NASA Astrophysics Data System (ADS)
King, S. F.
2004-02-01
This is a review article about neutrino mass models, particularly see-saw models involving three active neutrinos that are capable of describing both the atmospheric neutrino oscillation data and the large mixing angle (LMA) MSW solar solution, which is now uniquely specified by recent data. We briefly review the current experimental status, show how to parametrize and construct the neutrino mixing matrix, and present the leading order neutrino Majorana mass matrices. We then introduce the see-saw mechanism and discuss a natural application of it to current data using the sequential dominance mechanism, which we compare with an early proposal for obtaining LMAs. We show how both the Standard Model and the Minimal Supersymmetric Standard Model may be extended to incorporate the see-saw mechanism and show how the latter case leads to the expectation of lepton flavour violation. The see-saw mechanism motivates models with additional symmetries such as unification and family symmetry models, and we tabulate some possible models before focusing on two particular examples based on SO(10) grand unification and either U(1) or SU(3) family symmetry as specific examples. This review contains extensive appendices that include techniques for analytically diagonalizing different types of mass matrices involving two LMAs and one small mixing angle, to leading order in the small mixing angle.
Model of neutrino effective masses
Dinh Nguyen Dinh; Nguyen Thi Hong Van; Nguyen Anh Ky; Phi Quang Van
2006-10-01
It is shown that an effective (nonrenormalizable) coupling of lepton multiplets to scalar triplets in the 331 model with sterile/exotic neutrinos, can be a good way for generating neutrino masses of different types. The method is simple and avoids radiative/loop calculations which, sometimes, are long and complicated. Basing on some astrophysical arguments it is also stated that the scale of SU(3){sub L} symmetry breaking is at TeV scale, in agreement with earlier investigations. Or equivalently, starting from this symmetry breaking scale we could have sterile/exotic neutrinos with mass of a few keV's which could be used to explain several astrophysical and cosmological puzzles, such as the dark matter, the fast motion of the observed pulsars, the re-ionization of the Universe, etc.
Predictive models of radiative neutrino masses
NASA Astrophysics Data System (ADS)
Julio, J.
2016-06-01
We discuss two models of radiative neutrino mass generation. The first model features one-loop Zee model with Z4 symmetry. The second model is the two-loop neutrino mass model with singly- and doubly-charged scalars. These two models fit neutrino oscillation data well and predict some interesting rates for lepton flavor violation processes.
Flavour dependent gauged radiative neutrino mass model
NASA Astrophysics Data System (ADS)
Baek, Seungwon; Okada, Hiroshi; Yagyu, Kei
2015-04-01
We propose a one-loop induced radiative neutrino mass model with anomaly free flavour dependent gauge symmetry: μ minus τ symmetry U(1) μ- τ . A neutrino mass matrix satisfying current experimental data can be obtained by introducing a weak isospin singlet scalar boson that breaks U(1) μ- τ symmetry, an inert doublet scalar field, and three right-handed neutrinos in addition to the fields in the standard model. We find that a characteristic structure appears in the neutrino mass matrix: two-zero texture form which predicts three non-zero neutrino masses and three non-zero CP-phases from five well measured experimental inputs of two squared mass differences and three mixing angles. Furthermore, it is clarified that only the inverted mass hierarchy is allowed in our model. In a favored parameter set from the neutrino sector, the discrepancy in the muon anomalous magnetic moment between the experimental data and the the standard model prediction can be explained by the additional neutral gauge boson loop contribution with mass of order 100 MeV and new gauge coupling of order 10-3.
Predictive model of radiative neutrino masses
NASA Astrophysics Data System (ADS)
Babu, K. S.; Julio, J.
2014-03-01
We present a simple and predictive model of radiative neutrino masses. It is a special case of the Zee model which introduces two Higgs doublets and a charged singlet. We impose a family-dependent Z4 symmetry acting on the leptons, which reduces the number of parameters describing neutrino oscillations to four. A variety of predictions follow: the hierarchy of neutrino masses must be inverted; the lightest neutrino mass is extremely small and calculable; one of the neutrino mixing angles is determined in terms of the other two; the phase parameters take CP-conserving values with δCP=π; and the effective mass in neutrinoless double beta decay lies in a narrow range, mββ=(17.6-18.5) meV. The ratio of vacuum expectation values of the two Higgs doublets, tanβ, is determined to be either 1.9 or 0.19 from neutrino oscillation data. Flavor-conserving and flavor-changing couplings of the Higgs doublets are also determined from neutrino data. The nonstandard neutral Higgs bosons, if they are moderately heavy, would decay dominantly into μ and τ with prescribed branching ratios. Observable rates for the decays μ →eγ and τ→3μ are predicted if these scalars have masses in the range of 150-500 GeV.
Neutrino mass models and CP violation
Joshipura, Anjan S.
2011-10-06
Theoretical ideas on the origin of (a) neutrino masses (b) neutrino mass hierarchies and (c) leptonic mixing angles are reviewed. Topics discussed include (1) symmetries of neutrino mass matrix and their origin (2) ways to understand the observed patterns of leptonic mixing angles and (3)unified description of neutrino masses and mixing angles in grand unified theories.
The simplest models of radiative neutrino mass
NASA Astrophysics Data System (ADS)
Law, Sandy S. C.; McDonald, Kristian L.
2014-04-01
The complexity of radiative neutrino-mass models can be judged by: (i) whether they require the imposition of ad hoc symmetries, (ii) the number of new multiplets they introduce and (iii) the number of arbitrary parameters that appear. Considering models that do not employ new symmetries, the simplest models have two new multiplets and a minimal number of new parameters. With this in mind, we search for the simplest models of radiative neutrino mass. We are led to two models, containing a real scalar triplet and a charged scalar doublet (respectively), in addition to the charged singlet scalar considered by Zee [h+ (1, 1, 2)]. These models are essentially simplified versions of the Zee model and appear to be the simplest models of radiative neutrino mass. However, despite successfully generating nonzero masses, present-day data is sufficient to rule these simple models out. The Zee and Zee-Babu models therefore remain as the simplest viable models. Moving beyond the minimal cases, we find a new model of two-loop masses that employs the charged doublet Φ (1, 2, 3) and the doubly-charged scalar k++ (1, 1, 4). This is the sole remaining model that employs only three new noncolored multiplets.
Electroweak absolute, meta-, and thermal stability in neutrino mass models
NASA Astrophysics Data System (ADS)
Lindner, Manfred; Patel, Hiren H.; Radovčić, Branimir
2016-04-01
We analyze the stability of the electroweak vacuum in neutrino mass models containing right-handed neutrinos or fermionic isotriplets. In addition to considering absolute stability, we place limits on the Yukawa couplings of new fermions based on metastability and thermal stability in the early Universe. Our results reveal that the upper limits on the neutrino Yukawa couplings can change significantly when the top quark mass is allowed to vary within the experimental range of uncertainty in its determination.
Leptogenesis in a neutrino mass model coupled with inflaton
NASA Astrophysics Data System (ADS)
Suematsu, Daijiro
2016-09-01
We propose a scenario for the generation of baryon number asymmetry based on the inflaton decay in a radiative neutrino mass model extended with singlet scalars. In this scenario, lepton number asymmetry is produced through the decay of non-thermal right-handed neutrinos caused from the inflaton decay. Since the amount of non-thermal right-handed neutrinos could be much larger than the thermal ones, the scenario could work without any resonance effect for rather low reheating temperature. Sufficient baryon number asymmetry can be generated for much lighter right-handed neutrinos compared with the Davidson-Ibarra bound.
NASA Astrophysics Data System (ADS)
VanDevender, B. A.
2009-12-01
Neutrino flavor oscillation experiments have demonstrated that the three Standard Model neutrino flavor eigenstates are mixed with three mass eigenstates whose mass eigenvalues are nondegenerate. The oscillation experiments measure the differences between the squares of the mass eigenvalues but tell us nothing about their absolute values. The unknown absolute neutrino mass scale has important implications in particle physics and cosmology. Beta decay endpoint measurements are presented as a model-independent method to measure the absolute neutrino mass. The Karlsruhe Tritium Neutrino Experiment (KATRIN) is explored in detail.
Renormalization of a two-loop neutrino mass model
Babu, K. S.; Julio, J.
2014-01-01
We analyze the renormalization group structure of a radiative neutrino mass model consisting of a singly charged and a doubly charged scalar fields. Small Majorana neutrino masses are generated by the exchange of these scalars via two-loop diagrams. We derive boundedness conditions for the Higgs potential and show how they can be satisfied to energies up to the Planck scale. Combining boundedness and perturbativity constraints with neutrino oscillation phenomenology, new limits on the masses and couplings of the charged scalars are derived. These in turn lead to lower limits on the branching ratios for certain lepton flavor violating (LFV) processes such as μ→eγ, μ→3e and μ – e conversion in nuclei. Improved LFV measurements could test the model, especially in the case of inverted neutrino mass hierarchy where these are more prominent.
Renormalization of a two-loop neutrino mass model
NASA Astrophysics Data System (ADS)
Babu, K. S.; Julio, J.
2014-06-01
We analyze the renormalization group structure of a radiative neutrino mass model consisting of a singly charged and a doubly charged scalar fields. Small Majorana neutrino masses are generated by the exchange of these scalars via two-loop diagrams. We derive boundedness conditions for the Higgs potential and show how they can be satisfied to energies up to the Planck scale. Combining boundedness and perturbativity constraints with neutrino oscillation phenomenology, new limits on the masses and couplings of the charged scalars are derived. These in turn lead to lower limits on the branching ratios for certain lepton flavor violating (LFV) processes such as μ→eγ, μ→3e and μ - e conversion in nuclei. Improved LFV measurements could test the model, especially in the case of inverted neutrino mass hierarchy where these are more prominent.
Dirac neutrino mass from a neutrino dark matter model for the galaxy cluster Abell 1689
NASA Astrophysics Data System (ADS)
Nieuwenhuizen, Theodorus Maria
2016-03-01
The dark matter in the galaxy cluster Abell 1689 is modelled as an isothermal sphere of neutrinos. New data on the 2d mass density allow an accurate description of its core and halo. The model has no “missing baryon problem” and beyond 2.1 Mpc the baryons have the cosmic mass abundance. Combination of cluster data with the cosmic dark matter fraction - here supposed to stem from the neutrinos - leads to a solution of the dark matter riddle by left and right handed neutrinos with mass (1.861 ± 0.016)h 70 -2eV/c 2. The thus far observed absence of neutrinoless double beta decay points to (quasi-) Dirac neutrinos: uncharged electrons with different flavour and mass eigenbasis, as for quarks. Though the cosmic microwave background spectrum is matched up to some 10% accuracy only, the case is not ruled out because the plasma phase of the early Universe may be turbulent.
Neutrino masses in the economical 3-3-1 model
Dong, P. V.; Long, H. N.; Soa, D. V.
2007-04-01
We show that in the framework of the economical 3-3-1 model, the suitable pattern of neutrino masses arises from three quite different sources - the lepton-number conserving, the spontaneous lepton-number breaking, and the explicit lepton-number violating, widely ranging over mass scales including the GUT one: u{approx}O(1) GeV, v{approx_equal}246 GeV, {omega}{approx}O(1) TeV, and M{approx}O(10{sup 16}) GeV. At the tree level, the model contains three Dirac neutrinos: one massless, and two large with degenerate masses in the range of the electron mass. At the one-loop level, the left-handed and right-handed neutrinos obtain Majorana masses M{sub L,R} in orders of 10{sup -2}-10{sup -3} eV and degenerate in M{sub R}=-M{sub L}, while the Dirac masses get a large reduction down to eV scale through a finite mass renormalization. In this model, the contributions of new physics are strongly signified, the degenerations in the masses and the last hierarchy between the Majorana and Dirac masses can be completely removed by heavy particles. All the neutrinos get mass and can fit the data. The acceptable set of the input data does not induce the large lepton flavor violating branching ratios such as Br({mu}{yields}e{gamma})
Models of Neutrino Masses: Anarchy versus Hierarchy
NASA Astrophysics Data System (ADS)
Altarelli, Guido; Feruglio, Ferruccio; Masina, Isabella
2003-01-01
We present a quantitative study of the ability of models with different levels of hierarchy to reproduce the solar neutrino solutions, in particular the LA solution. As a flexible testing ground we consider models based on SU(5) × U(1)F. In this context, we have made statistical simulations of models with different patterns from anarchy to various types of hierarchy: normal hierarchical models with and without automatic suppression of the 23 (sub)determinant and inverse hierarchy models. We find that, not only for the LOW or VO solutions, but even in the LA case, the hierarchical models have a significantly better success rate than those based on anarchy. The normal hierarchy and the inverse hierarchy models have comparable performances in models with see-saw dominance, while the inverse hierarchy models are particularly good in the no see-saw versions. As a possible distinction between these categories of models, the inverse hierarchy models favour a maximal solar mixing angle and their rate of success drops dramatically as the mixing angle decreases, while normal hierarchy models are far more stable in this respect.
Radiative model of neutrino mass with neutrino interacting MeV dark matter
NASA Astrophysics Data System (ADS)
Arhrib, Abdesslam; Bœhm, Céline; Ma, Ernest; Yuan, Tzu-Chiang
2016-04-01
We consider the radiative generation of neutrino mass through the interactions of neutrinos with MeV dark matter. We construct a realistic renormalizable model with one scalar doublet (in additional to the standard model doublet) and one complex singlet together with three light singlet Majorana fermions, all transforming under a dark U(1)D symmetry which breaks softly to Z2. We study in detail the scalar sector which supports this specific scenario and its rich phenomenology.
Direct neutrino mass measurements
NASA Astrophysics Data System (ADS)
Thümmler, T.
2011-07-01
The determination of the neutrino rest mass plays an important role at the intersections of cosmology, particle physics and astroparticle physics. This topic is currently being addressed by two complementary approaches in laboratory experiments. Neutrinoless double beta decay experiments probe whether neutrinos are Majorana particles and determine an effective neutrino mass value. Single beta decay experiments such as KATRIN and MARE investigate the spectral shape of β-decay electrons close to their kinematic endpoint in order to determine the neutrino rest mass with a model-independent method. Owing to neutrino flavour mixing, the neutrino mass parameter appears as an average of all neutrino mass eigenstates contributing to the electron neutrino. The KArlsruhe TRItium Neutrino experiment (KATRIN) is currently the experiment in the most advanced status of commissioning. Applying an ultra-luminous molecular windowless gaseous tritium source and an integrating high-resolution spectrometer of MAC-E filter type, it allows β-spectroscopy close to the T 2 end-point with unprecedented precision and will reach a sensitivity of 200 meV/ c 2 (90% C.L.) on the neutrino rest mass.
Testing radiative neutrino mass models at the LHC
NASA Astrophysics Data System (ADS)
Cai, Yi; Clarke, Jackson D.; Schmidt, Michael A.; Volkas, Raymond R.
2015-02-01
The Large Hadron Collider provides us new opportunities to search for the origin of neutrino mass. Beyond the minimal see-saw models a plethora of models exist which realise neutrino mass at tree- or loop-level, and it is important to be sure that these possibilities are satisfactorily covered by searches. The purpose of this paper is to advance a systematic approach to this problem. Majorana neutrino mass models can be organised by SM-gauge-invariant operators which violate lepton number by two units. In this paper we write down the minimal ultraviolet completions for all of the mass-dimension 7 operators. We predict vector-like quarks, vector-like leptons, scalar leptoquarks, a charged scalar, a scalar doublet, and a scalar quadruplet, whose properties are constrained by neutrino oscillation data. A detailed collider study is presented for and completions with a vector-like quark and a leptoquark . The existing LHC limits extracted from searches for vector-like fermions and sbottoms/stops are m χ ≳ 620 GeV and m ϕ ≳ 600 GeV.
Models of neutrino mass, mixing and CP violation
NASA Astrophysics Data System (ADS)
King, Stephen F.
2015-12-01
In this topical review we argue that neutrino mass and mixing data motivates extending the Standard Model (SM) to include a non-Abelian discrete flavour symmetry in order to accurately predict the large leptonic mixing angles and {C}{P} violation. We begin with an overview of the SM puzzles, followed by a description of some classic lepton mixing patterns. Lepton mixing may be regarded as a deviation from tri-bimaximal mixing, with charged lepton corrections leading to solar mixing sum rules, or tri-maximal lepton mixing leading to atmospheric mixing rules. We survey neutrino mass models, using a roadmap based on the open questions in neutrino physics. We then focus on the seesaw mechanism with right-handed neutrinos, where sequential dominance (SD) can account for large lepton mixing angles and {C}{P} violation, with precise predictions emerging from constrained SD (CSD). We define the flavour problem and discuss progress towards a theory of favour using GUTs and discrete family symmetry. We classify models as direct, semidirect or indirect, according to the relation between the Klein symmetry of the mass matrices and the discrete family symmetry, in all cases focussing on spontaneous {C}{P} violation. Finally we give two examples of realistic and highly predictive indirect models with CSD, namely an A to Z of flavour with Pati-Salam and a fairly complete A 4 × SU(5) SUSY GUT of flavour, where both models have interesting implications for leptogenesis.
Lepton mass and mixing in a neutrino mass model based on S4 flavor symmetry
NASA Astrophysics Data System (ADS)
Vien, V. V.
2016-03-01
We study a neutrino mass model based on S4 flavor symmetry which accommodates lepton mass, mixing with nonzero θ13 and CP violation phase. The spontaneous symmetry breaking in the model is imposed to obtain the realistic neutrino mass and mixing pattern at the tree-level with renormalizable interactions. Indeed, the neutrinos get small masses from one SU(2)L doublet and two SU(2)L singlets in which one being in 2̲ and the two others in 3̲ under S4 with both the breakings S4 → S3 and S4 → Z3 are taken place in charged lepton sector and S4 →𝒦 in neutrino sector. The model also gives a remarkable prediction of Dirac CP violation δCP = π 2 or ‑π 2 in both the normal and inverted spectrum which is still missing in the neutrino mixing matrix. The relation between lepton mixing angles is also represented.
Predictive model for radiatively induced neutrino masses and mixings with dark matter.
Gustafsson, Michael; No, Jose M; Rivera, Maximiliano A
2013-05-24
A minimal extension of the standard model to naturally generate small neutrino masses and provide a dark matter candidate is proposed. The dark matter particle is part of a new scalar doublet field that plays a crucial role in radiatively generating neutrino masses. The symmetry that stabilizes the dark matter also suppresses neutrino masses to appear first at three-loop level. Without the need of right-handed neutrinos or other very heavy new fields, this offers an attractive explanation of the hierarchy between the electroweak and neutrino mass scales. The model has distinct verifiable predictions for the neutrino masses, flavor mixing angles, colliders, and dark matter signals. PMID:23745861
Absolute neutrino mass measurements
Wolf, Joachim
2011-10-06
The neutrino mass plays an important role in particle physics, astrophysics and cosmology. In recent years the detection of neutrino flavour oscillations proved that neutrinos carry mass. However, oscillation experiments are only sensitive to the mass-squared difference of the mass eigenvalues. In contrast to cosmological observations and neutrino-less double beta decay (0v2{beta}) searches, single {beta}-decay experiments provide a direct, model-independent way to determine the absolute neutrino mass by measuring the energy spectrum of decay electrons at the endpoint region with high accuracy.Currently the best kinematic upper limits on the neutrino mass of 2.2eV have been set by two experiments in Mainz and Troitsk, using tritium as beta emitter. The next generation tritium {beta}-experiment KATRIN is currently under construction in Karlsruhe/Germany by an international collaboration. KATRIN intends to improve the sensitivity by one order of magnitude to 0.2eV. The investigation of a second isotope ({sup 137}Rh) is being pursued by the international MARE collaboration using micro-calorimeters to measure the beta spectrum. The technology needed to reach 0.2eV sensitivity is still in the R and D phase. This paper reviews the present status of neutrino-mass measurements with cosmological data, 0v2{beta} decay and single {beta}-decay.
Absolute neutrino mass measurements
NASA Astrophysics Data System (ADS)
Wolf, Joachim
2011-10-01
The neutrino mass plays an important role in particle physics, astrophysics and cosmology. In recent years the detection of neutrino flavour oscillations proved that neutrinos carry mass. However, oscillation experiments are only sensitive to the mass-squared difference of the mass eigenvalues. In contrast to cosmological observations and neutrino-less double beta decay (0v2β) searches, single β-decay experiments provide a direct, model-independent way to determine the absolute neutrino mass by measuring the energy spectrum of decay electrons at the endpoint region with high accuracy. Currently the best kinematic upper limits on the neutrino mass of 2.2eV have been set by two experiments in Mainz and Troitsk, using tritium as beta emitter. The next generation tritium β-experiment KATRIN is currently under construction in Karlsruhe/Germany by an international collaboration. KATRIN intends to improve the sensitivity by one order of magnitude to 0.2eV. The investigation of a second isotope (137Rh) is being pursued by the international MARE collaboration using micro-calorimeters to measure the beta spectrum. The technology needed to reach 0.2eV sensitivity is still in the R&D phase. This paper reviews the present status of neutrino-mass measurements with cosmological data, 0v2β decay and single β-decay.
Tachyonic neutrinos and the neutrino masses
NASA Astrophysics Data System (ADS)
Ehrlich, Robert
2013-01-01
With a recent claim of superluminal neutrinos shown to be in error, 2012 may not be a propitious time to consider the evidence that one or more neutrinos may indeed be tachyons. Nevertheless, there are a growing number of observations that continue to suggest this possibility - albeit with an mν2<0 having a much smaller magnitude than was implied by the original OPERA claim. One recently published non-standard analysis of SN 1987A neutrinos supports a tachyonic mass eigenstate, and here we show how it leads to 3 + 3 mirror neutrino model having an unconventional mass hierarchy. The model incorporates one superluminal active-sterile neutrino pair, and it is testable in numerous ways, including making a surprising prediction about an unpublished aspect of the SN 1987A neutrinos. Additional supporting evidence involving earlier analyses of cosmic rays is summarized to add credence to the tachyonic neutrino hypothesis.
Neutrino masses and lepton flavor violation in the 3-3-1 model with right-handed neutrinos
Dong, P. V.; Long, H. N.
2008-03-01
We show that, in the 3-3-1 model with right-handed neutrinos, small neutrino masses and large lepton flavor violating processes such as {mu}{yields}3e and {mu}{yields}e{gamma} can be obtained by just introducing an additional Higgs sextet. In the limit of vanishing of the Yukawa interaction among Higgs and lepton triplets (h{sup {nu}}=0), the decay {mu}{yields}3e strongly depends on the neutrino-mass patterns, but the {mu}{yields}e{gamma} almost does not. The neutrino masses are not constrained by such processes in the cases of h{sup {nu}}{ne}0.
Neutrino-Antineutrino Mass Splitting in the Standard Model: Neutrino Oscillation and Baryogenesis
NASA Astrophysics Data System (ADS)
Fujikawa, Kazuo; Tureanu, Anca
By adding a neutrino mass term to the Standard Model, which is Lorentz and SU(2) × U(1) invariant but nonlocal to evade CPT theorem, it is shown that nonlocality within a distance scale of the Planck length, that may not be fatal to unitarity in generic effective theory, can generate the neutrino-antineutrino mass splitting of the order of observed neutrino mass differences, which is tested in oscillation experiments, and non-negligible baryon asymmetry depending on the estimate of sphaleron dynamics. The one-loop order induced electron-positron mass splitting in the Standard Model is shown to be finite and estimated at ˜ 10-20 eV, well below the experimental bound < 10-2 eV. The induced CPT violation in the K-meson in the Standard Model is expected to be even smaller and well below the experimental bound |m_{K} - m_{bar{K}}| < 0.44 × 10^{-18} GeV.
Neutrino masses, leptogenesis, and dark matter in a hybrid seesaw model
Gu Peihong; Hirsch, M.; Valle, J. W. F.
2009-02-01
We suggest a hybrid seesaw model where relatively light right-handed neutrinos give no contribution to neutrino mass matrix due to a special symmetry. This allows their Yukawa couplings to the standard model particles to be relatively strong, so that the standard model Higgs boson can decay dominantly to a left- and a right-handed neutrino, leaving another stable right-handed neutrino as cold dark matter. In our model neutrino masses arise via the type-II seesaw mechanism, the Higgs triplet scalars being also responsible for the generation of the matter-antimatter asymmetry via the leptogenesis mechanism.
Direct Neutrino Mass Experiments
NASA Astrophysics Data System (ADS)
Mertens, Susanne
2016-05-01
With a mass at least six orders of magnitudes smaller than the mass of an electron – but non-zero – neutrinos are a clear misfit in the Standard Model of Particle Physics. On the one hand, its tiny mass makes the neutrino one of the most interesting particles, one that might hold the key to physics beyond the Standard Model. On the other hand this minute mass leads to great challenges in its experimental determination. Three approaches are currently pursued: An indirect neutrino mass determination via cosmological observables, the search for neutrinoless double β-decay, and a direct measurement based on the kinematics of single β-decay. In this paper the latter will be discussed in detail and the status and scientific reach of the current and near-future experiments will be presented.
Connecting Dirac and Majorana neutrino mass matrices in the minimal left-right symmetric model.
Nemevšek, Miha; Senjanović, Goran; Tello, Vladimir
2013-04-12
Probing the origin of neutrino mass by disentangling the seesaw mechanism is one of the central issues of particle physics. We address it in the minimal left-right symmetric model and show how the knowledge of light and heavy neutrino masses and mixings suffices to determine their Dirac Yukawa couplings. This in turn allows one to make predictions for a number of high and low energy phenomena, such as decays of heavy neutrinos, neutrinoless double beta decay, electric dipole moments of charged leptons, and neutrino transition moments. We also discuss a way of reconstructing the neutrino Dirac Yukawa couplings at colliders such as the LHC. PMID:25167249
Probing models of Dirac neutrino masses via the flavor structure of the mass matrix
NASA Astrophysics Data System (ADS)
Kanemura, Shinya; Sakurai, Kodai; Sugiyama, Hiroaki
2016-07-01
We classify models of the Dirac neutrino mass by concentrating on flavor structures of the mass matrix. The advantage of our classification is that we do not need to specify detail of models except for Yukawa interactions because flavor structures can be given only by products of Yukawa matrices. All possible Yukawa interactions between leptons (including the right-handed neutrino) are taken into account by introducing appropriate scalar fields. We also take into account the case of Yukawa interactions of leptons with the dark matter candidate. Then, we see that flavor structures can be classified into seven groups. The result is useful for the efficient test of models of the neutrino mass. One of seven groups can be tested by measuring the absolute neutrino mass. Other two can be tested by probing the violation of the lepton universality in ℓ →ℓ‧ ν ν ‾. In order to test the other four groups, we can rely on searches for new scalar particles at collider experiments.
A model-independent investigation on quasi-degenerate neutrino mass models and their significance
NASA Astrophysics Data System (ADS)
Roy, Subhankar; Singh, N. Nimai
2013-12-01
The prediction of possible hierarchy of neutrino masses mostly depends on the model chosen. Dissociating the μ-τ interchange symmetry from discrete flavor symmetry based models, makes the neutrino mass matrix less predictive and motivates one to seek the answer from different phenomenological frameworks. This insists on proper parametrization of the neutrino mass matrices concerning individual hierarchies. In this work, an attempt has been made to study the six different cases of quasi-degenerate (QDN) neutrino models with mass matrices, mLLν parametrized with two free parameters (α,η), standard Wolfenstein parameter (λ) and input mass scale, m0˜0.08 eV. We start with a μ-τ symmetric neutrino mass matrix followed by a correction from charged lepton sector. The parametrization emphasizes on the existence of four independent texture zero building blocks common to all the QDN models under μ-τ symmetric framework and is found to be invariant under any choice of solar angle. In our parametrization, solar angle is controlled from neutrino sector whereas the charged lepton sector drives the reactor and atmospheric mixing angles. The individual models are tested in the framework of oscillation experiments, cosmological observation and future experiments involving β-decay and 0νββ experiments, and any reason to discard the QDN mass models with relatively lower mass is unfounded. Although the QDNH-Type IA model shows strong preference for sin2θ12=0.32, yet this is not sufficient to rule out the other models. The present work leaves a scope to extend the search of most favorable QDN mass model from observed baryon asymmetry of the Universe.
Gauge Trimming of Neutrino Masses
Chen, Mu-Chun; de Gouvea, Andre; Dobrescu, Bogdan A.; /Fermilab
2006-12-01
We show that under a new U(1) gauge symmetry, which is non-anomalous in the presence of one ''right-handed neutrino'' per generation and consistent with the standard model Yukawa couplings, the most general fermion charges are determined in terms of four rational parameters. This generalization of the B-L symmetry with generation-dependent lepton charges leads to neutrino masses induced by operators of high dimensionality. Neutrino masses are thus naturally small without invoking physics at energies above the TeV scale, whether neutrinos are Majorana or Dirac fermions. This ''Leptocratic'' Model predicts the existence of light quasi-sterile neutrinos with consequences for cosmology, and implies that collider experiments may reveal the origin of neutrino masses.
Neutrino masses, neutrino oscillations, and cosmological implications
NASA Technical Reports Server (NTRS)
Stecker, F. W.
1982-01-01
Theoretical concepts and motivations for considering neutrinos having finite masses are discussed and the experimental situation on searches for neutrino masses and oscillations is summarized. The solar neutrino problem, reactor, deep mine and accelerator data, tri decay experiments and double beta-decay data are considered and cosmological implications and astrophysical data relating to neutrino masses are reviewed. The neutrino oscillation solution to the solar neutrino problem, the missing mass problem in galaxy halos and galaxy cluster galaxy formation and clustering, and radiative neutrino decay and the cosmic ultraviolet background radiation are examined.
Cosmological neutrino mass detection: The Best probe of neutrino lifetime
Serpico, Pasquale D.; /Fermilab
2007-01-01
Future cosmological data may be sensitive to the effects of a finite sum of neutrino masses even as small as {approx}0.06 eV, the lower limit guaranteed by neutrino oscillation experiments. We show that a cosmological detection of neutrino mass at that level would improve by many orders of magnitude the existing limits on neutrino lifetime, and as a consequence on neutrino secret interactions with (quasi-)massless particles as in majoron models. On the other hand, neutrino decay may provide a way-out to explain a discrepancy {approx}< 0.1 eV between cosmic neutrino bounds and Lab data.
Cosmological Neutrino Mass Detection: The Best Probe of Neutrino Lifetime
Serpico, Pasquale D.
2007-04-27
Future cosmological data may be sensitive to the effects of a finite sum of neutrino masses even as small as {approx}0.06 eV, the lower limit guaranteed by neutrino oscillation experiments. We show that a cosmological detection of neutrino mass at that level would improve by many orders of magnitude the existing limits on neutrino lifetime, and as a consequence, on neutrino secret interactions with (quasi)massless particles as in Majoron models. On the other hand, neutrino decay may provide a way out to explain a discrepancy < or approx. 0.1 eV between cosmic neutrino bounds and lab data.
Neutrino masses and leptogenesis in type I and type II seesaw models
NASA Astrophysics Data System (ADS)
Borah, Debasish; Das, Mrinal Kumar
2014-07-01
The baryon to photon ratio in the present Universe is very accurately measured to be (6.065±0.090)×10-10. We study the possible origin of this baryon asymmetry in the neutrino sector through the generic mechanism of baryogenesis through leptogenesis. We consider both the type I and type II seesaw origin of neutrino masses within the framework of left-right symmetric models (LRSM). Using the latest best-fit global neutrino oscillation data of mass squared differences, mixing angles and Dirac CP phase, we compute the predictions for baryon to photon ratio keeping the Majorana CP phases as free parameters for two different choices of lightest neutrino mass eigenvalue for both normal and inverted hierarchical patterns of neutrino masses. We do our calculation with and without lepton flavor effects being taken into account. We choose different diagonal Dirac neutrino mass matrix for different flavor effects in such a way that the lightest right-handed neutrino mass is in the appropriate range. We also study the predictions for baryon asymmetry when the neutrino masses arise from a combination of both type I and type II seesaw (with dominating type I term) and discriminate between several combinations of Dirac and Majorana CP phases by demanding successful predictions for baryon asymmetry.
Mass determination of neutrinos
NASA Technical Reports Server (NTRS)
Chiu, Hong-Yee
1988-01-01
A time-energy correlation method has been developed to determine the signature of a nonzero neutrino mass in a small sample of neutrinos detected from a distant source. The method is applied to the Kamiokande II (Hirata et al., 1987) and IMB (Bionta et al., 1987) observations of neutrino bursts from SN 1987A. Using the Kamiokande II data, the neutrino rest mass is estimated at 2.8 + 2.0, - 1.4 eV and the initial neutrino pulse is found to be less than 0.3 sec full width, followed by an emission tail lasting at least 10 sec.
NASA Astrophysics Data System (ADS)
Hall, Lawrence; Murayama, Hitoshi; Weiner, Neal
2000-03-01
What is the form of the neutrino mass matrix which governs the oscillations of the atmospheric and solar neutrinos? Features of the data have led to a dominant viewpoint where the mass matrix has an ordered, regulated pattern, perhaps dictated by a flavor symmetry. We challenge this viewpoint and demonstrate that the data are well accounted for by a neutrino mass matrix which appears to have random entries.
Hall; Murayama; Weiner
2000-03-20
What is the form of the neutrino mass matrix which governs the oscillations of the atmospheric and solar neutrinos? Features of the data have led to a dominant viewpoint where the mass matrix has an ordered, regulated pattern, perhaps dictated by a flavor symmetry. We challenge this viewpoint and demonstrate that the data are well accounted for by a neutrino mass matrix which appears to have random entries. PMID:11017272
Small neutrino masses from gravitational θ -term
NASA Astrophysics Data System (ADS)
Dvali, Gia; Funcke, Lena
2016-06-01
We present how a neutrino condensate and small neutrino masses emerge from a topological formulation of gravitational anomaly. We first recapitulate how a gravitational θ -term leads to the emergence of a new bound neutrino state analogous to the η' meson of QCD. Then we show the consequent formation of a neutrino vacuum condensate, which effectively generates small neutrino masses. Afterwards we outline numerous phenomenological consequences of our neutrino mass generation model. The cosmological neutrino mass bound vanishes since we predict the neutrinos to be massless until the phase transition in the late Universe, T ˜meV . Coherent radiation of new light particles in the neutrino sector can be detected in prospective precision experiments. Deviations from an equal flavor rate due to enhanced neutrino decays in extraterrestrial neutrino fluxes can be observed in future IceCube data. These neutrino decays may also necessitate modified analyses of the original neutrino spectra of the supernova SN 1987A. The current cosmological neutrino background only consists of the lightest neutrinos, which, due to enhanced neutrino-neutrino interactions, either bind up, form a superfluid, or completely annihilate into massless bosons. Strongly coupled relic neutrinos could provide a contribution to cold dark matter in the late Universe, together with the new proposed particles and topological defects, which may have formed during neutrino condensation. These enhanced interactions could also be a source of relic neutrino clustering in our Galaxy, which possibly makes the overdense cosmic neutrino background detectable in the KATRIN experiment. The neutrino condensate provides a mass for the hypothetical B -L gauge boson, leading to a gravity-competing force detectable in short-distance measurements. Prospective measurements of the polarization intensities of gravitational waves can falsify our neutrino mass generation model.
New U(1) gauge model of radiative lepton masses with sterile neutrino and dark matter
NASA Astrophysics Data System (ADS)
Adhikari, Rathin; Borah, Debasish; Ma, Ernest
2016-04-01
An anomaly-free U(1) gauge extension of the standard model (SM) is presented. Only one Higgs doublet with a nonzero vacuum expectation is required as in the SM. New fermions and scalars as well as all SM particles transform nontrivially under this U(1), resulting in a model of three active neutrinos and one sterile neutrino, all acquiring radiative masses. Charged-lepton masses are also radiative as well as the mixing between active and sterile neutrinos. At the same time, a residual Z2 symmetry of the U(1) gauge symmetry remains exact, allowing for the existence of dark matter.
LHC phenomenology of a two-Higgs-doublet neutrino mass model
NASA Astrophysics Data System (ADS)
Davidson, Shainen M.; Logan, Heather E.
2010-12-01
We study the LHC search prospects for a model in which the neutrinos obtain Dirac masses from couplings to a second Higgs doublet with tiny vacuum expectation value. The model contains a charged Higgs boson that decays to ℓν with branching fractions controlled by the neutrino masses and mixing angles as measured in neutrino oscillation experiments. The most promising signal is electroweak production of H+H- pairs with decays to ℓℓ'pTmiss, where ℓℓ'=e+e-, μ+μ-, and e±μ∓. We find that a cut on the kinematic variable MT2 eliminates most of the tt¯ and W-pair background. Depending on the neutrino mass spectrum and mixing angles, a 100 (300) GeV charged Higgs could be discovered at the LHC with as little as 8(24)fb-1 of integrated luminosity at 14 TeV pp center-of-mass energy.
GUT implications from neutrino mass
Carl H. Albright
2001-06-26
An overview is given of the experimental neutrino mixing results and types of neutrino models proposed, with special attention to the general features of various GUT models involving intra-family symmetries and horizontal flavor symmetries. Many of the features are then illustrated by a specific SO (10) SUSY GUT model formulated by S.M. Barr and the author which can explain all four types of solar neutrino mixing solutions by various choices of the right-handed Majorana mass matrix. The quantitative nature of the model's large mixing angle solution is used to compare the reaches of a neutrino super beam and a neutrino factory for determining the small U{sub e3} mixing matrix element.
Neutrino masses in SU(4){sub L}⊗U(1){sub X} gauge models
Palcu, Adrian
2013-11-13
Neutrino masses are obtained within SU(4){sub L}⊗U(1){sub X} electroweak gauge models with spontaneous symmetry breaking by simply exploiting the tree level realization of certain dimension-five effective operators. The scalar sector needs not to be enlarged, since these operators are constructed as direct products among scalar multiplets already existing in the model. There is a unique generic matrix for Yukawa couplings in the neutrino sector, while the charged leptons are already in their diagonal basis. The experimentally observed phenomenology in the neutrino sector is obtained as a natural consequence of this particular approach.
Probing Late Neutrino Mass Properties With SupernovaNeutrinos
Baker, Joseph; Goldberg, Haim; Perez, Gilad; Sarcevic, Ina
2007-08-08
Models of late-time neutrino mass generation contain new interactions of the cosmic background neutrinos with supernova relic neutrinos (SRNs). Exchange of an on-shell light scalar may lead to significant modification of the differential SRN flux observed at earth. We consider an Abelian U(1) model for generating neutrino masses at low scales, and show that there are cases for which the changes induced in the flux allow one to distinguish the Majorana or Dirac nature of neutrinos, as well as the type of neutrino mass hierarchy (normal or inverted or quasi-degenerate). In some region of parameter space the determination of the absolute values of the neutrino masses is also conceivable. Measurements of the presence of these effects may be possible at the next-generation water Cerenkov detectors enriched with Gadolinium, or a 100 kton liquid argon detector.
Three-loop neutrino mass model with doubly charged particles from isodoublets
NASA Astrophysics Data System (ADS)
Okada, Hiroshi; Yagyu, Kei
2016-01-01
We propose a new type of a three-loop induced neutrino mass model with dark matter candidates which are required for the neutrino mass generation. The smallness of neutrino masses can be naturally explained without introducing super heavy particles, namely, much heavier than a TeV scale and quite small couplings as compared to the gauge couplings. We find that as a bonus, the anomaly of the muon anomalous magnetic moment can simultaneously be explained by loop effects of new particles. In our model, there are doubly charged scalar bosons and leptons from isospin doublet fields which give characteristic collider signatures. In particular, the doubly charged scalar bosons can decay into the same-sign dilepton with its chirality of both right-handed or left- and right-handed. This can be a smoking gun signature to identify our model and be useful to distinguish other models with doubly charged scalar bosons at collider experiments.
Bhattacharya, Bhubanjyoti; Hill, Richard J.; Paz, Gil
2011-10-01
Quasielastic neutrino-nucleon scattering is a basic signal process for neutrino oscillation studies. At accelerator energies, the corresponding cross section is subject to significant uncertainty due to the poorly constrained axial-vector form factor of the nucleon. A model-independent description of the axial-vector form factor is presented. Data from the MiniBooNE experiment for quasielastic neutrino scattering on {sup 12}C are analyzed under the assumption of a definite nuclear model. The value of the axial mass parameter, m{sub A}=0.85{sub -0.07}{sup +0.22}{+-}0.09 GeV, is found to differ significantly from extractions based on traditional form factor models. Implications for future neutrino scattering and pion electroproduction measurements are discussed.
AN OVERVIEW OF NEUTRINO MASSES AND MIXING IN SO(10) MODELS.
CHEN,M.C.MAHANTHAPPA,K.T.
2003-06-05
We review in this talk various SUSY SO(10) models. Specifically, we discuss how small neutrino masses are generated in and generic predictions of different SO(10) models. A comparison of the predictions of these models for sin{sup 2} {theta}{sub 13}is given.
Direct measurements of neutrino mass
Robertson, R.G.H.
1991-01-01
Some recent developments in the experimental search for neutrino mass are discussed. New data from Los Alamos on the electron neutrino mass as measured in tritium beta decay give an upper limit of 9.3 eV at the 95% confidence level. This result is not consistent with the long-standing ITEP result of 26(5) eV within a model-independent'' range of 17 to 40 eV. It now appears that the electron neutrino is not sufficiently massive to close the universe by itself. Hime and Jelley report finding new evidence for a 17-keV neutrino in the {Beta} decay of {sup 35}S and {sup 63}Ni. Many other experiments are being reported and the situation is still unresolved. 56 refs., 1 fig., 3 tabs.
AMEND: A Model Explaining Neutrino masses and Dark matter testable at the LHC and MEG
NASA Astrophysics Data System (ADS)
Farzan, Yasaman; Pascoli, Silvia; Schmidt, Michael A.
2010-10-01
Despite being very successful in explaining the wide range of precision experimental results obtained so far, the Standard Model (SM) of elementary particles fails to address two of the greatest observations of the recent decades: tiny but nonzero neutrino masses and the well-known problem of missing mass in the Universe. Typically the new models beyond the SM explain only one of these observations. Instead, in the present article, we take the view that they both point towards the same new extension of the Standard Model. The new particles introduced are responsible simultaneously for neutrino masses and for the dark matter of the Universe. The stability of dark matter and the smallness of neutrino masses are guaranteed by a U(1) global symmetry, broken to a remnant {mathbb{Z}_2} . The canonical seesaw mechanism is forbidden and neutrino masses emerge at the loop level being further suppressed by the small explicit breaking of the U(1) symmetry. The new particles and interactions are invoked at the electroweak scale and lead to rich phenomenology in colliders, in lepton flavour violating rare decays and in direct and indirect dark matter searches, making the model testable in the coming future.
Constraints on texture zero and cofactor zero models for neutrino mass
Whisnant, K.; Liao, Jiajun; Marfatia, D.
2014-06-24
Imposing a texture or cofactor zero on the neutrino mass matrix reduces the number of independent parameters from nine to seven. Since five parameters have been measured, only two independent parameters would remain in such models. We find the allowed regions for single texture zero and single cofactor zero models. We also find strong similarities between single texture zero models with one mass hierarchy and single cofactor zero models with the opposite mass hierarchy. We show that this correspondence can be generalized to texture-zero and cofactor-zero models with the same homogeneous costraints on the elements and cofactors.
Neutrino Masses and Mixings in SO(10)
NASA Astrophysics Data System (ADS)
Abud, M.; Buccella, F.; Tramontano, F.; Falcone, D.; Ricciardi, G.
Assuming a Zee-like matrix for the right-handed neutrino Majorana masses in the seesaw mechanism, one gets maximal mixing for vacuum solar oscillations, a very small value for Ue3 and an approximate degeneracy for the two lower neutrino masses. The scale of right-handed neutrino Majorana masses is in good agreement with the value expected in an SO(10) model with Pati-Salam SU(4)×SU(2)×SU(2) intermediate symmetry.
Neutrino masses via the Zee mechanism in the 5D split fermion model
Chang, We-Fu; Chen, I-Ting; Liou, Siao-Cing
2011-01-15
We study the original version of the Zee model, where both of the SU(2){sub L} Higgs doublets are allowed to couple to the leptons, in the framework of the split fermion model in M{sub 4}xS{sub 1}/Z{sub 2} space-time. The neutrino masses are generated through 1-loop diagrams without introducing the right-handed neutrinos. By assuming an order one anarchical complex 5D Yukawa couplings, all the effective 4D Yukawa couplings are determined by the wave function overlap between the split fermions and the bulk scalars in the fifth dimension. The predictability of the Yukawa couplings is in sharp contrast to the original Zee model in 4D where the Yukawa couplings are unknown free parameters. This setup exhibits a geometrical alternative to the lepton flavor symmetry. By giving four explicit sets of the split fermion locations, we demonstrate that it is possible to simultaneously fit the lepton masses and neutrino oscillation data by just a handful free parameters without much fine tuning. Moreover, we are able to make definite predictions for the mixing angle {theta}{sub 13}, the absolute neutrino masses, and the lepton flavor violation processes for each configuration.
A 4 -based seesaw model for realistic neutrino masses and mixing
NASA Astrophysics Data System (ADS)
Pramanick, Soumita; Raychaudhuri, Amitava
2016-02-01
We present an A 4 -based model where neutrino masses arise from a combination of seesaw mechanisms. The model is motivated by several small mixing and mass parameters indicated by the data. These are θ13, the solar mass splitting, and the small deviation of θ23 from maximal mixing (=π /4 ). We take the above as indications that at some level the small quantities are well approximated by zero. In particular, the mixing angles to zeroth order should be either 0 or π /4 . Accordingly, in this model the type-II seesaw dominates and generates the larger atmospheric mass splitting and sets θ23=π /4 . The other mixing angles are vanishing as is the solar splitting. We show how the A 4 assignment for the lepton doublets leads to this form. We also specify the A 4 properties of the right-handed neutrinos which result in a smaller type-I seesaw contribution that acts as a perturbation and shifts the angles θ12 and θ13 into the correct range and the desired value of Δ msolar2 is produced. The A 4 symmetry results in relationships between these quantities as well as with a small deviation of θ23 from π /4 . If the right-handed neutrino mass matrix MR is chosen real then there is no leptonic C P violation and only normal ordering is admissible. If MR is complex then inverted ordering is also allowed with the proviso that the C P phase δ is large, i.e., ˜π /2 or -π /2 . The preliminary results from NO ν A favoring normal ordering and δ near -π /2 imply quasidegenerate neutrino masses in this model.
A critical analysis of one-loop neutrino mass models with minimal dark matter
NASA Astrophysics Data System (ADS)
Ahriche, Amine; McDonald, Kristian L.; Nasri, Salah; Picek, Ivica
2016-06-01
A recent paper investigated minimal RνMDM models with the type T1-iii and T3 one-loop topologies. However, the candidate most-minimal model does not possess an accidental symmetry - the scalar potential contains an explicit symmetry breaking term, rendering the dark matter unstable. We present two models that cure this problem. However, we further show that all of the proposed minimal one-loop RνMDM models suffer from a second problem - an additional source of explicit Z2 symmetry breaking in the Yukawa sector. We perform a more-general analysis to show that neutrino mass models using either the type T3 or type T1-iii one-loop topologies do not give viable minimal dark matter candidates. Consequently, one-loop models of neutrino mass with minimal dark matter do not appear possible. Thus, presently there remains a single known (three-loop) model of neutrino mass that gives stable dark matter without invoking any new symmetries.
Geometric Mean Neutrino Mass Relation
NASA Astrophysics Data System (ADS)
He, Xiao-Gang; Zee, A.
Present experimental data from neutrino oscillations have provided much information about the neutrino mixing angles. Since neutrino oscillations only determine the mass squared differences Δ m2ij = m2i - m2j, the absolute values for neutrino masses mi, can not be determined using data just from oscillations. In this work we study implications on neutrino masses from a geometric mean mass relation m2 = √ {m1m_3} which enables one to determined the absolute masses of the neutrinos. We find that the central values of the three neutrino masses and their 2σ errors to be m1 = (1.58 ± 0.18)meV, m2 = (9.04 ± 0.42)meV, and m3 = (51.8 ± 3.5)meV. Implications for cosmological observation, beta decay and neutrinoless double beta decays are discussed.
The problem of neutrino masses in extensions of the Standard Model
NASA Astrophysics Data System (ADS)
Masina, Isabella
2001-07-01
We review the problem of neutrino masses and mixings in the context of Grand Unified Theories. After a brief summary of the present experimental status of neutrino physics, we describe how the see-saw mechanism can automatically account for the large atmospheric mixing angle. We provide two specific examples where this possibility is realized by means of a flavour symmetry. We then review in some detail the various severe problems which plague minimal GUT models (like the doublet-triplet splitting and proton-decay) and which force to investigate the possibility of constructing more elaborate but realistic models. We then show an example of a quasi-realistic SUSY SU(5) model which, by exploiting the crucial presence of an abelian flavour symmetry, does not require any fine-tuning and predicts a satisfactory phenomenology with respect to coupling unification, fermion masses and mixings and bounds from proton decay.
Radiative neutrino mass, dark matter, and leptogenesis
Gu Peihong; Sarkar, Utpal
2008-05-15
We propose an extension of the standard model, in which neutrinos are Dirac particles and their tiny masses originate from a one-loop radiative diagram. The new fields required by the neutrino mass generation also accommodate the explanation for the matter-antimatter asymmetry and dark matter in the Universe.
Model independent extraction of the axial mass parameter in CCQE anti neutrino-nucleon scattering
NASA Astrophysics Data System (ADS)
Grebe, Heather
2013-10-01
Neutrino oscillation studies depend on a consistent value for the axial mass. For this reason, a model-independent extraction of this parameter from quasielastic (anti)neutrino-nucleon scattering data is vital. While most studies employ a model-dependent extraction using the dipole model of the axial form factor, we present a model-independent description using the z expansion of the axial form factor. Quasielastic antineutrino scattering data on C-12 from the MiniBooNE experiment are analyzed using this model-independent description. The value found, mA = 0 .85-0 . 06 + 0 . 13 +/- 0 . 13 GeV, differs significantly from the value utilized by the MiniBooNE Collaboration, mA = 1 . 35 GeV. Advisor: Dr. Gil Paz Wayne State Univerity.
Neutrino mass and mixing: Summary of the neutrino sessions
Bowles, T.J.
1993-01-01
A great deal of experimental and theoretical effort is underway to use neutrinos as a probe for Physics Beyond the Standard Model. Most of these efforts center on the questions of the possible existence of non zero neutrino mass and mixing. Sessions at the Moriond conferences have dealt with these questions at most of the meetings during the last several years and this year was no exception. Presentations covering most of the current and planned research in this field were presented and discussed. Although there is, at present, no definitive evidence for a non zero neutrino mass and mixing, several unresolved problems (in particular solar neutrinos) do seem to be indicating the likely existence of new neutrino properties. It is likely that before the end of this decade, efforts now being initiated will be able to determine whether or not the hints we are now seeing are really due to new physics.
Relic neutrinos: Physically consistent treatment of effective number of neutrinos and neutrino mass
NASA Astrophysics Data System (ADS)
Birrell, Jeremiah; Rafelski, Johann
2014-03-01
It is well known that the effective number of cosmic neutrinos, Nν, is larger than the standard model number of neutrino flavors Nνf = 3 due a small flow of entropy into neutrinos from e +/- annihilation. Observational bounds from both BBN and the CMB suggest a value of Nν that is larger than the current theoretical prediction of Nν = 3 . 046 . We show in a model independent way how Nν relates to the neutrino kinetic freeze-out temperature, Tk, which we treat as parameter. We derive the relations that must hold between Nν, the photon to neutrino temperature ratio, the neutrino fugacity, and Tk. Our results imply that measurement of neutrino reheating, as characterized by Nν, amounts to the determination of Tk. We follow the free streaming neutrinos down to a temperature on the order of the neutrino mass and determine how the cosmic neutrino properties i.e. energy density, pressure, particle density, depend in a physically consistent way on both neutrino mass and Nν. We continue down to the present day temperature and characterize the neutrino distribution in this regime as well. See arXiv:1212.6943, PRD in press. This work has been supported by a grant from the U.S. Department of Energy, No. DE-FG02-04ER41318 and by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program.
Phenomenological relations for neutrino masses and mixing parameters
Khruschov, V. V.
2013-11-15
Phenomenological relations for masses, angles, and CP phases in the neutrino mixing matrix are proposed with allowance for available experimental data. For the case of CP violation in the lepton sector, an analysis of the possible structure of the neutrino mass matrix and a calculation of the neutrino mass features and the Dirac CP phase for the bimodal-neutrino model are performed. The values obtained in this way can be used to interpret and predict the results of various neutrino experiments.
Seesaw model in SO(10) with an upper limit on right-handed neutrino masses
NASA Astrophysics Data System (ADS)
Abud, M.; Buccella, F.; Falcone, D.; Oliver, L.
2012-08-01
In the framework of SO(10) gauge unification and the seesaw mechanism, we show that the upper bound on the mass of the heaviest right-handed neutrino MR3<3×1011GeV, given by the Pati-Salam intermediate scale of B-L spontaneous symmetry breaking, constrains the observables related to the left-handed light neutrino mass matrix. We assume such an upper limit on the masses of right-handed neutrinos and, as a first approximation, a Cabibbo form for the matrix VL that diagonalizes the Dirac neutrino matrix mD. Using the inverse seesaw formula, we show that our hypotheses imply a triangular relation in the complex plane of the light neutrino masses with the Majorana phases. We obtain normal hierarchy with an absolute scale for the light neutrino spectrum. Two regions are allowed for the lightest neutrino mass m1 and for the Majorana phases, implying predictions for the neutrino mass measured in Tritium decay and for the double beta decay effective mass |⟨mee⟩|.
Abelian gauge extension of the standard model: Dark matter and radiative neutrino mass
NASA Astrophysics Data System (ADS)
Borah, Debasish; Adhikari, Rathin
2012-05-01
We study a simple extension of the standard model where the gauge group is extended by an additional U(1)X gauge symmetry. Neutrino mass arises both at tree level as well as radiatively by the anomaly-free addition of one singlet fermion NR and two triplet fermions Σ1R, Σ2R with suitable Higgs scalars. The spontaneous gauge symmetry breaking is achieved in a way that results in a residual Z2 symmetry and hence provides a stable cold dark matter candidate. We study the possible dark matter candidates in this model by incorporating the constraints from cosmology as well as direct detection experiments. We discuss both low- and high-mass (from GeV to the TeV scale) regimes of fermionic and scalar dark matter candidates in the model. We show that scalar dark matter relic density, although not significantly affected by the presence or absence of annihilation into U(1)X gauge boson pairs, is however affected by choice of U(1)X gauge charges. We discuss the neutrino mass phenomenology and its compatibility with the allowed dark matter mass ranges and we also comment on the implications of the model on Higgs signatures at colliders including those related to the fourth fermion generation.
Future of Neutrino Interaction Models
NASA Astrophysics Data System (ADS)
Terri, Ryan
2015-04-01
Neutrino-nucleus cross sections are one of the dominant sources of systematic errors in long-baseline neutrino oscillation experiments. To achieve the goals of precision measurements of the mixing angles and difference of the mass eigenstates squared, and discover the mass hierarchy and CP-violating phase, the underlying neutrino interactions must be better understood. This poster will mention some recent improvements in models in the interaction generators as well as some possible future improvements for proposed experiments.
Marshak, R. E.
1982-01-01
Several crucial tests of three popular unification models (of strong, electromagnetic, and weak interactions) are described. The models are SU(5) and SO(10) at the grand unification theory (GUT) level and SU(4)C × SU(2)L × SU(2)R at the partial unification theory (PUT) level. The tests selected for discussion are the finiteness of the neutrino mass in the electron volt region, the decay of protons into antileptons in the range of 1031± yr, and the detectability of neutron oscillations at all. The PUT group can also be tested by establishing the existence of four generations of quarks and leptons.
Revised WMAP constraints on neutrino masses and other extensions of the minimal {lambda}CDM model
Kristiansen, Jostein R.; Elgaroey, Oystein; Eriksen, Hans Kristian
2006-12-15
Recently, two issues concerning the three-year Wilkinson Microwave Anisotropy Probe (WMAP) likelihood code were pointed out. On large angular scales (l(less-or-similar sign)30), a suboptimal likelihood approximation resulted in a small power excess. On small angular scales (l(greater-or-similar sign)300), over-subtraction of unresolved point sources produced a small power deficit. For a minimal six-parameter cosmological model, these two effects conspired to decrease the value of n{sub s} by {approx}0.7{sigma}. In this paper, we study the change in preferred parameter ranges for extended cosmological models, including running of n{sub s}, massive neutrinos, curvature, and the equation of state for dark energy. We also include large-scale structure and supernova data in our analysis. We find that the parameter ranges for {alpha}{sub s}, {omega}{sub k} and w are not much altered by the modified analysis. For massive neutrinos the upper limit on the sum of the neutrino masses decreases from M{sub {nu}}<1.90 eV to M{sub {nu}}<1.57 eV when using the modified WMAP code and WMAP data only. We also find that the shift of n{sub s} to higher values is quite robust to these extensions of the minimal cosmological model.
Evidence for neutrino mass: A decade of discovery
Heeger, Karsten M.
2004-12-08
Neutrino mass and mixing are amongst the major discoveries of recent years. From the observation of flavor change in solar and atmospheric neutrino experiments to the measurements of neutrino mixing with terrestrial neutrinos, recent experiments have provided consistent and compelling evidence for the mixing of massive neutrinos. The discoveries at Super-Kamiokande, SNO, and KamLAND have solved the long-standing solar neutrino problem and demand that we make the first significant revision of the Standard Model in decades. Searches for neutrinoless double-beta decay probe the particle nature of neutrinos and continue to place limits on the effective mass of the neutrino. Possible signs of neutrinoless double-beta decay will stimulate neutrino mass searches in the next decade and beyond. I review the recent discoveries in neutrino physics and the current evidence for massive neutrinos.
Seesaw majoron model of neutrino mass and novel signals in Higgs boson production at LEP
NASA Astrophysics Data System (ADS)
Díaz, Marco A.; García-Jareño, M. A.; Restrepo, Diego A.; Valle, José W. F.
1998-08-01
We perform a careful study of the neutral scalar sector of a model which includes a singlet, a doublet, and a triplet scalar field under SU(2). This model is motivated by neutrino physics, since it is simply the most general version of the seesaw model of neutrino mass generation through spontaneous violation of lepton number. The neutral Higgs sector contains three CP-even and one massive CP-odd Higgs boson A, in addition to the massless CP-odd mojoron J. The weakly interacting majoron remains massless if the breaking of lepton number symmetry is purely spontaneous. We show that the massive CP-odd Higgs boson may invisibly decay to three majorons, as well as to a CP-even Higgs H boson plus a majoron. We consider the associated Higgs production e+e- → Z → HA followed by invisible decays A → JJJ and H → JJ and derive the corresponding limits on masses and coupling that follow from LEP I precision measurements of the invisible Z width. We also study a novel b overlinebb overlinebp T signal predicted by the model, analyze the background and perform a Monte Carlo simulation of the signal in order to illustrate the limits on Higgs boson mass, couplings and branching ratios that follow from that.
Neutrino masses in supersymmetric SU(3){sub c} x SU(3){sub L} x U(1){sub X} models
Rodriguez, J-Alexis; Duarte, J.
2008-11-23
The mass spectra and the superpotential of two different supersymetric models based on the gauge symmetry SU(3){sub C} x SU(3){sub L} x U(1){sub X}(331) without any exotic charges assigned to the fermionic spectra are studied. These two models have three families in different representations of the gauge group. In these kind of models, the diagonalization of the neutralino mass matrix allows that three light neutrinos get different mass values. Possible values for the neutrino masses are calculated covering the parameter space of the models. These values have to agree with the available data coming from the neutrino oscillations experiments. Therefore, a reduced space of parameters for the superpotential and the vacuum expectation values allowed in the framework of the 331 supersymetric models can be obtained.
Neff in low-scale seesaw models versus the lightest neutrino mass
NASA Astrophysics Data System (ADS)
Hernández, P.; Kekic, M.; Lopez-Pavon, J.
2014-09-01
We evaluate the contribution to Neff of the extra sterile states in low-scale type I seesaw models (with three extra sterile states). We explore the full parameter space and find that at least two of the heavy states always reach thermalization in the early Universe, while the third one might not thermalize provided the lightest neutrino mass is below O(10-3 eV). Constraints from cosmology therefore severely restrict the spectra of heavy states in the range 1 eV-100 MeV. The implications for neutrinoless double beta decay are also discussed.
Neutrino mixing matrix and masses from a generalized Friedberg-Lee model
NASA Astrophysics Data System (ADS)
Razzaghi, N.; Gousheh, S. S.
2014-02-01
The overall characteristics of the solar and atmospheric neutrino oscillation are approximately consistent with a tribimaximal form of the mixing matrix U of the lepton sector. Exact tribimaximal mixing leads to θ13=0. However, recent results from the Daya Bay and RENO experiments have established a nonzero value for θ13. Keeping the leading behavior of U as tribimaximal, we use a generalized Friedberg-Lee neutrino mass model along with a complementary ansatz to incorporate a nonzero θ13 along with CP violation. We generalize this model in two stages: In the first stage, we assume μ -τ symmetry and add imaginary components which leads to nonzero phases. In the second stage, we add a perturbation with real components which breaks the μ-τ symmetry, and this leads to a nonzero value for θ13. The combination of these two generalizations leads to CP violation. Using only two sets of the experimental data, we can fix all of the parameters of our model and predict not only values for the other experimental data, which agree well with the available data, but also the masses of neutrinos and the CP-violating phases and parameters. These predictions include the following: ⟨mνe⟩≈(0.033-0.037) eV, ⟨mνμ⟩≈(0.043-0.048) eV, ⟨mντ⟩≈(0.046-0.051) eV, and 59.21°≲δ ≲59.34°.
Neutrino mass without cosmic variance
NASA Astrophysics Data System (ADS)
LoVerde, Marilena
2016-05-01
Measuring the absolute scale of the neutrino masses is one of the most exciting opportunities available with near-term cosmological data sets. Two quantities that are sensitive to neutrino mass, scale-dependent halo bias b (k ) and the linear growth parameter f (k ) inferred from redshift-space distortions, can be measured without cosmic variance. Unlike the amplitude of the matter power spectrum, which always has a finite error, the error on b (k ) and f (k ) continues to decrease as the number density of tracers increases. This paper presents forecasts for statistics of galaxy and lensing fields that are sensitive to neutrino mass via b (k ) and f (k ). The constraints on neutrino mass from the auto- and cross-power spectra of spectroscopic and photometric galaxy samples are weakened by scale-dependent bias unless a very high density of tracers is available. In the high-density limit, using multiple tracers allows cosmic variance to be beaten, and the forecasted errors on neutrino mass shrink dramatically. In practice, beating the cosmic-variance errors on neutrino mass with b (k ) will be a challenge, but this signal is nevertheless a new probe of neutrino effects on structure formation that is interesting in its own right.
Lepton flavor violating decay of SM-like Higgs boson in a radiative neutrino mass model
NASA Astrophysics Data System (ADS)
Thuc, T. T.; Hue, L. T.; Long, H. N.; Nguyen, T. Phong
2016-06-01
The lepton flavor violating decay of the Standard Model-like Higgs boson (LFVHD) is discussed in the framework of the radiative neutrino mass model built in [K. Nishiwaki, H. Okada, and Y. Orikasa, Phys. Rev. D 92, 093013 (2015)]. The branching ratio (BR) of the LFVHD is shown to reach 10-5 in the most interesting region of the parameter space shown in [K. Nishiwaki, H. Okada, and Y. Orikasa, Phys. Rev. D 92, 093013 (2015)]. The dominant contributions come from the singly charged Higgs mediations, namely, the coupling of h2± with exotic neutrinos. Furthermore, if the doubly charged Higgs boson is heavy enough to allow the mass of h2± around 1 TeV, the mentioned BR can reach 10-4 . In addition, we obtain that the large values of Br (h →μ τ ) lead to very small ones of Br (h →e τ ) , much smaller than the various sensitivities of current experiments.
New development in radiative neutrino mass generation
NASA Astrophysics Data System (ADS)
Julio
2014-10-01
We present a simple and predictive model of radiative neutrino masses. It is a special case of the Zee model with a family-dependent Z4 symmetry acting on the leptons. A variety of predictions follow: The hierarchy of neutrino masses must be inverted; the lightest neutrino mass is extremely small and calculable; one of the neutrino mixing angles is determined in terms of the other two; the phase parameters take CP-conserving values with δCP = π and the effective mass in neutrinoless double beta decay lies in a narrow range, mββ =(17.6-18.5) meV. The ratio of vacuum expectation values of the two Higgs doublets, tan β, is determined to be either 1.9 or 0.19 from neutrino oscillation data. Flavor-conserving and flavor-changing couplings of the Higgs doublets are also determined from neutrino data. The non-standard neutral Higgs bosons, if they are moderately heavy, decay significantly into μ and τ with prescribed branching ratios. Observable rates for the decays μ → eγ and τ → 3μ are predicted if these scalars have masses in the range of 150-500 GeV.
Neutrino mass and mixing in the seesaw playground
NASA Astrophysics Data System (ADS)
King, Stephen F.
2016-07-01
We discuss neutrino mass and mixing in the framework of the classic seesaw mechanism, involving right-handed neutrinos with large Majorana masses, which provides an appealing way to understand the smallness of neutrino masses. However, with many input parameters, the seesaw mechanism is in general not predictive. We focus on natural implementations of the seesaw mechanism, in which large cancellations do not occur, where one of the right-handed neutrinos is dominantly responsible for the atmospheric neutrino mass, while a second right-handed neutrino accounts for the solar neutrino mass, leading to an effective two right-handed neutrino model. We discuss recent attempts to predict lepton mixing and CP violation within such natural frameworks, focusing on the Littlest Seesaw and its distinctive predictions.
Right-handed neutrinos at CERN LHC and the mechanism of neutrino mass generation
Kersten, Joern; Smirnov, Alexei Yu.
2007-10-01
We consider the possibility to detect right-handed neutrinos, which are mostly singlets of the standard model gauge group, at future accelerators. Substantial mixing of these neutrinos with the active neutrinos requires a cancellation of different contributions to the light neutrino mass matrix at the level of 10{sup -8}. We discuss possible symmetries behind this cancellation and argue that for three right-handed neutrinos they always lead to conservation of total lepton number. Light neutrino masses can be generated by small perturbations violating these symmetries. In the most general case, LHC physics and the mechanism of neutrino mass generation are essentially decoupled; with additional assumptions, correlations can appear between collider observables and features of the neutrino mass matrix.
NASA Astrophysics Data System (ADS)
Smirnov, A. Yu
2006-11-01
Reconstruction of the neutrino mass and flavor spectrum is described. Essentially two processes are relevant for interpretation of the neutrino results which were used in determination of neutrino parameters: oscillations (averaged and non-averaged) in vacuum and matter and the adiabatic flavor conversion in matter (the MSW-effect). Detailed physics picture of these processes is elaborated and their realizations in solar and atmospheric neutrinos as well as in K2K, KamLAND and MINOS experiments are described. Important bounds have been obtained from neutrinoless double beta decay and cosmology. Implications of the obtained results to fundamental physics are discussed. Among various mechanisms for small neutrino masses we consider the seesaw (which has the highest priority) and overlap suppression in extra dimensions. The observed pattern on neutrino mixing may testify for existence of new symmetries of nature. One of the key issues on the way to underlying physics is comparison of the quarks and lepton masses and mixing. In this connections concepts of quark-lepton symmetry and unification, quark-lepton universality and quark-lepton complementarity are described.
The one loop corrections to the neutrino masses in BLMSSM
NASA Astrophysics Data System (ADS)
Zhao, Shu-Min; Feng, Tai-Fu; Dong, Xing-Xing; Zhang, Hai-Bin; Ning, Guo-Zhu; Guo, Tao
2016-09-01
The neutrino masses and mixings are studied in the model which is the supersymmetric extension of the standard model with local gauged baryon and lepton numbers (BLMSSM). At tree level the neutrinos can obtain tiny masses through the See-Saw mechanism in the BLMSSM. The one-loop corrections to the neutrino masses and mixings are important, and they are studied in this work with the mass insertion approximation. We study the numerical results and discuss the allowed parameter space of BLMSSM. It can contribute to study the neutrino masses and to explore the new physics beyond the standard model (SM).
Determining the neutrino mass hierarchy with cosmology
De Bernardis, Francesco; Kitching, Thomas D.; Heavens, Alan; Melchiorri, Alessandro
2009-12-15
The combination of current large-scale structure and cosmic microwave background anisotropies data can place strong constraints on the sum of the neutrino masses. Here we show that future cosmic shear experiments, in combination with cosmic microwave background constraints, can provide the statistical accuracy required to answer questions about differences in the mass of individual neutrino species. Allowing for the possibility that masses are nondegenerate we combine Fisher matrix forecasts for a weak lensing survey like Euclid with those for the forthcoming Planck experiment. Under the assumption that neutrino mass splitting is described by a normal hierarchy we find that the combination Planck and Euclid will possibly reach enough sensitivity to put a constraint on the mass of a single species. Using a Bayesian evidence calculation we find that such future experiments could provide strong evidence for either a normal or an inverted neutrino hierarchy. Finally we show that if a particular neutrino hierarchy is assumed then this could bias cosmological parameter constraints, for example, the dark energy equation of state parameter, by > or approx. 1{sigma}, and the sum of masses by 2.3{sigma}. We finally discuss the impact of uncertainties on the theoretical modeling of nonlinearities. The results presented in this analysis are obtained under an approximation to the nonlinear power spectrum. This significant source of uncertainty needs to be addressed in future work.
Neutrino mass as the probe of intermediate mass scales
Senjanovic, G.
1980-01-01
A discussion of the calculability of neutrino mass is presented. The possibility of neutrinos being either Dirac or Majorana particles is analyzed in detail. Arguments are offered in favor of the Majorana case: the smallness of neutrino mass is linked to the maximality of parity violation in weak interactions. It is shown how the measured value of neutrino mass would probe the existence of an intermediate mass scale, presumably in the TeV region, at which parity is supposed to become a good symmetry. Experimental consequences of the proposed scheme are discussed, in particular the neutrino-less double ..beta.. decay, where observation would provide a crucial test of the model, and rare muon decays such as ..mu.. ..-->.. e..gamma.. and ..mu.. ..-->.. ee anti e. Finally, the embedding of this model in an O(10) grand unified theory is analyzed, with the emphasis on the implications for intermediate mass scales that it offers. It is concluded that the proposed scheme provides a distinct and testable alternative for understanding the smallness of neutrino mass. 4 figures.
Constraints on neutrino masses from weak lensing
Ichiki, Kiyotomo; Takada, Masahiro; Takahashi, Tomo
2009-01-15
Weak lensing (WL) distortions of distant galaxy images are sensitive to neutrino masses by probing the suppression effect on clustering strengths of total matter in large-scale structure. We use the latest measurements of WL correlations, the Canada-France-Hawaii Telescope Legacy Survey data, to explore constraints on neutrino masses. We find that, while the WL data alone cannot place a stringent limit on neutrino masses due to parameter degeneracies, the constraint can be significantly improved when combined with other cosmological probes, such as the WMAP 5-year data (WMAP5) and the distance measurements of type-Ia supernovae (SNe) and baryon acoustic oscillations (BAO). The upper bounds on the sum of neutrino masses are , 0.76, and 0.54 eV (95% CL) for WL+WMAP5, WMAP5+SNe+BAO, and WL+WMAP5+SNe+BAO, respectively, assuming a flat {lambda}CDM model with finite-mass neutrinos. In deriving these constraints, our analysis includes the non-Gaussian covariances of the WL correlation functions to properly take into account significant correlations between different angles.
Beyond the Standard Model: The Weak Scale, Neutrino Mass, and the Dark Sector
Weiner, Neal
2010-12-20
The goal of this proposal was to advance theoretical studies into questions of collider physics at the weak scale, models and signals of dark matter, and connections between neutrino mass and dark energy. The project was a significant success, with a number of developments well beyond what could have been anticipated at the outset. A total of 35 published papers and preprints were produced, with new ideas and signals for LHC physics and dark matter experiments, in particular. A number of new ideas have been found on the possible indirect signals of models of dark matter which relate to the INTEGRAL signal of astrophysical positron production, high energy positrons seen at PAMELA and Fermi, studies into anomalous gamma rays at Fermi, collider signatures of sneutrino dark matter, scenarios of Higgs physics arising in SUSY models, the implications of galaxy cluster surveys for photon-axion conversion models, previously unconsidered collider phenomenology in the form of 'lepton jets' and a very significant result for flavor physics in supersymmetric theories. Progress continues on all fronts, including development of models with dramatic implications for direct dark matter searches, dynamics of dark matter with various excited states, flavor physics, and consequences of modified missing energy signals for collider searches at the LHC.
Renormalizable model for neutrino mass, dark matter, muon g - 2 and 750 GeV diphoton excess
NASA Astrophysics Data System (ADS)
Okada, Hiroshi; Yagyu, Kei
2016-05-01
We discuss a possibility to explain the 750 GeV diphoton excess observed at the LHC in a three-loop neutrino mass model which has a similar structure to the model by Krauss, Nasri and Trodden. Tiny neutrino masses are naturally generated by the loop effect of new particles with their couplings and masses to be of order 0.1-1 and TeV, respectively. The lightest right-handed neutrino, which runs in the three-loop diagram, can be a dark matter candidate. In addition, the deviation in the measured value of the muon anomalous magnetic moment from its prediction in the standard model can be compensated by one-loop diagrams with exotic multi-charged leptons and scalar bosons. For the diphoton event, an additional isospin singlet real scalar field plays the role to explain the excess by taking its mass of 750 GeV, where it is produced from the gluon fusion production via the mixing with the standard model like Higgs boson. We find that the cross section of the diphoton process can be obtained to be a few fb level by taking the masses of new charged particles to be about 375 GeV and related coupling constants to be order 1.
Review of direct neutrino mass experiments
Dragoun, O.
2015-10-28
Advantages and drawbacks of the kinematic methods of the neutrino mass determination are discussed. The meaning of the effective neutrino mass, resulting from measurements of the endpoint region of β-spectra is clarified. Current experimental constraints on the mass of active as well as sterile neutrinos are presented. Several new experiments are briefly outlined.
Higgs Boson Mass, Neutrino Oscillations and Inflation
Shafi, Qaisar
2008-11-23
Finding the Standard Model scalar (Higgs) boson is arguably the single most important mission of the LHC. I review predictions for the Higgs boson mass based on stability and perturbativity arguments, taking into account neutrino oscillations. Primordial inflation based on the Coleman-Weinberg potential is briefly discussed.
Neutrino masses, Majorons, and muon decay
Santamaria, A.; Bernabeu, J.; Pich, A.
1987-09-01
The contributions to the parameters xi, delta, rho, and eta in muon decay coming from double Majoron emission, Majorana neutrino masses, and effects of charged scalars are evaluated in the scalar-triplet model. The relevance of these effects for planned experiments is discussed.
Planck-scale physics and neutrino masses
NASA Astrophysics Data System (ADS)
Akhmedov, Evgenii Kh.; Berezhiani, Zurab G.; Senjanovic, Goran
1992-11-01
We discuss gravitationally induced masses and mass splittings of Majorana, Zeldovich-Konopinski-Mahmoud, and Dirac neutrinos. Among other implications, these effects can provide a solution of the solar neutrino puzzle. In particular, we show how this may work in the 17 keV neutrino picture.
Neutrinos: in and out of the standard model
Parke, Stephen; /Fermilab
2006-07-01
The particle physics Standard Model has been tremendously successful in predicting the outcome of a large number of experiments. In this model Neutrinos are massless. Yet recent evidence points to the fact that neutrinos are massive particles with tiny masses compared to the other particles in the Standard Model. These tiny masses allow the neutrinos to change flavor and oscillate. In this series of Lectures, I will review the properties of Neutrinos In the Standard Model and then discuss the physics of Neutrinos Beyond the Standard Model. Topics to be covered include Neutrino Flavor Transformations and Oscillations, Majorana versus Dirac Neutrino Masses, the Seesaw Mechanism and Leptogenesis.
Secret neutrino interactions: a pseudoscalar model
NASA Astrophysics Data System (ADS)
Archidiacono, Maria; Hannestad, Steen; Sloth Hansen, Rasmus; Tram, Thomas
2016-05-01
Neutrino oscillation experiments point towards the existence of additional mostly sterile neutrino mass eigenstates in the eV mass range. At the same time, such sterile neutrinos are disfavoured by cosmology (Big Bang Nucleosynthesis, Cosmic Microwave Background and Large Scale Structure), unless they can be prevented from being thermalised in the early Universe. To this aim, we introduce a model of sterile neutrino secret interactions mediated by a new light pseudoscalar: The new interactions can accomodate sterile neutrinos in the early Universe, providing a good fit to all the up to date cosmological data.
Introduction to direct neutrino mass measurements and KATRIN
NASA Astrophysics Data System (ADS)
Thümmler, T.; Katrin Collaboration
2012-08-01
The properties of neutrinos and especially their rest mass play an important role at the intersections of cosmology, particle physics and astroparticle physics. At present there are two complementary approaches to address this topic in laboratory experiments. The search for neutrinoless double beta decay probes whether neutrinos are Majorana particles and determines an effective neutrino mass value. On the other hand experiments such as MARE, KATRIN and the recently proposed Project 8 will investigate the spectral shape of β-decay electrons close to their kinematic endpoint in order to determine the neutrino rest mass with a model-independent method. Here, because of neutrino flavour mixing, the neutrino mass appears as an average of all neutrino mass eigenstates contributing to the electron neutrino. The KArlsruhe TRItium Neutrino experiment (KATRIN) is currently the experiment in the most advanced status of commissioning. It combines an ultra-luminous molecular windowless gaseous tritium source with an integrating high-resolution spectrometer of MAC-E filter type. It will investigate the neutrino rest mass with 0.2 eV/c (90% C.L.) sensitivity and allow β spectroscopy close to the T endpoint at 18.6 keV with unprecedented precision.
Neutrino masses: from fantasy to facts
NASA Astrophysics Data System (ADS)
Valle, J. W. F.
Theory suggests the existence of neutrino masses, but little more. Facts are coming close to revealing our fantasy: solar- and atmospheric-neutrino data strongly indicate the need for neutrino conversions, while LSND provides an intriguing hint. The simplest ways to reconcile these data in terms of neutrino oscillations invoke a light sterile neutrino in addition to the three active ones. Out of the four neutrinos, two are maximally mixed and lie at the LSND scale, while the others are at the solar-mass scale. These schemes can be distinguished at neutral-current-sensitive solar- and atmospheric-neutrino experiments. I discuss the simplest theoretical scenarios, where the lightness of the sterile neutrino, the nearly maximal atmospheric-neutrino mixing and the generation of Δm {⊙/2} and Δm {atm/2} all follow naturally from the assumed lepton-number symmetry and its breaking. Although the most likely interpretation of the present data is in terms of neutrino-mass-induced oscillations, one still has room for alternative explanations, such as flavor-changing neutrino interactions, with no need for neutrino mass or mixing. Such flavor-violating transitions arise in theories with strictly massless neutrinos and may lead to other sizeable flavor non-conservation effects, such as μ → e + γ, μ - e conversion in nuclei, unaccompanied by neutrinoless double-beta decay.
KATRIN: Measuring the Mass Scale of Neutrinos
NASA Astrophysics Data System (ADS)
Oblath, Noah; Katrin Collaboration
2011-10-01
Over the past decade, experiments studying neutrinos from atmospheric, solar, and reactor sources have shown conclusively that neutrinos change flavor and, as a consequence, have a small but finite mass. However, the scale of neutrino masses remains an open question that is of great importance for many areas of physics. The most direct method to measure the neutrino mass scale is still via beta decay. The talk will focus primarily on the status of the KArlsruhe TRItium Neutrino experiment (KATRIN), currently under construction. KATRIN combines an ultra-luminous molecular windowless gaseous tritium source with a high-resolution integrating spectrometer to gain sensitivity to the absolute mass scale of neutrinos. The projected sensitivity of the experiment on the neutrino mass is 0.2 eV at 90% C.L. In this talk I will discuss the status of the KATRIN experiment.
Decaying majoron dark matter and neutrino masses
Lattanzi, Massimiliano
2008-01-03
We review our recent proposal of the majoron as a suitable warm dark matter candidate. The majoron is the Goldstone boson associated to the spontaneous breaking of ungauged lepton number, one of the mechanisms proposed to give rise to neutrino masses. The majoron can acquire a mass through quantum gravity effects, and can possibly account for the observed dark matter component of the Universe. We present constraints on the majoron lifetime, mass and abundance obtained by the analysis of the cosmic microwave background data. We find that, in the case of thermal production, the limits for the majoron mass read 0.12 keV
Campos, F. de; Diaz, M. A.; Eboli, O. J. P.; Magro, M. B.; Porod, W.; Skadhauge, S.
2008-06-01
We investigate a neutrino mass model in which the neutrino data is accounted for by bilinear R-parity violating supersymmetry with anomaly mediated supersymmetry breaking. We focus on the CERN Large Hadron Collider (LHC) phenomenology, studying the reach of generic supersymmetry search channels with leptons, missing energy and jets. A special feature of this model is the existence of long-lived neutralinos and charginos which decay inside the detector leading to detached vertices. We demonstrate that the largest reach is obtained in the displaced vertices channel and that practically all of the reasonable parameter space will be covered with an integrated luminosity of 10 fb{sup -1}. We also compare the displaced vertex reaches of the LHC and Tevatron.
Discriminating neutrino see-saw models
NASA Astrophysics Data System (ADS)
Hirsch, M.; King, S. F.
2001-09-01
We consider how well current theories can predict neutrino mass and mixing parameters, and construct a statistical discriminator which allows us to compare different models to each other. As an example we consider see-saw models based on family symmetry, and single right-handed neutrino dominance, and compare them to each other and to the case of neutrino anarchy with random entries in the neutrino Yukawa and Majorana mass matrices. The predictions depend crucially on the range of the undetermined coefficients over which we scan, and we speculate on how future theories might lead to more precise predictions for the coefficients and hence for neutrino observables. Our results indicate how accurately neutrino masses and mixing angles need to be measured by future experiments in order to discriminate between current models.
Direct nuclear probes of neutrino mass
NASA Astrophysics Data System (ADS)
Parno, Diana
2016-03-01
Neutrinos have non-zero mass, as demonstrated by an extensive experimental program in neutrino oscillations. The absolute mass scale of neutrinos, however, remains elusive. In this talk, I will review past and future laboratory-based efforts to measure the neutrino mass directly, with minimal model dependence, through the endpoint kinematics of nuclear beta decays. The KATRIN collaboration expects to begin taking data on tritium within the next year; the Project 8 collaboration has recently demonstrated an important proof-of-principle milestone for a new tritium-based concept; and three collaborations---ECHo, HOLMES, and NuMECS---are making substantial progress toward a competitive holmium-based measurement. I will discuss some of the technical and scientific challenges faced by each approach, and give an update on the current status of the field. I gratefully acknowledge support from the U.S. Department of Energy Office of Science, Office of Nuclear Physics under Award Number DE-FG02-97ER41020.
Neutrino oscillations and the seesaw origin of neutrino mass
NASA Astrophysics Data System (ADS)
Miranda, O. G.; Valle, J. W. F.
2016-07-01
The historical discovery of neutrino oscillations using solar and atmospheric neutrinos, and subsequent accelerator and reactor studies, has brought neutrino physics to the precision era. We note that CP effects in oscillation phenomena could be difficult to extract in the presence of unitarity violation. As a result upcoming dedicated leptonic CP violation studies should take into account the non-unitarity of the lepton mixing matrix. Restricting non-unitarity will shed light on the seesaw scale, and thereby guide us towards the new physics responsible for neutrino mass generation.
Constraining absolute neutrino masses via detection of galactic supernova neutrinos at JUNO
Lu, Jia-Shu; Cao, Jun; Li, Yu-Feng; Zhou, Shun
2015-05-26
A high-statistics measurement of the neutrinos from a galactic core-collapse supernova is extremely important for understanding the explosion mechanism, and studying the intrinsic properties of neutrinos themselves. In this paper, we explore the possibility to constrain the absolute scale of neutrino masses m{sub ν} via the detection of galactic supernova neutrinos at the Jiangmen Underground Neutrino Observatory (JUNO) with a 20 kiloton liquid-scintillator detector. In assumption of a nearly-degenerate neutrino mass spectrum and a normal mass ordering, the upper bound on the absolute neutrino mass is found to be m{sub ν}<(0.83±0.24) eV at the 95% confidence level for a typical galactic supernova at a distance of 10 kpc, where the mean value and standard deviation are shown to account for statistical fluctuations. For comparison, we find that the bound in the Super-Kamiokande experiment is m{sub ν}<(0.94±0.28) eV at the same confidence level. However, the upper bound will be relaxed when the model parameters characterizing the time structure of supernova neutrino fluxes are not exactly known, and when the neutrino mass ordering is inverted.
Constraining absolute neutrino masses via detection of galactic supernova neutrinos at JUNO
NASA Astrophysics Data System (ADS)
Lu, Jia-Shu; Cao, Jun; Li, Yu-Feng; Zhou, Shun
2015-05-01
A high-statistics measurement of the neutrinos from a galactic core-collapse supernova is extremely important for understanding the explosion mechanism, and studying the intrinsic properties of neutrinos themselves. In this paper, we explore the possibility to constrain the absolute scale of neutrino masses mν via the detection of galactic supernova neutrinos at the Jiangmen Underground Neutrino Observatory (JUNO) with a 20 kiloton liquid-scintillator detector. In assumption of a nearly-degenerate neutrino mass spectrum and a normal mass ordering, the upper bound on the absolute neutrino mass is found to be mν < (0.83 ± 0.24) eV at the 95% confidence level for a typical galactic supernova at a distance of 10 kpc, where the mean value and standard deviation are shown to account for statistical fluctuations. For comparison, we find that the bound in the Super-Kamiokande experiment is mν < (0.94 ± 0.28) eV at the same confidence level. However, the upper bound will be relaxed when the model parameters characterizing the time structure of supernova neutrino fluxes are not exactly known, and when the neutrino mass ordering is inverted.
Neutrino mass anarchy and the Universe
NASA Astrophysics Data System (ADS)
Lu, Xiaochuan; Murayama, Hitoshi
2014-08-01
We study the consequence of the neutrino mass anarchy on cosmology, in particular the total mass of neutrinos and baryon asymmetry through leptogenesis. We require independence of measure in each mass matrix elements in addition to the basis independence, which uniquely picks the Gaussian measure. A simple approximate U(1) flavor symmetry makes leptogenesis highly successful. Correlations between the baryon asymmetry and the light-neutrino quantities are investigated. We also discuss possible implications of recently suggested large total mass of neutrinos by the SDSS/BOSS data.
Searching for radiative neutrino mass generation at the LHC
NASA Astrophysics Data System (ADS)
Volkas, Raymond R.
2015-04-01
In this talk (talk given at the International Conference on Massive Neutrinos, Singapore, 9-13 February 2015), I describe the general characteristics of radiative neutrino mass models that can be probed at the LHC. I then cover the specific constraints on a new, explicit model of this type.
Chang, Darwin; Hoang Ngoc Long
2006-03-01
We investigate a simple model of neutrino mass based on SU(3){sub C}xSU(3){sub L}xU(1){sub X} gauge unification. The Yukawa coupling of the model has automatic lepton-number symmetry which is broken only by the self-couplings of the Higgs boson. At tree level, the neutrino spectrum contains three Dirac fermions, one massless and two degenerate in mass. At the two-loop level, neutrinos obtain Majorana masses and correct the tree-level result which naturally gives rise to an inverted hierarchy mass pattern and interesting mixing which can fit the current data with minor fine-tuning. In another scenario, one can pick the scales such that the loop-induced Majorana mass matrix is bigger than the Dirac one and thus reproduces the usual seesaw mechanism.
Implications of results of neutrino mass experiments
McKellar, B.H.; Garbutt, M.
2000-10-01
The long standing negative (mass){sup 2} anomaly encountered in attempts to measure the mass of the electron neutrino may be an indication of physics beyond the standard model. It is demonstrated that an additional charged current interaction which is not of V--A form, and which is at least an order of magnitude weaker than the standard model charged current interaction, will produce a spectrum, which, if fitted by the standard model, may give a negative value for m{sub {nu}}{sup 2}. A possible physical explanation of the time dependent effects seen by the Troitsk experiment is also provided.
Probing the Absolute Mass Scale of Neutrinos
Prof. Joseph A. Formaggio
2011-10-12
The experimental efforts of the Neutrino Physics Group at MIT center primarily around the exploration of neutrino mass and its significance within the context of nuclear physics, particle physics, and cosmology. The group has played a prominent role in the Sudbury Neutrino Observatory, a neutrino experiment dedicated to measure neutrino oscillations from 8B neutrinos created in the sun. The group is now focusing its efforts in the measurement of the neutrino mass directly via the use of tritium beta decay. The MIT group has primary responsibilities in the Karlsruhe Tritium Neutrino mass experiment, expected to begin data taking by 2013. Specifically, the MIT group is responsible for the design and development of the global Monte Carlo framework to be used by the KATRIN collaboration, as well as responsibilities directly associated with the construction of the focal plane detector. In addition, the MIT group is sponsoring a new research endeavor for neutrino mass measurements, known as Project 8, to push beyond the limitations of current neutrino mass experiments.
Neutrino masses and non-abelian horizontal symmetries
NASA Astrophysics Data System (ADS)
Antonelli, V.; Caravaglios, F.; Ferrari, R.; Picariello, M.
2002-12-01
Recently neutrino experiments have made very significant progresses and our knowledge of neutrino masses and mixing has considerably improved. In a model-independent Monte Carlo approach, we have examined a very large class of textures, in the context of non-abelian horizontal symmetries; we have found that neutrino data select only those charged lepton matrices with left-right asymmetric texture. The large atmospheric mixing angle needs m23≃m33. This result, if combined with similar recent findings for the quark sector in the B oscillations, can be interpreted as a hint for SU(5) unification. In the neutrino sector strict neutrino anarchy is disfavored by data, and at least a factor 2 of suppression in the first row and column of the neutrino Majorana mass matrix is required.
Simple neutrino mass matrix with only two free parameters
NASA Astrophysics Data System (ADS)
Nishiura, Hiroyuki; Fukuyama, Takeshi
2014-09-01
A simple form of neutrino mass matrix which has only two free parameters is proposed from a phenomenological point of view. Using this mass matrix, we succeed to reproduce all the observed values for the Maki-Nakagawa-Sakata (MNS) lepton mixing angles and the neutrino mass squared difference ratio. Our model also predicts δν = 155° for the Dirac CP violating phase in the lepton sector and the effective neutrino mass
Simple mass matrices of neutrinos and quarks consistent with observed mixings and masses
NASA Astrophysics Data System (ADS)
Nishiura, Hiroyuki; Fukuyama, Takeshi
2016-02-01
We propose a simple phenomenological model of quarks-leptons mass matrices having fundamentally universal symmetry structure. These mass matrices consist of democratic and semi-democratic mass matrix terms commonly to the neutrino and the quark sectors and have only eight free parameters. We show that this mass matrix model well reproduces all the observed values of the MNS lepton and the CKM quark mixing angles, the neutrino mass squared difference ratio, and quark mass ratios, with an excellent agreement. The model also predicts δCPℓ = - 94 ° for the leptonic CP violating phase and < m > ≃ 0.0073 eV for the effective Majorana neutrino mass.
Hybrid method to resolve the neutrino mass hierarchy by supernova (anti)neutrino induced reactions
NASA Astrophysics Data System (ADS)
Vale, D.; Rauscher, T.; Paar, N.
2016-02-01
We introduce a hybrid method to determine the neutrino mass hierarchy by simultaneous measurements of responses of at least two detectors to antineutrino and neutrino fluxes from accretion and cooling phases of core-collapse supernovae. The (anti)neutrino-nucleus cross sections for 56Fe and 208Pb are calculated in the framework of the relativistic nuclear energy density functional and weak interaction Hamiltonian, while the cross sections for inelastic scattering on free protons p(bar nue,e+)n are obtained using heavy-baryon chiral perturbation theory. The modelling of (anti)neutrino fluxes emitted from a protoneutron star in a core-collapse supernova include collective and Mikheyev-Smirnov-Wolfenstein effects inside the exploding star. The particle emission rates from the elementary decay modes of the daughter nuclei are calculated for normal and inverted neutrino mass hierarchy. It is shown that simultaneous use of (anti)neutrino detectors with different target material allows to determine the neutrino mass hierarchy from the ratios of νe- and bar nue-induced particle emissions. This hybrid method favors neutrinos from the supernova cooling phase and the implementation of detectors with heavier target nuclei (208Pb) for the neutrino sector, while for antineutrinos the use of free protons in mineral oil or water is the appropriate choice.
Neutrino Masses Beyond the Tree Level
NASA Astrophysics Data System (ADS)
Aristizabal Sierra, D.
2012-07-01
Models for Majorana neutrino masses can be classified according to the level in perturbation theory at which the effective dimension five operator LLHH is realized. The possibilities range from the tree-level up to the three-loop level realizations. We discuss some general aspects of this approach and speculate about a model independent classification of the possible cases. Among all the realizations, those in which the effective operator is induced by radiative corrections open the possibility for lepton number violation near—or at—the electroweak scale. We discuss some phenomenological aspects of two generic realizations: the Babu-Zee model and supersymmetric models with bilinear R-parity violation.
Neutrino mass and mixing with discrete symmetry
NASA Astrophysics Data System (ADS)
King, Stephen F.; Luhn, Christoph
2013-05-01
This is a review paper about neutrino mass and mixing and flavour model building strategies based on discrete family symmetry. After a pedagogical introduction and overview of the whole of neutrino physics, we focus on the PMNS mixing matrix and the latest global fits following the Daya Bay and RENO experiments which measure the reactor angle. We then describe the simple bimaximal, tri-bimaximal and golden ratio patterns of lepton mixing and the deviations required for a non-zero reactor angle, with solar or atmospheric mixing sum rules resulting from charged lepton corrections or residual trimaximal mixing. The different types of see-saw mechanism are then reviewed as well as the sequential dominance mechanism. We then give a mini-review of finite group theory, which may be used as a discrete family symmetry broken by flavons either completely, or with different subgroups preserved in the neutrino and charged lepton sectors. These two approaches are then reviewed in detail in separate chapters including mechanisms for flavon vacuum alignment and different model building strategies that have been proposed to generate the reactor angle. We then briefly review grand unified theories (GUTs) and how they may be combined with discrete family symmetry to describe all quark and lepton masses and mixing. Finally, we discuss three model examples which combine an SU(5) GUT with the discrete family symmetries A4, S4 and Δ(96).
Neutrino mass hierarchy extraction using atmospheric neutrinos in ice
Mena, Olga; Mocioiu, Irina; Razzaque, Soebur
2008-11-01
We show that the measurements of 10 GeV atmospheric neutrinos by an upcoming array of densely-packed phototubes buried deep inside the IceCube detector at the South Pole can be used to determine the neutrino mass hierarchy for values of sin{sup 2}2{theta}{sub 13} close to the present bound, if the hierarchy is normal. These results are obtained for an exposure of 100 Mton years and systematic uncertainties up to 10%.
New constraints on neutrino masses from cosmology
Melchiorri, A.; Serra, P.; Dodelson, S.; Slosar, A.; /Ljubljana U.
2006-01-01
By combining data from cosmic microwave background (CMB) experiments (including the recent WMAP third year results), large scale structure (LSS) and Lyman-{alpha} forest observations, we derive upper limits on the sum of neutrino masses of {summation}m{sub v} < 0.17eV at 95% c.l.. We then constrain the hypothesis of a fourth, sterile, massive neutrino. For the 3 massless + 1 massive neutrino case we bound the mass of the sterile neutrino to m{sub s} < 0.26eV at 95% c.l.. These results exclude at high significance the sterile neutrino hypothesis as an explanation of the LSND anomaly. We then generalize the analysis to account for active neutrino masses which tightens the limit to m{sub s} < 0.23eV and the possibility that the sterile abundance is not thermal. In the latter case, the constraints in the (mass, density) plane are nontrivial. For a mass of > 1eV or < 0.05eV the cosmological energy density in sterile neutrinos is always constrained to be {omega}{sub v} < 0.003 at 95% c.l.. However, for a sterile neutrino mass of {omega}{sub v} 0.25eV, {omega}{sub v} can be as large as 0.01.
PINGU sensitivity to neutrino mass hierarchy
Groß, Andreas; Collaboration: IceCube-PINGU Collaboration
2014-11-18
Determination of the neutrino mass hierarchy (NMH) is among the most fundamental questions in particle physics. Recent measurements of 1) a large mixing angle between the first and the third neutrino mass eigenstates and 2) the first observation of atmospheric neutrino oscillations at tens of GeV with neutrino telescopes, open the intriguing new possibility to exploit matter effects in neutrino oscillation to determine the neutrino mass hierarchy. A further extension of IceCube/DeepCore called PINGU (Precision IceCube Next Generation Upgrade) has been recently envisioned with the ultimate goal to measure neutrino mass hierarchy. PINGU would consist of additional IceCube-like strings of detectors deployed in the deepest and cleanest ice in the center of IceCube. More densely deployed instrumentation would provide a threshold substantially below 10 GeV and enhance the sensitivity to the mass hierarchy signal in atmospheric neutrinos. Here we discuss an estimate of the PINGU sensitivity to the mass hierarchy determined using an approximation with an Asimov dataset and an oscillation parameter fit.
Novel Frameworks for Dark Matter and Neutrino Masses
NASA Astrophysics Data System (ADS)
Schmidt, Daniel
2013-12-01
The established light neutrino masses and the Dark Matter of the Universe both require physics beyond the Standard Model for their theoretical explanation. Models that provide a common framework for these two issues are very attractive. In particular, radiative mechanisms naturally yield light neutrino masses due to loop suppression factors. These corrections can comprise a link to the physics of Dark Matter. In most considerations, the Dark Matter relic density is produced by freeze-out. This thesis contributes to the elds of radiative neutrino masses and frozen-out Dark Matter. In detail, it is shown that in the Ma-model, right-handed neutrino Dark Matter can be directly detected by photon exchange at one-loop level. The Zee{Babu-model is extended such that it enjoys a global symmetry based on baryon and lepton number. This symmetry generates light neutrino masses and a mass for a stable Dark Matter particle by its spontaneous breaking. Moreover, this thesis provides a new production mechanism for keV sterile neutrino Dark Mattetr, which is based on the freeze-in scenario. In particular, keV sterile neutrino Dark Matter produced by the decay of a frozen-in scalar is investigated.
Testing constrained sequential dominance models of neutrinos
NASA Astrophysics Data System (ADS)
Björkeroth, Fredrik; King, Stephen F.
2015-12-01
Constrained sequential dominance (CSD) is a natural framework for implementing the see-saw mechanism of neutrino masses which allows the mixing angles and phases to be accurately predicted in terms of relatively few input parameters. We analyze a class of CSD(n) models where, in the flavour basis, two right-handed neutrinos are dominantly responsible for the ‘atmospheric’ and ‘solar’ neutrino masses with Yukawa couplings to ({ν }e,{ν }μ ,{ν }τ ) proportional to (0,1,1) and (1,n,n-2), respectively, where n is a positive integer. These coupling patterns may arise in indirect family symmetry models based on A 4. With two right-handed neutrinos, using a χ 2 test, we find a good agreement with data for CSD(3) and CSD(4) where the entire Pontecorvo-Maki-Nakagawa-Sakata mixing matrix is controlled by a single phase η, which takes simple values, leading to accurate predictions for mixing angles and the magnitude of the oscillation phase | {δ }{CP}| . We carefully study the perturbing effect of a third ‘decoupled’ right-handed neutrino, leading to a bound on the lightest physical neutrino mass {m}1{{≲ }}1 meV for the viable cases, corresponding to a normal neutrino mass hierarchy. We also discuss a direct link between the oscillation phase {δ }{CP} and leptogenesis in CSD(n) due to the same see-saw phase η appearing in both the neutrino mass matrix and leptogenesis.
NASA Astrophysics Data System (ADS)
Šoln, Josip
2009-08-01
For the electroweak interactions, the massive neutrino perturbative kinematical procedure is developed in the massive neutrino Fock space. The perturbation expansion parameter is the ratio of neutrino mass to its energy. This procedure, within the Pontecorvo-Maki-Nakagawa-Sakata (PMNS)-modified electroweak Lagrangian, calculates the cross-sections with the new neutrino energy projection operators in the massive neutrino Fock space, resulting in the dominant Lorentz invariant standard model massless flavor neutrino cross-sections. As a consequence of the kinematical relations between the massive and massless neutrinos, some of the neutrino oscillation cross-sections are Lorentz invariance violating. But all these oscillating cross-sections, some of which violate the flavor conservation, being proportional to the squares of neutrino masses are practically unobservable in the laboratory. However, these neutrino oscillating cross-sections are consistent with the original Pontecorvo neutrino oscillating transition probability expression at short time (baseline), as presented by Dvornikov. From these comparisons, by mimicking the time dependence of the original Pontecorvo neutrino oscillating transition probability, one can formulate the dimensionless neutrino intensity-probability I, by phenomenologically extrapolating the time t, or, equivalently the baseline distance L away from the collision point for the oscillating differential cross-section. For the incoming neutrino of 10 MeV in energy and neutrino masses from Fritzsch analysis with the neutrino mixing matrix of Harrison, Perkins and Scott, the baseline distances at the first two maxima of the neutrino intensity are Lsime281 and 9279 km. The intensity I at the first maximum conserves the flavor, while at the second maximum, the intensities violate the flavor, respectively, in the final and initial state. At the end some details are given as to how one should be able to verify experimentally these neutrino
Status of the KATRIN Neutrino Mass Experiment
NASA Astrophysics Data System (ADS)
Parno, Diana; Katrin Collaboration
2015-04-01
The Karlsruhe Tritium Neutrino experiment (KATRIN), presently under construction in Germany, will probe the absolute mass scale of the neutrino through the kinematics of tritium beta decay, a nearly model-independent approach. To achieve the projected sensitivity of 0.2 eV at the 90% confidence level, KATRIN will use a windowless, gaseous tritium source and a large magnetic adiabatic collimation-electrostatic filter. The collaboration has now completed a second commissioning phase of the spectrometer and detector section, and construction of the tritium sections is proceeding well. We will report on the current status of the experiment and the outlook for data-taking with tritium. US participation in KATRIN is supported by the U.S. Department of Energy Office of Science, Office of Nuclear Physics under Award Number DE-FG02-97ER41020.
Status of the neutrino mass experiment KATRIN
Bornschein, L.; Bornschein, B.; Sturm, M.; Roellig, M.; Priester, F.
2015-03-15
The most sensitive way to determine the neutrino mass scale without further assumptions is to measure the shape of a tritium beta spectrum near its kinematic end-point. Tritium is the nucleus of choice because of its low endpoint energy, superallowed decay and simple atomic structure. Within an international collaboration the Karlsruhe Tritium Neutrino experiment (KATRIN) is currently being built up at KIT. KATRIN will allow a model-independent measurement of the neutrino mass scale with an expected sensitivity of 0.2 eV/c{sup 2} (90% CL). KATRIN will use a source of ultrapure molecular tritium. This contribution presents the status of the KATRIN experiment, thereby focusing on its Calibration and Monitoring System (CMS), which is the last component being subject to research/development. After a brief overview of the KATRIN experiment in Section II the CMS is introduced in Section III. In Section IV the Beta Induced X-Ray Spectroscopy (BIXS) as method of choice to monitor the tritium activity of the KATRIN source is described and first results are presented.
Limits on the neutrino mass from cosmology
Melchiorri, Alessandro; De Bernardis, Francesco; Menegoni, Eloisa
2010-07-12
We use measurements of luminosity-dependent galaxy bias at several different redshifts, SDSS at z = 0.05, DEEP2 at z = 1 and LBGs at z = 3.8, combined with WMAP five-year cosmic microwave background anisotropy data and SDSS Red Luminous Galaxy survey three-dimensional clustering power spectrum to put constraints on cosmological parameters. Fitting this combined dataset, we show that the luminosity-dependent bias data that probe the relation between halo bias and halo mass and its redshift evolution are very sensitive to sum of the neutrino masses: in particular we obtain the upper limit of {Sigma}m{sub {nu}<}0.28 eV at the 95% confidence level for a {Lambda}CDM+m{sub {nu}}model, with a {sigma}8 equal to {sigma}8 = 0.759{+-}0.025 (1{sigma}). When we allow the dark energy equation of state parameter w to vary we find w -1.30{+-}0.19 for a general wCDM+m{sub {nu}}model with the 95% confidence level upper limit on the neutrino masses at {Sigma}m{sub {nu}<}0.59 eV. The constraint on the dark energy equation of state further improves to w = -1.125{+-}0.092 when using also ACBAR and supernovae Union data, in addition to above, with a prior on the Hubble constant from the Hubble Space Telescope. Finally, we have investigated the ability of future cosmic shear measurements, like those achievable with the proposed Euclid mission, to constrain differences in the mass of individual neutrino species.
Distinguishing neutrino mass hierarchies using dark matter annihilation signals at IceCube
Allahverdi, Rouzbeh; Dutta, Bhaskar; Ghosh, Dilip Kumar; Knockel, Bradley; Saha, Ipsita
2015-12-01
We explore the possibility of distinguishing neutrino mass hierarchies through the neutrino signal from dark matter annihilation at neutrino telescopes. We consider a simple extension of the standard model where the neutrino masses and mixing angles are obtained via the type-II seesaw mechanism as an explicit example. We show that future extensions of IceCube neutrino telescope may detect the neutrino signal from DM annihilation at the Galactic Center and inside the Sun, and differentiate between the normal and inverted mass hierarchies, in this model.
Arkani-Hamed, Nima; Hall, Lawrence; Murayama, Hitoshi; Smith,David; Weiner, Neal
2000-10-10
Theories in which neutrino masses are generated by a conventional see-saw mechanism generically yield masses which are O(v{sup 2}) in units where M{sub Pl} = 1, which is naively too small to explain the results from SuperKamiokande. In supersymmetric theories with gravity mediated supersymmetry breaking, the fundamental small parameter is not v/M{sub Pl}, but m{sub I}/M{sub Pl}, where m{sub I} is the scale of supersymmetry breaking in the hidden sector. We note that m{sub I}{sup 3}/M{sub Pl}{sup 2} is only slightly too large to explain SuperKamiokande, and present two models that achieve neutrino masses at this order in m{sub I}, one of which has an additional suppression {lambda}{sub {tau}}{sup 2}, while the other has additional suppression arising from a loop factor. The latter model shares a great deal of phenomenology with a class of models previously explored, including the possibility of viable sneutrino dark matter.
Matter-antimatter oscillations and neutrino mass
Senjanovic, G.
1982-01-01
A discussion of neutron-antineutron (n- anti n) and hydrogen-antihydrogen (H- anti H) transitions is presented. An SU(2)/sub L/ x U(1) x SU(3)/sub c/ model with spontaneously broken global B-L symmetry is shown to predict the interesting connection between oscillation times T/sub n- anti n/, T/sub H- anti H/, neutrino mass and the mass of a doubly charged Higgs scalar. A case of B-L as a gauge symmetry is discussed in the context of SU(2)/sub L/ x SU(2)/sub R/ x U(1)/sub B-L/ x SU(3)/sub c/ gauge model, with the emphasis on matter oscillations. Finally, an analysis of Higgs mass scales in GUTS and their impact on such processes is offered.
Neutrino masses in lepton number violating mSUGRA
Kom, Steve C. H.
2008-11-23
In SUSY models which violate R-parity, there exist trilinear lepton number violating (LNV) operators which can lead to neutrino masses. If these operators are defined at the unification scale, the renormalization group flow becomes important and generally leads to one neutrino mass much heavier than the others. We study, in a minimal supergravity (mSUGRA) set-up with two trilinear LNV operators and three charged lepton mixing angles, numerically how these parameters may be arranged to be compatible with neutrino oscillation data, and discuss some phenomenological observations.
NASA Astrophysics Data System (ADS)
Ding, Ran; Han, Zhi-Long; Liao, Yi; Ma, Xiao-Dong
2016-04-01
We propose that the possible 750 GeVdiphoton excess can be explained in the color-octet neutrino mass model extended with a scalar singlet Φ . The model generally contains N_s species of color-octet, electroweak doublet scalars S and N_f species of color-octet, electroweak triplet χ or singlet ρ fermions. While both scalars and fermions contribute to the production of Φ through gluon fusion, only the charged members induce the diphoton decay of Φ . The diphoton rate can be significantly enhanced due to interference between the scalar and fermion loops. We show that the diphoton cross section can be from 3 to 10 fb for O(TeV) color-octet particles while evading all current LHC limits.
Frigerio, Michele; Ma, Ernest
2007-11-01
The smallness of the 1-3 lepton mixing angle {theta}{sub 13} and of the neutrino mass-squared-difference ratio {delta}m{sub 12}{sup 2}/{delta}m{sub 23}{sup 2} can be understood as the departure from a common limit where they both vanish. We discuss in general the conditions for realizing the mass degeneracy of a pair of neutrinos and show that the vanishing of a CP violating phase is needed. We find that the discrete quaternion group Q of eight elements is the simplest family symmetry which correlates the smallness of {delta}m{sub 12}{sup 2} to the value of {theta}{sub 13}. In such a model we predict 0.12 < or approx. sin{theta}{sub 13} < or approx. 0.2 if the ordering of the neutrino mass spectrum is normal, and sin{theta}{sub 13} < or approx. 0.12 if it is inverted.
Sterile neutrino dark matter production in the neutrino-phillic two Higgs doublet model
NASA Astrophysics Data System (ADS)
Adulpravitchai, Adisorn; Schmidt, Michael A.
2015-12-01
Sterile Neutrinos with a mass in the keV range form a good candidate for dark matter. They are naturally produced from neutrino oscillations via their mixing with the active neutrinos. However the production via non-resonant neutrino oscillations has recently been ruled out. The alternative production via Higgs decay is negligibly small compared to neutrino oscillations. We show that in the neutrino-phillic two Higgs doublet model, the contribution from Higgs decay can dominate over the contribution from neutrino oscillations and evade all constraints. We also study the free-streaming horizon and find that a sterile neutrino mass in the range of 4 to 53 keV leads to warm dark matter.
Status of the Zee-Babu model for neutrino mass and possible tests at a like-sign linear collider
NASA Astrophysics Data System (ADS)
Schmidt, Daniel; Schwetz, Thomas; Zhang, He
2014-08-01
We provide an updated scan of the allowed parameter space of the two-loop Zee-Babu model for neutrino mass. Taking into account most recent experimental data on μ→eγ as well as the mixing angle θ13 we obtain lower bounds on the masses of the singly and doubly charged scalars of between 1 and 2 TeV, with some dependence on perturbativity and fine-tuning requirements. This makes the scalars difficult to observe at LHC with 14 TeV even with optimistic assumptions on the luminosity, and would require a multi-TeV linear collider to see the scalar resonances. We point out, however, that a sub-TeV linear collider in the like-sign mode may be able to observe lepton flavor violating processes such as e-e-→μ-μ- due to contact interactions induced by the doubly charged scalar with masses up to around 10 TeV. We investigate the possibility to distinguish the Zee-Babu model from the Higgs triplet model using such processes.
Hierarchical majorana neutrinos from democratic mass matrices
NASA Astrophysics Data System (ADS)
Yang, Masaki J. S.
2016-09-01
In this paper, we obtain the light neutrino masses and mixings consistent with the experiments, in the democratic texture approach. The essential ansatz is that νRi are assumed to transform as "right-handed fields" 2R +1R under the S3L ×S3R symmetry. The symmetry breaking terms are assumed to be diagonal and hierarchical. This setup only allows the normal hierarchy of the neutrino mass, and excludes both of inverted hierarchical and degenerated neutrinos. Although the neutrino sector has nine free parameters, several predictions are obtained at the leading order. When we neglect the smallest parameters ζν and ζR, all components of the mixing matrix UPMNS are expressed by the masses of light neutrinos and charged leptons. From the consistency between predicted and observed UPMNS, we obtain the lightest neutrino masses m1 = (1.1 → 1.4) meV, and the effective mass for the double beta decay
Observables sensitive to absolute neutrino masses. II
Fogli, G. L.; Marrone, A.; Rotunno, A. M.; Lisi, E.; Melchiorri, A.; Palazzo, A.; Silk, J.; Slosar, A.
2008-08-01
In this followup to Phys. Rev. D 75, 053001 (2007) , we report updated constraints on neutrino mass-mixing parameters, in light of recent neutrino oscillation data (KamLAND, SNO, and MINOS) and cosmological observations (WMAP 5-year and other data). We discuss their interplay with the final 0{nu}2{beta} decay results in {sup 76}Ge claimed by part of the Heidelberg-Moscow Collaboration, using recent evaluations of the corresponding nuclear matrix elements, and their uncertainties. We also comment on the 0{nu}2{beta} limits in {sup 130}Te recently set by Cuoricino and on prospective limits or signals from the Karlsruhe tritium neutrino experiment.
Measurement of neutrino masses from relative velocities.
Zhu, Hong-Ming; Pen, Ue-Li; Chen, Xuelei; Inman, Derek; Yu, Yu
2014-09-26
We present a new technique to measure neutrino masses using their flow field relative to dark matter. Present day streaming motions of neutrinos relative to dark matter and baryons are several hundred km/s, comparable with their thermal velocity dispersion. This results in a unique dipole anisotropic distortion of the matter-neutrino cross power spectrum, which is observable through the dipole distortion in the cross correlation of different galaxy populations. Such a dipole vanishes if not for this relative velocity and so it is a clean signature for neutrino mass. We estimate the size of this effect and find that current and future galaxy surveys may be sensitive to these signature distortions. PMID:25302878
Fogli, G.L.; Lisi, E.; Marrone, A.; Palazzo, A.; Melchiorri, A.; Serra, P.; Silk, J.
2004-12-01
In the context of three-flavor neutrino mixing, we present a thorough study of the phenomenological constraints applicable to three observables sensitive to absolute neutrino masses: The effective neutrino mass in Tritium beta-decay (m{sub {beta}}); the effective Majorana neutrino mass in neutrinoless double beta-decay (m{sub {beta}}{sub {beta}}); and the sum of neutrino masses in cosmology ({sigma}). We discuss the correlations among these variables which arise from the combination of all the available neutrino oscillation data, in both normal and inverse neutrino mass hierarchy. We set upper limits on m{sub {beta}} by combining updated results from the Mainz and Troitsk experiments. We also consider the latest results on m{sub {beta}}{sub {beta}} from the Heidelberg-Moscow experiment, both with and without the lower bound claimed by such experiment. We derive upper limits on {sigma} from an updated combination of data from the Wilkinson Microwave Anisotropy Probe (WMAP) satellite and the two degrees Fields (2dF) Galaxy Redshifts Survey, with and without Lyman-{alpha} forest data from the Sloan Digital Sky Survey (SDSS), in models with a nonzero running of the spectral index of primordial inflationary perturbations. The results are discussed in terms of two-dimensional projections of the globally allowed region in the (m{sub {beta}},m{sub {beta}}{sub {beta}},{sigma}) parameter space, which neatly show the relative impact of each data set. In particular, the (in)compatibility between {sigma} and m{sub {beta}}{sub {beta}} constraints is highlighted for various combinations of data. We also briefly discuss how future neutrino data (both oscillatory and nonoscillatory) can further probe the currently allowed regions.
McKeown, R. D.
2010-08-04
Recent studies of neutrino oscillations have established the existence of finite neutrino masses and mixing between generations of neutrinos. The combined results from studies of atmospheric neutrinos, solar neutrinos, reactor antineutrinos and neutrinos produced at accelerators paint an intriguing picture that clearly requires modification of the standard model of particle physics. These results also provide clear motivation for future neutrino oscillation experiments as well as searches for direct neutrino mass and nuclear double-beta decay. I will discuss the program of new neutrino oscillation experiments aimed at completing our knowledge of the neutrino mixing matrix.
NASA Astrophysics Data System (ADS)
Wu, Meng-Ru; Qian, Yong-Zhong; Martínez-Pinedo, Gabriel; Fischer, Tobias; Huther, Lutz
2015-03-01
In this paper, we explore the effects of neutrino flavor oscillations on supernova nucleosynthesis and on the neutrino signals. Our study is based on detailed information about the neutrino spectra and their time evolution from a spherically symmetric supernova model for an 18 M⊙ progenitor. We find that collective neutrino oscillations are not only sensitive to the detailed neutrino energy and angular distributions at emission, but also to the time evolution of both the neutrino spectra and the electron density profile. We apply the results of neutrino oscillations to study the impact on supernova nucleosynthesis and on the neutrino signals from a Galactic supernova. We show that in our supernova model, collective neutrino oscillations enhance the production of rare isotopes 138La and 180Ta but have little impact on the ν p -process nucleosynthesis. In addition, the adiabatic Mikheyev-Smirnov-Wolfenstein flavor transformation, which occurs in the C /O and He shells of the supernova, may affect the production of light nuclei such as 7Li and 11B. For the neutrino signals, we calculate the rate of neutrino events in the Super-Kamiokande detector and in a hypothetical liquid argon detector. Our results suggest the possibility of using the time profiles of the events in both detectors, along with the spectral information of the detected neutrinos, to infer the neutrino mass hierarchy.
Zero minors of the neutrino mass matrix
Lashin, E. I.; Chamoun, N.
2008-10-01
We examine the possibility that a certain class of neutrino mass matrices, namely, those with two independent vanishing minors in the flavor basis, regardless of being invertible or not, is sufficient to describe current data. We compute generic formulas for the ratios of the neutrino masses and for the Majorana phases. We find that seven textures with two vanishing minors can accommodate the experimental data. We present an estimate of the mass matrix for these patterns. All of the possible textures can be dynamically generated through the seesaw mechanism augmented with a discrete Abelian symmetry.
Scalar sextet in the 331 model with right-handed neutrinos
Nguyen Anh Ky; Nguyen Thi Hong Van
2005-12-01
A Higgs sextet is introduced in order to generate Dirac and Majorana neutrino masses in the 331 model with right-handed neutrinos. As will be seen the present sextet introduction leads to a rich neutrino mass structure. The smallness of neutrino masses can be achieved via, for example, a seesaw limit. The fact that the masses of the charged leptons are not effected by their new Yukawa couplings to the sextet is convenient for generating small neutrino masses.
Gu, Pei-Hong
2014-12-01
We propose an SO(10) × SO(10)' model to simultaneously realize a seesaw for Dirac neutrino masses and a leptogenesis for ordinary and dark matter-antimatter asymmetries. A (16 × 1-bar 6-bar '){sub H} scalar crossing the SO(10) and SO(10)' sectors plays an essential role in this seesaw-leptogenesis scenario. As a result of lepton number conservation, the lightest dark nucleon as the dark matter particle should have a determined mass around 15 GeV to explain the comparable fractions of ordinary and dark matter in the present universe. The (16 × 1-bar 6-bar '){sub H} scalar also mediates a U(1){sub em} × U(1)'{sub em} kinetic mixing after the ordinary and dark left-right symmetry breaking so that we can expect a dark nucleon scattering in direct detection experiments and/or a dark nucleon decay in indirect detection experiments. Furthermore, we can impose a softly broken mirror symmetry to simplify the parameter choice.
Small Neutrino Masses from Supersymmetry Breaking
Arkani-Hamed, Nima; Hall, Lawrence; Murayama, Hitoshi; Smith, David; Weiner, Neal
2000-06-27
An alternative to the conventional see-saw mechanism is proposed to explain the origin of small neutrino masses in supersymmetric theories. The masses and couplings of the right-handed neutrino field are suppressed by supersymmetry breaking, in a way similar to the suppression of the Higgs doublet mass, $\\mu$. New mechanisms for light Majorana, Dirac and sterile neutrinos arise, depending on the degree of suppression. Superpartner phenomenology is greatly altered by the presence of weak scale right-handed sneutrinos, which may have a coupling to a Higgs boson and a left-handed sneutrino. The sneutrino spectrum and couplings are quite unlike the conventional case - the lightest sneutrino can be the dark matter and predictions are given for event rates at upcoming halo dark matter direct detection experiments. Higgs decays and search strategies are changed. Copious Higgs production at hadron colliders can result from cascade decays of squarks and gluinos.
Probing neutrino masses with CMB lensing extraction
NASA Astrophysics Data System (ADS)
Lesgourgues, Julien; Perotto, Laurence; Pastor, Sergio; Piat, Michel
2006-02-01
We evaluate the ability of future cosmic microwave background (CMB) experiments to measure the power spectrum of large scale structure using quadratic estimators of the weak lensing deflection field. We calculate the sensitivity of upcoming CMB experiments such as BICEP, QUaD, BRAIN, ClOVER and Planck to the nonzero total neutrino mass Mν indicated by current neutrino oscillation data. We find that these experiments greatly benefit from lensing extraction techniques, improving their one-sigma sensitivity to Mν by a factor of order four. The combination of data from Planck and the SAMPAN mini-satellite project would lead to σ(Mν)˜0.1 eV, while a value as small as σ(Mν)˜0.035 eV is within the reach of a space mission based on bolometers with a passively cooled 3 4 m aperture telescope, representative of the most ambitious projects currently under investigation. We show that our results are robust not only considering possible difficulties in subtracting astrophysical foregrounds from the primary CMB signal but also when the minimal cosmological model (Λ Mixed Dark Matter) is generalized in order to include a possible scalar tilt running, a constant equation-of-state parameter for the dark energy and/or extra relativistic degrees of freedom.
Neutrino masses and proton decay in SO(10)
NASA Astrophysics Data System (ADS)
Abud, M.; Buccella, F.; Falcone, D.
2012-10-01
We consider the constraints on SO(10) unified models coming from the lower limits on proton lifetime and on the scale of B-L symmetry breaking within the framework of the seesaw model for neutrino masses. By upgrading a triangular relationship for the inverse of νL Majorana masses to the experimental situation with nonmaximal θ23 and nonvanishing θ13, we get for the sum of νL masses the upper limit 0.16 eV.
Neutrino in standard model and beyond
NASA Astrophysics Data System (ADS)
Bilenky, S. M.
2015-07-01
After discovery of the Higgs boson at CERN the Standard Model acquired a status of the theory of the elementary particles in the electroweak range (up to about 300 GeV). What general conclusions can be inferred from the Standard Model? It looks that the Standard Model teaches us that in the framework of such general principles as local gauge symmetry, unification of weak and electromagnetic interactions and Brout-Englert-Higgs spontaneous breaking of the electroweak symmetry nature chooses the simplest possibilities. Two-component left-handed massless neutrino fields play crucial role in the determination of the charged current structure of the Standard Model. The absence of the right-handed neutrino fields in the Standard Model is the simplest, most economical possibility. In such a scenario Majorana mass term is the only possibility for neutrinos to be massive and mixed. Such mass term is generated by the lepton-number violating Weinberg effective Lagrangian. In this approach three Majorana neutrino masses are suppressed with respect to the masses of other fundamental fermions by the ratio of the electroweak scale and a scale of a lepton-number violating physics. The discovery of the neutrinoless double β-decay and absence of transitions of flavor neutrinos into sterile states would be evidence in favor of the minimal scenario we advocate here.
Maximal CP violation in flavor neutrino masses
NASA Astrophysics Data System (ADS)
Kitabayashi, Teruyuki; Yasuè, Masaki
2016-03-01
Since flavor neutrino masses Mμμ,ττ,μτ can be expressed in terms of Mee,eμ,eτ, mutual dependence among Mμμ,ττ,μτ is derived by imposing some constraints on Mee,eμ,eτ. For appropriately imposed constraints on Mee,eμ,eτ giving rise to both maximal CP violation and the maximal atmospheric neutrino mixing, we show various specific textures of neutrino mass matrices including the texture with Mττ = Mμμ∗ derived as the simplest solution to the constraint of Mττ ‑ Mμμ = imaginary, which is required by the constraint of Meμcos θ23 ‑ Meτsin θ23 = real for cos 2θ23 = 0. It is found that Majorana CP violation depends on the phase of Mee.
Form Invariance of the Neutrino Mass Matrix
NASA Astrophysics Data System (ADS)
Ma, Ernest
2003-06-01
Consider the most general 3×3 Majorana neutrino mass matrix M. Motivated by present neutrino-oscillation data, much theoretical effort is directed at reducing it to a specific texture in terms of a small number of parameters. This procedure is often adhoc. I propose instead that for any M one may choose, it should satisfy the condition UMUT=M, where U≠1 is a specific unitary matrix such that UN represents a well-defined discrete symmetry in the νe,μ,τ basis, N being a particular integer not necessarily equal to 1. I illustrate this idea with a number of examples, including the realistic case of an inverted hierarchy of neutrino masses.
Towards a cosmological neutrino mass detection
NASA Astrophysics Data System (ADS)
Allison, R.; Caucal, P.; Calabrese, E.; Dunkley, J.; Louis, T.
2015-12-01
Future cosmological measurements should enable the sum of neutrino masses to be determined indirectly through their effects on the expansion rate of the Universe and the clustering of matter. We consider prospects for the gravitationally lensed cosmic microwave background (CMB) anisotropies and baryon acoustic oscillations (BAOs) in the galaxy distribution, examining how the projected uncertainty of ≈15 meV on the neutrino mass sum (a 4 σ detection of the minimal mass) might be reached over the next decade. The current 1 σ uncertainty of ≈103 meV (Planck-2015 +BAO -15 ) will be improved by upcoming "Stage-3" (S3) CMB experiments (S 3 +BAO -15 : 44 meV ), then upcoming BAO measurements (S 3 +DESI : 22 meV ), and planned next-generation "Stage 4" (S4) CMB experiments (S 4 +DESI : 15 - 19 meV , depending on angular range). An improved optical depth measurement is important: the projected neutrino mass uncertainty increases to 26 meV if S4 is limited to ℓ>20 and combined with current large-scale polarization data. Looking beyond Λ CDM , including curvature uncertainty increases the forecast mass error by ≈50 % for S 4 +DESI , and more than doubles the error with a two-parameter dark-energy equation of state. Complementary low-redshift probes including galaxy lensing will play a role in distinguishing between massive neutrinos and a departure from a w =-1 , flat geometry.
NASA Astrophysics Data System (ADS)
Fargion, Daniele; D'Armiento, Daniele
2012-08-01
We tried to fit in any way the recent OPERA-CERN claims of a neutrino super-luminal speed with the observed supernova SN1987A neutrino burst and all (or most) neutrino flavor oscillations. We considered three main frameworks: (1) tachyon imaginary neutrino mass, whose timing is nevertheless in conflict with the observed IMB-Kamiokande SN1987A burst by thousands of billion times longer. (2) An ad hoc anti-tachyon model whose timing shrinkage may accommodate the SN1987A burst but greatly disagrees with the energy-independent CERN-OPERA super-luminal speed. (3) A split neutrino flavor speed (among a common real mass relativistic νe component and a super-luminal νμ) in an ad hoc frozen speed scenario that leads to the prompt neutrino de-coherence and rapid flavor mixing (between νe and νμ, ντ) that are in conflict with most oscillation records. Therefore, we concluded that an error must be hidden in OPERA-CERN time calibration (as indeed recent rumors seem to confirm). We concluded recalling the relevance of the real guaranteed minimal atmospheric neutrino mass whose detection may be achieved by a millisecond graviton-neutrino split time delay among the gravity burst and neutronization neutrino peak in any future supernova explosion in Andromeda recordable in the Megaton neutrino detector.
Shedding light on neutrino masses with dark forces
NASA Astrophysics Data System (ADS)
Batell, Brian; Pospelov, Maxim; Shuve, Brian
2016-08-01
Heavy right-handed neutrinos, N , provide the simplest explanation for the origin of light neutrino masses and mixings. If M N is at or below the weak scale, direct experimental discovery of these states is possible at accelerator experiments such as the LHC or new dedicated beam dump experiments; in these experiments, N decays after traversing a macroscopic distance from the collision point. The experimental sensitivity to right-handed neutrinos is significantly enhanced if there is a new "dark" gauge force connecting them to the Standard Model (SM), and detection of N can be the primary discovery mode for the new dark force itself. We take the well-motivated example of a B - L gauge symmetry and analyze the sensitivity to displaced decays of N produced via the new gauge interaction in two experiments: the LHC and the proposed SHiP beam dump experiment. In the most favorable case in which the mediator can be produced on-shell and decays to right handed neutrinos ( pp → X + V B- L → X + N N ), the sensitivity reach is controlled by the square of the B - L gauge coupling. We demonstrate that these experiments could access neutrino parameters responsible for the observed SM neutrino masses and mixings in the most straightforward implementation of the see-saw mechanism.
Consistency of WIMP Dark Matter as radiative neutrino mass messenger
NASA Astrophysics Data System (ADS)
Merle, Alexander; Platscher, Moritz; Rojas, Nicolás; Valle, José W. F.; Vicente, Avelino
2016-07-01
The scotogenic scenario provides an attractive approach to both Dark Matter and neutrino mass generation, in which the same symmetry that stabilises Dark Matter also ensures the radiative seesaw origin of neutrino mass. However the simplest scenario may suffer from inconsistencies arising from the spontaneous breaking of the underlying ℤ 2 symmetry. Here we show that the singlet-triplet extension of the simplest model naturally avoids this problem due to the presence of scalar triplets neutral under the ℤ 2 which affect the evolution of the couplings in the scalar sector. The scenario offers good prospects for direct WIMP Dark Matter detection through the nuclear recoil method.
New Stringy Instanton Effects And Neutrino Majorana Masses
Cvetic, M.; Richter, R.; Weigand, T.
2007-10-03
D-brane instantons can generate open string couplings in the superpotential which violate global abelian symmetries and are therefore perturbatively forbidden. After discussing the main ingredients, focussing for concretenes on Type IIA orientifold compactifications, we exemplify the computation of instanton-induced Majorana mass terms for right-handed neutrinos in a local SU(5) GUT-like model. In particular, we show that the instanton allows for naturally engineering the intermediate scale of the Majorana masses, thereby realizing the seesaw mechanism for neutrinos.
Reconstructing SUSY and R-Neutrino Masses in SO(10)
Deppisch, F.; Freitas, A.; Porod, W.; Zerwas, P. M.
2008-11-23
We report on the extrapolation of scalar mass parameters in the lepton sector to reconstruct SO(10) scenarios close to the unification scale. The method is demonstrated for an example in which SO(10) is broken directly to the Standard Model, based on the expected precision from coherent LHC and ILC collider analyses. In addition to the fundamental scalar mass parameters at the unification scale, the mass of the heaviest right-handed neutrino can be estimated in the seesaw scenario.
Proton decay and neutrino masses inSO(10)
NASA Astrophysics Data System (ADS)
Acampora, F.; Amelino-Camelia, G.; Buccella, F.; Pisanti, O.; Rosa, L.; Tuzi, T.
1995-03-01
In the last few years physicists have been looking at $SO(10)$ GUT models with renewed attention because it has been realized that the SU(5) minimal model cannot unify the strong, electromagnetic and weak interactions in a way consistent with the experimental values of $\\alpha(M_Z)$, $\\si$ and $\\alpha_S(M_Z)$. In this paper we derive lower limits on neutrino masses, relevant for cosmology and for the solar-neutrino problem, from necessary consistency conditions on a class of $SO(10)$ models with $\\sq$ or $\\stt$ intermediate gauge symmetry.
Unique forbidden beta decays and neutrino mass
NASA Astrophysics Data System (ADS)
Dvornický, Rastislav; Šimkovic, Fedor
2015-10-01
The measurement of the electron energy spectrum in single β decays close to the endpoint provides a direct determination of the neutrino masses. The most sensitive experiments use β decays with low Q value, e.g. KATRIN (tritium) and MARE (rhenium). We present the theoretical spectral shape of electrons emitted in the first, second, and fourth unique forbidden β decays. Our findings show that the Kurie functions for these unique forbidden β transitions are linear in the limit of massless neutrinos like the Kurie function of the allowed β decay of tritium.
Unique forbidden beta decays and neutrino mass
Dvornický, Rastislav; Šimkovic, Fedor
2015-10-28
The measurement of the electron energy spectrum in single β decays close to the endpoint provides a direct determination of the neutrino masses. The most sensitive experiments use β decays with low Q value, e.g. KATRIN (tritium) and MARE (rhenium). We present the theoretical spectral shape of electrons emitted in the first, second, and fourth unique forbidden β decays. Our findings show that the Kurie functions for these unique forbidden β transitions are linear in the limit of massless neutrinos like the Kurie function of the allowed β decay of tritium.
Measuring neutrino masses with a future galaxy survey
Hamann, Jan; Hannestad, Steen; Wong, Yvonne Y.Y. E-mail: sth@phys.au.dk
2012-11-01
We perform a detailed forecast on how well a EUCLID-like photometric galaxy and cosmic shear survey will be able to constrain the absolute neutrino mass scale. Adopting conservative assumptions about the survey specifications and assuming complete ignorance of the galaxy bias, we estimate that the minimum mass sum of Σm{sub ν} ≅ 0.06 eV in the normal hierarchy can be detected at 1.5σ to 2.5σ significance, depending on the model complexity, using a combination of galaxy and cosmic shear power spectrum measurements in conjunction with CMB temperature and polarisation observations from PLANCK. With better knowledge of the galaxy bias, the significance of the detection could potentially reach 5.4σ. Interestingly, neither PLANCK+shear nor PLANCK+galaxy alone can achieve this level of sensitivity; it is the combined effect of galaxy and cosmic shear power spectrum measurements that breaks the persistent degeneracies between the neutrino mass, the physical matter density, and the Hubble parameter. Notwithstanding this remarkable sensitivity to Σm{sub ν}, EUCLID-like shear and galaxy data will not be sensitive to the exact mass spectrum of the neutrino sector; no significant bias ( < 1σ) in the parameter estimation is induced by fitting inaccurate models of the neutrino mass splittings to the mock data, nor does the goodness-of-fit of these models suffer any significant degradation relative to the true one (Δχ{sub eff}{sup 2} < 1)
One vanishing minor in the neutrino mass matrix
Lashin, E. I.; Chamoun, N.
2009-11-01
We study a specific texture of the neutrino mass matrix, namely the models with one 2x2 subdeterminant equal to zero. We carry out a complete phenomenological analysis with all possible relevant correlations. Every pattern of the six possible ones is found able to accommodate the experimental data, with three cases allowing also for noninvertible mass matrices. We present symmetry realizations for all the models.
Constraining neutrino mass from neutrinoless double beta decay
NASA Astrophysics Data System (ADS)
Dev, P. S. Bhupal; Goswami, Srubabati; Mitra, Manimala; Rodejohann, Werner
2013-11-01
We study the implications of the recent results on neutrinoless double beta decay (0νββ) from GERDA-I (Ge76) and KamLAND-Zen+EXO-200 (Xe136) and the upper limit on the sum of light neutrino masses from Planck. We show that the upper limits on the effective neutrino mass from Xe136 are stronger than those from Ge76 for most of the recent calculations of the nuclear matrix elements (NMEs). We also analyze the compatibility of these limits with the claimed observation in Ge76 and show that while the updated claim value is still compatible with the recent GERDA limit as well as the individual Xe136 limits for a few NME calculations, it is inconsistent with the combined Xe136 limit for all but one NME. Imposing the most stringent limit from Planck, we find that the canonical light neutrino contribution cannot saturate the current limit, irrespective of the NME uncertainties. Saturation can be reached by inclusion of the right-handed (RH) neutrino contributions in TeV-scale left-right symmetric models with type-II seesaw. This imposes a lower limit on the lightest neutrino mass. Using the 0νββ bounds, we also derive correlated constraints in the RH sector, complimentary to those from direct searches at the LHC.
A model of massive neutrinos with a conserved lepton number
NASA Astrophysics Data System (ADS)
Ecker, G.; Grimus, W.; Gronau, M.
1987-01-01
We consider a left-right symmetric model with three generations and with the standard assignments of fermion and scalar fields. The left-right symmetry gives rise to a unique conserved lepton number which is of the Zel'dovich-Konopinski-Mahmoud type. The neutrino mass matrix yields one Dirac and one Majorana neutrino, both in the light and in the heavy sector. Up to small mixings with right-handed neutrinos, the left-handed ν e and ν τ combine to the light Dirac neutrino whereas ν μ is the light Majoranan neutrino. With a right-handed scale in the TeV range all light neutrino lepton masses. Phenomenological consequences of the model are discussed. charged lepton masses. Phenomenological consequences of the model are discussed.
Neutrino mixing and mass hierarchy in Gaussian landscapes
Hall, Lawrence J.; Salem, Michael P.; Watari, Taizan
2009-01-15
The flavor structure of the standard model may arise from random selection on a landscape. In a class of simple models, called ''Gaussian landscapes,'' Yukawa couplings derive from overlap integrals of Gaussian zero-mode wave functions on an extra-dimensional space. Statistics of vacua are generated by scanning the peak positions of these wave functions, giving probability distributions for all flavor observables. Gaussian landscapes can account for all of the major features of flavor, including both the small electroweak mixing in the quark sector and the large mixing observed in the lepton sector. We find that large lepton mixing stems directly from lepton doublets having broad wave functions on the internal manifold. Assuming the seesaw mechanism, we find the mass hierarchy among neutrinos is sensitive to the number of right-handed neutrinos and can provide a good fit to neutrino oscillation measurements.
Measuring neutrino masses with weak lensing
Wong, Yvonne Y. Y.
2006-11-17
Weak gravitational lensing of distant galaxies by large scale structure (LSS) provides an unbiased way to map the matter distribution in the low redshift universe. This technique, based on the measurement of small distortions in the images of the source galaxies induced by the intervening LSS, is expected to become a key cosmological probe in the future. We discuss how future lensing surveys can probe the sum of the neutrino masses at the 0 05 eV level.
Evidence for a tau-neutrino mass
Samuel, M.A.; Mendel, R.R.
1988-03-01
In a recent experiment, the measured lifetime of the tau lepton indicates that the e - ..mu.. universality may not hold in the case of the third-generation leptons. It is shown here that the universality of weak interactions can be restored if the tau-neutrino has a non-zero mass. This results is m/sub v/tau/sub / = (160 +- 70) MeV.
Realistic Sterile Neutrino Dark Matter with KeV Mass does not Contradict Cosmological Bounds
Boyarsky, Alexey; Lesgourgues, Julien; Ruchayskiy, Oleg
2009-05-22
Previous fits of sterile neutrino dark matter (DM) models to cosmological data ruled out masses smaller than {approx}8 keV, assuming a production mechanism that is not the best motivated from a particle physics point of view. Here we focus on a realistic extension of the standard model with three sterile neutrinos, consistent with neutrino oscillation data and baryogenesis, with the lightest sterile neutrino being the DM particle. We show that for each mass {>=}2 keV there exists at least one model accounting for 100% of DM and consistent with Lyman-{alpha} and other cosmological, astrophysical, and particle physics data.
The halo model in a massive neutrino cosmology
Massara, Elena; Villaescusa-Navarro, Francisco; Viel, Matteo E-mail: villaescusa@oats.inaf.it
2014-12-01
We provide a quantitative analysis of the halo model in the context of massive neutrino cosmologies. We discuss all the ingredients necessary to model the non-linear matter and cold dark matter power spectra and compare with the results of N-body simulations that incorporate massive neutrinos. Our neutrino halo model is able to capture the non-linear behavior of matter clustering with a ∼20% accuracy up to very non-linear scales of k = 10 h/Mpc (which would be affected by baryon physics). The largest discrepancies arise in the range k = 0.5 – 1 h/Mpc where the 1-halo and 2-halo terms are comparable and are present also in a massless neutrino cosmology. However, at scales k < 0.2 h/Mpc our neutrino halo model agrees with the results of N-body simulations at the level of 8% for total neutrino masses of < 0.3 eV. We also model the neutrino non-linear density field as a sum of a linear and clustered component and predict the neutrino power spectrum and the cold dark matter-neutrino cross-power spectrum up to k = 1 h/Mpc with ∼30% accuracy. For masses below 0.15 eV the neutrino halo model captures the neutrino induced suppression, casted in terms of matter power ratios between massive and massless scenarios, with a 2% agreement with the results of N-body/neutrino simulations. Finally, we provide a simple application of the halo model: the computation of the clustering of galaxies, in massless and massive neutrinos cosmologies, using a simple Halo Occupation Distribution scheme and our halo model extension.
Charged Neutrinos and Atoms in the Standard Model
NASA Astrophysics Data System (ADS)
Takasugi, E.; Tanaka, M.
1992-03-01
The possibility of the charge quantization in the standard model is examined in the absence of the ``generation as copies'' rule. It is shown that neutrinos and atoms can have mini-charges, while neutron is neutral. If a triplet Higgs boson is introduced, neutrinos have masses. Two neutrinos form a Konopinski-Mahmoud Dirac particle and the other becomes a Majorana particle due to the hidden local anomaly free U(1) symmetry.
Constraints on the relic neutrino abundance and implications for cosmological neutrino mass limits
Bell, Nicole F.; /Fermilab
2004-01-01
The authors examine a mechanism which can lead to flavor transformation of neutrino-antineutrino asymmetries in the early universe, a process which is unavoidable when the neutrino mixing angles are large. This sets the best limit on the lepton number of the universe, and hence on the relic neutrino abundance. They also consider the consequences for the relic neutrino abundance if extra neutrino interactions are allowed, e.g., the coupling of the neutrinos to a light (compared to m{sub {nu}}) boson. For a wide range of couplings not excluded by other considerations, the relic neutrinos would annihilate to bosons at late times, and thus make a negligible contribution to the matter density today. This mechanism evades the neutrino mass limits arising from large scale structure.
Gravity effects on neutrino masses in split supersymmetry
Diaz, Marco Aurelio; Koch, Benjamin; Panes, Boris
2009-06-01
The mass differences and mixing angles of neutrinos can neither be explained by R-parity violating split supersymmetry nor by flavor blind quantum gravity alone. It is shown that combining both effects leads, within the allowed parameter range, to good agreement with the experimental results. The atmospheric mass is generated by supersymmetry through mixing between neutrinos and neutralinos, while the solar mass is generated by gravity through flavor blind dimension five operators. Maximal atmospheric mixing forces the tangent squared of the solar angle to be equal to 1/2. The scale of the quantum gravity operator is predicted within a 5% error, implying that the reduced Planck scale should lie around the grand unified theory scale. In this way, the model is very predictive and can be tested at future experiments.
Neutrino flavor pendulum in both mass hierarchies
NASA Astrophysics Data System (ADS)
Raffelt, Georg; Seixas, David de Sousa
2013-08-01
We construct a simple example for self-induced flavor conversion in dense neutrino gases, showing new solutions that violate the symmetries of initial conditions. Our system consists of two opposite momentum modes 1 and 2, each initially occupied with equal densities of νe and ν¯e. Restricting solutions to symmetry under 1↔2 allows for the usual bimodal instability (“flavor pendulum”) in the inverted neutrino mass hierarchy and stability (no self-induced flavor conversion) in the normal hierarchy (NH). Lifting this symmetry restriction allows for a second pendulumlike solution that occurs in NH, where the modes 1 and 2 swing in opposite directions in flavor space. Any small deviation from 1-2 symmetry in the initial condition triggers the new instability in NH. This effect corresponds to the recently identified multi-azimuth angle instability of supernova neutrino fluxes. Both cases show explicitly that solutions of the equations of collective flavor oscillations need not inherit the symmetries of initial conditions, although this has been universally assumed.
Besson, Dave; Cowen, Doug; Selen, Mats; Wiebusch, Christopher
1999-01-01
Neutrinos represent a new “window” to the Universe, spanning a large range of energy. We discuss the science of neutrino astrophysics and focus on two energy regimes. At “lower” energies (≈1 MeV), studies of neutrinos born inside the sun, or produced in interactions of cosmic rays with the atmosphere, have allowed the first incontrovertible evidence that neutrinos have mass. At energies typically one thousand to one million times higher, sources further than the sun (both within the Milky Way and beyond) are expected to produce a flux of particles that can be detected only through neutrinos. PMID:10588680
Measuring the neutrino mass from future wide galaxy cluster catalogues
Carbone, Carmelita; Moscardini, Lauro; Cimatti, Andrea; Fedeli, Cosimo E-mail: cosimo.fedeli@astro.ufl.edu E-mail: a.cimatti@unibo.it
2012-03-01
We present forecast errors on a wide range of cosmological parameters obtained from a photometric cluster catalogue of a future wide-field Euclid-like survey. We focus in particular on the total neutrino mass as constrained by a combination of the galaxy cluster number counts and correlation function. For the latter we consider only the shape information and the Baryon Acoustic Oscillations (BAO), while marginalising over the spectral amplitude and the redshift space distortions. In addition to the cosmological parameters of the standard ΛCDM+ν model we also consider a non-vanishing curvature, and two parameters describing a redshift evolution for the dark energy equation of state. For completeness, we also marginalise over a set of ''nuisance'' parameters, representing the uncertainties on the cluster mass determination. We find that combining cluster counts with power spectrum information greatly improves the constraining power of each probe taken individually, with errors on cosmological parameters being reduced by up to an order of magnitude. In particular, the best improvements are for the parameters defining the dynamical evolution of dark energy, where cluster counts break degeneracies. Moreover, the resulting error on neutrino mass is at the level of σ(M{sub ν}) ∼ 0.9 eV, comparable with that derived from present Lyα forest measurements and Cosmic Microwave background (CMB) data in the framework of a non-flat Universe. Further adopting Planck priors and reducing the number of free parameters to a ΛCDM+ν cosmology allows to place constraints on the total neutrino mass of σ(M{sub ν}) ∼ 0.08 eV, close to the lower bound enforced by neutrino oscillation experiments. Finally, in the optimistic case where uncertainties in the calibration of the mass-observable relation were so small to be neglected, the combination of Planck priors with cluster counts and power spectrum would constrain the total neutrino mass down to σ(M{sub ν}) ∼ 0.034 eV, i
Flavor Gauge Theory, and Masses of Top and Neutrino
NASA Astrophysics Data System (ADS)
Cvetič, G.; Kim, C. S.
We assume that the standard model (SM) breaks down around some energy Λ, and is replaced by a new (Higgsless) flavor gauge theory (FGT). We investigate this possibility by studying the renormalization group equations for the Yukawa couplings of SM with two Higgs doublets for various mt and υU/υD. With appropriate flavor democratic boundary conditions at ΛFGT, we derive the bounds on masses of top and tau-neutrino, which are compatible with experimental bounds.
Neutrino oscillations and uncertainty in the solar model
NASA Astrophysics Data System (ADS)
Dearborn, D. S.; Fuller, G. M.
1989-06-01
The Mikheyev-Smirnov-Wolfenstein (MSW) resonant neutrino oscillation mechanism is investigated for the Sun using a detailed numerical solar model and a modified version of the Parke-Walker technique for following the neutrino phases through the oscillation resonance. We present overall solar-neutrino spectra and the associated expected neutrino count rates for the 37Cl, 71Ga, and Kamiokande detectors for ranges of masses and vacuum mixing angles for two neutrino species. We also investigate the effects of uncertainties in the solar model. In particular, we examine the effect of opacity changes on the expected solar-neutrino spectrum and resulting parameter space for the MSW mechanism. We find that plausible uncertainties in the standard solar model, and in particular the opacity, translate into significant expansion in the constraints on neutrino masses and vacuum mixing angles from neutrino experiments. It is shown, however, that forthcoming results from the Kamiokande solar-neutrino experiment could put stringent constraints on even the expanded MSW parameter space.
Degeneracy effects of neutrino mass ejection in supernovae
NASA Technical Reports Server (NTRS)
Mazurek, T. J.
1974-01-01
A neutrino mechanism is discussed in order to explain supernovae in massive stars. An argument is presented for supernova mass ejection through leptonic neutrino transport characteristics suppressed by the arbitrary zero chemical potential condition. Results show that lepton conservation effects may be important in supernova neutrino transport. At low temperature and density the diffusion approximation becomes less precise because of the long mean free paths of low energy neutrinos. The amount of equilibrium neutrino spectrum affected here is small over most of the collapsing supernova structure.
Radiative neutrino mass generation from WIMP dark matter
NASA Astrophysics Data System (ADS)
Lineros, Roberto A.
2016-05-01
The minimal seesaw extension of the Standard Model requires two electroweak singlet fermions in order to accommodate the neutrino oscillation parameters at tree level. Here we consider a next to minimal extension where light neutrino masses are generated radiatively by two electroweak fermions: one singlet and one triplet under SU(2). These should be odd under a parity symmetry and their mixing gives rise to a stable weakly interactive massive particle dark matter candidate. For mass in the GeV-TeV range, it reproduces the correct relic density, and provides an observable signal in nuclear recoil direct detection experiments. The fermion triplet component of the dark matter has gauge interactions, making it also detectable at present and near future collider experiments.
Upper bound on neutrino mass based on T2K neutrino timing measurements
NASA Astrophysics Data System (ADS)
Abe, K.; Adam, J.; Aihara, H.; Akiri, T.; Andreopoulos, C.; Aoki, S.; Ariga, A.; Assylbekov, S.; Autiero, D.; Barbi, M.; Barker, G. J.; Barr, G.; Bartet-Friburg, P.; Bass, M.; Batkiewicz, M.; Bay, F.; Berardi, V.; Berger, B. E.; Berkman, S.; Bhadra, S.; Blaszczyk, F. d. M.; Blondel, A.; Bojechko, C.; Bolognesi, S.; Bordoni, S.; Boyd, S. B.; Brailsford, D.; Bravar, A.; Bronner, C.; Buchanan, N.; Calland, R. G.; Caravaca Rodríguez, J.; Cartwright, S. L.; Castillo, R.; Catanesi, M. G.; Cervera, A.; Cherdack, D.; Chikuma, N.; Christodoulou, G.; Clifton, A.; Coleman, J.; Coleman, S. J.; Collazuol, G.; Connolly, K.; Cremonesi, L.; Dabrowska, A.; Danko, I.; Das, R.; Davis, S.; de Perio, P.; De Rosa, G.; Dealtry, T.; Dennis, S. R.; Densham, C.; Dewhurst, D.; Di Lodovico, F.; Di Luise, S.; Dolan, S.; Drapier, O.; Duboyski, T.; Duffy, K.; Dumarchez, J.; Dytman, S.; Dziewiecki, M.; Emery-Schrenk, S.; Ereditato, A.; Escudero, L.; Feusels, T.; Finch, A. J.; Fiorentini, G. A.; Friend, M.; Fujii, Y.; Fukuda, Y.; Furmanski, A. P.; Galymov, V.; Garcia, A.; Giffin, S.; Giganti, C.; Gilje, K.; Goeldi, D.; Golan, T.; Gonin, M.; Grant, N.; Gudin, D.; Hadley, D. R.; Haegel, L.; Haesler, A.; Haigh, M. D.; Hamilton, P.; Hansen, D.; Hara, T.; Hartz, M.; Hasegawa, T.; Hastings, N. C.; Hayashino, T.; Hayato, Y.; Hearty, C.; Helmer, R. L.; Hierholzer, M.; Hignight, J.; Hillairet, A.; Himmel, A.; Hiraki, T.; Hirota, S.; Holeczek, J.; Horikawa, S.; Hosomi, F.; Huang, K.; Ichikawa, A. K.; Ieki, K.; Ieva, M.; Ikeda, M.; Imber, J.; Insler, J.; Irvine, T. J.; Ishida, T.; Ishii, T.; Iwai, E.; Iwamoto, K.; Iyogi, K.; Izmaylov, A.; Jacob, A.; Jamieson, B.; Jiang, M.; Johnson, R. A.; Johnson, S.; Jo, J. H.; Jonsson, P.; Jung, C. K.; Kabirnezhad, M.; Kaboth, A. C.; Kajita, T.; Kakuno, H.; Kameda, J.; Kanazawa, Y.; Karlen, D.; Karpikov, I.; Katori, T.; Kearns, E.; Khabibullin, M.; Khotjantsev, A.; Kielczewska, D.; Kikawa, T.; Kilinski, A.; Kim, J.; King, S.; Kisiel, J.; Kitching, P.; Kobayashi, T.; Koch, L.; Koga, T.; Kolaceke, A.; Konaka, A.; Kopylov, A.; Kormos, L. L.; Korzenev, A.; Koshio, Y.; Kropp, W.; Kubo, H.; Kudenko, Y.; Kurjata, R.; Kutter, T.; Lagoda, J.; Lamont, I.; Larkin, E.; Laveder, M.; Lawe, M.; Lazos, M.; Lindner, T.; Lister, C.; Litchfield, R. P.; Longhin, A.; Lopez, J. P.; Ludovici, L.; Magaletti, L.; Mahn, K.; Malek, M.; Manly, S.; Marino, A. D.; Marteau, J.; Martin, J. F.; Martins, P.; Martynenko, S.; Maruyama, T.; Matveev, V.; Mavrokoridis, K.; Mazzucato, E.; McCarthy, M.; McCauley, N.; McFarland, K. S.; McGrew, C.; Mefodiev, A.; Metelko, C.; Mezzetto, M.; Mijakowski, P.; Miller, C. A.; Minamino, A.; Mineev, O.; Missert, A.; Miura, M.; Moriyama, S.; Mueller, Th. A.; Murakami, A.; Murdoch, M.; Murphy, S.; Myslik, J.; Nakadaira, T.; Nakahata, M.; Nakamura, K. G.; Nakamura, K.; Nakayama, S.; Nakaya, T.; Nakayoshi, K.; Nantais, C.; Nielsen, C.; Nirkko, M.; Nishikawa, K.; Nishimura, Y.; Nowak, J.; O'Keeffe, H. M.; Ohta, R.; Okumura, K.; Okusawa, T.; Oryszczak, W.; Oser, S. M.; Ovsyannikova, T.; Owen, R. A.; Oyama, Y.; Palladino, V.; Palomino, J. L.; Paolone, V.; Payne, D.; Perevozchikov, O.; Perkin, J. D.; Petrov, Y.; Pickard, L.; Pinzon Guerra, E. S.; Pistillo, C.; Plonski, P.; Poplawska, E.; Popov, B.; Posiadala-Zezula, M.; Poutissou, J.-M.; Poutissou, R.; Przewlocki, P.; Quilain, B.; Radicioni, E.; Ratoff, P. N.; Ravonel, M.; Rayner, M. A. M.; Redij, A.; Reeves, M.; Reinherz-Aronis, E.; Riccio, C.; Rodrigues, P. A.; Rojas, P.; Rondio, E.; Roth, S.; Rubbia, A.; Ruterbories, D.; Rychter, A.; Sacco, R.; Sakashita, K.; Sánchez, F.; Sato, F.; Scantamburlo, E.; Scholberg, K.; Schoppmann, S.; Schwehr, J.; Scott, M.; Seiya, Y.; Sekiguchi, T.; Sekiya, H.; Sgalaberna, D.; Shah, R.; Shaker, F.; Shaw, D.; Shiozawa, M.; Short, S.; Shustrov, Y.; Sinclair, P.; Smith, B.; Smy, M.; Sobczyk, J. T.; Sobel, H.; Sorel, M.; Southwell, L.; Stamoulis, P.; Steinmann, J.; Still, B.; Suda, Y.; Suzuki, A.; Suzuki, K.; Suzuki, S. Y.; Suzuki, Y.; Tacik, R.; Tada, M.; Takahashi, S.; Takeda, A.; Takeuchi, Y.; Tanaka, H. K.; Tanaka, H. A.; Tanaka, M. M.; Terhorst, D.; Terri, R.; Thompson, L. F.; Thorley, A.; Tobayama, S.; Toki, W.; Tomura, T.; Totsuka, Y.; Touramanis, C.; Tsukamoto, T.; Tzanov, M.; Uchida, Y.; Vacheret, A.; Vagins, M.; Vasseur, G.; Wachala, T.; Wakamatsu, K.; Walter, C. W.; Wark, D.; Warzycha, W.; Wascko, M. O.; Weber, A.; Wendell, R.; Wilkes, R. J.; Wilking, M. J.; Wilkinson, C.; Williamson, Z.; Wilson, J. R.; Wilson, R. J.; Wongjirad, T.; Yamada, Y.; Yamamoto, K.; Yanagisawa, C.; Yano, T.; Yen, S.; Yershov, N.; Yokoyama, M.; Yoo, J.; Yoshida, K.; Yuan, T.; Yu, M.; Zalewska, A.; Zalipska, J.; Zambelli, L.; Zaremba, K.; Ziembicki, M.; Zimmerman, E. D.; Zito, M.; Żmuda, J.; T2K Collaboration
2016-01-01
The Tokai to Kamioka (T2K) long-baseline neutrino experiment consists of a muon neutrino beam, produced at the J-PARC accelerator, a near detector complex and a large 295-km-distant far detector. The present work utilizes the T2K event timing measurements at the near and far detectors to study neutrino time of flight as a function of derived neutrino energy. Under the assumption of a relativistic relation between energy and time of flight, constraints on the neutrino rest mass can be derived. The sub-GeV neutrino beam in conjunction with timing precision of order tens of ns provide sensitivity to neutrino mass in the few MeV /c2 range. We study the distribution of relative arrival times of muon and electron neutrino candidate events at the T2K far detector as a function of neutrino energy. The 90% C.L. upper limit on the mixture of neutrino mass eigenstates represented in the data sample is found to be mν2<5.6 MeV2/c4 .
NASA Astrophysics Data System (ADS)
Borah, Debasish; Dasgupta, Arnab; Adhikari, Rathin
2015-10-01
We attempt to simultaneously explain the recently observed 3.55 keV x-ray line in the analysis of XMM-Newton telescope data and the Galactic Center gamma ray excess observed by the Fermi Gamma Ray Space Telescope within an Abelian gauge extension of the standard model. We consider a two component dark matter scenario with tree level mass difference 3.55 keV such that the heavier one can decay into the lighter one and a photon with energy 3.55 keV. The lighter dark matter candidate is protected from decaying into the standard model particles by a remnant Z2 symmetry into which the Abelian gauge symmetry gets spontaneously broken. If the mass of the dark matter particle is chosen to be within 31-40 GeV, then this model can also explain the Galactic Center gamma ray excess if the dark matter annihilation into b b ¯ pairs has a cross section of ⟨σ v ⟩≃(1.4 -2.0 )×1 0-26 cm3/s . We constrain the model from the requirement of producing correct dark matter relic density, 3.55 keV x-ray line flux, and Galactic Center gamma ray excess. We also impose the bounds coming from dark matter direct detection experiments as well as collider limits on additional gauge boson mass and gauge coupling. We also briefly discuss how this model can give rise to subelectron volt neutrino masses at tree level as well as the one-loop level while keeping the dark matter mass at a few tens of giga-electron volts. We also constrain the model parameters from the requirement of keeping the one-loop mass difference between two dark matter particles below a kilo-electron volt. We find that the constraints from light neutrino mass and kilo-electron volt mass splitting between two dark matter components show more preference for opposite C P eigenvalues of the two fermion singlet dark matter candidates in the model.
NASA Astrophysics Data System (ADS)
Dutta, Rupak; Ch, Upender; Giri, Anjan K.; Sahu, Narendra
2014-08-01
We discuss the role of lightest neutrino mass (m0) in the neutrino mass matrix, defined in a flavor basis, through a bottom-up approach using the current neutrino oscillation data. We find that if m0 < 10-3eV, then the deviation δMν in the neutrino mass matrix from a tree-level, say tribimaximal neutrino mass matrix, does not depend on m0. As a result δMν's are exactly predicted in terms of the experimentally determined quantities such as solar and atmospheric mass squared differences and the mixing angles. On the other hand for m0 ≳10-3eV, δMν strongly depends on m0 and hence cannot be determined within the knowledge of oscillation parameters alone. In this limit, we provide an exponential parametrization for δMν for all values of m0 such that it can factorize the m0 dependency of δMν from rest of the oscillation parameters. This helps us in finding δMν as a function of the solar and atmospheric mass squared differences and the mixing angles for all values of m0. We use this information to build up a model of neutrino masses and mixings in a top-down scenario which can predict large θ13 perturbatively.
Leptoquark patterns unifying neutrino masses, flavor anomalies, and the diphoton excess
NASA Astrophysics Data System (ADS)
Deppisch, F. F.; Kulkarni, S.; Päs, H.; Schumacher, E.
2016-07-01
Vector leptoquarks provide an elegant solution to a series of anomalies and at the same time generate naturally light neutrino masses through their mixing with the standard model Higgs boson. We present a simple Froggatt-Nielsen model to accommodate the B physics anomalies RK and RD , neutrino masses, and the 750 GeV diphoton excess in one cohesive framework adding only two vector leptoquarks and two singlet scalar fields to the standard model field content.
Astrophysics and cosmology closing in on neutrino masses
Dar, A. )
1990-12-14
Massive neutrinos are expected in most grand unified theories that attempt to unify the strong and electroweak interactions. So far, heroic laboratory experiments have yielded only upper bounds on the masses of the elusive neutrinos. These bounds, however, are not very restrictive and cannot even exclude the possibility that the dark matter in the universe consists of neutrinos. The astrophysical and cosmological bounds on the masses of the muon and tau neutrinos, m{sub {nu}{sub {mu}}} and m{sub {nu}{sub {tau}}}, which already are much more restrictive than the laboratory bounds, and the laboratory bound on the mass of the electron neutrino, m{sub {nu}{sub e}}, can be improved significantly by future astrophysical and cosmological observations that perhaps will pin down the neutrino masses. Indeed, the recent results from the solar neutrino experiments combined with the seesaw mechanism for generating neutrino masses suggest that m{sub {nu}{sub e}} {approximately}10{sup {minus}8} electron volts, m{sub {nu}{sub {mu}}} {approximately}10{sup {minus}3} electron volts, and m{sub {nu}{sub {tau}}} {approximately}10 electron volts, which can be tested in the near future by solar neutrino and accelerator experiments.
Astrophysics and cosmology closing in on neutrino masses.
Dar, A
1990-12-14
Massive neutrinos are expected in most grand unified theories that attempt to unify the strong and electroweak interactions. So far, heroic laboratory experiments have yielded only upper bounds on the masses of the elusive neutrinos. These bounds, however, are not very restrictive and cannot even exclude the possibility that the dark matter in the universe consists of neutrinos. The astrophysical and cosmological bounds on the masses of the muon and tau neutrinos, mv(vmicro) and mv(vtau), which already are much more restrictive than the laboratory bounds, and the laboratory bound on the mass of the electron neutrino, mv(vc), can be improved significantly by future astrophysical and cosmological observations that perhaps will pin down the neutrino masses. Indeed, the recent results from the solar neutrino experiments combined with the seesaw mechanism for generating neutrino masses suggest that mv(vc) approximately 10(-8) electron volts, mv(vmicro) approximately 10(-3) electron volts, and mv(vtau) approximately 10 electron volts, which can be tested in the near future by solar neutrino and accelerator experiments. PMID:17818280
Astrophysics and cosmology closing in on neutrino masses
NASA Technical Reports Server (NTRS)
Dar, Arnon
1990-01-01
Massive neutrinos are expected in most grand unified theories that attempt to unify the strong and electroweak interactions. So far, heroic laboratory experiments have yielded only upper bounds on the masses of the elusive neutrinos. These bounds, however, are not very restrictive and cannot even exclude the possibility that the dark matter in the universe consists of neutrinos. The astrophysical and cosmological bounds on the masses of the muon and tau neutrinos, m(nu sub mu) and m(nu sub tau), which already are much more restrictive than the laboratory bounds, and the laboratory bound on the mass of the electron neutrino, m(nu sub e) can be improved significantly by future astrophysical and cosmological observations that perhaps will pin down the neutrino masses. Indeed, the recent results from the solar neutrino experiments combined with the seesaw mechanism for generating neutrino masses suggest that m(nu sub e) of about 10 to the -8th electron volts, m(nu sub mu) of about 0.001 electron volts, and m(nu sub tau) of about 10 electron volts, which can be tested in the near future by solar neutrino and accelerator experiments.
Strong thermal leptogenesis and the absolute neutrino mass scale
Bari, Pasquale Di; King, Sophie E.; Fiorentin, Michele Re E-mail: sk1806@soton.ac.uk
2014-03-01
We show that successful strong thermal leptogenesis, where the final asymmetry is independent of the initial conditions and in particular a large pre-existing asymmetry is efficiently washed-out, favours values of the lightest neutrino mass m{sub 1}∼>10 meV for normal ordering (NO) and m{sub 1}∼>3 meV for inverted ordering (IO) for models with orthogonal matrix entries respecting |Ω{sub ij}{sup 2}|∼<2. We show analytically why lower values of m{sub 1} require a higher level of fine tuning in the seesaw formula and/or in the flavoured decay parameters (in the electronic for NO, in the muonic for IO). We also show how this constraint exists thanks to the measured values of the neutrino mixing angles and could be tightened by a future determination of the Dirac phase. Our analysis also allows us to place a more stringent constraint for a specific model or class of models, such as SO(10)-inspired models, and shows that some models cannot realise strong thermal leptogenesis for any value of m{sub 1}. A scatter plot analysis fully supports the analytical results. We also briefly discuss the interplay with absolute neutrino mass scale experiments concluding that they will be able in the coming years to either corner strong thermal leptogenesis or find positive signals pointing to a non-vanishing m{sub 1}. Since the constraint is much stronger for NO than for IO, it is very important that new data from planned neutrino oscillation experiments will be able to solve the ambiguity.
Form invariance and symmetry in the neutrino mass matrix
Lashin, E. I.; Nasri, S.; Malkawi, E.; Chamoun, N.
2011-01-01
We present the general form of the unitary matrices keeping invariant the Majorana neutrino mass matrix of specific texture suitable for explaining oscillation data. In the case of the tri-bimaximal pattern with two degenerate masses, we give a specific realization of the underlying U(1) symmetry which can be uplifted to a symmetry in a complete theory including charged leptons. For this, we present a model with three light SM-like Higgs doublets and one heavy Higgs triplet and find that one can accommodate the hierarchy of the charged-lepton masses. The lepton mass spectrum can also be achieved in another model extending the SM with three SM-singlet scalars transforming nontrivially under the flavor symmetry. We discuss how such a model has room for generating enough baryon asymmetry through leptogenesis in the framework of type-I and -II seesaw mechanisms.
Majorana neutrino masses and the neutrinoless double-beta decay
Faessler, A.
2006-12-15
Neutrinoless double-beta decay is forbidden in the Standard Model of electroweak and strong interaction but allowed in most Grand Unified Theories (GUTs). Only if the neutrino is a Majorana particle (identical with its antiparticle) and if it has a mass is neutrinoless double-beta decay allowed. Apart from one claim that the neutrinoless double-beta decay in {sup 76}Ge is measured, one has only upper limits for this transition probability. But even the upper limits allow one to give upper limits for the electron Majorana neutrino mass and upper limits for parameters of GUTs and the minimal R-parity-violating supersymmetric model. One further can give lower limits for the vector boson mediating mainly the right-handed weak interaction and the heavy mainly right-handed Majorana neutrino in left-right symmetric GUTs. For that, one has to assume that the specific mechanism is the leading one for neutrinoless double-beta decay and one has to be able to calculate reliably the corresponding nuclear matrix elements. In the present work, one discusses the accuracy of the present status of calculating of the nuclear matrix elements and the corresponding limits of GUTs and supersymmetric parameters.
Measurable neutrino mass scale in A{sub 4}xSU(5)
Antusch, S.; Spinrath, M.; King, Stephen F.
2011-01-01
We propose a supersymmetric A{sub 4}xSU(5) model of quasidegenerate neutrinos which predicts the effective neutrino mass m{sub ee} relevant for neutrinoless double beta decay to be proportional to the neutrino mass scale, thereby allowing its determination approximately independently of unknown Majorana phases. Such a natural quasidegeneracy is achieved by using A{sub 4} family symmetry (as an example of a non-Abelian family symmetry with real triplet representations) to enforce a contribution to the neutrino mass matrix proportional to the identity. Tribimaximal neutrino mixing as well as quark CP violation with {alpha}{approx_equal}90 deg. d a leptonic CP phase {delta}{sub MNS{approx_equal}}90 deg. arise from the breaking of the A{sub 4} family symmetry by the vacuum expectation values of four 'flavon' fields pointing in specific postulated directions in flavor space.
Natural leptogenesis and neutrino masses with two Higgs doublets
NASA Astrophysics Data System (ADS)
Clarke, Jackson D.; Foot, Robert; Volkas, Raymond R.
2015-08-01
The minimal Type I seesaw model cannot explain the observed neutrino masses and the baryon asymmetry of the Universe via hierarchical thermal leptogenesis without ceding naturalness. We show that this conclusion can be avoided by adding a second Higgs doublet with tan β ≳4 . The models considered naturally accommodate a standard model-like Higgs boson and predict TeV-scale scalar states and low- to intermediate-scale hierarchical leptogenesis with 103 GeV ≲MN1≲108 GeV .
Active and sterile neutrino mass effects on beta decay spectra
Boillos, Juan Manuel; Moya de Guerra, Elvira
2013-06-10
We study the spectra of the emitted charged leptons in charge current weak nuclear processes to analyze the effect of neutrino masses. Standard active neutrinos are studied here, with masses of the order of 1 eV or lower, as well as sterile neutrinos with masses of a few keV. The latter are warm dark matter (WDM) candidates hypothetically produced or captured as small mixtures with the active neutrinos. We compute differential decay or capture rates spectra in weak charged processes of different nuclei ({sup 3}H, {sup 187}Re, {sup 107}Pd, {sup 163}Ho, etc) using different masses of both active and sterile neutrinos and different values of the mixing parameter.
Blennow, Mattias
2008-06-01
We discuss the effects of neutrino mixing and the neutrino mass hierarchy when considering the capture of the cosmic neutrino background (CNB) on radioactive nuclei. The implications of mixing and hierarchy at future generations of tritium decay experiments are considered. We find that the CNB should be detectable at these experiments provided that the resolution for the kinetic energy of the outgoing electron can be pushed to a few 0.01 eV for the scenario with inverted neutrino mass hierarchy, about an order of magnitude better than that of the upcoming KATRIN experiment. Another order of magnitude improvement is needed in the case of normal neutrino mass hierarchy. We also note that mixing effects generally make the prospects for CNB detection worse due to an increased maximum energy of the normal beta decay background.
Status and Implications of Neutrino Masses: A Brief Panorama
NASA Astrophysics Data System (ADS)
Valle, José W. F.
With the historic discovery of the Higgs boson our picture of particle physics would have been complete were it not for the neutrino sector and cosmology. I briefly discuss the role of neutrino masses and mixing upon gauge coupling unification, electroweak breaking and the flavor sector. Time is ripe for new discoveries such as leptonic CP violation, charged lepton flavor violation and neutrinoless double beta decay. Neutrinos could also play a role in elucidating the nature of dark matter and cosmic inflation.
Can electron capture tell us the mass of the neutrino?
NASA Astrophysics Data System (ADS)
Faessler, Amand; Šimkovic, F.
2016-04-01
The neutrino masses are one of the most important open problems in particle physics. Presently major efforts are underway to measure the electron antineutrino-mass by the triton beta decay [1] and the effective Majorana neutrino mass by the double beta decay [2]. The best way to determine the neutrino mass by electron capture was assumed to be in {}163{Ho}. The total decay energy of the excited daughter atom has for all excitations the same upper energy limit of the Q-value minus the mass of the electron neutrino. Recently Robertson [3] claimed, that the excitation of the two-hole states makes the determination of the neutrino mass by this method practically impossible. But Faessler and Simkovic [4] showed, that the influence of the two-hole states is less than 1% near the Q-value, the area relevant for the determination of the neutrino mass. Even weaker are the contributions of the three-hole states [5]. The upper end of the calorimetric deexcitation spectrum of Dy is dominated by the highest energy one-hole resonance. With a Lorentzian profile of this resonance one has to fit after including the experimental sensitivity four parameters: (1) the neutrino mass, (2) the Q-value, (3) the width of the resonance and (4) its strength. This contribution discusses the problems of the determination of the neutrino mass by electron capture in {}163{Ho}. The conclusion of this work is, that the determination of the electron neutrino mass by electron capture in {}163{Ho} is difficult, but (probably) not impossible.
Remarks on models with singlet neutrino in large extra dimensions*
NASA Astrophysics Data System (ADS)
Agashe, K.; Wu, G.-H.
2001-01-01
Small Dirac masses for neutrinos are natural in models with singlet fermions in large extra dimensions with quantum gravity scale M*~1-100 TeV. We study two modifications of the minimal model in order to obtain the mass scale relevant for atmospheric neutrino oscillations with at most /O(1) higher-dimensional Yukawa couplings and with M*~ a few TeV. (1) In models with singlet fermions in smaller number of extra dimensions than gravity, we find that the effects on BR/(μ-->eγ) and on charged-current universality in π--->eν¯,μν¯ decays are suppressed as compared to that in the minimal model with neutrino and gravity in the same space. (2) If small Dirac masses for the singlets are added along with lepton number violating couplings, then the mass scales and mixing angles for neutrino oscillations can be different from those relevant for /μ-->eγ and π--->eν¯,μν¯. Thus, in both modified models the constraints on M* from BR/(μ-->eγ) and π--->eν¯,μν¯ decays can be significantly relaxed. Furthermore, constraints from supernova /1987a strongly disfavor oscillations of active neutrinos to sterile neutrinos in both the minimal and the modified models.
Experimental constraints on the neutrino oscillations and a simple model of three-flavor mixing
Raczka, P.A.; Szymacha, A. ); Tatur, S. )
1994-02-01
A simple model of neutrino mixing is considered which contains only one right-handed neutrino field coupled, via the mass term, to the three usual left-handed fields. This is the simplest model that allows for three-flavor neutrino oscillations. The existing experimental limits on the neutrino oscillations are used to obtain constraints on the two free-mixing parameters of the model. A specific sum rule relating the oscillation probabilities of different flavors is derived.
Diffuse supernova neutrinos: oscillation effects, stellar cooling and progenitor mass dependence
Lunardini, Cecilia; Tamborra, Irene E-mail: tamborra@mpp.mpg.de
2012-07-01
We estimate the diffuse supernova neutrino background (DSNB) using the recent progenitor-dependent, long-term supernova simulations from the Basel group and including neutrino oscillations at several post-bounce times. Assuming multi-angle matter suppression of collective effects during the accretion phase, we find that oscillation effects are dominated by the matter-driven MSW resonances, while neutrino-neutrino collective effects contribute at the 5–10% level. The impact of the neutrino mass hierarchy, of the time-dependent neutrino spectra and of the diverse progenitor star population is 10% or less, small compared to the uncertainty of at least 25% of the normalization of the supernova rate. Therefore, assuming that the sign of the neutrino mass hierarchy will be determined within the next decade, the future detection of the DSNB will deliver approximate information on the MSW-oscillated neutrino spectra. With a reliable model for neutrino emission, its detection will be a powerful instrument to provide complementary information on the star formation rate and for learning about stellar physics.
Tsirigotis, A. G.; Collaboration: KM3NeT Collaboration
2014-11-18
With the measurement of a non zero value of the θ{sub 13} neutrino mixing parameter, interest in neutrinos as source of the baryon asymmetry of the universe has increased. Among the measurements of a rich and varied program in near future neutrino physics is the determination of the mass hierarchy. We present the status of a study of the feasibility of using a densely instrumented undersea neutrino detector to determine the mass hierarchy, utilizing the Mikheyev-Smirnov-Wolfenstein (MSW) effect on atmospheric neutrino oscillations. The detector will use technology developed for KM3NeT. We present the systematic studies of the optimization of a detector in the required 5–10 GeV energy regime. These studies include new tracking and interaction identification algorithms as well as geometrical optimizations of the detector.
Remarks on Models with Singlet Neutrino in Large Extra Dimensions
NASA Astrophysics Data System (ADS)
Agashe, Kaustubh
2002-03-01
In this talk, we discuss two non-minimal models with singlet neutrino in large extra dimensions: (1) singlet neutrino in a sub-space of the bulk and (2) Dirac mass for singlet with lepton number violating Yukawa couplings. The motivation is to obtain the mass scale relevant for atmospheric neutrino oscillations with a quantum gravity scale M* ~ a few TeV and with at most O(1) higher-dimensional couplings. In both non-minimal models, such a low M* can be consistent with the limit on BR(μ → eγ) (unlike in the minimal model). We also show that in this scenario, with 2 Higgs doublets, the decay of charged Higgs into left-handed τ can be significantly enhanced, with O(1) branching ratio, due to the large number of Kaluza-Klein states of the right-handed neutrino.
Neutrino masses and sterile neutrino dark matter from the PeV scale
NASA Astrophysics Data System (ADS)
Roland, Samuel B.; Shakya, Bibhushan; Wells, James D.
2015-12-01
We show that active neutrino masses and a keV-GeV mass sterile neutrino dark matter candidate can result from a modified, low energy seesaw mechanism if right-handed neutrinos are charged under a new symmetry broken by a scalar field vacuum expectation value at the PeV scale. The dark matter relic abundance can be obtained through active-sterile oscillation, freeze-in through the decay of the heavy scalar, or freeze-in via nonrenormalizable interactions at high temperatures. The low energy effective theory maps onto the widely studied ν MSM framework.
Grand unification and low scale implications: D₂ parity for unification and neutrino masses
Tavartkiladze, Zurab
2014-01-01
The Grand Unified SU(5)-SU(5)´ model, augmented with D₂ Parity, is considered. The latter play crucial role for phenomenology. The model has several novel properties and gives interesting phenomenological implications. The charged leptons together with right handed (or sterile) neutrinos emerge es composite states. Within considered scenario, we study the charged fermion and neutrino mass generation. Moreover, we show that the model gives successful gauge coupling unification.
Fermion masses and neutrino mixing in an SU(5)/sub GUT/ x SU(8)/sub ETC/ model
Aubrecht, G.J. II; Matsuki, T.; Tanaka, K.
1983-01-01
We extend the SU(3) x SU(2) x U(1) model without scalars to SU(5)/sub GUT/ x SU(8)/sub ETC/. In our model, the mixing in the leptons is identical to that for the quarks, so that the Cabibbo angle determines the mixing of nu/sub e/ and nu/sub ..mu../. The quark masses and mixing angles are studied for two and three generations of quarks.
Double seesaw mechanism in a left-right symmetric model with TeV neutrinos
Almeida, F. M. L. Jr. de; Coutinho, Y. A.; Simoes, J. A. Martins; Ramalho, A. J.; Pinto, L. Ribeiro; Wulck, S.; Vale, M. A. B. do
2010-03-01
A left-right symmetric model is discussed with new mirror fermions and a Higgs sector with two doublets and neutral scalar singlets. The seesaw mechanism is generalized, including not only neutrino masses but also charged fermion masses. The spectrum of heavy neutrinos presents a second seesaw mass matrix and has neutrinos masses naturally in the TeV region. The model has very clear signatures for the new neutral vector gauge bosons. Two classes of models are discussed. New mirror neutrinos can be very light and a new Z{sup '} can be discriminated from other models by a very high invisible branching fraction. The other possibility is that mirror neutrinos can have masses naturally in the TeV region and can be produced through Z{sup '} decays into heavy neutrino pairs. Signatures and production processes for the model at the LHC energy are also presented.
Constraints on neutrino masses from future cosmological observations
Hirano, Koichi
2014-05-02
Constraints on neutrino masses are estimated based on future observations of the cosmic microwave background (CMB) including the B-mode polarization produced by CMB lensing using the Planck satellite, and baryon acoustic oscillations distance scale and the galaxy power spectrum from all-sky galaxy redshift survey in the BigBOSS experiment. We estimate the error in the bound on the total neutrino mass to be Δ∑m{sub v} = 0.012 eV with a 68% confidence level. If the fiducial value of the total neutrino mass is ∑m{sub v} = 0.06 eV, this result implies that the neutrino mass hierarchy must be normal.
Neutrino mass ordering in future neutrinoless double beta decay experiments
NASA Astrophysics Data System (ADS)
Zhang, Jue
2016-06-01
Motivated by recent intensive experimental efforts on searching for neutrinoless double beta decays, we present a detailed quantitative analysis on the prospect of resolving neutrino mass ordering in the next generation 76Ge-type experiments.
Minimal 3 +2 sterile neutrino model at LBNE
NASA Astrophysics Data System (ADS)
Hollander, D.; Mocioiu, I.
2015-01-01
In this paper we examine the sensitivity of the Long Baseline Neutrino Oscillation Experiment to the inclusion of two new sterile neutrino flavors with masses in the eV range. We implement a model with a modified Casas-Ibarra parametrization which can accommodate medium scale mass eigenstates and introduce a new complex mixing angle. We explore the new mixing angle parameter space and demonstrate how LBNE can be used to either provide evidence for or rule out a particular model of sterile neutrinos. Certain three-flavor C P -violation scenarios cannot be distinguished from the sterile neutrinos. Constraints from the Daya Bay reactor experiment and T2K are used to help lift this degeneracy.
Neutrino Mass Measurement Using a Directed Mono-Energetic Beam
NASA Astrophysics Data System (ADS)
Tsifrinovich, Vladimir; Folan, Lorcan
2015-04-01
It was shown that a directed mono-energetic neutrino beam can be generated by electron capture beta-decay in a sample with a strong hyperfine field at the radioactive nuclei. We study the conditions required to measure the neutrino rest mass using the recoil force produced by a directed neutrino beam. We consider the displacement of an atomic force microscope cantilever due to such a recoil force. We find the change in the cantilever displacement associated with the non-zero neutrino mass, as a function of nuclear half-life T1 / 2, cantilever spring constant, and temperature. We consider the opportunity to increase the sensitivity of the neutrino mass measurement using averaging of the measurement signal. We show that the optimal time for the signal accumulation is, approximately, 1.8T1 / 2. We compute the optimal signal-to-noise ratio for 119Sb nuclei decaying to 119Sn with a decrease in the nuclear spin from I = 5/2 to I = 3/2, and T1 / 2 = 38.2 hours. Finally, we present the parameters values required for detection of sub-eV neutrino rest mass, and estimate the angular distribution of neutrino radiation as a function of temperature.
Constraints on the mass of unstable neutrinos from the supernova
NASA Astrophysics Data System (ADS)
Liu, Jiang
1987-11-01
The cosmological constraint together with the information obtained from the supernova could be used to give a lower bound on the mass of unstable neutrinos. It is shown that if the only viable channel for the unstable neutrino decay is through three lighter neutrinos, the mass of this particle should be heavier than about 500 eV. I wish to thank Professor Ling-Fong Li and Professor Lincoln Wolfenstein for valuable discussions. This work was supported in part by the US Department of Energy.
Sterile Neutrinos in Non-Standard Cosmologies and Particle Models
NASA Astrophysics Data System (ADS)
Osoba, Efunwande
2010-12-01
The discovery of neutrino masses suggests that the Standard Model should be supplemented with new gauge-singlet fermions, often called sterile neutrinos. These sterile neutrinos can shed new light on open questions in cosmology. I will highlight some interesting contributions that sterile neutrinos bring to the understanding of cosmology. In this dissertation, I will show a novel way in which sterile neutrinos could be a dark matter candidate in the form of "Inert-Sterile" neutrinos. In usual particle models, sterile neutrinos can account for the dark matter of the Universe only if they have niasses in the keV range and are warm dark matter. Stringent cosmological and astrophysical bounds, in particular imposed by X-ray observations, apply to them. I will point out that in a particular variation of the Inert Doublet Model, sterile neutrinos can account for the dark matter in the Universe and may be either cold or warm dark matter candidates, even for masses much larger than the keV range. These "Inert-Sterile" neutrinos, produced non-thermally in the early Universe, would be stable and have very small couplings to Standard Model particles, rendering very difficult their detection in either direct or indirect dark matter searches. They could be, in principle, revealed in colliders by discovering other particles in the model. I also show how the existence of the sterile neutrino may force us to rethink the standard cosmology. It is commonly assumed that the cosmological and astrophysical bounds on the mixings of sterile with active neutrinos are much more stringent than those obtained from laboratory measurements. In this dissertation, I show that in scenarios with a very low reheating temperature at the end of (the last episode of) inflation or entropy creation, the abundance of heavy (> 1 MeV) sterile neutrinos becomes largely suppressed with respect to that obtained within the standard framework. Thus, in this case cosmological bounds become much less stringent
Very Low Energy Supernovae From Neutrino Mass Loss
NASA Astrophysics Data System (ADS)
Lovegrove, Elizabeth; Woosley, S. E.
2013-01-01
The continuing difficulty of achieving a reliable core-collapse supernova in simulation has led many to speculate about what transients might be visible if a core-collapse supernova fails. If some percentage of such supernovae fail, there may be many more types of transients occurring than are currently being detected and catalogued as supernovae. Even if the original outgoing shock in a collapsing presupernova star fails, one must still consider the hydrodynamic response of the star to the abrupt loss of a small amount of mass via neutrinos as the core forms a protoneutron star. Following a suggestion by Nadezhin (1980), we use the Kepler and CASTRO codes to model the hydrodynamical responses of typical supernova progenitor stars to the loss of approximately 0.2 - 0.5 solar masses of gravitational mass from their centers. In a red supergiant star, a very weak supernova with total kinetic energy ~1047 ergs results. The binding energy of the hydrogen envelope before the explosion is of the same order and, depending upon assumptions regarding the neutrino loss rates, most of it is ejected. Ejection speeds are ~50 km/s and luminosities ~1039 ergs/s are maintained for about a year. A significant part of the energy comes from the recombination of hydrogen. The color of the explosion is extremely red and the events bear some similarity to the detected transients catalogued as "luminous red novae."
Neutrino mass matrices with two vanishing elements/cofactors
NASA Astrophysics Data System (ADS)
Dev, S.; Singh, Lal; Raj, Desh
2015-08-01
We study the phenomenological implications of the recent neutrino data for class B of two texture zeros and two vanishing cofactors for Majorana neutrinos in the flavor basis. We find that the classes () of two texture zeros and the classes () of two vanishing cofactors have similar predictions for neutrino oscillation parameters for the same mass hierarchy. Similar predictions for the classes () of two texture zeros and classes () of two vanishing cofactors are expected. However, a preference for a shift in the quadrant of the Dirac-type CP-violating phase () in contrast to the earlier analysis has been predicted for a relatively large value of the reactor neutrino mixing angle () for class B of two texture zeros and two vanishing cofactors for an inverted mass spectrum. No such shift in the quadrant of has been found for the normal mass spectrum.
A search for neutrino-antineutrino mass inequality by means of sterile neutrino oscillometry
NASA Astrophysics Data System (ADS)
Smirnov, M. V.; Loo, K. K.; Novikov, Yu. N.; Trzaska, W. H.; Wurm, M.
2015-11-01
The investigation of the oscillation pattern induced by the sterile neutrinos might determine the oscillation parameters, and at the same time, allow to probe CPT symmetry in the leptonic sector through neutrino-antineutrino mass inequality. We propose to use a large scintillation detector like JUNO or LENA to detect electron neutrinos and electron antineutrinos from MCi electron capture or beta decay sources. Our calculations indicate that such an experiment is realistic and could be performed in parallel to the current research plans for JUNO and RENO. Requiring at least 5σ confidence level and assuming the values of the oscillation parameters indicated by the current global fit, we would be able to detect neutrino-antineutrino mass inequality of the order of 0.5% or larger, which would imply a signal of CPT anomalies.
NASA Astrophysics Data System (ADS)
Lai, Kwang-Chang; Lee, Fei-Fan; Lee, Feng-Shiuh; Lin, Guey-Lin; Liu, Tsung-Che; Yang, Yi
2016-07-01
The neutrino mass hierarchy is one of the neutrino fundamental properties yet to be determined. We introduce a method to determine neutrino mass hierarchy by comparing the interaction rate of neutral current (NC) interactions, ν(bar nu) + p → ν(bar nu) + p, and inverse beta decays (IBD), bar nue + p → n + e+, of supernova neutrinos in scintillation detectors. Neutrino flavor conversions inside the supernova are sensitive to neutrino mass hierarchy. Due to Mikheyev-Smirnov-Wolfenstein effects, the full swapping of bar nue flux with the bar nux (x = μ, τ) one occurs in the inverted hierarchy, while such a swapping does not occur in the normal hierarchy. As a result, more high energy IBD events occur in the detector for the inverted hierarchy than the high energy IBD events in the normal hierarchy. By comparing IBD interaction rate with the mass hierarchy independent NC interaction rate, one can determine the neutrino mass hierarchy.
Sterile neutrinos with eV masses in cosmology — How disfavoured exactly?
Hamann, Jan; Hannestad, Steen; Raffelt, Georg G.; Wong, Yvonne Y.Y. E-mail: sth@phys.au.dk E-mail: yvonne.wong@physik.rwth-aachen.de
2011-09-01
We study cosmological models that contain sterile neutrinos with eV-range masses as suggested by reactor and short-baseline oscillation data. We confront these models with both precision cosmological data (probing the CMB decoupling epoch) and light-element abundances (probing the BBN epoch). In the minimal ΛCDM model, such sterile neutrinos are strongly disfavoured by current data because they contribute too much hot dark matter. However, if the cosmological framework is extended to include also additional relativistic degrees of freedom beyond the three standard neutrinos and the putative sterile neutrinos, then the hot dark matter constraint on the sterile states is considerably relaxed. A further improvement is achieved by allowing a dark energy equation of state parameter w < −1. While BBN strongly disfavours extra radiation beyond the assumed eV-mass sterile neutrino, this constraint can be circumvented by a small ν{sub e} degeneracy. Any model containing eV-mass sterile neutrinos implies also strong modifications of other cosmological parameters. Notably, the inferred cold dark matter density can shift up by 20–75% relative to the standard ΛCDM value.
Recent progress of SPAN towards neutrino mass spectroscopy
NASA Astrophysics Data System (ADS)
Masuda, T.; Hara, H.; Miyamoto, Y.; Sasao, N.; Tanaka, M.; Uetake, S.; Yoshimi, A.; Yoshimura, K.; Yoshimura, M.
2016-05-01
SPAN (Spectroscopy of Atomic Neutrino) project aims to determine the absolute neutrino mass. The process we plan to use is a cooperative de-excitation of atoms in a metastable level emitting a neutrino pair associated with a photon. The photon energy spectrum of this process contains information on the absolute mass of neutrino. Key items of this experiment are a rate amplification using macro-coherence in a target medium in case of plural particles emission and an external triggering of the emission in order to scan the spectrum. We have demonstrated the rate amplification in two-photon emission from para-hydrogen gas which was coherently excited to its first vibrationally excited state. The coherence in the medium was generated by irradiating two driving laser pulses. The emission was stimulated by irradiating a mid-infrared laser pulse. The enhancement factor of more than 1018 with respect to the spontaneous emission was achieved. This paper briefly summarizes the results.
Neutrino mass hierarchy and three-flavor spectral splits of supernova neutrinos
Dasgupta, Basudeb; Mirizzi, Alessandro; Tomas, Ricard; Tamborra, Irene
2010-05-01
It was recently realized that three-flavor effects could peculiarly modify the development of spectral splits induced by collective oscillations, for supernova neutrinos emitted during the cooling phase of a protoneutron star. We systematically explore this case, explaining how the impact of these three-flavor effects depends on the ordering of the neutrino masses. In inverted mass hierarchy, the solar mass splitting gives rise to instabilities in regions of the (anti)neutrino energy spectra that were otherwise stable under the leading two-flavor evolution governed by the atmospheric mass splitting and by the 1-3 mixing angle. As a consequence, the high-energy spectral splits found in the electron (anti)neutrino spectra disappear, and are transferred to other flavors. Imperfect adiabaticity leads to smearing of spectral swap features. In normal mass hierarchy, the three-flavor and the two-flavor instabilities act in the same region of the neutrino energy spectrum, leading to only minor departures from the two-flavor treatment.
Massive neutrinos in the standard model and beyond
NASA Astrophysics Data System (ADS)
Thalapillil, Arun Madhav
The generation of the fermion mass hierarchy in the standard model of particle physics is a long-standing puzzle. The recent discoveries from neutrino physics suggests that the mixing in the lepton sector is large compared to the quark mixings. To understand this asymmetry between the quark and lepton mixings is an important aim for particle physics. In this regard, two promising approaches from the theoretical side are grand unified theories and family symmetries. In the first part of my thesis we try to understand certain general features of grand unified theories with Abelian family symmetries by taking the simplest SU(5) grand unified theory as a prototype. We construct an SU(5) toy model with U(1) F ⊗Z'2 ⊗Z'' 2⊗Z''' 2 family symmetry that, in a natural way, duplicates the observed mass hierarchy and mixing matrices to lowest approximation. The system for generating the mass hierarchy is through a Froggatt-Nielsen type mechanism. One idea that we use in the model is that the quark and charged lepton sectors are hierarchical with small mixing angles while the light neutrino sector is democratic with larger mixing angles. We also discuss some of the difficulties in incorporating finer details into the model without making further assumptions or adding a large scalar sector. In the second part of my thesis, the interaction of high energy neutrinos with weak gravitational fields is explored. The form of the graviton-neutrino vertex is motivated from Lorentz and gauge invariance and the non-relativistic interpretations of the neutrino gravitational form factors are obtained. We comment on the renormalization conditions, the preservation of the weak equivalence principle and the definition of the neutrino mass radius. We associate the neutrino gravitational form factors with specific angular momentum states. Based on Feynman diagrams, spin-statistics, CP invariance and symmetries of the angular momentum states in the neutrino-graviton vertex, we deduce
A tight SO(10) connection between leptogenesis and neutrino masses
Frigerio, Michele
2008-11-23
We discuss a source of light neutrino masses and leptogenesis in SO(10) unification theories, that was not previously recognized. It is present when the light lepton doublets belong (at least partially) to dimension-10 matter multiplets. At odds with previous leptogenesis scenarios, the CP asymmetry depends only on the low energy flavour parameters of the neutrino sector. We demonstrate that a successful generation of the baryon asymmetry of the Universe is possible.
Probing neutrino mass with displaced vertices at the Fermilab Tevatron
Campos, F. de; Eboli, O.J.P.; Magro, M.B.; Porod, W.; Restrepo, D.; Valle, J.W.F.
2005-04-01
Supersymmetric extensions of the standard model exhibiting bilinear R-parity violation can generate naturally the observed neutrino mass spectrum as well as mixings. One interesting feature of these scenarios is that the lightest supersymmetric particle (LSP) is unstable, with several of its decay properties predicted in terms of neutrino mixing angles. A smoking gun of this model in colliders is the presence of displaced vertices due to LSP decays in large parts of the parameter space. In this work we focus on the simplest model of this type that comes from minimal supergravity with universal R-parity conserving soft breaking of supersymmetry augmented with bilinear R-parity breaking terms at the electroweak scale (RmSUGRA). We evaluate the potential of the Fermilab Tevatron to probe the RmSUGRA parameters through the analysis of events possessing two displaced vertices stemming from LSP decays. We show that requiring two displaced vertices in the events leads to a reach in m{sub 1/2} twice the one in the usual multilepton signals in a large fraction of the parameter space.
NASA Astrophysics Data System (ADS)
Chan, Yat-Long; Chu, M.-C.; Tsui, Ka Ming; Wong, Chan Fai; Xu, Jianyi
2016-06-01
We derive the neutrino flavor transition probabilities with the neutrino treated as a wave packet. The decoherence and dispersion effects from the wave-packet treatment show up as damping and phase-shifting of the plane-wave neutrino oscillation patterns. If the energy uncertainty in the initial neutrino wave packet is larger than around 0.01 of the neutrino energy, the decoherence and dispersion effects would degrade the sensitivity of reactor neutrino experiments to mass hierarchy measurement to lower than 3 σ confidence level.
Resolving neutrino mass hierarchy from supernova (anti)neutrino-nucleus reactions
NASA Astrophysics Data System (ADS)
Vale, Deni; Paar, Nils
2015-10-01
Recently a hybrid method has been introduced to determine neutrino mass hierarchy by simultaneous measurements of detector responses induced by antineutrino and neutrino fluxes from accretion and cooling phase of type II supernova. The (anti)neutrino-nucleus cross sections for 12C, 16O, 56Fe and 208Pb are calculated in the framework of relativistic nuclear energy density functional and weak interaction Hamiltonian, while the cross sections for inelastic scattering on free protons in mineral oil and water, p (v¯e,e+)n are obtained using heavy-baryon chiral perturbation theory. The simulations of (anti)neutrino fluxes emitted from a proto-neutron star in a core-collapse supernova include collective and Mikheyev-Smirnov-Wolfenstein effects inside star. It is shown that simultaneous use of ve/v¯e detectors with different target material allow to determine the neutrino mass hierarchy from the ratios of ve/v¯e induced particle emissions. The hybrid method favors detectors with heavier target nuclei (208Pb) for the neutrino sector, while for antineutrinos the use of free protons in mineral oil and water is more appropriate.
Neutrinos: Theory and Phenomenology
Parke, Stephen
2013-10-22
The theory and phenomenology of neutrinos will be addressed, especially that relating to the observation of neutrino flavor transformations. The current status and implications for future experiments will be discussed with special emphasis on the experiments that will determine the neutrino mass ordering, the dominant flavor content of the neutrino mass eigenstate with the smallest electron neutrino content and the size of CP violation in the neutrino sector. Beyond the neutrino Standard Model, the evidence for and a possible definitive experiment to confirm or refute the existence of light sterile neutrinos will be briefly discussed.
Impact of eV-mass sterile neutrinos on neutrino-driven supernova outflows
Tamborra, Irene; Raffelt, Georg G.; Hüdepohl, Lorenz; Janka, Hans-Thomas E-mail: raffelt@mpp.mpg.de E-mail: thj@mpa-garching.mpg.de
2012-01-01
Motivated by recent hints for sterile neutrinos from the reactor anomaly, we study active-sterile conversions in a three-flavor scenario (2 active + 1 sterile families) for three different representative times during the neutrino-cooling evolution of the proto-neutron star born in an electron-capture supernova. In our ''early model'' (0.5 s post bounce), the ν{sub e}-ν{sub s} MSW effect driven by Δm{sup 2} = 2.35eV{sup 2} is dominated by ordinary matter and leads to a complete ν{sub e}-ν{sub s} swap with little or no trace of collective flavor oscillations. In our ''intermediate'' (2.9 s p.b.) and ''late models'' (6.5 s p.b.), neutrinos themselves significantly modify the ν{sub e}-ν{sub s} matter effect, and, in particular in the late model, νν refraction strongly reduces the matter effect, largely suppressing the overall ν{sub e}-ν{sub s} MSW conversion. This phenomenon has not been reported in previous studies of active-sterile supernova neutrino oscillations. We always include the feedback effect on the electron fraction Y{sub e} due to neutrino oscillations. In all examples, Y{sub e} is reduced and therefore the presence of sterile neutrinos can affect the conditions for heavy-element formation in the supernova ejecta, even if probably not enabling the r-process in the investigated outflows of an electron-capture supernova. The impact of neutrino-neutrino refraction is strong but complicated, leaving open the possibility that with a more complete treatment, or for other supernova models, active-sterile neutrino oscillations could generate conditions suitable for the r-process.
Neutrino mass and dark energy from weak lensing.
Abazajian, Kevork N; Dodelson, Scott
2003-07-25
Weak gravitational lensing of background galaxies by intervening matter directly probes the mass distribution in the Universe. This distribution is sensitive to both the dark energy and neutrino mass. We examine the potential of lensing experiments to measure features of both simultaneously. Focusing on the radial information contained in a future deep 4000 deg(2) survey, we find that the expected (1-sigma) error on a neutrino mass is 0.1 eV, if the dark-energy parameters are allowed to vary. The constraints on dark-energy parameters are similarly restrictive, with errors on w of 0.09. PMID:12906650
Neutrino mixing with nonzero θ13 in Zee-Babu model
NASA Astrophysics Data System (ADS)
Long, Hoang Ngoc; Vien, Vo Van
2014-05-01
The exact solution for the neutrino mass matrix of the Zee-Babu model is derived. Tribimaximal mixing imposes conditions on the Yukawa couplings, from which the normal mass hierarchy is preferred. The derived conditions give a possibility of Majorana maximal CP violation in the neutrino sector. We have shown that nonzero θ13 is generated if Yukawa couplings between leptons almost equal to each other. The model gives some regions of the parameters where neutrino mixing angles and the normal neutrino mass hierarchy obtained are consistent with the recent experimental data.
Neutrino Mass Hierarchy and Neutrino Oscillation Parameters with One Hundred Thousand Reactor Events
NASA Astrophysics Data System (ADS)
Capozzi, F.; Lisi, E.; Marrone, A.
High-statistics reactor neutrino experiments at medium baselines will probe mass-mixing parameters governing neutrino oscillations at long wavelength, driven by the (δm2, θ12) and at short wavelength, driven by (Δm2, θ13).The interference between these two oscillations will allow to probe the mass hierarchy. The determination of the neutrino mass spectrum hierarchy, however, will require an unprecedented level of detector performance and collected statistics, and the control of several systematics at (sub)percent level. In this work we perform accurate theoretical calculations of reactor event spectra and refined statistical analyses to show that with O(105) reactor events, a typical sensitivity of ∼ 2σ could be achieved by an experiment such as JUNO. We also show the impact of the energy scale and spectrum shape systematics on the determination of the hierarchy.
Relic abundance of dark matter in universal extra dimension models with right-handed neutrinos
Matsumoto, Shigeki; Sato, Joe; Yamanaka, Masato; Senami, Masato
2009-04-17
Relic abundance of dark matter is investigated in the framework of universal extra dimension models with right-handed neutrinos. These models are free from the serious Kaluza-Klein (KK) graviton problem that the original universal extra dimension model possesses. The first KK particle of the right-handed neutrino is a candidate for dark matter in this framework. When ordinary neutrino masses are large enough such as the degenerate mass spectrum case, the dark matter relic abundance can change significantly. The scale of the extra dimension consistent with cosmological observations can be 500 GeV in the minimal setup of universal extra dimension models with right-handed neutrinos.
Renormalization of the neutrino mass matrix
NASA Astrophysics Data System (ADS)
Chiu, S. H.; Kuo, T. K.
2016-09-01
In terms of a rephasing invariant parametrization, the set of renormalization group equations (RGE) for Dirac neutrino parameters can be cast in a compact and simple form. These equations exhibit manifest symmetry under flavor permutations. We obtain both exact and approximate RGE invariants, in addition to some approximate solutions and examples of numerical solutions.
Neutrino mass hierarchy determination for theta{sub 13} = 0
Gandhi, Raj; Ghoshal, Pomita; Goswami, Srubabati; Sankar, S. Uma
2010-03-30
We examine the possibility of determining the neutrino mass hierarchy in the limit theta{sub 13} = 0 using atmospheric neutrinos as the source. In this limit, theta{sub 13} driven matter effects are absent so independent measurements of DELTA{sub 31} and DELTA{sub 32} can, in principle, lead to hierarchy determination. Since their difference is DELTA{sub 21}, one needs an experimental arrangement where DELTA{sub 21}L/E > or approx. 1 can be achieved. This can be satisfied by atmospheric neutrinos which have a large range of L and E. Still, we find that hierarchy determination in the theta{sub 13} = 0 limit with atmospheric neutrinos is not a realistic possibility, even in conjunction with a beam experiment like T2K or NOnuA. We discuss why, and also reiterate the general conditions for hierarchy determination if theta{sub 13} = 0.
Minimal models for axion and neutrino
NASA Astrophysics Data System (ADS)
Ahn, Y. H.; Chun, Eung Jin
2016-01-01
The PQ mechanism resolving the strong CP problem and the seesaw mechanism explaining the smallness of neutrino masses may be related in a way that the PQ symmetry breaking scale and the seesaw scale arise from a common origin. Depending on how the PQ symmetry and the seesaw mechanism are realized, one has different predictions on the color and electromagnetic anomalies which could be tested in the future axion dark matter search experiments. Motivated by this, we construct various PQ seesaw models which are minimally extended from the (non-) supersymmetric Standard Model and thus set up different benchmark points on the axion-photon-photon coupling in comparison with the standard KSVZ and DFSZ models.
Probing the Dark Matter mass and nature with neutrinos
Blennow, Mattias; Carrigan, Marcus; Martinez, Enrique Fernandez E-mail: carri@kth.se
2013-06-01
We study the possible indirect neutrino signal from dark matter annihilations inside the Sun's core for relatively light dark matter masses in the O(10) GeV range. Due to their excellent energy reconstruction capabilities, we focus on the detection of this flux in liquid argon or magnetized iron calorimeter detectors, proposed for the next generation of far detectors of neutrino oscillation experiments and neutrino telescopes. The aim of the study is to probe the ability of these detectors to determine fundamental properties of the dark matter nature such as its mass or its relative annihilation branching fractions to different channels. We find that these detectors will be able to accurately measure the dark matter mass as long as the dark matter annihilations have a significant branching into the neutrino or at least the τ channel. We have also discovered degeneracies between different dark matter masses and annihilation channels, where a hard τ channel spectrum for a lower dark matter mass may mimic that of a softer quark channel spectrum for a larger dark matter mass. Finally, we discuss the sensitivity of the detectors to the different branching ratios and find that it is between one and two orders of magnitude better than the current bounds from those coming from analysis of Super-Kamiokande data.
Neutrino mass, dark matter, and Baryon asymmetry via TeV-scale physics without fine-tuning.
Aoki, Mayumi; Kanemura, Shinya; Seto, Osamu
2009-02-01
We propose an extended version of the standard model, in which neutrino oscillation, dark matter, and the baryon asymmetry of the Universe can be simultaneously explained by the TeV-scale physics without assuming a large hierarchy among the mass scales. Tiny neutrino masses are generated at the three-loop level due to the exact Z2 symmetry, by which the stability of the dark matter candidate is guaranteed. The extra Higgs doublet is required not only for the tiny neutrino masses but also for successful electroweak baryogenesis. The model provides discriminative predictions especially in Higgs phenomenology, so that it is testable at current and future collider experiments. PMID:19257506
Neutrino mass and mixing: from theory to experiment
NASA Astrophysics Data System (ADS)
King, Stephen F.; Merle, Alexander; Morisi, Stefano; Shimizu, Yusuke; Tanimoto, Morimitsu
2014-04-01
The origin of fermion mass hierarchies and mixings is one of the unresolved and most difficult problems in high-energy physics. One possibility to address the flavour problems is by extending the standard model to include a family symmetry. In the recent years it has become very popular to use non-Abelian discrete flavour symmetries because of their power in the prediction of the large leptonic mixing angles relevant for neutrino oscillation experiments. Here we give an introduction to the flavour problem and to discrete groups that have been used to attempt a solution for it. We review the current status of models in light of the recent measurement of the reactor angle, and we consider different model-building directions taken. The use of the flavons or multi-Higgs scalars in model building is discussed as well as the direct versus indirect approaches. We also focus on the possibility of experimentally distinguishing flavour symmetry models by means of mixing sum rules and mass sum rules. In fact, we illustrate in this review the complete path from mathematics, via model building, to experiments, so that any reader interested in starting work in the field could use this text as a starting point in order to obtain a broad overview of the different subject areas.
Leptogenesis, radiative neutrino masses and inert Higgs triplet dark matter
NASA Astrophysics Data System (ADS)
Lu, Wen-Bin; Gu, Pei-Hong
2016-05-01
We extend the standard model by three types of inert fields including Majorana fermion singlets/triplets, real Higgs singlets/triplets and leptonic Higgs doublets. In the presence of a softly broken lepton number and an exactly conserved Z2 discrete symmetry, these inert fields together can mediate a one-loop diagram for a Majorana neutrino mass generation. The heavier inert fields can decay to realize a successful leptogenesis while the lightest inert field can provide a stable dark matter candidate. As an example, we demonstrate the leptogenesis by the inert Higgs doublet decays. We also perform a systematic study on the inert Higgs triplet dark matter scenario where the interference between the gauge and Higgs portal interactions can significantly affect the dark matter properties.
Neutrino mass as a signal of TeV scale physics
NASA Astrophysics Data System (ADS)
Mohapatra, Rabindra N.
2016-07-01
If the origin of neutrino masses is due to physics at the TeV scale, it would be of tremendous interest since it can be probed using ongoing collider as well as low energy rare process searches. So, a key question is: could the new physics behind neutrino masses be near the TeV scale? In this brief overview, I present arguments in favor of this possibility by presenting the example of TeV scale left-right symmetric models (LRSM) for neutrino mass based on type I seesaw paradigm. A particular issue with understanding the small neutrino masses in TeV scale LRSM is to understand the suppression of type II seesaw contribution to neutrino masses, which a priori could be much larger than desired. I discuss how using either D-parity breaking or by using supersymmetry, one can suppress these contributions to the desired level in a natural way. Experimental probes of this hypothesis are briefly touched upon. Constraints of supersymmetry and that of successful leptogenesis on the left-right scale are also emphasized. The former provides an upper limit and the latter, a lower limit on mWR.
Determining neutrino mass hierarchy from electron disappearance at a low energy neutrino factory
NASA Astrophysics Data System (ADS)
Dutta, Rupak; Sinha, Nita; Raut, Sushant K.
2014-04-01
Recent measurements of large θ13 by the reactor experiments have opened up the possibility of determining the neutrino mass hierarchy, i.e., the sign of the mass squared splitting Δm312, the CP-violating phase δCP, and the octant of θ23. In light of this result, we study the performance of a low energy neutrino factory (LENF) for determination of the mass hierarchy. In particular, we explore the potential of the νe and ν¯e disappearance channels at LENF to determine the neutrino mass hierarchy, that is free from the uncertainties arising from the unknown δCP phase and the θ23 octant. We find that using these electron neutrino (antineutrino) disappearance channels with a standard LENF, it is possible to exclude the wrong hierarchy at 5σ with only 2 years of running, with a muon beam energy above ˜3.5(5.0-10.0) GeV and baseline longer than ˜1400(1900-2400) km for an optimistic (conservative) systematic error of 2% (5%).
Dirac or Inverse Seesaw Neutrino Masses from Gauged B - L Symmetry
NASA Astrophysics Data System (ADS)
Ma, Ernest; Srivastava, Rahul
The gauged B - L symmetry is one of the simplest and well studied extension of standard model. In the conventional case, addition of three singlet right-handed neutrinos each transforming as -1 under the B - L symmetry renders it anomaly free. It is usually assumed that the B - L symmetry is spontaneously broken by a singlet scalar having two units of B - L charge, resulting in a natural implementation of Majorana seesaw mechanism for neutrinos. However, as we discuss in this proceeding, there is another simple anomaly free solution which leads to Dirac or inverse seesaw masses for neutrinos. These new possibilities are explored along with an application to neutrino mixing with S3 flavour symmetry.
Dirac or inverse seesaw neutrino masses from gauged B-L symmetry
NASA Astrophysics Data System (ADS)
Ma, Ernest; Srivastava, Rahul
2015-08-01
The gauged B-L symmetry is one of the simplest and well-studied extension of Standard Model. In the conventional case, addition of three singlet right-handed neutrinos each transforming as - 1 under the B-L symmetry renders it anomaly-free. It is usually assumed that the B-L symmetry is spontaneously broken by a singlet scalar having two units of B-L charge, resulting in a natural implementation of Majorana seesaw mechanism for neutrinos. However, as we discuss here, there is another simple anomaly-free solution which leads to Dirac or inverse seesaw masses for neutrinos. These new possibilities are explored along with an application to neutrino mixing with S3 flavor symmetry.
PQ-symmetry for a small Dirac neutrino mass, dark radiation and cosmic neutrinos
Park, Wan-Il
2014-06-01
We propose a supersymmetric scenario in which the small Yukawa couplings for the Dirac neutrino mass term are generated by the spontaneous-breaking of Pecci-Quinn symmetry. In this scenario, a right amount of dark matter relic density can be obtained by either right-handed sneutrino or axino LSP, and a sizable amount of axion dark radiation can be obtained. Interestingly, the decay of right-handed sneutrino NLSP to axino LSP is delayed to around the present epoch, and can leave an observable cosmological background of neutrinos at the energy scale of O(10−100) GeV.
Neutrino Masses and SO10 Unification
NASA Astrophysics Data System (ADS)
Minkowski, P.
We present the embedding of the SM gauge group in SO10, a simple, compact unifying gauge group, with each of the three basic spin 1/2 families forming a unitary, irreducible 16-dimensional representation of spin10, which is complex, i.e. chiral. Subtle differences to the mixed representations of SU5, contained in the SO10 scheme, are pointed out. These have consequences for neutrino flavors, which become paired in a light SU2L-active doublet mode and a heavy SM singlet mode, one ν, 𝒩-pair per family.
NASA Astrophysics Data System (ADS)
Zhang, Jue; Zhou, Shun
2016-06-01
The atomic transition from an excited state |e ⟩ to the ground state |g ⟩ by emitting a neutrino pair and a photon, i.e., |e ⟩→|g ⟩+|γ ⟩+|νi⟩+|ν¯j⟩ with i , j =1 , 2, 3, has been proposed by Yoshimura and his collaborators as an alternative way to determine the absolute scale m0 of neutrino masses. More recently, a statistical analysis of the fine structure of the photon spectrum from this atomic process has been performed [N. Song et al. Phys. Rev. D 93, 013020 (2016)] to quantitatively examine the experimental requirements for a realistic determination of absolute neutrino masses. In this paper, we show how to improve the statistical analysis and demonstrate that the previously required detection time can be reduced by one order of magnitude for the case of a 3 σ determination of m0˜0.01 eV with an accuracy better than 10%. Such an improvement is very encouraging for further investigations on measuring absolute neutrino masses through atomic processes.
Neutrino mass limits: Robust information from the power spectrum of galaxy surveys
NASA Astrophysics Data System (ADS)
Cuesta, Antonio J.; Niro, Viviana; Verde, Licia
2016-09-01
We present cosmological upper limits on the sum of active neutrino masses using large-scale power spectrum data from the WiggleZ Dark Energy Survey and from the Sloan Digital Sky Survey - Data Release 7 (SDSS-DR7) sample of Luminous Red Galaxies (LRG). Combining measurements on the Cosmic Microwave Background temperature and polarisation anisotropies by the Planck satellite together with WiggleZ power spectrum results in a neutrino mass bound of 0.37 eV at 95% C.L., while replacing WiggleZ by the SDSS-DR7 LRG power spectrum, the 95% C.L. bound on the sum of neutrino masses is 0.38 eV. Adding Baryon Acoustic Oscillation (BAO) distance scale measurements, the neutrino mass upper limits greatly improve, since BAO data break degeneracies in parameter space. Within a ΛCDM model, we find an upper limit of 0.13 eV (0.14 eV) at 95% C.L., when using SDSS-DR7 LRG (WiggleZ) together with BAO and Planck. The addition of BAO data makes the neutrino mass upper limit robust, showing only a weak dependence on the power spectrum used. We also quantify the dependence of neutrino mass limit reported here on the CMB lensing information. The tighter upper limit (0.13 eV) obtained with SDSS-DR7 LRG is very close to that recently obtained using Lyman-alpha clustering data, yet uses a completely different probe and redshift range, further supporting the robustness of the constraint. This constraint puts under some pressure the inverted mass hierarchy and favours the normal hierarchy.
Mass varying neutrinos, quintessence, and the accelerating expansion of the Universe
Chitov, Gennady Y.; August, Tyler; Natarajan, Aravind; Kahniashvili, Tina
2011-02-15
We analyze the mass varying neutrino scenario. We consider a minimal model of massless Dirac fermions coupled to a scalar field, mainly in the framework of finite-temperature quantum field theory. We demonstrate that the mass equation we find has nontrivial solutions only for special classes of potentials, and only within certain temperature intervals. We give most of our results for the Ratra-Peebles dark energy (DE) potential. The thermal (temporal) evolution of the model is analyzed. Following the time arrow, the stable, metastable, and unstable phases are predicted. The model predicts that the present Universe is below its critical temperature and accelerates. At the critical point, the Universe undergoes a first-order phase transition from the (meta)stable oscillatory regime to the unstable rolling regime of the DE field. This conclusion agrees with the original idea of quintessence as a force making the Universe roll towards its true vacuum with a zero {Lambda} term. The present mass varying neutrino scenario is free from the coincidence problem, since both the DE density and the neutrino mass are determined by the scale M of the potential. Choosing M{approx}10{sup -3} eV to match the present DE density, we can obtain the present neutrino mass in the range m{approx}10{sup -2}-1 eV and consistent estimates for other parameters of the Universe.
Closing in on minimal dark matter and radiative neutrino masses
NASA Astrophysics Data System (ADS)
Sierra, D. Aristizabal; Simoes, C.; Wegman, D.
2016-06-01
We study one-loop radiative neutrino mass models in which one of the beyond-the-standard model fields is either a hypercharge-zero fermion quintet (minimal dark matter) or a hypercharge-zero scalar septet. By systematically classifying all possible one-loop such models we identify various processes that render the neutral component of these representations (dark matter) cosmologically unstable. Thus, our findings show that these scenarios are in general not reconcilable with dark matter stability unless tiny couplings or additional ad hoc symmetries are assumed, in contrast to minimal dark matter models where stability is entirely due to the standard model gauge symmetry. For some variants based on higher-order loops we find that α2 reaches a Landau pole at rather low scales, a couple orders of magnitude from the characteristic scale of the model itself. Thus, we argue that some of these variations although consistent with dark matter stability and phenomenological constraints are hard to reconcile with perturbativity criteria.
Repressing anarchy in neutrino mass textures
NASA Astrophysics Data System (ADS)
Altarelli, Guido; Feruglio, Ferruccio; Masina, Isabella; Merlo, Luca
2012-11-01
The recent results that θ 13 is relatively large, of the order of the previous upper bound, and the indications of a sizable deviation of θ 23 from the maximal value are in agreement with the predictions of Anarchy in the lepton sector. The quark and charged lepton hierarchies can then be reproduced in a SU(5) GUT context by attributing non-vanishing U(1)FN charges, different for each family, only to the SU(5) tenplet states. The fact that the observed mass hierarchies are stronger for up quarks than for down quarks and charged leptons supports this idea. As discussed in the past, in the flexible context of SU(5) ⊗ U(1)FN, different patterns of charges can be adopted going from Anarchy to various types of hierarchy. We revisit this approach by also considering new models and we compare all versions to the present data. As a result we confirm that, by relaxing the ansatz of equal U(1)FN charges for all SU(5) pentaplets and singlets, better agreement with the data than for Anarchy is obtained without increasing the model complexity. We also present the distributions obtained in the different models for the Dirac CP-violating phase. Finally we discuss the relative merits of these simple models.
Three loop neutrino model with isolated k±±
NASA Astrophysics Data System (ADS)
Nishiwaki, Kenji; Okada, Hiroshi; Orikasa, Yuta
2015-11-01
We propose a three loop radiative neutrino mass scenario with an isolated doubly charged singlet scalar k±± without couplings to the charged leptons, while two other singly charged scalars h1± and h2± attach to them. In this setup, the lepton flavor violation originating from k±± exchanges is suppressed and the model is less constrained, where some couplings can take sizable values. As reported in our previous work [1], the loop suppression factor at the three loop level would be too strong and realized neutrino masses in a three loop scenario could be smaller than the observed minuscule values. The sizable couplings can help us to enhance neutrino masses without drastically large scalar trilinear couplings appearing in a neutrino mass matrix, which tends to drive the vacuum stability to become jeopardized at the one loop level. Now the doubly charged scalar k±± has less constraint via lepton flavor violation and the vacuum can be quite stable, and thus a few hundred GeV mass in k±± is possible, which is within the LHC reach and this model can be tested in the near future. Note that the other h1± and h2± should be heavy at least around a few TeV. We suitably arrange the charges of an additional global U (1 ) symmetry, where the decay constant of the associated Nambu-Goldstone boson can be around a TeV scale consistently. Also, this model is indirectly limited through a global analysis on results of the LHC Higgs search and issues on a dark matter candidate, the lightest Majorana neutrino. After h1± and h2± are decoupled, this particle couples to the standard model particles only through two charge parity even scalars in theory and thus information on this scalar sector is important. Consistent solutions are found, but a part of them is now on the edge.
NASA Technical Reports Server (NTRS)
Loredo, Thomas J.; Lamb, Don Q.
1989-01-01
Data on neutrinos from SN 1987A are compared here with parameterized models of the neutrino emission using a consistent and straightforward statistical methodology. The empirically measured detector background spectra are included in the analysis, and the data are compared with a much wider variety of neutrino emission models than was explored previously. It is shown that the inferred neutrino emission model parameters are strongly correlated. The analysis confirms that simple models of the neutrino cooling of the nascent neutron star formed by the SN adequately explain the data. The inferred radius and binding energy of the neutron star are in excellent agreement with model calculations based on a wide range of equations of state. The results also raise the upper limit of the electron antineutrino rest mass to roughly 25 eV at the 95 percent confidence level, roughly 1.5-5 times higher than found previously.
Forbidden unique beta-decays and neutrino mass
Dvornický, Rastislav; Šimkovic, Fedor
2013-12-30
The measurement of the electron spectrum in beta-decays provides a robust direct determination of the values of neutrino masses. The planned rhenium beta-decay experiment, called the “Microcalorimeter Arrays for a Rhenium Experiment” (MARE), might probe the absolute mass scale of neutrinos with the same sensitivity as the Karlsruhe tritium neutrino mass (KATRIN) experiment, which is expected to collect data in a near future. In this contribution we discuss the spectrum of emitted electrons close to the end point in the case of the first unique forbidden beta-decay of {sup 79}Se, {sup 107}Pd and {sup 187}Re. It is found that the p{sub 3/2}-wave emission dominates over the s{sub 1/2}-wave. It is shown that the Kurie plot near the end point is within a good accuracy linear in the limit of massless neutrinos like the Kurie plot of the superallowed beta-decay of {sup 3}H.
Mass hierarchy determination via future atmospheric neutrino detectors
NASA Astrophysics Data System (ADS)
Gandhi, Raj; Ghoshal, Pomita; Goswami, Srubabati; Mehta, Poonam; Uma Sankar, S.; Shalgar, Shashank
2007-10-01
We study the problem of determination of the sign of Δm312, or the neutrino mass hierarchy, through observations of atmospheric neutrinos in future detectors. We consider two proposed detector types: (a) Megaton sized water C̆erenkov detectors, which can measure the event rates of νμ+ν¯μ and νe+ν¯e and (b) 100 kton sized magnetized iron detectors, which can measure the event rates of νμ and ν¯μ. For energies and path lengths relevant to atmospheric neutrinos, these rates obtain significant matter contributions from Pμe, Pμμ and Pee, leading to an appreciable sensitivity to the hierarchy. We do a binned χ2 analysis of simulated data in these two types of detectors which includes the effect of smearing in neutrino energy and direction and incorporates detector efficiencies and relevant statistical, theoretical and systematic errors. We also marginalize the χ2 over the allowed ranges of neutrino parameters in order to accurately account for their uncertainties. Finally, we compare the performance of both types of detectors vis a vis the hierarchy determination.
Constraining a type I seesaw model with A4 flavor symmetry from neutrino data and leptogenesis
NASA Astrophysics Data System (ADS)
Kalita, Rupam; Borah, Debasish
2015-09-01
We study a type I seesaw model of neutrino masses within the framework of A4 flavor symmetry. Incorporating the presence of both singlet and triplet flavons under A4 symmetry, we construct the leptonic mass matrices involved in the type I seesaw mechanism. We then construct the light neutrino mass matrix using the 3 σ values of neutrino oscillation parameters keeping the presently undetermined parameters, namely, the lightest neutrino mass mlightest , one Dirac CP phase δ , and two Majorana phases α ,β , as free parameters. Comparing the mass matrices derived using A4 parameters as well as light neutrino parameters, we then evaluate all the A4 parameters in terms of light neutrino parameters. Assuming some specific vacuum alignments of the A4 triplet flavon field, we then numerically evaluate all the free parameters in the light neutrino sector, using them to find out the remaining A4 parameters. We then use the numerical values of these parameters to calculate baryon asymmetry through the mechanism of leptogenesis. We constrain not only the A4 vacuum alignments from the requirement of successful leptogenesis, but also the free parameters in the light neutrino sector (mlightest,δ ,α ,β ) to a certain range of values. These values can be tested in ongoing and future neutrino experiments, providing a way to discriminate between different possible A4 vacuum alignments discussed in this work.
Textures with two traceless submatrices of the neutrino mass matrix
Alhendi, H. A.; Mudlej, A. A.; Lashin, E. I.
2008-01-01
We propose a new texture for the light neutrino mass matrix. The proposal is based upon imposing a zero-trace condition on the two-by-two submatrices of the complex symmetric Majorana mass matrix in the flavor basis where the charged lepton mass matrix is diagonal. Restricting the mass matrix to have two traceless submatrices may be found sufficient to describe the current data. Eight out of 15 independent possible cases are found to be compatible with current data. Numerical and some approximate analytical results are presented.
Neutrino masses, the cosmological constant, and a stable universe in a Randall-Sundrum scenario
Dey, Paramita; Mukhopadhyaya, Biswarup; SenGupta, Soumitra
2009-09-01
The Randall-Sundrum model of warped geometry in a five-dimensional scenario, aimed at explaining the hierarchy between the Planck and electroweak scales, is intrinsically unstable in its minimal form due to negative tension of the visible brane. A proposed solution to the problem yields a negative cosmological constant in four dimensions. We show that this wrong-sign cosmological constant is restricted to small values, therefore requiring less cancellation from hitherto unknown physics, if bulk neutrinos are postulated to explain the observed neutrino mass pattern. Thus neutrino masses, a stable TeV-brane configuration and new physics in the context of the cosmological constant get rather suggestively connected by the same thread.
New upper limit on the total neutrino mass from the 2 degree field galaxy redshift survey.
Elgarøy, Ø; Lahav, O; Percival, W J; Peacock, J A; Madgwick, D S; Bridle, S L; Baugh, C M; Baldry, I K; Bland-Hawthorn, J; Bridges, T; Cannon, R; Cole, S; Colless, M; Collins, C; Couch, W; Dalton, G; De Propris, R; Driver, S P; Efstathiou, G P; Ellis, R S; Frenk, C S; Glazebrook, K; Jackson, C; Lewis, I; Lumsden, S; Maddox, S; Norberg, P; Peterson, B A; Sutherland, W; Taylor, K
2002-08-01
We constrain f(nu) identical with Omega(nu)/Omega(m), the fractional contribution of neutrinos to the total mass density in the Universe, by comparing the power spectrum of fluctuations derived from the 2 Degree Field Galaxy Redshift Survey with power spectra for models with four components: baryons, cold dark matter, massive neutrinos, and a cosmological constant. Adding constraints from independent cosmological probes we find f(nu)<0.13 (at 95% confidence) for a prior of 0.1
Moving to atomic tritium for neutrino mass measurements
NASA Astrophysics Data System (ADS)
Kazkaz, Kareem; Project8 Collaboration
2016-03-01
For direct measurements of the neutrino mass, the tritium-based experiments Mainz and Troitsk have provided the most sensitive measurements to date, with upper limits near 2200 meV. The KATRIN experiment, beginning its first science run in 2016, also uses tritium as its source and has an anticipated ultimate sensitivity of 200 meV. The largest single systematic effect limiting the mass sensitivity beyond KATRIN is the energy sharing between the emitted beta particle and the resulting T-3He molecule. It therefore behooves all future tritium-based experiments to use atomic, rather than molecular, tritium. In this presentation we will outline experimental considerations of atomic tritium: production, purification, inhibiting recombination, and cooling. We will discuss these considerations within the context of Project8, a tritium-based, cyclotron radiation emission spectroscopy neutrino mass measurement with an ultimate target sensitivity of 50 meV. Prepared by LLNL under Contract DE-AC52-07NA27344.
Ultra-low Q values for neutrino mass measurements
Kopp, Joachim; Merle, Alexander; /Heidelberg, Max Planck Inst.
2009-11-01
We investigate weak nuclear decays with extremely small kinetic energy release (Q value) and thus extremely good sensitivity to the absolute neutrino mass scale. In particular, we consider decays into excited daughter states, and we show that partial ionization of the parent atom can help to tune Q values to << 1 keV. We discuss several candidate isotopes undergoing {beta}{sup {+-}}, bound state {beta}, or electron capture decay, and come to the conclusion that a neutrino mass measurement using low-Q decays might only be feasible if no ionization is required, and if future improvements in isotope production technology, nuclear mass spectroscopy, and atomic structure calculations are possible. Experiments using ions, however, are extremely challenging due to the large number of ions that must be stored. New precision data on nuclear excitation levels could help to identify further isotopes with low-Q decay modes and possibly less challenging requirements.
Neutrino mass, dark energy, and the linear growth factor
NASA Astrophysics Data System (ADS)
Kiakotou, Angeliki; Elgarøy, Øystein; Lahav, Ofer
2008-03-01
We study the degeneracies between neutrino mass and dark energy as they manifest themselves in cosmological observations. In contradiction to a popular formula in the literature, the suppression of the matter power spectrum caused by massive neutrinos is not just a function of the ratio of neutrino to total mass densities fν=Ων/Ωm, but also each of the densities independently. We also present a fitting formula for the logarithmic growth factor of perturbations in a flat universe, f(z,k;fν,w,ΩDE)≈[1-A(k)ΩDEfν+B(k)fν2-C(k)fν3]Ωmα(z), where α depends on the dark energy equation of state parameter w. We then discuss cosmological probes where the f factor directly appears: peculiar velocities, redshift distortion, and the integrated Sachs-Wolfe effect. We also modify the approximation of Eisenstein and Hu [Astrophys. J.ASJOAB0004-637X 511, 5 (1999)10.1086/306640] for the power spectrum of fluctuations in the presence of massive neutrinos and provide a revised code [http://www.star.ucl.ac.uk/~lahav/nu_matter_power.f].
Cosmological axion and neutrino mass constraints from Planck 2015 temperature and polarization data
NASA Astrophysics Data System (ADS)
Di Valentino, Eleonora; Giusarma, Elena; Lattanzi, Massimiliano; Mena, Olga; Melchiorri, Alessandro; Silk, Joseph
2016-01-01
Axions currently provide the most compelling solution to the strong CP problem. These particles may be copiously produced in the early universe, including via thermal processes. Therefore, relic axions constitute a hot dark matter component and their masses are strongly degenerate with those of the three active neutrinos, as they leave identical signatures in the different cosmological observables. In addition, thermal axions, while still relativistic states, also contribute to the relativistic degrees of freedom, parameterized via Neff. We present the cosmological bounds on the relic axion and neutrino masses, exploiting the full Planck mission data, which include polarization measurements. In the mixed hot dark matter scenario explored here, we find the tightest and more robust constraint to date on the sum of the three active neutrino masses, ∑mν < 0.136 eV at 95% CL, as it is obtained in the very well-known linear perturbation regime. The Planck Sunyaev-Zeldovich cluster number count data further tightens this bound, providing a 95% CL upper limit of ∑mν < 0.126 eV in this very same mixed hot dark matter model, a value which is very close to the expectations in the inverted hierarchical neutrino mass scenario. Using this same combination of data sets we find the most stringent bound to date on the thermal axion mass, ma < 0.529 eV at 95% CL.