Science.gov

Sample records for neutral gas outflows

  1. Neutral gas outflows in nearby [U]LIRGs via optical NaD feature

    NASA Astrophysics Data System (ADS)

    Cazzoli, S.; Arribas, S.; Maiolino, R.; Colina, L.

    2016-05-01

    We studied the properties of the neutral gas in a sample of 38 local luminous and ultra luminous infrared galaxies ([U]LIRGs, 51 individual galaxies at z ≤ 0.09), which mainly covers the less explored LIRG luminosity range. This study is based on the analysis of the spatially integrated and spatially resolved spectra of the NaDλλ 5890, 5896 Å feature obtained with the integral field unit (IFU) of VIMOS at the Very Large Telescope. Analyzing spatially integrated spectra, we find that the contribution of the stars to the observed NaD equivalent width is small (<35%) for about half of the sample, and therefore this feature is dominated by inter stellar medium (ISM) absorption. After subtracting the stellar contribution, we find that the pure-ISM integrated spectra generally show blueshifted NaD profiles, indicating neutral gas outflow velocities, V, in the range 65-260 km s-1. Excluding the galaxies with powerful AGNs, V shows a dependency with the star formation rate (SFR) of the type V ∝ SFR0.15, which is in rather good agreement with previous results. The spatially resolved analysis could be performed for 40 galaxies, 22 of which have neutral gas velocity fields dominated by noncircular motions with signatures of cone-like winds. However, a large number of targets (11/40) show disk rotation signatures. Based on a simple model, we found that the wind masses are in the range 0.4-7.5 × 108 M⊙, reaching up to ~3% of the dynamical mass of the host. The mass rates are typically only ~0.2-0.4 times the corresponding global SFR indicating that, in general, the mass loss is too small to slow down the star formation significantly. In the majority of cases, the velocity of the outflowing gas is not sufficient to escape the host potential well and, therefore, most of the gas rains back into the galaxy disk. On average V/vesc is higher in less massive galaxies, confirming that the galaxy mass has a primary role in shaping the recycling of gas and metals. The

  2. NEUTRAL GAS OUTFLOWS AND INFLOWS IN INFRARED-FAINT SEYFERT GALAXIES

    SciTech Connect

    Krug, Hannah B.; Veilleux, Sylvain; Rupke, David S. N. E-mail: veilleux@astro.umd.ed

    2010-01-10

    Previous studies of the Na I D interstellar absorption line doublet have shown that galactic winds occur in most galaxies with high infrared luminosities. However, in infrared-bright composite systems where a starburst coexists with an active galactic nucleus (AGN), it is unclear whether the starburst, the AGN, or both are driving the outflows. The present paper describes the results from a search for outflows in 35 infrared-faint Seyferts with 10{sup 9.9}< L{sub IR}/L{sub sun} < 10{sup 11}, or, equivalently, star formation rates (SFRs) of approx0.4-9 M{sub sun} yr{sup -1}, to attempt to isolate the source of the outflow. We find that the outflow detection rates for the infrared-faint Seyfert 1s (6%) and Seyfert 2s (18%) are lower than previously reported for infrared-luminous Seyfert 1s (50%) and Seyfert 2s (45%). The outflow kinematics of infrared-faint and infrared-bright Seyfert 2 galaxies resemble those of starburst galaxies, while the outflow velocities in Seyfert 1 galaxies are significantly larger. Taken together, these results suggest that the AGN does not play a significant role in driving the outflows in most infrared-faint and infrared-bright systems, except the high-velocity outflows seen in Seyfert 1 galaxies. Another striking result of this study is the high rate of detection of inflows in infrared-faint galaxies (39% of Seyfert 1s, 35% of Seyfert 2s), significantly larger than in infrared-luminous Seyferts (15%). This inflow may be contributing to the feeding of the AGN in these galaxies, and potentially provides more than enough material to power the observed nuclear activity over typical AGN lifetimes.

  3. Descriptions of the neutral gas outflow in Comets P/Halley and Wilson (1987 VII) from analyses of velocity-resolved H2O line profiles

    NASA Technical Reports Server (NTRS)

    Larson, Harold P.; Hu, Hong-Yao; Hsieh, K. C.; Weaver, Harold A.; Mumma, Michael J.

    1991-01-01

    The spatial distribution and expansion velocity of the Comets Wilson (1987 VII) and pre- and postperihelion P/Halley are derived on the bases of velocity-resolved H2O spectral line profiles, using a kinematic model which synthesizes line profiles for comparison with observed line shapes. The results thus obtained demonstrate that the spherically symmetric outflow at constant velocity is a poor characterization of cometary neutral-gas outflow. While the radial dependence of the H2O expansion velocity is noted to be consistent with theoretically envisioned trends, the high H2O outflow velocity observed in Comet Wilson resists reconciliation with any existing kinematic model.

  4. Galaxy ecosystems: gas contents, inflows and outflows

    NASA Astrophysics Data System (ADS)

    Lu, Zhankui; Mo, H. J.; Lu, Yu

    2015-06-01

    We use a set of observational data for galaxy cold gas mass fraction and gas phase metallicity to constrain the content, inflow and outflow of gas in central galaxies hosted by haloes with masses between 1011 and 1012 M⊙. The gas contents in high-redshift galaxies are obtained by combining the empirical star formation histories and star formation models that relate star formation rate with the cold gas mass in galaxies. We find that the total baryon mass in low-mass galaxies is always much less than the universal baryon mass fraction since z = 2, regardless of star formation model adopted. The data for the evolution of the gas phase metallicity require net metal outflow at z ≲ 2, and the metal loading factor is constrained to be about 0.01, or about 60 per cent of the metal yield. Based on the assumption that galactic outflow is more enriched in metal than both the interstellar medium and the material ejected at earlier epochs, we are able to put stringent constraints on the upper limits for both the net accretion rate and the net mass outflow rate. The upper limits strongly suggest that the evolution of the gas phase metallicity and gas mass fraction for low-mass galaxies at z < 2 is not compatible with strong outflow. We speculate that the low star formation efficiency of low-mass galaxies is owing to some preventative processes that prevent gas from accreting into galaxies in the first place.

  5. The Prevalence of Gas Outflows in Type 2 AGNs. II. 3D Biconical Outflow Models

    NASA Astrophysics Data System (ADS)

    Bae, Hyun-Jin; Woo, Jong-Hak

    2016-09-01

    We present 3D models of biconical outflows combined with a thin dust plane for investigating the physical properties of the ionized gas outflows and their effect on the observed gas kinematics in type 2 active galactic nuclei (AGNs). Using a set of input parameters, we construct a number of models in 3D and calculate the spatially integrated velocity and velocity dispersion for each model. We find that three primary parameters, i.e., intrinsic velocity, bicone inclination, and the amount of dust extinction, mainly determine the simulated velocity and velocity dispersion. Velocity dispersion increases as the intrinsic velocity or the bicone inclination increases, while velocity (i.e., velocity shifts with respect to systemic velocity) increases as the amount of dust extinction increases. Simulated emission-line profiles well reproduce the observed [O iii] line profiles, e.g., narrow core and broad wing components. By comparing model grids and Monte Carlo simulations with the observed [O iii] velocity–velocity dispersion distribution of ∼39,000 type 2 AGNs, we constrain the intrinsic velocity of gas outflows ranging from ∼500 to ∼1000 km s‑1 for the majority of AGNs, and up to ∼1500–2000 km s‑1 for extreme cases. The Monte Carlo simulations show that the number ratio of AGNs with negative [O iii] velocity to AGNs with positive [O iii] velocity correlates with the outflow opening angle, suggesting that outflows with higher intrinsic velocity tend to have wider opening angles. These results demonstrate the potential of our 3D models for studying the physical properties of gas outflows, applicable to various observations, including spatially integrated and resolved gas kinematics.

  6. Tracing inflows and outflows with absorption lines in circumgalactic gas

    NASA Astrophysics Data System (ADS)

    Ford, Amanda Brady; Davé, Romeel; Oppenheimer, Benjamin D.; Katz, Neal; Kollmeier, Juna A.; Thompson, Robert; Weinberg, David H.

    2014-10-01

    We examine how H I and metal absorption lines within low-redshift galaxy haloes trace the dynamical state of circumgalactic gas, using cosmological hydrodynamic simulations that include a well-vetted heuristic model for galactic outflows. We categorize inflowing, outflowing, and ambient gas based on its history and fate as tracked in our simulation. Following our earlier work, showing that the ionization level of absorbers was a primary factor in determining the physical conditions of absorbing gas, we show here that it is also a governing factor for its dynamical state. Low-ionization metal absorbers (e.g. Mg II) tend to arise in gas that will fall on to galaxies within several Gyr, while high-ionization metal absorbers (e.g. O VI) generally trace material that was deposited by outflows many Gyr ago. Inflowing gas is dominated by enriched material that was previously ejected in an outflow; hence, accretion at low redshifts is typically substantially enriched. Recycling wind material is preferentially found closer to galaxies, and is more dominant in lower mass haloes since high-mass haloes have more hot gas that is able to support itself against infall. Low-mass haloes also tend to re-eject more of their accreted material, owing to our outflow prescription that employs higher mass loading factors for lower mass galaxies. Typical H I absorbers trace unenriched ambient material that is not participating in the baryon cycle, but stronger H I absorbers arise in cool, enriched inflowing gas. Instantaneous radial velocity measures of absorbers are generally poor at distinguishing between inflowing and outflowing gas, except in the case of very recent outflows. These results suggest that probing halo gas using a range of absorbers can provide detailed information about the amount and physical conditions of material that is participating in the baryon cycle.

  7. Neutral gas dynamics in fireballs

    SciTech Connect

    Stenzel, R. L.; Ionita, C.; Schrittwieser, R.

    2011-06-01

    Fireballs are local discharge phenomena on positively biased electrodes in partially ionized plasmas. Electrons, energized at a double layer, heat neutral gas which expands. The gas pressure exceeds the plasma pressure, hence becomes important to the stability and transport in fireballs. The flow of gas moves the electrode and sensors similar to a mica pendulum. Flow speed and directions are measured. A fireball gun has been developed to partially collimate the flow of hot gas and heat objects in its path. New applications of fireballs are suggested.

  8. Gas cell neutralizers (Fundamental principles)

    SciTech Connect

    Fuehrer, B.

    1985-06-01

    Neutralizing an ion-beam of the size and energy levels involved in the neutral-particle-beam program represents a considerable extension of the state-of-the-art of neutralizer technology. Many different mediums (e.g., solid, liquid, gas, plasma, photons) can be used to strip the hydrogen ion of its extra electron. A large, multidisciplinary R and D effort will no doubt be required to sort out all of the ''pros and cons'' of these various techniques. The purpose of this particular presentation is to discuss some basic configurations and fundamental principles of the gas type of neutralizer cell. Particular emphasis is placed on the ''Gasdynamic Free-Jet'' neutralizer since this configuration has the potential of being much shorter than other type of gas cells (in the beam direction) and it could operate in nearly a continuous mode (CW) if necessary. These were important considerations in the ATSU design which is discussed in some detail in the second presentation entitled ''ATSU Point Design''.

  9. Shocked Outflows and Gas Disks in Local Merging Galaxies

    NASA Astrophysics Data System (ADS)

    Soto, Kurt; Martin, C. L.; Prescott, M. K. M.; Armus, L.

    2012-01-01

    We have mapped the kinematic and physical properties of gas emitting optical emission lines across 39 gas-rich mergers, which were previously shown to host tidally-induced gas inflows, with deep ESI spectroscopy. In our unique analysis of these longslit spectra, we fitted multiple kinematic components to forbidden lines and recombination lines simultaneously, enabling an examination of the excitation mechanism in different kinematic components. We identify many rotating gas disks in systems whose stellar component is no longer a disk due to the merger. Many of these disks present gas excited by hot stars, but some of the disks present shock-like ratios of diagnostic emission lines, an observation we attribute to the collision of the two galaxies. In another subset of galaxies, we find very broad (sigma > 150 km/s) emission components that also present shock-like emission-line ratios. The large spatial extent of this emission favors shocks over the narrow-line region of a hidden AGN as the excitation mechanism. The high star formation rate, high dust content, and blueshift of the broad emission further suggest an origin in a galactic outflow. If this interpretation is correct, then our study of these nearby galaxies provides important insight for interpreting the broad emission lines associated with giant star-forming clumps in z 2 galaxies. It also shows that galactic outflows can be recognized via resolved emission lines, in addition to absorption lines, even in integrated spectra; and this technique could prove very powerful for studying galactic outflows in infrared spectra of high-redshift galaxies in the future. This work was supported by the National Science Foundation under contract 0808161.

  10. STRONG MOLECULAR HYDROGEN EMISSION AND KINEMATICS OF THE MULTIPHASE GAS IN RADIO GALAXIES WITH FAST JET-DRIVEN OUTFLOWS

    SciTech Connect

    Guillard, P.; Ogle, P. M.; Emonts, B. H. C.; Appleton, P. N.; Morganti, R.; Oosterloo, T.; Tadhunter, C.; Evans, D. A.; Evans, A. S.

    2012-03-10

    Observations of ionized and neutral gas outflows in radio galaxies (RGs) suggest that active galactic nucleus (AGN) radio jet feedback has a galaxy-scale impact on the host interstellar medium, but it is still unclear how the molecular gas is affected. Thus, it is crucial to determine the physical conditions of the molecular gas in powerful RGs to understand how radio sources may regulate the star formation in their host galaxies. We present deep Spitzer Infrared Spectrograph (IRS) high-resolution spectroscopy of eight nearby RGs that show fast H I outflows. Strikingly, all of these H I-outflow RGs have bright H{sub 2} mid-IR lines that cannot be accounted for by UV or X-ray heating. This strongly suggests that the radio jet, which drives the H I outflow, is also responsible for the shock excitation of the warm H{sub 2} gas. In addition, the warm H{sub 2} gas does not share the kinematics of the ionized/neutral gas. The mid-IR-ionized gas lines (with FWHM up to 1250 km s{sup -1} for [Ne II] 12.8 {mu}m) are systematically broader than the H{sub 2} lines, which are resolved by the IRS in Almost-Equal-To 60% of the detected lines (with FWHM up to 900 km s{sup -1}). In five sources, 3C 236, 3C 293, 3C 459, 4C 12.50, and PKS 1549-79, the [Ne II] 12.8 {mu}m line, and to a lesser extent the [Ne III] 15.5 {mu}m and [Ne V] 14.3 {mu}m lines, clearly exhibits blueshifted wings (up to -900 km s{sup -1} with respect to the systemic velocity) that match well the kinematics of the outflowing H I or ionized gas. The H{sub 2} lines do not show these broad wings, except tentative detections in 4C 12.50, 3C 459, and PKS 1549-79. This shows that, contrary to the H I gas, the H{sub 2} gas is inefficiently coupled to the AGN jet-driven outflow of ionized gas. While the dissipation of a small fraction (<10%) of the jet kinetic power can explain the turbulent heating of the molecular gas, our data show that the bulk of the warm molecular gas is not expelled from these galaxies.

  11. Neutral gas heating in helium microplasmas

    NASA Astrophysics Data System (ADS)

    Jugroot, M.

    2009-01-01

    The present study details a self-consistent model of charged and neutral particle dynamics which is applied to atmospheric small-space (200 μm) discharges in helium. Hydrodynamic transport equations of the self-consistent and time-dependant model are described with an emphasis on the different terms involved in the close coupling among charged species, neutral species, and the electric field. Those equations are solved by two-dimensional numerical schemes for both species transport and electric field. The microplasmas are studied from an initial cloud until the stages of charged particle overamplification in small spaces, where transients are particularly important. Gas heating, neutral depletion initiation, and electric field reversal are observed, highlighting the close interaction between neutral gas and charged species in governing the evolution of the microplasma.

  12. Four-fluid MHD simulations of the plasma and neutral gas environment of comet 67P/Churyumov-Gerasimenko near perihelion

    NASA Astrophysics Data System (ADS)

    Huang, Zhenguang; Tóth, Gábor; Gombosi, Tamas I.; Jia, Xianzhe; Rubin, Martin; Fougere, Nicolas; Tenishev, Valeriy; Combi, Michael R.; Bieler, Andre; Hansen, Kenneth C.; Shou, Yinsi; Altwegg, Kathrin

    2016-05-01

    The neutral and plasma environment is critical in understanding the interaction of the solar wind and comet 67P/Churyumov-Gerasimenko (CG), the target of the European Space Agency's Rosetta mission. To serve this need and support the Rosetta mission, we have developed a 3-D four-fluid model, which is based on BATS-R-US (Block-Adaptive Tree Solarwind Roe-type Upwind Scheme) within SWMF (Space Weather Modeling Framework) that solves the governing multifluid MHD equations and the Euler equations for the neutral gas fluid. These equations describe the behavior and interactions of the cometary heavy ions, the solar wind protons, the electrons, and the neutrals. This model incorporates different mass loading processes, including photoionization and electron impact ionization, charge exchange, dissociative ion-electron recombination, and collisional interactions between different fluids. We simulated the plasma and neutral gas environment near perihelion in three different cases: an idealized comet with a spherical body and uniform neutral gas outflow, an idealized comet with a spherical body and illumination-driven neutral gas outflow, and comet CG with a realistic shape model and illumination-driven neutral gas outflow. We compared the results of the three cases and showed that the simulations with illumination-driven neutral gas outflow have magnetic reconnection, a magnetic pileup region and nucleus directed plasma flow inside the nightside reconnection region, which have not been reported in the literature.

  13. Gas Flow Measurements of a Novel Geometry for Neutral Beam Neutralizers.

    NASA Astrophysics Data System (ADS)

    Pirkle, David Ross

    The gas flow characteristics of a novel geometry (pumped neutralizer) for decreasing the flow of gas from neutral beam neutralizers were measured and compared with a conventional (passive) neutralizer. A passive neutralizer is typically a duct attached to the ion source. For the pumped neutralizer the top and bottom surfaces of the duct are replaced by a Venetian blind geometry which opens into ballast vacuum pumping volumes. With guidance from a Monte Carlo program which models gas flow at low pressure, a one-half scale model with pumped neutralizer geometry was built and compared to a passive neutralizer with comparable dimensions. With the vanes on the pumped neutralizer opened to 55 degrees, the line density of the pumped neutralizer was 1.6 times less than the passive neutralizer. The amount of gas flowing from the exit of the pumped neutralizer was from 2 to 5 times less than the amount flowing from the pumped neutralizer. Hence, the pumped neutralizer geometry appears to be a promising method of limiting the flow of gas from neutral beam gas cell neutralizers.

  14. A dynamical model of supernova feedback: gas outflows from the interstellar medium

    NASA Astrophysics Data System (ADS)

    Lagos, Claudia del P.; Lacey, Cedric G.; Baugh, Carlton M.

    2013-12-01

    We present a dynamical model of supernova feedback which follows the evolution of pressurized bubbles driven by supernovae in a multiphase interstellar medium (ISM). The bubbles are followed until the point of break-out into the halo, starting from an initial adiabatic phase to a radiative phase. We show that a key property which sets the fate of bubbles in the ISM is the gas surface density, through the work done by the expansion of bubbles and its role in setting the gas scaleheight. The multiphase description of the ISM is essential, and neglecting it leads to order-of-magnitude differences in the predicted outflow rates. We compare our predicted mass loading and outflow velocities to observations of local and high-redshift galaxies and find good agreement over a wide range of stellar masses and velocities. With the aim of analysing the dependence of the mass loading of the outflow, β (i.e. the ratio between the outflow and star formation rates), on galaxy properties, we embed our model in the galaxy formation simulation, GALFORM, set in the Λ cold dark matter framework. We find that a dependence of β solely on the circular velocity, as is widely assumed in the literature, is actually a poor description of the outflow rate, as large variations with redshift and galaxy properties are obtained. Moreover, we find that below a circular velocity of ≈80 km s-1, the mass loading saturates. A more fundamental relation is that between β and the gas scaleheight of the disc, hg, and the gas fraction, fgas, as β ∝ h^{1.1}_g f^{0.4}_gas, or the gas surface density, Σg, and the gas fraction, as β ∝ Σ ^{-0.6}_g f^{0.8}_gas. We find that using the new mass loading model leads to a shallower faint-end slope in the predicted optical and near-IR galaxy luminosity functions.

  15. Jet-driven outflows of ionized gas in the nearby radio galaxy 3C 293

    NASA Astrophysics Data System (ADS)

    Mahony, E. K.; Oonk, J. B. R.; Morganti, R.; Tadhunter, C.; Bessiere, P.; Short, P.; Emonts, B. H. C.; Oosterloo, T. A.

    2016-01-01

    Fast outflows of gas, driven by the interaction between the radio jets and interstellar medium (ISM) of the host galaxy, are being observed in an increasing number of galaxies. One such example is the nearby radio galaxy 3C 293. In this paper we present integral field unit observations taken with OASIS on the William Herschel Telescope, enabling us to map the spatial extent of the ionized gas outflows across the central regions of the galaxy. The jet-driven outflow in 3C 293 is detected along the inner radio lobes with a mass outflow rate ranging from ˜0.05 to 0.17 M⊙ yr-1 (in ionized gas) and corresponding kinetic power of ˜0.5-3.5 × 1040 erg s-1. Investigating the kinematics of the gas surrounding the radio jets (i.e. not directly associated with the outflow), we find linewidths broader than 300 km s-1 up to 5 kpc in the radial direction from the nucleus (corresponding to 3.5 kpc in the direction perpendicular to the radio axis at maximum extent). Along the axis of the radio jet linewidths >400 km s-1 are detected out to 7 kpc from the nucleus and linewidths of >500 km s-1 at a distance of 12 kpc from the nucleus, indicating that the disturbed kinematics clearly extend well beyond the high surface brightness radio structures of the jets. This is suggestive of the cocoon structure seen in simulations of jet-ISM interaction and implies that the radio jets are capable of disturbing the gas throughout the central regions of the host galaxy in all directions.

  16. SIMPLE MODELS OF METAL-LINE ABSORPTION AND EMISSION FROM COOL GAS OUTFLOWS

    SciTech Connect

    Prochaska, J. Xavier; Rubin, Kate

    2011-06-10

    We analyze the absorption and emission-line profiles produced by a set of simple, cool gas wind models motivated by galactic-scale outflow observations. We implement Monte Carlo radiative transfer techniques that track the propagation of scattered and fluorescent photons to generate one-dimensional spectra and two-dimensional spectral images. We focus on the Mg II {lambda}{lambda}2796, 2803 doublet and Fe II UV1 multiplet at {lambda} {approx} 2600 A, but the results are applicable to other transitions that trace outflows (e.g., Na I, H I Ly{alpha}, Si II). By design, the resonance transitions show blueshifted absorption but one also predicts strong resonance and fine-structure line emission at roughly the systemic velocity. This line-emission 'fills in' the absorption, reducing the equivalent width by up to 50%, shifting the absorption-line centroid by tens of km s{sup -1}, and reducing the effective opacity near systemic. Analysis of cool gas outflows that ignores this line emission may incorrectly infer that the gas is partially covered, measure a significantly lower peak optical depth, and/or conclude that gas at systemic velocity is absent (e.g., an interstellar or slowly infalling component). Because the Fe II lines are connected by optically thin transitions to fine-structure levels, their profiles more closely reproduce the intrinsic opacity of the wind. Together these results naturally explain the absorption and emission-line characteristics observed for star-forming galaxies at z < 1. We also study a scenario promoted to describe the outflows of z {approx} 3 Lyman break galaxies and find profiles inconsistent with the observations due to scattered photon emission. Although line emission complicates the analysis of absorption-line profiles, the surface brightness profiles offer a unique means of assessing the morphology and size of galactic-scale winds. Furthermore, the kinematics and line ratios offer powerful diagnostics of outflows, motivating deep

  17. Simple Models of Metal-line Absorption and Emission from Cool Gas Outflows

    NASA Astrophysics Data System (ADS)

    Prochaska, J. Xavier; Kasen, Daniel; Rubin, Kate

    2011-06-01

    We analyze the absorption and emission-line profiles produced by a set of simple, cool gas wind models motivated by galactic-scale outflow observations. We implement Monte Carlo radiative transfer techniques that track the propagation of scattered and fluorescent photons to generate one-dimensional spectra and two-dimensional spectral images. We focus on the Mg II λλ2796, 2803 doublet and Fe II UV1 multiplet at λ ≈ 2600 Å, but the results are applicable to other transitions that trace outflows (e.g., Na I, H I Lyα, Si II). By design, the resonance transitions show blueshifted absorption but one also predicts strong resonance and fine-structure line emission at roughly the systemic velocity. This line-emission "fills in" the absorption, reducing the equivalent width by up to 50%, shifting the absorption-line centroid by tens of km s-1, and reducing the effective opacity near systemic. Analysis of cool gas outflows that ignores this line emission may incorrectly infer that the gas is partially covered, measure a significantly lower peak optical depth, and/or conclude that gas at systemic velocity is absent (e.g., an interstellar or slowly infalling component). Because the Fe II lines are connected by optically thin transitions to fine-structure levels, their profiles more closely reproduce the intrinsic opacity of the wind. Together these results naturally explain the absorption and emission-line characteristics observed for star-forming galaxies at z < 1. We also study a scenario promoted to describe the outflows of z ~ 3 Lyman break galaxies and find profiles inconsistent with the observations due to scattered photon emission. Although line emission complicates the analysis of absorption-line profiles, the surface brightness profiles offer a unique means of assessing the morphology and size of galactic-scale winds. Furthermore, the kinematics and line ratios offer powerful diagnostics of outflows, motivating deep, spatially extended spectroscopic

  18. Long way to go: how outflows from large galaxies propagate through the hot halo gas

    NASA Astrophysics Data System (ADS)

    Sarkar, Kartick Chandra; Nath, Biman B.; Sharma, Prateek; Shchekinov, Yuri

    2015-03-01

    Using hydrodynamic simulations, we study the mass-loss due to supernova-driven outflows from Milky Way type disc galaxies, paying particular attention to the effect of the extended hot halo gas. We find that the total mass-loss at inner radii scales roughly linearly with total mass of stars formed, and that the mass loading factor at the virial radius can be several times its value at inner radii because of the swept up hot halo gas. The temperature distribution of the outflowing material in the inner region (˜10 kpc) is bimodal in nature, peaking at 105 K and 106.5 K, responsible for optical and X-ray emission, respectively. The contribution of cold/warm gas with temperature ≤105.5 K to the outflow rate within 10 kpc is ≈0.3-0.5. The warm mass loading factor, η3e5 (T ≤ 3 × 105 K) is related to the mass loading factor at the virial radius (ηv) as ηv ≈ 25 η3e5 (SFR/M⊙ yr-1)-0.15 for a baryon fraction of 0.1 and a starburst period of 50 Myr. We also discuss the effect of multiple bursts that are separated by both short and long periods. The outflow speed at the virial radius is close to the sound speed in the hot halo, ≲ 200 km s-1. We identify two `sequences' of outflowing cold gas at small scales: a fast (≈500 km s-1) sequence, driven by the unshocked free-wind; and a slow sequence (≈± 100 km s-1) at the conical interface of the superwind and the hot halo.

  19. Outflow of hot and cold molecular gas from the obscured secondary nucleus of NGC 3256: closing in on feedback physics

    NASA Astrophysics Data System (ADS)

    Emonts, B. H. C.; Piqueras-López, J.; Colina, L.; Arribas, S.; Villar-Martín, M.; Pereira-Santaella, M.; Garcia-Burillo, S.; Alonso-Herrero, A.

    2014-12-01

    The nuclei of merging galaxies are often deeply buried in dense layers of gas and dust. In these regions, gas outflows driven by starburst and active galactic nuclear activity are believed to play a crucial role in the evolution of these galaxies. However, to fully understand this process it is essential to resolve the morphology and kinematics of such outflows. Using near-infrared integral-field spectroscopy obtained with SINFONI on the Very Large Telescope, we detect a kpc-scale structure of high-velocity molecular hydrogen (H2) gas associated with the deeply buried secondary nucleus of the infrared-luminous merger-galaxy NGC 3256. We show that this structure is most likely the hot component of a molecular outflow, which was recently also detected in the cold molecular gas through CO emission. This outflow, with a total molecular gas mass of MH2 ~ 2 × 107M⊙, is among the first to be spatially resolved in both the hot molecular H2 gas with VLT/SINFONI and the cold molecular CO emitting gas with ALMA. The hot and cold components share a similar morphology and kinematics, with a hot-to-cold molecular gas mass ratio of ~ 6 × 10-5. The high (~100 pc) resolution at which we map the geometry and velocity structure of the hot outflow reveals a biconical morphology with opening angle ~40° and gas spread across a FWZI ~ 1200 km s-1. Because this collimated outflow is oriented close to the plane of the sky, the molecular gas may reach maximum intrinsic outflow velocities of ~1800 km s-1, with an average mass outflow rate of at least Ṁoutfl ~ 20 M⊙ yr-1. By modeling the line-ratios of various near-infrared H2 transitions, we show that the H2-emitting gas in the outflow is heated through shocks or X-rays to a temperature of T ~ 1900 ± 300 K. The energy needed to drive the collimated outflow is most likely provided by a hidden Compton-thick AGN or by the nuclear starburst. We show that the global kinematics of the molecular outflow that we detect in NGC 3256 mimic

  20. Gas Dynamics and Outflow in the Barred Starburst Galaxy NGC 1808 Revealed with ALMA

    NASA Astrophysics Data System (ADS)

    Salak, Dragan; Nakai, Naomasa; Hatakeyama, Takuya; Miyamoto, Yusuke

    2016-05-01

    NGC 1808 is a nearby barred starburst galaxy with an outflow from the nuclear region. To study the inflow and outflow processes related to star formation and dynamical evolution of the galaxy, we have carried out 12CO (J=1-0) mapping observations of the central r ∼ 4 kpc of NGC 1808 using the Atacama Large Millimeter/submillimeter Array. Four distinct components of molecular gas are revealed at high spatial resolution of 2″ (∼100 pc): (1) a compact (r < 200 pc) circumnuclear disk (CND), (2) r ∼ 500 pc ring, (3) gas-rich galactic bar, and (4) spiral arms. Basic geometric and kinematic parameters are derived for the central 1 kpc region using tilted-ring modeling. The derived rotation curve reveals multiple mass components that include (1) a stellar bulge, (2) a nuclear bar and molecular CND, and (3) an unresolved massive (∼107 M ⊙) core. Two systemic velocities, 998 km s‑1 for the CND and 964 km s‑1 for the 500 pc ring, are revealed, indicating a kinematic offset. The pattern speed of the primary bar, derived by using a cloud-orbit model, is 56 ± 11 km s‑1 kpc‑1. Noncircular motions are detected associated with a nuclear spiral pattern and outflow in the central 1 kpc region. The ratio of the mass outflow rate to the star formation rate is {\\dot{M}}{out}/{SFR}∼ 0.2 in the case of optically thin CO (1–0) emission in the outflow, suggesting low efficiency of star formation quenching.

  1. Hot gas outflow in the blue compact dwarf galaxy VII Zw 403

    NASA Technical Reports Server (NTRS)

    Papaderos, P.; Fricke, K. J.; Thuan, T. X.; Loose, H.-H.

    1994-01-01

    We have observed the Blue Compact Dwarf Galaxy VII Zw 403 with the Position Sensitive Proportional Counter (PSPC) camera onboard ROSAT. We found a total X-ray luminosity of 1.94 x 10(exp 38) erg/s distributed in a central core to which are connected three elongated structures. We interpret this X-ray morphology as the result of a hot gas outflow from the core of the dwarf galaxy powered by the present starburst.

  2. Anisotropy of the neutral gas distribution of Comet Halley deduced from NGE/Vega 1 measurements. [Neutral Gas Experiment (NGE)

    NASA Technical Reports Server (NTRS)

    Hsieh, K. C.; Eip, WING-H. AFKEPPLER, E. agrichter, a. k; Eip, WING-H. AFKEPPLER, E. agrichter, a. k

    1986-01-01

    The neutral gas density profile of comet Halley measured by the Neutral Gas Experiment on Vega 1 showed an asymmetry between the inbound and the outbound legs during the fly-by on 6 March 1986. The implications of this asymmetry are discussed, and it is shown how the asymmetry detected by NGE on Vega 1 can be traced back to regions on or near the nucleus to obtain their relative gas production activities at specific times of emission.

  3. A census of gas outflows in type 2 active galactic nuclei

    SciTech Connect

    Bae, Hyun-Jin; Woo, Jong-Hak E-mail: woo@astro.snu.ac.kr

    2014-11-01

    We perform a census of ionized gas outflows using a sample of ∼23,000 type 2 active galactic nuclei (AGNs) out to z ∼ 0.1. By measuring the velocity offset of narrow emission lines, i.e., [O III] λ5007 and Hα, with respect to the systemic velocity measured from the stellar absorption lines, we find that 47% of AGNs display an [O III] line-of-sight velocity offset ≥ 20 km s{sup –1}. The fraction of the [O III] velocity offset in type 2 AGNs is comparable to that in type 1 AGNs after considering the projection effect. AGNs with a large [O III] velocity offset preferentially have a high Eddington ratio, implying that the detected velocity offsets are related to black hole activity. The distribution of the host galaxy inclination is clearly different between the AGNs with blueshifted [O III] and the AGNs with redshifted [O III], supporting the combined model of the biconical outflow and dust obscuration. In addition, for ∼3% of AGNs, [O III] and Hα show comparable large velocity offsets, indicating a more complex gas kinematics than decelerating outflows in a stratified narrow-line region.

  4. Tracing the neutral gas environments of young radio AGN with ASKAP

    NASA Astrophysics Data System (ADS)

    Allison, J. R.; Sadler, E. M.; Moss, V. A.; Harvey-Smith, L.; Heywood, I.; Indermuehle, B. T.; McConnell, D.; Sault, R. J.; Whiting, M. T.

    2016-02-01

    At present neutral atomic hydrogen (H I) gas in galaxies at redshifts above {z ˜ 0.3} (the extent of 21 cm emission surveys in individual galaxies) and below {z ˜ 1.7} (where the Lyman-\\alpha line is not observable with ground-based telescopes) has remained largely unexplored. The advent of precursor telescopes to the Square Kilometre Array will allow us to conduct the first systematic radio-selected 21 cm absorption surveys for H I over these redshifts. While H I absorption is a tracer of the reservoir of cold neutral gas in galaxies available for star formation, it can also be used to reveal the extreme kinematics associated with jet-driven neutral outflows in radio-loud active galactic nuclei. Using the six-antenna Boolardy Engineering Test Array of the Australian Square Kilometre Array Pathfinder, we have demonstrated that in a single frequency tuning we can detect H I absorption over a broad range of redshifts between z = 0.4 and 1.0. As part of our early science and commissioning program, we are now carrying out a search for absorption towards a sample of the brightest GPS and CSS sources in the southern sky. These intrinsically compact sources present us with an opportunity to study the circumnuclear region of recently re-started radio galaxies, in some cases showing direct evidence of mechanical feedback through jet-driven outflows. With the sensitivity of the full ASKAP array we will be able to study the kinematics of atomic gas in a few thousand radio galaxies, testing models of radio jet feedback well beyond the nearby Universe.

  5. Do Radio Jets Contribute to Driving Ionized Gas Outflows in Moderate Luminosity Type 2 AGN?

    NASA Astrophysics Data System (ADS)

    Fowler, Julia; Sajina, Anna; Lacy, Mark

    2016-01-01

    This poster examines the role of AGN-driven feedback in low to intermediate power radio galaxies. We begin with [OIII] measurements of ionized gas outflows in 29 moderate AGN-luminosity z~0.3-0.7 dust-obscured Type 2 AGN. We aim to examine the relative role of the AGN itself, of star-formation and of nascent radio jets in driving these outflows. The strength of the AGN and star formation are based on the [OIII] luminosities, and the far-IR luminosities respectively. For the radio jets, we present multi-frequency radio (X, S, and L-bands) JVLA imaging of our sample, which allows us both to constrain the overall radio power, but also look for signatures of young radio sources, including Giga-hertz Peaked Spectrum (GPS) sources, as well as small-scale jets. While radio jet-driven outflows are well known for powerful radio-loud galaxies, this study allows us to constrain the degree to which this mechanism is significant at more modest radio luminosities of L5GHz~10^22-25 W/Hz.

  6. Modeling of neutral gas dynamics in high-density plasmas

    NASA Astrophysics Data System (ADS)

    Canupp, Patrick Wellington

    This thesis describes a physical model of chemically reactive neutral gas flow and discusses numerical solutions of this model for the flow in an inductively coupled plasma etch reactor. To obtain these solutions, this research develops an efficient, implicit numerical method. As a result of the enhanced numerical stability of the scheme, large time steps advance the solution from initial conditions to a final steady state in fewer iterations and with less computational expense than simpler explicit methods. This method would incorporate suitably as a module in currently existing large scale plasma simulation tools. In order to demonstrate the accuracy of the numerical technique, this thesis presents results from two simulations of flows that possess theoretical solutions. The first case is the inviscid flow of a gas through a converging nozzle. A comparison of the numerical solution to isentropic flow theory shows that the numerical technique capably captures the essential flow features of this environment. The second case is the Couette flow of a gas between two parallel plates. The simulation results compare well with the exact solution for this flow. After establishing the accuracy of the numerical technique, this thesis discusses results for the flow of chemically reactive gases in a chlorine plasma etch reactor. This research examines the influence of the plasma on the neutral gas and the dynamics exhibited by the neutral gas in the reactor. This research finds that the neutral gas temperature strongly depends on the rate at which inelastic, electron-impact dissociation reactions occur and on atomic chlorine wall recombination rates. Additionally, the neutral gas Aow in the reactor includes a significant mass flux of etch product from the wafer surface. Resolution of these effects is useful for neutral gas simulation. Finally, this thesis demonstrates that continuum fluid models provide reasonable accuracy for these low pressure reactor flows due to the fact

  7. Cold-gas outflows in typical low-redshift galaxies are driven by star formation, not AGN

    NASA Astrophysics Data System (ADS)

    Sarzi, Marc; Kaviraj, Sugata; Nedelchev, Borislav; Tiffany, Joshua; Shabala, Stanislav S.; Deller, Adam T.; Middelberg, Enno

    2016-02-01

    Energetic feedback from active galactic nuclei (AGN) is an important ingredient for regulating the star formation history of galaxies in models of galaxy formation, which makes it important to study how AGN feedback actually occurs in practice. In order to catch AGNs in the act of quenching star formation, we have used the interstellar Na I λλ5890, 5895(NaD) absorption lines to look for cold-gas outflows in a sample of 456 nearby galaxies for which we could unambiguously ascertain the presence of radio-AGN activity, thanks to radio imaging at milli-arcsecond scales. While compact radio emission indicating a radio AGN was found in 103 galaxies (23 per cent of the sample), and 23 objects (5 per cent) exhibited NaD absorption-line kinematics suggestive of cold-gas outflows, not one object showed evidence of a radio AGN and of a cold-gas outflow simultaneously. Radio-AGN activity was found predominantly in early-type galaxies, while cold-gas outflows were mainly seen in spiral galaxies with central star formation or composite star formation/AGN activity. Optical AGNs also do not seem capable of driving galactic winds in our sample. Our work adds to a picture of the low-redshift Universe, where cold-gas outflows in massive galaxies are generally driven by star formation and where radio-AGN activity occurs most often in systems in which the gas reservoir has already been significantly depleted.

  8. Ionized gas outflow in the isolated S0 galaxy NGC 4460

    NASA Astrophysics Data System (ADS)

    Moiseev, Alexei; Karachentsev, Igor; Kaisin, Serafim

    2010-04-01

    We used integral-field and long-slit spectroscopy to study a bright extended nebulosity recently discovered in the isolated lenticular galaxy NGC 4460 during an Hα survey of nearby galaxies. An analysis of archival Sloan Digital Sky Survey, GALEX and Hubble Space Telescope images indicates that current star formation is entirely concentrated in the central kiloparsec of the galaxy disc. The observed ionized gas parameters (morphology, kinematics and ionization state) can be explained by a gas outflow above the plane of the galaxy, caused by star formation in the circumnuclear region. Galactic wind parameters in NGC 4460 (outflow velocity, total kinetic energy) are several times smaller, compared with the known galactic wind in NGC 253, which is explained by the substantially lower total star formation rate. We discuss the cause of the star formation processes in NGC 4460 and in two other known isolated lenticular (S0) and elliptical (E) galaxies of the Local Volume: NGC 404 and 855. We provide evidence suggesting that the feeding of isolated galaxies by intergalactic gas on a cosmological time-scale is a steady process without significant variations. Based on observations collected with the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences, which is operated under the financial support of the Science Department of Russia (registration number 01-43). E-mail: moisav@gmail.com

  9. Neutral Gas Plasma Interactions in Space Plasma

    NASA Astrophysics Data System (ADS)

    Liou, Kan

    A sounding rocket experiment, CRIT-II, involving the injection of shaped-charge barium in ionospheric plasma was conducted on May 7, 1989, to investigate Alfven's critical ionization velocity (CIV) hypothesis in space. The CRIT -II main payload was instrumented to make in situ measurements within the neutral barium beam. Among the detectors, UNH provided three energetic particle detectors and two photometers. The data from these detectors are presented. The typical features of the CIV effect were observed including plasma density enhancement, energy and momentum loss of a fast ion beam, excitation of plasma waves, and electron heating. It was found by optical observations that about 4% of the neutral barium was ionized. We believe that about one half of these barium ions were created by electron impact ionization --a CIV mechanism. The cross section for collisions between the barium atoms and the ionospheric oxygen ions was also calculated, assuming that the other half of ionizing barium ions were mainly generated by charge exchange, and found to be in the range from 1 times 10 ^{-17} cm^{-2} at a velocity of 4 km/s to 1 times 10^{-15} cm^{-2} at a velocity of 20 km/s. We also confirmed that the early observed ions were originally from the collisionally accelerated neutral oxygen which charge exchanges with the local oxygen ions. The early stage of electron heating was confirmed to be the result of lower hybrid instabilities excited by the precursor ion beam, using our quasi-linear model calculation. However, the wave spectrum during the passage of main streaming barium was found to be inconsistent with the lower hybrid instabilities proposed by current CIV theories. This could be the main reason for a relatively low ionization yield that one otherwise would expect from CRIT-II. A multi-fluid model of the wave dispersion relation for an unmagnetized beam with finite width in a magnetized plasma was also derived. We found that the nonuniform beam density effect

  10. The molecular gas content of the Pipe Nebula. I. Direct evidence of outflow-generated turbulence in B59?

    NASA Astrophysics Data System (ADS)

    Duarte-Cabral, A.; Chrysostomou, A.; Peretto, N.; Fuller, G. A.; Matthews, B.; Schieven, G.; Davis, G. R.

    2012-07-01

    Context. Star forming regions may share many characteristics, but the specific interplay between gravity, magnetic fields, large-scale dynamics, and protostellar feedback will have an impact on the star formation history of each region. The importance of feedback from outflows is a particular subject to debate, as we are yet to understand the details of their impact on clouds and star formation. Aims: The Pipe Nebula is a nearby molecular cloud hosting the B59 region as its only active star-forming clump. This paper focuses on the global dynamics of B59, its temperature structure, and its outflowing gas, with the goal of revealing the local and global impact of the protostellar outflows. Methods: Using HARP at the James Clerk Maxwell Telescope, we have mapped the B59 region in the J = 3 → 2 transition of 12CO to study the kinematics and energetics of the outflows, and the same transitions of 13CO and C18O to study the overall dynamics of the ambient cloud, the physical properties of the gas, and the hierarchical structure of the region. Results: The B59 region has a total of ~30 M⊙ of cold and quiescent material, mostly gravitationally bound, with narrow line widths throughout. Such low levels of turbulence in the non-star-forming regions within B59 are indicative of the intrinsic initial conditions of the cloud. On the other hand, close to the protostars the impact of the outflows is observed as a localised increase of both C18O line widths from ~0.3 km s-1 to ~1 km s-1, and 13CO excitation temperatures by ~2-3 K. The impact of the outflows is also evident in the low column density material which shows signs of being shaped by the outflow bow shocks as they pierce their way out of the cloud. Much of this structure is readily apparent in a dendrogram analysis of the cloud and demonstrates that when decomposing clouds using such techniques a careful interpretation of the results is needed. Conclusions: The low mass of B59 together with its intrinsically

  11. Comet Halley neutral gas density profile along the Vega 1 trajectory measured by NGE. [Neutral Gas Experiment (NGE)

    NASA Technical Reports Server (NTRS)

    Curtis, C. C.; Fan, C. Y.; Hsieh, K. C.; Hunten, D. M.; Ip, WING-H.; Keppler, E.; Richter, A. K.; Umlauft, G.; Afonin, V. V.; Dyachkov, A. V.

    1986-01-01

    Data from the Vega 1 permitted the determination of the total neutral gas density profile along the spacecraft trajectory. Discounting small fluctuations, the field ionization source instrument measured a density profile which varied approximately as the inverse radial distance squared. Data from the electron impact ionization instrument yielded a series of calibration points; e.g., the neutral density at 100,000 km is 10,000/cc. The combined data provide a calibrated total density profile, and imply a neutral production rate of 10 to the 30th power molecules/sec.

  12. Initiation of Martian Outflow Channels: Related to the Dissociation of Gas Hydrate?

    NASA Technical Reports Server (NTRS)

    Max, Michael D.; Clifford, Stephen M.

    2001-01-01

    We propose that the disruption of subpermafrost aquifers on Mars by the thermal- or pressure-induced dissociation of methane hydrate may have been a frequent trigger for initiating outflow channel activity. This possibility is raised by recent work that suggests that significant amounts of methane and gas hydrate may have been produced within and beneath the planet's cryosphere. On Earth, the build-up of overpressured water and gas by the decomposition of hydrate deposits has been implicated in the formation of large blowout features on the ocean floor. These features display a remarkable resemblance (in both morphology and scale) to the chaotic terrain found at the source of many Martian channels. The destabilization of hydrate can generate pressures sufficient to disrupt aquifers confined by up to 5 kilometers of frozen ground, while smaller discharges may result from the water produced by the decomposition of near-surface hydrate alone.

  13. Thick discs, and an outflow, of dense gas in the nuclei of nearby Seyfert galaxies

    NASA Astrophysics Data System (ADS)

    Lin, Ming-Yi; Davies, R. I.; Burtscher, L.; Contursi, A.; Genzel, R.; González-Alfonso, E.; Graciá-Carpio, J.; Janssen, A.; Lutz, D.; Orban de Xivry, G.; Rosario, D.; Schnorr-Müller, A.; Sternberg, A.; Sturm, E.; Tacconi, L.

    2016-05-01

    We discuss the dense molecular gas in central regions of nearby Seyfert galaxies, and report new arcsec resolution observations of HCN (1-0) and HCO+ (1-0) for three objects. In NGC 3079, the lines show complex profiles as a result of self-absorption and saturated continuum absorption. H13CN reveals the continuum absorption profile, with a peak close to the galaxy's systemic velocity that traces disc rotation, and a second feature with a blue wing extending to -350 km s-1 that most likely traces a nuclear outflow. The morphological and spectral properties of the emission lines allow us to constrain the dense gas dynamics. We combine our kinematic analysis for these three objects, as well as another with archival data, with a previous comparable analysis of four other objects, to create a sample of eight Seyferts. In seven of these, the emission line kinematics imply thick disc structures on radial scales of ˜100 pc, suggesting such structures are a common occurrence. We find a relation between the circum-nuclear LHCN and Mdyn that can be explained by a gas fraction of 10 per cent and a conversion factor αHCN ˜ 10 between gas mass and HCN luminosity. Finally, adopting a different perspective to probe the physical properties of the gas around active galactic nuclei, we report on an analysis of molecular line ratios which indicates that the clouds in this region are not self-gravitating.

  14. Gas outflow and dust transport of comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Lai, Ian-Lin; Su, Cheng-Chin; Ip, Wing-Huen; Lee, Jui-Chi; Lin, Zhong-Yi; Wu, Jong-Shinn

    2016-04-01

    Because of the diurnal thermal cycle and the irregular shape of the nucleus, gas outflow of comet 67P/Churyumov-Gerasimenko could be highly anisotropic as possibly indicated by the colliminated dust jet structures on the sunlit side. Based on the preliminary study of the outgassing effect from the early phase of the Rosetta mission, a simple model of surface sublimation can be constructed by taking into account the dependence on the solar insolation. By implementing the time variability of the global gas production rate, a sequence of gas coma models can be generated at different epochs before and after perihelion by using an advanced DSMC code [1, 2] to calculate the gas flow near the cometary nucleus. At selected time intervals, we will also investigate the size change of the cometary ionosphere as the nucleus rotates as well as the ejection of dust particles dragged by the gas flow into bounded and unbounded trajectories. Reference: 1. Wu, J.-S., Tseng, K.-C. and Wu, F.-Y., "Parallel three-dimensional DSMC method using mesh refinement and variable time-step scheme", Comput. Phys. Comm., 162, pp. 166-187, 2004. 2. Su, C.-C., Tseng, K.-C., Cave, H.M., Wu, J.-S., Lian, Y.-Y., Kuo, T.-C. and Jermy, M.C., "Implementation of a Transient Adaptive Sub-Cell Module for the Parallel DSMC Code Using Unstructured Grids," Computers & Fluids, Vol. 39, pp. 1136-1145, 2010.

  15. Integral Transport Analysis of Ions Flowing Through Neutral Gas

    NASA Astrophysics Data System (ADS)

    Emmert, Gilbert; Santarius, John; Alderson, Eric

    2011-10-01

    A computational model for the flow of energetic ions through a background neutral gas is being developed. Its essence is to consider reactions as creating a new source of ions or neutrals if the energy or charge state of the resulting particle is changed. For a given source boundary condition, the creation and annihilation of the various species is formulated as a 1-D Volterra integral equation that can quickly be solved numerically by finite differences. The current work focuses on radially converging, multiple-pass, 1-D ion flow through neutral gas and a nearly transparent, concentric anode and cathode pair in spherical geometry. This has been implemented as a computer code for atomic (3He, 3He+) and molecular (D, D2, D-, D+, D2+, D3+) ion and neutral species, and applied to modeling inertial-electrostatic confinement (IEC) devices. The inclusion of negative ions is a recent development. The code yields detailed energy spectra of the various ions and energetic neutral species. Comparisons with experimental data for a University of Wisconsin IEC device will be presented. Research supported by US Dept of Energy, grant DE-FG02-04ER54745, and by the Grainger Foundation.

  16. Outflowing Diffuse Gas in the Active Galactic Nucleus of NGC 1068

    NASA Astrophysics Data System (ADS)

    Geballe, T. R.; Mason, R. E.; Oka, T.

    2015-10-01

    Spectra of the archetypal Type II Seyfert galaxy NGC 1068 in a narrow wavelength interval near 3.7 μm have revealed a weak absorption feature due to two lines of the molecular ion {{{H}}}3+. The observed wavelength of the feature corresponds to a velocity of -70 km s-1 relative to the systemic velocity of the galaxy, implying an outward flow from the nucleus along the line of sight. The absorption by H{}3+ along with the previously known broad hydrocarbon absorption at 3.4μm are probably formed in diffuse gas that is in close proximity to the continuum source, i.e., within a few tens of parsecs of the central engine. Based on that conclusion and the measured H{}3+ absorption velocity and with the assumption of a spherically symmetric wind we estimate a rate of mass outflow from the active galactic nucleus of ˜1 M⊙ yr-1.

  17. Galaxy Mergers with Adaptive Mesh Refinement: Star Formation and Hot Gas Outflow

    SciTech Connect

    Kim, Ji-hoon; Wise, John H.; Abel, Tom; /KIPAC, Menlo Park /Stanford U., Phys. Dept.

    2011-06-22

    In hierarchical structure formation, merging of galaxies is frequent and known to dramatically affect their properties. To comprehend these interactions high-resolution simulations are indispensable because of the nonlinear coupling between pc and Mpc scales. To this end, we present the first adaptive mesh refinement (AMR) simulation of two merging, low mass, initially gas-rich galaxies (1.8 x 10{sup 10} M{sub {circle_dot}} each), including star formation and feedback. With galaxies resolved by {approx} 2 x 10{sup 7} total computational elements, we achieve unprecedented resolution of the multiphase interstellar medium, finding a widespread starburst in the merging galaxies via shock-induced star formation. The high dynamic range of AMR also allows us to follow the interplay between the galaxies and their embedding medium depicting how galactic outflows and a hot metal-rich halo form. These results demonstrate that AMR provides a powerful tool in understanding interacting galaxies.

  18. Observational Constraints on a Pluto Torus of Circumsolar Neutral Gas

    NASA Astrophysics Data System (ADS)

    Hill, M. E.; Kollmann, P.; McNutt, R. L., Jr.; Smith, H. T.; Bagenal, F.; Brown, L. E.; Elliott, H. A.; Haggerty, D. K.; Horanyi, M.; Krimigis, S. M.; Kusterer, M. B.; Lisse, C. M.; McComas, D. J.; Piquette, M. R.; Sidrow, E. J.; Strobel, D. F.; Szalay, J.; Vandegriff, J. D.; Zirnstein, E.; Ennico Smith, K.; Olkin, C.; Weaver, H. A., Jr.; Young, L. A.; Stern, S. A.

    2015-12-01

    We present the concept of a neutral gas torus surrounding the Sun, aligned with Pluto's orbit, and place observational constraints based primarily on comparison of New Horizons (NH) measurements with a 3-D Monte Carlo model adapted from analogous satellite tori surrounding Saturn and Jupiter. Such a torus, or perhaps partial torus, should result from neutral N2 escaping from Pluto's exosphere. Unlike other more massive planets closer to the Sun, neutrals escape Pluto readily owing, e.g., to the high thermal speed relative to the escape velocity. Importantly, escaped neutrals have a long lifetime due to the great distance from the Sun, ~100 years for photoionization of N2 and ~180 years for photoionization of N, which results from disassociated N2. Despite the lengthy 248-year orbit, these long e-folding lifetimes may allow an enhanced neutral population to form an extended gas cloud that modifies the N2 spatial profile near Pluto. These neutrals are not directly observable by NH but once ionized N2+ or N+ are picked up by the solar wind, reaching ~50 keV, making these pickup ions (PUIs) detectable by NH's Pluto Energetic Particle Spectrometer Science Investigation (PEPSSI) instrument. PEPSSI observations analyzed to date may constrain the N2 density; the remaining ~95% of the encounter data, scheduled for downlink in August along with similarly anticipated data from the Solar Wind Around Pluto (SWAP) experiment, should help determine the Pluto outgassing rates. Measurements from SWAP include the solar wind speed, a quantity that greatly enhances PUI studies by enabling us to directly account for the PUI distribution's sensitive dependence on plasma speed. Note that anomalous cosmic ray Si observed at Voyager is overabundant by a factor of ~3000 relative to interstellar composition. This might be related to "outer source" PUIs, but the fact that N2 and Si are indistinguishable in many instruments could mean that N2 is actually driving this apparent Si discrepancy.

  19. THE GAS INFLOW AND OUTFLOW RATE IN STAR-FORMING GALAXIES AT z ∼ 1.4

    SciTech Connect

    Yabe, Kiyoto; Ohta, Kouji; Iwamuro, Fumihide; Akiyama, Masayuki; Tamura, Naoyuki; Yuma, Suraphong; Dalton, Gavin; Lewis, Ian

    2015-01-01

    We try to constrain the gas inflow and outflow rate of star-forming galaxies at z ∼ 1.4 by employing a simple analytic model for the chemical evolution of galaxies. The sample is constructed based on a large near-infrared spectroscopic sample observed with Subaru/FMOS. The gas-phase metallicity is measured from the [N II] λ6584/Hα emission line ratio and the gas mass is derived from the extinction corrected Hα luminosity by assuming the Kennicutt-Schmidt law. We constrain the inflow and outflow rate from the least-χ{sup 2} fittings of the observed gas-mass fraction, stellar mass, and metallicity with the analytic model. The joint χ{sup 2} fitting shows that the best-fit inflow rate is ∼1.8 and the outflow rate is ∼0.6 in units of star-formation rate. By applying the same analysis to the previous studies at z ∼ 0 and z ∼ 2.2, it is shown that both the inflow and outflow rates decrease with decreasing redshift, which implies the higher activity of gas flow process at higher redshift. The decreasing trend of the inflow rate from z ∼ 2.2 to z ∼ 0 agrees with that seen in previous observational works with different methods, though the absolute value is generally larger than in previous works. The outflow rate and its evolution from z ∼ 2.2 to z ∼ 0 obtained in this work agree well with the independent estimations in previous observational works.

  20. Miniaturized Argon Plasma: Neutral Gas Characteristics in Dielectric Barrier Discharge

    NASA Astrophysics Data System (ADS)

    Ashraf, Farahat

    2015-10-01

    Plasma-neutral gas dynamics is computationally investigated in a miniaturized microthruster that encloses Ar and contains dielectric material sandwiched between two metal plates using a two-dimensional plasma mode. Spatial and temporal plasma properties are investigated by solving the Poisson equation with the conservation equations of charged and excited neutral plasma species using the COMSOL Multiphysics 4.2b. The microthruster property is found to depend on the secondary electron emission coefficient. The electrohydrodynamic force (EHD) is calculated and found to be significant in the sheath area near the dielectric layer and is found to affect gas flow dynamics including the Ar excimer formation and density. The effects of pressure and secondary emission coefficient are discussed. The plasma characteristics are affected by small changes in the secondary electron emission coefficient, which could result from the dielectric erosion and aging, and is found to affect the electrohydrodynamic force produced when the microthruster is used to produce thrust for a small spacecraft.

  1. Neutral gas and diffuse interstellar bands in the LMC

    NASA Technical Reports Server (NTRS)

    Danks, Anthony C.; Penprase, Brian

    1994-01-01

    Tracing the dynamics of the neutral gas and observing diffuse interstellar bands in the LMC (Large Magellanic Cloud) was the focus of this study. The S/N values, a Quartz lamp exposure, a T horium Argon Comparision lamp exposure, and spectral plots for each star observed were taken. The stars observed were selected to sample the 30 Dor vicinty. NaI absorption profiles are included.

  2. A UNIVERSAL NEUTRAL GAS PROFILE FOR NEARBY DISK GALAXIES

    SciTech Connect

    Bigiel, F.; Blitz, L.

    2012-09-10

    Based on sensitive CO measurements from HERACLES and H I data from THINGS, we show that the azimuthally averaged radial distribution of the neutral gas surface density ({Sigma}{sub HI}+ {Sigma}{sub H2}) in 33 nearby spiral galaxies exhibits a well-constrained universal exponential distribution beyond 0.2 Multiplication-Sign r{sub 25} (inside of which the scatter is large) with less than a factor of two scatter out to two optical radii r{sub 25}. Scaling the radius to r{sub 25} and the total gas surface density to the surface density at the transition radius, i.e., where {Sigma}{sub HI} and {Sigma}{sub H2} are equal, as well as removing galaxies that are interacting with their environment, yields a tightly constrained exponential fit with average scale length 0.61 {+-} 0.06 r{sub 25}. In this case, the scatter reduces to less than 40% across the optical disks (and remains below a factor of two at larger radii). We show that the tight exponential distribution of neutral gas implies that the total neutral gas mass of nearby disk galaxies depends primarily on the size of the stellar disk (influenced to some degree by the great variability of {Sigma}{sub H2} inside 0.2 Multiplication-Sign r{sub 25}). The derived prescription predicts the total gas mass in our sub-sample of 17 non-interacting disk galaxies to within a factor of two. Given the short timescale over which star formation depletes the H{sub 2} content of these galaxies and the large range of r{sub 25} in our sample, there appears to be some mechanism leading to these largely self-similar radial gas distributions in nearby disk galaxies.

  3. HST study of Lyman-alpha emission in star-forming galaxies: the effect of neutral gas flows

    NASA Astrophysics Data System (ADS)

    Kunth, Daniel; Mas-Hesse, J. M.; Terlevich, E.; Terlevich, R.; Lequeux, J.; Fall, S. Michael

    1998-06-01

    We present high dispersion HST GHRS UV spectroscopic observations of 8 H II galaxies covering a wide range of metallicities and physical properties. We have found Lyalpha \\ emission in 4 galaxies with blueshifted absorption features, leading to P Cygni like profiles in 3 of them. In all these objects the O I and Si II absorption lines are also blueshifted with respect to the ionized gas, indicating that the neutral gas is outflowing in these galaxies with velocities up to 200 km s(-1) or more. The rest of the sample shows broad damped Lyalpha \\ absorption profiles centered at the wavelength corresponding to the redshift of the H II emitting gas. We therefore find that the velocity structure of the neutral gas in these galaxies is the driving factor that determines the detectability of Lyalpha \\ in emission. Relatively small column densities of neutral gas with even very small dust content would destroy the Lyalpha \\ emission if this gas is static with respect to the ionized region where Lyalpha \\ photons originate. The situation changes dramatically when most of the neutral gas is velocity-shifted with respect to the ionized regions because resonant scattering by neutral hydrogen will be most efficient at wavelengths shorter than the Lyalpha \\ emission, allowing the Lyalpha \\ photons to escape (at least partially). This mechanism complements the effect of porosity in the neutral interstellar medium discussed by other authors, which allows to explain the escape of Lyalpha \\ photons in regions surrounded by static neutral gas, but with only partial covering factors. The anisotropy of these gas flows and their dependence on the intrinsic properties of the violent star-forming episodes taking place in these objects (age, strength, gas geometry,...) might explain (in part) the apparent lack of correlation between other properties (like metallicity) and the frequency of occurence and strength of Lyalpha \\ emission in star-forming galaxies. Attempts to derive the

  4. Gas physical conditions and kinematics of the giant outflow Ou4

    NASA Astrophysics Data System (ADS)

    Corradi, Romano L. M.; Grosso, Nicolas; Acker, Agnès; Greimel, Robert; Guillout, Patrick

    2014-10-01

    Context. The recently discovered bipolar outflow Ou4 has a projected size of more than one degree in the plane of the sky. It is apparently centred on the young stellar cluster - whose most massive representative is the triple system HR 8119 - inside the H ii region Sh 2-129. The driving source, the nature, and the distance of Ou4 are not known. Aims: The basic properties of Ou4 and its environment are investigated to shed light on the origin of this remarkable outflow. Methods: Deep narrow-band imagery of the whole nebula at arcsecond resolution was obtained to study the details of its morphology. Long-slit spectroscopy of the bipolar lobe tips was secured to determine the gas ionisation mechanism, physical conditions, and line-of-sight velocities. An estimate of the proper motions at the tip of the south lobe using archival plate images was attempted. The existing multi-wavelength data for Sh 2-129 and HR 8119 were also comprehensively reviewed. Results: The observed morphology of Ou4, its emission-line spatial distribution, line flux ratios, and the kinematic modelling developed adopting a bow-shock parabolic geometry, illustrate the expansion of a shock-excited fast collimated outflow. The observed radial velocities of Ou4 and its reddening are consistent with those of Sh 2-129 and HR 8119. The improved determination of the distance to HR 8119 (composed of two B0 V and one B0.5 V stars) and Sh 2-129 is 712 pc. We identify in WISE images at 22 μm an emission bubble of 5' radius (1 pc at the distance above) emitted by hot (107 K) dust grains, located inside the central part of Ou4 and corresponding to several [O iii] emission features of Ou4. Conclusions: The apparent position of Ou4 and the properties studied in this work are consistent with the hypothesis that Ou4 is located inside the Sh 2-129 H ii region, suggesting that it was launched some 90 000 yr ago by HR 8119. The outflow total kinetic energy is estimated to be ≈4 × 1047 ergs. However, we cannot

  5. Constraining the Dynamical Importance of Hot Gas and Radiation Pressure in Quasar Outflows Using Emission Line Ratios

    NASA Astrophysics Data System (ADS)

    Stern, Jonathan; Faucher-Giguère, Claude-André; Zakamska, Nadia L.; Hennawi, Joseph F.

    2016-03-01

    Quasar feedback models often predict an expanding hot gas bubble that drives a galaxy-scale outflow. In many circumstances this hot gas radiates inefficiently and is therefore difficult to observe directly. We present an indirect method to detect the presence of a hot bubble using hydrostatic photoionization calculations of the cold (∼ {10}4 {{K}}) line-emitting gas. We compare our calculations with observations of the broad line region, the inner face of the torus, the narrow line region (NLR), and the extended NLR, and thus constrain the hot gas pressure at distances 0.1 {{pc}}{--}10 {{kpc}} from the center. We find that emission line ratios observed in the average quasar spectrum are consistent with radiation-pressure-dominated models on all scales. On scales \\lt 40 {{pc}} a dynamically significant hot gas pressure is ruled out, while on larger scales the hot gas pressure cannot exceed six times the local radiation pressure. In individual quasars, ≈25% of quasars exhibit NLR ratios that are inconsistent with radiation-pressure-dominated models, although in these objects the hot gas pressure is also unlikely to exceed the radiation pressure by an order of magnitude or more. The derived upper limits on the hot gas pressure imply that the instantaneous gas pressure force acting on galaxy-scale outflows falls short of the time-averaged force needed to explain the large momentum fluxes \\dot{p}\\gg {L}{{AGN}}/c inferred for galaxy-scale outflows. This apparent discrepancy can be reconciled if optical quasars previously experienced a buried, fully obscured phase during which the hot gas bubble was more effectively confined and during which galactic wind acceleration occurred.

  6. The long lives of giant clumps and the birth of outflows in gas-rich galaxies at high redshift

    SciTech Connect

    Bournaud, Frédéric; Renaud, Florent; Daddi, Emanuele; Duc, Pierre-Alain; Elbaz, David; Gabor, Jared M.; Juneau, Stéphanie; Kraljic, Katarina; Le Floch', Emeric; Dekel, Avishai; Elmegreen, Bruce G.; Elmegreen, Debra M.; Teyssier, Romain

    2014-01-01

    Star-forming disk galaxies at high redshift are often subject to violent disk instability, characterized by giant clumps whose fate is yet to be understood. The main question is whether the clumps disrupt within their dynamical timescale (≤50 Myr), like the molecular clouds in today's galaxies, or whether they survive stellar feedback for more than a disk orbital time (≈300 Myr) in which case they can migrate inward and help building the central bulge. We present 3.5-7 pc resolution adaptive mesh refinement simulations of high-redshift disks including photoionization, radiation pressure, and supernovae feedback. Our modeling of radiation pressure determines the mass loading and initial velocity of winds from basic physical principles. We find that the giant clumps produce steady outflow rates comparable to and sometimes somewhat larger than their star formation rate, with velocities largely sufficient to escape the galaxy. The clumps also lose mass, especially old stars, by tidal stripping, and the stellar populations contained in the clumps hence remain relatively young (≤200 Myr), as observed. The clumps survive gaseous outflows and stellar loss, because they are wandering in gas-rich turbulent disks from which they can reaccrete gas at high rates compensating for outflows and tidal stripping, overall keeping realistic and self-regulated gaseous and stellar masses. The outflow and accretion rates have specific timescales of a few 10{sup 8} yr, as opposed to rapid and repeated dispersion and reformation of clumps. Our simulations produce gaseous outflows with velocities, densities, and mass loading consistent with observations, and at the same time suggest that the giant clumps survive for hundreds of Myr and complete their migration to the center of high-redshift galaxies. These long-lived clumps are gas-dominated and contain a moderate mass fraction of stars; they drive inside-out disk evolution, thickening, spheroid growth, and fueling of the central

  7. Neutral Gas and Ion Measurements by the CONTOUR Mission

    NASA Technical Reports Server (NTRS)

    Mahaffy, Paul R.; Niemann, Hasso B. (Technical Monitor)

    2002-01-01

    The Neutral Gas and Ion Mass Spectrometer (NGIMS) on the Comet Nucleus Tour (CONTOUR) Mission will measure the chemical and isotopic composition of neutral and ion species in the coma of comet Encke and the subsequent targets of this mission. Currently the second target of this mission is comet Schwassmann-Wachmann 3. This neutral gas and ion data together with complementary data from the dust analyzer and the imaging spectrometer is designed to allow a broad characterization of the molecular and elemental composition of each cometary nucleus. These experiments enable the study of the of the likely variations in chemical conditions present in different regions of the early solar nebula where the comets formed. With these experiments we will also test ideas about cometary contributions of organics, water, and other volatiles to the inner planets. The CONTOUR NGIMS data set from multiple comets is expected to provide an important extension of to the only other detailed in situ data set from a close flyby of a nucleus, that from Halley. CONTOUR will extend this measurement of an Oort cloud comet to the class of short period comets thought to originate in the Kuiper belt. This data will complement the detailed measurements to be carried out at a single nucleus by the Rosetta Mission.

  8. Modeling of Gas and Dust Outflow Dynamics at Active Small Solar System Bodies

    NASA Astrophysics Data System (ADS)

    Fahnestock, Eugene G.

    2013-05-01

    Abstract (2,250 Maximum Characters): We present methodology and results from our recent effort in modeling the gas outflow from the surfaces of primitive/active small solar system bodies, and modeling the dynamics of dust particles entrained by that flow. We based our initial simulation capability on the COMA software package, developed ≈1995-1999 for ESA to enable studies preparatory to Rosetta. Rather than integrate the derived software for gas and dust dynamics simulation "into the loop" within high-fidelity 6DOF integration of a rendezvoused spacecraft's dynamics, we created simple tools, or "interfaces", computationally efficient enough to be brought into the loop, yet capturing the variety of ways in which gas and lifted dust can potentially perturb guidance, navigation, and control (GN&C) performance and surface observation performance. For example, these interfaces are called in the loop to compute noise models for degradation by the dust of imagery and lidar navigation observables. The same applies for degradation of science instrument observations of the surface. Accurate spacecraft dynamics propagation is necessary for mission design, while both that and the observables modeling are required for end-to-end simulation and analysis of navigation and control to the designed close-proximity trajectories. We created interfaces with increasing levels of fidelity, ultimately sufficiently approximating the full flow-field of gas and dust activity; both diffuse background activity (with spatial variation in relation to sun direction) and concentrated jet activity (with spatial and temporal variation through masking to the regions of jet activity in the body-fixed frame and modeling body rotation). We show example results using these tools for two representative design reference missions involving 9P/Tempel 1 and 67P/C-G. This work should be of interest to anyone in the DDA community considering involvement in such mission scenarios. It may also be extended in

  9. Interaction between single neutral atoms and an ultracold atomic gas

    NASA Astrophysics Data System (ADS)

    Bauer, Michael; Kindermann, Farina; Franzreb, Philipp; Gänger, Benjamin; Phieler, Jan; Chakrabarti, Shrabana; Spethmann, Nicolas; Meschede, Dieter; Widera, Artur

    2013-05-01

    Recently hybrid systems immersing single atoms in a many body system have been a subject of intense interest. Here we present an example of controlled doping of an ultracold Rubidium cloud with single neutral Cesium impurity atoms. We observe thermalization of ``hot'' Cs atoms by elastic interaction with an ultracold Rb gas, employing different schemes of measuring the impurities' energy distribution. In addition we present a concept and review the current status of a new setup, which will be capable of breeding an all optical BEC in a few seconds. Our setup will feature mechanisms for independently manipulating and imaging both single atoms and the BEC, thereby providing an unrivaled level of control over impurities in a quantum gas. Possible research directions include the investigation of coherent impurity physics and the creation and characterization of polarons in a BEC. Funded by the ERC, starting grant project QuantumProbe.

  10. Extended warm gas in the ULIRG Mrk273: Galactic outflows and tidal debris

    NASA Astrophysics Data System (ADS)

    Rodríguez Zaurín, J.; Tadhunter, C. N.; Rupke, D. S. N.; Veilleux, S.; Spoon, H. W. W.; Chiaberge, M.; Ramos Almeida, C.; Batcheldor, D.; Sparks, W. B.

    2014-11-01

    We present new HST/ACS medium- and narrow-band images and optical Isaac Newton Telescope long-slit spectra of the merging system Mrk273. The HST observations sample the [OIII]λλ4959,5007 emission from the galaxy and the nearby continuum. These data were taken as a part of a larger study of ultraluminous infrared galaxies (ULIRGs) with the aim of investigating the importance of the warm, AGN induced outflows in such objects. The HST images show that the morphologies of the extended continuum and the ionised gas emission from the galaxy are decoupled, extending almost perpendicular to each other. In particular, we detect for the first time a spectacular structure of ionised gas in the form of filaments and clumps that extend ~23 kpc to the east of the nuclear region. The quiescent ionised gas kinematics at these locations suggests that these filaments are tidal debris left over from a secondary merger event that are illuminated by an AGN in the nuclear regions. The images also reveal a complex morphology in the nuclear region of the galaxy for both the continuum and the [OIII] emission. Consistent with this complexity, we find a wide diversity of emission line profiles in these regions. Kinematic disturbance in the form of broad (FWHM> 500 km s-1) and/or strongly shifted (| ΔV | > 150 km s-1 ) emission line components is found at almost all locations in the nuclear regions, but confined to a radius of ~4 kpc to the east and west of the northern nucleus. In most cases, we are able to fit the profiles of all the emission lines of different ionisation with a kinematic model using two or three Gaussian components. From these fits, we derive diagnostic line ratios that are used to investigate the ionisation mechanisms at the different locations in the galaxy. We show that these line ratios are generally consistent with photoionisation by an AGN as the main ionisation mechanism. Finally, the highest surface brightness [OIII] emission is found in a compact region that is

  11. Evidence for feedback in action from the molecular gas content in the z ~ 1.6 outflowing QSO XID2028

    NASA Astrophysics Data System (ADS)

    Brusa, M.; Feruglio, C.; Cresci, G.; Mainieri, V.; Sargent, M. T.; Perna, M.; Santini, P.; Vito, F.; Marconi, A.; Merloni, A.; Lutz, D.; Piconcelli, E.; Lanzuisi, G.; Maiolino, R.; Rosario, D.; Daddi, E.; Bongiorno, A.; Fiore, F.; Lusso, E.

    2015-06-01

    Aims: Gas outflows are believed to play a pivotal role in shaping galaxies, as they regulate both star formation and black hole growth. Despite their ubiquitous presence, the origin and the acceleration mechanism of these powerful and extended winds is not yet understood. Direct observations of the cold gas component in objects with detected outflows at other wavelengths are needed to assess the impact of the outflow on the host galaxy interstellar medium (ISM). Methods: We observed with the Plateau de Bure Interferometer an obscured quasar at z ~ 1.5, XID2028, for which the presence of an ionized outflow has been unambiguously signalled by NIR spectroscopy. The detection of 12CO(3-2) emission in this source allows us to infer the molecular gas content and compare it to the ISM mass derived from the dust emission. We then analyzed the results in the context of recent insights on scaling relations, which describe the gas content of the overall population of star-forming galaxies at a similar redshifts. Results: The star formation efficiency (~100) and gas mass (Mgas = 2.1-9.5 × 1010 M⊙) inferred from the CO(3-2) line depend on the underlying assumptions on the excitation of the transition and the CO-to-H2 conversion factor. However, the combination of this information and the ISM mass estimated from the dust mass suggests that the ISM/gas content of XID2028 is significantly lower than expected for its observed M⋆, sSFR and redshift, based on the most up-to-date calibrations (with gas fraction <20% and depletion timescale <340 Myr). Conclusions: Overall, the constraints we obtain from the far infrared and millimeter data suggest that we are observing QSO feedback able to remove the gas from the host. Based on observations with the Plateau de Bure millimetre interferometer, operated by the Institute for Radio Astronomy in the Millimetre Range (IRAM), which is funded by a partnership of INSU/CNRS (France), MPG (Germany) and IGN (Spain).A FITS file for the spectrum

  12. Role of neutral gas in scrape-off layer tokamak plasma

    SciTech Connect

    Bisai, N.; Jha, R.; Kaw, P. K.

    2015-02-15

    Neutral gas in scrape-off layer of tokamak plasma plays an important role as it can modify the plasma turbulence. In order to investigate this, we have derived a simple two-dimensional (2D) model that consists of electron continuity, quasi-neutrality, and neutral gas continuity equations using neutral gas ionization and charge exchange processes. Simple 1D profile analysis predicts neutral penetration depth into the plasma. Growth rate obtained from the linear theory has been presented. The 2D model equations have been solved numerically. It is found that the neutral gas reduces plasma fluctuations and shifts spectrum of the turbulence towards lower frequency side. The neutral gas fluctuation levels have been presented. The numerical results have been compared with Aditya tokamak experiments.

  13. CHEMICALLY DISTINCT NUCLEI AND OUTFLOWING SHOCKED MOLECULAR GAS IN Arp 220

    SciTech Connect

    Tunnard, R.; Greve, T. R.; Garcia-Burillo, S.; Fuente, A.; Usero, A.; Planesas, P.; Carpio, J. Graciá; Hailey-Dunsheath, S.; Sturm, E.; Fischer, J.; González-Alfonso, E.; Neri, R.

    2015-02-10

    We present the results of interferometric spectral line observations of Arp 220 at 3.5 mm and 1.2 mm from the Plateau de Bure Interferometer, imaging the two nuclear disks in H{sup 13}CN(1-0) and (3-2), H{sup 13}CO{sup +}(1-0) and (3-2), and HN{sup 13}C(3-2) as well as SiO(2-1) and (6-5), HC{sup 15}N(3-2), and SO(6{sub 6}-5{sub 5}). The gas traced by SiO(6-5) has a complex and extended kinematic signature including a prominent P Cygni profile, almost identical to previous observations of HCO{sup +}(3-2). Spatial offsets 0.''1 north and south of the continuum center in the emission and absorption of the SiO(6-5) P Cygni profile in the western nucleus (WN) imply a bipolar outflow, delineating the northern and southern edges of its disk and suggesting a disk radius of ∼40 pc, consistent with that found by ALMA observations of Arp 220. We address the blending of SiO(6-5) and H{sup 13}CO{sup +}(3-2) by considering two limiting cases with regards to the H{sup 13}CO{sup +} emission throughout our analysis. Large velocity gradient modeling is used to constrain the physical conditions of the gas and to infer abundance ratios in the two nuclei. Our most conservative lower limit on the [H{sup 13}CN]/[H{sup 13}CO{sup +}] abundance ratio is 11 in the WN, compared with 0.10 in the eastern nucleus (EN). Comparing these ratios to the literature we argue on chemical grounds for an energetically significant active galactic nucleus in the WN driving either X-ray or shock chemistry, and a dominant starburst in the EN.

  14. Star Formation as a Function of Neutral Hydrogen Gas Density in Local Group Galaxies

    NASA Astrophysics Data System (ADS)

    Carlson, Erika K.; Madore, Barry F.; Freedman, Wendy L.

    2016-06-01

    We present a study of the efficiency and timescales of star formation as a function of local neutral hydrogen gas density in four Local Group galaxies: M33, NGC 6822, the LMC, and the SMC. In this work, we conceptualize the process of star formation as a cycle of two major phases – (1) a gas dynamics phase in which neutral hydrogen gas coalesces into clouds, and (2) a stellar phase in which stars have formed and interrupt further gas coalescence during their active lifetimes. By examining the spatial distribution and number densities of stars on maps of neutral hydrogen, we estimate the timescale of the gas coalescence phase relative to the timescale of the stellar phase and infer an efficiency of star formation as a function of neutral hydrogen gas density. From these timescales and efficiencies, we will calculate star formation rates as a function of neutral hydrogen gas density in these galaxies.

  15. Water and methanol in low-mass protostellar outflows: gas-phase synthesis, ice sputtering and destruction

    NASA Astrophysics Data System (ADS)

    Suutarinen, A. N.; Kristensen, L. E.; Mottram, J. C.; Fraser, H. J.; van Dishoeck, E. F.

    2014-05-01

    Water in outflows from protostars originates either as a result of gas-phase synthesis from atomic oxygen at T ≳ 200 K, or from sputtered ice mantles containing water ice. We aim to quantify the contribution of the two mechanisms that lead to water in outflows, by comparing observations of gas-phase water to methanol (a grain surface product) towards three low-mass protostars in NGC 1333. In doing so, we also quantify the amount of methanol destroyed in outflows. To do this, we make use of James Clerk Maxwell Telescope and Herschel-Heterodyne Instrument for the Far-Infrared data of H2O, CH3OH and CO emission lines and compare them to RADEX non-local thermodynamic equilibrium excitation simulations. We find up to one order of magnitude decrease in the column density ratio of CH3OH over H2O as the velocity increases in the line wings up to ˜15 km s-1. An independent decrease in X(CH3OH) with respect to CO of up to one order of magnitude is also found in these objects. We conclude that gas-phase formation of H2O must be active at high velocities (above 10 km s-1 relative to the source velocity) to re-form the water destroyed during sputtering. In addition, the transition from sputtered water at low velocities to form water at high velocities must be gradual. We place an upper limit of two orders of magnitude on the destruction of methanol by sputtering effects.

  16. Sublimating comets as the source of nucleation seeds for grain condensation in the gas outflow from AGB stars

    NASA Technical Reports Server (NTRS)

    Whitmire, D. P.; Matese, John J.; Reynolds, R. T.

    1989-01-01

    A growing amount of observational and theoretical evidence suggests that most main sequence stars are surrounded by disks of cometary material. The dust production by comets in such disks is investigated when the central stars evolve up the red giant and asymptotic giant branch (AGB). Once released, the dust is ablated and accelerated by the gas outflow and the fragments become the seeds necessary for condensation of the gas. The origin of the requisite seeds has presented a well known problem for classical nucleation theory. This model is consistent with the dust production observed in M giants and supergiants (which have increasing luminosities) and the fact that earlier supergiants and most WR stars (whose luminosities are unchanging) do not have significant dust clouds even though they have significant stellar winds. Another consequence of the model is that the spatial distribution of the dust does not, in general, coincide with that of the gas outflow, in contrast to the conventional condensation model. A further prediction is that the condensation radius is greater that that predicted by conventional theory which is in agreement with IR interferometry measurements of alpha-Ori.

  17. DEMOGRAPHICS AND PHYSICAL PROPERTIES OF GAS OUTFLOWS/INFLOWS AT 0.4 < z < 1.4

    SciTech Connect

    Martin, Crystal L.; Shapley, Alice E.; Kornei, Katherine A.; Coil, Alison L.; Bundy, Kevin; Weiner, Benjamin J.; Noeske, Kai G.; Schiminovich, David

    2012-12-01

    We present Keck/LRIS spectra of over 200 galaxies with well-determined redshifts between 0.4 and 1.4. We combine new measurements of near-ultraviolet, low-ionization absorption lines with previously measured masses, luminosities, colors, and star formation rates to describe the demographics and properties of galactic flows. Among star-forming galaxies with blue colors, we find a net blueshift of the Fe II absorption greater than 200 km s{sup -1} (100 km s{sup -1}) toward 2.5% (20%) of the galaxies. The fraction of blueshifted spectra does not vary significantly with stellar mass, color, or luminosity but does decline at specific star formation rates less than roughly 0.8 Gyr{sup -1}. The insensitivity of the blueshifted fraction to galaxy properties requires collimated outflows at these redshifts, while the decline in outflow fraction with increasing blueshift might reflect the angular dependence of the outflow velocity. The low detection rate of infalling gas, 3%-6% of the spectra, suggests an origin in (enriched) streams favorably aligned with our sightline. We find that four of these nine infalling streams have projected velocities commensurate with the kinematics of an extended disk or satellite galaxy. The strength of the Mg II absorption increases with stellar mass, B-band luminosity, and U - B color, trends arising from a combination of more interstellar absorption at the systemic velocity and less emission filling in more massive galaxies. Our results provide a new quantitative understanding of gas flows between galaxies and the circumgalactic medium over a critical period in galaxy evolution.

  18. Cirrus outflow dynamics

    NASA Technical Reports Server (NTRS)

    Lilly, Douglas K.

    1988-01-01

    In the present analyses of cirrus clouds' deep-convection outflow plumes as dynamically and thermodynamically active systems, the initial outflow is considered as an analog to wake collapse: after a neutrally-buoyant flow intrusion is flattened and stretched by its stratified environment, the initially isotropic turbulence within it is converted to other forms. Dugan et al.'s (1976) analytic and numerical calculations are used to predict the early spread of the outflow. Strong radiative heat flux curvature then leads to maintenance or regeneration of buoyant turbulence in the collapsed outflow plume. The rise of narrow plumes is sufficiently rapid that their mean temperature does not significantly differ from that of their environment.

  19. NIHAO IX: the role of gas inflows and outflows in driving the contraction and expansion of cold dark matter haloes

    NASA Astrophysics Data System (ADS)

    Dutton, Aaron A.; Macciò, Andrea V.; Dekel, Avishai; Wang, Liang; Stinson, Gregory; Obreja, Aura; Di Cintio, Arianna; Brook, Chris; Buck, Tobias; Kang, Xi

    2016-09-01

    We use ˜100 cosmological galaxy formation `zoom-in' simulations using the smoothed particle hydrodynamics code GASOLINE to study the effect of baryonic processes on the mass profiles of cold dark matter haloes. The haloes in our study range from dwarf (M200 ˜ 1010 M⊙) to Milky Way (M200 ˜ 1012 M⊙) masses. Our simulations exhibit a wide range of halo responses, primarily varying with mass, from expansion to contraction, with up to factor ˜10 changes in the enclosed dark matter mass at 1 per cent of the virial radius. Confirming previous studies, the halo response is correlated with the integrated efficiency of star formation: ɛSF ≡ (Mstar/M200)/(Ωb/Ωm). In addition, we report a new correlation with the compactness of the stellar system: ɛR ≡ r1/2/R200. We provide an analytic formula depending on ɛSF and ɛR for the response of cold dark matter haloes to baryonic processes. An observationally testable prediction is that, at fixed mass, larger galaxies experience more halo expansion, while the smaller galaxies more halo contraction. This diversity of dark halo response is captured by a toy model consisting of cycles of adiabatic inflow (causing contraction) and impulsive gas outflow (causing expansion). For net outflow, or equal inflow and outflow fractions, f, the overall effect is expansion, with more expansion with larger f. For net inflow, contraction occurs for small f (large radii), while expansion occurs for large f (small radii), recovering the phenomenology seen in our simulations. These regularities in the galaxy formation process provide a step towards a fully predictive model for the structure of cold dark matter haloes.

  20. Sideband cooling of ions in a non-neutral buffer gas

    SciTech Connect

    Kellerbauer, A.; Bonomi, G.; Doser, M.; Landua, R.; Amoretti, M.; Canali, C.; Carraro, C.; Lagomarsino, V.; Macri, M.; Testera, G.; Bowe, P. D.; Charlton, M.; Joergensen, L. V.; Mitchard, D.; Variola, A.; Werf, D. P. van der; Cesar, C. L.; Fontana, A.; Genova, P.; Montagna, P.

    2006-06-15

    We have investigated an extension of the buffer gas cooling technique to a non-neutral buffer gas. The proposed scheme will allow efficient mass-selective centering of ions confined in a Penning trap in situations where the use of a neutral damping agent is not possible. The present paper reviews the principle of the technique and reports on evidence for sideband cooling of antiprotons in an electron gas, obtained with the ATHENA apparatus at CERN's Antiproton Decelerator facility.

  1. Studies of Magnetized Plasmas Interacting with Neutral Gas

    NASA Astrophysics Data System (ADS)

    Chiu, Gordon San-Yin

    1995-01-01

    Experiments and computer simulations have been performed in a linear magnetized helium and argon plasma column of similar collisionalities to that expected in ITER to examine heat flow and particle parameters. Plasma properties are found to differ significantly at low and high ambient neutral pressures. At pressures below 100 mT, plasmas obey the low -recycling prediction of approximate plasma pressure balance. Density decreases by a factor of about 2 to 3 with respect to that upstream, and T_{e} remains isothermal. Power flow is predominantly convective. Results obtained with varying neutral pressures and input power are consistent with zero-dimensional modeling of particle and energy balances. Ion are found to be heated by the electrons via classical energy equilibration, moderated by charge-exchange. Neutrals are heated above room temperatures. They exhibit a two-temperature population, the hotter neutrals due to charge-exchange with ions, and the colder via electron -neutral elastic collisions. The 2-d fluid code B2 has been modified to simulate the experimental conditions. Results are in good agreement. A novel regime of abrupt collapse in plasma pressure, affecting both density and T_{e} and accompanied by a dramatic increase in neutral line radiation, has been observed in high (>100 mT) pressure discharges. A potential structure akin to a double layer is calculated to exist. This phenomenon of thermal collapse is favored by a high neutral pressure, a large positive target bias, and a sufficiently long column. It is postulated that the disparate rates of momentum exchange between electrons and ions with neutrals are responsible for the formation of such collapses. The large increase in radiation is partly attributed to 3-body recombination during stagnated flow, although the estimated power loss is insufficient to account for the observations. The B2 neutral particle treatment has been found to be inadequate at these higher pressures. These results motivate

  2. Investigation of Sterilization Mechanism for Geobacillus stearothermophilus Spores with Plasma-Excited Neutral Gas

    NASA Astrophysics Data System (ADS)

    Matsui, Kei; Ikenaga, Noriaki; Sakudo, Noriyuki

    2015-09-01

    We investigate the mechanism of the sterilization with plasma-excited neutral gas that uniformly sterilizes both the space and inner wall of the reactor chamber at atmospheric pressure. Only reactive neutral species such as plasma-excited gas molecules and radicals are separated from the plasma and sent to the reactor chamber for chemical sterilization. The plasma source gas uses humidified mixture of nitrogen and oxygen. Geobacillus stearothermophilus spores and tyrosine which is amino acid are treated by the plasma-excited neutral gas. Shape change of the treated spore is observed by SEM, and chemical modification of the treated tyrosine is analyzed by HPLC. As a result, the surface of the treated spore shows depression. Hydroxylation and nitration of tyrosine are shown after the treatment. For these reasons, we believe that the sterilization with plasma-excited neutral gas results from the deformation of spore structure due to the chemical modification of amino acid.

  3. Gas utilization in TFTR (Tokamak Fusion Test Reactor) neutral beam injectors

    SciTech Connect

    Kamperschroer, J.H.; Gammel, G.M.; Kugel, H.W.; Grisham, L.R.; Stevenson, T.N.; von Halle, A.; Williams, M.D.

    1987-08-01

    Measurements of gas utilization in a test TFTR neutral beam injector have been performed to study the feasibility of running tritium neutral beams with existing ion sources. Gas consumption is limited by the restriction of 50,000 curies of T/sub 2/ allowed on site. It was found that the gas efficiency of the present long-pulse ion sources is higher than it was with previous short-pulse sources. Gas efficiencies were studied over the range of 35 to 55%. At the high end of this range the neutral fraction of the beam fell below that predicted by room temperature molecular gas flow. This is consistent with observations made on the JET injectors, where it has been attributed to beam heating of the neutralizer gas and a concomitant increase in conductance. It was found that a working gas isotope exchange from H/sub 2/ to D/sub 2/ could be accomplished on the first beam shot after changing the gas supply, without any intermediate preconditioning. The mechanism believed responsible for this phenomenon is heating of the plasma generator walls by the arc and a resulting thermal desorption of all previously adsorbed and implanted gas. Finally, it was observed that an ion source conditioned to 120 kV operation could produce a beam pulse after a waiting period of fourteen hours by preceding the beam extraction with several hi-pot/filament warm-up pulses, without any gas consumption. 18 refs., 7 figs., 2 tabs.

  4. Understanding of Neutral Gas Transport in the Alcator C-Mod Tokamak Divertor

    SciTech Connect

    D.P. Stotler; C.S. Pitcher; C.J. Boswell; B. LaBombard; J.L. Terry; J.D. Elder; S. Lisgo

    2002-05-07

    A series of experiments on the effect of divertor baffling on the Alcator C-Mod tokamak provides stringent tests on models of neutral gas transport in and around the divertor region. One attractive feature of these experiments is that a trial description of the background plasma can be constructed from experimental measurements using a simple model, allowing the neutral gas transport to be studied with a stand-alone code. The neutral-ion and neutral-neutral elastic scattering processes recently added to the DEGAS 2 Monte Carlo neutral transport code permit the neutral gas flow rates between the divertor and main chamber to be simulated more realistically than before. Nonetheless, the simulated neutral pressures are too low and the deuterium Balmer-alpha emission profiles differ qualitatively from those measured, indicating an incomplete understanding of the physical processes involved in the experiment. Some potential explanations are examined and opportunities for future exploration a re highlighted. Improvements to atomic and surface physics data and models will play a role in the latter.

  5. Termination of a Magnetized Plasma on a Neutral Gas: The End of the Plasma

    NASA Astrophysics Data System (ADS)

    Cooper, C. M.; Gekelman, W.

    2013-06-01

    Experiments are performed at the Enormous Toroidal Plasma Device at UCLA to study the neutral boundary layer (NBL) between a magnetized plasma and a neutral gas along the direction of a confining magnetic field. This is the first experiment to measure plasma termination within a neutral gas without the presence of a wall or obstacle. A magnetized, current-free helium plasma created by a lanthanum hexaboride (LaB6) cathode terminates entirely within a neutral helium gas. The plasma is weakly ionized (ne/nn˜1%) and collisional λn≪Lplasma. The NBL occurs where the plasma pressure equilibrates with the neutral gas pressure, consistent with a pressure balance model. It is characterized by a field-aligned ambipolar electric field, developing self-consistently to maintain a current-free termination of the plasma on the neutral gas. Probes are inserted into the plasma to measure the plasma density, flow, temperature, current, and potential. These measurements confirm the presence of the ambipolar field and the pressure equilibration model of the NBL.

  6. Hydrocarbon anomaly in soil gas as near-surface expressions of upflows and outflows in geothermal systems

    SciTech Connect

    Ong, H.L.; Higashihara, M.; Klusman, R.W.; Voorhees, K.J.; Pudjianto, R.; Ong, J

    1996-01-24

    A variety of hydrocarbons, C1 - C12, have been found in volcanic gases (fumarolic) and in geothermal waters and gases. The hydrocarbons are thought to have come from products of pyrolysis of kerogen in sedimentary rocks or they could be fed into the geothermal system by the recharging waters which may contain dissolved hydrocarbons or hydrocarbons extracted by the waters from the rocks. In the hot geothermal zone, 300°+ C, many of these hydrocarbons are in their critical state. It is thought that they move upwards due to buoyancy and flux up with the upflowing geothermal fluids in the upflow zones together with the magmatic gases. Permeability which could be provided by faults, fissures, mini and micro fractures are thought to provide pathways for the upward flux. A sensitive technique (Petrex) utilizing passive integrative adsorption of the hydrocarbons in soil gas on activated charcoal followed by desorption and analysis of the hydrocarbons by direct introduction mass spectrometry allows mapping of the anomalous areas. Surveys for geothermal resources conducted in Japan and in Indonesia show that the hydrocarbon anomaly occur over known fields and over areas strongly suspected of geothermal potential. The hydrocarbons found and identified were n-paraffins (C7-C9) and aromatics (C7-C8). Detection of permeable, i.e. active or open faults, parts of older faults which have been reactivated, e.g. by younger intersecting faults, and the area surrounding these faulted and permeable region is possible. The mechanism leading to the appearance of the hydrocarbon in the soil gas over upflow zones of the geothermal reservoir is proposed. The paraffins seems to be better pathfinders for the location of upflows than the aromatics. However the aromatics may, under certain circumstances, give better indications of the direction of the outflow of the geothermal system. It is thought that an upflow zone can be

  7. INVESTIGATION OF DUAL ACTIVE NUCLEI, OUTFLOWS, SHOCK-HEATED GAS, AND YOUNG STAR CLUSTERS IN MARKARIAN 266

    SciTech Connect

    Mazzarella, J. M.; Chan, B. H. P.; Iwasawa, K. E-mail: bchan@ipac.caltech.edu; and others

    2012-11-01

    Results of observations with the Spitzer, Hubble, GALEX, Chandra, and XMM-Newton space telescopes are presented for the luminous infrared galaxy (LIRG) merger Markarian 266. The SW (Seyfert 2) and NE (LINER) nuclei reside in galaxies with Hubble types SBb (pec) and S0/a (pec), respectively. Both companions are more luminous than L* galaxies and they are inferred to each contain a Almost-Equal-To 2.5 Multiplication-Sign 10{sup 8} M{sub Sun} black hole. Although the nuclei have an observed hard X-ray flux ratio of f{sub X} (NE)/f{sub X} (SW) = 6.4, Mrk 266 SW is likely the primary source of a bright Fe K{alpha} line detected from the system, consistent with the reflection-dominated X-ray spectrum of a heavily obscured active galactic nucleus (AGN). Optical knots embedded in an arc with aligned radio continuum radiation, combined with luminous H{sub 2} line emission, provide evidence for a radiative bow shock in an AGN-driven outflow surrounding the NE nucleus. A soft X-ray emission feature modeled as shock-heated plasma with T {approx} 10{sup 7} K is cospatial with radio continuum emission between the galaxies. Mid-infrared diagnostics provide mixed results, but overall suggest a composite system with roughly equal contributions of AGN and starburst radiation powering the bolometric luminosity. Approximately 120 star clusters have been detected, with most having estimated ages less than 50 Myr. Detection of 24 {mu}m emission aligned with soft X-rays, radio continuum, and ionized gas emission extending {approx}34'' (20 kpc) north of the galaxies is interpreted as {approx}2 Multiplication-Sign 10{sup 7} M{sub Sun} of dust entrained in an outflowing superwind. At optical wavelengths this Northern Loop region is resolved into a fragmented morphology indicative of Rayleigh-Taylor instabilities in an expanding shell of ionized gas. Mrk 266 demonstrates that the dust 'blow-out' phase can begin in a LIRG well before the galaxies fully coalesce during a subsequent

  8. The ionospheric outflow feedback loop

    NASA Astrophysics Data System (ADS)

    Moore, T. E.; Fok, M.-C.; Garcia-Sage, K.

    2014-08-01

    Following a long period of observation and investigation beginning in the early 1970s, it has been firmly established that Earth's magnetosphere is defined as much by the geogenic plasma within it as by the geomagnetic field. This plasma is not confined to the ionosphere proper, defined as the region within a few density scale heights of the F-region plasma density peak. Rather, it fills the flux tubes on which it is created, and circulates throughout the magnetosphere in a pattern driven by solar wind plasma that becomes magnetically connected to the ionosphere by reconnection through the dayside magnetopause. Under certain solar wind conditions, plasma and field energy is stored in the magnetotail rather than being smoothly recirculated back to the dayside. Its release into the downstream solar wind is produced by magnetotail disconnection of stored plasma and fields both continuously and in the form of discrete plasmoids, with associated generation of energetic Earthward-moving bursty bulk flows and injection fronts. A new generation of global circulation models is showing us that outflowing ionospheric plasmas, especially O+, load the system in a different way than the resistive F-region load of currents dissipating energy in the plasma and atmospheric neutral gas. The extended ionospheric load is reactive to the primary dissipation, forming a time-delayed feedback loop within the system. That sets up or intensifies bursty transient behaviors that would be weaker or absent if the ionosphere did not “strike back” when stimulated. Understanding this response appears to be a necessary, if not sufficient, condition for us to gain accurate predictive capability for space weather. However, full predictive understanding of outflow and incorporation into global simulations requires a clear observational and theoretical identification of the causal mechanisms of the outflows. This remains elusive and requires a dedicated mission effort.

  9. Method and apparatus for confinement of ions in the presence of a neutral gas

    DOEpatents

    Peurrung, A.J.; Barlow, S.E.

    1999-08-03

    The present invention is an apparatus and method for combining ions with a neutral gas and flowing the mixture with a radial flow component through a magnetic field so that the weakly ionized gas is confined by the neutral gas. When the weakly ionized gas is present in sufficient density, a weakly ionized non-neutral plasma is formed that may be trapped in accordance with the present invention. Applications for a weakly ionized non-neutral plasma exploit the trap`s ability to store and manipulate ionic species in the presence of neutral gas. The trap may be connected to a mass spectrometer thereby permitting species identification after a fixed period of time. Delicate and/or heavy particles such as clusters may be held and studied in a ``gentle`` environment. In addition, the trap can provide a relatively intense, low-energy source of a particular ion species for surface implantation or molecular chemistry. Finally, a long trap may permit spectroscopy of unprecedented accuracy to be performed on ionic species. 4 figs.

  10. Method and apparatus for confinement of ions in the presence of a neutral gas

    DOEpatents

    Peurrung, Anthony J.; Barlow, Stephan E.

    1999-01-01

    The present invention is an apparatus and method for combining ions with a neutral gas and flowing the mixture with a radial flow component through a magnetic field so that the weakly ionized gas is confined by the neutral gas. When the weakly ionized gas is present in sufficient density, a weakly ionized non-neutral plasma is formed that may be trapped in accordance with the present invention. Applications for a weakly ionized non-neutral plasma exploit the trap's ability to store and manipulate ionic species in the presence of neutral gas. The trap may be connected to a mass spectrometer thereby permitting species identification after a fixed period of time. Delicate and/or heavy particles such as clusters may be held and studied in a "gentle" environment. In addition, the trap can provide a relatively intense, low-energy source of a particular ion species for surface implantation or molecular chemistry. Finally, a long trap may permit spectroscopy of unprecedented accuracy to be performed on ionic species.

  11. Outflows and Shock Chemistry

    NASA Astrophysics Data System (ADS)

    Tafalla, M.

    2016-05-01

    Bipolar outflows result from the supersonic ejection of material by a protostar, and constitute one of the most characteristic signposts of stellar birth. They also provide ideal targets to test chemical models, and can serve as templates for more complex systems of galactic and extragalactic astronomy where supersonic interactions between gas components take place.

  12. COSMIC RAYS CAN DRIVE STRONG OUTFLOWS FROM GAS-RICH HIGH-REDSHIFT DISK GALAXIES

    SciTech Connect

    Hanasz, M.; Kowalik, K.; Wóltański, D.; Lesch, H.; Naab, T.; Gawryszczak, A.

    2013-11-10

    We present simulations of the magnetized interstellar medium (ISM) in models of massive star-forming (40 M {sub ☉} yr{sup –1}) disk galaxies with high gas surface densities (Σ{sub gas} ∼ 100 M {sub ☉} pc{sup –2}) similar to observed star-forming high-redshift disks. We assume that type II supernovae deposit 10% of their energy into the ISM as cosmic rays (CRs) and neglect the additional deposition of thermal energy or momentum. With a typical Galactic diffusion coefficient for CRs (3 × 10{sup 28} cm{sup 2} s{sup –1}), we demonstrate that this process alone can trigger the local formation of a strong low-density galactic wind maintaining vertically open field lines. Driven by the additional pressure gradient of the relativistic fluid, the wind speed can exceed 10{sup 3} km s{sup –1}, much higher than the escape velocity of the galaxy. The global mass loading, i.e., the ratio of the gas mass leaving the galactic disk in a wind to the star formation rate, becomes of order unity once the system has settled into an equilibrium. We conclude that relativistic particles accelerated in supernova remnants alone provide a natural and efficient mechanism to trigger winds similar to observed mass-loaded galactic winds in high-redshift galaxies. These winds also help in explaining the low efficiencies for the conversion of gas into stars in galaxies, as well as the early enrichment of the intergalactic medium with metals. This mechanism may be at least of similar importance to the traditionally considered momentum feedback from massive stars and thermal and kinetic feedback from supernova explosions.

  13. The Effects of Neutral Gas Release on Vehicle Charging: Experiment and Theory

    NASA Astrophysics Data System (ADS)

    Walker, D. N.; Amatucci, W. E.; Bowles, J. H.; Fernsler, R. F.; Siefring, C. L.; Antoniades, J. A.; Keskinen, M. J.

    1998-11-01

    This paper describes an experimental and theoretical research effort related to the mitigation of spacecraft charging by Neutral Gas Release (NGR). The Space Power Experiments Aboard Rockets programs (SPEAR I and III) [Mandel et al., 1998; Berg et al., 1995] and other earlier efforts have demonstrated that NGR is an effective method of controlling discharges in space. The laboratory experimentswere conducted in the large volume Space Physics Simulation Chamber (SPSC) at the Naval Research Laboratory (NRL). A realistic near-earth space environment can be simulated in this device for whichminimumscalingneeds to be performedtorelate the data to space plasma regimes. This environment is similar to that encountered by LEO spacecraft, e.g., the Space Station, Shuttle, and high inclination satellites. The experimental arrangement consists of an aluminum cylinder which can be biased to high negative voltage (0.4 kVneutral gas release valve designed for millisec release times, a pressure-regulated neutral gas reservoir, and variable Mach number nozzles. After the cylinder is charged to high voltage, the neutral gas is released, inducing a breakdown of the gas in the strong electric field about the cylinder. Collection of ions from the newly created dense plasma, along with secondary electron emission from the cylinder surface, provide the return current necessary for grounding the body. The theoretical treatment assumes a simple Townsend discharge along with the fundamental assumption of exponential electron growth in an avalanche fashion as one proceeds from the cathode toward the anode during neutral gas breakdown in the presence of high potentials. In addition the nozzle release of neutral gas is modeled and a simple linear spatial dependence of the applied potential is assumed. This basic model produces quite good results when compared to the experiment.

  14. Gas-Phase Neutral Binary Oxide Clusters: Distribution, Structure, and Reactivity toward CO.

    PubMed

    Wang, Zhe-Chen; Yin, Shi; Bernstein, Elliot R

    2012-09-01

    Neutral binary (vanadium-cobalt) oxide clusters are generated and detected in the gas phase for the first time. Their reactivities toward carbon monoxide (CO) are studied both experimentally and theoretically. Experimental results suggest that neutral VCoO4 can react with CO to generate VCoO3 and CO2. Density functional theory studies show parallel results as well as provide detailed reaction mechanisms. PMID:26292125

  15. Measurement of neutral gas temperature in a 13.56 MHz inductively coupled plasma

    SciTech Connect

    Jayapalan, Kanesh K.; Chin, Oi Hoong

    2015-04-24

    Measuring the temperature of neutrals in inductively coupled plasmas (ICP) is important as heating of neutral particles will influence plasma characteristics such as the spatial distributions of plasma density and electron temperature. Neutral gas temperatures were deduced using a non-invasive technique that combines gas actinometry, optical emission spectroscopy and simulation which is described here. Argon gas temperature in a 13.56 MHz ICP were found to fall within the range of 500 − 800 K for input power of 140 − 200 W and pressure of 0.05 − 0.2 mbar. Comparing spectrometers with 0.2 nm and 0.5 nm resolution, improved fitting sensitivity was observed for the 0.2 nm resolution.

  16. IONIZATION-DRIVEN FRAGMENTATION OF GAS OUTFLOWS RESPONSIBLE FOR FeLoBALs IN QUASARS

    SciTech Connect

    Bautista, Manuel A.; Dunn, Jay P.

    2010-07-10

    We show that time variations in the UV ionizing continuum of quasars, on scales of {approx}1 yr, affect the dynamic structure of the plasmas responsible for low-ionization broad absorption lines. Variations of the ionizing continuum produce non-equilibrium photoionization conditions over a significant fraction of the absorbing clouds and supersonically moving ionization fronts. When the flux drops, the contraction of the ionized region drives a supersonic cooling front toward the radiation source and a rarefaction wave in the opposite direction. The pressure imbalance is compensated by an increased speed of the cool gas relative to the front. When the flux recovers, the cool gas is re-ionized and re-heated by a supersonic ionization front traveling away from the radiation source and a forward shock is created. The re-heated clouds equilibrate to a temperature of {approx}10{sup 4} K and are observed to have different radial velocities than the main cloud. Such fragmentation seems consistent with the multicomponent structure of troughs seen in some objects. The velocity differences measured among various components in the quasars QSO 2359-1241 and SDSS J0318-0600 can be reproduced by our model if strong magnetic fields ({approx}10 mG) are present within the clouds.

  17. Ionization-driven Fragmentation of Gas Outflows Responsible for FeLoBALs in Quasars

    NASA Astrophysics Data System (ADS)

    Bautista, Manuel A.; Dunn, Jay P.

    2010-07-01

    We show that time variations in the UV ionizing continuum of quasars, on scales of ~1 yr, affect the dynamic structure of the plasmas responsible for low-ionization broad absorption lines. Variations of the ionizing continuum produce non-equilibrium photoionization conditions over a significant fraction of the absorbing clouds and supersonically moving ionization fronts. When the flux drops, the contraction of the ionized region drives a supersonic cooling front toward the radiation source and a rarefaction wave in the opposite direction. The pressure imbalance is compensated by an increased speed of the cool gas relative to the front. When the flux recovers, the cool gas is re-ionized and re-heated by a supersonic ionization front traveling away from the radiation source and a forward shock is created. The re-heated clouds equilibrate to a temperature of ~104 K and are observed to have different radial velocities than the main cloud. Such fragmentation seems consistent with the multicomponent structure of troughs seen in some objects. The velocity differences measured among various components in the quasars QSO 2359-1241 and SDSS J0318-0600 can be reproduced by our model if strong magnetic fields (~10 mG) are present within the clouds.

  18. The molecular hydrogen emission around L1551 IRS 5 - Shock-heated molecular gas at the base of the molecular outflow

    NASA Technical Reports Server (NTRS)

    Yamashita, Takuya; Tamura, Motohide

    1992-01-01

    Spatially resolved observations of the v = 1-0 S(1) molecular hydrogen emission toward L1551 IRS 5 using the grating spectrometer at KPNO are presented. The S(1) emission consists of a ridge component extending toward west along the optical jet from its peak on IRS 5 and a diffuse component which traces the innermost region of the cavity enclosed by the molecular outflow. The ridge component represents shock-heated molecular gas at the root of the optical jet. The diffuse component is too bright to be of scattered origin; it most likely arises from shock-heated gas within the cavity and could represent an acceleration process of the molecular outflow.

  19. Interactions between anionic and neutral bromine and rare gas atoms

    SciTech Connect

    Buchachenko, Alexei A.; Grinev, Timur A.; Wright, Timothy G.; Viehland, Larry A.

    2008-02-14

    High-quality, ab initio potential energy functions are obtained for the interaction of bromine atoms and anions with atoms of the six rare gases (Rg) from He to Rn. The potentials of the nonrelativistic {sup 2}{sigma}{sup +} and {sup 2}{pi} electronic states arising from the ground-state Br({sup 2}P)-Rg interactions are computed over a wide range of internuclear separations using a spin-restricted version of the coupled cluster method with single and double excitations and noniterative correction to triple excitations [RCCSD(T)] with an extrapolation to the complete basis set limit, from basis sets of d-aug-cc-pVQZ and d-aug-cc-pV5Z quality. These are compared with potentials derived previously from experimental measurements and ab initio calculations. The same approach is used also to refine the potentials of the Br{sup -}-Rg anions obtained previously [Buchachenko et al., J. Chem. Phys. 125, 064305 (2006)]. Spin-orbit coupling in the neutral species is included both ab initio and via an atomic approximation; deviations between two approaches that are large enough to affect the results significantly are observed only in the Br-Xe and Br-Rn systems. The resulting relativistic potentials are used to compute anion zero electron kinetic energy photoelectron spectra, differential scattering cross sections, and the transport coefficients of trace amounts of both anionic and neutral bromine in the rare gases. Comparison with available experimental data for all systems considered proves a very high precision of the present potentials.

  20. Effects of humidity on sterilization of Geobacillus stearothermophilus spores with plasma-excited neutral gas

    NASA Astrophysics Data System (ADS)

    Matsui, Kei; Ikenaga, Noriaki; Sakudo, Noriyuki

    2015-06-01

    We investigate the effects of relative humidity on the sterilization process using a plasma-excited neutral gas that uniformly sterilizes both the space and inner wall of the reactor chamber at atmospheric pressure. Only reactive neutral species such as plasma-excited gas molecules and radicals were separated from the plasma and sent to the reactor chamber for chemical sterilization. The plasma source gas is nitrogen mixed with 0.1% oxygen, and the relative humidity in the source gas is controlled by changing the mixing ratio of water vapor. The relative humidity near the sample in the reactor chamber is controlled by changing the sample temperature. As a result, the relative humidity near the sample should be kept in the range from 60 to 90% for the sterilization of Geobacillus stearothermophilus spores. When the relative humidity in the source gas increases from 30 to 90%, the sterilization effect is enhanced by the same degree.

  1. Neutral gas sympathetic cooling of an ion in a Paul trap.

    PubMed

    Chen, Kuang; Sullivan, Scott T; Hudson, Eric R

    2014-04-11

    A single ion immersed in a neutral buffer gas is studied. An analytical model is developed that gives a complete description of the dynamics and steady-state properties of the ions. An extension of this model, using techniques employed in the mathematics of economics and finance, is used to explain the recent observation of non-Maxwellian statistics for these systems. Taken together, these results offer an explanation of the long-standing issues associated with sympathetic cooling of an ion by a neutral buffer gas. PMID:24765957

  2. Neutral Gas Sympathetic Cooling of an Ion in a Paul Trap

    NASA Astrophysics Data System (ADS)

    Chen, Kuang; Sullivan, Scott T.; Hudson, Eric R.

    2014-04-01

    A single ion immersed in a neutral buffer gas is studied. An analytical model is developed that gives a complete description of the dynamics and steady-state properties of the ions. An extension of this model, using techniques employed in the mathematics of economics and finance, is used to explain the recent observation of non-Maxwellian statistics for these systems. Taken together, these results offer an explanation of the long-standing issues associated with sympathetic cooling of an ion by a neutral buffer gas.

  3. A kinematic study of the neutral and ionized gas in the irregular dwarf galaxies IC4662 and NGC5408

    NASA Astrophysics Data System (ADS)

    van Eymeren, Janine; Koribalski, Bärbel S.; López-Sánchez, Ángel R.; Dettmar, Ralf-Jürgen; Bomans, Dominik J.

    2010-09-01

    The feedback between massive stars and the interstellar medium is one of the most important processes in the evolution of dwarf galaxies. This interaction results in numerous neutral and ionized gas structures that have been found both in the disc and in the halo of these galaxies. However, their origin and fate are still poorly understood. We here present new HI and optical data of two Magellanic irregular dwarf galaxies in the Local Volume: IC4662 and NGC5408. The HI line data were obtained with the Australia Telescope Compact Array and are part of the `Local Volume HI Survey'. They are complemented by optical images and spectroscopic data obtained with the European Southern Observatory (ESO) New Technology Telescope and the ESO 3.6-m telescope. Our main aim is to study the kinematics of the neutral and ionized gas components in order to search for outflowing gas structures and to make predictions about their fate. Therefore, we perform a Gaussian decomposition of the HI and Hα line profiles. We find the HI gas envelopes of IC4662 and NGC5408 to extend well beyond the optical discs, with HI to optical diameter ratios of above 4. The optical disc is embedded into the central HI maximum in both galaxies. However, higher resolution HI maps show that the HI intensity peaks are typically offset from the prominent HII regions. While NGC5408 shows a fairly regular HI velocity field, which allows us to derive a rotation curve, IC4662 reveals a rather twisted HI velocity field, possibly caused by a recent merger event. We detect outflows with velocities between 20 and 60 kms-1 in our Hα spectra of both galaxies, sometimes with HI counterparts of similar velocity. We suggest the existence of expanding superbubbles, especially in NGC5408. This is also supported by the detection of full width at half-maxima as high as 70 kms-1 in Hα, which cannot be explained by thermal broadening alone. In the case of NGC5408, we compare our results with the escape velocity of the galaxy

  4. Space charge sheath in plasma-neutral gas interaction

    NASA Astrophysics Data System (ADS)

    Venkataramani, N.; Mattoo, S. K.

    1986-04-01

    A space charge sheath is found to be formed whenever a high-velocity magnetized plasma stream penetrates a gas cloud. The sheath is always located at the head of the plasma stream, and its thickness is very small compared to the length of the plasma stream. Soon after the sheath is formed it quickly slows down to the Alfven critical velocity. The plasma behind the sheath continues to move at higher velocity until the whole plasma stream is retarded to the critical velocity. In the interaction at gas density of about 10 to the 19th/cu cm, the sheaths are observed to be accompanied by a single loop of current with current density of about 10,000 A/sq m. Maximum potential in the sheath ranges between 50 and 200 V. Presently available models for the sheath may explain the initiation of the sheath formation. Physical processes like heating of the electrons and ionization of the gas cloud which come into play at a later stage of the interaction are not included in these models. These processes considerably alter the potential structure in the sheath region. A schematic model of the observed sheath is presented. Experiments reveal a threshold value of the magnetic field for plasma retardation to occur. This seems to correspond to the threshold condition for excitation of the modified two-stream instability, which can lead to the electron heating. The observed currents are found sufficient to account for the plasma retardation at a gas density of about 10 to the 17th/cu m.

  5. Evidence for a Large Scale Outflow of Hot Gas from the Scutum-Centaurus Spiral Arm

    NASA Astrophysics Data System (ADS)

    Benjamin, Robert A.

    2016-01-01

    The Scutum-Centaurus Spiral Arm, sometimes referred to as the "Molecular Ring", is one of the most prominent star-forming structures in the Milky Way Galaxy. The arm extends from a Galactic longitude of L=+30 degrees to L=-50 (310) degrees, and then behind Galactic center to become the Outer Scutum-Centaurus Arm. It is characterized by long, filamentary dark clouds, concentrated star formation, and numerous supernova remnants and bubbles. Previous models have shown that the energy input of supernova explosions can drive a "hybrid" thermal pressure/cosmic-ray pressure wind out of the Galaxy from this region and that such a wind can explain both the 3/4 keV X-ray emission observed by ROSAT as well as the high-latitude 408 MHz radio synchrotron emisison. Here the effects of Galactic rotation on this wind are demonstrated. The morphology of the X-ray and synchrotron emission as well as the behavior of the Ophiuchus superbubble (which is part of this flow) are shown to be consistent with a launching, rotating wind. Predictions for the velocity structure of this gas are provided that can be tested with future emission and absorption line studies. The importance of understanding this wind as a foreground in studies of the "Fermi Bubble" is also discussed.

  6. Modeling of the Dust and Gas Outflows from OH 26.5+0.6: The Superwind

    NASA Technical Reports Server (NTRS)

    Justtanont, K.; Skinner, C. J.; Tielens, A. G. G. M.; Meixner, M.; Baas, F.

    1996-01-01

    We have observed the extreme OH/IR star, OH 26.5+0.6, in the infrared dust continuum and in the sub- millimeter rotational lines of CO. Mid-infrared images reveal the compact nature of the circumstellar shell (less than 0.5 sec). A deep 9.7 microns absorption feature and an absorption at 18 microns show that the dust mass-loss rate is very high. However, the low antenna temperatures of CO J = 1-0 and 2-1 lines suggest that the outer part of the circumstellar shell is much more tenuous. In order to resolve this discrepancy, we have observed the J = 3-2 and 4-3 CO rotational transitions. We have developed a model for the circumstellar shell for OH 26.5 + 0.6 which is consistent with the infrared and submillimeter observations. The dust and gas data are well fitted by a two-shell model, consisting of a dense shell surrounded by a more tenuous shell. The former we identify with the superwind (M = 5.5 x 10(exp -4) solar mass/ yr), and the latter we identify with mass loss on the asymptotic giant branch (AGB) (M = 10(exp -6) solar mass/ yr). The transition between the two mass-loss phases is shown to be rather abrupt ((Delta)t less than 150 yr). Depending on the mass of the progenitor, this superwind phase may be the last thermal pulse (for M(sub *) less than 1.5 solar mass), or the first of a series of the superwind phases (for up to 8 solar mass), punctuated by a period of low mass-loss rates, before the star evolves off the AGB.

  7. Developments in the simulation of turbulence and neutral gas with BOUT + +

    NASA Astrophysics Data System (ADS)

    Dudson, Benjamin; Mekkaoui, Samad; Omotani, John; Madsen, Jens; Easy, Luke; Reiter, Detlev; Kotov, V.; Boerner, P.

    2014-10-01

    The performance of the plasma edge region is critical to the design and economic success of future fusion power plants. In particular, the flux of particles and power to material surfaces must be kept within technological limits. This is determined by a nonlinear interplay between parallel and perpendicular turbulent transport, impurities, and neutral gas. Here we report on recent progress towards modelling this complex system in 3D using the BOUT + + framework. Neutral modelling has been carried out using the Monte Carlo kinetic code EIRENE, and a fluid model evolving neutral gas density and momentum. These have been coupled to cold ion electromagnetic drift-reduced plasma turbulence models which evolve density, Te, vorticity, parallel ion momentum, and vector potential. Results in linear geometry show stabilisation of the drift wave turbulence due to neutral interactions, and greater mixing of neutral gas and plasma than would be predicted in the absence of turbulent fluctuations. Progress towards 3D modelling of detachment fronts will be reported. A rigorous verification exercise has also been carried out of BOUT + + using the Method of Manufactured Solutions, showingconvergenceto the exact solution at the expected rate. This work was supported by the EUROfusion consortium, the UK EPSRC under grant EP/K006940/1, and computing resources under Plasma HEC consortium grant EP/L000237/1.

  8. The interstellar tunnel of neutral-free gas toward Beta Canis Majoris

    NASA Technical Reports Server (NTRS)

    Welsh, Barry Y.

    1991-01-01

    Using high-resolution sodium absorption observations of early-type stars to determine the distribution of neutral interstellar gas in the direction of the star Beta CMa, the contours of a large feature in the local interstellar medium, some 50 pc in diameter and 300 pc long, that appears to be virtually free of neutral gas have been mapped. This rarefied 'interstellar tunnel' is an extension of a region of very low gas density surrounding the sun called the Local Bubble, which may well have been formed by the interaction of expanding interstellar cavities produced by multiple supernova events. This large region of unusually low gas density will be a prime area for study in the soft X-ray and EUV spectral regions.

  9. Trace organic compounds in rain—II. Gas scavenging of neutral organic compounds

    NASA Astrophysics Data System (ADS)

    Ligocki, Mary P.; Leuenberger, Christian; Pankow, James F.

    Concurrent rain and air sampling was conducted for seven rain events in Portland, Oregon during February through to April of 1984. Concentration data are presented for a number of neutral organic compounds for both the rain-dissolved phase and the atmospheric gas phase. The ambient temperature averaged 8°C. Measured gas scavenging ratios ranged from 3 for tetrachloroethene to 10 5 for dibutylphthalate, and were generally 3-6 times higher than those calculated from Henry's Law constant ( H) values at 25°C taken from the literature. This discrepancy was due to the inappropriateness of applying 25°C H data at 5-10°C. Indeed, excellent agreement between the measured and predicted gas scavenging ratios was found for several polycyclic aromatic hydrocarbons for which temperature-dependent H data were available. These results demonstrate that equilibrium between rain and the atmospheric gas phase is attained for non-reactive neutral organic compounds.

  10. Metallicity and Quasar Outflows

    NASA Astrophysics Data System (ADS)

    Wang, Huiyuan; Zhou, Hongyan; Yuan, Weimin; Wang, Tinggui

    2012-06-01

    Correlations of the outflow strength of quasars, as measured by the blueshift and asymmetry index (BAI) of the C IV line, with intensities and ratios of broad emission lines, based on composite quasar spectra built from the Sloan Digital Sky Survey, are investigated. We find that most of the line ratios of other ions to C IV increase prominently with BAI. These behaviors can be well understood in the context of increasing metallicity with BAI. The strength of the dominant coolant, C IV line, decreases, and weak collisionally excited lines increase with gas metallicity as a result of the competition between different line coolants. Using Si IV+O IV]/C IV as an indicator of gas metallicity, we present, for the first time, a strong correlation between the metallicity and the outflow strength of quasars over a wide range of 1.7-6.9 times solar abundance. Our result implies that metallicity plays an important role in the formation of quasar outflows, likely by affecting outflow acceleration. This effect may have a profound impact on galaxy evolution via momentum feedback and chemical enrichment.

  11. METALLICITY AND QUASAR OUTFLOWS

    SciTech Connect

    Wang, Huiyuan; Zhou, Hongyan; Wang, Tinggui; Yuan, Weimin

    2012-06-01

    Correlations of the outflow strength of quasars, as measured by the blueshift and asymmetry index (BAI) of the C IV line, with intensities and ratios of broad emission lines, based on composite quasar spectra built from the Sloan Digital Sky Survey, are investigated. We find that most of the line ratios of other ions to C IV increase prominently with BAI. These behaviors can be well understood in the context of increasing metallicity with BAI. The strength of the dominant coolant, C IV line, decreases, and weak collisionally excited lines increase with gas metallicity as a result of the competition between different line coolants. Using Si IV+O IV]/C IV as an indicator of gas metallicity, we present, for the first time, a strong correlation between the metallicity and the outflow strength of quasars over a wide range of 1.7-6.9 times solar abundance. Our result implies that metallicity plays an important role in the formation of quasar outflows, likely by affecting outflow acceleration. This effect may have a profound impact on galaxy evolution via momentum feedback and chemical enrichment.

  12. Transport in a field aligned magnetized plasma/neutral gas boundary: the end of the plasma

    NASA Astrophysics Data System (ADS)

    Cooper, Christopher Michael

    The objective of this dissertation is to characterize the physics of a boundary layer between a magnetized plasma and a neutral gas along the direction of a confining magnetic field. A series of experiments are performed at the Enormous Toroidal Plasma Device (ETPD) at UCLA to study this field aligned Neutral Boundary Layer (NBL) at the end of the plasma. A Lanthanum Hexaboride (LaB6) cathode and semi-transparent anode creates a magnetized, current-free helium plasma which terminates on a neutral helium gas without touching any walls. Probes are inserted into the plasma to measure the basic plasma parameters and study the transport in the NBL. The experiment is performed in the weakly ionized limit where the plasma density (ne) is much less than the neutral density (nn) such that ne/nn < 5%. The NBL is characterized by a field-aligned electric field which begins at the point where the plasma pressure equilibrates with the neutral gas pressure. Beyond the pressure equilibration point the electrons and ions lose their momentum by collisions with the neutral gas and come to rest. An electric field is established self consistently to maintain a current-free termination through equilibration of the different species' stopping rates in the neutral gas. The electric field resembles a collisional quasineutral sheath with a length 10 times the electron-ion collision length, 100 times the neutral collision length, and 10,000 times the Debye length. Collisions with the neutral gas dominate the losses in the system. The measured plasma density loss rates are above the classical cross-field current-free ambipolar rate, but below the anomalous Bohm diffusion rate. The electron temperature is below the ionization threshold of the gas, 2.2 eV in helium. The ions are in thermal equilibrium with the neutral gas. A generalized theory of plasma termination in a Neutral Boundary Layer is applied to this case using a two-fluid, current-free, weakly ionized transport model. The electron

  13. Neutral Gas and Low-Redshift Starbursts: From Infall to Ionization

    NASA Astrophysics Data System (ADS)

    Jaskot, Anne; Oey, M. S.; Salzer, J. J.; Van Sistine, A.; Haynes, M. P.

    2014-01-01

    The interplay of gas inflows, star formation, and feedback drives galaxy evolution, and starburst galaxies provide important laboratories for probing these processes at their most extreme. With two samples of low-redshift starburst galaxies, we examine the conversion of neutral gas into stars and the subsequent effects of stellar feedback on the neutral interstellar medium (ISM). The ALFALFA Hα survey represents a complete, volume-limited sample of HI-selected galaxies with 21 cm spectra and Hα and R-band imaging. By contrasting the starburst galaxies with the rest of the gas-rich galaxy population, we investigate the roles of galaxy morphology, HI kinematics, and the atomic gas supply in triggering extreme levels of star formation. Both an elevated HI gas supply and an external disturbance are necessary to drive the starbursts. While neutral gas may fuel a starburst, it may also increase starbursts' optical depths and hinder the transport of ionizing radiation. In contrast to the expectations for high-redshift star-forming galaxies, neutral gas appears to effectively bar the escape of ionizing radiation in most low-redshift starbursts. To evaluate the impact of radiative feedback in extreme starbursts, we analyze optical spectra of the Green Pea galaxies, a low-redshift sample selected by their intense [O III] λ5007 emission and compact sizes. We use nebular photoionization and stellar population models to constrain the Peas' burst ages, ionizing sources, and optical depths and find that the Peas are likely optically thin to Lyman continuum (LyC) radiation. These young starbursts still generate substantial ionizing radiation, while recent supernovae may have carved holes in the ISM that enhance LyC photon escape into the intergalactic medium. While the ALFALFA survey demonstrates the role of external processes in triggering starbursts, the Green Peas show that starbursts' radiation can escape to affect their external environment.

  14. High Velocity Outflows in Quasars

    NASA Astrophysics Data System (ADS)

    Hamann, Fred; Rodriguez Hidalgo, Paola; Nestor, Daniel

    2006-02-01

    High velocity (HV) outflows are important components of SMBH growth and evolution. The ability of SMBHs to accrete matter and light up as AGN probably requires that outflows are present to carry away angular momentum. Outflows during the luminous AGN phase might also play a critical role in ``unveiling" young dust-enshrouded AGN and in ``polluting" the intergalactic medium with metals at high redshifts. Nonetheless, AGN outflows remain poorly understood. We have begun a program to study a nearly unexplored realm of AGN outflow parameter space: HV winds with v> 10,000 km/s up to v~ 0.2c but small velocity dispersions (narrow absorption lines), such that v/(Delta) v ≫ 1. These extreme outflows have been detected so far in just a few quasars, but they might be ubiquitous if, as expected, the flows subtend a small solid angle as seen from the central engine. Narrow-line HV flows merit specific attention because they pose unique challenges for theoretical models of the wind acceleration, mass loss rates, launch radii, etc. They might also comprise a significant fraction of absorbers previously attributed to unrelated (interveinng) gas or galaxies. We have compiled a list of bright quasars with candidate HV outflow lines (CIV 1550 A) in existing SDSS spectra. We now propose to observe ~50 of these candidates with the 2.1m GoldCam to i) identify/confirm some of the true outflow systems (based on line variability), ii) place a firm lower limit on the fraction of quasars with narrow-line HV outflows, iii) compile a short list of confirmed HV outflow sources for future study, and iv) use the combined SDSS and GoldCam data to measure or constrain basic outflow properties, such as the kinematics, locations, and physical conditions.

  15. Space Charge Neutralization of DEMO Relevant Negative Ion Beams at Low Gas Density

    SciTech Connect

    Surrey, Elizabeth; Porton, Michael

    2011-09-26

    The application of neutral beams to future power plant devices (DEMO) is dependent on achieving significantly improved electrical efficiency and the most promising route to achieving this is by implementing a photoneutralizer in place of the traditional gas neutralizer. A corollary of this innovation would be a significant reduction in the background gas density through which the beam is transported between the accelerator and the neutralizer. This background gas is responsible for the space charge neutralization of the beam, enabling distances of several metres to be traversed without significant beam expansion. This work investigates the sensitivity of a D{sup -} beam to reduced levels of space charge compensation for energies from 100 keV to 1.5 MeV, representative of a scaled prototype experiment, commissioning and full energy operation. A beam transport code, following the evolution of the phase space ellipse, is employed to investigate the effect of space charge on the beam optics. This shows that the higher energy beams are insensitive to large degrees of under compensation, unlike the lower energies. The probable degree of compensation at low gas density is then investigated through a simple, two component beam-plasma model that allows the potential to be negative. The degree of under-compensation is dependent on the positive plasma ion energy, one source of which is dissociation of the gas by the beam. The subsequent space charge state of the beam is shown to depend upon the relative times for equilibration of the dissociation energy and ionization by the beam ions.

  16. The Neutral Gas and Ion Mass Spectrometer on the Mars Atmosphere and Volatile Evolution Mission

    NASA Technical Reports Server (NTRS)

    Mahaffy, Paul R.; Benna, Mehdi; King, Todd; Harpold, Daniel N.; Arvey, Robert; Barciniak, Michael; Bendt, Mirl; Carrigan, Daniel; Errigo, Therese; Holmes, Vincent; Kellogg, James; Jaeger, Ferzan; Raaen, Eric; Tan, Florence

    2014-01-01

    The Neutral Gas and Ion Mass Spectrometer (NGIMS) of the Mars Atmosphere and Volatile Evolution Mission (MAVEN) is designed to measure the composition, structure, and variability of the upper atmosphere of Mars. The NGIMS complements two other instrument packages on the MAVEN spacecraft designed to characterize the neutral upper atmosphere and ionosphere of Mars and the solar wind input to this region of the atmosphere. The combined measurement set is designed to quantify atmosphere escape rates and provide input to models of the evolution of the martian atmosphere. The NGIMS is designed to measure both surface reactive and inert neutral species and ambient ions along the spacecraft track over the 125-500 km altitude region utilizing a dual ion source and a quadrupole analyzer.

  17. Asymptotic theory of neutral stability curve of the Couette flow of vibrationally excited gas

    NASA Astrophysics Data System (ADS)

    Grigor'ev, Yu N.; Ershov, I. V.

    2016-06-01

    The asymptotic theory of neutral stability curve of the supersonic plane Couette flow of vibrationally excited gas is constructed. The system of two-temperature viscous gas dynamics equations was used as original mathematical model. Spectral problem for an eighth order linear system of ordinary differential equations was obtained from the system within framework of classical theory of linear stability. Transformations of the spectral problem universal for all shear flows were carried along the classical Dunn — Lin scheme. As a result the problem was reduced to secular algebraic equation with a characteristic division on “inviscid” and “viscous” parts which was solved numerically. The calculated neutral stability curves coincide in limits of 10% with corresponding results of direct numerical solution of original spectral problem.

  18. Alfalfa discovery of the nearby gas-rich dwarf galaxy LEO P. V. Neutral gas dynamics and kinematics

    SciTech Connect

    Bernstein-Cooper, Elijah Z.; Pardy, Stephen A.; Cannon, John M. E-mail: spardy@astro.wisc.edu; and others

    2014-08-01

    We present new H I spectral line imaging of the extremely metal-poor, star-forming dwarf irregular galaxy Leo P. Our H I images probe the global neutral gas properties and the local conditions of the interstellar medium (ISM). The H I morphology is slightly elongated along the optical major axis. We do not find obvious signatures of interaction or infalling gas at large spatial scales. The neutral gas disk shows obvious rotation, although the velocity dispersion is comparable to the rotation velocity. The rotation amplitude is estimated to be V {sub c} =15 ± 5 km s{sup –1}. Within the H I radius probed by these observations, the mass ratio of gas to stars is roughly 2:1, while the ratio of the total mass to the baryonic mass is ≳15:1. We use this information to place Leo P on the baryonic Tully-Fisher relation, testing the baryonic content of cosmic structures in a sparsely populated portion of parameter space that has hitherto been occupied primarily by dwarf spheroidal galaxies. We detect the signature of two temperature components in the neutral ISM of Leo P; the cold and warm components have characteristic velocity widths of 4.2 ± 0.9 km s{sup –1} and 10.1 ± 1.2 km s{sup –1}, corresponding to kinetic temperature upper limits of ∼1100 K and ∼6200 K, respectively. The cold H I component is unresolved at a physical resolution of 200 pc. The highest H I surface densities are observed in close physical proximity to the single H II region. A comparison of the neutral gas properties of Leo P with other extremely metal-deficient (XMD) galaxies reveals that Leo P has the lowest neutral gas mass of any known XMD, and that the dynamical mass of Leo P is more than two orders of magnitude smaller than any known XMD with comparable metallicity.

  19. Mapping Large-Scale Gaseous Outflows in Ultraluminous Infrared Galaxies with Keck II ESI Spectra: Spatial Extent of the Outflow

    NASA Astrophysics Data System (ADS)

    Martin, Crystal L.

    2006-08-01

    The kinematics of neutral gas and warm ionized gas have been mapped across ultraluminous starburst galaxies using the Na I λλ5890, 5896 absorption-line and Hα emission-line profiles, respectively, in Keck II ESI spectra. Blueshifted, interstellar absorption is found over extended regions, exceeding 15 kpc in several systems. An outflow diverging from the nuclear starburst would have to reach large heights to cover this area in projection. The scale height of the absorbing material could be lower, however, if the outflow emanates from a larger region of the galaxy. The large velocity gradient discovered across several outflows is inconsistent with a flow diverging from the nuclear starburst. Widespread star formation, triggered by the merger, probably drives these extended outflows via mechanical feedback from supernovae, although shocks generated by the galaxy-galaxy merger may also contribute to the formation of a hot wind. In a typical ULIG, the mass carried by the cool phase of the outflow is ~108 Msolar i.e., a few percent of the dynamical mass in the starburst region. Assuming the starburst activity has persisted for 10 Myr, the kinetic energy of the cool outflows is a few percent of the supernova energy. The cool wind is expected to be accelerated by momentum deposition, possibly from radiation pressure as well as the ram pressure of the hot, supernova-induced wind. The turnaround radii of the cool outflows are at least ~30-90 kpc, which presents a significant Na I absorption cross section. If most L>0.1L* galaxies pass through a luminous starburst phase, then relics of cool outflows will create a significant redshift-path density. Galaxy formation models should include this cool phase of the outflow in addition to a hot wind in feedback models. Data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National

  20. Evolution of neutral gas at high redshift: implications for the epoch of galaxy formation

    NASA Astrophysics Data System (ADS)

    Storrie-Lombardi, L. J.; McMahon, R. G.; Irwin, M. J.

    1996-12-01

    Although observationally rare, damped Lyalpha absorption systems dominate the mass density of neutral gas in the Universe. 11 high-redshift damped Lyalpha systems covering 2.8<=z<=4.4 were discovered in 26 QSOs from the APMz<~4 QSO survey, extending these absorption system surveys to the highest redshifts currently possible. Combining our new data set with previous surveys, we find that the cosmological mass density in neutral gas, Omega_g, does not rise as steeply prior to z~2 as indicated by previous studies. There is evidence in the observed Omega_g for a flattening at z~2 and a possible turnover at z~3. When combined with the decline at z<~3.5 in number density per unit redshift of damped systems with column densities log N_HI>=21 atom cm^-2, these results point to an epoch at z>~3 prior to which the highest column density damped systems are still forming. We find that, over the redshift range 2neutral gas is marginally comparable to the total visible mass in stars in present-day galaxies. However, if one considers the total mass visible in stellar discs alone, i.e. excluding galactic bulges, the two values are comparable. We are observing a mass of neutral gas that is comparable to the mass of visible disc stars. Lanzetta, Wolfe & Turnshek found that Omega(z~=3.5) was twice Omega(z~=2), implying that a much larger amount of star formation must have taken place between z=3.5 and 2 than is indicated by metallicity studies. This created a `cosmic G-dwarf problem'. The more gradual evolution of Omega_g that we find alleviates this. These results have profound implications for theories of galaxy formation.

  1. Spacelab 1 experiments on interactions of an energetic electron beam with neutral gas

    NASA Technical Reports Server (NTRS)

    Marshall, J. A.; Lin, C. S.; Burch, J. L.; Obayashi, T.; Beghin, C.

    1988-01-01

    An unusual signature of return current and spacecraft charging potential was observed during the Spacelab 1 mission launched on November 28, 1983. The phenomenon occurred during neutral gas releases from the SEPAC (Space Experiments with Particle Accelerators) magnetoplasma-dynamic arcjet (MPD) concurrent with firings of the PICPAB (Phenomena Induced by Charged Particle Beams) electron gun and was recorded by the instruments of the SEPAC diagnostic package (DGP). Data from the langmuir probe, floating probes, neutral gas pressure gauge, and the plasma wave probes are reported. As the dense neutral gas was released, the return current measured by the langmuir probe changed from positive to negative and a positive potential relative to the spacecraft was measured by the floating probe. The anomalous return current is believed to be attributable to secondary electron fluxes escaping from the spacecraft, and the unusual charging situation is attributed to the formation of a double-layer structure between a hot plasma cloud localized to the MPD and the spacecraft. The charging scenario is supported by a computer simulation.

  2. Enhancement of H{sup -} extraction from a compact source by streaming neutral gas injection

    SciTech Connect

    Mendenilla, Alexander; Takahashi, Hidenori; Kasuya, Toshiro; Wada, Motoi

    2006-03-15

    A new negative ion extraction geometry with streaming neutral gas injector (SNGI) was tested in its performance to enhance negative hydrogen ion (H{sup -}) at low operational pressure. The experiments were performed using a test ion source equipped with a SNGI having the wall perpendicular to the gas emission holes. The results showed that the SNGI was capable of reducing the operating pressure of the ion source from 0.14 to 0.07 Pa. At 0.14 Pa, the operation using the SNGI produced 20% more negative ions than the operation without SNGI. A compact ion source was constructed with a smaller SNGI and having a tapered wall for the gas injection nozzles. The neutral density distribution within the central region of the SNGI within the ion source was simulated using direct simulation Monte Carlo (DSMC) method. It was realized that the neutral density distribution produced by the SNGI with the tapered wall was at most 35% lower than a SNGI structure without the taper.

  3. The interaction between the solar wind and the heterogeneous neutral gas coma of comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Rubin, Martin; Toth, Gabor; Tenishev, Valeriy; Fougere, Nicolas; Huang, Zhenguang

    2016-07-01

    Comets are surrounded by an extended gas and dust coma. Neutral particles are continuously ionized by solar irradiation and then picked-up by the solar wind. This leads to a complex interaction between the neutral gas coma and the solar wind, which changes over the course of the comet's orbit around the Sun. The European Space Agency's Rosetta spacecraft has been in orbit around comet 67P/Churyumov-Gerasimenko since August 2014. Rosetta carries several instruments to investigate the comet's nucleus and surrounding neutral gas coma and plasma. Part of the payload is the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) that consists of two mass spectrometers and a pressure sensor. ROSINA was designed to measure the neutral gas abundance and composition and low energy ions in the coma in situ. ROSINA observations have shown that the coma is very heterogeneous both in total density and composition of the neutral gas. This heterogeneity is driven in large part by the complex shape of the nucleus and the varying illumination conditions associated with the comet's rotation. In this presentation we will show the time-dependent distribution of the major volatiles around the comet constrained by ROSINA observations. Furthermore we will investigate the impact of the highly non-symmetric neutral gas coma on the interaction of the solar wind with the comet.

  4. Mediterranean outflow mixing and dynamics.

    PubMed

    Price, J F; Baringer, M O; Lueck, R G; Johnson, G C; Ambar, I; Parrilla, G; Cantos, A; Kennelly, M A; Sanford, T B

    1993-02-26

    The Mediterranean Sea produces a salty, dense outflow that is strongly modified by entrainment as it first begins to descend the continental slope in the eastern Gulf of Cadiz. The current accelerates to 1.3 meters per second, which raises the internal Froude number above 1, and is intensely turbulent through its full thickness. The outflow loses about half of its density anomaly and roughly doubles its volume transport as it entrains less saline North Atlantic Central water. Within 100 kilometers downstream, the current is turned by the Coriolis force until it flows nearly parallel to topography in a damped geostrophic balance. The mixed Mediterranean outflow continues westward, slowly descending the continental slope until it becomes neutrally buoyant in the thermocline where it becomes an important water mass. PMID:17732247

  5. Mediterranean Outflow Mixing and Dynamics

    NASA Astrophysics Data System (ADS)

    Price, James F.; O'Neil Baringer, Molly; Lueck, Rolf G.; Johnson, Gregory C.; Ambar, Isabel; Parrilla, Gregorio; Cantos, Alain; Kennelly, Maureen A.; Sanford, Thomas B.

    1993-02-01

    The Mediterranean Sea produces a salty, dense outflow that is strongly modified by entrainment as it first begins to descend the continental slope in the eastern Gulf of Cadiz. The current accelerates to 1.3 meters per second, which raises the internal Froude number above 1, and is intensely turbulent through its full thickness. The outflow loses about half of its density anomaly and roughly doubles its volume transport as it entrains less saline North Atlantic Central water. Within 100 kilometers downstream, the current is turned by the Coriolis force until it flows nearly parallel to topography in a damped geostrophic balance. The mixed Mediterranean outflow continues westward, slowly descending the continental slope until it becomes neutrally buoyant in the thermocline where it becomes an important water mass.

  6. Baryonic distributions in galaxy dark matter haloes - I. New observations of neutral and ionized gas kinematics

    NASA Astrophysics Data System (ADS)

    Richards, Emily E.; van Zee, L.; Barnes, K. L.; Staudaher, S.; Dale, D. A.; Braun, T. T.; Wavle, D. C.; Dalcanton, J. J.; Bullock, J. S.; Chandar, R.

    2016-07-01

    We present a combination of new and archival neutral hydrogen (H I) observations and new ionized gas spectroscopic observations for 16 galaxies in the statistically representative Extended Disk Galaxy Explore Science kinematic sample. H I rotation curves are derived from new and archival radio synthesis observations from the Very Large Array (VLA) as well as processed data products from the Westerbork Radio Synthesis Telescope (WSRT). The H I rotation curves are supplemented with optical spectroscopic integral field unit (IFU) observations using SparsePak on the WIYN 3.5 m telescope to constrain the central ionized gas kinematics in 12 galaxies. The full rotation curves of each galaxy are decomposed into baryonic and dark matter halo components using 3.6μm images from the Spitzer Space Telescope for the stellar content, the neutral hydrogen data for the atomic gas component, and, when available, CO data from the literature for the molecular gas component. Differences in the inferred distribution of mass are illustrated under fixed stellar mass-to-light ratio (M/L) and maximum disc/bulge assumptions in the rotation curve decomposition.

  7. Baryonic Distributions in Galaxy Dark Matter Haloes I: New Observations of Neutral and Ionized Gas Kinematics

    NASA Astrophysics Data System (ADS)

    Richards, Emily E.; van Zee, L.; Barnes, K. L.; Staudaher, S.; Dale, D. A.; Braun, T. T.; Wavle, D. C.; Dalcanton, J. J.; Bullock, J. S.; Chandar, R.

    2016-04-01

    We present a combination of new and archival neutral hydrogen (HI) observations and new ionized gas spectroscopic observations for sixteen galaxies in the statistically representative EDGES kinematic sample. HI rotation curves are derived from new and archival radio synthesis observations from the Very Large Array (VLA) as well as processed data products from the Westerbork Radio Synthesis Telescope (WSRT). The HI rotation curves are supplemented with optical spectroscopic integral field unit (IFU) observations using SparsePak on the WIYN 3.5 m telescope to constrain the central ionized gas kinematics in twelve galaxies. The full rotation curves of each galaxy are decomposed into baryonic and dark matter halo components using 3.6μm images from the Spitzer Space Telescope for the stellar content, the neutral hydrogen data for the atomic gas component, and, when available, CO data from the literature for the molecular gas component. Differences in the inferred distribution of mass are illustrated under fixed stellar mass-to-light ratio (M/L) and maximum disc/bulge assumptions in the rotation curve decomposition.

  8. INTEGRAL FIELD SPECTROSCOPY OF MASSIVE, KILOPARSEC-SCALE OUTFLOWS IN THE INFRARED-LUMINOUS QSO Mrk 231

    SciTech Connect

    Rupke, David S. N.; Veilleux, Sylvain

    2011-03-10

    The quasi-stellar object (QSO)/merger Mrk 231 is arguably the nearest and best laboratory for studying QSO feedback. It hosts several outflows, including broad-line winds, radio jets, and a poorly understood kpc-scale outflow. In this Letter, we present integral field spectroscopy from the Gemini telescope that represents the first unambiguous detection of a wide-angle, kiloparsec-scale outflow from a powerful QSO. Using neutral gas absorption, we show that the nuclear region hosts an outflow with blueshifted velocities reaching 1100 km s{sup -1}, extending 2-3 kpc from the nucleus in all directions in the plane of the sky. A radio jet impacts the outflow north of the nucleus, accelerating it to even higher velocities (up to 1400 km s{sup -1}). Finally, 3.5 kpc south of the nucleus, star formation is simultaneously powering an outflow that reaches more modest velocities of only 570 km s{sup -1}. Blueshifted ionized gas is also detected around the nucleus at lower velocities and smaller scales. The mass and energy flux from the outflow are {approx}>2.5 times the star formation rate and {approx}>0.7% of the active galactic nucleus luminosity, consistent with negative feedback models of QSOs.

  9. Digital image analysis of four-frame holographic plasma and neutral gas interferograms

    NASA Astrophysics Data System (ADS)

    Mastin, G. A.; Allen, G. R.

    1985-01-01

    Diagnostic interferograms characterizing the dynamics of plasma and neutral in the anode-cathode gap of magnetically insulated transmission lines (MITL) are well suited for digital image analysis. The presence of plasma or a neutral gas near the cathode surface produces bending of a pattern of background fringes on the interferogram; the fringes would be straight and uniformly spaced in the absence of such a perturbation. Because the fringes are periodic, a Fast Fourier Transform (FFT) can be performed and the phase of the dominant spatial frequency component of the fringe pattern extracted. The fringe phase shift is proportional to the plasma electron or neutral gas density. Futhermore, the location of the plasma-cathode interface can be estimated from the interferogram so that electron density as a function of distance from the cathode surface can be computed. The technical problem is introduced. The image analysis algorithm examined and diagnostic interferogram analysis results presented. The ability to reliably extract and estimate quantitative parameters from interferograms via digital image analysis is emphasized.

  10. Effects of additional vapors on sterilization of microorganism spores with plasma-excited neutral gas

    NASA Astrophysics Data System (ADS)

    Matsui, Kei; Ikenaga, Noriaki; Sakudo, Noriyuki

    2015-01-01

    Some fundamental experiments are carried out in order to develop a plasma process that will uniformly sterilize both the space and inner wall of the reactor chamber at atmospheric pressure. Air, oxygen, argon, and nitrogen are each used as the plasma source gas to which mixed vapors of water and ethanol at different ratios are added. The reactor chamber is remotely located from the plasma area and a metal mesh for eliminating charged particles is installed between them. Thus, only reactive neutral particles such as plasma-excited gas molecules and radicals are utilized. As a result, adding vapors to the source gas markedly enhances the sterilization effect. In particular, air with water and/or ethanol vapor and oxygen with ethanol vapor show more than 6-log reduction for Geobacillus stearothermophilus spores.

  11. Electron collection enhancement arising from neutral gas jets on a charged vehicle in the ionosphere

    NASA Technical Reports Server (NTRS)

    Gilchrist, Brian E.; Banks, Peter M.; Neubert, Torsten; Williamson, P. Roger; Myers, Neil B.

    1990-01-01

    Observations of current collection enhancements due to cold nitrogen gas control jet emissions from a highly charged, isolated rocket payload in the ionosphere have been made during the cooperative high altitude rocket gun experiment (CHARGE) 2 using an electrically tethered mother/daughter payload system. The current collection enhancement was observed on a platform (daughter payload) located 100 to 400 m away from the main payload firing an energetic electron beam (mother payload). These results are interpreted in terms of an electrical discharge forming in close proximity to the daughter vehicle during the short periods of gas emission. The results indicate that it is possible to enhance the electron current collection capability of positively charged vehicles by means of deliberate neutral gas releases into an otherwise undisturbed space plasma. The results are also compared with recent laboratory observations of hollow cathode plasma contactors operating in the 'ignited' mode.

  12. High-frequency electron-gas secondary neutral mass spectrometry: evaluation of transient effects

    NASA Astrophysics Data System (ADS)

    Krimke, Ralf; Urbassek, Herbert M.; Wucher, Andreas

    1997-06-01

    In electron-gas secondary neutral mass spectrometry (SNMS), a low-pressure plasma serves both as an ion source for sputter depth profiling the target and for post-ionizing the sputtered neutrals. In its high-frequency mode, a rectangular RF bias is applied to the target. We investigate by PIC/MC kinetic simulation the processes occurring in the vicinity of the substrate as a consequence of the voltage jumps: sheath expansion and contraction, as well as flux and energy of the ions impinging onto the substrate. In particular, we determine the enhancement of the ion current shortly after negatively charging the substrate; this enhancement is due to the acceleration of the large ion population in the expanding sheath. Our results indicate that already at a switch frequency of only 1 MHz the surface treatment by rectangularly shaped RF potentials is dominated by transient effects.

  13. Sgr A* and Its Environment: Low-mass Star Formation, the Origin of X-Ray Gas and Collimated Outflow

    NASA Astrophysics Data System (ADS)

    Yusef-Zadeh, F.; Wardle, M.; Schödel, R.; Roberts, D. A.; Cotton, W.; Bushouse, H.; Arendt, R.; Royster, M.

    2016-03-01

    We present high-resolution multiwavelength radio continuum images of the region within 150″ of Sgr A*, revealing a number of new extended features and stellar sources in this region. First, we detect a continuous 2″ east-west ridge of radio emission, linking Sgr A* and a cluster of stars associated with IRS 13 N and IRS 13E. The ridge suggests that an outflow of east-west blob-like structures is emerging from Sgr A*. In particular, we find arc-like radio structures within the ridge with morphologies suggestive of photoevaporative protoplanetary disks. We use infrared Ks and L‧ fluxes to show that the emission has similar characteristics to those of a protoplanetary disk irradiated by the intense radiation field at the Galactic center. This suggests that star formation has taken place within the S-cluster 2″ from Sgr A*. We suggest that the diffuse X-ray emission associated with Sgr A* is due to an expanding hot wind produced by the mass loss from B-type main sequence stars, and/or the disks of photoevaporation of low mass young stellar objects (YSOs) at a rate of ˜10-6 {M}⊙ yr-1. The proposed model naturally reduces the inferred accretion rate and is an alternative to the inflow-outflow style models to explain the underluminous nature of Sgr A*. Second, on a scale of 5″ from Sgr A*, we detect new cometary radio and infrared sources at a position angle PA ˜ 50° which is similar to that of two other cometary sources X3 and X7, all of which face Sgr A*. In addition, we detect a striking tower of radio emission at a PA ˜ 50°-60° along the major axis of the Sgr A East supernova remnant shell on a scale of 150″ from Sgr A*. We suggest that the cometary sources and the tower feature are tracing interaction sites of a mildly relativistic jet from Sgr A* with the atmosphere of stars and the nonthermal Sgr A East shell at a PA ˜ 50°-60° with \\dot{M}˜ 1× {10}-7 {M}⊙ {{yr}}-1, and opening angle 10°. Lastly, we suggest that the east-west ridge of

  14. Interactions Between Neutral Gas Clouds and Plasma Near the icy satellites of Jupiter and Saturn.

    NASA Astrophysics Data System (ADS)

    Burger, M. H.

    2007-05-01

    Neutral gas clouds associated with icy satellites are intimately tied to the magnetospheric plasma in which they are formed and reside. Plasma interactions can create the clouds, remove material from them, and make it possible for us to observe them. At Europa, for example, energetic ions incident on the icy surface eject hydrogen and oxygen formed from the dissociation of water (Johnson et al. 1982). The hydrogen escapes, but the O2remains gravitationally bound, forming an atmosphere. This atmosphere then interacts with the thermal plasma in Jupiter's magneotpshere: the O2is dissociated by the electrons resulting in emissions from atomic oxygen which have been observed by HST and Cassini (Hall et al. 1995; Hansen et al. 2005). Charge exchange with magnetospheric ions and electron-impact ionization removes atoms and molecules from Europa's atmosphere and exosphere, and contributes fresh ions to the plasma (Saur et al. 1998; Shematovich et al 2005). At Enceladus, where 150-300 kg/s of H2O gas is supplied by the south pole plume (Hansen et al. 2006; Burger et al. 2007), charge exchange reactions between the plasma and H2O produce fresh pickup ions which slow and deflect the plasma (Tokar et al. 2006; Pontius and Hill 2006) and induce perturbations in Saturn's magnetic field (Dougherty et al. 2006; Khurana et al. 2006). The neutrals created in these charge exchange reactions either escape from Saturn entirely or are redistributed throughout the inner magnetosphere forming gas clouds which have been observed by HST and Cassini (Johnson et al. 2006). I will describe the interaction processes between the neutral atoms and molecules in icy satellite atmospheres and exospheres, and discuss differences between the processes imporant in Jupiter's magnetosphere, where the plasma content is greater than the neutral content, and Saturn's magnetosphere, which is dominated by neutrals. References: Burger et al., JGR, 2007, in press. Dougherty et al., Science, 311, 1406, 2006

  15. Shining a light on galactic outflows: photoionized outflows

    NASA Astrophysics Data System (ADS)

    Chisholm, John; Tremonti, Christy A.; Leitherer, Claus; Chen, Yanmei; Wofford, Aida

    2016-04-01

    We study the ionization structure of galactic outflows in 37 nearby, star-forming galaxies with the Cosmic Origins Spectrograph on the Hubble Space Telescope. We use the O I, Si II, Si III, and Si IV ultraviolet absorption lines to characterize the different ionization states of outflowing gas. We measure the equivalent widths, line widths, and outflow velocities of the four transitions, and find shallow scaling relations between them and galactic stellar mass and star formation rate. Regardless of the ionization potential, lines of similar strength have similar velocities and line widths, indicating that the four transitions can be modelled as a comoving phase. The Si equivalent width ratios (e.g. Si IV/Si II) have low dispersion, and little variation with stellar mass; while ratios with O I and Si vary by a factor of 2 for a given stellar mass. Photoionization models reproduce these equivalent width ratios, while shock models under predict the relative amount of high ionization gas. The photoionization models constrain the ionization parameter (U) between -2.25 < log (U) < -1.5, and require that the outflow metallicities are greater than 0.5 Z⊙. We derive ionization fractions for the transitions, and show that the range of ionization parameters and stellar metallicities leads to a factor of 1.15-10 variation in the ionization fractions. Historically, mass outflow rates are calculated by converting a column density measurement from a single metal ion into a total hydrogen column density using an ionization fraction, thus mass outflow rates are sensitive to the assumed ionization structure of the outflow.

  16. A Search for Neutral Gas at Redshift z 0.55

    NASA Astrophysics Data System (ADS)

    Monier, Eric M.; Turnshek, D.; Rao, S.; Held, R.

    2010-01-01

    We present a sample of approximately 30 high-probability damped Lyman-alpha (DLA) absorption-line systems in the redshift range 0.42neutral hydrogen gas in the Universe, and they are classically defined to have neutral hydrogen column densities of N(HI)<= 2 x 1020 atoms cm-2. Studies of DLAs, therefore, provide insight into the evolution of gas and galaxies over the age of the Universe. DLAs with z<1.65, for which the redshifted Lyman-alpha line remains in the UV, trace the neutral gas over approximately 70% of the most recent history of the Universe. However, since they can only be confirmed and studied through space-based UV spectroscopy, the number of confirmed DLAs remains relatively low in small redshift intervals at z<1.65. For example, in the 0.42neutral gas cosmological mass density at 0.42

  17. Hot outflows in galaxy clusters

    NASA Astrophysics Data System (ADS)

    Kirkpatrick, C. C.; McNamara, B. R.

    2015-10-01

    The gas-phase metallicity distribution has been analysed for the hot atmospheres of 29 galaxy clusters using Chandra X-ray Observatory observations. All host brightest cluster galaxies (BCGs) with X-ray cavity systems produced by radio AGN. We find high elemental abundances projected preferentially along the cavities of 16 clusters. The metal-rich plasma was apparently lifted out of the BCGs with the rising X-ray cavities (bubbles) to altitudes between twenty and several hundred kiloparsecs. A relationship between the maximum projected altitude of the uplifted gas (the `iron radius') and jet power is found with the form R_Fe ∝ P_jet^{0.45}. The estimated outflow rates are typically tens of solar masses per year but exceed 100 M⊙ yr- 1 in the most powerful AGN. The outflow rates are 10-20 per cent of the cooling rates, and thus alone are unable to offset a cooling inflow. Nevertheless, hot outflows effectively redistribute the cooling gas and may play a significant role at regulating star formation and AGN activity in BCGs and presumably in giant elliptical galaxies. The metallicity distribution overall can be complex, perhaps due to metal-rich gas returning in circulation flows or being blown around in the hot atmospheres. Roughly 15 per cent of the work done by the cavities is expended lifting the metal-enriched gas, implying their nuclear black holes have increased in mass by at least ˜107-109 M⊙. Finally, we show that hot outflows can account for the broad, gas-phase metallicity distribution compared to the stellar light profiles of BCGs, and we consider a possible connection between hot outflows and cold molecular gas flows discovered in recent Atacama Large Millimeter Array observations.

  18. Role of gas surface interactions in the reduction of OGO-6 neutral gas particle mass spectrometer data

    NASA Technical Reports Server (NTRS)

    Hedin, A. E.; Hinton, B. B.; Schmitt, G. A.

    1972-01-01

    The gas-surface interaction effects observed by the quadrupole mass spectrometer are described, and the technique developed to account for them in determining ambient neutral densities is summarized. The total ion current and the ion currents for ions with molecular weights 2, 4, 16, 28, and 32 are sampled for 1.125 sec once every 9.216 sec, for 258 sec out of a 368 sec cycle. An equation is given for the number density of any constituent in the ion source region, and source density data are discussed. The mass 28 background gas is considered to be CO rather than N2, and a CO model is developed. A quasi-equilibrium model of the atomic oxygen interactions is constructed, and a set of surface parameters is determined which provides a reasonable fit to the mass 16 and 32 source densities consistent with the predicted ambient atomic oxygen.

  19. Using IBEX data to constrain the heliosphere's large-scale structure: interstellar neutral gas and the Warm Breeze

    NASA Astrophysics Data System (ADS)

    Bzowski, Maciej; McComas, David; Galli, Andre; Kucharek, Harald; Wurz, Peter; Sokol, Justyna M.; Schwadron, Nathan; Heirtzler, David M.; Kubiak, M. Marzena A.; Möbius, Eberhard; Fuselier, Stephen; Swaczyna, Paweł; Leonard, Trevor; Park, Jeewoo

    2016-07-01

    The large-scale structure of the heliosphere is governed by the interaction of the partly ionized, magnetized interstellar gas and the magnetized, fully ionized solar wind, structured in heliolatitude. Determining factors of this interaction are the density and flow velocity of interstellar gas relative to the Sun, the Mach number of this flow and the strength and inclination of the interstellar magnetic field to the flow vector at the interstellar side, and the magnitude of dynamic pressure of solar wind and the strength of its embedded magnetic field at the solar side. As a result of charge exchange interactions operating in the boundary region between the heliosphere and interstellar matter, a new population of neutral atoms is created, in addition to the population of unperturbed interstellar neutral gas. Both of these populations penetrate deep inside the heliosphere, where they can be sampled by the first space probe dedicated to observations of the heliosphere and its immediate surroundings by means of neutral atoms: the Interstellar Boundary Explorer (IBEX). Due to distortion of the heliosphere from axial symmetry, the secondary population of interstellar neutrals, created via charge exchange between the plasma flowing past the heliopause and the unperturbed pristine neutral interstellar gas, appears to be coming from a different direction than the unperturbed interstellar neutral flow. These two directions should be coplanar with the plane defined by the local interstellar magnetic field and the flow direction of the unperturbed gas. IBEX provides an unprecedented opportunity to study and interpret these relations. The IBEX science team have recently accomplished important milestones in researching the primary and secondary populations of interstellar gas and their relation to the local interstellar magnetic fields. First, the temperature and velocity vector of the inflowing interstellar neutral gas has been determined with unprecedented robustness based

  20. Properties of clusters in the gas phase. V - Complexes of neutral molecules onto negative ions

    NASA Technical Reports Server (NTRS)

    Keesee, R. G.; Lee, N.; Castleman, A. W., Jr.

    1980-01-01

    Ion-molecules association reactions of the form A(-)(B)n-1 + B = A(-)(B)n were studied over a range of temperatures in the gas phase using high pressure mass spectrometry. Enthalpy and entropy changes were determined for the stepwise clustering reactions of (1) sulfur dioxide onto Cl(-), I(-), and NO2(-) with n ranging from one to three or four, and onto SO2(-) and SO3(-) with n equal to one; and (2) carbon dioxide onto Cl(-), I(-), NO2(-), CO3(-), and SO3(-) with n equal to one. From these data and earlier hydration results, the order of the magnitude of the enthalpy changes on the association of the first neutral for a series of negative ions was found to parallel the gas-phase basicity of those anions.

  1. Photochemical studies of reactive intermediates involved in gas phase ion-neutral reactions

    SciTech Connect

    Osterheld, T.H.

    1992-01-01

    Infrared multiple photon dissociation was used to study unimolecular reactions of gas phase ions in a Fourier transform mass spectrometer. Specifically, the influence of intermediates on reactivity and dynamics was investigated. Dissociation of nitrobenzene cation displays a variety of surprising and apparently non-statistical behavior. The authors demonstrated that some of its reactions involve an isomerization to phenyl nitrite cation by a dissociation/reassociation mechanism in an ion-neutral complex. This allowed the behavior to be explained by normal statistical reactions. Previous work in other laboratories suggested that methane loss from acetone cation occurs by tunneling of a hydrogen atom. Part of the evidence came from the observation of very large isotope effects. The authors demonstrated that methane loss could not occur by tunneling. They further showed that the isotope effects result from normal zero point vibrational energy differences in an ion-neutral complex mechanism. Two simple dissociations of butanone cation do not compete as expected. They also found that the rates for the low energy reactions are much slower than statistical calculations. They explained these results by a prior isomerization to an ion-neutral complex. They calculated that the ion-neutral complex has a higher density of states than butanone cation even at energies well below a reaction threshold. McLafferty and co-workers demonstrated that acetone enol cation isomerizes to a symmetric acetone cation structure which then loses methyl groups at unequal rates. The authors have confirmed this behavior and demonstrated that the non-statistical dissociation depends on the internal energy. They proposed that an excited vibrational mode of the transition state for isomerization couples more strongly with the reaction coordinate, thus yielding more non-statistical dissociation.

  2. Physical Processes for Driving Ionospheric Outflows in Global Simulations

    NASA Technical Reports Server (NTRS)

    Moore, Thomas Earle; Strangeway, Robert J.

    2009-01-01

    We review and assess the importance of processes thought to drive ionospheric outflows, linking them as appropriate to the solar wind and interplanetary magnetic field, and to the spatial and temporal distribution of their magnetospheric internal responses. These begin with the diffuse effects of photoionization and thermal equilibrium of the ionospheric topside, enhancing Jeans' escape, with ambipolar diffusion and acceleration. Auroral outflows begin with dayside reconnexion and resultant field-aligned currents and driven convection. These produce plasmaspheric plumes, collisional heating and wave-particle interactions, centrifugal acceleration, and auroral acceleration by parallel electric fields, including enhanced ambipolar fields from electron heating by precipitating particles. Observations and simulations show that solar wind energy dissipation into the atmosphere is concentrated by the geomagnetic field into auroral regions with an amplification factor of 10-100, enhancing heavy species plasma and gas escape from gravity, and providing more current carrying capacity. Internal plasmas thus enable electromagnetic driving via coupling to the plasma, neutral gas and by extension, the entire body " We assess the Importance of each of these processes in terms of local escape flux production as well as global outflow, and suggest methods for their implementation within multispecies global simulation codes. We complete 'he survey with an assessment of outstanding obstacles to this objective.

  3. Outflows in infrared-luminous galaxies: Absorption-line spectroscopy of starbursts and AGN

    NASA Astrophysics Data System (ADS)

    Rupke, David S.

    Large-scale galactic outflows, better known as superwinds, are driven by the powerful energy reservoirs in star forming and active galaxies. They play a significant role in galaxy formation, galaxy evolution, and the evolution of the intergalactic medium. We have performed a survey of over 100 infrared-luminous galaxies in order to address the exact frequency with which they occur in different galaxy types, the dependence of their properties on those of their host galaxies, and their properties in the most luminous starburst and active galaxies. Most of our sample consists of ultraluminous infrared galaxies (ULIRGs), and we use moderate- resolution spectroscopy of the Na I D interstellar absorption feature (which directly probes the neutral gas phase). We find superwinds in the majority of these galaxies at typical maximum, deprojected velocities of 500 700 km s-1. The detection rate increases with star formation rate (SFR) in starbursts, while the mass outflow rate appears constant with SFR, contrary to theoretical expectations. The resulting mass entrainment efficiencies in ULIRGs are quite low, of order a few percent of the star formation rate. There is some dependence of outflow velocity on host galaxy properties; the outflow velocities in LINERs are higher than those in H II galaxies, and the highest column density gas in each galaxy may have an upper envelope in velocity that increases with SFR. Outflows in most galaxies hosting a dominant AGN have very similar properties to those in starbursts, so discerning their power source is difficult. The velocities in Seyfert 2 outflows may be slightly higher than those in starbursts, and the fraction of neutral gas escaping Seyfert 2s is higher than that in starbursts (˜50% vs. ≲ 20%). The outflows in our Seyfert 1 galaxies have extreme velocities of up to ˜104 km s-1, and two of three Seyfert is with outflows possess broad absorption lines. Finally, we find that spectroscopy of a few galaxies at very high

  4. Particle Dynamics in Neutral-Gas Confined Laser-Produced Plasmas

    NASA Astrophysics Data System (ADS)

    Kim, Yong W.

    2001-10-01

    Laser-produced plasma from a metallic target can be confined to higher plasma densities by immersing the target in an inert gas medium at increasingly high density. The plasma becomes Rayleigh-Taylor unstable, however, when the mass density of the neutral gas exceeds the plasma mass density substantially.[1] A new plasma diagnostic method is developed to help examine the early time development of the gas-plasma interfacial structure. A preliminary study based on plasma polarization spectroscopy is presented, in which the dynamics of atoms and ions are visualized in the presence of electromagnetic fields due to charge separation. The ambient gas pressure of argon is varied as active control in the low-pressure regime. Time-resolved multi-directional projections of an aluminum plasma are obtained in line and continuum emissions, polarization and spectral broadening including Doppler shifts. The electrostatic potential of the target is also followed. The results indicate a bifurcation of the phase-space distribution function and structural segmentation of the plasma into a thermalized core and a crown with highly aligned, energetic atoms and ions. Reconstruction of the plasma structure appears possible by generalization of the two new algorithms we have developed.[1,2] 1. Y.W. Kim and J.-C. Oh, Rev. Sci. Inst. 72, 948 (2001). 2. Y.W. Kim and C.D. Lloyd-Knight, Rev. Sci. Inst. 72, 944 (2001).

  5. Observing the Interstellar Neutral He Gas Flow with a Variable IBEX Pointing Strategy

    NASA Astrophysics Data System (ADS)

    Leonard, T.; Moebius, E.; Bzowski, M.; Fuselier, S. A.; Heirtzler, D.; Kubiak, M. A.; Kucharek, H.; Lee, M. A.; McComas, D. J.; Schwadron, N.; Wurz, P.

    2015-12-01

    The Interstellar Neutral (ISN) gas flow can be observed at Earth's orbit due to the motion of the solar system relative to the surrounding interstellar gas. Since He is minimally influenced by ionization and charge exchange, the ISN He flow provides a sample of the pristine interstellar environment. The Interstellar Boundary Explorer (IBEX) has observed the ISN gas flow over the past 7 years from a highly elliptical orbit around the Earth. IBEX is a Sun-pointing spinning spacecraft with energetic neutral atom (ENA) detectors observing perpendicular to the spacecraft spin axis. Due to the Earth's orbital motion around the Sun, it is necessary for IBEX to perform spin axis pointing maneuvers every few days to maintain a sunward pointed spin axis. The IBEX operations team has successfully pointed the spin axis in a variety of latitude orientations during the mission, including in the ecliptic during the 2012 and 2013 seasons, about 5 degrees below the ecliptic during the 2014 season, and recently about 5 degrees above the ecliptic during the 2015 season, as well as optimizing observations with the spin axis pointed along the Earth-Sun line. These observations include a growing number of measurements near the perihelion of the interstellar atom trajectories, which allow for an improved determination of the ISN He bulk flow longitude at Earth orbit. Combining these bulk flow measurements with an analytical model (Lee et al. 2012 ApJS, 198, 10) based upon orbital mechanics improves the knowledge of the narrow ISN parameter tube, obtained with IBEX, which couples the interstellar inflow longitude, latitude, speed, and temperature.

  6. Outflows, Jets and Shocks in the Orion Nebula

    NASA Technical Reports Server (NTRS)

    ODell, C. R.; Bally, John

    2000-01-01

    The rich young cluster of stars associated with the Orion Nebula provides a unique laboratory for the study of plasma phenomena. We see five types of flows and shocks. Photoablation outflow from the proplyds nearest theta (exp 1) Ori C form nearly stationary shocks with the high velocity wind from that star. Microjets, with scales of less than 10 (exp 4) AU, are seen around some 20 low mass stars. Isolated jets, with high velocities and scales of about, 104 AU, are less numerous but common. One also sees the shocks formed when these jets impinge on the ionized nebular gas and the neutral gas in the foreground lid. The final type of object is the stationary shock formed by the interaction from the stellar wind that arises during disk formation with the ambient, gas flowing away from the main body of the nebula.

  7. HST/COS SPECTRA OF THREE QSOs THAT PROBE THE CIRCUMGALACTIC MEDIUM OF A SINGLE SPIRAL GALAXY: EVIDENCE FOR GAS RECYCLING AND OUTFLOW

    SciTech Connect

    Keeney, Brian A.; Stocke, John T.; Danforth, Charles W.; Shull, J. Michael; Green, James C.; Rosenberg, Jessica L.; Ryan-Weber, Emma V.; Savage, Blair D.

    2013-03-01

    We have used the Cosmic Origins Spectrograph (COS) to obtain far-UV spectra of three closely spaced QSO sight lines that probe the circumgalactic medium (CGM) of an edge-on spiral galaxy, ESO 157-49, at impact parameters of 74 and 93 h {sup -1} {sub 70} kpc near its major axis and 172 h {sup -1} {sub 70} kpc along its minor axis. H I Ly{alpha} absorption is detected at the galaxy redshift in the spectra of all three QSOs, and metal lines of Si III, Si IV, and C IV are detected along the two major-axis sight lines. Photoionization models of these clouds suggest metallicities close to the galaxy metallicity, cloud sizes of {approx}1 kpc, and gas masses of {approx}10{sup 4} M {sub Sun }. Given the high covering factor of these clouds, ESO 157-49 could harbor {approx}2 Multiplication-Sign 10{sup 9} M {sub Sun} of warm CGM gas. We detect no metals in the sight line that probes the galaxy along its minor axis, but gas at the galaxy metallicity would not have detectable metal absorption with ionization conditions similar to the major-axis clouds. The kinematics of the major-axis clouds favor these being portions of a 'galactic fountain' of recycled gas, while two of the three minor-axis clouds are constrained geometrically to be outflowing gas. In addition, one of our QSO sight lines probes a second more distant spiral, ESO 157-50, along its major axis at an impact parameter of 88 h {sup -1} {sub 70} kpc. Strong H I Ly{alpha} and C IV absorption only are detected in the QSO spectrum at the redshift of ESO 157-50.

  8. Detection of hot, metal-enriched outflowing gas around z ≈ 2.3 star-forming galaxies in the Keck Baryonic Structure Survey

    NASA Astrophysics Data System (ADS)

    Turner, Monica L.; Schaye, Joop; Steidel, Charles C.; Rudie, Gwen C.; Strom, Allison L.

    2015-06-01

    We use quasar absorption lines to study the physical conditions in the circumgalactic medium of redshift z ≈ 2.3 star-forming galaxies taken from the Keck Baryonic Structure Survey. In Turner et al. we used the pixel optical depth technique to show that absorption by H I and the metal ions O VI, N V, C IV, C III, and Si IV is strongly enhanced within |Δv| ≲ 170 km s-1 and projected distances |d| ≲ 180 proper kpc from sightlines to the background quasars. Here we demonstrate that the O VI absorption is also strongly enhanced at fixed H I, C IV, and Si IV optical depths, and that this enhancement extends out to ˜350 km s-1. At fixed H I the increase in the median O VI optical depth near galaxies is 0.3-0.7 dex and is detected at 2-3σ confidence for all seven H I bins that have log _{10}τ_{H I} ≥ -1.5. We use ionization models to show that the observed strength of O VI as a function of H I is consistent with enriched, photoionized gas for pixels with τ_{H I} ≳ 10. However, for pixels with τ_{H I} ≲ 1 this would lead to implausibly high metallicities at low densities if the gas were photoionized by the background radiation. This indicates that the galaxies are surrounded by gas that is sufficiently hot to be collisionally ionized (T > 105 K) and that a substantial fraction of the hot gas has a metallicity ≳10-1 of solar. Given the high metallicity and large velocity extent (out to ˜1.5 vcirc) of this gas, we conclude that we have detected hot, metal-enriched outflows arising from star-forming galaxies.

  9. Effects of neutral gas release on current collection during the CHARGE-2 rocket experiment

    NASA Technical Reports Server (NTRS)

    Gilchrist, B. E.; Banks, P. M.; Neubert, T.; Williamson, P. R.; Myers, Neil B.; Raitt, W. John; Sasaki, S.

    1990-01-01

    Observations of current collection enhancements due to cold nitrogen gas control jet emissions from a highly charged rocket payload in the ionosphere are reported. These observations were made during the second cooperative high altitude rocket gun experiment (CHARGE-2) which was an electrically tethered mother/daughter payload system. The current collection enhancement was observed at the daughter payload located 100 to 400 m away from the mother which was firing an energetic electron beam. The authors interpret these results in terms of an electrical discharge forming in close proximity to the daughter during the short periods of gas emission. The results indicate that it is possible to enhance the electron current collection capability of positively charged vehicles by means of deliberate neutral gas releases into an otherwise undisturbed space plasma. These results can also be compared with recent laboratory observations of hollow cathode plasma contactors operating in the ignited mode. Experimental observations of current collection enhancements due to cold nitrogen gas control jet emissions from a highly charged, isolated daughter payload in the nighttime ionosphere were made. These observations were derived from the second cooperative high altitude rocket gun experiment (CHARGE-2) which was an electrically tethered mother-daughter payload system. The rocket flew from White Sands Missile Range (WSMR) in December, 1985. The rocket achieved an altitude of 261 km and carried a 1 keV electron beam emitting up to 48 mA of current (Myers, et al., 1989a). The mother payload, carried the electron beam source, while the daughter acted as a remote current collection and observation platform and reached a distance of 426 m away from the main payload. Gas emissions at the daughter were due to periodic thruster jet firings to maintain separation velocity between the two payloads.

  10. Prediction of a neutral noble gas compound in the triplet state.

    PubMed

    Manna, Debashree; Ghosh, Ayan; Ghanty, Tapan K

    2015-05-26

    Discovery of the HArF molecule associated with H-Ar covalent bonding [Nature, 2000, 406, 874-876] has revolutionized the field of noble gas chemistry. In general, this class of noble gas compound involving conventional chemical bonds exists as closed-shell species in a singlet electronic state. For the first time, in a bid to predict neutral noble gas chemical compounds in their triplet electronic state, we have carried out a systematic investigation of xenon inserted FN and FP species by using quantum chemical calculations with density functional theory and various post-Hartree-Fock-based correlated methods, including the multireference configuration interaction technique. The FXeP and FXeN species are predicted to be stable by all the computational methods employed in the present work, such as density functional theory (DFT), second-order Møller-Plesset perturbation theory (MP2), coupled-cluster theory (CCSD(T)), and multireference configuration interaction (MRCI). For the purpose of comparison we have also included the Kr-inserted compounds of FN and FP species. Geometrical parameters, dissociation energies, transition-state barrier heights, atomic charge distributions, vibrational frequency data, and atoms-in-molecules properties clearly indicate that it is possible to experimentally realize the most stable state of FXeP and FXeN molecules, which is triplet in nature, through the matrix isolation technique under cryogenic conditions. PMID:25891838

  11. Emission and afterglow properties of an expanding RF plasma with nonuniform neutral gas density

    NASA Astrophysics Data System (ADS)

    Chaplin, Vernon H.; Bellan, Paul M.

    2016-08-01

    We describe some notable aspects of the light emission and afterglow properties in pulsed, high-density ( 1018-1020 m-3 ) argon inductively coupled discharges initiated following fast gas injection. The plasma was created in a long, narrow discharge tube and then expanded downstream of the radiofrequency (RF) antenna into a large chamber. Fast camera images of the expanding plasma revealed a multi-phase time-dependent emission pattern that did not follow the ion density distribution. Dramatic differences in visible brightness were observed between discharges with and without an externally applied magnetic field. These phenomena were studied by tracking excited state populations using passive emission spectroscopy and are discussed in terms of the distinction between ionizing and recombining phase plasmas. Additionally, a method is presented for inferring the unknown neutral gas pressure in the discharge tube from the time-dependent visible and infrared emission measured by a simple photodiode placed near the antenna. In magnetized discharges created with fast gas injection, the downstream ion density rose by Δni˜1018 m-3 in the first ˜100 μs after the RF power was turned off. The conditions conducive to this afterglow density rise are investigated in detail, and the effect is tentatively attributed to pooling ionization.

  12. Early Observations of the Upper Atmosphere and Ionosphere of Mars by MAVEN’s Neutral Gas and Ion Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Benna, Mehdi; Mahaffy, Paul R.; Elrod, Meredith

    2015-04-01

    The Neutral Gas and Ion Mass Spectrometer (NGIMS) of the Mars Atmosphere and Volatile Evolution (MAVEN) Mission is designed to characterize the source region of escaping atoms in the upper atmosphere and ionosphere of Mars. The NGIMS instrument is a quadrupole analyzer with a mass rang of 2-150 Da. It utilizes a dual ion source in order to measure both surface reactive neutrals (using the Open Source Neutral mode - OSN), inert neutrals (using the Closed Source Neutral mode - CSN), and thermal ions (using the Open Source Ion mode - OSI) at altitudes below 500 km.In the first few months of the MAVEN mission, NGIMS alternated on sequential orbits between measurement sequences that focus on fully characterizing neutral species (using the CSN/OSN modes) and ions (using the CSN/OSI modes). The collected data revealed the substantial structure present in both neutral and ion densities with spatial scales of hundreds of kilometers along the spacecraft track. The data also brought to light the sharp contrast between the day side and night side atmospheric profiles of neutrals and ions in both total density and relative abundance.

  13. Electrostatic plasma instabilities driven by neutral gas flows in the solar chromosphere

    NASA Astrophysics Data System (ADS)

    Gogoberidze, G.; Voitenko, Y.; Poedts, S.; De Keyser, J.

    2014-03-01

    We investigate electrostatic plasma instabilities of Farley-Buneman (FB) type driven by quasi-stationary neutral gas flows in the solar chromosphere. The role of these instabilities in the chromosphere is clarified. We find that the destabilizing ion thermal effect is highly reduced by the Coulomb collisions and can be ignored for the chromospheric FB-type instabilities. In contrast, the destabilizing electron thermal effect is important and causes a significant reduction of the neutral drag velocity triggering the instability. The resulting threshold velocity is found as function of chromospheric height. Our results indicate that the FB-type instabilities are still less efficient in the global chromospheric heating than the Joule dissipation of the currents driving these instabilities. This conclusion does not exclude the possibility that the FB-type instabilities develop in the places where the cross-field currents overcome the threshold value and contribute to the heating locally. Typical length-scales of plasma density fluctuations produced by these instabilities are determined by the wavelengths of unstable modes, which are in the range 10-102 cm in the lower chromosphere and 102-103 cm in the upper chromosphere. These results suggest that the decimetric radio waves undergoing scattering (scintillations) by these plasma irregularities can serve as a tool for remote probing of the solar chromosphere at different heights.

  14. Discovery of a compact gas-rich damped Lyman-α galaxy at z = 2.2: evidence of a starburst-driven outflow

    NASA Astrophysics Data System (ADS)

    Noterdaeme, P.; Laursen, P.; Petitjean, P.; Vergani, S. D.; Maureira, M. J.; Ledoux, C.; Fynbo, J. P. U.; López, S.; Srianand, R.

    2012-04-01

    We present the detection of Ly α, [O iii], and H α emission associated with an extremely strong damped Lyman-α (DLA) system (N(H i) = 1022.10 cm-2) at z = 2.207 towards the quasar SDSS J113520.39 - 001053.56. This is the largest H I column density ever measured along a quasi-stellar object (QSO) line of sight, though typical of those often found in DLAs associated to gamma-ray bursts (GRBs). This absorption system can also be classified as an ultra-strong Mg II system with W_rλ2796≃3.6 Å. The mean metallicity of the gas ( [Zn/H] = -1.1) and dust depletion factors ( [Zn/Fe] = 0.72, [Zn/Cr] = 0.49) are consistent with (and only marginally larger than) the mean values found in the general QSO-DLA population. The [O iii]-Hα emitting region has a very small impact parameter with respect to the QSO line of sight, b ≈ 0.1'' (0.9 kpc proper distance), and is unresolved. From the H α line, we measure a significant star formation rate (SFR) ≈ 25 M⊙ yr-1 (uncorrected for dust). The shape of the Ly α line is double-peaked, which is the signature of a resonant scattering of Ly α photons, and the Ly α emission is spatially extended. More strikingly, the blue and red Ly α peaks arise from distinct regions extended over a few kpc on either side of the star-forming region. We propose that this is the consequence of a Ly α transfer in outflowing gas. The presence of starburst-driven outflows is also in agreement with the high SFR together with the small size and low mass of the galaxy (Mvir ~ 1010 M⊙). By placing constraints on the stellar UV continuum luminosity of the galaxy, we estimate an age of at most a few 107 yr, again consistent with a recent starburst scenario. We interpret these data as the observation of a young, gas-rich, compact starburst galaxy, from which material is expelled through collimated winds powered by the vigorous star formation activity. We substantiate this picture by modelling the radiative transfer of Ly α photons in the galactic

  15. Effect of neutral gas heating on the wave magnetic fields of a low pressure 13.56 MHz planar coil inductively coupled argon discharge

    SciTech Connect

    Jayapalan, Kanesh K. Chin, Oi-Hoong

    2014-04-15

    The axial and radial magnetic field profiles in a 13.56 MHz (radio frequency) laboratory 6 turn planar coil inductively coupled plasma reactor are simulated with the consideration of the effect of neutral gas heating. Spatially resolved electron densities, electron temperatures, and neutral gas temperatures were obtained for simulation using empirically fitted electron density and electron temperature and heuristically determined neutral gas temperature. Comparison between simulated results and measured fields indicates that neutral gas heating plays an important role in determining the skin depth of the magnetic fields.

  16. Spatial distribution of interstellar dust in the Sun's vicinity. Comparison with neutral sodium-bearing gas

    NASA Astrophysics Data System (ADS)

    Vergely, J.-L.; Valette, B.; Lallement, R.; Raimond, S.

    2010-07-01

    Aims: 3D tomography of the interstellar dust and gas may be useful in many respects, from the physical and chemical evolution of the interstellar medium itself to foreground decontamination of the cosmic microwave background, or various studies of the environments of specific objects. However, while spectral data cubes of the galactic emission become increasingly precise, the information on the distance to the emitting regions has not progressed as well and relies essentially on the galactic rotation curve. Our goal here is to bring more precise information on the distance to nearby interstellar dust and gas clouds within 250 pc. Methods: We apply the best available calibration methods to a carefully screened set of stellar Strömgren photometry data for targets possessing a Hipparcos parallax and spectral type classification. We combine the derived interstellar extinctions and the parallax distances for about 6000 stars to build a 3D tomography of the local dust. We use an inversion method based on a regularized Bayesian approach and a least squares criterion, optimized for this specific data set. We apply the same inversion technique to a totally independent set of neutral sodium absorption data available for about 1700 target stars. Results: We obtain 3D maps of the opacity and the distance to the main dust-bearing clouds within 250 pc and identify in those maps well-known dark clouds and high galactic more diffuse entities. We calculate the integrated extinction between the Sun and the cube boundary and compare this with the total galactic extinction derived from infrared 2D maps. The two quantities reach similar values at high latitudes, as expected if the local dust content is satisfyingly reproduced and the dust is closer than 250 pc. Those maps show a larger high latitude dust opacity in the North compared to the South, reinforcing earlier evidences. Interestingly the gas maps do not show the same asymmetry, suggesting a polar asymmetry of the dust to gas

  17. DIAGNOSTICS OF AGN-DRIVEN MOLECULAR OUTFLOWS IN ULIRGs FROM HERSCHEL-PACS OBSERVATIONS OF OH AT 119 μm

    SciTech Connect

    Spoon, H. W. W.; Lebouteiller, V.; Farrah, D.; González-Alfonso, E.; Bernard-Salas, J.; Urrutia, T.; Rigopoulou, D.; Verma, A.; Westmoquette, M. S.; Smith, H. A.; Afonso, J.; Pearson, C.; Cormier, D.; Efstathiou, A.; Borys, C.; Etxaluze, M.; Clements, D. L.

    2013-10-01

    We report on our observations of the 79 and 119 μm doublet transitions of OH for 24 local (z < 0.262) ULIRGs observed with Herschel-PACS as part of the Herschel ULIRG Survey (HERUS). Some OH 119 μm profiles display a clear P-Cygni shape and therefore imply outflowing OH gas, while other profiles are predominantly in absorption or are completely in emission. We find that the relative strength of the OH emission component decreases as the silicate absorption increases. This result locates the OH outflows inside the obscured nuclei. The maximum outflow velocities for our sources range from less than 100 to ∼2000 km s{sup –1}, with 15/24 (10/24) sources showing OH absorption at velocities exceeding 700 km s{sup –1} (1000 km s{sup –1}). Three sources show maximum OH outflow velocities exceeding that of Mrk231. Since outflow velocities above 500-700 km s{sup –1} are thought to require an active galactic nucleus (AGN) to drive them, about two-thirds of our ULIRG sample may host AGN-driven molecular outflows. This finding is supported by the correlation we find between the maximum OH outflow velocity and the IR-derived bolometric AGN luminosity. No such correlation is found with the IR-derived star formation rate. The highest outflow velocities are found among sources that are still deeply embedded. We speculate that the molecular outflows in these sources may be in an early phase of disrupting the nuclear dust veil before these sources evolve into less-obscured AGNs. Four of our sources show high-velocity wings in their [C II] fine-structure line profiles, implying neutral gas outflow masses of at least (2-4.5) × 10{sup 8} M{sub ☉}.

  18. DSMC Simulations of Gas Outflow and Photochemical Processes in the Coma of Comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Lai, Ian-Lin; Su, Cheng-Chin; Ip, Wing-Huen; Wei, Chen-En; Wu, Jong-Shinn; Lo, Ming-Chung; Liao, Ying; Thomas, Nicolas

    2015-04-01

    The expansion of sublimating gas from cometary nucleus surface is a complex physical process. It involves the diurnal temperature effect of the outgassing rate, the gas drag to the dust, the irregular shape of the nucleus at different scale lengths, transition from the collisional flow regime to the free-molecular flow regime, and the direct gas flow over or into regions in the shadow. Most of these effects which have been discussed before can now be tested by imaging observations and in-situ measurements at comet 67P/Churyumov-Gerasimenko (67P/C-G). We produce the surface temperature distribution and its diurnal variation by a geometrical thermal model of comet 67P/C-G. And we use a parallel 3D Direct Simulation Monte Carlo (DSMC) code, named PDSC++ [1, 2], from Wu's group at NCTU to calculate the gas flow near the cometary nucleus. In the presentation, we will show the results and basic characteristics of the gas coma pattern of comet 67P by including non-uniform gas composition (i.e., H2O-rich vs. CO2/CO) from different regions (i.e., neck vs. head/body). In addition, preliminary results on the photochemical effects of a distributed source will be described. Reference: 1. Wu, J.-S., Tseng, K.-C. and Wu, F.-Y., "Parallel three-dimensional DSMC method using mesh refinement and variable time-step scheme", Comput. Phys. Comm., 162, pp. 166-187, 2004. 2. Su, C.-C., Tseng, K.-C., Cave, H.M., Wu, J.-S., Lian, Y.-Y., Kuo, T.-C. and Jermy, M.C., "Implementation of a Transient Adaptive Sub-Cell Module for the Parallel DSMC Code Using Unstructured Grids," Computers & Fluids, Vol. 39, pp. 1136-1145, 2010.

  19. The ESO UVES Advanced Data Products Quasar Sample: Neutral Gas Mass and Metal Abundances in the Universe

    NASA Astrophysics Data System (ADS)

    Zafar, T.; Péroux, C.; Vladilo, G.; Centurión, M.; Molaro, P.; D'Odorico, V.; Abbas, K.; Popping, A.; Milliard, B.; Deharveng, J.-M.; Frank, S.

    2015-06-01

    Damped Lyα absorbers (DLAs), seen in the spectra of background quasars, are unique probes to select HI-rich galaxies. We selected a dataset of 250 quasars observed with the Ultraviolet Visual Echelle Spectrograph (UVES) and available through the ESO UVES Advanced Data Products (EUADP) archive, to study the gas and metal properties of 150 damped absorbers. These high-redshift absorbers contain information on the physical state and chemical composition of the interstellar medium and the neutral gas mass, a possible indicator of gas consumption as star formation proceeds. We find no evolution of the neutral gas mass density, with sub-DLAs contributing 8-20% (increasing with redshift). The EUADP dataset provides insights into the nucleosynthetic origin of nitrogen, confirming the bimodal behaviour of [N/α], and also confirms the deficiency of argon in DLAs.

  20. A Field-Reversed Configuration Plasma Translated into a Neutral Gas Atmosphere

    NASA Astrophysics Data System (ADS)

    Sekiguchi, Jun'ichi; Asai, Tomohiko; Takahashi, Tsutomu; Ando, Hirotoshi; Arai, Mamiko; Katayama, Seri; Takahashi, Toshiki

    2014-10-01

    A field-reversed configuration (FRC) is a compact toroid dominantly with poloidal magnetic field. Because of its simply-connected configuration, an FRC can be translated axially along a gradient of guide magnetic field, and trapped in a confinement region with quasi-static external magnetic field. FRC translation experiments have been performed several facilities. Translation speed of those translated FRCs is comparable with super-Alfvenic speed of approximately 200 km/s. In this experiments, FRC translation has been performed on the FAT (FRC Amplification via Translation) facility. Achieved translation speed in the case of translation into a confinement chamber maintained as the vacuum state is in the range from 130 to 210 km/s. On the other hand, FRC translation into a statically filled deuterium gas atmosphere has also been performed. In the case of translation into filled neutral gas, FRC translation speed is approximately 80 km/s and the separatrix volume has extremely expanded compared with the case of a vacuum state. The phenomenon suggests the presence of regeneration process of translation kinetic energy back into the internal plasma energy during the translation process. This work was partially supported by ``Nihon University Symbolic Project.'' The authors gratefully acknowledge contributions from Nac Image Technology Inc. on the fast camera measurements.

  1. Physical properties of neutral gas in M31 and the Galaxy

    NASA Technical Reports Server (NTRS)

    Braun, Robert; Walterbos, Rene A. M.

    1992-01-01

    The present study analyzes, in parallel with published data for the Galaxy, neutral hydrogen (H I) absorption and deduced emission detected along seven lines of sight through the disk of M31. It is shown that the brightness temperature of H I emission is coupled to the opacity of the gas. The Galactic relationship shows asymptotic trends at both large and small opacities. A simple yet effective physical model which accounts for this behavior consists of only two independent components: a high-opacity cool component of fixed mean temperature, and a low-opacity warm component of fixed mean brightness. A lower mean gas pressure by a factor of about 2 is argued to be the most plausible mechanism for accounting for a higher cool-component H I temperature in M31. Deduced volume filling factors of the Galactic H I are about 1 and 15 percent, respectively, for the cool and warm components, while for M31 they are 8 and 30 percent. The large ratio of surface to volume filling factors for both cool and warm H I suggests that these components are distributed predominantly as large sheet- or shell-like structures.

  2. Four-fluid MHD Simulations of the Plasma and Neutral Gas Environment of Comet Churyumov-Gerasimenko Near Perihelion

    NASA Astrophysics Data System (ADS)

    Huang, Z.; Toth, G.; Gombosi, T.; Jia, X.; Rubin, M.; Fougere, N.; Tenishev, V.; Combi, M.; Bieler, A.; Hansen, K.; Shou, Y.; Altwegg, K.

    2015-10-01

    We develop a 3-D four fluid model to study the plasma environment of comet Churyumov- Gerasimenko (CG), which is the target of the Rosetta mission. Our model is based on BATS-R-US within the SWMF (Space Weather Modeling Framework) that solves the governing multifluid MHD equations and and the Euler equations for the neutral gas fluid. These equations describe the behavior and interactions of the cometary heavy ions, the solar wind protons, the electrons, and the neutrals. This model incorporates mass loading processes, including photo and electron impact ionization, furthermore taken into account are charge exchange, dissociative ion-electron recombination, as well as collisional interactions between different fluids. We simulate the near nucleus plasma and neutral gas environment with a realistic shape model of CG near perihelion and compare our simulation results with Rosetta observations.

  3. Transport in a field-aligned magnetized plasma and neutral gas boundary: the end of the plasma

    NASA Astrophysics Data System (ADS)

    Cooper, Christopher; Gekelman, Walter

    2012-10-01

    A series of experiments at the Enormous Toroidal Plasma Device (ETPD) at UCLA study the Neutral Boundary Layer (NBL) between a magnetized plasma and a neutral gas in the direction of the confining field. A lanthanum hexaboride (LaB6) cathode and semi-transparent anode create a current-free, weakly ionized (ne/nn<5%), helium plasma (B˜250 G, Rplasma=10cm, ne<10^12cm^3, Te<3eV, and Ti˜Tn) that terminates on helium gas without touching any walls. Probes inserted into the plasma measure the basic plasma parameters in the NBL. The NBL begins where the plasma and neutral gas pressures equilibrate and the electrons and ions come to rest through collisions with the neutral gas. A field-aligned electric field (δφ/kTe˜1) is established self-consistently to maintain a current-free termination and dominates transport in the NBL, similar to a sheath but with a length L˜10λei˜10^2λen˜10^5λD. A two-fluid weakly-ionized transport model describes the system. A generalized Ohm's Law correctly predicts the electric field observed. The pressure balance criteria and magnitude of the termination electric field are confirmed over a scaling of parameters. The model can also be used to describe the atmospheric termination of aurora or fully detached gaseous divertors.

  4. Modelling the interaction between the plasma and the neutral gas in a pulsed glow discharge in nitrogen

    SciTech Connect

    Guiberteau, E.; Bonhomme, G.; Zoheir, C.

    1995-12-31

    We present here the first results obtained from the modelling of a pulsed glow discharge in nitrogen, taking into account the heat transfer to the neutral gas. The aim of modelling is to optimize the plasma process in a nitriding reactor. The iron sample to be nitrided forms the cathode of the glow discharge at low pressure (100 to 200 Pa). The reactor uses two disks of diameter 50 mm as electrodes with a 40 mm gap. It works in a pulsed regime (cycle period varies from 10 to 100 ms) with a discharge duration which can be varied from 0.5 to 10 ms. Experimental studies have been carried out using emission spectroscopy resolved in space (1 mm) and time (1 {mu}s), under various discharge and post-discharge durations. These studies have shown the important effect of energy transfer from the discharge to the neutral gas. In fact this transfer produces an expansion of the negative glow observed when the post-discharge duration is decreased. A realistic modelling should thus be performed bearing in mind that the neutral gas behaves not as a thermostat. Consequently the thermal and hydrodynamic evolution of the neutral gas must be considered in the whole modelling.

  5. Another piece of the puzzle: The fast H I outflow in Mrk 231

    NASA Astrophysics Data System (ADS)

    Morganti, Raffaella; Veilleux, Sylvain; Oosterloo, Tom; Teng, Stacy H.; Rupke, David

    2016-09-01

    We present the detection, performed with the Westerbork Synthesis Radio Telescope (WSRT) and the Karl Jansky Very Large Array (VLA), of a fast H I 21 cm outflow in the ultra-luminous infrared galaxy Mrk 231. The outflow is observed as shallow H I absorption blueshifted ~1300 km s-1 with respect to the systemic velocity and located against the inner kpc of the radio source. The outflowing gas has an estimated column density between 5 and 15 × 1018Tspin cm-2. We derive the Tspin to lie in the range 400-2000 K and the corresponding H I densities are nHI ~ 10-100 cm-3. Our results complement previous findings and confirm the multiphase nature of the outflow in Mrk 231. Although effects of the interaction between the radio plasma and the surrounding medium cannot be ruled out, the energetics and the lack of a clear kpc-scale jet suggest that the most likely origin of the H I outflow is a wide-angle nuclear wind, as earlier proposed to explain the neutral outflow traced by Na I and molecular gas in this source. Our results suggest that an H I component is present in fast outflows regardless of the acceleration mechanism (wind vs. jet driven) and that it must be connected with common properties of the pre-interaction gas involved. Considering the observed similarity of their column densities, the H I outflow likely represents the inner part of the broad wind identified on larger scales in atomic Na I. The mass outflow rate of the H I outflow (between 8 and 18 M⊙ yr-1) does not appear to be as large as that observed in molecular gas, partly owing to the smaller sizes of the outflowing region sampled by the H I absorption. These characteristics are commonly seen in other cases of outflows driven by the active galactic nucleus (AGN) suggesting that the H I may represent a short intermediate phase in the rapid cooling of the gas. The results further confirm H I as a good tracer for AGN-driven outflows not only in powerful radio sources. We also obtained deeper continuum

  6. Metallofullerene and fullerene formation from condensing carbon gas under conditions of stellar outflows and implication to stardust

    PubMed Central

    Dunk, Paul W.; Adjizian, Jean-Joseph; Kaiser, Nathan K.; Quinn, John P.; Blakney, Gregory T.; Ewels, Christopher P.; Marshall, Alan G.; Kroto, Harold W.

    2013-01-01

    Carbonaceous presolar grains of supernovae origin have long been isolated and are determined to be the carrier of anomalous 22Ne in ancient meteorites. That exotic 22Ne is, in fact, the decay isotope of relatively short-lived 22Na formed by explosive nucleosynthesis, and therefore, a selective and rapid Na physical trapping mechanism must take place during carbon condensation in supernova ejecta. Elucidation of the processes that trap Na and produce large carbon molecules should yield insight into carbon stardust enrichment and formation. Herein, we demonstrate that Na effectively nucleates formation of Na@C60 and other metallofullerenes during carbon condensation under highly energetic conditions in oxygen- and hydrogen-rich environments. Thus, fundamental carbon chemistry that leads to trapping of Na is revealed, and should be directly applicable to gas-phase chemistry involving stellar environments, such as supernova ejecta. The results indicate that, in addition to empty fullerenes, metallofullerenes should be constituents of stellar/circumstellar and interstellar space. In addition, gas-phase reactions of fullerenes with polycyclic aromatic hydrocarbons are investigated to probe “build-up” and formation of carbon stardust, and provide insight into fullerene astrochemistry. PMID:24145444

  7. Metallofullerene and fullerene formation from condensing carbon gas under conditions of stellar outflows and implication to stardust.

    PubMed

    Dunk, Paul W; Adjizian, Jean-Joseph; Kaiser, Nathan K; Quinn, John P; Blakney, Gregory T; Ewels, Christopher P; Marshall, Alan G; Kroto, Harold W

    2013-11-01

    Carbonaceous presolar grains of supernovae origin have long been isolated and are determined to be the carrier of anomalous (22)Ne in ancient meteorites. That exotic (22)Ne is, in fact, the decay isotope of relatively short-lived (22)Na formed by explosive nucleosynthesis, and therefore, a selective and rapid Na physical trapping mechanism must take place during carbon condensation in supernova ejecta. Elucidation of the processes that trap Na and produce large carbon molecules should yield insight into carbon stardust enrichment and formation. Herein, we demonstrate that Na effectively nucleates formation of Na@C60 and other metallofullerenes during carbon condensation under highly energetic conditions in oxygen- and hydrogen-rich environments. Thus, fundamental carbon chemistry that leads to trapping of Na is revealed, and should be directly applicable to gas-phase chemistry involving stellar environments, such as supernova ejecta. The results indicate that, in addition to empty fullerenes, metallofullerenes should be constituents of stellar/circumstellar and interstellar space. In addition, gas-phase reactions of fullerenes with polycyclic aromatic hydrocarbons are investigated to probe "build-up" and formation of carbon stardust, and provide insight into fullerene astrochemistry. PMID:24145444

  8. The Neutral Gas Desorption and Breakdown on a Metal-Dielectric Junction Immersed in a Plasma

    NASA Technical Reports Server (NTRS)

    Vayner, Boris; Galofaro, Joel; Ferguson, Dale; Lyons, Valerie J. (Technical Monitor)

    2002-01-01

    New results are presented of an experimental study and theoretical analysis of arcing on metal-dielectric junctions immersed in a low-density plasma. Two samples of conventional solar arrays have been used to investigate the effects of arcing within a wide range of neutral gas pressures, ion currents, and electron number densities. All data (except video) were obtained in digital form that allowed us to study the correlation between external parameters (plasma density, additional capacitance, bias voltage, etc) and arc characteristics (arc rate, arc current pulse width and amplitude, gas species partial pressures, intensities of spectral lines, and so on). Arc sites were determined by employing a video-camera, and it is shown that the most probable sites for arc inception are trip le-junctions, even though some arcs were initiated in gaps between cells. The effect of surface conditioning (decrease of arc rate due to outgassing) was clearly demonstrated. Moreover, a considerable increase in arc rate due to absorption of molecules from atmospheric air has been confirmed. The analysis of optical spectra (240-800 nm) reveals intense narrow atomic lines (Ag, H) and wide molecular bands (OH, CH, SiH, SiN) that confirm a complicated mechanism of arc plasma generation. The rate of plasma contamination due to arcing was measured by employing a mass-spectrometer. These measurements provided quite reliable data for the development of a theoretical model of plasma contamination, In conclusion, the arc threshold was increased to above 350 V (from 190 V) by keeping a sample in vacuum (20 micronTorr) for seven days. The results obtained are important for the understanding of the arc inception mechanism, which is absolutely essential for progress toward the design of high voltage solar arrays for space applications.

  9. A Tetrapositive Metal Ion in the Gas Phase: Thorium(IV) Coordinated by Neutral Tridentate Ligands

    SciTech Connect

    Gong, Yu; Hu, Han-Shi; Tian, Guoxin; Rao, Linfeng; Li, Jun; Gibson, John K.

    2013-07-01

    ESI of 1:1 mixtures of Th(ClO₄)₄ and ligand TMOGA in acetonitrile resulted in the observation of the TMOGA supported tetracation, Th(L)₃⁴⁺, in the gas phase. Three TMOGA ligands are necessary to stabilize the tetrapositive thorium ion; no Th(L)₂⁴⁺ or Th(L)₄⁴⁺ was observed. Theoretical calculations reveal that the Th(L)₃⁴⁺ complex possesses C₃ symmetry with the thorium center coordinated by nine oxygen atoms from three ligands, which forms a twisted TPP geometry. Actinide compounds with such a geometry feature a nine-coordinate chiral actinide center. The Th-L binding energy and bond orders of Th(L)n⁴⁺ decrease as the coordination number increases, consistent with the trend of concurrently increasing Th-O distances. The Th-O bonding is mainly electrostatic in nature, but the covalent interactions are not negligible. CID of the Th(L)₃⁴⁺ complex mainly resulted in charge reduction to form Th(L)₂(L-86)³⁺oss of neutral TMOGA was not observed. The protic ligand methanol stabilized only tri- and dications of ligated thorium. The intensity of the Th(L)₃⁴⁺ peak was reduced as the percentage of water increased in the Th(ClO₄)₄/TMOGA solution.

  10. Mass spectrometric measurements of the neutral gas composition of the thermosphere and exosphere of Venus

    NASA Technical Reports Server (NTRS)

    Niemann, H. B.; Kasprzak, W. T.; Hedin, A. E.; Spencer, N. W.; Hunten, D. M.

    1980-01-01

    The neutral gas composition and density in the thermosphere of Venus is being measured with a quadrupole mass spectrometer on the Pioneer Venus orbiter. Data are obtained near periapsis once per day approximately 150-250 km above the surface. The principal gases in the thermosphere are CO2, CO, N2, O, N, and He. Atomic oxygen is the major constituent above 155 km on the dayside and also on the nightside up to 180 km when helium becomes the major constituent. The average values of CO2, CO, N2, O, and N remain nearly constant during day and night, but an abrupt change occurs across the terminator from a high dayside value to a low nightside value. The helium density varies in the opposite way, and a distinct bulge was observed at night near the morning terminator. The data have been used as the basis of an empirical model. Large orbit to orbit variations in densities were also observed on the nightside, suggesting perhaps strong turbulent motion in the atmosphere below. Kinetic temperatures inferred from scale heights are approximately 285 K on the dayside and 110 K at night. The average global temperature obtained from the model is 199 K.

  11. Statistical mechanics of a neutral point-vortex gas at low energy.

    PubMed

    Esler, J G; Ashbee, T L; McDonald, N R

    2013-07-01

    The statistics of a neutral point-vortex gas in an arbitrary two-dimensional simply connected and bounded container are investigated in the framework of the microcanonical ensemble, following the cumulant expansion method of Pointin and Lundgren [Phys. Fluids 19, 1459 (1976)]. The equation for vorticity fluctuations, obtained when a thermodynamic scaling limit is taken, is solved explicitly. The solution depends on an infinite sequence of negative "domain inverse temperatures," determined by the domain shape, which are obtained from solutions of a "vorticity mode" eigenvalue problem. An explicit expression for the thermodynamic curve relating inverse temperature and energy is found and is shown to depend on the geometry and not on the scale of the domain. Explicit formulas are then obtained for the time variance of the projection of the vorticity field onto each vorticity mode. The results are verified by two methods. First, for a chosen single-parameter family of domains, direct sampling of the microcanonical ensemble is used to demonstrate the accuracy of the formula for the thermodynamic curve. Second, direct numerical simulations are used to verify the formulas for the variance of the projections of the vorticity field, with convincing results. PMID:23944416

  12. Neutral Gas Temperature Estimates in an Inductively Coupled CF4 Plasma by Fitting Diatomic Emission Spectra

    NASA Technical Reports Server (NTRS)

    Cruden, Brett A.; Rao, M. V. V. S.; Sharma, Surendra P.; Meyyappan, M.

    2001-01-01

    This work examines the accuracy of plasma neutral temperature estimates by fitting the rotational band envelope of different diatomic species in emission. Experiments are performed in an inductively coupled CF4 plasma generated in a Gaseous Electronics Conference reference cell. Visible and ultraviolet emission spectra are collected at a power of 300 W (approximately 0.7 W/cc) and pressure of 30 mtorr. The emission bands of several molecules (CF, CN, C2, CO, and SiF) are fit simultaneously for rotational and vibrational temperatures and compared. Four different rotational temperatures are obtained: 1250 K for CF and CN, 1600 K for CO, 1800 K for C2, and 2300 K for SiF. The vibrational temperatures obtained vary from 1750-5950 K, with the higher vibrational temperatures generally corresponding to the lower rotational temperatures. These results suggest that the different species have achieved different degrees of equilibration between the rotational and vibrational modes and may not be equilibrated with the translational temperatures. The different temperatures are also related to the likelihood that the species are produced by ion bombardment of the surface, with etch products like SiF, CO, and C2 having higher temperatures than species expected to have formed in the gas phase.

  13. The Geometry of Quasar Outflows

    NASA Astrophysics Data System (ADS)

    Ganguly, Rajib

    2012-10-01

    Quasar outflows are important for understanding the accretion and growth processes of the central black hole, but also potentially play a role in feedback to the galaxy, halting star formation and infall of gas. A big uncertainty lies in the geometry and density of these outflows, especially as a function of ionization and velocity. We aim to tackle this using the archival COS M grating spectra of 266 quasars. We separate the geometry of outflows into two parts: the solid angle subtended around the black hole, and the distance of the outflow from the central engine. Large numbers of quasars with high resolution spectra are required for each aspect of this statistical investigation. First, we will determine which/how many absorption-line systems are intrinsic through both partial covering methods and statistical assessments. Second, we will consider the incidence of intrinsic absorbers as a function of quasar property {e.g., radio-loudness, SED shape, black hole mass, bolometric luminosity}. This will reveal what determines the solid angle. This can only be done at moderate redshifts where quasars with a larger range of properties are observable, and hence requires HST/COS. Third, we will use the wide range of diagnostic lines to constrain the physical conditions of the absorbers. We will target the CIII*1175 complex and apply photoionization models to constrain the densities and ionization parameters. This will provide the largest set yet of intrinsic absorbers with systematic distance constraints. In tandem with the solid angles, this work will inform models regarding the geometry of quasar outflows.

  14. The neutral gas extent of galaxies as derived from weak intervening Ca ii absorbers

    NASA Astrophysics Data System (ADS)

    Richter, P.; Krause, F.; Fechner, C.; Charlton, J. C.; Murphy, M. T.

    2011-04-01

    We present a systematic study of weak intervening Ca ii absorbers at low redshift (z < 0.5), based on the analysis of archival high-resolution (R ≥ 45 000) optical spectra of 304 quasars and active galactic nuclei observed with VLT/UVES. Along a total redshift path of Δz ≈ 100 we detected 23 intervening Ca ii absorbers in both the Ca ii H & K lines, with rest frame equivalent widths Wr,3934 = 15-799 mÅ and column densities log N(Ca ii) = 11.25-13.04 (obtained by fitting Voigt-profile components). We obtain a bias-corrected number density of weak intervening Ca ii absorbers of {d{N}/dz=0.117 ± 0.044} at ⟨zabs⟩ = 0.35 for absorbers with log N(Ca ii) ≥ 11.65 (Wr,3934 ≥ 32 mÅ). This is 2.6 times the value obtained for damped Lyman α absorbers (DLAs) at low redshift. All Ca ii absorbers in our sample show associated absorption by other low ions such as Mg ii and Fe ii; 45 percent of them have associated Na i absorption. From ionization modelling we conclude that intervening Ca ii absorption with log N(Ca ii) ≥ 11.5 arises in DLAs, sub-DLAs and Lyman-limit systems (LLS) at H i column densities of log N(H i) ≥ 17.4. Using supplementary H i information for nine of the absorbers we find that the Ca ii/H i ratio decreases strongly with increasing H i column density, indicating a column-density-dependent dust depletion of Ca. The observed column density distribution function of Ca ii absorption components follows a relatively steep power law, f(N) ∝ N - β, with a slope of - β = -1.68, which again points towards an enhanced dust depletion in high column density systems. The relatively large cross section of these absorbers together with the frequent detection of Ca ii absorption in high-velocity clouds (HVCs) in the halo of the Milky Way suggests that a considerable fraction of the intervening Ca ii systems trace (partly) neutral gas structures in the halos and circumgalactic environment of galaxies (i.e., they are HVC analogs). Based on the recently

  15. Blue-sky bifurcation of ion energies and the limits of neutral-gas sympathetic cooling of trapped ions

    PubMed Central

    Schowalter, Steven J.; Dunning, Alexander J.; Chen, Kuang; Puri, Prateek; Schneider, Christian; Hudson, Eric R.

    2016-01-01

    Sympathetic cooling of trapped ions through collisions with neutral buffer gases is critical to a variety of modern scientific fields, including fundamental chemistry, mass spectrometry, nuclear and particle physics, and atomic and molecular physics. Despite its widespread use over four decades, there remain open questions regarding its fundamental limitations. To probe these limits, here we examine the steady-state evolution of up to 10 barium ions immersed in a gas of three-million laser-cooled calcium atoms. We observe and explain the emergence of nonequilibrium behaviour as evidenced by bifurcations in the ion steady-state temperature, parameterized by ion number. We show that this behaviour leads to the limitations in creating and maintaining translationally cold samples of trapped ions using neutral-gas sympathetic cooling. These results may provide a route to studying non-equilibrium thermodynamics at the atomic level. PMID:27511602

  16. Flowing afterglow measurements of the density dependence of gas-phase ion-ion mutual neutralization reactions

    SciTech Connect

    Shuman, Nicholas S.; Viggiano, Albert A.; Johnsen, Rainer

    2013-05-28

    We have studied the dependence of several ion-ion mutual neutralization (MN) reactions on helium density in the range from 1.6 Multiplication-Sign 10{sup 16} to 1.5 Multiplication-Sign 10{sup 17} cm{sup -3} at 300 K, using the Variable Electron and Neutral Density Attachment Mass Spectrometry method. The rate coefficients of the reactions Ar{sup +}+ Br{sub 2}{sup -}, Ar{sup +}+ SF{sub 6}{sup -}, and Ar{sup +}+ C{sub 7}F{sub 14}{sup -} were found to be independent of gas density over the range studied, in disagreement with earlier observations that similar MN reactions are strongly enhanced at the same gas densities. The cause of the previous enhancement with density is traced to the use of 'orbital-motion-limit' theory to infer ion densities from the currents collected by ion-attracting Langmuir probes in a region where it is not applicable.

  17. Blue-sky bifurcation of ion energies and the limits of neutral-gas sympathetic cooling of trapped ions.

    PubMed

    Schowalter, Steven J; Dunning, Alexander J; Chen, Kuang; Puri, Prateek; Schneider, Christian; Hudson, Eric R

    2016-01-01

    Sympathetic cooling of trapped ions through collisions with neutral buffer gases is critical to a variety of modern scientific fields, including fundamental chemistry, mass spectrometry, nuclear and particle physics, and atomic and molecular physics. Despite its widespread use over four decades, there remain open questions regarding its fundamental limitations. To probe these limits, here we examine the steady-state evolution of up to 10 barium ions immersed in a gas of three-million laser-cooled calcium atoms. We observe and explain the emergence of nonequilibrium behaviour as evidenced by bifurcations in the ion steady-state temperature, parameterized by ion number. We show that this behaviour leads to the limitations in creating and maintaining translationally cold samples of trapped ions using neutral-gas sympathetic cooling. These results may provide a route to studying non-equilibrium thermodynamics at the atomic level. PMID:27511602

  18. Gas-phase energetics of actinide oxides: an assessment of neutral and cationic monoxides and dioxides from thorium to curium.

    PubMed

    Marçalo, Joaquim; Gibson, John K

    2009-11-12

    An assessment of the gas-phase energetics of neutral and singly and doubly charged cationic actinide monoxides and dioxides of thorium, protactinium, uranium, neptunium, plutonium, americium, and curium is presented. A consistent set of metal-oxygen bond dissociation enthalpies, ionization energies, and enthalpies of formation, including new or revised values, is proposed, mainly based on recent experimental data and on correlations with the electronic energetics of the atoms or cations and with condensed-phase thermochemistry. PMID:19725530

  19. Gas-Phase Energetics of Actinide Oxides: An Assessment of Neutral and Cationic Monoxides and Dioxides from Thorium to Curium

    NASA Astrophysics Data System (ADS)

    Marçalo, Joaquim; Gibson, John K.

    2009-09-01

    An assessment of the gas-phase energetics of neutral and singly and doubly charged cationic actinide monoxides and dioxides of thorium, protactinium, uranium, neptunium, plutonium, americium, and curium is presented. A consistent set of metal-oxygen bond dissociation enthalpies, ionization energies, and enthalpies of formation, including new or revised values, is proposed, mainly based on recent experimental data and on correlations with the electronic energetics of the atoms or cations and with condensed-phase thermochemistry.

  20. Gas-phase energies of actinide oxides -- an assessment of neutral and cationic monoxides and dioxides from thorium to curium

    SciTech Connect

    Marcalo, Joaquim; Gibson, John K.

    2009-08-10

    An assessment of the gas-phase energetics of neutral and singly and doubly charged cationic actinide monoxides and dioxides of thorium, protactinium, uranium, neptunium, plutonium, americium, and curium is presented. A consistent set of metal-oxygen bond dissociation enthalpies, ionization energies, and enthalpies of formation, including new or revised values, is proposed, mainly based on recent experimental data and on correlations with the electronic energetics of the atoms or cations and with condensed-phase thermochemistry.

  1. A simple drift-diffusion model for calculating the neutralization time of H- in xe gas for choppers placed in the LEBT

    SciTech Connect

    Tan, Cheng-Yan; /Fermilab

    2010-03-01

    The neutralization of H{sup -} beam with a gas like Xe is an important part of low energy beam transport (LEBT). It is well known that choppers which use an electric field when placed in the LEBT strongly affects the neutralization of H{sup -}. The question then naturally arises as to whether a magnetic chopper has a better neutralization time than an electric chopper. To answer this question, a simple 1-space, 1 time drift-diffusion model of H{sup -} beam in Xe gas has been used to calculate the neutralization times for the following scenarios: (a) a region initially cleared of Xe+ ions with an electric field but partially neutralized outside, (b) a region within and outside the chopper which is initially partially neutralized.

  2. Antibody-mediated neutralization of autocrine Gas6 inhibits the growth of pancreatic ductal adenocarcinoma tumors in vivo.

    PubMed

    Moody, Gordon; Belmontes, Brian; Masterman, Stephanie; Wang, Wei; King, Chadwick; Murawsky, Chris; Tsuruda, Trace; Liu, Shuying; Radinsky, Robert; Beltran, Pedro J

    2016-09-15

    Gas6 and its receptors Axl, Mer and Tyro-3 (TAM) are highly expressed in human malignancy suggesting that signaling through this axis may be tumor-promoting. In pancreatic ductal adenocarcinoma (PDAC), Gas6 and the TAM receptor Axl are frequently co-expressed and their co-expression correlates with poor survival. A strategy was devised to generate fully human neutralizing antibodies against Gas6 using XenoMouse® technology. Hybridoma supernatants were selected based on their ability to inhibit Gas6 binding to the receptor Axl and block Gas6-induced Axl phosphorylation in human cells. Two purified antibodies isolated from the screened hybridomas, GMAB1 and GMAB2, displayed optimal cellular potency which was comparable to that of the soluble extracellular domain of the receptor Axl (Axl-Fc). In vivo characterization of GMAB1 was conducted using a pharmacodynamic assay that measured inhibition of Gas6-induced Akt activation in the mouse spleen. Treatment of mice with a single dose (100-1000 µg) of GMAB1 led to greater than 90% inhibition of Gas6-induced phosphorylated Akt (pAkt) for up to 72 hr. Based on the target coverage observed in the PD assay, the efficacy of GMAB1 was tested against human pancreatic adenocarcinoma xenografts. At doses of 50 µg and 150 µg, twice weekly, GMAB1 was able to inhibit 55% and 76% of tumor growth, respectively (p < 0.001 for both treatments vs. control Ig). When combined with gemcitabine, GMAB1 significantly inhibited tumor growth compared to either agent alone (p < 0.001). Together, the data suggest that Gas6 neutralization may be important as a potential strategy for the treatment of PDAC. PMID:27170265

  3. Modelling penetration and plasma response of a dense neutral gas jet in a post-thermal quenched plasma

    NASA Astrophysics Data System (ADS)

    Parks, P. B.; Wu, W.

    2014-02-01

    This paper is about the dynamics of gas jet injection and propagation into the cold, current quench (CQ) discharge following the thermal quench (TQ) phase of a disruption event. Understanding the processes involved in the interpenetration between a dense, fast-moving supersonic gas jet and a magnetized plasma is fundamental to the solution of the disruption mitigation problem using massive gas injection. An analytical model was developed that provides the penetration depth of the jet in the CQ discharge. The model developed incorporates the injector, the vacuum space between injector and plasma, and the low beta CQ plasma through which the jet penetrates. The radially moving gas stagnates at some point inside the plasma by formation of a ‘bottle shock’, resulting in a certain penetration depth. Consistent with experimental findings, it is shown that high fuelling efficiency >70% and good penetration beyond the q = 2 surface is possible in such plasma discharges, but in normal (unquenched) plasma discharges penetration of dense gas jets will be quite poor. The paper also sheds light on how the external plasma responds to allow interpenetration of perfectly insulating gas jet through a strong magnetic field B2/2μ0 ≫ ρu2. The paper also develops semi-analytical models for the response of the cold, high-current, collision-dominated plasma to the insertion of a dense neutral jet: the propagation of cooling waves out along the magnetic field lines, the heated and ionized surface layer which also expands outwards along the magnetic field lines, and the electrical breakdown of the neutral gas within the jet volume. Although good penetration in the ITER post-TQ discharge can be achieved, the plasma resistivity is only marginally enhanced. This may render repetitive gas inject ineffective, as the concept requires a sizable resistivity enhancement to initiate a current profile contraction, and resulting kink-tearing activity to suppress runaway avalanching.

  4. Doubling of Ion Up-flow for Ion Outflow Calculations

    NASA Astrophysics Data System (ADS)

    Carlson, H. C.; Moen, J. I.; Oksavik, K.; Aruliah, A. L.; Skjaeveland, A.

    2013-12-01

    Estimates of O+ ion escape fluxes from the ionosphere to the magnetosphere, involve the combination of ionospheric O+ up-flow to adequate altitudes for intermediate altitude acceleration processes to boost them into storage in the magnetosphere. Calculations of ambiploar up-flow based on measured ion and electron gas temperatures lead to ion up-flows order 100 m/s in the vicinity of 400 km, but are found to be only order half ion up-flow velocities observed. It has been speculated that this calculated shortfall can be explained by magnetic reconnection, leading to plasma flow jets, in turn leading to frictional drag heating of the thermosphere and consequent upwelling of the neutral rest frame within which ambipolar up-flow occurs. We report here the first direct observations confirming this mechanism for order doubling the ion up-flow speeds. This new perspective needs to be added to thinking within the heavy ion outflow community.

  5. Champagne flutes and brandy snifters: modelling protostellar outflow-cloud chemical interfaces

    NASA Astrophysics Data System (ADS)

    Rollins, R. P.; Rawlings, J. M. C.; Williams, D. A.; Redman, M. P.

    2014-10-01

    A rich variety of molecular species has now been observed towards hot cores in star-forming regions and in the interstellar medium. An increasing body of evidence from millimetre interferometers suggests that many of these form at the interfaces between protostellar outflows and their natal molecular clouds. However, current models have remained unable to explain the origin of the observational bias towards wide-angled `brandy snifter' shaped outflows over narrower `champagne flute' shapes in carbon monoxide imaging. Furthermore, these wide-angled systems exhibit unusually high abundances of the molecular ion HCO+. We present results from a chemodynamic model of such regions where a rich chemistry arises naturally as a result of turbulent mixing between cold, dense molecular gas and the hot, ionized outflow material. The injecta drives a rich and rapid ion-neutral chemistry in qualitative and quantitative agreement with the observations. The observational bias towards wide-angled outflows is explained naturally by the geometry-dependent ion injection rate causing rapid dissociation of CO in the younger systems.

  6. Studies of charge neutral FCC Lattice Gas with Yukawa Interaction and Accelerated Cartesian Expansion method

    NASA Astrophysics Data System (ADS)

    Huang, He

    In this thesis, I present the results of studies of the structural properties and phase transition of a charge neutral FCC Lattice Gas with Yukawa Interaction and discuss a novel fast calculation algorithm---Accelerated Cartesian Expansion (ACE) method. In the first part of my thesis, I discuss the results of Monte Carlo simulations carried out to understand the finite temperature (phase transition) properties and the ground state structure of a Yukawa Lattice Gas (YLG) model. In this model the ions interact via the potential q iqjexp(-kappar> ij)/rij where qi,j are the charges of the ions located at the lattice sites i and j with position vectors R i and Rj; rij = Ri-Rj, kappa is a measure of the range of the interaction and is called the screening parameter. This model approximates an interesting quaternary system of great current thermoelectric interest called LAST-m, AgSbPbmTem+2. I have also developed rapid calculation methods for the potential energy calculation in a lattice gas system with periodic boundary condition bases on the Ewald summation method and coded the algorithm to compute the energies in MC simulation. Some of the interesting results of the MC simulations are: (i) how the nature and strength of the phase transition depend on the range of interaction (Yukawa screening parameter kappa) (ii) what is the degeneracy of the ground state for different values of the concentration of charges, and (iii) what is the nature of two-stage disordering transition seen for certain values of x. In addition, based on the analysis of the surface energy of different nano-clusters formed near the transition temperature, the solidification process and the rate of production of these nano-clusters have been studied. In the second part of my thesis, we have developed two methods for rapidly computing potentials of the form R-nu. Both these methods are founded on addition theorems based on Taylor expansions. Taylor's series has a couple of inherent advantages: (i) it

  7. Numerical Models of Starburst Galaxies: A Study of Outflows and ISM Morphology in Galactic Cores

    NASA Astrophysics Data System (ADS)

    Tanner, Ryan; Cecil, G. N.; Heitsch, F.

    2014-01-01

    Starbursts and AGN winds in galaxy cores can produce large scale outflows. Whether any given outburst can create an outflow depends on several variables including the rate at which the energy is injected into the interstellar medium (ISM), the distribution of clouds with in the ISM, and the overall shape of the ISM. Previous simulations by Cooper et al. (2008) reproduce linear filaments like that in M 82, but were limited in the parameter space that they could explore. We have modified the public Athena hydro code (Stone et al. 2008) to greatly reduce the computation time of high resolution 3D simulations similar to Cooper et al. (2008) and to handle accurate gas cooling down to lower molecule-forming temperatures (10 K). We are exploring the parameter space of a galactic “blowout”, the origin and evolution of interesting ISM morphology such as the curved filamentary “towers” observed at the center of NGC 3079, and how different ISM morphologies may influence the outflow. These simulations are being compared with spectral imaging obtained with the Herschel space telescope to study the connection between regions of the cold neutral medium, warm neutral medium, and warm ionized medium. Those observations are being presented in another session of this AAS meeting. Our work is supported by NASA/Herschel and NC Space Grant funding.

  8. Interstellar neutral flow characteristics, composition, and interaction with the heliosphere - neutral gas and pickup ion analysis from ongoing observations and perspectives for IMAP

    NASA Astrophysics Data System (ADS)

    Moebius, E.; Bzowski, M.; Drews, C.; Frisch, P. C.; Fuselier, S. A.; Galli, A.; Gloeckler, G.; Kubiak, M. A.; Kucharek, H.; Lee, M. A.; Leonard, T.; McComas, D. J.; Park, J.; Schwadron, N.; Swaczyna, P.; Sokol, J. M.; Wood, B. E.; Wurz, P.

    2015-12-01

    The Sun's motion relative to the surrounding interstellar medium leads to an interstellar neutral (ISN) wind through the heliosphere that is moderately depleted by ionization. This situation allows remote sensing of the ISN through resonant scattering of solar UV and in-situ sampling, first via pickup ions (PUI) and most recently with direct neutral atom imaging. PUI observations have revealed the gravitational focusing cone of interstellar He and Ne as well as the composition of high ionization potential elements. After the first direct ISN He observations with Ulysses GAS, the Interstellar Boundary Explorer (IBEX) observes with high collecting power the ISN flow trajectories very close to their perihelion in Earth's orbit for H, He, O, and Ne from December through March. Meanwhile, IBEX has recorded seven years of ISN observations, with changing solar activity and varying viewing strategies. These recurring and remarkably repeatable observations allow us to consolidate the derived physical parameters and some key compositional aspects of the interstellar medium. IBEX observations provide a very precise relation between ISN flow longitude and speed via the hyperbolic trajectory equation, but with larger uncertainties separately for longitude and speed. Recent concerted studies have led to a velocity vector that is consistent between IBEX and Ulysses, with a substantially higher temperature than found previously. The fact that the IBEX He and O ISN observations contain a substantial secondary neutral contribution adds complexity to the quantitative analysis of the physical interstellar medium parameters. However, their discovery also provides invaluable insight into the interstellar plasma interaction in the outer heliosheath, which is shaped strongly by the interstellar magnetic field. The longitude range of the IBEX observations limits the precision of the ISN velocity vector. The IBEX collection power and its sensitivity to the Earth's magnetosphere limit

  9. Suppression of galactic outflows by cosmological infall and circumgalactic medium

    NASA Astrophysics Data System (ADS)

    Singh, Priyanka; Rana, Sandeep; Bagla, Jasjeet S.; Nath, Biman B.

    2016-06-01

    We investigate the relative importance of two galactic outflow suppression mechanisms: (a) cosmological infall of the intergalactic gas on to the galaxy, and (b) the existence of a hot circumgalactic medium (CGM). Considering only radial motion, the infall reduces the speed of outflowing gas and even halts the outflow, depending on the mass and redshift of the galaxy. For star-forming galaxies, there exists an upper mass limit beyond which outflows are suppressed by the gravitational field of the galaxy. We find that infall can reduce this upper mass limit approximately by a factor of 2 (independent of the redshift). Massive galaxies (≳1012 M⊙) host large reservoir of hot, diffuse CGM around the central part of the galaxy. The CGM acts as a barrier between the infalling and outflowing gas and provides an additional source of outflow suppression. We find that at low redshifts (z ≲ 3.5), the CGM is more effective than the infall in suppressing the outflows. Together, these two processes give a mass range in which galaxies are unable to have effective outflows. We also discuss the impact of outflow suppression on the enrichment history of the galaxy and its environment.

  10. Bending and turbulent enhancement phenomena of neutral gas flow containing an atmospheric pressure plasma by applying external electric fields measured by schlieren optical method

    NASA Astrophysics Data System (ADS)

    Yamada, Hiromasa; Yamagishi, Yusuke; Sakakita, Hajime; Tsunoda, Syuichiro; Kasahara, Jiro; Fujiwara, Masanori; Kato, Susumu; Itagaki, Hirotomo; Kim, Jaeho; Kiyama, Satoru; Fujiwara, Yutaka; Ikehara, Yuzuru; Ikehara, Sanae; Nakanishi, Hayao; Shimizu, Nobuyuki

    2016-01-01

    To understand the mechanism of turbulent enhancement phenomena of a neutral gas flow containing plasma ejected from the nozzle of plasma equipment, the schlieren optical method was performed to visualize the neutral gas behavior. It was confirmed that the turbulent starting point became closer to the nozzle exit, as the amplitude of discharge voltage (electric field) increased. To study the effect of electric field on turbulent enhancement, two sets of external electrodes were arranged in parallel, and the gas from the nozzle was allowed to flow between the upper and lower electrodes. It was found that the neutral gas flow was bent, and the bending angle increased as the amplitude of the external electric field increased. The results obtained using a simple model analysis roughly coincide with experimental data. These results indicate that momentum transport from drifted ions induced by the electric field to neutral particles is an important factor that enhances turbulence.

  11. Measurements of Electron Beam and Neutral Gas Emissions in a Space Plasma during AN Ionospheric Modification Experiment.

    NASA Astrophysics Data System (ADS)

    Gilchrist, Brian Earl

    The principal objective of this research was to investigate observations of current collection enhancements due to nitrogen gas emissions from a highly charged, isolated rocket payload in the ionosphere. These observations were made during the second Cooperative High Altitude Rocket Gun Experiment (CHARGE-2) which was an electrically tethered dual payload system. The current collection enhancement was observed on a "daughter" payload located 100 to 426 m away from a "mother" payload, approximately perpendicular to the Earth's magnetic field, which was firing a 1 keV electron beam at up to 48 mA. The unambiguous response of emitting neutral gas from a highly charged vehicle located well away from the disturbed region surrounding the electron beam's mother payload was unique to this experiment. These results are interpreted in terms of neutral gas ionization in close proximity to the daughter vehicle during the short periods of gas emission. The gas source was a modified nitrogen gas rate control system (RCS). The ionization source was most likely accelerated ionospheric electrons. The results indicate that it is possible to enhance the electron current collection capability of positively charged vehicles and reduce overall charging potentials by means of deliberate neutral gas release into a space plasma. Calculations also seem to suggest that ion current out of the ionization region was not a dominant factor in net current balance. A secondary research objective was to investigate magnetic field-aligned electron beam ionization of the atmosphere using ground based vhf radar. Only one radar event could be correlated with both electron beam emission and expected range. This occurred during an RCS induced current collection enhancement which was itself unique among all RCS gas releases. During this event a high voltage power supply, connected in series between the mother payload and the tether wire to the daughter payload, drove the electron beam emitting payload

  12. Coupled two-dimensional edge plasma and neutral gas modeling of tokamak scrape-off-layers

    SciTech Connect

    Maingi, R.

    1992-08-01

    The objective of this study is to devise a detailed description of the tokamak scrape-off-layer (SOL), which includes the best available models of both the plasma and neutral species and the strong coupling between the two in many SOL regimes. A good estimate of both particle flux and heat flux profiles at the limiter/divertor target plates is desired. Peak heat flux is one of the limiting factors in determining the survival probability of plasma-facing-components at high power levels. Plate particle flux affects the neutral flux to the pump, which determines the particle exhaust rate. A technique which couples a two-dimensional (2-D) plasma and a 2-D neutral transport code has been developed (coupled code technique), but this procedure requires large amounts of computer time. Relevant physics has been added to an existing two-neutral-species model which takes the SOL plasma/neutral coupling into account in a simple manner (molecular physics model), and this model is compared with the coupled code technique mentioned above. The molecular physics model is benchmarked against experimental data from a divertor tokamak (DIII-D), and a similar model (single-species model) is benchmarked against data from a pump-limiter tokamak (Tore Supra). The models are then used to examine two key issues: free-streaming-limits (ion energy conduction and momentum flux) and the effects of the non-orthogonal geometry of magnetic flux surfaces and target plates on edge plasma parameter profiles.

  13. Powerful Molecular Outflows in Nearby Active Galaxies

    NASA Astrophysics Data System (ADS)

    Veilleux, Sylvain; Meléndez, Marcio

    2014-07-01

    We report the results from a systematic search for molecular (OH 119 μm) outflows with Herschel-PACS† in a sample of 43 nearby (z < 0.3) galaxy mergers, mostly ultraluminous infrared galaxies (ULIRGs) and QSOs. We find that the character of the OH feature (strength of the absorption relative to the emission) correlates with that of the 9.7-μm silicate feature, a measure of obscuration in ULIRGs. Unambiguous evidence for molecular outflows, based on the detection of OH absorption profiles with median velocities more blueshifted than -50 km s-1, is seen in 26 (70%) of the 37 OH-detected targets, suggesting a wide-angle (~ 145°) outflow geometry. Conversely, unambiguous evidence for molecular inflows, based on the detection of OH absorption profiles with median velocities more redshifted than +50 km s-1, is seen in only 4 objects, suggesting a planar or filamentary geometry for the inflowing gas. Terminal outflow velocities of ~ -1000 km s-1 are measured in several objects, but median outflow velocities are typically ~ -200 km s-1. While the outflow velocities show no statistically significant dependence on the star formation rate, they are distinctly more blueshifted among systems with large AGN fractions and luminosities [log (L AGN/L ⊙) >= 11.8 +/- 0.3]. The quasars in these systems play a dominant role in driving the molecular outflows. In contrast, the most AGN dominated systems, where OH is seen purely in emission, show relatively modest OH line widths, despite their large AGN luminosities, perhaps indicating that molecular outflows subside once the quasar has cleared a path through the obscuring material.

  14. A SEARCH FOR CO-EVOLVING ION AND NEUTRAL GAS SPECIES IN PRESTELLAR MOLECULAR CLOUD CORES

    SciTech Connect

    Tassis, Konstantinos; Hezareh, Talayeh; Willacy, Karen

    2012-11-20

    A comparison between the widths of ion and neutral molecule spectral lines has been recently used to estimate the strength of the magnetic field in turbulent star-forming regions. However, the ion (HCO{sup +}) and neutral (HCN) species used in such studies may not be necessarily co-evolving at every scale and density, and thus, may not trace the same regions. Here, we use coupled chemical/dynamical models of evolving prestellar molecular cloud cores including non-equilibrium chemistry, with and without magnetic fields, to study the spatial distribution of HCO{sup +} and HCN, which have been used in observations of spectral line width differences to date. In addition, we seek new ion-neutral pairs that are good candidates for such observations, because they have similar evolution and are approximately co-spatial in our models. We identify three such good candidate pairs: HCO{sup +}/NO, HCO{sup +}/CO, and NO{sup +}/NO.

  15. Neutral hydrogen gas, past and future star formation in galaxies in and around the `Sausage' merging galaxy cluster

    NASA Astrophysics Data System (ADS)

    Stroe, Andra; Oosterloo, Tom; Röttgering, Huub J. A.; Sobral, David; van Weeren, Reinout; Dawson, William

    2015-09-01

    CIZA J2242.8+5301 (z = 0.188, nicknamed `Sausage') is an extremely massive (M200 ˜ 2.0 × 1015 M⊙), merging cluster with shock waves towards its outskirts, which was found to host numerous emission line galaxies. We performed extremely deep Westerbork Synthesis Radio Telescope H I observations of the `Sausage' cluster to investigate the effect of the merger and the shocks on the gas reservoirs fuelling present and future star formation (SF) in cluster members. By using spectral stacking, we find that the emission line galaxies in the `Sausage' cluster have, on average, as much H I gas as field galaxies (when accounting for the fact cluster galaxies are more massive than the field galaxies), contrary to previous studies. Since the cluster galaxies are more massive than the field spirals, they may have been able to retain their gas during the cluster merger. The large H I reservoirs are expected to be consumed within ˜0.75-1.0 Gyr by the vigorous SF and active galactic nuclei activity and/or driven out by the outflows we observe. We find that the star formation rate (SFR) in a large fraction of H α emission line cluster galaxies correlates well with the radio broad-band emission, tracing supernova remnant emission. This suggests that the cluster galaxies, all located in post-shock regions, may have been undergoing sustained SFR for at least 100 Myr. This fully supports the interpretation proposed by Stroe et al. and Sobral et al. that gas-rich cluster galaxies have been triggered to form stars by the passage of the shock.

  16. Effects of neutral gas releases on electron beam injection from electrically tethered spacecraft

    NASA Technical Reports Server (NTRS)

    Winglee, R. M.

    1990-01-01

    The presence of high neutral densities at low altitudes and/or during thruster firings is known to modify the spacecraft potential during active electron beam injection. Two-dimensional (three velocity) particle simulations are used to investigate the ionization processes including the neutral density required, the modification of the spacecraft potential, beam profile and spatial distribution of the return current into the spacecraft. Three processes are identified: (1) beam-induced ionization, (2) vehicle-induced ionization, and (3) beam plasma discharge. Only in the first two cases does the beam propagate away with little distortion.

  17. TRACING THE BIPOLAR OUTFLOW FROM ORION SOURCE I

    SciTech Connect

    Plambeck, R. L.; Wright, M. C. H.; Friedel, D. N.; Widicus Weaver, S. L.; Bolatto, A. D.; Pound, M. W.; Woody, D. P.; Lamb, J. W.; Scott, S. L.

    2009-10-10

    Using CARMA, we imaged the 87 GHz SiO v = 0 J = 2-1 line toward Orion-KL with 0.''45 angular resolution. The maps indicate that radio source I drives a bipolar outflow into the surrounding molecular cloud along a NE-SW axis, in agreement with the model of Greenhill et al. The extended high-velocity outflow from Orion-KL appears to be a continuation of this compact outflow. High-velocity gas extends farthest along a NW-SE axis, suggesting that the outflow direction changes on timescales of a few hundred years.

  18. A detector to measure transverse profiles and energy of an H- beam using gas stripping and laser photo neutralization

    NASA Astrophysics Data System (ADS)

    Connolly, R.; Degen, C.; DeSanto, L.; Raparia, D.

    2012-02-01

    A detector has been developed at Brookhaven National Lab (BNL) [1] and installed in the exit beam line of the BNL H- linear accelerator (linac) to measure transverse beam profiles, average beam energy and beam-energy spread. These beam properties are found by deflecting beam electrons, produced by both gas stripping and laser neutralization, into a detector. An H- ion, with a first ionization potential of 0.756 eV, can be neutralized by collisions with background gas and by absorbing the energy of a photon of wavelength shorter than 1.64 m. Free electrons produced by both mechanisms are deflected out of the H- beam by a dipole magnet and into a chamber which measures electron charge vs. energy. Ion-beam profiles are measured by scanning a laser beam across the H- beam and measuring the laser-stripped electron charge vs. laser position. Beam energy is deduced by measuring either the laser-stripped or gas-stripped electron charge which passes through a retarding-voltage grid vs. the grid voltage. Since beam electrons have the same velocities as beam protons, the beam proton energy is the electron energy multiplied by mp/me=1836, [E=(γ-1)mc2].

  19. The Space Station neutral gas environment and the concomitant requirements for monitoring

    NASA Technical Reports Server (NTRS)

    Carignan, George

    1988-01-01

    At 340 km, for typical conditions, the neutral atmospheric density is several times 10E8/cc and is thus more abundant than the ionized component by several factors of 10. At that altitude, the principal series is atomic oxygen with 10 percent N2, and 1 percent He, and trace amounts of O2, H, N, NO, and Ar. The constituent densities are highly variable with local time, latitude, and geophysical indices. The physical interaction with surfaces at orbital velocity leads to large buildup of density on forward faces and great depletions in the wakes of objects. Chemical reactions lead to major modifications in constituent densities as in the case of the conversion of most colliding oxygen atoms to oxygen bearing molecules. The neutral environment about an orbiting body is thus a complex product of many variables even without a source of neutral contaminants. The addition of fluxes of gases emanating from the orbiting vehicle, as will be the case for the Space Station, with the associated physical and chemical interactions adds another level of complexity to the character of the environment and mandates a sophisticated measurement capability if the neutral environment is to be quantitatively characterized.

  20. Behaviour of the ASDEX pressure gauge at high neutral gas pressure and applications for ITER

    SciTech Connect

    Scarabosio, A.; Haas, G.

    2008-03-12

    The ASDEX Pressure Gauge is, at present, the main candidate for in-vessel neutral pressure measurement in ITER. Although the APG output is found to saturate at around 15 Pa, below the ITER requirement of 20 Pa. We show, here, that with small modifications of the gauge geometry and potentials settings we can achieve satisfactory behaviour up to 30 Pa at 6 T.

  1. Far-IR spectroscopy of the galactic center: Neutral and ionized gas in the central 10 pc of the galaxy

    NASA Technical Reports Server (NTRS)

    Hollenbach, D. J.; Watson, D. M.; Townes, C. H.; Dinerstein, H. L.; Hollenbach, D.; Lester, D. F.; Werner, M.; Storey, J. W. V.

    1983-01-01

    The 3P1 - 3P2 fine structure line emission from neutral atomic oxygen at 63 microns in the vicinity of the galactic center was mapped. The emission is extended over more than 4' (12 pc) along the galactic plane, centered on the position of Sgr A West. The line center velocities show that the O I gas is rotating around the galactic center with an axis close to that of the general galactic rotation, but there appear also to be noncircular motions. The rotational velocity at R is approximately 1 pc corresponds to a mass within the central pc of about 3 x 10(6) solar mass. Between 1 and 6 pc from the center the mass is approximately proportional to radius. The (O I) line probability arises in a predominantly neutral, atomic region immediately outside of the ionized central parsec of out galaxy. Hydrogen densities in the (O I) emitting region are 10(3) to 10(6) cm(-3) and gas temperatures are or = 100 K. The total integrated luminosity radiated in the line is about 10(5) solar luminosity, and is a substantial contribution to the cooling of the gas. Photoelectric heating or heating by ultraviolet excitation of H2 at high densities (10(5) cm(-3)) are promising mechanisms for heating of the gas, but heating due to dissipation of noncircular motions of the gas may be an alternative possibility. The 3P1 - 3P0 fine structure line of (O III) at 88 microns toward Sgr A West was also detected. The (O III) emission comes from high density ionized gas (n 10(4) cm(-3)), and there is no evidence for a medium density region (n 10(3) cm(-3)), such as the ionized halo in Sgr A West deduced from radio observations. This radio halo may be nonthermal, or may consist of many compact, dense clumps of filaments on the inner edges of neutral condensations at R or = 2 pc.

  2. Outflow Propagation in Collapsars: Collimated Jets And Expanding Outflows

    SciTech Connect

    Mizuta, A.; Yamasaki, T.; Nagataki, S.; Mineshige, S.; /Kyoto U., Yukawa Inst., Kyoto /KIPAC, Menlo Park

    2007-06-08

    We investigate the outflow propagation in the collapsar in the context of gamma-ray bursts (GRBs) with 2D relativistic hydrodynamic simulations. We vary the specific internal energy and bulk Lorentz factor of the injected outflow from non-relativistic regime to relativistic one, fixing the power of the outflow to be 10{sup 51}erg s{sup -1}. We observed the collimated outflow, when the Lorentz factor of the injected outflow is roughly greater than 2. To the contrary, when the velocity of the injected outflow is slower, the expanding outflow is observed. The transition from collimated jet to expanding outflow continuously occurs by decreasing the injected velocity. Different features of the dynamics of the outflows would cause the difference between the GRBs and similar phenomena, such as, X-ray flashes.

  3. Analysis of solids with a secondary-neutral microprobe based on electron-gas post-ionization.

    PubMed

    Bieck, W; Gnaser, H; Oechsner, H

    1995-10-01

    The detection sensitivity and the lateral resolution in electron-gas SNMS have been improved in a newly developed secondary-neutral microprobe. This instrument combines the high post-ionization efficiency provided by the electron component of an rf-plasma (post-ionization probability alpha(0) of some 10(-2)) with a high-transmission magnetic mass spectrometer. Using the plasma as an effective primary ion source, secondary-neutral intensities of up to 10(9) cps can be realized for 1 keV Ar(+) ion bombardment and a primary current density of 1 mA/cm(2). To obtain laterally resolved secondary-neutral micrographs, a 20 keV-Ga(+)-ion beam produced in a liquid-metal ion source (LMIS) is utilized for sputter excitation. At Ga(+)-ion-beam currents of about 6 nA a spot size on the target of 1 microm is possible. The detection sensitivity in this operation mode is on the order of

  4. Galaxy Outflows Without Supernovae

    NASA Astrophysics Data System (ADS)

    Sur, Sharanya; Scannapieco, Evan; Ostriker, Eve C.

    2016-02-01

    High surface density, rapidly star-forming galaxies are observed to have ≈50-100 km s-1 line of sight velocity dispersions, which are much higher than expected from supernova driving alone, but may arise from large-scale gravitational instabilities. Using three-dimensional simulations of local regions of the interstellar medium, we explore the impact of high velocity dispersions that arise from these disk instabilities. Parametrizing disks by their surface densities and epicyclic frequencies, we conduct a series of simulations that probe a broad range of conditions. Turbulence is driven purely horizontally and on large scales, neglecting any energy input from supernovae. We find that such motions lead to strong global outflows in the highly compact disks that were common at high redshifts, but weak or negligible mass loss in the more diffuse disks that are prevalent today. Substantial outflows are generated if the one-dimensional horizontal velocity dispersion exceeds ≈35 km s-1, as occurs in the dense disks that have star-formation rate (SFR) densities above ≈0.1 M⊙ yr-1 kpc-2. These outflows are triggered by a thermal runaway, arising from the inefficient cooling of hot material coupled with successive heating from turbulent driving. Thus, even in the absence of stellar feedback, a critical value of the SFR density for outflow generation can arise due to a turbulent heating instability. This suggests that in strongly self-gravitating disks, outflows may be enhanced by, but need not caused by, energy input from supernovae.

  5. Compact Neutral Hydrogen Clouds: Searching for Undiscovered Dwarf Galaxies and Gas Associated with an Algol-type Variable Star

    NASA Astrophysics Data System (ADS)

    Grcevich, Jana; Berger, Sabrina; Putman, Mary E.; Eli Goldston Peek, Joshua

    2016-01-01

    Several interesting compact neutral hydrogen clouds were found in the GALFA-HI (Galactic Arecibo L-Band Feed Array HI) survey which may represent undiscovered dwarf galaxy candidates. The continuation of this search is motivated by successful discoveries of Local Volume dwarfs in the GALFA-HI DR1. We identify additional potential dwarf galaxies from the GALFA-HI DR1 Compact Cloud Catalog which are indentified as having unexpected velocities given their other characteristics via the bayesian analysis software BayesDB. We also present preliminary results of a by-eye search for dwarf galaxies in the GALFA-HI DR2, which provides additional sky coverage. Interestingly, one particularly compact cloud discovered during our dwarf galaxy search is spatially coincident with an Algol-type variable star. Although the association is tentative, Algol-type variables are thought to have undergone significant gas loss and it is possible this gas may be observable in HI.

  6. Neutral-pion-decay gamma rays from the Galaxy and the interstellar gas content

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1973-01-01

    Knowledge of the total gamma-ray production rate per H atom from the decay of neutral pions produced in interstellar cosmic-ray interactions is essential for determining the possible amount of interstellar H2. This production rate is recalculated here using the latest accelerator data on neutral pion production in p-p interactions up to about 1500 GeV. A simple but accurate approximation used here resolves the past disagreement over the magnitude of this rate. An upper limit is obtained of (1.51 plus or minus 0.23) times 10 to the -25th power/sec, consistent with the observed upper limit of 1.6 times 10 to the -25th power/sec.

  7. Studying the outflow-core interaction with ALMA Cycle 1 observations of the HH 46/47 molecular outflow

    NASA Astrophysics Data System (ADS)

    Zhang, Yichen; Arce, Hector G.; Mardones, Diego; Dunham, Michael; Garay, Guido; Noriega-Crespo, Alberto; Corder, Stuartt; Offner, Stella; Cabrit, Sylvie

    2016-01-01

    We present ALMA Cycle 1 observations of the HH 46/47 molecular outflow which is driven by a low-mass Class 0/I protostar. Previous ALMA Cycle 0 12CO observation showed outflow cavities produced by the entrainment of ambient gas by the protostellar jet and wide-angle wind. Here we present analysis of observation of 12CO, 13CO, C18O and other species using combined 12m array and ACA observations. The improved angular resolution and sensitivity allow us to detect details of the outflow structure. Specially, we see that the outflow cavity wall is composed of two or more layers of outflowing gas, which separately connect to different shocked regions along the outflow axis inside the cavity, suggesting the outflow cavity wall is composed of multiple shells entrained by a series of jet bow-shock events. The new 13CO and C18O data also allow us to trace relatively denser and slower outflow material than that traced by the 12CO. These species are only detected within about 1 to 2 km/s from the cloud velocity, tracing the outflow to lower velocities than what is possible using only the 12CO emission. Interestingly, the cavity wall of the red lobe appears at very low outflow velocities (as low as ~0.2 km/s). In addition, 13CO and C18O allow us to correct for the CO optical depth, allowing us to obtain more accurate estimates of the outflow mass, momentum and kinetic energy. Applying the optical depth correction significantly increases the previous mass estimate by a factor of 14. The outflow kinetic energy distribution shows that even though the red lobe is mainly entrained by jet bow-shocks, most of the outflow energy is being deposited into the cloud at the base of the outflow cavity rather than around the heads of the bow shocks. The estimated total mass, momentum, and energy of the outflow indicate that the outflow has the ability to disperse the parent core. We found possible evidence for a slowly moving rotating outflow in CS. Our 13CO and C18O observations also trace a

  8. Episodic outflows from high-mass protostars

    SciTech Connect

    Mitchell, G.F.; Maillard, J.P.; Hasegawa, T.I. Canada-France-Hawaii Telescope Corp., Waimea, HI CNRS, Institut d'Astrophysique, Paris Duke University, Durham, NC )

    1991-04-01

    This paper examines the kinematics and physical properties of the outflowing gas from seven luminous deeply embedded young stellar objects or protostars: M8E-IR, GL 490, GL 2591, W3 IRS 5, NGC 7538 IRS 1, NGC 7538 IRS 9, and S140 IRS 1. The outflows are seen as blueshifted absorption features in lines of the fundamental band of CO. The CO lines seen in absorption are compared with CO lines seen in emission at mm wavelengths. New CO J = 2-1 emission-line data are presented for the first five of the sources. 60 refs.

  9. Neutral gas temperature measurements of high-power-density fluorocarbon plasmas by fitting swan bands of C{sub 2} molecules

    SciTech Connect

    Bai Bo; Sawin, Herbert H.; Cruden, Brett A.

    2006-01-01

    The neutral gas temperature of fluorocarbon plasmas in a remote toroidal transformer-coupled source was measured to be greater than 5000 K, under the conditions of a power density greater than 15 W/cm{sup 3} and pressures above 2 torr. The rovibrational bands of C{sub 2} molecules (swan bands, d {sup 3}{pi}{sub g}{yields}a {sup 3}{pi}{sub u}) were fitted to obtain the rotational temperature that was assumed to equal the translational temperature. This rotational-translational temperature equilibrium assumption was supported by the comparison with the rotational temperature of second positive system of added N{sub 2}. For the same gas mixture, the neutral gas temperature is nearly a linear function of plasma power, since the conduction to chamber wall and convection are the major energy-loss processes, and they are both proportional to neutral gas temperature. The dependence of the neutral gas temperature on O{sub 2} flow rate and pressure can be well represented through the power dependence, under the condition of constant current operation. An Arrhenius type of dependence between the etching rate of oxide film and the neutral gas temperature is observed, maybe indicating the importance of the pyrolytic dissociation in the plasma formation process when the temperature is above 5000 K.

  10. Study of Outflow and Molecular Lines from the Observations of BHR71 by The Herschel Key Program,``Dust, Ice, and Gas In Time" (DIGIT)

    NASA Astrophysics Data System (ADS)

    Yang, Yao-Lun; Green, Joel D.

    2014-07-01

    The infall and outflow processes initiated by the collapse a dense core are widely observed in Class 0 protostars, and significantly change the density and temperature structure of the prestellar core as well as the following disk and envelope evolution. Since the Class 0 protostars are usually embedded in the cold molecular envelope preventing them from being observed at visible or near-IR wavelengths, the spectral analyses of the far-IR spectra provide us a window to look through the envelope and constrain the physical properties of the envelope and the core. BHR71, a Class 0 embedded protostar, is located in an isolated neighborhood with a collimated bipolar outflow and shows a rich far-IR spectrum as observed in the DIGIT program (PI: Neal Evans) with Herschel. It has numerous molecular and atomic features that can constrain its physical properties and the density structure well. In this research, we developed a robust data reduction (Green et al. 2013a, b) and automatic line fitting package that ensures all of the molecular and atomic lines are extracted to the same standard and it can be easily used for any other protostars observed by Herschel as well. We found 44 and 28 emission lines in the central spaxel in the PACS and the SPIRE bands respectively, including CO, 13CO, OH, and H2O. The extended feature observed at low-J CO and several H2O lines are consistent to the outflow direction but less collimated and a heterogeneous environment is concluded from the rotational diagram analysis. A dust Monte Carlo radiative transfer simulation using RADMC-3D will reveal the embedded structure with a dust density profile of a flared disk and a spherical envelope with bipolar outflow cavity. We will use a line radiative transfer simulation for multiple species to constrain the chemical abundance distributions and their temperature profiles.With high sensitivity spatial resolved spectra and simulated internal structure analysis of BHR71 will provide a good test of

  11. Kinetic Modeling of the Neutral Gas, Ions, and Charged Dust in Europa's Exosphere

    NASA Astrophysics Data System (ADS)

    Tenishev, V.; Borovikov, D.; Rubin, M.; Jia, X.; Combi, M. R.

    2015-12-01

    The interaction of the Jovian magnetosphere with Europa has been a subject of active research during the last few decades both through in-situ and remote sensing observations as well as theoretical considerations. Linking the magnetosphere and the moon's surface and interior, Europa's exosphere has become one of the primary objects of study in the field. Understanding the physical processes occurring in the exosphere and its chemical composition is required for the understanding of the interaction between Europa and Jupiter. Europa's surface-bound exosphere originates mostly from ion sputtering of the water ice surface. Minor neutral species and ions of exospheric origin are produced via photolytic and electron impact reactions. The interaction of the Jovian magnetosphere and Europa affects the exospheric population of both neutrals and ions via source and loss processes. Moreover, the Lorentz force causes the newly created exospheric ions to move preferably aligned with the magnetic field lines. Contrary to the ions, heavier and slow-moving charged dust grains are mostly affected by gravity and the electric field component of the Lorentz force. As a result, escaping dust forms a narrow tail aligned in the direction of the convection electric field. Here we present results of a kinetic model of the neutral species (H2O, OH, O2, O, and H), ions (O+, O2+, H+, H2+, H2O+, and OH+), and neutral and charged dust in Europa's exosphere. In our model H2O and O2 are produced via sputtering and other exospheric neutral and ions species are produced via photolytic and electron impact reactions. For the charged dust we compute the equilibrium grain charge by balancing the electron and ion collecting currents according to the local plasma flow conditions at the grain's location. For the tracking of the ions, charged dust, and the calculation of the grains' charge we use plasma density and velocity, and the magnetic field derived from our multi-fluid MHD model of Europa

  12. Generation of shockwave and vortex structures at the outflow of a boiling water jet

    NASA Astrophysics Data System (ADS)

    Alekseev, M. V.; Lezhnin, S. I.; Pribaturin, N. A.; Sorokin, A. L.

    2014-12-01

    Results of numerical simulation for shock waves and generation of vortex structures during unsteady outflow of boiling liquid jet are presented. The features of evolution of shock waves and vortex structures formation during unsteady outflow of boiling water are compared with corresponding structures during unsteady gas outflow.

  13. HERSCHEL FAR-INFRARED SPECTRAL-MAPPING OF ORION BN/KL OUTFLOWS: SPATIAL DISTRIBUTION OF EXCITED CO, H{sub 2}O, OH, O, AND C{sup +} IN SHOCKED GAS

    SciTech Connect

    Goicoechea, Javier R.; Cernicharo, José; Cuadrado, Sara; Etxaluze, Mireya; Chavarría, Luis; Neufeld, David A.; Vavrek, Roland; Encrenaz, Pierre; Melnick, Gary J.; Polehampton, Edward

    2015-01-20

    We present ∼2' × 2' spectral-maps of Orion Becklin-Neugebauer/Kleinmann-Low (BN/KL) outflows taken with Herschel at ∼12'' resolution. For the first time in the far-IR domain, we spatially resolve the emission associated with the bright H{sub 2} shocked regions ''Peak 1'' and ''Peak 2'' from that of the hot core and ambient cloud. We analyze the ∼54-310 μm spectra taken with the PACS and SPIRE spectrometers. More than 100 lines are detected, most of them rotationally excited lines of {sup 12}CO (up to J = 48-47), H{sub 2}O, OH, {sup 13}CO, and HCN. Peaks 1/2 are characterized by a very high L(CO)/L {sub FIR} ≈ 5 × 10{sup –3} ratio and a plethora of far-IR H{sub 2}O emission lines. The high-J CO and OH lines are a factor of ≈2 brighter toward Peak 1 whereas several excited H{sub 2}O lines are ≲50% brighter toward Peak 2. Most of the CO column density arises from T {sub k} ∼ 200-500 K gas that we associate with low-velocity shocks that fail to sputter grain ice mantles and show a maximum gas-phase H{sub 2}O/CO ≲ 10{sup –2} abundance ratio. In addition, the very excited CO (J > 35) and H{sub 2}O lines reveal a hotter gas component (T {sub k} ∼ 2500 K) from faster (v {sub S} > 25 km s{sup –1}) shocks that are able to sputter the frozen-out H{sub 2}O and lead to high H{sub 2}O/CO ≳ 1 abundance ratios. The H{sub 2}O and OH luminosities cannot be reproduced by shock models that assume high (undepleted) abundances of atomic oxygen in the preshock gas and/or neglect the presence of UV radiation in the postshock gas. Although massive outflows are a common feature in other massive star-forming cores, Orion BN/KL seems more peculiar because of its higher molecular luminosities and strong outflows caused by a recent explosive event.

  14. Studies of Quasar Outflows

    NASA Technical Reports Server (NTRS)

    Arav, Nahum

    2002-01-01

    The main aim of this research program is to determine the ionization equilibrium and abundances in quasar outflows. Especially in the broad absorption line QSO PG 0946+301. We find that the outflow's metalicity is consistent with being solar, while the abundance ratio of phosphorus to other metals is at least ten times solar. These findings are based on diagnostics that are not sensitive to saturation and partial covering effects in the BALs (Broad Adsorption Lines), which considerably weakened previous claims for enhanced metalicity. Ample evidence for these effects is seen in the spectrum.

  15. Ionised outflows in z ~ 2.4 quasar host galaxies

    NASA Astrophysics Data System (ADS)

    Carniani, S.; Marconi, A.; Maiolino, R.; Balmaverde, B.; Brusa, M.; Cano-Díaz, M.; Cicone, C.; Comastri, A.; Cresci, G.; Fiore, F.; Feruglio, C.; La Franca, F.; Mainieri, V.; Mannucci, F.; Nagao, T.; Netzer, H.; Piconcelli, E.; Risaliti, G.; Schneider, R.; Shemmer, O.

    2015-08-01

    Aims: Outflows driven by active galactic nuclei (AGN) are invoked by galaxy evolutionary models to quench star formation and to explain the origin of the relations observed locally between super-massive black holes and their host galaxies. We here aim to detect extended ionised outflows in luminous quasars, where we expect the highest activity both in star formation and in black-hole accretion. Currently, there are only a few studies based on spatially resolved observations of outflows at high redshift, z > 2. Methods: We analysed a sample of six luminous (L > 1047 erg/s) quasars at z ~ 2.4, observed in H-band using the near-IR integral field spectrometer SINFONI at the VLT. We performed a kinematic analysis of the [Oiii] emission line at λ = 5007 Å. Results: We detect fast, spatially extended outflows in five out of six targets. [Oiii]λ5007 has a complex gas kinematic, with blue-shifted velocities of a few hundreds of km s-1 and line widths up to 1500 km s-1. Using the spectroastrometric method, we infer a size of the ionised outflows of up to ~2 kpc. The properties of the ionised outflows, mass outflow rate, momentum rate, and kinetic power, are correlated with the AGN luminosity. The increase in outflow rate with increasing AGN luminosity is consistent with the idea that a luminous AGN pushes away the surrounding gas through fast outflows that are driven by radiation pressure, which depends on the emitted luminosity. Conclusions: We derive mass outflow rates of about 6-700 M⊙ yr-1 for our sample, which are lower than those observed in molecular outflows. The physical properties of ionised outflows show dependences on AGN luminosity that are similar to those of molecular outflows, but indicate that the mass of ionised gas is lower than that of molecular outflows. Alternatively, this discrepancy between ionised and molecular outflows could be explained with different acceleration mechanisms. Based on Observations collected at the European Organisation for

  16. Radiative ion-ion neutralization: a new gas-phase atmospheric pressure ion transduction mechanism.

    PubMed

    Davis, Eric J; Siems, William F; Hill, Herbert H

    2012-06-01

    All atmospheric pressure ion detectors, including photo ionization detectors, flame ionization detectors, electron capture detectors, and ion mobility spectrometers, utilize Faraday plate designs in which ionic charge is collected and amplified. The sensitivity of these Faraday plate ion detectors are limited by thermal (Johnson) noise in the associated electronics. Thus approximately 10(6) ions per second are required for a minimal detection. This is not the case for ion detection under vacuum conditions where secondary electron multipliers (SEMs) can be used. SEMs produce a cascade of approximately 10(6) electrons per ion impinging on the conversion dynode. Similarly, photomultiplier tubes (PMTs) can generate approximately 10(6) electrons per photon. Unlike SEMs, however, PMTs are evacuated and sealed so that they are commonly used under atmospheric pressure conditions. This paper describes an atmospheric pressure ion detector based on coupling a PMT with light emitted from ion-ion neutralization reactions. The normal Faraday plate collector electrode was replaced with an electrode "needle" used to concentrate the anions as they were drawn to the tip of the needle by a strong focusing electric field. Light was emitted near the surface of the electrode when analyte ions were neutralized with cations produced from the anode. Although radiative-ion-ion recombination has been previously reported, this is the first time ions from separate ionization sources have been combined to produce light. The light from this radiative-ion-ion-neutralization (RIIN) was detected using a photon multiplier such that an ion mobility spectrum was obtained by monitoring the light emitted from mobility separated ions. An IMS spectrum of nitroglycerin (NG) was obtained utilizing RIIN for tranducing the mobility separated ions into an analytical signal. The implications of this novel ion transduction method are the potential for counting ions at atmospheric pressure and for obtaining ion

  17. Interaction energy and closest approach of moving charged particles on a plasma and neutral gas background

    NASA Astrophysics Data System (ADS)

    Øien, Alf H.

    2012-02-01

    Electric interaction between two negatively charged particles of different sizes on a mixed background of positive, negative, and neutral particles is complex and has relevance both to dusty plasmas and to transports in ionized fluids in general. We consider particularly effects during interaction that particle velocity and neutrals in the background may have on the well-known “dressing” and electric shielding that is due to the charged part of the background and how the interaction energy is modified because of this. Without such effects earlier works show the interaction becomes attractive when the distance between the two particles is a bit larger than the Debye length. We use a model where one of the two interacting particles has a radius much larger than the Debye length and the other a radius shorter than the Debye length. Then, the complex interaction may be more easily determined for particle separation up to a few Debye lengths. We consider the larger particle as stationary while the smaller may move. We find quite simple analytic expressions for the dressed particle interaction energy over the whole range of speed of the incoming smaller particle, assumed coming head on the larger particle, and the whole range of neutral particle densities. We also derive a distance of closest approach of small and large particles for all such parameter values. This distance is important for excluded volume estimations for moving small charged particles in media populated by large charged particles on a background as described above, and hence, important for determining the speed of flow of the smaller particles through such media.

  18. Outflows in Sodium Excess Objects

    NASA Astrophysics Data System (ADS)

    Park, Jongwon; Jeong, Hyunjin; Yi, Sukyoung K.

    2015-08-01

    Van Dokkum and Conroy revisited the unexpectedly strong Na i lines at 8200 Å found in some giant elliptical galaxies and interpreted them as evidence for an unusually bottom-heavy initial mass function. Jeong et al. later found a large population of galaxies showing equally extraordinary Na D doublet absorption lines at 5900 Å (Na D excess objects: NEOs) and showed that their origins can be different for different types of galaxies. While a Na D excess seems to be related to the interstellar medium (ISM) in late-type galaxies, smooth-looking early-type NEOs show little or no dust extinction and hence no compelling signs of ISM contributions. To further test this finding, we measured the Doppler components in the Na D lines. We hypothesized that the ISM would have a better (albeit not definite) chance of showing a blueshift Doppler departure from the bulk of the stellar population due to outflow caused by either star formation or AGN activities. Many of the late-type NEOs clearly show blueshift in their Na D lines, which is consistent with the former interpretation that the Na D excess found in them is related to gas outflow caused by star formation. On the contrary, smooth-looking early-type NEOs do not show any notable Doppler components, which is also consistent with the interpretation of Jeong et al. that the Na D excess in early-type NEOs is likely not related to ISM activities but is purely stellar in origin.

  19. THE CIRCUMBINARY OUTFLOW: A PROTOSTELLAR OUTFLOW DRIVEN BY A CIRCUMBINARY DISK

    SciTech Connect

    Machida, Masahiro N.; Inutsuka, Shu-ichiro; Matsumoto, Tomoaki E-mail: inutsuka@nagoya-u.j

    2009-10-10

    Protostellar outflow is a star's first cry at the moment of birth. The outflows have an indispensable role in the formation of single stars because they carry off the excess angular momentum from the center of the shrinking gas cloud, and permit further collapse to form a star. On the other hand, a significant fraction of stars is supposedly born as binaries with circumbinary disks that are frequently observed. Here, we investigate the evolution of a magnetized rotating cloud using a three-dimensional resistive MHD nested-grid code, and show that the outflow is driven by the circumbinary disk and has an important role even in the binary formation. After the adiabatic core formation in the collapsing cloud core, the magnetic flux is significantly removed from the center of the cloud by the Ohmic dissipation. Since this removal makes the magnetic braking ineffective, the adiabatic core continuously acquires the angular momentum to induce fragmentation and subsequent binary formation. The magnetic field accumulates in the circumbinary disk where the removal and accretion of magnetic field are balanced, and finally drives the circumbinary outflow. This result explains the spectacular morphology of some specific young stellar objects such as L1551 IRS5. We can infer that most of the bipolar molecular outflows observed by low density tracers (i.e., CO) would correspond to circumbinary or circum-multiple outflows found in this Letter, since most of the young stellar objects are supposed to be binaries or multiples.

  20. Starburst outflows from nearby galaxies

    NASA Technical Reports Server (NTRS)

    Waller, William H.

    1990-01-01

    Starburst outflows from NGC 5461, 1569 and M82 are discussed. The Sc I galaxy, M101, is reknowned for the kpc-size superassociations of star clusters and HII regions that dominate its spiral arms. NGC 5461 is one of the brightest of these superassociations, rivaling the Large Magellanic Cloud in H alpha luminosity. The NGC 5461 superassociation is dominated by a single unresolved HII region of outstanding luminosity (approx. 1000 Orion nebulae). Detailed examination of corresponding continuum images indicates that only the southern plume has any sort of stellar counterpart. The other plumes are clearly diffuse with no underlying hot stars. An image of NGC 1569 is discussed. Besides showing the peculiar arm noted by Zwicky (1971) and the filamentary extensions to the North and South (as noted by Hodge 1974), this image also reveals two arc-like features of diffuse ionized gas to the South. Both arcs are concentric with the bright center of the galaxy - where the super star clusters, A and B are located. The inner arc (Arc 1) appears to follow the same curve as the SW arm thus suggesting that the two features represent limb-brightened fragments of vast superbubble that was blown out by a central starburst sometime in the past. As the classic starburst galaxy, M82 displays all the luminous hallmarks of intense high-mass star formation and outflow activity. The diffuse H alpha and x ray emitting gas along the minor axis provides especially good evidence for a bipolar outflow of hot gas which is shock heating the swept-up interstellar medium (ISM) to temperatures of approx. 10(exp 4) K. An image shows the H alpha emission within the disk and along the minor axis. Another image shows the same field in the light of near-infrared. Both figures are based on charge coupled device images taken with the McGraw-Hill 1.3 m telescope (Waller 1989). The longer wavelength emission clearly shows a more extended morphology along the major axis. The morphological discrepancy is most

  1. The effects of neutral gas heating on H mode transition and maintenance currents in a 13.56 MHz planar coil inductively coupled plasma reactor

    SciTech Connect

    Jayapalan, Kanesh K.; Chin, Oi-Hoong

    2012-09-15

    The H mode transition and maintenance currents in a 13.56 MHz laboratory 6 turn planar coil inductively coupled plasma (ICP) reactor are simulated for low pressure argon discharge range of 0.02-0.3 mbar with neutral gas heating and at ambient temperature. An experimentally fitted 3D power evolution plot for 0.02 mbar argon pressure is also shown to visualize the effects of hysteresis in the system. Comparisons between simulation and experimental measurements show good agreement in the pressure range of 0.02-0.3 mbar for transition currents and 0.02-0.1 mbar for maintenance currents only when neutral gas heating is considered. This suggests that neutral gas heating plays a non-negligible role in determining the mode transition points of a rf ICP system.

  2. Re-examining the case for neutral gas near the redshift 7 quasar ULAS J1120+0641

    NASA Astrophysics Data System (ADS)

    Bosman, Sarah E. I.; Becker, George D.

    2015-09-01

    Signs of damping-wing absorption attenuating the Lyman α emission line of the first known z ˜ 7 quasar, ULAS J1120+0641, recently provided exciting evidence of a significantly neutral intergalactic medium (IGM). This long-awaited signature of reionization was inferred, in part, from a deficit of flux in the quasar's Lyman α emission line based on predictions from a composite of lower redshift quasars. The composite sample was chosen based on its C IV emission line properties; however, as the original study by Mortlock et al. noted, the composite contained a slight velocity offset in C IV compared to ULAS J1120+0641. Here we test whether this offset may be related to the predicted strength of the Lyman α emission line. We confirm the significant (˜10 per cent at rms) scatter in Lyman α flux for quasars of a given C IV velocity and equivalent width found by Mortlock et al. We further find that among lower redshift objects chosen to more closely match the C IV properties of ULAS J1120+0641, its Lyman α emission falls within the observed distribution of fluxes. Among lower redshift quasars chosen to more closely match in C IV velocity and equivalent width, we find that ULAS J1120+0641 falls within the observed distribution of Lyman α emission line strengths. This suggests that damping-wing absorption may not be present, potentially weakening the case for neutral gas around this object. Larger samples of z > 7 quasars may therefore be needed to establish a clearer picture of the IGM neutral fraction at these redshifts.

  3. Venus upper atmosphere neutral gas composition - First observations of the diurnal variations

    NASA Technical Reports Server (NTRS)

    Niemann, H. B.; Hartle, R. E.; Hedin, A. E.; Kasprzak, W. T.; Spencer, N. W.; Hunten, D. M.; Carignan, G. R.

    1979-01-01

    Measurements of the composition, temperature, and diurnal variations of the major neutral constituents in the thermosphere of Venus are being made with a quadrupole mass spectrometer on the Pioneer Venus Orbiter. Concentrations of carbon dioxide, carbon monoxide, molecular nitrogen, atomic oxygen, and helium are presented, in addition to an empirical model of the data. The concentrations of the heavy gases, carbon dioxide, carbon monoxide, and molecular nitrogen, rapidly decrease from the evening terminator toward the nightside; the concentration of atomic oxygen remains nearly constant and the helium concentration increases, an indication of a nightside bulge. The kinetic temperature inferred from scale heights drops rapidly from 230 K at the terminator to 130 K at a solar zenith angle of 120 deg, and to 112 K at the antisolar point.

  4. Chemical reactions between cold trapped Ba+ ions and neutral molecules in the gas phase

    NASA Astrophysics Data System (ADS)

    Roth, B.; Offenberg, D.; Zhang, C. B.; Schiller, S.

    2008-10-01

    Using a laser-cooled ion trapping apparatus, we have investigated laser-induced chemical reactions between cold trapped Ba+ ions and several neutral molecular gases at room temperature, O2 , CO2 , and N2O , leading to the production of cold trapped (≈20mK) BaO+ ions. The BaO+ ions were converted back to Ba+ ions via reaction with room-temperature CO. Reaction rates were determined by employing molecular dynamics simulations. The cold mixed-species ion ensembles produced were used for studying the efficiency of sympathetic cooling, by variation of the ratio of laser-cooled to sympathetically cooled ion numbers. In one extreme case, 20 laser-cooled Ba+138 ions were capable of maintaining the translational temperature of 120 sympathetically cooled barium isotopes (Ba+135-137) and 430 Ba16138O+ molecules at approximately 25mK .

  5. Warp or Lag? The Ionized and Neutral Hydrogen Gas in the Edge-on Dwarf Galaxy UGC 1281

    NASA Astrophysics Data System (ADS)

    Kamphuis, P.; Peletier, R. F.; van der Kruit, P. C.; Heald, G. H.

    The properties of gas in the halos of galaxies tell us something about the properties of the interstellar medium. Here we report on deep HI and Hα observations of UGC 1281 in order to determine the existence of extra planar gas and its kinematics. This is the first time the halo characteristics of a dwarf galaxy have been investigated. These observations are compared to 3D models in order to determine the distribution of HI in the galaxy. We find that UGC 1281 has Hα emission up to 25 '' (655 pc,˜0.6 Hα hR) in projection above the plane and in general a low Hα flux. Its HI extends 70 '' (1.8 kpc,˜1.5 HI hR) in projection from the plane. This neutral extra-planar gas can be explained by either a line-of-sight warp or a thick disk with rotational velocities that decline with a vertical gradient of 10.6±3.7 km s-1 kpc-1. The line-of-sight warp model is the preferred model as it is conceptually simpler. In either model the warp starts well within the optical radius.

  6. The interaction between an impact-produced neutral gas cloud and the solar wind at the lunar surface

    NASA Technical Reports Server (NTRS)

    Lindeman, R. A.; Vondrak, R. R.; Freeman, J. W.; Snyder, C. W.

    1974-01-01

    On Apr. 15, 1970, the Apollo 13 S-IVB stage impacted the nighttime lunar surface. Beginning 20 sec after impact, the Suprathermal Ion Detector Experiment and the Solar Wind Spectrometer observed a large flux of positive ions (maximum flux of about 3 x 10 to the 8th ions/sq cm/sec/ster) and electrons. Two separate streams of ions were observed: a horizontal flux that appeared to be deflected solar wind ions and a smaller vertical flux of predominantly heavy ions (greater than 10 amu), which probably were material vaporized from the S-IVB stage. An examination of the data shows that collisions between neutral molecules and hot electrons (50 eV) were probably an important ionization mechanism in the impact-produced neutral gas cloud. These electrons, which were detected by the Solar Wind Spectrometer, are thought to have been energized in a shock front or some form of intense interaction region between the cloud and the solar wind. Thus strong ionization and acceleration are seen under conditions approaching a collisionless state.

  7. PROTOSTELLAR OUTFLOWS AND RADIATIVE FEEDBACK FROM MASSIVE STARS

    SciTech Connect

    Kuiper, Rolf; Yorke, Harold W.; Turner, Neal J. E-mail: Harold.W.Yorke@jpl.nasa.gov

    2015-02-20

    We carry out radiation hydrodynamical simulations of the formation of massive stars in the super-Eddington regime including both their radiative feedback and protostellar outflows. The calculations start from a prestellar core of dusty gas and continue until the star stops growing. The accretion ends when the remnants of the core are ejected, mostly by the force of the direct stellar radiation in the polar direction and elsewhere by the reradiated thermal infrared radiation. How long the accretion persists depends on whether the protostellar outflows are present. We set the mass outflow rate to 1% of the stellar sink particle's accretion rate. The outflows open a bipolar cavity extending to the core's outer edge, through which the thermal radiation readily escapes. The radiative flux is funneled into the polar directions while the core's collapse proceeds near the equator. The outflow thus extends the ''flashlight effect'', or anisotropic radiation field, found in previous studies from the few hundred AU scale of the circumstellar disk up to the 0.1 parsec scale of the core. The core's flashlight effect allows core gas to accrete on the disk for longer, in the same way that the disk's flashlight effect allows disk gas to accrete on the star for longer. Thus although the protostellar outflows remove material near the core's poles, causing slower stellar growth over the first few free-fall times, they also enable accretion to go on longer in our calculations. The outflows ultimately lead to stars of somewhat higher mass.

  8. Magnetospheric and Thermospheric Influence on Ionospheric Outflow

    NASA Astrophysics Data System (ADS)

    Garcia-Sage, K.; Moore, T. E.; Mitchell, E. J.; Olson, D. K.

    2013-12-01

    The Fast Auroral SnapshoT (FAST) small explorer has been used extensively to study ionospheric outflow. Past research has used particle and field data to examine the contemporaneous transfer of electromagnetic energy and particle flow downward from the magnetosphere and upward from the ionosphere. Single event studies published by Strangeway et al. [2005] and Brambles et al. [2011, Supporting Online Material] showed that downward electromagnetic energy and particle flow into the ionosphere are correlated with the upward flow of ions out of the ionosphere. It is expected, however, that this correlation will be affected by circumstances that are unique to each specific event, including but not limited to the outflow location (cusp or nightside), preconditioning due to prior geomagnetic activity, and thermospheric neutral densities. Although knowledge of the thermospheric neutral density is usually unavailable, data from the CHAllenging Minisatellite Payload (CHAMP) is able to provide insight into thermospheric populations at altitudes of about 400 km for a few select events. We expand on the previously-mentioned studies by looking at FAST particle and field data for additional events, and we further examine the influence of thermospheric neutral populations, based on CHAMP data.

  9. The evolution of neutral gas in star-forming galaxies across cosmic time

    NASA Astrophysics Data System (ADS)

    Berry, Michael James

    We study the evolution of cold gas in distant galaxies by analyzing observations, semi-analytic models (SAMs), and simulations of star-forming galaxies (SFGs) and damped Lyalpha absorption systems (DLAs). First, we present individual and composite rest-frame ultraviolet (UV) spectra for 81 SFGs where we study the relations among Ly? emission, low and high ionization absorption strength, rest-ultraviolet continuum slope, redshift, and velocity offset. We find that galaxies with R < 25.5 and WLyalpha > 20A have bluer UV continua, weaker low-ionization interstellar absorption lines, weaker C IV absorption, and stronger Si II nebular emission than those with WLyalpha < 20A. Next, we present our range of models which include "standard," "extended," and merger-based disks as well as a metallicity-dependent and pressure-based prescription for partitioning cold gas into atomic and molecular components. Using these models, we "observe" a catalog of mock DLAs, which we compare to observations. We find that extended disk models reproduce quite well the column density distribution of absorbers over the column density range 19 < log N(HI) < 22.5, the observed line density of DLAs, Hi gas density, the Deltav distribution in the redshift range 2 < z < 3.5, and the evolution of DLA metallicity with redshift. Using these models, we characterize the properties of DLA host galaxies and compare them to model SFGs "observed" in the SAMs. We show that DLA host galaxies exhibit a broad range of galaxy properties spanning several decades in stellar mass, star formation rate, and luminosity and fall upon common galaxy scaling relations. Finally, we analyze the radial profiles and evolution of 15 galaxies in numerical simulations and compare them to predictions from the SAMs. Galaxies' cold gas and stellar components are moderately well-fit by exponential profiles, although both gas partitioning recipes predict more molecular gas and less star formation than is observed in the numerical

  10. Outflows of stars due to quasar feedback

    NASA Astrophysics Data System (ADS)

    Zubovas, Kastytis; Nayakshin, Sergei; Sazonov, Sergey; Sunyaev, Rashid

    2013-05-01

    Quasar feedback outflows are commonly invoked to drive gas out of galaxies in the early gas-rich epoch to terminate growth of galaxies. Here we present simulations that show that AGN feedback may drive not only gas but also stars out of their host galaxies under certain conditions. The mechanics of this process is as follows: (1) AGN-driven outflows accelerate and compress gas filling the host galaxy; (2) the accelerated dense shells become gravitationally unstable and form stars on radial trajectories. For the spherically symmetric initial conditions explored here, the black hole needs to exceed the host's Mσ mass by a factor of a few to accelerate the shells and the new stars to escape velocities. We discuss potential implications of these effects for the host galaxies: (i) radial mixing of bulge stars with the rest of the host; (ii) contribution of quasar outflows to galactic fountains as sources of high-velocity clouds; (iii) wholesale ejection of hypervelocity stars out of their hosts, giving rise to Type II supernovae on galactic outskirts, and contributing to reionization and metal enrichment of the Universe; (iv) bulge erosion and even complete destruction in extreme cases resulting in overweight or bulgeless SMBHs.

  11. Gas chromatography analysis of cellular fatty acids and neutral monosaccharides in the identification of lactobacilli.

    PubMed Central

    Rizzo, A F; Korkeala, H; Mononen, I

    1987-01-01

    Cellular fatty acids and monosaccharides in a group of 14 lactobacilli were analyzed by gas chromatography and the identity of the components was confirmed by gas chromatography-mass spectrometry. From the same bacterial sample, both monosaccharides and fatty acids were liberated by methanolysis, and in certain experiments, fatty acids alone were released by basic hydrolysis. The results indicate that basic hydrolysis gave more comprehensive information about the fatty acids, but the analysis of monosaccharides was found to be much more useful in distinguishing between different species of lactobacilli. The method described allowed differentiation of 11 of 14 Lactobacillus species, and even single colonies isolated from agar plates could be used for analysis without subculturing. PMID:3435147

  12. An apparatus for immersing trapped ions into an ultracold gas of neutral atoms.

    PubMed

    Schmid, Stefan; Härter, Arne; Frisch, Albert; Hoinka, Sascha; Denschlag, Johannes Hecker

    2012-05-01

    We describe a hybrid vacuum system in which a single ion or a well-defined small number of trapped ions (in our case Ba(+) or Rb(+)) can be immersed into a cloud of ultracold neutral atoms (in our case Rb). This apparatus allows for the study of collisions and interactions between atoms and ions in the ultracold regime. Our setup is a combination of a Bose-Einstein condensation apparatus and a linear Paul trap. The main design feature of the apparatus is to first separate the production locations for the ion and the ultracold atoms and then to bring the two species together. This scheme has advantages in terms of stability and available access to the region where the atom-ion collision experiments are carried out. The ion and the atoms are brought together using a moving one-dimensional optical lattice transport which vertically lifts the atomic sample over a distance of 30 cm from its production chamber into the center of the Paul trap in another chamber. We present techniques to detect and control the relative position between the ion and the atom cloud. PMID:22667603

  13. A bipolar outflow of ionized gas in K3-50A: H76 alpha radio recombination line and continuum observations of K3-50

    NASA Technical Reports Server (NTRS)

    Depree, C. G.; Goss, W. M.; Palmer, Patrick; Rubin, Robert H.

    1994-01-01

    The H II regions near K3-50 (G70.3 + 1.6) have been imaged at high angular resolution (approximately 1 sec .3) in the continuum and the recombination lines H76(sub alpha and He76(sub alpha) using the Very Large Array (VLA). The helium line is detected in only the brightest component K3-50A while the hydrogen line is detected in three components (K3-50A, B and C1). K3-50A shows a pronounced velocity gradient of approximately 150 km/sec/pc along its major axis (P.A. = 160 deg); in addition a wide range of line widths are observed, from 20 to 65 km/sec. Kinematics from the line data and the morphology of the continuum emission suggest that the ionized material associated with K3-50A is undergoing a high-velocity bipolar outflow.

  14. Neutral gas-plasma interaction - The case of the Io plasma torus

    NASA Astrophysics Data System (ADS)

    Ip, W.-H.

    Recent developments in the study of the gas-plasma interaction at Io and in the Io plasma torus are reviewed. It is suggested that the 'energy crisis' in the hot Io plasma torus may be partially resolved by a local energy generation mechanism such as the magnetic pumping process. It is also argued that the Jovian ring could act as an additional plasma source in injecting cold plasma component into the inner plasma torus, and that the formation of an ion wake may permit a much more extended electromagnetic coupling between Io and the Jovian ionosphere.

  15. High resolution observations of the L1551 bipolar outflow

    NASA Technical Reports Server (NTRS)

    Snell, R.; Moriarty-Schieven, G.; Strom, S.; Schloerb, P.; Strom, K.; Grasdalen, G.

    1986-01-01

    The nearby dark cloud Lynds 1551 contains one of the closest examples of a well-collimated bipolar molecular outflow. This source has the largest angular size of any known outflow and was the first bipolar outflow to be detected. The outflow originates from a low-luminosity young stellar object, IRS-5. Optical and radio continuum observations show the presence of a highly collimated, ionized stellar wind orginating from close to IRS-5 and aligned with the molecular outflow. However, we have little information on the actual mechanism that generates the stellar wind and collimates it into opposed jets. The Very Large Array (VLA) observations indicate that the winds originate within 10(15) cm of IRS-5, unfortunately at a size scale difficult to resolve. For these reasons, observations of the structure and dynamics of the hypersonic molecular gas may provide valuable information on the origin and evolution of these outflows. In addition, the study of the impact of the outflowing gas on the surrounding molecular material is essential to understand the consequence these outflows have on the evolution and star formation history of the entire cloud. Moriarty-Schieven et al. (1986) obtained a oversampled map of the CO emission of a portion of both the blueshifted and redshifted outflows in LI551 using Five College Radio Astronomy Observatory 14 m telescope. The oversampled maps have been reconstructed to an effective angular resolution of 20 arcsec using a maximum entropy algorithm. A continuation of the study of Moriarty-Schieven et al. is presented. The entire L1551 outflow has now been mapped at 12 arcsec sampling requiring roughly 4000 spectra. This data has been constructed to 20 arcsec resolution to provide the first high resolution picture of the entire L1551 outflow. This new data has shown that the blueshifted lobe is more extended than previously thought and has expanded downstream sufficiently to break out of the dense molecular cloud, but the redshifted outflow

  16. Neutral gas desorption and photoelectric emission from aluminum alloy vacuum chambers exposed to synchrotron radiation

    SciTech Connect

    Groebner, O.; Mathewson, A.G.; Strubin, P.; Alge, E.; Souchet, R.

    1989-03-01

    In an aluminum alloy vacuum chamber exposed to synchrotron radiation, the photoelectron currents produced were measured with the photons incident at low angles on the side wall and compared with normal incidence. The calculated photocurrents for normal incidence, using published values of the photoyield for oxidized Al, agree to within 15% with the measured values. Differences in the photocurrent dependence on photon spectrum at normal and glancing incidence were attributed to low-energy photons being totally reflected and hence producing no photoelectrons. It was established that, at glancing angles of incidence down to 11 mrad, a substantial: more than 20%: fraction of the synchrotron radiation is scattered around the vacuum chamber from the initial point of impact. During exposure to synchrotron radiation, the gases desorbed were H/sub 2/, CO, CO/sub 2/, and CH/sub 4/. The similar shapes of the dependence of the gas desorption and the photoelectron currents on the photon spectrum suggested that it is mainly the photoelectrons that are contributing to the desorption. It was estimated that electrons of 60 eV would produce the same gas desorption as synchrotron radiation with a critical energy of 3 keV.

  17. High-speed digital holography for neutral gas and electron density imaging.

    PubMed

    Granstedt, E M; Thomas, C E; Kaita, R; Majeski, R; Baylor, L R; Meitner, S J; Combs, S K

    2016-05-01

    An instrument was developed using digital holographic reconstruction of the wavefront from a CO2 laser imaged on a high-speed commercial IR camera. An acousto-optic modulator is used to generate 1-25 μs pulses from a continuous-wave CO2 laser, both to limit the average power at the detector and also to freeze motion from sub-interframe time scales. Extensive effort was made to characterize and eliminate noise from vibrations and second-surface reflections. Mismatch of the reference and object beam curvature initially contributed substantially to vibrational noise, but was mitigated through careful positioning of identical imaging lenses. Vibrational mode amplitudes were successfully reduced to ≲1 nm for frequencies ≳50 Hz, and the inter-frame noise across the 128 × 128 pixel window which is typically used is ≲2.5 nm. To demonstrate the capabilities of the system, a piezo-electric valve and a reducing-expanding nozzle were used to generate a super-sonic gas jet which was imaged with high spatial resolution (better than 0.8 lp/mm) at high speed. Abel inversions were performed on the phase images to produce 2-D images of localized gas density. This system could also be used for high spatial and temporal resolution measurements of plasma electron density or surface deformations. PMID:27250423

  18. PIC code modeling of spacecraft charging potential during electron beam injection into a background of neutral gas and plasma, part 1

    NASA Technical Reports Server (NTRS)

    Koga, J. K.; Lin, C. S.; Winglee, R. M.

    1989-01-01

    Injections of nonrelativistic electron beams from an isolated equipotential conductor into a uniform background of plasma and neutral gas were simulated using a 2-D electrostatic particle code. The ionization effects on spacecraft charging are examined by including interactions of electrons with neutral gas. The simulations show that the conductor charging potential decreases with increasing neutral background density due to the production of secondary electrons near the conductor surface. In the spacecraft wake, the background electrons accelerated towards the charged spacecraft produce an enhancement of secondary electrons and ions. Simulations run for longer times indicate that the spacecraft potential is further reduced and short wavelength beam-plasma oscillations appear. The results are applied to explain the spacecraft charging potential measured during the SEPAC experiments from Spacelab 1.

  19. A high-redshift quasar absorber without C IV. A galactic outflow caught in the act?

    NASA Astrophysics Data System (ADS)

    Fox, Anne; Richter, Philipp

    2016-04-01

    We present a detailed analysis of a very unusual sub-damped Lyman α (sub-DLA) system at redshift z = 2.304 towards the quasar Q 0453-423, based on high signal-to-noise (S/N), high-resolution spectral data obtained with VLT/UVES. With a neutral hydrogen column density of log N(H i) = 19.23 and a metallicity of -1.61 as indicated by [O i/H i] the sub-DLA mimics the properties of many other optically thick absorbers at this redshift. A very unusual feature of this system is, however, the lack of any C iv absorption at the redshift of the neutral hydrogen absorption, although the relevant spectral region is free of line blends and has very high S/N. Instead, we find high-ion absorption from C iv and O vi in another metal absorber at a velocity more than 220 km s-1 redwards of the neutral gas component. We explore the physical conditions in the two different absorption systems using Cloudy photoionisation models. We find that the weakly ionised absorber is dense and metal-poor while the highly ionised system is thin and more metal-rich. The absorber pair towards Q 0453-423 mimics the expected features of a galactic outflow with highly ionised material that moves away with high radial velocities from a (proto)galactic gas disk in which star-formation takes place. We discuss our findings in the context of C iv absorption line statistics at high redshift and compare our results to recent galactic-wind and outflow models.

  20. BAL OUTFLOW CONTRIBUTION TO AGN FEEDBACK: FREQUENCY OF S IV OUTFLOWS IN THE SDSS

    SciTech Connect

    Dunn, Jay P.; Arav, Nahum; Laughlin, Courtney; Edmonds, Doug; Aoki, Kentaro; Wilkins, Ashlee; Bautista, Manuel E-mail: arav@vt.edu E-mail: kentaro.aoki@hawaiiantel.net E-mail: manuel.bautista@wmich.edu

    2012-05-10

    We present a study of broad absorption line (BAL) quasar outflows that show S IV {lambda}1063 and S IV* {lambda}1073 troughs. The fractional abundances of S IV and C IV peak at similar value of the ionization parameter, implying that they arise from the same physical component of the outflow. Detection of the S IV* troughs will allow us to determine the distance to this gas with higher resolution and higher signal-to-noise spectra, therefore providing the distance and energetics of the ubiquitous C IV BAL outflows. In our bright sample of 156 SDSS quasars, 14% show C IV and 1.9% S IV troughs, which are consistent with a fainter magnitude sample with twice as many objects. One object in the fainter sample shows evidence of a broad S IV trough without any significant trough present from the excited state line, which implies that this outflow could be at a distance of several kpc. Given the fractions of C IV and S IV, we establish firm limits on the global covering factor on S IV that ranges from 2.8% to 21% (allowing for the k-correction). Comparison of the expected optical depth for these ions with their detected percentage suggests that these species arise from common outflows with a covering factor closer to the latter.

  1. Shining a light on star formation driven outflows: the physical conditions within galactic outflows

    NASA Astrophysics Data System (ADS)

    Chisholm, John P.; Tremonti, Christina A.; Leitherer, Claus; Wofford, Aida; Chen, Yanmei

    2016-01-01

    Stellar feedback drives energy and momentum into the surrounding gas, which drives gas and metals out of galaxies through a galactic outflow. Unfortunately, galactic outflows are difficult to observe and characterize because they are extremely diffuse, and contain gas at many different temperatures. Here we present results from a sample of 37 nearby (z < 0.27) star forming galaxies observed in the ultraviolet with the Cosmic Origins Spectrograph on the Hubble Space Telescope. The sample covers over three decades in stellar mass and star formation rate, probing different morphologies such as dwarf irregulars and high-mass merging systems. Using four different UV absorption lines (O I, Si II, Si III and Si IV) that trace a wide range of temperatures (ionization potentials between 13.6 eV and 45 eV), we find shallow correlations between the outflow velocity or the equivalent width of absorption lines with stellar mass or star formation rate. Absorption lines probing different temperature phases have similar centroid velocities and line widths, indicating that they are comoving. Using the equivalent width ratios of the four different transitions, we find the ratios to be consistent with photo-ionized outflows, with moderately strong ionization parameters. By constraining the ionization mechanism we model the ionization fractions for each transition, but find the ionization fractions depend crucially on input model parameters. The shallow velocity scalings imply that low-mass galaxies launch outflows capable of escaping their galactic potential, while higher mass galaxies retain all of their gas, unless they undergo a merger.

  2. COMPLETE IONIZATION OF THE NEUTRAL GAS: WHY THERE ARE SO FEW DETECTIONS OF 21 cm HYDROGEN IN HIGH-REDSHIFT RADIO GALAXIES AND QUASARS

    SciTech Connect

    Curran, S. J.; Whiting, M. T.

    2012-11-10

    From the first published z {approx}> 3 survey of 21 cm absorption within the hosts of radio galaxies and quasars, Curran et al. found an apparent dearth of cool neutral gas at high redshift. From a detailed analysis of the photometry, each object is found to have a {lambda} = 1216 A continuum luminosity in excess of L {sub 1216} {approx} 10{sup 23} W Hz{sup -1}, a critical value above which 21 cm has never been detected at any redshift. At these wavelengths, and below, hydrogen is excited above the ground state so that it cannot absorb in 21 cm. In order to apply the equation of photoionization equilibrium, we demonstrate that this critical value also applies to the ionizing ({lambda} {<=} 912 A) radiation. We use this to show, for a variety of gas density distributions, that upon placing a quasar within a galaxy of gas, there is always an ultraviolet luminosity above which all of the large-scale atomic gas is ionized. While in this state, the hydrogen cannot be detected or engage in star formation. Applying the mean ionizing photon rate of all of the sources searched, we find, using canonical values for the gas density and recombination rate coefficient, that the observed critical luminosity gives a scale length (3 kpc) similar that of the neutral hydrogen (H I) in the Milky Way, a large spiral galaxy. Thus, this simple yet physically motivated model can explain the critical luminosity (L {sub 912} {approx} L {sub 1216} {approx} 10{sup 23} W Hz{sup -1}), above which neutral gas is not detected. This indicates that the non-detection of 21 cm absorption is not due to the sensitivity limits of current radio telescopes, but rather that the lines of sight to the quasars, and probably the bulk of the host galaxies, are devoid of neutral gas.

  3. Evolution of the cosmological mass density of neutral gas from Sloan Digital Sky Survey II - Data Release 7

    NASA Astrophysics Data System (ADS)

    Noterdaeme, P.; Petitjean, P.; Ledoux, C.; Srianand, R.

    2009-10-01

    We present the results of a search for damped Lyman-α (DLA) systems in the Sloan Digital Sky Survey II (SDSS), Data Release 7. We use a fully automatic procedure to identify DLAs and derive their column densities. The procedure is checked against the results of previous searches for DLAs in SDSS. We discuss the agreements and differences and show the robustness of our procedure. For each system, we obtain an accurate measurement of the absorber's redshift, the H I column density and the equivalent width of associated metal absorption lines, without any human intervention. We find 1426 absorbers with 2.15 < z < 5.2 with log N(H I) ≥ 20, out of which 937 systems have log N(H I) ≥ 20.3. This is the largest DLA sample ever built, made available to the scientific community through the electronic version of this paper. In the course of the survey, we discovered the intervening DLA with highest H I column density known to date with log N(H I) = 22.0±0.1. This single system provides a strong constraint on the high-end of the N(H I) frequency distribution now measured with high accuracy. We show that the presence of a DLA at the blue end of a QSO spectrum can lead to important systematic errors and propose a method to avoid them. This has important consequences for the measurement of the cosmological mass density of neutral gas at z ~ 2.2 and therefore on our understanding of galaxy evolution over the past 10 billion years. We find a significant decrease of the cosmological mass density of neutral gas in DLAs, Ω_g^DLA, from z = 4 to z = 2.2, consistent with the result of previous SDSS studies. However, and contrary to other SDSS studies, we find that Ω_g^DLA(z = 2.2) is about twice the value at z = 0. This implies that Ω_g^DLA keeps decreasing at z < 2.2. Catalog is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/505/1087

  4. Neutral beam monitoring

    DOEpatents

    Fink, Joel H.

    1981-08-18

    Method and apparatus for monitoring characteristics of a high energy neutral beam. A neutral beam is generated by passing accelerated ions through a walled cell containing a low energy neutral gas, such that charge exchange neutralizes the high energy ion beam. The neutral beam is monitored by detecting the current flowing through the cell wall produced by low energy ions which drift to the wall after the charge exchange. By segmenting the wall into radial and longitudinal segments various beam conditions are further identified.

  5. A high order cell-centered semi-Lagrangian scheme for multi-dimensional kinetic simulations of neutral gas flows

    NASA Astrophysics Data System (ADS)

    Güçlü, Y.; Hitchon, W. N. G.

    2012-04-01

    The term 'Convected Scheme' (CS) refers to a family of algorithms, most usually applied to the solution of Boltzmann's equation, which uses a method of characteristics in an integral form to project an initial cell forward to a group of final cells. As such the CS is a 'forward-trajectory' semi-Lagrangian scheme. For multi-dimensional simulations of neutral gas flows, the cell-centered version of this semi-Lagrangian (CCSL) scheme has advantages over other options due to its implementation simplicity, low memory requirements, and easier treatment of boundary conditions. The main drawback of the CCSL-CS to date has been its high numerical diffusion in physical space, because of the 2nd order remapping that takes place at the end of each time step. By means of a modified equation analysis, it is shown that a high order estimate of the remapping error can be obtained a priori, and a small correction to the final position of the cells can be applied upon remapping, in order to achieve full compensation of this error. The resulting scheme is 4th order accurate in space while retaining the desirable properties of the CS: it is conservative and positivity-preserving, and the overall algorithm complexity is not appreciably increased. Two monotone (i.e. non-oscillating) versions of the fourth order CCSL-CS are also presented: one uses a common flux-limiter approach; the other uses a non-polynomial reconstruction to evaluate the derivatives of the density function. The method is illustrated in simple one- and two-dimensional examples, and a fully 3D solution of the Boltzmann equation describing expansion of a gas into vacuum through a cylindrical tube.

  6. An Overview of the Comet Nucleus TOUR Discovery Mission and a Description of Neutral Gas and Ion Measurements Planned

    NASA Technical Reports Server (NTRS)

    Mahaffy, Paul; Veverka, Joe; Niemann, Hasso; Harpold, Dan; Chiu, Mary; Reynolds, Edward; Owen, Toby; Kasprzak, Wayne; Patrick, Ed; Raaen, Eric

    2001-01-01

    The CONTOUR (Comet Nucleus TOUR) Mission led by its Principal Investigator Professor Joseph Veverka of Cornell is presently under development at the Johns Hopkins Applied Physics Laboratory for launch in July of 2002 with a flyby of Comet Encke scheduled for November 3, 2003 at a solar distance of 1.07 au. A robust Whipple dust shield is designed to allow a close nucleus approach distance (less than 150 km). The 2nd nominal CONTOUR target is Comet Schwassmann-Wachmann 3, although the spacecraft can alternately be directed to a new comet if such an interesting target is discovered. CONTOUR contains 4 instruments: an imaging spectrometer (CRISP) developed at APL that will obtain both high resolution nucleus images through 8 filters and IR spectra (800 to 2550 nm) of the nucleus, a narrow field of view forward imager (CFI) to locate the target days before the encounter, a dust composition time of flight mass spectrometer (CIDA) provided by Dr. J. Kissel and von Hoemer & Sulger, GmbH, and a mass spectrometer (NGIMS) provided by Goddard Space Flight Center to measure neutral gas and ambient ions. Laboratory calibration of the NGIMS has now been completed. NGIMS also includes an in-flight calibration system that we plan to exercise before and after each comet encounter. We will provide an overview of the CONTOUR Mission and discuss more specifically the NGIMS measurement goals for this mission.

  7. He Bulge Detection by MAVEN Neutral Gas and Ion Mass Spectrometer (NGIMS) in the Upper Atmosphere of Mars

    NASA Astrophysics Data System (ADS)

    Elrod, Meredith; Bougher, Stephen; Benna, Mehdi; Yelle, Roger; Jakosky, Bruce; Bell, Jared; Mahaffy, Paul; Stone, Shane

    2016-07-01

    Studies of the Venusian atmospheres have demonstrated enhanced He densities at high latitudes and on the night-side detections. To determine if Mars has a similar enhanced He 'bulge' in the same region, we compared several periapsis passes from night to dayside. The first six weeks of the MAVEN prime mission had periapsis at high latitudes on the night-side, followed by the next three months at mid latitudes on the dayside moving to low latitudes on the night-side. In addition to its normal orbit, which has a periapsis of approximately 150 km, MAVEN conducts a few deep dip orbits where the spacecraft has a periapsis closer to 125km. The first deep dip was at dusk at mid latitudes, the second at noon at the equator, with the third going from dawn to night in the southern hemisphere. Initial analysis of the Neutral Gas and Ion Mass Spectrometer (NGIMS) closed source data from all orbits with good pointing revealed an enhanced He density on the night-side orbits and a decreased He density on the dayside. This enhancement of He demonstrates a bulge at Mars that will continue to be explored over the course of the mission.

  8. Molecular emission in chemically active protostellar outflows

    NASA Astrophysics Data System (ADS)

    Lefloch, B.

    2011-12-01

    Protostellar outflows play an important role in the dynamical and chemical evolution of cloud through shocks. The Herschel Space Observatory (HSO) brings new insight both on the molecular content and the physical conditions in protostellar shocks through high spectral and angular resolution studies of the emission of major gas cooling agents and hydrides. The Herschel/CHESS key-program is carrying out an in depth study of the prototypical shock region L1157-B1. Analysis of the line profiles detected allows to constrain the formation/destruction route of various molecular species, in relation with the predictions of MHD shock models. The Herschel/WISH key-program investigates the properties and origin of water emission in a broad sample of protostellar outflows and envelopes. Implications of the first results for future studies on mass-loss phenomena are discussed.

  9. Quasar feedback revealed by giant molecular outflows

    NASA Astrophysics Data System (ADS)

    Feruglio, C.; Maiolino, R.; Piconcelli, E.; Menci, N.; Aussel, H.; Lamastra, A.; Fiore, F.

    2010-07-01

    In the standard scenario for galaxy evolution young star-forming galaxies transform into red bulge-dominated spheroids, where star formation has been quenched. To explain this transformation, a strong negative feedback generated by accretion onto a central super-massive black hole is often invoked. The depletion of gas resulting from quasar-driven outflows should eventually stop star-formation across the host galaxy and lead the black hole to “suicide” by starvation. Direct observational evidence for a major quasar feedback onto the host galaxy is still missing, because outflows previously observed in quasars are generally associated with the ionized component of the gas, which only accounts for a minor fraction of the total gas content, and typically occurrs in the central regions. We used the IRAM PdB Interferometer to observe the CO(1-0) transition in Mrk 231, the closest quasar known. Thanks to the wide band we detected broad wings of the CO line, with velocities of up to 750 km s-1 and spatially resolved on the kpc scale. These broad CO wings trace a giant molecular outflow of about 700 M_⊙/year, far larger than the ongoing star-formation rate (~200 M_⊙/year) observed in the host galaxy. This wind will totally expel the cold gas reservoir in Mrk 231 in about 107 yrs, therefore halting the star-formation activity on the same timescale. The inferred kinetic energy in the molecular outflow is ~1.2 × 1044 erg/s, corresponding to a few percent of the AGN bolometric luminosity, which is very close to the fraction expected by models ascribing quasar feedback to highly supersonic shocks generated by radiatively accelerated nuclear winds. Instead, the contribution by the SNe associated with the starburst fall short by several orders of magnitude to account for the kinetic energy observed in the outflow. The direct observational evidence for quasar feedback reported here provides solid support to the scenarios ascribing the observed properties of local massive

  10. A spectacular molecular outflow in the Monoceros OB1 molecular cloud

    NASA Technical Reports Server (NTRS)

    Margulis, Michael; Lada, Charles J.; Hasegawa, Tetsuo; Hayashi, Saeko S.; Hayashi, Masihiko

    1990-01-01

    Detailed observations of CO, CS, IR continuum, and H2 emission from a large, highly collimated, bipolar outflow in the Monoceros OB1 molecular cloud are presented. The CO observations suggest that molecular gas in the outflow is contained in a shell with higher velocity material situated interior to lower velocity material. The velocities of outflow emission are found to increase with increasing distance from the center of the outflow. Additional detections include shock-excited molecular hydrogen emission from the blueshifted lobe of the outflow and six 2-micron sources in the direction of the outflow. Near-IR and IRAS observations suggest that the driving source for the outflow must have a bolometric luminosity below about 4.5 solar luminosities. It is concluded that the flow is probably not driven by stellar radiation from a central source.

  11. Particle Acceleration in Relativistic Outflows

    NASA Technical Reports Server (NTRS)

    Bykov, Andrei; Gehrels, Neil; Krawczynski, Henric; Lemoine, Martin; Pelletier, Guy; Pohl, Martin

    2012-01-01

    In this review we confront the current theoretical understanding of particle acceleration at relativistic outflows with recent observational results on various source classes thought to involve such outflows, e.g. gamma-ray bursts, active galactic nuclei, and pulsar wind nebulae. We highlight the possible contributions of these sources to ultra-high-energy cosmic rays.

  12. Zephyria Outflow Features

    NASA Technical Reports Server (NTRS)

    2004-01-01

    1 October 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows streamlined islands and a small cataract in an outflow channel system in the Zephyria region of Mars, south of Cerberus. The fluids responsible for creating these landforms flowed from the lower left (southwest) toward upper right (northeast). The fluids may have been water and mud or, some Mars scientists have argued, extremely fluid lava. The presence of a small cataract probably argues more strongly for a water and mud origin. This image is located near 3.8oN, 204.7oW. The picture covers an area about 3 km (1.9 mi) wide and is illuminated by sunlight from upper left.

  13. Driving Mechanisms for Molecular Outflows

    NASA Astrophysics Data System (ADS)

    Downes, Turlough P.

    Molecular outflows are observed to be closely associated with star formation. The cumulative momentum and the momentum injection rate in these outflows are important parameters in theories of star formation. The cumulative momentum in an outflow is a measure of the feed-back from star formation on molecular cloud turbulence. The level of turbulence in a cloud also effects the formation of further stars and, indeed, the survival of the cloud itself (e.g. [15]). In addition the rate of injection of momentum is an important constraint for theoretical models of outflows from young stars [10, 18]. Hence, while these outflows are interesting in themselves, it is also critical to understand their origin and behaviour as part of the general study of how stars themselves form.

  14. A Study of PG Quasar-Driven Outflows with COS

    NASA Astrophysics Data System (ADS)

    Hamann, Frederick

    2013-10-01

    Quasar outflows are an important part of the quasar phenomenon, but many questions remain about their energetics, physical properties and the role they might play in providing feedback to host galaxy evolution. We searched our own COS far-UV observations from the QUEST survey and other large COS programs to find a sample of 6 bright PG quasars with broad {FWHM > 400 km/s} high velocity {v > 1000 km/s} absorption lines that clearly form in quasar-driven winds. These quasars can fill an important gap in our understanding between local Seyferts with low-speed winds and high-redshift quasars with extreme BAL outflows. They are also well-studied at other wavelengths, with some evidence for the quasars driving galaxy-scale blowouts and shutting down star formation. But almost nothing is known about the quasar outflows themselves. We propose a detailed study of these 6 outflow quasars using new COS FUV observations to 1} expand the existing wavelength coverage across critical lines that are diagnostic of the outflow physical conditions, kinetic energies, and metallicities, and 2} check for line variability as an indicator of the outflow structure and locations. This quasar sample includes unusual cases with many low-abundance {PV 1118,1128 and SIV 1063} and excited-state lines {SIV 1073*, CIII* 1175, CII* 1335} that will provide unprecedented constraints on the outflow properties, plus the first known OVI-only mini-BAL outflow {no lower ions detected} for which we will cover NeVIII 770,780 to probe the highest ionization gas. The high FUV sensitivity of COS is uniquely able to measure this wide range of outflow lines in low-redshift quasars with no Lya forest contamination.

  15. Thermospheric Wind Impacts on Ionospheric Upflow and Outflow

    NASA Astrophysics Data System (ADS)

    Burleigh, M.; Zettergren, M. D.

    2014-12-01

    Significant amounts of thermal ionospheric plasma can be transported to high altitudes in response to magnetospheric and atmospheric forcing. Soft electron precipitation serves as a heat source for the ambient F-region ionospheric electrons, which enhances the ambipolar electric field and induces upflowing ions. Frictional heating of ions from fast convection through the neutral atmosphere creates pressure-driven ion upflows. Finally, large neutral winds along the geomagnetic field may effectively lift or lower the F-region density peak. At regions above where ion upflows are typically initiated, transverse ion acceleration is thought to give upflowing ions sufficient energy to escape to the magnetosphere. This study examines how low-altitude upflow processes affect ion outflow, focusing particularly on the impacts of neutral winds. A new multi-fluid ionospheric model, which solves conservation equations for mass, momentum, and parallel and perpendicular energy is developed for this study. These fluid equations are solved for all species relevant to the E, F, and topside ionospheric regions and the system is closed through an electrostatic treatment of the auroral currents. This model is driven by the specification of field-aligned currents and a resonant transverse heating term. The model therefore encapsulates the basic ionospheric upflow processes and provides a simple way to approximate the effects of transverse heating and ion outflow. Using this model, individual species responses to electron precipitation, frictional heating, neutral winds, and transverse heating are examined to determine the effects of these low-altitude upflow processes on ion outflow. Results suggest that upflows, including those induced by neutral winds, can have a significant impact on the types and amounts of outflowing ions.

  16. Plasma Outflows: Known Knowns, Known Unknowns, and The Unknown

    NASA Technical Reports Server (NTRS)

    Moore, T. E.

    2012-01-01

    A brief summary is given of i) what we know from observing ionospheric outflows and ii) how outflow parameterizations are being used in global simulations to evaluate their effects on magnetospheric dynamics. Then, a list of unanswered questions and issues to be resolved is given, followed by a description of the known future mission plans expressed in the Heliophysics Roadmap, such as Origin of Near-Earth Plasmas (ONEP), and Ion-Neutral Coupling in the Atmosphere (INCA). Finally, a set of requirements for definitive plasma outflow observations are identified, along with possible methods for fulfilling them in future missions. Since results of the current Heliophysics Decadal Survey are expected soon, it is hoped that future plans can be summarized and discussed without speculation at the GEM 2012 meeting.

  17. Four-fluid MHD Simulations of the Plasma and Neutral Gas Environment of Comet 67P/Churyumov-Gerasimenko Near Perihelion

    NASA Astrophysics Data System (ADS)

    Huang, Zhenguang; Toth, Gabor; Gombosi, Tamas; Jia, Xianzhe; Rubin, Martin; Fougere, Nicolas; Tenishev, Valeriy; Combi, Michael; Bieler, Andre; Hansen, Kenneth; Shou, Yinsi; Altwegg, Kathrin

    2016-04-01

    The neutral and plasma environment is critical in understanding the interaction of the solar wind and comet 67P/Churyumov-Gerasimenko (CG), the target of the European Space Agency's Rosetta mission. In this study, we have developed a 3-D four-fluid model, which is based on BATS-R-US (Block-Adaptive Tree Solarwind Roe-type Upwind Scheme) within SWMF (Space Weather Modeling Framework) that solves the governing multi-fluid MHD equations and the Euler equations for the neutral gas fluid. These equations describe the behavior and interactions of the cometary heavy ions, the solar wind protons, the electrons, and the neutrals. We simulated the plasma and neutral gas environment of comet CG with SHAP5 model near perihelion and we showed that the plasma environment in the inner coma region have some new features: magnetic reconnection in the tail region, a magnetic pile-up region on the nightside, and nucleus directed plasma flow inside the nightside reconnection region.

  18. Characterization of Molecular Outflows in the Substellar Domain

    NASA Astrophysics Data System (ADS)

    Phan-Bao, Ngoc; Lee, Chin-Fei; Ho, Paul T. P.; Dang-Duc, Cuong; Li, Di

    2014-11-01

    We report here our latest search for molecular outflows from young brown dwarfs and very low-mass stars in nearby star-forming regions. We have observed three sources in Taurus with the Submillimeter Array and the Combined Array for Research in Millimeter-wave Astronomy at 230 GHz frequency to search for CO J = 2 → 1 outflows. We obtain a tentative detection of a redshifted and extended gas lobe at about 10 arcsec from the source GM Tau, a young brown dwarf in Taurus with an estimated mass of 73 M J , which is right below the hydrogen-burning limit. No blueshifted emission around the brown dwarf position is detected. The redshifted gas lobe that is elongated in the northeast direction suggests a possible bipolar outflow from the source with a position angle of about 36°. Assuming that the redshifted emission is outflow emission from GM Tau, we then estimate a molecular outflow mass in the range from 1.9 × 10-6 M ⊙ to 2.9 × 10-5 M ⊙ and an outflow mass-loss rate from 2.7 × 10-9 M ⊙ yr-1 to 4.1 × 10-8 M ⊙ yr-1. These values are comparable to those we have observed in the young brown dwarf ISO-Oph 102 of 60 M J in ρ Ophiuchi and the very low-mass star MHO 5 of 90 M J in Taurus. Our results suggest that the outflow process in very low-mass objects is episodic with a duration of a few thousand years and the outflow rate of active episodes does not significantly change for different stages of the formation process of very low-mass objects. This may provide us with important implications that clarify the formation process of brown dwarfs.

  19. Characterization of molecular outflows in the substellar domain

    SciTech Connect

    Phan-Bao, Ngoc; Dang-Duc, Cuong; Lee, Chin-Fei; Ho, Paul T. P.; Li, Di E-mail: pbngoc@asiaa.sinica.edu.tw

    2014-11-01

    We report here our latest search for molecular outflows from young brown dwarfs and very low-mass stars in nearby star-forming regions. We have observed three sources in Taurus with the Submillimeter Array and the Combined Array for Research in Millimeter-wave Astronomy at 230 GHz frequency to search for CO J = 2 → 1 outflows. We obtain a tentative detection of a redshifted and extended gas lobe at about 10 arcsec from the source GM Tau, a young brown dwarf in Taurus with an estimated mass of 73 M {sub J}, which is right below the hydrogen-burning limit. No blueshifted emission around the brown dwarf position is detected. The redshifted gas lobe that is elongated in the northeast direction suggests a possible bipolar outflow from the source with a position angle of about 36°. Assuming that the redshifted emission is outflow emission from GM Tau, we then estimate a molecular outflow mass in the range from 1.9 × 10{sup –6} M {sub ☉} to 2.9 × 10{sup –5} M {sub ☉} and an outflow mass-loss rate from 2.7 × 10{sup –9} M {sub ☉} yr{sup –1} to 4.1 × 10{sup –8} M {sub ☉} yr{sup –1}. These values are comparable to those we have observed in the young brown dwarf ISO-Oph 102 of 60 M {sub J} in ρ Ophiuchi and the very low-mass star MHO 5 of 90 M {sub J} in Taurus. Our results suggest that the outflow process in very low-mass objects is episodic with a duration of a few thousand years and the outflow rate of active episodes does not significantly change for different stages of the formation process of very low-mass objects. This may provide us with important implications that clarify the formation process of brown dwarfs.

  20. Analytical method of free and conjugated neutral aroma components in tobacco by solvent extraction coupled with comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry.

    PubMed

    Ding, Yu; Zhu, Lijun; Liu, Shaomin; Yu, Hanqing; Dai, Ya

    2013-03-01

    A reliable and simple method for quantitative analysis of free and conjugated neutral aroma components (including aldehydes, ketones, alcohols, esters and alkenes) in tobacco using comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry (GC × GC-TOFMS) is described. Simple solvent extraction using methyl tert-butyl ether (MTBE) ensured extraction of the neutral aroma components in their free form. The components present as conjugates were isolated using MTBE extraction following acid-catalysed hydrolysis. The GC × GC-TOFMS analysis was performed to comprehensively identify different forms of neutral aroma components in tobacco. Compared with the conventional methods, our method not only simplified the process but also saved time and solvent. It also exhibited higher selectivity and sensitivity and demonstrated the following results: the limit of detection of the neutral aroma components varied from 0.006 μg/g for 2-acetylfuran to 0.133 μg/g for 5-(hydroxymethyl)-2-furfural, the relative standard deviations were from 0.5% to 6.8% and the recovery ranged from 82.4% to 118.2%. The optimized method was successfully employed to analyse real tobacco samples. Eighty-three neutral aroma components of interest were identified. PMID:23357748

  1. Gas-Phase Oxidation of Cm+ and Cm2+ -- Thermodynamics of neutral and ionized CmO

    SciTech Connect

    Gibson, John K; Haire, Richard G.; Santos, Marta; Pires de Matos, Antonio; Marcalo, Joaquim

    2008-12-08

    Fourier transform ion cyclotron resonance mass spectrometry was employed to study the products and kinetics of gas-phase reactions of Cm+ and Cm2+; parallel studies were carried out with La+/2+, Gd+/2+ and Lu+/2+. Reactions with oxygen-donor molecules provided estimates for the bond dissociation energies, D[M+-O](M = Cm, Gd, Lu). The first ionization energy, IE[CmO], was obtained from the reactivity of CmO+ with dienes, and the second ionization energies, IE[MO+](M = Cm, La, Gd, Lu), from the rates of electron-transfer reactions from neutrals to the MO2+ ions. The following thermodynamic quantities for curium oxide molecules were obtained: IE[CmO]= 6.4+-0.2 eV; IE[CmO+]= 15.8+-0.4 eV; D[Cm-O]= 710+-45 kJ mol-1; D[Cm+-O]= 670+-40 kJ mol-1; and D[Cm2+-O]= 342+-55 kJ mol-1. Estimates for the M2+-O bond energies for M = Cm, La, Gd and Lu are all intermediate between D[N2-O]and D[OC-O]--i.e., 167 kJ mol-1< D[M2+-O]< 532 kJ mol-1 -- such that the four MO2+ ions fulfill the thermodynamic requirement for catalytic O-atom transport from N2O to CO. It was demonstrated that the kinetics are also favorable and that the CmO2+, LaO2+, GdO2+ and LuO2+ dipositive ions each catalyze the gas-phase oxidation of CO to CO2 by N2O. The CmO2+ ion appeared during the reaction of Cm+ with O2 when the intermediate, CmO+, was not collisionally cooled -- although its formation is kinetically and/or thermodynamically unfavorable, CmO2+ is a stable species.

  2. The gas environment of the young stellar object GL 2591 studied by infrared spectroscopy

    NASA Technical Reports Server (NTRS)

    Mitchell, George F.; Curry, Charles; Maillard, Jean-Pierre; Allen, Mark

    1989-01-01

    High-resolution M band (4.6 microns) spectroscopy of GL 2591 is presented. Physical structures noted include an absorption feature with an outflow velocity of about 17 km/s, cold gas (identified with the core of the molecular cloud within which the object is embedded), and very broad C-12O lines formed in a neutral wind. The detection of hot low-velocity gas together with warm high-velocity gas suggests the scenario of a warm neutral wind accelerating from an accretion disk.

  3. The gas environment of the young stellar object GL 2591 studied by infrared spectroscopy

    SciTech Connect

    Mitchell, G.F.; Curry, C.; Maillard, J.; Allen, M.; CNR, Institut d'Astrophysique, Paris; California Institute of Technology, Pasadena )

    1989-06-01

    High-resolution M band (4.6 microns) spectroscopy of GL 2591 is presented. Physical structures noted include an absorption feature with an outflow velocity of about 17 km/s, cold gas (identified with the core of the molecular cloud within which the object is embedded), and very broad C-12O lines formed in a neutral wind. The detection of hot low-velocity gas together with warm high-velocity gas suggests the scenario of a warm neutral wind accelerating from an accretion disk. 32 refs.

  4. Analysis of plasma and neutral gas flow inside of a PET bottle under PIII condition by particle-in-cell/Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Miyagawa, Y.; Tanaka, M.; Ikeyama, M.; Nakao, S.; Choi, J.; Miyagawa, S.

    2006-01-01

    The plasma behavior inside of a PET bottle has been simulated under the condition of plasma immersed ion implantation and deposition (PIII&D) using the simulation software "PEGASUS". The software uses the "PIC-MCCM" module for the plasma analysis and the "DSMCM" module for the gas flow field analysis. DSMCM gives densities, velocities, fluxes, temperatures and pressures of each neutral species such as the fed gas species and radicals. By coupling PIC-MCCM with DSMCM simulation, the plasma behavior in the flowing Ar gas and N2 gas has been simulated. The gas was injected from the tip of the gas inlet which was inserted into the center of the bottle. The base gas pressure was 1-50 Pa and a positive pulse voltage (maximum voltage = 0.1-1 kV) was applied to the center rod. A two-dimensional cylindrical coordinate system was used. Time evolution of the spacial distribution was obtained for densities of electrons, N2+ ions, N2∗ radicals and N atoms in N2 gas, and Ar+ ions, Ar∗ and Ar∗(4s) radicals in Ar gas. Time evolution of the particle flux and the energy flux of electrons and ions on the target surface was also obtained.

  5. Operation and application of a new time-of-flight e-gas secondary neutral mass spectrometer (ToF-SNMS).

    PubMed

    Kopnarski, M; Lösch, J; Simeonov, L

    2009-04-01

    The low-pressure rf plasma of a secondary neutral mass spectrometer (e-gas SNMS) was connected with a time-of-flight (ToF) mass spectrometer for the first time. As opposed to ToF-SIMS in e-gas SNMS, the primary ion pulse cannot be used for triggering the flight time measurement. Therefore, an extraction pulse is used which at a defined time loads an ion package from the beam of the post-ionised particles into the ToF spectrometer. The newly developed ToF-SNMS system is described, and first experimental results are presented. PMID:19130045

  6. Auroral arcs and ion outflow

    NASA Astrophysics Data System (ADS)

    Maggiolo, Romain

    2016-04-01

    This presentation provides an overwiew of the chapter "Auroral Arcs and Ion Outflow" from the AGU book "Auroral Dynamics and Space Weather" (eds Y. Zhang and L. J. Paxton). This topic covers a wide range of domains, from auroral acceleration processes, auroral arc morphology and dynamics to global magnetosphere-ionosphere coupling and atmospheric erosion. This presentation mainly focuses on the observational properties of auroral ion outflow. Recent observations about their large-scale spatial distribution and link with auroral forms will be presented. Auroral ion outflow statistical dependence on solar and geomagnetic activity and its modulation by auroral dynamics at the timescale of substorms will also be discussed.

  7. IONIZED OUTFLOWS FROM COMPACT STEEP SPECTRUM SOURCES

    SciTech Connect

    Shih, Hsin-Yi; Stockton, Alan; Kewley, Lisa E-mail: stockton@ifa.hawaii.edu

    2013-08-01

    Massive outflows are known to exist, in the form of extended emission-line regions (EELRs), around about one-third of powerful FR II radio sources. We investigate the origin of these EELRs by studying the emission-line regions around compact-steep-spectrum (CSS) radio galaxies that are younger (10{sup 3}-10{sup 5} yr old) versions of the FR II radio galaxies. We have searched for and analyzed the emission-line regions around 11 CSS sources by taking integral field spectra using Gemini Multi-Object Spectrograph on Gemini North. We fit the [O III] {lambda}5007 line and present the velocity maps for each detected emission-line region. We find, in most cases, that the emission-line regions have multi-component velocity structures with different velocity dispersions and/or flux distributions for each component. The velocity gradients of the emission-line gas are mostly well aligned with the radio axis, suggesting a direct causal link between the outflowing gas and the radio jets. The complex velocity structure may be a result of different driving mechanisms related to the onset of the radio jets. We also present the results from the line-ratio diagnostics we used to analyze the ionization mechanism of the extended gas, which supports the scenario where the emission-line regions are ionized by a combination of active galactic nucleus radiation and shock excitation.

  8. What Fraction of Active Galaxies Actually Show Outflows?

    NASA Astrophysics Data System (ADS)

    Ganguly, Rajib; Brotherton, M. S.

    2007-12-01

    Outflows from active galactic nuclei (AGNs) seem to be common and are thought to be important from a variety of perspectives: as an agent of chemical enhancement of the interstellar and intergalactic media, as an agent of angular momentum removal from the accreting central engine, and as an agent limiting star formation in starbursting systems by blowing out gas and dust from the host galaxy. To understand these processes, we must determine what fraction of AGNs feature outflows and understand what forms they take. We examine recent surveys of outflows detected in ultraviolet absorption over the entire range of velocities and velocity widths (i.e., broad absorption lines, associated absorption lines, and high-velocity narrow absorption lines). While the fraction of specific forms of outflows depends on AGN properties, the overall fraction displaying outflows is fairly constant, approximately 60%, over many orders of magnitude in luminosity. We discuss implications of this result and ways to refine our understanding of outflows. We acknowledge support from the US National Science Foundation through grant AST 05-07781.

  9. FIRE simulations: galactic outflows and their consequences

    NASA Astrophysics Data System (ADS)

    Keres, Dusan; FIRE team

    2016-06-01

    We study gaseous outflows and their consequences in high-resolution galaxy formation simulations with explicit stellar feedback from the Feedback in Realistic Environments project. Collective, galaxy scale, effect of stellar feedback results in episodic ejections of large amount of gas and heavy elements into the circum-galactic medium. Gas ejection episodes follow strong bursts of star formation. Properties of galactic star formation and ejection episodes depend on galaxy mass and redshift and, together with gas infall and recycling, shape the evolution of the circum-galactic medium and galaxies. As a consequence, our simulated galaxies have masses, star formation histories and heavy element content in good agreement with the observed population of galaxies.

  10. Improved method for the determination of the major neutral steroids and unconjugated bile acids in human faeces using capillary gas chromatography.

    PubMed

    Bailey, E; Brooks, A G; Purchase, R; Meakings, M; Davies, M; Walters, D G

    1987-10-01

    An improved method has been developed for the determination of the major neutral steroids (cholesterol and 5 beta-cholestan-3 beta-ol) and unconjugated bile acids (deoxycholic acid and lithocholic acid) in human faeces, using capillary gas chromatography with flame ionization detection. The freeze-dried faecal sample was subjected to a two-stage Soxhlet extraction followed by an aqueous alkali-organic solvent partition step to separate neutral steroids from bile acids. The neutral steroids were analysed as their trimethylsilyl ether derivatives on an OV-1 capillary column. The bile acids were further purified on a Sep-Pak C18 cartridge and then fractionated on a Sep-Pak SIL cartridge. Unconjugated bile acids were analysed as their methyl ester-trimethylsilyl ether derivatives also on an OV-1 capillary column. Quantitation of neutral steroids and unconjugated bile acids was achieved by reference to appropriate internal standards, added to the faecal extract immediately after the Soxhlet extraction stage. The method is being used in a study of the effect of diet on the metabolic activity of human gut flora. PMID:3429569