... , or using the shaken lattice scheme of Parker et al. [C. V. Parker, L.-C. Ha, and C. Chin, Nat. Phys. 9, 769 (2013), 10.1038/nphys2789]. We numerically compare the ground-state energies of the mean-field Bose-Einstein condensate (BEC) and various trial wave functions, where bosons avoid each other at short distances. We discover that, at low densities, several types of strongly correlated states have an energy per particle (ɛ ), which scales with density (n ) as ɛ ˜n4 /3 , in contrast to ɛ ˜n for the weakly interacting Bose gas. These competing states include a Wigner crystal, quasicondensates described in terms of properly symmetrized fermionic states, and variational wave functions of Jastrow type. We find that one of the latter has the lowest energy among the states we consider. This Jastrow-type state has a strongly reduced, but finite, condensate fraction, and true off-diagonal long-range order, which suggests that the ground state of interacting bosons with quartic dispersion is a strongly correlated condensate reminiscent of superfluid helium-4. Our results show that even for weakly interacting bosons in higher dimensions, one can explore the crossover from a weakly coupled BEC to a strongly correlated condensate by simply tuning the single-particle dispersion or density.
Disappearance of quasiparticles in a Bose lattice gas
NASA Astrophysics Data System (ADS)
Chen, David; Meldgin, Carolyn; Russ, Philip; DeMarco, Brian; Mueller, Erich
2016-08-01
We use a momentum-space hole-burning technique implemented via stimulated Raman transitions to measure the momentum relaxation time for a gas of bosonic atoms trapped in an optical lattice. By changing the lattice potential depth, we observe a smooth crossover between relaxation times larger and smaller than the bandwidth. The latter condition violates the Mott-Ioffe-Regel bound and indicates a breakdown of the quasiparticle picture. We produce a simple kinetic model that quantitatively predicts these relaxation times. Finally, we introduce a cooling technique based upon our hole-burning technique.
Quantum Joule-Thomson effect in a saturated homogeneous Bose gas.
Schmidutz, Tobias F; Gotlibovych, Igor; Gaunt, Alexander L; Smith, Robert P; Navon, Nir; Hadzibabic, Zoran
2014-01-31
We study the thermodynamics of Bose-Einstein condensation in a weakly interacting quasihomogeneous atomic gas, prepared in an optical-box trap. We characterize the critical point for condensation and observe saturation of the thermal component in a partially condensed cloud, in agreement with Einstein's textbook picture of a purely statistical phase transition. Finally, we observe the quantum Joule-Thomson effect, namely isoenthalpic cooling of an (essentially) ideal gas. In our experiments this cooling occurs spontaneously, due to energy-independent collisions with the background gas in the vacuum chamber. We extract a Joule-Thomson coefficient μJT>10(9) K/bar, about 10 orders of magnitude larger than observed in classical gases. PMID:24580421
Quantum sine-Gordon dynamics on analogue curved spacetime in a weakly imperfect scalar Bose gas
NASA Astrophysics Data System (ADS)
Volkoff, T. J.; Fischer, Uwe R.
2016-07-01
Using the coherent state functional integral expression of the partition function, we show that the sine-Gordon model on an analogue curved spacetime arises as the effective quantum field theory for phase fluctuations of a weakly imperfect Bose gas on an incompressible background superfluid flow when these fluctuations are restricted to a subspace of the single-particle Hilbert space. We consider bipartitions of the single-particle Hilbert space relevant to experiments on ultracold bosonic atomic or molecular gases, including, e.g., restriction to high- or low-energy sectors of the dynamics and spatial bipartition corresponding to tunnel-coupled planar Bose gases. By assuming full unitary quantum control in the low-energy subspace of a trapped gas, we show that (1) appropriately tuning the particle number statistics of the lowest-energy mode partially decouples the low- and high-energy sectors, allowing any low-energy single-particle wave function to define a background for sine-Gordon dynamics on curved spacetime and (2) macroscopic occupation of a quantum superposition of two states of the lowest two modes produces an analogue curved spacetime depending on two background flows, with respective weights continuously dependent on the corresponding weights of the superposed quantum states.
Bose-Einstein Condensation in a Dilute Gas; the First 70 Years and Some Recent Experiments
NASA Astrophysics Data System (ADS)
Cornell, E. A.; Wieman, C. E.
Bose-Einstein condensation, or BEC, has a long and rich history dating from the early 1920s. In this article we will trace briefly over this history and some of the developments in physics that made possible our successful pursuit of BEC in a gas. We will then discuss what was involved in this quest. In this discussion we will go beyond the usual technical description to try and address certain questions that we now hear frequently, but are not covered in our past research papers. These are questions along the lines of ``How did you get the idea and decide to pursue it? Did you know it was going to work? How long did it take you and why?'' We will review some of our favorites from among the experiments we have carried out with BEC. There will then be a brief encore on why we are optimistic that BEC can be created with nearly any species of magnetically trappable atom. Throughout this article we will try to explain what makes BEC in a dilute gas so interesting, unique, and experimentally challenging.
NASA Technical Reports Server (NTRS)
Hsieh, K. C.; Eip, WING-H. AFKEPPLER, E. agrichter, a. k; Eip, WING-H. AFKEPPLER, E. agrichter, a. k
1986-01-01
The neutral gas density profile of comet Halley measured by the Neutral Gas Experiment on Vega 1 showed an asymmetry between the inbound and the outbound legs during the fly-by on 6 March 1986. The implications of this asymmetry are discussed, and it is shown how the asymmetry detected by NGE on Vega 1 can be traced back to regions on or near the nucleus to obtain their relative gas production activities at specific times of emission.
Emergence of coherence via transverse condensation in a uniform quasi-two-dimensional Bose gas.
Chomaz, Lauriane; Corman, Laura; Bienaimé, Tom; Desbuquois, Rémi; Weitenberg, Christof; Nascimbène, Sylvain; Beugnon, Jérôme; Dalibard, Jean
2015-01-01
Phase transitions are ubiquitous in our three-dimensional world. By contrast, most conventional transitions do not occur in infinite uniform low-dimensional systems because of the increased role of thermal fluctuations. The crossover between these situations constitutes an important issue, dramatically illustrated by Bose-Einstein condensation: a gas strongly confined along one direction of space may condense along this direction without exhibiting true long-range order in the perpendicular plane. Here we explore transverse condensation for an atomic gas confined in a novel trapping geometry, with a flat in-plane bottom, and we relate it to the onset of an extended (yet of finite-range) in-plane coherence. By quench crossing the transition, we observe topological defects with a mean number satisfying the universal scaling law predicted by Kibble-Zurek mechanism. The approach described can be extended to investigate the topological phase transitions that take place in planar quantum fluids. PMID:25635999
Emergent structure in a dipolar Bose gas in a one-dimensional lattice
NASA Astrophysics Data System (ADS)
Wilson, Ryan M.; Bohn, John L.
2011-02-01
We consider an ultracold dipolar Bose gas in a one-dimensional lattice. For a sufficiently large lattice recoil energy, such a system becomes a series of nonoverlapping Bose-Einstein condensates that interact via the long-range dipole-dipole interaction (ddi). We model this system via a coupled set of nonlocal Gross-Pitaevskii equations (GPEs) for lattices of both infinite and finite extent. We find significantly modified stability properties in the lattice due to the softening of a discrete roton-like mode, as well as “islands” in parameter space where biconcave densities are predicted to exist and that only exist in the presence of the other condensates on the lattice. We solve for the elementary excitations of the system to check the dynamical stability of these solutions and to uncover the nature of their collapse. By solving a coupled set of GPEs exactly on a full numeric grid, we show that this emergent biconcave structure can be realized in a finite lattice with atomic Cr52.
Excitations of the quantum phases of a two-component Bose gas in an optical lattice
NASA Astrophysics Data System (ADS)
Luxat, David L.
2004-03-01
We consider the dynamics of a two-component Bose gas in an optical lattice at T=0. As shown recently, the phase diagram has several quantum phase transitions, which arise because of intra-component correlations. We focus on the two-component Mott insulating (2MI) and the xy-ferromagnetic or super-counter-fluid (SCF) phases. Starting from the two-component Bose-Hubbard model, an effective Hamiltonian is used to study the excitations and collective modes of these two quantum phases. The two-particle excitations associated with the intra-component or spin dynamics are markedly different in these two phases, exhibiting a Goldstone mode in the SCF phase. These collective modes are the poles of the intra-component two-particle correlation function or transverse spin susceptibility. We show how this intra-component two-particle correlation function, and thus the two-particle excitation spectrum, may be measured using a two-photon Raman probe that couples the two components. We also show how a Raman probe may be used to study the single-particle excitations when it couples one of the components to another hyperfine state. This could provide a direct measure of the Mott insulating gap.
Thermodynamics of the Noninteracting Bose Gas in a Two-Dimensional Box
NASA Astrophysics Data System (ADS)
Li, Heqiu; Guo, Qiujiang; Jiang, Ji; Johnston, David C.
Bose-Einstein condensation (BEC) of a noninteracting Bose gas of N particles in a two-dimensional (2D) box with Dirichlet boundary conditions is studied. Confirming previous work, we find that BEC occurs at finite N at low temperatures T without the occurrence of a phase transition. We further show that the crossover temperature between weak and strong increases in BEC upon cooling is TE ~ 1 / log (N) at fixed area per boson, so in the thermodynamic limit there is no significant BEC in 2D at finite T. Calculations of thermodynamic properties versus T and area A are presented, including Helmholtz free energy, entropy S, pressure p, ratio of p to the energy density U / A , heat capacity at constant area CV and at constant pressure Cp, isothermal compressibility κT and thermal expansion coefficient αp, obtained using both the grand canonical ensemble (GCE) and canonical ensemble (CE) formalisms. The GCE formalism gives acceptable predictions for S, p, p / (U / A) , κT and αp at large N, T and A, but fails when N is small or BEC is significant, whereas the CE formalism gives accurate results even at low T and/or A where BEC occurs.
Striped ferronematic ground states in a spin-orbit coupled S = 1 Bose gas
NASA Astrophysics Data System (ADS)
Cole, William; Natu, Stefan; Li, Xiaopeng
2015-05-01
We theoretically establish the mean-field phase diagram of a homogeneous spin-1, spin-orbit coupled Bose gas as a function of the spin-dependent interaction parameter, the Raman coupling strength and the quadratic Zeeman shift. We find that the interplay between spin-orbit coupling and spin-dependent interactions leads to the occurrence of ferromagnetic or ferronematic phases which also break translational symmetry. For weak Raman coupling, increasing attractive spin-dependent interactions induces a transition from a uniform to a stripe XY ferromagnet with no nematic order. For repulsive spin-dependent interactions, however, we find a transition from an XY spin spiral phase with uniaxial nematic order, to a biaxial ferronematic, where the total density, spin vector and nematic director oscillate in real space. We investigate the stability of these phases against the quadratic Zeeman effect, which generally tends to favor uniform phases with either ferromagnetic or nematic order but not both. We discuss the relevance of our results to ongoing experiments on spin-orbit coupled, spinor Bose gases. We gratefully acknowledge support from JQI-NSF-PFC, AFOSR-MURI, and ARO-MURI (Atomtronics).
Emergent structure in a dipolar Bose gas in a one-dimensional lattice
Wilson, Ryan M.; Bohn, John L.
2011-02-15
We consider an ultracold dipolar Bose gas in a one-dimensional lattice. For a sufficiently large lattice recoil energy, such a system becomes a series of nonoverlapping Bose-Einstein condensates that interact via the long-range dipole-dipole interaction (ddi). We model this system via a coupled set of nonlocal Gross-Pitaevskii equations (GPEs) for lattices of both infinite and finite extent. We find significantly modified stability properties in the lattice due to the softening of a discrete roton-like mode, as well as ''islands'' in parameter space where biconcave densities are predicted to exist and that only exist in the presence of the other condensates on the lattice. We solve for the elementary excitations of the system to check the dynamical stability of these solutions and to uncover the nature of their collapse. By solving a coupled set of GPEs exactly on a full numeric grid, we show that this emergent biconcave structure can be realized in a finite lattice with atomic {sup 52}Cr.
Many-body physics in the classical-field description of a degenerate Bose gas
Wright, T. M.; Davis, M. J.; Proukakis, N. P.
2011-08-15
The classical-field formalism has been widely applied in the calculation of normal correlation functions, and the characterization of condensation, in finite-temperature Bose gases. Here we discuss the extension of this method to the calculation of more general correlations, including the so-called anomalous correlations of the field, without recourse to symmetry-breaking assumptions. Our method is based on the introduction of U(1)-symmetric classical-field variables analogous to the modified quantum ladder operators of number-conserving approaches to the degenerate Bose gas, and allows us to rigorously quantify the anomalous and non-Gaussian character of the field fluctuations. We compare our results for anomalous correlation functions with the predictions of mean-field theories, and demonstrate that the nonlinear classical-field dynamics incorporate a full description of many-body processes which modify the effective mean-field potentials experienced by condensate and noncondensate atoms. We discuss the role of these processes in shaping the condensate mode, and thereby demonstrate the consistency of the Penrose-Onsager definition of the condensate orbital in the classical-field equilibrium. We consider the contribution of various noncondensate-field correlations to the overall suppression of density fluctuations and interactions in the field, and demonstrate the distinct roles of phase and density fluctuations in the transition of the field to the normal phase.
Analytic solutions of the one-dimensional finite-coupling delta-function Bose gas
NASA Astrophysics Data System (ADS)
Forrester, P. J.; Frankel, N. E.; Makin, M. I.
2006-10-01
An intensive study for both the weak coupling and strong coupling limits of the ground state properties of this classic system is presented. Detailed results for specific values of finite N are given and from them results for general N are determined. We focus on the density matrix and concomitantly its Fourier transform, the occupation numbers, along with the pair correlation function and concomitantly its Fourier transform, the structure factor. These are the signature quantities of the Bose gas. One specific result is that for weak coupling a rational polynomial structure holds despite the transcendental nature of the Bethe equations. All these results are predicated on the Bethe ansatz and are built upon the seminal works of the past.
Quantum fluctuations of the vortex-lattice state in an ultrafast rotating Bose gas
Li Qiong; Feng Bo; Li Dingping
2011-04-15
Quantum fluctuations in an ultrafast rotating Bose gas at zero temperature are investigated. We calculate the condensate density perturbatively to show that no condensate is present in the thermodynamic limit. The excitation from Gaussian fluctuations around the mean-field solution causes infrared divergences in loop diagrams, nevertheless, in calculating the atom number density, the correlation functions and the free energy, we find that the sum of the divergences in the same loop order vanishes and we obtain finite physical quantities. The long-range correlation is explored and the algebraic decay exponent for the single-particle correlation function is obtained. The atom number density distribution is obtained at the one-loop level, which illustrates the quantum fluctuation effects to melt the mean-field vortex lattice. By the nonperturbative Gaussian variational method, we locate the spinodal point of the vortex-lattice state.
Quantum fluctuations of the vortex-lattice state in an ultrafast rotating Bose gas
NASA Astrophysics Data System (ADS)
Li, Qiong; Feng, Bo; Li, Dingping
2011-04-01
Quantum fluctuations in an ultrafast rotating Bose gas at zero temperature are investigated. We calculate the condensate density perturbatively to show that no condensate is present in the thermodynamic limit. The excitation from Gaussian fluctuations around the mean-field solution causes infrared divergences in loop diagrams, nevertheless, in calculating the atom number density, the correlation functions and the free energy, we find that the sum of the divergences in the same loop order vanishes and we obtain finite physical quantities. The long-range correlation is explored and the algebraic decay exponent for the single-particle correlation function is obtained. The atom number density distribution is obtained at the one-loop level, which illustrates the quantum fluctuation effects to melt the mean-field vortex lattice. By the nonperturbative Gaussian variational method, we locate the spinodal point of the vortex-lattice state.
Non-thermal fixed points and solitons in a one-dimensional Bose gas
NASA Astrophysics Data System (ADS)
Schmidt, Maximilian; Erne, Sebastian; Nowak, Boris; Sexty, Dénes; Gasenzer, Thomas
2012-07-01
Single-particle momentum spectra for a dynamically evolving one-dimensional Bose gas are analysed in the semi-classical wave limit. Representing one of the simplest correlation functions, these provide information on a possible universal scaling behaviour. Motivated by the previously discovered connection between (quasi-) topological field configurations, strong wave turbulence and non-thermal fixed points of quantum field dynamics, soliton formation is studied with respect to the appearance of transient power-law spectra. A random-soliton model is developed for describing the spectra analytically, and the analogies and differences between the emerging power laws and those found in a field theory approach to strong wave turbulence are discussed. The results open a new perspective on solitary wave dynamics from the point of view of critical phenomena far from thermal equilibrium and the possibility of studying this dynamics by experiment without the need for detecting solitons in situ.
Detecting different correlation regimes in a 1D Bose gas using in-situ absorption imaging
NASA Astrophysics Data System (ADS)
Salces-Carcoba, Francisco; Sugawa, Seiji; Yue, Yuchen; Putra, Andika; Spielman, Ian
2016-05-01
We present the realization of a single 1D Bose gas (1DBG) using a tightly focused Laguerre-Gauss beam as a waveguide for a 87Rb cloud. Axial confinement is provided by a weak trap that also sets the final density profile. A homogeneous 1DBG at T = 0 can be fully described by the dimensionless interaction parameter γ ~ 1/n, where n is the linear density; at sufficiently low densities the system becomes strongly interacting. An inhomogeneous (trapped) system can enter this description within the local density approximation (LDA) where the interaction parameter becomes position dependent γ(x) ~ 1/n(x). The system then displays different correlation regimes over its extension which can be detected by measuring its equation of state (EoS) or the density density correlations in real space using in-situ absorption imaging.
Thermodynamics of a Bose gas near the superfluid-Mott-insulator transition
NASA Astrophysics Data System (ADS)
Rançon, A.; Dupuis, N.
2012-10-01
We study the thermodynamics near the generic (density-driven) superfluid-Mott-insulator transition in the three-dimensional Bose-Hubbard model using the nonperturbative renormalization-group approach. At low energy, the physics is controlled by the Gaussian fixed point and becomes universal. Thermodynamic quantities can then be expressed in terms of the universal scaling functions of the dilute Bose gas universality class while the microscopic physics enters only via two nonuniversal parameters, namely, the effective mass m* and the “scattering length” a* of the elementary excitations at the quantum critical point between the superfluid and Mott-insulating phases. A notable exception is the condensate density in the superfluid phase which is proportional to the quasiparticle weight Zqp of the elementary excitations. The universal regime is defined by m*a*2T≪1 and m*a*2|δμ|≪1 or, equivalently, |n¯-n¯c|a*3≪1, where δμ=μ-μc is the chemical potential shift from the quantum critical point (μ=μc,T=0) and n¯-n¯c the doping with respect to the commensurate density n¯c of the T=0 Mott insulator. We compute Zqp, m*, and a* and find that they vary strongly with both the ratio t/U between hopping amplitude and onsite repulsion and the value of the (commensurate) density n¯c. Finally, we discuss the experimental observation of universality and the measurement of Zqp, m*, and a* in a cold-atomic gas in an optical lattice.
Modeling of neutral gas dynamics in high-density plasmas
NASA Astrophysics Data System (ADS)
Canupp, Patrick Wellington
This thesis describes a physical model of chemically reactive neutral gas flow and discusses numerical solutions of this model for the flow in an inductively coupled plasma etch reactor. To obtain these solutions, this research develops an efficient, implicit numerical method. As a result of the enhanced numerical stability of the scheme, large time steps advance the solution from initial conditions to a final steady state in fewer iterations and with less computational expense than simpler explicit methods. This method would incorporate suitably as a module in currently existing large scale plasma simulation tools. In order to demonstrate the accuracy of the numerical technique, this thesis presents results from two simulations of flows that possess theoretical solutions. The first case is the inviscid flow of a gas through a converging nozzle. A comparison of the numerical solution to isentropic flow theory shows that the numerical technique capably captures the essential flow features of this environment. The second case is the Couette flow of a gas between two parallel plates. The simulation results compare well with the exact solution for this flow. After establishing the accuracy of the numerical technique, this thesis discusses results for the flow of chemically reactive gases in a chlorine plasma etch reactor. This research examines the influence of the plasma on the neutral gas and the dynamics exhibited by the neutral gas in the reactor. This research finds that the neutral gas temperature strongly depends on the rate at which inelastic, electron-impact dissociation reactions occur and on atomic chlorine wall recombination rates. Additionally, the neutral gas Aow in the reactor includes a significant mass flux of etch product from the wafer surface. Resolution of these effects is useful for neutral gas simulation. Finally, this thesis demonstrates that continuum fluid models provide reasonable accuracy for these low pressure reactor flows due to the fact
Exact many-body ground states of a spin-1 Bose gas in Tonks-Girardeau limit
NASA Astrophysics Data System (ADS)
Jen, Hsiang-Hua; Yip, Sungkit
2016-05-01
We investigate the many-body ground states of a one-dimensional spin-1 Bose gas in Tonks-Girardeau (TG) limit. It is known that in TG gas limit of scalar bosons, the system becomes fermionized that bosons do not penetrate each other, and their wavefunctions take the form of noninteracting fermions. For a spin-1 Bose gas with an infinite atom-atom interaction in a harmonic trap, we construct the many-body ground states from the ones of a noninteracting Fermi gas along with the spin degrees of freedom. With zero magnetic field in the sector of Sz = 0 and in the regime of spin-incoherent Luttinger liquid where we assume negligible | a2 -a0 | , the interaction energy becomes spin-independent, and the many-body wavefunctions of a spin-1 Bose gas is also SU(3) invariant. The many-body wavefunction can be derived by calculating the weightings of spin functions using the conjugacy class G of SN symmetric group for the number of atoms N. We then study the first-order correlation function of the density matrix, from which we extract its momentum distribution. Finite-temperature calculation of the wavefunction by including orbital excitations is also investigated to compare with the case of spinless bosons. Ministry of Science and Technology, Taiwan, under Grant Number MOST-101-2112-M-001-021-MY3.
Neutral Gas Plasma Interactions in Space Plasma
NASA Astrophysics Data System (ADS)
Liou, Kan
A sounding rocket experiment, CRIT-II, involving the injection of shaped-charge barium in ionospheric plasma was conducted on May 7, 1989, to investigate Alfven's critical ionization velocity (CIV) hypothesis in space. The CRIT -II main payload was instrumented to make in situ measurements within the neutral barium beam. Among the detectors, UNH provided three energetic particle detectors and two photometers. The data from these detectors are presented. The typical features of the CIV effect were observed including plasma density enhancement, energy and momentum loss of a fast ion beam, excitation of plasma waves, and electron heating. It was found by optical observations that about 4% of the neutral barium was ionized. We believe that about one half of these barium ions were created by electron impact ionization --a CIV mechanism. The cross section for collisions between the barium atoms and the ionospheric oxygen ions was also calculated, assuming that the other half of ionizing barium ions were mainly generated by charge exchange, and found to be in the range from 1 times 10 ^{-17} cm^{-2} at a velocity of 4 km/s to 1 times 10^{-15} cm^{-2} at a velocity of 20 km/s. We also confirmed that the early observed ions were originally from the collisionally accelerated neutral oxygen which charge exchanges with the local oxygen ions. The early stage of electron heating was confirmed to be the result of lower hybrid instabilities excited by the precursor ion beam, using our quasi-linear model calculation. However, the wave spectrum during the passage of main streaming barium was found to be inconsistent with the lower hybrid instabilities proposed by current CIV theories. This could be the main reason for a relatively low ionization yield that one otherwise would expect from CRIT-II. A multi-fluid model of the wave dispersion relation for an unmagnetized beam with finite width in a magnetized plasma was also derived. We found that the nonuniform beam density effect
Thermodynamics of the noninteracting Bose gas in a two-dimensional box
NASA Astrophysics Data System (ADS)
Li, Heqiu; Guo, Qiujiang; Jiang, Ji; Johnston, D. C.
2015-12-01
Bose-Einstein condensation (BEC) of a noninteracting Bose gas of N particles in a two-dimensional box with Dirichlet boundary conditions is studied. Confirming previous work, we find that BEC occurs at finite N at low temperatures T without the occurrence of a phase transition. The conventionally-defined transition temperature TE for an infinite three-dimensional (3D) system is shown to correspond in a 2D system with finite N to a crossover temperature between a slow and rapid increase in the fractional boson occupation N0/N of the ground state with decreasing T . We further show that TE˜1 /logN at fixed area per boson, so in the thermodynamic limit there is no significant BEC in 2D at finite T . Thus, paradoxically, BEC only occurs in 2D at finite N with no phase transition associated with it. Calculations of thermodynamic properties versus T and area A are presented, including Helmholtz free energy, entropy S , pressure p , ratio of p to the energy density U /A , heat capacity at constant volume (area) CV and at constant pressure Cp, isothermal compressibility κT and thermal expansion coefficient αp, obtained using both the grand-canonical ensemble (GCE) and canonical ensemble (CE) formalisms. The GCE formalism gives acceptable predictions for S , p , p /(U /A ) , κT and αp at large N , T and A but fails for smaller values of these three parameters for which BEC becomes significant, whereas the CE formalism gives accurate results for all thermodynamic properties of finite systems even at low T and/or A where BEC occurs.
Thermodynamics of the noninteracting Bose gas in a two-dimensional box.
Li, Heqiu; Guo, Qiujiang; Jiang, Ji; Johnston, D C
2015-12-01
Bose-Einstein condensation (BEC) of a noninteracting Bose gas of N particles in a two-dimensional box with Dirichlet boundary conditions is studied. Confirming previous work, we find that BEC occurs at finite N at low temperatures T without the occurrence of a phase transition. The conventionally-defined transition temperature T(E) for an infinite three-dimensional (3D) system is shown to correspond in a 2D system with finite N to a crossover temperature between a slow and rapid increase in the fractional boson occupation N(0)/N of the ground state with decreasing T. We further show that T(E)∼1/logN at fixed area per boson, so in the thermodynamic limit there is no significant BEC in 2D at finite T. Thus, paradoxically, BEC only occurs in 2D at finite N with no phase transition associated with it. Calculations of thermodynamic properties versus T and area A are presented, including Helmholtz free energy, entropy S, pressure p, ratio of p to the energy density U/A, heat capacity at constant volume (area) C(V) and at constant pressure C(p), isothermal compressibility κ(T) and thermal expansion coefficient α(p), obtained using both the grand-canonical ensemble (GCE) and canonical ensemble (CE) formalisms. The GCE formalism gives acceptable predictions for S, p, p/(U/A), κ(T) and α(p) at large N, T and A but fails for smaller values of these three parameters for which BEC becomes significant, whereas the CE formalism gives accurate results for all thermodynamic properties of finite systems even at low T and/or A where BEC occurs. PMID:26764634
Nonequilibrium and local detection of the normal fraction of a trapped two-dimensional Bose gas
NASA Astrophysics Data System (ADS)
Carusotto, Iacopo; Castin, Yvan
2011-11-01
We propose a method to measure the normal fraction of a two-dimensional Bose gas, a quantity that generally differs from the noncondensed fraction. The idea is based on applying a spatially oscillating artificial gauge field to the atoms. The response of the atoms to the gauge field can be read out either mechanically from the deposited energy into the cloud or optically from the macroscopic optical properties of the atomic gas. The local nature of the proposed scheme allows one to reconstruct the spatial profile of the superfluid component; furthermore, the proposed method does not require having established thermal equilibrium in the gas in the presence of the gauge field. The theoretical description of the system is based on a generalization of the Dum-Olshanii theory of artificial gauge fields to the interacting many-body context. The efficiency of the proposed measurement scheme is assessed by means of classical field numerical simulations. An explicit atomic level scheme minimizing disturbing effects such as spontaneous emission and light shifts is proposed for 87Rb atoms.
Ates, C.; Moseley, Ch.; Ziegler, K.
2005-06-15
The characteristic oscillations of the density-density correlation function and the resulting structure factor are studied for a hard-core Bose gas in a one-dimensional lattice. Their wavelength diverges as the system undergoes a continuous transition from an incommensurate to a Mott insulating phase. The transition is associated with a unit static structure factor and a vanishing sound velocity. The qualitative picture is unchanged when a weak confining potential is applied to the system.
Mora, Christophe; Castin, Yvan
2009-05-01
We consider the grand potential Omega of a two-dimensional weakly interacting homogeneous Bose gas at zero temperature. Building on a number-conserving Bogoliubov method for a lattice model in the grand canonical ensemble, we calculate the next order term as compared to the Bogoliubov prediction, in a systematic expansion of Omega in powers of the parameter measuring the weakness of the interaction. Our prediction is in very good agreement with recent Monte Carlo calculations. PMID:19518848
NASA Technical Reports Server (NTRS)
Curtis, C. C.; Fan, C. Y.; Hsieh, K. C.; Hunten, D. M.; Ip, WING-H.; Keppler, E.; Richter, A. K.; Umlauft, G.; Afonin, V. V.; Dyachkov, A. V.
1986-01-01
Data from the Vega 1 permitted the determination of the total neutral gas density profile along the spacecraft trajectory. Discounting small fluctuations, the field ionization source instrument measured a density profile which varied approximately as the inverse radial distance squared. Data from the electron impact ionization instrument yielded a series of calibration points; e.g., the neutral density at 100,000 km is 10,000/cc. The combined data provide a calibrated total density profile, and imply a neutral production rate of 10 to the 30th power molecules/sec.
Breathing dynamics of a trapped impurity in a dipolar Bose gas
NASA Astrophysics Data System (ADS)
Hu, Fang-Qi; Xue, Ju-Kui
2014-09-01
With the consideration of impurity-bosons coupling and dipole-dipole interactions (DDI), we study the breathing dynamics of a harmonically trapped impurity interacting with a separately trapped background of dipolar Bose gas. By using the variational approach, the breathing equations, the breathing frequencies and the effective potentials governing the breathing dynamics of the impurity in dipolar gas are obtained. The effects of DDI, impurity-bosons interaction and external trapping potentials on breathing dynamics of impurity are discussed. We find that, because of the anisotropic and long-range characters of DDI, the effects of DDI, impurity-bosons interaction and external trapping potentials on breathing dynamics of impurity are strongly coupled. DDI has significant modification on dynamics, which depends on the external trapping potentials. For spherically symmetric external trapping, DDI makes the impurity more cigar-shaped along axial direction and the breathing oscillation in radial direction is suppressed by DDI. However, the effect of DDI on the breathing dynamics is weakened for cigar-shaped external trapping. Interestingly, for strong external pancake-shaped trapping, the symmetries of the breathing dynamics with respect to attractive and repulsive impurity-bosons coupling recover. Especially, for some critical value of impurity-bosons coupling, the breathing dynamics undergo a sudden quench.
Non-equilibrium dynamics around integrability in a one-dimensional two-component Bose gas
NASA Astrophysics Data System (ADS)
van Druten, Nicolaas; Wicke, Philipp; Whitlock, Shannon
2011-05-01
We investigate a one-dimensional two-component Bose gas near the point of state-independent interactions. At this specific point the system is integrable, in the sense that exact (thermodynamic) Bethe Ansatz solutions can be applied locally. In the experiments, we employ an atom chip and the magnetically trappable clock states in 87Rb. State-dependent potentials are generated by using the polarization dependence of radio-frequency dressing. We show that this allows us to continuously and dynamically tune both the local interactions and the global trapping potential. The experimentally accessible range in interactions includes the region around the integrability point. We study the spin motion that follows upon a sudden change in the system, a quantum quench. When starting from a low-temperature, quantum-degenerate gas in the weakly interacting regime, good agreement with a Gross-Pitaevskii description is found. The experiment allows exploring regimes that go beyond such a description and opens up a novel route to the study of the relation between non-equilibrium dynamics, thermalization and the making and breaking of integrability in quantum many-body physics. Supported by FOM, NWO and EU
Black hole thermodynamics as seen through a microscopic model of a relativistic Bose gas
NASA Astrophysics Data System (ADS)
Skákala, Jozef; Shankaranarayanan, S.
2016-02-01
Equations of gravity when projected on spacetime horizons resemble Navier-Stokes equation of a fluid with a specific equation of state [T. Damour, Surface effects of black hole physics, in Proc. M. Grossman Meeting (North Holland, 1982), p. 587, T. Padmanabhan, Phys. Rev. D 83 (2011) 044048, arXiv:gr-qc/1012.0119, S. Kolekar and T. Padmanabhan, Phys. Rev. D 85 (2011) 024004, arXiv:gr-qc/1012.5421]. We show that this equation of state describes massless ideal relativistic gas. We use these results, and build an explicit and simple molecular model of the fluid living on the Schwarzschild and Reissner-Nordström black hole horizons. For the spin zero Bose gas, our model makes two predictions: (i) The horizon area/entropy is quantized as given by Bekenstein’s quantization rule, (ii) The model explains the correct type of proportionality between horizon area and entropy. However, for the physically relevant range of parameters, the proportionality constant is never equal to 1/4.
Integral Transport Analysis of Ions Flowing Through Neutral Gas
NASA Astrophysics Data System (ADS)
Emmert, Gilbert; Santarius, John; Alderson, Eric
2011-10-01
A computational model for the flow of energetic ions through a background neutral gas is being developed. Its essence is to consider reactions as creating a new source of ions or neutrals if the energy or charge state of the resulting particle is changed. For a given source boundary condition, the creation and annihilation of the various species is formulated as a 1-D Volterra integral equation that can quickly be solved numerically by finite differences. The current work focuses on radially converging, multiple-pass, 1-D ion flow through neutral gas and a nearly transparent, concentric anode and cathode pair in spherical geometry. This has been implemented as a computer code for atomic (3He, 3He+) and molecular (D, D2, D-, D+, D2+, D3+) ion and neutral species, and applied to modeling inertial-electrostatic confinement (IEC) devices. The inclusion of negative ions is a recent development. The code yields detailed energy spectra of the various ions and energetic neutral species. Comparisons with experimental data for a University of Wisconsin IEC device will be presented. Research supported by US Dept of Energy, grant DE-FG02-04ER54745, and by the Grainger Foundation.
Quantum states of dark solitons in the 1D Bose gas
NASA Astrophysics Data System (ADS)
Sato, Jun; Kanamoto, Rina; Kaminishi, Eriko; Deguchi, Tetsuo
2016-07-01
We present a series of quantum states that are characterized by dark solitons of the nonlinear Schrödinger equation (i.e. the Gross–Pitaevskii equation) for the one-dimensional Bose gas interacting through the repulsive delta-function potentials. The classical solutions satisfy the periodic boundary conditions and we simply call them classical dark solitons. Through exact solutions we show corresponding aspects between the states and the solitons in the weak coupling case: the quantum and classical density profiles completely overlap with each other not only at an initial time but also at later times over a long period of time, and they move together with the same speed in time; the matrix element of the bosonic field operator between the quantum states has exactly the same profiles of the square amplitude and the phase as the classical complex scalar field of a classical dark soliton not only at the initial time but also at later times, and the corresponding profiles move together for a long period of time. We suggest that the corresponding properties hold rigorously in the weak coupling limit. Furthermore, we argue that the lifetime of the dark soliton-like density profile in the quantum state becomes infinitely long as the coupling constant approaches zero, by comparing it with the quantum speed limit time. Thus, we call the quantum states quantum dark soliton states.
Quantum particle-number fluctuations in a two-component Bose gas in a double-well potential
Zin, Pawel; Oles, Bartlomiej; Sacha, Krzysztof
2011-09-15
A two-component Bose gas in a double-well potential with repulsive interactions may undergo a phase separation transition if the interspecies interactions outweigh the intraspecies ones. We analyze the transition in the strong interaction limit within the two-mode approximation. Numbers of particles in each potential well are equal and constant. However, at the transition point, the ground state of the system reveals huge fluctuations of numbers of particles belonging to the different gas components; that is, the probability for observation of any mixture of particles in each potential well becomes uniform.
Beau, Mathieu; Savoie, Baptiste
2014-05-15
In this paper, we rigorously investigate the reduced density matrix (RDM) associated to the ideal Bose gas in harmonic traps. We present a method based on a sum-decomposition of the RDM allowing to treat not only the isotropic trap, but also general anisotropic traps. When focusing on the isotropic trap, the method is analogous to the loop-gas approach developed by Mullin [“The loop-gas approach to Bose-Einstein condensation for trapped particles,” Am. J. Phys. 68(2), 120 (2000)]. Turning to the case of anisotropic traps, we examine the RDM for some anisotropic trap models corresponding to some quasi-1D and quasi-2D regimes. For such models, we bring out an additional contribution in the local density of particles which arises from the mesoscopic loops. The close connection with the occurrence of generalized-Bose-Einstein condensation is discussed. Our loop-gas-like approach provides relevant information which can help guide numerical investigations on highly anisotropic systems based on the Path Integral Monte Carlo method.
Observational Constraints on a Pluto Torus of Circumsolar Neutral Gas
NASA Astrophysics Data System (ADS)
Hill, M. E.; Kollmann, P.; McNutt, R. L., Jr.; Smith, H. T.; Bagenal, F.; Brown, L. E.; Elliott, H. A.; Haggerty, D. K.; Horanyi, M.; Krimigis, S. M.; Kusterer, M. B.; Lisse, C. M.; McComas, D. J.; Piquette, M. R.; Sidrow, E. J.; Strobel, D. F.; Szalay, J.; Vandegriff, J. D.; Zirnstein, E.; Ennico Smith, K.; Olkin, C.; Weaver, H. A., Jr.; Young, L. A.; Stern, S. A.
2015-12-01
We present the concept of a neutral gas torus surrounding the Sun, aligned with Pluto's orbit, and place observational constraints based primarily on comparison of New Horizons (NH) measurements with a 3-D Monte Carlo model adapted from analogous satellite tori surrounding Saturn and Jupiter. Such a torus, or perhaps partial torus, should result from neutral N2 escaping from Pluto's exosphere. Unlike other more massive planets closer to the Sun, neutrals escape Pluto readily owing, e.g., to the high thermal speed relative to the escape velocity. Importantly, escaped neutrals have a long lifetime due to the great distance from the Sun, ~100 years for photoionization of N2 and ~180 years for photoionization of N, which results from disassociated N2. Despite the lengthy 248-year orbit, these long e-folding lifetimes may allow an enhanced neutral population to form an extended gas cloud that modifies the N2 spatial profile near Pluto. These neutrals are not directly observable by NH but once ionized N2+ or N+ are picked up by the solar wind, reaching ~50 keV, making these pickup ions (PUIs) detectable by NH's Pluto Energetic Particle Spectrometer Science Investigation (PEPSSI) instrument. PEPSSI observations analyzed to date may constrain the N2 density; the remaining ~95% of the encounter data, scheduled for downlink in August along with similarly anticipated data from the Solar Wind Around Pluto (SWAP) experiment, should help determine the Pluto outgassing rates. Measurements from SWAP include the solar wind speed, a quantity that greatly enhances PUI studies by enabling us to directly account for the PUI distribution's sensitive dependence on plasma speed. Note that anomalous cosmic ray Si observed at Voyager is overabundant by a factor of ~3000 relative to interstellar composition. This might be related to "outer source" PUIs, but the fact that N2 and Si are indistinguishable in many instruments could mean that N2 is actually driving this apparent Si discrepancy.
Miniaturized Argon Plasma: Neutral Gas Characteristics in Dielectric Barrier Discharge
NASA Astrophysics Data System (ADS)
Ashraf, Farahat
2015-10-01
Plasma-neutral gas dynamics is computationally investigated in a miniaturized microthruster that encloses Ar and contains dielectric material sandwiched between two metal plates using a two-dimensional plasma mode. Spatial and temporal plasma properties are investigated by solving the Poisson equation with the conservation equations of charged and excited neutral plasma species using the COMSOL Multiphysics 4.2b. The microthruster property is found to depend on the secondary electron emission coefficient. The electrohydrodynamic force (EHD) is calculated and found to be significant in the sheath area near the dielectric layer and is found to affect gas flow dynamics including the Ar excimer formation and density. The effects of pressure and secondary emission coefficient are discussed. The plasma characteristics are affected by small changes in the secondary electron emission coefficient, which could result from the dielectric erosion and aging, and is found to affect the electrohydrodynamic force produced when the microthruster is used to produce thrust for a small spacecraft.
Neutral gas and diffuse interstellar bands in the LMC
NASA Technical Reports Server (NTRS)
Danks, Anthony C.; Penprase, Brian
1994-01-01
Tracing the dynamics of the neutral gas and observing diffuse interstellar bands in the LMC (Large Magellanic Cloud) was the focus of this study. The S/N values, a Quartz lamp exposure, a T horium Argon Comparision lamp exposure, and spectral plots for each star observed were taken. The stars observed were selected to sample the 30 Dor vicinty. NaI absorption profiles are included.
A UNIVERSAL NEUTRAL GAS PROFILE FOR NEARBY DISK GALAXIES
Bigiel, F.; Blitz, L.
2012-09-10
Based on sensitive CO measurements from HERACLES and H I data from THINGS, we show that the azimuthally averaged radial distribution of the neutral gas surface density ({Sigma}{sub HI}+ {Sigma}{sub H2}) in 33 nearby spiral galaxies exhibits a well-constrained universal exponential distribution beyond 0.2 Multiplication-Sign r{sub 25} (inside of which the scatter is large) with less than a factor of two scatter out to two optical radii r{sub 25}. Scaling the radius to r{sub 25} and the total gas surface density to the surface density at the transition radius, i.e., where {Sigma}{sub HI} and {Sigma}{sub H2} are equal, as well as removing galaxies that are interacting with their environment, yields a tightly constrained exponential fit with average scale length 0.61 {+-} 0.06 r{sub 25}. In this case, the scatter reduces to less than 40% across the optical disks (and remains below a factor of two at larger radii). We show that the tight exponential distribution of neutral gas implies that the total neutral gas mass of nearby disk galaxies depends primarily on the size of the stellar disk (influenced to some degree by the great variability of {Sigma}{sub H2} inside 0.2 Multiplication-Sign r{sub 25}). The derived prescription predicts the total gas mass in our sub-sample of 17 non-interacting disk galaxies to within a factor of two. Given the short timescale over which star formation depletes the H{sub 2} content of these galaxies and the large range of r{sub 25} in our sample, there appears to be some mechanism leading to these largely self-similar radial gas distributions in nearby disk galaxies.
The relation between the Gross Pitaevskii and Bogoliubov descriptions of a dilute Bose gas
NASA Astrophysics Data System (ADS)
Leggett, A. J.
2003-07-01
I formulate a 'pseudo-paradox' in the theory of a dilute Bose gas with repulsive interactions: the standard expression for the ground state energy within the Gross Pitaevskii (GP) approximation is lower than that in the Bogoliubov approximation, and hence, by the standard variational argument, the former should prima facie be a better approximation than the latter to the true ground state—a conclusion which is of course opposite to the established wisdom concerning this problem. It is shown that the pseudo-paradox is (unsurprisingly) resolved by a correct transcription of the two-body scattering theory to the many-body case; however, contrary to what appears to be a widespread belief, the resolution has nothing to do with any spurious ultraviolet divergences which result from the replacement of the true interatomic potential by a delta-function pseudopotential. Rather, it relates to an infrared divergence which has the consequence that (a) the most obvious form of the GP 'approximation' actually does not correspond to any well-defined ansatz for the many-body wavefunction, and (b) that the 'best shot' at such a wavefunction always produces an energy which exceeds, or at best equals, that calculated in the Bogoliubov approximation. In fact, the necessity of the latter may be seen as a consequence of the need to reduce the Fock term in the energy, which is absent in the two-particle problem but dominant in the many-body case; it does this by increasing the density correlations, at distances less than or approximately equal to the correlation length xi, above the value extrapolated from the two-body case. As a by-product I devise an alternative formulation of the Bogoliubov approximation which does not require the explicit replacement of the true interatomic potential by a delta-function pseudopotential.
Analytical theory of mesoscopic Bose-Einstein condensation in an ideal gas
NASA Astrophysics Data System (ADS)
Kocharovsky, Vitaly V.; Kocharovsky, Vladimir V.
2010-03-01
We find the universal structure and scaling of the Bose-Einstein condensation (BEC) statistics and thermodynamics (Gibbs free energy, average energy, heat capacity) for a mesoscopic canonical-ensemble ideal gas in a trap with an arbitrary number of atoms, any volume, and any temperature, including the whole critical region. We identify a universal constraint-cutoff mechanism that makes BEC fluctuations strongly non-Gaussian and is responsible for all unusual critical phenomena of the BEC phase transition in the ideal gas. The main result is an analytical solution to the problem of critical phenomena. It is derived by, first, calculating analytically the universal probability distribution of the noncondensate occupation, or a Landau function, and then using it for the analytical calculation of the universal functions for the particular physical quantities via the exact formulas which express the constraint-cutoff mechanism. We find asymptotics of that analytical solution as well as its simple analytical approximations which describe the universal structure of the critical region in terms of the parabolic cylinder or confluent hypergeometric functions. The obtained results for the order parameter, all higher-order moments of BEC fluctuations, and thermodynamic quantities perfectly match the known asymptotics outside the critical region for both low and high temperature limits. We suggest two- and three-level trap models of BEC and find their exact solutions in terms of the cutoff negative binomial distribution (which tends to the cutoff gamma distribution in the continuous limit) and the confluent hypergeometric distribution, respectively. Also, we present an exactly solvable cutoff Gaussian model of BEC in a degenerate interacting gas. All these exact solutions confirm the universality and constraint-cutoff origin of the strongly non-Gaussian BEC statistics. We introduce a regular refinement scheme for the condensate statistics approximations on the basis of the
Neutral Gas and Ion Measurements by the CONTOUR Mission
NASA Technical Reports Server (NTRS)
Mahaffy, Paul R.; Niemann, Hasso B. (Technical Monitor)
2002-01-01
The Neutral Gas and Ion Mass Spectrometer (NGIMS) on the Comet Nucleus Tour (CONTOUR) Mission will measure the chemical and isotopic composition of neutral and ion species in the coma of comet Encke and the subsequent targets of this mission. Currently the second target of this mission is comet Schwassmann-Wachmann 3. This neutral gas and ion data together with complementary data from the dust analyzer and the imaging spectrometer is designed to allow a broad characterization of the molecular and elemental composition of each cometary nucleus. These experiments enable the study of the of the likely variations in chemical conditions present in different regions of the early solar nebula where the comets formed. With these experiments we will also test ideas about cometary contributions of organics, water, and other volatiles to the inner planets. The CONTOUR NGIMS data set from multiple comets is expected to provide an important extension of to the only other detailed in situ data set from a close flyby of a nucleus, that from Halley. CONTOUR will extend this measurement of an Oort cloud comet to the class of short period comets thought to originate in the Kuiper belt. This data will complement the detailed measurements to be carried out at a single nucleus by the Rosetta Mission.
FK-DLR properties of a quantum multi-type Bose-gas with a repulsive interaction
Suhov, Y.; Stuhl, I.
2014-08-01
The paper extends earlier results from Suhov and Kelbert [“FK-DLR states of a quantum Bose-gas with a hardcore interaction,” http://arxiv.org/abs/arXiv:1304.0782 ] and Suhov et al. [“Shift-invariance for FK-DLR states of a 2D quantum Bose-gas,” http://arxiv.org/abs/arXiv:1304.4177 ] about infinite-volume quantum bosonic states (FK-DLR states) to the case of multi-type particles with non-negative interactions. (An example is a quantum Widom–Rowlinson model.) Following the strategy from Suhov and Kelbert and Suhov et al., we establish that, for the values of fugacity zϵ(0, 1) and inverse temperature β > 0, finite-volume Gibbs states form a compact family in the thermodynamic limit. Next, in dimension two we show that any limit-point state (an FK-DLR state in the terminology adopted in Suhov and Kelbert and Suhov et al.) is translation-invariant.
Kochereshko, Vladimir P.; Durnev, Mikhail V.; Besombes, Lucien; Mariette, Henri; Sapega, Victor F.; Askitopoulos, Alexis; Savenko, Ivan G.; Liew, Timothy C. H.; Shelykh, Ivan A.; Platonov, Alexey V.; Tsintzos, Simeon I.; Hatzopoulos, Z.; Savvidis, Pavlos G.; Kalevich, Vladimir K.; Afanasiev, Mikhail M.; Lukoshkin, Vladimir A.; Schneider, Christian; Amthor, Matthias; Metzger, Christian; Kamp, Martin; Hoefling, Sven; Lagoudakis, Pavlos; Kavokin, Alexey
2016-01-01
Light amplification by stimulated emission of radiation, well-known for revolutionising photonic science, has been realised primarily in fermionic systems including widely applied diode lasers. The prerequisite for fermionic lasing is the inversion of electronic population, which governs the lasing threshold. More recently, bosonic lasers have also been developed based on Bose-Einstein condensates of exciton-polaritons in semiconductor microcavities. These electrically neutral bosons coexist with charged electrons and holes. In the presence of magnetic fields, the charged particles are bound to their cyclotron orbits, while the neutral exciton-polaritons move freely. We demonstrate how magnetic fields affect dramatically the phase diagram of mixed Bose-Fermi systems, switching between fermionic lasing, incoherent emission and bosonic lasing regimes in planar and pillar microcavities with optical and electrical pumping. We collected and analyzed the data taken on pillar and planar microcavity structures at continuous wave and pulsed optical excitation as well as injecting electrons and holes electronically. Our results evidence the transition from a Bose gas to a Fermi liquid mediated by magnetic fields and light-matter coupling. PMID:26822483
Lasing in Bose-Fermi mixtures.
Kochereshko, Vladimir P; Durnev, Mikhail V; Besombes, Lucien; Mariette, Henri; Sapega, Victor F; Askitopoulos, Alexis; Savenko, Ivan G; Liew, Timothy C H; Shelykh, Ivan A; Platonov, Alexey V; Tsintzos, Simeon I; Hatzopoulos, Z; Savvidis, Pavlos G; Kalevich, Vladimir K; Afanasiev, Mikhail M; Lukoshkin, Vladimir A; Schneider, Christian; Amthor, Matthias; Metzger, Christian; Kamp, Martin; Hoefling, Sven; Lagoudakis, Pavlos; Kavokin, Alexey
2016-01-01
Light amplification by stimulated emission of radiation, well-known for revolutionising photonic science, has been realised primarily in fermionic systems including widely applied diode lasers. The prerequisite for fermionic lasing is the inversion of electronic population, which governs the lasing threshold. More recently, bosonic lasers have also been developed based on Bose-Einstein condensates of exciton-polaritons in semiconductor microcavities. These electrically neutral bosons coexist with charged electrons and holes. In the presence of magnetic fields, the charged particles are bound to their cyclotron orbits, while the neutral exciton-polaritons move freely. We demonstrate how magnetic fields affect dramatically the phase diagram of mixed Bose-Fermi systems, switching between fermionic lasing, incoherent emission and bosonic lasing regimes in planar and pillar microcavities with optical and electrical pumping. We collected and analyzed the data taken on pillar and planar microcavity structures at continuous wave and pulsed optical excitation as well as injecting electrons and holes electronically. Our results evidence the transition from a Bose gas to a Fermi liquid mediated by magnetic fields and light-matter coupling. PMID:26822483
NASA Astrophysics Data System (ADS)
Kochereshko, Vladimir P.; Durnev, Mikhail V.; Besombes, Lucien; Mariette, Henri; Sapega, Victor F.; Askitopoulos, Alexis; Savenko, Ivan G.; Liew, Timothy C. H.; Shelykh, Ivan A.; Platonov, Alexey V.; Tsintzos, Simeon I.; Hatzopoulos, Z.; Savvidis, Pavlos G.; Kalevich, Vladimir K.; Afanasiev, Mikhail M.; Lukoshkin, Vladimir A.; Schneider, Christian; Amthor, Matthias; Metzger, Christian; Kamp, Martin; Hoefling, Sven; Lagoudakis, Pavlos; Kavokin, Alexey
2016-01-01
Light amplification by stimulated emission of radiation, well-known for revolutionising photonic science, has been realised primarily in fermionic systems including widely applied diode lasers. The prerequisite for fermionic lasing is the inversion of electronic population, which governs the lasing threshold. More recently, bosonic lasers have also been developed based on Bose-Einstein condensates of exciton-polaritons in semiconductor microcavities. These electrically neutral bosons coexist with charged electrons and holes. In the presence of magnetic fields, the charged particles are bound to their cyclotron orbits, while the neutral exciton-polaritons move freely. We demonstrate how magnetic fields affect dramatically the phase diagram of mixed Bose-Fermi systems, switching between fermionic lasing, incoherent emission and bosonic lasing regimes in planar and pillar microcavities with optical and electrical pumping. We collected and analyzed the data taken on pillar and planar microcavity structures at continuous wave and pulsed optical excitation as well as injecting electrons and holes electronically. Our results evidence the transition from a Bose gas to a Fermi liquid mediated by magnetic fields and light-matter coupling.
Interaction between single neutral atoms and an ultracold atomic gas
NASA Astrophysics Data System (ADS)
Bauer, Michael; Kindermann, Farina; Franzreb, Philipp; Gänger, Benjamin; Phieler, Jan; Chakrabarti, Shrabana; Spethmann, Nicolas; Meschede, Dieter; Widera, Artur
2013-05-01
Recently hybrid systems immersing single atoms in a many body system have been a subject of intense interest. Here we present an example of controlled doping of an ultracold Rubidium cloud with single neutral Cesium impurity atoms. We observe thermalization of ``hot'' Cs atoms by elastic interaction with an ultracold Rb gas, employing different schemes of measuring the impurities' energy distribution. In addition we present a concept and review the current status of a new setup, which will be capable of breeding an all optical BEC in a few seconds. Our setup will feature mechanisms for independently manipulating and imaging both single atoms and the BEC, thereby providing an unrivaled level of control over impurities in a quantum gas. Possible research directions include the investigation of coherent impurity physics and the creation and characterization of polarons in a BEC. Funded by the ERC, starting grant project QuantumProbe.
Bose-Einstein condensation of photons in an ideal atomic gas
NASA Astrophysics Data System (ADS)
Kruchkov, Alex; Slyusarenko, Yurii
2013-07-01
We study peculiarities of Bose-Einstein condensation of photons that are in thermodynamic equilibrium with atoms of noninteracting gases. General equations of the thermodynamic equilibrium of the system under study are obtained. We examine solutions of these equations in the case of high temperatures, when the atomic components of the system can be considered as nondegenerated ideal gases of atoms, and the photonic component can form a state with the Bose condensate. Transcendental equation for transition temperature and expression for the density of condensed photons in the considered system are derived. We also obtain analytical solutions of the equation for the critical temperature in a number of particular cases. The existence of two regimes of Bose condensation of photons, which differ significantly in nature of transition temperature dependence on the total density of photons pumped into the system, is revealed. In one case, this dependence is a traditional fractional-power law, and in another one it is the logarithmic law. Applying numerical methods, we determine boundaries of existence and implementation conditions for different regimes of condensation depending on the physical parameters of the system under study. We also show that for a large range of physical systems that are in equilibrium with photons (from ultracold gases of alkali metals to certain types of ideal plasma), the condensation of photons should occur according to the logarithmic regime.
Liu, Xia-Ji Hu, Hui
2014-12-15
We theoretically investigate first and second sound of a two-dimensional (2D) atomic Bose gas in harmonic traps by solving Landau’s two-fluid hydrodynamic equations. For an isotropic trap, we find that first and second sound modes become degenerate at certain temperatures and exhibit typical avoided crossings in mode frequencies. At these temperatures, second sound has significant density fluctuation due to its hybridization with first sound and has a divergent mode frequency towards the Berezinskii–Kosterlitz–Thouless (BKT) transition. For a highly anisotropic trap, we derive the simplified one-dimensional hydrodynamic equations and discuss the sound-wave propagation along the weakly confined direction. Due to the universal jump of the superfluid density inherent to the BKT transition, we show that the first sound velocity exhibits a kink across the transition. These predictions might be readily examined in current experimental setups for 2D dilute Bose gases with a sufficiently large number of atoms, where the finite-size effect due to harmonic traps is relatively weak.
NASA Astrophysics Data System (ADS)
Berman, Oleg L.; Kezerashvili, Roman Ya.
2016-06-01
The high-temperature superfluidity of two-dimensional dipolar excitons in two parallel transition metal dichalcogenide (TMDC) layers is predicted. We study Bose-Einstein condensation in the two-component system of dipolar A and B excitons. The effective mass, energy spectrum of the collective excitations, the sound velocity, and critical temperature are obtained for different TMDC materials. It is shown that in the Bogoliubov approximation, the sound velocity in the two-component dilute exciton Bose gas is always larger than in any one-component exciton system. The difference between the sound velocities for two-component and one-component dilute gases is caused by the fact that the sound velocity for a two-component system depends on the reduced mass of A and B excitons, which is always smaller than the individual mass of A or B exciton. Due to this fact, the critical temperature Tc for superfluidity for the two-component exciton system in a TMDC bilayer is about one order of magnitude higher than Tc in any one-component exciton system. We propose to observe the superfluidity of two-dimensional dipolar excitons in two parallel TMDC layers, which causes two opposite superconducting currents in each TMDC layer.
Cherny, Alexander Yu.; Brand, Joachim
2006-02-15
Correlation functions related to the dynamic density response of the one-dimensional Bose gas in the model of Lieb and Liniger are calculated. An exact Bose-Fermi mapping is used to work in a fermionic representation with a pseudopotential Hamiltonian. The Hartree-Fock and generalized random phase approximations are derived and the dynamic polarizability is calculated. The results are valid to first order in 1/{gamma}, where {gamma} is Lieb-Liniger coupling parameter. Approximations for the dynamic and static structure factor at finite temperature are presented. The results preclude superfluidity at any finite temperature in the large-{gamma} regime due to the Landau criterion. Due to the exact Bose-Fermi duality, the results apply for spinless fermions with weak p-wave interactions as well as for strongly interacting bosons.
Role of neutral gas in scrape-off layer tokamak plasma
Bisai, N.; Jha, R.; Kaw, P. K.
2015-02-15
Neutral gas in scrape-off layer of tokamak plasma plays an important role as it can modify the plasma turbulence. In order to investigate this, we have derived a simple two-dimensional (2D) model that consists of electron continuity, quasi-neutrality, and neutral gas continuity equations using neutral gas ionization and charge exchange processes. Simple 1D profile analysis predicts neutral penetration depth into the plasma. Growth rate obtained from the linear theory has been presented. The 2D model equations have been solved numerically. It is found that the neutral gas reduces plasma fluctuations and shifts spectrum of the turbulence towards lower frequency side. The neutral gas fluctuation levels have been presented. The numerical results have been compared with Aditya tokamak experiments.
Star Formation as a Function of Neutral Hydrogen Gas Density in Local Group Galaxies
NASA Astrophysics Data System (ADS)
Carlson, Erika K.; Madore, Barry F.; Freedman, Wendy L.
2016-06-01
We present a study of the efficiency and timescales of star formation as a function of local neutral hydrogen gas density in four Local Group galaxies: M33, NGC 6822, the LMC, and the SMC. In this work, we conceptualize the process of star formation as a cycle of two major phases – (1) a gas dynamics phase in which neutral hydrogen gas coalesces into clouds, and (2) a stellar phase in which stars have formed and interrupt further gas coalescence during their active lifetimes. By examining the spatial distribution and number densities of stars on maps of neutral hydrogen, we estimate the timescale of the gas coalescence phase relative to the timescale of the stellar phase and infer an efficiency of star formation as a function of neutral hydrogen gas density. From these timescales and efficiencies, we will calculate star formation rates as a function of neutral hydrogen gas density in these galaxies.
Vortex Quantum Creation and Winding Number Scaling in a Quenched Spinor Bose Gas
Uhlmann, Michael; Schuetzhold, Ralf; Fischer, Uwe R.
2007-09-21
Motivated by a recent experiment, we study nonequilibrium quantum phenomena taking place in the quench of a spinor Bose-Einstein condensate through the zero-temperature phase transition separating the polar paramagnetic and planar ferromagnetic phases. We derive the typical spin domain structure (correlations of the effective magnetization) created by the quench arising due to spin-mode quantum fluctuations, and we establish a sample-size scaling law for the creation of spin vortices, which are topological defects in the transverse magnetization.
Spontaneous Demagnetization of a Dipolar Spinor Bose Gas in an Ultralow Magnetic Field
Pasquiou, B.; Marechal, E.; Bismut, G.; Pedri, P.; Vernac, L.; Gorceix, O.; Laburthe-Tolra, B.
2011-06-24
We study the spinor properties of S=3 {sup 52}Cr condensates, in which dipole-dipole interactions allow changes in magnetization. We observe a demagnetization of the Bose-Einstein condensate (BEC) when the magnetic field is quenched below a critical value corresponding to a phase transition between a ferromagnetic and a nonpolarized ground state, which occurs when spin-dependent contact interactions overwhelm the linear Zeeman effect. The critical field is increased when the density is raised by loading the BEC in a deep 2D optical lattice. The magnetization dynamics is set by dipole-dipole interactions.
Exponents of the spectral functions and dynamical structure factor of the 1D Lieb-Liniger Bose gas
NASA Astrophysics Data System (ADS)
Carmelo, J. M. P.; Sacramento, P. D.
2016-06-01
We study the (k , ω) -plane finite-energy line shape of the zero-temperature one-boson removal spectral function (ω < 0) , one-boson addition spectral function (ω > 0) , and charge dynamical structure factor (ω > 0) of the 1D Lieb-Liniger Bose gas with repulsive boson interaction c > 0. Our analysis of the problem focuses on the line shape at finite excitation energies in the vicinity of these functions spectrum upper (ω < 0) or lower (ω > 0) threshold. Specifically, we derive the exact momentum, interaction, and density dependences of the exponents controlling such a line shape in each of the N = 1 , 2 , 3 , … momentum subdomains k ∈ [(N - 1) 2 πn , N 2 πn ] . Here n = N / L is the boson density, N the boson number, and L the system length. In the thermodynamic limit considered in our study nearly all spectral weight of the dynamical correlation functions is for large values of n / c contained in the N = 1 momentum subdomain k ∈ [ 0 , 2 πn ] . As n / c decreases a small fraction of that weight is transferred to the remaining set of N = 2 , 3 , 4 , … momentum subdomains, particularly to the N = 2 subdomain. In the case of the momentum subdomain k ∈ [ 0 , 2 πn ] , our exact results agree with those of previous studies. For that subdomain the above exponents are plotted as a function of the momentum for several n / c values. Our derivation of the line shapes of the three dynamical correlation functions relies on the use of a simplified form of the pseudofermion dynamical theory of the fermionic 1D Hubbard model suitably modified in this paper for the 1D Bose gas.
Quantum kinetic theory of a Bose-Einstein gas confined in a lattice
NASA Astrophysics Data System (ADS)
Rey, Ana Maria; Hu, B. L.; Calzetta, Esteban; Clark, Charles W.
2005-08-01
We extend our earlier work on the nonequilibrium dynamics of a Bose-Einstein condensate initially loaded into a one-dimensional optical lattice. From the two-particle-irreducible (2PI) closed-time-path (CTP) effective action for the Bose-Hubbard Hamiltonian we derive causal equations of motion that treat mean-field effects and quantum fluctuations on an equal footing. We demonstrate that these equations reproduce well-known limits when simplifying approximations are introduced. For example, when the system dynamics admits two-time separation, we obtain the Kadanoff-Baym equations of quantum kinetic theory, and in the weakly interacting limit, we show that the local equilibrium solutions of our equations reproduce the second-order corrections to the self-energy of the type originally derived by Beliaev. The derivation of quantum kinetic equations from the 2PI-CTP effective action not only checks the viability of the formalism but also shows it to be a tractable framework for going beyond standard Boltzmann equations of motion.
Quantum kinetic theory of a Bose-Einstein gas confined in a lattice
Rey, Ana Maria; Hu, B.L.; Calzetta, Esteban; Clark, Charles W.
2005-08-15
We extend our earlier work on the nonequilibrium dynamics of a Bose-Einstein condensate initially loaded into a one-dimensional optical lattice. From the two-particle-irreducible (2PI) closed-time-path (CTP) effective action for the Bose-Hubbard Hamiltonian we derive causal equations of motion that treat mean-field effects and quantum fluctuations on an equal footing. We demonstrate that these equations reproduce well-known limits when simplifying approximations are introduced. For example, when the system dynamics admits two-time separation, we obtain the Kadanoff-Baym equations of quantum kinetic theory, and in the weakly interacting limit, we show that the local equilibrium solutions of our equations reproduce the second-order corrections to the self-energy of the type originally derived by Beliaev. The derivation of quantum kinetic equations from the 2PI-CTP effective action not only checks the viability of the formalism but also shows it to be a tractable framework for going beyond standard Boltzmann equations of motion.
From unitary to uniform Bose gases
NASA Astrophysics Data System (ADS)
Hadzibabic, Zoran
2014-05-01
In this talk I will give an overview of our recent experiments on Bose gases in extreme interaction regimes. In one limit, we studied the stability of a unitary Bose gas, with strongest possible interactions allowed by quantum mechanics. In the other limit, we studied purely quantum-statistical ideal-gas phenomena, such as the quantum Joule-Thomson effect, by achieving Bose-Einstein condensation in a quasi-uniform potential of an optical-box trap.
Observation of a Rosensweig Instability and Stable Quantum Droplets in a Dipolar Bose Gas
NASA Astrophysics Data System (ADS)
Pfau, Tilman; Ferrier Barbut, Igor; Kadau, Holger; Schmitt, Matthias; Wenzel, Matthias
2016-05-01
Ferrofluids show unusual hydrodynamic effects due to the magnetic nature of their constituents. For increasing magnetization a classical ferrofluid undergoes a Rosensweig instability and creates self-organized ordered surface structures or droplet crystals. We observe a related instability in a Bose-Einstein condensate with strong dipolar interactions resulting in surprisingly stable droplet crystals. We find that quantum fluctuations which are the origin of genuine quantum many-body effects cannot be neglected and provide a stabilizing mechanism. We study experimentally individual stable quantum droplets containing about 800 atoms which are expected to collapse at the mean-field level due to the essentially attractive interaction. By systematic measurements on individual droplets we demonstrate quantitatively that quantum fluctuations stabilize them against the mean-field collapse. We observe in addition interference of several droplets indicating that this stable many-body state is phase coherent.
Visualizing edge states with an atomic Bose gas in the quantum Hall regime.
Stuhl, B K; Lu, H-I; Aycock, L M; Genkina, D; Spielman, I B
2015-09-25
Bringing ultracold atomic gases into the quantum Hall regime is challenging. We engineered an effective magnetic field in a two-dimensional lattice with an elongated-strip geometry, consisting of the sites of an optical lattice in the long direction and of three internal atomic spin states in the short direction. We imaged the localized states of atomic Bose-Einstein condensates in this strip; via excitation dynamics, we further observed both the skipping orbits of excited atoms traveling down the system's edges, analogous to edge magnetoplasmons in two-dimensional electron systems, and a dynamical Hall effect for bulk excitations. Our technique involves minimal heating, which will be important for spectroscopic measurements of the Hofstadter butterfly and realizations of Laughlin's charge pump. PMID:26404830
Half-quantum vortex molecules in a binary dipolar Bose gas.
Shirley, Wilbur E; Anderson, Brandon M; Clark, Charles W; Wilson, Ryan M
2014-10-17
We study the ground state phases of a rotating two-component, or binary, Bose-Einstein condensate, wherein one component possesses a large permanent magnetic dipole moment. A variety of nontrivial phases emerge in this system, including a half-quantum vortex (HQV) chain phase and a HQV molecule phase, where HQVs bind at short distances. We attribute these phases to the development of a minimum in the HQV interaction potential, which emerges without coherent coupling or attractive interactions between the components. Thus, we show that the presence of dipolar interactions in this system provides a unique mechanism for the formation of HQV molecules and results in a rich ground state phase diagram. PMID:25361261
On the phase-correlation and phase-fluctuation dynamics of a strongly excited Bose gas
NASA Astrophysics Data System (ADS)
Sakhel, Roger R.; Sakhel, Asaad R.; Ghassib, Humam B.
2015-12-01
The dynamics of a Bose-Einstein condensate (BEC) is explored in the wake of a violent excitation caused by a strong time-dependent deformation of a trapping potential under the action of an intense stirring laser. The system is a two-dimensional BEC confined to a power-law trap with hard-wall boundaries. The stirring agent is a moving red-detuned laser potential. The time-dependent Gross-Pitaevskii equation is solved numerically by the split-step Crank-Nicolson method in real time. The phase correlations and phase fluctuations are examined as functions of time to demonstrate the evolving properties of a strongly-excited BEC. Of special significance is the occurrence of spatial fluctuations while the condensate is being excited. These oscillations arise from stirrer-induced density fluctuations. While the stirrer is inside the trap, a reduction in phase coherence occurs, which is attributed to phase fluctuations.
Gavrilik, A M; Mishchenko, Yu A
2014-11-01
We establish the relation of the second virial coefficient of a recently proposed (μ[over ̃],q)-deformed Bose gas model [A. M. Gavrilik and Yu. A. Mishchenko, Ukr. J. Phys. 58, 1171 (2013)] to the interaction and compositeness parameters when either of these factors is taken into account separately. When the interaction is dealt with, the deformation parameter becomes linked directly to the scattering length and the effective radius of interaction (in general, to scattering phases). The additionally arising temperature dependence is a feature absent in the deformed Bose gas model within the adopted interpretation of the deformation parameters μ[over ̃] and q. Here the problem of the temperature dependence is analyzed in detail and its possible solution is proposed. PMID:25493779
Sideband cooling of ions in a non-neutral buffer gas
Kellerbauer, A.; Bonomi, G.; Doser, M.; Landua, R.; Amoretti, M.; Canali, C.; Carraro, C.; Lagomarsino, V.; Macri, M.; Testera, G.; Bowe, P. D.; Charlton, M.; Joergensen, L. V.; Mitchard, D.; Variola, A.; Werf, D. P. van der; Cesar, C. L.; Fontana, A.; Genova, P.; Montagna, P.
2006-06-15
We have investigated an extension of the buffer gas cooling technique to a non-neutral buffer gas. The proposed scheme will allow efficient mass-selective centering of ions confined in a Penning trap in situations where the use of a neutral damping agent is not possible. The present paper reviews the principle of the technique and reports on evidence for sideband cooling of antiprotons in an electron gas, obtained with the ATHENA apparatus at CERN's Antiproton Decelerator facility.
Studies of Magnetized Plasmas Interacting with Neutral Gas
NASA Astrophysics Data System (ADS)
Chiu, Gordon San-Yin
1995-01-01
Experiments and computer simulations have been performed in a linear magnetized helium and argon plasma column of similar collisionalities to that expected in ITER to examine heat flow and particle parameters. Plasma properties are found to differ significantly at low and high ambient neutral pressures. At pressures below 100 mT, plasmas obey the low -recycling prediction of approximate plasma pressure balance. Density decreases by a factor of about 2 to 3 with respect to that upstream, and T_{e} remains isothermal. Power flow is predominantly convective. Results obtained with varying neutral pressures and input power are consistent with zero-dimensional modeling of particle and energy balances. Ion are found to be heated by the electrons via classical energy equilibration, moderated by charge-exchange. Neutrals are heated above room temperatures. They exhibit a two-temperature population, the hotter neutrals due to charge-exchange with ions, and the colder via electron -neutral elastic collisions. The 2-d fluid code B2 has been modified to simulate the experimental conditions. Results are in good agreement. A novel regime of abrupt collapse in plasma pressure, affecting both density and T_{e} and accompanied by a dramatic increase in neutral line radiation, has been observed in high (>100 mT) pressure discharges. A potential structure akin to a double layer is calculated to exist. This phenomenon of thermal collapse is favored by a high neutral pressure, a large positive target bias, and a sufficiently long column. It is postulated that the disparate rates of momentum exchange between electrons and ions with neutrals are responsible for the formation of such collapses. The large increase in radiation is partly attributed to 3-body recombination during stagnated flow, although the estimated power loss is insufficient to account for the observations. The B2 neutral particle treatment has been found to be inadequate at these higher pressures. These results motivate
Quantum field theory for the three-body constrained lattice Bose gas. I. Formal developments
NASA Astrophysics Data System (ADS)
Diehl, S.; Baranov, M.; Daley, A. J.; Zoller, P.
2010-08-01
We develop a quantum field theoretical framework to analytically study the three-body constrained Bose-Hubbard model beyond mean field and noninteracting spin wave approximations. It is based on an exact mapping of the constrained model to a theory with two coupled bosonic degrees of freedom with polynomial interactions, which have a natural interpretation as single particles and two-particle states. The procedure can be seen as a proper quantization of the Gutzwiller mean field theory. The theory is conveniently evaluated in the framework of the quantum effective action, for which the usual symmetry principles are now supplemented with a “constraint principle” operative on short distances. We test the theory via investigation of scattering properties of few particles in the limit of vanishing density, and we address the complementary problem in the limit of maximum filling, where the low-lying excitations are holes and diholes on top of the constraint-induced insulator. This is the first of a sequence of two papers. The application of the formalism to the many-body problem, which can be realized with atoms in optical lattices with strong three-body loss, is performed in a related work [S. Diehl, M. Baranov, A. Daley, and P. Zoller, Phys. Rev. B 82, 064510 (2010)10.1103/PhysRevB.82.064510].
Quantum field theory for the three-body constrained lattice Bose gas. I. Formal developments
Diehl, S.; Daley, A. J.; Zoller, P.; Baranov, M.
2010-08-01
We develop a quantum field theoretical framework to analytically study the three-body constrained Bose-Hubbard model beyond mean field and noninteracting spin wave approximations. It is based on an exact mapping of the constrained model to a theory with two coupled bosonic degrees of freedom with polynomial interactions, which have a natural interpretation as single particles and two-particle states. The procedure can be seen as a proper quantization of the Gutzwiller mean field theory. The theory is conveniently evaluated in the framework of the quantum effective action, for which the usual symmetry principles are now supplemented with a ''constraint principle'' operative on short distances. We test the theory via investigation of scattering properties of few particles in the limit of vanishing density, and we address the complementary problem in the limit of maximum filling, where the low-lying excitations are holes and diholes on top of the constraint-induced insulator. This is the first of a sequence of two papers. The application of the formalism to the many-body problem, which can be realized with atoms in optical lattices with strong three-body loss, is performed in a related work [S. Diehl, M. Baranov, A. Daley, and P. Zoller, Phys. Rev. B 82, 064510 (2010)].
Transport of an interacting Bose gas in 1D disordered lattices
D'Errico, C.; Chaudhuri, S.; Gori, L.; Kumar, A.; Lucioni, E.; Tanzi, L.; Inguscio, M.; Modugno, G.
2014-08-20
We use ultracold atoms in a quasiperiodic lattice to study two outstanding problems in the physics of disordered systems: a) the anomalous diffusion of a wavepacket in the presence of disorder, interactions and noise; b) the transport of a disordered superfluid. a) Our results show that the subdiffusion, observed when interaction alone is present, can be modelled with a nonlinear diffusion equation and the peculiar shape of the expanding density profiles can be connected to the microscopic nonlinear diffusion coefficients. Also when noise alone is present we can describe the observed normal diffusion dynamics by existing microscopic models. In the unexplored regime in which noise and interaction are combined, instead, we observe an anomalous diffusion, that we model with a generalized diffusion equation, where noise- and interaction-induced contributions add each other. b) We find that an instability appearing at relatively large momenta can be employed to locate the fluid-insulator crossover driven by disorder. By investigating the momentum-dependent transport, we observe a sharp crossover from a weakly dissipative regime to a strongly unstable one at a disorder-dependent critical momentum. The set of critical disorder and interaction strengths for which such critical momentum vanishes, can be identified with the separation between a fluid regime and an insulating one and can be related to the predicted zero-temperature superfluid-Bose glass transition.
Magnetic and nematic phases in a Weyl type spin–orbit-coupled spin-1 Bose gas
NASA Astrophysics Data System (ADS)
Chen, Guanjun; Chen, Li; Zhang, Yunbo
2016-06-01
We present a variational study of the spin-1 Bose gases in a harmonic trap with three-dimensional spin–orbit (SO) coupling of Weyl type. For weak SO coupling, we treat the single-particle ground states as the form of perturbational harmonic oscillator states in the lowest total angular momentum manifold with j = 1, m j = 1, 0, ‑1. When the two-body interaction is considered, we set the trail order parameter as the superposition of three degenerate single-particle ground-states and the weight coefficients are determined by minimizing the energy functional. Two ground state phases, namely the magnetic and the nematic phases, are identified depending on the spin-independent and the spin-dependent interactions. Unlike the non-SO-coupled spin-1 Bose–Einstein condensate for which the phase boundary between the magnetic and the nematic phase lies exactly at zero spin-dependent interaction, the boundary is modified by the SO-coupling. We find the magnetic phase is featured with phase-separated density distributions, 3D skyrmion-like spin textures and competing magnetic and biaxial nematic orders, while the nematic phase is featured with miscible density distributions, zero magnetization and spatially modulated uniaxial nematic order. The emergence of higher spin order creates new opportunities for exploring spin-tensor-related physics in SO coupled superfluid.
NASA Astrophysics Data System (ADS)
Matsui, Kei; Ikenaga, Noriaki; Sakudo, Noriyuki
2015-09-01
We investigate the mechanism of the sterilization with plasma-excited neutral gas that uniformly sterilizes both the space and inner wall of the reactor chamber at atmospheric pressure. Only reactive neutral species such as plasma-excited gas molecules and radicals are separated from the plasma and sent to the reactor chamber for chemical sterilization. The plasma source gas uses humidified mixture of nitrogen and oxygen. Geobacillus stearothermophilus spores and tyrosine which is amino acid are treated by the plasma-excited neutral gas. Shape change of the treated spore is observed by SEM, and chemical modification of the treated tyrosine is analyzed by HPLC. As a result, the surface of the treated spore shows depression. Hydroxylation and nitration of tyrosine are shown after the treatment. For these reasons, we believe that the sterilization with plasma-excited neutral gas results from the deformation of spore structure due to the chemical modification of amino acid.
NASA Astrophysics Data System (ADS)
Hanai, R.; Littlewood, P. B.; Ohashi, Y.
2016-05-01
We theoretically investigate a Bose-condensed exciton gas out of equilibrium. Within the framework of the combined BCS-Leggett strong-coupling theory with the non-equilibrium Keldysh formalism, we show how the Bose-Einstein condensation (BEC) of excitons is suppressed to eventually disappear, when the system is in the non-equilibrium steady state. The supply of electrons and holes from the bath is shown to induce quasi-particle excitations, leading to the partial occupation of the upper branch of Bogoliubov single-particle excitation spectrum. We also discuss how this quasi-particle induction is related to the suppression of exciton BEC, as well as the stability of the steady state.
Role of quantum fluctuations in the dissipative dynamics of a 1D Bose gas in an optical lattice
NASA Astrophysics Data System (ADS)
Rey, Ana Maria; Gea-Banacloche, Julio; Pupillo, Guido; Williams, Carl J.; Clark, Charles W.
2005-03-01
We will present a theoretical treatment[1] of the surprisingly large damping observed recently in a experiment done at NIST [2] where the transport properties of a harmonically trapped 1D Bose gas in a periodic (optical lattice) potential were studied by observing small amplitude dipole oscillations. In the absence of the lattice these oscillations are expected to be undamped (generalized Kohn's theorem), however, large damping of the dipole mode was observed in the experiment for very weak optical lattices and very small cloud displacements. We will show that the observed damping can be derived from a model whose main ingredients are (a) a large noncondensate fraction that arises as a direct consequence of the enhanced effective on-site interaction due to the tight transverse confinement, (b) the fact that a non-negligible part of it occupies high-momentum states and is therefore affected by dynamical instabilities, and (c) the interaction of the condensate atoms with the random field created by these noncondensate atoms when their equilibrium state is perturbed. We find good agreement between the model and the experimental results. [1] Julio Gea-Banacloche et al. cond-mat/0410677. [2] C. D. Fertig, K. et al.cond-mat/0410491.
NASA Astrophysics Data System (ADS)
Arahata, Emiko; Nikuni, Tetsuro
2008-03-01
We study damping of the dipole oscillation in a Bose-condensed gas in a combined cigar-shaped harmonic trap and one-dimensional (1D) optical lattice potential at finite temperatures. In order to include the effect of thermal excitations in the radial direction, we derive a quasi-1D model of the Gross-Pitaevskii equation and the Bogoliubov equations. We use the Popov approximation to calculate the temperature dependence of the condensate fraction with varying lattice depth. We then calculate the Landau damping rate of the dipole oscillation as a function of the lattice depth and temperature. The damping rate increases with increasing lattice depth, which is consistent with experimental observations. The magnitude of the damping rate is in reasonable agreement with experimental data. We also find that the damping rate has a strong temperature dependence, showing a sharp increase with increasing temperature. Finally, we emphasize the importance of the radial thermal excitations in both equilibrium properties and the Landau damping.
Satyendranath Bose: Co-Founder of Quantum Statistics
ERIC Educational Resources Information Center
Blanpied, William A.
1972-01-01
Satyendranath Bose was first to prove Planck's Law by using ideal quantum gas. Einstein credited Bose for this first step in the development of quantum statistical mechanics. Bose did not realize the importance of his work, perhaps because of peculiar academic settings in India under British rule. (PS)
Gas utilization in TFTR (Tokamak Fusion Test Reactor) neutral beam injectors
Kamperschroer, J.H.; Gammel, G.M.; Kugel, H.W.; Grisham, L.R.; Stevenson, T.N.; von Halle, A.; Williams, M.D.
1987-08-01
Measurements of gas utilization in a test TFTR neutral beam injector have been performed to study the feasibility of running tritium neutral beams with existing ion sources. Gas consumption is limited by the restriction of 50,000 curies of T/sub 2/ allowed on site. It was found that the gas efficiency of the present long-pulse ion sources is higher than it was with previous short-pulse sources. Gas efficiencies were studied over the range of 35 to 55%. At the high end of this range the neutral fraction of the beam fell below that predicted by room temperature molecular gas flow. This is consistent with observations made on the JET injectors, where it has been attributed to beam heating of the neutralizer gas and a concomitant increase in conductance. It was found that a working gas isotope exchange from H/sub 2/ to D/sub 2/ could be accomplished on the first beam shot after changing the gas supply, without any intermediate preconditioning. The mechanism believed responsible for this phenomenon is heating of the plasma generator walls by the arc and a resulting thermal desorption of all previously adsorbed and implanted gas. Finally, it was observed that an ion source conditioned to 120 kV operation could produce a beam pulse after a waiting period of fourteen hours by preceding the beam extraction with several hi-pot/filament warm-up pulses, without any gas consumption. 18 refs., 7 figs., 2 tabs.
Understanding of Neutral Gas Transport in the Alcator C-Mod Tokamak Divertor
D.P. Stotler; C.S. Pitcher; C.J. Boswell; B. LaBombard; J.L. Terry; J.D. Elder; S. Lisgo
2002-05-07
A series of experiments on the effect of divertor baffling on the Alcator C-Mod tokamak provides stringent tests on models of neutral gas transport in and around the divertor region. One attractive feature of these experiments is that a trial description of the background plasma can be constructed from experimental measurements using a simple model, allowing the neutral gas transport to be studied with a stand-alone code. The neutral-ion and neutral-neutral elastic scattering processes recently added to the DEGAS 2 Monte Carlo neutral transport code permit the neutral gas flow rates between the divertor and main chamber to be simulated more realistically than before. Nonetheless, the simulated neutral pressures are too low and the deuterium Balmer-alpha emission profiles differ qualitatively from those measured, indicating an incomplete understanding of the physical processes involved in the experiment. Some potential explanations are examined and opportunities for future exploration a re highlighted. Improvements to atomic and surface physics data and models will play a role in the latter.
Termination of a Magnetized Plasma on a Neutral Gas: The End of the Plasma
NASA Astrophysics Data System (ADS)
Cooper, C. M.; Gekelman, W.
2013-06-01
Experiments are performed at the Enormous Toroidal Plasma Device at UCLA to study the neutral boundary layer (NBL) between a magnetized plasma and a neutral gas along the direction of a confining magnetic field. This is the first experiment to measure plasma termination within a neutral gas without the presence of a wall or obstacle. A magnetized, current-free helium plasma created by a lanthanum hexaboride (LaB6) cathode terminates entirely within a neutral helium gas. The plasma is weakly ionized (ne/nn˜1%) and collisional λn≪Lplasma. The NBL occurs where the plasma pressure equilibrates with the neutral gas pressure, consistent with a pressure balance model. It is characterized by a field-aligned ambipolar electric field, developing self-consistently to maintain a current-free termination of the plasma on the neutral gas. Probes are inserted into the plasma to measure the plasma density, flow, temperature, current, and potential. These measurements confirm the presence of the ambipolar field and the pressure equilibration model of the NBL.
Dynamics of neutral atoms in artificial magnetic field
NASA Astrophysics Data System (ADS)
Yu, Zi-Fa; Hu, Fang-Qi; Zhang, Ai-Xia; Xue, Ju-Kui
2016-02-01
Cyclotron dynamics of neutral atoms in a harmonic trap potential with artificial magnetic field is studied theoretically. The cyclotron orbit is obtained analytically and confirmed numerically. When the external harmonic potential is absent, artificial magnetic field can result in the singly periodic circular motion of Bose gas with the emergence of a Lorentz-like force, which is similar to particles with electric charge moving in a magnetic field. However, the coupling between artificial magnetic field and harmonic trap potential leads to rich and complex cyclotron trajectory, which depends on √{B2 + 1 }, where B is the rescaled artificial magnetic field. When √{B2 + 1 } is a rational number, the cyclotron orbit is multiply periodic and closed. However, when √{B2 + 1 } is an irrational number, the cyclotron orbit is quasiperiodic, i.e., the cyclotron motion of Bose gas is limited in a annular region, and eventually, the motion is ergodic in this region. Furthermore, the cyclotron orbits also depend on the initial conditions of Bose gas. Thus, the cyclotron dynamics of Bose gas can be manipulated in a controllable way by changing the artificial magnetic field, harmonic trap potential and initial conditions. Our results provide a direct theoretical evidence for the cyclotron dynamics of neutral atoms in the artificial gauge field.
NASA Astrophysics Data System (ADS)
Caux, Jean-Sébastien
2013-05-01
In this talk, we consider the out-of-equilibrium evolution of a one-dimensional bosonic gas (as described by the Lieb-Liniger model) after release from a parabolic trapping potential. We present a new method based on combining the theory of integrable models with numerical renormalization, which allows to reconstruct the post-quench dynamics of the gas all the way to infinite time. We also present a framework by which the generalized Gibbs ensemble, which has been suggested as the effective theory governing this dynamics, can be explicitly constructed. We compare predictions for reequilibration from this ensemble against the long-time dynamics observed using our method. Supported by FOM and NWO (Netherlands).
Method and apparatus for confinement of ions in the presence of a neutral gas
Peurrung, A.J.; Barlow, S.E.
1999-08-03
The present invention is an apparatus and method for combining ions with a neutral gas and flowing the mixture with a radial flow component through a magnetic field so that the weakly ionized gas is confined by the neutral gas. When the weakly ionized gas is present in sufficient density, a weakly ionized non-neutral plasma is formed that may be trapped in accordance with the present invention. Applications for a weakly ionized non-neutral plasma exploit the trap`s ability to store and manipulate ionic species in the presence of neutral gas. The trap may be connected to a mass spectrometer thereby permitting species identification after a fixed period of time. Delicate and/or heavy particles such as clusters may be held and studied in a ``gentle`` environment. In addition, the trap can provide a relatively intense, low-energy source of a particular ion species for surface implantation or molecular chemistry. Finally, a long trap may permit spectroscopy of unprecedented accuracy to be performed on ionic species. 4 figs.
Method and apparatus for confinement of ions in the presence of a neutral gas
Peurrung, Anthony J.; Barlow, Stephan E.
1999-01-01
The present invention is an apparatus and method for combining ions with a neutral gas and flowing the mixture with a radial flow component through a magnetic field so that the weakly ionized gas is confined by the neutral gas. When the weakly ionized gas is present in sufficient density, a weakly ionized non-neutral plasma is formed that may be trapped in accordance with the present invention. Applications for a weakly ionized non-neutral plasma exploit the trap's ability to store and manipulate ionic species in the presence of neutral gas. The trap may be connected to a mass spectrometer thereby permitting species identification after a fixed period of time. Delicate and/or heavy particles such as clusters may be held and studied in a "gentle" environment. In addition, the trap can provide a relatively intense, low-energy source of a particular ion species for surface implantation or molecular chemistry. Finally, a long trap may permit spectroscopy of unprecedented accuracy to be performed on ionic species.
Finite-momentum superfluidity and phase transitions in a p-wave resonant Bose gas
Choi, Sungsoo; Radzihovsky, Leo
2011-10-15
We study a degenerate two-species gas of bosonic atoms interacting through a p-wave Feshbach resonance as, for example, realized in a {sup 85}Rb-{sup 87}Rb mixture. We show that, in addition to a conventional atomic and a p-wave molecular spinor-1 superfluidity at large positive and negative detunings, respectively, the system generically exhibits a finite-momentum atomic-molecular superfluidity at intermediate detuning around the unitary point. We analyze the detailed nature of the corresponding phases and the associated quantum and thermal phase transitions.
Quantum and Thermal Effects of Dark Solitons in a One-Dimensional Bose Gas
Martin, A. D.; Ruostekoski, J.
2010-05-14
We numerically study the imprinting and dynamics of dark solitons in a bosonic atomic gas in a tightly confined one-dimensional harmonic trap both with and without an optical lattice. Quantum and thermal fluctuations are synthesized within the truncated Wigner approximation in the quasicondensate description. We track the soliton coordinates and calculate position and velocity uncertainties. We find that the phase fluctuations lower the classically predicted soliton speed and seed instabilities. Individual runs show interactions of solitons with sound waves, splitting, and disappearing solitons.
Thermodynamics of a two-dimensional dipolar Bose gas with correlated disorder in the roton regime
NASA Astrophysics Data System (ADS)
Boudjemâa, Abdelâali
2016-05-01
We study the impact of a weak random potential with a Gaussian correlation function on the thermodynamics of a two-dimensional dipolar bosonic gas. Analytical expressions for the quantum depletion, anomalous density, the ground state energy, the equation of state and the sound velocity are derived in the roton regime within the framework of the Bogoliubov theory. Surprisingly, we find that the condensate depletion and the anomalous density are comparable. The structure factor and the superfluid fraction are also obtained analytically and numerically. We show that these quantities acquire dramatically modified profiles when the roton is close to zero yielding the transition to an unusual quantum state.
The Effects of Neutral Gas Release on Vehicle Charging: Experiment and Theory
NASA Astrophysics Data System (ADS)
Walker, D. N.; Amatucci, W. E.; Bowles, J. H.; Fernsler, R. F.; Siefring, C. L.; Antoniades, J. A.; Keskinen, M. J.
1998-11-01
This paper describes an experimental and theoretical research effort related to the mitigation of spacecraft charging by Neutral Gas Release (NGR). The Space Power Experiments Aboard Rockets programs (SPEAR I and III) [Mandel et al., 1998; Berg et al., 1995] and other earlier efforts have demonstrated that NGR is an effective method of controlling discharges in space. The laboratory experimentswere conducted in the large volume Space Physics Simulation Chamber (SPSC) at the Naval Research Laboratory (NRL). A realistic near-earth space environment can be simulated in this device for whichminimumscalingneeds to be performedtorelate the data to space plasma regimes. This environment is similar to that encountered by LEO spacecraft, e.g., the Space Station, Shuttle, and high inclination satellites. The experimental arrangement consists of an aluminum cylinder which can be biased to high negative voltage (0.4 kV
Gas-Phase Neutral Binary Oxide Clusters: Distribution, Structure, and Reactivity toward CO.
Wang, Zhe-Chen; Yin, Shi; Bernstein, Elliot R
2012-09-01
Neutral binary (vanadium-cobalt) oxide clusters are generated and detected in the gas phase for the first time. Their reactivities toward carbon monoxide (CO) are studied both experimentally and theoretically. Experimental results suggest that neutral VCoO4 can react with CO to generate VCoO3 and CO2. Density functional theory studies show parallel results as well as provide detailed reaction mechanisms. PMID:26292125
Localized collapse and revival of coherence in an ultracold Bose gas
McGuirk, J. M.; Zajiczek, L. F.
2011-01-15
We study the collapse and revival of coherence induced by dipolar spin waves in a trapped gas of {sup 87}Rb atoms. In particular, we observe spatially localized collapse and revival of Ramsey fringe contrast and show how the pattern of coherence depends on the strength of the spin-wave excitation. We find that the spatial character of the coherence dynamics is incompatible with a simple model based only on position-space overlap of wave functions. We show that this phenomenon requires a full phase-space description of the atomic spin using a quantum Boltzmann transport equation, which highlights spin-wave-induced coherent spin currents and the ensuing dynamics they drive.
Measurement of neutral gas temperature in a 13.56 MHz inductively coupled plasma
Jayapalan, Kanesh K.; Chin, Oi Hoong
2015-04-24
Measuring the temperature of neutrals in inductively coupled plasmas (ICP) is important as heating of neutral particles will influence plasma characteristics such as the spatial distributions of plasma density and electron temperature. Neutral gas temperatures were deduced using a non-invasive technique that combines gas actinometry, optical emission spectroscopy and simulation which is described here. Argon gas temperature in a 13.56 MHz ICP were found to fall within the range of 500 − 800 K for input power of 140 − 200 W and pressure of 0.05 − 0.2 mbar. Comparing spectrometers with 0.2 nm and 0.5 nm resolution, improved fitting sensitivity was observed for the 0.2 nm resolution.
NASA Astrophysics Data System (ADS)
Xiong, Bo; Yang, Tao; Benedict, Keith A.
2013-07-01
We study the effect of quantum fluctuations on the dynamics of a quasi-one-dimensional Bose gas in an optical lattice at zero temperature using the truncated Wigner approximation with a variety of basis sets for the initial fluctuation modes. The initial spatial distributions of the quantum fluctuations are very different when using a limited number of plane-wave (PW), simple-harmonic-oscillator (SHO) and self-consistently determined Bogoliubov (SCB) modes. The short-time transport properties of the Bose gas, characterized by the phase coherence in the PW basis, are distinct from those gained using the SHO and SCB basis. The calculations using the SCB modes predict greater phase decoherence and stronger number fluctuations than the other choices. Furthermore, we observe that the use of PW modes overestimates the extent to which atoms are expelled from the core of the cloud, while the use of the other modes only breaks the cloud structure slightly, which is in agreement with the experimental observations by Fertig et al (2005 Phys. Rev. Lett. 94 120403).
Thermodynamics of a trapped Bose-Fermi mixture
Hu, Hui; Liu, Xia-Ji
2003-08-01
By using the Hartree-Fock-Bogoliubov equations within the Popov approximation, we investigate the thermodynamic properties of a dilute binary Bose-Fermi mixture confined in an isotropic harmonic trap. For mixtures with an attractive Bose-Fermi interaction, we find a sizable enhancement of the condensate fraction and of the critical temperature of Bose-Einstein condensation with respect to the predictions for a pure interacting Bose gas. Conversely, the influence of the repulsive Bose-Fermi interaction is less pronounced. The possible relevance of our results in current experiments on trapped {sup 87}Rb-{sup 40}K mixtures is discussed.
Interactions between anionic and neutral bromine and rare gas atoms
Buchachenko, Alexei A.; Grinev, Timur A.; Wright, Timothy G.; Viehland, Larry A.
2008-02-14
High-quality, ab initio potential energy functions are obtained for the interaction of bromine atoms and anions with atoms of the six rare gases (Rg) from He to Rn. The potentials of the nonrelativistic {sup 2}{sigma}{sup +} and {sup 2}{pi} electronic states arising from the ground-state Br({sup 2}P)-Rg interactions are computed over a wide range of internuclear separations using a spin-restricted version of the coupled cluster method with single and double excitations and noniterative correction to triple excitations [RCCSD(T)] with an extrapolation to the complete basis set limit, from basis sets of d-aug-cc-pVQZ and d-aug-cc-pV5Z quality. These are compared with potentials derived previously from experimental measurements and ab initio calculations. The same approach is used also to refine the potentials of the Br{sup -}-Rg anions obtained previously [Buchachenko et al., J. Chem. Phys. 125, 064305 (2006)]. Spin-orbit coupling in the neutral species is included both ab initio and via an atomic approximation; deviations between two approaches that are large enough to affect the results significantly are observed only in the Br-Xe and Br-Rn systems. The resulting relativistic potentials are used to compute anion zero electron kinetic energy photoelectron spectra, differential scattering cross sections, and the transport coefficients of trace amounts of both anionic and neutral bromine in the rare gases. Comparison with available experimental data for all systems considered proves a very high precision of the present potentials.
NASA Astrophysics Data System (ADS)
Matsui, Kei; Ikenaga, Noriaki; Sakudo, Noriyuki
2015-06-01
We investigate the effects of relative humidity on the sterilization process using a plasma-excited neutral gas that uniformly sterilizes both the space and inner wall of the reactor chamber at atmospheric pressure. Only reactive neutral species such as plasma-excited gas molecules and radicals were separated from the plasma and sent to the reactor chamber for chemical sterilization. The plasma source gas is nitrogen mixed with 0.1% oxygen, and the relative humidity in the source gas is controlled by changing the mixing ratio of water vapor. The relative humidity near the sample in the reactor chamber is controlled by changing the sample temperature. As a result, the relative humidity near the sample should be kept in the range from 60 to 90% for the sterilization of Geobacillus stearothermophilus spores. When the relative humidity in the source gas increases from 30 to 90%, the sterilization effect is enhanced by the same degree.
Neutral gas sympathetic cooling of an ion in a Paul trap.
Chen, Kuang; Sullivan, Scott T; Hudson, Eric R
2014-04-11
A single ion immersed in a neutral buffer gas is studied. An analytical model is developed that gives a complete description of the dynamics and steady-state properties of the ions. An extension of this model, using techniques employed in the mathematics of economics and finance, is used to explain the recent observation of non-Maxwellian statistics for these systems. Taken together, these results offer an explanation of the long-standing issues associated with sympathetic cooling of an ion by a neutral buffer gas. PMID:24765957
Neutral Gas Sympathetic Cooling of an Ion in a Paul Trap
NASA Astrophysics Data System (ADS)
Chen, Kuang; Sullivan, Scott T.; Hudson, Eric R.
2014-04-01
A single ion immersed in a neutral buffer gas is studied. An analytical model is developed that gives a complete description of the dynamics and steady-state properties of the ions. An extension of this model, using techniques employed in the mathematics of economics and finance, is used to explain the recent observation of non-Maxwellian statistics for these systems. Taken together, these results offer an explanation of the long-standing issues associated with sympathetic cooling of an ion by a neutral buffer gas.
Space charge sheath in plasma-neutral gas interaction
NASA Astrophysics Data System (ADS)
Venkataramani, N.; Mattoo, S. K.
1986-04-01
A space charge sheath is found to be formed whenever a high-velocity magnetized plasma stream penetrates a gas cloud. The sheath is always located at the head of the plasma stream, and its thickness is very small compared to the length of the plasma stream. Soon after the sheath is formed it quickly slows down to the Alfven critical velocity. The plasma behind the sheath continues to move at higher velocity until the whole plasma stream is retarded to the critical velocity. In the interaction at gas density of about 10 to the 19th/cu cm, the sheaths are observed to be accompanied by a single loop of current with current density of about 10,000 A/sq m. Maximum potential in the sheath ranges between 50 and 200 V. Presently available models for the sheath may explain the initiation of the sheath formation. Physical processes like heating of the electrons and ionization of the gas cloud which come into play at a later stage of the interaction are not included in these models. These processes considerably alter the potential structure in the sheath region. A schematic model of the observed sheath is presented. Experiments reveal a threshold value of the magnetic field for plasma retardation to occur. This seems to correspond to the threshold condition for excitation of the modified two-stream instability, which can lead to the electron heating. The observed currents are found sufficient to account for the plasma retardation at a gas density of about 10 to the 17th/cu m.
Developments in the simulation of turbulence and neutral gas with BOUT + +
NASA Astrophysics Data System (ADS)
Dudson, Benjamin; Mekkaoui, Samad; Omotani, John; Madsen, Jens; Easy, Luke; Reiter, Detlev; Kotov, V.; Boerner, P.
2014-10-01
The performance of the plasma edge region is critical to the design and economic success of future fusion power plants. In particular, the flux of particles and power to material surfaces must be kept within technological limits. This is determined by a nonlinear interplay between parallel and perpendicular turbulent transport, impurities, and neutral gas. Here we report on recent progress towards modelling this complex system in 3D using the BOUT + + framework. Neutral modelling has been carried out using the Monte Carlo kinetic code EIRENE, and a fluid model evolving neutral gas density and momentum. These have been coupled to cold ion electromagnetic drift-reduced plasma turbulence models which evolve density, Te, vorticity, parallel ion momentum, and vector potential. Results in linear geometry show stabilisation of the drift wave turbulence due to neutral interactions, and greater mixing of neutral gas and plasma than would be predicted in the absence of turbulent fluctuations. Progress towards 3D modelling of detachment fronts will be reported. A rigorous verification exercise has also been carried out of BOUT + + using the Method of Manufactured Solutions, showingconvergenceto the exact solution at the expected rate. This work was supported by the EUROfusion consortium, the UK EPSRC under grant EP/K006940/1, and computing resources under Plasma HEC consortium grant EP/L000237/1.
The interstellar tunnel of neutral-free gas toward Beta Canis Majoris
NASA Technical Reports Server (NTRS)
Welsh, Barry Y.
1991-01-01
Using high-resolution sodium absorption observations of early-type stars to determine the distribution of neutral interstellar gas in the direction of the star Beta CMa, the contours of a large feature in the local interstellar medium, some 50 pc in diameter and 300 pc long, that appears to be virtually free of neutral gas have been mapped. This rarefied 'interstellar tunnel' is an extension of a region of very low gas density surrounding the sun called the Local Bubble, which may well have been formed by the interaction of expanding interstellar cavities produced by multiple supernova events. This large region of unusually low gas density will be a prime area for study in the soft X-ray and EUV spectral regions.
Trace organic compounds in rain—II. Gas scavenging of neutral organic compounds
NASA Astrophysics Data System (ADS)
Ligocki, Mary P.; Leuenberger, Christian; Pankow, James F.
Concurrent rain and air sampling was conducted for seven rain events in Portland, Oregon during February through to April of 1984. Concentration data are presented for a number of neutral organic compounds for both the rain-dissolved phase and the atmospheric gas phase. The ambient temperature averaged 8°C. Measured gas scavenging ratios ranged from 3 for tetrachloroethene to 10 5 for dibutylphthalate, and were generally 3-6 times higher than those calculated from Henry's Law constant ( H) values at 25°C taken from the literature. This discrepancy was due to the inappropriateness of applying 25°C H data at 5-10°C. Indeed, excellent agreement between the measured and predicted gas scavenging ratios was found for several polycyclic aromatic hydrocarbons for which temperature-dependent H data were available. These results demonstrate that equilibrium between rain and the atmospheric gas phase is attained for non-reactive neutral organic compounds.
NASA Astrophysics Data System (ADS)
Brockmann, M.
2014-05-01
We present a ‘Gaudin-like’ determinant expression for overlaps of q-raised Néel states with Bethe states of the spin-1/2 XXZ chain in the non-zero-magnetization sector. The former is constructed by applying global Uq(sl2) spin raising operators to the Néel state, the ground state of the antiferromagnetic Ising chain. The formulas presented are derived from recently-obtained results for the overlap of the Néel state with XXZ Bethe states (Brockmann et al, 2014 J. Phys. A: Math. Theor. 47 145003, Pozsgay, 2013 arXiv:1309.4593, Kozlowski and Pozsgay, 2012 J. Stat. Mech. P05021, Tsuchiya, 1998 J. Math. Phys. 39 5946). The determinants as well as their prefactors can be evaluated in the scaling limit of the XXZ spin chain to the Lieb-Liniger Bose gas. Within this limit a q-raised Néel state that contains finitely many down spins corresponds to the ground state of finitely many free bosons. This allows for a rigorous proof of the overlap formula of De Nardis et al (2014 Phys. Rev. A 89 033601) for Lieb-Liniger Bethe states and a Bose-Einstein condensate (BEC) state with an arbitrary even number of particles.
An apparatus for immersing trapped ions into an ultracold gas of neutral atoms.
Schmid, Stefan; Härter, Arne; Frisch, Albert; Hoinka, Sascha; Denschlag, Johannes Hecker
2012-05-01
We describe a hybrid vacuum system in which a single ion or a well-defined small number of trapped ions (in our case Ba(+) or Rb(+)) can be immersed into a cloud of ultracold neutral atoms (in our case Rb). This apparatus allows for the study of collisions and interactions between atoms and ions in the ultracold regime. Our setup is a combination of a Bose-Einstein condensation apparatus and a linear Paul trap. The main design feature of the apparatus is to first separate the production locations for the ion and the ultracold atoms and then to bring the two species together. This scheme has advantages in terms of stability and available access to the region where the atom-ion collision experiments are carried out. The ion and the atoms are brought together using a moving one-dimensional optical lattice transport which vertically lifts the atomic sample over a distance of 30 cm from its production chamber into the center of the Paul trap in another chamber. We present techniques to detect and control the relative position between the ion and the atom cloud. PMID:22667603
Transport in a field aligned magnetized plasma/neutral gas boundary: the end of the plasma
NASA Astrophysics Data System (ADS)
Cooper, Christopher Michael
The objective of this dissertation is to characterize the physics of a boundary layer between a magnetized plasma and a neutral gas along the direction of a confining magnetic field. A series of experiments are performed at the Enormous Toroidal Plasma Device (ETPD) at UCLA to study this field aligned Neutral Boundary Layer (NBL) at the end of the plasma. A Lanthanum Hexaboride (LaB6) cathode and semi-transparent anode creates a magnetized, current-free helium plasma which terminates on a neutral helium gas without touching any walls. Probes are inserted into the plasma to measure the basic plasma parameters and study the transport in the NBL. The experiment is performed in the weakly ionized limit where the plasma density (ne) is much less than the neutral density (nn) such that ne/nn < 5%. The NBL is characterized by a field-aligned electric field which begins at the point where the plasma pressure equilibrates with the neutral gas pressure. Beyond the pressure equilibration point the electrons and ions lose their momentum by collisions with the neutral gas and come to rest. An electric field is established self consistently to maintain a current-free termination through equilibration of the different species' stopping rates in the neutral gas. The electric field resembles a collisional quasineutral sheath with a length 10 times the electron-ion collision length, 100 times the neutral collision length, and 10,000 times the Debye length. Collisions with the neutral gas dominate the losses in the system. The measured plasma density loss rates are above the classical cross-field current-free ambipolar rate, but below the anomalous Bohm diffusion rate. The electron temperature is below the ionization threshold of the gas, 2.2 eV in helium. The ions are in thermal equilibrium with the neutral gas. A generalized theory of plasma termination in a Neutral Boundary Layer is applied to this case using a two-fluid, current-free, weakly ionized transport model. The electron
Neutral Gas and Low-Redshift Starbursts: From Infall to Ionization
NASA Astrophysics Data System (ADS)
Jaskot, Anne; Oey, M. S.; Salzer, J. J.; Van Sistine, A.; Haynes, M. P.
2014-01-01
The interplay of gas inflows, star formation, and feedback drives galaxy evolution, and starburst galaxies provide important laboratories for probing these processes at their most extreme. With two samples of low-redshift starburst galaxies, we examine the conversion of neutral gas into stars and the subsequent effects of stellar feedback on the neutral interstellar medium (ISM). The ALFALFA Hα survey represents a complete, volume-limited sample of HI-selected galaxies with 21 cm spectra and Hα and R-band imaging. By contrasting the starburst galaxies with the rest of the gas-rich galaxy population, we investigate the roles of galaxy morphology, HI kinematics, and the atomic gas supply in triggering extreme levels of star formation. Both an elevated HI gas supply and an external disturbance are necessary to drive the starbursts. While neutral gas may fuel a starburst, it may also increase starbursts' optical depths and hinder the transport of ionizing radiation. In contrast to the expectations for high-redshift star-forming galaxies, neutral gas appears to effectively bar the escape of ionizing radiation in most low-redshift starbursts. To evaluate the impact of radiative feedback in extreme starbursts, we analyze optical spectra of the Green Pea galaxies, a low-redshift sample selected by their intense [O III] λ5007 emission and compact sizes. We use nebular photoionization and stellar population models to constrain the Peas' burst ages, ionizing sources, and optical depths and find that the Peas are likely optically thin to Lyman continuum (LyC) radiation. These young starbursts still generate substantial ionizing radiation, while recent supernovae may have carved holes in the ISM that enhance LyC photon escape into the intergalactic medium. While the ALFALFA survey demonstrates the role of external processes in triggering starbursts, the Green Peas show that starbursts' radiation can escape to affect their external environment.
NASA Astrophysics Data System (ADS)
Alekseev, Vladimir A.
2001-01-01
The distribution function ω0(n0) of the number n0 of particles in the condensate of an ideal Bose gas confined by a trap is found. It is shown that at the temperature above the critical one (T > Tc) this function has the usual form ω0(n0) =(1 — eμ)eμno, where μ is the chemical potential in the temperature units. For T < Tc, this distribution changes almost in a jump to a Gaussian distribution, which depends on the trap potential only parametrically. The centre of this function shifts to larger values of n0 with decreasing temperature and its width tends to zero, which corresponds to the suppression of fluctuations.
Space Charge Neutralization of DEMO Relevant Negative Ion Beams at Low Gas Density
Surrey, Elizabeth; Porton, Michael
2011-09-26
The application of neutral beams to future power plant devices (DEMO) is dependent on achieving significantly improved electrical efficiency and the most promising route to achieving this is by implementing a photoneutralizer in place of the traditional gas neutralizer. A corollary of this innovation would be a significant reduction in the background gas density through which the beam is transported between the accelerator and the neutralizer. This background gas is responsible for the space charge neutralization of the beam, enabling distances of several metres to be traversed without significant beam expansion. This work investigates the sensitivity of a D{sup -} beam to reduced levels of space charge compensation for energies from 100 keV to 1.5 MeV, representative of a scaled prototype experiment, commissioning and full energy operation. A beam transport code, following the evolution of the phase space ellipse, is employed to investigate the effect of space charge on the beam optics. This shows that the higher energy beams are insensitive to large degrees of under compensation, unlike the lower energies. The probable degree of compensation at low gas density is then investigated through a simple, two component beam-plasma model that allows the potential to be negative. The degree of under-compensation is dependent on the positive plasma ion energy, one source of which is dissociation of the gas by the beam. The subsequent space charge state of the beam is shown to depend upon the relative times for equilibration of the dissociation energy and ionization by the beam ions.
The Neutral Gas and Ion Mass Spectrometer on the Mars Atmosphere and Volatile Evolution Mission
NASA Technical Reports Server (NTRS)
Mahaffy, Paul R.; Benna, Mehdi; King, Todd; Harpold, Daniel N.; Arvey, Robert; Barciniak, Michael; Bendt, Mirl; Carrigan, Daniel; Errigo, Therese; Holmes, Vincent; Kellogg, James; Jaeger, Ferzan; Raaen, Eric; Tan, Florence
2014-01-01
The Neutral Gas and Ion Mass Spectrometer (NGIMS) of the Mars Atmosphere and Volatile Evolution Mission (MAVEN) is designed to measure the composition, structure, and variability of the upper atmosphere of Mars. The NGIMS complements two other instrument packages on the MAVEN spacecraft designed to characterize the neutral upper atmosphere and ionosphere of Mars and the solar wind input to this region of the atmosphere. The combined measurement set is designed to quantify atmosphere escape rates and provide input to models of the evolution of the martian atmosphere. The NGIMS is designed to measure both surface reactive and inert neutral species and ambient ions along the spacecraft track over the 125-500 km altitude region utilizing a dual ion source and a quadrupole analyzer.
Asymptotic theory of neutral stability curve of the Couette flow of vibrationally excited gas
NASA Astrophysics Data System (ADS)
Grigor'ev, Yu N.; Ershov, I. V.
2016-06-01
The asymptotic theory of neutral stability curve of the supersonic plane Couette flow of vibrationally excited gas is constructed. The system of two-temperature viscous gas dynamics equations was used as original mathematical model. Spectral problem for an eighth order linear system of ordinary differential equations was obtained from the system within framework of classical theory of linear stability. Transformations of the spectral problem universal for all shear flows were carried along the classical Dunn — Lin scheme. As a result the problem was reduced to secular algebraic equation with a characteristic division on “inviscid” and “viscous” parts which was solved numerically. The calculated neutral stability curves coincide in limits of 10% with corresponding results of direct numerical solution of original spectral problem.
Alfalfa discovery of the nearby gas-rich dwarf galaxy LEO P. V. Neutral gas dynamics and kinematics
Bernstein-Cooper, Elijah Z.; Pardy, Stephen A.; Cannon, John M. E-mail: spardy@astro.wisc.edu; and others
2014-08-01
We present new H I spectral line imaging of the extremely metal-poor, star-forming dwarf irregular galaxy Leo P. Our H I images probe the global neutral gas properties and the local conditions of the interstellar medium (ISM). The H I morphology is slightly elongated along the optical major axis. We do not find obvious signatures of interaction or infalling gas at large spatial scales. The neutral gas disk shows obvious rotation, although the velocity dispersion is comparable to the rotation velocity. The rotation amplitude is estimated to be V {sub c} =15 ± 5 km s{sup –1}. Within the H I radius probed by these observations, the mass ratio of gas to stars is roughly 2:1, while the ratio of the total mass to the baryonic mass is ≳15:1. We use this information to place Leo P on the baryonic Tully-Fisher relation, testing the baryonic content of cosmic structures in a sparsely populated portion of parameter space that has hitherto been occupied primarily by dwarf spheroidal galaxies. We detect the signature of two temperature components in the neutral ISM of Leo P; the cold and warm components have characteristic velocity widths of 4.2 ± 0.9 km s{sup –1} and 10.1 ± 1.2 km s{sup –1}, corresponding to kinetic temperature upper limits of ∼1100 K and ∼6200 K, respectively. The cold H I component is unresolved at a physical resolution of 200 pc. The highest H I surface densities are observed in close physical proximity to the single H II region. A comparison of the neutral gas properties of Leo P with other extremely metal-deficient (XMD) galaxies reveals that Leo P has the lowest neutral gas mass of any known XMD, and that the dynamical mass of Leo P is more than two orders of magnitude smaller than any known XMD with comparable metallicity.
Evolution of neutral gas at high redshift: implications for the epoch of galaxy formation
NASA Astrophysics Data System (ADS)
Storrie-Lombardi, L. J.; McMahon, R. G.; Irwin, M. J.
1996-12-01
Although observationally rare, damped Lyalpha absorption systems dominate the mass density of neutral gas in the Universe. 11 high-redshift damped Lyalpha systems covering 2.8<=z<=4.4 were discovered in 26 QSOs from the APMz<~4 QSO survey, extending these absorption system surveys to the highest redshifts currently possible. Combining our new data set with previous surveys, we find that the cosmological mass density in neutral gas, Omega_g, does not rise as steeply prior to z~2 as indicated by previous studies. There is evidence in the observed Omega_g for a flattening at z~2 and a possible turnover at z~3. When combined with the decline at z<~3.5 in number density per unit redshift of damped systems with column densities log N_HI>=21 atom cm^-2, these results point to an epoch at z>~3 prior to which the highest column density damped systems are still forming. We find that, over the redshift range 2
Spacelab 1 experiments on interactions of an energetic electron beam with neutral gas
NASA Technical Reports Server (NTRS)
Marshall, J. A.; Lin, C. S.; Burch, J. L.; Obayashi, T.; Beghin, C.
1988-01-01
An unusual signature of return current and spacecraft charging potential was observed during the Spacelab 1 mission launched on November 28, 1983. The phenomenon occurred during neutral gas releases from the SEPAC (Space Experiments with Particle Accelerators) magnetoplasma-dynamic arcjet (MPD) concurrent with firings of the PICPAB (Phenomena Induced by Charged Particle Beams) electron gun and was recorded by the instruments of the SEPAC diagnostic package (DGP). Data from the langmuir probe, floating probes, neutral gas pressure gauge, and the plasma wave probes are reported. As the dense neutral gas was released, the return current measured by the langmuir probe changed from positive to negative and a positive potential relative to the spacecraft was measured by the floating probe. The anomalous return current is believed to be attributable to secondary electron fluxes escaping from the spacecraft, and the unusual charging situation is attributed to the formation of a double-layer structure between a hot plasma cloud localized to the MPD and the spacecraft. The charging scenario is supported by a computer simulation.
Enhancement of H{sup -} extraction from a compact source by streaming neutral gas injection
Mendenilla, Alexander; Takahashi, Hidenori; Kasuya, Toshiro; Wada, Motoi
2006-03-15
A new negative ion extraction geometry with streaming neutral gas injector (SNGI) was tested in its performance to enhance negative hydrogen ion (H{sup -}) at low operational pressure. The experiments were performed using a test ion source equipped with a SNGI having the wall perpendicular to the gas emission holes. The results showed that the SNGI was capable of reducing the operating pressure of the ion source from 0.14 to 0.07 Pa. At 0.14 Pa, the operation using the SNGI produced 20% more negative ions than the operation without SNGI. A compact ion source was constructed with a smaller SNGI and having a tapered wall for the gas injection nozzles. The neutral density distribution within the central region of the SNGI within the ion source was simulated using direct simulation Monte Carlo (DSMC) method. It was realized that the neutral density distribution produced by the SNGI with the tapered wall was at most 35% lower than a SNGI structure without the taper.
A Ring with a Spin: Superfluidity in a toroidal Bose-Einstein condensate
NASA Astrophysics Data System (ADS)
Ramanathan, Anand Krishnan
2011-12-01
Superfluidity is a remarkable phenomenon. Superfluidity was initially characterized by flow without friction, first seen in liquid helium in 1938, and has been studied extensively since. Superfluidity is believed to be related to, but not identical to Bose-Einstein condensation, a statistical mechanical phenomena predicted by Albert Einstein in 1924 based on the statistics of Satyendra Nath Bose, where bosonic atoms make a phase transition to form a Bose-Einstein condensate (BEC), a gas which has macroscopic occupation of a single quantum state. Developments in laser cooling of neutral atoms and the subsequent realization of Bose-Einstein condensates in ultracold gases have opened a new window into the study of superfluidity and its relation to Bose-Einstein condensation. In our atomic sodium BEC experiment, we studied superfluidity and dissipationless flow in an all-optical toroidal trap, constructed using the combination of a horizontal "sheet"-like beam and vertical "ring"-like beam, which, like a circuit loop, allows flow around the ring. On inducing a single quantum of circulation in the condensate, the smoothness and uniformity of the toroidal BEC enabled the sustaining of a persistent current lasting 40 seconds, limited by the lifetime of the BEC due to background gas pressure. This success set the stage for further experiments studying superfluidity. In a first set of experiments, we studied the stability of the persistent current by inserting a barrier in the flow path of the ring. The superflow stopped abruptly at a barrier strength such that the local flow velocity at the barrier exceeded a critical velocity, which supported decay via the creation of a vortex-antivortex pair. Our precise control in inducing and arresting superflow in the BEC is a first step toward studying other aspects of superfluidity, such as the effect of temperature and dimensionality. This thesis discusses these experiments and also details partial-transfer absorption imaging, an
Composite fermions, trios, and quartets in a Fermi-Bose mixture
Kagan, M.Yu.; Brodsky, I.V.; Efremov, D.V.; Klaptsov, A.V.
2004-08-01
We consider a model of a Fermi-Bose mixture with strong hard-core repulsion between particles of the same sort and attraction between particles of different sorts. In this case, besides the standard anomalous averages of the type ,
NASA Astrophysics Data System (ADS)
Rubin, Martin; Toth, Gabor; Tenishev, Valeriy; Fougere, Nicolas; Huang, Zhenguang
2016-07-01
Comets are surrounded by an extended gas and dust coma. Neutral particles are continuously ionized by solar irradiation and then picked-up by the solar wind. This leads to a complex interaction between the neutral gas coma and the solar wind, which changes over the course of the comet's orbit around the Sun. The European Space Agency's Rosetta spacecraft has been in orbit around comet 67P/Churyumov-Gerasimenko since August 2014. Rosetta carries several instruments to investigate the comet's nucleus and surrounding neutral gas coma and plasma. Part of the payload is the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) that consists of two mass spectrometers and a pressure sensor. ROSINA was designed to measure the neutral gas abundance and composition and low energy ions in the coma in situ. ROSINA observations have shown that the coma is very heterogeneous both in total density and composition of the neutral gas. This heterogeneity is driven in large part by the complex shape of the nucleus and the varying illumination conditions associated with the comet's rotation. In this presentation we will show the time-dependent distribution of the major volatiles around the comet constrained by ROSINA observations. Furthermore we will investigate the impact of the highly non-symmetric neutral gas coma on the interaction of the solar wind with the comet.
Cornell, Eric A; Wieman, Carl E
2002-06-17
Bose-Einstein condensates of dilute gases offer a rich field to study fundamental quantum-mechanical processes, manipulation of the speed at which light propogates, observation of atomic pair-formation and superfluidity, or even simulating white dwarf stars. Still more radical applications are on the horizon. However, their initial creation was a masterpiece of experimental physics. After an initial process of laser cooling (which itself won its developers the 1997 Nobel Prize), atoms in a magnetic-optical trap must be safely transferred into a purely magnetic trap, where the condensation process begins at 170 nK and 20 nK a pure condensate of 2000 atoms could be created. More astonishingly, Wieman and Cornell showed these low temperatures could be achieved in "bench scale" equipment rather than the massive pieces normally demanded by cryoscience. For their 1995 discovery of this new state of matter, they were awarded the 2001 Nobel Prize in Physics. PMID:12465486
Jain, P.; Bradley, A. S.; Gardiner, C. W.
2007-08-15
We study an experimentally realizable system containing stable black hole-white hole acoustic horizons in toroidally trapped Bose-Einstein condensates--the quantum de Laval nozzle. We numerically obtain stationary flow configurations and assess their stability using Bogoliubov theory, finding both in hydrodynamic and nonhydrodynamic regimes there exist dynamically unstable regions associated with the creation of positive and negative energy quasiparticle pairs in analogy with the gravitational Hawking effect. The dynamical instability takes the form of a two mode squeezing interaction between resonant pairs of Bogoliubov modes. We study the evolution of dynamically unstable flows using the truncated Wigner method, which confirms the two mode squeezed state picture of the analogue Hawking effect for low winding number.
NASA Astrophysics Data System (ADS)
Richards, Emily E.; van Zee, L.; Barnes, K. L.; Staudaher, S.; Dale, D. A.; Braun, T. T.; Wavle, D. C.; Dalcanton, J. J.; Bullock, J. S.; Chandar, R.
2016-07-01
We present a combination of new and archival neutral hydrogen (H I) observations and new ionized gas spectroscopic observations for 16 galaxies in the statistically representative Extended Disk Galaxy Explore Science kinematic sample. H I rotation curves are derived from new and archival radio synthesis observations from the Very Large Array (VLA) as well as processed data products from the Westerbork Radio Synthesis Telescope (WSRT). The H I rotation curves are supplemented with optical spectroscopic integral field unit (IFU) observations using SparsePak on the WIYN 3.5 m telescope to constrain the central ionized gas kinematics in 12 galaxies. The full rotation curves of each galaxy are decomposed into baryonic and dark matter halo components using 3.6μm images from the Spitzer Space Telescope for the stellar content, the neutral hydrogen data for the atomic gas component, and, when available, CO data from the literature for the molecular gas component. Differences in the inferred distribution of mass are illustrated under fixed stellar mass-to-light ratio (M/L) and maximum disc/bulge assumptions in the rotation curve decomposition.
NASA Astrophysics Data System (ADS)
Richards, Emily E.; van Zee, L.; Barnes, K. L.; Staudaher, S.; Dale, D. A.; Braun, T. T.; Wavle, D. C.; Dalcanton, J. J.; Bullock, J. S.; Chandar, R.
2016-04-01
We present a combination of new and archival neutral hydrogen (HI) observations and new ionized gas spectroscopic observations for sixteen galaxies in the statistically representative EDGES kinematic sample. HI rotation curves are derived from new and archival radio synthesis observations from the Very Large Array (VLA) as well as processed data products from the Westerbork Radio Synthesis Telescope (WSRT). The HI rotation curves are supplemented with optical spectroscopic integral field unit (IFU) observations using SparsePak on the WIYN 3.5 m telescope to constrain the central ionized gas kinematics in twelve galaxies. The full rotation curves of each galaxy are decomposed into baryonic and dark matter halo components using 3.6μm images from the Spitzer Space Telescope for the stellar content, the neutral hydrogen data for the atomic gas component, and, when available, CO data from the literature for the molecular gas component. Differences in the inferred distribution of mass are illustrated under fixed stellar mass-to-light ratio (M/L) and maximum disc/bulge assumptions in the rotation curve decomposition.
Digital image analysis of four-frame holographic plasma and neutral gas interferograms
NASA Astrophysics Data System (ADS)
Mastin, G. A.; Allen, G. R.
1985-01-01
Diagnostic interferograms characterizing the dynamics of plasma and neutral in the anode-cathode gap of magnetically insulated transmission lines (MITL) are well suited for digital image analysis. The presence of plasma or a neutral gas near the cathode surface produces bending of a pattern of background fringes on the interferogram; the fringes would be straight and uniformly spaced in the absence of such a perturbation. Because the fringes are periodic, a Fast Fourier Transform (FFT) can be performed and the phase of the dominant spatial frequency component of the fringe pattern extracted. The fringe phase shift is proportional to the plasma electron or neutral gas density. Futhermore, the location of the plasma-cathode interface can be estimated from the interferogram so that electron density as a function of distance from the cathode surface can be computed. The technical problem is introduced. The image analysis algorithm examined and diagnostic interferogram analysis results presented. The ability to reliably extract and estimate quantitative parameters from interferograms via digital image analysis is emphasized.
NASA Astrophysics Data System (ADS)
Matsui, Kei; Ikenaga, Noriaki; Sakudo, Noriyuki
2015-01-01
Some fundamental experiments are carried out in order to develop a plasma process that will uniformly sterilize both the space and inner wall of the reactor chamber at atmospheric pressure. Air, oxygen, argon, and nitrogen are each used as the plasma source gas to which mixed vapors of water and ethanol at different ratios are added. The reactor chamber is remotely located from the plasma area and a metal mesh for eliminating charged particles is installed between them. Thus, only reactive neutral particles such as plasma-excited gas molecules and radicals are utilized. As a result, adding vapors to the source gas markedly enhances the sterilization effect. In particular, air with water and/or ethanol vapor and oxygen with ethanol vapor show more than 6-log reduction for Geobacillus stearothermophilus spores.
Electron collection enhancement arising from neutral gas jets on a charged vehicle in the ionosphere
NASA Technical Reports Server (NTRS)
Gilchrist, Brian E.; Banks, Peter M.; Neubert, Torsten; Williamson, P. Roger; Myers, Neil B.
1990-01-01
Observations of current collection enhancements due to cold nitrogen gas control jet emissions from a highly charged, isolated rocket payload in the ionosphere have been made during the cooperative high altitude rocket gun experiment (CHARGE) 2 using an electrically tethered mother/daughter payload system. The current collection enhancement was observed on a platform (daughter payload) located 100 to 400 m away from the main payload firing an energetic electron beam (mother payload). These results are interpreted in terms of an electrical discharge forming in close proximity to the daughter vehicle during the short periods of gas emission. The results indicate that it is possible to enhance the electron current collection capability of positively charged vehicles by means of deliberate neutral gas releases into an otherwise undisturbed space plasma. The results are also compared with recent laboratory observations of hollow cathode plasma contactors operating in the 'ignited' mode.
High-frequency electron-gas secondary neutral mass spectrometry: evaluation of transient effects
NASA Astrophysics Data System (ADS)
Krimke, Ralf; Urbassek, Herbert M.; Wucher, Andreas
1997-06-01
In electron-gas secondary neutral mass spectrometry (SNMS), a low-pressure plasma serves both as an ion source for sputter depth profiling the target and for post-ionizing the sputtered neutrals. In its high-frequency mode, a rectangular RF bias is applied to the target. We investigate by PIC/MC kinetic simulation the processes occurring in the vicinity of the substrate as a consequence of the voltage jumps: sheath expansion and contraction, as well as flux and energy of the ions impinging onto the substrate. In particular, we determine the enhancement of the ion current shortly after negatively charging the substrate; this enhancement is due to the acceleration of the large ion population in the expanding sheath. Our results indicate that already at a switch frequency of only 1 MHz the surface treatment by rectangularly shaped RF potentials is dominated by transient effects.
Interactions Between Neutral Gas Clouds and Plasma Near the icy satellites of Jupiter and Saturn.
NASA Astrophysics Data System (ADS)
Burger, M. H.
2007-05-01
Neutral gas clouds associated with icy satellites are intimately tied to the magnetospheric plasma in which they are formed and reside. Plasma interactions can create the clouds, remove material from them, and make it possible for us to observe them. At Europa, for example, energetic ions incident on the icy surface eject hydrogen and oxygen formed from the dissociation of water (Johnson et al. 1982). The hydrogen escapes, but the O2remains gravitationally bound, forming an atmosphere. This atmosphere then interacts with the thermal plasma in Jupiter's magneotpshere: the O2is dissociated by the electrons resulting in emissions from atomic oxygen which have been observed by HST and Cassini (Hall et al. 1995; Hansen et al. 2005). Charge exchange with magnetospheric ions and electron-impact ionization removes atoms and molecules from Europa's atmosphere and exosphere, and contributes fresh ions to the plasma (Saur et al. 1998; Shematovich et al 2005). At Enceladus, where 150-300 kg/s of H2O gas is supplied by the south pole plume (Hansen et al. 2006; Burger et al. 2007), charge exchange reactions between the plasma and H2O produce fresh pickup ions which slow and deflect the plasma (Tokar et al. 2006; Pontius and Hill 2006) and induce perturbations in Saturn's magnetic field (Dougherty et al. 2006; Khurana et al. 2006). The neutrals created in these charge exchange reactions either escape from Saturn entirely or are redistributed throughout the inner magnetosphere forming gas clouds which have been observed by HST and Cassini (Johnson et al. 2006). I will describe the interaction processes between the neutral atoms and molecules in icy satellite atmospheres and exospheres, and discuss differences between the processes imporant in Jupiter's magnetosphere, where the plasma content is greater than the neutral content, and Saturn's magnetosphere, which is dominated by neutrals. References: Burger et al., JGR, 2007, in press. Dougherty et al., Science, 311, 1406, 2006
Tracing the neutral gas environments of young radio AGN with ASKAP
NASA Astrophysics Data System (ADS)
Allison, J. R.; Sadler, E. M.; Moss, V. A.; Harvey-Smith, L.; Heywood, I.; Indermuehle, B. T.; McConnell, D.; Sault, R. J.; Whiting, M. T.
2016-02-01
At present neutral atomic hydrogen (H I) gas in galaxies at redshifts above {z ˜ 0.3} (the extent of 21 cm emission surveys in individual galaxies) and below {z ˜ 1.7} (where the Lyman-\\alpha line is not observable with ground-based telescopes) has remained largely unexplored. The advent of precursor telescopes to the Square Kilometre Array will allow us to conduct the first systematic radio-selected 21 cm absorption surveys for H I over these redshifts. While H I absorption is a tracer of the reservoir of cold neutral gas in galaxies available for star formation, it can also be used to reveal the extreme kinematics associated with jet-driven neutral outflows in radio-loud active galactic nuclei. Using the six-antenna Boolardy Engineering Test Array of the Australian Square Kilometre Array Pathfinder, we have demonstrated that in a single frequency tuning we can detect H I absorption over a broad range of redshifts between z = 0.4 and 1.0. As part of our early science and commissioning program, we are now carrying out a search for absorption towards a sample of the brightest GPS and CSS sources in the southern sky. These intrinsically compact sources present us with an opportunity to study the circumnuclear region of recently re-started radio galaxies, in some cases showing direct evidence of mechanical feedback through jet-driven outflows. With the sensitivity of the full ASKAP array we will be able to study the kinematics of atomic gas in a few thousand radio galaxies, testing models of radio jet feedback well beyond the nearby Universe.
Bose Polarons in the Strongly Interacting Regime
NASA Astrophysics Data System (ADS)
Hu, Ming-Guang; Van de Graaff, Michael J.; Kedar, Dhruv; Corson, John P.; Cornell, Eric A.; Jin, Deborah S.
2016-07-01
When an impurity is immersed in a Bose-Einstein condensate, impurity-boson interactions are expected to dress the impurity into a quasiparticle, the Bose polaron. We superimpose an ultracold atomic gas of 87Rb with a much lower density gas of fermionic 40 impurities. Through the use of a Feshbach resonance and radio-frequency spectroscopy, we characterize the energy, spectral width, and lifetime of the resultant polaron on both the attractive and the repulsive branches in the strongly interacting regime. The width of the polaron in the attractive branch is narrow compared to its binding energy, even as the two-body scattering length diverges.
Bose Polarons in the Strongly Interacting Regime.
Hu, Ming-Guang; Van de Graaff, Michael J; Kedar, Dhruv; Corson, John P; Cornell, Eric A; Jin, Deborah S
2016-07-29
When an impurity is immersed in a Bose-Einstein condensate, impurity-boson interactions are expected to dress the impurity into a quasiparticle, the Bose polaron. We superimpose an ultracold atomic gas of ^{87}Rb with a much lower density gas of fermionic ^{40}K impurities. Through the use of a Feshbach resonance and radio-frequency spectroscopy, we characterize the energy, spectral width, and lifetime of the resultant polaron on both the attractive and the repulsive branches in the strongly interacting regime. The width of the polaron in the attractive branch is narrow compared to its binding energy, even as the two-body scattering length diverges. PMID:27517776
A Search for Neutral Gas at Redshift z 0.55
NASA Astrophysics Data System (ADS)
Monier, Eric M.; Turnshek, D.; Rao, S.; Held, R.
2010-01-01
We present a sample of approximately 30 high-probability damped Lyman-alpha (DLA) absorption-line systems in the redshift range 0.42
Neutral gas outflows in nearby [U]LIRGs via optical NaD feature
NASA Astrophysics Data System (ADS)
Cazzoli, S.; Arribas, S.; Maiolino, R.; Colina, L.
2016-05-01
We studied the properties of the neutral gas in a sample of 38 local luminous and ultra luminous infrared galaxies ([U]LIRGs, 51 individual galaxies at z ≤ 0.09), which mainly covers the less explored LIRG luminosity range. This study is based on the analysis of the spatially integrated and spatially resolved spectra of the NaDλλ 5890, 5896 Å feature obtained with the integral field unit (IFU) of VIMOS at the Very Large Telescope. Analyzing spatially integrated spectra, we find that the contribution of the stars to the observed NaD equivalent width is small (<35%) for about half of the sample, and therefore this feature is dominated by inter stellar medium (ISM) absorption. After subtracting the stellar contribution, we find that the pure-ISM integrated spectra generally show blueshifted NaD profiles, indicating neutral gas outflow velocities, V, in the range 65-260 km s-1. Excluding the galaxies with powerful AGNs, V shows a dependency with the star formation rate (SFR) of the type V ∝ SFR0.15, which is in rather good agreement with previous results. The spatially resolved analysis could be performed for 40 galaxies, 22 of which have neutral gas velocity fields dominated by noncircular motions with signatures of cone-like winds. However, a large number of targets (11/40) show disk rotation signatures. Based on a simple model, we found that the wind masses are in the range 0.4-7.5 × 108 M⊙, reaching up to ~3% of the dynamical mass of the host. The mass rates are typically only ~0.2-0.4 times the corresponding global SFR indicating that, in general, the mass loss is too small to slow down the star formation significantly. In the majority of cases, the velocity of the outflowing gas is not sufficient to escape the host potential well and, therefore, most of the gas rains back into the galaxy disk. On average V/vesc is higher in less massive galaxies, confirming that the galaxy mass has a primary role in shaping the recycling of gas and metals. The
NASA Technical Reports Server (NTRS)
Hedin, A. E.; Hinton, B. B.; Schmitt, G. A.
1972-01-01
The gas-surface interaction effects observed by the quadrupole mass spectrometer are described, and the technique developed to account for them in determining ambient neutral densities is summarized. The total ion current and the ion currents for ions with molecular weights 2, 4, 16, 28, and 32 are sampled for 1.125 sec once every 9.216 sec, for 258 sec out of a 368 sec cycle. An equation is given for the number density of any constituent in the ion source region, and source density data are discussed. The mass 28 background gas is considered to be CO rather than N2, and a CO model is developed. A quasi-equilibrium model of the atomic oxygen interactions is constructed, and a set of surface parameters is determined which provides a reasonable fit to the mass 16 and 32 source densities consistent with the predicted ambient atomic oxygen.
NASA Astrophysics Data System (ADS)
Bzowski, Maciej; McComas, David; Galli, Andre; Kucharek, Harald; Wurz, Peter; Sokol, Justyna M.; Schwadron, Nathan; Heirtzler, David M.; Kubiak, M. Marzena A.; Möbius, Eberhard; Fuselier, Stephen; Swaczyna, Paweł; Leonard, Trevor; Park, Jeewoo
2016-07-01
The large-scale structure of the heliosphere is governed by the interaction of the partly ionized, magnetized interstellar gas and the magnetized, fully ionized solar wind, structured in heliolatitude. Determining factors of this interaction are the density and flow velocity of interstellar gas relative to the Sun, the Mach number of this flow and the strength and inclination of the interstellar magnetic field to the flow vector at the interstellar side, and the magnitude of dynamic pressure of solar wind and the strength of its embedded magnetic field at the solar side. As a result of charge exchange interactions operating in the boundary region between the heliosphere and interstellar matter, a new population of neutral atoms is created, in addition to the population of unperturbed interstellar neutral gas. Both of these populations penetrate deep inside the heliosphere, where they can be sampled by the first space probe dedicated to observations of the heliosphere and its immediate surroundings by means of neutral atoms: the Interstellar Boundary Explorer (IBEX). Due to distortion of the heliosphere from axial symmetry, the secondary population of interstellar neutrals, created via charge exchange between the plasma flowing past the heliopause and the unperturbed pristine neutral interstellar gas, appears to be coming from a different direction than the unperturbed interstellar neutral flow. These two directions should be coplanar with the plane defined by the local interstellar magnetic field and the flow direction of the unperturbed gas. IBEX provides an unprecedented opportunity to study and interpret these relations. The IBEX science team have recently accomplished important milestones in researching the primary and secondary populations of interstellar gas and their relation to the local interstellar magnetic fields. First, the temperature and velocity vector of the inflowing interstellar neutral gas has been determined with unprecedented robustness based
Properties of clusters in the gas phase. V - Complexes of neutral molecules onto negative ions
NASA Technical Reports Server (NTRS)
Keesee, R. G.; Lee, N.; Castleman, A. W., Jr.
1980-01-01
Ion-molecules association reactions of the form A(-)(B)n-1 + B = A(-)(B)n were studied over a range of temperatures in the gas phase using high pressure mass spectrometry. Enthalpy and entropy changes were determined for the stepwise clustering reactions of (1) sulfur dioxide onto Cl(-), I(-), and NO2(-) with n ranging from one to three or four, and onto SO2(-) and SO3(-) with n equal to one; and (2) carbon dioxide onto Cl(-), I(-), NO2(-), CO3(-), and SO3(-) with n equal to one. From these data and earlier hydration results, the order of the magnitude of the enthalpy changes on the association of the first neutral for a series of negative ions was found to parallel the gas-phase basicity of those anions.
Photochemical studies of reactive intermediates involved in gas phase ion-neutral reactions
Osterheld, T.H.
1992-01-01
Infrared multiple photon dissociation was used to study unimolecular reactions of gas phase ions in a Fourier transform mass spectrometer. Specifically, the influence of intermediates on reactivity and dynamics was investigated. Dissociation of nitrobenzene cation displays a variety of surprising and apparently non-statistical behavior. The authors demonstrated that some of its reactions involve an isomerization to phenyl nitrite cation by a dissociation/reassociation mechanism in an ion-neutral complex. This allowed the behavior to be explained by normal statistical reactions. Previous work in other laboratories suggested that methane loss from acetone cation occurs by tunneling of a hydrogen atom. Part of the evidence came from the observation of very large isotope effects. The authors demonstrated that methane loss could not occur by tunneling. They further showed that the isotope effects result from normal zero point vibrational energy differences in an ion-neutral complex mechanism. Two simple dissociations of butanone cation do not compete as expected. They also found that the rates for the low energy reactions are much slower than statistical calculations. They explained these results by a prior isomerization to an ion-neutral complex. They calculated that the ion-neutral complex has a higher density of states than butanone cation even at energies well below a reaction threshold. McLafferty and co-workers demonstrated that acetone enol cation isomerizes to a symmetric acetone cation structure which then loses methyl groups at unequal rates. The authors have confirmed this behavior and demonstrated that the non-statistical dissociation depends on the internal energy. They proposed that an excited vibrational mode of the transition state for isomerization couples more strongly with the reaction coordinate, thus yielding more non-statistical dissociation.
Particle Dynamics in Neutral-Gas Confined Laser-Produced Plasmas
NASA Astrophysics Data System (ADS)
Kim, Yong W.
2001-10-01
Laser-produced plasma from a metallic target can be confined to higher plasma densities by immersing the target in an inert gas medium at increasingly high density. The plasma becomes Rayleigh-Taylor unstable, however, when the mass density of the neutral gas exceeds the plasma mass density substantially.[1] A new plasma diagnostic method is developed to help examine the early time development of the gas-plasma interfacial structure. A preliminary study based on plasma polarization spectroscopy is presented, in which the dynamics of atoms and ions are visualized in the presence of electromagnetic fields due to charge separation. The ambient gas pressure of argon is varied as active control in the low-pressure regime. Time-resolved multi-directional projections of an aluminum plasma are obtained in line and continuum emissions, polarization and spectral broadening including Doppler shifts. The electrostatic potential of the target is also followed. The results indicate a bifurcation of the phase-space distribution function and structural segmentation of the plasma into a thermalized core and a crown with highly aligned, energetic atoms and ions. Reconstruction of the plasma structure appears possible by generalization of the two new algorithms we have developed.[1,2] 1. Y.W. Kim and J.-C. Oh, Rev. Sci. Inst. 72, 948 (2001). 2. Y.W. Kim and C.D. Lloyd-Knight, Rev. Sci. Inst. 72, 944 (2001).
Observing the Interstellar Neutral He Gas Flow with a Variable IBEX Pointing Strategy
NASA Astrophysics Data System (ADS)
Leonard, T.; Moebius, E.; Bzowski, M.; Fuselier, S. A.; Heirtzler, D.; Kubiak, M. A.; Kucharek, H.; Lee, M. A.; McComas, D. J.; Schwadron, N.; Wurz, P.
2015-12-01
The Interstellar Neutral (ISN) gas flow can be observed at Earth's orbit due to the motion of the solar system relative to the surrounding interstellar gas. Since He is minimally influenced by ionization and charge exchange, the ISN He flow provides a sample of the pristine interstellar environment. The Interstellar Boundary Explorer (IBEX) has observed the ISN gas flow over the past 7 years from a highly elliptical orbit around the Earth. IBEX is a Sun-pointing spinning spacecraft with energetic neutral atom (ENA) detectors observing perpendicular to the spacecraft spin axis. Due to the Earth's orbital motion around the Sun, it is necessary for IBEX to perform spin axis pointing maneuvers every few days to maintain a sunward pointed spin axis. The IBEX operations team has successfully pointed the spin axis in a variety of latitude orientations during the mission, including in the ecliptic during the 2012 and 2013 seasons, about 5 degrees below the ecliptic during the 2014 season, and recently about 5 degrees above the ecliptic during the 2015 season, as well as optimizing observations with the spin axis pointed along the Earth-Sun line. These observations include a growing number of measurements near the perihelion of the interstellar atom trajectories, which allow for an improved determination of the ISN He bulk flow longitude at Earth orbit. Combining these bulk flow measurements with an analytical model (Lee et al. 2012 ApJS, 198, 10) based upon orbital mechanics improves the knowledge of the narrow ISN parameter tube, obtained with IBEX, which couples the interstellar inflow longitude, latitude, speed, and temperature.
Inhibition of Coherence in Trapped Bose-Einstein Condensates
Imamoglu, A.; Lewenstein, M.
1997-03-01
We analyze the dependence of the collapse and revival of many-atom coherence of a trapped Bose-Einstein condensate on the trap potential, dimensionality of the gas, and atom number fluctuations. We show that in a class of experimentally relevant systems the collapse time vanishes in the limit of a large number of atoms, implying that the trapped Bose gas cannot sustain a well-defined quantum phase. {copyright} {ital 1997} {ital The American Physical Society}
Spin Drag in Noncondensed Bose Gases
Duine, R. A.; Stoof, H. T. C.
2009-10-23
We show how time-dependent magnetic fields lead to spin motive forces and spin drag in a spinor Bose gas. We propose to observe these effects in a toroidal trap and analyze this particular proposal in some detail. In the linear-response regime we define a transport coefficient that is analogous to the usual drag resistivity in electron bilayer systems. Because of Bose enhancement of atom-atom scattering, this coefficient strongly increases as temperature is lowered. We also investigate the effects of heating.
Effects of neutral gas release on current collection during the CHARGE-2 rocket experiment
NASA Technical Reports Server (NTRS)
Gilchrist, B. E.; Banks, P. M.; Neubert, T.; Williamson, P. R.; Myers, Neil B.; Raitt, W. John; Sasaki, S.
1990-01-01
Observations of current collection enhancements due to cold nitrogen gas control jet emissions from a highly charged rocket payload in the ionosphere are reported. These observations were made during the second cooperative high altitude rocket gun experiment (CHARGE-2) which was an electrically tethered mother/daughter payload system. The current collection enhancement was observed at the daughter payload located 100 to 400 m away from the mother which was firing an energetic electron beam. The authors interpret these results in terms of an electrical discharge forming in close proximity to the daughter during the short periods of gas emission. The results indicate that it is possible to enhance the electron current collection capability of positively charged vehicles by means of deliberate neutral gas releases into an otherwise undisturbed space plasma. These results can also be compared with recent laboratory observations of hollow cathode plasma contactors operating in the ignited mode. Experimental observations of current collection enhancements due to cold nitrogen gas control jet emissions from a highly charged, isolated daughter payload in the nighttime ionosphere were made. These observations were derived from the second cooperative high altitude rocket gun experiment (CHARGE-2) which was an electrically tethered mother-daughter payload system. The rocket flew from White Sands Missile Range (WSMR) in December, 1985. The rocket achieved an altitude of 261 km and carried a 1 keV electron beam emitting up to 48 mA of current (Myers, et al., 1989a). The mother payload, carried the electron beam source, while the daughter acted as a remote current collection and observation platform and reached a distance of 426 m away from the main payload. Gas emissions at the daughter were due to periodic thruster jet firings to maintain separation velocity between the two payloads.
Prediction of a neutral noble gas compound in the triplet state.
Manna, Debashree; Ghosh, Ayan; Ghanty, Tapan K
2015-05-26
Discovery of the HArF molecule associated with H-Ar covalent bonding [Nature, 2000, 406, 874-876] has revolutionized the field of noble gas chemistry. In general, this class of noble gas compound involving conventional chemical bonds exists as closed-shell species in a singlet electronic state. For the first time, in a bid to predict neutral noble gas chemical compounds in their triplet electronic state, we have carried out a systematic investigation of xenon inserted FN and FP species by using quantum chemical calculations with density functional theory and various post-Hartree-Fock-based correlated methods, including the multireference configuration interaction technique. The FXeP and FXeN species are predicted to be stable by all the computational methods employed in the present work, such as density functional theory (DFT), second-order Møller-Plesset perturbation theory (MP2), coupled-cluster theory (CCSD(T)), and multireference configuration interaction (MRCI). For the purpose of comparison we have also included the Kr-inserted compounds of FN and FP species. Geometrical parameters, dissociation energies, transition-state barrier heights, atomic charge distributions, vibrational frequency data, and atoms-in-molecules properties clearly indicate that it is possible to experimentally realize the most stable state of FXeP and FXeN molecules, which is triplet in nature, through the matrix isolation technique under cryogenic conditions. PMID:25891838
Emission and afterglow properties of an expanding RF plasma with nonuniform neutral gas density
NASA Astrophysics Data System (ADS)
Chaplin, Vernon H.; Bellan, Paul M.
2016-08-01
We describe some notable aspects of the light emission and afterglow properties in pulsed, high-density ( 1018-1020 m-3 ) argon inductively coupled discharges initiated following fast gas injection. The plasma was created in a long, narrow discharge tube and then expanded downstream of the radiofrequency (RF) antenna into a large chamber. Fast camera images of the expanding plasma revealed a multi-phase time-dependent emission pattern that did not follow the ion density distribution. Dramatic differences in visible brightness were observed between discharges with and without an externally applied magnetic field. These phenomena were studied by tracking excited state populations using passive emission spectroscopy and are discussed in terms of the distinction between ionizing and recombining phase plasmas. Additionally, a method is presented for inferring the unknown neutral gas pressure in the discharge tube from the time-dependent visible and infrared emission measured by a simple photodiode placed near the antenna. In magnetized discharges created with fast gas injection, the downstream ion density rose by Δni˜1018 m-3 in the first ˜100 μs after the RF power was turned off. The conditions conducive to this afterglow density rise are investigated in detail, and the effect is tentatively attributed to pooling ionization.
NASA Astrophysics Data System (ADS)
Benna, Mehdi; Mahaffy, Paul R.; Elrod, Meredith
2015-04-01
The Neutral Gas and Ion Mass Spectrometer (NGIMS) of the Mars Atmosphere and Volatile Evolution (MAVEN) Mission is designed to characterize the source region of escaping atoms in the upper atmosphere and ionosphere of Mars. The NGIMS instrument is a quadrupole analyzer with a mass rang of 2-150 Da. It utilizes a dual ion source in order to measure both surface reactive neutrals (using the Open Source Neutral mode - OSN), inert neutrals (using the Closed Source Neutral mode - CSN), and thermal ions (using the Open Source Ion mode - OSI) at altitudes below 500 km.In the first few months of the MAVEN mission, NGIMS alternated on sequential orbits between measurement sequences that focus on fully characterizing neutral species (using the CSN/OSN modes) and ions (using the CSN/OSI modes). The collected data revealed the substantial structure present in both neutral and ion densities with spatial scales of hundreds of kilometers along the spacecraft track. The data also brought to light the sharp contrast between the day side and night side atmospheric profiles of neutrals and ions in both total density and relative abundance.
Electrostatic plasma instabilities driven by neutral gas flows in the solar chromosphere
NASA Astrophysics Data System (ADS)
Gogoberidze, G.; Voitenko, Y.; Poedts, S.; De Keyser, J.
2014-03-01
We investigate electrostatic plasma instabilities of Farley-Buneman (FB) type driven by quasi-stationary neutral gas flows in the solar chromosphere. The role of these instabilities in the chromosphere is clarified. We find that the destabilizing ion thermal effect is highly reduced by the Coulomb collisions and can be ignored for the chromospheric FB-type instabilities. In contrast, the destabilizing electron thermal effect is important and causes a significant reduction of the neutral drag velocity triggering the instability. The resulting threshold velocity is found as function of chromospheric height. Our results indicate that the FB-type instabilities are still less efficient in the global chromospheric heating than the Joule dissipation of the currents driving these instabilities. This conclusion does not exclude the possibility that the FB-type instabilities develop in the places where the cross-field currents overcome the threshold value and contribute to the heating locally. Typical length-scales of plasma density fluctuations produced by these instabilities are determined by the wavelengths of unstable modes, which are in the range 10-102 cm in the lower chromosphere and 102-103 cm in the upper chromosphere. These results suggest that the decimetric radio waves undergoing scattering (scintillations) by these plasma irregularities can serve as a tool for remote probing of the solar chromosphere at different heights.
HST study of Lyman-alpha emission in star-forming galaxies: the effect of neutral gas flows
NASA Astrophysics Data System (ADS)
Kunth, Daniel; Mas-Hesse, J. M.; Terlevich, E.; Terlevich, R.; Lequeux, J.; Fall, S. Michael
1998-06-01
We present high dispersion HST GHRS UV spectroscopic observations of 8 H II galaxies covering a wide range of metallicities and physical properties. We have found Lyalpha \\ emission in 4 galaxies with blueshifted absorption features, leading to P Cygni like profiles in 3 of them. In all these objects the O I and Si II absorption lines are also blueshifted with respect to the ionized gas, indicating that the neutral gas is outflowing in these galaxies with velocities up to 200 km s(-1) or more. The rest of the sample shows broad damped Lyalpha \\ absorption profiles centered at the wavelength corresponding to the redshift of the H II emitting gas. We therefore find that the velocity structure of the neutral gas in these galaxies is the driving factor that determines the detectability of Lyalpha \\ in emission. Relatively small column densities of neutral gas with even very small dust content would destroy the Lyalpha \\ emission if this gas is static with respect to the ionized region where Lyalpha \\ photons originate. The situation changes dramatically when most of the neutral gas is velocity-shifted with respect to the ionized regions because resonant scattering by neutral hydrogen will be most efficient at wavelengths shorter than the Lyalpha \\ emission, allowing the Lyalpha \\ photons to escape (at least partially). This mechanism complements the effect of porosity in the neutral interstellar medium discussed by other authors, which allows to explain the escape of Lyalpha \\ photons in regions surrounded by static neutral gas, but with only partial covering factors. The anisotropy of these gas flows and their dependence on the intrinsic properties of the violent star-forming episodes taking place in these objects (age, strength, gas geometry,...) might explain (in part) the apparent lack of correlation between other properties (like metallicity) and the frequency of occurence and strength of Lyalpha \\ emission in star-forming galaxies. Attempts to derive the
Jayapalan, Kanesh K. Chin, Oi-Hoong
2014-04-15
The axial and radial magnetic field profiles in a 13.56 MHz (radio frequency) laboratory 6 turn planar coil inductively coupled plasma reactor are simulated with the consideration of the effect of neutral gas heating. Spatially resolved electron densities, electron temperatures, and neutral gas temperatures were obtained for simulation using empirically fitted electron density and electron temperature and heuristically determined neutral gas temperature. Comparison between simulated results and measured fields indicates that neutral gas heating plays an important role in determining the skin depth of the magnetic fields.
NASA Astrophysics Data System (ADS)
Robinson, Neil J.; Caux, Jean-Sébastien; Konik, Robert M.
2016-04-01
We consider the real-time dynamics of an initially localized distinguishable impurity injected into the ground state of the Lieb-Liniger model. Focusing on the case where integrability is preserved, we numerically compute the time evolution of the impurity density operator in regimes far from analytically tractable limits. We find that the injected impurity undergoes a stuttering motion as it moves and expands. For an initially stationary impurity, the interaction-driven formation of a quasibound state with a hole in the background gas leads to arrested expansion—a period of quasistationary behavior. When the impurity is injected with a finite center-of-mass momentum, the impurity moves through the background gas in a snaking manner, arising from a quantum Newton's cradlelike scenario where momentum is exchanged back and forth between the impurity and the background gas.
Robinson, Neil J; Caux, Jean-Sébastien; Konik, Robert M
2016-04-01
We consider the real-time dynamics of an initially localized distinguishable impurity injected into the ground state of the Lieb-Liniger model. Focusing on the case where integrability is preserved, we numerically compute the time evolution of the impurity density operator in regimes far from analytically tractable limits. We find that the injected impurity undergoes a stuttering motion as it moves and expands. For an initially stationary impurity, the interaction-driven formation of a quasibound state with a hole in the background gas leads to arrested expansion-a period of quasistationary behavior. When the impurity is injected with a finite center-of-mass momentum, the impurity moves through the background gas in a snaking manner, arising from a quantum Newton's cradlelike scenario where momentum is exchanged back and forth between the impurity and the background gas. PMID:27104716
Neil J. Robinson; Caux, Jean -Sebastien; Konik, Robert M.
2016-04-07
We consider the real-time dynamics of an initially localized distinguishable impurity injected into the ground state of the Lieb-Liniger model. Focusing on the case where integrability is preserved, we numerically compute the time evolution of the impurity density operator in regimes far from analytically tractable limits. We find that the injected impurity undergoes a stuttering motion as it moves and expands. For an initially stationary impurity, the interaction-driven formation of a quasibound state with a hole in the background gas leads to arrested expansion—a period of quasistationary behavior. In conclusion, when the impurity is injected with a finite center-of-mass momentum,more » the impurity moves through the background gas in a snaking manner, arising from a quantum Newton’s cradlelike scenario where momentum is exchanged back and forth between the impurity and the background gas.« less
NASA Astrophysics Data System (ADS)
Vergely, J.-L.; Valette, B.; Lallement, R.; Raimond, S.
2010-07-01
Aims: 3D tomography of the interstellar dust and gas may be useful in many respects, from the physical and chemical evolution of the interstellar medium itself to foreground decontamination of the cosmic microwave background, or various studies of the environments of specific objects. However, while spectral data cubes of the galactic emission become increasingly precise, the information on the distance to the emitting regions has not progressed as well and relies essentially on the galactic rotation curve. Our goal here is to bring more precise information on the distance to nearby interstellar dust and gas clouds within 250 pc. Methods: We apply the best available calibration methods to a carefully screened set of stellar Strömgren photometry data for targets possessing a Hipparcos parallax and spectral type classification. We combine the derived interstellar extinctions and the parallax distances for about 6000 stars to build a 3D tomography of the local dust. We use an inversion method based on a regularized Bayesian approach and a least squares criterion, optimized for this specific data set. We apply the same inversion technique to a totally independent set of neutral sodium absorption data available for about 1700 target stars. Results: We obtain 3D maps of the opacity and the distance to the main dust-bearing clouds within 250 pc and identify in those maps well-known dark clouds and high galactic more diffuse entities. We calculate the integrated extinction between the Sun and the cube boundary and compare this with the total galactic extinction derived from infrared 2D maps. The two quantities reach similar values at high latitudes, as expected if the local dust content is satisfyingly reproduced and the dust is closer than 250 pc. Those maps show a larger high latitude dust opacity in the North compared to the South, reinforcing earlier evidences. Interestingly the gas maps do not show the same asymmetry, suggesting a polar asymmetry of the dust to gas
NASA Astrophysics Data System (ADS)
Zafar, T.; Péroux, C.; Vladilo, G.; Centurión, M.; Molaro, P.; D'Odorico, V.; Abbas, K.; Popping, A.; Milliard, B.; Deharveng, J.-M.; Frank, S.
2015-06-01
Damped LyÎ± absorbers (DLAs), seen in the spectra of background quasars, are unique probes to select HI-rich galaxies. We selected a dataset of 250 quasars observed with the Ultraviolet Visual Echelle Spectrograph (UVES) and available through the ESO UVES Advanced Data Products (EUADP) archive, to study the gas and metal properties of 150 damped absorbers. These high-redshift absorbers contain information on the physical state and chemical composition of the interstellar medium and the neutral gas mass, a possible indicator of gas consumption as star formation proceeds. We find no evolution of the neutral gas mass density, with sub-DLAs contributing 8-20% (increasing with redshift). The EUADP dataset provides insights into the nucleosynthetic origin of nitrogen, confirming the bimodal behaviour of [N/Î±], and also confirms the deficiency of argon in DLAs.
A Field-Reversed Configuration Plasma Translated into a Neutral Gas Atmosphere
NASA Astrophysics Data System (ADS)
Sekiguchi, Jun'ichi; Asai, Tomohiko; Takahashi, Tsutomu; Ando, Hirotoshi; Arai, Mamiko; Katayama, Seri; Takahashi, Toshiki
2014-10-01
A field-reversed configuration (FRC) is a compact toroid dominantly with poloidal magnetic field. Because of its simply-connected configuration, an FRC can be translated axially along a gradient of guide magnetic field, and trapped in a confinement region with quasi-static external magnetic field. FRC translation experiments have been performed several facilities. Translation speed of those translated FRCs is comparable with super-Alfvenic speed of approximately 200 km/s. In this experiments, FRC translation has been performed on the FAT (FRC Amplification via Translation) facility. Achieved translation speed in the case of translation into a confinement chamber maintained as the vacuum state is in the range from 130 to 210 km/s. On the other hand, FRC translation into a statically filled deuterium gas atmosphere has also been performed. In the case of translation into filled neutral gas, FRC translation speed is approximately 80 km/s and the separatrix volume has extremely expanded compared with the case of a vacuum state. The phenomenon suggests the presence of regeneration process of translation kinetic energy back into the internal plasma energy during the translation process. This work was partially supported by ``Nihon University Symbolic Project.'' The authors gratefully acknowledge contributions from Nac Image Technology Inc. on the fast camera measurements.
Physical properties of neutral gas in M31 and the Galaxy
NASA Technical Reports Server (NTRS)
Braun, Robert; Walterbos, Rene A. M.
1992-01-01
The present study analyzes, in parallel with published data for the Galaxy, neutral hydrogen (H I) absorption and deduced emission detected along seven lines of sight through the disk of M31. It is shown that the brightness temperature of H I emission is coupled to the opacity of the gas. The Galactic relationship shows asymptotic trends at both large and small opacities. A simple yet effective physical model which accounts for this behavior consists of only two independent components: a high-opacity cool component of fixed mean temperature, and a low-opacity warm component of fixed mean brightness. A lower mean gas pressure by a factor of about 2 is argued to be the most plausible mechanism for accounting for a higher cool-component H I temperature in M31. Deduced volume filling factors of the Galactic H I are about 1 and 15 percent, respectively, for the cool and warm components, while for M31 they are 8 and 30 percent. The large ratio of surface to volume filling factors for both cool and warm H I suggests that these components are distributed predominantly as large sheet- or shell-like structures.
NASA Astrophysics Data System (ADS)
Huang, Z.; Toth, G.; Gombosi, T.; Jia, X.; Rubin, M.; Fougere, N.; Tenishev, V.; Combi, M.; Bieler, A.; Hansen, K.; Shou, Y.; Altwegg, K.
2015-10-01
We develop a 3-D four fluid model to study the plasma environment of comet Churyumov- Gerasimenko (CG), which is the target of the Rosetta mission. Our model is based on BATS-R-US within the SWMF (Space Weather Modeling Framework) that solves the governing multifluid MHD equations and and the Euler equations for the neutral gas fluid. These equations describe the behavior and interactions of the cometary heavy ions, the solar wind protons, the electrons, and the neutrals. This model incorporates mass loading processes, including photo and electron impact ionization, furthermore taken into account are charge exchange, dissociative ion-electron recombination, as well as collisional interactions between different fluids. We simulate the near nucleus plasma and neutral gas environment with a realistic shape model of CG near perihelion and compare our simulation results with Rosetta observations.
Fast Rotating Scalar and Multi-component Bose Gases
NASA Technical Reports Server (NTRS)
Ho, TIn-Lun Jason
2003-01-01
We show that in the limit of large angular momentum, many equilibrium and dynamical phenomena of scalar and multi-component Bose gases can be accounted for by approximating the system to reside in an effective lowest Landau level. This method explains the origin of the mysterious stripe formation in fast rotating Bose gas recently observed at JILA, and accounts for all the dynamical details observed in this experiment. To further demonstrate the usefulness of this method, we present its predictions of the interference patterns of two vortex lattices, and rich vortex lattice structures in multi-component Bose gases.
Condensate fluctuations of interacting Bose gases within a microcanonical ensemble
Wang Jianhui; He Jizhou; Ma Yongli
2011-05-15
Based on counting statistics and Bogoliubov theory, we present a recurrence relation for the microcanonical partition function for a weakly interacting Bose gas with a finite number of particles in a cubic box. According to this microcanonical partition function, we calculate numerically the distribution function, condensate fraction, and condensate fluctuations for a finite and isolated Bose-Einstein condensate. For ideal and weakly interacting Bose gases, we compare the condensate fluctuations with those in the canonical ensemble. The present approach yields an accurate account of the condensate fluctuations for temperatures close to the critical region. We emphasize that the interactions between excited atoms turn out to be important for moderate temperatures.
Transport in a field-aligned magnetized plasma and neutral gas boundary: the end of the plasma
NASA Astrophysics Data System (ADS)
Cooper, Christopher; Gekelman, Walter
2012-10-01
A series of experiments at the Enormous Toroidal Plasma Device (ETPD) at UCLA study the Neutral Boundary Layer (NBL) between a magnetized plasma and a neutral gas in the direction of the confining field. A lanthanum hexaboride (LaB6) cathode and semi-transparent anode create a current-free, weakly ionized (ne/nn<5%), helium plasma (B˜250 G, Rplasma=10cm, ne<10^12cm^3, Te<3eV, and Ti˜Tn) that terminates on helium gas without touching any walls. Probes inserted into the plasma measure the basic plasma parameters in the NBL. The NBL begins where the plasma and neutral gas pressures equilibrate and the electrons and ions come to rest through collisions with the neutral gas. A field-aligned electric field (δφ/kTe˜1) is established self-consistently to maintain a current-free termination and dominates transport in the NBL, similar to a sheath but with a length L˜10λei˜10^2λen˜10^5λD. A two-fluid weakly-ionized transport model describes the system. A generalized Ohm's Law correctly predicts the electric field observed. The pressure balance criteria and magnitude of the termination electric field are confirmed over a scaling of parameters. The model can also be used to describe the atmospheric termination of aurora or fully detached gaseous divertors.
Guiberteau, E.; Bonhomme, G.; Zoheir, C.
1995-12-31
We present here the first results obtained from the modelling of a pulsed glow discharge in nitrogen, taking into account the heat transfer to the neutral gas. The aim of modelling is to optimize the plasma process in a nitriding reactor. The iron sample to be nitrided forms the cathode of the glow discharge at low pressure (100 to 200 Pa). The reactor uses two disks of diameter 50 mm as electrodes with a 40 mm gap. It works in a pulsed regime (cycle period varies from 10 to 100 ms) with a discharge duration which can be varied from 0.5 to 10 ms. Experimental studies have been carried out using emission spectroscopy resolved in space (1 mm) and time (1 {mu}s), under various discharge and post-discharge durations. These studies have shown the important effect of energy transfer from the discharge to the neutral gas. In fact this transfer produces an expansion of the negative glow observed when the post-discharge duration is decreased. A realistic modelling should thus be performed bearing in mind that the neutral gas behaves not as a thermostat. Consequently the thermal and hydrodynamic evolution of the neutral gas must be considered in the whole modelling.
Quantum phase transition of a Bose gas in a lattice with a controlled number of atoms per site
NASA Astrophysics Data System (ADS)
Du, Xu
2005-05-01
We have studied the superfluid-Mott insulator quantum phase transition [1] of a gas of ^87Rb atoms in an optical lattice. We are able to prepare the gas with a controllable number of one, two, or three atoms per lattice site, as verified with photoassociation spectroscopy. We measure momentum distributions using standard time-of-flight imaging techniques. These are similar to those of ref. [1], and exhibit narrow peaks at moderate lattice strengths. We find that the width of these peaks increases for lattice heights greater than about 13 times the recoil energy [2], and we observe interesting differences in this behavior, depending on the number of atoms per site. The data suggest that the quantum phase transition occurs at higher lattice strength with larger site occupation. We acknowledge the support of this work by the R. A. Welch Foundation, The N. S. F., and the D.O.E. Quantum Optics Initiative. [1] Markus Greiner et al., Nature 415, 39 (2002). [2] Thilo St"oferle et al., Phys. Rev. Lett. 92, 130403 (2004).
ERIC Educational Resources Information Center
Sudarshan, E. C. G.
1975-01-01
Describes a four page paper written by S. Bose who helped found quantum statistics. The consequences of the paper to modern physics are presented. Contrasted are the scientific relationships of Einstein, Dirac, and Bose. (GH)
The Neutral Gas Desorption and Breakdown on a Metal-Dielectric Junction Immersed in a Plasma
NASA Technical Reports Server (NTRS)
Vayner, Boris; Galofaro, Joel; Ferguson, Dale; Lyons, Valerie J. (Technical Monitor)
2002-01-01
New results are presented of an experimental study and theoretical analysis of arcing on metal-dielectric junctions immersed in a low-density plasma. Two samples of conventional solar arrays have been used to investigate the effects of arcing within a wide range of neutral gas pressures, ion currents, and electron number densities. All data (except video) were obtained in digital form that allowed us to study the correlation between external parameters (plasma density, additional capacitance, bias voltage, etc) and arc characteristics (arc rate, arc current pulse width and amplitude, gas species partial pressures, intensities of spectral lines, and so on). Arc sites were determined by employing a video-camera, and it is shown that the most probable sites for arc inception are trip le-junctions, even though some arcs were initiated in gaps between cells. The effect of surface conditioning (decrease of arc rate due to outgassing) was clearly demonstrated. Moreover, a considerable increase in arc rate due to absorption of molecules from atmospheric air has been confirmed. The analysis of optical spectra (240-800 nm) reveals intense narrow atomic lines (Ag, H) and wide molecular bands (OH, CH, SiH, SiN) that confirm a complicated mechanism of arc plasma generation. The rate of plasma contamination due to arcing was measured by employing a mass-spectrometer. These measurements provided quite reliable data for the development of a theoretical model of plasma contamination, In conclusion, the arc threshold was increased to above 350 V (from 190 V) by keeping a sample in vacuum (20 micronTorr) for seven days. The results obtained are important for the understanding of the arc inception mechanism, which is absolutely essential for progress toward the design of high voltage solar arrays for space applications.
A Tetrapositive Metal Ion in the Gas Phase: Thorium(IV) Coordinated by Neutral Tridentate Ligands
Gong, Yu; Hu, Han-Shi; Tian, Guoxin; Rao, Linfeng; Li, Jun; Gibson, John K.
2013-07-01
ESI of 1:1 mixtures of Th(ClO₄)₄ and ligand TMOGA in acetonitrile resulted in the observation of the TMOGA supported tetracation, Th(L)₃⁴⁺, in the gas phase. Three TMOGA ligands are necessary to stabilize the tetrapositive thorium ion; no Th(L)₂⁴⁺ or Th(L)₄⁴⁺ was observed. Theoretical calculations reveal that the Th(L)₃⁴⁺ complex possesses C₃ symmetry with the thorium center coordinated by nine oxygen atoms from three ligands, which forms a twisted TPP geometry. Actinide compounds with such a geometry feature a nine-coordinate chiral actinide center. The Th-L binding energy and bond orders of Th(L)n⁴⁺ decrease as the coordination number increases, consistent with the trend of concurrently increasing Th-O distances. The Th-O bonding is mainly electrostatic in nature, but the covalent interactions are not negligible. CID of the Th(L)₃⁴⁺ complex mainly resulted in charge reduction to form Th(L)₂(L-86)³⁺oss of neutral TMOGA was not observed. The protic ligand methanol stabilized only tri- and dications of ligated thorium. The intensity of the Th(L)₃⁴⁺ peak was reduced as the percentage of water increased in the Th(ClO₄)₄/TMOGA solution.
NASA Technical Reports Server (NTRS)
Niemann, H. B.; Kasprzak, W. T.; Hedin, A. E.; Spencer, N. W.; Hunten, D. M.
1980-01-01
The neutral gas composition and density in the thermosphere of Venus is being measured with a quadrupole mass spectrometer on the Pioneer Venus orbiter. Data are obtained near periapsis once per day approximately 150-250 km above the surface. The principal gases in the thermosphere are CO2, CO, N2, O, N, and He. Atomic oxygen is the major constituent above 155 km on the dayside and also on the nightside up to 180 km when helium becomes the major constituent. The average values of CO2, CO, N2, O, and N remain nearly constant during day and night, but an abrupt change occurs across the terminator from a high dayside value to a low nightside value. The helium density varies in the opposite way, and a distinct bulge was observed at night near the morning terminator. The data have been used as the basis of an empirical model. Large orbit to orbit variations in densities were also observed on the nightside, suggesting perhaps strong turbulent motion in the atmosphere below. Kinetic temperatures inferred from scale heights are approximately 285 K on the dayside and 110 K at night. The average global temperature obtained from the model is 199 K.
Statistical mechanics of a neutral point-vortex gas at low energy.
Esler, J G; Ashbee, T L; McDonald, N R
2013-07-01
The statistics of a neutral point-vortex gas in an arbitrary two-dimensional simply connected and bounded container are investigated in the framework of the microcanonical ensemble, following the cumulant expansion method of Pointin and Lundgren [Phys. Fluids 19, 1459 (1976)]. The equation for vorticity fluctuations, obtained when a thermodynamic scaling limit is taken, is solved explicitly. The solution depends on an infinite sequence of negative "domain inverse temperatures," determined by the domain shape, which are obtained from solutions of a "vorticity mode" eigenvalue problem. An explicit expression for the thermodynamic curve relating inverse temperature and energy is found and is shown to depend on the geometry and not on the scale of the domain. Explicit formulas are then obtained for the time variance of the projection of the vorticity field onto each vorticity mode. The results are verified by two methods. First, for a chosen single-parameter family of domains, direct sampling of the microcanonical ensemble is used to demonstrate the accuracy of the formula for the thermodynamic curve. Second, direct numerical simulations are used to verify the formulas for the variance of the projections of the vorticity field, with convincing results. PMID:23944416
NASA Technical Reports Server (NTRS)
Cruden, Brett A.; Rao, M. V. V. S.; Sharma, Surendra P.; Meyyappan, M.
2001-01-01
This work examines the accuracy of plasma neutral temperature estimates by fitting the rotational band envelope of different diatomic species in emission. Experiments are performed in an inductively coupled CF4 plasma generated in a Gaseous Electronics Conference reference cell. Visible and ultraviolet emission spectra are collected at a power of 300 W (approximately 0.7 W/cc) and pressure of 30 mtorr. The emission bands of several molecules (CF, CN, C2, CO, and SiF) are fit simultaneously for rotational and vibrational temperatures and compared. Four different rotational temperatures are obtained: 1250 K for CF and CN, 1600 K for CO, 1800 K for C2, and 2300 K for SiF. The vibrational temperatures obtained vary from 1750-5950 K, with the higher vibrational temperatures generally corresponding to the lower rotational temperatures. These results suggest that the different species have achieved different degrees of equilibration between the rotational and vibrational modes and may not be equilibrated with the translational temperatures. The different temperatures are also related to the likelihood that the species are produced by ion bombardment of the surface, with etch products like SiF, CO, and C2 having higher temperatures than species expected to have formed in the gas phase.
NASA Astrophysics Data System (ADS)
Huang, Zhenguang; Tóth, Gábor; Gombosi, Tamas I.; Jia, Xianzhe; Rubin, Martin; Fougere, Nicolas; Tenishev, Valeriy; Combi, Michael R.; Bieler, Andre; Hansen, Kenneth C.; Shou, Yinsi; Altwegg, Kathrin
2016-05-01
The neutral and plasma environment is critical in understanding the interaction of the solar wind and comet 67P/Churyumov-Gerasimenko (CG), the target of the European Space Agency's Rosetta mission. To serve this need and support the Rosetta mission, we have developed a 3-D four-fluid model, which is based on BATS-R-US (Block-Adaptive Tree Solarwind Roe-type Upwind Scheme) within SWMF (Space Weather Modeling Framework) that solves the governing multifluid MHD equations and the Euler equations for the neutral gas fluid. These equations describe the behavior and interactions of the cometary heavy ions, the solar wind protons, the electrons, and the neutrals. This model incorporates different mass loading processes, including photoionization and electron impact ionization, charge exchange, dissociative ion-electron recombination, and collisional interactions between different fluids. We simulated the plasma and neutral gas environment near perihelion in three different cases: an idealized comet with a spherical body and uniform neutral gas outflow, an idealized comet with a spherical body and illumination-driven neutral gas outflow, and comet CG with a realistic shape model and illumination-driven neutral gas outflow. We compared the results of the three cases and showed that the simulations with illumination-driven neutral gas outflow have magnetic reconnection, a magnetic pileup region and nucleus directed plasma flow inside the nightside reconnection region, which have not been reported in the literature.
Atomtronics with Ultracold Bose Gases
NASA Astrophysics Data System (ADS)
Ott, Herwig
Neutral atom systems can exhibit similar transport properties like solid state devices. For instance, a neutral atom current is induced by a difference in chemical potential very much in the same way as a voltage drives an electric current. Employing Bose-Einstein condensed atomic gases allows observing superfluid transport phenomena, thus drawing connections to superconductivity. With help of light fields, the atomic current can additionally be guided in engineered potential landscapes in which one can also incorporate tunneling junctions. Eventually, the different components and elements can be integrated in atomtronic circuits which shed light on fundamental transport properties of many-body quantum systems. In this talk, I will present two fundamental atomtronic devices. The first is the observation of negative differential conductivity, which occurs at a multimode tunneling junction for ultracold atoms. The second is the appearance of a DC Josephson current in a biased tunneling junction, which features bistable transport characteristics. I will discuss the prospects of these basic elements for more complex atomtronic circuits.
The neutral gas extent of galaxies as derived from weak intervening Ca ii absorbers
NASA Astrophysics Data System (ADS)
Richter, P.; Krause, F.; Fechner, C.; Charlton, J. C.; Murphy, M. T.
2011-04-01
We present a systematic study of weak intervening Ca ii absorbers at low redshift (z < 0.5), based on the analysis of archival high-resolution (R ≥ 45 000) optical spectra of 304 quasars and active galactic nuclei observed with VLT/UVES. Along a total redshift path of Δz ≈ 100 we detected 23 intervening Ca ii absorbers in both the Ca ii H & K lines, with rest frame equivalent widths Wr,3934 = 15-799 mÅ and column densities log N(Ca ii) = 11.25-13.04 (obtained by fitting Voigt-profile components). We obtain a bias-corrected number density of weak intervening Ca ii absorbers of {d{N}/dz=0.117 ± 0.044} at ⟨zabs⟩ = 0.35 for absorbers with log N(Ca ii) ≥ 11.65 (Wr,3934 ≥ 32 mÅ). This is 2.6 times the value obtained for damped Lyman α absorbers (DLAs) at low redshift. All Ca ii absorbers in our sample show associated absorption by other low ions such as Mg ii and Fe ii; 45 percent of them have associated Na i absorption. From ionization modelling we conclude that intervening Ca ii absorption with log N(Ca ii) ≥ 11.5 arises in DLAs, sub-DLAs and Lyman-limit systems (LLS) at H i column densities of log N(H i) ≥ 17.4. Using supplementary H i information for nine of the absorbers we find that the Ca ii/H i ratio decreases strongly with increasing H i column density, indicating a column-density-dependent dust depletion of Ca. The observed column density distribution function of Ca ii absorption components follows a relatively steep power law, f(N) ∝ N - β, with a slope of - β = -1.68, which again points towards an enhanced dust depletion in high column density systems. The relatively large cross section of these absorbers together with the frequent detection of Ca ii absorption in high-velocity clouds (HVCs) in the halo of the Milky Way suggests that a considerable fraction of the intervening Ca ii systems trace (partly) neutral gas structures in the halos and circumgalactic environment of galaxies (i.e., they are HVC analogs). Based on the recently
Schowalter, Steven J.; Dunning, Alexander J.; Chen, Kuang; Puri, Prateek; Schneider, Christian; Hudson, Eric R.
2016-01-01
Sympathetic cooling of trapped ions through collisions with neutral buffer gases is critical to a variety of modern scientific fields, including fundamental chemistry, mass spectrometry, nuclear and particle physics, and atomic and molecular physics. Despite its widespread use over four decades, there remain open questions regarding its fundamental limitations. To probe these limits, here we examine the steady-state evolution of up to 10 barium ions immersed in a gas of three-million laser-cooled calcium atoms. We observe and explain the emergence of nonequilibrium behaviour as evidenced by bifurcations in the ion steady-state temperature, parameterized by ion number. We show that this behaviour leads to the limitations in creating and maintaining translationally cold samples of trapped ions using neutral-gas sympathetic cooling. These results may provide a route to studying non-equilibrium thermodynamics at the atomic level. PMID:27511602
Shuman, Nicholas S.; Viggiano, Albert A.; Johnsen, Rainer
2013-05-28
We have studied the dependence of several ion-ion mutual neutralization (MN) reactions on helium density in the range from 1.6 Multiplication-Sign 10{sup 16} to 1.5 Multiplication-Sign 10{sup 17} cm{sup -3} at 300 K, using the Variable Electron and Neutral Density Attachment Mass Spectrometry method. The rate coefficients of the reactions Ar{sup +}+ Br{sub 2}{sup -}, Ar{sup +}+ SF{sub 6}{sup -}, and Ar{sup +}+ C{sub 7}F{sub 14}{sup -} were found to be independent of gas density over the range studied, in disagreement with earlier observations that similar MN reactions are strongly enhanced at the same gas densities. The cause of the previous enhancement with density is traced to the use of 'orbital-motion-limit' theory to infer ion densities from the currents collected by ion-attracting Langmuir probes in a region where it is not applicable.
Schowalter, Steven J; Dunning, Alexander J; Chen, Kuang; Puri, Prateek; Schneider, Christian; Hudson, Eric R
2016-01-01
Sympathetic cooling of trapped ions through collisions with neutral buffer gases is critical to a variety of modern scientific fields, including fundamental chemistry, mass spectrometry, nuclear and particle physics, and atomic and molecular physics. Despite its widespread use over four decades, there remain open questions regarding its fundamental limitations. To probe these limits, here we examine the steady-state evolution of up to 10 barium ions immersed in a gas of three-million laser-cooled calcium atoms. We observe and explain the emergence of nonequilibrium behaviour as evidenced by bifurcations in the ion steady-state temperature, parameterized by ion number. We show that this behaviour leads to the limitations in creating and maintaining translationally cold samples of trapped ions using neutral-gas sympathetic cooling. These results may provide a route to studying non-equilibrium thermodynamics at the atomic level. PMID:27511602
Degenerate Bose gases with uniform loss
NASA Astrophysics Data System (ADS)
Grišins, Pjotrs; Rauer, Bernhard; Langen, Tim; Schmiedmayer, Jörg; Mazets, Igor E.
2016-03-01
We theoretically investigate a weakly interacting degenerate Bose gas coupled to an empty Markovian bath. We show that in the universal phononic limit the system evolves towards an asymptotic state where an emergent temperature is set by the quantum noise of the outcoupling process. For situations typically encountered in experiments, this mechanism leads to significant cooling. Such dissipative cooling supplements conventional evaporative cooling and dominates in settings where thermalization is highly suppressed, such as in a one-dimensional quasicondensate.
Marçalo, Joaquim; Gibson, John K
2009-11-12
An assessment of the gas-phase energetics of neutral and singly and doubly charged cationic actinide monoxides and dioxides of thorium, protactinium, uranium, neptunium, plutonium, americium, and curium is presented. A consistent set of metal-oxygen bond dissociation enthalpies, ionization energies, and enthalpies of formation, including new or revised values, is proposed, mainly based on recent experimental data and on correlations with the electronic energetics of the atoms or cations and with condensed-phase thermochemistry. PMID:19725530
NASA Astrophysics Data System (ADS)
Marçalo, Joaquim; Gibson, John K.
2009-09-01
An assessment of the gas-phase energetics of neutral and singly and doubly charged cationic actinide monoxides and dioxides of thorium, protactinium, uranium, neptunium, plutonium, americium, and curium is presented. A consistent set of metal-oxygen bond dissociation enthalpies, ionization energies, and enthalpies of formation, including new or revised values, is proposed, mainly based on recent experimental data and on correlations with the electronic energetics of the atoms or cations and with condensed-phase thermochemistry.
Marcalo, Joaquim; Gibson, John K.
2009-08-10
An assessment of the gas-phase energetics of neutral and singly and doubly charged cationic actinide monoxides and dioxides of thorium, protactinium, uranium, neptunium, plutonium, americium, and curium is presented. A consistent set of metal-oxygen bond dissociation enthalpies, ionization energies, and enthalpies of formation, including new or revised values, is proposed, mainly based on recent experimental data and on correlations with the electronic energetics of the atoms or cations and with condensed-phase thermochemistry.
Tan, Cheng-Yan; /Fermilab
2010-03-01
The neutralization of H{sup -} beam with a gas like Xe is an important part of low energy beam transport (LEBT). It is well known that choppers which use an electric field when placed in the LEBT strongly affects the neutralization of H{sup -}. The question then naturally arises as to whether a magnetic chopper has a better neutralization time than an electric chopper. To answer this question, a simple 1-space, 1 time drift-diffusion model of H{sup -} beam in Xe gas has been used to calculate the neutralization times for the following scenarios: (a) a region initially cleared of Xe+ ions with an electric field but partially neutralized outside, (b) a region within and outside the chopper which is initially partially neutralized.
Moody, Gordon; Belmontes, Brian; Masterman, Stephanie; Wang, Wei; King, Chadwick; Murawsky, Chris; Tsuruda, Trace; Liu, Shuying; Radinsky, Robert; Beltran, Pedro J
2016-09-15
Gas6 and its receptors Axl, Mer and Tyro-3 (TAM) are highly expressed in human malignancy suggesting that signaling through this axis may be tumor-promoting. In pancreatic ductal adenocarcinoma (PDAC), Gas6 and the TAM receptor Axl are frequently co-expressed and their co-expression correlates with poor survival. A strategy was devised to generate fully human neutralizing antibodies against Gas6 using XenoMouse® technology. Hybridoma supernatants were selected based on their ability to inhibit Gas6 binding to the receptor Axl and block Gas6-induced Axl phosphorylation in human cells. Two purified antibodies isolated from the screened hybridomas, GMAB1 and GMAB2, displayed optimal cellular potency which was comparable to that of the soluble extracellular domain of the receptor Axl (Axl-Fc). In vivo characterization of GMAB1 was conducted using a pharmacodynamic assay that measured inhibition of Gas6-induced Akt activation in the mouse spleen. Treatment of mice with a single dose (100-1000 µg) of GMAB1 led to greater than 90% inhibition of Gas6-induced phosphorylated Akt (pAkt) for up to 72 hr. Based on the target coverage observed in the PD assay, the efficacy of GMAB1 was tested against human pancreatic adenocarcinoma xenografts. At doses of 50 µg and 150 µg, twice weekly, GMAB1 was able to inhibit 55% and 76% of tumor growth, respectively (p < 0.001 for both treatments vs. control Ig). When combined with gemcitabine, GMAB1 significantly inhibited tumor growth compared to either agent alone (p < 0.001). Together, the data suggest that Gas6 neutralization may be important as a potential strategy for the treatment of PDAC. PMID:27170265