Science.gov

Sample records for neutral hydrogen fraction

  1. A large neutral fraction of cosmic hydrogen a billion years after the Big Bang.

    PubMed

    Wyithe, J Stuart B; Loeb, Abraham

    2004-02-26

    The fraction of ionized hydrogen left over from the Big Bang provides evidence for the time of formation of the first stars and quasar black holes in the early Universe; such objects provide the high-energy photons necessary to ionize hydrogen. Spectra of the two most distant known quasars show nearly complete absorption of photons with wavelengths shorter than the Lyman alpha transition of neutral hydrogen, indicating that hydrogen in the intergalactic medium (IGM) had not been completely ionized at a redshift of z approximately 6.3, about one billion years after the Big Bang. Here we show that the IGM surrounding these quasars had a neutral hydrogen fraction of tens of per cent before the quasar activity started, much higher than the previous lower limits of approximately 0.1 per cent. Our results, when combined with the recent inference of a large cumulative optical depth to electron scattering after cosmological recombination therefore suggest the presence of a second peak in the mean ionization history of the Universe. PMID:14985754

  2. Size of HII Regions Around High Redshift Quasars vs Intergalactic Medium Neutral Hydrogen Fraction at z~6

    NASA Astrophysics Data System (ADS)

    Maselli, A.; Gallerani, S.; Ferrara, A.; Choudury, T. S.

    2006-08-01

    We discuss the robustness of constraints on the intergalactic medium neutral hydrogen fraction inferred from the extent of HII regions of high redshift quasars by means of their absorption spectra. We have combined state-of-art SPH and 3D Radiative Transfer (RT) simulations to extract a sample of mock quasar spectra and we have analyzed such a sample with a procedure commonly adopted in real observations. Our analysis shows that the size of the quasar HII regions measured in quasar spectra strongly underestimate the real HII extent, as a result of absorption by residual neutral hydrogen inside the HII region and red damping wing absorption produced by HI just outside the HII region. We demonstrate that, even an idealized large sample of observed spectra -with negligible uncertainties on the quasars parameters (ie. lifetime, luminosity)- is compatible with a surrounding IGM whose mean IGM neutral hydrogen fraction can range freely in the interval [0.05,1] . We conclude, that our current knowledge of the re-ionization process is not accurate enough to allow a direct conversion of the quasars HII region extent into a value for the mean IGM ionization fraction. Finally, we propose a statistical method which could allow to extract such information from a large sample of quasar spectra at z>6.

  3. Neutral hydrogen in compact groups of galaxies

    SciTech Connect

    Williams, B.A.; Rood, H.J.

    1987-02-01

    Integrated H I profiles were detected for 34 of 51 Hickson compact groups (HCGs) of galaxies, and sensitive upper limits to the H I flux density were measured for the other 17. About 60 percent of the galaxies within compact groups are spirals, and a significant tendency exists for the fraction of elliptical galaxies to increase with group surface brightness. The amount of dark matter within the compact group region is negligibly small. An HCG on average contains half as much neutral hydrogen as a loose group with a similar spectrum of galaxy luminosities and morphological types, implying that compact groups are independent dynamical entities and not transient or projected configurations of loose groups. The observed fraction of galaxies which are luminous enough to be possible merger products of compact groups is small compared with the fraction required by the theory of dynamical friction. A clear discrepancy thus exists between solid empirical evidence and a straightforward prediction of Newtonian dynamical theory in a setting which does not permit a dark matter explanation. 44 references.

  4. Neutral hydrogen survey of andromeda galaxy.

    PubMed

    Brundage, W D; Kraus, J D

    1966-07-22

    A neutral hydrogen survey of the Andromeda galaxy (M31) has been conducted with the 260-foot (80m) Ohio State University radio telescope. The neutral hydrogen is concentrated in the spiral arm regions, with but relatively small amounts near the center of the galaxy. Similar deficiencies have been found near the center of M33 and our galaxy, suggesting similar evolutionary processes in the three galaxies. PMID:17839713

  5. Phenolic compounds containing/neutral fractions extract and products derived therefrom from fractionated fast-pyrolysis oils

    DOEpatents

    Chum, H.L.; Black, S.K.; Diebold, J.P.; Kreibich, R.E.

    1993-06-29

    A process is described for preparing phenol-formaldehyde novolak resins and molding compositions in which portions of the phenol normally contained in said resins are replaced by a phenol/neutral fractions extract obtained from fractionating fast-pyrolysis oils. The fractionation consists of a neutralization stage which can be carried out with aqueous solutions of bases or appropriate bases in the dry state, followed by solvent extraction with an organic solvent having at least a moderate solubility parameter and good hydrogen bonding capacity. Phenolic compounds-containing/neutral fractions extracts obtained by fractionating fast-pyrolysis oils from a lignocellulosic material, is such that the oil is initially in the pH range of 2-4, being neutralized with an aqueous bicarbonate base, and extracted into a solvent having a solubility parameter of approximately 8.4-9.11 [cal/cm[sup 3

  6. Phenolic compounds containing/neutral fractions extract and products derived therefrom from fractionated fast-pyrolysis oils

    DOEpatents

    Chum, Helena L.; Black, Stuart K.; Diebold, James P.; Kreibich, Roland E.

    1993-01-01

    A process for preparing phenol-formaldehyde novolak resins and molding compositions in which portions of the phenol normally contained in said resins are replaced by a phenol/neutral fractions extract obtained from fractionating fast-pyrolysis oils. The fractionation consists of a neutralization stage which can be carried out with aqueous solutions of bases or appropriate bases in the dry state, followed by solvent extraction with an organic solvent having at least a moderate solubility parameter and good hydrogen bonding capacity. Phenolic compounds-containing/neutral fractions extracts obtained by fractionating fast-pyrolysis oils from a lignocellulosic material, is such that the oil is initially in the pH range of 2-4, being neutralized with an aqueous bicarbonate base, and extracted into a solvent having a solubility parameter of approximately 8.4-9.11 [cal/cm.sup.3 ].sup.1/2 with polar components in the 1.8-3.0 range and hydrogen bonding components in the 2-4.8 range and the recovery of the product extract from the solvent with no further purification being needed for use in adhesives and molding compounds. The product extract is characterized as being a mixture of very different compounds having a wide variety of chemical functionalities, including phenolic, carbonyl, aldehyde, methoxyl, vinyl and hydroxyl. The use of the product extract on phenol-formaldehyde thermosetting resins is shown to have advantages over the conventional phenol-formaldehyde resins.

  7. VLA neutral hydrogen imaging of compact groups

    NASA Technical Reports Server (NTRS)

    Williams, B. A.; Mcmahon, P. M.; Vangorkom, J. H.

    1990-01-01

    Images of the neutral hydrogen (H I) in the direction of the compact groups of galaxies, HCG 31, HCG 44, and HCG 79 are presented. The authors find in HCG 31 and HCG 79, emission contained within a cloud much larger than the galaxies as well as the entire group. The H I emission associated with HCG 44 is located within the individual galaxies but shows definite signs of tidal interactions. The authors imaged the distribution and kinematics of neutral hydrogen at the two extremes of group sizes represented in Hickson's sample. HCG 44 is at the upper limit while HCG 18, HCG 31, and HCG 79 are at the lower end. Although the number of groups that have been imaged is still very small, there may be a pattern emerging which describes the H I morphology of compact groups. The true nature of compact groups has been the subject of considerable debate and controversy. The most recent observational and theoretical evidence strongly suggests that compact groups are physically dense, dynamical systems that are in the process of merging into a single object (Williams and Rood 1987, Hickson and Rood 1988, Barnes 1989). The neutral hydrogen deficiency observed by Williams and Rood (1987) is consistent with a model in which frequent galactic collisions and interactions have heated some of the gas during the short lifetime of the group. The H I disks which are normally more extended than the luminous ones are expected to be more sensitive to collisions and to trace the galaxy's response to recent interactions. Very Large Array observations can provide in most cases the spatial resolution needed to confirm the dynamical interactions in these systems.

  8. Neutral Hydrogen in Local Group Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Grcevich, Jana

    The gas content of the faintest and lowest mass dwarf galaxies provide means to study the evolution of these unique objects. The evolutionary histories of low mass dwarf galaxies are interesting in their own right, but may also provide insight into fundamental cosmological problems. These include the nature of dark matter, the disagreement between the number of observed Local Group dwarf galaxies and that predicted by lambda cold dark matter models, and the discrepancy between the observed census of baryonic matter in the Milky Way's environment and theoretical predictions. This thesis explores these questions by studying the neutral hydrogen (HI) component of dwarf galaxies. First, limits on the HI mass of the ultra-faint dwarfs are presented, and the HI content of all Local Group dwarf galaxies is examined from an environmental standpoint. We find that those Local Group dwarfs within 270 kpc of a massive host galaxy are deficient in HI as compared to those at larger galactocentric distances. Ram-pressure arguments are invoked, which suggest halo densities greater than 2-3 x 10-4 cm-3 out to distances of at least 70 kpc, values which are consistent with theoretical models and suggest the halo may harbor a large fraction of the host galaxy's baryons. We also find that accounting for the incompleteness of the dwarf galaxy count, known dwarf galaxies whose gas has been removed could have provided at most 2.1 x 108 M⊙ of HI gas to the Milky Way. Second, we examine the possibility of discovering unknown gas-rich ultra-faint galaxies in the Local Group using HI. The GALFA-HI Survey catalog is searched for compact, isolated HI clouds which are most similar to the expected HI characteristics of low mass dwarf galaxies. Fifty-one Local Group dwarf galaxy candidates are identified through column density, brightness temperature, and kinematic selection criteria, and their properties are explored. Third, we present hydrodynamic simulations of dwarf galaxies experiencing a

  9. Stability and delay sensitivity of neutral fractional-delay systems

    NASA Astrophysics Data System (ADS)

    Xu, Qi; Shi, Min; Wang, Zaihua

    2016-08-01

    This paper generalizes the stability test method via integral estimation for integer-order neutral time-delay systems to neutral fractional-delay systems. The key step in stability test is the calculation of the number of unstable characteristic roots that is described by a definite integral over an interval from zero to a sufficient large upper limit. Algorithms for correctly estimating the upper limits of the integral are given in two concise ways, parameter dependent or independent. A special feature of the proposed method is that it judges the stability of fractional-delay systems simply by using rough integral estimation. Meanwhile, the paper shows that for some neutral fractional-delay systems, the stability is extremely sensitive to the change of time delays. Examples are given for demonstrating the proposed method as well as the delay sensitivity.

  10. Stability and delay sensitivity of neutral fractional-delay systems.

    PubMed

    Xu, Qi; Shi, Min; Wang, Zaihua

    2016-08-01

    This paper generalizes the stability test method via integral estimation for integer-order neutral time-delay systems to neutral fractional-delay systems. The key step in stability test is the calculation of the number of unstable characteristic roots that is described by a definite integral over an interval from zero to a sufficient large upper limit. Algorithms for correctly estimating the upper limits of the integral are given in two concise ways, parameter dependent or independent. A special feature of the proposed method is that it judges the stability of fractional-delay systems simply by using rough integral estimation. Meanwhile, the paper shows that for some neutral fractional-delay systems, the stability is extremely sensitive to the change of time delays. Examples are given for demonstrating the proposed method as well as the delay sensitivity. PMID:27586618

  11. A Blind Search for Neutral Hydrogen

    NASA Astrophysics Data System (ADS)

    Gross, Julia; Momjian, Emmanuel; Van Gorkom, Jacqueline H.

    2015-01-01

    Measurements of neutral hydrogen (HI) are important in our understanding of the universe. Hydrogen within galaxies passes through a neutral phase as it cools and collapses into stars. The reservoir and distribution of HI associated with galaxies is therefore closely tied to how galaxies grow and evolve. Unfortunately, most of our observational information on HI is limited to the local universe, impeding our ability to see how the HI properties of galaxies change over time. Using the newly upgraded Very Large Array (VLA) radio telescope, located in Socorro, New Mexico, we are working on a far-reaching survey of HI gas around galaxies: The COSMOS HI Large Extragalactic Survey (CHILES). For the first time, we can search for HI over one-third of the age of the universe in a single observation. This survey will provide HI mass, morphology, and kinematics over a substantial, continuous distance range, and in a wide range of cosmic environments. Detection of HI sources is typically done by eye and sometimes with the help of optical catalogs of galaxies with known locations. Given that this is a blind search over a very large volume and that these HI sources can be very faint, this standard approach is unlikely to allow us to fully exploit these rich data. In light of this, we are looking into the use of algorithms to aid in the detection of HI sources. We present a source-finding application and discuss its strengths and limitations for these kinds of data. This is a step in advancing data-analysis tools to keep up with the technological advancements of radio telescopes. Once fully tested and applied, our application will help provide the most reliable, complete data set for us to gain insight into the evolution of galaxies as traced by HI and as function of location in the underlying large-scale structure of the universe.

  12. Predictions for ASKAP neutral hydrogen surveys

    NASA Astrophysics Data System (ADS)

    Duffy, Alan R.; Meyer, Martin J.; Staveley-Smith, Lister; Bernyk, Maksym; Croton, Darren J.; Koribalski, Bärbel S.; Gerstmann, Derek; Westerlund, Stefan

    2012-11-01

    The Australian Square Kilometre Array Pathfinder (ASKAP) will revolutionize our knowledge of gas-rich galaxies in the universe. Here we present predictions for two proposed extragalactic ASKAP neutral hydrogen (H I) emission-line surveys, based on semi-analytic models applied to cosmological N-body simulations. The ASKAP H I All-Sky Survey, known as Widefield ASKAP L-band Legacy All-sky Blind surveY (WALLABY), is a shallow 3 π survey (z = 0-0.26) which will probe the mass and dynamics of over 6 × 105 galaxies. A much deeper small-area H I survey, called Deep Investigation of Neutral Gas Origins (DINGO), aims to trace the evolution of H I from z = 0 to 0.43, a cosmological volume of 4 × 107 Mpc3, detecting potentially 105 galaxies. The high-sensitivity 30 antenna ASKAP core (diameter ˜2 km) will provide an angular resolution of 30 arcsec (at z = 0). Our simulations show that the majority of galaxies detected in WALLABY (87.5 per cent) will be resolved. About 5000 galaxies will be well resolved, i.e. more than five beams (2.5 arcmin) across the major axis, enabling kinematic studies of their gaseous discs. This number would rise to 1.6 × 105 galaxies if all 36 ASKAP antennas could be used; the additional six antennas provide baselines up to 6 km, resulting in an angular resolution of 10 arcsec. For DINGO this increased resolution is highly desirable to minimize source confusion, reducing confusion rates from a maximum of 10 per cent of sources at the survey edge to 3 per cent. We estimate that the sources detected by WALLABY and DINGO will span four orders of magnitude in total halo mass (from 1011 to 1015 M⊙) and nearly seven orders of magnitude in stellar mass (from 105 to 1012 M⊙), allowing us to investigate the process of galaxy formation across the last four billion years.

  13. Xenon Fractionation, Hydrogen Escape, and the Oxidation of the Earth

    NASA Astrophysics Data System (ADS)

    Zahnle, K. J.; Catling, D. C.

    2014-12-01

    Xenon in Earth's atmosphere is severely mass fractionated and depleted compared to any plausible solar system source material, yet Kr is unfractionated. These observations seem to imply that Xe has escaped from Earth. Vigorous hydrodynamic hydrogen escape can produce mass fractionation in heavy gases. The required hydrogen flux is very high but within the range permitted by solar EUV heating when Earth was 100 Myrs old or younger. However this model cannot explain why Xe escapes but Kr does not. Recently, what appears to be ancient atmospheric xenon has been recovered from several very ancient (3-3.5 Ga) terrestrial hydrothermal barites and cherts (Pujol 2011, 2013). What is eye-catching about this ancient Xe is that it is less fractionated that Xe in modern air. In other words, it appears that a process was active on Earth some 3 to 3.5 billion years ago that caused xenon to fractionate. By this time the Sun was no longer the EUV source that it used to be. If xenon was being fractionated by escape — currently the only viable hypothesis — it had to be in Earth's Archean atmosphere and under rather modest levels of EUV forcing. It should be possible for Xe, but not Kr, to escape from Earth as an ion. In a hydrodynamically escaping hydrogen wind the hydrogen is partially ionized. The key concepts are that ions are much more strongly coupled to the escaping flow than are neutrals (so that a relatively modest flow of H and H+ to space could carry Xe+ along with it, the flux can be small enough to be consistent with diffusion-limited flux), and that Xe alone among the noble gases is more easily ionized than hydrogen. This sort of escape is possible along the polar field lines, although a weak or absent magnetic field would likely work as well. The extended history of hydrogen escape implicit in Xe escape in the Archean is consistent with other suggestions that hydrogen escape in the Archean was considerable. Hydrogen escape plausibly played the key role in creating

  14. Observation of neutral modes in the fractional quantum Hall regime.

    PubMed

    Bid, Aveek; Ofek, N; Inoue, H; Heiblum, M; Kane, C L; Umansky, V; Mahalu, D

    2010-07-29

    The quantum Hall effect takes place in a two-dimensional electron gas under a strong magnetic field and involves current flow along the edges of the sample. For some particle-hole conjugate states of the fractional regime (for example, with fillings between 1/2 and 1 of the lowest Landau level), early predictions suggested the presence of counter-propagating edge currents in addition to the expected ones. When this did not agree with the measured conductance, it was suggested that disorder and interactions will lead to counter-propagating modes that carry only energy--the so called neutral modes. In addition, a neutral upstream mode (the Majorana mode) was expected for selected wavefunctions proposed for the even-denominator filling 5/2. Here we report the direct observation of counter-propagating neutral modes for fillings of 2/3, 3/5 and 5/2. The basis of our approach is that, if such modes impinge on a narrow constriction, the neutral quasiparticles will be partly reflected and fragmented into charge carriers, which can be detected through shot noise measurements. We find that the resultant shot noise is proportional to the injected current. Moreover, when we simultaneously inject a charge mode, the presence of the neutral mode was found to significantly affect the Fano factor and the temperature of the backscattered charge mode. In particular, such observations for filling 5/2 may single out the non-Abelian wavefunctions for the state. PMID:20671702

  15. ExoCube INMS with Neutral Hydrogen Mode

    NASA Astrophysics Data System (ADS)

    Jones, S.; Paschalidis, N.; Rodriguez, M.; Sittler, E. C., Jr.; Chornay, D. J.; Cameron, T.; Uribe, P.; Nanan, G.; Noto, J.; Waldrop, L.; Mierkiewicz, E. J.; Gardner, D.; Nossal, S. M.; Puig-Suari, J.; Bellardo, J.

    2015-12-01

    The ExoCube mission launched on Jan 31 2015 into a polar orbit to acquire global knowledge of in situ densities of neutral and ionized H, He, and O in the upper ionosphere and lower exosphere. The CubeSat platform is used in combination with incoherent scatter radar and optical ground stations distributed throughout the Americas. ExoCube seeks to obtain the first in situ measurement of neutral exospheric hydrogen and will measure in situ atomic oxygen for the first time in decades. The compact Ion and Neutral Mass Spectrometer (INMS) developed by GSFC uses the gated Time of Flight technique for in situ measurements of ions and neutrals (H, He, N, O, N2, O2) with M/dM of approximately 10. The compact sensor has a dual symmetric configuration with ion and neutral sensor heads. Neutral particles are ionized by electron impact using a thermionic emitter. In situ measurements of neutral hydrogen are notoriously difficult as historically the signal has been contaminated by hydrogen outgassing which persists even years after commissioning. In order to obtain neutral atmospheric hydrogen fluxes, either the atmospheric peak and outgassing peak must be well resolved, or the outgassing component subtracted off. The ExoCube INMS employs a separate mode, specifically for measuring neutral Hydrogen. The details of this mode and lessons learned will be presented as well as in flight instrument validation data for the neutral channel and preliminary flight ion spectra. At the time of abstract submission, the ExoCube spacecraft is currently undergoing attitude control maneuvers to orient INMS in the ram direction for science operations.

  16. Identifying OH Imposters in the ALFALFA Neutral Hydrogen Survey

    NASA Astrophysics Data System (ADS)

    Suess, Katherine A.; Darling, Jeremy; Haynes, Martha P.; Giovanelli, Riccardo

    2016-06-01

    OH megamasers (OHMs) are rare, luminous molecular masers that are typically observed in (ultra) luminous infrared galaxies and serve as markers of major galaxy mergers. In blind emission line surveys such as the Arecibo Legacy Fast Arecibo L-Band Feed Array (ALFALFA) survey for neutral hydrogen (H I), OHMs at z ˜ 0.2 can mimic z ˜ 0.05 H I lines. We present the results of optical spectroscopy of ambiguous H I detections in the ALFALFA 40 per cent data release detected by the Wide Field Infrared Survey Explorer (WISE) but with uncertain optical counterparts. The optical redshifts, obtained from observations at the Apache Point Observatory, revealed five new OHMs and identified 129 H I optical counterparts. 60 candidates remain ambiguous. The new OHMs are the first detected in a blind spectral line survey. The number of OHMs in ALFALFA is consistent with predictions from the OH luminosity function. Additionally, the mid-infrared magnitudes and colours of the OHM host galaxies found in a blind survey do not seem to differ from those found in previous targeted surveys. This validates the methods used in previous IR-selected OHM surveys and indicates there is no previously unknown OHM-producing population at z ˜ 0.2. We also provide a method for future surveys to separate OH megamasers from 99 per cent of H I line emitters without optical spectroscopy by using WISE infrared colours and magnitudes. Since the fraction of OHMs found in flux-limited H I surveys is expected to increase with the survey's redshift, this selection method can be applied to future flux-limited high-redshift hydrogen surveys.

  17. Neutral hydrogen in the solar wind acceleration region

    NASA Technical Reports Server (NTRS)

    Olsen, Espen Lyngdal; Leer, Egil; Holzer, Thomas E.

    1994-01-01

    Observation of solar Ly alpha radiation scattered by coronal neutral hydrogen atoms can be used to investigate the acceleration region of the solar wind. In this paper we focus on the use of these observations to study Alfven waves, which can accelerate the solar wind plasma to flow speeds observed in high-speed streams if their amplitude at the coronal base is 20 km/s or larger. The wave amplitude is then larger than the proton thermal speed in the outer corona, so that the mean proton speed (averaged over a wave period) is significantly larger than the proton thermal speed. For low-frequency wave the hydrogen atoms follow the proton motion in the waves, while for higher frequencies the protons move relative to the neutrals. Nevertheless, in the higher frequency case, the rates for charge exchange and recombination are high enough to broaden the velocity distribution function of neutral hydrogen. Both the wave motion of the hydrogen atoms in low-frequency Alfven waves and the 'heating' by higher frequency waves lead to a broadening of the scattered solar Ly alpha line. For coronal base amplitues of 20 km/s, the line broadening increases with heliocentric distance beyond 4-5 solar radii.

  18. The Secondary Stream of Interstellar Neutral Hydrogen Flow

    NASA Astrophysics Data System (ADS)

    Nakagawa, H.; Fukunishi, H.; Watanabe, S.; Takahashi, Y.; Taguchi, M.; Yamazaki, A.

    2005-12-01

    The solar system is located in a low-density interstellar cloud. Neutral hydrogen and helium atoms of the interstellar medium can penetrate deep into the heliosphere without being completely interrupted by the solar wind plasma. Consequently, there is a uniform flow of interplanetary hydrogen and helium in the solar system. This neutral hydrogen and helium flow is called `interstellar wind'. Spacecraft data demonstrated that the upstream direction of the interplanetary neutral helium flow is (254.7°+-0.4°, 5.2°+-0.2°) in the ecliptic coordinate system [Witte, 2004; Vallerga et al., 2004; Gloeckler et al., 2004], while it is (252.5°+-0.5°, 8.8°+-0.5°) for the interplanetary neutral hydrogen [Lallement, et al., 2005; Quemerais et al., 1999]. The presence of this well-established primary stream leads the hydrogen and helium glows to symmetry with respect to the 74° / 254° ecliptic longitude axis. Meanwhile, the existence of a secondary stream of the neutral wind inside the heliosphere arriving from a direction between about 260° and 290° ecliptic longitude, about 10° - 40° different from the upstream primary interstellar neutral flow direction, has been proposed recently by a synthetic analysis of a wide variety of spacecraft observations [M. R. Collier, private communication]. In this study, we have performed a detailed analysis of the interstellar hydrogen resonance glow data obtained from ultraviolet imaging spectrometer (UVS) measurements onboard Nozomi spacecraft. Although the UVS instrument instantaneously points a certain direction with the field-of-view which is perpendicular to the spin axis controlled toward the Earth, spatial distributions of emissions are measured by using the spin and orbital motion of the Nozomi spacecraft. One year observations enable us to derive the full sky image of Lyman alpha emission. We plotted the data obtained in the ecliptic plane from 2000 to 2001 and compared them with the model calculations in cases of the

  19. A nearly complete longitude-velocity map of neutral hydrogen

    NASA Technical Reports Server (NTRS)

    Waldes, F.

    1978-01-01

    A longitude-velocity map based on two recent 21-cm neutral hydrogen surveys and covering all but 42 deg of galactic longitude is presented. Latitude information between -2 and +2 deg is included as an integrated quantity by averaging the observed brightness temperatures over latitude at constant longitude and velocity to produce intensity information corresponding to a surface density distribution of neutral hydrogen in the galactic plane. The northern and southern rotation curves of the Galaxy within the solar galactic orbit are derived from the maximum radial velocities by the usual tangent-point method. Five interesting features of the map are discussed: (1) the scale of density variations in the neutral hydrogen; (2) a region of very high brightness centered at 81 deg and 0 km/s which is probably due to the spiral arm with which the sun is associated; (3) a region of very low brightness centered at 242 deg and 39 km/s; (4) negative-velocity features visible in the anticenter direction; and (5) a strong absorption feature at 289 deg having a kinematic distance of about 4 kpc.

  20. Neutral hydrogen in galaxy clusters: impact of AGN feedback and implications for intensity mapping

    NASA Astrophysics Data System (ADS)

    Villaescusa-Navarro, Francisco; Planelles, Susana; Borgani, Stefano; Viel, Matteo; Rasia, Elena; Murante, Giuseppe; Dolag, Klaus; Steinborn, Lisa K.; Biffi, Veronica; Beck, Alexander M.; Ragone-Figueroa, Cinthia

    2016-03-01

    By means of zoom-in hydrodynamic simulations, we quantify the amount of neutral hydrogen (H I) hosted by groups and clusters of galaxies. Our simulations, which are based on an improved formulation of smoothed particle hydrodynamics, include radiative cooling, star formation, metal enrichment and supernova feedback, and can be split into two different groups, depending on whether feedback from active galactic nuclei (AGN) is turned on or off. Simulations are analysed to account for H I self-shielding and the presence of molecular hydrogen. We find that the mass in neutral hydrogen of dark matter haloes monotonically increases with the halo mass and can be well described by a power law of the form M_{H I}(M,z)∝ M^{3/4}. Our results point out that AGN feedback reduces both the total halo mass and its H I mass, although it is more efficient in removing H I. We conclude that AGN feedback reduces the neutral hydrogen mass of a given halo by ˜50 per cent, with a weak dependence on halo mass and redshift. The spatial distribution of neutral hydrogen within haloes is also affected by AGN feedback, whose effect is to decrease the fraction of H I that resides in the halo inner regions. By extrapolating our results to haloes not resolved in our simulations, we derive astrophysical implications from the measurements of Ω _{H I}(z): haloes with circular velocities larger than ˜25 km s-1 are needed to host H I in order to reproduce observations. We find that only the model with AGN feedback is capable of reproducing the value of Ω _{H I}b_{H I} derived from available 21 cm intensity mapping observations.

  1. The post-reionization neutral hydrogen - a cosmological probe

    NASA Astrophysics Data System (ADS)

    Guha Sarkar, Tapomoy

    2012-07-01

    In the absence of complex astrophysical processes that characterize the reionization era, bulk of the post-reionization neutral gas is believed to be housed in dense self shielded DLA clouds. The neutral hydrogen from this epoch can be seen either through the 21-cm emission or Lyman-alpha absorption. We present the cross-correlation of the redshifted 21-cm emission from neutral hydrogen (HI) in the post-reionization era with the Ly-alpha forest as a new probe of the large scale matter distribution in the redshift range z=2 to 3 with a significantly lesser problem arising from foreground contamination. Though the 21-cm and the Lyman-alpha forest signals originate from different astrophysical systems, they are both expected to trace the underlying dark matter distribution on large scales. The post-reionization 21-cm signal is studied using numerical N-body simulation to justify its use as a biased tracer. We investigate the imprint of baryon acoustic oscillation (BAO) in the cross-correlation power spectrum and the feasibility of a detection of the BAO scale with future radio interferometric observations and quasar surveys. The multi-frequency angular power spectrum, shall allow the detection of the BAO feature along both radial and transverse directions, opening new avenues for precision cosmology and enhance our understanding of Dark energy.

  2. Depolarizing collisions with hydrogen: Neutral and singly ionized alkaline earths

    SciTech Connect

    Manso Sainz, Rafael; Ramos, Andrés Asensio; Bueno, Javier Trujillo; Aguado, Alfredo

    2014-06-20

    Depolarizing collisions are elastic or quasielastic collisions that equalize the populations and destroy the coherence between the magnetic sublevels of atomic levels. In astrophysical plasmas, the main depolarizing collider is neutral hydrogen. We consider depolarizing rates on the lowest levels of neutral and singly ionized alkali earths Mg I, Sr I, Ba I, Mg II, Ca II, and Ba II, due to collisions with H°. We compute ab initio potential curves of the atom-H° system and solve the quantum mechanical dynamics. From the scattering amplitudes, we calculate the depolarizing rates for Maxwellian distributions of colliders at temperatures T ≤ 10,000 K. A comparative analysis of our results and previous calculations in the literature is completed. We discuss the effect of these rates on the formation of scattering polarization patterns of resonant lines of alkali earths in the solar atmosphere, and their effect on Hanle effect diagnostics of solar magnetic fields.

  3. The environmental dependence of neutral hydrogen in the GIMIC simulations

    NASA Astrophysics Data System (ADS)

    Cunnama, D.; Andrianomena, S.; Cress, C. M.; Faltenbacher, A.; Gibson, B. K.; Theuns, T.

    2014-03-01

    We use the Galaxies-Intergalactic Medium Interaction Calculation (GIMIC) cosmological hydrodynamic simulation at z = 0 to study the distribution and environmental dependence of neutral hydrogen (H I) gas in the outskirts of simulated galaxies. This gas can currently be probed directly in, for example, Lyα absorption via the observation of background quasars. Radio facilities, such as the Square Kilometre Array, will provide a complementary probe of the diffuse H I in emission and will constrain the physics underpinning the complex interplay between accretion and feedback mechanisms which affect the intergalactic medium. We extract a sample of 488 galaxies from a resimulation of the average cosmic density GIMIC region. We estimate the neutral hydrogen content of these galaxies and the surrounding intergalactic medium within which they reside. We investigate the average H I radial profiles by stacking the individual profiles according to both mass and environment. We find high H I column densities at large impact parameters in group environments and markedly lower H I densities for non-group galaxies. We suggest that these results likely arise from the combined effects of ram pressure stripping and tidal interactions present in group environments.

  4. Xenon Fractionation and Archean Hydrogen Escape

    NASA Technical Reports Server (NTRS)

    Zahnle, K. J.

    2015-01-01

    Xenon is the heaviest gas found in significant quantities in natural planetary atmospheres. It would seem the least likely to escape. Yet there is more evidence for xenon escape from Earth than for any element other than helium and perhaps neon. The most straightforward evidence is that most of the radiogenic Xe from the decay of (129)I (half-life 15.7 Myr) and (244)Pu (half-life 81 Myr) that is Earth's birthright is missing. The missing xenon is often attributed to the impact erosion of early atmospheres of Earth and its ancestors. It is obvious that if most of the radiogenic xenon were driven off by impacts, most of the rest of the atmophiles fared the same fate. The other line of evidence is in the nonradiogenic isotopes of xenon and its silent partner, krypton. Atmospheric xenon is strongly mass fractionated (at about 4% per amu) compared to any known solar system source (Figure 1). This is in stark contrast to krypton, which may not be fractionated at all: atmospheric Kr is slightly heavier than solar Kr (at about 0.5% per amu), but it is the same as in carbonaceous chondrites. Nonradiogenic xenon is also under abundant relative to krypton (the so-called "missing xenon" problem). Together these observations imply that xenon has been subject to fractionating escape and krypton not.

  5. Carbon and Hydrogen Isotopic Fractionation during Anaerobic Biodegradation of Benzene

    PubMed Central

    Mancini, Silvia A.; Ulrich, Ania C.; Lacrampe-Couloume, Georges; Sleep, Brent; Edwards, Elizabeth A.; Sherwood Lollar, Barbara

    2003-01-01

    Compound-specific isotope analysis has the potential to distinguish physical from biological attenuation processes in the subsurface. In this study, carbon and hydrogen isotopic fractionation effects during biodegradation of benzene under anaerobic conditions with different terminal-electron-accepting processes are reported for the first time. Different enrichment factors (ɛ) for carbon (range of −1.9 to −3.6‰) and hydrogen (range of −29 to −79‰) fractionation were observed during biodegradation of benzene under nitrate-reducing, sulfate-reducing, and methanogenic conditions. These differences are not related to differences in initial biomass or in rates of biodegradation. Carbon isotopic enrichment factors for anaerobic benzene biodegradation in this study are comparable to those previously published for aerobic benzene biodegradation. In contrast, hydrogen enrichment factors determined for anaerobic benzene biodegradation are significantly larger than those previously published for benzene biodegradation under aerobic conditions. A fundamental difference in the previously proposed initial step of aerobic versus proposed anaerobic biodegradation pathways may account for these differences in hydrogen isotopic fractionation. Potentially, C-H bond breakage in the initial step of the anaerobic benzene biodegradation pathway may account for the large fractionation observed compared to that in aerobic benzene biodegradation. Despite some differences in reported enrichment factors between cultures with different terminal-electron-accepting processes, carbon and hydrogen isotope analysis has the potential to provide direct evidence of anaerobic biodegradation of benzene in the field. PMID:12513995

  6. Calculation of hydrogen isotopic fractionations in biogeochemical systems

    NASA Astrophysics Data System (ADS)

    Sessions, Alex L.; Hayes, John M.

    2005-02-01

    Hydrogen-isotopic data are often interpreted using mathematical approximations originally intended for other isotopes. One of the most common, apparent in literature over the last several decades, assumes that delta values of reactants and products are separated by a constant fractionation factor: δ p = δ r + ɛ p/r. Because of the large fractionations that affect hydrogen isotopes, such approximations can lead to substantial errors. Here we review and develop general equations for isotopic mass balances that include the differential fractionation of each component in a mixture and discuss their use in three geochemical applications. For the fractionation of a single component, the reactant and product are related by δ p = α p/rδ r + ɛ p/r, where α and ɛ refer to the same fractionation. Regression of δ p on δ r should give equivalent fractionations based on the intercept and slope, but this has not generally been recognized in studies of D/H fractionation. In a mixture of two components, each of which is fractionated during mixing, there is no unique solution for the three unknown variables (two fractionation factors and the elemental mixing ratio of the two hydrogen sources). The flow of H from CH 4 and H 2O to bacterial lipids in the metabolism of Methylococcus capsulatus provides an example of such a case. Data and conclusions from an earlier study of that system (Sessions et al., 2002) are reexamined here. Several constraints on the variables are available based on plausible ranges for fractionation factors. A possible refinement to current experimental procedures is the measurement of three different isotopes, which would allow unique determination of all variables.

  7. MODELING THE LARGE-SCALE BIAS OF NEUTRAL HYDROGEN

    SciTech Connect

    MarIn, Felipe A.; Gnedin, Nickolay Y.; Seo, Hee-Jong; Vallinotto, Alberto E-mail: gnedin@fnal.go E-mail: avalli@fnal.go

    2010-08-01

    We present new analytical estimates of the large-scale bias of neutral hydrogen (H I). We use a simple, non-parametric model which monotonically relates the total mass of a halo M{sub tot} with its H I mass M{sub HI} at zero redshift; for earlier times we assume limiting models for the {Omega}{sub HI} evolution consistent with the data presently available, as well as two main scenarios for the evolution of our M{sub HI}-M{sub tot} relation. We find that both the linear and the first nonlinear bias terms exhibit a strong evolution with redshift, regardless of the specific limiting model assumed for the H I density over time. These analytical predictions are then shown to be consistent with measurements performed on the Millennium Simulation. Additionally, we show that this strong bias evolution does not sensibly affect the measurement of the H I power spectrum.

  8. On the shape of expanding supershells of neutral hydrogen

    SciTech Connect

    Silich, S.A.

    1985-11-01

    This paper draws attention to a feature of the ''supershells'' of neutral hydrogen, namely, the elongation of most of the expanding shells in the plane of the Galaxy, to propose a qualitative explanation of this fact in the framework of the model of a ''detonation'' wave of star formation sustained by a cascade of supernova explosions. The paper also aims to establish a possible connection between the observed shapes of the shells and the mechanisms of their formation. It is shown that in the case of a cascade of supernova explosions propagating in the galactic disk all shells with characteristic radii exceeding a critical value Z /sub c/ must be elongated along the plane of the Galaxy. Objects elongated in the direction perpendicular to this plane or spherical objects with radii exceeding Z /sub c/ must be due to other mechanisms.

  9. The environmental dependence of neutral hydrogen content in spiral galaxies

    SciTech Connect

    Miner, Jesse; Rose, Jim; Kannappan, Sheila

    2008-08-01

    We present a study of the relationship between the deficiency of neutral hydrogen and the local three-dimensional number density of spiral galaxies in the Arecibo catalog [1] of global HI measurements. We find that the dependence on density of the HI content is weak at low densities, but increases sharply at high densities where interactions between galaxies and the intra-cluster medium become important. This behavior is reminiscent of the morphology-density relation [2] in that the effect manifests itself only at cluster-type densities, and indeed when we plot both the HI deficiency-density and morphology-density relations, we see that the densities at which they 'turn up' are similar. This suggests that the physical mechanisms responsible for the increase in early types in clusters are also responsible for the decrease in HI content.

  10. Neutral Hydrogen in Galaxies at the Present Epoch

    NASA Astrophysics Data System (ADS)

    Rao, Sandhya; Briggs, Frank

    1993-12-01

    The evolution of the neutral hydrogen content of galaxies as a function of time is an important constraint on processes in galactic evolution. We present a comprehensive, statistical description of the H I content and distribution within galaxies at the present epoch and compare these statistics with the properties of H I associated with "damped Lyα" absorption systems at high redshift that are observed in the spectra of QSOs. ΩH I(z = 0), the H I mass density at the present epoch relative to the present critical mass density, is found to be (2.5±0.6) × 10-4h-175, consistent with the decreasing trend of the H I content with time deduced from QSO absorption line statistics for redshifts from about 4 to 0.5 (Lanzetta 1993). Spiral galaxies contain an overwhelming 89% of this neutral hydrogen mass. The rest is contained in irregulars, SOs, and ellipticals Spirals also offer the largest cross section to line-of-sight absorption of light from QSOs By considering nearby spirals as potential absorbers, the interception probability as a function of the H I column density, N(H I), is derived for comparison with the cross sections inferred from observations of damped Lyman-alpha systems. The comparison shows that the damped Lyα lines are created by absorbers that subtend larger cross sections than present-day spirals by a factor of 5 implying that galaxies were either larger or more numerous at z ˜ 2.5.

  11. A neutral hydrogen survey of the Hydra 1 cluster

    NASA Technical Reports Server (NTRS)

    Mcmahon, Pauline; Vangorkom, Jacqueline; Richter, Otto; Ferguson, Henry

    1993-01-01

    We are undertaking a project to image the entire volume of the Hydra 1 cluster of galaxies in neutral hydrogen using the VLA. This involves making a series of pointings spaced 30 min. (the half power beam width) apart, each observed at three velocity settings in order to span the whole velocity range of the cluster. The purpose of this survey is to determine the true distribution, both in space and velocity, of gas-rich systems and hence, to deduce what effects a dense environment may have on the evolution of these systems. Most surveys of clusters to date have been performed on optically selected samples. However, optically selected samples may provide misleading views of the distribution of gas-rich systems, since many low surface brightness galaxies have an abundance of neutral gas (Bothun et al. 1987, Giovanelli & Haynes 1989). The Hydra project is providing the first unbiased view of the HI distribution in a cluster of galaxies. Our 5 sigma sensitivity is 4.1 x 10(exp 7) solar M/beam, (assuming H(sub 0) = 75 km s(exp -1) Mpc(exp -1)) and our velocity resolution is 42 km s(exp -1). We have a spatial resolution of 45 sec., which means that only the largest galaxies are spatially resolved enough to determine HI disk size. Our coverage is about 50 percent of the central region plus eight other fields centered on bright spirals within about 2 deg. of the center.

  12. Neutral hydrogen observations of four MKW-AWM poor clusters

    SciTech Connect

    Williams, B.A.; Lynch, J.R. )

    1991-06-01

    The Arecibo 305-m telescope was used to make neutral hydrogen observations of the poor clusters MKW 7, MKW 9, AWM 1, and AWM 3. The observations are almost complete for MKW 7 and AWM 1 galaxies brighter than 15.7 mag within one-half of a degree of the D or cD galaxy, and for MKW 9 galaxies brighter than 15.7 mag within one degree of the D galaxy. Both the integrated H I profile and the sensitive upper limits of the H I flux density are examined, and 22 new redshifts are reported for the D galaxy. The 18 galaxies closest to the dominant member of the D galaxy have an average hydrogen mass-to-light ratio of 0.20 solar units, with a standard deviation of 0.12. The ratio is lower than that measured for late-type spirals found in loose groups or in isolation, and is similar to the ratio determined for late-type galaxies near the centers of Abell clusters. A correlation between galaxy size and distance from the D or cD galaxy is found in the examination of the MKW-AWM clusters. However, the weak correlation may in fact be that between galaxy size and surface density, or a consequence of the larger members' direct tidal interaction with the dominant galaxy. 41 refs.

  13. Neutral hydrogen observations of four MKW-AWM poor clusters

    NASA Astrophysics Data System (ADS)

    Williams, B. A.; Lynch, J. R.

    1991-06-01

    The Arecibo 305-m telescope was used to make neutral hydrogen observations of the poor clusters MKW 7, MKW 9, AWM 1, and AWM 3. The observations are almost complete for MKW 7 and AWM 1 galaxies brighter than 15.7 mag within one-half of a degree of the D or cD galaxy, and for MKW 9 galaxies brighter than 15.7 mag within one degree of the D galaxy. Both the integrated H I profile and the sensitive upper limits of the H I flux density are examined, and 22 new redshifts are reported for the D galaxy. The 18 galaxies closest to the dominant member of the D galaxy have an average hydrogen mass-to-light ratio of 0.20 solar units, with a standard deviation of 0.12. The ratio is lower than that measured for late-type spirals found in loose groups or in isolation, and is similar to the ratio determined for late-type galaxies near the centers of Abell clusters. A correlation between galaxy size and distance from the D or cD galaxy is found in the examination of the MKW-AWM clusters. However, the weak correlation may in fact be that between galaxy size and surface density, or a consequence of the larger members' direct tidal interaction with the dominant galaxy.

  14. Neutral hydrogen in galaxy haloes at the peak of the cosmic star formation history

    NASA Astrophysics Data System (ADS)

    Faucher-Giguère, Claude-André; Hopkins, Philip F.; Kereš, Dušan; Muratov, Alexander L.; Quataert, Eliot; Murray, Norman

    2015-05-01

    We use high-resolution cosmological zoom-in simulations from the FIRE (Feedback in Realistic Environments) project to make predictions for the covering fractions of neutral hydrogen around galaxies at z = 2-4. These simulations resolve the interstellar medium of galaxies and explicitly implement a comprehensive set of stellar feedback mechanisms. Our simulation sample consists of 16 main haloes covering the mass range Mh ≈ 109-6 × 1012 M⊙ at z = 2, including 12 haloes in the mass range Mh ˜ 1011-1012 M⊙ corresponding to Lyman break galaxies (LBGs). We process our simulations with a ray tracing method to compute the ionization state of the gas. Galactic winds increase the H I covering fractions in galaxy haloes by direct ejection of cool gas from galaxies and through interactions with gas inflowing from the intergalactic medium. Our simulations predict H I covering fractions for Lyman limit systems (LLSs) consistent with measurements around z ˜ 2-2.5 LBGs; these covering fractions are a factor ˜2 higher than our previous calculations without galactic winds. The fractions of H I absorbers arising in inflows and in outflows are on average ˜50 per cent but exhibit significant time variability, ranging from ˜10 to ˜90 per cent. For our most massive haloes, we find a factor ˜3 deficit in the LLS covering fraction relative to what is measured around quasars at z ˜ 2, suggesting that the presence of a quasar may affect the properties of halo gas on ˜100 kpc scales. The predicted covering fractions, which decrease with time, peak at Mh ˜ 1011-1012 M⊙, near the peak of the star formation efficiency in dark matter haloes. In our simulations, star formation and galactic outflows are highly time dependent; H I covering fractions are also time variable but less so because they represent averages over large areas.

  15. Star Formation as a Function of Neutral Hydrogen Gas Density in Local Group Galaxies

    NASA Astrophysics Data System (ADS)

    Carlson, Erika K.; Madore, Barry F.; Freedman, Wendy L.

    2016-06-01

    We present a study of the efficiency and timescales of star formation as a function of local neutral hydrogen gas density in four Local Group galaxies: M33, NGC 6822, the LMC, and the SMC. In this work, we conceptualize the process of star formation as a cycle of two major phases – (1) a gas dynamics phase in which neutral hydrogen gas coalesces into clouds, and (2) a stellar phase in which stars have formed and interrupt further gas coalescence during their active lifetimes. By examining the spatial distribution and number densities of stars on maps of neutral hydrogen, we estimate the timescale of the gas coalescence phase relative to the timescale of the stellar phase and infer an efficiency of star formation as a function of neutral hydrogen gas density. From these timescales and efficiencies, we will calculate star formation rates as a function of neutral hydrogen gas density in these galaxies.

  16. Moving-mesh cosmology: properties of neutral hydrogen in absorption

    NASA Astrophysics Data System (ADS)

    Bird, Simeon; Vogelsberger, Mark; Sijacki, Debora; Zaldarriaga, Matias; Springel, Volker; Hernquist, Lars

    2013-03-01

    We examine the distribution of neutral hydrogen in cosmological simulations carried out with the new moving-mesh code AREPO and compare it with the corresponding GADGET simulations based on the smoothed particle hydrodynamics (SPH) technique. The two codes use identical gravity solvers and baryonic physics implementations, but very different methods for solving the Euler equations, allowing us to assess how numerical effects associated with the hydro solver impact the results of simulations. Here we focus on an analysis of the neutral gas, as detected in quasar absorption lines. We find that the high column density regime probed by damped Lyα (DLA) and Lyman limit systems (LLS) exhibits significant differences between the codes. GADGET produces spurious artefacts in large haloes in the form of gaseous clumps, boosting the LLS cross-section. Furthermore, it forms haloes with denser central baryonic cores than AREPO, which leads to a substantially greater DLA cross-section from smaller haloes. AREPO thus produces a significantly lower cumulative abundance of DLAs, which is intriguingly in much closer agreement with observations. The column density function, however, is not altered enough to significantly reduce the discrepancy with the observed value. For the low column density gas probed by the Lyα forest, the codes differ only at the level of a few per cent, suggesting that this regime is quite well described by both methods, a fact that is reassuring for the many Lyα studies carried out with SPH thus far. While the residual differences are smaller than the errors on current Lyα forest data, we note that this will likely change for future precision experiments.

  17. Spectra of accelerated particles at supernova shocks in the presence of neutral hydrogen: the case of Tycho

    NASA Astrophysics Data System (ADS)

    Morlino, G.; Blasi, P.

    2016-05-01

    Context. The presence of neutral hydrogen in the shock proximity changes the structure of the shock and affects the spectra of particles accelerated through the first-order Fermi mechanism. This phenomenon has profound implications for the interpretation of the multifrequency spectra of radiation from supernova remnants. Aims: Neutrals that undergo charge exchange with hot ions downstream of the shock may result in fast neutrals moving towards the upstream gas, where they can suffer additional charge exchange or ionisation reactions, thereby depositing energy and momentum upstream. Here we discuss the implications of this neutral return flux, which was already predicted in our previous work on neutral mediated supernova shocks, and show how the spectra of accelerated particles turn out to be appreciably steeper than p-4, thereby affecting the gamma ray spectra from supernova remnants in general and from Tycho specifically. Methods: The theory that describes non-linear diffusive shock acceleration in the presence of neutral hydrogen has been developed in recent years. Here we use a semi-analytical theory developed in previous work and specialise our predictions to the case of the Tycho supernova shock, where there is evidence from gamma ray observations that the spectrum of the parent cosmic rays is steeper than expected from the traditional theory of diffusive shock acceleration. Results: We show that, if the fraction of neutral hydrogen in the vicinity of the Tycho supernova shock is, as suggested by observations, ~70-90%, then spectra of accelerated protons steeper than p-4 may be a natural consequence of charge exchange reactions and the associated neutral return flux. The spectral shape is affected by this phenomenon for particles with energies below ~100-1000 GeV, for which the diffusion length is less than or at most comparable to the path length of charge exchange and ionisation upstream of the shock.

  18. The heliospheric neutral hydrogen density profile in the presence of a solar wind shock

    NASA Technical Reports Server (NTRS)

    Gangopadhyay, P.; Judge, D. L.

    1989-01-01

    The effect of a postulated nearby solar wind shock on the radial density profile of the cold inflowing neutral hydrogen atoms is studied. It is found that a nearby solar wind shock strongly affects the neutral hydrogen breeze. Model calculation reveals that the strongly perturbed hydrogen atom distribution beyond a solar wind shock can be remotely detected by observation of the radial dependence of the backscattered UV glow from the deep space probes Pioneer 10/11 and Voyager 1/2.

  19. Negative hydrogen ion source for TOKAMAK neutral beam injector (invited)

    NASA Astrophysics Data System (ADS)

    Okumura, Y.; Fujiwara, Y.; Kashiwagi, M.; Kitagawa, T.; Miyamoto, K.; Morishita, T.; Hanada, M.; Takayanagi, T.; Taniguchi, M.; Watanabe, K.

    2000-02-01

    Intense negative ion source producing multimegawatt hydrogen/deuterium negative ion beams has been developed for the neutral beam injector (NBI) in TOKAMAK thermonuclear fusion machines. Negative ions are produced in a cesium seeded multi-cusp plasma generator via volume and surface processes, and accelerated with a multistage electrostatic accelerator. The negative ion source for JT-60U has produced 18.5 A/360 keV (6.7 MW) H- and 14.3 A/380 keV (5.4 MW) D- ion beams at average current densities of 11 mA/cm2 (H-) and 8.5 mA/cm2 (D-). A high energy negative ion source has been developed for the next generation TOKAMAK such as the International Thermonuclear Experimental Reactor (ITER). The source has demonstrated to accelerate negative ions up to 1 MeV, the energy required for ITER. Higher negative ion current density of more than 20 mA/cm2 was obtained in the ITER concept sources. It was confirmed that the consumption rate of cesium is small enough to operate the source for a half year in ITER-NBI without maintenance.

  20. Modelling the post-reionization neutral hydrogen (H I ) bias

    NASA Astrophysics Data System (ADS)

    Sarkar, Debanjan; Bharadwaj, Somnath; Anathpindika, S.

    2016-08-01

    Observations of the neutral Hydrogen (\\HI ) 21-cm signal hold the potential of allowing us to map out the cosmological large scale structures (LSS) across the entire post-reionization era ($z \\leq 6$). Several experiments are planned to map the LSS over a large range of redshifts and angular scales, many of these targeting the Baryon Acoustic Oscillations. It is important to model the \\HI distribution in order to correctly predict the expected signal, and more so to correctly interpret the results after the signal is detected. In this paper we have carried out semi-numerical simulations to model the \\HI distribution and study the \\HI power spectrum $P_{\\HI}(k,z)$ across the redshift range $1 \\le z \\le 6$. We have modelled the \\HI bias as a complex quantity $\\tilde{b}(k,z)$ whose modulus squared $b^2(k,z)$ relates $P_{\\HI}(k,z)$ to the matter power spectrum $P(k,z)$, and whose real part $b_r(k,z)$ quantifies the cross-correlation between the \\HI and the matter distribution. We study the $z$ and $k$ dependence of the bias, and present polynomial fits which can be used to predict the bias across $0 \\le z \\le6$ and $0.01 \\le k \\le 10 \\, {\\rm Mpc}^{-1}$. We also present results for the stochasticity $r=b_r/b$ which is important for cross-correlation studies.

  1. The neutral hydrogen cosmological mass density at z = 5

    NASA Astrophysics Data System (ADS)

    Crighton, Neil H. M.; Murphy, Michael T.; Prochaska, J. Xavier; Worseck, Gábor; Rafelski, Marc; Becker, George D.; Ellison, Sara L.; Fumagalli, Michele; Lopez, Sebastian; Meiksin, Avery; O'Meara, John M.

    2015-09-01

    We present the largest homogeneous survey of z > 4.4 damped Lyα systems (DLAs) using the spectra of 163 QSOs that comprise the Giant Gemini GMOS (GGG) survey. With this survey we make the most precise high-redshift measurement of the cosmological mass density of neutral hydrogen, Ω_{H I}. At such high redshift, important systematic uncertainties in the identification of DLAs are produced by strong intergalactic medium absorption and QSO continuum placement. These can cause spurious DLA detections, result in real DLAs being missed or bias the inferred DLA column density distribution. We correct for these effects using a combination of mock and higher resolution spectra, and show that for the GGG DLA sample the uncertainties introduced are smaller than the statistical errors on Ω_{H I}. We find Ω _{H I}=0.98^{+0.20}_{-0.18}× 10^{-3} at = 4.9, assuming a 20 per cent contribution from lower column density systems below the DLA threshold. By comparing to literature measurements at lower redshifts, we show that Ω_{H I} can be described by the functional form Ω _{H I}(z)∝ (1+z)^{0.4}. This gradual decrease from z = 5 to 0 is consistent with the bulk of H I gas being a transitory phase fuelling star formation, which is continually replenished by more highly ionized gas from the intergalactic medium and from recycled galactic winds.

  2. Modelling the post-reionization neutral hydrogen (H I ) bias

    NASA Astrophysics Data System (ADS)

    Sarkar, Debanjan; Bharadwaj, Somnath; Anathpindika, S.

    2016-08-01

    Observations of the neutral hydrogen (H I) 21-cm signal hold the potential of allowing us to map out the cosmological large-scale structures (LSS) across the entire post-reionization era (z ≤ 6). Several experiments are planned to map the LSS over a large range of redshifts and angular scales, many of these targeting the Baryon Acoustic Oscillations. It is important to model the H I distribution in order to correctly predict the expected signal, and more so to correctly interpret the results after the signal is detected. In this paper we have carried out semi-numerical simulations to model the H I distribution and study the H I power spectrum P_{H I}(k,z) across the redshift range 1 ≤ z ≤ 6. We have modelled the H I bias as a complex quantity tilde{b}(k,z) whose modulus squared b2(k, z) relates P_{H I}(k,z) to the matter power spectrum P(k, z), and whose real part br(k, z) quantifies the cross-correlation between the H I and the matter distribution. We study the z and k dependence of the bias, and present polynomial fits which can be used to predict the bias across 0 ≤ z ≤ 6 and 0.01 ≤ k ≤ 10 Mpc-1. We also present results for the stochasticity r = br/b which is important for cross-correlation studies.

  3. Imaging the South Pole-Aitken basin in backscattered neutral hydrogen atoms

    NASA Astrophysics Data System (ADS)

    Vorburger, A.; Wurz, P.; Barabash, S.; Wieser, M.; Futaana, Y.; Bhardwaj, A.; Asamura, K.

    2015-09-01

    The lunar surface is very efficient in reflecting impinging solar wind ions as energetic neutral atoms (ENAs). A global analysis of lunar hydrogen ENAs showed that on average 16% of the solar wind protons are reflected, and that the reflected fraction can range from less than 8% to more than 24%, depending on location. It is established that magnetic anomalies reduce the flux of backscattered hydrogen ENAs by screening-off a fraction of the impinging solar wind. The effects of the surface properties, such as porosity, roughness, chemical composition, and extent of weathering, were not known. In this paper, we conduct an in-depth analysis of ENA observations of the South Pole-Aitken basin to determine which of the surface properties might be responsible for the observed variation in the integral ENA flux. The South Pole-Aitken basin with its highly variable surface properties is an ideal object for such studies. It is very deep, possesses strikingly elevated concentrations in iron and thorium, has a low albedo and coincides with a cluster of strong magnetic anomalies located on the northern rim of the basin. Our analysis shows that whereas, as expected, the magnetic anomalies can account well for the observed ENA depletion at the South Pole-Aitken basin, none of the other surface properties seem to influence the ENA reflection efficiency. Therefore, the integral flux of backscattered hydrogen ENAs is mainly determined by the impinging plasma flux and ENA imaging of backscattered hydrogen captures the electrodynamics of the plasma at the surface. We cannot exclude minor effects by surface features. We create two maps of surface reflected ENAs at the South Pole-Aitken basin. We compare these ENA maps to elevation, albedo, composition and magnetic field maps. The ENA maps only significantly correlate with the magnetic field map. ENA imaging captures solely the electrodynamics of the plasma at the surface.

  4. Thermal coupling of protons and neutral hydrogen with anisotropic temperatures in the fast solar wind

    NASA Astrophysics Data System (ADS)

    Allen, Lorraine A.; Habbal, Shadia R.; Li, Xing

    2000-10-01

    The thermal coupling between the neutral hydrogen and protons in the inner corona is explored by extending the study of Allenet al. [1998] to include anisotropic proton temperature to determine what the neutral hydrogen Ly α spectral line measurements reveal about the proton temperature, temperature anisotropy, and outflow velocity in the fast solar wind. The anisotropic proton temperature is produced by ion cyclotron resonant interaction of protons with high-frequency waves, produced by a nonlinear cascade at the Kolmogorov dissipation rate from dominant lower-frequency Alfvén waves. As a result of the coupling between the respective parallel and perpendicular components of the neutral hydrogen and proton temperatures, a greater temperature anisotropy in the neutral hydrogen develops as compared to the case when the proton temperature is isotropic. The neutral hydrogen and proton effective temperatures (Teff), incorporating both random and wave motions of the particles, and outflow velocities, are comparable below ~3Rs. Neutral hydrogen anisotropy ratios, TH(eff)/T∥, ~4 below 3Rs are readily attained, in agreement with observations. Below ~3Rs, these reflect the proton anisotropy ratio. For plasma conditions typical of the fast solar wind, these results imply that the measured Ly α spectral line profiles, from which the neutral hydrogen temperature, anisotropy ratio, and outflow velocity are inferred, are equivalent to measurements of protons below ~3Rs. Beyond this distance the width of the measured Ly α spectral lines provides a lower limit to the proton effective temperature and temperature anisotropy in the inner corona.

  5. Neutral hydrogen self-absorption in the Milky Way Galaxy

    NASA Astrophysics Data System (ADS)

    Kavars, Dain William

    2006-06-01

    To develop a better understanding of the cold neutral medium phase of the interstellar medium, we present a detailed analysis of neutral hydrogen self- absorption (HISA) clouds in the Milky Way Galaxy. These HISA clouds are in the Southern Galactic Plane Survey (SGPS), spanning the region l = 253°--358° and | b | <= 1.3°, and in the VLA Galactic Plane Survey (VGPS), spanning the region l = 18°--67° and | b | <= 1.3°--2.3°. The SGPS and VGPS have an angular resolution of ~1 arcminute and a velocity channel spacing of 0.82 km s -1 . With the recent completion of these surveys, we can study HISA features across the Galaxy at a much better resolution and sensitivity than any previous work. To analyze HISA in detail, catalogs of clouds of all sizes, including those undetectable by eye alone, are required. We present an automated search routine to detect all HISA clouds in the SGPS. We compare HISA to CO data and find some HISA clouds associated with CO, but others have no associated CO. This suggests that HISA clouds are in a transition between molecular and atomic gas, bridging the gap between dense molecular clouds and warmer, diffuse atomic clouds. HISA thus plays an important role in the overall evolution of the Galaxy. To study this transition further, we present observations of the OH molecule toward a select sample of HISA clouds in the VGPS, using the Green Bank Telescope (GBT). We present an analysis of the molecular properties of this sample, including a derivation of an OH to H 2 conversion factor and H 2 to H I abundance ratios. We discuss the complex relationship between H I, OH, 12 CO, and 13 CO emission. Finally we present a statistical analysis comparing HISA with infrared data from the Galactic Legacy Infrared Mid-Plane Survey Extraordinaire (GLIMPSE) project. The GLIMPSE data reveal a large number of compact, dark infrared clouds believed to be in the early stages of star formation. If GLIMPSE clouds are associated with HISA, they provide

  6. Global Properties of Neutral Hydrogen in Compact Groups

    NASA Astrophysics Data System (ADS)

    Walker, Lisa May; Johnson, Kelsey E.; Gallagher, Sarah C.; Privon, George C.; Kepley, Amanda A.; Whelan, David G.; Desjardins, Tyler D.; Zabludoff, Ann I.

    2016-02-01

    Compact groups of galaxies provide a unique environment to study the evolution of galaxies amid frequent gravitational encounters. These nearby groups have conditions similar to those in the earlier universe when galaxies were assembled and give us the opportunity to witness hierarchical formation in progress. To understand how the compact group environment affects galaxy evolution, we examine the gas and dust in these groups. We present new single-dish GBT neutral hydrogen (H i) observations of 30 compact groups and define a new way to quantify the group H i content as the H i-to-stellar mass ratio of the group as a whole. We compare the H i content with mid-IR indicators of star formation and optical [g - r] color to search for correlations between group gas content and star formation activity of individual group members. Quiescent galaxies tend to live in H i-poor groups, and galaxies with active star formation are more commonly found in H i-rich groups. Intriguingly, we also find “rogue” galaxies whose star formation does not correlate with group H i content. In particular, we identify three galaxies (NGC 2968 in RSCG 34, KUG 1131+202A in RSCG 42, and NGC 4613 in RSCG 64) whose mid-IR activity is discrepant with the H i. We speculate that this mismatch between mid-IR activity and H i content is a consequence of strong interactions in this environment that can strip H i from galaxies and abruptly affect star formation. Ultimately, characterizing how and on what timescales the gas is processed in compact groups will help us understand the interstellar medium in complex, dense environments similar to the earlier universe.

  7. THE DEARTH OF NEUTRAL HYDROGEN IN GALACTIC DWARF SPHEROIDAL GALAXIES

    SciTech Connect

    Spekkens, Kristine; Urbancic, Natasha; Mason, Brian S.; Willman, Beth; Aguirre, James E.

    2014-11-01

    We present new upper limits on the neutral hydrogen (H I) content within the stellar half-light ellipses of 15 Galactic dwarf spheroidal galaxies (dSphs), derived from pointed observations with the Green Bank Telescope (GBT) as well as Arecibo L-band Fast ALFA survey and Galactic All-Sky Survey data. All of the limits M{sub H} {sub I}{sup lim} are more stringent than previously reported values, and those from the GBT improve upon constraints in the literature by a median factor of 23. Normalizing by V-band luminosity L{sub V} and dynamical mass M {sub dyn}, we find M{sub H} {sub I}{sup lim}/L{sub V}∼10{sup −3} M{sub ⊙}/L{sub ⊙} and M{sub H} {sub I}{sup lim}/M{sub dyn}∼5×10{sup −5}, irrespective of location in the Galactic halo. Comparing these relative H I contents to those of the Local Group and nearby neighbor dwarfs compiled by McConnachie, we find that the Galactic dSphs are extremely gas-poor. Our H I upper limits therefore provide the clearest picture yet of the environmental dependence of the H I content in Local Volume dwarfs. If ram pressure stripping explains the dearth of H I in these systems, then orbits in a relatively massive Milky Way are favored for the outer halo dSph Leo I, while Leo II and Canes Venatici I have had a pericentric passage in the past. For Draco and Ursa Minor, the interstellar medium mass that should accumulate through stellar mass loss in between pericentric passages exceeds M{sub H} {sub I}{sup lim} by a factor of ∼30. In Ursa Minor, this implies that either this material is not in the atomic phase, or that another mechanism clears the recycled gas on shorter timescales.

  8. Water hydrogen bonding in proton exchange and neutral polymer membranes

    NASA Astrophysics Data System (ADS)

    Smedley, Sarah Black

    to the increased conductivity. The polyamide active layer of commercially available reverse osmosis membranes was studied at various relative humilities to better understand how the structure of the active layer changes when hydrated. In summary, by studying the water hydrogen bonding network in various proton exchange membranes and neutral polyamide membranes, a new understanding of structure-property relationships has been developed. This will lead to a greater understanding of transport properties and conductivity in various polymer membranes. Expanding this fundamental knowledge will lead to the development of smarter materials for energy and reverse osmosis applications, and the ideas developed here can be extended to new types of materials used for various needs. (Abstract shortened by ProQuest.).

  9. STUDIES OF DIFFUSE INTERSTELLAR BANDS V. PAIRWISE CORRELATIONS OF EIGHT STRONG DIBs AND NEUTRAL HYDROGEN, MOLECULAR HYDROGEN, AND COLOR EXCESS

    SciTech Connect

    Friedman, Scott D.; Sonnentrucker, Paule; York, Donald G.; Hobbs, L. M.; McCall, Benjamin J.; Dahlstrom, Julie; Welty, Daniel E.; Drosback, Meredith M.; Rachford, Brian L.; Snow, Theodore P.

    2011-01-20

    We establish correlations between equivalent widths of eight diffuse interstellar bands (DIBs), and examine their correlations with atomic hydrogen, molecular hydrogen, and E{sub B-V}. The DIBs are centered at {lambda}{lambda} 5780.5, 6204.5, 6283.8, 6196.0, 6613.6, 5705.1, 5797.1, and 5487.7, in decreasing order of Pearson's correlation coefficient with N(H) (here defined as the column density of neutral hydrogen), ranging from 0.96 to 0.82. We find the equivalent width (EW) of {lambda}5780.5 is better correlated with column densities of H than with E{sub B-V} or H{sub 2}, confirming earlier results based on smaller data sets. We show that the same is true for six of the seven other DIBs presented here. Despite this similarity, the eight strong DIBs chosen are not correlated well enough with each other to suggest they come from the same carrier. We further conclude that these eight DIBs are more likely to be associated with H than with H{sub 2}, and hence are not preferentially located in the densest, most UV shielded parts of interstellar clouds. We suggest that they arise from different molecules found in diffuse H regions with very little H{sub 2} (molecular fraction f < 0.01). Of the 133 stars with available data in our study, there are three with significantly weaker {lambda}5780.5 than our mean H-{lambda}5780.5 relationship, all of which are in regions of high radiation fields, as previously noted by Herbig. The correlations will be useful in deriving interstellar parameters when direct methods are not available. For instance, with care, the value of N(H) can be derived from W{sub {lambda}}(5780.5).

  10. Optimizing 50kV hydrogen diagnostic neutral beam performance for active spectroscopy in MST

    NASA Astrophysics Data System (ADS)

    Feng, X.; Boguski, J.; Craig, D.; den Hartog, D. J.; Munaretto, S.; Nornberg, M. D.; Olivia, S.

    2015-11-01

    The 50 kV hydrogen diagnostic neutral beam on MST provides local measurements of impurity ion emission through charge exchange recombination spectroscopy (CHERS) and of core-localized magnetic field through the motional Stark effect (MSE). The beam, which was designed to provide 5A of neutral current at 50 kV to meet these needs, is currently on a test stand to accommodate diagnosis, in order to increase the reliability of beam formation, sustain a steady current of 5 amps for 20ms, and optimize the primary energy fraction. The reliability of arc formation was increased from 40% to 80% success rate with increase of cathode gas pressure from 150kPa to 200kPa, and the stability of the arc current is improved with a decrease of the insulation magnetic field. A calorimeter with 5 thermocouples is installed to measure the horizontal and vertical beam profiles as well as beam divergence. Beam energy components are quantified through Doppler-shift spectroscopy. Preliminary simulation results of the beam using the ALCBEAM code as well as a description of how changes to the beam performance can affect CHERS and MSE measurements are presented. This work is supported by the U.S. DOE.

  11. Fractionation of inorganic arsenic by adjusting hydrogen ion concentration.

    PubMed

    Oliveira, Andrea; Gonzalez, Mario Henrique; Queiroz, Helena Müller; Cadore, Solange

    2016-12-15

    The inorganic fraction of arsenic species, iAs=∑[As(III)+As(V)] present in fish samples can be quantified in the presence of other arsenic species also found in fishes, such as: monomethylarsonic acid (MMA), dimethylarsinic acid (DMA) and arsenobetaine (AsB). The toxic arsenic fraction was selected taking into account the dissociation constants of these arsenic species in different hydrogen ions concentration leading to the arsine formation from iAs compounds detected as As(III) by HG AAS. For thus, a microwave assisted extraction was carried out using HCl 1molL(-1) in order to maintain the integrity of the arsenic species in this mild extraction media. Recovery experiments were done for iAs fraction, in the presence of other arsenic species. The recovery values obtained for iAs fraction added were quantitative about 87-107% (for N=3, RSD⩽3%). The limit of detection (LOD), and the limit of quantification (LOQ), were 5μgkg(-1) and 16μgkg(-1) respectively. PMID:27451157

  12. Branching fraction and time-dependent CP asymmetry in neutral B decays to psi and a neutral pion

    NASA Astrophysics Data System (ADS)

    Soha, Aron Lucas

    The invariance of physical laws under the combination of exchange of particles with antiparticles (charge conjugation, C) and reversal of coordinates (parity, P) is called CP symmetry. The violation of CP symmetry was first discovered in 1964 in the neutral kaon system, and is in general one of the great puzzles of particle physics. The recent observation of CP violation in the B meson system has been a simultaneous success for model predictions and experiment. The opportunity now exists to probe details of the underlying mechanisms. This thesis presents measurements of the branching fraction and time-dependent CP-violating asymmetry in neutral B decays to J/ y pi0. The decay amplitude for this channel features both tree and penguin diagram contributions, the interference of which can yield a result for the asymmetry differing from that found in the "golden mode" B0 → J/ yK0S . Using the measured branching fraction and CP asymmetry, constraints are placed on the ratio of penguin to tree amplitudes in B0 → J/ y pi0. In addition, the impact on the CP asymmetry measurement in B0 → J/ yK0S is discussed. The results are presented for e+ e- annihilation data collected with the BABAR detector on the Upsilon(4S) resonance at the PEP-II asymmetric-energy B Factory at SLAC. The measurement of the branching fraction, based on about 23 million BB¯ pairs collected between October 1999 and October 2000, yields BF(B0 → J/ y pi0) = (2.0 +/- 0.6 (stat) +/- 0.2 (syst)) x 10-5. With about 88 million BB¯ pairs collected during the years 1999--2002, our results for the coefficients of the cosine and sine terms of the CP asymmetry are CJ/ y pi0 = 0.38 +/- 0.41 (stat) +/- 0.09 (syst) and SJ/ y pi0 = 0.05 +/- 0.49 (stat) +/- 0.16 (syst).

  13. Isotopic fractionation of hydrogen in planetary exospheres due to ionosphere-exosphere coupling - Implications for Venus

    NASA Astrophysics Data System (ADS)

    Hodges, R. R.

    1993-06-01

    The paper considers isotopic hydrogen fractionation processes in the Venusian exosphere due to ionosphere-exosphere coupling by addressing two deficiencies in the present theory of differential escape. First, a set of D/H isotopic fractionation curves is derived for the ion-neutral interactions of charge and collisional momentum transfer, and these are compared with the results of Gurwell and Yung (1993) for hot O collisional ejection. Then, the question of the relative importance of collisional ejection in atmospheric escape is reexamined using two simple exosphere models. It is shown that O-O collisions suppress the high energy component of the hot O distribution by more than a factor of 10. Moreover, the ballistic trajectories of fast O atoms that reach the nighttime reservoir of exospheric hydrogen favor downward scatter of D and H rather than their escape. It is concluded that, due to severe limits placed on the effectiveness of collisional ejection, the differential escape of D and H from Venus is determined by charge exchange interactions rather than the collisional ejection.

  14. Isotopic fractionation of hydrogen in planetary exospheres due to ionosphere-exosphere coupling - Implications for Venus

    NASA Technical Reports Server (NTRS)

    Hodges, R. R., Jr.

    1993-01-01

    The paper considers isotopic hydrogen fractionation processes in the Venusian exosphere due to ionosphere-exosphere coupling by addressing two deficiencies in the present theory of differential escape. First, a set of D/H isotopic fractionation curves is derived for the ion-neutral interactions of charge and collisional momentum transfer, and these are compared with the results of Gurwell and Yung (1993) for hot O collisional ejection. Then, the question of the relative importance of collisional ejection in atmospheric escape is reexamined using two simple exosphere models. It is shown that O-O collisions suppress the high energy component of the hot O distribution by more than a factor of 10. Moreover, the ballistic trajectories of fast O atoms that reach the nighttime reservoir of exospheric hydrogen favor downward scatter of D and H rather than their escape. It is concluded that, due to severe limits placed on the effectiveness of collisional ejection, the differential escape of D and H from Venus is determined by charge exchange interactions rather than the collisional ejection.

  15. Bioassay-directed fractionation for discovery of bioactive neutral lipids guided by relative mass defect filtering and multiplexed collision-induced dissociation

    PubMed Central

    Stagliano, Michael C.; DeKeyser, Joshua G.; Omiecinski, Curtis J.; Jones, A. Daniel

    2014-01-01

    We report a synergistic method using bioassay-directed liquid chromatography fractionation and time-of-flight mass spectrometry to guide and accelerate bioactive compound discovery. To steer purification and assays toward anticipated neutral lipid activators of a constitutive androstane receptor splice variant, a relative mass defect filter was calculated, based on the ratio of the mass defect to the measured ion mass, and used to reduce the number of candidate ion masses. Mass measurements often lack sufficient accuracy to provide unambiguous assignments of elemental compositions, and since the relative mass defect reflects fractional hydrogen content of ions, this value is largely determined by the hydrogen content of a compound’s biosynthetic precursors. A relative mass defect window ranging from 600–1000 ppm, consistent with an assortment of lipids, was chosen to assess the number of candidate ions in fractions of fetal bovine serum. This filter reduced the number of candidate ion m/z values from 1345 to 892, which was further reduced to 21 by intensity and isotope filtering. Accurate mass measurements from time-of-flight mass spectrometry and fragment ion masses generated using nonselective collision-induced dissociation suggested dioctyl phthalate as one of few neutral lipid constituents in the active fraction. The identity of this compound was determined to be di(2-ethylhexyl) phthalate using GC/MS, and it was ranked as a promising candidate for reporter assay screening. PMID:21080510

  16. Minimisation of the Hydrogenic Inventory of the ITER Neutral Beamline and Torus Cryo-Sorption Pumps

    SciTech Connect

    Wykes, M

    2005-07-15

    The tritium inventory of all the ITER torus cryopumps open to the vacuum vessel has an administrative limit of 120 g, including tritium bound to hydrocarbon compounds formed by combination of fuel gas with carbon plasma-facing components. The total hydrogenic inventory of each of the torus cryopumps has to be less than that resulting in a deflagration pressure of 0.2 MPa (the design pressure of the ITER vacuum vessel of which the torus and neutral beam cryopump pressure boundaries are a part) following a hydrogen-air ignition. Since the neutral beamline fuelling is with protium and deuterium only, these pumps do not significantly contribute to the 120 g tritium limit. The hydrogenic inventories of both the torus and neutral beam cryopumps add to the total for the vacuum vessel following an in-vessel ingress of coolant from a failed water-cooled component, wherein hydrogen is produced from steam reacting with hot metallic dust. There is therefore a large incentive to keep the peak inventories of both the torus and neutral beamline cryopumps as low as practicable. The paper describes the regeneration patterns of the torus and neutral beamline cryopumps that are used to attain this goal while achieving the required vacuum conditions commensurate with the reference ITER pulse scenarios.

  17. Detection of an antibothropic fraction in opossum (Didelphis marsupialis) milk that neutralizes Bothrops jararaca venom.

    PubMed

    Jurgilas, P B; Neves-Ferreira, A G; Domont, G B; Moussatché, H; Perales, J

    1999-01-01

    An antibothropic fraction (ABF) from Didelphis marsupialis (opossum) serum, which is responsible for the neutralization of Bothrops jararaca venom was isolated by Perales et al. [Perales, J., Moussatché, H., Marangoni, S., Oliveira, B. and Domont, G. B. (1994). Isolation and partial characterization of an antibothropic complex from the serum of South American Didelphidae. Toxicon 32, 1237-1249]. The aim of this work was to verify the presence of this factor in opossum's milk, which could represent an additional protection for the neonatal opossum against bothropic venoms. An active milk fraction was isolated and showed similar physicochemical, structural, antigenic and biological properties when compared to ABF, indicating that they are probably the same protein. PMID:9920488

  18. Ion Pairs or Neutral Molecule Adducts? Cooperativity in Hydrogen Bonding

    ERIC Educational Resources Information Center

    DeKock, Roger L.; Schipper, Laura A.; Dykhouse, Stephanie C.; Heeringa, Lee P.; Brandsen, Benjamin M.

    2009-01-01

    We performed theoretical studies on the systems NH[subscript 3] times HF times mH[subscript 2]O, NH[subscript 3] times HCl times mH[subscript 2]O, with m = 0, 1, 2, and 6. The molecules with m = 0 form hydrogen-bonded adducts with little tendency to form an ion-pair structure. The molecule NH[subscript 3] times HCl times H[subscript 2]O cannot be…

  19. Discovery of a shell of neutral atomic hydrogen surrounding the carbon star IRC+10216

    NASA Astrophysics Data System (ADS)

    Matthews, L. D.; Gérard, E.; Le Bertre, T.

    2015-05-01

    We have used the Robert C. Byrd Green Bank Telescope to perform the most sensitive search to date for neutral atomic hydrogen (H I) in the circumstellar envelope (CSE) of the carbon star IRC+10216. Our observations have uncovered a low surface brightness H I shell of diameter ˜1300 arcsec (˜0.8 pc), centred on IRC+10216. The H I shell has an angular extent comparable to the far ultraviolet-emitting astrosphere of IRC+10216 previously detected with the GALEX satellite, and its kinematics are consistent with circumstellar matter that has been decelerated by the local interstellar medium. The shell appears to completely surround the star, but the highest H I column densities are measured along the leading edge of the shell, near the location of a previously identified bow shock. We estimate a total mass of atomic hydrogen associated with the IRC+10216 CSE of M_{H I} ˜ 3× 10^{-3} M_{⊙}. This is only a small fraction of the expected total mass of the CSE (<1 per cent) and is consistent with the bulk of the stellar wind originating in molecular rather than atomic form, as expected for a cool star with an effective temperature Teff ≲ 2200 K. H I mapping of a 2° × 2° region surrounding IRC+10216 has also allowed us to characterize the line-of-sight interstellar emission in the region and has uncovered a link between diffuse FUV emission south-west of IRC+10216 and the Local Leo Cold Cloud.

  20. Low energy, high power hydrogen neutral beam for plasma heating

    NASA Astrophysics Data System (ADS)

    Deichuli, P.; Davydenko, V.; Ivanov, A.; Korepanov, S.; Mishagin, V.; Smirnov, A.; Sorokin, A.; Stupishin, N.

    2015-11-01

    A high power, relatively low energy neutral beam injector was developed to upgrade of the neutral beam system of the gas dynamic trap device and C2-U experiment. The ion source of the injector produces a proton beam with the particle energy of 15 keV, current of up to 175 A, and pulse duration of a few milliseconds. The plasma emitter of the ion source is produced by superimposing highly ionized plasma jets from an array of four arc-discharge plasma generators. A multipole magnetic field produced with permanent magnets at the periphery of the plasma box is used to increase the efficiency and improve the uniformity of the plasma emitter. Multi-slit grids with 48% transparency are fabricated from bronze plates, which are spherically shaped to provide geometrical beam focusing. The focal length of the Ion Optical System (IOS) is 3.5 m and the initial beam diameter is 34 cm. The IOS geometry and grid potentials were optimized numerically to ensure accurate beam formation. The measured angular divergences of the beam are ±0.01 rad parallel to the slits and ±0.03 rad in the transverse direction.

  1. Low energy, high power hydrogen neutral beam for plasma heating.

    PubMed

    Deichuli, P; Davydenko, V; Ivanov, A; Korepanov, S; Mishagin, V; Smirnov, A; Sorokin, A; Stupishin, N

    2015-11-01

    A high power, relatively low energy neutral beam injector was developed to upgrade of the neutral beam system of the gas dynamic trap device and C2-U experiment. The ion source of the injector produces a proton beam with the particle energy of 15 keV, current of up to 175 A, and pulse duration of a few milliseconds. The plasma emitter of the ion source is produced by superimposing highly ionized plasma jets from an array of four arc-discharge plasma generators. A multipole magnetic field produced with permanent magnets at the periphery of the plasma box is used to increase the efficiency and improve the uniformity of the plasma emitter. Multi-slit grids with 48% transparency are fabricated from bronze plates, which are spherically shaped to provide geometrical beam focusing. The focal length of the Ion Optical System (IOS) is 3.5 m and the initial beam diameter is 34 cm. The IOS geometry and grid potentials were optimized numerically to ensure accurate beam formation. The measured angular divergences of the beam are ±0.01 rad parallel to the slits and ±0.03 rad in the transverse direction. PMID:26628137

  2. Low energy, high power hydrogen neutral beam for plasma heating

    SciTech Connect

    Deichuli, P.; Davydenko, V.; Ivanov, A. Mishagin, V.; Sorokin, A.; Stupishin, N.; Korepanov, S.; Smirnov, A.

    2015-11-15

    A high power, relatively low energy neutral beam injector was developed to upgrade of the neutral beam system of the gas dynamic trap device and C2-U experiment. The ion source of the injector produces a proton beam with the particle energy of 15 keV, current of up to 175 A, and pulse duration of a few milliseconds. The plasma emitter of the ion source is produced by superimposing highly ionized plasma jets from an array of four arc-discharge plasma generators. A multipole magnetic field produced with permanent magnets at the periphery of the plasma box is used to increase the efficiency and improve the uniformity of the plasma emitter. Multi-slit grids with 48% transparency are fabricated from bronze plates, which are spherically shaped to provide geometrical beam focusing. The focal length of the Ion Optical System (IOS) is 3.5 m and the initial beam diameter is 34 cm. The IOS geometry and grid potentials were optimized numerically to ensure accurate beam formation. The measured angular divergences of the beam are ±0.01 rad parallel to the slits and ±0.03 rad in the transverse direction.

  3. Production of intense negative hydrogen beams with polarized nuclei by selective neutralization of cold negative ions

    DOEpatents

    Hershcovitch, A.

    1984-02-13

    A process for selectively neutralizing H/sup -/ ions in a magnetic field to produce an intense negative hydrogen ion beam with spin polarized protons. Characteristic features of the process include providing a multi-ampere beam of H/sup -/ ions that are

  4. Water hydrogen bonding in proton exchange and neutral polymer membranes

    NASA Astrophysics Data System (ADS)

    Smedley, Sarah Black

    Understanding the dynamics of water sorbed into polymer films is critical to reveal structure-property relationships in membranes for energy and water treatment applications, where membranes must interact with water to facilitate or inhibit the transport of ions. The chemical structure of the polymer has drastic effects on the transport properties of the membrane due to the morphological structure of the polymer and how water is interacting with the functional groups on the polymer backbone. Therefore studying the dynamics of water adsorbed into a membrane will give insight into how water-polymer interactions influence transport properties of the film. With a better understanding of how to design materials to have specific properties, we can accelerate development of smarter materials for both energy and water treatment applications to increase efficiency and create high-flux materials and processes. The goal of this dissertation is to investigate the water-polymer interactions in proton exchange and uncharged membranes and make correlations to their charge densities and transport properties. A linear Fourier Transform Infrared (FTIR) spectroscopic method for measuring the hydrogen bonding distribution of water sorbed in proton exchange membranes is described in this thesis. The information on the distribution of the microenvironments of water in an ionic polymer is critical to understanding the effects of different acidic groups on the proton conductivity of proton exchange membranes at low relative humidity. The OD stretch of dilute HOD in H2O is a single, well-defined vibrational band. When HOD in dilute H2O is sorbed into a proton exchange membrane, the OD stretch peak shifts based on the microenvironment that water encounters within the nanophase separated structure of the material. This peak shift is a signature of different hydrogen bonding populations within the membrane, which can be deconvoluted rigorously for dilute HOD in H 2O compared to only

  5. Isotope Effect in Tunneling Ionization of Neutral Hydrogen Molecules.

    PubMed

    Wang, X; Xu, H; Atia-Tul-Noor, A; Hu, B T; Kielpinski, D; Sang, R T; Litvinyuk, I V

    2016-08-19

    It has been recently predicted theoretically that due to nuclear motion light and heavy hydrogen molecules exposed to strong electric field should exhibit substantially different tunneling ionization rates [O. I. Tolstikhin, H. J. Worner, and T. Morishita, Phys. Rev. A 87, 041401(R) (2013)]. We studied that isotope effect experimentally by measuring relative ionization yields for each species in a mixed H_{2}/D_{2} gas jet interacting with intense femtosecond laser pulses. In a reaction microscope apparatus, we detected ionic fragments from all contributing channels (single ionization, dissociation, and sequential double ionization) and determined the ratio of total single ionization yields for H_{2} and D_{2}. The measured ratio agrees quantitatively with the prediction of the generalized weak-field asymptotic theory in an apparent failure of the frozen-nuclei approximation. PMID:27588855

  6. Isotope Effect in Tunneling Ionization of Neutral Hydrogen Molecules

    NASA Astrophysics Data System (ADS)

    Wang, X.; Xu, H.; Atia-Tul-Noor, A.; Hu, B. T.; Kielpinski, D.; Sang, R. T.; Litvinyuk, I. V.

    2016-08-01

    It has been recently predicted theoretically that due to nuclear motion light and heavy hydrogen molecules exposed to strong electric field should exhibit substantially different tunneling ionization rates [O. I. Tolstikhin, H. J. Worner, and T. Morishita, Phys. Rev. A 87, 041401(R) (2013)]. We studied that isotope effect experimentally by measuring relative ionization yields for each species in a mixed H2/D2 gas jet interacting with intense femtosecond laser pulses. In a reaction microscope apparatus, we detected ionic fragments from all contributing channels (single ionization, dissociation, and sequential double ionization) and determined the ratio of total single ionization yields for H2 and D2 . The measured ratio agrees quantitatively with the prediction of the generalized weak-field asymptotic theory in an apparent failure of the frozen-nuclei approximation.

  7. Cobalt-Nanocrystal-Assembled Hollow Nanoparticles for Electrocatalytic Hydrogen Generation from Neutral-pH Water.

    PubMed

    Liu, Bingrui; Zhang, Lin; Xiong, Weilin; Ma, Mingming

    2016-06-01

    Highly active and stable electrocatalysts for hydrogen generation from neutral-pH water are highly desired, but very difficult to achieve. Herein we report a facile synthetic approach to cobalt nanocrystal assembled hollow nanoparticles (Co-HNP), which serve as an electrocatalyst for hydrogen generation from neutral-pH water. An electrode composed of Co-HNP on a carbon cloth (CC) produces cathodic current densities of 10 and 100 mA cm(-2) at overpotentials of -85 mV and -237 mV, respectively. The Co-HNP/CC electrode retains its high activity after 20 h hydrogen generation at a high current density of 150 mA cm(-2) , indicating the superior activity and stability of Co-HNP as electrocatalyst. PMID:27125576

  8. Comparison between the radial density buildup in the TARA plugs using hydrogen versus deuterium neutral beams

    SciTech Connect

    Blackfield, D.T.

    1983-11-01

    The WOLF code is used to compare the beam divergences from a TARA source using hydrogen and deuterium. Factors which influence the divergence which are investigated are the electron temperature, initial ion energy, electrode positions and ion beam current density. The beam divergence for 20 keV hydrogen is found to be only 20% smaller than for 25 keV deuterium for the same electrode positions. Since the optimal positioning of the electrodes is found to be independent of mesh spacing, a large parameter study is undertaken using little computer time. A time-dependent radial Fokker-Planck code is next used to examine the radial density buildup in a plug of the TARA tandem mirror. For both hydrogen and deuterium neutral beams, the influences of beam positioning, current and energy, edge neutral pressure and assumed electron temperature are studied.

  9. Evidence for neutral-current diffractive π0 production from hydrogen in neutrino interactions on hydrocarbon

    DOE PAGESBeta

    Wolcott, J.

    2016-04-06

    Here, the MINERvA experiment observes an excess of events containing electromagnetic showers relative to the expectation from Monte Carlo simulations in neutral-current neutrino interactions with mean beam energy of 4.5 GeV on a hydrocarbon target. The excess is characterized and found to be consistent with neutral-current π0 production with a broad energy distribution peaking at 7 GeV and a total cross section of 0.26more » $$\\pm$$ 0.02 (stat) $$\\pm$$ 0.08 (sys) x $$10^{-39} cm^{2}$$. The angular distribution, electromagnetic shower energy, and spatial distribution of the energy depositions of the excess are consistent with expectations from neutrino neutral-current diffractive neutral pion production from hydrogen in the hydrocarbon target. These data comprise the first direct experimental observation and constraint for a reaction that poses an important background process in neutrino oscillation experiments searching for $$\

  10. The effects of the small-scale DM power on the cosmological neutral hydrogen (HI) distribution at high redshifts

    NASA Astrophysics Data System (ADS)

    Sarkar, Abir; Mondal, Rajesh; Das, Subinoy; Sethi, Shiv. K.; Bharadwaj, Somnath; Marsh, David J. E.

    2016-04-01

    The particle nature of dark matter remains a mystery. In this paper, we consider two dark matter models—Late Forming Dark Matter (LFDM) and Ultra-Light Axion (ULA) models—where the matter power spectra show novel effects on small scales. The high redshift universe offers a powerful probe of their parameters. In particular, we study two cosmological observables: the neutral hydrogen (HI) redshifted 21-cm signal from the epoch of reionization, and the evolution of the collapsed fraction of HI in the redshift range 2 < z < 5. We model the theoretical predictions of the models using CDM-like N-body simulations with modified initial conditions, and generate reionization fields using an excursion set model. The N-body approximation is valid on the length and halo mass scales studied. We show that LFDM and ULA models predict an increase in the HI power spectrum from the epoch of reionization by a factor between 2–10 for a range of scales 0.1 < k < 4 Mpc‑1. Assuming a fiducial model where a neutral hydrogen fraction bar xHI = 0.5 must be achieved by z = 8, the reionization process allows us to put approximate bounds on the redshift of dark matter formation zf > 4 × 105 (for LFDM) and the axion mass ma > 2.6 × 10‑23 eV (for ULA). The comparison of the collapsed mass fraction inferred from damped Lyman-α observations to the theoretical predictions of our models lead to the weaker bounds: zf > 2 × 105 and ma > 10‑23 eV. These bounds are consistent with other constraints in the literature using different observables; we briefly discuss how these bounds compare with possible constraints from the observation of luminosity function of galaxies at high redshifts. In the case of ULAs, these constraints are also consistent with a solution to the cusp-core problem of CDM.

  11. Imaging the South Pole - Aitken Basin in Backscattered Energetic Neutral Hydrogen Atoms

    NASA Astrophysics Data System (ADS)

    Vorburger, Audrey; Wurz, Peter; Barabash, Stas; Wieser, Martin; Futaana, Yoshifumi; Bhardwaj, Anil; Asamura, Kazushi

    2015-04-01

    The Moon, not being protected by a global magnetic field or an atmosphere, is constantly bombarded by solar wind ions. Until a few years ago, it was tacitly assumed that the impinging solar wind ions are almost completely absorbed ( < 1% reflection) by the lunar surface (e.g. Crider and Vondrak, Adv. Space Res., (2002); Feldman et al., J. Geophys. Res., (2000)). Recent observations by IBEX and the Sub-keV Atom Reflecting Analyzer (SARA) onboard Chandrayaan-1 invalidated this assumption, though: In fact, these measurements showed that the lunar surface very efficiently reflects impinging solar wind ions as energetic neutral atoms (ENAs) (e.g. McComas et al., GRL, 2009; Wieser et al., PSS, 2009). Most recently, a global analysis of lunar hydrogen ENAs measured by SARA showed that on average 16% of the solar wind protons are reflected, and that the reflected fraction can range from less than 8% to more than 24%, depending on location (Vorburger et al., J. Geophys. Res., 2013). Whereas it is established that magnetic anomalies reduce the flux of backscattered hydrogen ENAs by screening-off a fraction of the impinging solar wind ions (e.g. Wieser et al., Planet. Space Sci., (2009); Lue et al., Geophys. Res. Lett., (2011); Vorburger et al., J. Geophys. Res., (2012); Futaana et al., Geophys. Res. Lett., (2013)), the effects of other surface properties such as porosity, roughness, chemical composition, and extent of weathering, was not known. To investigate the effects of these surface properties on the properties of scattered ENAs, we conducted an in-depth analysis of ENA observations near the South Pole - Aitken basin using the complete dataset collected by SARA. The South Pole - Aitken basin is an ideal object for such a study, because it highly differs in many properties from the surrounding terrain. It is very deep (~13 km), possesses strikingly elevated concentrations in iron (~15 wt%) and thorium (~7 wt%), has a low albedo and coincides with a cluster of strong

  12. THE NEUTRAL HYDROGEN BRIDGE BETWEEN M31 AND M33

    SciTech Connect

    Lockman, Felix J.; Free, Nicole L.; Shields, Joseph C.

    2012-08-15

    The Green Bank Telescope has been used to search for 21 cm H I emission over a large area between the galaxies M31 and M33 in an attempt to confirm at 9.'1 angular resolution the detection by Braun and Thilker of a very extensive neutral gas 'bridge' between the two systems at the level N{sub HI} Almost-Equal-To 10{sup 17} cm{sup -2}. We detect H I emission at several locations up to 120 kpc in projected distance from M31, at least half the distance to M33, with velocities similar to that of the galaxies, confirming the essence of the Braun and Thilker discovery. The H I does not appear to be associated with the extraplanar high-velocity clouds of either galaxy. In two places we measure N{sub HI} > 3 Multiplication-Sign 10{sup 18} cm{sup -2}, indicative of concentrations of H I with {approx}10{sup 5} M{sub Sun} on scales {approx}< 2 kpc, but over most of the field we have only 5{sigma} upper limits of N{sub HI} {<=} 1.4 Multiplication-Sign 10{sup 18} cm{sup -2}. In very deep measurements in two directions H I lines were detected at a few 10{sup 17} cm{sup -2}. The absence of emission at another location to a 5{sigma} limit N{sub HI} {<=} 1.5 Multiplication-Sign 10{sup 17} cm{sup -2} suggests that the H I bridge is either patchy or confined to within {approx}125 kpc of M31. The measurements also cover two of M31's dwarf galaxies, And II and And XV, but in neither case is there evidence for associated H I at the 5{sigma} level of 1.4 Multiplication-Sign 10{sup 4} M{sub Sun} for And II and 9.3 Multiplication-Sign 10{sup 3} M{sub Sun} for And XV.

  13. Communication: Long-lived neutral H2 in hydrogen migration within methanol dication

    NASA Astrophysics Data System (ADS)

    Nakai, K.; Kato, T.; Kono, H.; Yamanouchi, K.

    2013-11-01

    The ejection of triatomic hydrogen molecular ions HD2+ and D3+ from CD3OH2+ is investigated by first-principle molecular dynamics simulation. Two C-D chemical bonds are found to be broken to form a neutral D2 moiety that vibrates, rotates, and moves for a relatively long period of time (20-330 fs) towards a transition state leading to the ejection of HD2+ or D3+. The formation of such a long-lived neutral D2 moiety within a hydrocarbon molecule interprets well the recent experimental findings of the long lifetime of doubly charged energized hydrocarbon molecules prior to the ejection of H3+.

  14. Cavity Ringdown Technique for negative-hydrogen-ion measurement in ion source for neutral beam injector

    NASA Astrophysics Data System (ADS)

    Nakano, H.; Tsumori, K.; Shibuya, M.; Geng, S.; Kisaki, M.; Ikeda, K.; Nagaoka, K.; Osakabe, M.; Takeiri, Y.; Kaneko, O.

    2016-03-01

    The Cavity Ringdown Technique (CRD) is applied for negative hydrogen ion (H-) density measurement in H- source for the neutral beam injector. The CRD is one of the laser absorption techniques. Nd:YAG pulse laser was utilized for negative-hydrogen-ion photodetachment. The H- density related to extracted H- beam was successfully observed by a fixed position CRD. A two-dimensional movable CRD has been developed to measure the H- density profile. Measured profiles were consistent with expected profiles from the H- production area in pure hydrogen and cesium seeded plasmas. By applying absorption saturation in the optical cavity, negative hydrogen ion temperature was evaluated and was confirmed as being a similar value measured with other diagnostics.

  15. Unique stability of neutral interstitial hydrogen in cubic BN and diamond

    NASA Astrophysics Data System (ADS)

    Lyons, John L.; van de Walle, Chris G.

    In virtually all semiconductors and insulators, hydrogen interstitial impurities act as negative-U centers, implying that hydrogen is never stable in the neutral charge state. Using hybrid density functional calculations, which are crucial for obtaining accurate properties of defects in semiconductors, we find a different behavior for hydrogen interstitials in diamond and cubic BN. In diamond, we find that hydrogen is a very strong positive-U center, and the neutral charge state of the interstitial is stable over a Fermi-level range of more than 2 eV. In cubic BN, a III-V compound semiconductor with properties similar to diamond, we also find positive-U behavior, though over a much smaller Fermi-level range. We will discuss the electronic-structure origins of this negative-U behavior, and compare with the properties of hydrogen in other materials. Research done in part at the Center for Functional Nanomaterials, which is a U.S. DOE Office of Science Facility, at Brookhaven National Laboratory under Contract No. DE-SC0012704. Work at UCSB was supported by the National Science Foundation.

  16. Mass fractionation of noble gases in diffusion-limited hydrodynamic hydrogen escape.

    PubMed

    Zahnle, K; Kasting, J F; Pollack, J B

    1990-01-01

    Mass fractionation by hydrodynamic hydrogen escape is a promising mechanism for explaining the observed elemental and isotopic abundance patterns in terrestrial planet atmospheres. Previous work has considered only pure hydrogen winds. Here, the theory of mass fractionation by hydrogen escape is extended to atmospheres in which hydrogen is not the only major constituent. Analytical solutions are derived for cases in which all relevant atmospheric constituents escape; both analytical and numerical solutions are obtained for cases in which important heavy constituents are retained. In either case the fractionation patterns that result can differ significantly from those produced by pure hydrogen winds. Three applications of the theory are discussed: (1) The observed fractionation of terrestrial atmospheric neon with respect to mantle neon can be explained as a by-product of diffusion-limited hydrogen escape from a steam atmosphere toward the end of accretion. (2) The anomalously high Martian (SNC) 38Ar/36Ar ratio is attributed to hydrodynamic fractionation by a vigorously escaping, nearly pure hydrogen wind. (3) It is possible that the present high Martian D/H ratio was established during the same hydrodynamic escape phase that fractionated argon, but the predicted degree of D/H enrichment is sensitive to other, less well constrained parameters. PMID:11538474

  17. Neutral hydrogen at the present epoch: A constraint on the evolution of high redshift systems

    NASA Technical Reports Server (NTRS)

    Rao, Sandhya; Briggs, Frank H.

    1993-01-01

    Damped Lyman-alpha and metal absorption lines in the spectra of quasars indicate the presence of intervening gas-rich systems at high redshift (z greater than 2). These systems have characteristic size scales, velocity dispersions, and neutral hydrogen column densities (N(H1)) similar to present day spirals and are thus thought to be their progenitors. Constraints on galaxy evolution can be derived by comparing the H1 properties of high redshift systems to the present galaxy population. Good observational statistics on high redshift absorbers specify the number of these systems along the line of sight as a function of N(H1), the column density of neutral hydrogen per absorber. Similar statistics for nearby (z = 0) galaxies of which spirals are the only gas-rich systems that provide a significant cross-section for the interception of light from quasars is derived.

  18. Dissociative excitation as the source of neutral atoms in hydrogen discharges

    SciTech Connect

    McNeill, D.H.

    1980-01-01

    Electron impact dissociative excitation of H/sub 2/ molecules is identified as the origin of the narrow width and structure of Balmer lines observed in various low density hydrogen discharges. On the basis of this data and estimates of the rates of competing processes in plasmas, dissociative excitation, together with other molecular reactions, is proposed as the source of neutral atoms and protons in these discharges.

  19. Renewable Hydrogen Carrier Carbohydrate: Constructing the Carbon-Neutral Carbohydrate Economy

    SciTech Connect

    Zhang, Y.-H. Percival; Mielenz, Jonathan R

    2011-01-01

    Abstract The hydrogen economy presents an appealing energy future but its implementation must solve numerous problems ranging from low-cost sustainable production, high-density storage, costly infrastructure, to eliminating safety concern. The use of renewable carbohydrate as a high-density hydrogen carrier and energy source for hydrogen production is possible due to emerging cell-free synthetic biology technology called cell-free synthetic pathway biotransformation (SyPaB). Assembly of numerous enzymes and co-enzymes in vitro can create complicated set of biological reactions or pathways that microorganisms cannot complete, for example, C6H10O5 (aq) + 7 H2O (l) 12 H2 (g) + 6 CO2 (g) (PLoS One 2007, 2:e456). Thanks to 100% selectivity of enzymes, modest reaction conditions, and high-purity of generated hydrogen, carbohydrate is a promising hydrogen carrier for end users. Gravimetric density of carbohydrate is 14.8 H2 mass% if water can be recycled from PEM fuel cells or 8.33% H2 mass% without water recycling. Renewable carbohydrate can be isolated from plant biomass or would be produced from a combination of solar electricity/hydrogen and carbon dioxide fixation mediated by high-efficiency artificial photosynthesis mediated by SyPaB. The construction of this carbon-neutral carbohydrate economy would address numerous sustainability challenges, such as electricity and hydrogen storage, CO2 fixation and long-term storage, water conservation, transportation fuel production, plus feed and food production.

  20. Modeling of neutral hydrogen velocities in the Tokamak Fusion Test Reactor

    NASA Astrophysics Data System (ADS)

    Stotler, D. P.; Skinner, C. H.; Budny, R. V.; Ramsey, A. T.; Ruzic, D. N.; Turkot, R. B., Jr.

    1996-11-01

    Monte Carlo neutral transport simulations of hydrogen velocities in the Tokamak Fusion Test Reactor (TFTR) [K. M. McGuire et al., Phys. Plasmas 2, 2176 (1995)] are compared with experiment using the Doppler-broadened Balmer-α spectral line profile. Good agreement is obtained under a range of conditions, validating the treatment of charge exchange, molecular dissociation, surface reflection, and sputtering in the neutral gas code DEGAS [D. Heifetz et al., J. Comput. Phys. 46, 309 (1982)]. A residual deficiency of 10-100 eV neutrals in most of the simulations indicates that further study of the energetics of H+2 dissociation for electron energies in excess of 100 eV is needed.

  1. Emission of hydrogen energetic neutral atoms from the Martian subsolar magnetosheath

    NASA Astrophysics Data System (ADS)

    Wang, X.-D.; Alho, M.; Jarvinen, R.; Kallio, E.; Barabash, S.; Futaana, Y.

    2016-01-01

    We have simulated the hydrogen energetic neutral atom (ENA) emissions from the subsolar magnetosheath of Mars using a hybrid model of the proton plasma charge exchanging with the Martian exosphere to study statistical features revealed from the observations of the Neutral Particle Detectors on Mars Express. The simulations reproduce well the observed enhancement of the hydrogen ENA emissions from the dayside magnetosheath in directions perpendicular to the Sun-Mars line. Our results show that the neutralized protons from the shocked solar wind are the dominant ENA population rather than those originating from the pickup planetary ions. The simulation also suggests that the observed stronger ENA emissions in the direction opposite to the solar wind convective electric field result from a stronger proton flux in the same direction at the lower magnetosheath; i.e., the proton fluxes in the magnetosheath are not cylindrically symmetric. We also confirm the observed increasing of the ENA fluxes with the solar wind dynamical pressure in the simulations. This feature is associated with a low altitude of the induced magnetic boundary when the dynamic pressure is high and the magnetosheath protons can reach to a denser exosphere, and thus, the charge exchange rate becomes higher. Overall, the analysis suggests that kinetic effects play an important and pronounced role in the morphology of the hydrogen ENA distribution and the plasma environment at Mars, in general.

  2. Results of an investigation of interstellar neutral hydrogen and helium in the solar system

    NASA Astrophysics Data System (ADS)

    Mironova, E. N.

    The temperature and direction of moving interstellar gas has been determined relative to the position of the sun, based on measurements of scattered radiation in hydrogen and helium lines. The measurements were carried out using far-ultraviolet photometers on the scientific spacecraft Prognoz-5 and Prognoz-6. The wavelengths of the photometer measurements were 1216 A for H I; 584 A for He I; and 304 A for He II. The temperature of interstellar hydrogen in the vicinity of the sun was 9000 + or - 1000 K. Equatorial coordinates for the leeward direction of the neutral hydrogen gas were calculated on the basis of the photometric measurements. The coordinates are: alpha = 80 degrees, delta = 15 + or - 3 degrees.

  3. Numerical simulation of the creation of a hollow neutral-hydrogen channel by an electron beam.

    PubMed

    Ivanov, V V; Antsiferov, P S; Koshelev, K N; Akdim, M R; Bijkerk, F

    2006-11-17

    An experimental method is proposed for the creation of plasma optical waveguides at low electron densities. The method consists of creating a hollow neutral-hydrogen channel by means of fast local heating of a hydrogen volume by a needlelike electron beam, followed by laser ionization of the hydrogen to provide the plasma waveguide. Results of numerical simulations are presented which show that guiding with an axial electron density in the range of 10(17) cm-3 can be achieved with a matched spot size of 30 microm. Its application for laser wakefield acceleration of electrons is discussed. The method would enable guiding lengths up to 30 cm at maximal energies of accelerated electrons in the range 10-100 GeV. PMID:17155692

  4. Isotopic fractionation during soil uptake of atmospheric hydrogen

    NASA Astrophysics Data System (ADS)

    Rice, A.; Dayalu, A.; Quay, P.; Gammon, R.

    2011-03-01

    Soil uptake of atmospheric hydrogen (H2) and the associated hydrogen isotope effect were studied using soil chambers in a Western Washington second-growth coniferous forest. Chamber studies were conducted during both winter and summer seasons to account for large natural variability in soil moisture content (4-50%) and temperature (6-22 °C). H2 deposition velocities were found to range from 0.01-0.06 cm s-1 with an average of 0.033 ± 0.008 cm s-1 (95% confidence interval). Consistent with prior studies, deposition velocities were correlated with soil moisture below 20% soil moisture content during the summer season. During winter, there was considerable variability observed in deposition velocity that was not closely related to soil moisture. The hydrogen kinetic isotope effect with H2 uptake was found to range from -24‰ to -109‰. Aggregate analysis of experimental data results in an average KIE of -57 ± 5‰ (95% CI). Some of the variability in KIE can be explained by larger isotope effects at lower (<10%) and higher (>30%) soil moisture contents. The measured KIE was also found to be correlated with deposition velocity, with smaller isotope effects occurring at higher deposition velocities. If correct, these findings will have an impact on the interpretation of atmospheric measurements and modeling of δD of H2.

  5. Isotopic fractionation during soil uptake of atmospheric hydrogen

    NASA Astrophysics Data System (ADS)

    Rice, A.; Dayalu, A.; Quay, P.; Gammon, R.

    2010-11-01

    Soil uptake of atmospheric hydrogen (H2) and the associated hydrogen isotope effect were studied using soil chambers in a Western Washington second-growth coniferous forest. Chamber studies were conducted during both winter and summer seasons to account for large natural variability in soil moisture content (4-50%) and temperature (6-22 °C). H2 deposition velocities were found to range from 0.01-0.06 cm s-1 with an average of 0.033 ± 0.008 cm s-1 (95% confidence interval). Consistent with prior studies, deposition velocities were correlated with soil moisture below 20% soil moisture content during the summer season. Considerable variability in deposition velocity observed during winter was not found to be closely related to soil moisture. The hydrogen kinetic isotope effect with H2 uptake was found to range from -24‰ to -109‰. Aggregate analysis of experimental data results in an average KIE of -57 ± 5‰ (95% CI). Some of the variability in KIE can be explained by larger isotope effects at lower (<10%) and higher (>30%) soil moisture contents. The measured KIE was also found to be correlated with deposition velocity, with smaller isotope effects occurring at higher deposition velocities. If correct, these findings will have an impact on the interpretation of atmospheric measurements and modeling of δD of H2.

  6. [Research on the experiment of hydrogen isotope fractionation using diamond anvil cell and Raman spectra].

    PubMed

    Wang, Shi-xia; Zheng, Hai-fei

    2011-03-01

    Hydrothermal diamond-anvil cell and Raman spectroscopy were used to measure the hydrogen isotope fractionation factor between gypsum and liquid water. Hydrogen isotopes of deuterium (D) and hydrogen (H) show the largest relative mass difference in all stable isotope systems. The exchange reaction between D and H would easily take place and the extent of exchange would be larger than others under same condition. So we selected the hydrogen isotopes for the investigation. The concept of fractionation factor is the quotient of ratios of heavy and light isotopes in different minerals, and can be expressed as alpha(A-B) = R(A)/R(B). There is a linear relationship between ratio of Raman peak intensities and ratio of corresponding amount of substances. So the fractionation factor between gypsum and heavy water can be expressed as [formula: see text] The experimental study for the isotope fractionation is based on the dissolution and recrystallization of minerals in aqueous solutions. The process can reach the total isotope fractionation equilibrium and get isotope fractionation factors with different temperatures. Compared with other methods, chemical synthesis one has following advantages: (1) short time for the experiment; (2) no problem about the equilibrium for isotope exchanges. It was proved that the new method would be more convenient and reliable for obtaining the isotopic fractionation factor compared with previous ways. PMID:21595220

  7. Two-dimensional Raman mole-fraction and temperature measurements for hydrogen-nitrogen mixture analysis.

    PubMed

    Braeuer, Andreas; Leipertz, Alfred

    2009-02-01

    A two-dimensional laser Raman technique was developed and applied to directly probe the population number of selected rotational and vibrational energy levels of hydrogen and nitrogen. Using three cameras simultaneously, temperature and mole fraction images could be detected. Three different combinations of rotational and vibrational Raman signals of hydrogen and nitrogen were analyzed to identify the combination that is most suitable for future mixture analysis in hydrogen internal combustion engines. Here the experiments were conducted in an injection chamber where hot hydrogen was injected into room temperature nitrogen at 1.1 MPa. PMID:19183582

  8. Production of intense negative hydrogen beams with polarized nuclei by selective neutralization of negative ions

    DOEpatents

    Hershcovitch, Ady

    1987-01-01

    A process for selectively neutralizing H.sup.- ions in a magnetic field to produce an intense negative hydrogen ion beam with spin polarized protons. Characteristic features of the process include providing a multi-ampere beam of H.sup.- ions that are intersected by a beam of laser light. Photodetachment is effected in a uniform magnetic field that is provided around the beam of H.sup.- ions to spin polarize the H.sup.- ions and produce first and second populations or groups of ions, having their respective proton spin aligned either with the magnetic field or opposite to it. The intersecting beam of laser light is directed to selectively neutralize a majority of the ions in only one population, or given spin polarized group of H.sup.- ions, without neutralizing the ions in the other group thereby forming a population of H.sup.- ions each of which has its proton spin down, and a second group or population of H.sup.o atoms having proton spin up. Finally, the two groups of ions are separated from each other by magnetically bending the group of H.sup.- ions away from the group of neutralized ions, thereby to form an intense H.sup.- ion beam that is directed toward a predetermined objective.

  9. Hydrogen atom chemisorption and diffusion on neutral and charged polycyclic aromatic hydrocarbon (PAH) flakes in the interstellar media

    NASA Astrophysics Data System (ADS)

    Sánchez, Morella; Ruette, Fernando

    2015-11-01

    Hydrogen atoms diffusion on a hydrocarbon flake is studied using PM6 and DFT programs using as models neutral and positive charged coronene. Chemisorption and potential energy surfaces and diffusion paths were calculated. Results show that diffusion occurs through Csbnd C bonds. Edge effects are very important because the most stable adsorptions occur on hydrogenated border sites, so the diffusion is biased toward edge sites. Charged coronene has stronger adsorption energies than neutral systems. A large difference between barriers in neutral and charged systems was not observed in most of the cases. A discussion of modeling diffusion processes is presented.

  10. The Roll-over of Heliospheric Neutral Hydrogen below 100 eV: Observations and Implications

    NASA Astrophysics Data System (ADS)

    Galli, A.; Wurz, P.; Schwadron, N. A.; Kucharek, H.; Möbius, E.; Bzowski, M.; Sokół, J. M.; Kubiak, M. A.; Funsten, H. O.; Fuselier, S. A.; McComas, D. J.

    2016-04-01

    We present an improved analysis of the energy spectrum of energetic neutral hydrogen from the heliosheath observed with the IBEX-Lo sensor on the Interstellar Boundary EXplorer from the years 2009 to 2012. This analysis allows us to study the lowest energies between 10 and 100 eV although various background sources are more intense than the targeted signal over broad areas of the sky. The results improve our knowledge of the interaction region between our heliosphere and the interstellar plasma because these neutral atoms are direct messengers from the low-energy plasma in the heliosheath. We find a roll-over of the energy spectrum below 100 eV, which has major implications for the pressure balance of the plasma in the inner heliosheath. The results can also be compared directly with in situ observations of the Voyager 1 and 2 spacecraft.

  11. Neutral Hydrogen Structures Trace Dust Polarization Angle: Implications for Cosmic Microwave Background Foregrounds

    NASA Astrophysics Data System (ADS)

    Clark, S. E.; Hill, J. Colin; Peek, J. E. G.; Putman, M. E.; Babler, B. L.

    2015-12-01

    Using high-resolution data from the Galactic Arecibo L-Band Feed Array HI (GALFA-Hi) survey, we show that linear structure in Galactic neutral hydrogen (Hi) correlates with the magnetic field orientation implied by Planck 353 GHz polarized dust emission. The structure of the neutral interstellar medium is more tightly coupled to the magnetic field than previously known. At high Galactic latitudes, where the Planck data are noise dominated, the Hi data provide an independent constraint on the Galactic magnetic field orientation, and hence the local dust polarization angle. We detect strong cross-correlations between template maps constructed from estimates of dust intensity combined with either Hi-derived angles, starlight polarization angles, or Planck 353 GHz angles. The Hi data thus provide a new tool in the search for inflationary gravitational wave B -mode polarization in the cosmic microwave background, which is currently limited by dust foreground contamination.

  12. Neutral Hydrogen Structures Trace Dust Polarization Angle: Implications for Cosmic Microwave Background Foregrounds.

    PubMed

    Clark, S E; Hill, J Colin; Peek, J E G; Putman, M E; Babler, B L

    2015-12-11

    Using high-resolution data from the Galactic Arecibo L-Band Feed Array HI (GALFA-Hi) survey, we show that linear structure in Galactic neutral hydrogen (Hi) correlates with the magnetic field orientation implied by Planck 353 GHz polarized dust emission. The structure of the neutral interstellar medium is more tightly coupled to the magnetic field than previously known. At high Galactic latitudes, where the Planck data are noise dominated, the Hi data provide an independent constraint on the Galactic magnetic field orientation, and hence the local dust polarization angle. We detect strong cross-correlations between template maps constructed from estimates of dust intensity combined with either Hi-derived angles, starlight polarization angles, or Planck 353 GHz angles. The Hi data thus provide a new tool in the search for inflationary gravitational wave B-mode polarization in the cosmic microwave background, which is currently limited by dust foreground contamination. PMID:26705622

  13. A neutral hydrogen cavity in M101: expanding supershell evacuated by multiple supernovae

    NASA Astrophysics Data System (ADS)

    Ray, Alak; Chakraborti, Sayan

    2015-08-01

    A subset of neutral hydrogen (H I) cavities detected in our Milkyway galaxy and other nearby star forming galaxies may represent expanding supershells driven by the combined mechanical feedback from multiple supernovae occurring in OB associations. However, most extragalactic H I cavities do not have a demonstrated expansion velocity nor an identified OB association inside them. In the nearby, face-on spiral galaxy M101, an unbroken expanding H I supershell was found with a UV-emitting young stellar association inside it. From The HI Nearby Galaxy Survey (THINGS) datacubes (undertaken at the NRAO Very Large Array, VLA) to study the H I emission from nearby galaxies, we measured its size to be about 500 pc and expansion velocity of 20 km/s by identifying its approaching and receding components in the position velocity space, using 21 cm emission spectroscopy. This H I cavity provides us with an ideal system to test the theory of supershells driven by the mechanical feedback from multiple Supernovae, advanced by McCray and Kafatos. We compared the UV emission of the cluster inside the supershell with simulated spectral energy distribution of synthetic clusters of the appropriate age (~15 Myr) and found that the observed UV flux is consistent with an association of mass (~10^5 MSun) required by the energy budget of the supershell. Supershell characteristics of this galaxy can be used to infer the neutral hydrogen scale height and mean neutral hydrogen density in the disk of M101. Another UV-emitting stellar association in the overdense swept-up gas in the supershell is found and this will be discussed in the context of propagating star formation. Spatially resolved integral field spectroscopy may determine the metallicity enrichment of the gas and the true age of the stellar population and has the potential to reveal the role of multiple stellar populations within the cavity.

  14. Determination of hydrogen density of states in amorphous silicon using fractional evolution experiments

    SciTech Connect

    Franz, A.J.; Jackson, W.B.; Gland, J.L.

    1997-07-01

    Hydrogen plays an important role in the electronic behavior, structure and stability of amorphous silicon films. Therefore, determination of the hydrogen density of states (DOS) and correlation of the hydrogen DOS with the electronic film properties are important research goals. The authors have developed a novel method for determination of hydrogen DOS in silicon films, based on fractional evolution experiments. Fractional evolution experiments are performed by subjecting a silicon film to a series of linear, alternating heating and cooling ramps, while monitoring the hydrogen evolution rate. The fractional evolution data can be analyzed using two complementary methods, the fixed frequency factor approach and Arrhenius analysis. Using a rigorous, mean-field evolution model, they demonstrate the applicability of the two approaches to obtaining the hydrogen DOS in silicon films. They further validate both methods by analyzing experimental fractional evolution data for an amorphous silicon carbide film. Both types of analysis yield a similar double peaked density of states for the a-Si:C:H:D film.

  15. Hemispheric Imaging of Galactic Neutral Hydrogen with a Phased Array Antenna System

    NASA Astrophysics Data System (ADS)

    Wijnholds, Stefan J.; De Bruyn, A. Ger; Bregman, Jaap D.; Bij De Vaate, Jan Geralt

    2004-06-01

    The thousand element array (THEA) system is a phased array system consisting of 1 m2 tiles having 64 Vivaldi elements each, arranged on a regular 8-by-8 grid, which has been developed as a demonstrator of technology and applicability for SKA. In this paper we present imaging results of Galactic neutral hydrogen with THEA. Measurements have been taken using a dense 2-by-2 array of four tiles as a four tile adder. The results are compared with results from the Leiden-Dwingeloo Survey, showing qualitative agreement, but also indicating that further studies are needed on the instrumental characteristics.

  16. Surprising stability of neutral interstitial hydrogen in diamond and cubic BN

    NASA Astrophysics Data System (ADS)

    Lyons, J. L.; Van de Walle, C. G.

    2016-02-01

    In virtually all semiconductors and insulators, hydrogen interstitials ({{\\text{H}}i} ) act as negative-U centers, implying that hydrogen is never stable in the neutral charge state. Using hybrid density functional calculations, we find a different behavior for {{\\text{H}}i} in diamond and cubic BN. In diamond, {{\\text{H}}i} is a very strong positive-U center, and the \\text{H}i0 charge state is stable over a Fermi-level range of more than 2 eV. In cubic BN, a III-V compound similar to diamond, we also find positive-U behavior, though over a much smaller Fermi-level range. These results highlight the unique behavior of {{\\text{H}}i} in these covalent wide-band-gap semiconductors.

  17. Surprising stability of neutral interstitial hydrogen in diamond and cubic BN

    DOE PAGESBeta

    Lyons, J. L.; Van de Walle, C. G.

    2016-01-21

    We report that in virtually all semiconductors and insulators, hydrogen interstitials (Hi) act as negative-U centers, implying that hydrogen is never stable in the neutral charge state. Using hybrid density functional calculations, we find a different behavior for Hi in diamond and cubic BN. In diamond, Hi is a very strong positive-U center, and the H0icharge state is stable over a Fermi-level range of more than 2 eV. In cubic BN, a III-V compound similar to diamond, we also find positive-U behavior, though over a much smaller Fermi-level range. Finally, these results highlight the unique behavior of Hi in thesemore » covalent wide-band-gap semiconductors.« less

  18. Hydrogen Isotope Fractionation As a Tool to Identify Aerobic and Anaerobic PAH Biodegradation.

    PubMed

    Kümmel, Steffen; Starke, Robert; Chen, Gao; Musat, Florin; Richnow, Hans H; Vogt, Carsten

    2016-03-15

    Aerobic and anaerobic polycyclic aromatic hydrocarbon (PAH) biodegradation was characterized by compound specific stable isotope analysis (CSIA) of the carbon and hydrogen isotope effects of the enzymatic reactions initiating specific degradation pathways, using naphthalene and 2-methylnaphtalene as model compounds. Aerobic activation of naphthalene and 2-methylnaphthalene by Pseudomonas putida NCIB 9816 and Pseudomonas fluorescens ATCC 17483 containing naphthalene dioxygenases was associated with moderate carbon isotope fractionation (εC = -0.8 ± 0.1‰ to -1.6 ± 0.2‰). In contrast, anaerobic activation of naphthalene by a carboxylation-like mechanism by strain NaphS6 was linked to negligible carbon isotope fractionation (εC = -0.2 ± 0.2‰ to -0.4 ± 0.3‰). Notably, anaerobic activation of naphthalene by strain NaphS6 exhibited a normal hydrogen isotope fractionation (εH = -11 ± 2‰ to -47 ± 4‰), whereas an inverse hydrogen isotope fractionation was observed for the aerobic strains (εH = +15 ± 2‰ to +71 ± 6‰). Additionally, isotope fractionation of NaphS6 was determined in an overlaying hydrophobic carrier phase, resulting in more reliable enrichment factors compared to immobilizing the PAHs on the bottle walls without carrier phase. The observed differences especially in hydrogen fractionation might be used to differentiate between aerobic and anaerobic naphthalene and 2-methylnaphthalene biodegradation pathways at PAH-contaminated field sites. PMID:26855125

  19. The distribution of neutral hydrogen in the interstellar medium. 1: The data

    NASA Technical Reports Server (NTRS)

    Fruscione, Antonella; Hawkins, Isabel; Jelinsky, Patrick; Wiercigroch, Alexandria

    1994-01-01

    We compile, from the existing literature, the largest sample to date (842 data points) of hydrogen column density measurements, N(H I), of the gas in the interstellar medium. We include only results obtained from absorption measurements toward individual stars (594 in our sample) in an effort to construct a three-dimensional picture of the interstellar gas. We derive hydrogen column densities toward a fraction of the stars in the sample from published column density measurements of metal ions. A three-dimensional physical model derived from this data set will be presented in a companion paper. The observed stars span distances from a few parsecs to a few thousand parsecs, and more than half of the sample serves to describe the local interstellar medium within a few hundred parsecs of the Sun. Hydrogen column densities range from 10(exp 17) to 10(exp 22)/sq cm. We describe here the various observational methods used to estimate the hydrogen column densities and present the table with the stellar and hydrogen column density data. The provided table is intended as a global reference work, not to introduce new results.

  20. HOW TO SEARCH FOR ISLANDS OF NEUTRAL HYDROGEN IN THE z ∼ 5.5 IGM

    SciTech Connect

    Malloy, Matthew; Lidz, Adam

    2015-02-01

    Observations of the Lyman-alpha (Lyα) forest may allow reionization to complete as late as z ∼ 5.5, provided the ionization state of the intergalactic medium (IGM) is sufficiently inhomogeneous at these redshifts. In this case, significantly neutral islands may remain among highly ionized gas with the ionized regions allowing some transmission through the Lyα forest. This possibility has the important virtue that it is eminently testable with existing Lyα forest data. In particular, we describe three observable signatures of significantly neutral gas in the z ∼ 5.5 IGM. We use mock quasar spectra produced from numerical simulations of reionization to develop these tests. First, we quantify how the abundance and length of absorbed regions in the forest increase with the volume-averaged neutral fraction in our reionization model. Second, we consider stacking the transmission profile around highly absorbed regions in the forest. If and only if there is significantly neutral gas in the IGM, absorption in the damping wing of the Lyα line will cause the transmission to recover slowly as one moves from absorbed to transmitted portions of the spectrum. Third, the deuterium Lyβ line should imprint a small but distinctive absorption feature slightly blueward of absorbed neutral regions in the Lyβ forest. We show that these tests can be carried out with existing Keck HIRES spectra at z ∼ 5.5, with the damping wing being observable for 〈x{sub H} {sub I}〉≳0.05 and the deuterium feature observable with additional high-resolution spectra for 〈x{sub H} {sub I}〉≳0.2.

  1. STEREO Observations of Energetic Neutral Hydrogen Atoms during the 5 December 2006 Solar Flare

    NASA Technical Reports Server (NTRS)

    Mewaldt, R. A.; Leske, R. A.; Stone, E. C.; Barghouty, A. F.; Labrador, A. W.; Cohen, C. M. S.; Cummings, A. C.; Davis, A. J.; vonRosenvinge, T. T.; Wiedenbeck, M. E.

    2009-01-01

    We report the discovery of energetic neutral hydrogen atoms emitted during the X9 solar event of December 5, 2006. Beginning 1 hour following the onset of this E79 flare, the Low Energy Telescopes (LETs) on both the STEREO A and B spacecraft observed a sudden burst of 1.6 to 15 MeV protons beginning hours before the onset of the main solar energetic particle (SEP) event at Earth. More than 70% of these particles arrived from a longitude within 10 of the Sun, consistent with the measurement resolution. The derived emission profile at the Sun had onset and peak times remarkably similar to the GOES soft X-ray profile and continued for more than an hour. The observed arrival directions and energy spectrum argue strongly that the particle events less than 5 MeV were due to energetic neutral hydrogen atoms (ENAs). To our knowledge, this is the first reported observation of ENA emission from a solar flare/coronal mass ejection. Possible origins for the production of ENAs in a large solar event are considered. We conclude that the observed ENAs were most likely produced in the high corona and that charge-transfer reactions between accelerated protons and partially-stripped coronal ions are an important source of ENAs in solar events.

  2. Observation and Interpretation of Energetic Neutral Hydrogen Atoms from the December 5, 2006 Solar Flare

    NASA Technical Reports Server (NTRS)

    Barghouty, A. F.; Mewaldt, R. A.; Leske, R. A.; Shih, A. Y.; Stone, E. C.; Cohen, C. M. S.; Cummings, A. C.; Labrador, A. W.; vonRosenvinge, T. T.; Wiedenbeck, M. E.

    2009-01-01

    We discuss observations of energetic neutral hydrogen atoms (ENAs) from a solar flare/coronal mass ejection event reported by Mewaldt et al. (2009). The observations were made during the 5 December 2006 X9 solar flare, located at E79, by the Low Energy Telescopes (LETs) on STEREO A and B. Prior to the arrival of the main solar energetic particle (SEP) event at Earth, both LETs observed a sudden burst of 1.6 to 15 MeV particles arriving from the Sun. The derived solar emission profile, arrival directions, and energy spectrum all show that the <5 MeV particles were due to energetic neutral hydrogen atoms produced by either flare or shock-accelerated protons. RHESSI measurements of the 2.2-MeV gamma-ray line provide an estimate of the number of interacting flare-accelerated protons in this event, which leads to an improved estimate of ENA production by flare-accelerated protons. CME-driven shock acceleration is also considered. Taking into account ENA losses, we conclude that the observed ENAs must have been produced in the high corona at heliocentric distances .2 solar radii.

  3. Observations and Interpretations of Energetic Neutral Hydrogen Atoms from the December 5, 2006 Solar Event

    NASA Technical Reports Server (NTRS)

    Mewaldt, R. A.; Leske, R. A.; Shih, A. Y.; Stone, E. C.; Barghouty, A. f.; Cohen, C. M. S.; Cummings, A. c.; Labrador, A. W.; vonRosenvinge, T. T.

    2009-01-01

    We discuss recently reported observations of energetic neutral hydrogen atoms (ENAs) from an X9 solar flare/coronal mass ejection event on 5 December 2006, located at E79. The observations were made by the Low Energy Telescopes (LETs) on STEREO A and B. Prior to the arrival of the main solar energetic particle (SEP) event at Earth, both LETs observed a sudden burst of 1.6 to 15 MeV energetic neutral hydrogen atoms produced by either flare or shock-accelerated protons. RHESSI measurements of the 2.2-MeV gamma-ray line provide an estimate of the number of interacting flare-accelerated protons in this event, which leads to an improved estimate of ENA production by flare-accelerated protons. Taking into account ENA losses, we find that the observed ENAs must have been produced in the high corona at heliocentric distances > or equal to 2 solar radii. Although there are no CME images from this event, it is shown that CME-shock-accelerated protons can, in principle, produce a time-history consistent with the observations.

  4. Fractionation of Hydrogen Isotopes by Sulfate- and Nitrate-Reducing Bacteria

    PubMed Central

    Osburn, Magdalena R.; Dawson, Katherine S.; Fogel, Marilyn L.; Sessions, Alex L.

    2016-01-01

    Hydrogen atoms from water and food are incorporated into biomass during cellular metabolism and biosynthesis, fractionating the isotopes of hydrogen—protium and deuterium—that are recorded in biomolecules. While these fractionations are often relatively constant in plants, large variations in the magnitude of fractionation are observed for many heterotrophic microbes utilizing different central metabolic pathways. The correlation between metabolism and lipid δ2H provides a potential basis for reconstructing environmental and ecological parameters, but the calibration dataset has thus far been limited mainly to aerobes. Here we report on the hydrogen isotopic fractionations of lipids produced by nitrate-respiring and sulfate-reducing bacteria. We observe only small differences in fractionation between oxygen- and nitrate-respiring growth conditions, with a typical pattern of variation between substrates that is broadly consistent with previously described trends. In contrast, fractionation by sulfate-reducing bacteria does not vary significantly between different substrates, even when autotrophic and heterotrophic growth conditions are compared. This result is in marked contrast to previously published observations and has significant implications for the interpretation of environmental hydrogen isotope data. We evaluate these trends in light of metabolic gene content of each strain, growth rate, and potential flux and reservoir-size effects of cellular hydrogen, but find no single variable that can account for the differences between nitrate- and sulfate-respiring bacteria. The emerging picture of bacterial hydrogen isotope fractionation is therefore more complex than the simple correspondence between δ2H and metabolic pathway previously understood from aerobes. Despite the complexity, the large signals and rich variability of observed lipid δ2H suggest much potential as an environmental recorder of metabolism. PMID:27531993

  5. Catalytic two-stage coal hydrogenation process using extinction recycle of heavy liquid fraction

    DOEpatents

    MacArthur, James B.; Comolli, Alfred G.; McLean, Joseph B.

    1989-01-01

    A process for catalytic two-stage hydrogenation and liquefaction of coal with selective extinction recycle of all heavy liquid fractions boiling above a distillation cut point of about 600.degree.-750.degree. F. to produce increased yields of low-boiling hydrocarbon liquid and gas products. In the process, the particulate coal feed is slurried with a process-derived liquid solvent normally boiling above about 650.degree. F. and fed into a first stage catalytic reaction zone operated at conditions which promote controlled rate liquefaction of the coal, while simultaneously hydrogenating the hydrocarbon recycle oils. The first stage reactor is maintained at 710.degree.-800.degree. F. temperature, 1000-4000 psig hydrogen partial pressure, and 10-90 lb/hr per ft.sup.3 catalyst space velocity. Partially hydrogenated material withdrawn from the first stage reaction zone is passed directly to the second stage catalytic reaction zone maintained at 760.degree.-860.degree. F. temperature for further hydrogenation and hydroconversion reactions. A 600.degree.-750.degree. F..sup.+ fraction containing 0-20 W % unreacted coal and ash solids is recycled to the coal slurrying step. If desired, the cut point lower boiling fraction can be further catalytically hydrotreated. By this process, the coal feed is successively catalytically hydrogenated and hydroconverted at selected conditions, to provide significantly increased yields of desirable low-boiling hydrocarbon liquid products and minimal production of hydrocarbon gases, and no net production of undesirable heavy oils and residuum materials.

  6. Catalytic two-stage coal hydrogenation process using extinction recycle of heavy liquid fraction

    DOEpatents

    MacArthur, J.B.; Comolli, A.G.; McLean, J.B.

    1989-10-17

    A process is described for catalytic two-stage hydrogenation and liquefaction of coal with selective extinction recycle of all heavy liquid fractions boiling above a distillation cut point of about 600--750 F to produce increased yields of low-boiling hydrocarbon liquid and gas products. In the process, the particulate coal feed is slurried with a process-derived liquid solvent normally boiling above about 650 F and fed into a first stage catalytic reaction zone operated at conditions which promote controlled rate liquefaction of the coal, while simultaneously hydrogenating the hydrocarbon recycle oils. The first stage reactor is maintained at 710--800 F temperature, 1,000--4,000 psig hydrogen partial pressure, and 10-90 lb/hr per ft[sup 3] catalyst space velocity. Partially hydrogenated material withdrawn from the first stage reaction zone is passed directly to the second stage catalytic reaction zone maintained at 760--860 F temperature for further hydrogenation and hydroconversion reactions. A 600--750 F[sup +] fraction containing 0--20 W % unreacted coal and ash solids is recycled to the coal slurrying step. If desired, the cut point lower boiling fraction can be further catalytically hydrotreated. By this process, the coal feed is successively catalytically hydrogenated and hydroconverted at selected conditions, to provide significantly increased yields of desirable low-boiling hydrocarbon liquid products and minimal production of hydrocarbon gases, and no net production of undesirable heavy oils and residuum materials. 2 figs.

  7. On the sizes of neutral hydrogen regions giving rise to damped Lyα absorption systems

    NASA Astrophysics Data System (ADS)

    Monier, E. M.; Turnshek, D. A.; Rao, S.

    2009-08-01

    Using quasi-stellar object (QSO) absorption-line spectra obtained along closely spaced sightlines, we examine the transverse sizes of regions containing large columns of neutral hydrogen gas at redshifts z ~ 1.5. The observations are primarily of intervening damped Lyα (DLA) and sub-DLA absorption-line systems in gravitationally lensed QSOs. In particular, Hubble Space Telescope spectroscopy of the four-component Cloverleaf QSO (H1413+1143) reveals three new DLA/sub-DLA systems at z ~ 1.44, 1.49 and 1.66. A neutral hydrogen column density of NHI >= 2 × 1020atomscm-2 is required for a system to be classified as a DLA, but none of the three systems has an HI column density above the DLA threshold in all four components. Over component separations <1.4 arcsec in the Cloverleaf, corresponding to transverse sizes of ~5-12h-170kpc, the HI column densities typically change by factors of ~2-40. Similar observations of other QSOs containing absorption systems in the DLA regime are summarized from the literature. In addition to establishing approximate sizes for DLA regions, the results have implications for their volume-averaged HI gas number densities and neutral gas masses. By combining our results on DLA absorber sizes with published results on the sizes of lower column density QSO absorbers, which however arise in very ionized regions, we infer the useful relation that the typical transverse size of an absorber in the redshift interval z ~ [1, 2] is Sabs ~ 11h-170[NHI/1020]-1/4kpc. Based on observations made with the NASA/ESA Hubble Space Telescope. E-mail: emonier@brockport.edu

  8. Adsorption of hydrogen on neutral and charged fullerene: Experiment and theory

    SciTech Connect

    Kaiser, A.; Leidlmair, C.; Bartl, P.; Zoettl, S.; Denifl, S.; Mauracher, A.; Probst, M.; Scheier, P.; Echt, O.

    2013-02-21

    Helium droplets are doped with fullerenes (either C{sub 60} or C{sub 70}) and hydrogen (H{sub 2} or D{sub 2}) and investigated by high-resolution mass spectrometry. In addition to pure helium and hydrogen cluster ions, hydrogen-fullerene complexes are observed upon electron ionization. The composition of the main ion series is (H{sub 2}){sub n}HC{sub m}{sup +} where m= 60 or 70. Another series of even-numbered ions, (H{sub 2}){sub n}C{sub m}{sup +}, is slightly weaker in stark contrast to pure hydrogen cluster ions for which the even-numbered series (H{sub 2}){sub n}{sup +} is barely detectable. The ion series (H{sub 2}){sub n}HC{sub m}{sup +} and (H{sub 2}){sub n}C{sub m}{sup +} exhibit abrupt drops in ion abundance at n= 32 for C{sub 60} and 37 for C{sub 70}, indicating formation of an energetically favorable commensurate phase, with each face of the fullerene ion being covered by one adsorbate molecule. However, the first solvation layer is not complete until a total of 49 H{sub 2} are adsorbed on C{sub 60}{sup +}; the corresponding value for C{sub 70}{sup +} is 51. Surprisingly, these values do not exhibit a hydrogen-deuterium isotope effect even though the isotope effect for H{sub 2}/D{sub 2} adsorbates on graphite exceeds 6%. We also observe doubly charged fullerene-deuterium clusters; they, too, exhibit abrupt drops in ion abundance at n= 32 and 37 for C{sub 60} and C{sub 70}, respectively. The findings imply that the charge is localized on the fullerene, stabilizing the system against charge separation. Density functional calculations for C{sub 60}-hydrogen complexes with up to five hydrogen atoms provide insight into the experimental findings and the structure of the ions. The binding energy of physisorbed H{sub 2} is 57 meV for H{sub 2}C{sub 60}{sup +} and (H{sub 2}){sub 2}C{sub 60}{sup +}, and slightly above 70 meV for H{sub 2}HC{sub 60}{sup +} and (H{sub 2}){sub 2}HC{sub 60}{sup +}. The lone hydrogen in the odd-numbered complexes is covalently bound

  9. Hydrogen isotope fractionation in lipids of the methane-oxidizing bacterium Methylococcus capsulatus

    NASA Astrophysics Data System (ADS)

    Sessions, Alex L.; Jahnke, Linda L.; Schimmelmann, Arndt; Hayes, John M.

    2002-11-01

    Hydrogen isotopic compositions of individual lipids from Methylococcus capsulatus, an aerobic, methane-oxidizing bacterium, were analyzed by hydrogen isotope-ratio-monitoring gas chromatography-mass spectrometry (GC-MS). The purposes of the study were to measure isotopic fractionation factors between methane, water, and lipids and to examine the biochemical processes that determine the hydrogen isotopic composition of lipids. M. capsulatus was grown in six replicate cultures in which the δD values of methane and water were varied independently. Measurement of concomitant changes in δD values of lipids allowed estimation of the proportion of hydrogen derived from each source and the isotopic fractionation associated with the utilization of each source. All lipids examined, including fatty acids, sterols, and hopanols, derived 31.4 ± 1.7% of their hydrogen from methane. This was apparently true whether the cultures were harvested during exponential or stationary phase. Examination of the relevant biochemical pathways indicates that no hydrogen is transferred directly (with C-H bonds intact) from methane to lipids. Accordingly, we hypothesize that all methane H is oxidized to H 2O, which then serves as the H source for all biosynthesis, and that a balance between diffusion of oxygen and water across cell membranes controls the concentration of methane-derived H 2O at 31%. Values for α l/ w, the isotopic fractionation between lipids and water, were 0.95 for fatty acids and 0.85 for isoprenoid lipids. These fractionations are significantly smaller than those measured in higher plants and algae. Values for α l/ m, the isotopic fractionation between lipids and methane, were 0.94 for fatty acids and 0.79 for isoprenoid lipids. Based on these results, we predict that methanotrophs living in seawater and consuming methane with typical δD values will produce fatty acids with δD between -50 and -170‰, and sterols and hopanols with δD between -150 and -270‰.

  10. Measurement of the Ratio of Branching Fractions of the Υ(4S) to Charged and Neutral B Mesons

    NASA Astrophysics Data System (ADS)

    Godang, Romulus; Kinoshita, Kay

    2002-04-01

    Using 2.73 fb-1 of CLEO II data taken on the Υ(4S) and 1.43 fb-1 taken at a center of mass energy 60 MeV below the Υ(4S), we measure the ratio of production fractions times the ratio of semileptonic branching fractions, f_+-b_+\\over f_00b0 through the decays barB arrow D^*l^- barν_l, reconstructed using a partial reconstruction method. Assuming that b_+\\over b0 is equal to the lifetime ratio τ_+\\overτ0 and using the world average value of τ_+\\overτ_0, the ratio of branching fractions of the Υ(4S) to charged and neutral B mesons will be presented.

  11. Solar photoionization as a loss mechanism of neutral interstellar hydrogen in interplanetary space

    NASA Technical Reports Server (NTRS)

    Ogawa, H. S.; Wu, C. Y. Robert; Gangopadhyay, P.; Judge, D. L.

    1995-01-01

    Two primary loss mechanisms of interstellar neutral hydrogen in interplanetary space are resonance charge exchange ionization with solar wind protons and photoionization by solar EUV radiation. The later process has often been neglected since the average photoionization rate has been estimated to be as much as 5 to 10 times smaller than the charge exchange rate. These factors are based on ionization rates from early measurements of solar EUV and solar wind fluxes. Using revised solar EUV and solar wind fluxes measured near the ecliptic plane we have reinvestigated the ionization rates of interplanetary hydrogen. The result of our analysis indicates that indeed the photoionization rate during solar minimum can be smaller than charge exchange by a factor of 5; however, during solar maximum conditions when solar EUV fluxes are high, and solar wind fluxes are low, photoionization can be over 60% of the charge exchange rate at Earth orbit. To obtain an accurate estimate of the importance of photoionization relative to charge exchange, we have included photoionization from both the ground and metastable states of hydrogen. We find, however, that the photoionization from the metastable state does not contribute significantly to the overall photoionization rate.

  12. Doubly labeled water method: in vivo oxygen and hydrogen isotope fractionation

    SciTech Connect

    Schoeller, D.A.; Leitch, C.A.; Brown, C.

    1986-12-01

    The accuracy and precision of the doubly labeled water method for measuring energy expenditure are influenced by isotope fractionation during evaporative water loss and CO/sub 2/ excretion. To characterize in vivo isotope fractionation, we collected and isotopically analyzed physiological fluids and gases. Breath and transcutaneous water vapor were isotopically fractionated. The degree of fractionation indicated that the former was fractionated under equilibrium control at 37/sup 0/C, and the latter was kinetically fractionated. Sweat and urine were unfractionated. By use of isotopic balance models, the fraction of water lost via fractionating routes was estimated from the isotopic abundances of body water, local drinking water, and dietary solids. Fractionated water loss averaged 23% (SD = 10%) of water turnover, which agreed with our previous estimates based on metabolic rate, but there was a systematic difference between the results based on O/sub 2/ and hydrogen. Corrections for isotopic fractionation of water lost in breath and (nonsweat) transcutaneous loss should be made when using labeled water to measure water turnover or CO/sub 2/ production.

  13. Major Evolutionary Trends in Hydrogen Isotope Fractionation of Vascular Plant Leaf Waxes

    PubMed Central

    Gao, Li; Edwards, Erika J.; Zeng, Yongbo; Huang, Yongsong

    2014-01-01

    Hydrogen isotopic ratios of terrestrial plant leaf waxes (δD) have been widely used for paleoclimate reconstructions. However, underlying controls for the observed large variations in leaf wax δD values in different terrestrial vascular plants are still poorly understood, hampering quantitative paleoclimate interpretation. Here we report plant leaf wax and source water δD values from 102 plant species grown in a common environment (New York Botanic Garden), chosen to represent all the major lineages of terrestrial vascular plants and multiple origins of common plant growth forms. We found that leaf wax hydrogen isotope fractionation relative to plant source water is best explained by membership in particular lineages, rather than by growth forms as previously suggested. Monocots, and in particular one clade of grasses, display consistently greater hydrogen isotopic fractionation than all other vascular plants, whereas lycopods, representing the earlier-diverging vascular plant lineage, display the smallest fractionation. Data from greenhouse experiments and field samples suggest that the changing leaf wax hydrogen isotopic fractionation in different terrestrial vascular plants may be related to different strategies in allocating photosynthetic substrates for metabolic and biosynthetic functions, and potential leaf water isotopic differences. PMID:25402476

  14. Specific features of measuring the isotopic composition of hydrogen ions in ITER plasma by using neutral particle diagnostics under neutral beam injection conditions

    SciTech Connect

    Afanasyev, V. I.; Goncharov, P. R.; Mironov, M. I.; Nesenevich, V. G. Petrov, M. P.; Petrov, S. Ya.; Sergeev, V. Yu.

    2015-12-15

    Results of numerical simulation of signals from neutral particle analyzers under injection of the heating and diagnostic neutral beams in different operating modes of the ITER tokamak are presented. The distribution functions of fast ions in plasma are simulated, and the corresponding neutral particle fluxes escaping from the plasma along the line of sight of the analyzers are calculated. It is shown that the injection of heating deuterium (D{sup 0}) beams results in the appearance of an intense background signal hampering measurements of the ratio between the densities of deuterium and tritium fuel ions in plasma in the thermal energy range. The injection of a diagnostic hydrogen (H{sup 0}) beam does not affect measurements owing to the high mass resolution of the analyzers.

  15. Specific features of measuring the isotopic composition of hydrogen ions in ITER plasma by using neutral particle diagnostics under neutral beam injection conditions

    NASA Astrophysics Data System (ADS)

    Afanasyev, V. I.; Goncharov, P. R.; Mironov, M. I.; Nesenevich, V. G.; Petrov, M. P.; Petrov, S. Ya.; Sergeev, V. Yu.

    2015-12-01

    Results of numerical simulation of signals from neutral particle analyzers under injection of the heating and diagnostic neutral beams in different operating modes of the ITER tokamak are presented. The distribution functions of fast ions in plasma are simulated, and the corresponding neutral particle fluxes escaping from the plasma along the line of sight of the analyzers are calculated. It is shown that the injection of heating deuterium (D0) beams results in the appearance of an intense background signal hampering measurements of the ratio between the densities of deuterium and tritium fuel ions in plasma in the thermal energy range. The injection of a diagnostic hydrogen (H0) beam does not affect measurements owing to the high mass resolution of the analyzers.

  16. Model Insensitive and Calibration Independent Method for Determination of the Downstream Neutral Hydrogen Density Through Ly-alpha Glow Observations

    NASA Technical Reports Server (NTRS)

    Gangopadhyay, P.; Judge, D. L.

    1996-01-01

    Our knowledge of the various heliospheric phenomena (location of the solar wind termination shock, heliopause configuration and very local interstellar medium parameters) is limited by uncertainties in the available heliospheric plasma models and by calibration uncertainties in the observing instruments. There is, thus, a strong motivation to develop model insensitive and calibration independent methods to reduce the uncertainties in the relevant heliospheric parameters. We have developed such a method to constrain the downstream neutral hydrogen density inside the heliospheric tail. In our approach we have taken advantage of the relative insensitivity of the downstream neutral hydrogen density profile to the specific plasma model adopted. We have also used the fact that the presence of an asymmetric neutral hydrogen cavity surrounding the sun, characteristic of all neutral densities models, results in a higher multiple scattering contribution to the observed glow in the downstream region than in the upstream region. This allows us to approximate the actual density profile with one which is spatially uniform for the purpose of calculating the downstream backscattered glow. Using different spatially constant density profiles, radiative transfer calculations are performed, and the radial dependence of the predicted glow is compared with the observed I/R dependence of Pioneer 10 UV data. Such a comparison bounds the large distance heliospheric neutral hydrogen density in the downstream direction to a value between 0.05 and 0.1/cc.

  17. Muonium in stishovite: implications for the possible existence of neutral atomic hydrogen in the earth's deep mantle.

    PubMed

    Funamori, Nobumasa; Kojima, Kenji M; Wakabayashi, Daisuke; Sato, Tomoko; Taniguchi, Takashi; Nishiyama, Norimasa; Irifune, Tetsuo; Tomono, Dai; Matsuzaki, Teiichiro; Miyazaki, Masanori; Hiraishi, Masatoshi; Koda, Akihiro; Kadono, Ryosuke

    2015-01-01

    Hydrogen in the Earth's deep interior has been thought to exist as a hydroxyl group in high-pressure minerals. We present Muon Spin Rotation experiments on SiO2 stishovite, which is an archetypal high-pressure mineral. Positive muon (which can be considered as a light isotope of proton) implanted in stishovite was found to capture electron to form muonium (corresponding to neutral hydrogen). The hyperfine-coupling parameter and the relaxation rate of spin polarization of muonium in stishovite were measured to be very large, suggesting that muonium is squeezed in small and anisotropic interstitial voids without binding to silicon or oxygen. These results imply that hydrogen may also exist in the form of neutral atomic hydrogen in the deep mantle. PMID:25675890

  18. Muonium in Stishovite: Implications for the Possible Existence of Neutral Atomic Hydrogen in the Earth's Deep Mantle

    PubMed Central

    Funamori, Nobumasa; Kojima, Kenji M.; Wakabayashi, Daisuke; Sato, Tomoko; Taniguchi, Takashi; Nishiyama, Norimasa; Irifune, Tetsuo; Tomono, Dai; Matsuzaki, Teiichiro; Miyazaki, Masanori; Hiraishi, Masatoshi; Koda, Akihiro; Kadono, Ryosuke

    2015-01-01

    Hydrogen in the Earth's deep interior has been thought to exist as a hydroxyl group in high-pressure minerals. We present Muon Spin Rotation experiments on SiO2 stishovite, which is an archetypal high-pressure mineral. Positive muon (which can be considered as a light isotope of proton) implanted in stishovite was found to capture electron to form muonium (corresponding to neutral hydrogen). The hyperfine-coupling parameter and the relaxation rate of spin polarization of muonium in stishovite were measured to be very large, suggesting that muonium is squeezed in small and anisotropic interstitial voids without binding to silicon or oxygen. These results imply that hydrogen may also exist in the form of neutral atomic hydrogen in the deep mantle. PMID:25675890

  19. phi-meson photoproduction on Hydrogen in the neutral decay mode

    SciTech Connect

    Seraydaryan, Helena; Amaryan, Moscov J.; Gavalian, Gagik; Baghdasaryan, Hovhannes A.; Weinstein, Larry

    2014-05-01

    We report the first measurement of the photoproduction cross section of the $\\phi$ meson in its neutral decay mode in the reaction $\\gamma p \\to p\\phi(K_SK_L)$. The experiment was performed with a tagged photon beam of energy $1.6 \\le E_\\gamma \\le 3.6$ GeV incident on a liquid hydrogen target of the CLAS spectrometer at the Thomas Jefferson National Accelerator Facility. The $p \\phi$ final state is identified via reconstruction of $K_S$ in the invariant mass of two oppositely charged pions and by requiring the missing particle in the reaction $\\gamma p \\to p K_S X$ to be $K_L$. The presented results significantly enlarge the existing data on $\\phi$-photoproduction. These data, combined with the data from the charged decay mode, will help to constrain different mechanisms of $\\phi$ photoproduction.

  20. Sharp edges to neutral hydrogen disks in galaxies and the extragalactic radiation field

    NASA Technical Reports Server (NTRS)

    Maloney, Philip

    1993-01-01

    It is shown that the very sharp truncation of the neutral hydrogen distribution seen in NGC 3198 (and probably M33) is well modeled as the result of ionization of the atomic gas by the extragalactic radiation field. Below a critical column density of about a few times 10 exp 19/sq cm the gas is dominantly ionized and undetectable in the 21-cm line. It is inferred from the photoionization models that the total disk gas distribution in NGC 3198 is actually fairly axisymmetric. The critical column density for ionization is not a strong function of galaxy mass or mass distribution; thus, all galaxies should show a cutoff at approximately the same column density. Specific models of 3198 suggest that the extragalactic ionizing photon flux is 5000-10,000 photons/sq cm s.

  1. Northern dwarf and low surface brightness galaxies. II - The Green Bank neutral hydrogen survey

    NASA Technical Reports Server (NTRS)

    Schneider, Stephen E.; Thuan, Trinh X.; Mangum, Jeffrey G.; Miller, John

    1992-01-01

    The paper reports neutral hydrogen observations of a large sample of dwarf and other low surface brightness galaxies. A detailed discussion and error analysis of the observations are presented, and spectra are displayed for 329 galaxies detected for the first time, or detected with substantially better signal-to-noise ratios than achieved previously. The positions on the sky of 667 galaxies meeting the present selection criteria north of delta = 38 deg are shown. The distribution of the redshifts of galaxies detected at Green Bank is illustrated. The Green Bank detections tapered off strongly below the median H I flux of 3.7 Jy km/s detected at Arecibo: only 12 percent of the Green Bank sample was detected with smaller fluxes.

  2. Neutral hydrogen in the vicinity of the supernova remnant HB 9

    NASA Astrophysics Data System (ADS)

    Gosachinskii, I. V.

    2013-03-01

    The neutral hydrogen emission at 21 cm has been investigated with the RATAN-600 radio telescope in the vicinity of the supernova remnant HB9. A clumpyHI shell with radial motions surrounding the remnant has been detected. Its measured parameters contradict the connection with a shock wave from a supernova explosion. The shell formation under the action of a wind from a star that exploded as a supernova at the end of its evolution seems more realistic. The characteristics of the star obtained from the observed shell parameters are the following: a wind power of 0.5 × 1038 erg s-1, a mass-loss rate of 3.7 × 10-5 M ⊙ yr-1, and an age of 3 × 106 yr. Given the measurement errors, the mass of the star is estimated to be >8 M ⊙.

  3. Effects of the surface Miller index on the resonant neutralization of hydrogen anions near Ag surfaces

    SciTech Connect

    Chakraborty, Himadri; Niederhausen, Thomas; Thumm, Uwe

    2004-05-01

    We compare the resonant neutralization dynamics of hydrogen anions in front of plane Ag surfaces of symmetries (100) and (111) using a Crank-Nicholson wave-packet propagation method. For the Ag(100) surface, the surface state, degenerate with the valence band, rapidly decays while being populated by the ion. For Ag(111), in contrast, the population of a quasi-local Shockley surface state inside the projected L-band gap impedes the electron decay into the bulk along the direction normal to the surface. This difference in the decay pattern strongly affects the survival of 1 keV ions scattered from these surfaces. Scattering off the Ag(111) surface results in about an order of magnitude higher ion-survival as a function of the exit angle with respect to the surface plane compared to that off Ag(100). Results for Ag(111) show good agreement with measurements [Guillemot and Esaulov, Phys. Rev. Lett. 82, 4552 (1999)].

  4. ϕ-meson photoproduction on hydrogen in the neutral decay mode

    NASA Astrophysics Data System (ADS)

    Seraydaryan, H.; Amaryan, M. J.; Gavalian, G.; Baghdasaryan, H.; Weinstein, L.; Adhikari, K. P.; Adikaram, D.; Aghasyan, M.; Anderson, M. D.; Pereira, S. Anefalos; Avakian, H.; Ball, J.; Baltzell, N. A.; Battaglieri, M.; Batourine, V.; Bedlinskiy, I.; Bennett, R. P.; Biselli, A. S.; Bono, J.; Boiarinov, S.; Briscoe, W. J.; Brooks, W. K.; Bültmann, S.; Burkert, V. D.; Carman, D. S.; Celentano, A.; Chandavar, S.; Collins, P.; Contalbrigo, M.; Cortes, O.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Doughty, D.; Dugger, M.; Dupre, R.; Fassi, L. El; Eugenio, P.; Fedotov, G.; Fegan, S.; Fersch, R.; Fleming, J. A.; Gevorgyan, N.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Gohn, W.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guler, N.; Guo, L.; Hafidi, K.; Hakobyan, H.; Hanretty, C.; Harrison, N.; Heddle, D.; Hicks, K.; Ho, D.; Holtrop, M.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jo, H. S.; Joo, K.; Keller, D.; Khandaker, M.; Kim, A.; Kim, W.; Klein, F. J.; Koirala, S.; Kubarovsky, A.; Kubarovsky, V.; Kuhn, S. E.; Kuleshov, S. V.; Lewis, S.; Livingston, K.; Lu, H. Y.; MacGregor, I. J. D.; Martinez, D.; Mayer, M.; McKinnon, B.; Mineeva, T.; Mirazita, M.; Mokeev, V.; Montgomery, R. A.; Moutarde, H.; Munevar, E.; Camacho, C. Munoz; Nadel-Turonski, P.; Nasseripour, R.; Niccolai, S.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Pappalardo, L. L.; Paremuzyan, R.; Park, K.; Park, S.; Pasyuk, E.; Phelps, E.; Phillips, J. J.; Pisano, S.; Pogorelko, O.; Pozdniakov, S.; Price, J. W.; Protopopescu, D.; Puckett, A. J. R.; Rimal, D.; Ripani, M.; Ritchie, B. G.; Rizzo, A.; Rosner, G.; Rossi, P.; Sabatié, F.; Saini, M. S.; Salgado, C.; Schott, D.; Schumacher, R. A.; Seder, E.; Sharabian, Y. G.; Smith, G. D.; Sober, D. I.; Sokhan, D.; Stepanyan, S.; Stoler, P.; Strakovsky, I. I.; Strauch, S.; Tang, W.; Taylor, C. E.; Tian, Ye; Tkachenko, S.; Ungaro, M.; Vineyard, M. F.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D. P.; Weinstein, L. B.; Wood, M. H.; Zachariou, N.; Zana, L.; Zhang, J.; Zhao, Z. W.; CLAS Collaboration

    2014-05-01

    We report the first measurement of the photoproduction cross section of the ϕ meson in its neutral decay mode in the reaction γp →pϕ(KSKL). The experiment was performed with a tagged photon beam of energy 1.6≤Eγ≤3.6 GeV incident on a liquid hydrogen target of the CLAS spectrometer at the Thomas Jefferson National Accelerator Facility. The pϕ final state is identified via reconstruction of KS in the invariant mass of two oppositely charged pions and by requiring the missing particle in the reaction γp →pKSX to be KL. The presented results significantly enlarge the existing data on ϕ photoproduction. These data, combined with the data from the charged decay mode, will help to constrain different mechanisms of ϕ photoproduction.

  5. Fundamental studies on kinetic isotope effect (KIE) of hydrogen isotope fractionation in natural gas systems

    NASA Astrophysics Data System (ADS)

    Ni, Yunyan; Ma, Qisheng; Ellis, Geoffrey S.; Dai, Jinxing; Katz, Barry; Zhang, Shuichang; Tang, Yongchun

    2011-05-01

    Based on quantum chemistry calculations for normal octane homolytic cracking, a kinetic hydrogen isotope fractionation model for methane, ethane, and propane formation is proposed. The activation energy differences between D-substitute and non-substituted methane, ethane, and propane are 318.6, 281.7, and 280.2 cal/mol, respectively. In order to determine the effect of the entropy contribution for hydrogen isotopic substitution, a transition state for ethane bond rupture was determined based on density function theory (DFT) calculations. The kinetic isotope effect (KIE) associated with bond rupture in D and H substituted ethane results in a frequency factor ratio of 1.07. Based on the proposed mathematical model of hydrogen isotope fractionation, one can potentially quantify natural gas thermal maturity from measured hydrogen isotope values. Calculated gas maturity values determined by the proposed mathematical model using δD values in ethane from several basins in the world are in close agreement with similar predictions based on the δ 13C composition of ethane. However, gas maturity values calculated from field data of methane and propane using both hydrogen and carbon kinetic isotopic models do not agree as closely. It is possible that δD values in methane may be affected by microbial mixing and that propane values might be more susceptible to hydrogen exchange with water or to analytical errors. Although the model used in this study is quite preliminary, the results demonstrate that kinetic isotope fractionation effects in hydrogen may be useful in quantitative models of natural gas generation, and that δD values in ethane might be more suitable for modeling than comparable values in methane and propane.

  6. Fundamental studies on kinetic isotope effect (KIE) of hydrogen isotope fractionation in natural gas systems

    USGS Publications Warehouse

    Ni, Y.; Ma, Q.; Ellis, G.S.; Dai, J.; Katz, B.; Zhang, S.; Tang, Y.

    2011-01-01

    Based on quantum chemistry calculations for normal octane homolytic cracking, a kinetic hydrogen isotope fractionation model for methane, ethane, and propane formation is proposed. The activation energy differences between D-substitute and non-substituted methane, ethane, and propane are 318.6, 281.7, and 280.2cal/mol, respectively. In order to determine the effect of the entropy contribution for hydrogen isotopic substitution, a transition state for ethane bond rupture was determined based on density function theory (DFT) calculations. The kinetic isotope effect (KIE) associated with bond rupture in D and H substituted ethane results in a frequency factor ratio of 1.07. Based on the proposed mathematical model of hydrogen isotope fractionation, one can potentially quantify natural gas thermal maturity from measured hydrogen isotope values. Calculated gas maturity values determined by the proposed mathematical model using ??D values in ethane from several basins in the world are in close agreement with similar predictions based on the ??13C composition of ethane. However, gas maturity values calculated from field data of methane and propane using both hydrogen and carbon kinetic isotopic models do not agree as closely. It is possible that ??D values in methane may be affected by microbial mixing and that propane values might be more susceptible to hydrogen exchange with water or to analytical errors. Although the model used in this study is quite preliminary, the results demonstrate that kinetic isotope fractionation effects in hydrogen may be useful in quantitative models of natural gas generation, and that ??D values in ethane might be more suitable for modeling than comparable values in methane and propane. ?? 2011 Elsevier Ltd.

  7. The kinematics and spiral structure of the Galaxy from the neutral hydrogen

    NASA Astrophysics Data System (ADS)

    Petrovskaya, I. V.

    The kinematical and structural characteristics of the Galaxy are investigated using the whole 21-cm line profile of the neutral hydrogen emission. The concerted rotation curve and the spiral arms parameters are obtained. The Galaxy is found to have four armes with the pitch angle i = 14^circ in the region R >= 0.6R_0 and the gaseous ring when 0.4 < R / R_0 < 0.6. The Sun is between the arms. Comparing the rotation laws of the neutral and ionised gas subsystems we found the distance of the Sun to the Galactic centre R_0 = 7.5 plus or minus 1.0 kpk. The rotation velocity has a signature with the depression approximatedly 20 km/s near R = R_0. The velocity jump may be connected with giant vortices near corotation region. The parameters of the anticyclonic motion in that region are investigated. Our method of interpretation of the 21 cm profile gives the possibility to investigate z-dependance of the velocity field. To solve this problem for the inner region of the Galaxy (R

  8. Single discharge of the matrix source of negative hydrogen ions: Influence of the neutral particle dynamics

    SciTech Connect

    Paunska, Ts.; Todorov, D. Shivarova, A.; Tarnev, Kh.

    2015-04-08

    The study presents two-dimensional (2D) fluid-plasma-model description of a planar-coil inductively-driven discharge, considered as a single element of a matrix source of volume-produced negative hydrogen ions. Whereas the models developed up to now have been directed towards description of the charged particle behavior in the discharge, including that of the negative ions, this model stresses on the role of the neutral particle dynamics and of the surface processes in the formation of the discharge structure. The latter is discussed based on comparison of results obtained for discharges in a flowing gas and at a constant gas pressure as well as for different values of the coefficient of atom recombination on the walls. The conclusions are that the main plasma parameters – electron density and temperature and plasma potential – determining the gas discharge regime stay stable, regardless of changes in the redistribution of the densities of the neutral particles and of the positive ions. With regards to the volume production of the ions, which requires high density of (vibrationally excited) molecules, the impact on the degree of dissociation of the coefficient of atom recombination on the wall is discussed.

  9. Fractional Consumption of Liquid Hydrogen and Liquid Oxygen During the Space Shuttle Program

    NASA Technical Reports Server (NTRS)

    Partridge, Jonathan K.

    2011-01-01

    The Space Shuttle uses the propellants, liquid hydrogen and liquid oxygen, to meet part of the propulsion requirements from ground to orbit. The Kennedy Space Center procured over 25 million kilograms of liquid hydrogen and over 250 million kilograms of liquid oxygen during the 3D-year Space Shuttle Program. Because of the cryogenic nature of the propellants, approximately 55% of the total purchased liquid hydrogen and 30% of the total purchased liquid oxygen were used in the Space Shuttle Main Engines. The balance of the propellants were vaporized during operations for various purposes. This paper dissects the total consumption of liqUid hydrogen and liqUid oxygen and determines the fraction attributable to each of the various processing and launch operations that occurred during the entire Space Shuttle Program at the Kennedy Space Center.

  10. Fractional consumption of liquid hydrogen and liquid oxygen during the space shuttle program

    NASA Astrophysics Data System (ADS)

    Partridge, Jonathan K.

    2012-06-01

    The Space Shuttle uses the propellants, liquid hydrogen and liquid oxygen, to meet part of the propulsion requirements from ground to orbit. The Kennedy Space Center procured over 350 million liters of liquid hydrogen and over 200 million liters of liquid oxygen during the 30-year Space Shuttle Program. Because of the nature of the cryogenic propellants, approximately 54% of the total purchased liquid hydrogen and 32% of the total purchased liquid oxygen were used in the Space Shuttle Main Engines. The balance of the propellants were vaporized during operations for various purposes. This paper dissects the total consumption of liquid hydrogen and liquid oxygen and determines the fraction attributable to each of the various processing and launch operations that occurred during the entire Space Shuttle Program at the Kennedy Space Center.

  11. THE GALEX ARECIBO SDSS SURVEY. VII. THE BIVARIATE NEUTRAL HYDROGEN-STELLAR MASS FUNCTION FOR MASSIVE GALAXIES

    SciTech Connect

    Lemonias, Jenna J.; Schiminovich, David; Catinella, Barbara; Heckman, Timothy M.; Moran, Sean M.

    2013-10-20

    We present the bivariate neutral atomic hydrogen (H I)-stellar mass function (HISMF) φ(M{sub H{sub I}}, M{sub *}) for massive (log M{sub *}/M{sub ☉} \\gt 10) galaxies derived from a sample of 480 local (0.025 < z < 0.050) galaxies observed in H I at Arecibo as part of the GALEX Arecibo SDSS Survey. We fit six different models to the HISMF and find that a Schechter function that extends down to a 1% H I gas fraction, with an additional fractional contribution below that limit, is the best parameterization of the HISMF. We calculate Ω{sub H{sub I,{sub M{sub *>10{sup 1}{sup 0}}}}} and find that massive galaxies contribute 41% of the H I density in the local universe. In addition to the binned HISMF, we derive a continuous bivariate fit, which reveals that the Schechter parameters only vary weakly with stellar mass: M{sub H{sub I}{sup *}}, the characteristic H I mass, scales as M{sub *}{sup 0.39}; α, the slope of the HISMF at moderate H I masses, scales as M{sub *}{sup 0.07}; and f, the fraction of galaxies with H I gas fraction greater than 1%, scales as M{sub *}{sup -0.24}. The variation of f with stellar mass should be a strong constraint for numerical simulations. To understand the physical mechanisms that produce the shape of the HISMF, we redefine the parameters of the Schechter function as explicit functions of stellar mass and star formation rate (SFR) to produce a trivariate fit. This analysis reveals strong trends with SFR. While M{sub H{sub I}{sup *}} varies weakly with stellar mass and SFR (M{sub H{sub I}{sup *}} ∝ M{sub *}{sup 0.22}, M{sub H{sub I}{sup *}} ∝ SFR{sup –0.03}), α is a stronger function of both stellar mass and especially SFR (α ∝ M{sub *}{sup 0.47}, α ∝ SFR{sup 0.95}). The HISMF is a crucial tool that can be used to constrain cosmological galaxy simulations, test observational predictions of the H I content of populations of galaxies, and identify galaxies whose properties deviate from average trends.

  12. Interaction of the solar wind with interstellar neutral hydrogen - Three-fluid model

    NASA Technical Reports Server (NTRS)

    Isenberg, P. A.

    1986-01-01

    It is commonly assumed in models of the solar wind-interstellar neutral hydrogen interaction that the ionized interstellar particles are quickly assimilated into the solar wind proton population and 'become indistinguishable' from the original solar wind. This assumption leads to the prediction that the solar wind proton temperature should increase with radius in the outer heliosphere. This temperature increase has not been observed. It is pointed out that assimilation of the interstellar particles to the point of indistinguishability takes place on the very long Coulomb collision time scale, and is not expected to occur within the heliosphere. Results are presented of a three-fluid model of the solar wind which consists of comoving thermal populations of protons of solar origin, protons produced by ionization of interstellar hydrogen, and electrons. The steady-state results yield a solar wind with a 'core' proton distribution which cools adiabatically, and a 'halo' of interstellar pickup protons which is maintained near 10 to the 7th K by the energy input of continued ionization and pickup. Such a distribution will not be observed to manifest the temperature increase at large heliocentric distances which is predicted from a one-fluid analysis. Further time-dependent calculations show a strong correlation between the densities of the solar wind and the interstellar pickup protons. It is suggested that the interstellar pickup population may be observable by the Voyager plasma instruments in low resolution mode during periods of high solar wind density and low solar wind temperature.

  13. Cross-Linking Poly(lactic acid) Film Surface by Neutral Hyperthermal Hydrogen Molecule Bombardment.

    PubMed

    Du, Wangli; Shao, Hong; He, Zhoukun; Tang, Changyu; Liu, Yu; Shen, Tao; Zhu, Yan; Lau, Woon-ming; Hui, David

    2015-12-16

    Constructing a dense cross-linking layer on a polymer film surface is a good way to improve the water resistance of poly(lactic acid) (PLA). However, conventional plasma treatments have failed to achieve the aim as a result of the unavoidable surface damage arising from the charged species caused by the uncontrolled high energy coming from colliding ions and electrons. In this work, we report a modified plasma method called hyperthermal hydrogen-induced cross-linking (HHIC) technology to construct a dense cross-linking layer on PLA film surfaces. This method produces energy-controlled neutral hyperthermal hydrogen, which selectively cleaves C-H bonds by molecule collision from the PLA film without breaking other bonds (e.g., C-C bonds in the polymer backbone), and results in subsequent cross-linking of the carbon radicals generated from the organic molecules. The formation of a dense cross-linking layer can serve as a barrier layer to significantly improve both the hydrophobicity and water vapor barrier property of the PLA film. Because of the advantage of selective cleavage of C-H bonds by HHIC treatment, the original physical properties (e.g., mechanical strength and light transmittance) of the PLA films are well-preserved. PMID:26594874

  14. Chemical characterization of the inorganic fraction of aerosols and mechanisms of the neutralization of atmospheric acidity in Athens, Greece

    NASA Astrophysics Data System (ADS)

    Karageorgos, E. T.; Rapsomanikis, S.

    2007-06-01

    with inter-ionic correlations suggested that atmospheric ammonia is the major neutralizing agent of sulfate, while being insufficient to neutralize it to full extend. The formation of NH4NO3 is therefore not favored and additional contribution to the neutralization of acidity has been shown to be provided by Ca2+ and Mg2+. In the coarse particle fraction, the predominantly abundant Ca2+ has been found to correlate well with NO3- and SO42-, indicating its role as important neutralizing agent in this particle size range. The proximity of the location under study to the sea explains the important concentrations of salts with marine origin like NaCl and MgCl2 that were found in the coarse fraction, while chloride depletion in the gaseous phase was found to be limited to the fine particulate fraction. Total analyzed inorganic mass (elemental+ionic) was found to be ranging between approximately 25-33% of the total coarse particle mass and 35-42% of the total fine particle mass.

  15. Ultrafiltration by a compacted clay membrane-I. Oxygen and hydrogen isotopic fractionation

    USGS Publications Warehouse

    Coplen, T.B.; Hanshaw, B.B.

    1973-01-01

    Laboratory experiments were carried out to determine the magnitude of the isotopic fractionation of distilled water and of 0.01 N NaCl forced to flow at ambient temperature under a hydraulic pressure drop of 100 bars across a montmorillonite disc compacted to a porosity of 35 per cent by a pressure of 330 bars. The ultrafiltrates in both experiments were depleted in D by 2.5%. and in O18 by 0.8%. relative to the residual solution. No additional isotopic fractionation due to a salt filtering mechanism was observed at NaCl concentrations up to 0.01 N. Adsorption is most likely the principal mechanism which produces isotopic fractionation, but molecular diffusion may play a minor role. The results suggest that oxygen and hydrogen isotopic fractionation of ground water during passage through compacted clayey sediments should be a common occurrence, in accord with published interpretations of isotopic data from the Illinois and Alberta basins. ?? 1973.

  16. Neutral hydrogen in high-temperature pinch plasmas and its influence on the ionization dynamics of impurities

    NASA Astrophysics Data System (ADS)

    Preissing, N.; König, R.; Kolk, K. H.; Kunze, H.-J.

    1992-08-01

    The neutral-hydrogen density in a hot pinch plasma and in the surrounding halo is investigated spectroscopically, and its influence on the ionization dynamics of impurity ions is analyzed. The results are employed in the analysis of effective-ionization-rate coefficients, which are derived for Si viii to Si xii from the time evolution of the respective ions in the plasma.

  17. Palladium on Nitrogen-Doped Mesoporous Carbon: A Bifunctional Catalyst for Formate-Based, Carbon-Neutral Hydrogen Storage.

    PubMed

    Wang, Fanan; Xu, Jinming; Shao, Xianzhao; Su, Xiong; Huang, Yanqiang; Zhang, Tao

    2016-02-01

    The lack of safe, efficient, and economical hydrogen storage technologies is a hindrance to the realization of the hydrogen economy. Reported herein is a reversible formate-based carbon-neutral hydrogen storage system that is established over a novel catalyst comprising palladium nanoparticles supported on nitrogen-doped mesoporous carbon. The support was fabricated by a hard template method and nitridated under a flow of ammonia. Detailed analyses demonstrate that this bicarbonate/formate redox equilibrium is promoted by the cooperative role of the doped nitrogen functionalities and the well-dispersed, electron-enriched palladium nanoparticles. PMID:26763714

  18. Fractionation of hydrogen and deuterium on Venus due to collisional ejection

    NASA Astrophysics Data System (ADS)

    Gurwell, M. A.; Yung, Y. L.

    1993-02-01

    The collisional ejection process for hydrogen on Venus is reanalyzed. Improved values for the efficiency of H and D escape as a function of the ionospheric temperature are reported. It is proposed that the reduction of the hydrogen flux for collisional ejection be reduced from 8 to 3.5 x 10 exp 6/sq cm/s, and a revised D/H fractional factor of 0.47 due to collisional ejection is suggested. The resulting deuterium flux is 3.1 x 10 exp 4/sq cm/s, roughly six times the flux due to charge exchange, making collisional ejection the dominant escape mechanism for deuterium on Venus.

  19. Fractionation of hydrogen and deuterium on Venus due to collisional ejection

    NASA Technical Reports Server (NTRS)

    Gurwell, Mark A.; Yung, Yuk L.

    1993-01-01

    The collisional ejection process for hydrogen on Venus is reanalyzed. Improved values for the efficiency of H and D escape as a function of the ionospheric temperature are reported. It is proposed that the reduction of the hydrogen flux for collisional ejection be reduced from 8 to 3.5 x 10 exp 6/sq cm/s, and a revised D/H fractional factor of 0.47 due to collisional ejection is suggested. The resulting deuterium flux is 3.1 x 10 exp 4/sq cm/s, roughly six times the flux due to charge exchange, making collisional ejection the dominant escape mechanism for deuterium on Venus.

  20. Routes to formation of highly excited neutral atoms in the break-up of strongly driven hydrogen molecule

    NASA Astrophysics Data System (ADS)

    Emmanouilidou, Agapi

    2012-06-01

    We present a theoretical quasiclassical treatment of the formation, during Coulomb explosion, of highly excited neutral H atoms for strongly-driven hydrogen molecule. This process, where after the laser field is turned off, one electron escapes to the continuum while the other occupies a Rydberg state, was recently reported in an experimental study in Phys. Rev. Lett 102, 113002 (2009). We find that two-electron effects are important in order to correctly account for all pathways leading to highly excited neutral hydrogen formation [1]. We identify two pathways where the electron that escapes to the continuum does so either very quickly or after remaining bound for a few periods of the laser field. These two pathways of highly excited neutral H formation have distinct traces in the probability distribution of the escaping electron momentum components. [4pt] [1] A. Emmanouilidou, C. Lazarou, A. Staudte and U. Eichmann, Phys. Rev. A (Rapid) 85 011402 (2012).

  1. Impact-induced devolatilization and hydrogen isotopic fractionation of serpentine: Implications for planetary accretion

    NASA Technical Reports Server (NTRS)

    Tyburczy, James A.; Krishnamurthy, R. V.; Epstein, Samuel; Ahrens, Thomas J.

    1988-01-01

    Impact-induced devolatilization of porous serpentine was investigated using two independent experimental methods, the gas recovery and the solid recovery method, each yielding nearly identical results. For shock pressures near incipient devolatilization, the hydrogen isotopic composition of the evolved H2O is very close to that of the starting material. For shock pressures at which up to 12 percent impact-induced devolatilization occurs, the bulk evolved gas is significantly lower in deuterium than the starting material. There is also significant reduction of H2O to H2 in gases recovered at these higher shock pressures, probably caused by reaction of evolved H2O with the metal gas recovery fixture. Gaseous H2O-H2 isotopic fractionation suggests high temperature isotopic equilibrium between the gaseous species, indicating initiation of devolatilization at sites of greater than average energy deposition. Bulk gas-residual solid isotopic fractionations indicate nonequilibrium, kinetic control of gas-solid isotopic ratios. Impact-induced hydrogen isotopic fractionation of hydrous silicates during accretion can strongly affect the long-term planetary isotopic ratios of planetary bodies, leaving the interiors enriched in deuterium. Depending on the model used for extrapolation of the isotopic fractionation to devolatilization fractions greater than those investigated experimentally can result from this process.

  2. Studies on the formation of collagen. I. Properties and fractionation of neutral salt extracts of normal guinea pig connective tissue.

    PubMed

    GROSS, J

    1958-02-01

    Some properties of cold neutral salt extracts of fresh guinea pig dermis have been described in terms of viscosity, electrophoresis and sedimentation patterns, partial composition, the collagen content, conditions for extraction of collagen, and the effect of certain enzymes. Viscosity of the extracts depended on the collagen in solution as demonstrated by removal of this protein by precipitation or enzymatic degradation. The intrinsic viscosity of the crude 0.45 M extract, as well as that of the isolated collagen was 14.5, identical with that for collagen dissolved by dilute acid, indicating the same high asymmetry ratio for both. Electrophoresis of the skin extracts revealed a slow moving, high, sharp, poorly diffusing boundary in addition to a pattern superficially resembling that of serum. The ultracentrifuge pattern revealed a slowly sedimenting, hypersharp boundary following a large rapidly diffusing peak. The slow moving boundaries in both patterns were abolished by collagenase or heat precipitation of the collagen fraction. Hyaluronidase had no effect on either pattern. Neutral sulfate, chloride, and phosphate extracted more collagen than did thiocyanate. Very little collagen was extracted at 37 degrees C. as compared with that removed at 3 degrees C. A two stage fractionation procedure employing dilute trichloroacetic acid and ethanol is described for the isolation and purification of soluble collagen from crude extracts. PMID:13491760

  3. Use of predissociation to enhance the atomic hydrogen ion fraction in ion sources

    DOEpatents

    Kim, Jinchoon

    1979-01-01

    A duopigatron ion source is modified by replacing the normal oxide-coated wire filament cathode of the ion source with a hot tungsten oven through which hydrogen gas is fed into the arc chamber. The hydrogen gas is predissociated in the hot oven prior to the arc discharge, and the recombination rate is minimized by hot walls inside of the arc chamber. With the use of the above modifications, the atomic H.sub.1.sup.+ ion fraction output can be increased from the normal 50% to greater than 70% with a corresponding decrease in the H.sub.2.sup.+ and H.sub.3.sup.+ molecular ion fraction outputs from the ion source.

  4. Observation and Interpretation of Energetic Neutral Hydrogen Atoms from the December 5, 2006 Solar Event

    NASA Technical Reports Server (NTRS)

    Mewaldt, R. A.; Leske, R. A.; Stone, E. C.; Barghouty, A. F.; Shih, A. Y.; von Rosenvinge, T. T.; Labrador, A. W.; Cohen, C. M. S.; Cummings, A. C.; Cummings, A. C.

    2009-01-01

    We report the first observations of energetic neutral atoms (ENAs) from a solar flare/coronal mass ejection event. The observations were made during the December 5, 2006 X9 solar flare, located at E79, by the Low Energy Telescopes (LETs) on the STEREO A and B spacecraft. Within 1-2 hours of the flare onset, both LETs observed a sudden burst of 1.6 to 15 MeV protons arriving hours before the onset of the main solar energetic particle (SEP) event at Earth. More than 70% of these particles arrived from a longitude within +-10 degrees of the Sun. The derived emission profile at the Sun lasted for more than an hour and had a profile remarkably similar to the GOES soft X-ray profile. The observed arrival directions and energy spectrum argue strongly that the particle events <5 MeV were due to energetic neutral hydrogen atoms that were stripped of their electrons upon entering the LET sensor. To our knowledge, this is the first reported observation of ENA emission from a solar flare/coronal mass ejection. We discuss possible origins for the production of ENAs in solar events, including charge-transfer reactions involving both flare and shock-accelerated protons. Assuming isotropic emission, we find that 2 x 10E28 ENAs escaped from the Sun in the upper hemisphere. Based on the 2.2 MeV gamma-ray emission observed by RHESSI in this event, and using measured and theoretical cross sections, we estimate that 3 x 10E31 ENAs with 1.8 - 5 MeV could be produced by protons accelerated in the flare. CME-driven shock acceleration is also a possible ENA source, but unfortunately there were no CME observations available from this event. Taking into account ENA losses, we conclude that the observed ENAs were most likely produced in the high corona at heliocentric distances 1.6 solar radii.

  5. Radiation Damped Profiles of Extremely High Column Density Neutral Hydrogen : Implications of Cosmic Reionization

    NASA Astrophysics Data System (ADS)

    Bach, Kiehunn

    2016-09-01

    Incorporating the time-dependent second-order perturbation theory for the Lyman scattering cross-section, we investigate the intergalactic absorption profiles of extremely high column density systems near the end of cosmic reionization. Assuming a representative set of the redshift distribution of neutral hydrogen, we quantitatively examined the impact of inhomogeneous density on the intrinsic absorption profiles. The cumulative absorption by neutral patches in the line-of-sight mainly affects the far off-center region of the red damping wing, but the effect is not significant. The shape of the line-center can be modified by the near-zone distribution due to high opacities of the near-resonance scattering. On the other hand, the HWHM (half width at half maximum) as an effective line-width is relatively less sensitive to the local inhomogeneity. Specifically, when the two local damping wings of Lyα and Lyβ are close in spectra of the strongly damped systems, accurate profiles of both lines are required. In the case of N HI ≲ 1021 cm-2, the two-level approximation is marginally applicable for the damping wing fit within 5 - 7% errors. However, as the local column density reaches N HI ˜ 1022.3 cm-2, this classical approximation yields a relative error of a 10% overestimation in the red wing and a 20% underestimation in the blue wing of Lyα. If severe extinction by the Lyα forests is carefully subtracted, the intrinsic absorption profile will provide a better constraint on the local ionized states. For practical applications, an analytic fitting function for the Lyβ scattering is derived.

  6. The cosmological significance of low surface brightness galaxies found in a deep blind neutral hydrogen survey

    NASA Astrophysics Data System (ADS)

    Minchin, R. F.; Disney, M. J.; Parker, Q. A.; Boyce, P. J.; de Blok, W. J. G.; Banks, G. D.; Ekers, R. D.; Freeman, K. C.; Garcia, D. A.; Gibson, B. K.; Grossi, M.; Haynes, R. F.; Knezek, P. M.; Lang, R. H.; Malin, D. F.; Price, R. M.; Putman, M.; Stewart, I. M.; Wright, A. E.

    2004-12-01

    Minchin et al. have recently placed limits on the cosmological significance of gas-rich low surface brightness (LSB) galaxies as a proportion of the total population of gas-rich galaxies by carrying out a very deep survey (HIDEEP) for neutral hydrogen (HI) with the Parkes multibeam system. Such a survey avoids the surface brightness selection effects that limit the usefulness of optical surveys for finding LSB galaxies. To complement the HIDEEP survey, we have digitally stacked eight 1-h R-band Tech Pan films from the UK Schmidt Telescope covering 36 deg2 of the survey area to reach a very deep isophotal limit of 26.5 Rmag arcsec-2. At this level, we find that all of the 129 HI sources within this area have optical counterparts and that 107 of them can be identified with individual galaxies. We have used the properties of the galaxies identified as the optical counterparts of the HI sources to estimate the significance of LSB galaxies (defined to be those at least 1.5 mag dimmer in effective surface brightness than the peak in the observed distribution seen in optical surveys). Two different methods of correcting for ease of detection do not yield significantly different results: LSB galaxies make up 62 +/- 37 per cent of gas-rich galaxies by number according to our first method (weighting by HI mass function), which includes a correction for large-scale structure, or 51 +/- 20 per cent when calculated by our second method (1/Vmax correction). We also find that LSB galaxies provide 30 +/- 10 per cent of the contribution of gas-rich galaxies to the neutral hydrogen density of the Universe, 7 +/- 3 per cent of their contribution to the luminosity density of the Universe, 9 +/- 4 of their contribution to the baryonic mass density of the Universe, 20 +/- 10 per cent of their contribution to the dynamical mass density of the Universe, and 40 +/- 20 per cent of their cross-sectional area. We do not find any `crouching giant' LSB galaxies such as Malin 1, nor do we find a

  7. Neutral hydrolysable sugars, OC and N content across soil aggregate size fractions, as an effect of two different crop rotations

    NASA Astrophysics Data System (ADS)

    Angeletti, Carlo; Giannetta, Beatrice; Kölbl, Angelika; Monaci, Elga; Kögel-Knabner, Ingrid; Vischetti, Costantino

    2016-04-01

    This paper presents the results regarding the effects of two 13 years long crop rotations, on the composition of mineral associated neutral sugars, organic carbon (OC) and N concentration, across different aggregate size fractions. The two cropping sequences were characterized by different levels of N input from plant residues and tillage frequency. We also analysed the changes that occurred in soil organic matter (SOM) chemical composition following the cultivation in the two soils of winter wheat and chickpea on the same soils. The analysis of OC and N content across soil aggregate fractions allowed getting an insight into the role played by SOM chemical composition in the formation of organo-mineral associations, while neutral sugars composition provided information on mineral associated SOM origin and decomposition processes, as pentoses derive mostly from plant tissues and hexoses are prevalently of microbial origin. Soil samples were collected from two adjacent fields, from the 0-10 cm layer, in November 2011 (T0). For 13 years before the beginning of the experiment, one soil was cultivated mostly with alfalfa (ALF), while a conventional cereal-sunflower-legume rotation (CON) was carried out on the other. Winter wheat and chickpea were sown on the two soils during the following 2 growing seasons and the sampling was repeated after 18 months (T1). A combination of aggregates size and density fractionation was used to isolate OM associated with mineral particles in: macro-aggregates (>212 μm), micro-aggregates (<200 μm, > 63 μm) and silt and clay size particles (<63 μm). For every fraction, OC and N contents were measured by means of elemental analysis, while the content of the following neutral hydrolysable sugar monomers was measured via GC-FID: rhamnose, fucose, ribose, arabinose, xylose, mannose, galactose, glucose. OC and N contents were higher in ALF as compared to CON for every aggregate fraction, both at T0 and T1. During the 18-months cultivation

  8. Effects of USDA beef quality grade and cooking on fatty acid composition of neutral and polar lipid fractions.

    PubMed

    Legako, J F; Dinh, T T N; Miller, M F; Brooks, J C

    2015-02-01

    The effects of USDA beef quality grade (QG; Prime, Low Choice, and Standard; n=8) and cooking (RC) on fatty acid (FA) concentrations (mg/g dry matter) and percentages of neutral and polar lipid fractions (NL and PL, respectively)from strip steaks were explored. An increase in QG led to an accumulation of most FA, especially in the NL fraction (P < 0.001). Common effects on FA percentages were two-way interactions of either QG or RC with LF (P ≤ 0.019). Fatty acids were affected differently by QG and RC depending on their originating LF. Monounsaturated fatty acid (MUFA) and polyunsaturated fatty acid (PUFA) percentages of the PL were dependent on QG (P ≤ 0.014). Cooking and QG had minimal impact on FA percentages of the NL, however, greatly influenced PL MUFA and PUFA percentages (P b 0.001). There was evidence indicating that dry heat cookery affected not only PUFA, as generally thought, but also the MUFA of PL fraction. PMID:25460133

  9. Combined nitrogen limitation and hydrogen peroxide treatment enhances neutral lipid accumulation in the marine diatom Phaeodactylum tricornutum.

    PubMed

    Burch, Andrew R; Franz, Annaliese K

    2016-11-01

    Exogenous application of dilute hydrogen peroxide (H2O2) increases neutral lipid production in Phaeodactylum tricornutum. Exposing early stationary phase cultures of P. tricornutum to 0.25-2mM H2O2 increases the amount of neutral lipids per biomass (mg/mg) by >100% at 24h post H2O2 treatment as determined upon lipid extraction and analysis using a neutral lipid assay. H2O2 treatment increased the total levels of neutral lipids harvested up to 50%, from 64mg/L to 96mg/L, demonstrating its possible effectiveness as a pre-harvest strategy to enhance the biofuel feedstock potential of P. tricornutum. The effects of H2O2 on biomass are concentration dependent; increasing concentrations of H2O2 reduce the levels of isolated biomass. Analysis of combined stressors demonstrates that H2O2 treatment exhibits synergistic effects to enhance neutral lipid production under nitrogen-depleted, but not phosphorus-depleted conditions, suggesting that the effects of hydrogen peroxide on lipid production are influenced by environmental nitrogen levels. PMID:27529521

  10. Isotopic fractionation in proteins as a measure of hydrogen bond length

    NASA Astrophysics Data System (ADS)

    McKenzie, Ross H.; Athokpam, Bijyalaxmi; Ramesh, Sai G.

    2015-07-01

    If a deuterated molecule containing strong intramolecular hydrogen bonds is placed in a hydrogenated solvent, it may preferentially exchange deuterium for hydrogen. This preference is due to the difference between the vibrational zero-point energy for hydrogen and deuterium. It is found that the associated fractionation factor Φ is correlated with the strength of the intramolecular hydrogen bonds. This correlation has been used to determine the length of the H-bonds (donor-acceptor separation) in a diverse range of enzymes and has been argued to support the existence of short low-barrier H-bonds. Starting with a potential energy surface based on a simple diabatic state model for H-bonds, we calculate Φ as a function of the proton donor-acceptor distance R. For numerical results, we use a parameterization of the model for symmetric O-H⋯O bonds [R. H. McKenzie, Chem. Phys. Lett. 535, 196 (2012)]. We consider the relative contributions of the O-H stretch vibration, O-H bend vibrations (both in plane and out of plane), tunneling splitting effects at finite temperature, and the secondary geometric isotope effect. We compare our total Φ as a function of R with NMR experimental results for enzymes, and in particular with an earlier model parametrization Φ(R), used previously to determine bond lengths.

  11. Isotopic fractionation in proteins as a measure of hydrogen bond length.

    PubMed

    McKenzie, Ross H; Athokpam, Bijyalaxmi; Ramesh, Sai G

    2015-07-28

    If a deuterated molecule containing strong intramolecular hydrogen bonds is placed in a hydrogenated solvent, it may preferentially exchange deuterium for hydrogen. This preference is due to the difference between the vibrational zero-point energy for hydrogen and deuterium. It is found that the associated fractionation factor Φ is correlated with the strength of the intramolecular hydrogen bonds. This correlation has been used to determine the length of the H-bonds (donor-acceptor separation) in a diverse range of enzymes and has been argued to support the existence of short low-barrier H-bonds. Starting with a potential energy surface based on a simple diabatic state model for H-bonds, we calculate Φ as a function of the proton donor-acceptor distance R. For numerical results, we use a parameterization of the model for symmetric O-H⋯O bonds [R. H. McKenzie, Chem. Phys. Lett. 535, 196 (2012)]. We consider the relative contributions of the O-H stretch vibration, O-H bend vibrations (both in plane and out of plane), tunneling splitting effects at finite temperature, and the secondary geometric isotope effect. We compare our total Φ as a function of R with NMR experimental results for enzymes, and in particular with an earlier model parametrization Φ(R), used previously to determine bond lengths. PMID:26233131

  12. Isotopic fractionation in proteins as a measure of hydrogen bond length

    SciTech Connect

    McKenzie, Ross H.; Athokpam, Bijyalaxmi; Ramesh, Sai G.

    2015-07-28

    If a deuterated molecule containing strong intramolecular hydrogen bonds is placed in a hydrogenated solvent, it may preferentially exchange deuterium for hydrogen. This preference is due to the difference between the vibrational zero-point energy for hydrogen and deuterium. It is found that the associated fractionation factor Φ is correlated with the strength of the intramolecular hydrogen bonds. This correlation has been used to determine the length of the H-bonds (donor-acceptor separation) in a diverse range of enzymes and has been argued to support the existence of short low-barrier H-bonds. Starting with a potential energy surface based on a simple diabatic state model for H-bonds, we calculate Φ as a function of the proton donor-acceptor distance R. For numerical results, we use a parameterization of the model for symmetric O–H⋯O bonds [R. H. McKenzie, Chem. Phys. Lett. 535, 196 (2012)]. We consider the relative contributions of the O–H stretch vibration, O–H bend vibrations (both in plane and out of plane), tunneling splitting effects at finite temperature, and the secondary geometric isotope effect. We compare our total Φ as a function of R with NMR experimental results for enzymes, and in particular with an earlier model parametrization Φ(R), used previously to determine bond lengths.

  13. Modelling the cosmic neutral hydrogen from DLAs and 21-cm observations

    NASA Astrophysics Data System (ADS)

    Padmanabhan, Hamsa; Choudhury, T. Roy; Refregier, Alexandre

    2016-05-01

    We review the analytical prescriptions in the literature to model the 21-cm (emission line surveys/intensity mapping experiments) and Damped Lyman-Alpha (DLA) observations of neutral hydrogen (H I) in the post-reionization universe. While these two sets of prescriptions have typically been applied separately for the two probes, we attempt to connect these approaches to explore the consequences for the distribution and evolution of H I across redshifts. We find that a physically motivated, 21-cm-based prescription, extended to account for the DLA observables provides a good fit to the majority of the available data, but cannot accommodate the recent measurement of the clustering of DLAs at z ˜ 2.3. This highlights a tension between the DLA bias and the 21-cm measurements, unless there is a very significant change in the nature of H I-bearing systems across redshifts 0-3. We discuss the implications of our findings for the characteristic host halo masses of the DLAs and the power spectrum of 21-cm intensity fluctuations.

  14. Strongly lensed neutral hydrogen emission: detection predictions with current and future radio interferometers

    NASA Astrophysics Data System (ADS)

    Deane, R. P.; Obreschkow, D.; Heywood, I.

    2015-09-01

    Strong gravitational lensing provides some of the deepest views of the Universe, enabling studies of high-redshift galaxies only possible with next-generation facilities without the lensing phenomenon. To date, 21-cm radio emission from neutral hydrogen has only been detected directly out to z ˜ 0.2, limited by the sensitivity and instantaneous bandwidth of current radio telescopes. We discuss how current and future radio interferometers such as the Square Kilometre Array (SKA) will detect lensed H I emission in individual galaxies at high redshift. Our calculations rely on a semi-analytic galaxy simulation with realistic H I discs (by size, density profile and rotation), in a cosmological context, combined with general relativistic ray tracing. Wide-field, blind H I surveys with the SKA are predicted to be efficient at discovering lensed H I systems, increasingly so at z ≳ 2. This will be enabled by the combination of the magnification boosts, the steepness of the H I luminosity function at the high-mass end, and the fact that the H I spectral line is relatively isolated in frequency. These surveys will simultaneously provide a new technique for foreground lens selection and yield the highest redshift H I emission detections. More near term (and existing) cm-wave facilities will push the high-redshift H I envelope through targeted surveys of known lenses.

  15. Cross-correlation cosmography with intensity mapping of the neutral hydrogen 21 cm emission

    NASA Astrophysics Data System (ADS)

    Pourtsidou, A.; Bacon, D.; Crittenden, R.

    2015-11-01

    The cross-correlation of a foreground density field with two different background convergence fields can be used to measure cosmographic distance ratios and constrain dark energy parameters. We investigate the possibility of performing such measurements using a combination of optical galaxy surveys and neutral hydrogen (HI) intensity mapping surveys, with emphasis on the performance of the planned Square Kilometre Array (SKA). Using HI intensity mapping to probe the foreground density tracer field and/or the background source fields has the advantage of excellent redshift resolution and a longer lever arm achieved by using the lensing signal from high redshift background sources. Our results show that, for our best SKA-optical configuration of surveys, a constant equation of state for dark energy can be constrained to ≃8 % for a sky coverage fsky=0.5 and assuming a σ (ΩDE)=0.03 prior for the dark energy density parameter. We also show that using the cosmic microwave background as the second source plane is not competitive, even when considering a COrE-like satellite.

  16. VLA neutral hydrogen imaging of compact groups of galaxies. II - HCG 31, 44, and 79

    SciTech Connect

    Williams, B.A.; Mcmahon, P.M.; Van gorkom, J.H. Columbia University, New York )

    1991-06-01

    Neutral hydrogen images of three compact groups of galaxies are presented: HCG 31, 44, and 79. The images were obtained with the very large array (VLA), an on-line Hanning smoothing was applied to the data, and the H I spectral channel was isolated. The images were made on the Pipeline, and were produced by means of a method described by Gorkon and Ekers (1988). The images of HCG 44 are compared with earlier Arecibo observations. The H I emission in HCG 44 is discovered within the galaxies, whereas the emission in 31 and 79 can be found throughout the group in clouds that are larger than the galaxies. Evidence of a relationship between the compact groups is found in the H I data, and the groups are considered to be merging into a single object. Some of the groups are theorized to be young amorphous galaxies where the H I is still bound to individual galaxies, and which have just begun to condense from the intergalactic medium. The kinematics of the gas are shown to vary, and a common gaseous envelope contains the dwarf galaxies. 42 refs.

  17. Hydrogen and carbon isotope fractionation during degradation of chloromethane by methylotrophic bacteria

    PubMed Central

    Nadalig, Thierry; Greule, Markus; Bringel, Françoise; Vuilleumier, Stéphane; Keppler, Frank

    2013-01-01

    Chloromethane (CH3Cl) is a widely studied volatile halocarbon involved in the destruction of ozone in the stratosphere. Nevertheless, its global budget still remains debated. Stable isotope analysis is a powerful tool to constrain fluxes of chloromethane between various environmental compartments which involve a multiplicity of sources and sinks, and both biotic and abiotic processes. In this study, we measured hydrogen and carbon isotope fractionation of the remaining untransformed chloromethane following its degradation by methylotrophic bacterial strains Methylobacterium extorquens CM4 and Hyphomicrobium sp. MC1, which belong to different genera but both use the cmu pathway, the only pathway for bacterial degradation of chloromethane characterized so far. Hydrogen isotope fractionation for degradation of chloromethane was determined for the first time, and yielded enrichment factors (ε) of −29‰ and −27‰ for strains CM4 and MC1, respectively. In agreement with previous studies, enrichment in 13C of untransformed CH3Cl was also observed, and similar isotope enrichment factors (ε) of −41‰ and −38‰ were obtained for degradation of chloromethane by strains CM4 and MC1, respectively. These combined hydrogen and carbon isotopic data for bacterial degradation of chloromethane will contribute to refine models of the global atmospheric budget of chloromethane. PMID:24019296

  18. Hydrogen and carbon isotope fractionation during degradation of chloromethane by methylotrophic bacteria.

    PubMed

    Nadalig, Thierry; Greule, Markus; Bringel, Françoise; Vuilleumier, Stéphane; Keppler, Frank

    2013-12-01

    Chloromethane (CH3 Cl) is a widely studied volatile halocarbon involved in the destruction of ozone in the stratosphere. Nevertheless, its global budget still remains debated. Stable isotope analysis is a powerful tool to constrain fluxes of chloromethane between various environmental compartments which involve a multiplicity of sources and sinks, and both biotic and abiotic processes. In this study, we measured hydrogen and carbon isotope fractionation of the remaining untransformed chloromethane following its degradation by methylotrophic bacterial strains Methylobacterium extorquens CM4 and Hyphomicrobium sp. MC1, which belong to different genera but both use the cmu pathway, the only pathway for bacterial degradation of chloromethane characterized so far. Hydrogen isotope fractionation for degradation of chloromethane was determined for the first time, and yielded enrichment factors (ε) of -29‰ and -27‰ for strains CM4 and MC1, respectively. In agreement with previous studies, enrichment in (13) C of untransformed CH3 Cl was also observed, and similar isotope enrichment factors (ε) of -41‰ and -38‰ were obtained for degradation of chloromethane by strains CM4 and MC1, respectively. These combined hydrogen and carbon isotopic data for bacterial degradation of chloromethane will contribute to refine models of the global atmospheric budget of chloromethane. PMID:24019296

  19. Carbon and hydrogen isotope fractionation by microbial methane oxidation: Improved determination

    SciTech Connect

    Mahieu, Koenraad . E-mail: Koenraad.Mahieu@Ugent.be; Visscher, Alex De; Vanrolleghem, Peter A.; Cleemput, Oswald Van

    2006-07-01

    Isotope fractionation is a promising tool for quantifying methane oxidation in landfill cover soils. For good quantification an accurate determination of the isotope fractionation factor ({alpha}) of methane oxidation based on independent batch experiments with soil samples from the landfill cover is required. Most studies so far used data analysis methods based on approximations of the Rayleigh model to determine {alpha}. In this study, the two most common approximations were tested, the simplified Rayleigh approach and the Coleman method. To do this, the original model of Rayleigh was described in measurable variables, methane concentration and isotopic abundances, and fitted to batch oxidation data by means of a weighted non-linear errors-in-variables regression technique. The results of this technique were used as a benchmark to which the results of the two conventional approximations were compared. Three types of batch data were used: simulated data, data obtained from the literature, and data obtained from new batch experiments conducted in our laboratory. The Coleman approximation was shown to be acceptable but not recommended for carbon fractionation (error on {alpha} - 1 up to 5%) and unacceptable for hydrogen fractionation (error up to 20%). The difference between the simplified Rayleigh approach and the exact Rayleigh model is much smaller for both carbon and hydrogen fractionation (error on {alpha} - 1 < 0.05%). There is also a small difference when errors in both variables (methane concentration and isotope abundance) are accounted for instead of assuming an error-free independent variable. By means of theoretical calculations general criteria, not limited to methane, {sup 13}C, or D, were developed for the validity of the simplified Rayleigh approach when using labelled compounds.

  20. Release time of residual oxygen after dental bleaching with 35% hydrogen peroxide: effect of a catalase-based neutralizing agent.

    PubMed

    Guasso, Bárbara; Salomone, Paloma; Nascimento, Paulo Cícero; Pozzobon, Roselaine Terezinha

    2016-01-01

    This article assessed the effect of a catalase-based agent on residual oxygen (O2) release from teeth exposed to 35% hydrogen peroxide (H2O2). The use of the catalase-based neutralizer agent for 2-3 minutes was able to release residual O2 5 days after exposure to a 35% H2O2-based bleaching gel. PMID:27148658

  1. Observation of Fractional Stokes-Einstein Behavior in the Simplest Hydrogen-bonded Liquid

    SciTech Connect

    Herwig, Kenneth W; Molaison, Jamie J; Fernandez-Alonso, F.; Bermejo, F. J.; Turner, John F. C.; McLain, Sylvia E.

    2007-01-01

    Quasielastic neutron scattering has been used to investigate the single-particle dynamics of hydrogen fluoride across its entire liquid range at ambient pressure. For T > 230 K, translational diffusion obeys the celebrated Stokes-Einstein relation, in agreement with nuclear magnetic resonance studies. At lower temperatures, we find significant deviations from the above behavior in the form of a power law with exponent xi = -0.71+/-0.05. More striking than the above is a complete breakdown of the Debye-Stokes-Einstein relation for rotational diffusion. Our findings provide the first experimental verification of fractional Stokes-Einstein behavior in a hydrogen-bonded liquid, in agreement with recent computer simulations.

  2. On the Apparent Associations Between Interstellar Neutral Hydrogen Structure and (WMAP) High-frequency Continuum Emission

    NASA Astrophysics Data System (ADS)

    Verschuur, Gerrit L.

    2010-03-01

    Galactic neutral hydrogen (H I) within a few hundred parsecs of the Sun contains structure with an angular distribution that is similar to small-scale structure observed by the Wilkinson Microwave Anisotropy Probe (WMAP). A total of 108 associated pairs of associated H I and WMAP features have now been cataloged using H I data mapped in 2 km s-1 intervals and these pairs show a typical offset of 0fdg8. A large-scale statistical test for a direct association is carried out that casts little additional light on whether the these small offsets are merely coincidental or carry information. To pursue the issue further, the nature of several of the features within the foreground H I most closely associated with WMAP structure is examined in detail and it is shown that the cross-correlation coefficient for well-matched pairs of structures is of order unity. It is shown that free-free emission from electrons in unresolved density enhancements in interstellar space could theoretically produce high-frequency radio continuum radiation at the levels observed by WMAP and that such emission will appear nearly flat across the WMAP frequency range. Evidence for such structure in the interstellar medium already exists in the literature. Until higher angular resolution observations of the high-frequency continuum emission structure as well as the apparently associated H I structure become available, it may be difficult to rule out the possibility that some if not all the small-scale structure usually attributed to the cosmic microwave background may have a galactic origin.

  3. ON THE APPARENT ASSOCIATIONS BETWEEN INTERSTELLAR NEUTRAL HYDROGEN STRUCTURE AND (WMAP) HIGH-FREQUENCY CONTINUUM EMISSION

    SciTech Connect

    Verschuur, Gerrit L.

    2010-03-10

    Galactic neutral hydrogen (H I) within a few hundred parsecs of the Sun contains structure with an angular distribution that is similar to small-scale structure observed by the Wilkinson Microwave Anisotropy Probe (WMAP). A total of 108 associated pairs of associated H I and WMAP features have now been cataloged using H I data mapped in 2 km s{sup -1} intervals and these pairs show a typical offset of 0.{sup 0}8. A large-scale statistical test for a direct association is carried out that casts little additional light on whether the these small offsets are merely coincidental or carry information. To pursue the issue further, the nature of several of the features within the foreground H I most closely associated with WMAP structure is examined in detail and it is shown that the cross-correlation coefficient for well-matched pairs of structures is of order unity. It is shown that free-free emission from electrons in unresolved density enhancements in interstellar space could theoretically produce high-frequency radio continuum radiation at the levels observed by WMAP and that such emission will appear nearly flat across the WMAP frequency range. Evidence for such structure in the interstellar medium already exists in the literature. Until higher angular resolution observations of the high-frequency continuum emission structure as well as the apparently associated H I structure become available, it may be difficult to rule out the possibility that some if not all the small-scale structure usually attributed to the cosmic microwave background may have a galactic origin.

  4. High brightness neutral hydrogen in M31: A new probe of interstellar pressure

    NASA Technical Reports Server (NTRS)

    Braun, Robert; Walterbos, Rene

    1990-01-01

    An observational parameter of our own Galaxy, the peak brightness temperature of neutral hydrogen in emission, was determined almost twenty years ago (Burton 1970). This quantity, although possessing a degree of local variations, has a remarkably consistent peak value of 125 K towards spiral arm segments with a few isolated peaks extending to 135 K, once sufficient spatial and velocity resolution are used (less than or equal to 70 pc, less than or equal to 5 km/s) to resolve the emission peaks. The higher spatial and velocity resolution of more recent surveys has not led to the detection of higher brightnesses. For many years this remarkable observational result has received little attention, primarily because similar data for other galaxies, which would allow a meaningful comparison and analysis, did not exist. Recently this situation has changed. A Westerbork survey of M33 (Deul and Van der Hulst 1987, and private comm.) with 40 pc x 8 km/s resolution has revealed consistent peak values of only 95 plus or minus 5 K (although there is still some question of whether the velocity resolution was sufficient in this case), while a Very Large Array (VLA) survey of M31 (Braun 1989a) with 35 pc x 5 km/s resolution has shown consistent peak values but at a temperature of 155 to 165 K. It has become clear that although peak HI brightness seems to be a well-defined quantity within individual galaxies (with a degree of local variation) there are very significant differences in this quantity amongst different galaxies. Researchers embarked on an observational program directed at a sample of 11 nearby galaxies: NGC 55, 247, 7793, 3031, 2366, 2403, 4236, 4826, 4736, 4244, and 5457. They hope to determine the gas properties and phases as a function of both galaxy type and position within the galaxies utilizing high resolution HI observations and optical narrow band imagery and spectroscopy which are now underway.

  5. Clouds of neutral hydrogen between M31 and M33 and around the Milky Way

    NASA Astrophysics Data System (ADS)

    Wolfe, Spencer A.; Pisano, D. J.; Lockman, F. J.; McGaugh, S. S.; Shaya, E. J.

    2014-01-01

    Large spiral galaxies like our own Milky Way must acquire fresh gas to continue forming new stars. The gas that resides between galaxies may be a source of this material, but we know little about the gas’ structure or extent. I will present my thesis research, which attempts to answer these questions, based on our Green Bank Telescope (GBT) observations of the very faint M31-M33 neutral hydrogen (HI) stream that was first discovered a decade ago using the Westerbork Synthesis Radio Telescope. Our spectral line observations have over five times higher spatial resolution and roughly three times higher velocity resolution than the Westerbork data. These are the most sensitive observations of the 21 cm line conducted with the GBT. I will discuss our observing and reduction techniques used to reach the sensitivities needed to study the HI stream in detail. We find that the gas is actually composed of small clouds only a few kiloparsecs in diameter. The kinematics of the clouds also suggests that they are associated with M31 and M33 and not each galaxy’s respective High Velocity Cloud (HVC) population. Most, if not all, of the clouds do not appear to have stars associated with them. Thus, we believe that these clouds are part of a condensing intergalactic filament and may be a source of future star formation for M31 and M33. In addition, I will briefly present my research on the High Velocity and Intermediate Velocity Clouds around our Milky Way using the Galactic All-Sky Survey (GASS) at 21 cm that was conducted with the Parkes 64m radio telescope. I will discuss the basic properties of this gas and some interesting features seen in the survey.

  6. A SEARCH FOR DIFFUSE NEUTRAL HYDROGEN AND H I CLOUDS IN THE NGC 2403 GROUP

    SciTech Connect

    Chynoweth, Katie M.; Holley-Bockelmann, Kelly; Langston, Glen I.; Lockman, Felix J.

    2009-07-15

    We have observed the NGC 2403 group of galaxies using the Robert C. Byrd Green Bank Telescope in a search for faint, extended neutral hydrogen clouds similar to the clouds found around the M81/M82 group, which is located approximately 250 kpc from the NGC 2403 group along the same filament of galaxies. For an H I cloud with a size {<=}10 kpc within 50 kpc of a group galaxy, our 7{sigma} mass detection limit is 2.2 x 10{sup 6} M {sub sun} for a cloud with a line width of 20 km s{sup -1}, over the velocity range from -890 to 1750 km s{sup -1}. At this sensitivity level, we detect three new H I clouds in the direction of the group, as well as the known galaxies. The mean velocity of the new clouds differs from that of the group galaxies by more than 250 km s{sup -1}, but are in the range of Milky Way high-velocity clouds (HVCs) in that direction. It is most likely that the clouds are part of the Milky Way HVC population. If H I clouds exist in the NGC 2403 group, their masses are less than 2.2 x 10{sup 6} M {sub sun}. We also compared our results to structures that are expected based on recent cosmological models, and found none of the predicted clouds. If NGC 2403 is surrounded by a population of dark matter halos similar to those proposed for the Milky Way in recent models, our observations imply that their H I content is less than 1% of their total mass.

  7. Photon-induced Formation of Molecular Hydrogen from a Neutral Polycyclic Aromatic Hydrocarbon: 9,10-dihydroanthracene

    NASA Astrophysics Data System (ADS)

    Fu, Yi; Szczepanski, Jan; Polfer, Nick C.

    2012-01-01

    Experimental results from infrared spectroscopy and mass spectrometry provide compelling evidence that UV irradiation of the neutral polycyclic aromatic hydrocarbon (PAH) 9,10-dihydroanthracene (DHA), trapped in solid argon (12 K), results in efficient (i.e., 90% yield) conversion to anthracene and molecular hydrogen. A number of dissociation pathways involving single or double hydrogen loss are investigated computationally. Among these, two mechanisms are most credible for a one-photon dissociation process involving UV photons <5.5 eV. For the lowest-energy pathway (2.3 eV), a simultaneous lengthening of the C-H bonds of H9 and H10 gives rise to an anthracene-H2 complex. A higher-energy mechanism (3.4 eV) involves an initial lengthening of the H9 C-H bond, followed by this hydrogen "grabbing" H10, and forming H2. The high yield of this photolysis reaction suggests that similar reactions may take place for other neutral PAHs, with implications for the formation of molecular hydrogen in regions of low UV exposure, such as in dark clouds.

  8. D/H fractionation in the system methane-hydrogen-water

    NASA Astrophysics Data System (ADS)

    Horibe, Y.; Craig, H.

    1995-12-01

    We report measurements of the equilibrium D/H fractionation factor (a) between methane and hydrogen in the temperature range 200-500°C. Isotopic equilibrium was achieved by recycling the gases over a Ni-Thoria catalyst, using an in-line sampling volume for sequestering aliquots of the gas mixture without contributions from adsorbed gases on the catalyst. Equilibrium values of a were approached from both sides by use of (1) enriched CH 3D in the initial mixture and (2) pre-equilibration of the gases at temperatures below that of the final equilibrium mixture. The measured values of a are linear vs. 1/T 2 and fit the equation a = 0.8994 + 183,540/T2, with a standard deviation σ = ±2.5‰. The D/H fractionation factors for water vapor-hydrogen exchange measured by Suess (1949) and by Cerrai et al. (1954) are also linear in α vs. 1/T 2 over the temperature range of the data: comparison with published D/H ratios in high-temperature (1127°C) volcanic gases at Surtsey volcano shows that the Suess (1949) data are much closer to the observed ratios in H2 and H2O. The Suess (1949) measurements (80- 200°C) are also much closer to the theoretical values calculated by Bardo and Wolfsberg (1976), which fit the observed Surtsey fractionations slightly better than the extrapolated Suess (1949) results. We conclude that (1) the Suess (1949) measurements are the better set of experimental data, (2) the Surtsey gases are close to isotopic equilibrium at the vent temperatures, and (3) the Bardo and Wolfsberg (1976) theoretical equation gives the best representation of the H 2OH 2 fractionation factors. This equation is combined with the Horita and Wesolowski (1994) equation for H 2O liquid-vapor fractionation factors and can be used with the CH 4HZ a values to determine whether concordant temperatures are observed in the system CH 4H 2H 20. Application to the D/H ratios in the East Pacific Rise hydrothermal vents measured by Welhan and Craig (1979) shows that

  9. Charged versus Neutral Hydrogen-Bonded Complexes: Is There a Difference in the Nature of the Hydrogen Bonds?

    PubMed

    Alkorta, Ibon; Mata, Ignasi; Molins, Elies; Espinosa, Enrique

    2016-06-27

    A theoretical study on some carboxylic acid dimers formed by positively or negatively charged molecules has been carried out by using DFT methods. The resulting dimers possess either a charge of +2 or -2. In addition, the corresponding neutral complexes have also been considered. The electron density distribution described by the atoms in molecules and the natural bond orbital methods, as well as the electric field maps of the systems, have been analyzed and compared without finding significant differences between the neutral and ionic complexes. The interaction energy along the dissociation path of the charged dimers shows both a local minimum and a local maximum, defining a stability region between them. When this energetic profile is recalculated by removing the repulsion between the charged groups, it resembles to those of the neutral molecules. Hence, the characteristics of the charged dimers are similar to those of the neutral ones: the addition of a repulsion term for the charged groups permits to retrieve the energetic profiles dependence with the distance in the charged system. The interacting quantum atom (IQA) method has been used to calculate the interaction energy terms, including the classic Coulombic term between the whole molecules and the corresponding of the carboxylic acid groups. The IQA results show repulsive electrostatic interactions when the whole molecules are considered in the ionic complexes, but attractive ones between the carboxylic groups in both neutral and ionic complexes. PMID:27225820

  10. Application of gamma densitometer for measurement of void fraction in liquid hydrogen moderator of HANARO cold neutron source

    NASA Astrophysics Data System (ADS)

    Kim, Myong-Seop; Choi, Jungwoon; Sun, Gwang-Min; Lee, Kye-Hong

    2009-06-01

    The void fraction in the liquid hydrogen used for the moderator of the HANARO cold neutron source (CNS) was measured by using a gamma densitometer technique. A mock-up of the HANARO CNS facility with an electric heating system as the heat source instead of radiations was constructed. The photon transmissions through the hydrogen moderator were simulated to search for an optimum experimental condition. From the simulation, it was confirmed that Am-241 was suitable for the measurement of the void fraction in the liquid hydrogen medium. A gamma densitometer using the Am-241 gamma-ray source was designed and installed at the mock-up of the CNS. The attenuation of 59.5 keV gamma-rays from the Am-241 through the hydrogen medium was measured by using an HPGe detector. The void fraction was determined using the amount of the gamma-ray attenuation. The void fractions in the hydrogen moderator were measured for stable thermo-siphon loops with several electric heat loads applied to the moderator cell of the CNS mock-up. The longitudinal distribution of the void fraction inside the moderator cell was also determined. The void fraction measured at a heat load of 720 W had values of 8-41% depending on the height from the bottom of the moderator cell. The overall void fraction was obtained by volume-weighted averaging of its longitudinal distribution. The void fraction at the nuclear heating power expected at the normal operation condition of the HANARO CNS facility was determined to be about 20%. The large uncertainty was expected in the void fraction determination by a gamma densitometer for the liquid hydrogen medium with the void fraction less than 10%. When the void fraction of the liquid hydrogen was near 20%, the uncertainty in the void fraction determination by using a gamma densitometer became relatively small, and it was regarded as an acceptable level. The measurements for the void fraction will be very useful for the design and operation of the HANARO CNS.

  11. Fractionation of carbon and hydrogen isotopes by methane-oxidizing bacteria

    USGS Publications Warehouse

    Coleman, D.D.; Risatti, J.B.; Schoell, M.

    1981-01-01

    Carbon isotopic analysis of methane has become a popular technique in the exploration for oil and gas because it can be used to differentiate between thermogenic and microbial gas and can sometimes be used for gas-source rock correlations. Methane-oxidizing bacteria, however, can significantly change the carbon isotopic composition of methane; the origin of gas that has been partially oxidized by these bacteria could therefore be misinterpreted. We cultured methane-oxidizing bacteria at two different temperatures and monitored the carbon and hydrogen isotopic compositions of the residual methane. The residual methane was enriched in both 13C and D. For both isotopic species, the enrichment at equivalent levels of conversion was greater at 26??C than at 11.5??C. The change in ??D relative to the change in ??13C was independent of temperature within the range studied. One culture exhibited a change in the fractionation pattern for carbon (but not for hydrogen) midway through the experiment, suggesting that bacterial oxidation of methane may occur via more than one pathway. The change in the ??D value for the residual methane was from 8 to 14 times greater than the change in the ??13C value, indicating that combined carbon and hydrogen isotopic analysis may be an effective way of identifying methane which has been subjected to partial oxidation by bacteria. ?? 1981.

  12. Modeling the neutral hydrogen distribution in the post-reionization Universe: intensity mapping

    SciTech Connect

    Villaescusa-Navarro, Francisco; Viel, Matteo; Datta, Kanan K.; Choudhury, T. Roy E-mail: viel@oats.inaf.it E-mail: tirth@ncra.tifr.res.in

    2014-09-01

    We model the distribution of neutral hydrogen (HI) in the post-reionization era and investigate its detectability in 21 cm intensity mapping with future radio telescopes like the Square Kilometer array (SKA). We rely on high resolution hydrodynamical N-body simulations that have a state-of-the-art treatment of the low density photoionized gas in the inter-galactic medium (IGM). The HI is assigned a-posteriori to the gas particles following two different approaches: a halo-based method in which HI is assigned only to gas particles residing within dark matter halos; a particle-based method that assigns HI to all gas particles using a prescription based on the physical properties of the particles. The HI statistical properties are then compared to the observational properties of Damped Lyman-α Absorbers (DLAs) and of lower column density systems and reasonable good agreement is found for all the cases. Among the halo-based method, we further consider two different schemes that aim at reproducing the observed properties of DLAs by distributing HI inside halos: one of this results in a much higher bias for DLAs, in agreement with recent observations, which boosts the 21 cm power spectrum by a factor ∼ 4 with respect to the other recipe. Furthermore, we quantify the contribution of HI in the diffuse IGM to both Ω{sub HI} and the HI power spectrum finding to be subdominant in both cases. We compute the 21 cm power spectrum from the simulated HI distribution and calculate the expected signal for both SKA1-mid and SKA1-low configurations at 2.4 ≤ z ≤ 4. We find that SKA will be able to detect the 21 cm power spectrum, in the non-linear regime, up to k ∼ 1 h/Mpc for SKA1-mid and k ∼ 5 h/Mpc for SKA1-low with 100 hours of observations. We also investigate the perspective of imaging the HI distribution. Our findings indicate that SKA1-low could detect the most massive HI peaks with a signal to noise ratio (SNR) higher than 5 for an observation time of about 1000

  13. Neutral Hydrogen in the Local Group and around the Milky Way

    NASA Astrophysics Data System (ADS)

    Wolfe, Spencer A.

    Galaxies in our universe must acquire fresh gas to continue forming new stars. A likely source of this material may be the gas that resides between galaxies. We do not, however, have a clear understanding of the specifics, such as its distribution. The first claimed detection of this "cosmic web" of material directly in emission was published a decade ago using the Westerbork Synthesis Radio Telescope in the Netherlands while surveying neutral hydrogen in the Local Group of galaxies. Later evidence, in the form of stellar surveys and test particle simulations, showed that a tidal origin of the gas was another possibility. More recent survey work of the Local Group, specifically between the galaxies M31 and M33, motivated us to map a section of the Westerbork emission using the Robert C . Byrd Green Bank Telescope (GBT). Our survey covers a 12 square degree area between M31 and M33, in which we reach 21 cm column density sensitivities of 1017.2 cm-2 after 400 hours of observations. These observations provide more than a factor of five better spatial resolution, and better than a factor of three in velocity resolution. Not only do we confirm the emission seen in the Westerbork data, we find that the hydrogen gas is composed of clouds a few kiloparsecs across, with properties suggesting they are a unique population to the Local Group. We conclude that the clouds are likely transient condensations from an intergalactic filament of gas, although a tidal feature cannot currently be ruled out. We also conducted GBT pointings to the northwest of M31 to search for the extended emission seen in the Westerbork data as well. What detections we find appear to be more related to the high velocity cloud population of M31. We are continuing to map other regions around M31 to search for more diffuse emission. We also present southern sky maps of the high velocity and intermediate velocity clouds around our own Milky Way, using 21 cm survey data from the Parkes telescope in

  14. Hydrogen abstraction in the neutral molecular cluster of benzophenone and hydrogen donors formed in a supersonic free jet expansion

    SciTech Connect

    Matsushita, Yoshihisa; Kajii, Yoshizumi; Obi, Kinichi

    1992-08-06

    This paper discusses how benzophenone undergoes photoreduction to form benzophenone ketyl radical by an intracellular reaction in the benzophenone 1,4-cyclohexadiene mixed expansion in a supersonic free jet expansion. No ketyl radical fluorescence is observed when triethylamine, 2-propanol, or ethanol is the hydrogen donor; thus the normal molecular cluster activity depends on the nature of the hydrogen donor. 36 refs., 5 figs.

  15. Fractionation of terrestrial neon by hydrodynamic hydrogen escape from ancient steam atmospheres

    NASA Technical Reports Server (NTRS)

    Zahnle, K.

    1991-01-01

    Atmospheric neon is isotopically heavier than mantle neon. By contrast, nonradiogenic mantle Ar, Kr, and Xe are not known to differ from the atmosphere. These observations are most easily explained by selective neon loss to space; however, neon is much too massive to escape from the modern atmosphere. Steam atmospheres are a likely, if intermittent, feature of the accreting Earth. They occur because, on average, the energy liberated during accretion places Earth above the runaway greenhouse threshold, so that liquid water is not stable at the surface. It is found that steam atmospheres should have lasted some ten to fifty million years. Hydrogen escape would have been vigorous, but abundant heavy constituents would have been retained. There is no lack of plausible candidates; CO2, N2, or CO could all suffice. Neon can escape because it is less massive than any of the likely pollutants. Neon fractionation would have been a natural byproduct. Assuming that the initial Ne-20/Ne-22 ratio was solar, it was found that it would have taken some ten million years to effect the observed neon fractionation in a 30 bar steam atmosphere fouled with 10 bars of CO. Thicker atmospheres would have taken longer; less CO, shorter. This mechanism for fractionating neon has about the right level of efficiency. Because the lighter isotope escapes much more readily, total neon loss is pretty minimal; less than half of the initial neon endowment escapes.

  16. Electrocatalytic and photocatalytic hydrogen production from acidic and neutral-pH aqueous solutions using iron phosphide nanoparticles.

    PubMed

    Callejas, Juan F; McEnaney, Joshua M; Read, Carlos G; Crompton, J Chance; Biacchi, Adam J; Popczun, Eric J; Gordon, Thomas R; Lewis, Nathan S; Schaak, Raymond E

    2014-11-25

    Nanostructured transition-metal phosphides have recently emerged as Earth-abundant alternatives to platinum for catalyzing the hydrogen-evolution reaction (HER), which is central to several clean energy technologies because it produces molecular hydrogen through the electrochemical reduction of water. Iron-based catalysts are very attractive targets because iron is the most abundant and least expensive transition metal. We report herein that iron phosphide (FeP), synthesized as nanoparticles having a uniform, hollow morphology, exhibits among the highest HER activities reported to date in both acidic and neutral-pH aqueous solutions. As an electrocatalyst operating at a current density of -10 mA cm(-2), FeP nanoparticles deposited at a mass loading of ∼1 mg cm(-2) on Ti substrates exhibited overpotentials of -50 mV in 0.50 M H2SO4 and -102 mV in 1.0 M phosphate buffered saline. The FeP nanoparticles supported sustained hydrogen production with essentially quantitative faradaic yields for extended time periods under galvanostatic control. Under UV illumination in both acidic and neutral-pH solutions, FeP nanoparticles deposited on TiO2 produced H2 at rates and amounts that begin to approach those of Pt/TiO2. FeP therefore is a highly Earth-abundant material for efficiently facilitating the HER both electrocatalytically and photocatalytically. PMID:25250976

  17. Neutral hydrogen shell structure near Comet P/Halley deduced from Vega-1 and Giotto energetic particle data

    NASA Astrophysics Data System (ADS)

    Verigin, M. I.; McKenna-Lawlor, S.; Richter, A. K.; Szego, K.; Veselovskii, I. S.

    An existing model based on Vega-1 (Tunde-M) and Giotto (EPONA) energetic particle data, representing neutral gas shells expanding about Comet Halley, has been updated by incorporating additional information concerning energetic particles recorded by Tunde-M, and neutral gas measurements recorded aboard the Vega-1 and Vega-2 spacecraft, in the original data set. The modified model reproduces reasonably well the positions of the maxima in the intensity profiles of energetic cometary ions observed along the Vega and Giotto trajectories, and it is estimated that the velocity of gas in the envisioned neutral shells is about 7.3 km/s, i.e., close to the velocity (about 8 km/s) of the slow hydrogen component of cometary neutrals. Detailed arguments are presented to support the suggestion that, at distances of 2-10 x exp 6 km from the comet nucleus, the energetic particles recorded in the quasi-periodic structures identified by the Tunde-M and EPONA instruments were protons.

  18. Influence of salinity on hydrogen isotope fractionation in Rhizophora mangroves from Micronesia

    NASA Astrophysics Data System (ADS)

    Ladd, S. Nemiah; Sachs, Julian P.

    2015-11-01

    Hydrogen isotope ratios (2H/1H or δ2H) of plant leaf waxes typically covary with those of precipitation, and are therefore used as a proxy for past hydrologic variability. Mangroves present an important exception to this relationship, as salinity can strongly influence 2H fractionation in leaf lipids. To better understand and calibrate this effect, δ2H values of taraxerol and n-alkanes were measured in the leaves of Rhizophora spp. (red mangroves) from three estuaries and four brackish lakes on the Micronesian islands of Pohnpei and Palau, and compared to the δ2H and δ18O values of leaf water, xylem water and surface water. Net 2H discrimination between surface water and taraxerol increased by 0.9 ± 0.2‰ per part per thousand (ppt-1) over a salinity range of 1-34 ppt. Xylem water was always depleted in 2H relative to surface water, and the magnitude of this depletion increased with salinity, which is most likely due to a combination of greater 2H discrimination by roots during water uptake and opportunistic use of freshwater. Changes in the 2H content of xylem water can account for up to 43% of the change in net taraxerol fractionation with salinity. Leaf water isotopes were minimally enriched relative to xylem water and there was not significant variability in leaf water enrichment with salinity, which is consistent with a Péclet-modified Craig-Gordon model of leaf water enrichment. As leaf water enrichment is therefore unlikely to be responsible for increased 2H/1H fractionation in mangrove leaf lipids at elevated salinities, the majority of this signal is most likely explained either by changes in biosynthetic fractionation in response to salt stress or by salinity influenced changes in the timing of water uptake and lipid synthesis.

  19. Absolute differential and total cross sections for neutral fragments from dissociative collisions of triatomic hydrogen like ions on He

    NASA Astrophysics Data System (ADS)

    Yousif, F. B.; Fuentes, B. E.; Martínez, H.

    2010-12-01

    Neutral fragment products from dissociative collisions of triatomic hydrogen like ions incident on He atoms were studied. Absolute differential and total cross sections are reported here in the energy range of 1.00-5.00 keV and scattering angles between -5.0° and 5.0°. The differential cross sections show decreasing behaviour with a slight structure around 2.0°. The total cross sections for all triatomic molecular ions studied in this work are found to be comparable for the same velocity (E/M). The measured cross sections are between 0.7 × 10-17 cm2 and 0.9 × 10-16 cm2. The present results for the neutral total cross section correlate very well with previously measured total ions cross section for H+3, D+3 and HD+2 on He.

  20. Theoretical study of electronic excitation, ion-pair formation, and mutual neutralization in cesium-hydrogen collisions

    NASA Astrophysics Data System (ADS)

    Belyaev, Andrey K.; Lepetit, Bruno; Gadéa, Florent Xavier

    2014-12-01

    Inelastic cross sections for the excitation, deexcitation, ion-pair formation, and mutual neutralization processes in cesium-hydrogen collisions Cs (6 s ,6 p ,5 d ,7 s )+H and Cs ++H- are calculated by means of the recently proposed branching-probability-current method and the recently calculated accurate ab initio adiabatic potential energies. Scattering calculations are performed in the low-energy range from 0.01 eV to 1 keV. It is shown that among the endothermic processes, the highest values of the partial cross sections correspond to the ion-pair formation processes with the maximum values up to 23 Å2 . Among the exothermic processes in the low-energy range, the largest partial cross section corresponds to the mutual neutralization process into the Cs (5 d )+H final state.

  1. A neutral hydrogen survey of polar-ring galaxies, 1: Green Bank observations of the northern sample

    NASA Astrophysics Data System (ADS)

    Richter, O.-G.; Sackett, P. D.; Sparke, L. S.

    1994-01-01

    We present the results of a neutral hydrogen survey conducted with the Green Bank 140 foot radio telescope of 47 northern objects in the polar-ring galaxy atlas of Whitmore et al. (1990). We detected 39 of these above our detection limit of 1.7 Jy km/s; the average measured flux of 21 Jy km/s corresponds to an average neutral hydrogen mass of 5.3 x 109 solar mass for a Hubble constant of Hzero = 75 km/s/Mpc. For the polar-ring galaxies in our sample that have also been observed with radio arrays, we find that the 21 full width at half maximum (FWHM) Green Bank beam often includes much more flux than found by the synthesis instruments for the polar rings alone; some of these galaxies are known to have gas-rich companions. We compare the neutral hydrogen content of the sample to the blue luminosity and Infrared Astronomical Satellite (IRAS) fluxes. The H I-mass-to-blue-light ratios of the confirmed and probable polar rings are around unity in solar units, indicating that polar-ring galaxies (or their environments) are as gas-rich as typical irregular galaxies. For their blue luminosity, the confirmed polar rings are underluminous in the far infrared, as compared with the rest of the sample. They are also far infrared (FIR) underluminous for their H I masses, which suggests that most of the gas in the ring may be in stable orbits, rather than flowing inward to trigger star formation in the central galaxy. The more disordered class of 'related objects,' which includes a number of obvious mergers, is highly luminous in the far infrared. Detailed notes for each galaxy, including information about companions within the GB 140 min beam that may contribute to the total H I line integral and its width, are contained in the Appendix.

  2. Self-consistent modelling of charged and neutral particle dynamics in short-gap helium and hydrogen discharges

    NASA Astrophysics Data System (ADS)

    Jugroot, M.; Bayle, P.; Yousfi, M.; Eichwald, O.

    1999-01-01

    A self-consistent model of charged and neutral particle dynamics is developed for the case of high pressure short-gap discharges in helium 0022-3727/32/2/007/img7 and hydrogen 0022-3727/32/2/007/img8 and 0022-3727/32/2/007/img9. Boundary wall effects on the electron swarm parameters are first investigated by a Monte Carlo method in order to verify the validity of the classical local field approximation in short-gap discharges. The hydrodynamic transport equations of the self-consistent model are then described with an emphasis on the different terms involved in the close coupling between charged and neutral particles and the electric field. These equations are solved by powerful two-dimensional numerical schemes for both transport and electrical field equations. The discharges are studied from an initial electronic cloud to the first stages of breakdown. Cathode emission is discussed in terms of its prime importance in the spatio-temporal evolution of the short-gap discharges and it is shown that the principal difference between helium and hydrogen discharges is due to the mode of cathode emission. The particular observations in the luminosity in hydrogen are discussed in terms of ionization of the gas and secondary emission processes at the surface. A detailed analysis reveals a complex distribution of charged particles due to the superposition of ionization and transport effects. Furthermore, Joule heating of the neutral medium is evaluated in the entire time scale of the discharge and its influence on the discharge evolution is discussed.

  3. Jarosite-water oxygen and hydrogen isotope fractionations: preliminary experimental data

    USGS Publications Warehouse

    Rye, R.O.; Stoffregen, R.E.

    1995-01-01

    Stable isotope studies of alunite have added a powerful tool for understanding geochemical processes in the surficial environment. Jarosite [KFe3(SO4)2(OH)6], like alunite, is a common mineral in the weathered portions of many sulfide-bearing ore deposits and mine drainages where its formation reflects acidic conditions produced by the oxidation of sulfides. This paper describes oxygen and hydrogen isotope fractionations in jarosite-water experiments over a temperature range of 100?? to 250??C and the extrapolation of the results to surface conditions. It also includes some general observations on the exchange reaction mechanism that are important for evaluating how well natural samples of jarosite retain primary isotopic compositions. -from Authors

  4. Stable carbon and hydrogen isotope fractionation of dissolved organic groundwater pollutants by equilibrium sorption

    NASA Astrophysics Data System (ADS)

    Höhener, Patrick; Yu, Xianjing

    2012-03-01

    Linear free energy relationships (LFERs) were established which relate equilibrium vapor-liquid isotope effects to stable carbon and hydrogen isotope enrichment factors for equilibrium sorption to geosorbents. The LFERs were established for normal, cyclic or branched alkanes, monoaromatic hydrocarbons, and chloroethenes. These LFERs predict that isotopic light compounds sorb more strongly than their heavy counterparts. Defining fractionation as in classical literature by "heavy divided by light", carbon enrichment factors for equilibrium sorption were derived which ranged from - 0.13 ± 0.04‰ (benzene) to - 0.52 ± 0.19‰ (trichloroethene at 5-15 °C). Hydrogen enrichment factors for sorption of 14 different compounds were between - 2.4 and - 9.2‰. For perdeuterated hydrocarbons the predicted enrichment factors ranged from - 19 ± 5.4‰ (benzene) to - 64 ± 30‰ (cyclohexane). Equilibrium sorption experiments with a soil and activated carbon as sorbents were performed in the laboratory for perdeuterocyclohexane and perdeuterotoluene. The measured D/H enrichments agreed with the LFER prediction for both compounds and both sorbents within the uncertainty estimate of the prediction. The results of this work suggest that equilibrium sorption does create only very small isotope shifts for 13C in groundwater pollutants in aquifers. It is also suggested that deuterium shifts are expected to be higher, especially for strongly sorbing pollutants.

  5. Supramolecular structure of enterobacterial wild-type lipopolysaccharides (LPS), fractions thereof, and their neutralization by Pep19-2.5.

    PubMed

    Brandenburg, Klaus; Heinbockel, Lena; Correa, Wilmar; Fukuoka, Satoshi; Gutsmann, Thomas; Zähringer, Ulrich; Koch, Michel H J

    2016-04-01

    Lipopolysaccharides (LPS) belong to the strongest immune-modulating compounds known in nature, and are often described as pathogen-associated molecular patterns (PAMPs). In particular, at higher concentrations they are responsible for sepsis and the septic shock syndrome associated with high lethality. Since most data are indicative that LPS aggregates are the bioactive units, their supramolecular structures are considered to be of outmost relevance for deciphering the molecular mechanisms of its bioactivity. So far, however, most of the data available addressing this issue, were published only for the lipid part (lipid A) and the core-oligosaccharide containing rough LPS, representing the bioactive unit. By contrast, it is well known that most of the LPS specimen identified in natural habitats contain the smooth-form (S-form) LPS, which carry additionally a high-molecular polysaccharide (O-chain). To fill this lacuna and going into a more natural system, here various wild-type (smooth form) LPS including also some LPS fractions were investigated by small-angle X-ray scattering with synchrotron radiation to analyze their aggregate structure. Furthermore, the influence of a recently designed synthetic anti-LPS peptide (SALP) Pep19-2.5 on the aggregate structure, on the binding thermodynamics, and on the cytokine-inducing activity of LPS were characterized, showing defined aggregate changes, high affinity binding and inhibition of cytokine secretion. The data obtained are suitable to refine our view on the preferences of LPS for non-lamellar structures, representing the highest bioactive forms which can be significantly influenced by the binding with neutralizing peptides such as Pep19-2.5. PMID:26828112

  6. Neutral dissociation of hydrogen following photoexcitation of HCl at the chlorine K edge

    SciTech Connect

    Hansen, D.L.; Arrasate, M.E.; Martin, R.; Vanderford, B.; Lindle, D.W.; Cotter, J.; Neill, P.; Fisher, G.R.; Perera, R.C.; Leung, K.T.; Levin, J.C.; Sellin, I.A.; Simon, M.; Simon, M.; Uehara, Y.; Whitfield, S.B.

    1998-04-01

    Time-of-flight mass spectroscopy was used to study the relaxation dynamics of HCl following photoexcitation in the vicinity of the Cl K edge ({approximately}2.8keV) using monochromatic synchrotron radiation. At the lowest resonant excitation to the 6{sigma}{sup {asterisk}} antibonding orbital, almost half of the excited molecules decay by emission of a neutral H atom, mostly in coincidence with a highly charged Cl{sup n+} ion. The present work demonstrates that neutral-atom emission can be a significant decay channel for excited states with very short lifetimes (1 fs). {copyright} {ital 1998} {ital The American Physical Society}

  7. Adsorption of charged and neutral polymer chains on silica surfaces: The role of electrostatics, volume exclusion, and hydrogen bonding

    NASA Astrophysics Data System (ADS)

    Spruijt, Evan; Biesheuvel, P. M.; de Vos, Wiebe M.

    2015-01-01

    We develop an off-lattice (continuum) model to describe the adsorption of neutral polymer chains and polyelectrolytes to surfaces. Our continuum description allows taking excluded volume interactions between polymer chains and ions directly into account. To implement those interactions, we use a modified hard-sphere equation of state, adapted for mixtures of connected beads. Our model is applicable to neutral, charged, and ionizable surfaces and polymer chains alike and accounts for polarizability effects of the adsorbed layer and chemical interactions between polymer chains and the surface. We compare our model predictions to data of a classical system for polymer adsorption: neutral poly(N -vinylpyrrolidone) (PVP) on silica surfaces. The model shows that PVP adsorption on silica is driven by surface hydrogen bonding with an effective maximum binding energy of about 1.3 kBT per PVP segment at low p H . As the p H increases, the Si-OH groups become increasingly dissociated, leading to a lower capacity for H bonding and simultaneous counterion accumulation and volume exclusion close to the surface. Together these effects result in a characteristic adsorption isotherm, with the adsorbed amount dropping sharply at a critical p H . Using this model for adsorption data on silica surfaces cleaned by either a piranha solution or an O2 plasma, we find that the former have a significantly higher density of silanol groups.

  8. Neutralization and Acid Dissociation of Hydrogen Carbonate Ion: A Thermochemical Approach

    ERIC Educational Resources Information Center

    Koga, Nobuyoshi; Shigedomi, Kana; Kimura, Tomoyasu; Tatsuoka, Tomoyuki; Mishima, Saki

    2013-01-01

    A laboratory inquiry into the thermochemical relationships in the reaction between aqueous solutions of NaHCO[subscript 3] and NaOH is described. The enthalpy change for this reaction, delta[subscript r]H, and that for neutralization of strong acid and NaOH(aq), delta[subscript n]H, are determined calorimetrically; the explanation for the…

  9. EFFECTS OF NEUTRAL HYDROGEN ON COSMIC-RAY PRECURSORS IN SUPERNOVA REMNANT SHOCK WAVES

    SciTech Connect

    Raymond, John C.; Vink, J.; Helder, E. A.; De Laat, A.

    2011-04-10

    Many fast supernova remnant shocks show spectra dominated by Balmer lines. The H{alpha} profiles have a narrow component explained by direct excitations and a thermally Doppler broadened component due to atoms that undergo charge exchange in the post-shock region. However, the standard model does not take into account the cosmic-ray shock precursor, which compresses and accelerates plasma ahead of the shock. In strong precursors with sufficiently high densities, the processes of charge exchange, excitation, and ionization will affect the widths of both narrow and broad line components. Moreover, the difference in velocity between the neutrals and the precursor plasma gives rise to frictional heating due to charge exchange and ionization in the precursor. In extreme cases, all neutrals can be ionized by the precursor. In this Letter we compute the ion and electron heating for a wide range of shock parameters, along with the velocity distribution of the neutrals that reach the shock. Our calculations predict very large narrow component widths for some shocks with efficient acceleration, along with changes in the broad-to-narrow intensity ratio used as a diagnostic for the electron-ion temperature ratio. Balmer lines may therefore provide a unique diagnostic of precursor properties. We show that heating by neutrals in the precursor can account for the observed H{alpha} narrow component widths and that the acceleration efficiency is modest in most Balmer line shocks observed thus far.

  10. Variability of Deuterium Fractionation Associated With Soil Uptake of Atmospheric Molecular Hydrogen

    NASA Astrophysics Data System (ADS)

    Rahn, T.; Randerson, J. T.; Eiler, J.

    2005-12-01

    Molecular hydrogen (H2) is the second most abundant reduced gas in the atmosphere (after methane) with a globally averaged mixing ratio of ~530 nmol/mol. Its largest sources are photochemical oxidation of methane and non-methane hydrocarbons with other recognized sources that include biomass burning, fossil fuel burning, nitrogen fixation, and ocean degassing. These sources are balanced by reaction of H2 with hydroxyl radicals (~25%) in the atmosphere and by deposition at the terrestrial soil surface (~75%). As with other atmospheric trace gases, the stable isotopic content of H2 has the potential to help quantify the various aspects of its production and destruction. The average deuterium content of H2 is dDH2 = ~130 ‰ relative to Standard Mean Ocean Water. While recent studies have begun to elucidate the deuterium content of the individual sources of H2 and the fractionation associated with hydroxyl oxidation has been well established in the laboratory, there are still few data documenting the fractionation associated with soil uptake. We measured the fractionation associated with soil uptake in May, June and August of 2002 in three upland ecosystems that were part of an Alaskan fire chronosequence. Fire occurred at these sites in 1999, 1987, and ~1920. Grasses and herbaceous vegetation establish initially after fire and are gradually replaced by deciduous trees and finally by evergreen trees and moss. All three sites were in interior Alaska near the town of Delta Junction (63° 54'N, 145° 40'W). Fluxes were measured with a Plexiglas flux chamber (8 liter volume) with a manifold of four ~400 ml double-valved glass flasks in parallel and a diaphragm pump for circulation (5 SLPM). Flasks were continuously flushed by the circulating system and isolated sequentially; they were then returned to the laboratory at Caltech for subsequent analysis. In the field, the chamber was seated on Plexiglas collars that were installed prior to initiating the study and left in

  11. Charge-exchange coupling between pickup ions across the heliopause and its effect on energetic neutral hydrogen flux

    SciTech Connect

    Zirnstein, E. J.; Heerikhuisen, J.; Zank, G. P.; Pogorelov, N. V.; McComas, D. J.; Desai, M. I.

    2014-03-10

    Pickup ions (PUIs) appear to play an integral role in the multi-component nature of the plasma in the interaction between the solar wind (SW) and local interstellar medium (LISM). Three-dimensional (3D) MHD simulations with a kinetic treatment for neutrals and PUIs are currently still not viable. In light of recent energetic neutral atom (ENA) observations by the Interstellar Boundary EXplorer, the purpose of this paper is to illustrate the complex coupling between PUIs across the heliopause (HP) as facilitated by ENAs using estimates of PUI properties extracted from a 3D MHD simulation of the SW-LISM interaction with kinetic neutrals. First, we improve upon the multi-component treatment of the inner heliosheath (IHS) plasma from Zank et al. by including the extinction of PUIs through charge-exchange. We find a significant amount of energy is transferred away from hot, termination shock-processed PUIs into a colder, 'freshly injected' PUI population. Second, we extend the multi-component approach to estimate ENA flux from the outer heliosheath (OHS), formed from charge-exchange between interstellar hydrogen atoms and energetic PUIs. These PUIs are formed from ENAs in the IHS that crossed the HP and experienced charge-exchange. Our estimates, based on plasma-neutral simulations of the SW-LISM interaction and a post-processing analysis of ENAs and PUIs, suggest the majority of flux visible at 1 AU from the front of the heliosphere, between ∼0.02 and 10 keV, originates from OHS PUIs, indicating strong coupling between the IHS and OHS plasmas through charge-exchange.

  12. Biochemical hydrogen isotope fractionation during biosynthesis in higher plants reflects carbon metabolism of the plant

    NASA Astrophysics Data System (ADS)

    Cormier, Marc-André; Kahmen, Ansgar

    2015-04-01

    Compound-specific isotope analyses of plant material are frequently applied to understand the response of plants to the environmental changes. As it is generally assume that the main factors controlling δ2H values in plants are the plant's source water and evaporative deuterium enrichment of leaf water, hydrogen isotope analyses of plant material are mainly applied regarding hydrological conditions at different time scales. However, only few studies have directly addressed the variability of the biochemical hydrogen isotope fractionation occurring during biosynthesis of organic compounds (ɛbio), accounting also for a large part in the δ2H values of plants but generally assumed to be constant. Here we present the results from a climate-controlled growth chambers experiment where tested the sensitivity of ɛbio to different light treatments. The different light treatments were applied to induce different metabolic status (autotrophic vs. heterotrophic) in 9 different plant species that we grew from large storage organs (e.g. tubers or roots). The results show a systematic ɛbio shift (up to 80 ) between the different light treatments for different compounds (i.e. long chain n-alkanes and cellulose). We suggest that this shift is due to the different NADPH pools used by the plants to build up the compounds from stored carbohydrates in heterotrophic or autotrophic conditions. Our results have important implications for the calibration and interpretation of sedimentary and tree rings records in geological studies. In addition, as the δ2H values reflect also strongly the carbon metabolism of the plant, our findings support the idea of δ2H values as an interesting proxy for plant physiological studies.

  13. A stellar feedback origin for neutral hydrogen in high-redshift quasar-mass haloes

    NASA Astrophysics Data System (ADS)

    Faucher-Giguère, Claude-André; Feldmann, Robert; Quataert, Eliot; Kereš, Dušan; Hopkins, Philip F.; Murray, Norman

    2016-09-01

    Observations reveal that quasar host haloes at z ˜ 2 have large covering fractions of cool dense gas (≳60 per cent for Lyman limit systems within a projected virial radius). Most simulations have so far failed to explain these large observed covering fractions. We analyse a new set of 15 simulated massive haloes with explicit stellar feedback from the FIRE project, covering the halo mass range Mh ≈ 2 × 1012 - 1013 M⊙ at z = 2. This extends our previous analysis of the circum-galactic medium of high-redshift galaxies to more massive haloes. Active galactic nuclei (AGN) feedback is not included in these simulations. We find Lyman limit system covering fractions consistent with those observed around quasars. The large H I covering fractions arise from star formation-driven galactic winds, including winds from low-mass satellite galaxies that interact with cosmological filaments. We show that it is necessary to resolve these satellite galaxies and their winds to reproduce the large Lyman limit system covering fractions observed in quasar-mass haloes. Our simulations predict that galaxies occupying dark matter haloes of mass similar to quasars but without a luminous AGN should have Lyman limit system covering fractions comparable to quasars.

  14. Lyman-alpha measurements of neutral hydrogen in the outer geocorona and in interplanetary space.

    NASA Technical Reports Server (NTRS)

    Thomas, G. E.; Bohlin, R. C.

    1972-01-01

    Results of hydrogen Lyman-alpha (1216 A) measurements made on a continuous basis by a two-channel photometer on Ogo 5 from March 1968 to June 1971. The highly elliptical orbit provided measurements of both the outer geocorona and of the 1216-A sky background emission, since geocoronal scattering is minimal at the apogee distance of 150,000 km. Selected data (through 1970) are presented, as well as an interpretation of the three principal discoveries to date - namely, (1) a pronounced antisolar enhancement of the geocoronal scattering beyond 70,000 km, which is regarded as evidence for a hydrogen 'geotail' produced by solar Lyman-alpha radiation pressure; (2) a clear correlation of periodic variations in the sky background emission with solar activity associated with solar rotation; and (3) an annual variation of the 1216-A sky background emission, caused by the earth's orbital motion within the cavity created by the solar wind in the nearby interstellar hydrogen.

  15. Exploring adsorption and desorption characteristics of molecular hydrogen on neutral and charged Mg nanoclusters: A first principles study

    NASA Astrophysics Data System (ADS)

    Banerjee, Paramita; Chandrakumar, K. R. S.; Das, G. P.

    2016-05-01

    To surmount the limitations of bulk MgH2 for the purpose of hydrogen storage, we report here, a detailed first principles density functional theory (DFT) based study on the structure and stability of neutral (Mgm) and positively charged (Mgm+) Mg nanoclusters of different sizes (m = 2, 4, 8 and 12) and their interaction with molecular hydrogen (H2). Our results demonstrate that H2 is weakly bound to the Mg nanoclusters through van der Waals interactions. Incorporation of Grimme's dispersion correction (D3) in the DFT based exchange-correlation functionals leads to improved accuracy of H2 interaction energy (IE) values that fall within an energy window (between physisorption and chemisorption) desirable for hydrogen storage. Energy decomposition analysis reveals the significance of polarization energy for these Mg-H2 binding. Ab-initio molecular dynamics simulation shows that complete dehydrogenation from these Mg nanoclusters occur at ∼100 °C which is a significant improvement over bulk MgH2 (∼300 °C).

  16. IUE observations of neutral hydrogen and deuterium in the local interstellar medium

    NASA Technical Reports Server (NTRS)

    Landsman, W. B.; Murthy, J.; Henry, R. C.; Moos, H. W.; Linsky, J. L.

    1986-01-01

    Small-aperture, high-dispersion IUE spectra have been obtained of seven late-type stars that, in general, confirm previous Copernicus results concerning the distribution of hydrogen and deuterium in the local interstellar medium. In addition, the IUE Ly Alpha spectra of Altair, and of the Alpha Cen components, suggest that multiple velocity components exist in these two directions.

  17. The fractionation factors of stable carbon and hydrogen isotope ratios for VOCs

    NASA Astrophysics Data System (ADS)

    Kawashima, H.

    2014-12-01

    Volatile organic compounds (VOCs) are important precursors of ozone and secondary organic aerosols in the atmosphere, some of which are carcinogenic, teratogenic, or mutagenic. VOCs in ambient air originate from many sources, including vehicle exhausts, gasoline evaporation, solvent use, natural gas emissions, and industrial processes, and undergo intricate chemical reactions in the atmosphere. To develop efficient air pollution remediation strategies, it is important to clearly identify the emission sources and elucidate the reaction mechanisms in the atmosphere. Recently, stable carbon isotope ratios (δ13C) of VOCs in some sources and ambient air have been measured by gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS). In this study, we measured δ13C and stable hydrogen isotope ratios (δD) of atmospheric VOCs by using the gas chromatography/thermal conversion/isotope ratio mass spectrometry coupled with a thermal desorption instrument (TD-GC/TC/IRMS). The wider δD differences between sources were found in comparison with the δ13C studies. Therefore, determining δD values of VOCs in ambient air is potentially useful in identifying VOC sources and their reactive behavior in the atmosphere. However, to elucidate the sources and behavior of atmospheric VOCs more accurately, isotopic fractionation during atmospheric reaction must be considered. In this study, we determined isotopic fractionation of the δ13C and δD values for the atmospheric some VOCs under irradiation conditions. As the results, δ13C for target all VOCs and δD for most VOCs were increasing after irradiation. But, the δD values for both benzene and toluene tended to decrease as irradiation time increased. We also estimated the fractionation factors for benzene and toluene, 1.27 and 1.05, respectively, which differed from values determined in previous studies. In summary, we were able to identify an inverse isotope effect for the δD values of benzene and toluene

  18. Theory for Electronic Structure and Associated Hyperfine Interactions for Neutral Vacancy-Associated Hydrogen (Muonium) Atom Center in Silicon

    NASA Astrophysics Data System (ADS)

    Li, Hong; Sahoo, N.; Das, T. P.; Scheuermann, R.; Nagamine, K.

    2001-03-01

    The electronic structure and associated magnetic hyperfine interactions for the Neutral Vacancy-Associated Hydrogen (Muonium) Atom Center(B. Bech Nielsen et al., Phys. Rev. Lett. 79, 1507 (1997))^,(M.Schefzik et al, Solid State Commun. 107, 395 (1998)) in Silicon have been investigated using theHartree-Fock Cluster Procedure combined with many-body effects incorporated by perturbation methods. The influence of cluster size, size of electronic basis-set and lattice relaxation due to the presence of both the vacancy and muonium atom, have been studied. The results provide an explanation of the axial anisotropy of the hyperfine interaction tensors and the signs of the isotropic hyperfine constant and dipolar tensor components. The sizes of the calculated hyperfine tensor components are however found to be somewhat larger than experiment. Possible sources that could bridge the differences will be discussed.

  19. Compact Neutral Hydrogen Clouds: Searching for Undiscovered Dwarf Galaxies and Gas Associated with an Algol-type Variable Star

    NASA Astrophysics Data System (ADS)

    Grcevich, Jana; Berger, Sabrina; Putman, Mary E.; Eli Goldston Peek, Joshua

    2016-01-01

    Several interesting compact neutral hydrogen clouds were found in the GALFA-HI (Galactic Arecibo L-Band Feed Array HI) survey which may represent undiscovered dwarf galaxy candidates. The continuation of this search is motivated by successful discoveries of Local Volume dwarfs in the GALFA-HI DR1. We identify additional potential dwarf galaxies from the GALFA-HI DR1 Compact Cloud Catalog which are indentified as having unexpected velocities given their other characteristics via the bayesian analysis software BayesDB. We also present preliminary results of a by-eye search for dwarf galaxies in the GALFA-HI DR2, which provides additional sky coverage. Interestingly, one particularly compact cloud discovered during our dwarf galaxy search is spatially coincident with an Algol-type variable star. Although the association is tentative, Algol-type variables are thought to have undergone significant gas loss and it is possible this gas may be observable in HI.

  20. Cosmology on Ultralarge Scales with Intensity Mapping of the Neutral Hydrogen 21 cm Emission: Limits on Primordial Non-Gaussianity

    NASA Astrophysics Data System (ADS)

    Camera, Stefano; Santos, Mário G.; Ferreira, Pedro G.; Ferramacho, Luís

    2013-10-01

    The large-scale structure of the Universe supplies crucial information about the physical processes at play at early times. Unresolved maps of the intensity of 21 cm emission from neutral hydrogen HI at redshifts z≃1-5 are the best hope of accessing the ultralarge-scale information, directly related to the early Universe. A purpose-built HI intensity experiment may be used to detect the large scale effects of primordial non-Gaussianity, placing stringent bounds on different models of inflation. We argue that it may be possible to place tight constraints on the non-Gaussianity parameter fNL, with an error close to σfNL˜1.

  1. Research Experience for Teachers at NRAO-Green Bank: Identifying Extended Regions of Neutral Hydrogen Surrounding Isolated Galaxies

    NASA Astrophysics Data System (ADS)

    McCarty, Amy; Pisano, D. J., III; Maddalena, R. J.

    2007-12-01

    Funded by the National Science Foundation's Research Experience for Teachers program, we compared single dish and interferometer data in order to facilitate the identification of regions of diffuse neutral hydrogen surrounding a pre-selected set of isolated galaxies. These galaxies are also being utilized as the focal point of a curriculum on scientific research for high school physics students. The spectra of 31 isolated galaxies at 21 cm were previously observed with the VLA and the Green Bank Telescope. It was expected that areas of diffuse neutral hydrogen surrounding a galaxy would be manifested by a greater flux density in the GBT spectrum data than in the VLA spectrum. Twenty two of the galaxies exhibited a significant flux difference between the VLA and GBT spectrum. Of these, ten had VLA flux that was greater than the GBT flux - an unexpected result. Several of these galaxies will be re-observed with the GBT in order to determine if there was a calibration or pointing error resulting in the GBT flux being less than the VLA flux. The study of these galaxies is ongoing. The curriculum that we have designed for physics students focuses on the nature of astronomical research. Students are traditionally instructed that scientific research is carried out according to the rigid structure of the "scientific method.” This fails to expose them to the evolutionary nature of research that occurs in astronomy and its largely descriptive nature. Students will utilize online astronomical databases to facilitate the characterization, and then categorization, of the isolated galaxies. The culmination of the unit will be student presentations and defenses of their categorization of the galaxies to an astronomer.

  2. HELIOSPHERIC ENERGETIC NEUTRAL HYDROGEN MEASURED WITH ASPERA-3 AND ASPERA-4

    SciTech Connect

    Galli, A.; Wurz, P.; Kollmann, P.; Brandt, P. C.; Bzowski, M.; Sokół, J. M.; Kubiak, M. A.; Grigoriev, A.; Barabash, S.

    2013-09-20

    We re-analyze the signal of non-planetary energetic neutral atoms (ENAs) in the 0.4-5.0 keV range measured with the Neutral Particle Detector (NPD) of the ASPERA-3 and ASPERA-4 experiments on board the Mars and Venus Express satellites. Due to improved knowledge of sensor characteristics and exclusion of data sets affected by instrument effects, the typical intensity of the ENA signal obtained by ASPERA-3 is an order of magnitude lower than in earlier reports. The ENA intensities measured with ASPERA-3 and ASPERA-4 now agree with each other. In the present analysis, we also correct the ENA signal for Compton-Getting and for ionization loss processes under the assumption of a heliospheric origin. We find spectral shapes and intensities consistent with those measured by the Interstellar Boundary Explorer (IBEX). The principal advantage of ASPERA with respect to the IBEX sensors is the two times better spectral resolution. In this study, we discuss the physical significance of the spectral shapes and their potential variation across the sky. At present, these observations are the only independent test of the heliospheric ENA signal measured with IBEX in this energy range. The ASPERA measurements also allow us to check for a temporal variation of the heliospheric signal as they were obtained between 2003 and 2007, whereas IBEX has been operational since the end of 2008.

  3. The Complex Kinematics of the Neutral Hydrogen Associated with I ZW 18

    NASA Astrophysics Data System (ADS)

    van Zee, Liese; Westpfahl, David; Haynes, Martha P.; Salzer, John J.

    1998-03-01

    We present the results of high velocity (1.3 km s^-1 channels) and high spatial (~5", or ~250 pc at the distance of I Zw 18) resolution H i synthesis observations of the blue compact dwarf galaxy I Zw 18 to investigate the link between its unique evolutionary history and the neutral gas distribution and kinematics. The H i distribution is extensive, with diffuse neutral gas extending to the northwest and south of the main component. This diffuse gas may be a remnant of the nascent H i cloud. The kinematics of the I Zw 18 system are complex, with four components identified: H i-A, H i-C, H i-I, and H i-SX. The gas associated with the main body, H i-A, has a steep velocity gradient; although our analysis is hindered by poor spatial resolution relative to the extent of the system, the main body appears to be undergoing solid-body rotation. The optical condensation to the northwest of I Zw 18 is embedded in the common H i envelope and is found to be kinematically separate from the main body at a velocity of 740 km s^-1 (H i-C). The interbody gas, H i-I, connects H i-A and H i-C. Finally, a large, diffuse, kinematically distinct gas component extends at least 1' to the south of the main body (H i-SX), with no known optical counterpart. The peak of the gas column density coincides with the southeast H ii region in the main body; two other H i peaks are associated with the northwest H ii region and an H ii region in the optical condensation to the northwest. In many respects, the H i properties of the main body of I Zw 18 (H i-A) are not unusual for dwarf galaxies; the peak column density, gas dispersion, M_H/L_B, and M_H/M_T are remarkably similar to other low-mass systems. The neutral gas associated with I Zw 18 is best described as a fragmenting H i cloud in the early stages of galaxy evolution. The derived gas distribution and kinematics are placed in the context of the known star formation history of I Zw 18. In particular, the neutral gas velocity dispersion is

  4. Hierarchical Ni-Mo-S nanosheets on carbon fiber cloth: A flexible electrode for efficient hydrogen generation in neutral electrolyte

    PubMed Central

    Miao, Jianwei; Xiao, Fang-Xing; Yang, Hong Bin; Khoo, Si Yun; Chen, Jiazang; Fan, Zhanxi; Hsu, Ying-Ya; Chen, Hao Ming; Zhang, Hua; Liu, Bin

    2015-01-01

    A unique functional electrode made of hierarchal Ni-Mo-S nanosheets with abundant exposed edges anchored on conductive and flexible carbon fiber cloth, referred to as Ni-Mo-S/C, has been developed through a facile biomolecule-assisted hydrothermal method. The incorporation of Ni atoms in Mo-S plays a crucial role in tuning its intrinsic catalytic property by creating substantial defect sites as well as modifying the morphology of Ni-Mo-S network at atomic scale, resulting in an impressive enhancement in the catalytic activity. The Ni-Mo-S/C electrode exhibits a large cathodic current and a low onset potential for hydrogen evolution reaction in neutral electrolyte (pH ~7), for example, current density of 10 mA/cm2 at a very small overpotential of 200 mV. Furthermore, the Ni-Mo-S/C electrode has excellent electrocatalytic stability over an extended period, much better than those of MoS2/C and Pt plate electrodes. Scanning and transmission electron microscopy, Raman spectroscopy, x-ray diffraction, x-ray photoelectron spectroscopy, and x-ray absorption spectroscopy were used to understand the formation process and electrocatalytic properties of Ni-Mo-S/C. The intuitive comparison test was designed to reveal the superior gas-evolving profile of Ni-Mo-S/C over that of MoS2/C, and a laboratory-scale hydrogen generator was further assembled to demonstrate its potential application in practical appliances. PMID:26601227

  5. Highest Redshift Image of Neutral Hydrogen in Emission: A CHILES Detection of a Starbursting Galaxy at z = 0.376

    NASA Astrophysics Data System (ADS)

    Fernández, Ximena; Gim, Hansung B.; van Gorkom, J. H.; Yun, Min S.; Momjian, Emmanuel; Popping, Attila; Chomiuk, Laura; Hess, Kelley M.; Hunt, Lucas; Kreckel, Kathryn; Lucero, Danielle; Maddox, Natasha; Oosterloo, Tom; Pisano, D. J.; Verheijen, M. A. W.; Hales, Christopher A.; Chung, Aeree; Dodson, Richard; Golap, Kumar; Gross, Julia; Henning, Patricia; Hibbard, John; Jaffé, Yara L.; Donovan Meyer, Jennifer; Meyer, Martin; Sanchez-Barrantes, Monica; Schiminovich, David; Wicenec, Andreas; Wilcots, Eric; Bershady, Matthew; Scoville, Nick; Strader, Jay; Tremou, Evangelia; Salinas, Ricardo; Chávez, Ricardo

    2016-06-01

    Our current understanding of galaxy evolution still has many uncertainties associated with the details of the accretion, processing, and removal of gas across cosmic time. The next generation of radio telescopes will image the neutral hydrogen (H i) in galaxies over large volumes at high redshifts, which will provide key insights into these processes. We are conducting the COSMOS H i Large Extragalactic Survey (CHILES) with the Karl G. Jansky Very Large Array, which is the first survey to simultaneously observe H i from z = 0 to z ∼ 0.5. Here, we report the highest redshift H i 21 cm detection in emission to date of the luminous infrared galaxy COSMOS J100054.83+023126.2 at z = 0.376 with the first 178 hr of CHILES data. The total H i mass is (2.9 ± 1.0) × 1010 M ⊙ and the spatial distribution is asymmetric and extends beyond the galaxy. While optically the galaxy looks undisturbed, the H i distribution suggests an interaction with a candidate companion. In addition, we present follow-up Large Millimeter Telescope CO observations that show it is rich in molecular hydrogen, with a range of possible masses of (1.8–9.9) × 1010 M ⊙. This is the first study of the H i and CO in emission for a single galaxy beyond z ∼ 0.2.

  6. Highest Redshift Image of Neutral Hydrogen in Emission: A CHILES Detection of a Starbursting Galaxy at z = 0.376

    NASA Astrophysics Data System (ADS)

    Fernández, Ximena; Gim, Hansung B.; van Gorkom, J. H.; Yun, Min S.; Momjian, Emmanuel; Popping, Attila; Chomiuk, Laura; Hess, Kelley M.; Hunt, Lucas; Kreckel, Kathryn; Lucero, Danielle; Maddox, Natasha; Oosterloo, Tom; Pisano, D. J.; Verheijen, M. A. W.; Hales, Christopher A.; Chung, Aeree; Dodson, Richard; Golap, Kumar; Gross, Julia; Henning, Patricia; Hibbard, John; Jaffé, Yara L.; Donovan Meyer, Jennifer; Meyer, Martin; Sanchez-Barrantes, Monica; Schiminovich, David; Wicenec, Andreas; Wilcots, Eric; Bershady, Matthew; Scoville, Nick; Strader, Jay; Tremou, Evangelia; Salinas, Ricardo; Chávez, Ricardo

    2016-06-01

    Our current understanding of galaxy evolution still has many uncertainties associated with the details of the accretion, processing, and removal of gas across cosmic time. The next generation of radio telescopes will image the neutral hydrogen (H i) in galaxies over large volumes at high redshifts, which will provide key insights into these processes. We are conducting the COSMOS H i Large Extragalactic Survey (CHILES) with the Karl G. Jansky Very Large Array, which is the first survey to simultaneously observe H i from z = 0 to z ˜ 0.5. Here, we report the highest redshift H i 21 cm detection in emission to date of the luminous infrared galaxy COSMOS J100054.83+023126.2 at z = 0.376 with the first 178 hr of CHILES data. The total H i mass is (2.9 ± 1.0) × 1010 M ⊙ and the spatial distribution is asymmetric and extends beyond the galaxy. While optically the galaxy looks undisturbed, the H i distribution suggests an interaction with a candidate companion. In addition, we present follow-up Large Millimeter Telescope CO observations that show it is rich in molecular hydrogen, with a range of possible masses of (1.8–9.9) × 1010 M ⊙. This is the first study of the H i and CO in emission for a single galaxy beyond z ˜ 0.2.

  7. Absorption of infrared radiation by electrons in the field of a neutral hydrogen atom

    NASA Technical Reports Server (NTRS)

    Stallcop, J. R.

    1974-01-01

    An analytical expression for the absorption coefficient is developed from a relationship between the cross-section for inverse bremsstrahlung absorption and the cross-section for electron-atom momentum transfer; it is accurate for those photon frequencies v and temperatures such that hv/kT is small. The determination of the absorption of infrared radiation by free-free transitions of the negative hydrogen ion has been extended to higher temperatures. A simple analytical expression for the absorption coefficient has been derived.

  8. Copernicus observations of neutral hydrogen and deuterium in the direction of HR 1099

    NASA Technical Reports Server (NTRS)

    Anderson, R. C.; Weiler, E. J.

    1979-01-01

    High-resolution Copernicus U1 scans were obtained of the bright RS CVn binary HR 1099 (d = 33 pc, galactic longitude = 185 deg, galactic latitude = -41 deg) in October 1977. Strong emission at L-alpha was detected. The interstellar L-alpha absorption features of H I and D I were also observed. Analyses of these interstellar lines are reported in this paper. The average density of neutral H in the direction of this system is found to be 0.006-0.012 per cu cm, which, because the local density is higher, requires a marked inhomogeneity along this line of sight. This result, when combined with other recent studies of the local interstellar medium, suggests the sun is located within a moderate-density H I region.

  9. Polarization of Lyman α Emergent from a Thick Slab of Neutral Hydrogen

    NASA Astrophysics Data System (ADS)

    Ahn, Sang-Hyeon; Lee, Hee-Won

    2015-06-01

    Star forming galaxies found in the early universe exhibit asymmetric Lyα emission line that results from multiple scattering in a neutral thick medium surrounding the Lyα emission source. It is expected that emergent Lyα will be significantly polarized through a large number of resonance scattering events followed by a number of successive wing scatterings. In this study we adopt a Monte Carlo method to calculate the polarization of Lyα transferred in a very thick static slab of HI. Resonantly scattered radiation associated with transitions between 1S 1/2 - 2P 1/2, 3/2 is only weakly polarized and therefore linear polarization of the emergent Lyα is mainly dependent on the number of off-resonant wing scattering events. The number of wing scattering events just before escape from the slab is determined by the product of the Doppler parameter a and the line center optical depth τ0, which, in turn, determines the behavior of the linear polarization of Lyα. This result is analogous to the study of polarized radiative transfer of Thomson scattered photons in an electron slab, where the emergent photons are polarized in the direction perpendicular to the slab when the scattering optical depth is small and polarized in the parallel direction when the slab is optically thick. Our simulated spectropolarimetry of Lyα shows that the line center is negligibly polarized, the near wing parts polarized in the direction parallel to the slab and the far wing parts are polarized in the direction perpendicular to the slab. We emphasize that the flip of polarization direction in the wing parts of Lyα naturally reflects the diffusive nature of the Lyα transfer process in thick neutral media.

  10. Growth phase dependent hydrogen isotopic fractionation in alkenone-producing haptophytes

    NASA Astrophysics Data System (ADS)

    Wolhowe, M. D.; Prahl, F. G.; Probert, I.; Maldonado, M.

    2009-08-01

    Recent works have investigated use of the hydrogen isotopic composition of C37 alkenones (δDK37s, lipid biomarkers of certain haptophyte microalgae, as an independent paleosalinity proxy. We discuss herein the factors impeding the success of such an application and identify the potential alternative use of δDK37s measurements as a proxy for non-thermal, physiological stress impacts on the U37K' paleotemperature index. Batch-culture experiments with the haptophyte Emiliania huxleyi (CCMP 1742) were conducted to determine the magnitude and variability of the isotopic contrasts between individual C37 alkenones. Further experiments were conducted with Emiliania huxleyi (CCMP 1742) andGephyrocapsa oceanica (PZ3-1) to determine whether, and to what extent, δDK37s varies between the physiological extremes of nutrient-replete exponential growth and nutrient-depleted senescence. Emiliania huxleyi was observed to exhibit an isotopic contrast between di- and tri-unsaturated C37 alkenones (αK37:3-K37:2≈0.97) that is nearly identical to that reported recently by others for environmental samples. Furthermore, this contrast appears to be constant with growth stage. The consistency of the offset across different growth stages suggests that a single, well-defined value for αK37:3-K37:2 may exist and that its use in an isotope mass-balance will allow accurate determination of δD values for individual alkenones without having to rely on time- and labor-intensive chemical separations. The isotopic fractionation between growth medium and C37 alkenones was observed to increase dramatically upon the onset of nutrient-depletion-induced senescence, suggesting that δDK37s may serve as an objective tool for recognizing and potentially correcting, at least semi-quantitatively, for the effects of nutrient stress on U37K' temperature records.

  11. The redshift evolution of escape fraction of hydrogen ionizing photons from galaxies

    NASA Astrophysics Data System (ADS)

    Khaire, Vikram; Srianand, Raghunathan; Choudhury, Tirthankar Roy; Gaikwad, Prakash

    2016-04-01

    Using our cosmological radiative transfer code, we study the implications of the updated quasi-stellar object (QSO) emissivity and star formation history for the escape fraction (fesc) of hydrogen ionizing photons from galaxies. We estimate the fesc that is required to reionize the Universe and to maintain the ionization state of the intergalactic medium in the post-reionization era. At z > 5.5, we show that a constant fesc of 0.14-0.22 is sufficient to reionize the Universe. At z < 3.5, consistent with various observations, we find that fesc can have values from 0 to 0.05. However, a steep rise in fesc, of at least a factor of ˜3, is required between z = 3.5 and 5.5. It results from a rapidly decreasing QSO emissivity at z > 3 together with a nearly constant measured H I photoionization rates at 3 < z < 5. We show that this requirement of a steep rise in fesc over a very short time can be relaxed if we consider the contribution from a recently found large number density of faint QSOs at z ≥ 4. In addition, a simple extrapolation of the contribution of such QSOs to high-z suggests that QSOs alone can reionize the Universe. This implies, at z > 3.5, that either the properties of galaxies should evolve rapidly to increase the fesc or most of the low-mass galaxies should host massive black holes and sustain accretion over a prolonged period. These results motivate a careful investigation of theoretical predictions of these alternate scenarios that can be distinguished using future observations. Moreover, it is also very important to revisit the measurements of H I photoionization rates that are crucial to the analysis presented here.

  12. Towards a palaeosalinity proxy: hydrogen isotopic fractionation between source water and lipids produced via different biosynthetic pathways in haptophyte algae

    NASA Astrophysics Data System (ADS)

    Chivall, David; M'Boule, Daniela; Heinzelmann, Sandra M.; Kasper, Sebastian; Sinke-Schoen, Daniëlle; Sininnghe-Damsté, Jaap S.; Schouten, Stefan; van der Meer, Marcel T. J.

    2014-05-01

    Palaeosalinity is one of the most important oceanographic parameters that cannot currently be quantified with reasonable accuracy from sedimentary records. Hydrogen isotopic fractionation between water and alkenones is dependent, amongst other factors, upon the salinity in which alkenone-producing haptophyte algae grow and is represented by the fractionation factor, α, increasing with salinity.1 As such, the hydrogen isotopic composition of alkenones is emerging as a palaeosalinity proxy. Understanding the mechanism behind the sensitivity of fractionation to salinity is important for the correct application of the proxy, however this mechanism is currently unknown. Here we present hydrogen isotopic compositions of lipids produced via different biosynthetic pathways from batch cultures of Emiliania huxleyi CCMP 1516 and Isochrysis galbana CCMP 1323 grown over a range of salinities and discuss the possible sources of the sensitivity of hydrogen isotope fractionation to salinity. α for C37 alkenones (produced via an unknown biosynthetic pathway but assumed to be acetogenic; e.g.2) and that for C14:0, C16:0, and C18:1 fatty acids (acetogenic) from exponential growth phase I. galbana show a similar sensitivity to salinity, increasing at 0.0013-0.0019 per salinity unit (S-1). Meanwhile, in exponential growth phase E. huxleyi, α for C37 alkenones and α for brassicasterol (mevalonate pathway) increase at 0.0015-0.0022 S-1, but α for phytol (methylerythritol pathway) shows no significant relationship with salinity. These results suggest that fractionation is sensitive to salinity for lipids formed both in the chloroplast and cytosol. They also suggest that the sensitivity may either originate in glyceralde-3-phosphate or pyruvate but is then lost through hydrogen exchange with cell water during sugar rearrangements in the methylerythritol pathway or sensitivity originates with the production and consumption of acetate. References Schouten, S., Ossebaar, J., Schreiber

  13. A comparison of neutral hydrogen 21 cm observations with UV and optical absorption-line measurements

    NASA Technical Reports Server (NTRS)

    Giovanelli, R.; York, D. G.; Shull, J. M.; Haynes, M. P.

    1978-01-01

    Several absorption components detected in visible or UV lines have been identified with emission features in new high-resolution, high signal-to-noise 21 cm observations. Stars for which direct overlap is obtained are HD 28497, lambda Ori, mu Col, HD 50896, rho Leo, HD 93521, and HD 219881. With the use of the inferred H I column densities from 21 cm profiles, rather than the integrated column densities obtained from L-alpha, more reliable densities can be derived from the existence of molecular hydrogen. Hence the cloud thicknesses are better determined; and 21 cm emission maps near these stars can be used to obtain dimensions on the plane of the sky. It is now feasible to derive detailed geometries for isolated clumps of gas which produce visual absorption features.

  14. The effects of neutralized particles on the sampling efficiency of polyurethane foam used to estimate the extrathoracic deposition fraction.

    PubMed

    Tomyn, Ronald L; Sleeth, Darrah K; Thiese, Matthew S; Larson, Rodney R

    2016-01-01

    In addition to chemical composition, the site of deposition of inhaled particles is important for determining the potential health effects from an exposure. As a result, the International Organization for Standardization adopted a particle deposition sampling convention. This includes extrathoracic particle deposition sampling conventions for the anterior nasal passages (ET1) and the posterior nasal and oral passages (ET2). This study assessed how well a polyurethane foam insert placed in an Institute of Occupational Medicine (IOM) sampler can match an extrathoracic deposition sampling convention, while accounting for possible static buildup in the test particles. In this way, the study aimed to assess whether neutralized particles affected the performance of this sampler for estimating extrathoracic particle deposition. A total of three different particle sizes (4.9, 9.5, and 12.8 µm) were used. For each trial, one particle size was introduced into a low-speed wind tunnel with a wind speed set a 0.2 m/s (∼40 ft/min). This wind speed was chosen to closely match the conditions of most indoor working environments. Each particle size was tested twice either neutralized, using a high voltage neutralizer, or left in its normal (non neutralized) state as standard particles. IOM samplers were fitted with a polyurethane foam insert and placed on a rotating mannequin inside the wind tunnel. Foam sampling efficiencies were calculated for all trials to compare against the normalized ET1 sampling deposition convention. The foam sampling efficiencies matched well to the ET1 deposition convention for the larger particle sizes, but had a general trend of underestimating for all three particle sizes. The results of a Wilcoxon Rank Sum Test also showed that only at 4.9 µm was there a statistically significant difference (p-value = 0.03) between the foam sampling efficiency using the standard particles and the neutralized particles. This is interpreted to mean that static

  15. On the Neutral Hydrogen Filament Between M31 and M33

    NASA Astrophysics Data System (ADS)

    Lockman, Felix J.; Free, N.; Shields, J. C.

    2012-01-01

    In 2004, Braun & Thilker (B&T) reported the detection of extremely faint 21cm HI emission at the level log10(NH)=17.0 that formed a partial bridge about 200 kpc in extent between M31 and M33. This has been interpreted as the neutral component of a WHIM filament, or the remnant of a past encounter between the two galaxies. B&T used data from the Westerbork Synthesis Radio Telescope, operated as an array of single dishes, to obtain the necessary sensitivity, but at the expense of angular resolution ( 45'). Subsequently, Putman et al (2009) have questioned the existence of this filament, noting its absence from the immediate vicinity of M33 at the level log10(NH) 18 in data from Arecibo. We have reobserved much of the region between M31 and M33 using the Green Bank Telescope (GBT) at 9' resolution, with a 5-sigma sensitivity limit of log10(NHI) 18.0 and a few much deeper pointings. We detect HI lines consistent with the B&T results. In two locations the emission appears at log(NHI)>18.3, suggesting clumping in the otherwise diffuse gas. We estimate the mass of HI in the bridge, and show examples of the GBT's freedom from instrumental effects down to detection levels of log(NHI) 17.0. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under a cooperative agreement by Associated Universities, Inc.

  16. Infrared Spectra of Protonated Aromatic Hydrocarbons and Their Neutral Counterparts in Solid {PARA}-HYDROGEN

    NASA Astrophysics Data System (ADS)

    Bahou, Mohammed; Wu, Yu-Jong; Lee, Yuan-Pern

    2014-06-01

    Protonated polycyclic aromatic hydrocarbons (H+PAH) have been reported to have infrared (IR) bands at wavenumbers near those of unidentified infrared (UIR) emission bands from interstellar objects. However, recording IR spectra of H+PAH in laboratories is challenging. Two spectral methods have been employed previously to yield IR spectra of H+PAH. One employs IR multiphoton dissociation (IRMPD) of H+PAH, but the bands are broad and red-shifted. Another measures the single-photon IR photodissociation action spectrum of cold H+PAH tagged with a weakly bound ligand, such as Ar, but application of this method to large PAH is difficult. A new method for investigating IR spectra of H+PAH and their neutral counterparts was developed using electron bombardment during {p}-H2 matrix deposition. With this technique, we have recorded IR absorption spectra of protonated forms of benzene (C6H7+), naphthalene (1- and 2-C10H9+), pyrene (1-C16H11+), coronene (1-C24H13+), and their neutrals. The significant superiority of the spectra thus recorded to those with the Ar-tagging and IRMPD methods is demonstrated. The narrow widths of the lines enabled us to distinguish clearly between isomers 1-C10H9+ and 2-C10H9+; 2-C10H9+ was unstable and converted to 1-C10H9+ in less than 30 min. A survey of these experimental results shows that three major lines in the 7-9 μm region are red-shifted from 7.19, 7.45, and 8.13 μm of 1-C16H11+ to 7.37, 7.53, and 8.21 μm of 1-C24H13+, showing the direction towards the UIR bands near 7.6, 7.8, and 8.6 μm. In contrast, the line at 11.5 μm for 1-C16H11+ is blue-shifted to 11.4 μm for 1-C24H13+, showing the direction toward the UIR band near 11.2 μm. Other examples will be presented if time permits. O. Dopfer, PAHs and the Universe, 46, 103 (2011). A. M. Ricks, G. E. Douberly, M. A. Duncan, Astrophys. J., 702, 301 (2009). M. Bahou, Y.-J. Wu, Y.-P. Lee, J. Chem. Phys., 136, 154304 (2012) M. Bahou, Y.-J. Wu, Y.-P. Lee, Phys. Chem. Chem. Phys., 15, 1907

  17. Imaging neutral hydrogen on large scales during the Epoch of Reionization with LOFAR

    NASA Astrophysics Data System (ADS)

    Zaroubi, S.; de Bruyn, A. G.; Harker, G.; Thomas, R. M.; Labropolous, P.; Jelić, V.; Koopmans, L. V. E.; Brentjens, M. A.; Bernardi, G.; Ciardi, B.; Daiboo, S.; Kazemi, S.; Martinez-Rubi, O.; Mellema, G.; Offringa, A. R.; Pandey, V. N.; Schaye, J.; Veligatla, V.; Vedantham, H.; Yatawatta, S.

    2012-10-01

    The first generation of redshifted 21 cm detection experiments, carried out with arrays like Low Frequency Array (LOFAR), Murchison Widefield Array (MWA) and Giant Metrewave Telescope (GMRT), will have a very low signal-to-noise ratio (S/N) per resolution element (≲0.2). In addition, whereas the variance of the cosmological signal decreases on scales larger than the typical size of ionization bubbles, the variance of the formidable galactic foregrounds increases, making it hard to disentangle the two on such large scales. The poor sensitivity on small scales, on the one hand, and the foregrounds effect on large scales, on the other hand, make direct imaging of the Epoch of Reionization of the Universe very difficult, and detection of the signal therefore is expected to be statistical. Despite these hurdles, in this paper we argue that for many reionization scenarios low-resolution images could be obtained from the expected data. This is because at the later stages of the process one still finds very large pockets of neutral regions in the intergalactic medium, reflecting the clustering of the large-scale structure, which stays strong up to scales of ≈120 h-1 comoving Mpc (≈1°). The coherence of the emission on those scales allows us to reach sufficient S/N (≳3) so as to obtain reionization 21 cm images. Such images will be extremely valuable for answering many cosmological questions but above all they will be a very powerful tool to test our control of the systematics in the data. The existence of this typical scale (≈120 h-1 comoving Mpc) also argues for designing future EoR experiments, e.g. with Square Kilometre Array, with a field of view of at least 4°.

  18. INTERACTING GALACTIC NEUTRAL HYDROGEN FILAMENTS AND ASSOCIATED HIGH-FREQUENCY CONTINUUM EMISSION

    SciTech Connect

    Verschuur, Gerrit L.

    2013-05-10

    Galactic H I emission profiles in an area where several large-scale filaments at velocities ranging from -46 km s{sup -1} to 0 km s{sup -1} overlap were decomposed into Gaussian components. Eighteen families of components defined by similarities of center velocity and line width were identified and related to small-scale structure in the high-frequency continuum emission observed by the Wilkinson Microwave Anisotropy Probe spacecraft, as evidenced in the Internal Linear Combination (ILC) map of Hinshaw et al. When the center velocities of the Gaussian families, which summarize the properties of all the H I along the lines of sight in a given area, are used to focus on H I channel maps the phenomenon of close associations between H I and ILC peaks reported in previous papers is dramatically highlighted. Of particular interest, each of two pairs of H I peaks straddles a continuum peak. The previously hypothesized model for producing the continuum radiation involving free-free emission from electrons is re-examined in light of the new data. By choosing reasonable values for the parameters required to evaluate the model, the distance for associated H I-ILC features is of order 30-100 pc. No associated H{alpha} radiation is expected because the electrons involved exist throughout the Milky Way. The mechanism for clumping and separation of neutrals and electrons needs to be explored. It is concluded that the small-scale ILC structure originates in the local interstellar medium and not at cosmological distances.

  19. Synthesis and characterization of higher amino acid Schiff bases, as monosodium salts and neutral forms. Investigation of the intramolecular hydrogen bonding in all Schiff bases, antibacterial and antifungal activities of neutral forms

    NASA Astrophysics Data System (ADS)

    Güngör, Özlem; Gürkan, Perihan

    2014-09-01

    Schiff bases derived from 5-nitro-salicylaldehyde and 4-aminobutyric acid, 5-aminopentanoic acid and 6-aminohexanoic acid were synthesized both as monosodium salts (1a-3a) and neutral forms (1b-3b). The monosodium-Schiff bases were characterized by elemental analysis, 1H/13C NMR, IR, powder XRD, UV-vis spectra and conductivity measurements. The neutral-Schiff bases were characterized by elemental analysis, 1H/13C NMR, 2D NMR (HMQC), mass, IR, powder XRD, UV-vis spectra and conductivity measurements. The intramolecular hydrogen bonding and related tautomeric equilibria in all the Schiff bases were studied by UV-vis and 1H NMR spectra in solution. Additionally, the neutral-Schiff bases were screened against Staphylococcus aureus-EB18, S. aureus-ATCC 25923, Escherichia coli-ATCC 11230, Candida albicans-M3 and C. albicans-ATCC 16231.

  20. Growth phase dependent hydrogen isotopic fractionation in alkenone-producing haptophytes

    NASA Astrophysics Data System (ADS)

    Wolhowe, M. D.; Prahl, F. G.; Probert, I.; Maldonado, M.

    2009-04-01

    Several recent works have investigated use of the hydrogen isotopic composition of C37 alkenones (δDK37s), lipid biomarkers of certain haptophyte microalgae, as an independent paleosalinity proxy. We discuss herein the factors impeding the success of such an application and identify the potential alternative use of δDK37s measurements as a proxy for non-thermal, physiological stress impacts on the U37K' paleotemperature index. Batch-culture experiments with the haptophyte Emiliania huxleyi (CCMP 1742) were conducted to determine the magnitude and variability of the isotopic contrasts between individual C37 alkenones, an analytical impediment to the use of δDK37s in any paleoceanographic context. Further experiments were conducted with Emiliania huxleyi (CCMP 1742) and Gephyrocapsa oceanica (PZ3-1) to determine whether, and to what extent, δDK37s varies between the physiological extremes of nutrient-replete exponential growth and nutrient-depleted senescence, the basis for our proposed use of the measurement as an indicator of stress. Emiliania huxleyi exhibited an isotopic contrast between di- and tri-unsaturated C37 alkenones (αK37:3-K37:2≈0.97) that is nearly identical to that reported recently by others for environmental samples. Furthermore, this contrast appears to be constant with growth stage. The consistency of the offset across different growth stages suggests that a single, well-defined value for αK37:3-K37:2 exists and that its use in an isotope mass-balance will allow accurate determination of δD values for individual alkenones without having to rely on time- and labor-intensive chemical separations. The isotopic fractionation between growth medium and C37 alkenones was observed to increase dramatically upon the onset of nutrient-depletion-induced senescence, suggesting that δDK37s may serve as an objective tool for recognizing and potentially correcting, at least semi-quantitatively, for the effects of nutrient stress on U37K' temperature

  1. The effect of primordial hydrogen/helium fractionation on the solar neutrino flux

    NASA Technical Reports Server (NTRS)

    Wheeler, J. C.; Cameron, A. G. W.

    1975-01-01

    If hydrogen and helium are immiscible below some critical temperature, gravitational separation could occur in the proto-sun, resulting in a nearly pure helium core and a nearly pure hydrogen shell. We have constructed solar models according to this scenario and find the neutrino flux reduced to 1.5-3 SNU.

  2. Characterization of a buried neutral histidine residue in Bacillus circulans xylanase: NMR assignments, pH titration, and hydrogen exchange.

    PubMed Central

    Plesniak, L. A.; Connelly, G. P.; Wakarchuk, W. W.; McIntosh, L. P.

    1996-01-01

    Bacillus circulans xylanase contains two histidines, one of which (His 156) is solvent exposed, whereas the other (His 149) is buried within its hydrophobic core. His 149 is involved in a network of hydrogen bonds with an internal water and Ser 130, as well as a potential weak aromatic-aromatic interaction with Tyr 105. These three residues, and their network of interactions with the bound water, are conserved in four homologous xylanases. To probe the structural role played by His 149, NMR spectroscopy was used to characterize the histidines in BCX. Complete assignments of the 1H, 13C, and 15N resonances and tautomeric forms of the imidazole rings were obtained from two-dimensional heteronuclear correlation experiments. An unusual spectroscopic feature of BCX is a peak near 12 ppm arising from the nitrogen bonded 1H epsilon 2 of His 149. Due to its solvent inaccessibility and hydrogen bonding to an internal water molecule, the exchange rate of this proton (4.0 x 10(-5) s-1 at pH*7.04 and 30 degrees C) is retarded by > 10(6)-fold relative to an exposed histidine. The pKa of His 156 is unperturbed at approximately 6.5, as measured from the pH dependence of the 15N- and 1H-NMR spectra of BCX. In contrast, His 149 has a pKa < 2.3, existing in the neutral N epsilon 2H tautomeric state under all conditions examined. BCX unfolds at low pH and 30 degrees C, and thus His 149 is never protonated significantly in the context of the native enzyme. The structural importance of this buried histidine is confirmed by the destablizing effect of substituting a phenylalanine or glutamine at position 149 in BCX. PMID:8931150

  3. THE COS-HALOS SURVEY: RATIONALE, DESIGN, AND A CENSUS OF CIRCUMGALACTIC NEUTRAL HYDROGEN

    SciTech Connect

    Tumlinson, Jason; Thom, Christopher; Sembach, Kenneth R.; Werk, Jessica K.; Prochaska, J. Xavier; Davé, Romeel; Oppenheimer, Benjamin D.; Ford, Amanda Brady; O'Meara, John M.; Peeples, Molly S.; Weinberg, David H.

    2013-11-01

    We present the design and methods of the COS-Halos survey, a systematic investigation of the gaseous halos of 44 z = 0.15-0.35 galaxies using background QSOs observed with the Cosmic Origins Spectrograph aboard the Hubble Space Telescope. This survey has yielded 39 spectra of z{sub em} ≅ 0.5 QSOs with S/N ∼10-15 per resolution element. The QSO sightlines pass within 150 physical kpc of the galaxies, which span early and late types over stellar mass log M{sub *}/M{sub ☉} = 9.5-11.5. We find that the circumgalactic medium exhibits strong H I, averaging ≅ 1 Å in Lyα equivalent width out to 150 kpc, with 100% covering fraction for star-forming galaxies and 75% covering for passive galaxies. We find good agreement in column densities between this survey and previous studies over similar range of impact parameter. There is weak evidence for a difference between early- and late-type galaxies in the strength and distribution of H I. Kinematics indicate that the detected material is bound to the host galaxy, such that ∼> 90% of the detected column density is confined within ±200 km s{sup –1} of the galaxies. This material generally exists well below the halo virial temperatures at T ∼< 10{sup 5} K. We evaluate a number of possible origin scenarios for the detected material, and in the end favor a simple model in which the bulk of the detected H I arises in a bound, cool, low-density photoionized diffuse medium that is generic to all L* galaxies and may harbor a total gaseous mass comparable to galactic stellar masses.

  4. Pyrite Oxidation under initially neutral pH conditions and in the presence of Acidithiobacillus ferrooxidans and micromolar hydrogen peroxide

    NASA Astrophysics Data System (ADS)

    Ma, Y.; Lin, C.

    2012-01-01

    Hydrogen peroxide (H2O2) at a micromolar level played a role in the microbial surface oxidation of pyrite crystals under initially neutral pH. When the mineral-bacteria system was cyclically exposed to 50 μM H2O2, the colonization of Acidithiobacillus ferrooxidans onto the mineral surface was markedly enhanced, as compared to the control (no added H2O2). This can be attributed to the effects of H2O2 on increasing the roughness of the mineral surfaces, as well as the acidity and Fe2+ concentration at the mineral-solution interfaces. All of these effects tended to create more favourable nano- to micro-scale environments in the mineral surfaces for the cell adsorption. However, higher H2O2 levels inhibited the attachment of cells onto the mineral surfaces, possibly due to the oxidative stress in the bacteria when they approached the mineral surfaces where high levels of free radicals are present as a result of Fenton-like reactions. The more aggressive nature of H2O2 as an oxidant caused marked surface flaking of the mineral surface. The XPS results suggest that H2O2 accelerated the oxidation of pyrite-S and consequently facilitated the overall corrosion cycle of pyrite surfaces. This was accompanied by pH drop in the solution in contact with the pyrite cubes.

  5. Mapping the Hydrogen Bond Networks in the Catalytic Subunit of Protein Kinase A Using H/D Fractionation Factors.

    PubMed

    Li, Geoffrey C; Srivastava, Atul K; Kim, Jonggul; Taylor, Susan S; Veglia, Gianluigi

    2015-07-01

    Protein kinase A is a prototypical phosphoryl transferase, sharing its catalytic core (PKA-C) with the entire kinase family. PKA-C substrate recognition, active site organization, and product release depend on the enzyme's conformational transitions from the open to the closed state, which regulate its allosteric cooperativity. Here, we used equilibrium nuclear magnetic resonance hydrogen/deuterium (H/D) fractionation factors (φ) to probe the changes in the strength of hydrogen bonds within the kinase upon binding the nucleotide and a pseudosubstrate peptide (PKI5-24). We found that the φ values decrease upon binding both ligands, suggesting that the overall hydrogen bond networks in both the small and large lobes of PKA-C become stronger. However, we observed several important exceptions, with residues displaying higher φ values upon ligand binding. Notably, the changes in φ values are not localized near the ligand binding pockets; rather, they are radiated throughout the entire enzyme. We conclude that, upon ligand and pseudosubstrate binding, the hydrogen bond networks undergo extensive reorganization, revealing that the open-to-closed transitions require global rearrangements of the internal forces that stabilize the enzyme's fold. PMID:26030372

  6. NEUTRAL HYDROGEN OPTICAL DEPTH NEAR STAR-FORMING GALAXIES AT z Almost-Equal-To 2.4 IN THE KECK BARYONIC STRUCTURE SURVEY

    SciTech Connect

    Rakic, Olivera; Schaye, Joop; Steidel, Charles C.; Rudie, Gwen C.

    2012-06-01

    We study the interface between galaxies and the intergalactic medium by measuring the absorption by neutral hydrogen in the vicinity of star-forming galaxies at z Almost-Equal-To 2.4. Our sample consists of 679 rest-frame UV-selected galaxies with spectroscopic redshifts that have impact parameters <2 (proper) Mpc to the line of sight of one of the 15 bright, background QSOs and that fall within the redshift range of its Ly{alpha} forest. We present the first two-dimensional maps of the absorption around galaxies, plotting the median Ly{alpha} pixel optical depth as a function of transverse and line-of-sight separation from galaxies. The Ly{alpha} optical depths are measured using an automatic algorithm that takes advantage of all available Lyman series lines. The median optical depth, and hence the median density of atomic hydrogen, drops by more than an order of magnitude around 100 kpc, which is similar to the virial radius of the halos thought to host the galaxies. The median remains enhanced, at the >3{sigma} level, out to at least 2.8 Mpc (i.e., >9 comoving Mpc), but the scatter at a given distance is large compared with the median excess optical depth, suggesting that the gas is clumpy. Within 100 (200) kpc, and over {+-}165 km s{sup -1}, the covering fraction of gas with Ly{alpha} optical depth greater than unity is 100{sup +0}{sub -32}% (66% {+-} 16%). Absorbers with {tau}{sub Ly{alpha}} > 0.1 are typically closer to galaxies than random. The mean galaxy overdensity around absorbers increases with the optical depth and also as the length scale over which the galaxy overdensity is evaluated is decreased. Absorbers with {tau}{sub Ly{alpha}} {approx} 1 reside in regions where the galaxy number density is close to the cosmic mean on scales {>=}0.25 Mpc. We clearly detect two types of redshift space anisotropies. On scales <200 km s{sup -1}, or <1 Mpc, the absorption is stronger along the line of sight than in the transverse direction. This 'finger of God

  7. Synergistic Effects of Hydrogen and Stress on Corrosion of X100 Pipeline Steel in a Near-Neutral pH Solution

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Cheng, Y. F.

    2010-12-01

    In this work, scanning vibrating electrode technique and local electrochemical impedance spectroscopy measurements were used to investigate the effects of stress and hydrogen on electrochemical corrosion behavior of a X100 pipeline steel in a near-neutral pH solution. The stress distribution on the test specimen was calculated using the finite element method. Results demonstrated that the hydrogen-charging enhances the local anodic dissolution of the steel, contributing to the formation of a layer of corrosion product. However, there is little difference of the charge-transfer resistance between the regions with and without hydrogen-charging due to rapid diffusion of hydrogen atoms throughout the specimen with time. When the local stress concentration is not significant enough to approach the yielding strength of the steel, the steel is still in a relatively stable state, and there is a uniform distribution of dissolution rate over the whole surface of the steel specimen. Although the stress-enhanced activation is not sufficient to result in an apparent difference of current density of the steel, the activation of the steel would activate dislocations, which serve as effective traps to the charged hydrogen atoms. With the increase of hydrogen concentration, the hydrogen-enhanced anodic dissolution becomes dominant.

  8. Ultrafiltration by a compacted clay membrane. I - Oxygen and hydrogen isotopic fractionation. II - Sodium ion exclusion at various ionic strengths.

    NASA Technical Reports Server (NTRS)

    Coplen, T. B.; Hanshaw, B. B.

    1973-01-01

    Laboratory experiments were carried out to determine the magnitude of the isotopic fractionation of distilled water and of 0.01N NaCl forced to flow at ambient temperature under a hydraulic pressure drop of 100 bars across a montmorillonite disk compacted to a porosity of 35% by a pressure of 330 bars. The ultrafiltrates in both experiments were depleted in D by 2.5% and in O-18 by 0.8% relative to the residual solution. No additional isotopic fractionation due to a salt-filtering mechanism was observed at NaCl concentrations up to 0.01N. Adsorption is most likely the principal mechanism which produces isotopic fractionation, but molecular diffusion may play a minor role. The results suggest that oxygen and hydrogen isotopic fractionation of ground water during passage through compacted clayey sediments should be a common occurrence, in accord with published interpretations of isotopic data from the Illinois and Alberta basins. It is shown how it is possible to proceed from the ion exchange capacity of clay minerals and, by means of the Donnan membrane equilibrium concept and the Teorell-Meyer-Siever theory, develop a theory to explain why and to what extent ultrafiltration occurs when solutions of known concentration are forced to flow through a clay membrane.

  9. Study of Branching Ratio And Polarization Fraction in Neutral B Meson Decays to Negative Rho Meson Positive Kaon Resonance

    SciTech Connect

    Cheng, Baosen; /Wisconsin U., Madison

    2006-03-07

    We present the preliminary results on the search for B{sup 0} {yields} {rho}{sup -}K*{sup +}. The data sample comprises 122.7 million B{bar B} pairs in the e{sup +}e{sup -} annihilation through the {Upsilon}(4S) resonance collected during 1999-2003 with the BABAR detector at the PEP-II asymmetric-energy collider at Stanford Linear Accelerator Center (SLAC). We obtain an upper limit of the branching ratio at 90% confidence level as {Beta}(B{sup 0} {yields} {rho}{sup -}K*{sup +}) < 17.2 x 10{sup -6}. The fitted result on the polarization fraction shows no evidence that the decay is longitudinally dominated as predicted by various theoretical models.

  10. Associations between Small-scale Structure in Local Galactic Neutral Hydrogen and in the Cosmic Microwave Background Observed by PLANCK

    NASA Astrophysics Data System (ADS)

    Verschuur, Gerrit L.

    2015-11-01

    High-resolution galactic neutral hydrogen (HI) data obtained with the Green Bank Telescope (GBT) over 56 square degrees of sky around l = 132°, b = 25° are compared with small-scale structure in the Cosmic Microwave Background observed by PLANCK, specifically at 143 and 857 GHz, as well as with 100 μm observations from the IRIS survey. The analysis uses data in 13 2° × 2° sub-areas found in the IRSA database at IPAC. The results confirm what has been reported previously; nearby galactic HI features and high-frequency continuum sources believed to be cosmological are in fact clearly associated. While several attempts strongly suggest that the associations are statistically significant, the key to understanding the phenomenon lies in the fact that in any given area HI is associated with cirrus dust at certain HI velocities and with 143 GHz features at different velocities. At the same time, for the 13 sub-areas studied, there is very little overlap between the dust and 143 GHz features. The data do not imply that the HI itself gives rise to the high-frequency continuum emission. Rather, they appear to indicate undiagnosed brightness enhancements indirectly associated with the HI. If low density interstellar electrons concentrated into clumps, or observed in directions where their integrated line-of-sight column densities are greater than the background in a manner similar to the phenomena that give rise to structure in diffuse HI structure, they will profoundly affect attempts to create a foreground electron mask used for processing PLANCK as well as WMAP data.

  11. The Neutral Hydrogen Disk of ARP 10 (=VV 362): A Nonequilibrium Disk Associated with a Galaxy with Rings and Ripples

    NASA Astrophysics Data System (ADS)

    Charmandaris, V.; Appleton, P. N.

    1996-04-01

    We present VLA H I and optical spectra of the peculiar galaxy Arp 10. Originally believed to be an example of a classical colliding ring galaxy with multiple rings, the new observations show a large disturbed neutral hydrogen disk extending 2.7 times the radius of the bright optical ring. We also present evidence for optical shells or ripples in the outer isophotes of the galaxy reminiscent of the ripples seen in some early type systems. The small elliptical originally believed to be the companion is shown to be a background galaxy. The H I disk consists of two main parts: a very irregular outer structure, and a more regular inner disk associated with the main bright optical ring. In both cases, the H I structures do not exactly trace the optical morphology. In the outer parts, the H I distribution does not correlate well with the optical ripples. Even the inner H I disk does not correspond well morphologically nor kinematically to the optical rings. These peculiarities lead us to believe that the potential in which the H I disk resides is significantly out of equilibrium --- a situation which would inherently produce rings of star formation. We suggest that Arp 10 is the result of the intermediate stage of a merger between a large H I rich disk and a gas-poor disk system. As such, it may represent an example of a class of mergers which lies intermediate between the ``ripple and shell'' accretion systems and the head-on collisional ring galaxies.

  12. Searching for Neutral Hydrogen Halos around z ~ 2.1 and z ~ 3.1 Lyα Emitting Galaxies

    NASA Astrophysics Data System (ADS)

    Feldmeier, John J.; Hagen, Alex; Ciardullo, Robin; Gronwall, Caryl; Gawiser, Eric; Guaita, Lucia; Hagen, Lea M. Z.; Bond, Nicholas A.; Acquaviva, Viviana; Blanc, Guillermo A.; Orsi, Alvaro; Kurczynski, Peter

    2013-10-01

    We search for evidence of diffuse Lyα emission from extended neutral hydrogen surrounding Lyα emitting galaxies (LAEs) using deep narrow-band images of the Extended Chandra Deep Field South. By stacking the profiles of 187 LAEs at z = 2.06, 241 LAEs at z = 3.10, and 179 LAEs at z = 3.12, and carefully performing low-surface brightness photometry, we obtain mean surface brightness maps that reach 9.9, 8.7, and 6.2 × 10-19 erg cm-2 s-1 arcsec-2 in the emission line. We undertake a thorough investigation of systematic uncertainties in our surface brightness measurements and find that our limits are 5-10 times larger than would be expected from Poisson background fluctuations; these uncertainties are often underestimated in the literature. At z ~ 3.1, we find evidence for extended halos with small-scale lengths of 5-8 kpc in some but not all of our sub-samples. We demonstrate that sub-samples of LAEs with low equivalent widths and brighter continuum magnitudes are more likely to possess such halos. At z ~ 2.1, we find no evidence of extended Lyα emission down to our detection limits. Through Monte-Carlo simulations, we also show that we would have detected large diffuse LAE halos if they were present in our data sets. We compare these findings to other measurements in the literature and discuss possible instrumental and astrophysical reasons for the discrepancies.

  13. Behaviour and stability of Trivelpiece-Gould modes in non-neutral plasma containing small density fraction of background gas ions

    SciTech Connect

    Yeliseyev, Y. N.

    2013-03-19

    It is shown that the frequencies of Trivelpiece-Gould (TG) modes in non-neutral plasma can get into the low-frequency range due to the Doppler shift caused by plasma rotation in crossed fields. TG modes interact with the ion modes that leads to plasma instability. In paper the frequency spectrum of 'cold' electron plasma completely filling a waveguide and containing small density fraction of ions of background gas is determined numerically. For ions the kinetic description is used. Oscillations having azimuthal number m= 2 are considered. In this case both low- and upper-hybrid TG modes get into the low-frequency range. The spectrum consists of families of 'modified' ion cyclotron (MIC) modes and electron TG modes with the frequencies equal to hybrid frequencies with the Doppler shift. The growth rates of upper-hybrid modes are much faster than the growth rates of low-hybrid and MIC modes.

  14. Studies of quaternary saline lakes-I. Hydrogen isotope fractionation in saline minerals

    USGS Publications Warehouse

    Matsuo, S.; Friedman, I.; Smith, G.I.

    1972-01-01

    Borax, gaylussite, nahcolite and trona were synthesized in aqueous solution at temperatures ranging from 8?? to 35??C. Except for borax, deuterium was always depleted in these hydrated minerals relative to the solutions from which they were crystallized. In borax, no significant fractionation was found. The fractionation factor of D H for the trona-water system exhibited a marked temperature dependence. By combining the deuterium contents of trona and the solution from which trona was crystallized, the following thermometer scale was obtained: In ( D H) trona ( D H)water = 1.420 ?? 104 T2 + 23.56 T (1). An attempt to establish a geothermometer based on C13 C12 fractionation between carbonate minerals and carbonate ions in aqueous solution was not successful. ?? 1972.

  15. Different hydrogen isotope fractionations during lipid formation in higher plants: Implications for paleohydrology reconstruction at a global scale.

    PubMed

    Liu, Jinzhao; Liu, Weiguo; An, Zhisheng; Yang, Hong

    2016-01-01

    Leaf wax δDn-alkane values have shown to differ significantly among plant life forms (e.g., among grasses, shrubs, and trees) in higher plants. However, the underlying causes for the differences in leaf wax δDn-alkane values among different plant life forms remain poorly understood. In this study, we observed that leaf wax δDn-alkane values between major high plant lineages (eudicots versus monocots) differed significantly under the same environmental conditions. Such a difference primarily inherited from different hydrogen biosynthetic fractionations (εwax-lw). Based upon a reanalysis of the available leaf wax δDn-alkane dataset from modern plants in the Northern Hemisphere, we discovered that the apparent hydrogen fractionation factor (εwax-p) between leaf wax δDn-alkane values of major angiosperm lineages and precipitation δD values exhibited distinguishable distribution patterns at a global scale, with an average of -140‰ for monocotyledonous species, -107‰ for dicotyledonous species. Additionally, variations of leaf wax δDn-alkane values and the εwax-p values in gymnosperms are similar to those of dicotyledonous species. Therefore, the data let us believe that biological factors inherited from plant taxonomies have a significant effect on controlling leaf wax δDn-alkane values in higher plants. PMID:26806719

  16. Different hydrogen isotope fractionations during lipid formation in higher plants: Implications for paleohydrology reconstruction at a global scale

    NASA Astrophysics Data System (ADS)

    Liu, Jinzhao; Liu, Weiguo; An, Zhisheng; Yang, Hong

    2016-01-01

    Leaf wax δDn-alkane values have shown to differ significantly among plant life forms (e.g., among grasses, shrubs, and trees) in higher plants. However, the underlying causes for the differences in leaf wax δDn-alkane values among different plant life forms remain poorly understood. In this study, we observed that leaf wax δDn-alkane values between major high plant lineages (eudicots versus monocots) differed significantly under the same environmental conditions. Such a difference primarily inherited from different hydrogen biosynthetic fractionations (ɛwax-lw). Based upon a reanalysis of the available leaf wax δDn-alkane dataset from modern plants in the Northern Hemisphere, we discovered that the apparent hydrogen fractionation factor (ɛwax-p) between leaf wax δDn-alkane values of major angiosperm lineages and precipitation δD values exhibited distinguishable distribution patterns at a global scale, with an average of -140‰ for monocotyledonous species, -107‰ for dicotyledonous species. Additionally, variations of leaf wax δDn-alkane values and the ɛwax-p values in gymnosperms are similar to those of dicotyledonous species. Therefore, the data let us believe that biological factors inherited from plant taxonomies have a significant effect on controlling leaf wax δDn-alkane values in higher plants.

  17. Different hydrogen isotope fractionations during lipid formation in higher plants: Implications for paleohydrology reconstruction at a global scale

    PubMed Central

    Liu, Jinzhao; Liu, Weiguo; An, Zhisheng; Yang, Hong

    2016-01-01

    Leaf wax δDn-alkane values have shown to differ significantly among plant life forms (e.g., among grasses, shrubs, and trees) in higher plants. However, the underlying causes for the differences in leaf wax δDn-alkane values among different plant life forms remain poorly understood. In this study, we observed that leaf wax δDn-alkane values between major high plant lineages (eudicots versus monocots) differed significantly under the same environmental conditions. Such a difference primarily inherited from different hydrogen biosynthetic fractionations (εwax-lw). Based upon a reanalysis of the available leaf wax δDn-alkane dataset from modern plants in the Northern Hemisphere, we discovered that the apparent hydrogen fractionation factor (εwax-p) between leaf wax δDn-alkane values of major angiosperm lineages and precipitation δD values exhibited distinguishable distribution patterns at a global scale, with an average of −140‰ for monocotyledonous species, −107‰ for dicotyledonous species. Additionally, variations of leaf wax δDn-alkane values and the εwax-p values in gymnosperms are similar to those of dicotyledonous species. Therefore, the data let us believe that biological factors inherited from plant taxonomies have a significant effect on controlling leaf wax δDn-alkane values in higher plants. PMID:26806719

  18. A review of dark fermentative hydrogen production from biodegradable municipal waste fractions

    SciTech Connect

    De Gioannis, G.; Muntoni, A.; Polettini, A.; Pomi, R.

    2013-06-15

    Highlights: ► A large number of factors affect fermentative hydrogen production. ► Harmonization and systematic comparison of results from different literature sources are needed. ► More than 80 publications on H{sub 2} production from food waste and OFMSW have been examined. ► Experimental data from the reviewed literature were analyzed using statistical tools. ► For a reliable assessment of the process performance, the use of multiple parameters appears to be recommended. - Abstract: Hydrogen is believed to play a potentially key role in the implementation of sustainable energy production, particularly when it is produced from renewable sources and low energy-demanding processes. In the present paper an attempt was made at critically reviewing more than 80 recent publications, in order to harmonize and compare the available results from different studies on hydrogen production from FW and OFMSW through dark fermentation, and derive reliable information about process yield and stability in view of building related predictive models. The review was focused on the effect of factors, recognized as potentially affecting process evolution (including type of substrate and co-substrate and relative ratio, type of inoculum, food/microorganisms [F/M] ratio, applied pre-treatment, reactor configuration, temperature and pH), on the fermentation yield and kinetics. Statistical analysis of literature data from batch experiments was also conducted, showing that the variables affecting the H{sub 2} production yield were ranked in the order: type of co-substrate, type of pre-treatment, operating pH, control of initial pH and fermentation temperature. However, due to the dispersion of data observed in some instances, the ambiguity about the presence of additional hidden variables cannot be resolved. The results from the analysis thus suggest that, for reliable predictive models of fermentative hydrogen production to be derived, a high level of consistency between data is

  19. A review of dark fermentative hydrogen production from biodegradable municipal waste fractions.

    PubMed

    De Gioannis, G; Muntoni, A; Polettini, A; Pomi, R

    2013-06-01

    Hydrogen is believed to play a potentially key role in the implementation of sustainable energy production, particularly when it is produced from renewable sources and low energy-demanding processes. In the present paper an attempt was made at critically reviewing more than 80 recent publications, in order to harmonize and compare the available results from different studies on hydrogen production from FW and OFMSW through dark fermentation, and derive reliable information about process yield and stability in view of building related predictive models. The review was focused on the effect of factors, recognized as potentially affecting process evolution (including type of substrate and co-substrate and relative ratio, type of inoculum, food/microorganisms [F/M] ratio, applied pre-treatment, reactor configuration, temperature and pH), on the fermentation yield and kinetics. Statistical analysis of literature data from batch experiments was also conducted, showing that the variables affecting the H2 production yield were ranked in the order: type of co-substrate, type of pre-treatment, operating pH, control of initial pH and fermentation temperature. However, due to the dispersion of data observed in some instances, the ambiguity about the presence of additional hidden variables cannot be resolved. The results from the analysis thus suggest that, for reliable predictive models of fermentative hydrogen production to be derived, a high level of consistency between data is strictly required, claiming for more systematic and comprehensive studies on the subject. PMID:23558084

  20. Peripherally hydrogenated neutral polycyclic aromatic hydrocarbons as carriers of the 3 micron interstellar infrared emission complex: results from single-photon infrared emission spectroscopy

    NASA Technical Reports Server (NTRS)

    Wagner, D. R.; Kim, H. S.; Saykally, R. J.

    2000-01-01

    Infrared emission spectra of five gas-phase UV laser-excited polycyclic aromatic hydrocarbons (PAHs) containing aliphatic hydrogens are compared with the main 3.3 microns and associated interstellar unidentified infrared emission bands (UIRs). We show that neutral PAHs can account for the majority of the 3 microns emission complex while making little contribution to the other UIR bands; peripherally hydrogenated PAHs produce a better match to astrophysical data than do those containing methyl side groups; 3.4 microns plateau emission is shown to be a general spectral feature of vibrationally excited PAHs containing aliphatic hydrogens, especially those containing methyl groups; and finally, hot-band and overtone emissions arising from aromatic C-H vibrations are not observed in laboratory emission spectra, and therefore, in contrast to current assignments, are not expected to be observed in the UIRs.

  1. COMPLETE IONIZATION OF THE NEUTRAL GAS: WHY THERE ARE SO FEW DETECTIONS OF 21 cm HYDROGEN IN HIGH-REDSHIFT RADIO GALAXIES AND QUASARS

    SciTech Connect

    Curran, S. J.; Whiting, M. T.

    2012-11-10

    From the first published z {approx}> 3 survey of 21 cm absorption within the hosts of radio galaxies and quasars, Curran et al. found an apparent dearth of cool neutral gas at high redshift. From a detailed analysis of the photometry, each object is found to have a {lambda} = 1216 A continuum luminosity in excess of L {sub 1216} {approx} 10{sup 23} W Hz{sup -1}, a critical value above which 21 cm has never been detected at any redshift. At these wavelengths, and below, hydrogen is excited above the ground state so that it cannot absorb in 21 cm. In order to apply the equation of photoionization equilibrium, we demonstrate that this critical value also applies to the ionizing ({lambda} {<=} 912 A) radiation. We use this to show, for a variety of gas density distributions, that upon placing a quasar within a galaxy of gas, there is always an ultraviolet luminosity above which all of the large-scale atomic gas is ionized. While in this state, the hydrogen cannot be detected or engage in star formation. Applying the mean ionizing photon rate of all of the sources searched, we find, using canonical values for the gas density and recombination rate coefficient, that the observed critical luminosity gives a scale length (3 kpc) similar that of the neutral hydrogen (H I) in the Milky Way, a large spiral galaxy. Thus, this simple yet physically motivated model can explain the critical luminosity (L {sub 912} {approx} L {sub 1216} {approx} 10{sup 23} W Hz{sup -1}), above which neutral gas is not detected. This indicates that the non-detection of 21 cm absorption is not due to the sensitivity limits of current radio telescopes, but rather that the lines of sight to the quasars, and probably the bulk of the host galaxies, are devoid of neutral gas.

  2. On the meniscus formation and the negative hydrogen ion extraction from ITER neutral beam injection relevant ion source

    NASA Astrophysics Data System (ADS)

    Mochalskyy, S.; Wünderlich, D.; Ruf, B.; Fantz, U.; Franzen, P.; Minea, T.

    2014-10-01

    The development of a large area (Asource,ITER = 0.9 × 2 m2) hydrogen negative ion (NI) source constitutes a crucial step in construction of the neutral beam injectors of the international fusion reactor ITER. To understand the plasma behaviour in the boundary layer close to the extraction system the 3D PIC MCC code ONIX is exploited. Direct cross checked analysis of the simulation and experimental results from the ITER-relevant BATMAN source testbed with a smaller area (Asource,BATMAN ≈ 0.32 × 0.59 m2) has been conducted for a low perveance beam, but for a full set of plasma parameters available. ONIX has been partially benchmarked by comparison to the results obtained using the commercial particle tracing code for positive ion extraction KOBRA3D. Very good agreement has been found in terms of meniscus position and its shape for simulations of different plasma densities. The influence of the initial plasma composition on the final meniscus structure was then investigated for NIs. As expected from the Child-Langmuir law, the results show that not only does the extraction potential play a crucial role on the meniscus formation, but also the initial plasma density and its electronegativity. For the given parameters, the calculated meniscus locates a few mm downstream of the plasma grid aperture provoking a direct NI extraction. Most of the surface produced NIs do not reach the plasma bulk, but move directly towards the extraction grid guided by the extraction field. Even for artificially increased electronegativity of the bulk plasma the extracted NI current from this region is low. This observation indicates a high relevance of the direct NI extraction. These calculations show that the extracted NI current from the bulk region is low even if a complete ion-ion plasma is assumed, meaning that direct extraction from surface produced ions should be present in order to obtain sufficiently high extracted NI current density. The calculated extracted currents, both ions

  3. Anaerobic digestion of organic fraction of municipal solid waste combining two pretreatment modalities, high temperature microwave and hydrogen peroxide.

    PubMed

    Shahriari, Haleh; Warith, Mostafa; Hamoda, Mohamed; Kennedy, Kevin J

    2012-01-01

    In order to enhance anaerobic digestion (AD) of the organic fraction of municipal solid waste (OFMSW), pretreatment combining two modalities, microwave (MW) heating in presence or absence of hydrogen peroxide (H(2)O(2)) were investigated. The main pretreatment variables affecting the characteristics of the OFMSW were temperature (T) via MW irradiation and supplemental water additions of 20% and 30% (SWA20 and SW30). Subsequently, the focus of this study was to evaluate mesophilic batch AD performance in terms of biogas production, as well as changes in the characteristics of the OFMSW post digestion. A high MW induced temperature range (115-175°C) was applied, using sealed vessels and a bench scale MW unit equipped with temperature and pressure controls. Biochemical methane potential (BMP) tests were conducted on the whole OFMSW as well as the liquid fractions. The whole OFMSW pretreated at 115°C and 145°C showed 4-7% improvement in biogas production over untreated OFMSW (control). When pretreated at 175°C, biogas production decreased due to formation of refractory compounds, inhibiting the digestion. For the liquid fraction of OFMSW, the effect of pretreatment on the cumulative biogas production (CBP) was more pronounced for SWA20 at 145°C, with a 26% increase in biogas production after 8days of digestion, compared to the control. When considering the increased substrate availability in the liquid fraction after MW pretreatment, a 78% improvement in biogas production vs. the control was achieved. Combining MW and H(2)O(2) modalities did not have a positive impact on OFMSW stabilization and enhanced biogas production. In general, all samples pretreated with H(2)O(2) displayed a long lag phase and the CBP was usually lower than MW irradiated only samples. First order rate constant was calculated. PMID:21945550

  4. Hydrogen and oxygen isotope fractionation between brucite and aqueous NaCl solutions from 250 to 450°C

    USGS Publications Warehouse

    Saccocia, Peter J.; Seewald, Jeffrey S.; Shanks, Wayne C., III

    1998-01-01

    Hydrogen and oxygen isotope fractionation factors between brucite and aqueous NaCl solutions (1000lnαbr-sw) have been calibrated by experiment from 250 to 450°C at 0.5 Kb. For D/H fractionation, 1000lnα br-sw values are as follows: −32 ± 6‰ (250°C, 3.2 wt% NaCl), −21 ± 2‰ (350°C, 10.0 wt% NaCl), and −22 ± 2‰ (450°C, 3.2 wt% NaCl), indicating that brucite is depleted in D relative to coexisting aqueous NaCl solutions. These results are in good agreement with previous D/H fractionation factors determined in the brucite-water system, indicating that any effects of dissolved salt on D/H fractionation are relatively small, particularly in solutions with near seawater salinity. The maximum salt effect (+4‰) was observed in 10.0 wt% NaCl solutions at 350°C, suggesting that the addition of dissolved NaCl increases the amount of deuterium fractionated into mineral structures. For 18O/16O fractionation, 1000lnαbr-sw values in 3.0 wt% NaCl solutions are −6.0 ± 1.3‰, −5.6 ± 0.7‰ and −4.1 ± 0.2‰, at 250, 350, and 450°C, respectively, and −5.8 ± 0.6‰ in 10.0 wt % NaCl at 350°C. These data indicate that brucite is depleted in 18O relative to coexisting aqueous NaCl solutions and that the degree of depletion decreases slightly with increasing temperature and is not strongly dependent on salinity. We calculated 18O/16O brucite-water fractionation factors from available calibrations of the salt-effect on 18O/16O fractionation between coexisting phases. The resulting values were fit to the following equation that is valid from 250 to 450°C 1000ln αbr-w = 9.54 × 106T−2 − 3.53 × 104T−1 + 26.58 where T is temperature in Kelvins. These new data have been used to improve the prediction of 18O/16O fractionation factors in the talc-water and serpentine-water systems by modifying existing empirical bond-water models. The results of this analysis indicate that the δ18O composition of talc-brucite and serpentine

  5. Sulfur isotopic fractionation in vacuum UV photodissociation of hydrogen sulfide and its potential relevance to meteorite analysis

    PubMed Central

    Chakraborty, Subrata; Jackson, Teresa L.; Ahmed, Musahid; Thiemens, Mark H.

    2013-01-01

    Select meteoritic classes possess mass-independent sulfur isotopic compositions in sulfide and organic phases. Photochemistry in the solar nebula has been attributed as a source of these anomalies. Hydrogen sulfide (H2S) is the most abundant gas-phase species in the solar nebula, and hence, photodissociation of H2S by solar vacuum UV (VUV) photons (especially by Lyman-α radiation) is a relevant process. Because of experimental difficulties associated with accessing VUV radiation, there is a paucity of data and a lack of theoretical basis to test the hypothesis of a photochemical origin of mass-independent sulfur. Here, we present multiisotopic measurements of elemental sulfur produced during the VUV photolysis of H2S. Mass-independent sulfur isotopic compositions are observed. The observed isotopic fractionation patterns are wavelength-dependent. VUV photodissociation of H2S takes place through several predissociative channels, and the measured mass-independent fractionation is most likely a manifestation of these processes. Meteorite sulfur data are discussed in light of the present experiments, and suggestions are made to guide future experiments and models. PMID:23431159

  6. Sulfur isotopic fractionation in vacuum UV photodissociation of hydrogen sulfide and its potential relevance to meteorite analysis.

    PubMed

    Chakraborty, Subrata; Jackson, Teresa L; Ahmed, Musahid; Thiemens, Mark H

    2013-10-29

    Select meteoritic classes possess mass-independent sulfur isotopic compositions in sulfide and organic phases. Photochemistry in the solar nebula has been attributed as a source of these anomalies. Hydrogen sulfide (H2S) is the most abundant gas-phase species in the solar nebula, and hence, photodissociation of H2S by solar vacuum UV (VUV) photons (especially by Lyman-α radiation) is a relevant process. Because of experimental difficulties associated with accessing VUV radiation, there is a paucity of data and a lack of theoretical basis to test the hypothesis of a photochemical origin of mass-independent sulfur. Here, we present multiisotopic measurements of elemental sulfur produced during the VUV photolysis of H2S. Mass-independent sulfur isotopic compositions are observed. The observed isotopic fractionation patterns are wavelength-dependent. VUV photodissociation of H2S takes place through several predissociative channels, and the measured mass-independent fractionation is most likely a manifestation of these processes. Meteorite sulfur data are discussed in light of the present experiments, and suggestions are made to guide future experiments and models. PMID:23431159

  7. The neutral oxygen spectrum. 2: Pumping by hydrogen Lyman-beta under the optically thin condition: A first application to the classical novae

    NASA Technical Reports Server (NTRS)

    Kastner, S. O.; Bhatia, A. K.

    1995-01-01

    A calculation, employing a detailed model of neutral oxygen, is carried out to give fluorescent line intensities expected in a long-proposed photoexcitation by accidental resonance (PAR) process in which hydrogen Lyman-beta photoexcites the oxygen spectrum. The results pertain to the optically thin case but provide an upper limit to the fluorescent intensities which can be attained. They are applied to analyze line ratios involving the strong 8446 A line observed in classical novae during the diffusion-enhanced and Orion phases. Operation of the PAR process in the novae is verified. It is found that photoexcitation rates in the ejecta reach values greater than 0.1/sec, corresponding to hydrogen Lyman-beta radiation field intensities greater than 1250 ergs/cm/sec/sr.

  8. Neutralization of the oedematogenic activity of Bothrops jararaca venom on the mouse paw by an antibothropic fraction isolated from opossum (Didelphis marsupialis) serum.

    PubMed

    Perales, J; Amorim, C Z; Rocha, S L; Domont, G B; Moussatché, H

    1992-11-01

    The pharmacological modulation of mice paw oedema produced by Bothrops jararaca venom (BJV) has been studied. Intraplantar injection of BJV (1-30 micrograms/paw) produced a dose- and time-related oedema, which was maximal 30 min after injection, reduced gradually thereafter and disappeared over 48 h. BJV heated at 100 degrees C for 5 or 15 min blocked local hemorrhage and caused partial inhibition of its oedematogenic activity. The BJV oedema was not inhibited by the anti-histamine meclizine, the inhibitor of histamine and serotonin, cyproheptadine, PAF-acether antagonist WEB 2170 or by the anti-leukotrienes C4/D4, LY 171883. Dexamethasone, aspirin, indomethacin, and the dual cyclooxygenase and lipoxygenase inhibitor BW 755C inhibited BJV-induced oedema indicating that arachidonic acid metabolism products via the cyclooxygenase pathway participate in its genesis and/or maintenance. The antibothropic fraction (ABF) (25-200 micrograms/paw) isolated from Didelphis marsupialis serum neutralized the oedema induced by the venom with and without heating, the hemorrhage induced by BJV and partially blocked the oedema induced by bradykinin and by cellulose sulphate. The oedema produced by histamine, serotonin, PAF-acether or leukotriene C4 was not inhibited. PMID:1295374

  9. Electron-bifurcating transhydrogenase is central to hydrogen isotope fractionation during lipid biosynthesis in sulfate reducing bacteria

    NASA Astrophysics Data System (ADS)

    Leavitt, W.; Flynn, T. M.; Suess, M.; Bradley, A. S.

    2015-12-01

    A significant range in microbial lipid 2H/1H ratios is observed in modern marine sediments [Li et al. 2009. GCA]. The magnitude of hydrogen isotope fractionation between microbial lipids and growth water (2ɛlipid-H2O) is hypothesized to relate to the central carbon and energy metabolism [Zhang et al. 2009. PNAS]. These observations have raised the intriguing possibility for culture independent identification of the dominant metabolic pathways operating in environments critical to the geological record. One such metabolism we would like to track for its global significance in sedimentary carbon cycling is bacterial sulfate reduction [Jørgensen. 1982. Nature]. To-date, heterotrophic sulfate reducing bacteria (SRB) have been observed to produce lipids that are depleted in fatty acid H-isotope composition, relative to growth water (2ɛlipid-H2O ~ -125 to -175 ‰), with experiments on different substrates yielding little variability [Campbell et al. 2009. GCA; Osburn. 2013; Dawson et al. 2015. Geobiology]. In stark contrast, aerobic heterotrophs show a wide range in fractionations (2ɛlipid-H2O ~ +300 to -125‰) which seems to scale with the route cellular carbon metabolism [Zhang et al. 2009. PNAS; Heinzelmann et al. 2015. Front Microbio]. Recent work in aerobic methylotrophs [Bradley et al. 2014. AGU] implicates transhydrogenase (TH) activity as a critical control on 2ɛlipid-H2O. This work suggests a specific driving mechanism for this range in fractionation is the ratio of intracellular NADPH/NADH, and more fundamentally, the intracellular redox state. In SRB a key component of energy metabolism is the activity of electron-bifurcating TH [Price et al. 2014. Front Microbio], for which a recent transposon mutant library has generated a number of knockouts in the target gene [Kuehl et al. 2014. mBio] in the model organism Desulfovibrio alaskensis strain G20. In this study we compare growth rates, fatty acid concentrations and 2ɛlipid-H2O from wild type and TH

  10. Excitation and charge transfer in low-energy hydrogen-atom collisions with neutral atoms: Theory, comparisons, and application to Ca

    NASA Astrophysics Data System (ADS)

    Barklem, Paul S.

    2016-04-01

    A theoretical method is presented for the estimation of cross sections and rates for excitation and charge-transfer processes in low-energy hydrogen-atom collisions with neutral atoms, based on an asymptotic two-electron model of ionic-covalent interactions in the neutral atom-hydrogen-atom system. The calculation of potentials and nonadiabatic radial couplings using the method is demonstrated. The potentials are used together with the multichannel Landau-Zener model to calculate cross sections and rate coefficients. The main feature of the method is that it employs asymptotically exact atomic wave functions, which can be determined from known atomic parameters. The method is applied to Li+H , Na+H , and Mg+H collisions, and the results compare well with existing detailed full-quantum calculations. The method is applied to the astrophysically important problem of Ca+H collisions, and rate coefficients are calculated for temperatures in the range 1000-20 000 K.