Science.gov

Sample records for neutralizing antibody conferring

  1. Isolation and Chimerization of a Highly Neutralizing Antibody Conferring Passive Protection against Lethal Bacillus anthracis Infection

    PubMed Central

    Rosenfeld, Ronit; Marcus, Hadar; Ben-Arie, Einat; Lachmi, Bat-El; Mechaly, Adva; Reuveny, Shaul; Gat, Orit; Mazor, Ohad; Ordentlich, Arie

    2009-01-01

    Several studies have demonstrated that the passive transfer of protective antigen (PA)-neutralizing antibodies can protect animals against Bacillus anthracis infection. The standard protocol for the isolation of PA-neutralizing monoclonal antibodies is based upon a primary selection of the highest PA-binders by ELISA, and usually yields only few candidates antibodies. We demonstrated that by applying a PA-neutralization functionality-based screen as the primary criterion for positive clones, it was possible to isolate more than 100 PA-neutralizing antibodies, some of which exhibited no measurable anti-PA titers in ELISA. Among the large panel of neutralizing antibodies identified, mAb 29 demonstrated the most potent activity, and was therefore chimerized. The variable region genes of the mAb 29 were fused to human constant region genes, to form the chimeric 29 antibody (cAb 29). Guinea pigs were fully protected against infection by 40LD50 B. anthracis spores following two separate administrations with 10 mg/kg of cAb 29: the first administration was given before the challenge, and a second dose was administered on day 4 following exposure. Moreover, animals that survived the challenge and developed endogenous PA-neutralizing antibodies with neutralizing titers above 100 were fully protected against repeat challenges with 40LD50 of B. anthracis spores. The data presented here emphasize the importance of toxin neutralization-based screens for the efficient isolation of protective antibodies that were probably overlooked in the standard screening protocol. The protective activity of the chimeric cAb 29 demonstrated in this study suggest that it may serve as an effective immunotherapeutic agent against anthrax. PMID:19629185

  2. Both Neutralizing and Non-Neutralizing Human H7N9 Influenza Vaccine-Induced Monoclonal Antibodies Confer Protection.

    PubMed

    Henry Dunand, Carole J; Leon, Paul E; Huang, Min; Choi, Angela; Chromikova, Veronika; Ho, Irvin Y; Tan, Gene S; Cruz, John; Hirsh, Ariana; Zheng, Nai-Ying; Mullarkey, Caitlin E; Ennis, Francis A; Terajima, Masanori; Treanor, John J; Topham, David J; Subbarao, Kanta; Palese, Peter; Krammer, Florian; Wilson, Patrick C

    2016-06-01

    Pathogenic H7N9 avian influenza viruses continue to represent a public health concern, and several candidate vaccines are currently being developed. It is vital to assess if protective antibodies are induced following vaccination and to characterize the diversity of epitopes targeted. Here we characterized the binding and functional properties of twelve H7-reactive human antibodies induced by a candidate A/Anhui/1/2013 (H7N9) vaccine. Both neutralizing and non-neutralizing antibodies protected mice in vivo during passive transfer challenge experiments. Mapping the H7 hemagglutinin antigenic sites by generating escape mutant variants against the neutralizing antibodies identified unique epitopes on the head and stalk domains. Further, the broadly cross-reactive non-neutralizing antibodies generated in this study were protective through Fc-mediated effector cell recruitment. These findings reveal important properties of vaccine-induced antibodies and provide a better understanding of the human monoclonal antibody response to influenza in the context of vaccines. PMID:27281570

  3. Empowered Antibody Therapies - IBC conference.

    PubMed

    Herold, Jens

    2010-10-01

    The Empowered Antibody Therapies conference, held in Burlingame, CA, USA, included topics covering new therapeutic developments in the field of multispecific antibodies. This conference report highlights selected presentations on DVD-Igs from Abbott Laboratories, ImmTACs from Immunocore, 'Dock-and-Lock' technology from Immunomedics, the bispecific BiTE antibody blinatumomab from Micromet, and Triomabs from TRION Pharma and Fresenius Biotech. PMID:20878591

  4. Antibody Engineering and Therapeutics Conference

    PubMed Central

    Almagro, Juan Carlos; Gilliland, Gary L; Scott, Jamie; Larrick, James W; Plückthun, Andreas; Veldman, Trudi; Adams, Gregory P; Parren, Paul WHI; Chester, Kerry A; Bradbury, Andrew; Reichert, Janice M; Huston, James S

    2013-01-01

    The Antibody Engineering and Therapeutics conference, which serves as the annual meeting of The Antibody Society, will be held in Huntington Beach, CA from Sunday December 8 through Thursday December 12, 2013. The scientific program will cover the full spectrum of challenges in antibody research and development, and provide updates on recent progress in areas from basic science through approval of antibody therapeutics. Keynote presentations will be given by Leroy Hood (Institute of System Biology), who will discuss a systems approach for studying disease that is enabled by emerging technology; Douglas Lauffenburger (Massachusetts Institute of Technology), who will discuss systems analysis of cell communication network dynamics for therapeutic biologics design; David Baker (University of Washington), who will describe computer-based design of smart protein therapeutics; and William Schief (The Scripps Research Institute), who will discuss epitope-focused immunogen design.   In this preview of the conference, the workshop and session chairs share their thoughts on what conference participants may learn in sessions on: (1) three-dimensional structure antibody modeling; (2) identifying clonal lineages from next-generation data sets of expressed VH gene sequences; (3) antibodies in cardiometabolic medicine; (4) the effects of antibody gene variation and usage on the antibody response; (5) directed evolution; (6) antibody pharmacokinetics, distribution and off-target toxicity; (7) use of knowledge-based design to guide development of complementarity-determining regions and epitopes to engineer or elicit the desired antibody; (8) optimizing antibody formats for immunotherapy; (9) antibodies in a complex environment; (10) polyclonal, oligoclonal and bispecific antibodies; (11) antibodies to watch in 2014; and (12) polyreactive antibodies and polyspecificity.

  5. Enhanced HIV-1 neutralization by antibody heteroligation

    PubMed Central

    Mouquet, Hugo; Warncke, Malte; Scheid, Johannes F.; Seaman, Michael S.; Nussenzweig, Michel C.

    2012-01-01

    Passive transfer of broadly neutralizing human antibodies against HIV-1 protects macaques against infection. However, HIV-1 uses several strategies to escape antibody neutralization, including mutation of the gp160 viral surface spike, a glycan shield to block antibody access to the spike, and expression of a limited number of viral surface spikes, which interferes with bivalent antibody binding. The latter is thought to decrease antibody apparent affinity or avidity, thereby interfering with neutralizing activity. To test the idea that increasing apparent affinity might enhance neutralizing activity, we engineered bispecific anti–HIV-1 antibodies (BiAbs) that can bind bivalently by virtue of one scFv arm that binds to gp120 and a second arm to the gp41 subunit of gp160. The individual arms of the BiAbs preserved the binding specificities of the original anti-HIV IgG antibodies and together bound simultaneously to gp120 and gp41. Heterotypic bivalent binding enhanced neutralization compared with the parental antibodies. We conclude that antibody recognition and viral neutralization of HIV can be improved by heteroligation. PMID:22219363

  6. Antibody engineering and therapeutics conference

    PubMed Central

    Larrick, James W; Parren, Paul WHI; Huston, James S; Plückthun, Andreas; Bradbury, Andrew; Tomlinson, Ian M; Chester, Kerry A; Burton, Dennis R; Adams, Gregory P; Weiner, Louis M; Scott, Jamie K; Alfenito, Mark R; Veldman, Trudi; Reichert, Janice M

    2014-01-01

    The 25th anniversary of the Antibody Engineering & Therapeutics Conference, the Annual Meeting of The Antibody Society, will be held in Huntington Beach, CA, December 7–11, 2014. Organized by IBC Life Sciences, the event will celebrate past successes, educate participants on current activities and offer a vision of future progress in the field. Keynote addresses will be given by academic and industry experts Douglas Lauffenburger (Massachusetts Institute of Technology), Ira Pastan (National Cancer Institute), James Wells (University of California, San Francisco), Ian Tomlinson (GlaxoSmithKline) and Anthony Rees (Rees Consulting AB and Emeritus Professor, University of Bath). These speakers will provide updates of their work, placed in the context of the substantial growth of the industry over the past 25 years. PMID:25517297

  7. A live attenuated H7N7 candidate vaccine virus induces neutralizing antibody that confers protection from challenge in mice, ferrets, and monkeys.

    PubMed

    Min, Ji-Young; Vogel, Leatrice; Matsuoka, Yumiko; Lu, Bin; Swayne, David; Jin, Hong; Kemble, George; Subbarao, Kanta

    2010-11-01

    A live attenuated H7N7 candidate vaccine virus was generated by reverse genetics using the modified hemagglutinin (HA) and neuraminidase (NA) genes of highly pathogenic (HP) A/Netherlands/219/03 (NL/03) (H7N7) wild-type (wt) virus and the six internal protein genes of the cold-adapted (ca) A/Ann Arbor/6/60 ca (AA ca) (H2N2) virus. The reassortant H7N7 NL/03 ca vaccine virus was temperature sensitive and attenuated in mice, ferrets, and African green monkeys (AGMs). Intranasal (i.n.) administration of a single dose of the H7N7 NL/03 ca vaccine virus fully protected mice from lethal challenge with homologous and heterologous H7 viruses from Eurasian and North American lineages. Two doses of the H7N7 NL/03 ca vaccine induced neutralizing antibodies in serum and provided complete protection from pulmonary replication of homologous and heterologous wild-type H7 challenge viruses in mice and ferrets. One dose of the H7N7 NL/03 ca vaccine elicited an antibody response in one of three AGMs that was completely protected from pulmonary replication of the homologous wild-type H7 challenge virus. The contribution of CD8(+) and/or CD4(+) T cells to the vaccine-induced protection of mice was evaluated by T-cell depletion; T lymphocytes were not essential for the vaccine-induced protection from lethal challenge with H7 wt viruses. Additionally, passively transferred neutralizing antibody induced by the H7N7 NL/03 ca virus protected mice from lethality following challenge with H7 wt viruses. The safety, immunogenicity, and efficacy of the H7N7 NL/03 ca vaccine virus in mice, ferrets, and AGMs support the evaluation of this vaccine virus in phase I clinical trials. PMID:20810733

  8. Broadly neutralizing antibodies against influenza viruses

    PubMed Central

    Laursen, Nick S.; Wilson, Ian A.

    2014-01-01

    Despite available antivirals and vaccines, influenza infections continue to be a major cause of mortality worldwide. Vaccination generally induces an effective, but strain-specific antibody response. As the virus continually evolves, new vaccines have to be administered almost annually when a novel strain becomes dominant. Furthermore, the sporadic emerging resistance to neuraminidase inhibitors among circulating strains suggests an urgent need for new therapeutic agents. Recently, several cross-reactive antibodies have been described, which neutralize an unprecedented spectrum of influenza viruses. These broadly neutralizing antibodies generally target conserved functional regions on the major influenza surface glycoprotein hemagglutinin (HA). The characterization of their neutralization breadth and epitopes on HA could stimulate the development of new antibody-based antivirals and broader influenza vaccines. PMID:23583287

  9. 5th Annual Monoclonal Antibodies Conference

    PubMed Central

    2009-01-01

    The conference, which was organized by Visiongain and held at the BSG Conference Center in London, provided an excellent opportunity for participants to exchange views on the development, production and marketing of therapeutic antibodies, and discuss the current business environment. The conference included numerous interactive panel and group discussions on topics such as isotyping for therapeutic antibodies (panel chair: Nick Pullen, Pfizer), prospects for fully human monoclonal antibodies (chair: Christian Rohlff, Oxford BioTherapeutics), perspectives on antibody manufacturing and development (chair: Bo Kara, Avecia), market impact and post-marketing issues (chair: Keith Rodgers, Bodiam Consulting) and angiogenesis inhibitors (chair: David Blakey, AstraZeneca). PMID:20073132

  10. Poliovirus neutralization epitopes: analysis and localization with neutralizing monoclonal antibodies.

    PubMed Central

    Emini, E A; Jameson, B A; Lewis, A J; Larsen, G R; Wimmer, E

    1982-01-01

    Two hybridomas (H3 and D3) secreting monoclonal neutralizing antibody to intact poliovirus type 1 (Mahoney strain) were established. Each antibody bound to a site qualitatively different from that to which the other antibody bound. The H3 site was located on intact virions and, to a lesser extent, on 80S naturally occurring empty capsids and 14S precursor subunits. The D3 site was found only on virions and empty capsids. Neither site was expressed on 80S heat-treated virions. The antibodies did not react with free denatured or undenatured viral structural proteins. Viral variants which were no longer capable of being neutralized by either one or the other antibody were obtained. Such variants arose during normal cell culture passage of wild-type virus and were present in the progeny viral population on the order of 10(-4) variant per wild-type virus PFU. Toluene-2,4-diisocyanate, a heterobifunctional covalent cross-linking reagent, was used to irreversibly bind the F(ab) fragments of the two antibodies to their respective binding sites. In this way, VP1 was identified as the structural protein containing both sites. PMID:6183443

  11. Coxsackievirus A16-like particles produced in Pichia pastoris elicit high-titer neutralizing antibodies and confer protection against lethal viral challenge in mice.

    PubMed

    Zhang, Chao; Liu, Qingwei; Ku, Zhiqiang; Hu, Yang; Ye, Xiaohua; Zhang, Yingyi; Huang, Zhong

    2016-05-01

    Coxsackievirus A16 (CA16) is a major causative agent of hand, foot and mouse disease (HFMD) which has been affecting millions of young children annually in the Asia-Pacific region over the last seven years. However, no commercial CA16 vaccines are currently available. In the present study, we investigated the expression of virus-like particles (VLPs) of CA16 in Pichia pastoris yeast and their immunogenicity and protective efficacy in mice. We found that CA16-VLPs could be produced at relatively high levels in P. pastoris yeast transformed with a construct co-expressing the P1 and 3CD proteins of CA16. Mice immunized with the yeast-derived CA16-VLPs produced high-titer serum antibodies with potent neutralization effect specifically on CA16. More importantly, passive immunization with the yeast-derived VLPs fully protected neonatal mice against CA16 lethal challenge in both antisera transfer and maternal immunization experiments. Collectively, our results demonstrate that P. pastoris-derived CA16-VLPs represent a promising CA16 vaccine candidate with proven preclinical efficacy and desirable traits for manufacturing at industrial scale. PMID:26902108

  12. A Single Amino Acid Deletion in the Matrix Protein of Porcine Reproductive and Respiratory Syndrome Virus Confers Resistance to a Polyclonal Swine Antibody with Broadly Neutralizing Activity

    PubMed Central

    Popescu, Luca N.; Monday, Nicholas; Calvert, Jay G.; Rowland, Raymond R. R.

    2015-01-01

    Assessment of virus neutralization (VN) activity in 176 pigs infected with porcine reproductive and respiratory syndrome virus (PRRSV) identified one pig with broadly neutralizing activity. A Tyr-10 deletion in the matrix protein provided escape from broad neutralization without affecting homologous neutralizing activity. The role of the Tyr-10 deletion was confirmed through an infectious clone with a Tyr-10 deletion. The results demonstrate differences in the properties and specificities of VN responses elicited during PRRSV infection. PMID:25855739

  13. POLIOVIRUS TYPE 1: NEUTRALIZATION BY PAPAIN-DIGESTED ANTIBODIES.

    PubMed

    VOGT, A; KOPP, R; MAASS, G; REICH, L

    1964-09-25

    Papain-digested rabbit antibody (Porter's fractions I and II) can neutralize poliovirus. Neutralizing capacity after digestion ranged from 35 to 45 percent of that of the undigested antibody. No definite dissociation of the antibody fragments from the virus was observed after the reaction mixture had been diluted in a neutral medium. PMID:14175107

  14. Antibody neutralization of retargeted measles viruses.

    PubMed

    Lech, Patrycja J; Pappoe, Roland; Nakamura, Takafumi; Tobin, Gregory J; Nara, Peter L; Russell, Stephen J

    2014-04-01

    The measles virus (MV) vaccine lineage is a promising oncolytic but prior exposure to the measles vaccine or wild-type MV strains limits treatment utility due to the presence of anti-measles antibodies. MV entry can be redirected by displaying a polypeptide ligand on the Hemagglutinin (H) C-terminus. We hypothesized that retargeted MV would escape neutralization by monoclonal antibodies (mAbs) recognizing the H receptor-binding surface and be less susceptible to neutralization by human antisera. Using chimeric H proteins, with and without mutations that ablate MV receptor binding, we show that retargeted MVs escape mAbs that target the H receptor-binding surface by virtue of mutations that ablate infection via SLAM and CD46. However, C-terminally displayed domains do not mediate virus entry in the presence of human antibodies that bind to the underlying H domain. In conclusion, utility of retargeted oncolytic measles viruses does not extend to evasion of human serum neutralization. PMID:24725950

  15. Neutralizing antibodies to HIV-1 induced by immunization

    PubMed Central

    McCoy, Laura E.

    2013-01-01

    Most neutralizing antibodies act at the earliest steps of viral infection and block interaction of the virus with cellular receptors to prevent entry into host cells. The inability to induce neutralizing antibodies to HIV has been a major obstacle to HIV vaccine research since the early days of the epidemic. However, in the past three years, the definition of a neutralizing antibody against HIV has been revolutionized by the isolation of extremely broad and potent neutralizing antibodies from HIV-infected individuals. Considerable hurdles remain for inducing neutralizing antibodies to a protective level after immunization. Meanwhile, novel technologies to bypass the induction of antibodies are being explored to provide prophylactic antibody-based interventions. This review addresses the challenge of inducing HIV neutralizing antibodies upon immunization and considers notable recent advances in the field. A greater understanding of the successes and failures for inducing a neutralizing response upon immunization is required to accelerate the development of an effective HIV vaccine. PMID:23401570

  16. Broadly neutralizing antibodies abrogate established hepatitis C virus infection

    PubMed Central

    de Jong, Ype P.; Dorner, Marcus; Mommersteeg, Michiel C.; Xiao, Jing W.; Balazs, Alejandro B.; Robbins, Justin B.; Winer, Benjamin Y.; Gerges, Sherif; Vega, Kevin; Labitt, Rachael N.; Donovan, Bridget M.; Giang, Erick; Krishnan, Anuradha; Chiriboga, Luis; Charlton, Michael R.; Burton, Dennis R.; Baltimore, David; Law, Mansun; Rice, Charles M.; Ploss, Alexander

    2015-01-01

    Hepatitis C virus (HCV) establishes a chronic infection in the majority of exposed individuals and can cause cirrhosis and hepatocellular carcinoma. The role of antibodies directed against HCV in disease progression is poorly understood. Neutralizing antibodies (nAbs) can prevent HCV infection in vitro and in animal models. However, the effects of nAbs on an established HCV infection are unclear. Here, we demonstrate that three broadly nAbs, AR3A, AR3B and AR4A, delivered with adeno-associated viral (AAV) vectors can confer protection against viral challenge in humanized mice. Furthermore, we provide evidence that nAbs can abrogate an ongoing HCV infection in primary hepatocyte cultures and in a human liver chimeric mouse model. These results showcase a novel therapeutic approach to interfere with HCV infection exploiting a previously unappreciated need for HCV to continuously infect new hepatocytes in order to sustain chronicity. PMID:25232181

  17. Neutralizing Antibodies Against Interferon-Beta

    PubMed Central

    2008-01-01

    The development of neutralizing antibodies (NAbs) is a major problem in multiple sclerosis (MS) patients treated with interferon-beta (IFN-ß). Whereas binding antibodies (BAbs) can be demonstrated in the vast majority of patients, only a smaller proportion of patients develop NAbs. The principle in NAb in vitro assays is the utilization of cultured cell lines that are responsive to IFN-ß. The cytopathic effect (CPE) assay measures the capacity of NAbs to neutralize IFN- ß's protective effect on cells challenged with virus and the MxA induction assay measures the ability of NAbs to reduce the IFN-ß-induced expression of MxA, either at the mRNA or the protein level. A titer of >20 neutralizing units/ml traditionally defines NAb posi-tivity. NAbs in high titers completely abrogate the in vivo response to IFN-ß, whereas the effect of low and intermediate titers is unpredictable. As clinically important NAbs appear only after 9-18 months IFN- ß0 therapy, short-term studies of two years or less are unsuitable for evaluation of clinical NAb effects. All long-term trials of three years or more concordantly show evidence of a detrimental effect of NAbs on relapses, disease activity on MRI, or on disease progression. Persistent high titers of NAbs indicate an abrogation of the biological response and, hence, absence of therapeutic efficacy, and this observation should lead to a change of therapy. As low and medium titers are ambiguous treatment decisions in patients with low NAb titres should be guided by determination of in vivo mRNA MxA induction and clinical disease activity. PMID:21180570

  18. Incomplete Neutralization and Deviation from Sigmoidal Neutralization Curves for HIV Broadly Neutralizing Monoclonal Antibodies

    PubMed Central

    McCoy, Laura E.; Falkowska, Emilia; Doores, Katie J.; Le, Khoa; Sok, Devin; van Gils, Marit J.; Euler, Zelda; Burger, Judith A.; Seaman, Michael S.; Sanders, Rogier W.; Schuitemaker, Hanneke; Poignard, Pascal; Wrin, Terri; Burton, Dennis R.

    2015-01-01

    The broadly neutralizing HIV monoclonal antibodies (bnMAbs) PG9, PG16, PGT151, and PGT152 have been shown earlier to occasionally display an unusual virus neutralization profile with a non-sigmoidal slope and a plateau at <100% neutralization. In the current study, we were interested in determining the extent of non-sigmoidal slopes and plateaus at <100% for HIV bnMAbs more generally. Using both a 278 panel of pseudoviruses in a CD4 T-cell (U87.CCR5.CXCR4) assay and a panel of 117 viruses in the TZM-bl assay, we found that bnMAbs targeting many neutralizing epitopes of the spike had neutralization profiles for at least one virus that plateaued at <90%. Across both panels the bnMAbs targeting the V2 apex of Env and gp41 were most likely to show neutralization curves that plateaued <100%. Conversely, bnMAbs targeting the high-mannose patch epitopes were less likely to show such behavior. Two CD4 binding site (CD4bs) Abs also showed this behavior relatively infrequently. The phenomenon of incomplete neutralization was also observed in a large peripheral blood mononuclear cells (PBMC)-grown molecular virus clone panel derived from patient viral swarms. In addition, five bnMAbs were compared against an 18-virus panel of molecular clones produced in 293T cells and PBMCs and assayed in TZM-bl cells. Examples of plateaus <90% were seen with both types of virus production with no consistent patterns observed. In conclusion, incomplete neutralization and non-sigmoidal neutralization curves are possible for all HIV bnMAbs against a wide range of viruses produced and assayed in both cell lines and primary cells with implications for the use of antibodies in therapy and as tools for vaccine design. PMID:26267277

  19. Incomplete Neutralization and Deviation from Sigmoidal Neutralization Curves for HIV Broadly Neutralizing Monoclonal Antibodies.

    PubMed

    McCoy, Laura E; Falkowska, Emilia; Doores, Katie J; Le, Khoa; Sok, Devin; van Gils, Marit J; Euler, Zelda; Burger, Judith A; Seaman, Michael S; Sanders, Rogier W; Schuitemaker, Hanneke; Poignard, Pascal; Wrin, Terri; Burton, Dennis R

    2015-08-01

    The broadly neutralizing HIV monoclonal antibodies (bnMAbs) PG9, PG16, PGT151, and PGT152 have been shown earlier to occasionally display an unusual virus neutralization profile with a non-sigmoidal slope and a plateau at <100% neutralization. In the current study, we were interested in determining the extent of non-sigmoidal slopes and plateaus at <100% for HIV bnMAbs more generally. Using both a 278 panel of pseudoviruses in a CD4 T-cell (U87.CCR5.CXCR4) assay and a panel of 117 viruses in the TZM-bl assay, we found that bnMAbs targeting many neutralizing epitopes of the spike had neutralization profiles for at least one virus that plateaued at <90%. Across both panels the bnMAbs targeting the V2 apex of Env and gp41 were most likely to show neutralization curves that plateaued <100%. Conversely, bnMAbs targeting the high-mannose patch epitopes were less likely to show such behavior. Two CD4 binding site (CD4bs) Abs also showed this behavior relatively infrequently. The phenomenon of incomplete neutralization was also observed in a large peripheral blood mononuclear cells (PBMC)-grown molecular virus clone panel derived from patient viral swarms. In addition, five bnMAbs were compared against an 18-virus panel of molecular clones produced in 293T cells and PBMCs and assayed in TZM-bl cells. Examples of plateaus <90% were seen with both types of virus production with no consistent patterns observed. In conclusion, incomplete neutralization and non-sigmoidal neutralization curves are possible for all HIV bnMAbs against a wide range of viruses produced and assayed in both cell lines and primary cells with implications for the use of antibodies in therapy and as tools for vaccine design. PMID:26267277

  20. Immune escape by human immunodeficiency virus type 1 from neutralizing antibodies: evidence for multiple pathways.

    PubMed Central

    Watkins, B A; Reitz, M S; Wilson, C A; Aldrich, K; Davis, A E; Robert-Guroff, M

    1993-01-01

    Sera from many HIV-1-infected individuals contain broadly reactive, specific neutralizing antibodies. Despite their broad reactivity, variant viruses, resistant to neutralization, can be selected in vitro in the presence of such antisera. We have previously shown that neutralization resistance of an escape mutant with an amino acid substitution in the transmembrane protein (A582T) occurs because of alteration of a conformational epitope that is recognized by neutralizing antibodies directed against the CD4 binding site. In this report we demonstrate that immune escape via a single-amino-acid substitution (A281V) within a conserved region of the envelope glycoprotein gp120 confers neutralization resistance against a broadly reactive neutralizing antiserum from a seropositive individual. We show this alteration affects V3 and additional regions unrelated to V3 or the CD4 binding site. Together with previous studies on escape mutants selected in vitro, our findings suggest that immune-selective pressure can arise by multiple pathways. PMID:7693973

  1. Engineering broadly neutralizing antibodies for HIV prevention and therapy.

    PubMed

    Hua, Casey K; Ackerman, Margaret E

    2016-08-01

    A combination of advances spanning from isolation to delivery of potent HIV-specific antibodies has begun to revolutionize understandings of antibody-mediated antiviral activity. As a result, the set of broadly neutralizing and highly protective antibodies has grown in number, diversity, potency, and breadth of viral recognition and neutralization. These antibodies are now being further enhanced by rational engineering of their anti-HIV activities and coupled to cutting edge gene delivery and strategies to optimize their pharmacokinetics and biodistribution. As a result, the prospects for clinical use of HIV-specific antibodies to treat, clear, and prevent HIV infection are gaining momentum. Here we discuss the diverse methods whereby antibodies are being optimized for neutralization potency and breadth, biodistribution, pharmacokinetics, and effector function with the aim of revolutionizing HIV treatment and prevention options. PMID:26827912

  2. Resistance of a human serum-selected human immunodeficiency virus type 1 escape mutant to neutralization by CD4 binding site monoclonal antibodies is conferred by a single amino acid change in gp120.

    PubMed Central

    McKeating, J A; Bennett, J; Zolla-Pazner, S; Schutten, M; Ashelford, S; Brown, A L; Balfe, P

    1993-01-01

    We have selected an HXB2 variant which can replicate in the presence of a neutralizing human serum. Sequencing of the gp120 region of the env gene from the variant and parental viruses identified a single amino acid substitution in the third conserved region of gp120 at residue 375 (AGT-->AAT, Ser-->Asn; designated 375 S/N). The escape mutant was found to be resistant to neutralization by soluble CD4 (sCD4) and four monoclonal antibodies (MAbs), 39.13g, 1.5e, G13, and 448, binding to epitopes overlapping that of the CD4 binding site (CD4 b.s.). Introduction of the 375 S/N mutation into HXB2 by site-directed mutagenesis confirmed that this mutation is responsible for the neutralization-resistant phenotype. Both sCD4 and three of the CD4 b.s. MAbs (39.13g, 1.5e, and G13) demonstrated reduced binding to the native 375 S/N mutant gp120. The ability to select for an escape variant resistant to multiple independent CD4 b.s. MAbs by a human serum confirms the reports that antibodies to the discontinuous CD4 b.s. are a major component of the group-specific neutralizing activity in human sera. PMID:7688820

  3. Human-like antibodies neutralizing Western equine encephalitis virus

    PubMed Central

    Hülseweh, Birgit; Rülker, Torsten; Pelat, Thibaut; Langermann, Claudia; Frenzel, Andrè; Schirrmann, Thomas; Dübel, Stefan; Thullier, Philippe; Hust, Michael

    2014-01-01

    This study describes the development of the first neutralizing antibodies against Western equine encephalitis virus (WEEV), a member of the genus Alphavirus. WEEV is transmitted by mosquitoes and can spread to the human central nervous system, causing symptoms ranging from mild febrile reactions to life-threatening encephalitis. WEEV has been classified as a biological warfare agent by the US Centers for Disease Control and Prevention. No anti-WEEV drugs are currently commercially available. Neutralizing antibodies are useful for the pre- and post-exposure treatment of WEEV infections. In this study, two immune antibody gene libraries were constructed from two macaques immunized with inactivated WEEV. Four antibodies were selected from these libraries and recloned as scFv-Fc, with a human Fc part. These antibodies bound WEEV specifically in ELISA with little or no cross-reaction with other alphaviruses. They were further analyzed by immunohistochemistry. All binders were suitable for the intracellular detection of WEEV particles. Neutralizing activity was determined in vitro. Three of the four antibodies were found to be neutralizing; about 1 ng/mL of the best antibody (ToR69–3A2) neutralized 50% of 5x104 TCID50/mL. Due to its human-like nature with a germinality index of 89% (VH) and 91% (VL), the ToR69–3A2 antibody is a promising candidate for future passive vaccine development. PMID:24518197

  4. Neutralizing antibodies decrease the envelope fluidity of HIV-1

    SciTech Connect

    Harada, Shinji Monde, Kazuaki; Tanaka, Yuetsu; Kimura, Tetsuya; Maeda, Yosuke; Yusa, Keisuke

    2008-01-05

    For successful penetration of HIV-1, the formation of a fusion pore may be required in order to accumulate critical numbers of fusion-activated gp41 with the help of fluidization of the plasma membrane and viral envelope. An increase in temperature to 40 {sup o}C after viral adsorption at 25 {sup o}C enhanced the infectivity by 1.4-fold. The enhanced infectivity was inhibited by an anti-CXCR4 peptide, T140, and anti-V3 monoclonal antibodies (0.5{beta} and 694/98-D) by post-attachment neutralization, but not by non-neutralizing antibodies (670-30D and 246-D) specific for the C5 of gp120 and cluster I of gp41, respectively. Anti-HLA-II and an anti-HTLV-I gp46 antibody, LAT27, neutralized the molecule-carrying HIV-1{sub C-2(MT-2)}. The anti-V3 antibodies suppressed the fluidity of the HIV-1{sub C-2} envelope, whereas the non-neutralizing antibodies did not. The anti-HLA-II antibody decreased the envelope fluidity of HIV-1{sub C-2(MT-2)}, but not that of HIV-1{sub C-2}. Therefore, fluidity suppression by these antibodies represents an important neutralization mechanism, in addition to inhibition of viral attachment.

  5. Antibody Response to Hypervariable Region 1 Interferes with Broadly Neutralizing Antibodies to Hepatitis C Virus

    PubMed Central

    Keck, Zhen-yong; Girard-Blanc, Christine; Wang, Wenyan; Lau, Patrick; Zuiani, Adam; Rey, Felix A.; Krey, Thomas; Diamond, Michael S.

    2015-01-01

    ABSTRACT Hypervariable region 1 (HVR1) (amino acids [aa] 384 to 410) on the E2 glycoprotein of hepatitis C virus contributes to persistent infection by evolving escape mutations that attenuate binding of inhibitory antibodies and by blocking access of broadly neutralizing antibodies to their epitopes. A third proposed mechanism of immune antagonism is that poorly neutralizing antibodies binding to HVR1 interfere with binding of other superior neutralizing antibodies. Epitope mapping of human monoclonal antibodies (HMAbs) that bind to an adjacent, conserved domain on E2 encompassing aa 412 to 423 revealed two subsets, designated HC33 HMAbs. While both subsets have contact residues within aa 412 to 423, alanine-scanning mutagenesis suggested that one subset, which includes HC33.8, has an additional contact residue within HVR1. To test for interference of anti-HVR1 antibodies with binding of antibodies to aa 412 to 423 and other E2 determinants recognized by broadly neutralizing HMAbs, two murine MAbs against HVR1 (H77.16) and aa 412 to 423 (H77.39) were studied. As expected, H77.39 inhibited the binding of all HC33 HMAbs. Unexpectedly, H77.16 also inhibited the binding of both subsets of HC33 HMAbs. This inhibition also was observed against other broadly neutralizing HMAbs to epitopes outside aa 412 to 423. Combination antibody neutralization studies by the median-effect analysis method with H77.16 and broadly reactive HMAbs revealed antagonism between these antibodies. Structural studies demonstrated conformational flexibility in this antigenic region, which supports the possibility of anti-HVR1 antibodies hindering the binding of broadly neutralizing MAbs. These findings support the hypothesis that anti-HVR1 antibodies can interfere with a protective humoral response against HCV infection. IMPORTANCE HVR1 contributes to persistent infection by evolving mutations that escape from neutralizing antibodies to HVR1 and by shielding broadly neutralizing antibodies from

  6. Human recombinant neutralizing antibodies against hantaan virus G2 protein.

    PubMed

    Koch, Joachim; Liang, Mifang; Queitsch, Iris; Kraus, Annette A; Bautz, Ekkehard K F

    2003-03-30

    Old world hantaviruses, causing hemorrhagic fever with renal syndrome (HFRS), still present a public health problem in Asia and Eastern Europe. The majority of cases has been recorded in China. The aim of our study was to generate human recombinant neutralizing antibodies to a hantavirus by phage display technology. To preserve the structural identity of viral protein, the panning procedure was performed on native Hantaan (HTN) (76-118) virus propagated in Vero-E6 cells. In total, five complete human recombinant IgG antibodies were produced in a baculovirus expression system. All of them were able to completely neutralize HTN, and Seoul (SEO) virus in a plaque reduction neutralization test (PRNT). Three of these antibodies could also completely neutralize Dobrava (DOB) virus but not Puumala (PUU) virus. All antibodies bind to Hantaan virus G2 protein localized in the virus envelope. The sequence areas within the HTN (76-118)-G2 protein detected by five selected antibodies were mapped using peptide scans. Two partial epitopes, 916-KVMATIDSF-924 and 954-LVTKDIDFD-963, were recognized, which presumably are of paramount importance for docking of the virus to host cell receptors. A consensus motif 916-KVXATIXSF-924 could be identified by mutational analysis. The neutralizing antibodies to the most widely distributed hantaviruses causing HFRS might be promising candidates for the development of an agent for prevention and treatment of HFRS in patients. PMID:12706090

  7. Neutralizing antibodies in Borna disease virus-infected rats.

    PubMed Central

    Hatalski, C G; Kliche, S; Stitz, L; Lipkin, W I

    1995-01-01

    Borna disease is a neurologic syndrome caused by infection with a nonsegmented, negative-strand RNA virus, Borna disease virus. Infected animals have antibodies to two soluble viral proteins, p40 and p23, and a membrane-associated viral glycoprotein, gp18. We examined the time course for the development of neutralization activity and the expression of antibodies to individual viral proteins in sera of infected rats. The appearance of neutralizing activity correlated with the development of immunoreactivity to gp18, but not p40 or p23. Monospecific and monoclonal antibodies to native gp18 and recombinant nonglycosylated gp18 were also found to have neutralizing activity and to immunoprecipitate viral particles or subparticles. These findings suggest that gp18 is likely to be present on the surface of the viral particles and is likely to contain epitopes important for virus neutralization. PMID:7815538

  8. Higher Throughput Quantification of Neutralizing Antibody to Herpes Simplex Viruses

    PubMed Central

    Blevins, Tamara P.; Mitchell, Michelle C.; Korom, Maria; Wang, Hong; Yu, Yinyi; Morrison, Lynda A.; Belshe, Robert B.

    2015-01-01

    We report a rapid, higher throughput method for measuring neutralizing antibody to herpes simplex virus (HSV) in human sera. Clinical isolates and sera from the Herpevac Trial for Women were used in a colorimetric assay in which infection of tissue culture (lack of neutralization) was indicated by substrate metabolism by beta-galactosidase induced in the ELVIS cell line. The neutralization assay was optimized by addition of guinea pig complement, which particularly enhanced neutralizing antibody titers to HSV-2. Higher neutralizing antibody titers were also achieved using virus particles isolated from the supernatant of infected cells rather than lysate of infected cells as the source of virus. The effect of assay incubation time and incubation time with substrate were also optimized. We found that incubating with substrate until a standard optical density of 1.0 was reached permitted a better comparison among virus isolates, and achieved reliable measurement of neutralizing antibody activity. Interestingly, in contrast to results in the absence of complement, addition of complement allowed sera from HSV-2 gD-vaccinated subjects to neutralize HSV-1 and HSV-2 clinical and laboratory isolates with equal potency. PMID:26658766

  9. Higher Throughput Quantification of Neutralizing Antibody to Herpes Simplex Viruses.

    PubMed

    Blevins, Tamara P; Mitchell, Michelle C; Korom, Maria; Wang, Hong; Yu, Yinyi; Morrison, Lynda A; Belshe, Robert B

    2015-01-01

    We report a rapid, higher throughput method for measuring neutralizing antibody to herpes simplex virus (HSV) in human sera. Clinical isolates and sera from the Herpevac Trial for Women were used in a colorimetric assay in which infection of tissue culture (lack of neutralization) was indicated by substrate metabolism by beta-galactosidase induced in the ELVIS cell line. The neutralization assay was optimized by addition of guinea pig complement, which particularly enhanced neutralizing antibody titers to HSV-2. Higher neutralizing antibody titers were also achieved using virus particles isolated from the supernatant of infected cells rather than lysate of infected cells as the source of virus. The effect of assay incubation time and incubation time with substrate were also optimized. We found that incubating with substrate until a standard optical density of 1.0 was reached permitted a better comparison among virus isolates, and achieved reliable measurement of neutralizing antibody activity. Interestingly, in contrast to results in the absence of complement, addition of complement allowed sera from HSV-2 gD-vaccinated subjects to neutralize HSV-1 and HSV-2 clinical and laboratory isolates with equal potency. PMID:26658766

  10. Elicitation of broadly neutralizing influenza antibodies in animals with previous influenza exposure.

    PubMed

    Wei, Chih-Jen; Yassine, Hadi M; McTamney, Patrick M; Gall, Jason G D; Whittle, James R R; Boyington, Jeffrey C; Nabel, Gary J

    2012-08-15

    The immune system responds to influenza infection by producing neutralizing antibodies to the viral surface protein, hemagglutinin (HA), which regularly changes its antigenic structure. Antibodies that target the highly conserved stem region of HA neutralize diverse influenza viruses and can be elicited through vaccination in animals and humans. Efforts to develop universal influenza vaccines have focused on strategies to elicit such antibodies; however, the concern has been raised that previous influenza immunity may abrogate the induction of such broadly protective antibodies. We show here that prime-boost immunization can induce broadly neutralizing antibody responses in influenza-immune mice and ferrets that were previously infected or vaccinated. HA stem-directed antibodies were elicited in mice primed with a DNA vaccine and boosted with inactivated vaccine from H1N1 A/New Caledonia/20/1999 (1999 NC) HA regardless of preexposure. Similarly, gene-based vaccination with replication-defective adenovirus 28 (rAd28) and 5 (rAd5) vectors encoding 1999 NC HA elicited stem-directed neutralizing antibodies and conferred protection against unmatched 1934 and 2007 H1N1 virus challenge in influenza-immune ferrets. Indeed, previous exposure to certain strains could enhance immunogenicity: The strongest HA stem-directed immune response was observed in ferrets previously infected with a divergent 1934 H1N1 virus. These findings suggest that broadly neutralizing antibodies against the conserved stem region of HA can be elicited through vaccination despite previous influenza exposure, which supports the feasibility of developing stem-directed universal influenza vaccines for humans. PMID:22896678

  11. Arenavirus Glycan Shield Promotes Neutralizing Antibody Evasion and Protracted Infection.

    PubMed

    Sommerstein, Rami; Flatz, Lukas; Remy, Melissa M; Malinge, Pauline; Magistrelli, Giovanni; Fischer, Nicolas; Sahin, Mehmet; Bergthaler, Andreas; Igonet, Sebastien; Ter Meulen, Jan; Rigo, Dorothée; Meda, Paolo; Rabah, Nadia; Coutard, Bruno; Bowden, Thomas A; Lambert, Paul-Henri; Siegrist, Claire-Anne; Pinschewer, Daniel D

    2015-11-01

    Arenaviruses such as Lassa virus (LASV) can cause severe hemorrhagic fever in humans. As a major impediment to vaccine development, delayed and weak neutralizing antibody (nAb) responses represent a unifying characteristic of both natural infection and all vaccine candidates tested to date. To investigate the mechanisms underlying arenavirus nAb evasion we engineered several arenavirus envelope-chimeric viruses and glycan-deficient variants thereof. We performed neutralization tests with sera from experimentally infected mice and from LASV-convalescent human patients. NAb response kinetics in mice correlated inversely with the N-linked glycan density in the arenavirus envelope protein's globular head. Additionally and most intriguingly, infection with fully glycosylated viruses elicited antibodies, which neutralized predominantly their glycan-deficient variants, both in mice and humans. Binding studies with monoclonal antibodies indicated that envelope glycans reduced nAb on-rate, occupancy and thereby counteracted virus neutralization. In infected mice, the envelope glycan shield promoted protracted viral infection by preventing its timely elimination by the ensuing antibody response. Thus, arenavirus envelope glycosylation impairs the protective efficacy rather than the induction of nAbs, and thereby prevents efficient antibody-mediated virus control. This immune evasion mechanism imposes limitations on antibody-based vaccination and convalescent serum therapy. PMID:26587982

  12. Arenavirus Glycan Shield Promotes Neutralizing Antibody Evasion and Protracted Infection

    PubMed Central

    Malinge, Pauline; Magistrelli, Giovanni; Fischer, Nicolas; Sahin, Mehmet; Bergthaler, Andreas; Igonet, Sebastien; ter Meulen, Jan; Rigo, Dorothée; Meda, Paolo; Rabah, Nadia; Coutard, Bruno; Bowden, Thomas A.; Lambert, Paul-Henri; Siegrist, Claire-Anne; Pinschewer, Daniel D.

    2015-01-01

    Arenaviruses such as Lassa virus (LASV) can cause severe hemorrhagic fever in humans. As a major impediment to vaccine development, delayed and weak neutralizing antibody (nAb) responses represent a unifying characteristic of both natural infection and all vaccine candidates tested to date. To investigate the mechanisms underlying arenavirus nAb evasion we engineered several arenavirus envelope-chimeric viruses and glycan-deficient variants thereof. We performed neutralization tests with sera from experimentally infected mice and from LASV-convalescent human patients. NAb response kinetics in mice correlated inversely with the N-linked glycan density in the arenavirus envelope protein’s globular head. Additionally and most intriguingly, infection with fully glycosylated viruses elicited antibodies, which neutralized predominantly their glycan-deficient variants, both in mice and humans. Binding studies with monoclonal antibodies indicated that envelope glycans reduced nAb on-rate, occupancy and thereby counteracted virus neutralization. In infected mice, the envelope glycan shield promoted protracted viral infection by preventing its timely elimination by the ensuing antibody response. Thus, arenavirus envelope glycosylation impairs the protective efficacy rather than the induction of nAbs, and thereby prevents efficient antibody-mediated virus control. This immune evasion mechanism imposes limitations on antibody-based vaccination and convalescent serum therapy. PMID:26587982

  13. Induction of broadly neutralizing H1N1 influenza antibodies by vaccination.

    PubMed

    Wei, Chih-Jen; Boyington, Jeffrey C; McTamney, Patrick M; Kong, Wing-Pui; Pearce, Melissa B; Xu, Ling; Andersen, Hanne; Rao, Srinivas; Tumpey, Terrence M; Yang, Zhi-Yong; Nabel, Gary J

    2010-08-27

    The rapid dissemination of the 2009 pandemic influenza virus underscores the need for universal influenza vaccines that elicit protective immunity to diverse viral strains. Here, we show that vaccination with plasmid DNA encoding H1N1 influenza hemagglutinin (HA) and boosting with seasonal vaccine or replication-defective adenovirus 5 vector encoding HA stimulated the production of broadly neutralizing influenza antibodies. This prime/boost combination increased the neutralization of diverse H1N1 strains dating from 1934 to 2007 as compared to either component alone and conferred protection against divergent H1N1 viruses in mice and ferrets. These antibodies were directed to the conserved stem region of HA and were also elicited in nonhuman primates. Cross-neutralization of H1N1 subtypes elicited by this approach provides a basis for the development of a universal influenza vaccine for humans. PMID:20647428

  14. Harnessing the protective potential of HIV-1 neutralizing antibodies

    PubMed Central

    Smith, S Abigail; Derdeyn, Cynthia A

    2016-01-01

    Recent biological, structural, and technical advances are converging within the HIV-1 vaccine field to harness the power of antibodies for prevention and therapy. Numerous monoclonal antibodies with broad neutralizing activity against diverse HIV-1 isolates have now been identified, revealing at least five sites of vulnerability on the envelope (Env) glycoproteins. While there are practical and technological barriers blocking a clear path from broadly neutralizing antibodies (bNAb) to a protective vaccine, this is not a dead end. Scientists are revisiting old approaches with new technology, cutting new trails through unexplored territory, and paving new roads in the hopes of preventing HIV-1 infection. Other promising avenues to capitalize on the power of bNAbs are also being pursued, such as passive antibody immunotherapy and gene therapy approaches. Moreover, non-neutralizing antibodies have inhibitory activities that could have protective potential, alone or in combination with bNAbs. With a new generation of bNAbs, and a clinical trial that associated antibodies with reduced acquisition, the field is closer than ever to developing strategies to use antibodies against HIV-1. PMID:26918160

  15. The protective role of humoral neutralizing antibody in the NIH potency test for rabies vaccines.

    PubMed

    Wunderli, P S; Shaddock, J H; Schmid, D S; Miller, T J; Baer, G M

    1991-09-01

    Intraperitoneal vaccination of mice with rabies vaccine results in both dosage-dependent rabies virus neutralizing antibody titres and protection from lethal intracerebral (i.c.) challenge with fixed strain CVS rabies virus. Pre-exposure adoptive intravenous transfer of naive or immune cells did not significantly protect naive Balb/c mice from lethal i.c. CVS challenge, but immune serum and anti-rabies glycoprotein monoclonal antibodies (individually and in combination) did confer significant protection when administered before or up to 24 h after lethal i.c. rabies virus challenge. PMID:1950097

  16. Maturation Pathways of Cross-Reactive HIV-1 Neutralizing Antibodies

    PubMed Central

    Xiao, Xiaodong; Chen, Weizao; Feng, Yang; Dimitrov, Dimiter S.

    2009-01-01

    Several human monoclonal antibodies (hmAbs) and antibody fragments, including the best characterized in terms of structure-function b12 and Fab X5, exhibit relatively potent and broad HIV-1 neutralizing activity. However, the elicitation of b12 or b12-like antibodies in vivo by vaccine immunogens based on the HIV-1 envelope glycoprotein (Env) has not been successful. B12 is highly divergent from the closest corresponding germline antibody while X5 is less divergent. We have hypothesized that the relatively high degree of specific somatic hypermutations may preclude binding of the HIV-1 envelope glycoprotein (Env) to closest germline antibodies, and that identifying antibodies that are intermediates in the pathways to maturation could help design novel vaccine immunogens to guide the immune system for their enhanced elicitation. In support of this hypothesis we have previously found that a germline-like b12 (monovalent and bivalent scFv as an Fc fusion protein or IgG) lacks measurable binding to an Env as measured by ELISA with a sensitivity in the μM range [1]; here we present evidence confirming and expanding these findings for a panel of Envs. In contrast, a germline-like scFv X5 bound Env with high (nM) affinity. To begin to explore the maturation pathways of these antibodies we identified several possible b12 intermediate antibodies and tested their neutralizing activity. These intermediate antibodies neutralized only some HIV-1 isolates and with relatively weak potency. In contrast, germline-like scFv X5 neutralized a subset of the tested HIV-1 isolates with comparable efficiencies to that of the mature X5. These results could help explain the relatively high immunogenicity of the coreceptor binding site on gp120 and the abundance of CD4-induced (CD4i) antibodies in HIV-1-infected patients (X5 is a CD4i antibody) as well as the maturation pathway of X5. They also can help identify antigens that can bind specifically to b12 germline and intermediate antibodies

  17. Engineered Bispecific Antibodies with Exquisite HIV-1-Neutralizing Activity.

    PubMed

    Huang, Yaoxing; Yu, Jian; Lanzi, Anastasia; Yao, Xin; Andrews, Chasity D; Tsai, Lily; Gajjar, Mili R; Sun, Ming; Seaman, Michael S; Padte, Neal N; Ho, David D

    2016-06-16

    While the search for an efficacious HIV-1 vaccine remains elusive, emergence of a new generation of virus-neutralizing monoclonal antibodies (mAbs) has re-ignited the field of passive immunization for HIV-1 prevention. However, the plasticity of HIV-1 demands additional improvements to these mAbs to better ensure their clinical utility. Here, we report engineered bispecific antibodies that are the most potent and broad HIV-neutralizing antibodies to date. One bispecific antibody, 10E8V2.0/iMab, neutralized 118 HIV-1 pseudotyped viruses tested with a mean 50% inhibitory concentration (IC50) of 0.002 μg/mL. 10E8V2.0/iMab also potently neutralized 99% of viruses in a second panel of 200 HIV-1 isolates belonging to clade C, the dominant subtype accounting for ∼50% of new infections worldwide. Importantly, 10E8V2.0/iMab reduced virus load substantially in HIV-1-infected humanized mice and also provided complete protection when administered prior to virus challenge. These bispecific antibodies hold promise as novel prophylactic and/or therapeutic agents in the fight against HIV-1. PMID:27315479

  18. Dengue Virus (DENV) Neutralizing Antibody Kinetics in Children After Symptomatic Primary and Postprimary DENV Infection.

    PubMed

    Clapham, Hannah E; Rodriguez-Barraquer, Isabel; Azman, Andrew S; Althouse, Benjamin M; Salje, Henrik; Gibbons, Robert V; Rothman, Alan L; Jarman, Richard G; Nisalak, Ananda; Thaisomboonsuk, Butsaya; Kalayanarooj, Siripen; Nimmannitya, Suchitra; Vaughn, David W; Green, Sharone; Yoon, In-Kyu; Cummings, Derek A T

    2016-05-01

    The immune response to dengue virus (DENV) infection is complex and not fully understood. Using longitudinal data from 181 children with dengue in Thailand who were followed for up to 3 years, we describe neutralizing antibody kinetics following symptomatic DENV infection. We observed that antibody titers varied by serotype, homotypic vs heterotypic responses, and primary versus postprimary infections. The rates of change in antibody titers over time varied between primary and postprimary responses. For primary infections, titers increased from convalescence to 6 months. By comparing homotypic and heterotypic antibody titers, we saw an increase in type specificity from convalescence to 6 months for primary DENV3 infections but not primary DENV1 infections. In postprimary cases, there was a decrease in titers from convalescence up until 6 months after infection. Beginning 1 year after both primary and postprimary infections, there was evidence of increasing antibody titers, with greater increases in children with lower titers, suggesting that antibody titers were boosted due to infection and that higher levels of neutralizing antibody may be more likely to confer a sterilizing immune response. These findings may help to model virus transmission dynamics and provide baseline data to support the development of vaccines and therapeutics. PMID:26704615

  19. HIV-1 resistance to neutralizing antibodies: Determination of antibody concentrations leading to escape mutant evolution.

    PubMed

    Magnus, Carsten; Reh, Lucia; Trkola, Alexandra

    2016-06-15

    Broadly neutralizing antibodies against human immunodeficiency virus type 1 (HIV-1) are considered vital components of novel therapeutics and blueprints for vaccine research. Yet escape to even the most potent of these antibodies is imminent in natural infection. Measures to define antibody efficacy and prevent mutant selection are thus urgently needed. Here, we derive a mathematical framework to predict the concentration ranges for which antibody escape variants can outcompete their viral ancestors, referred to as mutant selection window (MSW). When determining the MSW, we focus on the differential efficacy of neutralizing antibodies against HIV-1 in two canonical infection routes, free-virus infection and cell-cell transmission. The latter has proven highly effective in vitro suggesting its importance for both in vivo spread as well as for escaping targeted intervention strategies. We observed a range of MSW patterns that highlight the potential of mutants to arise in both transmission pathways and over wide concentration ranges. Most importantly, we found that only when the arising mutant has both, residual sensitivity to the neutralizing antibody and reduced infectivity compared to the parental virus, antibody dosing outside of the MSW to restrict mutant selection is possible. Emergence of mutants that provide complete escape and have no considerable fitness loss cannot be prevented by adjusting antibody doses. The latter may in part explain the ubiquitous resistance to neutralizing antibodies observed in natural infection and antibody treatment. Based on our findings, combinations of antibodies targeting different epitopes should be favored for antibody-based interventions as this may render complete resistance less likely to occur and also increase chances that multiple escapes result in severe fitness loss of the virus making longer-term antibody treatment more feasible. PMID:26494166

  20. Structural Basis for Recognition of Human Enterovirus 71 by a Bivalent Broadly Neutralizing Monoclonal Antibody

    PubMed Central

    Ku, Zhiqiang; Zuo, Teng; Kong, Liangliang; Zhang, Chao; Shi, Jinping; Liu, Qingwei; Chen, Tan; Zhang, Yingyi; Jiang, Wen; Zhang, Linqi; Huang, Zhong; Cong, Yao

    2016-01-01

    Enterovirus 71 (EV71) is the main pathogen responsible for hand, foot and mouth disease with severe neurological complications and even death in young children. We have recently identified a highly potent anti-EV71 neutralizing monoclonal antibody, termed D5. Here we investigated the structural basis for recognition of EV71 by the antibody D5. Four three-dimensional structures of EV71 particles in complex with IgG or Fab of D5 were reconstructed by cryo-electron microscopy (cryo-EM) single particle analysis all at subnanometer resolutions. The most critical EV71 mature virion-Fab structure was resolved to a resolution of 4.8 Å, which is rare in cryo-EM studies of virus-antibody complex so far. The structures reveal a bivalent binding pattern of D5 antibody across the icosahedral 2-fold axis on mature virion, suggesting that D5 binding may rigidify virions to prevent their conformational changes required for subsequent RNA release. Moreover, we also identified that the complementary determining region 3 (CDR3) of D5 heavy chain directly interacts with the extremely conserved VP1 GH-loop of EV71, which was validated by biochemical and virological assays. We further showed that D5 is indeed able to neutralize a variety of EV71 genotypes and strains. Moreover, D5 could potently confer protection in a mouse model of EV71 infection. Since the conserved VP1 GH-loop is involved in EV71 binding with its uncoating receptor, the scavenger receptor class B, member 2 (SCARB2), the broadly neutralizing ability of D5 might attribute to its inhibition of EV71 from binding SCARB2. Altogether, our results elucidate the structural basis for the binding and neutralization of EV71 by the broadly neutralizing antibody D5, thereby enhancing our understanding of antibody-based protection against EV71 infection. PMID:26938634

  1. Structural Basis for Recognition of Human Enterovirus 71 by a Bivalent Broadly Neutralizing Monoclonal Antibody.

    PubMed

    Ye, Xiaohua; Fan, Chen; Ku, Zhiqiang; Zuo, Teng; Kong, Liangliang; Zhang, Chao; Shi, Jinping; Liu, Qingwei; Chen, Tan; Zhang, Yingyi; Jiang, Wen; Zhang, Linqi; Huang, Zhong; Cong, Yao

    2016-03-01

    Enterovirus 71 (EV71) is the main pathogen responsible for hand, foot and mouth disease with severe neurological complications and even death in young children. We have recently identified a highly potent anti-EV71 neutralizing monoclonal antibody, termed D5. Here we investigated the structural basis for recognition of EV71 by the antibody D5. Four three-dimensional structures of EV71 particles in complex with IgG or Fab of D5 were reconstructed by cryo-electron microscopy (cryo-EM) single particle analysis all at subnanometer resolutions. The most critical EV71 mature virion-Fab structure was resolved to a resolution of 4.8 Å, which is rare in cryo-EM studies of virus-antibody complex so far. The structures reveal a bivalent binding pattern of D5 antibody across the icosahedral 2-fold axis on mature virion, suggesting that D5 binding may rigidify virions to prevent their conformational changes required for subsequent RNA release. Moreover, we also identified that the complementary determining region 3 (CDR3) of D5 heavy chain directly interacts with the extremely conserved VP1 GH-loop of EV71, which was validated by biochemical and virological assays. We further showed that D5 is indeed able to neutralize a variety of EV71 genotypes and strains. Moreover, D5 could potently confer protection in a mouse model of EV71 infection. Since the conserved VP1 GH-loop is involved in EV71 binding with its uncoating receptor, the scavenger receptor class B, member 2 (SCARB2), the broadly neutralizing ability of D5 might attribute to its inhibition of EV71 from binding SCARB2. Altogether, our results elucidate the structural basis for the binding and neutralization of EV71 by the broadly neutralizing antibody D5, thereby enhancing our understanding of antibody-based protection against EV71 infection. PMID:26938634

  2. Structure and Design of Broadly-Neutralizing Antibodies Against HIV

    PubMed Central

    Ryu, Seong Eon; Hendrickson, Wayne A.

    2012-01-01

    Since the discovery more than 30 years ago of human immunodeficiency virus (HIV) as the causative agent of the deadly disease, acquired immune deficiency disease (AIDS), there have been no efficient vaccines against the virus. For the infection of the virus, the HIV surface glycoprotein gp120 first recognizes the CD4 receptor on the target helper T-cell, which initiates HIV fusion with the target cell and, if unchecked, leads to destruction of the patient’s immune system. Despite the difficulty of developing appropriate immune responses in HIV-infected individuals, patient sera often contain antibodies that have broad neutralization activity, indicating the possibility of immunological treatment and prevention. Recently, through extensive structural studies of neutralizing antibodies of HIV in complex with gp120, the critical mechanisms of broad neutralization against HIV have been elucidated. Based on these discoveries, the structure-aided designs of antibodies and novel scaffolds were performed to create extremely potent neutralizing antibodies against HIV. These new discoveries and advances shed light on the road to development of efficient immunological therapies against AIDS. PMID:22736269

  3. Redesigned HIV antibodies exhibit enhanced neutralizing potency and breadth.

    PubMed

    Willis, Jordan R; Sapparapu, Gopal; Murrell, Sasha; Julien, Jean-Philippe; Singh, Vidisha; King, Hannah G; Xia, Yan; Pickens, Jennifer A; LaBranche, Celia C; Slaughter, James C; Montefiori, David C; Wilson, Ian A; Meiler, Jens; Crowe, James E

    2015-06-01

    Several HIV envelope-targeting (Env-targeting) antibodies with broad and potent neutralizing activity have been identified and shown to have unusual features. Of these, the PG9 antibody has a long heavy chain complementarity determining region 3 (HCDR3) and possesses unique structural elements that interact with protein and glycan features of the HIV Env glycoprotein. Here, we used the Rosetta software suite to design variants of the PG9 antibody HCDR3 loop with the goal of identifying variants with increased potency and breadth of neutralization for diverse HIV strains. One variant, designated PG9_N100(F)Y, possessed increased potency and was able to neutralize a diverse set of PG9-resistant HIV strains, including those lacking the Env N160 glycan, which is critical for PG9 binding. An atomic resolution structure of the PG9_N100(F)Y fragment antigen binding (Fab) confirmed that the mutated residue retains the paratope surface when compared with WT PG9. Differential scanning calorimetry experiments revealed that the mutation caused a modest increase in thermodynamic stability of the Fab, a feature predicted by the computational model. Our findings suggest that thermodynamic stabilization of the long HCDR3 in its active conformation is responsible for the increased potency of PG9_N100(F)Y, and strategies aimed at stabilizing this region in other HIV antibodies could become an important approach to in silico optimization of antibodies. PMID:25985274

  4. Structural Basis of Human Parechovirus Neutralization by Human Monoclonal Antibodies

    PubMed Central

    Shakeel, Shabih; Westerhuis, Brenda M.; Ora, Ari; Koen, Gerrit; Bakker, Arjen Q.; Claassen, Yvonne; Wagner, Koen; Beaumont, Tim; Wolthers, Katja C.

    2015-01-01

    ABSTRACT Since it was first recognized in 2004 that human parechoviruses (HPeV) are a significant cause of central nervous system and neonatal sepsis, their clinical importance, primarily in children, has started to emerge. Intravenous immunoglobulin treatment is the only treatment available in such life-threatening cases and has given moderate success. Direct inhibition of parechovirus infection using monoclonal antibodies is a potential treatment. We have developed two neutralizing monoclonal antibodies against HPeV1 and HPeV2, namely, AM18 and AM28, which also cross-neutralize other viruses. Here, we present the mapping of their epitopes using peptide scanning, surface plasmon resonance, fluorescence-based thermal shift assays, electron cryomicroscopy, and image reconstruction. We determined by peptide scanning and surface plasmon resonance that AM18 recognizes a linear epitope motif including the arginine-glycine-aspartic acid on the C terminus of capsid protein VP1. This epitope is normally used by the virus to attach to host cell surface integrins during entry and is found in 3 other viruses that AM18 neutralizes. Therefore, AM18 is likely to cause virus neutralization by aggregation and by blocking integrin binding to the capsid. Further, we show by electron cryomicroscopy, three-dimensional reconstruction, and pseudoatomic model fitting that ordered RNA interacts with HPeV1 VP1 and VP3. AM28 recognizes quaternary epitopes on the capsid composed of VP0 and VP3 loops from neighboring pentamers, thereby increasing the RNA accessibility temperature for the virus-AM28 complex compared to the virus alone. Thus, inhibition of RNA uncoating probably contributes to neutralization by AM28. IMPORTANCE Human parechoviruses can cause mild infections to severe diseases in young children, such as neonatal sepsis, encephalitis, and cardiomyopathy. Intravenous immunoglobulin treatment is the only treatment available in such life-threatening cases. In order to develop more

  5. HIV Neutralizing Antibodies Induced by Native-like Envelope Trimers

    PubMed Central

    Sanders, Rogier W.; van Gils, Marit J.; Derking, Ronald; Sok, Devin; Ketas, Thomas J.; Burger, Judith A.; Ozorowski, Gabriel; Cupo, Albert; Simonich, Cassandra; Goo, Leslie; Arendt, Heather; Kim, Helen J.; Lee, Jeong Hyun; Pugach, Pavel; Williams, Melissa; Debnath, Gargi; Moldt, Brian; van Breemen, Mariëlle J.; Isik, Gözde; Medina-Ramírez, Max; Back, Jaap Willem; Koff, Wayne; Julien, Jean-Philippe; Rakasz, Eva G.; Seaman, Michael S.; Guttman, Miklos; Lee, Kelly K.; Klasse, Per Johan; LaBranche, Celia; Schief, William R.; Wilson, Ian A.; Overbaugh, Julie; Burton, Dennis R.; Ward, Andrew B.; Montefiori, David C.; Dean, Hansi; Moore, John P.

    2015-01-01

    A challenge for HIV-1 immunogen design is inducing neutralizing antibodies (NAbs) against neutralization-resistant (Tier-2) viruses that dominate human transmissions. We show that a soluble recombinant HIV-1 envelope glycoprotein trimer that adopts a native conformation (BG505 SOSIP.664) induced NAbs potently against the sequence-matched Tier-2 virus in rabbits and similar but weaker responses in macaques. The trimer also consistently induced cross-reactive NAbs against more sensitive (Tier-1) viruses. Tier-2 NAbs recognized conformational epitopes that differed between animals and in some cases overlapped with those recognized by broadly neutralizing antibodies (bNAbs), whereas Tier-1 responses targeted linear V3 epitopes. A second trimer, B41 SOSIP.664, also induced a strong autologous Tier-2 NAb response in rabbits. Thus, native-like trimers represent a promising starting point for developing HIV-1 vaccines aimed at inducing bNAbs. PMID:26089353

  6. Tetanus Neurotoxin Neutralizing Antibodies Screened from a Human Immune scFv Antibody Phage Display Library.

    PubMed

    Wang, Han; Yu, Rui; Fang, Ting; Yu, Ting; Chi, Xiangyang; Zhang, Xiaopeng; Liu, Shuling; Fu, Ling; Yu, Changming; Chen, Wei

    2016-01-01

    Tetanus neurotoxin (TeNT) produced by Clostridium tetani is one of the most poisonous protein substances. Neutralizing antibodies against TeNT can effectively prevent and cure toxicosis. Using purified Hc fragments of TeNT (TeNT-Hc) as an antigen, three specific neutralizing antibody clones recognizing different epitopes were selected from a human immune scFv antibody phage display library. The three antibodies (2-7G, 2-2D, and S-4-7H) can effectively inhibit the binding between TeNT-Hc and differentiated PC-12 cells in vitro. Moreover, 2-7G inhibited TeNT-Hc binding to the receptor via carbohydrate-binding sites of the W pocket while 2-2D and S-4-7H inhibited binding of the R pocket. Although no single mAb completely protected mice from the toxin, they could both prolong survival when challenged with 20 LD50s (50% of the lethal dose) of TeNT. When used together, the mAbs completely neutralized 1000 LD50s/mg Ab, indicating their high neutralizing potency in vivo. Antibodies recognizing different carbohydrate-binding pockets could have higher synergistic toxin neutralization activities than those that recognize the same pockets. These results could lead to further production of neutralizing antibody drugs against TeNT and indicate that using TeNT-Hc as an antigen for screening human antibodies for TeNT intoxication therapy from human immune antibody library was convenient and effective. PMID:27626445

  7. Preexisting human antibodies neutralize recently emerged H7N9 influenza strains

    PubMed Central

    Henry Dunand, Carole J.; Leon, Paul E.; Kaur, Kaval; Tan, Gene S.; Zheng, Nai-Ying; Andrews, Sarah; Huang, Min; Qu, Xinyan; Huang, Yunping; Salgado-Ferrer, Marlene; Ho, Irvin Y.; Taylor, William; Hai, Rong; Wrammert, Jens; Ahmed, Rafi; García-Sastre, Adolfo; Palese, Peter; Krammer, Florian; Wilson, Patrick C.

    2015-01-01

    The emergence and seasonal persistence of pathogenic H7N9 influenza viruses in China have raised concerns about the pandemic potential of this strain, which, if realized, would have a substantial effect on global health and economies. H7N9 viruses are able to bind to human sialic acid receptors and are also able to develop resistance to neuraminidase inhibitors without a loss in fitness. It is not clear whether prior exposure to circulating human influenza viruses or influenza vaccination confers immunity to H7N9 strains. Here, we demonstrate that 3 of 83 H3 HA-reactive monoclonal antibodies generated by individuals that had previously undergone influenza A virus vaccination were able to neutralize H7N9 viruses and protect mice against homologous challenge. The H7N9-neutralizing antibodies bound to the HA stalk domain but exhibited a difference in their breadth of reactivity to different H7 influenza subtypes. Mapping viral escape mutations suggested that these antibodies bind at least two different epitopes on the stalk region. Together, these results indicate that these broadly neutralizing antibodies may contribute to the development of therapies against H7N9 strains and may also be effective against pathogenic H7 strains that emerge in the future. PMID:25689254

  8. Recognition determinants of broadly neutralizing human antibodies against dengue viruses.

    PubMed

    Rouvinski, Alexander; Guardado-Calvo, Pablo; Barba-Spaeth, Giovanna; Duquerroy, Stéphane; Vaney, Marie-Christine; Kikuti, Carlos M; Navarro Sanchez, M Erika; Dejnirattisai, Wanwisa; Wongwiwat, Wiyada; Haouz, Ahmed; Girard-Blanc, Christine; Petres, Stéphane; Shepard, William E; Desprès, Philippe; Arenzana-Seisdedos, Fernando; Dussart, Philippe; Mongkolsapaya, Juthathip; Screaton, Gavin R; Rey, Félix A

    2015-04-01

    Dengue disease is caused by four different flavivirus serotypes, which infect 390 million people yearly with 25% symptomatic cases and for which no licensed vaccine is available. Recent phase III vaccine trials showed partial protection, and in particular no protection for dengue virus serotype 2 (refs 3, 4). Structural studies so far have characterized only epitopes recognized by serotype-specific human antibodies. We recently isolated human antibodies potently neutralizing all four dengue virus serotypes. Here we describe the X-ray structures of four of these broadly neutralizing antibodies in complex with the envelope glycoprotein E from dengue virus serotype 2, revealing that the recognition determinants are at a serotype-invariant site at the E-dimer interface, including the exposed main chain of the E fusion loop and the two conserved glycan chains. This 'E-dimer-dependent epitope' is also the binding site for the viral glycoprotein prM during virus maturation in the secretory pathway of the infected cell, explaining its conservation across serotypes and highlighting an Achilles' heel of the virus with respect to antibody neutralization. These findings will be instrumental for devising novel immunogens to protect simultaneously against all four serotypes of dengue virus. PMID:25581790

  9. Broadening the neutralizing capacity of a family of antibody fragments against different toxins from Mexican scorpions.

    PubMed

    Rodríguez-Rodríguez, Everardo Remi; Olamendi-Portugal, Timoteo; Serrano-Posada, Hugo; Arredondo-López, Jonathan Noé; Gómez-Ramírez, Ilse; Fernández-Taboada, Guillermo; Possani, Lourival D; Anguiano-Vega, Gerardo Alfonso; Riaño-Umbarila, Lidia; Becerril, Baltazar

    2016-09-01

    New approaches aimed at neutralizing the primary toxic components present in scorpion venoms, represent a promising alternative to the use of antivenoms of equine origin in humans. New potential therapeutics developed by these approaches correspond to neutralizing antibody fragments obtained by selection and maturation processes from libraries of human origin. The high sequence identity shared among scorpion toxins is associated with an important level of cross reactivity exhibited by these antibody fragments. We have exploited the cross reactivity showed by single chain variable antibody fragments (scFvs) of human origin to re-direct the neutralizing capacity toward various other scorpion toxins. As expected, during these evolving processes several variants derived from a parental scFv exhibited the capacity to simultaneously recognize and neutralize different toxins from Centruroides scorpion venoms. A sequence analyses of the cross reacting scFvs revealed that specific mutations are responsible for broadening their neutralizing capacity. In this work, we generated a set of new scFvs that resulted from the combinatorial insertion of these point mutations. These scFvs are potential candidates to be part of a novel recombinant antivenom of human origin that could confer protection against scorpion stings. A remarkable property of one of these new scFvs (ER-5) is its capacity to neutralize at least three different toxins and its complementary capacity to neutralize the whole venom from Centruroides suffusus in combination with a second scFv (LR), which binds to a different epitope shared by Centruroides scorpion toxins. PMID:27212628

  10. Structural basis of hepatitis C virus neutralization by broadly neutralizing antibody HCV1

    SciTech Connect

    Kong, Leopold; Giang, Erick; Robbins, Justin B.; Stanfield, Robyn L.; Burton, Dennis R.; Wilson, Ian A.; Law, Mansun

    2012-10-29

    Hepatitis C virus (HCV) infects more than 2% of the global population and is a leading cause of liver cirrhosis, hepatocellular carcinoma, and end-stage liver diseases. Circulating HCV is genetically diverse, and therefore a broadly effective vaccine must target conserved T- and B-cell epitopes of the virus. Human mAb HCV1 has broad neutralizing activity against HCV isolates from at least four major genotypes and protects in the chimpanzee model from primary HCV challenge. The antibody targets a conserved antigenic site (residues 412-423) on the virus E2 envelope glycoprotein. Two crystal structures of HCV1 Fab in complex with an epitope peptide at 1.8-{angstrom} resolution reveal that the epitope is a {beta}-hairpin displaying a hydrophilic face and a hydrophobic face on opposing sides of the hairpin. The antibody predominantly interacts with E2 residues Leu{sup 413} and Trp{sup 420} on the hydrophobic face of the epitope, thus providing an explanation for how HCV isolates bearing mutations at Asn{sup 415} on the same binding face escape neutralization by this antibody. The results provide structural information for a neutralizing epitope on the HCV E2 glycoprotein and should help guide rational design of HCV immunogens to elicit similar broadly neutralizing antibodies through vaccination.

  11. Heparanase-neutralizing antibodies attenuate lymphoma tumor growth and metastasis

    PubMed Central

    Weissmann, Marina; Arvatz, Gil; Horowitz, Netanel; Feld, Sari; Naroditsky, Inna; Zhang, Yi; Ng, Mary; Hammond, Edward; Nevo, Eviatar; Vlodavsky, Israel; Ilan, Neta

    2016-01-01

    Heparanase is an endoglycosidase that cleaves heparan sulfate side chains of proteoglycans, resulting in disassembly of the extracellular matrix underlying endothelial and epithelial cells and associating with enhanced cell invasion and metastasis. Heparanase expression is induced in carcinomas and sarcomas, often associating with enhanced tumor metastasis and poor prognosis. In contrast, the function of heparanase in hematological malignancies (except myeloma) was not investigated in depth. Here, we provide evidence that heparanase is expressed by human follicular and diffused non-Hodgkin's B-lymphomas, and that heparanase inhibitors restrain the growth of tumor xenografts produced by lymphoma cell lines. Furthermore, we describe, for the first time to our knowledge, the development and characterization of heparanase-neutralizing monoclonal antibodies that inhibit cell invasion and tumor metastasis, the hallmark of heparanase activity. Using luciferase-labeled Raji lymphoma cells, we show that the heparanase-neutralizing monoclonal antibodies profoundly inhibit tumor load in the mouse bones, associating with reduced cell proliferation and angiogenesis. Notably, we found that Raji cells lack intrinsic heparanase activity, but tumor xenografts produced by this cell line exhibit typical heparanase activity, likely contributed by host cells composing the tumor microenvironment. Thus, the neutralizing monoclonal antibodies attenuate lymphoma growth by targeting heparanase in the tumor microenvironment. PMID:26729870

  12. Macrophage Internal HIV-1 Is Protected from Neutralizing Antibodies

    PubMed Central

    Koppensteiner, Herwig; Banning, Carina; Schneider, Carola; Hohenberg, Heinrich

    2012-01-01

    In macrophages, HIV-1 accumulates in intracellular vesicles designated virus-containing compartments (VCCs). These might play an important role in the constitution of macrophages as viral reservoirs and allow HIV-1 to evade the immune system by sequestration in an internal niche, which is difficult to access from the exterior. However, until now, evidence of whether internal virus accumulations are protected from the host's humoral immune response is still lacking. In order to be able to study the formation and antibody accessibility of VCCs, we generated HIV-1 with green fluorescent protein (GFP)-tagged Gag replicating in primary macrophages. Live-cell observations revealed faint initial cytosolic Gag expression and subsequent large intracellular Gag accumulations which stayed stable over days. Taking advantage of the opportunity to study the accessibility of intracellular VCCs via the cell surface, we demonstrate that macrophage internal HIV-1-containing compartments cannot be targeted by neutralizing antibodies. Furthermore, HIV-1 was efficiently transferred from antibody-treated macrophages to T cells. Three-dimensional reconstruction of electron microscopic slices revealed that Gag accumulations correspond to viral particles within enclosed compartments and convoluted membranes. Thus, although some VCCs were connected to the plasma membrane, the complex membrane architecture of the HIV-1-containing compartment might shield viral particles from neutralizing antibodies. In sum, our study provides evidence that HIV-1 is sequestered into a macrophage internal membranous web, posing an obstacle for the elimination of this viral reservoir. PMID:22205742

  13. Mechanism of Neutralization by the Broadly Neutralizing HIV-1 Monoclonal Antibody VRC01▿†

    PubMed Central

    Li, Yuxing; O'Dell, Sijy; Walker, Laura M.; Wu, Xueling; Guenaga, Javier; Feng, Yu; Schmidt, Stephen D.; McKee, Krisha; Louder, Mark K.; Ledgerwood, Julie E.; Graham, Barney S.; Haynes, Barton F.; Burton, Dennis R.; Wyatt, Richard T.; Mascola, John R.

    2011-01-01

    The structure of VRC01 in complex with the HIV-1 gp120 core reveals that this broadly neutralizing CD4 binding site (CD4bs) antibody partially mimics the interaction of the primary virus receptor, CD4, with gp120. Here, we extended the investigation of the VRC01-gp120 core interaction to the biologically relevant viral spike to better understand the mechanism of VRC01-mediated neutralization and to define viral elements associated with neutralization resistance. In contrast to the interaction of CD4 or the CD4bs monoclonal antibody (MAb) b12 with the HIV-1 envelope glycoprotein (Env), occlusion of the VRC01 epitope by quaternary constraints was not a major factor limiting neutralization. Mutagenesis studies indicated that VRC01 contacts within the gp120 loop D, the CD4 binding loop, and the V5 region were necessary for optimal VRC01 neutralization, as suggested by the crystal structure. In contrast to interactions with the soluble gp120 monomer, VRC01 interaction with the native viral spike did not occur in a CD4-like manner; VRC01 did not induce gp120 shedding from the Env spike or enhance gp41 membrane proximal external region (MPER)-directed antibody binding to the Env spike. Finally, VRC01 did not display significant reactivity with human antigens, boding well for potential in vivo applications. The data indicate that VRC01 interacts with gp120 in the context of the functional spike in a manner distinct from that of CD4. It achieves potent neutralization by precisely targeting the CD4bs without requiring alterations of Env spike configuration and by avoiding steric constraints imposed by the quaternary structure of the functional Env spike. PMID:21715490

  14. Cross-Reactive and Potent Neutralizing Antibody Responses in Human Survivors of Natural Ebolavirus Infection.

    PubMed

    Flyak, Andrew I; Shen, Xiaoli; Murin, Charles D; Turner, Hannah L; David, Joshua A; Fusco, Marnie L; Lampley, Rebecca; Kose, Nurgun; Ilinykh, Philipp A; Kuzmina, Natalia; Branchizio, Andre; King, Hannah; Brown, Leland; Bryan, Christopher; Davidson, Edgar; Doranz, Benjamin J; Slaughter, James C; Sapparapu, Gopal; Klages, Curtis; Ksiazek, Thomas G; Saphire, Erica Ollmann; Ward, Andrew B; Bukreyev, Alexander; Crowe, James E

    2016-01-28

    Recent studies have suggested that antibody-mediated protection against the Ebolaviruses may be achievable, but little is known about whether or not antibodies can confer cross-reactive protection against viruses belonging to diverse Ebolavirus species, such as Ebola virus (EBOV), Sudan virus (SUDV), and Bundibugyo virus (BDBV). We isolated a large panel of human monoclonal antibodies (mAbs) against BDBV glycoprotein (GP) using peripheral blood B cells from survivors of the 2007 BDBV outbreak in Uganda. We determined that a large proportion of mAbs with potent neutralizing activity against BDBV bind to the glycan cap and recognize diverse epitopes within this major antigenic site. We identified several glycan cap-specific mAbs that neutralized multiple ebolaviruses, including SUDV, and a cross-reactive mAb that completely protected guinea pigs from the lethal challenge with heterologous EBOV. Our results provide a roadmap to develop a single antibody-based treatment effective against multiple Ebolavirus infections. PMID:26806128

  15. Structural basis for the antibody neutralization of Herpes simplex virus

    SciTech Connect

    Lee, Cheng-Chung; Lin, Li-Ling; Chan, Woan-Eng; Ko, Tzu-Ping; Lai, Jiann-Shiun; Wang, Andrew H.-J.

    2013-10-01

    The gD–E317-Fab complex crystal revealed the conformational epitope of human mAb E317 on HSV gD, providing a molecular basis for understanding the viral neutralization mechanism. Glycoprotein D (gD) of Herpes simplex virus (HSV) binds to a host cell surface receptor, which is required to trigger membrane fusion for virion entry into the host cell. gD has become a validated anti-HSV target for therapeutic antibody development. The highly inhibitory human monoclonal antibody E317 (mAb E317) was previously raised against HSV gD for viral neutralization. To understand the structural basis of antibody neutralization, crystals of the gD ectodomain bound to the E317 Fab domain were obtained. The structure of the complex reveals that E317 interacts with gD mainly through the heavy chain, which covers a large area for epitope recognition on gD, with a flexible N-terminal and C-terminal conformation. The epitope core structure maps to the external surface of gD, corresponding to the binding sites of two receptors, herpesvirus entry mediator (HVEM) and nectin-1, which mediate HSV infection. E317 directly recognizes the gD–nectin-1 interface and occludes the HVEM contact site of gD to block its binding to either receptor. The binding of E317 to gD also prohibits the formation of the N-terminal hairpin of gD for HVEM recognition. The major E317-binding site on gD overlaps with either the nectin-1-binding residues or the neutralizing antigenic sites identified thus far (Tyr38, Asp215, Arg222 and Phe223). The epitopes of gD for E317 binding are highly conserved between two types of human herpesvirus (HSV-1 and HSV-2). This study enables the virus-neutralizing epitopes to be correlated with the receptor-binding regions. The results further strengthen the previously demonstrated therapeutic and diagnostic potential of the E317 antibody.

  16. Anti-idiotypic antibodies induce neutralizing antibodies to bovine herpesvirus 1.

    PubMed Central

    Srikumaran, S; Onisk, D V; Borca, M V; Nataraj, C; Zamb, T J

    1990-01-01

    A neutralizing murine monoclonal antibody (mAb) of the IgG2a isotype (MM-113), specific for bovine herpesvirus 1 (BHV-1) glycoprotein gIV, was used to develop anti-idiotypic antibodies (anti-Id) in a calf. The bovine anti-Id were isolated from the serum of the immunized calf by affinity chromatography on an MM-113-Sepharose column, followed by repeated adsorption on a murine IgG2a column. The anti-Id thus obtained specifically reacted with MM-113, but not with isotype-matched controls. They also inhibited the binding of MM-113 to BHV-1 in a concentration-dependent manner. Mice immunized with the anti-Id produced neutralizing antibodies to BHV-1. The anti-Id bound to cells permissive to BHV-1 in a cell-binding radioimmunoassay (RIA). PMID:2165998

  17. Tailored Immunogens Direct Affinity Maturation toward HIV Neutralizing Antibodies.

    PubMed

    Briney, Bryan; Sok, Devin; Jardine, Joseph G; Kulp, Daniel W; Skog, Patrick; Menis, Sergey; Jacak, Ronald; Kalyuzhniy, Oleksandr; de Val, Natalia; Sesterhenn, Fabian; Le, Khoa M; Ramos, Alejandra; Jones, Meaghan; Saye-Francisco, Karen L; Blane, Tanya R; Spencer, Skye; Georgeson, Erik; Hu, Xiaozhen; Ozorowski, Gabriel; Adachi, Yumiko; Kubitz, Michael; Sarkar, Anita; Wilson, Ian A; Ward, Andrew B; Nemazee, David; Burton, Dennis R; Schief, William R

    2016-09-01

    Induction of broadly neutralizing antibodies (bnAbs) is a primary goal of HIV vaccine development. VRC01-class bnAbs are important vaccine leads because their precursor B cells targeted by an engineered priming immunogen are relatively common among humans. This priming immunogen has demonstrated the ability to initiate a bnAb response in animal models, but recall and maturation toward bnAb development has not been shown. Here, we report the development of boosting immunogens designed to guide the genetic and functional maturation of previously primed VRC01-class precursors. Boosting a transgenic mouse model expressing germline VRC01 heavy chains produced broad neutralization of near-native isolates (N276A) and weak neutralization of fully native HIV. Functional and genetic characteristics indicate that the boosted mAbs are consistent with partially mature VRC01-class antibodies and place them on a maturation trajectory that leads toward mature VRC01-class bnAbs. The results show how reductionist sequential immunization can guide maturation of HIV bnAb responses. PMID:27610570

  18. Investigating antibody neutralization of lyssaviruses using lentiviral pseudotypes: a cross-species comparison.

    PubMed

    Wright, Edward; Temperton, Nigel J; Marston, Denise A; McElhinney, Lorraine M; Fooks, Anthony R; Weiss, Robin A

    2008-09-01

    Cross-neutralization between rabies virus (RABV) and two European bat lyssaviruses (EBLV-1 and -2) was analysed using lentiviral pseudotypes as antigen vectors. Glycoprotein (G-protein) cDNA from RABV challenge virus standard-11 (CVS-11) and EBLV-1 and -2 were cloned and co-expressed with human immunodeficiency virus (HIV) or murine leukemia virus (MLV) gag-pol and packageable green fluorescent protein (GFP) or luciferase reporter genes in human cells. The harvested lentiviral (HIV) vector infected over 40% of baby hamster kidney (BHK) target cells, providing high-titre pseudotype stocks. Tests on blinded antibody-positive (n=15) and -negative (n=45) sera, predetermined by the fluorescent antibody virus neutralization (FAVN) test approved by the World Health Organization (WHO) and Office International des Epizooties (OIE), revealed that the CVS-11 pseudotype assay had 100% concordance with FAVN and strongly correlated with neutralization titres (r2=0.89). Cross-neutralization tests using sera from RABV-vaccinated humans and animals on pseudotypes with CVS-11, EBLV-1 and EBLV-2 envelopes showed that the relative neutralization titres correlated broadly with the degree of G-protein diversity. Pseudotypes have three major advantages over live-virus neutralization tests: (i) they can be handled in low-biohazard-level laboratories; (ii) the use of reporter genes such as GFP or beta-galactosidase will allow the assay to be undertaken at low cost in laboratories worldwide; (iii) each assay requires <10 microl serum. This robust microassay will improve our understanding of the protective humoral immunity that current rabies vaccines confer against emerging lyssaviruses, and will be applicable to surveillance studies, thus helping to control the spread of rabies. PMID:18753230

  19. Elimination of HIV-1-infected cells by broadly neutralizing antibodies

    PubMed Central

    Bruel, Timothée; Guivel-Benhassine, Florence; Amraoui, Sonia; Malbec, Marine; Richard, Léa; Bourdic, Katia; Donahue, Daniel Aaron; Lorin, Valérie; Casartelli, Nicoletta; Noël, Nicolas; Lambotte, Olivier; Mouquet, Hugo; Schwartz, Olivier

    2016-01-01

    The Fc region of HIV-1 Env-specific broadly neutralizing antibodies (bNAbs) is required for suppressing viraemia, through mechanisms which remain poorly understood. Here, we identify bNAbs that exert antibody-dependent cellular cytotoxicity (ADCC) in cell culture and kill HIV-1-infected lymphocytes through natural killer (NK) engagement. These antibodies target the CD4-binding site, the glycans/V3 and V1/V2 loops on gp120, or the gp41 moiety. The landscape of Env epitope exposure at the surface and the sensitivity of infected cells to ADCC vary considerably between viral strains. Efficient ADCC requires sustained cell surface binding of bNAbs to Env, and combining bNAbs allows a potent killing activity. Furthermore, reactivated infected cells from HIV-positive individuals expose heterogeneous Env epitope patterns, with levels that are often but not always sufficient to trigger killing by bNAbs. Our study delineates the parameters controlling ADCC activity of bNAbs, and supports the use of the most potent antibodies to clear the viral reservoir. PMID:26936020

  20. Elimination of HIV-1-infected cells by broadly neutralizing antibodies.

    PubMed

    Bruel, Timothée; Guivel-Benhassine, Florence; Amraoui, Sonia; Malbec, Marine; Richard, Léa; Bourdic, Katia; Donahue, Daniel Aaron; Lorin, Valérie; Casartelli, Nicoletta; Noël, Nicolas; Lambotte, Olivier; Mouquet, Hugo; Schwartz, Olivier

    2016-01-01

    The Fc region of HIV-1 Env-specific broadly neutralizing antibodies (bNAbs) is required for suppressing viraemia, through mechanisms which remain poorly understood. Here, we identify bNAbs that exert antibody-dependent cellular cytotoxicity (ADCC) in cell culture and kill HIV-1-infected lymphocytes through natural killer (NK) engagement. These antibodies target the CD4-binding site, the glycans/V3 and V1/V2 loops on gp120, or the gp41 moiety. The landscape of Env epitope exposure at the surface and the sensitivity of infected cells to ADCC vary considerably between viral strains. Efficient ADCC requires sustained cell surface binding of bNAbs to Env, and combining bNAbs allows a potent killing activity. Furthermore, reactivated infected cells from HIV-positive individuals expose heterogeneous Env epitope patterns, with levels that are often but not always sufficient to trigger killing by bNAbs. Our study delineates the parameters controlling ADCC activity of bNAbs, and supports the use of the most potent antibodies to clear the viral reservoir. PMID:26936020

  1. Defensins Potentiate a Neutralizing Antibody Response to Enteric Viral Infection

    PubMed Central

    Treuting, Piper M.; Bromme, Beth A.; Wilson, Sarah S.; Wiens, Mayim E.; Lu, Wuyuan; Ouellette, André J.; Spindler, Katherine R.; Parks, William C.; Smith, Jason G.

    2016-01-01

    α-defensins are abundant antimicrobial peptides with broad, potent antibacterial, antifungal, and antiviral activities in vitro. Although their contribution to host defense against bacteria in vivo has been demonstrated, comparable studies of their antiviral activity in vivo are lacking. Using a mouse model deficient in activated α-defensins in the small intestine, we show that Paneth cell α-defensins protect mice from oral infection by a pathogenic virus, mouse adenovirus 1 (MAdV-1). Survival differences between mouse genotypes are lost upon parenteral MAdV-1 infection, strongly implicating a role for intestinal defenses in attenuating pathogenesis. Although differences in α-defensin expression impact the composition of the ileal commensal bacterial population, depletion studies using broad-spectrum antibiotics revealed no effect of the microbiota on α-defensin-dependent viral pathogenesis. Moreover, despite the sensitivity of MAdV-1 infection to α-defensin neutralization in cell culture, we observed no barrier effect due to Paneth cell α-defensin activation on the kinetics and magnitude of MAdV-1 dissemination to the brain. Rather, a protective neutralizing antibody response was delayed in the absence of α-defensins. This effect was specific to oral viral infection, because antibody responses to parenteral or mucosal ovalbumin exposure were not affected by α-defensin deficiency. Thus, α-defensins play an important role as adjuvants in antiviral immunity in vivo that is distinct from their direct antiviral activity observed in cell culture. PMID:26933888

  2. Development of a Coxsackievirus A16 neutralization assay based on pseudoviruses for measurement of neutralizing antibody titer in human serum.

    PubMed

    Jin, Jun; Ma, Hongxia; Xu, Lin; An, Dong; Sun, Shiyang; Huang, Xueyong; Kong, Wei; Jiang, Chunlai

    2013-02-01

    Serum neutralizing antibody titers are indicative of protective immunity against Coxsackievirus A16 (CV-A16) and Enterovirus 71 (EV71), the two main etiological agents of hand, foot and mouth disease (HFMD), and provide the basis for evaluating vaccine efficacy. The current CV-A16 neutralization assay based on inhibition of cytopathic effects requires manual microscopic examination, which is time-consuming and labor-intensive. In this study, a high-throughput neutralization assay was developed by employing CV-A16 pseudoviruses expressing luciferase for detecting infectivity in rhabdomyosarcoma (RD) cells and measuring serum viral neutralizing antibodies. Without the need to use infectious CV-A16 strains, the neutralizing antibody titer against CV-A16 could be determined within 15h by measuring luciferase signals by this assay. The pseudovirus CV-A16 neutralization assay (pCNA) was validated by comparison with a conventional CV-A16 neutralization assay (cCNA) in testing 174 human serum samples collected from children (age <5 years). The neutralizing antibody titers determined by these two assays were well correlated (R(2)=0.7689). These results suggest that the pCNA can serve as a rapid and objective procedure for the measurement of neutralizing antibodies against CV-A16. PMID:23178532

  3. Development of a poliovirus neutralization test with poliovirus pseudovirus for measurement of neutralizing antibody titer in human serum.

    PubMed

    Arita, Minetaro; Iwai, Masae; Wakita, Takaji; Shimizu, Hiroyuki

    2011-11-01

    In the Global Polio Eradication Initiative, laboratory diagnosis plays a critical role by isolating and identifying poliovirus (PV) from the stool samples from acute flaccid paralysis (AFP) cases. In recent years, reestablishment of PV circulation in countries where PV was previously eliminated has occurred because of decreased herd immunity, possibly due to poor vaccination coverage. To monitor the vulnerability of countries to PV circulation, surveillance of neutralizing-antibody titers against PV in susceptible populations is essential in the end game of the polio eradication program. In this study, we have developed a PV neutralization test with type 1, 2, and 3 PV pseudoviruses to determine the neutralizing-antibody titer against PV in human serum samples. With this test, the neutralizing-antibody titer against PV could be determined within 2 days by automated interpretation of luciferase signals without using infectious PV strains. We validated the pseudovirus PV neutralization test with 131 human serum samples collected from a wide range of age groups (ages 1 to >60 years) by comparison with a conventional neutralization test. We found good correlation in the neutralizing-antibody titers determined by these tests. These results suggest that a pseudovirus PV neutralization test would serve as a safe and simple procedure for the measurement of the neutralizing-antibody titer against PV. PMID:21880850

  4. Progress on the induction of neutralizing antibodies against HIV-1

    PubMed Central

    Vaine, Michael; Lu, Shan; Wang, Shixia

    2013-01-01

    The Human Immunodeficiency Virus Type -1 (HIV-1), the causative agent of AIDS in humans, is one of the most catastrophic pandemics to affect human health care in the latter 20th century. The best hope of controlling this pandemic is the development of a successful prophylactic vaccine. However, to date, this goal has proven to be exceptionally elusive. The recent failure of an experimental AIDS vaccine in a phase IIb study named the STEP trial, intended to solely elicit cell mediated immune responses against HIV-1, has highlighted the need for a balanced immune response consisting of not only cellular immunity but also a broad and potent antibody response which can prevent the infection of HIV-1. This article will review the efforts being made up to this point to elicit such antibody responses, especially with regards to the use of a DNA prime-protein boost regimen which has been proven to be a highly effective platform for the induction of neutralizing antibodies in both animal and early phase human studies. PMID:19627166

  5. Enhanced Potency of a Broadly Neutralizing HIV-1 Antibody In Vitro Improves Protection against Lentiviral Infection In Vivo

    PubMed Central

    Rudicell, Rebecca S.; Kwon, Young Do; Ko, Sung-Youl; Pegu, Amarendra; Louder, Mark K.; Georgiev, Ivelin S.; Wu, Xueling; Zhu, Jiang; Boyington, Jeffrey C.; Chen, Xuejun; Shi, Wei; Yang, Zhi-yong; Doria-Rose, Nicole A.; McKee, Krisha; O'Dell, Sijy; Schmidt, Stephen D.; Chuang, Gwo-Yu; Druz, Aliaksandr; Soto, Cinque; Yang, Yongping; Zhang, Baoshan; Zhou, Tongqing; Todd, John-Paul; Lloyd, Krissey E.; Eudailey, Joshua; Roberts, Kyle E.; Donald, Bruce R.; Bailer, Robert T.; Ledgerwood, Julie; Mullikin, James C.; Shapiro, Lawrence; Koup, Richard A.; Graham, Barney S.; Nason, Martha C.; Connors, Mark; Haynes, Barton F.; Rao, Srinivas S.; Roederer, Mario; Kwong, Peter D.

    2014-01-01

    ABSTRACT Over the past 5 years, a new generation of highly potent and broadly neutralizing HIV-1 antibodies has been identified. These antibodies can protect against lentiviral infection in nonhuman primates (NHPs), suggesting that passive antibody transfer would prevent HIV-1 transmission in humans. To increase the protective efficacy of such monoclonal antibodies, we employed next-generation sequencing, computational bioinformatics, and structure-guided design to enhance the neutralization potency and breadth of VRC01, an antibody that targets the CD4 binding site of the HIV-1 envelope. One variant, VRC07-523, was 5- to 8-fold more potent than VRC01, neutralized 96% of viruses tested, and displayed minimal autoreactivity. To compare its protective efficacy to that of VRC01 in vivo, we performed a series of simian-human immunodeficiency virus (SHIV) challenge experiments in nonhuman primates and calculated the doses of VRC07-523 and VRC01 that provide 50% protection (EC50). VRC07-523 prevented infection in NHPs at a 5-fold lower concentration than VRC01. These results suggest that increased neutralization potency in vitro correlates with improved protection against infection in vivo, documenting the improved functional efficacy of VRC07-523 and its potential clinical relevance for protecting against HIV-1 infection in humans. IMPORTANCE In the absence of an effective HIV-1 vaccine, alternative strategies are needed to block HIV-1 transmission. Direct administration of HIV-1-neutralizing antibodies may be able to prevent HIV-1 infections in humans. This approach could be especially useful in individuals at high risk for contracting HIV-1 and could be used together with antiretroviral drugs to prevent infection. To optimize the chance of success, such antibodies can be modified to improve their potency, breadth, and in vivo half-life. Here, knowledge of the structure of a potent neutralizing antibody, VRC01, that targets the CD4-binding site of the HIV-1 envelope

  6. Antibody-mediated neutralization of African swine fever virus: myths and facts.

    PubMed

    Escribano, José M; Galindo, Inmaculada; Alonso, Covadonga

    2013-04-01

    Almost all viruses can be neutralized by antibodies. However, there is some controversy about antibody-mediated neutralization of African swine fever virus (ASFV) with sera from convalescent pigs and about the protective relevance of antibodies in experimentally vaccinated pigs. At present, there is no vaccine available for this highly lethal and economically relevant virus and all classical attempts to generate a vaccine have been unsuccessful. This failure has been attributed, in part, to what many authors describe as the absence of neutralizing antibodies. The findings of some studies clearly contradict the paradigm of the impossibility to neutralize ASFV by means of monoclonal or polyclonal antibodies. This review discusses scientific evidence of these types of antibodies in convalescent and experimentally immunized animals, the nature of their specificity, the neutralization-mediated mechanisms demonstrated, and the potential relevance of antibodies in protection. PMID:23159730

  7. Anti-tick-borne encephalitis (TBE) virus neutralizing antibodies dynamics in natural infections versus vaccination.

    PubMed

    Remoli, Maria Elena; Marchi, Antonella; Fortuna, Claudia; Benedetti, Eleonora; Minelli, Giada; Fiorentini, Cristiano; Mel, Rosanna; Venturi, Giulietta; Ciufolini, Maria Grazia

    2015-03-01

    Tick-borne encephalitis (TBE) virus infection elicits a life-long lasting protection. However, little is known about the neutralizing antibodies titres following natural infection. In this study, subjects with past TBE disease (n = 62) were analysed for the presence and titre of anti-TBE neutralizing antibodies, and compared with a vaccinated cohort (n = 101). Neutralizing antibody titres were higher in individuals with past TBE and did not show an age-dependent decrease when compared with vaccinees. PMID:25722483

  8. Human monoclonal antibodies targeting the haemagglutinin glycoprotein can neutralize H7N9 influenza virus.

    PubMed

    Chen, Zhe; Wang, Jianmin; Bao, Linlin; Guo, Li; Zhang, Weijia; Xue, Ying; Zhou, Hongli; Xiao, Yan; Wang, Jianwei; Wu, Fan; Deng, Ying; Qin, Chuan; Jin, Qi

    2015-01-01

    The recently identified avian-originated influenza H7N9 virus causes severe pulmonary disease and may lead to death in humans. Currently, treatment options for the prevention and control of fatal H7N9 infections in humans remain limited. Here we characterize two human monoclonal antibodies (HuMAbs), HNIgGA6 and HNIgGB5, by screening a Fab antibody phage library derived from patients who recovered from H7N9 infection. Both antibodies exhibit high neutralizing activity against H7N9 virus in cells. Two amino acids in the receptor-binding site, 186V and 226L, are crucial for the binding of these two HuMAbs to viral haemagglutinin antigens. Prophylaxis with HNIgGA6 and HNIgGB5 confers significant immunity against H7N9 virus in a mouse model and significantly reduces the pulmonary virus titre. When administered post infection, therapeutic doses of the HuMAbs also provide robust protection against lethality. These antibodies might represent a potential alternative or adjunct to H7N9 pandemic interventions. PMID:25819694

  9. Conference report: hot topics in antibody-drug conjugate development.

    PubMed

    Thudium, Karen; Bilic, Sanela

    2013-12-01

    American Association of Pharmaceutical Scientists National Biotechnology Conference Sheraton San Diego Hotel and Marina, San Diego, CA, USA, 19-23 May 2013 The National Biotechnology Conference, is a premier meeting for biotechnology professionals covering a broad range of hot topics in the biotechnology industry. Attracting participants from academia, industry and regulatory, this meeting features sessions that aim to address emerging subjects of interest and allows for open exchange between scientists. The 2013 conference featured leading researchers in the fields of antibody-drug conjugates (ADCs) and immunogenicity. Herein, we present a summary of the ADC hot topics, including bioanalytical and PK considerations, quantitative evaluation of the impact of immunogenicity and ADME to understand ADC drug-drug interactions, and clinical considerations for ADC development. This article aims to summarize the recommendations that were made by the speakers during various sessions throughout the conference. PMID:24320125

  10. G glycoprotein amino acid residues required for human monoclonal antibody RAB1 neutralization are conserved in rabies virus street isolates.

    PubMed

    Wang, Yang; Rowley, Kirk J; Booth, Brian J; Sloan, Susan E; Ambrosino, Donna M; Babcock, Gregory J

    2011-08-01

    Replacement of polyclonal anti-rabies immunoglobulin (RIG) used in rabies post-exposure prophylaxis (PEP) with a monoclonal antibody will eliminate cost and availability constraints that currently exist using RIG in the developing world. The human monoclonal antibody RAB1 has been shown to neutralize all rabies street isolates tested; however for the laboratory-adapted fixed strain, CVS-11, mutation in the G glycoprotein of amino acid 336 from asparagine (N) to aspartic acid (D) resulted in resistance to neutralization. Interestingly, this same mutation in the G glycoprotein of a second laboratory-adapted fixed strain (ERA) did not confer resistance to RAB1 neutralization. Using cell surface staining and lentivirus pseudotyped with rabies virus G glycoprotein (RABVpp), we identified an amino acid alteration in CVS-11 (K346), not present in ERA (R346), which was required in combination with D336 to confer resistance to RAB1. A complete analysis of G glycoprotein sequences from GenBank demonstrated that no identified rabies isolates contain the necessary combination of G glycoprotein mutations for resistance to RAB1 neutralization, consistent with the broad neutralization of RAB1 observed in direct viral neutralization experiments with street isolates. All combinations of amino acids 336 and 346 reported in the sequence database were engineered into the ERA G glycoprotein and RAB1 was able to neutralize RABVpp bearing ERA G glycoprotein containing all known combinations at these critical residues. These data demonstrate that RAB1 has the capacity to neutralize all identified rabies isolates and a minimum of two distinct mutations in the G glycoprotein are required for abrogation of RAB1 neutralization. PMID:21693135

  11. Single domain antibody multimers confer protection against rabies infection.

    PubMed

    Boruah, Bhargavi M; Liu, Dawei; Ye, Duan; Gu, Tie-Jun; Jiang, Chun-Lai; Qu, Mingsheng; Wright, Edward; Wang, Wei; He, Wen; Liu, Changzhen; Gao, Bin

    2013-01-01

    Post-exposure prophylactic (PEP) neutralizing antibodies against Rabies are the most effective way to prevent infection-related fatality. The outer envelope glycoprotein of the Rabies virus (RABV) is the most significant surface antigen for generating virus-neutralizing antibodies. The small size and uncompromised functional specificity of single domain antibodies (sdAbs) can be exploited in the fields of experimental therapeutic applications for infectious diseases through formatting flexibilities to increase their avidity towards target antigens. In this study, we used phage display technique to select and identify sdAbs that were specific for the RABV glycoprotein from a naïve llama-derived antibody library. To increase their neutralizing potencies, the sdAbs were fused with a coiled-coil peptide derived from the human cartilage oligomeric matrix protein (COMP48) to form homogenous pentavalent multimers, known as combodies. Compared to monovalent sdAbs, the combodies, namely 26424 and 26434, exhibited high avidity and were able to neutralize 85-fold higher input of RABV (CVS-11 strain) pseudotypes in vitro, as a result of multimerization, while retaining their specificities for target antigen. 26424 and 26434 were capable of neutralizing CVS-11 pseudotypes in vitro by 90-95% as compared to human rabies immunoglobulin (HRIG), currently used for PEP in Rabies. The multimeric sdAbs were also demonstrated to be partially protective for mice that were infected with lethal doses of rabies virus in vivo. The results demonstrate that the combodies could be valuable tools in understanding viral mechanisms, diagnosis and possible anti-viral candidate for RABV infection. PMID:23977032

  12. Neutralizing determinants defined by monoclonal antibodies on polypeptides specified by bovine herpesvirus 1.

    PubMed Central

    Collins, J K; Butcher, A C; Riegel, C A; McGrane, V; Blair, C D; Teramoto, Y A; Winston, S

    1984-01-01

    Monoclonal antibodies were used to study neutralizing determinants on polypeptides of bovine herpesvirus 1. Two of three monoclonal antibodies which recognized nonoverlapping epitopes on a glycoprotein of 82,000 daltons were found to neutralize. A second group of monoclonal antibodies that individually precipitated five viral glycopolypeptides ranging in size from 102,000 to 55,000 daltons also neutralized. Two monoclonal antibodies which were the most efficient in neutralization recognized a non-glycosylated protein of 115,000 daltons which was the major polypeptide on the virus. A fourth group of monoclonal antibodies precipitated a non-glycosylated polypeptide of 91,000 daltons and several smaller polypeptides, but these antibodies demonstrated only limited neutralizing activity. Images PMID:6208375

  13. Hypervariable antigenic region 1 of classical swine fever virus E2 protein impacts antibody neutralization.

    PubMed

    Liao, Xun; Wang, Zuohuan; Cao, Tong; Tong, Chao; Geng, Shichao; Gu, Yuanxing; Zhou, Yingshan; Li, Xiaoliang; Fang, Weihuan

    2016-07-19

    Envelope glycoprotein E2 of classical swine fever virus (CSFV) is the major antigen that induces neutralizing antibodies and confers protection against CSFV infection. There are three hypervariable antigenic regions (HAR1, HAR2 and HAR3) of E2 that are different between the group 1 vaccine C-strain and group 2 clinical isolates. This study was aimed to characterize the antigenic epitope region recognized by monoclonal antibody 4F4 (mAb-4F4) that is present in the group 2 field isolate HZ1-08, but not in the C-strain, and examine its impact on neutralization titers when antisera from different recombinant viruses were cross-examined. Indirect ELISA with C-strain E2-based chimeric proteins carrying the three HAR regions showed that the mAb-4F4 bound to HAR1 from HZ1-08 E2, but not to HAR2 or HAR3, indicating that the specific epitope is located in the HAR1 region. Of the 6 major residues differences between C-strain and field isolates, Glu713 in the HAR1 region of strain HZ1-08 is critical for mAb-4F4 binding either at the recombinant protein level or using intact recombinant viruses carrying single mutations. C-strain-based recombinant viruses carrying the most antigenic part of E2 or HAR1 from strain HZ1-08 remained non-pathogenic to pigs and induced good antibody responses. By cross-neutralization assay, we observed that the anti-C-strain serum lost most of its neutralization capacity to RecC-HZ-E2 and QZ-14 (subgroup 2.1d field isolate in 2014), and vice versa. More importantly, the RecC-HAR1 virus remained competent in neutralizing ReC-HZ-E2 and QZ-14 strains without compromising the neutralization capability to the recombinant C-strain. Thus, we propose that chimeric C-strain carrying the HAR1 region of field isolates is a good vaccine candidate for classical swine fever. PMID:27317266

  14. A Neutralizing Antibody Assay Based on a Reporter of Antibody-Dependent Cell-Mediated Cytotoxicity.

    PubMed

    Wu, Yuling; Li, Jia J; Kim, Hyun Jun; Liu, Xu; Liu, Weiyi; Akhgar, Ahmad; Bowen, Michael A; Spitz, Susan; Jiang, Xu-Rong; Roskos, Lorin K; White, Wendy I

    2015-11-01

    Benralizumab is a humanized anti-IL5 receptor α (IL5Rα) monoclonal antibody (mAb) with enhanced (afucosylation) antibody-dependent cell-mediated cytotoxicity (ADCC) function. An ADCC reporter cell-based neutralizing antibody (NAb) assay was developed and characterized to detect NAb against benralizumab in human serum to support the clinical development of benralizumab. The optimal ratio of target cells to effector cells was 3:1. Neither parental benralizumab (fucosylated) nor benralizumab Fab resulted in ADCC activity, confirming the requirement for ADCC activity in the NAb assay. The serum tolerance of the cells was determined to be 2.5%. The cut point derived from normal and asthma serum samples was comparable. The effective range of benralizumab was determined, and 35 ng/mL [80% maximal effective concentration (EC80)] was chosen as the standard concentration to run in the assessment of NAb. An affinity purified goat anti-benralizumab polyclonal idiotype antibody preparation was shown to have NAb since it inhibited ADCC activity in a dose-dependent fashion. The low endogenous concentrations of IL5 and soluble IL5 receptor (sIL5R) did not demonstrate to interfere with the assay. The estimated assay sensitivities at the cut point were 1.02 and 1.10 μg/mL as determined by the surrogate neutralizing goat polyclonal and mouse monoclonal anti-drug antibody (ADA) controls, respectively. The assay can detect NAb (at 2.5 μg/mL) in the presence of 0.78 μg/mL benralizumab. The assay was not susceptible to non-specific matrix effects. This study provides an approach and feasibility of developing an ADCC cell-based NAb assay to support biopharmaceuticals with an ADCC function. PMID:26205082

  15. Enveloped Virus-Like Particle Expression of Human Cytomegalovirus Glycoprotein B Antigen Induces Antibodies with Potent and Broad Neutralizing Activity

    PubMed Central

    Kirchmeier, Marc; Fluckiger, Anne-Catherine; Soare, Catalina; Bozic, Jasminka; Ontsouka, Barthelemy; Ahmed, Tanvir; Diress, Abebaw; Pereira, Lenore; Schödel, Florian; Plotkin, Stanley; Dalba, Charlotte; Klatzmann, David

    2014-01-01

    A prophylactic vaccine to prevent the congenital transmission of human cytomegalovirus (HCMV) in newborns and to reduce life-threatening disease in immunosuppressed recipients of HCMV-infected solid organ transplants is highly desirable. Neutralizing antibodies against HCMV confer significant protection against infection, and glycoprotein B (gB) is a major target of such neutralizing antibodies. However, one shortcoming of past HCMV vaccines may have been their failure to induce high-titer persistent neutralizing antibody responses that prevent the infection of epithelial cells. We used enveloped virus-like particles (eVLPs), in which particles were produced in cells after the expression of murine leukemia virus (MLV) viral matrix protein Gag, to express either full-length CMV gB (gB eVLPs) or the full extracellular domain of CMV gB fused with the transmembrane and cytoplasmic domains from vesicular stomatitis virus (VSV)-G protein (gB-G eVLPs). gB-G-expressing eVLPs induced potent neutralizing antibodies in mice with a much greater propensity toward epithelial cell-neutralizing activity than that induced with soluble recombinant gB protein. An analysis of gB antibody binding titers and T-helper cell responses demonstrated that high neutralizing antibody titers were not simply due to enhanced immunogenicity of the gB-G eVLPs. The cells transiently transfected with gB-G but not gB plasmid formed syncytia, consistent with a prefusion gB conformation like those of infected cells and viral particles. Two of the five gB-G eVLP-induced monoclonal antibodies we examined in detail had neutralizing activities, one of which possessed particularly potent epithelial cell-neutralizing activity. These data differentiate gB-G eVLPs from gB antigens used in the past and support their use in a CMV vaccine candidate with improved neutralizing activity against epithelial cell infection. PMID:24334684

  16. Enveloped virus-like particle expression of human cytomegalovirus glycoprotein B antigen induces antibodies with potent and broad neutralizing activity.

    PubMed

    Kirchmeier, Marc; Fluckiger, Anne-Catherine; Soare, Catalina; Bozic, Jasminka; Ontsouka, Barthelemy; Ahmed, Tanvir; Diress, Abebaw; Pereira, Lenore; Schödel, Florian; Plotkin, Stanley; Dalba, Charlotte; Klatzmann, David; Anderson, David E

    2014-02-01

    A prophylactic vaccine to prevent the congenital transmission of human cytomegalovirus (HCMV) in newborns and to reduce life-threatening disease in immunosuppressed recipients of HCMV-infected solid organ transplants is highly desirable. Neutralizing antibodies against HCMV confer significant protection against infection, and glycoprotein B (gB) is a major target of such neutralizing antibodies. However, one shortcoming of past HCMV vaccines may have been their failure to induce high-titer persistent neutralizing antibody responses that prevent the infection of epithelial cells. We used enveloped virus-like particles (eVLPs), in which particles were produced in cells after the expression of murine leukemia virus (MLV) viral matrix protein Gag, to express either full-length CMV gB (gB eVLPs) or the full extracellular domain of CMV gB fused with the transmembrane and cytoplasmic domains from vesicular stomatitis virus (VSV)-G protein (gB-G eVLPs). gB-G-expressing eVLPs induced potent neutralizing antibodies in mice with a much greater propensity toward epithelial cell-neutralizing activity than that induced with soluble recombinant gB protein. An analysis of gB antibody binding titers and T-helper cell responses demonstrated that high neutralizing antibody titers were not simply due to enhanced immunogenicity of the gB-G eVLPs. The cells transiently transfected with gB-G but not gB plasmid formed syncytia, consistent with a prefusion gB conformation like those of infected cells and viral particles. Two of the five gB-G eVLP-induced monoclonal antibodies we examined in detail had neutralizing activities, one of which possessed particularly potent epithelial cell-neutralizing activity. These data differentiate gB-G eVLPs from gB antigens used in the past and support their use in a CMV vaccine candidate with improved neutralizing activity against epithelial cell infection. PMID:24334684

  17. Potent neutralizing monoclonal antibodies against Ebola virus infection.

    PubMed

    Zhang, Qi; Gui, Miao; Niu, Xuefeng; He, Shihua; Wang, Ruoke; Feng, Yupeng; Kroeker, Andrea; Zuo, Yanan; Wang, Hua; Wang, Ying; Li, Jiade; Li, Chufang; Shi, Yi; Shi, Xuanling; Gao, George F; Xiang, Ye; Qiu, Xiangguo; Chen, Ling; Zhang, Linqi

    2016-01-01

    Ebola virus infections cause a deadly hemorrhagic disease for which no vaccines or therapeutics has received regulatory approval. Here we show isolation of three (Q206, Q314 and Q411) neutralizing monoclonal antibodies (mAbs) against the surface glycoprotein (GP) of Ebola virus identified in West Africa in 2014 through sequential immunization of Chinese rhesus macaques and antigen-specific single B cell sorting. These mAbs demonstrated potent neutralizing activities against both pseudo and live Ebola virus independent of complement. Biochemical, single particle EM, and mutagenesis analysis suggested Q206 and Q411 recognized novel epitopes in the head while Q314 targeted the glycan cap in the GP1 subunit. Q206 and Q411 appeared to influence GP binding to its receptor NPC1. Treatment with these mAbs provided partial but significant protection against disease in a mouse model of Ebola virus infection. These novel mAbs could serve as promising candidates for prophylactic and therapeutic interventions against Ebola virus infection. PMID:27181584

  18. Potent neutralizing monoclonal antibodies against Ebola virus infection

    PubMed Central

    Zhang, Qi; Gui, Miao; Niu, Xuefeng; He, Shihua; Wang, Ruoke; Feng, Yupeng; Kroeker, Andrea; Zuo, Yanan; Wang, Hua; Wang, Ying; Li, Jiade; Li, Chufang; Shi, Yi; Shi, Xuanling; Gao, George F.; Xiang, Ye; Qiu, Xiangguo; Chen, Ling; Zhang, Linqi

    2016-01-01

    Ebola virus infections cause a deadly hemorrhagic disease for which no vaccines or therapeutics has received regulatory approval. Here we show isolation of three (Q206, Q314 and Q411) neutralizing monoclonal antibodies (mAbs) against the surface glycoprotein (GP) of Ebola virus identified in West Africa in 2014 through sequential immunization of Chinese rhesus macaques and antigen-specific single B cell sorting. These mAbs demonstrated potent neutralizing activities against both pseudo and live Ebola virus independent of complement. Biochemical, single particle EM, and mutagenesis analysis suggested Q206 and Q411 recognized novel epitopes in the head while Q314 targeted the glycan cap in the GP1 subunit. Q206 and Q411 appeared to influence GP binding to its receptor NPC1. Treatment with these mAbs provided partial but significant protection against disease in a mouse model of Ebola virus infection. These novel mAbs could serve as promising candidates for prophylactic and therapeutic interventions against Ebola virus infection. PMID:27181584

  19. Cooperativity between CD8+ T cells, non-neutralizing antibodies, and alveolar macrophages is important for heterosubtypic influenza virus immunity.

    PubMed

    Laidlaw, Brian J; Decman, Vilma; Ali, Mohammed-Alkhatim A; Abt, Michael C; Wolf, Amaya I; Monticelli, Laurel A; Mozdzanowska, Krystyna; Angelosanto, Jill M; Artis, David; Erikson, Jan; Wherry, E John

    2013-03-01

    Seasonal epidemics of influenza virus result in ∼36,000 deaths annually in the United States. Current vaccines against influenza virus elicit an antibody response specific for the envelope glycoproteins. However, high mutation rates result in the emergence of new viral serotypes, which elude neutralization by preexisting antibodies. T lymphocytes have been reported to be capable of mediating heterosubtypic protection through recognition of internal, more conserved, influenza virus proteins. Here, we demonstrate using a recombinant influenza virus expressing the LCMV GP33-41 epitope that influenza virus-specific CD8+ T cells and virus-specific non-neutralizing antibodies each are relatively ineffective at conferring heterosubtypic protective immunity alone. However, when combined virus-specific CD8 T cells and non-neutralizing antibodies cooperatively elicit robust protective immunity. This synergistic improvement in protective immunity is dependent, at least in part, on alveolar macrophages and/or other lung phagocytes. Overall, our studies suggest that an influenza vaccine capable of eliciting both CD8+ T cells and antibodies specific for highly conserved influenza proteins may be able to provide heterosubtypic protection in humans, and act as the basis for a potential "universal" vaccine. PMID:23516357

  20. Cooperativity Between CD8+ T Cells, Non-Neutralizing Antibodies, and Alveolar Macrophages Is Important for Heterosubtypic Influenza Virus Immunity

    PubMed Central

    Laidlaw, Brian J.; Decman, Vilma; Ali, Mohammed-Alkhatim A.; Abt, Michael C.; Wolf, Amaya I.; Monticelli, Laurel A.; Mozdzanowska, Krystyna; Angelosanto, Jill M.; Artis, David; Erikson, Jan; Wherry, E. John

    2013-01-01

    Seasonal epidemics of influenza virus result in ∼36,000 deaths annually in the United States. Current vaccines against influenza virus elicit an antibody response specific for the envelope glycoproteins. However, high mutation rates result in the emergence of new viral serotypes, which elude neutralization by preexisting antibodies. T lymphocytes have been reported to be capable of mediating heterosubtypic protection through recognition of internal, more conserved, influenza virus proteins. Here, we demonstrate using a recombinant influenza virus expressing the LCMV GP33-41 epitope that influenza virus-specific CD8+ T cells and virus-specific non-neutralizing antibodies each are relatively ineffective at conferring heterosubtypic protective immunity alone. However, when combined virus-specific CD8 T cells and non-neutralizing antibodies cooperatively elicit robust protective immunity. This synergistic improvement in protective immunity is dependent, at least in part, on alveolar macrophages and/or other lung phagocytes. Overall, our studies suggest that an influenza vaccine capable of eliciting both CD8+ T cells and antibodies specific for highly conserved influenza proteins may be able to provide heterosubtypic protection in humans, and act as the basis for a potential “universal” vaccine. PMID:23516357

  1. Neutralization of Botulinum Neurotoxin Type E by a Humanized Antibody.

    PubMed

    Derman, Yağmur; Selby, Katja; Miethe, Sebastian; Frenzel, André; Liu, Yvonne; Rasetti-Escargueil, Christine; Avril, Arnaud; Pelat, Thibaut; Urbain, Remi; Fontayne, Alexandre; Thullier, Philippe; Sesardic, Dorothea; Lindström, Miia; Hust, Michael; Korkeala, Hannu

    2016-01-01

    Botulinum neurotoxins (BoNTs) cause botulism and are the deadliest naturally-occurring substances known to humans. BoNTs have been classified as one of the category A agents by the Centers for Disease Control and Prevention, indicating their potential use as bioweapons. To counter bio-threat and naturally-occurring botulism cases, well-tolerated antibodies by humans that neutralize BoNTs are relevant. In our previous work, we showed the neutralizing potential of macaque (Macaca fascicularis)-derived scFv-Fc (scFv-Fc ELC18) by in vitro endopeptidase immunoassay and ex vivo mouse phrenic nerve-hemidiaphragm assay by targeting the light chain of the botulinum neurotoxin type E (BoNT/E). In the present study, we germline-humanized scFv-Fc ELC18 into a full IgG hu8ELC18 to increase its immunotolerance by humans. We demonstrated the protection and prophylaxis capacity of hu8ELC18 against BoNT/E in a mouse model. A concentration of 2.5 ng/mouse of hu8ELC18 protected against 5 mouse lethal dose (MLD) in a mouse protection assay and complete neutralization of 1 LD50 of pure BoNT/E toxin was achieved with 8 ng of hu8ELC18 in mouse paralysis assay. Furthermore, hu8ELC18 protected mice from 5 MLD if injected up to 14 days prior to intraperitoneal BoNT/E administration. This newly-developed humanized IgG is expected to have high tolerance in humans. PMID:27626446

  2. Broadly neutralizing hemagglutinin stalk–specific antibodies require FcγR interactions for protection against influenza virus in vivo

    PubMed Central

    DiLillo, David J; Tan, Gene S; Palese, Peter; Ravetch, Jeffrey V

    2014-01-01

    Neutralizing antibodies against influenza viruses have traditionally been thought to provide protection exclusively through their variable region; the contributions of mechanisms conferred by the Fc domain remain controversial. We investigated the in vivo contributions of Fc interactions with their cognate receptors for a collection of neutralizing anti-influenza antibodies. Whereas five broadly neutralizing monoclonal antibodies (bNAbs) targeting the conserved stalk region of hemagglutinin (HA) required interactions between the antibody Fc and Fc receptors for IgG (FcγRs) to confer protection from lethal H1N1 challenge, three strain-specific monoclonal Abs (mAbs) against the variable head domain of HA were equally protective in the presence or absence of FcγR interactions. Although all antibodies blocked infection, only anti-stalk bNAbs were capable of mediating cytotoxicity of infected cells, which accounts for their FcγR dependence. Immune complexes generated with anti–HA stalk mAb efficiently interacted with FcγRs, but anti–HA head immune complexes did not. These results suggest that FcγR binding capacity by anti-HA antibodies was dependent on the interaction of the cognate Fab with antigen. We exploited these disparate mechanisms of mAb-mediated protection to reengineer an anti-stalk bNAb to selectively enhance FcγR engagement to augment its protective activity. These findings reveal a previously uncharacterized property of bNAbs and guide an approach toward enhancing mAb-mediated antiviral therapeutics. PMID:24412922

  3. Pharmacokinetics and pharmacodynamics of VEGF-neutralizing antibodies

    PubMed Central

    2011-01-01

    Background Vascular endothelial growth factor (VEGF) is a potent regulator of angiogenesis, and its role in cancer biology has been widely studied. Many cancer therapies target angiogenesis, with a focus being on VEGF-mediated signaling such as antibodies to VEGF. However, it is difficult to predict the effects of VEGF-neutralizing agents. We have developed a whole-body model of VEGF kinetics and transport under pathological conditions (in the presence of breast tumor). The model includes two major VEGF isoforms VEGF121 and VEGF165, receptors VEGFR1, VEGFR2 and co-receptors Neuropilin-1 and Neuropilin-2. We have added receptors on parenchymal cells (muscle fibers and tumor cells), and incorporated experimental data for the cell surface density of receptors on the endothelial cells, myocytes, and tumor cells. The model is applied to investigate the action of VEGF-neutralizing agents (called "anti-VEGF") in the treatment of cancer. Results Through a sensitivity study, we examine how model parameters influence the level of free VEGF in the tumor, a measure of the response to VEGF-neutralizing drugs. We investigate the effects of systemic properties such as microvascular permeability and lymphatic flow, and of drug characteristics such as the clearance rate and binding affinity. We predict that increasing microvascular permeability in the tumor above 10-5 cm/s elicits the undesired effect of increasing tumor interstitial VEGF concentration beyond even the baseline level. We also examine the impact of the tumor microenvironment, including receptor expression and internalization, as well as VEGF secretion. We find that following anti-VEGF treatment, the concentration of free VEGF in the tumor can vary between 7 and 233 pM, with a dependence on both the density of VEGF receptors and co-receptors and the rate of neuropilin internalization on tumor cells. Finally, we predict that free VEGF in the tumor is reduced following anti-VEGF treatment when VEGF121 comprises at least

  4. Co-evolution of a broadly neutralizing HIV-1 antibody and founder virus

    PubMed Central

    Liao, Hua-Xin; Lynch, Rebecca; Zhou, Tongqing; Gao, Feng; Alam, S. Munir; Boyd, Scott D.; Fire, Andrew Z.; Roskin, Krishna M.; Schramm, Chaim A.; Zhang, Zhenhai; Zhu, Jiang; Shapiro, Lawrence; Mullikin, James C.; Gnanakaran, S.; Hraber, Peter; Wiehe, Kevin; Kelsoe, Garnett; Yang, Guang; Xia, Shi-Mao; Montefiori, David C.; Parks, Robert; Lloyd, Krissey E.; Scearce, Richard M.; Soderberg, Kelly A.; Cohen, Myron; Kaminga, Gift; Louder, Mark K.; Tran, Lillan M.; Chen, Yue; Cai, Fangping; Chen, Sheri; Moquin, Stephanie; Du, Xiulian; Joyce, Gordon M.; Srivatsan, Sanjay; Zhang, Baoshan; Zheng, Anqi; Shaw, George M.; Hahn, Beatrice H.; Kepler, Thomas B.; Korber, Bette T.M.; Kwong, Peter D.; Mascola, John R.; Haynes, Barton F.

    2013-01-01

    Current HIV-1 vaccines elicit strain-specific neutralizing antibodies. However, cross-reactive neutralizing antibodies arise in ~20% of HIV-1-infected individuals, and details of their generation could provide a roadmap for effective vaccination. Here we report the isolation, evolution and structure of a broadly neutralizing antibody from an African donor followed from time of infection. The mature antibody, CH103, neutralized ~55% of HIV-1 isolates, and its co-crystal structure with gp120 revealed a novel loop-based mechanism of CD4-binding site recognition. Virus and antibody gene sequencing revealed concomitant virus evolution and antibody maturation. Notably, the CH103-lineage unmutated common ancestor avidly bound the transmitted/founder HIV-1 envelope glycoprotein, and evolution of antibody neutralization breadth was preceded by extensive viral diversification in and near the CH103 epitope. These data elucidate the viral and antibody evolution leading to induction of a lineage of HIV-1 broadly neutralizing antibodies and provide insights into strategies to elicit similar antibodies via vaccination. PMID:23552890

  5. Cross-neutralizing human anti-poliovirus antibodies bind the recognition site for cellular receptor

    PubMed Central

    Chen, Zhaochun; Fischer, Elizabeth R.; Kouiavskaia, Diana; Hansen, Bryan T.; Ludtke, Steven J.; Bidzhieva, Bella; Makiya, Michelle; Agulto, Liane; Purcell, Robert H.; Chumakov, Konstantin

    2013-01-01

    Most structural information about poliovirus interaction with neutralizing antibodies was obtained in the 1980s in studies of mouse monoclonal antibodies. Recently we have isolated a number of human/chimpanzee anti-poliovirus antibodies and demonstrated that one of them, MAb A12, could neutralize polioviruses of both serotypes 1 and 2. This communication presents data on isolation of an additional cross-neutralizing antibody (F12) and identification of a previously unknown epitope on the surface of poliovirus virions. Epitope mapping was performed by sequencing of antibody-resistant mutants and by cryo-EM of complexes of virions with Fab fragments. The results have demonstrated that both cross-neutralizing antibodies bind the site located at the bottom of the canyon surrounding the fivefold axis of symmetry that was previously shown to interact with cellular poliovirus receptor CD155. However, the same antibody binds to serotypes 1 and 2 through different specific interactions. It was also shown to interact with type 3 poliovirus, albeit with about 10-fold lower affinity, insufficient for effective neutralization. Antibody interaction with the binding site of the cellular receptor may explain its broad reactivity and suggest that further screening or antibody engineering could lead to a universal antibody capable of neutralizing all three serotypes of poliovirus. PMID:24277851

  6. Flexibility in Surface-Exposed Loops in a Virus Capsid Mediates Escape from Antibody Neutralization

    PubMed Central

    Kolawole, Abimbola O.; Li, Ming; Xia, Chunsheng; Fischer, Audrey E.; Giacobbi, Nicholas S.; Rippinger, Christine M.; Proescher, Jody B. G.; Wu, Susan K.; Bessling, Seneca L.; Gamez, Monica; Yu, Chenchen; Zhang, Rebecca; Mehoke, Thomas S.; Pipas, James M.; Wolfe, Joshua T.; Lin, Jeffrey S.; Feldman, Andrew B.

    2014-01-01

    ABSTRACT New human norovirus strains emerge every 2 to 3 years, partly due to mutations in the viral capsid that allow escape from antibody neutralization and herd immunity. To understand how noroviruses evolve antibody resistance, we investigated the structural basis for the escape of murine norovirus (MNV) from antibody neutralization. To identify specific residues in the MNV-1 protruding (P) domain of the capsid that play a role in escape from the neutralizing monoclonal antibody (MAb) A6.2, 22 recombinant MNVs were generated with amino acid substitutions in the A′B′ and E′F′ loops. Six mutations in the E′F′ loop (V378F, A382K, A382P, A382R, D385G, and L386F) mediated escape from MAb A6.2 neutralization. To elucidate underlying structural mechanisms for these results, the atomic structure of the A6.2 Fab was determined and fitted into the previously generated pseudoatomic model of the A6.2 Fab/MNV-1 virion complex. Previously, two distinct conformations, A and B, of the atomic structures of the MNV-1 P domain were identified due to flexibility in the two P domain loops. A superior stereochemical fit of the A6.2 Fab to the A conformation of the MNV P domain was observed. Structural analysis of our observed escape mutants indicates changes toward the less-preferred B conformation of the P domain. The shift in the structural equilibrium of the P domain toward the conformation with poor structural complementarity to the antibody strongly supports a unique mechanism for antibody escape that occurs via antigen flexibility instead of direct antibody-antigen binding. IMPORTANCE Human noroviruses cause the majority of all nonbacterial gastroenteritis worldwide. New epidemic strains arise in part by mutations in the viral capsid leading to escape from antibody neutralization. Herein, we identify a series of point mutations in a norovirus capsid that mediate escape from antibody neutralization and determine the structure of a neutralizing antibody. Fitting of

  7. Passive neutralizing antibody controls SHIV viremia and enhances B cell responses in infant macaques

    PubMed Central

    Ng, Cherie T.; Jaworski, J. Pablo; Jayaraman, Pushpa; Sutton, William F.; Delio, Patrick; Kuller, LaRene; Anderson, David; Landucci, Gary; Richardson, Barbra A.; Burton, Dennis R.; Forthal, Donald N.; Haigwood, Nancy L.

    2010-01-01

    Maternal HIV-1-specific antibodies are efficiently transferred to newborns; their role in disease control is unknown. We administered non-sterilizing levels of neutralizing IgG, including the human neutralizing monoclonal IgG1b12, to six newborn macaques before oral challenge with SHIVSF612P3. All rapidly developed neutralizing antibodies and had significantly reduced plasma viremia for 6 months. These studies support the use of neutralizing antibodies in enhancing B cell responses and viral control in perinatal settings. PMID:20890292

  8. Strain-Specific V3 and CD4 Binding Site Autologous HIV-1 Neutralizing Antibodies Select Neutralization-Resistant Viruses

    SciTech Connect

    Moody, M.  Anthony; Gao, Feng; Gurley, Thaddeus  C.; Amos, Joshua  D.; Kumar, Amit; Hora, Bhavna; Marshall, Dawn  J.; Whitesides, John  F.; Xia, Shi-Mao; Parks, Robert; Lloyd, Krissey  E.; Hwang, Kwan-Ki; Lu, Xiaozhi; Bonsignori, Mattia; Finzi, Andrés; Vandergrift, Nathan  A.; Alam, S.  Munir; Ferrari, Guido; Shen, Xiaoying; Tomaras, Georgia  D.; Kamanga, Gift; Cohen, Myron  S.; Sam, Noel  E.; Kapiga, Saidi; Gray, Elin S.; Tumba, Nancy  L.; Morris, Lynn; Zolla-Pazner, Susan; Gorny, Miroslaw  K.; Mascola, John  R.; Hahn, Beatrice H.; Shaw, George  M.; Sodroski, Joseph  G.; Liao, Hua-Xin; Montefiori, David C.; Hraber, Peter T.; Korber, Bette T.; Haynes, Barton F.

    2015-09-09

    The third variable (V3) loop and the CD4 binding site (CD4bs) of the viral envelope are frequently targeted by neutralizing antibodies (nAbs) in HIV-1-infected individuals. In chronic infection, virus escape mutants repopulate the plasma and V3 and CD4bs nAbs emerge that can neutralize heterologous tier 1 easy-to-neutralize, but not tier 2 difficult-to-neutralize HIV-1 isolates. However, neutralization sensitivity of autologous plasma viruses to this type of nAb response has not been studied. We describe the development and evolution in vivo of antibodies distinguished by their target specificity for V3and CD4bs epitopes on autologous tier 2 viruses but not on heterologous tier 2 viruses. A surprisingly high fraction of autologous circulating viruses was sensitive to these antibodies. These findings demonstrate a role for V3 and CD4bs antibodies in constraining the native envelope trimer in vivo to a neutralization-resistant phenotype, explaining why HIV-1 transmission generally occurs by tier 2 neutralization-resistant viruses.

  9. Strain-Specific V3 and CD4 Binding Site Autologous HIV-1 Neutralizing Antibodies Select Neutralization-Resistant Viruses

    DOE PAGESBeta

    Moody, M.  Anthony; Gao, Feng; Gurley, Thaddeus  C.; Amos, Joshua  D.; Kumar, Amit; Hora, Bhavna; Marshall, Dawn  J.; Whitesides, John  F.; Xia, Shi-Mao; Parks, Robert; et al

    2015-09-09

    The third variable (V3) loop and the CD4 binding site (CD4bs) of the viral envelope are frequently targeted by neutralizing antibodies (nAbs) in HIV-1-infected individuals. In chronic infection, virus escape mutants repopulate the plasma and V3 and CD4bs nAbs emerge that can neutralize heterologous tier 1 easy-to-neutralize, but not tier 2 difficult-to-neutralize HIV-1 isolates. However, neutralization sensitivity of autologous plasma viruses to this type of nAb response has not been studied. We describe the development and evolution in vivo of antibodies distinguished by their target specificity for V3and CD4bs epitopes on autologous tier 2 viruses but not on heterologous tiermore » 2 viruses. A surprisingly high fraction of autologous circulating viruses was sensitive to these antibodies. These findings demonstrate a role for V3 and CD4bs antibodies in constraining the native envelope trimer in vivo to a neutralization-resistant phenotype, explaining why HIV-1 transmission generally occurs by tier 2 neutralization-resistant viruses.« less

  10. Bispecific Antibodies Targeting Different Epitopes on the HIV-1 Envelope Exhibit Broad and Potent Neutralization

    PubMed Central

    Asokan, M.; Rudicell, R. S.; Louder, M.; McKee, K.; O'Dell, S.; Stewart-Jones, G.; Wang, K.; Xu, L.; Chen, X.; Choe, M.; Chuang, G.; Georgiev, I. S.; Joyce, M. G.; Kirys, T.; Ko, S.; Pegu, A.; Shi, W.; Todd, J. P.; Yang, Z.; Bailer, R. T.; Rao, S.; Kwong, P. D.; Nabel, G. J.

    2015-01-01

    ABSTRACT The potency and breadth of the recently isolated neutralizing human monoclonal antibodies to HIV-1 have stimulated interest in their use to prevent or to treat HIV-1 infection. Due to the antigenically diverse nature of the HIV-1 envelope (Env), no single antibody is highly active against all viral strains. While the physical combination of two broadly neutralizing antibodies (bNAbs) can improve coverage against the majority of viruses, the clinical-grade manufacturing and testing of two independent antibody products are time and resource intensive. In this study, we constructed bispecific immunoglobulins (IgGs) composed of independent antigen-binding fragments with a common Fc region. We developed four different bispecific IgG variants that included antibodies targeting four major sites of HIV-1 neutralization. We show that these bispecific IgGs display features of both antibody specificities and, in some cases, display improved coverage over the individual parental antibodies. All four bispecific IgGs neutralized 94% to 97% of antigenically diverse viruses in a panel of 206 HIV-1 strains. Among the bispecific IgGs tested, VRC07 × PG9-16 displayed the most favorable neutralization profile. It was superior in breadth to either of the individual antibodies, neutralizing 97% of viruses with a median 50% inhibitory concentration (IC50) of 0.055 μg/ml. This bispecific IgG also demonstrated in vivo pharmacokinetic parameters comparable to those of the parental bNAbs when administered to rhesus macaques. These results suggest that IgG-based bispecific antibodies are promising candidates for the prevention and treatment of HIV-1 infection in humans. IMPORTANCE To prevent or treat HIV-1 infection, antibodies must potently neutralize nearly all strains of HIV-1. Thus, the physical combination of two or more antibodies may be needed to broaden neutralization coverage and diminish the possibility of viral resistance. A bispecific antibody that has two different

  11. Analysis of defined combinations of monoclonal antibodies in anthrax toxin neutralization assays and their synergistic action.

    PubMed

    Ngundi, Miriam M; Meade, Bruce D; Little, Stephen F; Quinn, Conrad P; Corbett, Cindi R; Brady, Rebecca A; Burns, Drusilla L

    2012-05-01

    Antibodies against the protective antigen (PA) component of anthrax toxin play an important role in protection against disease caused by Bacillus anthracis. In this study, we examined defined combinations of PA-specific monoclonal antibodies for their ability to neutralize anthrax toxin in cell culture assays. We observed additive, synergistic, and antagonistic effects of the antibodies depending on the specific antibody combination examined and the specific assay used. Synergistic toxin-neutralizing antibody interactions were examined in more detail. We found that one mechanism that can lead to antibody synergy is the bridging of PA monomers by one antibody, with resultant bivalent binding of the second antibody. These results may aid in optimal design of new vaccines and antibody therapies against anthrax. PMID:22441391

  12. Neutralizing antibodies to different proteins of African swine fever virus inhibit both virus attachment and internalization.

    PubMed Central

    Gómez-Puertas, P; Rodríguez, F; Oviedo, J M; Ramiro-Ibáñez, F; Ruiz-Gonzalvo, F; Alonso, C; Escribano, J M

    1996-01-01

    African swine fever virus induces in convalescent pigs antibodies that neutralized the virus before and after binding to susceptible cells, inhibiting both virus attachment and internalization. A further analysis of the neutralization mechanisms mediated by the different viral proteins showed that antibodies to proteins p72 and p54 are involved in the inhibition of a first step of the replication cycle related to virus attachment, while antibodies to protein p30 are implicated in the inhibition of virus internalization. PMID:8764090

  13. Passive antibody therapy of Lassa fever in cynomolgus monkeys: importance of neutralizing antibody and Lassa virus strain.

    PubMed Central

    Jahrling, P B; Peters, C J

    1984-01-01

    Lassa virus-infected cynomolgus monkeys were passively immunized with immune plasma of primate or human origin to gain insight into criteria for plasma selection and administration to human Lassa fever patients. Protective efficacy was correlated with neutralizing antibody concentrations, expressed as a log10 neutralization index (LNI). Convalescent Lassa-immune monkey plasma was titrated for protective efficacy in monkeys by intravenous inoculation with dilutions of plasma on the day of subcutaneous Lassa virus inoculation (day 0) and again on days 3 and 6. Monkeys that received undiluted plasma (LNI = 4.1) (1 ml/kg per treatment) survived a lethal viral dose, whereas those given a 1:3 dilution (LNI = 2.6) of this same plasma (1 ml/kg per treatment) died. Protection was restored when the volume of the 1:3 plasma dilution was increased to 3 ml/kg per treatment. Plasma diluted 1:9 or more (LNI = 1.5 or less) delayed onset and suppressed the magnitude of viremia but failed to confer protection at 3 ml/kg per treatment. Immunological enhancement, defined as increased viremia or accelerated death, did not occur following inadequate treatment. Human convalescent plasma also protected recipient monkeys; reductions in mortality and viremia were accurately predicted by the LNI of the plasma. Plasma of Liberian origin neutralized a Liberian Lassa strain more effectively than a Sierra Leone strain in vitro (LNI = 2.8 and 1.6, respectively) and protected monkeys more effectively against the Liberian strain. Geographic origin is thus a factor in the selection of optimal plasma for treatment of human Lassa fever, since geographically matched plasma is more likely to contain adequate LNI titers against homologous Lassa virus strains.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:6715049

  14. Focused Evolution of HIV-1 Neutralizing Antibodies Revealed by Structures and Deep Sequencing

    SciTech Connect

    Wu, Xueling; Zhou, Tongqing; Zhu, Jiang; Zhang, Baoshan; Georgiev, Ivelin; Wang, Charlene; Chen, Xuejun; Longo, Nancy S.; Louder, Mark; McKee, Krisha; O’Dell, Sijy; Perfetto, Stephen; Schmidt, Stephen D.; Shi, Wei; Wu, Lan; Yang, Yongping; Yang, Zhi-Yong; Yang, Zhongjia; Zhang, Zhenhai; Bonsignori, Mattia; Crump, John A.; Kapiga, Saidi H.; Sam, Noel E.; Haynes, Barton F.; Simek, Melissa; Burton, Dennis R.; Koff, Wayne C.; Doria-Rose, Nicole A.; Connors, Mark; Mullikin, James C.; Nabel, Gary J.; Roederer, Mario; Shapiro, Lawrence; Kwong, Peter D.; Mascola, John R.

    2013-03-04

    Antibody VRC01 is a human immunoglobulin that neutralizes about 90% of HIV-1 isolates. To understand how such broadly neutralizing antibodies develop, we used x-ray crystallography and 454 pyrosequencing to characterize additional VRC01-like antibodies from HIV-1-infected individuals. Crystal structures revealed a convergent mode of binding for diverse antibodies to the same CD4-binding-site epitope. A functional genomics analysis of expressed heavy and light chains revealed common pathways of antibody-heavy chain maturation, confined to the IGHV1-2*02 lineage, involving dozens of somatic changes, and capable of pairing with different light chains. Broadly neutralizing HIV-1 immunity associated with VRC01-like antibodies thus involves the evolution of antibodies to a highly affinity-matured state required to recognize an invariant viral structure, with lineages defined from thousands of sequences providing a genetic roadmap of their development.

  15. A game of numbers: the stoichiometry of antibody-mediated neutralization of flavivirus infection

    PubMed Central

    Pierson, Theodore C.; Diamond, Michael S.

    2016-01-01

    The humoral response contributes to the protection against viral pathogens. Although antibodies have the potential to inhibit viral infections via several mechanisms, an ability to neutralize viruses directly may be particularly important. Neutralizing antibody titers are commonly used as predictors of protection from infection, especially in the context of vaccine responses and immunity. Despite the simplicity of the concept, how antibody binding results in virus inactivation is incompletely understood despite decades of research. Flaviviruses have been an attractive system in which to seek a structural and quantitative understanding of how antibody interactions with virions modulate infection because of the contribution of antibodies to both protection and pathogenesis. This review will present a stoichiometric model of antibody-mediated neutralization of flaviviruses and discuss how these concepts can inform the development of vaccines and antibody-based therapeutics. PMID:25595803

  16. IBC’s 23rd Annual Antibody Engineering, 10th Annual Antibody Therapeutics International Conferences and the 2012 Annual Meeting of The Antibody Society

    PubMed Central

    Klöhn, Peter-Christian; Wuellner, Ulrich; Zizlsperger, Nora; Zhou, Yu; Tavares, Daniel; Berger, Sven; Zettlitz, Kirstin A.; Proetzel, Gabriele; Yong, May; Begent, Richard H.J.; Reichert, Janice M

    2013-01-01

    The 23rd Annual Antibody Engineering, 10th Annual Antibody Therapeutics international conferences, and the 2012 Annual Meeting of The Antibody Society, organized by IBC Life Sciences with contributions from The Antibody Society and two Scientific Advisory Boards, were held December 3–6, 2012 in San Diego, CA. The meeting drew over 800 participants who attended sessions on a wide variety of topics relevant to antibody research and development. As a prelude to the main events, a pre-conference workshop held on December 2, 2012 focused on intellectual property issues that impact antibody engineering. The Antibody Engineering Conference was composed of six sessions held December 3–5, 2012: (1) From Receptor Biology to Therapy; (2) Antibodies in a Complex Environment; (3) Antibody Targeted CNS Therapy: Beyond the Blood Brain Barrier; (4) Deep Sequencing in B Cell Biology and Antibody Libraries; (5) Systems Medicine in the Development of Antibody Therapies/Systematic Validation of Novel Antibody Targets; and (6) Antibody Activity and Animal Models. The Antibody Therapeutics conference comprised four sessions held December 4–5, 2012: (1) Clinical and Preclinical Updates of Antibody-Drug Conjugates; (2) Multifunctional Antibodies and Antibody Combinations: Clinical Focus; (3) Development Status of Immunomodulatory Therapeutic Antibodies; and (4) Modulating the Half-Life of Antibody Therapeutics. The Antibody Society’s special session on applications for recording and sharing data based on GIATE was held on December 5, 2012, and the conferences concluded with two combined sessions on December 5–6, 2012: (1) Development Status of Early Stage Therapeutic Antibodies; and (2) Immunomodulatory Antibodies for Cancer Therapy. PMID:23575266

  17. Equine Infectious Anemia Virus Envelope Evolution In Vivo during Persistent Infection Progressively Increases Resistance to In Vitro Serum Antibody Neutralization as a Dominant Phenotype

    PubMed Central

    Howe, Laryssa; Leroux, Caroline; Issel, Charles J.; Montelaro, Ronald C.

    2002-01-01

    Equine infectious anemia virus (EIAV) infection of horses is characterized by well-defined waves of viremia associated with the sequential evolution of distinct viral populations displaying extensive envelope gp90 variation; however, a correlation of in vivo envelope evolution with in vitro serum neutralization phenotype remains undefined. Therefore, the goal of the present study was to utilize a previously defined panel of natural variant EIAV envelope isolates from sequential febrile episodes to characterize the effects of envelope variation during persistent infection on viral neutralization phenotypes and to define the determinants of EIAV envelope neutralization specificity. To assess the neutralization phenotypes of the sequential EIAV envelope variants, we determined the sensitivity of five variant envelopes to neutralization by a longitudinal panel of immune serum from the source infected pony. The results indicated that the evolution of the EIAV envelope sequences observed during sequential febrile episodes produced an increasingly neutralization-resistant phenotype. To further define the envelope determinants of EIAV neutralization specificity, we examined the neutralization properties of a panel of chimeric envelope constructs derived from reciprocal envelope domain exchanges between selected neutralization-sensitive and neutralization-resistant envelope variants. These results indicated that the EIAV gp90 V3 and V4 domains individually conferred serum neutralization resistance while other envelope segments in addition to V3 and V4 were evidently required for conferring total serum neutralization sensitivity. These data clearly demonstrate for the first time the influence of sequential gp90 variation during persistent infection in increasing envelope neutralization resistance, identify the gp90 V3 and V4 domains as the principal determinants of antibody neutralization resistance, and indicate distinct complex cooperative envelope domain interactions in

  18. Envelope Variants Circulating as Initial Neutralization Breadth Developed in Two HIV-Infected Subjects Stimulate Multiclade Neutralizing Antibodies in Rabbits

    PubMed Central

    Malherbe, Delphine C.; Pissani, Franco; Sather, D. Noah; Guo, Biwei; Pandey, Shilpi; Sutton, William F.; Stuart, Andrew B.; Robins, Harlan; Park, Byung; Krebs, Shelly J.; Schuman, Jason T.; Kalams, Spyros; Hessell, Ann J.

    2014-01-01

    ABSTRACT Identifying characteristics of the human immunodeficiency virus type 1 (HIV-1) envelope that are effective in generating broad, protective antibodies remains a hurdle to HIV vaccine design. Emerging evidence of the development of broad and potent neutralizing antibodies in HIV-infected subjects suggests that founder and subsequent progeny viruses may express unique antigenic motifs that contribute to this developmental pathway. We hypothesize that over the course of natural infection, B cells are programmed to develop broad antibodies by exposure to select populations of emerging envelope quasispecies variants. To test this hypothesis, we identified two unrelated subjects whose antibodies demonstrated increasing neutralization breadth against a panel of HIV-1 isolates over time. Full-length functional env genes were cloned longitudinally from these subjects from months after infection through 2.6 to 5.8 years of infection. Motifs associated with the development of breadth in published, cross-sectional studies were found in both subjects. We compared the immunogenicity of envelope vaccines derived from time points obtained during and after broadening of neutralization activity within these subjects. Rabbits were coimmunized four times with selected multiple gp160 DNAs and gp140-trimeric envelope proteins. The affinity of the polyclonal response increased as a function of boosting. The most rapid and persistent neutralization of multiclade tier 1 viruses was elicited by envelopes that were circulating in plasma at time points prior to the development of 50% neutralization breadth in both human subjects. The breadth elicited in rabbits was not improved by exposure to later envelope variants. These data have implications for vaccine development in describing a target time point to identify optimal envelope immunogens. IMPORTANCE Vaccine protection against viral infections correlates with the presence of neutralizing antibodies; thus, vaccine components capable

  19. Neutralizing and non-neutralizing monoclonal antibodies against dengue virus E protein derived from a naturally infected patient

    PubMed Central

    2010-01-01

    Background Antibodies produced in response to infection with any of the four serotypes of dengue virus generally provide homotypic immunity. However, prior infection or circulating maternal antibodies can also mediate a non-protective antibody response that can enhance the course of disease in a subsequent heterotypic infection. Naturally occurring human monoclonal antibodies can help us understand the protective and pathogenic roles of the humoral immune system in dengue virus infection. Results Epstein-Barr Virus (EBV) transformation of B cells isolated from the peripheral blood of a human subject with previous dengue infection was performed. B cell cultures were screened by ELISA for antibodies to dengue (DENV) envelope (E) protein. ELISA positive cultures were cloned by limiting dilution. Three IgG1 human monoclonal antibodies (HMAbs) were purified and their binding specificity to E protein was verified by ELISA and biolayer interferometry. Neutralization and enhancement assays were conducted in epithelial and macrophage-like cell lines, respectively. All three HMAbs bound to E from at least two of the four DENV serotypes, one of the HMAbs was neutralizing, and all were able to enhance DENV infection. Conclusions HMAbs against DENV can be successfully generated by EBV transformation of B cells from patients at least two years after naturally acquired DENV infections. These antibodies show different patterns of cross-reactivity, neutralizing, and enhancement activity. PMID:20132551

  20. Human Antibody Titers to Epstein-Barr Virus (EBV) gp350 Correlate with Neutralization of Infectivity Better than Antibody Titers to EBV gp42 Using a Rapid Flow Cytometry-Based EBV Neutralization Assay

    PubMed Central

    Sashihara, Junji; Burbelo, Peter D.; Savoldo, Barbara; Pierson, Theodore C.; Cohen, Jeffrey I.

    2009-01-01

    Measurement of neutralizing antibodies to Epstein-Barr virus (EBV) is important for evaluation of candidate vaccines. The current neutralization assay is based on antibody inhibition of EBV transformation of B cells and requires 6 weeks to perform. We developed a rapid, quantitative flow cytometry assay and show that neutralizing antibody titers measured by the new assay strongly correlate with antibody titers in the standard transformation-based assay. Antibodies to EBV gp350 and gp42 have been shown to block infection of B cells by EBV. Using new assays to quantify antibodies to these glycoproteins, we show for the first time that that human plasma contains high titers of antibody to gp42; these titers correlate with neutralization of EBV infectivity or transformation. Furthermore, we show that antibody titers to EBV gp350 correlate more strongly with neutralization than antibody titers to gp42. These assays should be useful in accessing antibody responses to candidate EBV vaccines. PMID:19584018

  1. Structural repertoire of HIV-1-neutralizing antibodies targeting the CD4 supersite in 14 donors

    PubMed Central

    Zhou, Tongqing; Lynch, Rebecca M.; Chen, Lei; Acharya, Priyamvada; Wu, Xueling; Doria-Rose, Nicole A.; Joyce, M. Gordon; Lingwood, Daniel; Soto, Cinque; Bailer, Robert T.; Ernandes, Michael J.; Kong, Rui; Longo, Nancy S.; Louder, Mark K.; McKee, Krisha; O’Dell, Sijy; Schmidt, Stephen D.; Tran, Lillian; Yang, Zhongjia; Druz, Aliaksandr; Luongo, Timothy S.; Moquin, Stephanie; Srivatsan, Sanjay; Yang, Yongping; Zhang, Baoshan; Zheng, Anqi; Pancera, Marie; Kirys, Tatsiana; Georgiev, Ivelin S.; Gindin, Tatyana; Peng, Hung-Pin; Yang, An-Suei; Mullikin, James C.; Gray, Matthew D.; Stamatatos, Leonidas; Burton, Dennis R.; Koff, Wayne C.; Cohen, Myron S.; Haynes, Barton F.; Casazza, Joseph P.; Connors, Mark; Corti, Davide; Lanzavecchia, Antonio; Sattentau, Quentin J.; Weiss, Robin A.; West, Anthony P.; Bjorkman, Pamela J.; Scheid, Johannes F.; Nussenzweig, Michel C.; Shapiro, Lawrence; Mascola, John R.; Kwong, Peter D.

    2015-01-01

    The site on the HIV-1 gp120 glycoprotein that binds the CD4 receptor is recognized by broadly reactive antibodies, several of which neutralize over 90% of HIV-1 strains. To understand how antibodies achieve such neutralization, we isolated CD4-binding-site (CD4bs) antibodies and analyzed 16 co-crystal structures –8 determined here– of CD4bs antibodies from 14 donors. The 16 antibodies segregated by recognition mode and developmental ontogeny into two types: CDR H3-dominated and VH-gene-restricted. Both could achieve greater than 80% neutralization breadth, and both could develop in the same donor. Although paratope chemistries differed, all 16 gp120-CD4bs antibody complexes showed geometric similarity, with antibody-neutralization breadth correlating with antibody-angle of approach relative to the most effective antibody of each type. The repertoire for effective recognition of the CD4 supersite thus comprises antibodies with distinct paratopes arrayed about two optimal geometric orientations, one achieved by CDR H3 ontogenies and the other achieved by VH-gene-restricted ontogenies. PMID:26004070

  2. Neutralizing monoclonal antibodies against listeriolysin: mapping of epitopes involved in pore formation.

    PubMed Central

    Darji, A; Niebuhr, K; Hense, M; Wehland, J; Chakraborty, T; Weiss, S

    1996-01-01

    Six different mouse monoclonal antibodies (MAbs) and a specific rabbit polygonal antibody were raised against listeriolysin. Four of the MAbs also recognized seeligeriolysin, and five cross-reacted with ivanolysin. The hemolytic activity could be neutralized by the polygonal antibody as well as by five of the MAbs. None of the neutralizing antibodies interfered with the binding of listeriolysin to the cellular membrane. The epitopes recognized by the MAbs were localized by using overlapping synthetic peptides between positions 59 and 279, a region hitherto not implicated in mediating hemolytic activity. PMID:8675351

  3. NEP: web server for epitope prediction based on antibody neutralization of viral strains with diverse sequences.

    PubMed

    Chuang, Gwo-Yu; Liou, David; Kwong, Peter D; Georgiev, Ivelin S

    2014-07-01

    Delineation of the antigenic site, or epitope, recognized by an antibody can provide clues about functional vulnerabilities and resistance mechanisms, and can therefore guide antibody optimization and epitope-based vaccine design. Previously, we developed an algorithm for antibody-epitope prediction based on antibody neutralization of viral strains with diverse sequences and validated the algorithm on a set of broadly neutralizing HIV-1 antibodies. Here we describe the implementation of this algorithm, NEP (Neutralization-based Epitope Prediction), as a web-based server. The users must supply as input: (i) an alignment of antigen sequences of diverse viral strains; (ii) neutralization data for the antibody of interest against the same set of antigen sequences; and (iii) (optional) a structure of the unbound antigen, for enhanced prediction accuracy. The prediction results can be downloaded or viewed interactively on the antigen structure (if supplied) from the web browser using a JSmol applet. Since neutralization experiments are typically performed as one of the first steps in the characterization of an antibody to determine its breadth and potency, the NEP server can be used to predict antibody-epitope information at no additional experimental costs. NEP can be accessed on the internet at http://exon.niaid.nih.gov/nep. PMID:24782517

  4. A novel reporter system for neutralizing and enhancing antibody assay against dengue virus

    PubMed Central

    2014-01-01

    Background Dengue virus (DENV) still poses a global public health threat, and no vaccine or antiviral therapy is currently available. Antibody plays distinct roles in controlling DENV infections. Neutralizing antibody is protective against DENV infection, whereas sub-neutralizing concentration of antibody can increase DENV infection, termed antibody-dependent enhancement (ADE). Plaque-based assay represents the most widely accepted method measuring neutralizing or enhancing antibodies. Results In this study, a novel reporter virus-based system was developed for measuring neutralization and ADE activity. A stable Renilla luciferase reporter DENV (Luc-DENV) that can produce robust luciferase signals in BHK-21 and K562 cells were used to establish the assay and validated against traditional plaque-based assay. Luciferase value analysis using various known DENV-specific monoclonal antibodies showed good repeatability and a well linear correlation with conventional plaque-based assays. The newly developed assay was finally validated with clinical samples from infected animals and individuals. Conclusions This reporter virus-based assay for neutralizing and enhancing antibody evaluation is rapid, lower cost, and high throughput, and will be helpful for laboratory detection and epidemiological investigation for DENV antibodies. PMID:24548533

  5. Two Escape Mechanisms of Influenza A Virus to a Broadly Neutralizing Stalk-Binding Antibody

    PubMed Central

    Chai, Ning; Swem, Lee R.; Reichelt, Mike; Chen-Harris, Haiyin; Luis, Elizabeth; Park, Summer; Fouts, Ashley; Lupardus, Patrick; Wu, Thomas D.; Li, Olga; McBride, Jacqueline; Lawrence, Michael; Xu, Min; Tan, Man-Wah

    2016-01-01

    Broadly neutralizing antibodies targeting the stalk region of influenza A virus (IAV) hemagglutinin (HA) are effective in blocking virus infection both in vitro and in vivo. The highly conserved epitopes recognized by these antibodies are critical for the membrane fusion function of HA and therefore less likely to be permissive for virus mutational escape. Here we report three resistant viruses of the A/Perth/16/2009 strain that were selected in the presence of a broadly neutralizing stalk-binding antibody. The three resistant viruses harbor three different mutations in the HA stalk: (1) Gln387Lys; (2) Asp391Tyr; (3) Asp391Gly. The Gln387Lys mutation completely abolishes binding of the antibody to the HA stalk epitope. The other two mutations, Asp391Tyr and Asp391Gly, do not affect antibody binding at neutral pH and only slightly reduce binding at low pH. Interestingly, they enhance the fusion ability of the HA, representing a novel mechanism that allows productive membrane fusion even in the presence of antibody and hence virus escape from antibody neutralization. Therefore, these mutations illustrate two different resistance mechanisms used by IAV to escape broadly neutralizing stalk-binding antibodies. Compared to the wild type virus, the resistant viruses release fewer progeny viral particles during replication and are more sensitive to Tamiflu, suggesting reduced viral fitness. PMID:27351973

  6. Two Escape Mechanisms of Influenza A Virus to a Broadly Neutralizing Stalk-Binding Antibody.

    PubMed

    Chai, Ning; Swem, Lee R; Reichelt, Mike; Chen-Harris, Haiyin; Luis, Elizabeth; Park, Summer; Fouts, Ashley; Lupardus, Patrick; Wu, Thomas D; Li, Olga; McBride, Jacqueline; Lawrence, Michael; Xu, Min; Tan, Man-Wah

    2016-06-01

    Broadly neutralizing antibodies targeting the stalk region of influenza A virus (IAV) hemagglutinin (HA) are effective in blocking virus infection both in vitro and in vivo. The highly conserved epitopes recognized by these antibodies are critical for the membrane fusion function of HA and therefore less likely to be permissive for virus mutational escape. Here we report three resistant viruses of the A/Perth/16/2009 strain that were selected in the presence of a broadly neutralizing stalk-binding antibody. The three resistant viruses harbor three different mutations in the HA stalk: (1) Gln387Lys; (2) Asp391Tyr; (3) Asp391Gly. The Gln387Lys mutation completely abolishes binding of the antibody to the HA stalk epitope. The other two mutations, Asp391Tyr and Asp391Gly, do not affect antibody binding at neutral pH and only slightly reduce binding at low pH. Interestingly, they enhance the fusion ability of the HA, representing a novel mechanism that allows productive membrane fusion even in the presence of antibody and hence virus escape from antibody neutralization. Therefore, these mutations illustrate two different resistance mechanisms used by IAV to escape broadly neutralizing stalk-binding antibodies. Compared to the wild type virus, the resistant viruses release fewer progeny viral particles during replication and are more sensitive to Tamiflu, suggesting reduced viral fitness. PMID:27351973

  7. Neutralization of Botulinum Neurotoxin by a Human Monoclonal Antibody Specific for the Catalytic Light Chain

    PubMed Central

    Adekar, Sharad P.; Takahashi, Tsuyoshi; Jones, R. Mark; Al-Saleem, Fetweh H.; Ancharski, Denise M.; Root, Michael J.; Kapadnis, B. P.; Simpson, Lance L.; Dessain, Scott K.

    2008-01-01

    Background Botulinum neurotoxins (BoNT) are a family of category A select bioterror agents and the most potent biological toxins known. Cloned antibody therapeutics hold considerable promise as BoNT therapeutics, but the therapeutic utility of antibodies that bind the BoNT light chain domain (LC), a metalloprotease that functions in the cytosol of cholinergic neurons, has not been thoroughly explored. Methods and Findings We used an optimized hybridoma method to clone a fully human antibody specific for the LC of serotype A BoNT (BoNT/A). The 4LCA antibody demonstrated potent in vivo neutralization when administered alone and collaborated with an antibody specific for the HC. In Neuro-2a neuroblastoma cells, the 4LCA antibody prevented the cleavage of the BoNT/A proteolytic target, SNAP-25. Unlike an antibody specific for the HC, the 4LCA antibody did not block entry of BoNT/A into cultured cells. Instead, it was taken up into synaptic vesicles along with BoNT/A. The 4LCA antibody also directly inhibited BoNT/A catalytic activity in vitro. Conclusions An antibody specific for the BoNT/A LC can potently inhibit BoNT/A in vivo and in vitro, using mechanisms not previously associated with BoNT-neutralizing antibodies. Antibodies specific for BoNT LC may be valuable components of an antibody antidote for BoNT exposure. PMID:18714390

  8. Disease-enhancing antibodies improve the efficacy of bacterial toxin-neutralizing antibodies

    PubMed Central

    Chow, Siu-Kei; Smith, Cameron; MacCarthy, Thomas; Pohl, Mary Ann; Bergman, Aviv; Casadevall, Arturo

    2013-01-01

    SUMMARY During infection, humoral immunity produces a polyclonal response with various immunoglobulins recognizing different epitopes within the microbe or toxin. Despite this diverse response, the biological activity of an antibody (Ab) is usually assessed by the action of a monoclonal population. We demonstrate that a combination of monoclonal antibodies (mAbs) that are individually disease-enhancing or neutralizing to Bacillus anthracis protective antigen (PA), a component of anthrax toxin, results in significantly augmented protection against the toxin. This boosted protection is Fc gamma receptor (FcγR)-dependent and involves the formation of stoichiometrically defined mAb-PA complexes that requires immunoglobulin bivalence and simultaneous interaction between PA and the two mAbs. The formation of these mAb-PA complexes inhibits PA oligomerization, resulting in protection. These data suggest that functional assessments of single Abs may inaccurately predict how the same Abs will operate in polyclonal preparations and imply that potentially therapeutic mAbs may be overlooked in single Ab screens. PMID:23601104

  9. Immunogenic peptides comprising a T-helper epitope and a B-cell neutralizing antibody epitope

    DOEpatents

    Haynes, Barton F.; Korber, Bette T.; De Lorimier, Robert M.

    2006-12-26

    The present invention relates, generally, to a polyvalent immunogen and, more particularly, to a method of inducing neutralizing antibodies against HIV and to a polyvalent immunogen suitable for use in such a method.

  10. Latency of Herpes Simplex Virus in Absence of Neutralizing Antibody: Model for Reactivation

    NASA Astrophysics Data System (ADS)

    Sekizawa, Tsuyoshi; Openshaw, Harry; Wohlenberg, Charles; Notkins, Abner Louis

    1980-11-01

    Mice inoculated with herpes simplex virus (type 1) by the lip or corneal route and then passively immunized with rabbit antibody to herpes simplex virus developed a latent infection in the trigeminal ganglia within 96 hours. Neutralizing antibody to herpes simplex virus was cleared from the circulation and could not be detected in most of these mice after 2 months. Examination of ganglia from the antibody-negative mice revealed latent virus in over 90 percent of the animals, indicating that serum neutralizing antibody is not necessary to maintain the latent state. When the lips or corneas of these mice were traumatized, viral reactivation occurred in up to 90 percent of the mice, as demonstrated by the appearance of neutralizing antibody. This study provides a model for identifying factors that trigger viral reactivation.

  11. Affinity Maturation to Improve Human Monoclonal Antibody Neutralization Potency and Breadth against Hepatitis C Virus*

    PubMed Central

    Wang, Yong; Keck, Zhen-yong; Saha, Anasuya; Xia, Jinming; Conrad, Fraser; Lou, Jianlong; Eckart, Michael; Marks, James D.; Foung, Steven K. H.

    2011-01-01

    A potent neutralizing antibody to a conserved hepatitis C virus (HCV) epitope might overcome its extreme variability, allowing immunotherapy. The human monoclonal antibody HC-1 recognizes a conformational epitope on the HCV E2 glycoprotein. Previous studies showed that HC-1 neutralizes most HCV genotypes but has modest potency. To improve neutralization, we affinity-matured HC-1 by constructing a library of yeast-displayed HC-1 single chain Fv (scFv) mutants, using for selection an E2 antigen from one of the poorly neutralized HCVpp. We developed an approach by parallel mutagenesis of the heavy chain variable (VH) and κ-chain variable (Vk) genes separately, then combining the optimized VH and Vk mutants. This resulted in the generation of HC-1-related scFv variants exhibiting improved affinities. The best scFv variant had a 92-fold improved affinity. After conversion to IgG1, some of the antibodies exhibited a 30-fold improvement in neutralization activity. Both surface plasmon resonance and solution kinetic exclusion analysis showed that the increase in affinity was largely due to a lowering of the dissociation rate constant, Koff. Neutralization against a panel of HCV pseudoparticles and infectious 2a HCV virus improved with the affinity-matured IgG1 antibodies. Interestingly, some of these antibodies neutralized a viral isolate that was not neutralized by wild-type HC-1. Moreover, propagating 2a HCVcc under the selective pressure of WT HC-1 or affinity-matured HC-1 antibodies yielded no viral escape mutants and, with the affinity-matured IgG1, needed 100-fold less antibody to achieve complete virus elimination. Taken together, these findings suggest that affinity-matured HC-1 antibodies are excellent candidates for therapeutic development. PMID:22002064

  12. Serum virus neutralization assay for detection and quantitation of serum neutralizing antibodies to influenza A virus in swine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The serum virus neutralization (SVN) assay is a serological test to detect the presence and magnitude of functional systemic antibodies that prevent infectivity of a virus. The SVN assay is a highly sensitive and specific test that may be applied to influenza A viruses (IAV) in swine to measure the ...

  13. Developmental pathway for potent V1V2-directed HIV-neutralizing antibodies.

    PubMed

    Doria-Rose, Nicole A; Schramm, Chaim A; Gorman, Jason; Moore, Penny L; Bhiman, Jinal N; DeKosky, Brandon J; Ernandes, Michael J; Georgiev, Ivelin S; Kim, Helen J; Pancera, Marie; Staupe, Ryan P; Altae-Tran, Han R; Bailer, Robert T; Crooks, Ema T; Cupo, Albert; Druz, Aliaksandr; Garrett, Nigel J; Hoi, Kam H; Kong, Rui; Louder, Mark K; Longo, Nancy S; McKee, Krisha; Nonyane, Molati; O'Dell, Sijy; Roark, Ryan S; Rudicell, Rebecca S; Schmidt, Stephen D; Sheward, Daniel J; Soto, Cinque; Wibmer, Constantinos Kurt; Yang, Yongping; Zhang, Zhenhai; Mullikin, James C; Binley, James M; Sanders, Rogier W; Wilson, Ian A; Moore, John P; Ward, Andrew B; Georgiou, George; Williamson, Carolyn; Abdool Karim, Salim S; Morris, Lynn; Kwong, Peter D; Shapiro, Lawrence; Mascola, John R

    2014-05-01

    Antibodies capable of neutralizing HIV-1 often target variable regions 1 and 2 (V1V2) of the HIV-1 envelope, but the mechanism of their elicitation has been unclear. Here we define the developmental pathway by which such antibodies are generated and acquire the requisite molecular characteristics for neutralization. Twelve somatically related neutralizing antibodies (CAP256-VRC26.01-12) were isolated from donor CAP256 (from the Centre for the AIDS Programme of Research in South Africa (CAPRISA)); each antibody contained the protruding tyrosine-sulphated, anionic antigen-binding loop (complementarity-determining region (CDR) H3) characteristic of this category of antibodies. Their unmutated ancestor emerged between weeks 30-38 post-infection with a 35-residue CDR H3, and neutralized the virus that superinfected this individual 15 weeks after initial infection. Improved neutralization breadth and potency occurred by week 59 with modest affinity maturation, and was preceded by extensive diversification of the virus population. HIV-1 V1V2-directed neutralizing antibodies can thus develop relatively rapidly through initial selection of B cells with a long CDR H3, and limited subsequent somatic hypermutation. These data provide important insights relevant to HIV-1 vaccine development. PMID:24590074

  14. Inhibitory and neutral antibodies to Plasmodium falciparum MSP119 form ring structures with their antigen.

    PubMed

    Dekker, Carien; Uthaipibull, Chairat; Calder, Lesley J; Lock, Matthew; Grainger, Munira; Morgan, William D; Dodson, Guy G; Holder, Anthony A

    2004-09-01

    Blood-stage malaria vaccine candidates include surface proteins of the merozoite. Antibodies to these proteins may either block essential steps during invasion or render the merozoite susceptible to phagocytosis or complement-mediated degradation. Structural information on merozoite surface proteins complexed to antibodies provides crucial information for knowledge-based vaccine design. The major merozoite surface protein MSP1 is an abundant surface molecule in Plasmodium falciparum. Only a subset of antibodies against MSP119 inhibits invasion (inhibitory antibodies), whereas other antibodies binding to MSP119 have no effect on invasion (neutral antibodies). Here we report on the complex of MSP119 with both inhibitory monoclonal antibody 12.10 and neutral monoclonal antibody 2F10. The complexes were established using both whole IgG's and Fab fragments, and analysed by dynamic light scattering, electron microscopy and analytical ultra centrifugation. Specific ring structures were formed in the ternary complex with the two antibodies, providing direct evidence of non-overlapping epitopes on MSP119. Mutational studies also indicated that the epitopes of the inhibitory and neutral antibodies are spatially remote. PMID:15279960

  15. The Bordetella Adenylate Cyclase Repeat-in-Toxin (RTX) Domain Is Immunodominant and Elicits Neutralizing Antibodies*

    PubMed Central

    Wang, Xianzhe; Maynard, Jennifer A.

    2015-01-01

    The adenylate cyclase toxin (ACT) is a multifunctional virulence factor secreted by Bordetella species. Upon interaction of its C-terminal hemolysin moiety with the cell surface receptor αMβ2 integrin, the N-terminal cyclase domain translocates into the host cell cytosol where it rapidly generates supraphysiological cAMP concentrations, which inhibit host cell anti-bacterial activities. Although ACT has been shown to induce protective immunity in mice, it is not included in any current acellular pertussis vaccines due to protein stability issues and a poor understanding of its role as a protective antigen. Here, we aimed to determine whether any single domain could recapitulate the antibody responses induced by the holo-toxin and to characterize the dominant neutralizing antibody response. We first immunized mice with ACT and screened antibody phage display libraries for binding to purified ACT. The vast majority of unique antibodies identified bound the C-terminal repeat-in-toxin (RTX) domain. Representative antibodies binding two nonoverlapping, neutralizing epitopes in the RTX domain prevented ACT association with J774A.1 macrophages and soluble αMβ2 integrin, suggesting that these antibodies inhibit the ACT-receptor interaction. Sera from mice immunized with the RTX domain showed similar neutralizing activity as ACT-immunized mice, indicating that this domain induced an antibody response similar to that induced by ACT. These data demonstrate that RTX can elicit neutralizing antibodies and suggest it may present an alternative to ACT. PMID:25505186

  16. Anthrax vaccine recipients lack antibody against the loop neutralizing determinant: a protective neutralizing epitope from Bacillus anthracis protective antigen

    PubMed Central

    Oscherwitz, Jon; Quinn, Conrad P.; Cease, Kemp B.

    2015-01-01

    Background Epitope-focused immunogens can elicit antibody against the loop neutralizing determinant (LND), a neutralizing epitope found within the 2β2-2β3 loop of protective antigen (PA), which can protect rabbits from high-dose inhalation challenge with Bacillus anthracis Ames strain. Interestingly, data suggests that this epitope is relatively immunosilent in rabbits and non-human primates immunized with full length PA. Methods To determine whether the LND is immunosilent among humans vaccinated with PA, we screened antisera from AVA- or placebo-vaccinees from a clinical trial for antibody reactive with the LND. Results AVA-vaccinee sera had significant PA-specific antibody compared to placebo-vaccinee sera; however, sera from the two cohorts were indistinguishable with regard to the frequency of individuals with antibody specific for the LND. Conclusions AVA-vaccinees have a low frequency of antibody reactive with the LND. As with rabbits and non-human primates, the elicitation of LND-specific antibody in humans appears to require immunization with an epitope-focused vaccine. PMID:25820066

  17. The Effects of Somatic Hypermutation on Neutralization and Binding in the PGT121 Family of Broadly Neutralizing HIV Antibodies

    PubMed Central

    Vigneault, Francois; Julien, Jean-Philippe; Briney, Bryan; Ramos, Alejandra; Saye, Karen F.; Le, Khoa; Mahan, Alison; Wang, Shenshen; Kardar, Mehran; Yaari, Gur; Walker, Laura M.; Simen, Birgitte B.; St. John, Elizabeth P.; Chan-Hui, Po-Ying; Swiderek, Kristine; Kleinstein, Stephen H.; Alter, Galit; Seaman, Michael S.; Chakraborty, Arup K.; Koller, Daphne; Wilson, Ian A.; Church, George M.; Burton, Dennis R.; Poignard, Pascal

    2013-01-01

    Broadly neutralizing HIV antibodies (bnAbs) are typically highly somatically mutated, raising doubts as to whether they can be elicited by vaccination. We used 454 sequencing and designed a novel phylogenetic method to model lineage evolution of the bnAbs PGT121–134 and found a positive correlation between the level of somatic hypermutation (SHM) and the development of neutralization breadth and potency. Strikingly, putative intermediates were characterized that show approximately half the mutation level of PGT121–134 but were still capable of neutralizing roughly 40–80% of PGT121–134 sensitive viruses in a 74-virus panel at median titers between 15- and 3-fold higher than PGT121–134. Such antibodies with lower levels of SHM may be more amenable to elicitation through vaccination while still providing noteworthy coverage. Binding characterization indicated a preference of inferred intermediates for native Env binding over monomeric gp120, suggesting that the PGT121–134 lineage may have been selected for binding to native Env at some point during maturation. Analysis of glycan-dependent neutralization for inferred intermediates identified additional adjacent glycans that comprise the epitope and suggests changes in glycan dependency or recognition over the course of affinity maturation for this lineage. Finally, patterns of neutralization of inferred bnAb intermediates suggest hypotheses as to how SHM may lead to potent and broad HIV neutralization and provide important clues for immunogen design. PMID:24278016

  18. Cross-clade neutralizing antibodies against HIV-1 induced in rabbits by focusing the immune response on a neutralizing epitope

    SciTech Connect

    Zolla-Pazner, Susan; Cohen, Sandra; Pinter, Abraham; Krachmarov, Chavdar; Wrin, Terri; Wang Shixia; Lu Shan

    2009-09-15

    Studies were performed to induce cross-clade neutralizing antibodies (Abs) by testing various combinations of prime and boost constructs that focus the immune response on structurally-conserved epitopes in the V3 loop of HIV-1 gp120. Rabbits were immunized with gp120 DNA containing a V3 loop characterized by the GPGR motif at its tip, and/or with gp120 DNA with a V3 loop carrying the GPGQ motif. Priming was followed by boosts with V3-fusion proteins (V3-FPs) carrying the V3 sequence from a subtype B virus (GPGR motif), and/or with V3 sequences from subtypes A and C (GPGQ motif). The broadest and most consistent neutralizing responses were generated when using a clade C gp120 DNA prime and with the V3{sub B}-FP boost. Immune sera displayed neutralizing activity in three assays against pseudoviruses and primary isolates from subtypes A, AG, B, C, and D. Polyclonal Abs in the immune rabbit sera neutralized viruses that were not neutralized by pools of human anti-V3 monoclonal Abs. Greater than 80% of the neutralizing Abs were specific for V3, showing that the immune response could be focused on a neutralizing epitope and that vaccine-induced anti-V3 Abs have cross-clade neutralizing activity.

  19. Antibody to gp41 MPER Alters Functional Properties of HIV-1 Env without Complete Neutralization

    PubMed Central

    Kim, Arthur S.; Leaman, Daniel P.; Zwick, Michael B.

    2014-01-01

    Human antibody 10E8 targets the conserved membrane proximal external region (MPER) of envelope glycoprotein (Env) subunit gp41 and neutralizes HIV-1 with exceptional potency. Remarkably, HIV-1 containing mutations that reportedly knockout 10E8 binding to linear MPER peptides are partially neutralized by 10E8, producing a local plateau in the dose response curve. Here, we found that virus partially neutralized by 10E8 becomes significantly less neutralization sensitive to various MPER antibodies and to soluble CD4 while becoming significantly more sensitive to antibodies and fusion inhibitors against the heptad repeats of gp41. Thus, 10E8 modulates sensitivity of Env to ligands both pre- and post-receptor engagement without complete neutralization. Partial neutralization by 10E8 was influenced at least in part by perturbing Env glycosylation. With unliganded Env, 10E8 bound with lower apparent affinity and lower subunit occupancy to MPER mutant compared to wild type trimers. However, 10E8 decreased functional stability of wild type Env while it had an opposite, stabilizing effect on MPER mutant Envs. Clade C isolates with natural MPER polymorphisms also showed partial neutralization by 10E8 with altered sensitivity to various gp41-targeted ligands. Our findings suggest a novel mechanism of virus neutralization by demonstrating how antibody binding to the base of a trimeric spike cross talks with adjacent subunits to modulate Env structure and function. The ability of an antibody to stabilize, destabilize, partially neutralize as well as alter neutralization sensitivity of a virion spike pre- and post-receptor engagement may have implications for immunotherapy and vaccine design. PMID:25058619

  20. Isolation of Potent CGRP Neutralizing Antibodies Using Four Simple Assays.

    PubMed

    Neal, Frances; Arnold, Joanne; Rossant, Christine J; Podichetty, Sadhana; Lowne, David; Dobson, Claire; Wilkinson, Trevor; Colley, Caroline; Howes, Rob; Vaughan, Tristan J

    2016-01-01

    Calcitonin gene-related peptide (CGRP) is a small neuropeptide and a potent vasodilator that is widely associated with chronic pain and migraine. An antibody that inhibits CGRP function would be a potential therapeutic for treatment of these disorders. Here we describe the isolation of highly potent antibodies to CGRP from phage and ribosome display libraries and characterization of their epitope, species cross-reactivity, kinetics, and functional activity. Homogenous time-resolved fluorescence (HTRF) binding assays identified antibodies with the desired species cross-reactivity from naïve libraries, and HTRF epitope competition assays were used to characterize and group scFv by epitope. The functional inhibition of CGRP and species cross-reactivity of purified scFv and antibodies were subsequently confirmed using cAMP assays. We show that epitope competition assays could be used as a surrogate for functional cell-based assays during affinity maturation, in combination with scFv off-rate ranking by biolayer interferometry (BLI). This is the first time it has been shown that off-rate ranking can be predictive of functional activity for anti-CGRP antibodies. Here we demonstrate how, by using just four simple assays, diverse panels of antibodies to CGRP can be identified. These assay formats have potential utility in the identification of antibodies to other therapeutic targets. PMID:26450103

  1. The modification of fluorescent antibody virus neutralization (FAVN) test for the detection of antibodies to rabies virus.

    PubMed

    Hostnik, P

    2000-08-01

    The fluorescent antibody virus neutralization test (FAVN) for the detection of antibodies against rabies virus was modified by using a monoclonal anti-rabies antibodies and peroxidase anti-mouse conjugate instead of a fluorescent anti-rabies conjugate. The results were read on an automatic multi-channel spectrophotometer. A total of 182 serum samples from dogs were tested by both the original and modified FAVN methods and the results were compared. Good correlation was found between the two tests. Practically, the modified FAVN test was quicker and could be used for a larger number of samples. PMID:11014062

  2. Molecular Evolution of Broadly Neutralizing Llama Antibodies to the CD4-Binding Site of HIV-1

    PubMed Central

    McCoy, Laura E.; Rutten, Lucy; Frampton, Dan; Anderson, Ian; Granger, Luke; Bashford-Rogers, Rachael; Dekkers, Gillian; Strokappe, Nika M.; Seaman, Michael S.; Koh, Willie; Grippo, Vanina; Kliche, Alexander; Verrips, Theo; Kellam, Paul; Fassati, Ariberto; Weiss, Robin A.

    2014-01-01

    To date, no immunization of humans or animals has elicited broadly neutralizing sera able to prevent HIV-1 transmission; however, elicitation of broad and potent heavy chain only antibodies (HCAb) has previously been reported in llamas. In this study, the anti-HIV immune responses in immunized llamas were studied via deep sequencing analysis using broadly neutralizing monoclonal HCAbs as a guides. Distinct neutralizing antibody lineages were identified in each animal, including two defined by novel antibodies (as variable regions called VHH) identified by robotic screening of over 6000 clones. The combined application of five VHH against viruses from clades A, B, C and CRF_AG resulted in neutralization as potent as any of the VHH individually and a predicted 100% coverage with a median IC50 of 0.17 µg/ml for the panel of 60 viruses tested. Molecular analysis of the VHH repertoires of two sets of immunized animals showed that each neutralizing lineage was only observed following immunization, demonstrating that they were elicited de novo. Our results show that immunization can induce potent and broadly neutralizing antibodies in llamas with features similar to human antibodies and provide a framework to analyze the effectiveness of immunization protocols. PMID:25522326

  3. Molecular evolution of broadly neutralizing Llama antibodies to the CD4-binding site of HIV-1.

    PubMed

    McCoy, Laura E; Rutten, Lucy; Frampton, Dan; Anderson, Ian; Granger, Luke; Bashford-Rogers, Rachael; Dekkers, Gillian; Strokappe, Nika M; Seaman, Michael S; Koh, Willie; Grippo, Vanina; Kliche, Alexander; Verrips, Theo; Kellam, Paul; Fassati, Ariberto; Weiss, Robin A

    2014-12-01

    To date, no immunization of humans or animals has elicited broadly neutralizing sera able to prevent HIV-1 transmission; however, elicitation of broad and potent heavy chain only antibodies (HCAb) has previously been reported in llamas. In this study, the anti-HIV immune responses in immunized llamas were studied via deep sequencing analysis using broadly neutralizing monoclonal HCAbs as a guides. Distinct neutralizing antibody lineages were identified in each animal, including two defined by novel antibodies (as variable regions called VHH) identified by robotic screening of over 6000 clones. The combined application of five VHH against viruses from clades A, B, C and CRF_AG resulted in neutralization as potent as any of the VHH individually and a predicted 100% coverage with a median IC50 of 0.17 µg/ml for the panel of 60 viruses tested. Molecular analysis of the VHH repertoires of two sets of immunized animals showed that each neutralizing lineage was only observed following immunization, demonstrating that they were elicited de novo. Our results show that immunization can induce potent and broadly neutralizing antibodies in llamas with features similar to human antibodies and provide a framework to analyze the effectiveness of immunization protocols. PMID:25522326

  4. Discovering neutralizing antibodies targeting the stem epitope of H1N1 influenza hemagglutinin with synthetic phage-displayed antibody libraries

    PubMed Central

    Tung, Chao-Ping; Chen, Ing-Chien; Yu, Chung-Ming; Peng, Hung-Pin; Jian, Jhih-Wei; Ma, Shiou-Hwa; Lee, Yu-Ching; Jan, Jia-Tsrong; Yang, An-Suei

    2015-01-01

    Broadly neutralizing antibodies developed from the IGHV1–69 germline gene are known to bind to the stem region of hemagglutinin in diverse influenza viruses but the sequence determinants for the antigen recognition, including neutralization potency and binding affinity, are not clearly understood. Such understanding could inform designs of synthetic antibody libraries targeting the stem epitope on hemagglutinin, leading to artificially designed antibodies that are functionally advantageous over antibodies from natural antibody repertoires. In this work, the sequence space of the complementarity determining regions of a broadly neutralizing antibody (F10) targeting the stem epitope on the hemagglutinin of a strain of H1N1 influenza virus was systematically explored; the elucidated antibody-hemagglutinin recognition principles were used to design a phage-displayed antibody library, which was then used to discover neutralizing antibodies against another strain of H1N1 virus. More than 1000 functional antibody candidates were selected from the antibody library and were shown to neutralize the corresponding strain of influenza virus with up to 7 folds higher potency comparing with the parent F10 antibody. The antibody library could be used to discover functionally effective antibodies against other H1N1 influenza viruses, supporting the notion that target-specific antibody libraries can be designed and constructed with systematic sequence-function information. PMID:26456860

  5. Structural Basis for Broad and Potent Neutralization of HIV-1 by Antibody VRC01

    SciTech Connect

    Zhou, Tongqing; Georgiev, Ivelin; Wu, Xueling; Yang, Zhi-Yong; Dai, Kaifan; Finzi, Andrés; Kwon, Young Do; Scheid, Johannes F.; Shi, Wei; Xu, Ling; Yang, Yongping; Zhu, Jiang; Nussenzweig, Michel C.; Sodroski, Joseph; Shapiro, Lawrence; Nabel, Gary J.; Mascola, John R.; Kwong, Peter D.

    2010-08-26

    During HIV-1 infection, antibodies are generated against the region of the viral gp120 envelope glycoprotein that binds CD4, the primary receptor for HIV-1. Among these antibodies, VRC01 achieves broad neutralization of diverse viral strains. We determined the crystal structure of VRC01 in complex with a human immunodeficiency virus HIV-1 gp120 core. VRC01 partially mimics CD4 interaction with gp120. A shift from the CD4-defined orientation, however, focuses VRC01 onto the vulnerable site of initial CD4 attachment, allowing it to overcome the glycan and conformational masking that diminishes the neutralization potency of most CD4-binding-site antibodies. To achieve this recognition, VRC01 contacts gp120 mainly through immunoglobulin V-gene regions substantially altered from their genomic precursors. Partial receptor mimicry and extensive affinity maturation thus facilitate neutralization of HIV-1 by natural human antibodies.

  6. Functional analysis of neutralizing antibodies against Clostridium perfringens epsilon-toxin.

    PubMed

    McClain, Mark S; Cover, Timothy L

    2007-04-01

    The Clostridium perfringens epsilon-toxin causes a severe, often fatal illness (enterotoxemia) characterized by cardiac, pulmonary, kidney, and brain edema. In this study, we examined the activities of two neutralizing monoclonal antibodies against the C. perfringens epsilon-toxin. Both antibodies inhibited epsilon-toxin cytotoxicity towards cultured MDCK cells and inhibited the ability of the toxin to form pores in the plasma membranes of cells, as shown by staining cells with the membrane-impermeant dye 7-aminoactinomycin D. Using an antibody competition enzyme-linked immunosorbent assay (ELISA), a peptide array, and analysis of mutant toxins, we mapped the epitope recognized by one of the neutralizing monoclonal antibodies to amino acids 134 to 145. The antibody competition ELISA and analysis of mutant toxins suggest that the second neutralizing monoclonal antibody also recognizes an epitope in close proximity to this region. The region comprised of amino acids 134 to 145 overlaps an amphipathic loop corresponding to the putative membrane insertion domain of the toxin. Identifying the epitopes recognized by these neutralizing antibodies constitutes an important first step in the development of therapeutic agents that could be used to counter the effects of the epsilon-toxin. PMID:17261609

  7. Enhanced clearance of HIV-1-infected cells by broadly neutralizing antibodies against HIV-1 in vivo.

    PubMed

    Lu, Ching-Lan; Murakowski, Dariusz K; Bournazos, Stylianos; Schoofs, Till; Sarkar, Debolina; Halper-Stromberg, Ariel; Horwitz, Joshua A; Nogueira, Lilian; Golijanin, Jovana; Gazumyan, Anna; Ravetch, Jeffrey V; Caskey, Marina; Chakraborty, Arup K; Nussenzweig, Michel C

    2016-05-20

    Antiretroviral drugs and antibodies limit HIV-1 infection by interfering with the viral life cycle. In addition, antibodies also have the potential to guide host immune effector cells to kill HIV-1-infected cells. Examination of the kinetics of HIV-1 suppression in infected individuals by passively administered 3BNC117, a broadly neutralizing antibody, suggested that the effects of the antibody are not limited to free viral clearance and blocking new infection but also include acceleration of infected cell clearance. Consistent with these observations, we find that broadly neutralizing antibodies can target CD4(+) T cells infected with patient viruses and can decrease their in vivo half-lives by a mechanism that requires Fcγ receptor engagement in a humanized mouse model. The results indicate that passive immunotherapy can accelerate elimination of HIV-1-infected cells. PMID:27199430

  8. Anti-Semaphorin 3A neutralization monoclonal antibody prevents sepsis development in lipopolysaccharide-treated mice.

    PubMed

    Yamashita, Naoya; Jitsuki-Takahashi, Aoi; Ogawara, Miyuki; Ohkubo, Wataru; Araki, Tomomi; Hotta, Chie; Tamura, Tomohiko; Hashimoto, Shu-ichi; Yabuki, Takashi; Tsuji, Toru; Sasakura, Yukie; Okumura, Hiromi; Takaiwa, Aki; Koyama, Chika; Murakami, Koji; Goshima, Yoshio

    2015-09-01

    Semaphorin 3A (Sema3A), originally identified as a potent growth cone collapsing factor in developing sensory neurons, is now recognized as a key player in immune, cardiovascular, bone metabolism and neurological systems. Here we established an anti-Sema3A monoclonal antibody that neutralizes the effects of Sema3A both in vitro and in vivo. The anti-Sema3A neutralization chick IgM antibodies were screened by combining an autonomously diversifying library selection system and an in vitro growth cone collapse assay. We further developed function-blocking chick-mouse chimeric and humanized anti-Sema3A antibodies. We found that our anti-Sema3A antibodies were effective for improving the survival rate in lipopolysaccharide-induced sepsis in mice. Our antibody is a potential therapeutic agent that may prevent the onset of or alleviate symptoms of human diseases associated with Sema3A. PMID:25855660

  9. Roles of glycans in interactions between gp120 and HIV broadly neutralizing antibodies.

    PubMed

    Qi, Yifei; Jo, Sunhwan; Im, Wonpil

    2016-03-01

    Many novel broadly neutralizing antibodies against human immunodeficiency virus (HIV) have been identified during the past decade, providing promising templates for the development of an effective HIV-1 vaccine. Structural studies reveal that the epitopes of some of these antibodies involve one or more crucial glycans, without which the binding is completely abolished. In this study, we have investigated the critical roles of glycans in interactions between HIV-1 gp120 and two broadly neutralizing antibodies PG9 (targeting V1/V2) and PGT128 (targeting V3) that are able to neutralize more than 70% of HIV-1 isolates. We have performed molecular dynamics simulations of a number of systems including antibody-gp120 complex with and without glycans, antibody, gp120 with and without glycans, and glycan-only systems. The simulation results show that the complex structures are stabilized by the glycans, and the multivalent interactions between the antibody and gp120 promote cooperativities to further enhance the binding. In the free gp120, the glycans increase the flexibility of the V1/V2 and V3 loops, which likely increases the entropy cost of the antibody recognition. However, the antibodies are able to bind the flexible interface by recognizing the preexisting glycan conformation, and penetrating the glycan shield with flexible complementarity determining region loops that sample the bound conformations occasionally. PMID:26537503

  10. A high-throughput neutralizing assay for antibodies and sera against hepatitis E virus

    PubMed Central

    Cai, Wei; Tang, Zi-Min; Wen, Gui-Ping; Wang, Si-Ling; Ji, Wen-Fang; Yang, Min; Ying, Dong; Zheng, Zi-Zheng; Xia, Ning-Shao

    2016-01-01

    Hepatitis E virus (HEV) is the aetiological agent of enterically transmitted hepatitis. The traditional methods for evaluating neutralizing antibody titres against HEV are real-time PCR and the immunofluorescence foci assay (IFA), which are poorly repeatable and operationally complicated, factors that limit their applicability to high-throughput assays. In this study, we developed a novel high-throughput neutralizing assay based on biotin-conjugated p239 (HEV recombinant capsid proteins, a.a. 368–606) and staining with allophycocyanin-conjugated streptavidin (streptavidin APC) to amplify the fluorescence signal. A linear regression analysis indicated that there was a high degree of correlation between IFA and the novel assay. Using this method, we quantitatively evaluated the neutralization of sera from HEV-infected and vaccinated macaques. The anti-HEV IgG level had good concordance with the neutralizing titres of macaque sera. However, the neutralization titres of the sera were also influenced by anti-HEV IgM responses. Further analysis also indicated that, although vaccination with HEV vaccine stimulated higher anti-HEV IgG and neutralization titres than infection with HEV in macaques, the proportions of neutralizing antibodies in the infected macaques’ sera were higher than in the vaccinated macaques with the same anti-HEV IgG levels. Thus, the infection more efficiently stimulated neutralizing antibody responses. PMID:27122081

  11. A Broadly Flavivirus Cross-Neutralizing Monoclonal Antibody that Recognizes a Novel Epitope within the Fusion Loop of E Protein

    PubMed Central

    Jiang, Tao; Wang, Hua-Jing; Yang, Hai-ou; Tan, Weng-Long; Liu, Ran; Yu, Man; Ge, Bao-Xue; Zhu, Qing-Yu; Qin, E-De; Guo, Ya-Jun; Qin, Cheng-Feng

    2011-01-01

    Flaviviruses are a group of human pathogenic, enveloped RNA viruses that includes dengue (DENV), yellow fever (YFV), West Nile (WNV), and Japanese encephalitis (JEV) viruses. Cross-reactive antibodies against Flavivirus have been described, but most of them are generally weakly neutralizing. In this study, a novel monoclonal antibody, designated mAb 2A10G6, was determined to have broad cross-reactivity with DENV 1–4, YFV, WNV, JEV, and TBEV. Phage-display biopanning and structure modeling mapped 2A10G6 to a new epitope within the highly conserved flavivirus fusion loop peptide, the 98DRXW101 motif. Moreover, in vitro and in vivo experiments demonstrated that 2A10G6 potently neutralizes DENV 1–4, YFV, and WNV and confers protection from lethal challenge with DENV 1–4 and WNV in murine model. Furthermore, functional studies revealed that 2A10G6 blocks infection at a step after viral attachment. These results define a novel broadly flavivirus cross-reactive mAb with highly neutralizing activity that can be further developed as a therapeutic agent against severe flavivirus infections in humans. PMID:21264311

  12. Characterization of Two Human Monoclonal Antibodies Neutralizing Influenza A H7N9 Viruses

    PubMed Central

    Wang, Jianmin; Chen, Zhe; Bao, Linlin; Zhang, Weijia; Xue, Ying; Pang, XingHuo; Zhang, Xi

    2015-01-01

    H7N9 was a cause of significant global health concern due to its severe infection and approximately 35% mortality in humans. By screening a Fab antibody phage library derived from patients who recovered from H7N9 infections, we characterized two human monoclonal antibodies (HuMAbs), HNIgGD5 and HNIgGH8. The epitope of these two antibodies was dependent on two residues in the receptor binding site at positions V186 and L226 of the hemagglutinin glycoprotein. Both antibodies possessed high neutralizing activity. PMID:26063436

  13. Neutralizing Antibody Response in Dogs and Cats Inoculated with Commercial Inactivated Rabies Vaccines

    PubMed Central

    SHIRAISHI, Rikiya; NISHIMURA, Masaaki; NAKASHIMA, Ryuji; ENTA, Chiho; HIRAYAMA, Norio

    2013-01-01

    ABSTRACT In Japan, the import quarantine regulation against rabies has required from 2005 that dogs and cats should be inoculated with the rabies vaccine and that the neutralizing antibody titer should be confirmed to be at least 0.5 international units (IU)/ml. The fluorescent antibody virus neutralization (FAVN) test is used as an international standard method for serological testing for rabies. To achieve proper immunization of dogs and cats at the time of import and export, changes in the neutralizing antibody titer after inoculation of the rabies vaccine should be understood in detail. However, few reports have provided this information. In this study, we aimed to determine evaluated, such changes by using sera from experimental dogs and cats inoculated with the rabies vaccine, and we tested samples using the routine FAVN test. In both dogs and cats, proper, regular vaccination enabled the necessary titer of neutralizing antibodies to be maintained in the long term. However, inappropriate timing of blood sampling after vaccination could result in insufficient detected levels of neutralizing antibodies. PMID:24389741

  14. Neutralizing antibody response in dogs and cats inoculated with commercial inactivated rabies vaccines.

    PubMed

    Shiraishi, Rikiya; Nishimura, Masaaki; Nakashima, Ryuji; Enta, Chiho; Hirayama, Norio

    2014-04-01

    In Japan, the import quarantine regulation against rabies has required from 2005 that dogs and cats should be inoculated with the rabies vaccine and that the neutralizing antibody titer should be confirmed to be at least 0.5 international units (IU)/ml. The fluorescent antibody virus neutralization (FAVN) test is used as an international standard method for serological testing for rabies. To achieve proper immunization of dogs and cats at the time of import and export, changes in the neutralizing antibody titer after inoculation of the rabies vaccine should be understood in detail. However, few reports have provided this information. In this study, we aimed to determine evaluated, such changes by using sera from experimental dogs and cats inoculated with the rabies vaccine, and we tested samples using the routine FAVN test. In both dogs and cats, proper, regular vaccination enabled the necessary titer of neutralizing antibodies to be maintained in the long term. However, inappropriate timing of blood sampling after vaccination could result in insufficient detected levels of neutralizing antibodies. PMID:24389741

  15. Characterization of Neutralizing Antibodies and Identification of Neutralizing Epitope Mimics on the Clostridium botulinum Neurotoxin Type A

    PubMed Central

    Wu, Han-Chung; Yeh, Chia-Tsui; Huang, Yue-Ling; Tarn, Lih-Jeng; Lung, Chien-Cheng

    2001-01-01

    Clostridium botulinum neurotoxin type A (BTx-A) is known to inhibit the release of acetylcholine at the neuromuscular junctions and synapses and to cause neuroparalysis and death. In this study, we have identified two monoclonal antibodies, BT57-1 and BT150-3, which protect ICR mice against lethal doses of BTx-A challenge. The neutralizing activities for BT57-1 and BT150-3 were 103 and 104 times the 50% lethal dose, respectively. Using immunoblotting analysis, BT57-1 was recognized as a light chain and BT150-3 was recognized as a heavy chain of BTx-A. Also, applying the phage display method, we investigated the antibodies' neutralizing B-cell epitopes. These immunopositive phage clones displayed consensus motifs, Asp-Pro-Leu for BT57-1 and Cys-X-Asp-Cys for BT150. The synthetic peptide P4M (KGTFDPLQEPRT) corresponded to the phage-displayed peptide selected by BT57-1 and was able to bind the antibodies specifically. This peptide was also shown by competitive inhibition assay to be able to inhibit phage clone binding to BT57-1. Aspartic acid (D5) in P4M was crucial to the binding of P4M to BT57-1, since its binding activity dramatically decreased when it was changed to lysine (K5). Finally, immunizing mice with the selected phage clones elicited a specific humoral response against BTx-A. These results suggest that phage-displayed random-peptide libraries are useful in identifying the neutralizing epitopes of monoclonal antibodies. In the future, the identification of the neutralizing epitopes of BTx-A may provide important information for the identification of the BTx-A receptor and the design of a BTx-A vaccine. PMID:11425742

  16. Antibodies Targeting Novel Neutralizing Epitopes of Hepatitis C Virus Glycoprotein Preclude Genotype 2 Virus Infection

    PubMed Central

    Rao, Huiying; Jiang, Dong; Wang, Jianghua; Xie, Xingwang; Wei, Lai

    2015-01-01

    Currently, there is no effective vaccine to prevent hepatitis C virus (HCV) infection, partly due to our insufficient understanding of the virus glycoprotein immunology. Most neutralizing antibodies (nAbs) were identified using glycoprotein immunogens, such as recombinant E1E2, HCV pseudoparticles or cell culture derived HCV. However, the fact that in the HCV acute infection phase, only a small proportion of patients are self-resolved accompanied with the emergence of nAbs, indicates the limited immunogenicity of glycoprotein itself to induce effective antibodies against a highly evolved virus. Secondly, in previous reports, the immunogen sequence was mostly the genotype of the 1a H77 strain. Rarely, other genotypes/subtypes have been studied, although theoretically one genotype/subtype immunogen is able to induce cross-genotype neutralizing antibodies. To overcome these drawbacks and find potential novel neutralizing epitopes, 57 overlapping peptides encompassing the full-length glycoprotein E1E2 of subtype 1b were synthesized to immunize BALB/c mice, and the neutralizing reactive of the induced antisera against HCVpp genotypes 1–6 was determined. We defined a domain comprising amino acids (aa) 192–221, 232–251, 262–281 and 292–331 of E1, and 421–543, 564–583, 594–618 and 634–673 of E2, as the neutralizing regions of HCV glycoprotein. Peptides PUHI26 (aa 444–463) and PUHI45 (aa 604–618)-induced antisera displayed the most potent broad neutralizing reactive. Two monoclonal antibodies recognizing the PUHI26 and PUHI45 epitopes efficiently precluded genotype 2 viral (HCVcc JFH and J6 strains) infection, but they did not neutralize other genotypes. Our study mapped a neutralizing epitope region of HCV glycoprotein using a novel immunization strategy, and identified two monoclonal antibodies effective in preventing genotype 2 virus infection. PMID:26406225

  17. Antibodies Targeting Novel Neutralizing Epitopes of Hepatitis C Virus Glycoprotein Preclude Genotype 2 Virus Infection.

    PubMed

    Deng, Kai; Liu, Ruyu; Rao, Huiying; Jiang, Dong; Wang, Jianghua; Xie, Xingwang; Wei, Lai

    2015-01-01

    Currently, there is no effective vaccine to prevent hepatitis C virus (HCV) infection, partly due to our insufficient understanding of the virus glycoprotein immunology. Most neutralizing antibodies (nAbs) were identified using glycoprotein immunogens, such as recombinant E1E2, HCV pseudoparticles or cell culture derived HCV. However, the fact that in the HCV acute infection phase, only a small proportion of patients are self-resolved accompanied with the emergence of nAbs, indicates the limited immunogenicity of glycoprotein itself to induce effective antibodies against a highly evolved virus. Secondly, in previous reports, the immunogen sequence was mostly the genotype of the 1a H77 strain. Rarely, other genotypes/subtypes have been studied, although theoretically one genotype/subtype immunogen is able to induce cross-genotype neutralizing antibodies. To overcome these drawbacks and find potential novel neutralizing epitopes, 57 overlapping peptides encompassing the full-length glycoprotein E1E2 of subtype 1b were synthesized to immunize BALB/c mice, and the neutralizing reactive of the induced antisera against HCVpp genotypes 1-6 was determined. We defined a domain comprising amino acids (aa) 192-221, 232-251, 262-281 and 292-331 of E1, and 421-543, 564-583, 594-618 and 634-673 of E2, as the neutralizing regions of HCV glycoprotein. Peptides PUHI26 (aa 444-463) and PUHI45 (aa 604-618)-induced antisera displayed the most potent broad neutralizing reactive. Two monoclonal antibodies recognizing the PUHI26 and PUHI45 epitopes efficiently precluded genotype 2 viral (HCVcc JFH and J6 strains) infection, but they did not neutralize other genotypes. Our study mapped a neutralizing epitope region of HCV glycoprotein using a novel immunization strategy, and identified two monoclonal antibodies effective in preventing genotype 2 virus infection. PMID:26406225

  18. Recombinant sheep pox virus proteins elicit neutralizing antibodies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The aim of this study was to evaluate the immunogenicity and neutralizing activity of bacterially-expressed sheep pox virus (SPPV) structural proteins as candidate subunit vaccines to control sheep pox disease. SPPV structural proteins were identified by sequence homology with proteins from vaccinia...

  19. Protective antiviral antibodies that lack neutralizing activity: precedents and evolution of concepts.

    PubMed

    Schmaljohn, Alan L

    2013-07-01

    Antibody-mediated resistance to viral disease is often attributed solely to neutralizing antibodies (NAbs) despite a body of evidence -- more than 30 years in the making -- to show that other populations of antibodies (protective non-neutralizing antibodies, PnNAbs) can also contribute and are sometimes pivotal in host resistance to viruses. Recently, interest in varieties of PnNAbs has been restored and elevated by an HIV vaccine trial in which virus-specific nNAbs have been highlighted as a positive correlate of immunity. Here, I briefly review some of the historical precedents with many viruses other than HIV, along with the emergence of data over the course of some four decades, pointing emphatically to the importance of subsets of antiviral antibodies that operate by mechanisms other than classical virus neutralization. Foremost among suspected mechanisms of protection by PnNAbs is antibody-dependent cellular cytotoxicty (ADCC), but additional mechanisms have sometimes been incriminated or not experimentally excluded. Examples are given for the diversity of proteins and cognate epitopes bound by PnNAbs. Some such epitopes are restricted to virus-infected cell surfaces or found on secreted proteins; others may be associated with virions but unavailable to antibodies during much of the viral cycle; these are epitopes variously described as cryptic, transitional, dynamic, or reversibly masked. PMID:24191933

  20. Host-Pathogen Coevolution and the Emergence of Broadly Neutralizing Antibodies in Chronic Infections

    PubMed Central

    Plotkin, Joshua B.

    2016-01-01

    The vertebrate adaptive immune system provides a flexible and diverse set of molecules to neutralize pathogens. Yet, viruses such as HIV can cause chronic infections by evolving as quickly as the adaptive immune system, forming an evolutionary arms race. Here we introduce a mathematical framework to study the coevolutionary dynamics between antibodies and antigens within a host. We focus on changes in the binding interactions between the antibody and antigen populations, which result from the underlying stochastic evolution of genotype frequencies driven by mutation, selection, and drift. We identify the critical viral and immune parameters that determine the distribution of antibody-antigen binding affinities. We also identify definitive signatures of coevolution that measure the reciprocal response between antibodies and viruses, and we introduce experimentally measurable quantities that quantify the extent of adaptation during continual coevolution of the two opposing populations. Using this analytical framework, we infer rates of viral and immune adaptation based on time-shifted neutralization assays in two HIV-infected patients. Finally, we analyze competition between clonal lineages of antibodies and characterize the fate of a given lineage in terms of the state of the antibody and viral populations. In particular, we derive the conditions that favor the emergence of broadly neutralizing antibodies, which may have relevance to vaccine design against HIV. PMID:27442127

  1. Neutralizing antibodies derived from the B cells of 1918 influenza pandemic survivors.

    PubMed

    Yu, Xiaocong; Tsibane, Tshidi; McGraw, Patricia A; House, Frances S; Keefer, Christopher J; Hicar, Mark D; Tumpey, Terrence M; Pappas, Claudia; Perrone, Lucy A; Martinez, Osvaldo; Stevens, James; Wilson, Ian A; Aguilar, Patricia V; Altschuler, Eric L; Basler, Christopher F; Crowe, James E

    2008-09-25

    Investigation of the human antibody response to influenza virus infection has been largely limited to serology, with relatively little analysis at the molecular level. The 1918 H1N1 influenza virus pandemic was the most severe of the modern era. Recent work has recovered the gene sequences of this unusual strain, so that the 1918 pandemic virus could be reconstituted to display its unique virulence phenotypes. However, little is known about adaptive immunity to this virus. We took advantage of the 1918 virus sequencing and the resultant production of recombinant 1918 haemagglutinin (HA) protein antigen to characterize at the clonal level neutralizing antibodies induced by natural exposure of survivors to the 1918 pandemic virus. Here we show that of the 32 individuals tested that were born in or before 1915, each showed seroreactivity with the 1918 virus, nearly 90 years after the pandemic. Seven of the eight donor samples tested had circulating B cells that secreted antibodies that bound the 1918 HA. We isolated B cells from subjects and generated five monoclonal antibodies that showed potent neutralizing activity against 1918 virus from three separate donors. These antibodies also cross-reacted with the genetically similar HA of a 1930 swine H1N1 influenza strain, but did not cross-react with HAs of more contemporary human influenza viruses. The antibody genes had an unusually high degree of somatic mutation. The antibodies bound to the 1918 HA protein with high affinity, had exceptional virus-neutralizing potency and protected mice from lethal infection. Isolation of viruses that escaped inhibition suggested that the antibodies recognize classical antigenic sites on the HA surface. Thus, these studies demonstrate that survivors of the 1918 influenza pandemic possess highly functional, virus-neutralizing antibodies to this uniquely virulent virus, and that humans can sustain circulating B memory cells to viruses for many decades after exposure-well into the tenth

  2. Temporal analysis of HIV envelope sequence evolution and antibody escape in a subtype A-infected individual with a broad neutralizing antibody response

    PubMed Central

    Bosch, Katherine A.; Rainwater, Stephanie; Jaoko, Walter; Overbaugh, Julie

    2010-01-01

    The origin of broadly neutralizing HIV-specific antibodies and their relation to HIV evolution are not well defined. Here we examined virus evolution and neutralizing antibody escape in a subtype A infected individual with a broad, cross subtype, antibody response. The majority of envelope variants isolated over the first ~ 5 years post-infection were poorly neutralized by contemporaneous plasma that neutralized variants from earlier in infection, consistent with a dynamic process of escape. The majority of variants could be neutralized by later plasma, suggesting these evolving variants may have contributed to the elicitation of new antibody responses. However, some variants from later in infection were recognized by plasma from earlier in infection, including one notably neutralization-sensitive variant that was sensitive due to a proline at position 199 in V2. These studies suggest a complex pattern of virus evolution in this individual with a broad NAb response, including persistence of neutralization-sensitive viruses. PMID:20034648

  3. Pichia pastoris-expressed dengue 3 envelope-based virus-like particles elicit predominantly domain III-focused high titer neutralizing antibodies

    PubMed Central

    Tripathi, Lav; Mani, Shailendra; Raut, Rajendra; Poddar, Ankur; Tyagi, Poornima; Arora, Upasana; de Silva, Aravinda; Swaminathan, Sathyamangalam; Khanna, Navin

    2015-01-01

    Dengue poses a serious public health risk to nearly half the global population. It causes ~400 million infections annually and is considered to be one of the fastest spreading vector-borne diseases. Four distinct serotypes of dengue viruses (DENV-1, -2, -3, and -4) cause dengue disease, which may be either mild or extremely severe. Antibody-dependent enhancement (ADE), by pre-existing cross-reactive antibodies, is considered to be the major mechanism underlying severe disease. This mandates that a preventive vaccine must confer simultaneous and durable immunity to each of the four prevalent DENV serotypes. Recently, we used Pichia pastoris, to express recombinant DENV-2 E ectodomain, and found that it assembled into virus-like particles (VLPs), in the absence of prM, implicated in the elicitation of ADE-mediating antibodies. These VLPs elicited predominantly type-specific neutralizing antibodies that conferred significant protection against lethal DENV-2 challenge, in a mouse model. The current work is an extension of this approach to develop prM-lacking DENV-3 E VLPs. Our data reveal that P. pastoris-produced DENV-3 E VLPs not only preserve the antigenic integrity of the major neutralizing epitopes, but also elicit potent DENV-3 virus-neutralizing antibodies. Further, these neutralizing antibodies appear to be exclusively directed toward domain III of the DENV-3 E VLPs. Significantly, they also lack discernible ADE potential toward heterotypic DENVs. Taken together with the high productivity of the P. pastoris expression system, this approach could potentially pave the way toward developing a DENV E-based, inexpensive, safe, and efficacious tetravalent sub-unit vaccine, for use in resource-poor dengue endemic countries. PMID:26441930

  4. Neutralizing Antibodies and Sin Nombre Virus RNA after Recovery from Hantavirus Cardiopulmonary Syndrome

    PubMed Central

    Ye, Chunyan; Prescott, Joseph; Nofchissey, Robert; Goade, Diane

    2004-01-01

    Patients who later have a mild course of hantavirus cardiopulmonary syndrome (HCPS) are more likely to exhibit a high titer of neutralizing antibodies against Sin Nombre virus (SNV), the etiologic agent of HCPS, at the time of hospital admission. Because administering plasma from patients who have recovered from HCPS to those in the early stages of disease may be an advantageous form of passive immunotherapy, we examined the neutralizing antibody titers of 21 patients who had recovered from SNV infection. Even 1,000 days after admission to the hospital, 6 of 10 patients had titers of 800 or higher, with one sample retaining a titer of 3,200 after more than 1,400 days. None of the convalescent-phase serum samples contained detectable viral RNA. These results confirm that patients retain high titers of neutralizing antibodies long after recovery from SNV infection. PMID:15109416

  5. Antibody-Mediated Neutralization of the Exotoxin Mycolactone, the Main Virulence Factor Produced by Mycobacterium ulcerans

    PubMed Central

    Gersbach, Philipp; Hug, Melanie N.; Bieri, Raphael; Bomio, Claudio; Li, Jun; Huber, Sylwia; Altmann, Karl-Heinz; Pluschke, Gerd

    2016-01-01

    Background Mycolactone, the macrolide exotoxin produced by Mycobacterium ulcerans, causes extensive tissue destruction by inducing apoptosis of host cells. In this study, we aimed at the production of antibodies that could neutralize the cytotoxic activities of mycolactone. Methodology/Principal Findings Using the B cell hybridoma technology, we generated a series of monoclonal antibodies with specificity for mycolactone from spleen cells of mice immunized with the protein conjugate of a truncated synthetic mycolactone derivative. L929 fibroblasts were used as a model system to investigate whether these antibodies can inhibit the biological effects of mycolactone. By measuring the metabolic activity of the fibroblasts, we found that anti-mycolactone mAbs can completely neutralize the cytotoxic activity of mycolactone. Conclusions/Significance The toxin neutralizing capacity of anti-mycolactone mAbs supports the concept of evaluating the macrolide toxin as vaccine target. PMID:27351976

  6. Autophagy-associated dengue vesicles promote viral transmission avoiding antibody neutralization

    PubMed Central

    Wu, Yan-Wei; Mettling, Clément; Wu, Shang-Rung; Yu, Chia-Yi; Perng, Guey-Chuen; Lin, Yee-Shin; Lin, Yea-Lih

    2016-01-01

    One of the major defense mechanisms against virus spread in vivo is the blocking of viral infectibility by neutralizing antibodies. We describe here the identification of infectious autophagy-associated dengue vesicles released from infected cells. These vesicles contain viral proteins E, NS1, prM/M, and viral RNA, as well as host lipid droplets and LC3-II, an autophagy marker. The viral RNA can be protected within the autophagic organelles since anti-dengue neutralizing antibodies do not have an effect on the vesicle-mediated transmission that is able to initiate a new round of infection in target cells. Importantly, such infectious vesicles were also detected in a patient serum. Our study suggests that autophagy machinery plays a new role in dengue virus transmission. This discovery explains the inefficiency of neutralizing antibody upon dengue infection as a potential immune evasion mechanism in vivo. PMID:27558165

  7. Autophagy-associated dengue vesicles promote viral transmission avoiding antibody neutralization.

    PubMed

    Wu, Yan-Wei; Mettling, Clément; Wu, Shang-Rung; Yu, Chia-Yi; Perng, Guey-Chuen; Lin, Yee-Shin; Lin, Yea-Lih

    2016-01-01

    One of the major defense mechanisms against virus spread in vivo is the blocking of viral infectibility by neutralizing antibodies. We describe here the identification of infectious autophagy-associated dengue vesicles released from infected cells. These vesicles contain viral proteins E, NS1, prM/M, and viral RNA, as well as host lipid droplets and LC3-II, an autophagy marker. The viral RNA can be protected within the autophagic organelles since anti-dengue neutralizing antibodies do not have an effect on the vesicle-mediated transmission that is able to initiate a new round of infection in target cells. Importantly, such infectious vesicles were also detected in a patient serum. Our study suggests that autophagy machinery plays a new role in dengue virus transmission. This discovery explains the inefficiency of neutralizing antibody upon dengue infection as a potential immune evasion mechanism in vivo. PMID:27558165

  8. Identification of Broad-Genotype HPV L2 Neutralization Site for Pan-HPV Vaccine Development by a Cross-Neutralizing Antibody

    PubMed Central

    Wang, Daning; Li, Zhihai; Xiao, Jieqiong; Wang, Junqi; Zhang, Li; Liu, Yajing; Fan, Fei; Xin, Lu; Wei, Minxi; Kong, Zhibo; Yu, Hai; Gu, Ying; Zhang, Jun; Li, Shaowei; Xia, Ningshao

    2015-01-01

    Human Papillomavirus (HPV), a non-enveloped, double-stranded DNA virus, is responsible for 5% of human cancers. The HPV capsid consists of major and minor structural proteins, L1 and L2. L1 proteins form an icosahedral shell with building blocks of the pentameric capsomere, and one L2 molecule extends outward from the central hole of the capsid. Thus, L2 is concealed within L1 and only becomes exposed when the capsid interacts with host cells. The low antigenic variation of L2 means that this protein could offer a target for the development of a pan-HPV vaccine. Toward this goal, here we describe an anti-L2 monoclonal antibody, 14H6, which broadly neutralizes at least 11 types of HPV, covering types 6, 11, 16, 18, 31, 33, 35, 45, 52, 58 and 59, in pseudovirion—based cell neutralization assay. The mAb 14H6 recognizes a minimal linear epitope located on amino acids 21 to 30 of the L2 protein. Alanine scanning mutagenesis and sequence alignment identified several conserved residues (Cys22, Lys23, Thr27, Cys28 and Pro29) that are involved in the 14H6 binding with L2. The epitope was grafted to several scaffolding proteins, including HPV16 L1 virus-like particles, HBV 149 core antigen and CRM197. The resultant chimeric constructs were expressed in Escherichia coli and purified with high efficiency. Immunization with these pan-HPV vaccine candidates elicited high titers of the L2-specific antibody in mice and conferred robust (3-log) titers of cross-genotype neutralization, including against HPV11, 16, 18, 45, 52, 58 and 59. These findings will help in the development of an L2-based, pan-HPV vaccine. PMID:25905781

  9. Depletion of interfering antibodies in chronic hepatitis C patients and vaccinated chimpanzees reveals broad cross-genotype neutralizing activity

    PubMed Central

    Zhang, Pei; Zhong, Lilin; Struble, Evi Budo; Watanabe, Hisayoshi; Kachko, Alla; Mihalik, Kathleen; Virata-Theimer, Maria Luisa; Alter, Harvey J.; Feinstone, Stephen; Major, Marian

    2009-01-01

    Using human immune globulins made from antihepatitis C virus (HCV)-positive plasma, we recently identified two antibody epitopes in the E2 protein at residues 412–426 (epitope I) and 434–446 (epitope II). Whereas epitope I is highly conserved among genotypes, epitope II varies. We discovered that epitope I was implicated in HCV neutralization whereas the binding of non-neutralizing antibody to epitope II disrupted virus neutralization mediated by antibody binding at epitope I. These findings suggested that, if this interfering mechanism operates in vivo during HCV infection, a neutralizing antibody against epitope I can be restrained by an interfering antibody, which may account for the persistence of HCV even in the presence of an abundance of neutralizing antibodies. We tested this hypothesis by affinity depletion and peptide-blocking of epitope-II-specific antibodies in plasma of a chronically HCV-infected patient and recombinant E1E2 vaccinated chimpanzees. We demonstrate that, by removing the restraints imposed by the interfering antibodies to epitope-II, neutralizing activity can be revealed in plasma that previously failed to neutralize viral stock in cell culture. Further, cross-genotype neutralization could be generated from monospecific plasma. Our studies contribute to understanding the mechanisms of antibody-mediated neutralization and interference and provide a practical approach to the development of more potent and broadly reactive hepatitis C immune globulins. PMID:19380744

  10. A survey for neutralizing antibodies to the three types of poliovirus among children in Maiduguri, Nigeria.

    PubMed

    Baba, M M; Haruna, B A; Ogunmola, O; Ambe, J P; Shidali, N N; Oderinde, B; Marcello, A; Talle, M

    2012-04-01

    The milestone in polio eradication program is to protect effectively children aged 0-5 years against the three serotypes of poliovirus. It became necessary to measure the level of neutralizing antibodies to the three poliovirus types in an endemic State in Nigeria. Neutralizing antibodies to the poliovirus types among children aged 0-5 years was estimated using micro neutralization assay. Of 129 children, 99 (76.8%), 95 (73.6%), and 95 (73.6%) had neutralizing antibodies with the geometric mean titer of 42.7, 31.3, and 33.2 for the poliovirus type 1, 2, and 3, respectively. Fifty-three percent of the children were protected against the three types of poliovirus. Combination of poliovirus types 1 and 2, 1 and 3, and 2 and 3 were neutralized by 62.8, 58.9, and 61.2% of the children studied, respectively. Only poliovirus type 1 induced antibody titres ≥1:1,024. The number of children with neutralizing antibodies after receiving three doses was significantly higher than those who received one or two doses of oral polio vaccine (P ≤ 0.05). However, those who received more than three doses of oral polio vaccine showed no significant difference in their antibody response. The existence of immunity gap poses a risk of re-emergence of the paralytic poliovirus. The existence of unimmunized and unprotected children along with high birth rate could impede the success of polio vaccination in Nigeria. Elimination of non-compliance to polio vaccine, promotion of health education and documented evidence of vaccination of each child with the parents may facilitate the success of polio eradication program in Nigeria. PMID:22337311

  11. Development and characterization of human monoclonal antibodies that neutralize multiple TGFβ isoforms

    PubMed Central

    Bedinger, Daniel; Lao, Llewelyn; Khan, Shireen; Lee, Steve; Takeuchi, Toshihiko; Mirza, Amer M.

    2016-01-01

    ABSTRACT Transforming growth factor (TGF)β levels are elevated in, and drive the progression of, numerous disease states such as advanced metastatic cancer and systemic and ocular fibrosis. There are 3 main isoforms, TGFβ1, 2, and 3. As multiple TGFβ isoforms are involved in disease processes, maximal therapeutic efficacy may require neutralization of 2 or more of the TGFβ isoforms. Fully human antibody phage display libraries were used to discover a number of antibodies that bind and neutralize various combinations of TGFβ1, 2 or 3. The primary panning did not yield any uniformly potent pan-isoform neutralizing antibodies; therefore, an antibody that displayed potent TGFβ 1, 2 inhibition, but more modest affinity versus TGFβ3, was affinity matured by shuffling with a light chain sub-library and further screening. This process yielded a high affinity pan-isoform neutralizing clone. Antibodies were analyzed and compared by binding affinity, as well as receptor and epitope competition by surface plasmon resonance methods. The antibodies were also shown to neutralize TGFβ effects in vitro in 3 assays: 1) interleukin (IL)-4 induced HT-2 cell proliferation; 2) TGFβ-mediated IL-11 release by A549 cells; and 3) decreasing SMAD2 phosphorylation in Detroit 562 cells. The antibodies’ potency in these in vitro assays correlated well with their isoform-specific affinities. Furthermore, the ability of the affinity-matured clone to decrease tumor burden in a Detroit 562 xenograft study was superior to that of the parent clone. This affinity-matured antibody acts as a very potent inhibitor of all 3 main isoforms of TGFβ and may have utility for therapeutic intervention in human disease. PMID:26563652

  12. Robust Neutralizing Antibodies Elicited by HIV-1 JRFL Envelope Glycoprotein Trimers in Nonhuman Primates

    PubMed Central

    Feng, Yu; Sharma, Shailendra Kumar; McKee, Krisha; Karlsson Hedestam, Gunilla B.; LaBranche, Celia C.; Montefiori, David C.; Mascola, John R.

    2013-01-01

    Host cell-mediated proteolytic cleavage of the human immunodeficiency virus type 1 (HIV-1) gp160 precursor glycoprotein into gp120 and gp41 subunits is required to generate fusion-competent envelope glycoprotein (Env) spikes. The gp120-directed broadly neutralizing monoclonal antibodies (bNabs) isolated from HIV-infected individuals efficiently recognize fully cleaved JRFL Env spikes; however, nonneutralizing gp120-directed monoclonal antibodies isolated from infected or vaccinated subjects recognize only uncleaved JRFL spikes. Therefore, as an immunogen, cleaved spikes that selectively present desired neutralizing epitopes to B cells may elicit cross-reactive neutralizing antibodies. Accordingly, we inoculated nonhuman primates (NHPs) with plasmid DNA encoding transmembrane-anchored, cleaved JRFL Env or by electroporation (EP). Priming with DNA expressing soluble, uncleaved gp140 trimers was included as a comparative experimental group of NHPs. DNA inoculation was followed by boosts with soluble JRFL gp140 trimers, and control NHPs were inoculated with soluble JRFL protein trimers without DNA priming. In the TZM-bl assay, elicitation of neutralizing antibodies against HIV-1 tier 1 isolates was robust following the protein boost. Neutralization of tier 2 isolates was detected, but only in animals primed with plasmid DNA and boosted with trimeric protein. Using the more sensitive A3R5 assay, consistent neutralization of both clade B and C tier 2 isolates was detected from all regimens assessed in the current study, exceeding levels achieved by our previous vaccine regimens in primates. Together, these data suggest a potential advantage of B cell priming followed by a rest interval and protein boosting to present JRFL Env spikes to the immune system to better generate HIV-1 cross-clade neutralizing antibodies. PMID:24067980

  13. Phage Display-Derived Cross-Reactive Neutralizing Antibody against Enterovirus 71 and Coxsackievirus A16.

    PubMed

    Zhang, Xiao; Sun, Chunyun; Xiao, Xiangqian; Pang, Lin; Shen, Sisi; Zhang, Jie; Cen, Shan; Yang, Burton B; Huang, Yuming; Sheng, Wang; Zeng, Yi

    2016-01-01

    Enterovirus 71 (EV71) and coxsackievirus A16 (CVA16) are members of the Picornaviridae family and are considered the main causative agents of hand, foot and mouth disease (HFMD). In recent decades large HFMD outbreaks caused by EV71 and CVA16 have become significant public health concerns in the Asia-Pacific region. Vaccines and antiviral drugs are unavailable to prevent EV71 and CVA16 infection. In the current study, a chimeric antibody targeting a highly conserved peptide in the EV71 VP4 protein was isolated by using a phage display technique. The antibody showed cross-neutralizing capability against EV71 and CVA16 in vitro. The results suggest that this phage display-derived antibody will have great potential as a broad neutralizing antibody against EV71 and CVA16 after affinity maturation and humanization. PMID:26073737

  14. Virus mutation frequencies can be greatly underestimated by monoclonal antibody neutralization of virions.

    PubMed Central

    Holland, J J; de la Torre, J C; Steinhauer, D A; Clarke, D; Duarte, E; Domingo, E

    1989-01-01

    Monoclonal antibody-resistant mutants have been widely used to estimate virus mutation frequencies. We demonstrate that standard virion neutralization inevitably underestimates monoclonal antibody-resistant mutant genome frequencies of vesicular stomatitis virus, due to phenotypic masking-mixing when wild-type (wt) virions are present in thousandsfold greater numbers. We show that incorporation of antibody into the plaque overlay medium (after virus penetration at 37 degrees C) can provide accurate estimates of genome frequencies of neutral monoclonal antibody-resistant mutant viruses in wt clones. By using this method, we have observed two adjacent G----A base transition frequencies in the I3 epitope to be of the order of 10(-4) in a wt glycine codon. This appears to be slightly lower than the frequencies observed at other sites for total (viable and nonviable) virus genomes when using a direct sequence approach. Images PMID:2479770

  15. Recombinant Sheep Pox Virus Proteins Elicit Neutralizing Antibodies.

    PubMed

    Chervyakova, Olga V; Zaitsev, Valentin L; Iskakov, Bulat K; Tailakova, Elmira T; Strochkov, Vitaliy M; Sultankulova, Kulyaisan T; Sandybayev, Nurlan T; Stanbekova, Gulshan E; Beisenov, Daniyar K; Abduraimov, Yergali O; Mambetaliyev, Muratbay; Sansyzbay, Abylay R; Kovalskaya, Natalia Y; Nemchinov, Lev G; Hammond, Rosemarie W

    2016-01-01

    The aim of this work was to evaluate the immunogenicity and neutralizing activity of sheep pox virus (SPPV; genus Capripoxvirus, family Poxviridae) structural proteins as candidate subunit vaccines to control sheep pox disease. SPPV structural proteins were identified by sequence homology with proteins of vaccinia virus (VACV) strain Copenhagen. Four SPPV proteins (SPPV-ORF 060, SPPV-ORF 095, SPPV-ORF 117, and SPPV-ORF 122), orthologs of immunodominant L1, A4, A27, and A33 VACV proteins, respectively, were produced in Escherichia coli. Western blot analysis revealed the antigenic and immunogenic properties of SPPV-060, SPPV-095, SPPV-117 and SPPV-122 proteins when injected with adjuvant into experimental rabbits. Virus-neutralizing activity against SPPV in lamb kidney cell culture was detected for polyclonal antisera raised to SPPV-060, SPPV-117, and SPPV-122 proteins. To our knowledge, this is the first report demonstrating the virus-neutralizing activities of antisera raised to SPPV-060, SPPV-117, and SPPV-122 proteins. PMID:27338444

  16. Recombinant Sheep Pox Virus Proteins Elicit Neutralizing Antibodies

    PubMed Central

    Chervyakova, Olga V.; Zaitsev, Valentin L.; Iskakov, Bulat K.; Tailakova, Elmira T.; Strochkov, Vitaliy M.; Sultankulova, Kulyaisan T.; Sandybayev, Nurlan T.; Stanbekova, Gulshan E.; Beisenov, Daniyar K.; Abduraimov, Yergali O.; Mambetaliyev, Muratbay; Sansyzbay, Abylay R.; Kovalskaya, Natalia Y.; Nemchinov, Lev. G.; Hammond, Rosemarie W.

    2016-01-01

    The aim of this work was to evaluate the immunogenicity and neutralizing activity of sheep pox virus (SPPV; genus Capripoxvirus, family Poxviridae) structural proteins as candidate subunit vaccines to control sheep pox disease. SPPV structural proteins were identified by sequence homology with proteins of vaccinia virus (VACV) strain Copenhagen. Four SPPV proteins (SPPV-ORF 060, SPPV-ORF 095, SPPV-ORF 117, and SPPV-ORF 122), orthologs of immunodominant L1, A4, A27, and A33 VACV proteins, respectively, were produced in Escherichia coli. Western blot analysis revealed the antigenic and immunogenic properties of SPPV-060, SPPV-095, SPPV-117 and SPPV-122 proteins when injected with adjuvant into experimental rabbits. Virus-neutralizing activity against SPPV in lamb kidney cell culture was detected for polyclonal antisera raised to SPPV-060, SPPV-117, and SPPV-122 proteins. To our knowledge, this is the first report demonstrating the virus-neutralizing activities of antisera raised to SPPV-060, SPPV-117, and SPPV-122 proteins. PMID:27338444

  17. A neutralizing scFv antibody against infectious bursal disease virus screened by flow cytometry.

    PubMed

    Zhou, Yao; Xie, Zhi-Gang

    2015-09-01

    Infectious bursal disease (IBD) is considered a vital viral disease that threatens the poultry industry worldwide. In this study, a recombinant single chain variable fragment (scFv) antibody library derived from chickens immunized with VP2 protein of infectious bursal disease virus (IBDV) was constructed. The library was subjected to three rounds of screening by flow cytometry (FCM) against VP2/IBDV through a bacteria display technology, resulting in the enrichment of scFvs. Three scFv clones with different fluorescence intensity were obtained by colony pick up at random. The obtained scFv antibodies were expressed and purified. Relative affinity assay showed the three clones had different sensitivity to VP2, in accordance with fluorescence activity cell sorting analysis (FACS). The potential use of the isolated IBDV-specific scFv antibodies was demonstrated by the successful application of these antibodies in Western blotting and ELISA assay. What's more, in vitro neutralization measurement showed that one of the three isolated antibodies possessed the neutralization function against IBDV. This study provides new strategies for screening of antibody library, and scFv antibodies isolated in this study may be utilized as lead candidates for further development of diagnostic or therapeutic antibodies for detection and treatment of IBDV infection. PMID:26003676

  18. Cross-Reactivity of Neutralizing Antibodies among Malignant Catarrhal Fever Viruses

    PubMed Central

    Taus, Naomi S.; Cunha, Cristina W.; Marquard, Jana; O’Toole, Donal; Li, Hong

    2015-01-01

    Some members of the gamma herpesvirus genus Macavirus are maintained in nature as subclinical infections in well-adapted ungulate hosts. Transmission of these viruses to poorly adapted hosts, such as American bison and cattle, can result in the frequently fatal disease malignant catarrhal fever (MCF). Based on phylogenetic analysis, the MCF viruses (MCFV) cluster into two subgroups corresponding to the reservoir hosts’ subfamilies: Alcelaphinae/Hippotraginae and Caprinae. Antibody cross-reactivity among MCFVs has been demonstrated using techniques such as enzyme linked immunosorbent and immunofluorescence assays. However, minimal information is available as to whether virus neutralizing antibodies generated against one MCFV cross react with other members of the genus. This study tested the neutralizing activity of serum and plasma from select MCFV-infected reservoir hosts against alcelaphine herpesvirus 1 (AlHV-1) and ovine herpesvirus 2 (OvHV-2). Neutralizing antibody activity against AlHV-1 was detected in samples from infected hosts in the Alcelaphinae and Hippotraginae subfamilies, but not from hosts in the Caprinae subfamily. OvHV-2 neutralizing activity was demonstrated in samples from goats (Caprinae) but not from wildebeest (Alcelaphinae). These results show that neutralizing antibody cross reactivity is present to MCFVs within a virus subgroup but not between subgroups. This information is important for diagnosing infection with MCFVs and in the development of vaccines against MCF. PMID:26658281

  19. A sensitive retroviral pseudotype assay for influenza H5N1‐neutralizing antibodies

    PubMed Central

    Temperton, Nigel J.; Hoschler, Katja; Major, Diane; Nicolson, Carolyn; Manvell, Ruth; Hien, Vo Minh; Ha, Do Quang; De Jong, Menno; Zambon, Maria; Takeuchi, Yasuhiro; Weiss, Robin A.

    2007-01-01

    Background  The World Health Organisation (WHO) recommended the development of simple, safe, sensitive and specific neutralization assays for avian influenza antibodies. We have used retroviral pseudotypes bearing influenza H5 hemagglutinin (HA) as safe, surrogate viruses for influenza neutralization assays which can be carried out at Biosafety Level 2. Results  Using our assay, sera from patients who had recovered from infection with influenza H5N1, and sera from animals experimentally immunized or infected with H5 tested positive for the presence of neutralizing antibodies to H5N1. Pseudotype neutralizing antibody titers were compared with titers obtained by hemagglutinin inhibition (HI) assays and microneutralization (MN) assays using live virus, and showed a high degree of correlation, sensitivity and specificity. Conclusions  The pseudotype neutralization assay is as sensitive as horse erythrocyte HI and MN for the detection of antibodies to H5N1. It is safer, and can be applied in a high‐throughput format for human and animal surveillance and for the evaluation of vaccines. PMID:19453415

  20. Isolation of HIV-1-Neutralizing Mucosal Monoclonal Antibodies from Human Colostrum

    PubMed Central

    Friedman, James; Alam, S. Munir; Shen, Xiaoying; Xia, Shi-Mao; Stewart, Shelley; Anasti, Kara; Pollara, Justin; Fouda, Genevieve G.; Yang, Guang; Kelsoe, Garnett; Ferrari, Guido; Tomaras, Georgia D.; Haynes, Barton F.; Liao, Hua-Xin

    2012-01-01

    Background Generation of potent anti-HIV antibody responses in mucosal compartments is a potential requirement of a transmission-blocking HIV vaccine. HIV-specific, functional antibody responses are present in breast milk, and these mucosal antibody responses may play a role in protection of the majority of HIV-exposed, breastfeeding infants. Therefore, characterization of HIV-specific antibodies produced by B cells in milk could guide the development of vaccines that elicit protective mucosal antibody responses. Methods We isolated B cells from colostrum of an HIV-infected lactating woman with a detectable neutralization response in milk and recombinantly produced and characterized the resulting HIV-1 Envelope (Env)-specific monoclonal antibodies (mAbs). Results The identified HIV-1 Env-specific colostrum mAbs, CH07 and CH08, represent two of the first mucosally-derived anti-HIV antibodies yet to be reported. Colostrum mAb CH07 is a highly-autoreactive, weakly-neutralizing gp140-specific mAb that binds to linear epitopes in the gp120 C5 region and gp41 fusion domain. In contrast, colostrum mAb CH08 is a nonpolyreactive CD4-inducible (CD4i) gp120-specific mAb with moderate breadth of neutralization. Conclusions These novel HIV-neutralizing mAbs isolated from a mucosal compartment provide insight into the ability of mucosal B cell populations to produce functional anti-HIV antibodies that may contribute to protection against virus acquisition at mucosal surfaces. PMID:22624058

  1. Rapid Generation of Human-Like Neutralizing Monoclonal Antibodies in Urgent Preparedness for Influenza Pandemics and Virulent Infectious Diseases

    PubMed Central

    Meng, Weixu; Pan, Weiqi; Zhang, Anna J. X.; Li, Zhengfeng; Wei, Guowei; Feng, Liqiang; Dong, Zhenyuan; Li, Chufang; Hu, Xiangjing; Sun, Caijun; Luo, Qinfang; Yuen, Kwok-Yung; Zhong, Nanshan; Chen, Ling

    2013-01-01

    Background The outbreaks of emerging infectious diseases caused by pathogens such as SARS coronavirus, H5N1, H1N1, and recently H7N9 influenza viruses, have been associated with significant mortality and morbidity in humans. Neutralizing antibodies from individuals who have recovered from an infection confer therapeutic protection to others infected with the same pathogen. However, survivors may not always be available for providing plasma or for the cloning of monoclonal antibodies (mAbs). Methodology/Principal Findings The genome and the immunoglobulin genes in rhesus macaques and humans are highly homologous; therefore, we investigated whether neutralizing mAbs that are highly homologous to those of humans (human-like) could be generated. Using the H5N1 influenza virus as a model, we first immunized rhesus macaques with recombinant adenoviruses carrying a synthetic gene encoding hemagglutinin (HA). Following screening an antibody phage display library derived from the B cells of immunized monkeys, we cloned selected macaque immunoglobulin heavy chain and light chain variable regions into the human IgG constant region, which generated human-macaque chimeric mAbs exhibiting over 97% homology to human antibodies. Selected mAbs demonstrated potent neutralizing activities against three clades (0, 1, 2) of the H5N1 influenza viruses. The in vivo protection experiments demonstrated that the mAbs effectively protected the mice even when administered up to 3 days after infection with H5N1 influenza virus. In particular, mAb 4E6 demonstrated sub-picomolar binding affinity to HA and superior in vivo protection efficacy without the loss of body weight and obvious lung damage. The analysis of the 4E6 escape mutants demonstrated that the 4E6 antibody bound to a conserved epitope region containing two amino acids on the globular head of HA. Conclusions/Significance Our study demonstrated the generation of neutralizing mAbs for potential application in humans in urgent

  2. A Lentiviral Vector Expressing Japanese Encephalitis Virus-like Particles Elicits Broad Neutralizing Antibody Response in Pigs

    PubMed Central

    Souque, Philippe; Frenkiel, Marie-Pascale; Paulous, Sylvie; Garcìa-Nicolàs, Obdulio; Summerfield, Artur; Charneau, Pierre; Desprès, Philippe

    2015-01-01

    Background Japanese encephalitis virus (JEV) is the major cause of viral encephalitis in Southeast Asia. Vaccination of domestic pigs has been suggested as a “one health” strategy to reduce viral disease transmission to humans. The efficiency of two lentiviral TRIP/JEV vectors expressing the JEV envelope prM and E glycoproteins at eliciting protective humoral response was assessed in a mouse model and piglets. Methodology/Principal Findings A gene encoding the envelope proteins prM and E from a genotype 3 JEV strain was inserted into a lentiviral TRIP vector. Two lentiviral vectors TRIP/JEV were generated, each expressing the prM signal peptide followed by the prM protein and the E glycoprotein, the latter being expressed either in its native form or lacking its two C-terminal transmembrane domains. In vitro transduction of cells with the TRIP/JEV vector expressing the native prM and E resulted in the efficient secretion of virus-like particles of Japanese encephalitis virus. Immunization of BALB/c mice with TRIP/JEV vectors resulted in the production of IgGs against Japanese encephalitis virus, and the injection of a second dose one month after the prime injection greatly boosted antibody titers. The TRIP/JEV vectors elicited neutralizing antibodies against JEV strains belonging to genotypes 1, 3, and 5. Immunization of piglets with two doses of the lentiviral vector expressing JEV virus-like particles led to high titers of anti-JEV antibodies, that had efficient neutralizing activity regardless of the JEV genotype tested. Conclusions/Significance Immunization of pigs with the lentiviral vector expressing JEV virus-like particles is particularly efficient to prime antigen-specific humoral immunity and trigger neutralizing antibody responses against JEV genotypes 1, 3, and 5. The titers of neutralizing antibodies elicited by the TRIP/JEV vector are sufficient to confer protection in domestic pigs against different genotypes of JEV and this could be of a great

  3. Increased Efficacy of HIV-1 Neutralization by Antibodies at Low CCR5 Surface Concentration

    PubMed Central

    Choudhry, Vidita; Zhang, Mei-Yun; Harris, Ilia; Sidorov, Igor A.; Vu, Bang; Dimitrov, Antony S.; Fouts, Timothy; Dimitrov, Dimiter S.

    2007-01-01

    It has been observed that some antibodies, including the CD4-induced (CD4i) antibody IgG X5 and the gp41-specific antibody IgG 2F5, exhibit higher neutralizing activity in PBMC-based assays than in cell line based assays (Binley et al., J. Virology, 2004, 78: 13232). It has been hypothesized that the lower CCR5 concentration on the surface of the CD4 T lymphocyte compared to that on cell lines used for the neutralization assays could be a contributing factor to the observed differences in neutralizing activity. To test this hypothesis and to further elucidate the contribution of CCR5 concentration differences on antibody neutralizing activity, we used a panel of HeLa cell lines with well-defined and differential surface concentrations of CCR5 and CD4 in a pseudovirus-based assay. We observed that the CCR5 cell surface concentration but not the CD4 concentration had a significant effect on the inhibitory activity of X5 and several other CD4i antibodies including 17b and m9, as well as that of the gp41-specifc antibodies 2F5 and 4E10 but not on that of the CD4 binding site antibody (CD4bs), b12. The 50% inhibitory concentration (IC50) decreased up to two orders of magnitude in cell lines with low CCR5 concentration corresponding to that in CD4 T cells used in PBMC-based assays (about 103 per cell) compared to cell lines with high CCR5 concentration (about 104 or more). Our results suggest that the CCR5 cell surface concentration could be a contributing factor to the high neutralizing activities of some antibodies in PBMC-based-assays but other factors could also play an important role. These findings could have implications for development of vaccine immunogens based on the epitopes of X5 and other CD4i antibodies, for elucidation of the mechanisms of HIV-1 neutralization by antibodies, and for design of novel therapeutic approaches. PMID:16904645

  4. Naturally enveloped AAV vectors for shielding neutralizing antibodies and robust gene delivery in vivo

    PubMed Central

    György, Bence; Fitzpatrick, Zachary; Crommentuijn, Matheus HW; Mu, Dakai; Maguire, Casey A.

    2014-01-01

    Recently adeno-associated virus (AAV) became the first clinically approved gene therapy product in the western world. To develop AAV for future clinical application in a widespread patient base, particularly in therapies which require intravenous (i.v.) administration of vector, the virus must be able to evade pre-existing antibodies to the wild type virus. Here we demonstrate that in mice, AAV vectors associated with extracellular vesicles (EVs) can evade human anti-AAV neutralizing antibodies. We observed different antibody evasion and gene transfer abilities with populations of EVs isolated by different centrifugal forces. EV-associated AAV vector (ev-AAV) was up to 136-fold more resistant over a range of neutralizing antibody concentrations relative to standard AAV vector in vitro. Importantly in mice, at a concentration of passively transferred human antibodies which decreased i.v. administered standard AAV transduction of brain by 80%, transduction of ev-AAV transduction was not reduced and was 4,000-fold higher. Finally, we show that expressing a brain targeting peptide on the EV surface allowed significant enhancement of transduction compared to untargeted ev-AAV. Using ev-AAV represents an effective, clinically relevant approach to evade human neutralizing anti-AAV antibodies after systemic administration of vector. PMID:24917028

  5. Neutralizing antibodies are unable to inhibit direct viral cell-to-cell spread of human cytomegalovirus.

    PubMed

    Jacob, Christian L; Lamorte, Louie; Sepulveda, Eliud; Lorenz, Ivo C; Gauthier, Annick; Franti, Michael

    2013-09-01

    Infection with human cytomegalovirus (CMV) during pregnancy is the most common cause of congenital disorders, and can lead to severe life-long disabilities with associated high cost of care. Since there is no vaccine or effective treatment, current efforts are focused on identifying potent neutralizing antibodies. A panel of CMV monoclonal antibodies identified from patent applications, was synthesized and expressed in order to reproduce data from the literature showing that anti-glycoprotein B antibodies neutralized virus entry into all cell types and that anti-pentameric complex antibodies are highly potent in preventing virus entry into epithelial cells. It had not been established whether antibodies could prevent subsequent rounds of infection that are mediated primarily by direct cell-to-cell transmission. A thorough validation of a plaque reduction assay to monitor cell-to-cell spread led to the conclusion that neutralizing antibodies do not significantly inhibit plaque formation or reduce plaque size when they are added post-infection. PMID:23849792

  6. Engineering Venom’s Toxin-Neutralizing Antibody Fragments and Its Therapeutic Potential

    PubMed Central

    Alvarenga, Larissa M.; Zahid, Muhammad; di Tommaso, Anne; Juste, Matthieu O.; Aubrey, Nicolas; Billiald, Philippe; Muzard, Julien

    2014-01-01

    Serum therapy remains the only specific treatment against envenoming, but anti-venoms are still prepared by fragmentation of polyclonal antibodies isolated from hyper-immunized horse serum. Most of these anti-venoms are considered to be efficient, but their production is tedious, and their use may be associated with adverse effects. Recombinant antibodies and smaller functional units are now emerging as credible alternatives and constitute a source of still unexploited biomolecules capable of neutralizing venoms. This review will be a walk through the technologies that have recently been applied leading to novel antibody formats with better properties in terms of homogeneity, specific activity and possible safety. PMID:25153256

  7. Neutralizing monoclonal antibodies recognize antigenic variants among isolates of infectious hematopoietic necrosis virus

    USGS Publications Warehouse

    Winton, J.R.; Arakawa, C.N.; Lannan, C.N.; Fryer, J.L.

    1988-01-01

    eutralizing monoclonal antibodies were developed against strains of infectious hematopoietic necrosis virus (IHNV) from steelhead trout Salmo gairdneri in the Deschutes River of Oregon, chinook salmon Oncorhynchus tshawytscha in the Sacramento River of California, and rainbow trout Salmo gairdneri reared in the Hagerman Valley of Idaho, USA. These antibodies were tested for neutralization of 12 IHNV isolates obtained from salmonids in Japan, Alaska, Washington, Oregon, California, and Idaho. The antibodies recognized antigenic variants among the isolates and could be used to separate the viruses into 4 groups. The members of each group tended to be related by geographic area rather than by source host species, virulence, or date of isolation.

  8. Heterosubtypic neutralizing antibodies are produced by individuals immunized with a seasonal influenza vaccine

    PubMed Central

    Corti, Davide; Suguitan, Amorsolo L.; Pinna, Debora; Silacci, Chiara; Fernandez-Rodriguez, Blanca M.; Vanzetta, Fabrizia; Santos, Celia; Luke, Catherine J.; Torres-Velez, Fernando J.; Temperton, Nigel J.; Weiss, Robin A.; Sallusto, Federica; Subbarao, Kanta; Lanzavecchia, Antonio

    2010-01-01

    The target of neutralizing antibodies that protect against influenza virus infection is the viral protein HA. Genetic and antigenic variation in HA has been used to classify influenza viruses into subtypes (H1–H16). The neutralizing antibody response to influenza virus is thought to be specific for a few antigenically related isolates within a given subtype. However, while heterosubtypic antibodies capable of neutralizing multiple influenza virus subtypes have been recently isolated from phage display libraries, it is not known whether such antibodies are produced in the course of an immune response to influenza virus infection or vaccine. Here we report that, following vaccination with seasonal influenza vaccine containing H1 and H3 influenza virus subtypes, some individuals produce antibodies that cross-react with H5 HA. By immortalizing IgG-expressing B cells from 4 individuals, we isolated 20 heterosubtypic mAbs that bound and neutralized viruses belonging to several HA subtypes (H1, H2, H5, H6, and H9), including the pandemic A/California/07/09 H1N1 isolate. The mAbs used different VH genes and carried a high frequency of somatic mutations. With the exception of a mAb that bound to the HA globular head, all heterosubtypic mAbs bound to acid-sensitive epitopes in the HA stem region. Four mAbs were evaluated in vivo and protected mice from challenge with influenza viruses representative of different subtypes. These findings reveal that seasonal influenza vaccination can induce polyclonal heterosubtypic neutralizing antibodies that cross-react with the swine-origin pandemic H1N1 influenza virus and with the highly pathogenic H5N1 virus. PMID:20389023

  9. Characterization of novel neutralizing monoclonal antibodies specific to human neurturin.

    PubMed

    Hongo, J A; Tsai, S P; Moffat, B; Schroeder, K A; Jung, C; Chuntharapai, A; Lampe, P A; Johnson, E M; de Sauvage, F J; Armanini, M; Phillips, H; Devaux, B

    2000-08-01

    Neurturin (NTN) a structural and functional relative of glial cell line-derived neurotrophic factor, was originally identified based on its ability to support the survival of sympathetic neurons in culture. Similar to glial cell line-derived neurotrophic factor (GDNF), Neurturin has been shown to bind to a high affinity glycosylphosphatidylinositol (GPI)-linked receptor (GFRalpha2) and induce phosphorylation of the tyrosine kinase receptor Ret, resulting in the activation of the mitogen activated protein kinase (MAPK) signalling pathway. A panel of six novel murine monoclonal antibodies (MAbs) specific to human Neurturin has been developed and characterized. Four of the MAbs tested inhibit, to varying degrees, binding of NTN to the GPI-linked GFRalpha2 receptor. Three MAbs cross-react with the murine homolog. These antibodies have been shown to be useful reagents for Western blotting, immunohistochemistry, and also for the development of a sensitive, quantitative enzyme-linked immunosorbent assay (ELISA) for human NTN. Novel, specific MAbs with varying epitope specificities and blocking activity will be valuable tools for both the in vitro and in vivo characterization of NTN and its relationship to the GFRalpha2 and Ret receptors. PMID:11001403

  10. Prefusion F–specific antibodies determine the magnitude of RSV neutralizing activity in human sera

    PubMed Central

    Ngwuta, Joan O.; Chen, Man; Modjarrad, Kayvon; Joyce, M. Gordon; Kanekiyo, Masaru; Kumar, Azad; Yassine, Hadi M.; Moin, Syed M.; Killikelly, April M.; Chuang, Gwo-Yu; Druz, Aliaksandr; Georgiev, Ivelin S.; Rundlet, Emily J.; Sastry, Mallika; Stewart-Jones, Guillaume B. E.; Yang, Yongping; Zhang, Baoshan; Nason, Martha C.; Capella, Cristina; Peeples, Mark E.; Ledgerwood, Julie E.; McLellan, Jason S.; Kwong, Peter D.; Graham, Barney S.

    2015-01-01

    Respiratory syncytial virus (RSV) is estimated to claim more lives among infants <1 year old than any other single pathogen, except malaria, and poses a substantial global health burden. Viral entry is mediated by a type I fusion glycoprotein (F) that transitions from a metastable prefusion (pre-F) to a stable postfusion (post-F) trimer. A highly neutralization-sensitive epitope, antigenic site Ø, is found only on pre-F. We determined what fraction of neutralizing (NT) activity in human sera is dependent on antibodies specific for antigenic site Ø or other antigenic sites on F in healthy subjects from ages 7 to 93 years. Adsorption of individual sera with stabilized pre-F protein removed >90% of NT activity and depleted binding antibodies to both F conformations. In contrast, adsorption with post-F removed ~30% of NT activity, and binding antibodies to pre-F were retained. These findings were consistent across all age groups. Protein competition neutralization assays with pre-F mutants in which sites Ø or II were altered to knock out binding of antibodies to the corresponding sites showed that these sites accounted for ~35 and <10% of NT activity, respectively. Binding competition assays with monoclonal antibodies (mAbs) indicated that the amount of site Ø–specific antibodies correlated with NT activity, whereas the magnitude of binding competed by site II mAbs did not correlate with neutralization. Our results indicate that RSV NT activity in human sera is primarily derived from pre-F–specific antibodies, and therefore, inducing or boosting NT activity by vaccination will be facilitated by using pre-F antigens that preserve site Ø. PMID:26468324

  11. Neutralizing Antibody Response and Antibody-Dependent Cellular Cytotoxicity in HIV-1-Infected Individuals from Guinea-Bissau and Denmark.

    PubMed

    Borggren, Marie; Jensen, Sanne Skov; Heyndrickx, Leo; Palm, Angelica A; Gerstoft, Jan; Kronborg, Gitte; Hønge, Bo Langhoff; Jespersen, Sanne; da Silva, Zacarias José; Karlsson, Ingrid; Fomsgaard, Anders

    2016-05-01

    The development of therapeutic and prophylactic HIV vaccines for African countries is urgently needed, but the question of what immunogens to use needs to be answered. One approach is to include HIV envelope immunogens derived from HIV-positive individuals from a geographically concentrated epidemic with more limited viral genetic diversity for a region-based vaccine. To address if there is a basis for a regional selected antibody vaccine, we have screened two regionally separate cohorts from Guinea-Bissau and Denmark for neutralizing antibody activity and antibody-dependent cellular cytotoxicity (ADCC) against local and nonlocal circulating HIV-1 strains. The neutralizing activity did not demonstrate higher potential against local circulating strains according to geography and subtype determination, but the plasma from Danish individuals demonstrated significantly higher inhibitory activity than that from Guinea-Bissau individuals against both local and nonlocal virus strains. Interestingly, an opposite pattern was observed with ADCC activity, where Guinea-Bissau individual plasma demonstrated higher activity than Danish plasma and was specifically against the local circulating subtype. Thus, on basis of samples from these two cohorts, no local-specific neutralizing activity was detected, but a local ADCC response was identified in the Guinea-Bissau samples, suggesting potential use of regional immunogens for an ADCC-inducing vaccine. PMID:26621287

  12. Broadly-Reactive Neutralizing and Non-neutralizing Antibodies Directed against the H7 Influenza Virus Hemagglutinin Reveal Divergent Mechanisms of Protection

    PubMed Central

    Albrecht, Randy A.; Margine, Irina; Hirsh, Ariana; Bahl, Justin; Krammer, Florian

    2016-01-01

    In the early spring of 2013, Chinese health authorities reported several cases of H7N9 influenza virus infections in humans. Since then the virus has established itself at the human-animal interface in Eastern China and continues to cause several hundred infections annually. In order to characterize the antibody response to the H7N9 virus we generated several mouse monoclonal antibodies against the hemagglutinin of the A/Shanghai/1/13 (H7N9) virus. Of particular note are two monoclonal antibodies, 1B2 and 1H5, that show broad reactivity to divergent H7 hemagglutinins. Monoclonal antibody 1B2 binds to viruses of the Eurasian and North American H7 lineages and monoclonal antibody 1H5 reacts broadly to virus isolates of the Eurasian lineage. Interestingly, 1B2 shows broad hemagglutination inhibiting and neutralizing activity, while 1H5 fails to inhibit hemagglutination and demonstrates no neutralizing activity in vitro. However, both monoclonal antibodies were highly protective in an in vivo passive transfer challenge model in mice, even at low doses. Experiments using mutant antibodies that lack the ability for Fc/Fc-receptor and Fc/complement interactions suggest that the protection provided by mAb 1H5 is, at least in part, mediated by the Fc-fragment of the mAb. These findings highlight that a protective response to a pathogen may not only be due to neutralizing antibodies, but can also be the result of highly efficacious non-neutralizing antibodies not readily detected by classical in vitro neutralization or hemagglutination inhibition assays. This is of interest because H7 influenza virus vaccines induce only low hemagglutination inhibiting antibody titers while eliciting robust antibody titers as measured by ELISA. Our data suggest that these binding but non-neutralizing antibodies contribute to protection in vivo. PMID:27081859

  13. Memory B Cells Encode Neutralizing Antibody Specific for Toxin B from the Clostridium difficile Strains VPI 10463 and NAP1/BI/027 but with Superior Neutralization of VPI 10463 Toxin B

    PubMed Central

    Devera, T. Scott; Lang, Gillian A.; Lanis, Jordi M.; Rampuria, Pragya; Gilmore, Casey L.; James, Judith A.; Ballard, Jimmy D.

    2015-01-01

    Secreted toxin B (TcdB) substantially contributes to the pathology observed during Clostridium difficile infection. To be successfully incorporated into a vaccine, TcdB-based immunogens must stimulate the production of neutralizing antibody (Ab)-encoding memory B cells (Bmem cells). Despite numerous investigations, a clear analysis of Bmem cellular responses following vaccination against TcdB is lacking. B6 mice were therefore used to test the ability of a nontoxigenic C-terminal domain (CTD) fragment of TcdB to induce Bmem cells that encode TcdB-neutralizing antibody. CTD was produced from the historical VPI 10463 strain (CTD1) and from the hypervirulent strain NAP1/BI/027 (CTD2). It was then demonstrated that CTD1 induced strong recall IgG antibody titers, and this led to the development of functional Bmem cells that could be adoptively transferred to naive recipients. Bmem cell-driven neutralizing Ab responses conferred protection against lethal challenge with TcdB1. Further experiments revealed that an experimental adjuvant (Imject) and a clinical adjuvant (Alhydrogel) were compatible with Bmem cell induction. Reactivity of human Bmem cells to CTD1 was also evident in human peripheral blood mononuclear cells (PBMCs), suggesting that CTD1 could be a good vaccine immunogen. However, CTD2 induced strong Bmem cell-driven antibody titers, and the CTD2 antibody was neutralizing in vitro, but its protection against lethal challenge with TcdB2 was limited to delaying time to death. Therefore, CTD from different C. difficile strains may be a good immunogen for stimulating B cell memory that encodes in vitro neutralizing Ab but may be limited by variable protection against intoxication in vivo. PMID:26502913

  14. A rapid and quantitative assay for measuring antibody-mediated neutralization of West Nile virus infection

    SciTech Connect

    Pierson, Theodore C. . E-mail: piersontc@mail.nih.gov; Sanchez, Melissa D.; Puffer, Bridget A.; Ahmed, Asim A.; Geiss, Brian J.; Valentine, Laura E.; Altamura, Louis A.; Diamond, Michael S.; Doms, Robert W. . E-mail: doms@mail.med.upenn.edu

    2006-03-01

    West Nile virus (WNV) is a neurotropic flavivirus within the Japanese encephalitis antigenic complex that is responsible for causing West Nile encephalitis in humans. The surface of WNV virions is covered by a highly ordered icosahedral array of envelope proteins that is responsible for mediating attachment and fusion with target cells. These envelope proteins are also primary targets for the generation of neutralizing antibodies in vivo. In this study, we describe a novel approach for measuring antibody-mediated neutralization of WNV infection using virus-like particles that measure infection as a function of reporter gene expression. These reporter virus particles (RVPs) are produced by complementation of a sub-genomic replicon with WNV structural proteins provided in trans using conventional DNA expression vectors. The precision and accuracy of this approach stem from an ability to measure the outcome of the interaction between antibody and viral antigens under conditions that satisfy the assumptions of the law of mass action as applied to virus neutralization. In addition to its quantitative strengths, this approach allows the production of WNV RVPs bearing the prM-E proteins of different WNV strains and mutants, offering considerable flexibility for the study of the humoral immune response to WNV in vitro. WNV RVPs are capable of only a single round of infection, can be used under BSL-2 conditions, and offer a rapid and quantitative approach for detecting virus entry and its inhibition by neutralizing antibody.

  15. Mechanisms of Ricin Toxin Neutralization Revealed through Engineered Homodimeric and Heterodimeric Camelid Antibodies.

    PubMed

    Herrera, Cristina; Tremblay, Jacqueline M; Shoemaker, Charles B; Mantis, Nicholas J

    2015-11-13

    Novel antibody constructs consisting of two or more different camelid heavy-chain only antibodies (VHHs) joined via peptide linkers have proven to have potent toxin-neutralizing activity in vivo against Shiga, botulinum, Clostridium difficile, anthrax, and ricin toxins. However, the mechanisms by which these so-called bispecific VHH heterodimers promote toxin neutralization remain poorly understood. In the current study we produced a new collection of ricin-specific VHH heterodimers, as well as VHH homodimers, and characterized them for their ability neutralize ricin in vitro and in vivo. We demonstrate that the VHH heterodimers, but not homodimers were able to completely protect mice against ricin challenge, even though the two classes of antibodies (heterodimers and homodimers) had virtually identical affinities for ricin holotoxin and similar IC50 values in a Vero cell cytotoxicity assay. The VHH heterodimers did differ from the homodimers in their ability to promote toxin aggregation in solution, as revealed through analytical ultracentrifugation. Moreover, the VHH heterodimers that were most effective at promoting ricin aggregation in solution were also the most effective at blocking ricin attachment to cell surfaces. Collectively, these data suggest that heterodimeric VHH-based neutralizing agents may function through the formation of antibody-toxin complexes that are impaired in their ability to access host cell receptors. PMID:26396190

  16. Development of human neutralizing monoclonal antibodies for prevention and therapy of MERS-CoV infections

    PubMed Central

    Ying, Tianlei; Li, Haoyang; Lu, Lu; Dimitrov, Dimiter S; Jiang, Shibo

    2014-01-01

    The recent Middle East respiratory syndrome coronavirus (MERS-CoV) outbreak poses a serious threat to public health. Here, we summarize recent advances in identifying human neutralizing monoclonal antibodies (mAbs) against MERS-CoV, describe their mechanisms of action, and analyze their potential for treatment of MERS-CoV infections. PMID:25456101

  17. Induction of HIV Neutralizing Antibody Lineages in Mice with Diverse Precursor Repertoires.

    PubMed

    Tian, Ming; Cheng, Cheng; Chen, Xuejun; Duan, Hongying; Cheng, Hwei-Ling; Dao, Mai; Sheng, Zizhang; Kimble, Michael; Wang, Lingshu; Lin, Sherry; Schmidt, Stephen D; Du, Zhou; Joyce, M Gordon; Chen, Yiwei; DeKosky, Brandon J; Chen, Yimin; Normandin, Erica; Cantor, Elizabeth; Chen, Rita E; Doria-Rose, Nicole A; Zhang, Yi; Shi, Wei; Kong, Wing-Pui; Choe, Misook; Henry, Amy R; Laboune, Farida; Georgiev, Ivelin S; Huang, Pei-Yi; Jain, Suvi; McGuire, Andrew T; Georgeson, Eric; Menis, Sergey; Douek, Daniel C; Schief, William R; Stamatatos, Leonidas; Kwong, Peter D; Shapiro, Lawrence; Haynes, Barton F; Mascola, John R; Alt, Frederick W

    2016-09-01

    The design of immunogens that elicit broadly reactive neutralizing antibodies (bnAbs) has been a major obstacle to HIV-1 vaccine development. One approach to assess potential immunogens is to use mice expressing precursors of human bnAbs as vaccination models. The bnAbs of the VRC01-class derive from the IGHV1-2 immunoglobulin heavy chain and neutralize a wide spectrum of HIV-1 strains via targeting the CD4 binding site of the envelope glycoprotein gp120. We now describe a mouse vaccination model that allows a germline human IGHV1-2(∗)02 segment to undergo normal V(D)J recombination and, thereby, leads to the generation of peripheral B cells that express a highly diverse repertoire of VRC01-related receptors. When sequentially immunized with modified gp120 glycoproteins designed to engage VRC01 germline and intermediate antibodies, IGHV1-2(∗)02-rearranging mice, which also express a VRC01-antibody precursor light chain, can support the affinity maturation of VRC01 precursor antibodies into HIV-neutralizing antibody lineages. PMID:27610571

  18. Sequential Immunization Elicits Broadly Neutralizing Anti-HIV-1 Antibodies in Ig Knockin Mice.

    PubMed

    Escolano, Amelia; Steichen, Jon M; Dosenovic, Pia; Kulp, Daniel W; Golijanin, Jovana; Sok, Devin; Freund, Natalia T; Gitlin, Alexander D; Oliveira, Thiago; Araki, Tatsuya; Lowe, Sarina; Chen, Spencer T; Heinemann, Jennifer; Yao, Kai-Hui; Georgeson, Erik; Saye-Francisco, Karen L; Gazumyan, Anna; Adachi, Yumiko; Kubitz, Michael; Burton, Dennis R; Schief, William R; Nussenzweig, Michel C

    2016-09-01

    A vaccine that elicits broadly neutralizing antibodies (bNAbs) against HIV-1 is likely to be protective, but this has not been achieved. To explore immunization regimens that might elicit bNAbs, we produced and immunized mice expressing the predicted germline PGT121, a bNAb specific for the V3-loop and surrounding glycans on the HIV-1 spike. Priming with an epitope-modified immunogen designed to activate germline antibody-expressing B cells, followed by ELISA-guided boosting with a sequence of directional immunogens, native-like trimers with decreasing epitope modification, elicited heterologous tier-2-neutralizing responses. In contrast, repeated immunization with the priming immunogen did not. Antibody cloning confirmed elicitation of high levels of somatic mutation and tier-2-neutralizing antibodies resembling the authentic human bNAb. Our data establish that sequential immunization with specifically designed immunogens can induce high levels of somatic mutation and shepherd antibody maturation to produce bNAbs from their inferred germline precursors. PMID:27610569

  19. Antibody-mediated neutralization of Ebola virus can occur by two distinct mechanisms

    SciTech Connect

    Shedlock, Devon J.; Bailey, Michael A.; Popernack, Paul M.; Cunningham, James M.; Burton, Dennis R.; Sullivan, Nancy J.

    2010-06-05

    Human Ebola virus causes severe hemorrhagic fever disease with high mortality and there is no vaccine or treatment. Antibodies in survivors occur early, are sustained, and can delay infection when transferred into nonhuman primates. Monoclonal antibodies (mAbs) from survivors exhibit potent neutralizing activity in vitro and are protective in rodents. To better understand targets and mechanisms of neutralization, we investigated a panel of mAbs shown previously to react with the envelope glycoprotein (GP). While one non-neutralizing mAb recognized a GP epitope in the nonessential mucin-like domain, the rest were specific for GP1, were neutralizing, and could be further distinguished by reactivity with secreted GP. We show that survivor antibodies, human KZ52 and monkey JP3K11, were specific for conformation-dependent epitopes comprising residues in GP1 and GP2 and that neutralization occurred by two distinct mechanisms; KZ52 inhibited cathepsin cleavage of GP whereas JP3K11 recognized the cleaved, fusion-active form of GP.

  20. Safety, pharmacokinetics and neutralization of the broadly neutralizing HIV-1 human monoclonal antibody VRC01 in healthy adults.

    PubMed

    Ledgerwood, J E; Coates, E E; Yamshchikov, G; Saunders, J G; Holman, L; Enama, M E; DeZure, A; Lynch, R M; Gordon, I; Plummer, S; Hendel, C S; Pegu, A; Conan-Cibotti, M; Sitar, S; Bailer, R T; Narpala, S; McDermott, A; Louder, M; O'Dell, S; Mohan, S; Pandey, J P; Schwartz, R M; Hu, Z; Koup, R A; Capparelli, E; Mascola, J R; Graham, B S

    2015-12-01

    VRC-HIVMAB060-00-AB (VRC01) is a broadly neutralizing HIV-1 monoclonal antibody (mAb) isolated from the B cells of an HIV-infected patient. It is directed against the HIV-1 CD4 binding site and is capable of potently neutralizing the majority of diverse HIV-1 strains. This Phase I dose-escalation study in healthy adults was conducted at the National Institutes of Health (NIH) Clinical Center (Bethesda, MD, USA). Primary objectives were the safety, tolerability and pharmacokinetics (PK) of VRC01 intravenous (i.v.) infusion at 5, 20 or 40 mg/kg, given either once (20 mg/kg) or twice 28 days apart (all doses), and of subcutaneous (s.c.) delivery at 5 mg/kg compared to s.c. placebo given twice, 28 days apart. Cumulatively, 28 subjects received 43 VRC01 and nine received placebo administrations. There were no serious adverse events or dose-limiting toxicities. Mean 28-day serum trough concentrations after the first infusion were 35 and 57 μg/ml for groups infused with 20 mg/kg (n = 8) and 40 mg/kg (n = 5) doses, respectively. Mean 28-day trough concentrations after the second infusion were 56 and 89 μg/ml for the same two doses. Over the 5-40 mg/kg i.v. dose range (n = 18), the clearance was 0.016 l/h and terminal half-life was 15 days. After infusion VRC01 retained expected neutralizing activity in serum, and anti-VRC01 antibody responses were not detected. The human monoclonal antibody (mAb) VRC01 was well tolerated when delivered i.v. or s.c. The mAb demonstrated expected half-life and pharmacokinetics for a human immunoglobulin G. The safety and PK results support and inform VRC01 dosing schedules for planning HIV-1 prevention efficacy studies. PMID:26332605

  1. A novel antibody discovery platform identifies anti-influenza A broadly neutralizing antibodies from human memory B cells.

    PubMed

    Xiao, Xiaodong; Chen, Yan; Varkey, Reena; Kallewaard, Nicole; Koksal, Adem C; Zhu, Qing; Wu, Herren; Chowdhury, Partha S; Dall'Acqua, William F

    2016-07-01

    Monoclonal antibody isolation directly from circulating human B cells is a powerful tool to delineate humoral responses to pathological conditions and discover antibody therapeutics. We have developed a platform aimed at improving the efficiencies of B cell selection and V gene recovery. Here, memory B cells are activated and amplified using Epstein-Barr virus infection, co-cultured with CHO-muCD40L cells, and then assessed by functional screenings. An in vitro transcription and translation (IVTT) approach was used to analyze variable (V) genes recovered from each B cell sample and identify the relevant heavy/light chain pair(s). We achieved efficient amplification and activation of memory B cells, and eliminated the need to: 1) seed B cells at clonal level (≤1 cell/well) or perform limited dilution cloning; 2) immortalize B cells; or 3) assemble V genes into an IgG expression vector to confirm the relevant heavy/light chain pairing. Cross-reactive antibodies targeting a conserved epitope on influenza A hemagglutinin were successfully isolated from a healthy donor. In-depth analysis of the isolated antibodies suggested their potential uses as anti-influenza A antibody therapeutics and uncovered a distinct affinity maturation pathway. Importantly, our results showed that cognate heavy/light chain pairings contributed to both the expression level and binding abilities of our newly isolated VH1-69 family, influenza A neutralizing antibodies, contrasting with previous observations that light chains do not significantly contribute to the function of this group of antibodies. Our results further suggest the potential use of the IVTT as a powerful antibody developability assessment tool. PMID:27049174

  2. A potent and broad neutralizing antibody recognizes and penetrates the HIV glycan shield.

    PubMed

    Pejchal, Robert; Doores, Katie J; Walker, Laura M; Khayat, Reza; Huang, Po-Ssu; Wang, Sheng-Kai; Stanfield, Robyn L; Julien, Jean-Philippe; Ramos, Alejandra; Crispin, Max; Depetris, Rafael; Katpally, Umesh; Marozsan, Andre; Cupo, Albert; Maloveste, Sebastien; Liu, Yan; McBride, Ryan; Ito, Yukishige; Sanders, Rogier W; Ogohara, Cassandra; Paulson, James C; Feizi, Ten; Scanlan, Christopher N; Wong, Chi-Huey; Moore, John P; Olson, William C; Ward, Andrew B; Poignard, Pascal; Schief, William R; Burton, Dennis R; Wilson, Ian A

    2011-11-25

    The HIV envelope (Env) protein gp120 is protected from antibody recognition by a dense glycan shield. However, several of the recently identified PGT broadly neutralizing antibodies appear to interact directly with the HIV glycan coat. Crystal structures of antigen-binding fragments (Fabs) PGT 127 and 128 with Man(9) at 1.65 and 1.29 angstrom resolution, respectively, and glycan binding data delineate a specific high mannose-binding site. Fab PGT 128 complexed with a fully glycosylated gp120 outer domain at 3.25 angstroms reveals that the antibody penetrates the glycan shield and recognizes two conserved glycans as well as a short β-strand segment of the gp120 V3 loop, accounting for its high binding affinity and broad specificity. Furthermore, our data suggest that the high neutralization potency of PGT 127 and 128 immunoglobulin Gs may be mediated by cross-linking Env trimers on the viral surface. PMID:21998254

  3. A Potent and Broad Neutralizing Antibody Recognizes and Penetrates the HIV Glycan Shield

    SciTech Connect

    Pejchal, Robert; Doores, Katie J.; Walker, Laura M.; Khayat, Reza; Huang, Po-Ssu; Wang, Sheng-Kai; Stanfield, Robyn L.; Julien, Jean-Philippe; Ramos, Alejandra; Crispin, Max; Depetris, Rafael; Katpally, Umesh; Marozsan, Andre; Cupo, Albert; Maloveste, Sebastien; Liu, Yan; McBride, Ryan; Ito, Yukishige; Sanders, Rogier W.; Ogohara, Cassandra; Paulson, James C.; Feizi, Ten; Scanlan, Christopher N.; Wong, Chi-Huey; Moore, John P.; Olson, William C.; Ward, Andrew B.; Poignard, Pascal; Schief, William R.; Burton, Dennis R.; Wilson, Ian A.

    2015-10-15

    The HIV envelope (Env) protein gp120 is protected from antibody recognition by a dense glycan shield. However, several of the recently identified PGT broadly neutralizing antibodies appear to interact directly with the HIV glycan coat. Crystal structures of antigen-binding fragments (Fabs) PGT 127 and 128 with Man{sub 9} at 1.65 and 1.29 angstrom resolution, respectively, and glycan binding data delineate a specific high mannose-binding site. Fab PGT 128 complexed with a fully glycosylated gp120 outer domain at 3.25 angstroms reveals that the antibody penetrates the glycan shield and recognizes two conserved glycans as well as a short {beta}-strand segment of the gp120 V3 loop, accounting for its high binding affinity and broad specificify. Furthermore, our data suggest that the high neutralization potency of PGT 127 and 128 immunoglobulin Gs may be mediated by cross-linking Env trimers on the viral surface.

  4. HIV-1 VACCINES. HIV-1 neutralizing antibodies induced by native-like envelope trimers.

    PubMed

    Sanders, Rogier W; van Gils, Marit J; Derking, Ronald; Sok, Devin; Ketas, Thomas J; Burger, Judith A; Ozorowski, Gabriel; Cupo, Albert; Simonich, Cassandra; Goo, Leslie; Arendt, Heather; Kim, Helen J; Lee, Jeong Hyun; Pugach, Pavel; Williams, Melissa; Debnath, Gargi; Moldt, Brian; van Breemen, Mariëlle J; Isik, Gözde; Medina-Ramírez, Max; Back, Jaap Willem; Koff, Wayne C; Julien, Jean-Philippe; Rakasz, Eva G; Seaman, Michael S; Guttman, Miklos; Lee, Kelly K; Klasse, Per Johan; LaBranche, Celia; Schief, William R; Wilson, Ian A; Overbaugh, Julie; Burton, Dennis R; Ward, Andrew B; Montefiori, David C; Dean, Hansi; Moore, John P

    2015-07-10

    A challenge for HIV-1 immunogen design is the difficulty of inducing neutralizing antibodies (NAbs) against neutralization-resistant (tier 2) viruses that dominate human transmissions. We show that a soluble recombinant HIV-1 envelope glycoprotein trimer that adopts a native conformation, BG505 SOSIP.664, induced NAbs potently against the sequence-matched tier 2 virus in rabbits and similar but weaker responses in macaques. The trimer also consistently induced cross-reactive NAbs against more sensitive (tier 1) viruses. Tier 2 NAbs recognized conformational epitopes that differed between animals and in some cases overlapped with those recognized by broadly neutralizing antibodies (bNAbs), whereas tier 1 responses targeted linear V3 epitopes. A second trimer, B41 SOSIP.664, also induced a strong autologous tier 2 NAb response in rabbits. Thus, native-like trimers represent a promising starting point for the development of HIV-1 vaccines aimed at inducing bNAbs. PMID:26089353

  5. Escape from neutralization by the respiratory syncytial virus-specific neutralizing monoclonal antibody palivizumab is driven by changes in on-rate of binding to the fusion protein

    SciTech Connect

    Bates, John T.; Keefer, Christopher J.; Slaughter, James C.; Kulp, Daniel W.; Schief, William R.

    2014-04-15

    The role of binding kinetics in determining neutralizing potency for antiviral antibodies is poorly understood. While it is believed that increased steady-state affinity correlates positively with increased virus-neutralizing activity, the relationship between association or dissociation rate and neutralization potency is unclear. We investigated the effect of naturally-occurring antibody resistance mutations in the RSV F protein on the kinetics of binding to palivizumab. Escape from palivizumab-mediated neutralization of RSV occurred with reduced association rate (K{sub on}) for binding to RSV F protein, while alteration of dissociation rate (K{sub off}) did not significantly affect neutralizing activity. Interestingly, linkage of reduced K{sub on} with reduced potency mirrored the effect of increased K{sub on} found in a high-affinity enhanced potency palivizumab variant (motavizumab). These data suggest that association rate is the dominant factor driving neutralization potency for antibodies to RSV F protein antigenic site A and determines the potency of antibody somatic variants or efficiency of escape of viral glycoprotein variants. - Highlights: • The relationship of affinity to neutralization for virus antibodies is uncertain. • Palivizumab binds to RSV escape mutant fusion proteins, but with reduced affinity. • Association rate (K{sub on}) correlated well with the potency of neutralization.

  6. Evolutionarily Successful Asian 1 Dengue Virus 2 Lineages Contain One Substitution in Envelope That Increases Sensitivity to Polyclonal Antibody Neutralization.

    PubMed

    Wang, Chunling; Katzelnick, Leah C; Montoya, Magelda; Hue, Kien Duong Thi; Simmons, Cameron P; Harris, Eva

    2016-03-15

    The 4 dengue virus serotypes (DENV-1-4) cause the most prevalent mosquito-borne viral disease of humans worldwide. DENV-2 Asian 1 (A1) genotype viruses replaced the Asian-American (AA) genotype in Vietnam and Cambodia, after which A1 viruses containing Q or M at envelope (E) residue 160 became more prevalent than those with residue 160K in both countries (2008-2011). We investigated whether these substitutions conferred a fitness advantage by measuring neutralizing antibody titer against reporter virus particles (RVPs) representing AA, A1-160K, A1-160Q, and A1-160M, using patient sera from Vietnam and a well-characterized Nicaraguan cohort. Surprisingly, we found that A1-160Q and A1-160M RVPs were better neutralized by heterologous antisera than A1-160K. Despite this, Vietnamese patients infected with A1-160Q or A1-160M viruses had higher viremia levels than those infected with A1-160K. We thus found that independent lineages in Vietnam and Cambodia acquired a substitution in E that significantly increased polyclonal neutralization but nonetheless were successful in disseminating and infecting human hosts. PMID:26582957

  7. Sub-Domains of Ricin’s B Subunit as Targets of Toxin Neutralizing and Non-Neutralizing Monoclonal Antibodies

    PubMed Central

    Yermakova, Anastasiya; Vance, David J.; Mantis, Nicholas J.

    2012-01-01

    The B subunit (RTB) of ricin toxin is a galactose (Gal)−/N-acetylgalactosamine (GalNac)-specific lectin that mediates attachment, entry, and intracellular trafficking of ricin in host cells. Structurally, RTB consists of two globular domains with identical folding topologies. Domains 1 and 2 are each comprised of three homologous sub-domains (α, β, γ) that likely arose by gene duplication from a primordial carbohydrate recognition domain (CRD), although only sub-domains 1α and 2γ retain functional lectin activity. As part of our ongoing effort to generate a comprehensive B cell epitope map of ricin, we report the characterization of three new RTB-specific monoclonal antibodies (mAbs). All three mAbs, JB4, B/J F9 and C/M A2, were initially identified based on their abilities to neutralize ricin in a Vero cell cytotoxicty assay and to partially (or completely) block ricin attachment to cell surfaces. However, only JB4 proved capable of neutralizing ricin in a macrophage apoptosis assay and in imparting passive immunity to mice in a model of systemic intoxication. Using a combination of techniques, including competitive ELISAs, pepscan analysis, differential reactivity by Western blot, as well as affinity enrichment of phage displayed peptides, we tentatively localized the epitopes recognized by the non-neutralizing mAbs B/J F9 and C/M A2 to sub-domains 2α and 2β, respectively. Furthermore, we propose that the epitope recognized by JB4 is within sub-domain 2γ, adjacent to RTB’s high affinity Gal/GalNAc CRD. These data suggest that recognition of RTB’s sub-domains 1α and 2γ are critical determinants of antibody neutralizing activity and protective immunity to ricin. PMID:22984492

  8. HIV-1 Antibody Neutralization Breadth Is Associated with Enhanced HIV-Specific CD4+ T Cell Responses

    PubMed Central

    Soghoian, Damien Z.; Lindqvist, Madelene; Ghebremichael, Musie; Donaghey, Faith; Carrington, Mary; Seaman, Michael S.; Kaufmann, Daniel E.; Walker, Bruce D.

    2015-01-01

    ABSTRACT Antigen-specific CD4+ T helper cell responses have long been recognized to be a critical component of effective vaccine immunity. CD4+ T cells are necessary to generate and maintain humoral immune responses by providing help to antigen-specific B cells for the production of antibodies. In HIV infection, CD4+ T cells are thought to be necessary for the induction of Env-specific broadly neutralizing antibodies. However, few studies have investigated the role of HIV-specific CD4+ T cells in association with HIV neutralizing antibody activity in vaccination or natural infection settings. Here, we conducted a comprehensive analysis of HIV-specific CD4+ T cell responses in a cohort of 34 untreated HIV-infected controllers matched for viral load, with and without neutralizing antibody breadth to a panel of viral strains. Our results show that the breadth and magnitude of Gag-specific CD4+ T cell responses were significantly higher in individuals with neutralizing antibodies than in those without neutralizing antibodies. The breadth of Gag-specific CD4+ T cell responses was positively correlated with the breadth of neutralizing antibody activity. Furthermore, the breadth and magnitude of gp41-specific, but not gp120-specific, CD4+ T cell responses were significantly elevated in individuals with neutralizing antibodies. Together, these data suggest that robust Gag-specific CD4+ T cells and, to a lesser extent, gp41-specific CD4+ T cells may provide important intermolecular help to Env-specific B cells that promote the generation or maintenance of Env-specific neutralizing antibodies. IMPORTANCE One of the earliest discoveries related to CD4+ T cell function was their provision of help to B cells in the development of antibody responses. Yet little is known about the role of CD4+ T helper responses in the setting of HIV infection, and no studies to date have evaluated the impact of HIV-specific CD4+ T cells on the generation of antibodies that can neutralize

  9. Neutralizing antibodies respond to a bivalent dengue DNA vaccine or/and a recombinant bivalent antigen.

    PubMed

    Zhang, Zhi-Shan; Weng, Yu-Wei; Huang, Hai-Long; Zhang, Jian-Ming; Yan, Yan-Sheng

    2015-02-01

    There is currently no effective vaccine to prevent dengue infection, despite the existence of multiple studies on potential methods of immunization. The aim of the present study was to explore the effect of DNA and/or recombinant protein on levels of neutralizing antibodies. For this purpose, envelope domain IIIs of dengue serotypes 1 and 2 (DEN-1/2)were spliced by a linker (Gly‑Gly‑Ser‑Gly‑Ser)3 and cloned into the prokaryotic expression plasmid pET30a (+) and eukaryotic vector pcDNA3.1 (+). The chimeric bivalent protein was expressed in Escherichia coli, and one‑step purification by high‑performance liquid chromatography was conducted. Protein expression levels of the DNA plasmid were tested in BHK‑21 cells by indirect immunofluorescent assay. In order to explore a more effective immunization strategy and to develop neutralizing antibodies against the two serotypes, mice were inoculated with recombinant bivalent protein, the DNA vaccine, or the two given simultaneously. Presence of the specific antibodies was tested by ELISA and the presence of the neutralizing antibodies was determined by plaque reduction neutralization test. Results of the analysis indicated that the use of a combination of DNA and protein induced significantly higher titers of neutralizing antibodies against either DEN‑1 or DEN‑2 (1:64.0 and 1:76.1, respectively) compared with the DNA (1:24.7 and 1:26.9, DEN‑1 and DEN‑2, respectively) or the recombinant protein (1:34.9 and 1:45.3 in DEN‑1 and DEN‑2, respectively). The present study demonstrated that the combination of recombinant protein and DNA as an immunization strategy may be an effective method for the development of a vaccine to prevent dengue virus infection. PMID:25371092

  10. RSV neutralization by palivizumab, but not by monoclonal antibodies targeting other epitopes, is augmented by Fc gamma receptors.

    PubMed

    van Mechelen, Lenny; Luytjes, Willem; de Haan, Cornelis A M; Wicht, Oliver

    2016-08-01

    Palivizumab efficiently blocks respiratory syncytial virus (RSV) infection in vitro. However, virus neutralization assays generally omit Fc region-mediated effects. We investigated the neutralization activity of RSV-specific monoclonal antibodies on cells with Fc receptors. Subneutralizing concentrations of antibodies resulted in antibody-dependent enhancement of RSV infection in monocytic cells. Contrary to antibodies targeting other epitopes, the neutralization by palivizumab was augmented in cells with Fc receptors. This unrecognized characteristic of palivizumab may be relevant for its performance in vivo. PMID:27185625

  11. Structural Constraints of Vaccine-Induced Tier-2 Autologous HIV Neutralizing Antibodies Targeting the Receptor-Binding Site.

    PubMed

    Bradley, Todd; Fera, Daniela; Bhiman, Jinal; Eslamizar, Leila; Lu, Xiaozhi; Anasti, Kara; Zhang, Ruijung; Sutherland, Laura L; Scearce, Richard M; Bowman, Cindy M; Stolarchuk, Christina; Lloyd, Krissey E; Parks, Robert; Eaton, Amanda; Foulger, Andrew; Nie, Xiaoyan; Karim, Salim S Abdool; Barnett, Susan; Kelsoe, Garnett; Kepler, Thomas B; Alam, S Munir; Montefiori, David C; Moody, M Anthony; Liao, Hua-Xin; Morris, Lynn; Santra, Sampa; Harrison, Stephen C; Haynes, Barton F

    2016-01-01

    Antibodies that neutralize autologous transmitted/founder (TF) HIV occur in most HIV-infected individuals and can evolve to neutralization breadth. Autologous neutralizing antibodies (nAbs) against neutralization-resistant (Tier-2) viruses are rarely induced by vaccination. Whereas broadly neutralizing antibody (bnAb)-HIV-Envelope structures have been defined, the structures of autologous nAbs have not. Here, we show that immunization with TF mutant Envs gp140 oligomers induced high-titer, V5-dependent plasma neutralization for a Tier-2 autologous TF evolved mutant virus. Structural analysis of autologous nAb DH427 revealed binding to V5, demonstrating the source of narrow nAb specificity and explaining the failure to acquire breadth. Thus, oligomeric TF Envs can elicit autologous nAbs to Tier-2 HIVs, but induction of bnAbs will require targeting of precursors of B cell lineages that can mature to heterologous neutralization. PMID:26725118

  12. A novel mechanism for antibody-based anthrax toxin neutralization: inhibition of prepore-to-pore conversion.

    PubMed

    Mechaly, Adva; Levy, Haim; Epstein, Eyal; Rosenfeld, Ronit; Marcus, Hadar; Ben-Arie, Einat; Shafferman, Avigdor; Ordentlich, Arie; Mazor, Ohad

    2012-09-21

    Protective antigen (PA), a key component of anthrax toxin, mediates the entry of lethal factor (LF) or edema factor (EF) through a membranal pore into target cells. We have previously reported the isolation and chimerization of cAb29, an anti-PA monoclonal antibody that effectively neutralizes anthrax toxin in an unknown mechanism. The aim of this study was to elucidate the neutralizing mechanism of this antibody in vitro and to test its ability to confer post-exposure protection against anthrax in vivo. By systematic evaluation of the steps taking place during the PA-based intoxication process, we found that cAb29 did not interfere with the initial steps of intoxication, namely its ability to bind to the anthrax receptor, the consecutive proteolytic cleavage to PA(63), oligomerization, prepore formation, or LF binding. However, the binding of cAb29 to the prepore prevented its pH-triggered transition to the transmembranal pore, thus preventing the last step of intoxication, i.e. the translocation of LF/EF into the cell. Epitope mapping, using a phage display peptide library, revealed that cAb29 binds the 2α(1) loop in domain 2 of PA, a loop that undergoes major conformational changes during pore formation. In vivo, we found that 100% of anthrax-infected rabbits survived when treated with cAb29 12 h after exposure. In conclusion, these experiments demonstrate that cAb29 exerts its potent neutralizing activity in a unique manner by blocking the prepore-to-pore conversion process. PMID:22869370

  13. De Novo Sequencing and Resurrection of a Human Astrovirus-Neutralizing Antibody

    PubMed Central

    2016-01-01

    Monoclonal antibody (mAb) therapeutics targeting cancer, autoimmune diseases, inflammatory diseases, and infectious diseases are growing exponentially. Although numerous panels of mAbs targeting infectious disease agents have been developed, their progression into clinically useful mAbs is often hindered by the lack of sequence information and/or loss of hybridoma cells that produce them. Here we combine the power of crystallography and mass spectrometry to determine the amino acid sequence and glycosylation modification of the Fab fragment of a potent human astrovirus-neutralizing mAb. We used this information to engineer a recombinant antibody single-chain variable fragment that has the same specificity as the parent monoclonal antibody to bind to the astrovirus capsid protein. This antibody can now potentially be developed as a therapeutic and diagnostic agent. PMID:27213181

  14. Vaccine-Induced Antibodies that Neutralize Group 1 and Group 2 Influenza A Viruses.

    PubMed

    Joyce, M Gordon; Wheatley, Adam K; Thomas, Paul V; Chuang, Gwo-Yu; Soto, Cinque; Bailer, Robert T; Druz, Aliaksandr; Georgiev, Ivelin S; Gillespie, Rebecca A; Kanekiyo, Masaru; Kong, Wing-Pui; Leung, Kwanyee; Narpala, Sandeep N; Prabhakaran, Madhu S; Yang, Eun Sung; Zhang, Baoshan; Zhang, Yi; Asokan, Mangaiarkarasi; Boyington, Jeffrey C; Bylund, Tatsiana; Darko, Sam; Lees, Christopher R; Ransier, Amy; Shen, Chen-Hsiang; Wang, Lingshu; Whittle, James R; Wu, Xueling; Yassine, Hadi M; Santos, Celia; Matsuoka, Yumiko; Tsybovsky, Yaroslav; Baxa, Ulrich; Mullikin, James C; Subbarao, Kanta; Douek, Daniel C; Graham, Barney S; Koup, Richard A; Ledgerwood, Julie E; Roederer, Mario; Shapiro, Lawrence; Kwong, Peter D; Mascola, John R; McDermott, Adrian B

    2016-07-28

    Antibodies capable of neutralizing divergent influenza A viruses could form the basis of a universal vaccine. Here, from subjects enrolled in an H5N1 DNA/MIV-prime-boost influenza vaccine trial, we sorted hemagglutinin cross-reactive memory B cells and identified three antibody classes, each capable of neutralizing diverse subtypes of group 1 and group 2 influenza A viruses. Co-crystal structures with hemagglutinin revealed that each class utilized characteristic germline genes and convergent sequence motifs to recognize overlapping epitopes in the hemagglutinin stem. All six analyzed subjects had sequences from at least one multidonor class, and-in half the subjects-multidonor-class sequences were recovered from >40% of cross-reactive B cells. By contrast, these multidonor-class sequences were rare in published antibody datasets. Vaccination with a divergent hemagglutinin can thus increase the frequency of B cells encoding broad influenza A-neutralizing antibodies. We propose the sequence signature-quantified prevalence of these B cells as a metric to guide universal influenza A immunization strategies. PMID:27453470

  15. Maturation Pathway from Germline to Broad HIV-1 Neutralizer of a CD4-Mimic Antibody.

    PubMed

    Bonsignori, Mattia; Zhou, Tongqing; Sheng, Zizhang; Chen, Lei; Gao, Feng; Joyce, M Gordon; Ozorowski, Gabriel; Chuang, Gwo-Yu; Schramm, Chaim A; Wiehe, Kevin; Alam, S Munir; Bradley, Todd; Gladden, Morgan A; Hwang, Kwan-Ki; Iyengar, Sheelah; Kumar, Amit; Lu, Xiaozhi; Luo, Kan; Mangiapani, Michael C; Parks, Robert J; Song, Hongshuo; Acharya, Priyamvada; Bailer, Robert T; Cao, Allen; Druz, Aliaksandr; Georgiev, Ivelin S; Kwon, Young D; Louder, Mark K; Zhang, Baoshan; Zheng, Anqi; Hill, Brenna J; Kong, Rui; Soto, Cinque; Mullikin, James C; Douek, Daniel C; Montefiori, David C; Moody, Michael A; Shaw, George M; Hahn, Beatrice H; Kelsoe, Garnett; Hraber, Peter T; Korber, Bette T; Boyd, Scott D; Fire, Andrew Z; Kepler, Thomas B; Shapiro, Lawrence; Ward, Andrew B; Mascola, John R; Liao, Hua-Xin; Kwong, Peter D; Haynes, Barton F

    2016-04-01

    Antibodies with ontogenies from VH1-2 or VH1-46-germline genes dominate the broadly neutralizing response against the CD4-binding site (CD4bs) on HIV-1. Here, we define with longitudinal sampling from time-of-infection the development of a VH1-46-derived antibody lineage that matured to neutralize 90% of HIV-1 isolates. Structures of lineage antibodies CH235 (week 41 from time-of-infection, 18% breadth), CH235.9 (week 152, 77%), and CH235.12 (week 323, 90%) demonstrated the maturing epitope to focus on the conformationally invariant portion of the CD4bs. Similarities between CH235 lineage and five unrelated CD4bs lineages in epitope focusing, length-of-time to develop breadth, and extraordinary level of somatic hypermutation suggested commonalities in maturation among all CD4bs antibodies. Fortunately, the required CH235-lineage hypermutation appeared substantially guided by the intrinsic mutability of the VH1-46 gene, which closely resembled VH1-2. We integrated our CH235-lineage findings with a second broadly neutralizing lineage and HIV-1 co-evolution to suggest a vaccination strategy for inducing both lineages. PMID:26949186

  16. Structure of HCMV glycoprotein B in the postfusion conformation bound to a neutralizing human antibody

    PubMed Central

    Chandramouli, Sumana; Ciferri, Claudio; Nikitin, Pavel A.; Caló, Stefano; Gerrein, Rachel; Balabanis, Kara; Monroe, James; Hebner, Christy; Lilja, Anders E.; Settembre, Ethan C.; Carfi, Andrea

    2015-01-01

    Human cytomegalovirus (HCMV) poses a significant threat to immunocompromised individuals and neonates infected in utero. Glycoprotein B (gB), the herpesvirus fusion protein, is a target for neutralizing antibodies and a vaccine candidate due to its indispensable role in infection. Here we show the crystal structure of the HCMV gB ectodomain bound to the Fab fragment of 1G2, a neutralizing human monoclonal antibody isolated from a seropositive subject. The gB/1G2 interaction is dominated by aromatic residues in the 1G2 heavy chain CDR3 protruding into a hydrophobic cleft in the gB antigenic domain 5 (AD-5). Structural analysis and comparison with HSV gB suggest the location of additional neutralizing antibody binding sites on HCMV gB. Finally, immunoprecipitation experiments reveal that 1G2 can bind to HCMV virion gB suggesting that its epitope is exposed and accessible on the virus surface. Our data will support the development of vaccines and therapeutic antibodies against HCMV infection. PMID:26365435

  17. Maturation Pathway from Germline to Broad HIV-1 Neutralizer of a CD4-Mimic Antibody

    DOE PAGESBeta

    Bonsignori, Mattia; Zhou, Tongqing; Sheng, Zizhang; Chen, Lei; Gao, Feng; Joyce, M.  Gordon; Ozorowski, Gabriel; Chuang, Gwo-Yu; Schramm, Chaim A.; Wiehe, Kevin; et al

    2016-04-01

    Here, we report that antibodies with ontogenies from VH1-2 or VH1-46-germline genes dominate the broadly neutralizing response against the CD4-binding site (CD4bs) on HIV-1. We define with longitudinal sampling from time-of-infection the development of a VH1-46-derived antibody lineage that matured to neutralize 90% of HIV-1 isolates. Structures of lineage antibodies CH235 (week 41 from time-of-infection, 18% breadth), CH235.9 (week 152, 77%), and CH235.12 (week 323, 90%) demonstrated the maturing epitope to focus on the conformationally invariant portion of the CD4bs. Similarities between CH235 lineage and five unrelated CD4bs lineages in epitope focusing, length-of-time to develop breadth, and extraordinary level ofmore » somatic hypermutation suggested commonalities in maturation among all CD4bs antibodies. Fortunately, the required CH235-lineage hypermutation appeared substantially guided by the intrinsic mutability of the VH1-46 gene, which closely resembled VH1-2. Lastly, we integrated our CH235-lineage findings with a second broadly neutralizing lineage and HIV-1 co-evolution to suggest a vaccination strategy for inducing both lineages.« less

  18. Identification of Epitopes for Neutralizing Antibodies Against H10N8 Avian Influenza Virus Hemagglutinin.

    PubMed

    Hu, Jin-Fang; Sun, Chun-Yun; Rao, Mu-Ding; Xie, Liang-Zhi

    2016-08-01

    Objective To develop neutralizing monoclonal antibodies (MAbs) against H10N8 avian influenza virus hemagglutinin and to identify the binding sites. Methods MAbs against hemagglutinin of H10N8 avian influenza virus were developed by genetic engineering. Neutralizing MAbs were screened by microneutralization assay,and then tested by enzyme-linked immunosorbent assay and Western blot to identity the binding sites.The homology modeling process was performed using Discovery Studio 3.5 software,while the binding epitopes were analyzed by BioEdit software. Results One MAb that could neutralize the H10N8 pseudovirus was obtained and characterized. Analysis about epitopes suggested that the antibody could bind to the HA1 region of hemagglutinin,while the epitopes on antigen were conserved in H10 subtypes.Conclusions One neutralizing antibody was obtained by this research.The MAb may potentially be further developed as a pre-clinical candidate to treat avian influenza H10N8 virus infection. PMID:27594152

  19. Differential Specificity and Immunogenicity of Adenovirus Type 5 Neutralizing Antibodies Elicited by Natural Infection or Immunization▿

    PubMed Central

    Cheng, Cheng; Gall, Jason G. D.; Nason, Martha; King, C. Richter; Koup, Richard A.; Roederer, Mario; McElrath, M. Juliana; Morgan, Cecilia A.; Churchyard, Gavin; Baden, Lindsey R.; Duerr, Ann C.; Keefer, Michael C.; Graham, Barney S.; Nabel, Gary J.

    2010-01-01

    A recent clinical trial of a T-cell-based AIDS vaccine delivered with recombinant adenovirus type 5 (rAd5) vectors showed no efficacy in lowering viral load and was associated with increased risk of human immunodeficiency virus type 1 (HIV-1) infection. Preexisting immunity to Ad5 in humans could therefore affect both immunogenicity and vaccine efficacy. We hypothesized that vaccine-induced immunity is differentially affected, depending on whether subjects were exposed to Ad5 by natural infection or by vaccination. Serum samples from vaccine trial subjects receiving a DNA/rAd5 AIDS vaccine with or without prior immunity to Ad5 were examined for the specificity of their Ad5 neutralizing antibodies and their effect on HIV-1 immune responses. Here, we report that rAd5 neutralizing antibodies were directed to different components of the virion, depending on whether they were elicited by natural infection or vaccination in HIV vaccine trial subjects. Neutralizing antibodies elicited by natural infection were directed largely to the Ad5 fiber, while exposure to rAd5 through vaccination elicited antibodies primarily to capsid proteins other than fiber. Notably, preexisting immunity to Ad5 fiber from natural infection significantly reduced the CD4 and CD8 cell responses to HIV Gag after DNA/rAd5 vaccination. The specificity of Ad5 neutralizing antibodies therefore differs depending on the route of exposure, and natural Ad5 infection compromises Ad5 vaccine-induced immunity to weak immunogens, such as HIV-1 Gag. These results have implications for future AIDS vaccine trials and the design of next-generation gene-based vaccine vectors. PMID:19846512

  20. Enhancing neutralizing antibody production by an interferon-inducing porcine reproductive and respiratory syndrome virus strain.

    PubMed

    Wang, Rong; Xiao, Yueqiang; Opriessnig, Tanja; Ding, Yi; Yu, Ying; Nan, Yuchen; Ma, Zexu; Halbur, Patrick G; Zhang, Yan-Jin

    2013-11-12

    Porcine reproductive and respiratory syndrome (PRRS) virus (PRRSV) continues to cause substantial economic losses to the global swine industry. PRRSV appears to inhibit synthesis of type I interferons (IFNs), such as IFN-α and -β, which are critical for the innate immunity and play an important role in the modulation of adaptive immunity. An atypical PRRSV strain, A2MC2, is able to induce type I IFNs in vitro. In this study, A2MC2 induction of neutralizing antibodies in vivo was compared with the Ingelvac PRRS modified live virus (MLV) vaccine strain and VR-2385 (a moderate virulent strain). Three-week-old pigs were exposed to these PRRSV strains via intranasal or intramuscular routes to also account for a possible effect of inoculation routes. The interferon-inducing A2MC2 resulted in earlier onset and significantly higher levels of PRRSV neutralizing antibodies than the MLV. In addition, the A2MC2-induced neutralizing antibodies were capable of neutralizing VR-2385, a heterologous strain. The pigs exposed via intranasal route had higher titers of neutralizing antibodies than those injected via intramuscular route. Macroscopic and microscopic lung lesions 14 days post-exposure indicated that A2MC2 had similar virulence in vivo as VR-2385. Pulmonary alveolar macrophages (PAMs) collected during the necropsy 14 days post-exposure in the A2MC2 group had higher level expression of IFN-γ than the MLV group. These results indicate that A2MC2 can be further explored for development of an improved vaccine against PRRS. PMID:24063978

  1. Report of the Cent Gardes HIV Vaccines Conference. Part 1: The antibody response; Fondation Mérieux Conference Center, Veyrier-du-Lac, France, 25-27 October 2015.

    PubMed

    Girard, Marc P; Le-Grand, Roger; Picot, Valentina; Longuet, Christophe; Nabel, Gary J

    2016-06-30

    The 2015 Cent Gardes Conference on HIV vaccines took place on October 25-27 at the Merieux Foundation Conference Center in Veyrier du Lac, near Annecy, France. The meeting reviewed progress in the development of HIV vaccines and identified new directions of future research. The field has advanced incrementally over the past year but major progress will require additional information from new clinical trials. In this article, we review the presentations on humoral immune responses to HIV, and highlight the difficulty of eliciting broadly neutralizing antibodies by vaccination. Advances in cellular immunity for HIV prevention will be reviewed separately, in a following article. PMID:27216761

  2. IBC's 23rd Antibody Engineering and 10th Antibody Therapeutics Conferences and the Annual Meeting of The Antibody Society: December 2-6, 2012, San Diego, CA.

    PubMed

    Marquardt, John; Begent, Richard H J; Chester, Kerry; Huston, James S; Bradbury, Andrew; Scott, Jamie K; Thorpe, Philip E; Veldman, Trudi; Reichert, Janice M; Weiner, Louis M

    2012-01-01

    Now in its 23rd and 10th years, respectively, the Antibody Engineering and Antibody Therapeutics conferences are the Annual Meeting of The Antibody Society. The scientific program covers the full spectrum of challenges in antibody research and development from basic science through clinical development. In this preview of the conferences, the chairs provide their thoughts on sessions that will allow participants to track emerging trends in (1) the development of next-generation immunomodulatory antibodies; (2) the complexity of the environment in which antibodies must function; (3) antibody-targeted central nervous system (CNS) therapies that cross the blood brain barrier; (4) the extension of antibody half-life for improved efficacy and pharmacokinetics (PK)/pharmacodynamics (PD); and (5) the application of next generation DNA sequencing to accelerate antibody research. A pre-conference workshop on Sunday, December 2, 2012 will update participants on recent intellectual property (IP) law changes that affect antibody research, including biosimilar legislation, the America Invents Act and recent court cases. Keynote presentations will be given by Andreas Plückthun (University of Zürich), who will speak on engineering receptor ligands with powerful cellular responses; Gregory Friberg (Amgen Inc.), who will provide clinical updates of bispecific antibodies; James D. Marks (University of California, San Francisco), who will discuss a systems approach to generating tumor targeting antibodies; Dario Neri (Swiss Federal Institute of Technology Zürich), who will speak about delivering immune modulators at the sites of disease; William M. Pardridge (University of California, Los Angeles), who will discuss delivery across the blood-brain barrier; and Peter Senter (Seattle Genetics, Inc.), who will present his vision for the future of antibody-drug conjugates. For more information on these meetings or to register to attend, please visit www.IBCLifeSciences.com/Antibody

  3. IBC’s 23rd Antibody Engineering and 10th Antibody Therapeutics Conferences and the Annual Meeting of The Antibody Society

    PubMed Central

    Marquardt, John; Begent, Richard H.J.; Chester, Kerry; Huston, James S.; Bradbury, Andrew; Scott, Jamie K.; Thorpe, Philip E.; Veldman, Trudi; Reichert, Janice M.; Weiner, Louis M.

    2012-01-01

    Now in its 23rd and 10th years, respectively, the Antibody Engineering and Antibody Therapeutics conferences are the Annual Meeting of The Antibody Society. The scientific program covers the full spectrum of challenges in antibody research and development from basic science through clinical development. In this preview of the conferences, the chairs provide their thoughts on sessions that will allow participants to track emerging trends in (1) the development of next-generation immunomodulatory antibodies; (2) the complexity of the environment in which antibodies must function; (3) antibody-targeted central nervous system (CNS) therapies that cross the blood brain barrier; (4) the extension of antibody half-life for improved efficacy and pharmacokinetics (PK)/pharmacodynamics (PD); and (5) the application of next generation DNA sequencing to accelerate antibody research. A pre-conference workshop on Sunday, December 2, 2012 will update participants on recent intellectual property (IP) law changes that affect antibody research, including biosimilar legislation, the America Invents Act and recent court cases. Keynote presentations will be given by Andreas Plückthun (University of Zürich), who will speak on engineering receptor ligands with powerful cellular responses; Gregory Friberg (Amgen Inc.), who will provide clinical updates of bispecific antibodies; James D. Marks (University of California, San Francisco), who will discuss a systems approach to generating tumor targeting antibodies; Dario Neri (Swiss Federal Institute of Technology Zürich), who will speak about delivering immune modulators at the sites of disease; William M. Pardridge (University of California, Los Angeles), who will discuss delivery across the blood-brain barrier; and Peter Senter (Seattle Genetics, Inc.), who will present his vision for the future of antibody-drug conjugates. For more information on these meetings or to register to attend, please visit www.IBCLifeSciences.com/Antibody

  4. Serum Neutralization Assay Can Efficiently Replace Plaque Reduction Neutralization Test for Detection and Quantitation of West Nile Virus Antibodies in Human and Animal Serum Samples

    PubMed Central

    Di Gennaro, Annapia; Casaccia, Claudia; Conte, Annamaria; Monaco, Federica; Savini, Giovanni

    2014-01-01

    A serum neutralization assay (SN) was compared with the official plaque reduction neutralization test for the quantitation of West Nile virus antibodies. A total of 1,348 samples from equid sera and 38 from human sera were tested by these two methods. Statistically significant differences were not observed, thus supporting the use of SN for routine purposes. PMID:25100824

  5. Neutralization of measles virus wild-type isolates after immunization with a synthetic peptide vaccine which is not recognized by neutralizing passive antibodies.

    PubMed

    El Kasmi, K C; Fillon, S; Theisen, D M; Hartter, H; Brons, N H; Muller, C P

    2000-03-01

    The sequence H379-410 of the measles virus haemagglutinin (MV-H) protein forms a surface-exposed loop and contains three cysteine residues (Cys-381, Cys-386 and Cys-394) which are conserved among all measles isolates. It comprises the minimal sequential B cell epitope (BCE) (H386-400) of the neutralizing and protective MAb BH6 that neutralizes all wild-type viruses tested. The aim of this study was to design synthetic peptides which induce neutralizing antibodies against MV wild-type isolates. Peptides containing one or two copies of T cell epitopes (TCE) and BCEs of different lengths (H386-400, B(CC); H379-400, B(CCC)), in different combinations and orientations were produced and iteratively optimized for inducing neutralizing antibodies. Peptides with the shorter BCE induced sera that cross-reacted with MV but did not neutralize. The longer BCE containing the three cysteines (B(CCC)) and two homologous TCE were required for neutralization activity. These sera neutralized wild-type strains of different clades and geographic origins. Neutralizing serum was also obtained after immunization with human promiscuous TCEs. Furthermore B(CCC)-based peptides were fully immunogenic even in the presence of pre-existing MV-specific antibodies. The results suggest that subunit vaccines based on such peptides could potentially be used to actively protect infants against wild-type viruses irrespective of persisting maternal antibodies. PMID:10675410

  6. Neutralizing Monoclonal Antibodies Directed against Defined Linear Epitopes on Domain 4 of Anthrax Protective Antigen▿

    PubMed Central

    Kelly-Cirino, Cassandra D.; Mantis, Nicholas J.

    2009-01-01

    The anthrax protective antigen (PA) is the receptor-binding subunit common to lethal toxin (LT) and edema toxin (ET), which are responsible for the high mortality rates associated with inhalational Bacillus anthracis infection. Although recombinant PA (rPA) is likely to be an important constituent of any future anthrax vaccine, evaluation of the efficacies of the various candidate rPA vaccines is currently difficult, because the specific B-cell epitopes involved in toxin neutralization have not been completely defined. In this study, we describe the identification and characterization of two murine monoclonal immunoglobulin G1 antibodies (MAbs), 1-F1 and 2-B12, which recognize distinct linear neutralizing epitopes on domain 4 of PA. 1-F1 recognized a 12-mer peptide corresponding to residues 692 to 703; this epitope maps to a region of domain 4 known to interact with the anthrax toxin receptor CMG-2 and within a conformation-dependent epitope recognized by the well-characterized neutralizing MAb 14B7. As expected, 1-F1 blocked PA's ability to associate with CMG-2 in an in vitro solid-phase binding assay, and it protected murine macrophage cells from intoxication with LT. 2-B12 recognized a 12-mer peptide corresponding to residues 716 to 727, an epitope located immediately adjacent to the core 14B7 binding site and a stretch of amino acids not previously identified as a target of neutralizing antibodies. 2-B12 was as effective as 1-F1 in neutralizing LT in vitro, although it only partially inhibited PA binding to its receptor. Mice passively administered 1-F1 or 2-B12 were partially protected against a lethal challenge with LT. These results advance our fundamental understanding of the mechanisms by which antibodies neutralize anthrax toxin and may have future application in the evaluation of candidate rPA vaccines. PMID:19703971

  7. Epitope Mapping of Anti-Interleukin-13 Neutralizing Antibody CNTO607

    SciTech Connect

    Teplyakov, Alexey; Obmolova, Galina; Wu, Sheng-Jiun; Luo, Jinquan; Kang, James; O'Neil, Karyn; Gilliland, Gary L.

    2009-06-24

    CNTO607 is a neutralizing anti-interleukin-13 (IL-13) human monoclonal antibody obtained from a phage display library. To determine how this antibody inhibits the biological effect of IL-13, we determined the binding epitope by X-ray crystallography. The crystal structure of the complex between CNTO607 Fab and IL-13 reveals the antibody epitope at the surface formed by helices A and D of IL-13. This epitope overlaps with the IL-4Ralpha/IL-13Ralpha1 receptor-binding site, which explains the neutralizing effect of CNTO607. The extensive antibody interface covers an area of 1000 A(2), which is consistent with the high binding affinity. The key features of the interface are the charge and shape complementarity of the molecules that include two hydrophobic pockets on IL-13 that accommodate Phe32 [complementarity-determining region (CDR) L2] and Trp100a (CDR H3) and a number of salt bridges between basic residues of IL-13 and acidic residues of the antibody. Comparison with the structure of the free Fab shows that the CDR residues do not change their conformation upon complex formation, with the exception of two residues in CDR H3, Trp100a and Asp100b, which change rotamer conformations. To evaluate the relative contribution of the epitope residues to CNTO607 binding, we performed alanine-scanning mutagenesis of the A-D region of IL-13. This study confirmed the primary role of electrostatic interactions for antigen recognition.

  8. Broadly neutralizing antibodies that inhibit HIV-1 cell to cell transmission

    PubMed Central

    Malbec, Marine; Porrot, Françoise; Rua, Rejane; Horwitz, Joshua; Klein, Florian; Halper-Stromberg, Ari; Scheid, Johannes F.; Eden, Caroline; Mouquet, Hugo; Nussenzweig, Michel C.

    2013-01-01

    The neutralizing activity of anti–HIV-1 antibodies is typically measured in assays where cell-free virions enter reporter cell lines. However, HIV-1 cell to cell transmission is a major mechanism of viral spread, and the effect of the recently described broadly neutralizing antibodies (bNAbs) on this mode of transmission remains unknown. Here we identify a subset of bNAbs that inhibit both cell-free and cell-mediated infection in primary CD4+ lymphocytes. These antibodies target either the CD4-binding site (NIH45-46 and 3BNC60) or the glycan/V3 loop (10-1074 and PGT121) on HIV-1 gp120 and act at low concentrations by inhibiting multiple steps of viral cell to cell transmission. These antibodies accumulate at virological synapses and impair the clustering and fusion of infected and target cells and the transfer of viral material to uninfected T cells. In addition, they block viral cell to cell transmission to plasmacytoid DCs and thereby interfere with type-I IFN production. Thus, only a subset of bNAbs can efficiently prevent HIV-1 cell to cell transmission, and this property should be considered an important characteristic defining antibody potency for therapeutic or prophylactic antiviral strategies. PMID:24277152

  9. Long antibody HCDR3s from HIV-naïve donors presented on a PG9 neutralizing antibody background mediate HIV neutralization.

    PubMed

    Willis, Jordan R; Finn, Jessica A; Briney, Bryan; Sapparapu, Gopal; Singh, Vidisha; King, Hannah; LaBranche, Celia C; Montefiori, David C; Meiler, Jens; Crowe, James E

    2016-04-19

    Development of broadly neutralizing antibodies (bnAbs) against HIV-1 usually requires prolonged infection and induction of Abs with unusual features, such as long heavy-chain complementarity-determining region 3 (HCDR3) loops. Here we sought to determine whether the repertoires of HIV-1-naïve individuals contain Abs with long HCDR3 loops that could mediate HIV-1 neutralization. We interrogated at massive scale the structural properties of long Ab HCDR3 loops in HIV-1-naïve donors, searching for structured HCDR3s similar to those of the HIV-1 bnAb PG9. We determined the nucleotide sequences encoding 2.3 × 10(7)unique HCDR3 amino acid regions from 70 different HIV-1-naïve donors. Of the 26,917 HCDR3 loops with 30-amino acid length identified, we tested 30 for further study that were predicted to have PG9-like structure when chimerized onto PG9. Three of these 30 PG9 chimeras bound to the HIV-1 gp120 monomer, and two were neutralizing. In addition, we found 14 naturally occurring HCDR3 sequences that acquired the ability to bind to the HIV-1 gp120 monomer when adding 2- to 7-amino acid mutations via computational design. Of those 14 designed Abs, 8 neutralized HIV-1, with IC50values ranging from 0.7 to 98 µg/mL. These data suggest that the repertoire of HIV-1-naïve individuals contains rare B cells that encode HCDR3 loops that bind or neutralize HIV-1 when presented on a PG9 background with relatively few or no additional mutations. Long HCDR3 sequences are present in the HIV-naïve B-cell repertoire, suggesting that this class of bnAbs is a favorable target for rationally designed preventative vaccine efforts. PMID:27044078

  10. Development of human neutralizing antibody to ADAMTS4 (aggrecanase-1) and ADAMTS5 (aggrecanase-2).

    PubMed

    Shiraishi, Aya; Mochizuki, Satsuki; Miyakoshi, Akira; Kojoh, Kanehisa; Okada, Yasunori

    2016-01-01

    ADAMTS4 (aggrecanase-1) and ADAMTS5 (aggrecanase-2), members of the ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) gene family, are considered to play a key role in aggrecan degradation of articular cartilage in human osteoarthritis. Here, we developed a neutralizing antibody to these aggrecanases by screening human combinatorial antibody library. Among the five candidate antibodies, one antibody was immunoreactive with both ADAMTS4 and ADAMTS5, showing no or negligible cross-reactivity with 10 different related metalloproteinases of the ADAMTS, ADAM (a disintegrin and metalloproteinase) and MMP (matrix metalloproteinase) gene families. This antibody almost completely and partially inhibited aggrecanase activity of ADAMTS4 and ADAMTS5, respectively. It also suppressed the aggrecanase activity derived from interleukin-1-stimulated osteoarthritic chondrocytes. These data demonstrate that the antibody is specific to ADAMTS4 and ADAMTS5 and inhibits their aggrecanase activity at molecular and cellular levels, and suggest that this antibody may be useful for treatment of pathological conditions such as osteoarthritis. PMID:26612259

  11. Structural comparison of four different antibodies interacting with human papillomavirus 16 and mechanisms of neutralization

    SciTech Connect

    Guan, Jian; Bywaters, Stephanie M.; Brendle, Sarah A.; Lee, Hyunwook; Ashley, Robert E.; Makhov, Alexander M.; Conway, James F.; Christensen, Neil D.; Hafenstein, Susan

    2015-09-15

    Cryo-electron microscopy (cryo-EM) was used to solve the structures of human papillomavirus type 16 (HPV16) complexed with fragments of antibody (Fab) from three different neutralizing monoclonals (mAbs): H16.1A, H16.14J, and H263.A2. The structure-function analysis revealed predominantly monovalent binding of each Fab with capsid interactions that involved multiple loops from symmetry related copies of the major capsid protein. The residues identified in each Fab-virus interface map to a conformational groove on the surface of the capsomer. In addition to the known involvement of the FG and HI loops, the DE loop was also found to constitute the core of each epitope. Surprisingly, the epitope mapping also identified minor contributions by EF and BC loops. Complementary immunological assays included mAb and Fab neutralization. The specific binding characteristics of mAbs correlated with different neutralizing behaviors in pre- and post-attachment neutralization assays. - Highlights: • We present HPV16-Fab complexes from neutralizing mAbs: H16.1A, H16.14J, and H263.A2. • The structure-function analysis revealed predominantly monovalent binding of each mAb. • Capsid–Fab interactions involved multiple loops from symmetry related L1 proteins. • Besides the known FG and HI loops, epitope mapping also identified DE, EF, and BC loops. • Neutralizing assays complement the structures to show multiple neutralization mechanisms.

  12. Neutralization of Japanese Encephalitis Virus by heme-induced broadly reactive human monoclonal antibody

    PubMed Central

    Gupta, Nimesh; de Wispelaere, Mélissanne; Lecerf, Maxime; Kalia, Manjula; Scheel, Tobias; Vrati, Sudhanshu; Berek, Claudia; Kaveri, Srinivas V.; Desprès, Philippe; Lacroix-Desmazes, Sébastien; Dimitrov, Jordan D.

    2015-01-01

    Geographical expansion and re-emerging new genotypes of the Japanese encephalitis virus (JEV) require the development of novel therapeutic approaches. Here, we studied a non-conventional approach for antibody therapy and show that, upon exposure to heme, a fraction of natural human immunoglobulins acquires high-affinity reactivity with the antigenic domain-III of JEV E glycoprotein. These JEV-reactive antibodies exhibited neutralizing activity against recently dominant JEV genotypes. This study opens new therapeutic options for Japanese encephalitis. PMID:26542535

  13. Impact of the Maraviroc-Resistant Mutation M434I in the C4 Region of HIV-1 gp120 on Sensitivity to Antibody-Mediated Neutralization.

    PubMed

    Boonchawalit, Samatchaya; Harada, Shigeyoshi; Shirai, Noriko; Gatanaga, Hiroyuki; Oka, Shinichi; Matsushita, Shuzo; Yoshimura, Kazuhisa

    2016-05-20

    We previously reported that a maraviroc (MVC)-resistant human immunodeficiency virus type 1variant, generated using in vitro selection, exhibited high sensitivity to several neutralizing monoclonal antibodies (NMAbs) and autologous plasma IgGs. The MVC-resistant variant acquired 4 sequential mutations in gp120: T297I, M434I, V200I, and K305R. In this study, we examined the mutation most responsible for conferring enhanced neutralization sensitivity of the MVC-resistant variant to several NMAbs and autologous plasma IgGs. The virus with the first resistant mutation, T297I, was sensitive to all NMAbs, whereas the passage control virus was not. The neutralization sensitivity of the variant greatly increased following its acquisition of the second mutation, M434I, in the C4 region. The M434I mutation conferred the greatest neutralizing sensitivity among the 4 MVC-resistant mutations. Additionally, the single M434I mutation was sufficient for the enhanced neutralization of the virus by NMAbs, autologous plasma IgGs, and heterologous sera relative to that of the parental virus. PMID:26166507

  14. A Novel Humanized Antibody Neutralizes H5N1 Influenza Virus via Two Different Mechanisms

    PubMed Central

    Tan, Yunrui; Ng, Qingyong; Jia, Qiang

    2015-01-01

    ABSTRACT Highly pathogenic avian influenza virus subtype H5N1 continues to be a severe threat to public health, as well as the poultry industry, because of its high lethality and antigenic drift rate. Neutralizing monoclonal antibodies (MAbs) can serve as a useful tool for preventing, treating, and detecting H5N1. In the present study, humanized H5 antibody 8A8 was developed from a murine H5 MAb. Both the humanized and mouse MAbs presented positive activity in hemagglutination inhibition (HI), virus neutralization, and immunofluorescence assays against a wide range of H5N1 strains. Interestingly, both human and murine 8A8 antibodies were able to detect H5 in Western blot assays under reducing conditions. Further, by sequencing of escape mutants, the conformational epitope of 8A8 was found to be located within the receptor binding domain (RBD) of H5. The linear epitope of 8A8 was identified by Western blotting of overlapping fragments and substitution mutant forms of HA1. Reverse genetic H5N1 strains with individual mutations in either the conformational or the linear epitope were generated and characterized in a series of assays, including HI, postattachment, and cell-cell fusion inhibition assays. The results indicate that for 8A8, virus neutralization mediated by RBD blocking relies on the conformational epitope while binding to the linear epitope contributes to the neutralization by inhibiting membrane fusion. Taken together, the results of this study show that a novel humanized H5 MAb binds to two types of epitopes on HA, leading to virus neutralization via two mechanisms. IMPORTANCE Recurrence of the highly pathogenic avian influenza virus subtype H5N1 in humans and poultry continues to be a serious public health concern. Preventive and therapeutic measures against influenza A viruses have received much interest in the context of global efforts to combat the current and future pandemics. Passive immune therapy is considered to be the most effective and

  15. Requirement for Fc Effector Mechanisms in the APOBEC3/Rfv3-Dependent Neutralizing Antibody Response

    PubMed Central

    Halemano, Kalani; Barrett, Bradley S.; Heilman, Karl J.; Morrison, Thomas E.

    2015-01-01

    Antiretroviral neutralizing antibody (NAb) responses are often evaluated in the absence of Fc-dependent immune effectors. In murine Friend retrovirus infection, Apobec3/Rfv3 promotes a potent polyclonal NAb response. Here, we show that the Apobec3/Rfv3-dependent NAb response correlated with virus-specific IgG2 titers and that the in vivo neutralization potency of Apobec3/Rfv3-resistant antisera was dependent on activating Fcγ receptors but not complement. The data strengthen retroviral vaccine strategies aimed at eliciting NAbs that activate specific Fcγ receptors. PMID:25589647

  16. Use of the hemadsorption phenomenon for determining virus and neutralizing antibody titers of rabies.

    PubMed

    Minamoto, N; Kurata, K; Kaizuka, I; Sazawa, H

    1976-05-01

    Chicken embryo cells infected with the HEP Flury strain of rabies virus adapted to tissue culture produced a hemadsorption (HAD) phenomenon by using goose erthyrocytes. The optimal conditions for HAD included the incubation of cell cultures at 37C for 3 days after virus inoculation, the use of a 0.4% suspension of goose erythrocytes in phosphate buffer adjusted at pH 6.2, and adsorption of erythrocytes at 4C. This phenomenon was inhibited with anti-rabies serum. Virus titer obtained with the HAD technique was almost the same as with the fluorescent antibody technique or the intracerebral inoculation of suckling mice. Results of the neutralization test by using the HAD technique could be easily determined 3 days after inoculation of chicken embryo cells with the mixture of 100 mean tissue culture infective doses of virus and diluted serum. The neutralizing antibody titers coincided with those obtained in mice. PMID:57927

  17. Fusion peptide of HIV-1 as a site of vulnerability to neutralizing antibody.

    PubMed

    Kong, Rui; Xu, Kai; Zhou, Tongqing; Acharya, Priyamvada; Lemmin, Thomas; Liu, Kevin; Ozorowski, Gabriel; Soto, Cinque; Taft, Justin D; Bailer, Robert T; Cale, Evan M; Chen, Lei; Choi, Chang W; Chuang, Gwo-Yu; Doria-Rose, Nicole A; Druz, Aliaksandr; Georgiev, Ivelin S; Gorman, Jason; Huang, Jinghe; Joyce, M Gordon; Louder, Mark K; Ma, Xiaochu; McKee, Krisha; O'Dell, Sijy; Pancera, Marie; Yang, Yongping; Blanchard, Scott C; Mothes, Walther; Burton, Dennis R; Koff, Wayne C; Connors, Mark; Ward, Andrew B; Kwong, Peter D; Mascola, John R

    2016-05-13

    The HIV-1 fusion peptide, comprising 15 to 20 hydrophobic residues at the N terminus of the Env-gp41 subunit, is a critical component of the virus-cell entry machinery. Here, we report the identification of a neutralizing antibody, N123-VRC34.01, which targets the fusion peptide and blocks viral entry by inhibiting conformational changes in gp120 and gp41 subunits of Env required for entry. Crystal structures of N123-VRC34.01 liganded to the fusion peptide, and to the full Env trimer, revealed an epitope consisting of the N-terminal eight residues of the gp41 fusion peptide and glycan N88 of gp120, and molecular dynamics showed that the N-terminal portion of the fusion peptide can be solvent-exposed. These results reveal the fusion peptide to be a neutralizing antibody epitope and thus a target for vaccine design. PMID:27174988

  18. Generation of recombinant antibody fragments with toxin-neutralizing potential in loxoscelism.

    PubMed

    Karim-Silva, Sabrina; Moura, Juliana de; Noiray, Magali; Minozzo, Joao Carlos; Aubrey, Nicolas; Alvarenga, Larissa M; Billiald, Philippe

    2016-08-01

    Loxosceles spider bites often lead to serious envenomings and no definite therapy has yet been established. In such a context, it is of interest to consider an antibody-based targeted therapy. We have previously prepared a murine monoclonal IgG (LiMab7) that binds to 32-35kDa components of Loxosceles intermedia venom and neutralizes the dermonecrotic activity of the venom. Here, we re-engineered LiMab7 into a recombinant diabody. The protein was produced in bacteria and then it was functionally characterized. It proved to be efficient at neutralizing sphingomyelinase and hemolytic activities of the crude venom despite the slightly altered binding kinetic constants and the limited stability of the dimeric configuration. This is the first report of a specific recombinant antibody for a next-generation of Loxosceles antivenoms. PMID:27288291

  19. Neutralizing antibodies to botulinum neurotoxin type A in aesthetic medicine: five case reports

    PubMed Central

    Torres, Sebastian; Hamilton, Mark; Sanches, Elena; Starovatova, Polina; Gubanova, Elena; Reshetnikova, Tatiana

    2014-01-01

    Botulinum neurotoxin injections are a valuable treatment modality for many therapeutic indications as well as in the aesthetic field for facial rejuvenation. As successful treatment requires repeated injections over a long period of time, secondary resistance to botulinum toxin preparations after repeated injections is an ongoing concern. We report five case studies in which neutralizing antibodies to botulinum toxin type A developed after injection for aesthetic use and resulted in secondary treatment failure. These results add to the growing number of reports in the literature for secondary treatment failure associated with high titers of neutralizing antibodies in the aesthetic field. Clinicians should be aware of this risk and implement injection protocols that minimize resistance development. PMID:24379687

  20. Antibodies to the neutral glycolipid asialo ganglio-N-tetraosylceramide: association with gynecologic cancers.

    PubMed

    Witkin, S S; Bongiovanni, A M; Birnbaum, S; Caputo, T; Ledger, W J

    1985-03-01

    As part of our efforts to define subpopulations at increased risk for gynecologic malignancies, sera from 145 women were obtained prior to diagnosis and analyzed for antibody to asialo ganglio-N-tetraosylceramide. This neutral glycolipid is present on the surface of thymocytes and natural killer cells, and asialo ganglio-N-tetraosylceramide antibody has been shown in animals to block natural killer cell activity and promote tumor cell proliferation. With the use of an enzyme-linked immunosorbent assay and with a value of 2 SD above the mean for healthy women designated as the boundary for a positive response, antibody to asialo ganglio-N-tetraosylceramide was detected in only one of 30 (3%) healthy women, none of 16 pregnant women, none of 18 women with benign masses, and two of 24 (8%) women with microbial infections. All of the above samples that contained antibodies were barely over the 2 SD limit. In marked contrast, 19 of 35 (54%) women with gynecologic malignancies had asialo ganglio-N-tetraosylceramide antibodies, with positive values ranging to greater than 10 SD above the control mean. Asialo ganglio-N-tetraosylceramide antibody was found in six of eight (75%) patients with cervical cancer, five of eight (63%) with endometrial cancer, and seven of 15 (47%) with ovarian cancer. Of the eight patients with Stage I gynecologic cancer at any site, five (62%) had asialo ganglio-N-tetraosylceramide antibodies. Four of 22 (18%) women with Hodgkin's disease also had antibodies, with values just exceeding 2 SD above control levels. The presence of these antibodies may contribute to an impaired immune surveillance system in these women and so increase their susceptibility to malignancy. PMID:3976767

  1. Mechanistic Study of Broadly Neutralizing Human Monoclonal Antibodies against Dengue Virus That Target the Fusion Loop

    PubMed Central

    Costin, Joshua M.; Zaitseva, Elena; Kahle, Kristen M.; Nicholson, Cindo O.; Rowe, Dawne K.; Graham, Amanda S.; Bazzone, Lindsey E.; Hogancamp, Greg; Figueroa Sierra, Marielys; Fong, Rachel H.; Yang, Sung-Tae; Lin, Li; Robinson, James E.; Doranz, Benjamin J.; Chernomordik, Leonid V.; Michael, Scott F.; Schieffelin, John S.

    2013-01-01

    There are no available vaccines for dengue, the most important mosquito-transmitted viral disease. Mechanistic studies with anti-dengue virus (DENV) human monoclonal antibodies (hMAbs) provide a rational approach to identify and characterize neutralizing epitopes on DENV structural proteins that can serve to inform vaccine strategies. Here, we report a class of hMAbs that is likely to be an important determinant in the human humoral response to DENV infection. In this study, we identified and characterized three broadly neutralizing anti-DENV hMAbs: 4.8A, D11C, and 1.6D. These antibodies were isolated from three different convalescent patients with distinct histories of DENV infection yet demonstrated remarkable similarities. All three hMAbs recognized the E glycoprotein with high affinity, neutralized all four serotypes of DENV, and mediated antibody-dependent enhancement of infection in Fc receptor-bearing cells at subneutralizing concentrations. The neutralization activities of these hMAbs correlated with a strong inhibition of virus-liposome and intracellular fusion, not virus-cell binding. We mapped epitopes of these antibodies to the highly conserved fusion loop region of E domain II. Mutations at fusion loop residues W101, L107, and/or G109 significantly reduced the binding of the hMAbs to E protein. The results show that hMAbs directed against the highly conserved E protein fusion loop block viral entry downstream of virus-cell binding by inhibiting E protein-mediated fusion. Characterization of hMAbs targeting this region may provide new insights into DENV vaccine and therapeutic strategies. PMID:23077306

  2. Toward Effective HIV Vaccination INDUCTION OF BINARY EPITOPE REACTIVE ANTIBODIES WITH BROAD HIV NEUTRALIZING ACTIVITY

    SciTech Connect

    Nishiyama, Yasuhiro; Planque, Stephanie; Mitsuda, Yukie; Nitti, Giovanni; Taguchi, Hiroaki; Jin, Lei; Symersky, Jindrich; Boivin, Stephane; Sienczyk, Marcin; Salas, Maria; Hanson, Carl V.; Paul, Sudhir

    2009-11-23

    We describe murine monoclonal antibodies (mAbs) raised by immunization with an electrophilic gp120 analog (E-gp120) expressing the rare ability to neutralize genetically heterologous human immunodeficiency virus (HIV) strains. Unlike gp120, E-gp120 formed covalent oligomers. The reactivity of gp120 and E-gp120 with mAbs to reference neutralizing epitopes was markedly different, indicating their divergent structures. Epitope mapping with synthetic peptides and electrophilic peptide analogs indicated binary recognition of two distinct gp120 regions by anti-E-gp120 mAbs, the 421-433 and 288-306 peptide regions. Univalent Fab and single chain Fv fragments expressed the ability to recognize both peptides. X-ray crystallography of an anti-E-gp120 Fab fragment revealed two neighboring cavities, the typical antigen-binding cavity formed by the complementarity determining regions (CDRs) and another cavity dominated by antibody heavy chain variable (VH) domain framework (FR) residues. Substitution of the FR cavity VH Lys-19 residue by an Ala residue resulted in attenuated binding of the 421-433 region peptide probe. The CDRs and VH FR replacement/silent mutation ratios exceeded the ratio for a random mutation process, suggesting adaptive development of both putative binding sites. All mAbs studied were derived from VH1 family genes, suggesting biased recruitment of the V gene germ line repertoire by E-gp120. The conserved 421-433 region of gp120 is essential for HIV binding to host CD4 receptors. This region is recognized weakly by the FR of antibodies produced without exposure to HIV, but it usually fails to induce adaptive synthesis of neutralizing antibodies. We present models accounting for improved CD4-binding site recognition and broad HIV neutralizing activity of the mAbs, long sought goals in HIV vaccine development.

  3. Monoclonal anti-idiotypes induce neutralizing antibodies to enterovirus 70 conformational epitopes.

    PubMed Central

    Wiley, J A; Hamel, J; Brodeur, B R

    1992-01-01

    Monoclonal antibodies (MAbs) directed against the prototype enterovirus 70 (EV-70) strain J670/71 were generated and characterized in order to produce anti-idiotypic MAbs (MAb2s) for use as surrogate immunogens. Western immunoblot and radioimmunoprecipitation assays suggested that all the MAbs recognize conformational epitopes on the virion surface. An EV-70-neutralizing antibody, MAb/ev-12 (MAb1), was selected for the production of MAb2s. Five MAb2s were selected for their capacities to inhibit the interaction of MAb/ev-12 with EV-70 in dot immunobinding inhibition and immunofluorescence assays. In addition, these five MAb2s inhibited virus neutralization mediated by MAb/ev-12, suggesting that they recognize paratope-associated idiotopes. In competition enzyme immunosorbent assays, none of the five MAb2s recognized other neutralizing and nonneutralizing EV-70-specific MAbs, demonstrating that the MAb2s were specific for private idiotopes. Immunization with each of the MAb2s was carried out for the production of anti-anti-idiotypic antibodies (Ab3). All five MAb2s induced an immune response. Moreover, results suggested that they share idiotopes, since MAb2-MAb/ev-12 binding could be inhibited by homologous as well as heterologous Ab3s. Ab3 sera were shown to possess antibodies capable of immunoprecipitating 35S-labeled viral proteins in the same manner as MAb/ev-12. Nine of 15 mice immunized with MAb2s demonstrated Ab3 neutralizing activity specific for the prototype EV-70 strain, J670/71. The potential application of MAb2s to serve as surrogate immunogens for conformational epitopes is substantiated by the results presented in this report. Images PMID:1382141

  4. A Glycoprotein Subunit Vaccine Elicits a Strong Rift Valley Fever Virus Neutralizing Antibody Response in Sheep

    PubMed Central

    Lebedev, Maxim; McVey, D. Scott; Wilson, William; Morozov, Igor; Young, Alan

    2014-01-01

    Abstract Rift Valley fever virus (RVFV), a member of the Bunyaviridae family, is a mosquito-borne zoonotic pathogen that causes serious morbidity and mortality in livestock and humans. The recent spread of the virus beyond its traditional endemic boundaries in Africa to the Arabian Peninsula coupled with the presence of susceptible vectors in nonendemic countries has created increased interest in RVF vaccines. Subunit vaccines composed of specific virus proteins expressed in eukaryotic or prokaryotic expression systems are shown to elicit neutralizing antibodies in susceptible hosts. RVFV structural proteins, amino-terminus glycoprotein (Gn), and carboxyl-terminus glycoprotein (Gc), were expressed using a recombinant baculovirus expression system. The recombinant proteins were reconstituted as a GnGc subunit vaccine formulation and evaluated for immunogenicity in a target species, sheep. Six sheep were each immunized with a primary dose of 50 μg of each vaccine immunogen with the adjuvant montanide ISA25; at day 21, postvaccination, each animal received a second dose of the same vaccine. The vaccine induced a strong antibody response in all animals as determined by indirect enzyme-linked immunosorbent assay (ELISA). A plaque reduction neutralization test (PRNT80) showed the primary dose of the vaccine was sufficient to elicit potentially protective virus neutralizing antibody titers ranging from 40 to 160, and the second vaccine dose boosted the titer to more than 1280. Furthermore, all animals tested positive for neutralizing antibodies at day 328 postvaccination. ELISA analysis using the recombinant nucleocapsid protein as a negative marker antigen indicated that the vaccine candidate is DIVA (differentiating infected from vaccinated animals) compatible and represents a promising vaccine platform for RVFV infection in susceptible species. PMID:25325319

  5. Human cell lines used in a micro neutralization test for measuring influenza-neutralizing antibodies.

    PubMed

    Mittelholzer, C M; Brokstad, K A; Pauksens, K; Jonsson, R; Brytting, M; Linde, A

    2006-04-01

    An in situ neutralization test (NT) including ELISA for the measurement of influenza antigen was developed and evaluated. Two human cell lines, fibroblasts (HS27) cells and salivary gland epithelial duct (HSG) cells, were compared with Madin-Darby Canine Kidney (MDCK) cells. The viral production in the human cell lines was lower than that for MDCK cells, which influenced the results of the assay in the HSG and HS27 cells. However, when lowering the infectious dose, the NT using HS27 cells gave a sensitive and stable assay with low background in the ELISA. The NT titres were very low when using HSG cells compared to MDCK cells. The HS27 NT was used to analyze the humoral response after an influenza A infection in patients from a placebo-controlled zanamivir study. We found no differences in NT titres between patients treated with zanamivir or placebo. The MDCK and HS27 NT gave higher titres and more pronounced titre differences than the gold standard haemagglutinin inhibition (HAI) assay. Compared to the HAI assay, the sensitive NT using HS27 cells also revealed heterologous NT-titre rises after influenza infection in the patients. PMID:16623925

  6. Germlining of the HIV-1 broadly neutralizing antibody domain m36

    PubMed Central

    Chen, Weizao; Li, Wei; Ying, Tianlei; Wang, Yanping; Feng, Yang; Dimitrov, Dimiter S.

    2015-01-01

    Engineered antibody domains (eAds) have emerged as a novel class of HIV-1 inhibitors and are currently under preclinical testing as promising drug candidates for prevention and therapy of HIV-1 infection. Reverse mutation of antibodies to germline sequences (germlining) could not only identify less mutated variants with lower probability of immunogenicity and other improved properties but also help elucidate their mechanisms of action. In this study, we sequentially reverted the framework (FRs) and complementary determining regions (CDRs) of m36, a human antibody heavy chain variable domain-based eAd targeting the coreceptor binding site of the viral envelope glycoprotein gp120, back to germline sequences. Two types of amino acid mutations and one region in the antibody V segment were identified that are critical for HIV-1 neutralization. These include four mutations to acidic acid residues distributed in the CDR1 and CDR2, two mutations to hydrophobic residues in the FR3 and CDR3, and partial FR2 and FR3 sequences flanking the CDR2 that are derived from a different gene family. An m36 variant with all five mutations in the FRs reverted back to germline showed slightly increased neutralizing activity against two HIV-1 isolates tested. Another variant with seven of twelve mutations in the V segment reverted retained potency within three-fold of that of the mature antibody. These results, together with an analysis of m36-gp120-CD4 docking structures, could have implications for the further development of m36 as candidate therapeutics and elucidation of its mechanism of potent and broad HIV-1 neutralization. PMID:25676867

  7. Incompatible Natures of the HIV-1 Envelope in Resistance to the CCR5 Antagonist Cenicriviroc and to Neutralizing Antibodies

    PubMed Central

    Enomoto, Ikumi; Baba, Masanori

    2015-01-01

    Cenicriviroc is a CCR5 antagonist which prevents human immunodeficiency virus type 1 (HIV-1) from cellular entry. The CCR5-binding regions of the HIV-1 envelope glycoprotein are important targets for neutralizing antibodies (NAbs), and mutations conferring cenicriviroc resistance may therefore affect sensitivity to NAbs. Here, we used the in vitro induction of HIV-1 variants resistant to cenicriviroc or NAbs to examine the relationship between resistance to cenicriviroc and resistance to NAbs. The cenicriviroc-resistant variant KK652-67 (strain KK passaged 67 times in the presence of increasing concentrations of cenicriviroc) was sensitive to neutralization by NAbs against the V3 loop, the CD4-induced (CD4i) region, and the CD4-binding site (CD4bs), whereas the wild-type (WT) parental HIV-1 strain KKWT from which cenicriviroc-resistant strain KK652-67 was obtained was resistant to these NAbs. The V3 region of KK652-67 was important for cenicriviroc resistance and critical to the high sensitivity of the V3, CD4i, and CD4bs epitopes to NAbs. Moreover, induction of variants resistant to anti-V3 NAb 0.5γ and anti-CD4i NAb 4E9C from cenicriviroc-resistant strain KK652-67 resulted in reversion to the cenicriviroc-sensitive phenotype comparable to that of the parental strain, KKWT. Resistance to 0.5γ and 4E9C was caused by the novel substitutions R315K, G324R, and E381K in the V3 and C3 regions near the substitutions conferring cenicriviroc resistance. Importantly, these amino acid changes in the CCR5-binding region were also responsible for reversion to the cenicriviroc-sensitive phenotype. These results suggest the presence of key amino acid residues where resistance to cenicriviroc is incompatible with resistance to NAbs. This implies that cenicriviroc and neutralizing antibodies may restrict the emergence of variants resistant to each other. PMID:26525792

  8. Broadly neutralizing human antibody that recognizes the receptor-binding pocket of influenza virus hemagglutinin

    SciTech Connect

    Whittle, James R.R.; Zhang, Ruijun; Khurana, Surender; King, Lisa R.; Manischewitz, Jody; Golding, Hana; Dormitzer, Philip R.; Haynes, Barton F.; Walter, Emmanuel B.; Moody, M. Anthony; Kepler, Thomas B.; Liao, Hua-Xin; Harrison, Stephen C.

    2011-09-20

    Seasonal antigenic drift of circulating influenza virus leads to a requirement for frequent changes in vaccine composition, because exposure or vaccination elicits human antibodies with limited cross-neutralization of drifted strains. We describe a human monoclonal antibody, CH65, obtained by isolating rearranged heavy- and light-chain genes from sorted single plasma cells, coming from a subject immunized with the 2007 trivalent influenza vaccine. The crystal structure of a complex of the hemagglutinin (HA) from H1N1 strain A/Solomon Islands/3/2006 with the Fab of CH65 shows that the tip of the CH65 heavy-chain complementarity determining region 3 (CDR3) inserts into the receptor binding pocket on HA1, mimicking in many respects the interaction of the physiological receptor, sialic acid. CH65 neutralizes infectivity of 30 out of 36 H1N1 strains tested. The resistant strains have a single-residue insertion near the rim of the sialic-acid pocket. We conclude that broad neutralization of influenza virus can be achieved by antibodies with contacts that mimic those of the receptor.

  9. Age-specific incidence of neutralization antibodies of Herpes simplex virus.

    PubMed Central

    Terzin, A. L.; Masic, M. G.

    1976-01-01

    Sera of 1255 individuals from Novi Sad, varying in age from less than 1 month to 69 years, have been tested for neutralization antibodies to Herpes implex virus type 1. The eight newborns tested and 97% of the 507 adults were positive, with titres ranging from 1/4 to 1/256. The titres in newborns were significantly lower than the titres in adults. After birth the maternal antibodies declined rapidly and 94% of infants at the age of greater than 6 months and less than 2 years were negative. After the first year infants in Novi Sad start to acquire herpes-neutralizing antibodies actively, reaching a 50% incidence of positives between the 2nd and 3rd year of age. Age-specific incidence rates of herpes positives found in Novi Sad have been compared with those reported from Edinburgh, Freiburg i. Br. and Louisiana. Possible influences of several circumstances upon the incidence rate of positives detected by the neutralization test are discussed. PMID:185287

  10. Novel Ricin Subunit Antigens With Enhanced Capacity to Elicit Toxin-Neutralizing Antibody Responses in Mice.

    PubMed

    Wahome, Newton; Sully, Erin; Singer, Christopher; Thomas, Justin C; Hu, Lei; Joshi, Sangeeta B; Volkin, David B; Fang, Jianwen; Karanicolas, John; Jacobs, Donald J; Mantis, Nicholas J; Middaugh, C Russell

    2016-05-01

    RiVax is a candidate ricin toxin subunit vaccine antigen that has proven to be safe in human phase I clinical trials. In this study, we introduced double and triple cavity-filling point mutations into the RiVax antigen with the expectation that stability-enhancing modifications would have a beneficial effect on overall immunogenicity of the recombinant proteins. We demonstrate that 2 RiVax triple mutant derivatives, RB (V81L/C171L/V204I) and RC (V81I/C171L/V204I), when adsorbed to aluminum salts adjuvant and tested in a mouse prime-boost-boost regimen were 5- to 10-fold more effective than RiVax at eliciting toxin-neutralizing serum IgG antibody titers. Increased toxin neutralizing antibody values and seroconversion rates were evident at different antigen dosages and within 7 days after the first booster. Quantitative stability/flexibility relationships analysis revealed that the RB and RC mutations affect rigidification of regions spanning residues 98-103, which constitutes a known immunodominant neutralizing B-cell epitope. A more detailed understanding of the immunogenic nature of RB and RC may provide insight into the fundamental relationship between local protein stability and antibody reactivity. PMID:26987947

  11. Influenza Virus-Specific Neutralizing IgM Antibodies Persist for a Lifetime

    PubMed Central

    Skountzou, Ioanna; Satyabhama, Lakshmipriyadarshini; Stavropoulou, Anastasia; Ashraf, Zuhha; Esser, E. Stein; Vassilieva, Elena; Koutsonanos, Dimitrios; Compans, Richard

    2014-01-01

    Detection of immunoglobulin M (IgM) antibodies has long been used as an important diagnostic tool for identifying active viral infections, but their relevance in later stages has not been clearly defined in vivo. In this study, we followed the kinetics, longevity, and function of influenza virus-specific IgM antibodies for 2 years following sublethal infection of mice with live mouse-adapted A/PR/8/34 virus or immunization with formalin-inactivated virus. These groups mounted robust protective immune responses and survived lethal challenges with 50× 50% lethal dose (LD50) mouse-adapted A/PR/8/34 virus 600 days after the primary exposure. Surprisingly, the virus-specific IgM antibodies persisted along with IgG antibodies, and we found a significantly higher number of IgM-positive (IgM+) virus-specific plasma cells than IgG+ plasma cells that persisted for at least 9 months postexposure. The IgM antibodies were functional as they neutralized influenza virus in the presence of complement just as well as IgG antibodies did. PMID:25165027

  12. A novel human anti-interleukin-1β neutralizing monoclonal antibody showing in vivo efficacy

    PubMed Central

    Goh, Angeline XH; Bertin-Maghit, Sebastien; Ping Yeo, Siok; Ho, Adrian; Derks, Heidi; Mortellaro, Alessandra; Wang, Cheng-I

    2014-01-01

    The pro-inflammatory cytokine interleukin (IL)-1β is a clinical target in many conditions involving dysregulation of the immune system; therapeutics that block IL-1β have been approved to treat diseases such as rheumatoid arthritis (RA), neonatal onset multisystem inflammatory diseases, cryopyrin-associated periodic syndromes, active systemic juvenile idiopathic arthritis. Here, we report the generation and engineering of a new fully human antibody that binds tightly to IL-1β with a neutralization potency more than 10 times higher than that of the marketed antibody canakinumab. After affinity maturation, the derived antibody shows a >30-fold increased affinity to human IL-1β compared with its parent antibody. This anti-human IL-1β IgG also cross-reacts with mouse and monkey IL-1β, hence facilitating preclinical development. In a number of mouse models, this antibody efficiently reduced or abolished signs of disease associated with IL-1β pathology. Due to its high affinity for the cytokine and its potency both in vitro and in vivo, we propose that this novel fully human anti-IL-1β monoclonal antibody is a promising therapeutic candidate and a potential alternative to the current therapeutic arsenal. PMID:24671001

  13. Protective monotherapy against lethal Ebola virus infection by a potently neutralizing antibody.

    PubMed

    Corti, Davide; Misasi, John; Mulangu, Sabue; Stanley, Daphne A; Kanekiyo, Masaru; Wollen, Suzanne; Ploquin, Aurélie; Doria-Rose, Nicole A; Staupe, Ryan P; Bailey, Michael; Shi, Wei; Choe, Misook; Marcus, Hadar; Thompson, Emily A; Cagigi, Alberto; Silacci, Chiara; Fernandez-Rodriguez, Blanca; Perez, Laurent; Sallusto, Federica; Vanzetta, Fabrizia; Agatic, Gloria; Cameroni, Elisabetta; Kisalu, Neville; Gordon, Ingelise; Ledgerwood, Julie E; Mascola, John R; Graham, Barney S; Muyembe-Tamfun, Jean-Jacques; Trefry, John C; Lanzavecchia, Antonio; Sullivan, Nancy J

    2016-03-18

    Ebola virus disease in humans is highly lethal, with case fatality rates ranging from 25 to 90%. There is no licensed treatment or vaccine against the virus, underscoring the need for efficacious countermeasures. We ascertained that a human survivor of the 1995 Kikwit Ebola virus disease outbreak maintained circulating antibodies against the Ebola virus surface glycoprotein for more than a decade after infection. From this survivor we isolated monoclonal antibodies (mAbs) that neutralize recent and previous outbreak variants of Ebola virus and mediate antibody-dependent cell-mediated cytotoxicity in vitro. Strikingly, monotherapy with mAb114 protected macaques when given as late as 5 days after challenge. Treatment with a single human mAb suggests that a simplified therapeutic strategy for human Ebola infection may be possible. PMID:26917593

  14. Germline V-genes sculpt the binding site of a family of antibodies neutralizing human cytomegalovirus

    SciTech Connect

    Thomson, Christy A.; Bryson, Steve; McLean, Gary R.; Creagh, A. Louise; Pai, Emil F.; Schrader, John W.

    2008-10-17

    Immunoglobulin genes are generated somatically through specialized mechanisms resulting in a vast repertoire of antigen-binding sites. Despite the stochastic nature of these processes, the V-genes that encode most of the antigen-combining site are under positive evolutionary selection, raising the possibility that V-genes have been selected to encode key structural features of binding sites of protective antibodies against certain pathogens. Human, neutralizing antibodies to human cytomegalovirus that bind the AD-2S1 epitope on its gB envelope protein repeatedly use a pair of well-conserved, germline V-genes IGHV3-30 and IGKV3-11. Here, we present crystallographic, kinetic and thermodynamic analyses of the binding site of such an antibody and that of its primary immunoglobulin ancestor. These show that these germline V-genes encode key side chain contacts with the viral antigen and thereby dictate key structural features of the hypermutated, high-affinity neutralizing antibody. V-genes may thus encode an innate, protective immunological memory that targets vulnerable, invariant sites on multiple pathogens.

  15. Development of neutralizing monoclonal antibodies for oncogenic human papillomavirus types 31, 33, 45, 52, and 58.

    PubMed

    Brown, Martha J; Seitz, Hanna; Towne, Victoria; Müller, Martin; Finnefrock, Adam C

    2014-04-01

    Human papillomavirus (HPV) is the etiological agent for all cervical cancers, a significant number of other anogenital cancers, and a growing number of head and neck cancers. Two licensed vaccines offer protection against the most prevalent oncogenic types, 16 and 18, responsible for approximately 70% of cervical cancer cases worldwide and one of these also offers protection against types 6 and 11, responsible for 90% of genital warts. The vaccines are comprised of recombinantly expressed major capsid proteins that self-assemble into virus-like particles (VLPs) and prevent infection by eliciting neutralizing antibodies. Adding the other frequently identified oncogenic types 31, 33, 45, 52, and 58 to a vaccine would increase the coverage against HPV-induced cancers to approximately 90%. We describe the generation and characterization of panels of monoclonal antibodies to these five additional oncogenic HPV types, and the selection of antibody pairs that were high affinity and type specific and recognized conformation-dependent neutralizing epitopes. Such characteristics make these antibodies useful tools for monitoring the production and potency of a prototype vaccine as well as monitoring vaccine-induced immune responses in the clinic. PMID:24574536

  16. The past, present and future of neutralizing antibodies for hepatitis C virus

    PubMed Central

    Ball, Jonathan K.; Tarr, Alexander W.; McKeating, Jane A.

    2014-01-01

    Hepatitis C virus (HCV) is a major cause of liver disease and hepatocellular carcinoma worldwide. HCV establishes a chronic infection in the majority of cases. However, some individuals clear the virus, demonstrating a protective role for the host immune response. Although new all-oral drug combinations may soon replace traditional ribavirin–interferon therapy, the emerging drug cocktails will be expensive and associated with side-effects and resistance, making a global vaccine an urgent priority. T cells are widely accepted to play an essential role in clearing acute HCV infection, whereas the role antibodies play in resolution and disease pathogenesis is less well understood. Recent studies have provided an insight into viral neutralizing determinants and the protective role of antibodies during infection. This review provides a historical perspective of the role neutralizing antibodies play in HCV infection and discusses the therapeutic benefits of antibody-based therapies. This article forms part of a symposium in Antiviral Research on “Hepatitis C: next steps toward global eradication.” PMID:24583033

  17. Persistence of Neutralizing Antibody Against Dengue Virus 2 After 70 Years from Infection in Nagasaki

    PubMed Central

    Ngwe Tun, Mya Myat; Muta, Yoshihito; Inoue, Shingo; Morita, Kouichi

    2016-01-01

    Abstract This study aimed to investigate the duration of humoral immune responses to dengue virus (DENV) infection in Japanese who experienced acute febrile illness with hemorrhagic manifestations 70 years ago, when an epidemic of dengue occurred in Nagasaki, Japan, from 1942 to 1944. A Japanese volunteer requested serological diagnosis of DENV infection in 2014 and donated blood sample to measure the antibody titer against DENV by antiflavi IgG indirect ELISA, focus reduction neutralization test, and plaque reduction neutralization test. The serum sample of the volunteer was positive in flavi IgG ELISA and it indicated primary infection. In the neutralization test, the highest neutralizing titer was ≥218 for DENV-2. We report here the existence of DENV-specific antibodies in the serum of a person after 70 years from infection. Published reports indicated that DENV-1 was responsible for the 1942–1944 outbreak in Nagasaki. However, our data suggested that DENV-2 also played a role in this Nagasaki dengue epidemic. PMID:27493841

  18. Persistence of Neutralizing Antibody Against Dengue Virus 2 After 70 Years from Infection in Nagasaki.

    PubMed

    Ngwe Tun, Mya Myat; Muta, Yoshihito; Inoue, Shingo; Morita, Kouichi

    2016-01-01

    This study aimed to investigate the duration of humoral immune responses to dengue virus (DENV) infection in Japanese who experienced acute febrile illness with hemorrhagic manifestations 70 years ago, when an epidemic of dengue occurred in Nagasaki, Japan, from 1942 to 1944. A Japanese volunteer requested serological diagnosis of DENV infection in 2014 and donated blood sample to measure the antibody titer against DENV by antiflavi IgG indirect ELISA, focus reduction neutralization test, and plaque reduction neutralization test. The serum sample of the volunteer was positive in flavi IgG ELISA and it indicated primary infection. In the neutralization test, the highest neutralizing titer was ≥218 for DENV-2. We report here the existence of DENV-specific antibodies in the serum of a person after 70 years from infection. Published reports indicated that DENV-1 was responsible for the 1942-1944 outbreak in Nagasaki. However, our data suggested that DENV-2 also played a role in this Nagasaki dengue epidemic. PMID:27493841

  19. Virus-Neutralizing Monoclonal Antibody Expressed in Milk of Transgenic Mice Provides Full Protection against Virus-Induced Encephalitis

    PubMed Central

    Kolb, Andreas F.; Pewe, Lecia; Webster, John; Perlman, Stanley; Whitelaw, C. Bruce A.; Siddell, Stuart G.

    2001-01-01

    Neutralizing antibodies represent a major host defense mechanism against viral infections. In mammals, passive immunity is provided by neutralizing antibodies passed to the offspring via the placenta or the milk as immunoglobulin G and secreted immunoglobulin A. With the long-term goal of producing virus-resistant livestock, we have generated mice carrying transgenes that encode the light and heavy chains of an antibody that is able to neutralize the neurotropic JHM strain of murine hepatitis virus (MHV-JHM). MHV-JHM causes acute encephalitis and acute and chronic demyelination in susceptible strains of mice and rats. Transgene expression was targeted to the lactating mammary gland by using the ovine β-lactoglobulin promoter. Milk from these transgenic mice contained up to 0.7 mg of recombinant antibody/ml. In vitro analysis of milk derived from different transgenic lines revealed a linear correlation between antibody expression and virus-neutralizing activity, indicating that the recombinant antibody is the major determinant of MHV-JHM neutralization in murine milk. Offspring of transgenic and control mice were challenged with a lethal dose of MHV-JHM. Litters suckling nontransgenic dams succumbed to fatal encephalitis, whereas litters suckling transgenic dams were fully protected against challenge, irrespective of whether they were transgenic. This demonstrates that a single neutralizing antibody expressed in the milk of transgenic mice is sufficient to completely protect suckling offspring against MHV-JHM-induced encephalitis. PMID:11222704

  20. IBC's 22nd Annual Antibody Engineering and 9th Annual Antibody Therapeutics International Conferences and the 2011 Annual Meeting of The Antibody Society, December 5–8, 2011, San Diego, CA

    PubMed Central

    Nilvebrant, Johan; Dunlop, D Cameron; Sircar, Aroop; Wurch, Thierry; Falkowska, Emilia; Helguera, Gustavo; Piccione, Emily C; Brack, Simon; Berger, Sven

    2012-01-01

    The 22nd Annual Antibody Engineering and 9th Annual Antibody Therapeutics international conferences, and the 2011 Annual Meeting of The Antibody Society, organized by IBC Life Sciences with contributions from The Antibody Society and two Scientific Advisory Boards, were held December 5–8, 2011 in San Diego, CA. The meeting drew ∼800 participants who attended sessions on a wide variety of topics relevant to antibody research and development. As a preview to the main events, a pre-conference workshop held on December 4, 2011 focused on antibodies as probes of structure. The Antibody Engineering Conference comprised eight sessions: (1) structure and dynamics of antibodies and their membrane receptor targets; (2) model-guided generation of binding sites; (3) novel selection strategies; (4) antibodies in a complex environment: targeting intracellular and misfolded proteins; (5) rational vaccine design; (6) viral retargeting with engineered binding molecules; (7) the biology behind potential blockbuster antibodies and (8) antibodies as signaling modifiers: where did we go right, and can we learn from success? The Antibody Therapeutics Conference comprised five sessions: (1) Twenty-five years of therapeutic antibodies: lessons learned and future challenges; (2) preclinical and early stage development of antibody therapeutics; (3) next generation anti-angiogenics; (4) updates of clinical stage antibody therapeutics and (5) antibody drug conjugates and bispecific antibodies. PMID:22453091

  1. Characterization and Formulation of Multiple Epitope-Specific Neutralizing Monoclonal Antibodies for Passive Immunization against Cryptosporidiosis

    PubMed Central

    Schaefer, Deborah A.; Auerbach-Dixon, Beth A.; Riggs, Michael W.

    2000-01-01

    The coccidian parasite Cryptosporidium parvum causes diarrhea in humans, calves, and other mammals. Neither immunization nor parasite-specific pharmaceuticals that are consistently effective against this organism are available. While polyclonal antibodies against whole C. parvum reduce infection, their efficacy and predictability are suboptimal. We hypothesized that passive immunization against cryptosporidiosis could be improved by using neutralizing monoclonal antibodies (MAbs) targeting functionally defined antigens on the infective stages. We previously reported that the apical complex and surface-exposed zoite antigens CSL, GP25-200, and P23 are critical in the infection process and are therefore rational targets. In the present study, a panel of 126 MAbs generated against affinity-purified CSL, GP25-200, and P23 was characterized to identify the most efficacious neutralizing MAb formulation targeting each antigen. To identify neutralizing MAbs, sporozoite infectivity following exposure to individual MAbs was assessed by enzyme-linked immunosorbent assay. Of 126 MAbs evaluated, 47 had neutralizing activity. These were then evaluated individually in oocyst-challenged neonatal mice, and 14 MAbs having highly significant efficacy were identified for further testing in formulations. Epitope specificity assays were performed to determine if candidate MAbs recognized the same or different epitopes. Formulations of two or three neutralizing MAbs, each recognizing distinct epitopes, were then evaluated. A formulation of MAbs 3E2 (anti-CSL [αCSL]), 3H2 (αGP25-200), and 1E10 (αP23) provided highly significant additive efficacy over that of either individual MAbs or combinations of two MAbs and reduced intestinal infection by 86 to 93%. These findings indicate that polyvalent neutralizing MAb formulations targeting epitopes on defined antigens may provide optimal passive immunization against cryptosporidiosis. PMID:10768951

  2. Pseudovirion Particles Bearing Native HIV Envelope Trimers Facilitate a Novel Method for Generating Human Neutralizing Monoclonal Antibodies against HIV

    PubMed Central

    Hicar, Mark D.; Chen, Xuemin; Briney, Bryan; Hammonds, Jason; Wang, Jaang-Jiun; Kalams, Spyros; Spearman, Paul W.; Crowe, James E.

    2010-01-01

    Monomeric HIV envelope vaccines fail to elicit broadly neutralizing antibodies or to protect against infection. Neutralizing antibodies against HIV bind to native, functionally active Env trimers on the virion surface. Gag-Env pseudovirions recapitulate the native trimer, and could serve as an effective epitope presentation platform for study of the neutralizing antibody response in HIV-infected individuals. To address if pseudovirions can recapitulate native HIV virion epitope structures, we carefully characterized these particles, concentrating on the antigenic structure of the coreceptor binding site. By blue native gel shift assays, Gag-Env pseudovirions were shown to contain native trimers that were competent for binding to neutralizing monoclonal antibodies. In ELISA, pseudovirions exhibited increased binding of known CD4-induced antibodies following addition of CD4. Using flow cytometric analysis, fluorescently labeled pseudovirions specifically identified a subset of antigen-specific B cells in HIV-infected subjects. Interestingly, the sequence of one of these novel human antibodies, identified during cloning of single HIV-specific B cells and designated 2C6, exhibited homology to mAb 47e, a known anti-CD4-induced coreceptor binding site antibody. The secreted monoclonal antibody 2C6 did not bind monomeric gp120, but specifically bound envelope on pseudovirions. A recombinant form of the antibody 2C6 acted as a CD4-induced epitope-specific antibody in neutralization assays, yet did not bind monomeric gp120. These findings imply specificity against a quaternary epitope presented on the pseudovirion envelope spike. These data demonstrate that Gag-Env pseudovirions recapitulate CD4 and coreceptor binding pocket antigenic structures and can facilitate identification of B cell clones that secrete neutralizing antibodies. PMID:20531016

  3. Neutralizing antibody and anti-retroviral drug sensitivities of HIV-1 isolates resistant to small molecule CCR5 inhibitors

    SciTech Connect

    Pugach, Pavel; Ketas, Thomas J.; Michael, Elizabeth; Moore, John P.

    2008-08-01

    The small molecule CCR5 inhibitors are a new class of drugs for treating infection by human immunodeficiency virus type 1 (HIV-1). They act by binding to the CCR5 co-receptor and preventing its use during HIV-1-cell fusion. Escape mutants can be raised against CCR5 inhibitors in vitro and will arise when these drugs are used clinically. Here, we have assessed the responses of CCR5 inhibitor-resistant viruses to other anti-retroviral drugs that act by different mechanisms, and their sensitivities to neutralizing antibodies (NAbs). The rationale for the latter study is that the resistance pathway for CCR5 inhibitors involves changes in the HIV-1 envelope glycoproteins (Env), which are also targets for NAbs. The escape mutants CC101.19 and D1/85.16 were selected for resistance to AD101 and vicriviroc (VVC), respectively, from the primary R5 HIV-1 isolate CC1/85. Each escape mutant was cross-resistant to other small molecule CCR5 inhibitors (aplaviroc, maraviroc, VVC, AD101 and CMPD 167), but sensitive to protein ligands of CCR5: the modified chemokine PSC-RANTES and the humanized MAb PRO-140. The resistant viruses also retained wild-type sensitivity to the nucleoside reverse transcriptase inhibitor (RTI) zidovudine, the non-nucleoside RTI nevirapine, the protease inhibitor atazanavir and other attachment and fusion inhibitors that act independently of CCR5 (BMS-806, PRO-542 and enfuvirtide). Of note is that the escape mutants were more sensitive than the parental CC1/85 isolate to a subset of neutralizing monoclonal antibodies and to some sera from HIV-1-infected people, implying that sequence changes in Env that confer resistance to CCR5 inhibitors can increase the accessibility of some NAb epitopes. The need to preserve NAb resistance may therefore be a constraint upon how escape from CCR5 inhibitors occurs in vivo.

  4. Enhanced Neutralizing Antibody Response Induced by Respiratory Syncytial Virus Prefusion F Protein Expressed by a Vaccine Candidate

    PubMed Central

    Liang, Bo; Surman, Sonja; Amaro-Carambot, Emerito; Kabatova, Barbora; Mackow, Natalie; Lingemann, Matthias; Yang, Lijuan; McLellan, Jason S.; Graham, Barney S.; Kwong, Peter D.; Schaap-Nutt, Anne; Collins, Peter L.

    2015-01-01

    ABSTRACT Respiratory syncytial virus (RSV) and human parainfluenza virus type 3 (HPIV3) are the first and second leading viral agents of severe respiratory tract disease in infants and young children worldwide. Vaccines are not available, and an RSV vaccine is particularly needed. A live attenuated chimeric recombinant bovine/human PIV3 (rB/HPIV3) vector expressing the RSV fusion (F) glycoprotein from an added gene has been under development as a bivalent vaccine against RSV and HPIV3. Previous clinical evaluation of this vaccine candidate suggested that increased genetic stability and immunogenicity of the RSV F insert were needed. This was investigated in the present study. RSV F expression was enhanced 5-fold by codon optimization and by modifying the amino acid sequence to be identical to that of an early passage of the original clinical isolate. This conferred a hypofusogenic phenotype that presumably reflects the original isolate. We then compared vectors expressing stabilized prefusion and postfusion versions of RSV F. In a hamster model, prefusion F induced increased quantity and quality of RSV-neutralizing serum antibodies and increased protection against wild-type (wt) RSV challenge. In contrast, a vector expressing the postfusion F was less immunogenic and protective. The genetic stability of the RSV F insert was high and was not affected by enhanced expression or the prefusion or postfusion conformation of RSV F. These studies provide an improved version of the previously well-tolerated rB/HPIV3-RSV F vaccine candidate that induces a superior RSV-neutralizing serum antibody response. IMPORTANCE Respiratory syncytial virus (RSV) and human parainfluenza virus type 3 (HPIV3) are two major causes of pediatric pneumonia and bronchiolitis. The rB/HPIV3 vector expressing RSV F protein is a candidate bivalent live vaccine against HPIV3 and RSV. Previous clinical evaluation indicated the need to increase the immunogenicity and genetic stability of the RSV F

  5. Broadly Neutralizing Antibody Responses in a Large Longitudinal Sub-Saharan HIV Primary Infection Cohort

    PubMed Central

    Landais, Elise; Huang, Xiayu; Havenar-Daughton, Colin; Murrell, Ben; Price, Matt A.; Wickramasinghe, Lalinda; Ramos, Alejandra; Bian, Charoan B.; Simek, Melissa; Allen, Susan; Karita, Etienne; Kilembe, William; Lakhi, Shabir; Inambao, Mubiana; Kamali, Anatoli; Sanders, Eduard J.; Anzala, Omu; Edward, Vinodh; Bekker, Linda-Gail; Tang, Jianming; Gilmour, Jill; Kosakovsky-Pond, Sergei L.; Phung, Pham; Wrin, Terri; Crotty, Shane; Godzik, Adam; Poignard, Pascal

    2016-01-01

    Broadly neutralizing antibodies (bnAbs) are thought to be a critical component of a protective HIV vaccine. However, designing vaccines immunogens able to elicit bnAbs has proven unsuccessful to date. Understanding the correlates and immunological mechanisms leading to the development of bnAb responses during natural HIV infection is thus critical to the design of a protective vaccine. The IAVI Protocol C program investigates a large longitudinal cohort of primary HIV-1 infection in Eastern and South Africa. Development of neutralization was evaluated in 439 donors using a 6 cross-clade pseudo-virus panel predictive of neutralization breadth on larger panels. About 15% of individuals developed bnAb responses, essentially between year 2 and year 4 of infection. Statistical analyses revealed no influence of gender, age or geographical origin on the development of neutralization breadth. However, cross-clade neutralization strongly correlated with high viral load as well as with low CD4 T cell counts, subtype-C infection and HLA-A*03(-) genotype. A correlation with high overall plasma IgG levels and anti-Env IgG binding titers was also found. The latter appeared not associated with higher affinity, suggesting a greater diversity of the anti-Env responses in broad neutralizers. Broadly neutralizing activity targeting glycan-dependent epitopes, largely the N332-glycan epitope region, was detected in nearly half of the broad neutralizers while CD4bs and gp41-MPER bnAb responses were only detected in very few individuals. Together the findings suggest that both viral and host factors are critical for the development of bnAbs and that the HIV Env N332-glycan supersite may be a favorable target for vaccine design. PMID:26766578

  6. IBC's 23rd Annual Antibody Engineering, 10th Annual Antibody Therapeutics international conferences and the 2012 Annual Meeting of The Antibody Society: December 3-6, 2012, San Diego, CA.

    PubMed

    Klöhn, Peter-Christian; Wuellner, Ulrich; Zizlsperger, Nora; Zhou, Yu; Tavares, Daniel; Berger, Sven; Zettlitz, Kirstin A; Proetzel, Gabriele; Yong, May; Begent, Richard H J; Reichert, Janice M

    2013-01-01

    The 23rd Annual Antibody Engineering, 10th Annual Antibody Therapeutics international conferences, and the 2012 Annual Meeting of The Antibody Society, organized by IBC Life Sciences with contributions from The Antibody Society and two Scientific Advisory Boards, were held December 3-6, 2012 in San Diego, CA. The meeting drew over 800 participants who attended sessions on a wide variety of topics relevant to antibody research and development. As a prelude to the main events, a pre-conference workshop held on December 2, 2012 focused on intellectual property issues that impact antibody engineering. The Antibody Engineering Conference was composed of six sessions held December 3-5, 2012: (1) From Receptor Biology to Therapy; (2) Antibodies in a Complex Environment; (3) Antibody Targeted CNS Therapy: Beyond the Blood Brain Barrier; (4) Deep Sequencing in B Cell Biology and Antibody Libraries; (5) Systems Medicine in the Development of Antibody Therapies/Systematic Validation of Novel Antibody Targets; and (6) Antibody Activity and Animal Models. The Antibody Therapeutics conference comprised four sessions held December 4-5, 2012: (1) Clinical and Preclinical Updates of Antibody-Drug Conjugates; (2) Multifunctional Antibodies and Antibody Combinations: Clinical Focus; (3) Development Status of Immunomodulatory Therapeutic Antibodies; and (4) Modulating the Half-Life of Antibody Therapeutics. The Antibody Society's special session on applications for recording and sharing data based on GIATE was held on December 5, 2012, and the conferences concluded with two combined sessions on December 5-6, 2012: (1) Development Status of Early Stage Therapeutic Antibodies; and (2) Immunomodulatory Antibodies for Cancer Therapy. PMID:23575266

  7. Analysis of Cross-Reactive Neutralizing Antibodies in Human HFMD Serum with an EV71 Pseudovirus-Based Assay

    PubMed Central

    Jin, Jun; Xu, Lin; Sun, Shiyang; Jiang, Liping; Li, Xiaojun; Shao, Jie; Ma, Hongxia; Huang, Xueyong; Guo, Shijie; Chen, Haiying; Cheng, Tong; Yang, Lisheng; Su, Weiheng; Kong, Wei; Liang, Zhenglun; Jiang, Chunlai

    2014-01-01

    Hand, foot and mouth disease, associated with enterovirus 71 (EV71) infections, has recently become an important public health issue throughout the world. Serum neutralizing antibodies are major indicators of EV71 infection and protective immunity. However, the potential for cross-reactivity of neutralizing antibodies for different EV71 genotypes and subgenotypes is unclear. Here we measured the cross-reactive neutralizing antibody titers against EV71 of different genotypes or subgenotypes in sera collected from EV71-infected children and vaccine-inoculated children in a phase III clinical trial (ClinicalTrials.gov Identifier: NCT01636245) using a new pseudovirus-based neutralization assay. Antibodies induced by EV71-C4a were cross-reactive for different EV71 genotypes, demonstrating that C4a is a good candidate strain for an EV71 vaccine. Our study also demonstrated that this new assay is practical for analyses of clinical samples from epidemiological and vaccine studies. PMID:24964084

  8. Developmental Pathway of the MPER-Directed HIV-1-Neutralizing Antibody 10E8

    PubMed Central

    Zhang, Baoshan; McKee, Krisha; Longo, Nancy S.; Yang, Yongping; Huang, Jinghe; Parks, Robert; Eudailey, Joshua; Lloyd, Krissey E.; Alam, S. Munir; Haynes, Barton F.; Mullikin, James C.; Connors, Mark; Mascola, John R.; Shapiro, Lawrence; Kwong, Peter D.

    2016-01-01

    Antibody 10E8 targets the membrane-proximal external region (MPER) of HIV-1 gp41, neutralizes >97% of HIV-1 isolates, and lacks the auto-reactivity often associated with MPER-directed antibodies. The developmental pathway of 10E8 might therefore serve as a promising template for vaccine design, but samples from time-of-infection—often used to infer the B cell record—are unavailable. In this study, we used crystallography, next-generation sequencing (NGS), and functional assessments to infer the 10E8 developmental pathway from a single time point. Mutational analysis indicated somatic hypermutation of the 2nd-heavy chain-complementarity determining region (CDR H2) to be critical for neutralization, and structures of 10E8 variants with V-gene regions reverted to genomic origin for heavy-and-light chains or heavy chain-only showed structural differences >2 Å relative to mature 10E8 in the CDR H2 and H3. To understand these developmental changes, we used bioinformatic sieving, maximum likelihood, and parsimony analyses of immunoglobulin transcripts to identify 10E8-lineage members, to infer the 10E8-unmutated common ancestor (UCA), and to calculate 10E8-developmental intermediates. We were assisted in this analysis by the preservation of a critical D-gene segment, which was unmutated in most 10E8-lineage sequences. UCA and early intermediates weakly bound a 26-residue-MPER peptide, whereas HIV-1 neutralization and epitope recognition in liposomes were only observed with late intermediates. Antibody 10E8 thus develops from a UCA with weak MPER affinity and substantial differences in CDR H2 and H3 from the mature 10E8; only after extensive somatic hypermutation do 10E8-lineage members gain recognition in the context of membrane and HIV-1 neutralization. PMID:27299673

  9. Antibody Conjugation Approach Enhances Breadth and Potency of Neutralization of Anti-HIV-1 Antibodies and CD4-IgG

    PubMed Central

    Gavrilyuk, Julia; Ban, Hitoshi; Uehara, Hisatoshi; Sirk, Shannon J.; Saye-Francisco, Karen; Cuevas, Angelica; Zablowsky, Elise; Oza, Avinash; Seaman, Michael S.; Burton, Dennis R.

    2013-01-01

    Broadly neutralizing antibodies PG9 and PG16 effectively neutralize 70 to 80% of circulating HIV-1 isolates. In this study, the neutralization abilities of PG9 and PG16 were further enhanced by bioconjugation with aplaviroc, a small-molecule inhibitor of virus entry into host cells. A novel air-stable diazonium hexafluorophosphate reagent that allows for rapid, tyrosine-selective functionalization of proteins and antibodies under mild conditions was used to prepare a series of aplaviroc-conjugated antibodies, including b12, 2G12, PG9, PG16, and CD4-IgG. The conjugated antibodies blocked HIV-1 entry through two mechanisms: by binding to the virus itself and by blocking the CCR5 receptor on host cells. Chemical modification did not significantly alter the potency of the parent antibodies against nonresistant HIV-1 strains. Conjugation did not alter the pharmacokinetics of a model IgG in blood. The PG9-aplaviroc conjugate was tested against a panel of 117 HIV-1 strains and was found to neutralize 100% of the viruses. PG9-aplaviroc conjugate IC50s were lower than those of PG9 in neutralization studies of 36 of the 117 HIV-1 strains. These results support this new approach to bispecific antibodies and offer a potential new strategy for combining HIV-1 therapies. PMID:23427154

  10. Antibody conjugation approach enhances breadth and potency of neutralization of anti-HIV-1 antibodies and CD4-IgG.

    PubMed

    Gavrilyuk, Julia; Ban, Hitoshi; Uehara, Hisatoshi; Sirk, Shannon J; Saye-Francisco, Karen; Cuevas, Angelica; Zablowsky, Elise; Oza, Avinash; Seaman, Michael S; Burton, Dennis R; Barbas, Carlos F

    2013-05-01

    Broadly neutralizing antibodies PG9 and PG16 effectively neutralize 70 to 80% of circulating HIV-1 isolates. In this study, the neutralization abilities of PG9 and PG16 were further enhanced by bioconjugation with aplaviroc, a small-molecule inhibitor of virus entry into host cells. A novel air-stable diazonium hexafluorophosphate reagent that allows for rapid, tyrosine-selective functionalization of proteins and antibodies under mild conditions was used to prepare a series of aplaviroc-conjugated antibodies, including b12, 2G12, PG9, PG16, and CD4-IgG. The conjugated antibodies blocked HIV-1 entry through two mechanisms: by binding to the virus itself and by blocking the CCR5 receptor on host cells. Chemical modification did not significantly alter the potency of the parent antibodies against nonresistant HIV-1 strains. Conjugation did not alter the pharmacokinetics of a model IgG in blood. The PG9-aplaviroc conjugate was tested against a panel of 117 HIV-1 strains and was found to neutralize 100% of the viruses. PG9-aplaviroc conjugate IC50s were lower than those of PG9 in neutralization studies of 36 of the 117 HIV-1 strains. These results support this new approach to bispecific antibodies and offer a potential new strategy for combining HIV-1 therapies. PMID:23427154