Science.gov

Sample records for neutrino matter oscillation

  1. Nonadiabatic three-neutrino oscillations in matter

    SciTech Connect

    DOlivo, J.C.; Oteo, J.A.

    1996-07-01

    Oscillations of three neutrinos in matter are analyzed by using the Magnus expansion for the time-evolution operator. We derive a simple expression for the electron-neutrino survival probability which is applied to the examination of the effect of a third neutrino on the nonadiabatic flavor transformations. {copyright} {ital 1996 The American Physical Society.}

  2. Matter-antimatter oscillations and neutrino mass

    SciTech Connect

    Senjanovic, G.

    1982-01-01

    A discussion of neutron-antineutron (n- anti n) and hydrogen-antihydrogen (H- anti H) transitions is presented. An SU(2)/sub L/ x U(1) x SU(3)/sub c/ model with spontaneously broken global B-L symmetry is shown to predict the interesting connection between oscillation times T/sub n- anti n/, T/sub H- anti H/, neutrino mass and the mass of a doubly charged Higgs scalar. A case of B-L as a gauge symmetry is discussed in the context of SU(2)/sub L/ x SU(2)/sub R/ x U(1)/sub B-L/ x SU(3)/sub c/ gauge model, with the emphasis on matter oscillations. Finally, an analysis of Higgs mass scales in GUTS and their impact on such processes is offered.

  3. Obtaining supernova directional information using the neutrino matter oscillation pattern

    SciTech Connect

    Scholberg, Kate; Wendell, Roger; Burgmeier, Armin

    2010-02-15

    A nearby core collapse supernova will produce a burst of neutrinos in several detectors worldwide. With reasonably high probability, the Earth will shadow the neutrino flux in one or more detectors. In such a case, for allowed oscillation parameter scenarios, the observed neutrino energy spectrum will bear the signature of oscillations in Earth matter. Because the frequency of the oscillations in energy depends on the path length traveled by the neutrinos in the Earth, an observed spectrum also contains information about the direction to the supernova. We explore here the possibility of constraining the supernova location using matter oscillation patterns observed in a detector. Good energy resolution (typical of scintillator detectors), well-known oscillation parameters, and optimistically large (but conceivable) statistics are required. Pointing by this method can be significantly improved using multiple detectors located around the globe. Although it is not competitive with neutrino-electron elastic scattering-based pointing with water Cherenkov detectors, the technique could still be useful.

  4. Earth matter effect on active-sterile neutrino oscillations

    NASA Astrophysics Data System (ADS)

    Acero, Mario A.; Aguilar-Arevalo, Alexis A.; D'Olivo, J. C.

    2011-08-01

    Oscillations between active and sterile neutrinos remain as an open possibility to explain some experimental observations. In a four-neutrino mixing scheme, we use the Magnus expansion of the evolution operator to study the evolution of neutrino flavor amplitudes within the Earth. We apply this formalism to calculate the transition probabilities from active to sterile neutrinos taking into account the matter effect for a varying terrestrial density.

  5. Compact perturbative expressions for neutrino oscillations in matter

    DOE PAGESBeta

    Denton, Peter B.; Minakata, Hisakazu; Parke, Stephen J.

    2016-06-08

    We further develop and extend a recent perturbative framework for neutrino oscillations in uniform matter density so that the resulting oscillation probabilities are accurate for the complete matter potential versus baseline divided by neutrino energy plane. This extension also gives the exact oscillation probabilities in vacuum for all values of baseline divided by neutrino energy. The expansion parameter used is related to the ratio of the solar to the atmosphericmore » $$\\Delta m^2$$ scales but with a unique choice of the atmospheric $$\\Delta m^2$$ such that certain first-order effects are taken into account in the zeroth-order Hamiltonian. Using a mixing matrix formulation, this framework has the exceptional feature that the neutrino oscillation probability in matter has the same structure as in vacuum, to all orders in the expansion parameter. It also contains all orders in the matter potential and $$\\sin\\theta_{13}$$. It facilitates immediate physical interpretation of the analytic results, and makes the expressions for the neutrino oscillation probabilities extremely compact and very accurate even at zeroth order in our perturbative expansion. Furthermore, the first and second order results are also given which improve the precision by approximately two or more orders of magnitude per perturbative order.« less

  6. Compact perturbative expressions for neutrino oscillations in matter

    NASA Astrophysics Data System (ADS)

    Denton, Peter B.; Minakata, Hisakazu; Parke, Stephen J.

    2016-06-01

    We further develop and extend a recent perturbative framework for neutrino oscillations in uniform matter density so that the resulting oscillation probabilities are accurate for the complete matter potential versus baseline divided by neutrino energy plane. This extension also gives the exact oscillation probabilities in vacuum for all values of baseline divided by neutrino energy. The expansion parameter used is related to the ratio of the solar to the atmospheric ∆ m 2 scales but with a unique choice of the atmospheric ∆ m 2 such that certain first-order effects are taken into account in the zeroth-order Hamiltonian. Using a mixing matrix formulation, this framework has the exceptional feature that the neutrino oscillation probability in matter has the same structure as in vacuum, to all orders in the expansion parameter. It also contains all orders in the matter potential and sin θ 13. It facilitates immediate physical interpretation of the analytic results, and makes the expressions for the neutrino oscillation probabilities extremely compact and very accurate even at zeroth order in our perturbative expansion. The first and second order results are also given which improve the precision by approximately two or more orders of magnitude per perturbative order.

  7. Simple and compact expressions for neutrino oscillation probabilities in matter

    SciTech Connect

    Minakata, Hisakazu; Parke, Stephen J.

    2015-05-07

    We reformulate perturbation theory for neutrino oscillations in matter with an expansion parameter related to the ratio of the solar to the atmospheric Δm2 scales. Unlike previous works, use a renormalized basis in which certain first-order effects are taken into account in the zeroth-order Hamiltonian. Using this perturbation theory we derive extremely compact expressions for the neutrino oscillations probabilities in matter. We find, for example, that the νe disappearance probability at this order is of a simple two flavor form with an appropriately identified mixing angle and Δm2. Furthermore, despite exceptional simplicity in their forms they accommodate all order effects θ13 and the matter potential.

  8. Simple and compact expressions for neutrino oscillation probabilities in matter

    DOE PAGESBeta

    Minakata, Hisakazu; Parke, Stephen J.

    2016-01-29

    We reformulate perturbation theory for neutrino oscillations in matter with an expansion parameter related to the ratio of the solar to the atmospheric Δm2 scales. Unlike previous works, use a renormalized basis in which certain first-order effects are taken into account in the zeroth-order Hamiltonian. Using this perturbation theory we derive extremely compact expressions for the neutrino oscillations probabilities in matter. We find, for example, that the νe disappearance probability at this order is of a simple two flavor form with an appropriately identified mixing angle and Δm2. Furthermore, despite exceptional simplicity in their forms they accommodate all order effectsmore » θ13 and the matter potential.« less

  9. First indication of terrestrial matter effects on solar neutrino oscillation.

    PubMed

    Renshaw, A; Abe, K; Hayato, Y; Iyogi, K; Kameda, J; Kishimoto, Y; Miura, M; Moriyama, S; Nakahata, M; Nakano, Y; Nakayama, S; Sekiya, H; Shiozawa, M; Suzuki, Y; Takeda, A; Takenaga, Y; Tomura, T; Ueno, K; Yokozawa, T; Wendell, R A; Irvine, T; Kajita, T; Kaneyuki, K; Lee, K P; Nishimura, Y; Okumura, K; McLachlan, T; Labarga, L; Berkman, S; Tanaka, H A; Tobayama, S; Kearns, E; Raaf, J L; Stone, J L; Sulak, L R; Goldhabar, M; Bays, K; Carminati, G; Kropp, W R; Mine, S; Smy, M B; Sobel, H W; Ganezer, K S; Hill, J; Keig, W E; Hong, N; Kim, J Y; Lim, I T; Akiri, T; Himmel, A; Scholberg, K; Walter, C W; Wongjirad, T; Ishizuka, T; Tasaka, S; Jang, J S; Learned, J G; Matsuno, S; Smith, S N; Hasegawa, T; Ishida, T; Ishii, T; Kobayashi, T; Nakadaira, T; Nakamura, K; Oyama, Y; Sakashita, K; Sekiguchi, T; Tsukamoto, T; Suzuki, A T; Takeuchi, Y; Bronner, C; Hirota, S; Huang, K; Ieki, K; Ikeda, M; Kikawa, T; Minamino, A; Nakaya, T; Suzuki, K; Takahashi, S; Fukuda, Y; Choi, K; Itow, Y; Mitsuka, G; Mijakowski, P; Hignight, J; Imber, J; Jung, C K; Yanagisawa, C; Ishino, H; Kibayashi, A; Koshio, Y; Mori, T; Sakuda, M; Yano, T; Kuno, Y; Tacik, R; Kim, S B; Okazawa, H; Choi, Y; Nishijima, K; Koshiba, M; Totsuka, Y; Yokoyama, M; Martens, K; Marti, Ll; Vagins, M R; Martin, J F; de Perio, P; Konaka, A; Wilking, M J; Chen, S; Zhang, Y; Wilkes, R J

    2014-03-01

    We report an indication that the elastic scattering rate of solar B8 neutrinos with electrons in the Super-Kamiokande detector is larger when the neutrinos pass through Earth during nighttime. We determine the day-night asymmetry, defined as the difference of the average day rate and average night rate divided by the average of those two rates, to be [-3.2 ± 1.1(stat) ± 0.5(syst)]%, which deviates from zero by 2.7 σ. Since the elastic scattering process is mostly sensitive to electron-flavored solar neutrinos, a nonzero day-night asymmetry implies that the flavor oscillations of solar neutrinos are affected by the presence of matter within the neutrinos' flight path. Super-Kamiokande's day-night asymmetry is consistent with neutrino oscillations for 4 × 10(-5)  eV(2) ≤ Δm 2(21) ≤ 7 × 10(-5) eV(2) and large mixing values of θ12, at the 68% C.L. PMID:24655245

  10. Matter Effects on Neutrino Oscillations in Different Supernova Models

    NASA Astrophysics Data System (ADS)

    Xu, Jing; Hu, Li-Jun; Li, Rui-Cheng; Guo, Xin-Heng; Young, Bing-Lin

    2016-04-01

    In recent years, with the development of simulations about supernova explosion, we have a better understanding about the density profiles and the shock waves in supernovae than before. There might be a reverse shock wave, another sudden change of density except the forward shock wave, or even no shock wave, emerging in the supernova. Instead of using the expression of the crossing probability at the high resonance, PH, we have studied the matter effects on neutrino oscillations in different supernova models. In detail, we have calculated the survival probability of ve (Ps) and the conversion probability of vx (Pc) in the Schrödinger equation within a simplified two-flavor framework for a certain case, in which the neutrino transfers through the supernova matter from an initial flavor eigenstate located at the core of the supernova. Our calculations was based on the data of density in three different supernova models obtained from simulations. In our work, we do not steepen the density gradient around the border of the shock wave, which differs to what was done in most of the other simulations. It is found that the mass and the density distribution of the supernova do make a difference on the behavior of Ps and Pc. With the results of Ps and Pc, we can estimate the number of ve (and vx) remained in the beam after they go through the matter in the supernova. Supported by National Science Foundation of China under Grant Nos. 11175020 and 11275025

  11. Neutrino magnetic moment, CP violation, and flavor oscillations in matter

    NASA Astrophysics Data System (ADS)

    Pehlivan, Y.; Balantekin, A. B.; Kajino, Toshitaka

    2014-09-01

    We consider collective oscillations of neutrinos, which are emergent nonlinear flavor evolution phenomena instigated by neutrino-neutrino interactions in astrophysical environments with sufficiently high neutrino densities. We investigate the symmetries of the problem in the full three-flavor mixing scheme and in the exact many-body formulation by including the effects of CP violation and the neutrino magnetic moment. We show that, similar to the two-flavor scheme, several dynamical symmetries exist for three flavors in the single-angle approximation if the net electron background in the environment and the effects of the neutrino magnetic moment are negligible. Moreover, we show that these dynamical symmetries are present even when the CP symmetry is violated in neutrino oscillations. We explicitly write down the constants of motion through which these dynamical symmetries manifest themselves in terms of the generators of the SU(3) flavor transformations. We also show that the effects due to the CP-violating Dirac phase factor out of the many-body evolution operator and evolve independently of nonlinear flavor transformations if neutrino electromagnetic interactions are ignored. In the presence of a strong magnetic field, CP-violating effects can still be considered independently provided that an effective definition for the neutrino magnetic moment is used.

  12. Oscillations of Dirac and Majorana neutrinos in matter and a magnetic field

    SciTech Connect

    Dvornikov, Maxim; Maalampi, Jukka

    2009-06-01

    We study the evolution of massive mixed Dirac and Majorana neutrinos in matter under the influence of a transversal magnetic field. The analysis is based on relativistic quantum mechanics. We solve exactly the evolution equation for relativistic neutrinos, find the neutrino wave functions, and calculate the transition probability for spin-flavor oscillations. We analyze the dependence of the transition probability on the external fields and compare the cases of Dirac and Majorana neutrinos. The evolution of Majorana particles in vacuum is also studied and correction terms to the standard oscillation formula are derived and discussed. As a possible application of our results we discuss the spin-flavor transitions in supernovae.

  13. Parametric resonance in neutrino oscillation: A guide to control the effects of inhomogeneous matter density

    NASA Astrophysics Data System (ADS)

    Koike, Masafumi; Ota, Toshihiko; Saito, Masako; Sato, Joe

    2016-08-01

    Effects of the inhomogeneous matter density on the three-generation neutrino oscillation probability are analyzed. Realistic profile of the matter density is expanded into a Fourier series. Taking in the Fourier modes one by one, we demonstrate that each mode has its corresponding target energy. The high Fourier mode selectively modifies the oscillation probability of the low-energy region. This rule is well described by the parametric resonance between the neutrino oscillation and the matter effect. The Fourier analysis gives a simple guideline to systematically control the uncertainty of the oscillation probability caused by the uncertain density of matter. Precise analysis of the oscillation probability down to the low-energy region requires accurate evaluation of the Fourier coefficients of the matter density up to the corresponding high modes.

  14. Analytical theory of neutrino oscillations in matter with C P violation

    NASA Astrophysics Data System (ADS)

    Johnson, Mikkel B.; Henley, Ernest M.; Kisslinger, Leonard S.

    2015-04-01

    We develop an exact analytical formulation of neutrino oscillations in matter within the framework of the standard neutrino model assuming three Dirac neutrinos. Our Hamiltonian formulation, which includes C P violation, leads to expressions for the partial oscillation probabilities that are linear combinations of spherical Bessel functions in the eigenvalue differences. The coefficients of these Bessel functions are polynomials in the neutrino CKM matrix elements, the neutrino mass differences squared, the strength of the neutrino interaction with matter, and the neutrino mass eigenvalues in matter. We give exact closed-form expressions for all partial oscillation probabilities in terms of these basic quantities. Adopting the standard neutrino model, we then examine how the exact expressions for the partial oscillation probabilities might simplify by expanding in one of the small parameters α and sin θ13 of this model. We show explicitly that for small α and sin θ13 , there are branch points in the analytic structure of the eigenvalues that lead to singular behavior of expansions near the solar and atmospheric resonances. We present numerical calculations that indicate how to use the small-parameter expansions in practice.

  15. A New Neutrino Oscillation

    SciTech Connect

    Parke, Stephen J.; /Fermilab

    2011-07-01

    Starting in the late 1960s, neutrino detectors began to see signs that neutrinos, now known to come in the flavors electron ({nu}{sub e}), muon ({nu}{sub {mu}}), and tau ({nu}{sub {tau}}), could transform from one flavor to another. The findings implied that neutrinos must have mass, since massless particles travel at the speed of light and their clocks, so to speak, don't tick, thus they cannot change. What has since been discovered is that neutrinos oscillate at two distinct scales, 500 km/GeV and 15,000 km/GeV, which are defined by the baseline (L) of the experiment (the distance the neutrino travels) divided by the neutrino energy (E). Neutrinos of one flavor can oscillate into neutrinos of another flavor at both L/E scales, but the amplitude of these oscillations is different for the two scales and depends on the initial and final flavor of the neutrinos. The neutrino states that propogate unchanged in time, the mass eigenstates {nu}1, {nu}2, {nu}3, are quantum mechanical mixtures of the electron, muon, and tau neutrino flavors, and the fraction of each flavor in a given mass eigenstate is controlled by three mixing angles and a complex phase. Two of these mixing angles are known with reasonable precision. An upper bound exists for the third angle, called {theta}{sub 13}, which controls the size of the muon neutrino to electron neutrino oscillation at an L/E of 500 km/GeV. The phase is completely unknown. The existence of this phase has important implications for the asymmetry between matter and antimatter we observe in the universe today. Experiments around the world have steadily assembled this picture of neutrino oscillation, but evidence of muon neutrino to electron neutrino oscillation at 500 km/GeV has remained elusive. Now, a paper from the T2K (Tokai to Kamioka) experiment in Japan, reports the first possible observation of muon neutrinos oscillating into electron neutrinos at 500 km/GeV. They see 6 candidate signal events, above an expected background

  16. Implications of Neutrino Oscillations on the Dark-Matter World

    NASA Astrophysics Data System (ADS)

    Hwang, W.-Y. Pauchy

    2014-01-01

    According to my own belief that "The God wouldn't create a world that is so boring that a particle knows only the very feeble weak interaction.", maybe we underestimate the roles of neutrinos. We note that right-handed neutrinos play no roles, or don't exist, in the minimal Standard Model. We discuss the language to write down an extended Standard Model - using renormalizable quantum field theory as the language; to start with a certain set of basic units under a certain gauge group; in fact, to use the three right-handed neutrinos to initiate the family gauge group SUf (3). Specifically we use the left-handed and right-handed spinors to form the basic units together with SUc (3) × SUL (2) × U (1) × SUf (3) as the gauge group. The dark-matter SUf (3) world couples with the lepton world, but not with the quark world. Amazingly enough, the space of the Standard-Model Higgs Φ (1 , 2), the family Higgs triplet Φ(3, 1), and the neutral part of the mixed family Higgs Φ0 (3 , 2) undergoes the spontaneous symmetry breaking, i.e. the Standard-Model Higgs mechanism and the "project-out" family Higgs mechanism, to give rise to the weak bosons W± and Z0, one Standard-Model Higgs, the eight massive family gauge bosons, and the remaining four massive neutral family Higgs particles, and nothing more. Thus, the roles of neutrinos in this extended Standard Model are extremely interesting in connection with the dark-matter world.

  17. Consequences of an Abelian Z' for neutrino oscillations and dark matter

    NASA Astrophysics Data System (ADS)

    Plestid, Ryan

    2016-02-01

    The Standard Model's accidental and anomaly-free currents, B -L , Le-Lμ, Le-Lτ, and Lμ-Lτ, could be indicative of a hidden gauge structure beyond the Standard Model. Additionally, neutrino masses can be generated by a dimension-5 operator that generically breaks all of these symmetries. It is therefore important to investigate the compatibility of a gauged U'(1 ) and neutrino phenomenology. We consider gauging each of the symmetries above with a minimal extended matter content. This includes the Z', an order parameter to break the U'(1 ), and three right-handed neutrinos. We find all but B -L require additional matter content to explain the measured neutrino oscillation parameters. We also discuss the compatibility of the measured neutrino textures with a nonthermal dark matter production mechanism involving the decay of the Z'. Finally, we present a parametric relation that implies that any sterile neutrino dark matter candidate should not be expected to contribute to neutrino masses beyond ten parts per million.

  18. Analytical approximation of the neutrino oscillation matter effects at large θ 13

    NASA Astrophysics Data System (ADS)

    Agarwalla, Sanjib Kumar; Kao, Yee; Takeuchi, Tatsu

    2014-04-01

    We argue that the neutrino oscillation probabilities in matter are best understood by allowing the mixing angles and mass-squared differences in the standard parametrization to `run' with the matter effect parameter a = , where N e is the electron density in matter and E is the neutrino energy. We present simple analytical approximations to these `running' parameters. We show that for the moderately large value of θ 13, as discovered by the reactor experiments, the running of the mixing angle θ 23 and the CP violating phase δ can be neglected. It simplifies the analysis of the resulting expressions for the oscillation probabilities considerably. Approaches which attempt to directly provide approximate analytical expressions for the oscillation probabilities in matter suffer in accuracy due to their reliance on expansion in θ 13, or in simplicity when higher order terms in θ 13 are included. We demonstrate the accuracy of our method by comparing it to the exact numerical result, as well as the direct approximations of Cervera et al., Akhmedov et al., Asano and Minakata, and Freund. We also discuss the utility of our approach in figuring out the required baseline lengths and neutrino energies for the oscillation probabilities to exhibit certain desirable features.

  19. Berry phase in neutrino oscillations

    SciTech Connect

    He Xiaogang; McKellar, Bruce H.J.; Zhang Yue

    2005-09-01

    We study the Berry phase in neutrino oscillations for both Dirac and Majorana neutrinos. In order to have a Berry phase, the neutrino oscillations must occur in a varying medium, the neutrino-background interactions must depend on at least two independent densities, and also there must be CP violation. If the neutrino interactions with matter are mediated only by the standard model W and Z boson exchanges, these conditions imply that there must be at least three generations of neutrinos. The CP violating Majorana phases do not play a role in generating a Berry phase. We show that a natural way to satisfy the conditions for the generation of a Berry phase is to have sterile neutrinos with active-sterile neutrino mixing, in which case at least two active and one sterile neutrinos are required. If there are additional new CP violating flavor changing interactions, it is also possible to have a nonzero Berry phase with just two generations.

  20. Oscillations of solar atmosphere neutrinos

    SciTech Connect

    Fogli, G. L.; Lisi, E.; Mirizzi, A.; Montanino, D.; Serpico, P. D.

    2006-11-01

    The Sun is a source of high-energy neutrinos (E(greater-or-similar sign)10 GeV) produced by cosmic ray interactions in the solar atmosphere. We study the impact of three-flavor oscillations (in vacuum and in matter) on solar atmosphere neutrinos, and calculate their observable fluxes at Earth, as well as their event rates in a kilometer-scale detector in water or ice. We find that peculiar three-flavor oscillation effects in matter, which can occur in the energy range probed by solar atmosphere neutrinos, are significantly suppressed by averaging over the production region and over the neutrino and antineutrino components. In particular, we find that the relation between the neutrino fluxes at the Sun and at the Earth can be approximately expressed in terms of phase-averaged vacuum oscillations, dominated by a single mixing parameter (the angle {theta}{sub 23})

  1. Semiclassical treatment of matter-enhanced neutrino oscillations for an arbitrary density profile

    SciTech Connect

    Balantekin, A.B.; Beacom, J.F.

    1996-11-01

    The matter-enhanced oscillations of two neutrino flavors are studied using a uniform semiclassical approximation. Unlike some analytic studies which have focused on certain exactly solvable densities, this method can be used for an arbitrary monotonic density profile. The method is applicable to a wider range of mixing parameters than previous approximate methods for arbitrary densities. The approximation is excellent in the adiabatic regime and up to the extreme nonadiabatic limit. In particular, the range of validity for this approximation extends farther into the nonadiabatic regime than for the linear Landau-Zener result. This method also allows calculation of the source- and detector-dependent terms in the unaveraged survival probability, and analytic results for these terms are given. These interference terms may be important in studying neutrino mixing in the Sun or in supernovas. {copyright} {ital 1996 The American Physical Society.}

  2. A torsional completion of gravity for Dirac matter fields and its applications to neutrino oscillations

    NASA Astrophysics Data System (ADS)

    Fabbri, Luca; Vignolo, Stefano

    2016-01-01

    In this paper, we consider the torsional completion of gravitation for an underlying background filled with Dirac fields, applying it to the problem of neutrino oscillations: we discuss the effects of the induced torsional interactions as corrections to the neutrino oscillations mechanism.

  3. Paradoxes of neutrino oscillations

    SciTech Connect

    Akhmedov, E. Kh.; Smirnov, A. Yu.

    2009-08-15

    Despite the theory of neutrino oscillations being rather old, some of its basic issues are still being debated in the literature. We discuss a number of such issues, including the relevance of the 'same energy' and 'same momentum' assumptions, the role of quantum-mechanical uncertainty relations in neutrino oscillations, the dependence of the coherence and localization conditions that ensure the observability of neutrino oscillations on neutrino energy and momentum uncertainties, the question of (in)dependence of the oscillation probabilities on the neutrino production and detection processes, and the applicability limits of the stationary-source approximation. We also develop a novel approach to calculation of the oscillation probability in the wave-packet approach, based on the summation/integration conventions different from the standard one, which allows a new insight into the 'same energy' vs. 'same momentum' problem. We also discuss a number of apparently paradoxical features of the theory of neutrino oscillations.

  4. Neutrino Oscillations With Two Sterile Neutrinos

    NASA Astrophysics Data System (ADS)

    Kisslinger, Leonard S.

    2016-06-01

    This work estimates the probability of μ to e neutrino oscillation with two sterile neutrinos using a 5×5 U-matrix, an extension of the previous estimate with one sterile neutrino and a 4×4 U-matrix. The sterile neutrino-active neutrino mass differences and the mixing angles of the two sterile neutrinos with the three active neutrinos are taken from recent publications, and the oscillation probability for one sterile neutrino is compared to the previous estimate.

  5. Neutrino Oscillation Physics

    SciTech Connect

    Kayser, Boris

    2012-06-01

    To complement the neutrino-physics lectures given at the 2011 International School on Astro Particle Physics devoted to Neutrino Physics and Astrophysics (ISAPP 2011; Varenna, Italy), at the 2011 European School of High Energy Physics (ESHEP 2011; Cheila Gradistei, Romania), and, in modified form, at other summer schools, we present here a written description of the physics of neutrino oscillation. This description is centered on a new way of deriving the oscillation probability. We also provide a brief guide to references relevant to topics other than neutrino oscillation that were covered in the lectures. Neutrinos and photons are by far the most abundant elementary particles in the universe. Thus, if we would like to comprehend the universe, we must understand the neutrinos. Of course, studying the neutrinos is challenging, since the only known forces through which these electrically-neutral leptons interact are the weak force and gravity. Consequently, interactions of neutrinos in a detector are very rare events, so that very large detectors and intense neutrino sources are needed to make experiments feasible. Nevertheless, we have confirmed that the weak interactions of neutrinos are correctly described by the Standard Model (SM) of elementary particle physics. Moreover, in the last 14 years, we have discovered that neutrinos have nonzero masses, and that leptons mix. These discoveries have been based on the observation that neutrinos can change from one 'flavor' to another - the phenomenon known as neutrino oscillation. We shall explain the physics of neutrino oscillation, deriving the probability of oscillation in a new way. We shall also provide a very brief guide to references that can be used to study some major neutrino-physics topics other than neutrino oscillation.

  6. Atmospheric neutrinos and discovery of neutrino oscillations

    PubMed Central

    Kajita, Takaaki

    2010-01-01

    Neutrino oscillation was discovered through studies of neutrinos produced by cosmic-ray interactions in the atmosphere. These neutrinos are called atmospheric neutrinos. They are produced as decay products in hadronic showers resulting from collisions of cosmic rays with nuclei in the atmosphere. Electron-neutrinos and muon-neutrinos are produced mainly by the decay chain of charged pions to muons to electrons. Atmospheric neutrino experiments observed zenith-angle and energy dependent deficit of muon-neutrino events. Neutrino oscillations between muon-neutrinos and tau-neutrinos explain these data well. Neutrino oscillations imply that neutrinos have small but non-zero masses. The small neutrino masses have profound implications to our understanding of elementary particle physics and the Universe. This article discusses the experimental discovery of neutrino oscillations. PMID:20431258

  7. Magnus approximation in neutrino oscillations

    NASA Astrophysics Data System (ADS)

    Acero, Mario A.; Aguilar-Arevalo, Alexis A.; D'Olivo, J. C.

    2011-04-01

    Oscillations between active and sterile neutrinos remain as an open possibility to explain some anomalous experimental observations. In a four-neutrino (three active plus one sterile) mixing scheme, we use the Magnus expansion of the evolution operator to study the evolution of neutrino flavor amplitudes within the Earth. We apply this formalism to calculate the transition probabilities from active to sterile neutrinos with energies of the order of a few GeV, taking into account the matter effect for a varying terrestrial density.

  8. Boxing with Neutrino Oscillations

    NASA Astrophysics Data System (ADS)

    Wagner, Dj; Weiler, Thomas J.

    1998-03-01

    We have developed a model-independent ``box'' parameterization of neutrino oscillations. Oscillation probabilities are linear in these new parameters, so measurements can straighforwardly determine the box parameters which can then be manipulated to yield magnitudes of mixing matrix elements. We will present these new parameters and examine the effects of unitarity which reduce the number of independent parameters to the minimum set. The framework presented here will facilitate general analyses of neutrino oscillations among n >= 3 flavors.

  9. Coherence effects in neutrino oscillations

    NASA Astrophysics Data System (ADS)

    Kiers, Ken; Nussinov, Schmuel; Weiss, Nathan

    1996-01-01

    We study the effect of coherent and incoherent broadening on neutrino oscillations both in vacuum and in the presence of matter (the MSW effect). We show under very general assumptions that it is not possible to distinguish experimentally neutrinos produced in some region of space as wave packets from those produced in the same region of space as plane waves with the same energy distribution.

  10. CPand t violation in neutrino oscillations

    SciTech Connect

    Hisakazu Minakata; Hiroshi Nunokawa; Stephen Parke

    2003-09-18

    In this short lecture, we discuss some basic phenomenological aspects of CP and T violation in neutrino oscillation. Using CP/T trajectory diagrams in the bi-probability space, we try to sketch out some essential features of the interplay between the effect of CP/T violating phase and that of the matter in neutrino oscillation.

  11. Neutrino masses, neutrino oscillations, and cosmological implications

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1982-01-01

    Theoretical concepts and motivations for considering neutrinos having finite masses are discussed and the experimental situation on searches for neutrino masses and oscillations is summarized. The solar neutrino problem, reactor, deep mine and accelerator data, tri decay experiments and double beta-decay data are considered and cosmological implications and astrophysical data relating to neutrino masses are reviewed. The neutrino oscillation solution to the solar neutrino problem, the missing mass problem in galaxy halos and galaxy cluster galaxy formation and clustering, and radiative neutrino decay and the cosmic ultraviolet background radiation are examined.

  12. Neutrinos Matter

    NASA Astrophysics Data System (ADS)

    Freedman, Stuart

    2003-04-01

    The excitement about neutrinos is all about mass. Recent experiments have established that neutrino have mass and that the familiar weak interaction states ν_e, ν_μ, and ν_τ are not the states the quantum states with definite mass. These new discoveries require a major reassessment of the role of neutrinos in the universe and the first reformulation of the Standard Model of particle physics since the discovery of the third generation of quarks and leptons. Neutrino experiments are poised to answer many of the new questions raised by the recent discoveries. I will review the current status of the field and discuss what experiment is teaching us about neutrino mass and mixing.

  13. Neutrino Oscillations and the Sudbury Neutrino Observatory

    NASA Astrophysics Data System (ADS)

    Wark, David

    2001-04-01

    When the existence of the neutrino was almost apologetically first proposed by Wolfgang Pauli it was intended to explain the mysterious apparent absence of energy and momentum in beta decay. 70 years later the neutrino has indeed solved that mystery, but it has generated still more of its own. Are neutrinos massive? Is it possible to create a neutrino with its spin in the same direction as its momentum? What fraction of the mass of the Universe is made up of neutrinos? Are the flavour labels which we put on neutrinos, like electron and muon, really fixed or can they change? Why does no experiment see the predicted flux of neutrinos from the Sun? Why do there appear to be roughly equal numbers of muon and electron neutrinos created in our atmosphere, rather than the 2:1 ratio we would expect? Many of these questions were coupled when Bruno Pontecorvo first suggested that the shortfall in solar neutrino measurements were caused by neutrino oscillations - neutrinos spontaneously changing flavour as they travel from the Sun. 30 years later we still await definitive proof of that conjecture, and providing that proof is the reason for the Sudbury Neutrino Observatory. The talk will discuss the current state of neutrino oscillations studies, and show how the unique capabilities of the Sudbury Neutrino Observatory can provide definitive proof of whether neutrino oscillations are the long-sought answer to the solar neutrino problem.

  14. Running of oscillation parameters in matter with flavor-diagonal non-standard interactions of the neutrino

    NASA Astrophysics Data System (ADS)

    Agarwalla, Sanjib Kumar; Kao, Yee; Saha, Debashis; Takeuchi, Tatsu

    2015-11-01

    In this article we unravel the role of matter effect in neutrino oscillation in the presence of lepton-flavor-conserving, non-universal non-standard interactions (NSI's) of the neutrino. Employing the Jacobi method, we derive approximate analytical expressions for the effective mass-squared differences and mixing angles in matter. It is shown that, within the effective mixing matrix, the Standard Model (SM) W -exchange interaction only affects θ 12 and θ 13, while the flavor-diagonal NSI's only affect θ 23. The CP-violating phase δ remains unaffected. Using our simple and compact analytical approximation, we study the impact of the flavor-diagonal NSI's on the neutrino oscillation probabilities for various appearance and disappearance channels. At higher energies and longer baselines, it is found that the impact of the NSI's can be significant in the ν μ → ν μ channel, which can probed in future atmospheric neutrino experiments, if the NSI's are of the order of their current upper bounds. Our analysis also enables us to explore the possible degeneracy between the octant of θ 23 and the sign of the NSI parameter for a given choice of mass hierarchy in a simple manner.

  15. Boxing with neutrino oscillations

    NASA Astrophysics Data System (ADS)

    Wagner, D. J.; Weiler, Thomas J.

    1999-06-01

    We develop a characterization of neutrino oscillations based on the coefficients of the oscillating terms. These coefficients are individually observable; although they are quartic in the elements of the unitary mixing matrix, they are independent of the conventions chosen for the angle and phase parametrization of the mixing matrix. We call these reparametrization-invariant observables ``boxes'' because of their geometric relation to the mixing matrix, and because of their association with the Feynman box diagram that describes oscillations in field theory. The real parts of the boxes are the coefficients for the CP- or T-even oscillation modes, while the imaginary parts are the coefficients for the CP- or T-odd oscillation modes. Oscillation probabilities are linear in the boxes, so measurements can straightforwardly determine values for the boxes (which can then be manipulated to yield magnitudes of mixing matrix elements). We examine the effects of unitarity on the boxes and discuss the reduction of the number of boxes to a minimum basis set. For the three-generation case, we explicitly construct the basis. Using the box algebra, we show that CP violation may be inferred from measurements of neutrino flavor mixing even when the oscillatory factors have averaged. The framework presented here will facilitate general analyses of neutrino oscillations among n>=3 flavors.

  16. Boxing with neutrino oscillations

    SciTech Connect

    Wagner, D.J.; Weiler, T.J.

    1999-06-01

    We develop a characterization of neutrino oscillations based on the coefficients of the oscillating terms. These coefficients are individually observable; although they are quartic in the elements of the unitary mixing matrix, they are independent of the conventions chosen for the angle and phase parametrization of the mixing matrix. We call these reparametrization-invariant observables {open_quotes}boxes{close_quotes} because of their geometric relation to the mixing matrix, and because of their association with the Feynman box diagram that describes oscillations in field theory. The real parts of the boxes are the coefficients for the {ital CP}- or {ital T}-even oscillation modes, while the imaginary parts are the coefficients for the {ital CP}- or {ital T}-odd oscillation modes. Oscillation probabilities are linear in the boxes, so measurements can straightforwardly determine values for the boxes (which can then be manipulated to yield magnitudes of mixing matrix elements). We examine the effects of unitarity on the boxes and discuss the reduction of the number of boxes to a minimum basis set. For the three-generation case, we explicitly construct the basis. Using the box algebra, we show that {ital CP} violation may be inferred from measurements of neutrino flavor mixing even when the oscillatory factors have averaged. The framework presented here will facilitate general analyses of neutrino oscillations among n{ge}3 flavors. {copyright} {ital 1999} {ital The American Physical Society}

  17. Calculating Neutrino Oscillations with Sterile Neutrinos

    NASA Astrophysics Data System (ADS)

    Linehan, Bryan

    2014-09-01

    In particle physics, it is currently known that three types of neutrinos exist that interact via the weak force. Referred to as ``flavors,'' they are distinguishable and named for the lepton they produce through charged current interactions: electron, muon, and tau. In a process called neutrino oscillation, one flavor of neutrino can change into another flavor as it propagates through space. At the moment, mild discrepancies between expected and measured neutrino oscillations suggest that more types of neutrinos that do not interact via the weak force exist: sterile neutrinos. The goal of this project was to calculate non-sterile flavor oscillation probabilities when 1, 2 or 3 sterile neutrinos were assumed to exist. An application has been written in Mathematica that calculates these probabilities with the neutrino masses, linear relationships between mass and flavor states, values of CP symmetry violating constants, and constant densities of media in which the neutrinos propagate set as parameters. The application was published online for researchers to use as a tool when considering the existence of sterile neutrinos. In the immediate future, the insights this application gives into neutrino oscillations will be studied and reported. In particle physics, it is currently known that three types of neutrinos exist that interact via the weak force. Referred to as ``flavors,'' they are distinguishable and named for the lepton they produce through charged current interactions: electron, muon, and tau. In a process called neutrino oscillation, one flavor of neutrino can change into another flavor as it propagates through space. At the moment, mild discrepancies between expected and measured neutrino oscillations suggest that more types of neutrinos that do not interact via the weak force exist: sterile neutrinos. The goal of this project was to calculate non-sterile flavor oscillation probabilities when 1, 2 or 3 sterile neutrinos were assumed to exist. An application

  18. Floquet Theory of Neutrino Oscillations in the Earth

    NASA Astrophysics Data System (ADS)

    Akhmedov, E. Kh.

    2001-05-01

    We review the Floquet theory of linear differential equations with periodic coefficients and discuss its applications to neutrino oscillations in matter of periodically varying density. In particular, we consider parametric resonance in neutrino oscillations which can occur in such media, and discuss implications for oscillations of neutrinos traversing the earth and passing through the earth's core.

  19. Neutrino oscillations refitted

    NASA Astrophysics Data System (ADS)

    Forero, D. V.; Tórtola, M.; Valle, J. W. F.

    2014-11-01

    Here, we update our previous global fit of neutrino oscillations by including the recent results that have appeared since the Neutrino 2012 conference. These include the measurements of reactor antineutrino disappearance reported by Daya Bay and RENO, together with latest T2K and MINOS data including both disappearance and appearance channels. We also include the revised results from the third solar phase of Super-Kamiokande, SK-III, as well as new solar results from the fourth phase of Super-Kamiokande, SK-IV. We find that the preferred global determination of the atmospheric angle θ23 is consistent with maximal mixing. We also determine the impact of the new data upon all the other neutrino oscillation parameters with an emphasis on the increasing sensitivity to the C P phase, thanks to the interplay between accelerator and reactor data. In the Appendix, we present the updated results obtained after the inclusion of new reactor data presented at the Neutrino 2014 conference. We discuss their impact on the global neutrino analysis.

  20. Helicity oscillations of Dirac and Majorana neutrinos

    NASA Astrophysics Data System (ADS)

    Dobrynina, Alexandra; Kartavtsev, Alexander; Raffelt, Georg

    2016-06-01

    The helicity of a Dirac neutrino with mass m evolves under the influence of a B field because it has a magnetic dipole moment proportional to m . Moreover, it was recently shown that a polarized or anisotropic medium engenders the same effect for both Dirac and Majorana neutrinos. Because a B field polarizes a background medium, it instigates helicity oscillations even for Majorana neutrinos unless the medium is symmetric between matter and antimatter. Motivated by these observations, we review the impact of a B field and of an anisotropic or polarized medium on helicity oscillations for Dirac and Majorana neutrinos from the common perspective of in-medium dispersion.

  1. Neutrino oscillation studies with reactors.

    PubMed

    Vogel, P; Wen, L J; Zhang, C

    2015-01-01

    Nuclear reactors are one of the most intense, pure, controllable, cost-effective and well-understood sources of neutrinos. Reactors have played a major role in the study of neutrino oscillations, a phenomenon that indicates that neutrinos have mass and that neutrino flavours are quantum mechanical mixtures. Over the past several decades, reactors were used in the discovery of neutrinos, were crucial in solving the solar neutrino puzzle, and allowed the determination of the smallest mixing angle θ13. In the near future, reactors will help to determine the neutrino mass hierarchy and to solve the puzzling issue of sterile neutrinos. PMID:25913819

  2. Neutrino oscillation studies with reactors

    DOE PAGESBeta

    Vogel, P.; Wen, L.J.; Zhang, C.

    2015-04-27

    Nuclear reactors are one of the most intense, pure, controllable, cost-effective and well-understood sources of neutrinos. Reactors have played a major role in the study of neutrino oscillations, a phenomenon that indicates that neutrinos have mass and that neutrino flavours are quantum mechanical mixtures. Over the past several decades, reactors were used in the discovery of neutrinos, were crucial in solving the solar neutrino puzzle, and allowed the determination of the smallest mixing angle θ13. In the near future, reactors will help to determine the neutrino mass hierarchy and to solve the puzzling issue of sterile neutrinos.

  3. Neutrino oscillation studies with reactors

    PubMed Central

    Vogel, P.; Wen, L.J.; Zhang, C.

    2015-01-01

    Nuclear reactors are one of the most intense, pure, controllable, cost-effective and well-understood sources of neutrinos. Reactors have played a major role in the study of neutrino oscillations, a phenomenon that indicates that neutrinos have mass and that neutrino flavours are quantum mechanical mixtures. Over the past several decades, reactors were used in the discovery of neutrinos, were crucial in solving the solar neutrino puzzle, and allowed the determination of the smallest mixing angle θ13. In the near future, reactors will help to determine the neutrino mass hierarchy and to solve the puzzling issue of sterile neutrinos. PMID:25913819

  4. Neutrino oscillation studies with reactors

    SciTech Connect

    Vogel, P.; Wen, L.J.; Zhang, C.

    2015-04-27

    Nuclear reactors are one of the most intense, pure, controllable, cost-effective and well-understood sources of neutrinos. Reactors have played a major role in the study of neutrino oscillations, a phenomenon that indicates that neutrinos have mass and that neutrino flavours are quantum mechanical mixtures. Over the past several decades, reactors were used in the discovery of neutrinos, were crucial in solving the solar neutrino puzzle, and allowed the determination of the smallest mixing angle θ13. In the near future, reactors will help to determine the neutrino mass hierarchy and to solve the puzzling issue of sterile neutrinos.

  5. Generalized Boltzmann formalism for oscillating neutrinos

    SciTech Connect

    Strack, P.; Burrows, A.

    2005-05-01

    In the standard approaches to neutrino transport in the simulation of core-collapse supernovas, one will often start from the classical Boltzmann equation for the neutrino's spatial, temporal, and spectral evolution. For each neutrino species, and its antiparticle, the classical density in phase space, or the associated specific intensity, will be calculated as a function of time. The neutrino radiation is coupled to matter by source and sink terms on the 'right-hand side' of the transport equation and together with the equations of hydrodynamics this set of coupled partial differential equations for classical densities describes, in principle, the evolution of core collapse and explosion. However, with the possibility of neutrino oscillations between species, a purely quantum-physical effect, how to generalize this set of Boltzmann equations for classical quantities to reflect oscillation physics has not been clear. To date, the formalisms developed have retained the character of quantum operator physics involving complex quantities and have not been suitable for easy incorporation into standard supernova codes. In this paper, we derive generalized Boltzmann equations for quasiclassical, real-valued phase-space densities that retain all the standard oscillation phenomenology, including the matter-enhanced resonant flavor conversion (Mikheev-Smirnov-Wolfenstein effect), neutrino self-interactions, and the interplay between decohering matter coupling and flavor oscillations. With this formalism, any code(s) that can now handle the solution of the classical Boltzmann or transport equation can easily be generalized to include neutrino oscillations in a quantum-physically consistent fashion.

  6. Atmospheric neutrino oscillations for Earth tomography

    NASA Astrophysics Data System (ADS)

    Winter, Walter

    2016-07-01

    Modern proposed atmospheric neutrino oscillation experiments, such as PINGU in the Antarctic ice or ORCA in Mediterranean sea water, aim for precision measurements of the oscillation parameters including the ordering of the neutrino masses. They can, however, go far beyond that: Since neutrino oscillations are affected by the coherent forward scattering with matter, neutrinos can provide a new view on the interior of the earth. We show that the proposed atmospheric oscillation experiments can measure the lower mantle density of the earth with a precision at the level of a few percent, including the uncertainties of the oscillation parameters and correlations among different density layers. While the earth's core is, in principle, accessible by the angular resolution, new technology would be required to extract degeneracy-free information.

  7. Sterile neutrinos as dark matter

    SciTech Connect

    Dodelson, S.; Widrow, L.M. |

    1993-03-01

    The simplest model that can accommodate a viable nonbaryonic dark matter candidate is the standard electroweak theory with the addition of right-handed or sterile neutrinos. This model has been studied extensively in the context of the hot dark matter scenario. We reexamine this model and find that hot, warm, and cold dark matter are all possibilities. We focus on the case where sterile neutrinos are the dark matter. Since their only direct coupling is to left-handed or active neutrinos, the most efficient production mechanism is via neutrino oscillations. If the production rate is always less than the expansion rate, then these neutrinos will never be in thermal equilibrium. However, they may still play a significant role in the dynamics of the Universe and possibly provide the missing mass necessary for closure. We consider a single generation of neutrino fields ({nu}{sub L}, {nu}{sub R}) with a Dirac mass, {mu}, and a Majorana mass for the right-handed components only, M. For M {much_gt} {mu} we show that the number density of sterile neutrinos is proportional to {mu}{sup 2}/M so that the energy density today is independent of M. However M is crucial in determining the large scale structure of the Universe. In particular, M {approx_equal} 0.1--1.0 key leads to warm dark matter and a structure formation scenario that may have some advantages over both the standard hot and cold dark matter scenarios.

  8. Sterile neutrinos as dark matter

    SciTech Connect

    Dodelson, S. ); Widrow, L.M. . Dept. of Physics Toronto Univ., ON . Canadian Inst. for Theoretical Astrophysics)

    1993-03-01

    The simplest model that can accommodate a viable nonbaryonic dark matter candidate is the standard electroweak theory with the addition of right-handed or sterile neutrinos. This model has been studied extensively in the context of the hot dark matter scenario. We reexamine this model and find that hot, warm, and cold dark matter are all possibilities. We focus on the case where sterile neutrinos are the dark matter. Since their only direct coupling is to left-handed or active neutrinos, the most efficient production mechanism is via neutrino oscillations. If the production rate is always less than the expansion rate, then these neutrinos will never be in thermal equilibrium. However, they may still play a significant role in the dynamics of the Universe and possibly provide the missing mass necessary for closure. We consider a single generation of neutrino fields ([nu][sub L], [nu][sub R]) with a Dirac mass, [mu], and a Majorana mass for the right-handed components only, M. For M [much gt] [mu] we show that the number density of sterile neutrinos is proportional to [mu][sup 2]/M so that the energy density today is independent of M. However M is crucial in determining the large scale structure of the Universe. In particular, M [approx equal] 0.1--1.0 key leads to warm dark matter and a structure formation scenario that may have some advantages over both the standard hot and cold dark matter scenarios.

  9. Results from Neutrino Oscillations Experiments

    SciTech Connect

    Aguilar-Arevalo, Alexis

    2010-09-10

    The interpretation of the results of early solar and atmospheric neutrino experiments in terms of neutrino oscillations has been verified by several recent experiments using both, natural and man-made sources. The observations provide compelling evidence in favor of the existence of neutrino masses and mixings. These proceedings give a general description of the results from neutrino oscillation experiments, the current status of the field, and some possible future developments.

  10. Current trends in non-accelerator particle physics: 1, Neutrino mass and oscillation. 2, High energy neutrino astrophysics. 3, Detection of dark matter. 4, Search for strange quark matter. 5, Magnetic monopole searches

    SciTech Connect

    He, Yudong |

    1995-07-01

    This report is a compilation of papers reflecting current trends in non-accelerator particle physics, corresponding to talks that its author was invited to present at the Workshop on Tibet Cosmic Ray Experiment and Related Physics Topics held in Beijing, China, April 4--13, 1995. The papers are entitled `Neutrino Mass and Oscillation`, `High Energy Neutrino Astrophysics`, `Detection of Dark Matter`, `Search for Strange Quark Matter`, and `Magnetic Monopole Searches`. The report is introduced by a survey of the field and a brief description of each of the author`s papers.

  11. Spectrometry of the Earth using neutrino oscillations

    NASA Astrophysics Data System (ADS)

    Taketa, Akimichi; Rott, Carsten

    2016-04-01

    Neutrinos have favorable properties for measuring the elemental composition deep inside the earth's interior. First, they propagate a long distance almost undisturbed through the earth due to their weak interactions with matter. Secondly, neutrino oscillations in matter are sensitive to the electron density of the medium traversed by them. Therefore, neutrinos can be used for a probe to determine the average atomic mass ratio Z/A of the earth's core by comparing with the earth's nucleus density distribution that is inferred from seismic observations. There is a little uncertainty in densities of the earth's core, but our knowledge of its main light element is still not fixed. With the advent of the new-generation megaton neutrino detectors, neutrino oscillation mass spectrometry will allow us to constrain directly the light elements in the earth's outer core. We report the detail of this novel technic and the sensitivity study.

  12. Neutrino Oscillations:. Hierarchy Question

    NASA Astrophysics Data System (ADS)

    Ernst, D. J.; Cogswell, B. K.; Burroughs, H. R.; Escamilla-Roa, J.; Latimer, D. L.

    2014-09-01

    The only experimentally observed phenomenon that lies outside the standard model of the electroweak interaction is neutrino oscillations. A way to try to unify the extensive neutrino oscillation data is to add a phenomenological mass term to the Lagrangian that is not diagonal in the flavor basis. The goal is then to understand the world's data in terms of the parameters of the mixing matrix and the differences between the squares of the masses of the neutrinos. An outstanding question is what is the correct ordering of the masses, the hierarchy question. We point out a broken symmetry relevant to this question, the symmetry of the simultaneous interchange of hierarchy and the sign of θ13. We first present the results of an analysis of data that well determine the phenomenological parameters but are not sensitive to the hierarchy. We find θ13 = 0.152±0.014, θ 23 = 0.25{ - 0.05}{ + 0.03} π and Δ32 = 2.45±0.14×10-3 eV2, results consistent with others. We then include data that are sensitive to the hierarchy and the sign of θ13. We find, unlike others, four isolated minimum in the χ2-space as predicted by the symmetry. Now that Daya Bay and RENO have determined θ13 to be surprisingly large, the Super-K atmospheric data produce meaningful symmetry breaking such that the inverse hierarchy is preferred at the 97.2 % level.

  13. Flavor oscillations with sterile neutrinos and in dense neutrino environments

    NASA Astrophysics Data System (ADS)

    Hollander, David

    that the mixing parameters for the three Standard Model neutrino flavors are well known, some implications of neutrino interactions for flavor oscillations are not well understood. Neutrinos can interact with one another in a similar way to how neutrinos interact with normal matter. Neutrino-neutrino forward scattering can lead to a flavor swap for the propagating neutrino, or the propagating neutrino can retain its original flavor. These interactions contribute an effective potential to the Hamiltonian describing the flavor evolution which depends on a background neutrino density. In normal matter the neutrino density is very low which allows for neutrino-neutrino interactions to be ignored, however these interactions can dominate over vacuum and normal matter interactions in very dense environments such as core-collapse supernovae and early universe scenarios. Neutrino-neutrino interactions give rise to terms quadratic in neutrino densities in the equations of motion, and can give rise to what is called collective oscillations resulting from interference with vacuum and normal matter effects. The non-linearity has made the problem of solving for collective oscillations analytically intractable without simplifying assumptions, and has made this a problem relegated to supercomputer simulations. This dissertation is concerned with analytic methods for solving the equations of motion for core-collapse neutrino propagation. It will be shown here that, by keeping only nunu-interactions at initial distances outward from the supernova core, it is possible to solve the equations of motion by factorizing vacuum oscillations and the effects of nunu-interactions. Furthermore, it will be shown how using this factorization scheme it is possible to predict where flavor oscillations become unstable. This is an important development because it can allow one to predict the neutrino flux in Earth experiments from core-collapse supernovae, while at the same time gaining an understanding

  14. Neutrino Oscillations in the Case of General Interaction

    NASA Astrophysics Data System (ADS)

    Syska, J.; Zajac, S.; Zrałek, M.

    2007-11-01

    The process of the neutrino production, oscillation in the vacuum or in matter, and detection in the case of interactions which are beyond the Standard Model is considered. Neutrino states are described by the density matrix. The final neutrino production rate does not factorize. The known Maki-Nakagawa-Sakata neutrino states and the factorized production rate are recovered in the nu SM regime.

  15. LSND neutrino oscillation results

    SciTech Connect

    Louis, W.C.; LSND Collaboration

    1996-10-01

    The LSND (Liquid Scintillator Neutrino Detector) experiment at Los Alamos has conducted a search for muon antineutrino {r_arrow} electron antineutrino oscillations using muon neutrinos from antimuon decay at rest. The electron antineutrinos are detected via the reaction electron antineutrino + proton {r_arrow} positron + neutron, correlated with the 2.2-MeV gamma from neutron + proton {r_arrow} deuteron + gamma. The use of tight cuts to identify positron events with correlated gamma rays yields 22 events with positron energy between 36 and 60 MeV and only 4.6 {+-} 0.6 background events. The probability that this excess is due entirely to a statistical fluctuation is 4.1 {times} 10{sup -8}. A chi-squared fit to the entire positron sample results in a total excess of 51.8 {sup +18.7}{sub -16.9} {+-} 8.0 events with positron energy between 20 and 60 MeV. If attributed to muon antineutrino {r_arrow} electron antineutrino oscillations, this corresponds to an oscillation probability (averaged over the experimental energy and spatial acceptance) of (0.31 {+-} 0.12 {+-} 0.05){percent}. 10 refs., 7 figs., 1 tab.

  16. Neutrinos and dark matter

    SciTech Connect

    Ibarra, Alejandro

    2015-07-15

    Neutrinos could be key particles to unravel the nature of the dark matter of the Universe. On the one hand, sterile neutrinos in minimal extensions of the Standard Model are excellent dark matter candidates, producing potentially observable signals in the form of a line in the X-ray sky. On the other hand, the annihilation or the decay of dark matter particles produces, in many plausible dark matter scenarios, a neutrino flux that could be detected at neutrino telescopes, thus providing non-gravitational evidence for dark matter. More conservatively, the non-observation of a significant excess in the neutrino fluxes with respect to the expected astrophysical backgrounds can be used to constrain dark matter properties, such as the self-annihilation cross section, the scattering cross section with nucleons and the lifetime.

  17. Neutrino Oscillations with Three Active and Three Sterile Neutrinos

    NASA Astrophysics Data System (ADS)

    Kisslinger, Leonard S.

    2016-07-01

    This is an extension of estimates of the probability of μ to e neutrino oscillation with one sterile neutrino to three sterile neutrinos, using a 6x6 matrix. Since the mixing angle for only one sterile neutrino has been experimentally determined, we estimate the μ to e neutrino oscillation probability with different mixing angles for two of the sterile neutrinos.

  18. Prospects for detecting supernova neutrino flavor oscillations

    NASA Astrophysics Data System (ADS)

    Fuller, George M.; Haxton, Wick C.; McLaughlin, Gail C.

    1999-04-01

    The neutrinos from a type II supernova provide perhaps our best opportunity to probe cosmologically interesting muon and/or tauon neutrino masses. This is because matter enhanced neutrino oscillations can lead to an anomalously hot νe spectrum, and thus to enhanced charged current cross sections in terrestrial detectors. Two recently proposed supernova neutrino observatories, OMNIS and LAND, will detect neutrons spalled from target nuclei by neutral and charged current neutrino interactions. As this signal is not flavor specific, it is not immediately clear whether a convincing neutrino oscillation signal can be extracted from such experiments. To address this issue we examine the responses of a series of possible light and heavy mass targets, 9Be,23Na,35Cl, and 208Pb. We find that strategies for detecting oscillations which use only neutron count rates are problematic at best, even if cross sections are determined by ancillary experiments. Plausible uncertainties in supernova neutrino spectra tend to obscure rate enhancements due to oscillations. However, in the case of 208Pb, a signal emerges that is largely flavor specific and extraordinarily sensitive to the νe temperature, the emission of two neutrons. This signal and its flavor specificity are associated with the strength and location of the first-forbidden responses for neutral and charge current reactions, aspects of the 208Pb neutrino cross section that have not been discussed previously. Hadronic spin transfer experiments might be helpful in confirming some of the nuclear structure physics underlying our conclusions.

  19. Analytical approximations for matter effects on CP violation in the accelerator-based neutrino oscillations with E ≲ 1 GeV

    NASA Astrophysics Data System (ADS)

    Xing, Zhi-zhong; Zhu, Jing-yu

    2016-07-01

    Given an accelerator-based neutrino experiment with the beam energy E ≲ 1 GeV, we expand the probabilities of ν μ → ν e and {overline{ν}}_{μ}to {overline{ν}}_e oscillations in matter in terms of two small quantities Δ21 /Δ31 and A/Δ31, where Δ 21≡ m 2 2 - m 1 2 and Δ 31≡ m 3 2 - m 1 2 are the neutrino mass-squared differences, and A measures the strength of terrestrial matter effects. Our analytical approximations are numerically more accurate than those made by Freund in this energy region, and thus they are particularly applicable for the study of leptonic CP violation in the low-energy MOMENT, ESS νSM and T2K oscillation experiments. As a by-product, the new analytical approximations help us to easily understand why the matter-corrected Jarlskog parameter tilde{J} peaks at the resonance energy E ∗ ≃ 0 .14GeV (or 0 .12 GeV) for the normal (or inverted) neutrino mass hierarchy, and how the three Dirac unitarity triangles are deformed due to the terrestrial matter contamination. We also affirm that a medium-baseline neutrino oscillation experiment with the beam energy E lying in the E ∗ ≲ E ≲ 2 E ∗ range is capable of exploring leptonic CP violation with little matter-induced suppression.

  20. Analyzing Atmospheric Neutrino Oscillations

    SciTech Connect

    Escamilla, J.; Ernst, D. J.; Latimer, D. C.

    2007-10-26

    We provide a pedagogic derivation of the formula needed to analyze atmospheric data and then derive, for the subset of the data that are fully-contained events, an analysis tool that is quantitative and numerically efficient. Results for the full set of neutrino oscillation data are then presented. We find the following preliminary results: 1.) the sub-dominant approximation provides reasonable values for the best fit parameters for {delta}{sub 32}, {theta}{sub 23}, and {theta}{sub 13} but does not quantitatively provide the errors for these three parameters; 2.) the size of the MSW effect is suppressed in the sub-dominant approximation; 3.) the MSW effect reduces somewhat the extracted error for {delta}{sub 32}, more so for {theta}{sub 23} and {theta}{sub 13}; 4.) atmospheric data alone constrains the allowed values of {theta}{sub 13} only in the sub-dominant approximation, the full three neutrino calculations requires CHOOZ to get a clean constraint; 5.) the linear in {theta}{sub 13} terms are not negligible; and 6.) the minimum value of {theta}{sub 13} is found to be negative, but at a statistically insignificant level.

  1. Supernova neutrino oscillations: A simple analytical approach

    NASA Astrophysics Data System (ADS)

    Fogli, G. L.; Lisi, E.; Montanino, D.; Palazzo, A.

    2002-04-01

    Analyses of observable supernova neutrino oscillation effects require the calculation of the electron (anti)neutrino survival probability Pee along a given supernova matter density profile. We propose a simple analytical prescription for Pee, based on a double-exponential form for the crossing probability and on the concept of maximum violation of adiabaticity. In the case of two-flavor transitions, the prescription is shown to reproduce accurately, in the whole neutrino oscillation parameter space, the results of exact numerical calculations for generic (realistic or power-law) profiles. The analytical approach is then generalized to cover three-flavor transitions with (direct or inverse) mass spectrum hierarchy, and to incorporate Earth matter effects. Compact analytical expressions, explicitly showing the symmetry properties of Pee, are provided for practical calculations.

  2. Neutrino oscillation results from MINOS

    SciTech Connect

    Sousa, Alexandre; /Oxford U.

    2007-08-01

    The Main Injector Neutrino Oscillation Search (MINOS) long-baseline experiment has been actively collecting beam data since 2005, having already accumulated 3 x 10{sup 20} protons-on-target (POT). MINOS uses the Neutrinos at the Main Injector (NuMI) neutrino beam measured in two locations: at Fermilab, close to beam production, and 735 km downstream, in Northern Minnesota. By observing the oscillatory structure in the neutrino energy spectrum, MINOS can precisely measure the neutrino oscillation parameters in the atmospheric sector. These parameters were determined to be |{Delta}m{sub 32}{sup 2}| = 2.74{sub -0.26}{sup +0.44} x 10{sup -3} eV{sup 2}/c{sup 4} and sin{sup 2}(2{theta}{sub 23}) > 0.87 (68% C.L.) from analysis of the first year of data, corresponding to 1.27 x 10{sup 20} POT.

  3. Oscillating asymmetric dark matter

    SciTech Connect

    Tulin, Sean; Yu, Hai-Bo; Zurek, Kathryn M. E-mail: haiboyu@umich.edu

    2012-05-01

    We study the dynamics of dark matter (DM) particle-antiparticle oscillations within the context of asymmetric DM. Oscillations arise due to small DM number-violating Majorana-type mass terms, and can lead to recoupling of annihilation after freeze-out and washout of the DM density. Asymmetric DM oscillations 'interpolate' between symmetric and asymmetric DM freeze-out scenarios, and allow for a larger DM model-building parameter space. We derive the density matrix equations for DM oscillations and freeze-out from first principles using nonequilibrium field theory, and our results are qualitatively different than in previous studies. DM dynamics exhibits particle-vs-antiparticle 'flavor' effects, depending on the interaction type, analogous to neutrino oscillations in a medium. 'Flavor-sensitive' DM interactions include scattering or annihilation through a new vector boson, while 'flavor-blind' interactions include scattering or s-channel annihilation through a new scalar boson. In particular, we find that flavor-sensitive annihilation does not recouple when coherent oscillations begin, and that flavor-blind scattering does not lead to decoherence.

  4. Spectrometry of the Earth using Neutrino Oscillations.

    PubMed

    Rott, C; Taketa, A; Bose, D

    2015-01-01

    The unknown constituents of the interior of our home planet have provoked the human imagination and driven scientific exploration. We herein demonstrate that large neutrino detectors could be used in the near future to significantly improve our understanding of the Earth's inner chemical composition. Neutrinos, which are naturally produced in the atmosphere, traverse the Earth and undergo oscillations that depend on the Earth's electron density. The Earth's chemical composition can be determined by combining observations from large neutrino detectors with seismic measurements of the Earth's matter density. We present a method that will allow us to perform a measurement that can distinguish between composition models of the outer core. We show that the next-generation large-volume neutrino detectors can provide sufficient sensitivity to reject extreme cases of outer core composition. In the future, dedicated instruments could be capable of distinguishing between specific Earth composition models and thereby reshape our understanding of the inner Earth in previously unimagined ways. PMID:26489447

  5. Supernova neutrinos: production, oscillations and detection

    NASA Astrophysics Data System (ADS)

    Mirizzi, A.; Tamborra, I.; Janka, H.-Th.; Saviano, N.; Scholberg, K.; Bollig, R.; Hüdepohl, L.; Chakraborty, S.

    Neutrinos play a crucial role in the collapse and explosion of massive stars, governing the infall dynamics of the stellar core, triggering and fueling the explosion and driving the cooling and deleptonization of the newly formed neutron star. Due to their role neutrinos carry information from the heart of the explosion and, due to their weakly interacting nature, offer the only direct probe of the dynamics and thermodynamics at the center of a supernova. In this paper, we review the present status of modelling the neutrino physics and signal formation in collapsing and exploding stars. We assess the capability of current and planned large underground neutrino detectors to yield faithful information of the time and flavor-dependent neutrino signal from a future Galactic supernova. We show how the observable neutrino burst would provide a benchmark for fundamental supernova physics with unprecedented richness of detail. Exploiting the treasure of the measured neutrino events requires a careful discrimination of source-generated properties from signal features that originate on the way to the detector. As for the latter, we discuss self-induced flavor conversions associated with neutrino-neutrino interactions that occur in the deepest stellar regions; matter effects that modify the pattern of flavor conversions in the dynamical stellar envelope; neutrino-oscillation signatures that result from structural features associated with the shock-wave propagation as well as turbulent mass motions in post-shock layers. Finally, we highlight our current understanding of the formation of the diffuse supernova neutrino background and we analyse the perspectives for a detection of this relic signal that integrates the contributions from all past core-collapse supernovae in the Universe.

  6. An analytical treatment for three neutrino oscillations in the Earth

    NASA Astrophysics Data System (ADS)

    Aguilar-Arevalo, A. A.; D'Olivo, J. C.; Supanitsky, A. D.

    2012-08-01

    A simple, and at the same time accurate, description of the Earth matter effects on the oscillations between three neutrino flavors is given in terms of the Magnus expansion for the evolution operator.

  7. Why is the neutrino oscillation formula expanded in Δ m {21/2}/Δ m {31/2} still accurate near the solar resonance in matter?

    NASA Astrophysics Data System (ADS)

    Xu, Xun-Jie

    2015-10-01

    The conventional approximate formula for neutrino oscillation in matter which is obtained from the expansion in terms of the ratio of mass square differences α = Δ m 21 2 /Δ m 31 2 ≈ 0.03, first proposed by Cervera, et al. and Freund, turns out to be an accurate formula for accelerator neutrino experiments. Originally it required the neutrino energy to be well above the solar resonance to validate the expansion but it is found to be still very accurate when the formula is extrapolated to the resonance, which is practically important for the T2K experiment. This paper shows that the accuracy is guaranteed by cancellations of branch cut singularities and also, for the first time, analytically computes the actual error of the formula. The actual error implies that the original requirement can be safely removed in current experiments.

  8. Sterile neutrino dark matter production in the neutrino-phillic two Higgs doublet model

    NASA Astrophysics Data System (ADS)

    Adulpravitchai, Adisorn; Schmidt, Michael A.

    2015-12-01

    Sterile Neutrinos with a mass in the keV range form a good candidate for dark matter. They are naturally produced from neutrino oscillations via their mixing with the active neutrinos. However the production via non-resonant neutrino oscillations has recently been ruled out. The alternative production via Higgs decay is negligibly small compared to neutrino oscillations. We show that in the neutrino-phillic two Higgs doublet model, the contribution from Higgs decay can dominate over the contribution from neutrino oscillations and evade all constraints. We also study the free-streaming horizon and find that a sterile neutrino mass in the range of 4 to 53 keV leads to warm dark matter.

  9. Evidence for neutrino oscillations in the Sudbury Neutrino Observatory

    SciTech Connect

    Marino, Alysia Diane

    2004-08-10

    The Sudbury Neutrino Observatory (SNO) is a large-volume heavy water Cerenkov detector designed to resolve the solar neutrino problem. SNO observes charged-current interactions with electron neutrinos, neutral-current interactions with all active neutrinos, and elastic-scattering interactions primarily with electron neutrinos with some sensitivity to other flavors. This dissertation presents an analysis of the solar neutrino flux observed in SNO in the second phase of operation, while {approx}2 tonnes of salt (NaCl) were dissolved in the heavy water. The dataset here represents 391 live days of data. Only the events above a visible energy threshold of 5.5 MeV and inside a fiducial volume within 550 cm of the center of the detector are studied. The neutrino flux observed via the charged-current interaction is [1.71 {+-} 0.065(stat.){+-}{sub 0.068}{sup 0.065}(sys.){+-}0.02(theor.)] x 10{sup 6}cm{sup -2}s{sup -1}, via the elastic-scattering interaction is [2.21{+-}0.22(stat.){+-}{sub 0.12}{sup 0.11}(sys.){+-}0.01(theor.)] x 10{sup 6}cm{sup -2}s{sup -1}, and via the neutral-current interaction is [5.05{+-}0.23(stat.){+-}{sub 0.37}{sup 0.31}(sys.){+-}0.06(theor.)] x 10{sup 6}cm{sup -2}s{sup -1}. The electron-only flux seen via the charged-current interaction is more than 7{sigma} below the total active flux seen via the neutral-current interaction, providing strong evidence that neutrinos are undergoing flavor transformation as they travel from the core of the Sun to the Earth. The most likely origin of the flavor transformation is matter-induced flavor oscillation.

  10. Neutrino oscillations as a probe of dark energy.

    PubMed

    Kaplan, David B; Nelson, Ann E; Weiner, Neal

    2004-08-27

    We consider a class of theories in which neutrino masses depend significantly on environment, as a result of interactions with the dark sector. Such theories of mass varying neutrinos were recently introduced to explain the origin of the cosmological dark energy density and why its magnitude is apparently coincidental with that of neutrino mass splittings. In this Letter we argue that in such theories neutrinos can exhibit different masses in matter and in vacuum, dramatically affecting neutrino oscillations. As an example of modifications to the standard picture, we consider simple models that may simultaneously account for the LSND anomaly, KamLAND, K2K, and studies of solar and atmospheric neutrinos, while providing motivation to continue to search for neutrino oscillations in short baseline experiments such as BooNE. PMID:15447091

  11. Measuring neutrino oscillation parameters using $\

    SciTech Connect

    Backhouse, Christopher James

    2011-01-01

    MINOS is a long-baseline neutrino oscillation experiment. It consists of two large steel-scintillator tracking calorimeters. The near detector is situated at Fermilab, close to the production point of the NuMI muon-neutrino beam. The far detector is 735 km away, 716m underground in the Soudan mine, Northern Minnesota. The primary purpose of the MINOS experiment is to make precise measurements of the 'atmospheric' neutrino oscillation parameters (Δmatm2 and sin2atm). The oscillation signal consists of an energy-dependent deficit of vμ interactions in the far detector. The near detector is used to characterize the properties of the beam before oscillations develop. The two-detector design allows many potential sources of systematic error in the far detector to be mitigated by the near detector observations. This thesis describes the details of the vμ-disappearance analysis, and presents a new technique to estimate the hadronic energy of neutrino interactions. This estimator achieves a significant improvement in the energy resolution of the neutrino spectrum, and in the sensitivity of the neutrino oscillation fit. The systematic uncertainty on the hadronic energy scale was re-evaluated and found to be comparable to that of the energy estimator previously in use. The best-fit oscillation parameters of the vμ-disappearance analysis, incorporating this new estimator were: Δm2 = 2.32-0.08+0.12 x 10-3 eV2, sin 2 2θ > 0.90 (90% C.L.). A similar analysis, using data from a period of running where the NuMI beam was operated in a configuration producing a predominantly $\\bar{v}$μ beam, yielded somewhat different best-fit parameters Δ$\\bar{m}${sup 2} = (3.36-0.40+0.46(stat.) ± 0.06(syst.)) x 10-3eV2, sin2 2$\\bar{θ}$ = 0.86-0.12_0.11

  12. Multipole expansion method for supernova neutrino oscillations

    SciTech Connect

    Duan, Huaiyu; Shalgar, Shashank E-mail: shashankshalgar@unm.edu

    2014-10-01

    We demonstrate a multipole expansion method to calculate collective neutrino oscillations in supernovae using the neutrino bulb model. We show that it is much more efficient to solve multi-angle neutrino oscillations in multipole basis than in angle basis. The multipole expansion method also provides interesting insights into multi-angle calculations that were accomplished previously in angle basis.

  13. LSND neutrino oscillation results

    SciTech Connect

    White, D.H.; LSND Collaboration

    1997-11-01

    The LSND experiment at Los Alamos has conducted a search for {anti v}{sub {mu}} {yields} {anti v}{sub e} oscillations using {anti v}{sub {mu}} from {mu}{sup +} decay at rest. The {anti v}{sub e} are detected via the reaction {anti v}{sub e} p {yields} e{sup +}n, correlated with the 2.2 MeV {gamma} from n p {yields} d {gamma}. The use of tight cuts to identify e{sup +} events with correlated {gamma} rays yielded 22 events with e{sup +} energy between 36 and 60 MeV and only 4.6 {+-} 0.6 background events. The probability that this excess is due entirely to a statistical fluctuation is 4.1 {times} 10{sup {minus}8}. A {chi}{sup 2} fit to the entire e{sup +} sample results in a total excess of 51.8{sub {minus}16.9}{sup +18.7} {+-} 8.0 events with e{sup +} energy between 20 and 60 MeV. If attributed to {anti v}{sub {mu}} {yields} {anti v}{sub e} oscillations, this corresponds to an oscillation probability (averaged over the experimental energy and spatial acceptance) of 0.31 {+-} 0.12 {+-} 0.05%.

  14. Atmospheric neutrinos in ice and measurement of neutrino oscillation parameters

    SciTech Connect

    Fernandez-Martinez, Enrique; Giordano, Gerardo; Mocioiu, Irina; Mena, Olga

    2010-11-01

    The main goal of the IceCube Deep Core array is to search for neutrinos of astrophysical origins. Atmospheric neutrinos are commonly considered as a background for these searches. We show that the very high statistics atmospheric neutrino data can be used to obtain precise measurements of the main oscillation parameters.

  15. Another look at synchronized neutrino oscillations

    NASA Astrophysics Data System (ADS)

    Akhmedov, Evgeny; Mirizzi, Alessandro

    2016-07-01

    In dense neutrino backgrounds present in supernovae and in the early Universe neutrino oscillations may exhibit complex collective phenomena, such as synchronized oscillations, bipolar oscillations and spectral splits and swaps. We consider in detail possible decoherence effects on the simplest of these phenomena - synchronized neutrino oscillations that can occur in a uniform and isotropic neutrino gas. We develop an exact formalism of spectral moments of the flavour spin vectors describing such a system and then apply it to find analytical approaches that allow one to study decoherence effects on its late-time evolution. This turns out to be possible in part due to the existence of the (previously unknown) exact conservation law satisfied by the quantities describing the considered neutrino system. Interpretation of the decoherence effects in terms of neutrino wave packet separation is also given, both in the adiabatic and non-adiabatic regimes of neutrino flavour evolution.

  16. Neutrino Oscillations: Eighty Years in Review

    NASA Astrophysics Data System (ADS)

    Bowers, Rebecca Lyn

    In order to discuss neutrino oscillations, it is necessary to have knowledge of the developments in the field spanning the last eighty years. The existence of the neutrino was posited by Wolfgang Pauli in 1930 to account for the mass defect in beta decay, and to this day physicists are still endeavoring to answer fundamental questions about this enigmatic particle. The scope of this thesis includes a historical background of neutrino physics and a discussion of neutrinos and the Standard Model; subsequent to this is a discussion of the Solar Neutrino Problem, which provided the impetus for the proposal of neutrino oscillations. Bolstering the theory of neutrino oscillations (which is developed in the body of this thesis) are neutrino detector experiments and their results; these include the Homestake experiment, SNO, Kamiokande and Super-Kamiokande, MINOS, and Double-Chooz. We also include relevant derivations, most particularly of the quantum mechanics of neutrino oscillations as treated in the wave packet formalism. We have amassed here the principle theories and experimental results -- a mere tip of the iceberg -- that have brought us to our current understanding of neutrino oscillations. We have also studied the quantum mechanics of neutrino oscillations and developed for ourselves the wave packet formalism describing the phenomenon.

  17. Subpanel on accelerator-based neutrino oscillation experiments

    SciTech Connect

    1995-09-01

    Neutrinos are among nature`s fundamental constituents, and they are also the ones about which we know least. Their role in the universe is widespread, ranging from the radioactive decay of a single atom to the explosions of supernovae and the formation of ordinary matter. Neutrinos might exhibit a striking property that has not yet been observed. Like the back-and-forth swing of a pendulum, neutrinos can oscillate to-and-from among their three types (or flavors) if nature provides certain conditions. These conditions include neutrinos having mass and a property called {open_quotes}mixing.{close_quotes} The phenomenon is referred to as neutrino oscillations. The questions of the origin of neutrino mass and mixing among the neutrino flavors are unsolved problems for which the Standard Model of particle physics holds few clues. It is likely that the next critical step in answering these questions will result from the experimental observation of neutrino oscillations. The High Energy Physics Advisory Panel (HEPAP) Subpanel on Accelerator-Based Neutrino Oscillation Experiments was charged to review the status and discovery potential of ongoing and proposed accelerator experiments on neutrino oscillations, to evaluate the opportunities for the U.S. in this area of physics, and to recommend a cost-effective plan for pursuing this physics, as appropriate. The complete charge is provided in Appendix A. The Subpanel studied these issues over several months and reviewed all the relevant and available information on the subject. In particular, the Subpanel reviewed the two proposed neutrino oscillation programs at Fermi National Accelerator Laboratory (Fermilab) and at Brookhaven National Laboratory (BNL). The conclusions of this review are enumerated in detail in Chapter 7 of this report. The recommendations given in Chapter 7 are also reproduced in this summary.

  18. FINAL NEUTRINO OSCILLATION RESULTS FROM LSND

    SciTech Connect

    W. LOUIS

    2000-10-01

    The LSND experiment provides evidence for neutrino oscillations from both the primary {bar {nu}}{sub {mu}} {r_arrow} {bar {nu}}{sub e} oscillation search and the secondary {nu}{sub {mu}} {r_arrow} {nu}{sub e} oscillation search. At present, this remains the only evidence for appearance neutrino oscillations and implies that at least one neutrino has a mass greater than 0.4 eV/c{sup 2} and that neutrinos comprise more than 1% of the mass of the universe. The MiniBooNE experiment at Fermilab, which is presently under construction, will provide a definitive test of the LSND results, and if the neutrino oscillation results are confirmed, will make a precision measurement of the oscillation parameters.

  19. NuCraft: Oscillation probabilities for atmospheric neutrinos calculator

    NASA Astrophysics Data System (ADS)

    Wallraff, Marius

    2016-02-01

    NuCraft calculates oscillation probabilities for atmospheric neutrinos, taking into account matter effects and the Earth's atmosphere, and supports an arbitrary number of sterile neutrino flavors with easily configurable continuous Earth models. Continuous modeling of the Earth instead of the often-used approximation of four layers with constant density and consideration of the smearing of baseline lengths due to the variable neutrino production heights in Earth's atmosphere each lead to deviations of 10% or more for conventional neutrinos between 1 and 10 GeV.

  20. Neutrino oscillation studies at LAMPF

    SciTech Connect

    Louis, W.C.; LSND Collaboration

    1994-09-01

    A search for {anti v}{sub {mu}} {yields} {anti v}{sub e} oscillations has been made by the Liquid Scintillator Neutrino Detector experiment at LAMPF after an initial month and a half run. The experiment observes eight events consistent with the reaction {anti v}{sub e}p {yields} e{sup +}n followed by np {yields} d{gamma} (2.2 MeV). The total estimated background is 0.9{plus_minus}0.2 events.

  1. Spectrometry of the Earth using Neutrino Oscillations

    NASA Astrophysics Data System (ADS)

    Rott, C.; Taketa, A.; Bose, D.

    2015-10-01

    The unknown constituents of the interior of our home planet have provoked the human imagination and driven scientific exploration. We herein demonstrate that large neutrino detectors could be used in the near future to significantly improve our understanding of the Earth’s inner chemical composition. Neutrinos, which are naturally produced in the atmosphere, traverse the Earth and undergo oscillations that depend on the Earth’s electron density. The Earth’s chemical composition can be determined by combining observations from large neutrino detectors with seismic measurements of the Earth’s matter density. We present a method that will allow us to perform a measurement that can distinguish between composition models of the outer core. We show that the next-generation large-volume neutrino detectors can provide sufficient sensitivity to reject extreme cases of outer core composition. In the future, dedicated instruments could be capable of distinguishing between specific Earth composition models and thereby reshape our understanding of the inner Earth in previously unimagined ways.

  2. Spectrometry of the Earth using Neutrino Oscillations

    PubMed Central

    Rott, C.; Taketa, A.; Bose, D.

    2015-01-01

    The unknown constituents of the interior of our home planet have provoked the human imagination and driven scientific exploration. We herein demonstrate that large neutrino detectors could be used in the near future to significantly improve our understanding of the Earth’s inner chemical composition. Neutrinos, which are naturally produced in the atmosphere, traverse the Earth and undergo oscillations that depend on the Earth’s electron density. The Earth’s chemical composition can be determined by combining observations from large neutrino detectors with seismic measurements of the Earth’s matter density. We present a method that will allow us to perform a measurement that can distinguish between composition models of the outer core. We show that the next-generation large-volume neutrino detectors can provide sufficient sensitivity to reject extreme cases of outer core composition. In the future, dedicated instruments could be capable of distinguishing between specific Earth composition models and thereby reshape our understanding of the inner Earth in previously unimagined ways. PMID:26489447

  3. Neutrino clouds and dark matter

    SciTech Connect

    Goldman, T.; McKellar, B.H.J.; Stephenson, G.J. Jr.

    1996-12-31

    We have examined the consequences of assuming the existence of a light scalar boson, weakly coupled to neutrinos, and not coupled to any other light fermions. For a range of parameters, we find that this hypothesis leads to the development of neutrino clusters which form in the early Universe and which provide gravitational fluctuations on scales small compared to a parsec (i.e., the scale of solar systems). Under some conditions, this can produce anomalous gravitational acceleration within solar systems and lead to a vanishing of neutrino mass-squared differences, giving rise to strong neutrino oscillation effects.

  4. Neutrino oscillations and the seesaw origin of neutrino mass

    NASA Astrophysics Data System (ADS)

    Miranda, O. G.; Valle, J. W. F.

    2016-07-01

    The historical discovery of neutrino oscillations using solar and atmospheric neutrinos, and subsequent accelerator and reactor studies, has brought neutrino physics to the precision era. We note that CP effects in oscillation phenomena could be difficult to extract in the presence of unitarity violation. As a result upcoming dedicated leptonic CP violation studies should take into account the non-unitarity of the lepton mixing matrix. Restricting non-unitarity will shed light on the seesaw scale, and thereby guide us towards the new physics responsible for neutrino mass generation.

  5. Neutrino oscillations in the presence of super-light sterile neutrinos

    NASA Astrophysics Data System (ADS)

    Divari, Paraskevi; Vergados, John

    2016-07-01

    In this paper, we study the effect of conversion of super-light sterile neutrino (SLSN) to electron neutrino in matter like that of the Earth. In the Sun the resonance conversion between SLSN and electron neutrino via the neutral current is suppressed due to the smallness of neutron number. On the other hand, neutron number density can play an important role in the Earth, making the scenario of SLSN quite interesting. The effect of CP-violating phases on active-SLSN oscillations is also discussed. Reactor neutrino experiments with medium or short baseline may probe the scenario of SLSN.

  6. Uncovering the matter-neutrino resonance

    NASA Astrophysics Data System (ADS)

    Väänänen, D.; McLaughlin, G. C.

    2016-05-01

    Matter-neutrino resonances (MNRs) can drastically modify neutrino flavor evolution in astrophysical environments and may significantly impact nucleosynthesis. Here we further investigate the underlying physics of MNR-type flavor transitions. We provide generalized resonance conditions and make analytical predictions for the behavior of the system. We discuss the adiabatic evolution of these transitions considering both symmetric and standard MNR scenarios. Symmetric MNR transitions differ from standard MNR transitions in that both neutrinos and antineutrinos can completely transform to other flavors simultaneously. We provide an example of the simplest system in which such transitions can occur with a neutrino and an antineutrino having a single energy and emission angle. We further apply linearized stability analysis to predict the location of self-induced nutation-type (or bipolar) oscillations due to ν ν interactions in the regions where MNR is ineffective. In all cases, we compare our analytical predictions to numerical calculations.

  7. Collective neutrino oscillations in supernovae

    SciTech Connect

    Duan, Huaiyu

    2014-06-24

    In a dense neutrino medium neutrinos can experience collective flavor transformation through the neutrino-neutrino forward scattering. In this talk we present some basic features of collective neutrino flavor transformation in the context in core-collapse supernovae. We also give some qualitative arguments for why and when this interesting phenomenon may occur and how it may affect supernova nucleosynthesis.

  8. Cosmological bounds on dark-matter-neutrino interactions

    SciTech Connect

    Mangano, Gianpiero; Melchiorri, Alessandro; Serra, Paolo; Cooray, Asantha; Kamionkowski, Marc

    2006-08-15

    We investigate the cosmological effects of a neutrino interaction with cold dark-matter. We postulate a neutrino that interacts with a ''neutrino-interacting dark-matter'' (NIDM) particle with an elastic-scattering cross section that either decreases with temperature as T{sup 2} or remains constant with temperature. The neutrino-dark-matter interaction results in a neutrino-dark-matter fluid with pressure, and this pressure results in diffusion-damped oscillations in the matter power spectrum, analogous to the acoustic oscillations in the baryon-photon fluid. We discuss the bounds from the Sloan Digital Sky Survey on the NIDM opacity (ratio of cross section to NIDM-particle mass) and compare with the constraint from observation of neutrinos from supernova 1987A. If only a fraction of the dark matter interacts with neutrinos, then NIDM oscillations may affect current cosmological constraints from measurements of galaxy clustering. We discuss how detection of NIDM oscillations would suggest a particle-antiparticle asymmetry in the dark-matter sector.

  9. Sterile neutrinos as the origin of dark and baryonic matter.

    PubMed

    Canetti, Laurent; Drewes, Marco; Shaposhnikov, Mikhail

    2013-02-01

    We demonstrate for the first time that three sterile neutrinos alone can simultaneously explain neutrino oscillations, the observed dark matter, and the baryon asymmetry of the Universe without new physics above the Fermi scale. The key new point of our analysis is leptogenesis after sphaleron freeze-out, which leads to resonant dark matter production, evading thus the constraints on sterile neutrino dark matter from structure formation and x-ray searches. We identify the range of sterile neutrino properties that is consistent with all known constraints. We find a domain of parameters where the new particles can be found with present day experimental techniques, using upgrades to existing experimental facilities. PMID:23432234

  10. Effects of Neutrino Decay on Oscillation Probabilities

    NASA Astrophysics Data System (ADS)

    Leonard, Kayla; de Gouvêa, André

    2016-01-01

    It is now well accepted that neutrinos oscillate as a quantum mechanical result of a misalignment between their mass-eigenstates and the flavor-eigenstates. We study neutrino decay—the idea that there may be new, light states that the three Standard Model flavors may be able to decay into. We consider what effects this neutrino decay would have on the observed oscillation probabilities.The Hamiltonian governs how the states change with time, so we use it to calculate an oscillation amplitude, and from that, the oscillation probability. We simplify the theoretical probabilities using results from experimental data, such as the neutrino mixing angles and mass differences. By exploring what values of the decay parameters are physically allowable, we can begin to understand just how large the decay parameters can be. We compare the probabilities in the case of no neutrino decay and in the case of maximum neutrino decay to determine how much of an effect neutrino decay could have on observations, and discuss the ability of future experiments to detect these differences.We also examine neutrino decay in the realm of CP invariance, and found that it is a new source of CP violation. Our work indicates that there is a difference in the oscillation probabilities between particle transitions and their corresponding antiparticle transitions. If neutrino decay were proven true, it could be an important factor in understanding leptogenesis and the particle-antiparticle asymmetry present in our Universe.

  11. Neutrino oscillations: From a historical perspective to the present status

    NASA Astrophysics Data System (ADS)

    Bilenky, S.

    2016-07-01

    The history of neutrino mixing and oscillations is briefly presented. Basics of neutrino mixing and oscillations and convenient formalism of neutrino oscillations in vacuum are given. The role of neutrino in the Standard Model and the Weinberg mechanism of the generation of the Majorana neutrino masses are discussed.

  12. Decoherence and oscillations of supernova neutrinos

    NASA Astrophysics Data System (ADS)

    Kersten, Jörn; Smirnov, Alexei Yu.

    2016-06-01

    Supernova neutrinos have several exceptional features which can lead to interesting physical consequences. At the production point their wave packets have an extremely small size σ x ˜ 10^{-11} cm; hence the energy uncertainty can be as large as the energy itself, σ E ˜ E, and the coherence length is short. On the way to the Earth the wave packets of mass eigenstates spread to macroscopic sizes and separate. Inside the Earth the mass eigenstates split into eigenstates in matter and oscillate again. The coherence length in the Earth is comparable with the radius of the Earth. We explore these features and their consequences. (1) We present new estimates of the wave packet size. (2) We consider the decoherence condition for the case of wave packets with spatial spread and show that it is not modified by the spread. (3) We study the coherence of neutrinos propagating in a multi-layer medium with density jumps at the borders of layers. In this case coherence can be partially restored due to a "catch-up effect", increasing the coherence length beyond the usual estimate. This catch-up effect can occur for supernova neutrinos as they cross the shock wave fronts in the exploding star or the core of the Earth.

  13. A study of neutrino oscillations in MINOS

    SciTech Connect

    Raufer, Tobias Martin; /Oxford U.

    2007-06-01

    MINOS is a long-baseline neutrino oscillations experiment located at Fermi National Accelerator Laboratory (FNAL), USA. It makes use of the NuMI neutrino beamline and two functionally identical detectors located at distances of {approx}1km and {approx}735km from the neutrino production target respectively. The Near Detector measures the composition and energy spectrum of the neutrino beam with high precision while the Far Detector looks for evidence of neutrino oscillations. This thesis presents work conducted in two distinct areas of the MINOS experiment: analysis of neutral current and charged current interactions. While charged current events are only sensitive to muon neutrino disappearance, neutral current events can be used to distinguish oscillations into sterile neutrinos from those involving only active neutrino species. A complete, preliminary neutral current study is performed on simulated data. This is followed by a more detailed investigation of neutral current neutrino interactions in the MINOS Near Detector. A procedure identifying neutral current interactions and rejecting backgrounds due to reconstruction failures is developed. Two distinct event classification methods are investigated. The selected neutral current events in the Near Detector are used to extract corrections to the neutral current cross-section in the MINOS Monte Carlo simulation as a function of energy. The resulting correction factors are consistent with unity. The main MINOS charged current neutrino disappearance analysis is described. We present the Monte Carlo tuning procedure, event selection, extrapolation from Near to Far Detector and fit for neutrino oscillations. Systematic errors on this measurement are evaluated and discussed in detail. The data are consistent with neutrino oscillations with the following parameters: 2.74 {sup +0.44}{sub -0.26} x 10{sup -3} eV{sup 2} and sin{sup 2}(2{theta}{sub 23}) > 0.87 at 68% confidence level.

  14. Nuclear effects in neutrino oscillation experiments

    SciTech Connect

    Chauhan, S.; Athar, M. Sajjad; Singh, S. K.

    2011-10-06

    We have studied the nuclear medium effects in the neutrino(antineutrino) induced interactions in nuclei which are relevant for present neutrino oscillation experiments in the few GeV energy region. The study is specially focused on calculating the cross sections and the event rates for atmospheric and accelerator neutrino experiments. The nuclear effects are found to be important for the quasielastic lepton production and the charged current incoherent and coherent pion production processes.

  15. Impact of Neutrino Oscillation Measurements on Theory

    SciTech Connect

    Murayama, Hitoshi

    2003-11-30

    Neutrino oscillation data had been a big surprise to theorists, and indeed they have ongoing impact on theory. I review what the impact has been, and what measurements will have critical impact on theory in the future.

  16. Neutrino mixing and oscillations in astrophysical environments

    SciTech Connect

    Balantekin, A. B.

    2014-05-02

    A brief review of the current status of neutrino mixing and oscillations in astrophysical environments, with particular emphasis on the Sun and core-collapse supernovae, is given. Implications of the existence of sterile states which mix with the active neutrinos are discussed.

  17. Nuclear Propelled Vessels and Neutrino Oscillation Experiments

    NASA Astrophysics Data System (ADS)

    Detwiler, J.; Gratta, G.; Tolich, N.; Uchida, Y.

    2002-10-01

    We study the effect of naval nuclear reactors on the study of neutrino oscillations. We find that the presence of naval reactors at unknown locations and times may limit the accuracy of future very long baseline reactor-based neutrino oscillation experiments. At the same time, we argue that a nuclear powered surface ship such as a large Russian icebreaker may provide an ideal source for precision experiments.

  18. Reproducing sterile neutrinos and the behavior of flavor oscillations with superconducting-magnetic proximity effects

    NASA Astrophysics Data System (ADS)

    Baker, Thomas E.

    2016-03-01

    The physics of a superconductor subjected to a magnetic field is known to be equivalent to neutrino oscillations. Examining the properties of singlet-triplet oscillations in the magnetic field, a sterile neutrino is suggested to be represented by singlet Cooper pairs and moderates flavor oscillations between three flavor neutrinos (triplet Cooper pairs). A superconductor-exchange spring system's rotating magnetization profile is used to simulate the mass-flavor oscillations in the neutrino case and the physics of neutrino oscillations are discussed. Connecting the condensed matter system and the particle physics system with this analogy may allow for the properties of the condensed matter system to inform neutrino experiments. Support is graciously acknowledged from the Pat Beckman Memorial Scholarship from the Orange County Chapter of the Achievement Rewards for College Scientists Foundation.

  19. Neutrino interactions in neutron matter

    NASA Astrophysics Data System (ADS)

    Cipollone, Andrea

    2012-12-01

    Neutrino flow is the dominant mechanism of energy transfer in the latest stages of supernovae explosions and in compact stars. The Standard Model of particle physics and accelerator data, provide a satisfactory description of neutrino physics in vacuum up to TeV scale. Nevertheless modeling the dynamics of neutrino interaction in the nuclear environment involves severe difficulties. This thesis in mainly aimed at obtaining the weak response of infinite matter, using both the Correlated Basis Function theory and Landau Theory of Fermi liquid to take into account properly nucleon-nucleon hard core potential and long range correlation (quasi-particle, collective modes, ecc.)

  20. Measuring Neutrino Oscillations with Nuclear Reactors

    SciTech Connect

    McKeown, R. D.

    2007-10-26

    Since the first direct observations of antineutrino events by Reines and Cowan in the 1950's, nuclear reactors have been an important tool in the study of neutrino properties. More recently, the study of neutrino oscillations has been a very active area of research. The pioneering observation of oscillations by the KamLAND experiment has provided crucial information on the neutrino mixing matrix. New experiments to study the remaining unknown mixing angle are currently under development. These recent studies and potential future developments will be discussed.

  1. Establishing atmospheric neutrino oscillations with Super-Kamiokande

    NASA Astrophysics Data System (ADS)

    Kajita, T.; Kearns, E.; Shiozawa, M.

    2016-07-01

    In this article we review the discovery of atmospheric neutrino oscillation by the Super-Kamiokande experiment. This review outlines the sequence of observations and their associated publications that solved the atmospheric neutrino anomaly and established the existence of neutrino oscillations with nearly maximal mixing of muon neutrinos and tau neutrinos. We also discuss subsequent and ongoing studies that use atmospheric neutrinos to continue to reveal the nature of the neutrino.

  2. Neutrino oscillation above a black hole accretion disk

    SciTech Connect

    Malkus, A.; Kneller, J. P.; McLaughlin, G. C.; Surman, R.

    2015-05-15

    We examine neutrino oscillations in the context of an accretion disk surrounding a black hole. Because accretion disks produce large quantities of neutrinos, they may be home to interesting neutrino oscillation as well. We model accretion disks associated with stellar collapse for the sake of understanding neutrino oscillations. We find that the neutrino oscillations include phenomena seen in the protoneutron star setting as well as phenomena not seen elsewhere.

  3. Connecting leptonic unitarity triangle to neutrino oscillation

    NASA Astrophysics Data System (ADS)

    He, Hong-Jian; Xu, Xun-Jie

    2014-04-01

    The leptonic unitarity triangle (LUT) provides a geometric description of CP violations in the lepton-neutrino sector and is directly measurable in principle. In this paper, we reveal that the angles in the LUT have definite physical meaning, and demonstrate the exact connection of the LUT to neutrino oscillations. For the first time, we prove that these leptonic angles act as phase shifts in neutrino oscillations, by shifting Δm2L/2E to Δm2L/2E +α, where (L,E,α) denote the baseline length, neutrino energy and corresponding angle of the LUT. Each LUT has three independent parameters and contains only partial information of the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix. We demonstrate that the partial information in each LUT can describe the corresponding neutrino oscillation. Hence, for the first time, we uncover that any given kind of neutrino oscillations contains at most three (rather than four) independent degrees of freedom from the PMNS matrix, and this may provide a cleaner way for fitting the corresponding oscillation data.

  4. Relic neutrino decoupling with flavour oscillations revisited

    NASA Astrophysics Data System (ADS)

    de Salas, Pablo F.; Pastor, Sergio

    2016-07-01

    We study the decoupling process of neutrinos in the early universe in the presence of three-flavour oscillations. The evolution of the neutrino spectra is found by solving the corresponding momentum-dependent kinetic equations for the neutrino density matrix, including for the first time the proper collision integrals for both diagonal and off-diagonal elements. This improved calculation modifies the evolution of the off-diagonal elements of the neutrino density matrix and changes the deviation from equilibrium of the frozen neutrino spectra. However, it does not vary the contribution of neutrinos to the cosmological energy density in the form of radiation, usually expressed in terms of the effective number of neutrinos, Neff. We find a value of Neff = 3.045, in agreement with previous theoretical calculations and consistent with the latest analysis of Planck data. This result does not depend on the ordering of neutrino masses. We also consider the effect of non-standard neutrino-electron interactions (NSI), predicted in many theoretical models where neutrinos acquire mass. For two sets of NSI parameters allowed by present data, we find that Neff can be reduced down to 3.040 or enhanced up to 3.059.

  5. Long-baseline neutrino oscillation experiments

    SciTech Connect

    Crane, D.; Goodman, M.

    1994-12-31

    There is no unambiguous definition for long baseline neutrino oscillation experiments. The term is generally used for accelerator neutrino oscillation experiments which are sensitive to {Delta}m{sup 2} < 1.0 eV{sup 2}, and for which the detector is not on the accelerator site. The Snowmass N2L working group met to discuss the issues facing such experiments. The Fermilab Program Advisory Committee adopted several recommendations concerning the Fermilab neutrino program at their Aspen meeting immediately prior to the Snowmass Workshop. This heightened the attention for the proposals to use Fermilab for a long-baseline neutrino experiment at the workshop. The plan for a neutrino oscillation program at Brookhaven was also thoroughly discussed. Opportunities at CERN were considered, particularly the use of detectors at the Gran Sasso laboratory. The idea to build a neutrino beam from KEK towards Superkamiokande was not discussed at the Snowmass meeting, but there has been considerable development of this idea since then. Brookhaven and KEK would use low energy neutrino beams, while FNAL and CERN would plan have medium energy beams. This report will summarize a few topics common to LBL proposals and attempt to give a snapshot of where things stand in this fast developing field.

  6. Accelerator-based neutrino oscillation experiments

    SciTech Connect

    Harris, Deborah A.; /Fermilab

    2007-12-01

    Neutrino oscillations were first discovered by experiments looking at neutrinos coming from extra-terrestrial sources, namely the sun and the atmosphere, but we will be depending on earth-based sources to take many of the next steps in this field. This article describes what has been learned so far from accelerator-based neutrino oscillation experiments, and then describe very generally what the next accelerator-based steps are. In section 2 the article discusses how one uses an accelerator to make a neutrino beam, in particular, one made from decays in flight of charged pions. There are several different neutrino detection methods currently in use, or under development. In section 3 these are presented, with a description of the general concept, an example of such a detector, and then a brief discussion of the outstanding issues associated with this detection technique. Finally, section 4 describes how the measurements of oscillation probabilities are made. This includes a description of the near detector technique and how it can be used to make the most precise measurements of neutrino oscillations.

  7. Parametric enhancement of flavor oscillation in a three-neutrino framework

    NASA Astrophysics Data System (ADS)

    Merfeld, Kara M.; Latimer, David C.

    2014-12-01

    When neutrinos travel through matter with a periodic density profile, the neutrino oscillation probability can be enhanced if certain conditions are satisfied. In a two-neutrino framework, the condition for parametric resonance is known. Herein, we consider the analogous parametric resonance condition within the context of a full three-neutrino framework with two oscillation scales. For energies in the range of hundreds of MeV to a few GeV, we find that neutrino oscillation can be parametrically enhanced if two approximate relations are satisfied. The first is similar to the two-neutrino parametric resonance condition while the second involves the other oscillation scale. Treating the Earth's density as piecewise constant, we show that oscillations in this energy range can be enhanced between two- and threefold.

  8. Neutrino Oscillations Effects in the Context of Accretion Disks

    NASA Astrophysics Data System (ADS)

    Malkus, Annelise

    2013-10-01

    Neutrino oscillation effects due to the interaction of neutrinos with one another are diverse and depend strongly on having high densities of neutrinos. Accretion disks, which can arise from neutron star mergers or certain supernovae, are a setting where neutrino emission is high enough to be home to many of the neutrino-neutrino interaction effects seen in the early universe and supernova settings. Meanwhile, they lend themselves to additional effects not seen in other settings. We look in depth at one such effect, where the neutrino-neutrino interaction occurs at the same scale as the neutrino-electron interaction that can also influence oscillation.

  9. OPERA neutrino oscillation search: Status and perspectives

    NASA Astrophysics Data System (ADS)

    Gornushkin, Yu.

    2016-07-01

    OPERA is a long-baseline neutrino experiment at the Gran Sasso laboratory (LNGS) designed to search for ν_{{μ}}^{} → ν_{{τ}}^{} oscillations in a direct appearance mode on an event by event basis. OPERA took data in 2008-2012 with the CNGS neutrino beam from CERN. The data analysis is ongoing, with the goal of establishing ν_{{τ}}^{} appearance with a high significance. Complementary studies of the ν_{{μ}}^{} → ν_{{e}}^{} oscillations and atmospheric muons fluxes were performed as well. Current results of the experiment are presented and perspectives discussed.

  10. Neutrino oscillations in a turbulent plasma

    SciTech Connect

    Mendonça, J. T.; Haas, F.

    2013-07-15

    A new model for the joint neutrino flavor and plasma oscillations is introduced, in terms of the dynamics of the neutrino flavor polarization vector in a plasma background. Fundamental solutions are found for both time-invariant and time-dependent media, considering slow and fast variations of the electron plasma density. The model is shown to be described by a generalized Hamiltonian formalism. In the case of a broad spectrum of electron plasma waves, a statistical approach indicates the shift of both equilibrium value and frequency oscillation of flavor coherence, due to the existence of a turbulent plasma background.

  11. Neutrino masses and sterile neutrino dark matter from the PeV scale

    NASA Astrophysics Data System (ADS)

    Roland, Samuel B.; Shakya, Bibhushan; Wells, James D.

    2015-12-01

    We show that active neutrino masses and a keV-GeV mass sterile neutrino dark matter candidate can result from a modified, low energy seesaw mechanism if right-handed neutrinos are charged under a new symmetry broken by a scalar field vacuum expectation value at the PeV scale. The dark matter relic abundance can be obtained through active-sterile oscillation, freeze-in through the decay of the heavy scalar, or freeze-in via nonrenormalizable interactions at high temperatures. The low energy effective theory maps onto the widely studied ν MSM framework.

  12. Supernova constraints on neutrino oscillation and EoS for proto-neutron star

    SciTech Connect

    Kajino, T.; Aoki, W.; Cheoun, M.-K.; Hayakawa, T.; Hidaka, J.; Hirai, Y.; Shibagaki, S.; Mathews, G. J.; Nakamura, K.; Suzuki, T.

    2014-05-02

    Core-collapse supernovae eject huge amount of flux of energetic neutrinos which affect explosive nucleosynthesis of rare isotopes like {sup 7}Li, {sup 11}B, {sup 92}Nb, {sup 138}La and Ta and r-process elements. Several isotopes depend strongly on the neutrino flavor oscillation due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. We here discuss how to determine the neutrino temperatures and propose a method to determine still unknown neutrino oscillation parameters, mass hierarchy and θ{sub 13}, simultaneously. Combining the recent experimental constraints on θ{sub 13} with isotopic ratios of the light elements discovered in presolar grains from the Murchison meteorite, we show that our method suggests at a marginal preference for an inverted neutrino mass hierarchy. We also discuss supernova relic neutrinos that may indicate the softness of the equation of state (EoS) of nuclear matter as well as adiabatic conditions of the neutrino oscillation.

  13. Supernova constraints on neutrino oscillation and EoS for proto-neutron star

    NASA Astrophysics Data System (ADS)

    Kajino, T.; Aoki, W.; Cheoun, M.-K.; Hayakawa, T.; Hidaka, J.; Hirai, Y.; Mathews, G. J.; Nakamura, K.; Shibagaki, S.; Suzuki, T.

    2014-05-01

    Core-collapse supernovae eject huge amount of flux of energetic neutrinos which affect explosive nucleosynthesis of rare isotopes like 7Li, 11B, 92Nb, 138La and Ta and r-process elements. Several isotopes depend strongly on the neutrino flavor oscillation due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. We here discuss how to determine the neutrino temperatures and propose a method to determine still unknown neutrino oscillation parameters, mass hierarchy and θ13, simultaneously. Combining the recent experimental constraints on θ13 with isotopic ratios of the light elements discovered in presolar grains from the Murchison meteorite, we show that our method suggests at a marginal preference for an inverted neutrino mass hierarchy. We also discuss supernova relic neutrinos that may indicate the softness of the equation of state (EoS) of nuclear matter as well as adiabatic conditions of the neutrino oscillation.

  14. Neutrinos, Dark Matter and Nuclear Detection

    SciTech Connect

    Goldstein, W H; Bernstein, A; Craig, W W; Johnson, M

    2007-05-29

    Solutions to problems in nuclear non-proliferation and counter-terrorism may be found at the forefront of modern physics. Neutrino oscillation experiments, dark matter searches, and high energy astrophysics, are based on technology advances that have may also have application to nuclear detection. The detection problems share many characteristics, including energy scales, time structures, particle-type, and, of course, the combination of high backgrounds and low signal levels. This convergence of basic and applied physics is realized in non-proliferation and homeland security projects at Lawrence Livermore National Laboratory. Examples described here include reactor anti-neutrino monitoring, dual-phase noble liquid TPC development, gamma-ray telescopes, and nuclear resonance fluorescence.

  15. Neutrino Propagation in Dense Magnetized Matter

    NASA Astrophysics Data System (ADS)

    Arbuzova, E. V.; Lobanov, A. E.; Murchikova, E. M.

    2009-01-01

    We obtained a complete system of solutions of the Dirac-Pauli equation for a massive neutrino interacting with dense matter and strong electromagnetic field. We demonstrated that these solutions can describe precession of the neutrino spin.

  16. KamLAND's precision neutrino oscillation measurements

    NASA Astrophysics Data System (ADS)

    Decowski, M. P.

    2016-07-01

    The KamLAND experiment started operation in the Spring of 2002 and is operational to this day. The experiment observes signals from electron antineutrinos from distant nuclear reactors. The program, spanning more than a decade, allowed the determination of LMA-MSW as the solution to the solar neutrino transformation results (under the assumption of CPT invariance) and the measurement of various neutrino oscillation parameters. In particular, the solar mass-splitting Δ m212 was determined to high precision. Besides the study of neutrino oscillation, KamLAND started the investigation of geologically produced antineutrinos (geo-ν‾e). The collaboration also reported on a variety of other topics related to particle and astroparticle physics.

  17. Higgs Boson Mass, Neutrino Oscillations and Inflation

    SciTech Connect

    Shafi, Qaisar

    2008-11-23

    Finding the Standard Model scalar (Higgs) boson is arguably the single most important mission of the LHC. I review predictions for the Higgs boson mass based on stability and perturbativity arguments, taking into account neutrino oscillations. Primordial inflation based on the Coleman-Weinberg potential is briefly discussed.

  18. Collective neutrino oscillations in nonspherical geometry

    SciTech Connect

    Dasgupta, Basudeb; Dighe, Amol; Mirizzi, Alessandro; Raffelt, Georg

    2008-08-01

    The rich phenomenology of collective neutrino oscillations has been studied only in one-dimensional or spherically symmetric systems. Motivated by the nonspherical example of coalescing neutron stars, presumably the central engines of short gamma-ray bursts, we use the Liouville equation to formulate the problem for general source geometries. Assuming the neutrino ensemble displays self-maintained coherence, the problem once more becomes effectively one-dimensional along the streamlines of the overall neutrino flux. This approach for the first time provides a formal definition of the 'single-angle approximation' frequently used for supernova neutrinos and allows for a natural generalization to nonspherical geometries. We study the explicit example of a disk-shaped source as a proxy for coalescing neutron stars.

  19. High intensity neutrino oscillation facilities in Europe

    NASA Astrophysics Data System (ADS)

    Edgecock, T. R.; Caretta, O.; Davenne, T.; Densam, C.; Fitton, M.; Kelliher, D.; Loveridge, P.; Machida, S.; Prior, C.; Rogers, C.; Rooney, M.; Thomason, J.; Wilcox, D.; Wildner, E.; Efthymiopoulos, I.; Garoby, R.; Gilardoni, S.; Hansen, C.; Benedetto, E.; Jensen, E.; Kosmicki, A.; Martini, M.; Osborne, J.; Prior, G.; Stora, T.; Melo Mendonca, T.; Vlachoudis, V.; Waaijer, C.; Cupial, P.; Chancé, A.; Longhin, A.; Payet, J.; Zito, M.; Baussan, E.; Bobeth, C.; Bouquerel, E.; Dracos, M.; Gaudiot, G.; Lepers, B.; Osswald, F.; Poussot, P.; Vassilopoulos, N.; Wurtz, J.; Zeter, V.; Bielski, J.; Kozien, M.; Lacny, L.; Skoczen, B.; Szybinski, B.; Ustrycka, A.; Wroblewski, A.; Marie-Jeanne, M.; Balint, P.; Fourel, C.; Giraud, J.; Jacob, J.; Lamy, T.; Latrasse, L.; Sortais, P.; Thuillier, T.; Mitrofanov, S.; Loiselet, M.; Keutgen, Th.; Delbar, Th.; Debray, F.; Trophine, C.; Veys, S.; Daversin, C.; Zorin, V.; Izotov, I.; Skalyga, V.; Burt, G.; Dexter, A. C.; Kravchuk, V. L.; Marchi, T.; Cinausero, M.; Gramegna, F.; De Angelis, G.; Prete, G.; Collazuol, G.; Laveder, M.; Mazzocco, M.; Mezzetto, M.; Signorini, C.; Vardaci, E.; Di Nitto, A.; Brondi, A.; La Rana, G.; Migliozzi, P.; Moro, R.; Palladino, V.; Gelli, N.; Berkovits, D.; Hass, M.; Hirsh, T. Y.; Schaumann, M.; Stahl, A.; Wehner, J.; Bross, A.; Kopp, J.; Neuffer, D.; Wands, R.; Bayes, R.; Laing, A.; Soler, P.; Agarwalla, S. K.; Cervera Villanueva, A.; Donini, A.; Ghosh, T.; Gómez Cadenas, J. J.; Hernández, P.; Martín-Albo, J.; Mena, O.; Burguet-Castell, J.; Agostino, L.; Buizza-Avanzini, M.; Marafini, M.; Patzak, T.; Tonazzo, A.; Duchesneau, D.; Mosca, L.; Bogomilov, M.; Karadzhov, Y.; Matev, R.; Tsenov, R.; Akhmedov, E.; Blennow, M.; Lindner, M.; Schwetz, T.; Fernández Martinez, E.; Maltoni, M.; Menéndez, J.; Giunti, C.; González García, M. C.; Salvado, J.; Coloma, P.; Huber, P.; Li, T.; López Pavón, J.; Orme, C.; Pascoli, S.; Meloni, D.; Tang, J.; Winter, W.; Ohlsson, T.; Zhang, H.; Scotto-Lavina, L.; Terranova, F.; Bonesini, M.; Tortora, L.; Alekou, A.; Aslaninejad, M.; Bontoiu, C.; Kurup, A.; Jenner, L. J.; Long, K.; Pasternak, J.; Pozimski, J.; Back, J. J.; Harrison, P.; Beard, K.; Bogacz, A.; Berg, J. S.; Stratakis, D.; Witte, H.; Snopok, P.; Bliss, N.; Cordwell, M.; Moss, A.; Pattalwar, S.; Apollonio, M.

    2013-02-01

    The EUROnu project has studied three possible options for future, high intensity neutrino oscillation facilities in Europe. The first is a Super Beam, in which the neutrinos come from the decay of pions created by bombarding targets with a 4 MW proton beam from the CERN High Power Superconducting Proton Linac. The far detector for this facility is the 500 kt MEMPHYS water Cherenkov, located in the Fréjus tunnel. The second facility is the Neutrino Factory, in which the neutrinos come from the decay of μ+ and μ- beams in a storage ring. The far detector in this case is a 100 kt magnetized iron neutrino detector at a baseline of 2000 km. The third option is a Beta Beam, in which the neutrinos come from the decay of beta emitting isotopes, in particular He6 and Ne18, also stored in a ring. The far detector is also the MEMPHYS detector in the Fréjus tunnel. EUROnu has undertaken conceptual designs of these facilities and studied the performance of the detectors. Based on this, it has determined the physics reach of each facility, in particular for the measurement of CP violation in the lepton sector, and estimated the cost of construction. These have demonstrated that the best facility to build is the Neutrino Factory. However, if a powerful proton driver is constructed for another purpose or if the MEMPHYS detector is built for astroparticle physics, the Super Beam also becomes very attractive.

  20. Influence of flavor oscillations on neutrino beam instabilities

    SciTech Connect

    Mendonça, J. T.; Haas, F.; Bret, A.

    2014-09-15

    We consider the collective neutrino plasma interactions and study the electron plasma instabilities produced by a nearly mono-energetic neutrino beam in a plasma. We describe the mutual interaction between neutrino flavor oscillations and electron plasma waves. We show that the neutrino flavor oscillations are not only perturbed by electron plasmas waves but also contribute to the dispersion relation and the growth rates of neutrino beam instabilities.

  1. Some comments on high precision study of neutrino oscillations

    NASA Astrophysics Data System (ADS)

    Bilenky, S. M.

    2015-07-01

    I discuss here some problems connected with the high precision study of neutrino oscillations. In the general case of n-neutrino mixing I derive a convenient expression for transition probability in which only independent terms (and mass-squared differences) enter. For three-neutrino mixing I discuss a problem of a definition of a large (atmospheric) neutrino mass-squared difference. I comment also possibilities to reveal the character of neutrino mass spectrum in future reactor neutrino experiments.

  2. Oscillations of very low energy atmospheric neutrinos

    SciTech Connect

    Peres, Orlando L. G.; Smirnov, A. Yu.

    2009-06-01

    There are several new features in the production, oscillations, and detection of the atmospheric neutrinos of low energies E < or approx. 100 MeV. The flavor ratio r of muon to electron neutrino fluxes is substantially smaller than 2 and decreases with energy, a significant part of events is due to the decay of invisible muons at rest, etc. Oscillations in a two-layer medium (atmosphere-Earth) should be taken into account. We derive analytical and semianalytical expressions for the oscillation probabilities of these 'sub-sub-GeV' neutrinos. The energy spectra of the e-like events in water Cherenkov detectors are computed, and the dependence of the spectra on the 2-3 mixing angle {theta}{sub 23}, the 1-3 mixing, and the CP-violation phase are studied. We find that variations of {theta}{sub 23} in the presently allowed region change the number of e-like events by about 15%-20% as well as lead to distortion of the energy spectrum. The 1-3 mixing and CP violation can lead to {approx}10% effects. Detailed study of the sub-sub-GeV neutrinos will be possible in future megaton-scale detectors.

  3. Short distance neutrino oscillations with Borexino

    NASA Astrophysics Data System (ADS)

    Caminata, A.; Agostini, M.; Altenmüller, K.; Appel, S.; Bellini, G.; Benziger, J.; Berton, N.; Bick, D.; Bonfini, G.; Bravo, D.; Caccianiga, B.; Calaprice, F.; Cavalcante, P.; Chepurnov, A.; Cribier, M.; D'Angelo, D.; Davini, S.; Derbin, A.; di Noto, L.; Durero, M.; Empl, A.; Etenko, A.; Farinon, S.; Fischer, V.; Fomenko, K.; Franco, D.; Gabriele, F.; Gaffiot, J.; Galbiati, C.; Ghiano, C.; Giammarchi, M.; Göger-Neff, M.; Goretti, A.; Gromov, M.; Hagner, C.; Houdy, Th.; Hungerford, E.; Ianni, Aldo; Ianni, Andrea; Jonquères, N.; Kaiser, M.; Kobychev, V.; Korablev, D.; Korga, G.; Kryn, D.; Lachenmaier, T.; Lasserre, T.; Laubenstein, M.; Lehnert, B.; Link, J.; Litvinovich, E.; Lombardi, F.; Lombardi, P.; Ludhova, L.; Lukyanchenko, G.; Machulin, I.; Maneschg, W.; Marcocci, S.; Maricic, J.; Mention, G.; Meroni, E.; Meyer, M.; Miramonti, L.; Misiaszek, M.; Montuschi, M.; Muratova, V.; Musenich, R.; Neumair, B.; Oberauer, L.; Obolensky, M.; Ortica, F.; Pallavicini, M.; Papp, L.; Perasso, L.; Pocar, A.; Ranucci, G.; Razeto, A.; Re, A.; Romani, A.; Rossi, N.; Schönert, S.; Scola, L.; Simgen, H.; Skorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Sukhotin, S.; Suvorov, Y.; Tartaglia, R.; Testera, G.; Veyssière, C.; Vivier, M.; Vogelaar, R. B.; von Feilitzsch, F.; Wang, H.; Winter, J.; Wojcik, M.; Wurm, M.; Zaimidoroga, O.; Zavatarelli, S.; Zuber, K.; Zuzel, G.

    2016-07-01

    The Borexino detector has convincingly shown its outstanding performances in the low energy, sub-MeV regime through its unprecedented accomplishments in the solar and geo-neutrinos detection. These performances make it the ideal tool to accomplish a state-of-the-art experiment able to test unambiguously the long-standing issue of the existence of a sterile neutrino, as suggested by the several anomalous results accumulated over the past two decades, i.e. the outputs of the LSND and Miniboone experiments, the results of the source calibration of the two Gallium solar neutrino experiments, and the recently hinted reactor anomaly. The SOX project will exploit two sources, based on Chromium and Cerium, respectively, which deployed under the experiment, in a location foreseen on purpose at the time of the construction of the detector, will emit two intense beams of neutrinos (Cr) and anti-neutrinos (Ce). Interacting in the active volume of the liquid scintillator, each beam would create an unmistakable spatial wave pattern in case of oscillation of the νe (or ν̅e) into the sterile state: such a pattern would be the smoking gun proving the existence of the new sterile member of the neutrino family. Otherwise, its absence will allow setting a very stringent limit on its existence.

  4. Calculation of oscillation probabilities of atmospheric neutrinos using nuCraft

    NASA Astrophysics Data System (ADS)

    Wallraff, Marius; Wiebusch, Christopher

    2015-12-01

    NuCraft (nucraft.hepforge.org) is an open-source Python project that calculates neutrino oscillation probabilities for neutrinos from cosmic-ray interactions in the atmosphere for their propagation through Earth. The solution is obtained by numerically solving the Schrödinger equation. The code supports arbitrary numbers of neutrino flavors including additional sterile neutrinos, CP violation, arbitrary mass hierarchies, matter effects with a configurable continuous Earth model, and takes into account the production height distribution of neutrinos in the Earth's atmosphere.

  5. Quantum correlations in terms of neutrino oscillation probabilities

    NASA Astrophysics Data System (ADS)

    Alok, Ashutosh Kumar; Banerjee, Subhashish; Uma Sankar, S.

    2016-08-01

    Neutrino oscillations provide evidence for the mode entanglement of neutrino mass eigenstates in a given flavour eigenstate. Given this mode entanglement, it is pertinent to consider the relation between the oscillation probabilities and other quantum correlations. In this work, we show that all the well-known quantum correlations, such as the Bell's inequality, are directly related to the neutrino oscillation probabilities. The results of the neutrino oscillation experiments, which measure the neutrino survival probability to be less than unity, imply Bell's inequality violation.

  6. Solar neutrinos results and oscillation analysis from Super-Kamiokande

    NASA Astrophysics Data System (ADS)

    Koshio, Yusuke

    The results of the solar neutrino spectrum measurement in Super-Kamiokande is presented. The precise measurement of the solar neutrino enegy spectrum is one of the most important key issue to understand neutrino oscillations. In order to measure the spectrum, it is very important to precisely determin the energy scale of the detector. For this purpose, we have used an electron LINAC. This calibration can be done at several positions, directions and energy points, and it can reduce the systematic errors of energy scale less than 1. Neutrino oscillations are essentially energy dependent phenomena. Actually different solar neutrino oscillation solutions require the different energy dependece. In addition, such a measurement is independent the absolute flux results of solar models. Therefore an observation of the deviation from the expected energy spectrum not only show the definite evidence of the solar neutrino oscillation, but also differenciate the possible oscillation solutions. The results of the extensive analysis on neutrino oscillation is presented.

  7. Resolving Standard and Nonstandard CP Violation Phases in Neutrino Oscillations

    SciTech Connect

    Gago, A. M.; Minakata, H.; Uchinami, S.; Nunokawa, H.; Zukanovich Funchal, R.

    2010-03-30

    Neutrino oscillations can exhibit extra CP violation effects, beyond those expected from the standard Kobayashi-Maskawa phase delta, if non-standard neutrino interactions are at play. We show that it is possible to disentangle the two CP violating effects by measuring muon neutrino appearance using a near-far two detector setting in a neutrino factory experiment.

  8. Neutrino oscillations with MINOS and MINOS+

    NASA Astrophysics Data System (ADS)

    Whitehead, L. H.

    2016-07-01

    The MINOS experiment ran from 2003 until 2012 and collected a data sample including 10.71 ×1020 protons-on-target (POT) of beam neutrinos, 3.36 ×1020 POT of beam antineutrinos and an atmospheric neutrino exposure of 37.88 kt yrs. The final measurement of the atmospheric neutrino oscillation parameters, Δ m322 and θ23, came from a full three flavour oscillation analysis of the combined CC νμ and CC ν‾μ beam and atmospheric samples and the CC νe and CC ν‾e appearance samples. This analysis yielded the most precise measurement of the atmospheric mass splitting Δ m322 performed to date. The results are | Δ m322 | = [ 2.28- 2.46 ] ×10-3 eV2 (68%) and sin2 ⁡θ23 = 0.35- 0.65 (90%) in the normal hierarchy, and | Δ m322 | = [ 2.32- 2.53 ] ×10-3 eV2 (68%) and sin2 ⁡θ23 = 0.34- 0.67 (90%) in the inverted hierarchy. The successor to MINOS in the NOνA era at FNAL, MINOS+, is now collecting data mostly in the 3- 10 GeV region, and an analysis of νμ disappearance using the first 2.99 ×1020 POT of data produced results very consistent with those from MINOS. Future data will further test the standard neutrino oscillation paradigm and allow for improved searches for exotic phenomena including sterile neutrinos, large extra dimensions and non-standard interactions.

  9. Oscillation of Very Low Energy Atmospheric Neutrinos

    SciTech Connect

    Peres, Orlando L. G.

    2010-03-30

    We discuss the oscillation effects of sub-sub-GeV atmospheric neutrinos, the sample with energies E < or approx. 100 MeV. The energy spectra of the e-like events in water Cherenkov detectors are computed and dependence of the spectra on the 2-3 mixing angle, theta{sub 23}, the 1-3 mixing and CP-violation phase are studied.

  10. Massive neutrinos, Lorentz invariance dominated standard model and the phenomenological approach to neutrino oscillations

    NASA Astrophysics Data System (ADS)

    Šoln, Josip

    2009-08-01

    For the electroweak interactions, the massive neutrino perturbative kinematical procedure is developed in the massive neutrino Fock space. The perturbation expansion parameter is the ratio of neutrino mass to its energy. This procedure, within the Pontecorvo-Maki-Nakagawa-Sakata (PMNS)-modified electroweak Lagrangian, calculates the cross-sections with the new neutrino energy projection operators in the massive neutrino Fock space, resulting in the dominant Lorentz invariant standard model massless flavor neutrino cross-sections. As a consequence of the kinematical relations between the massive and massless neutrinos, some of the neutrino oscillation cross-sections are Lorentz invariance violating. But all these oscillating cross-sections, some of which violate the flavor conservation, being proportional to the squares of neutrino masses are practically unobservable in the laboratory. However, these neutrino oscillating cross-sections are consistent with the original Pontecorvo neutrino oscillating transition probability expression at short time (baseline), as presented by Dvornikov. From these comparisons, by mimicking the time dependence of the original Pontecorvo neutrino oscillating transition probability, one can formulate the dimensionless neutrino intensity-probability I, by phenomenologically extrapolating the time t, or, equivalently the baseline distance L away from the collision point for the oscillating differential cross-section. For the incoming neutrino of 10 MeV in energy and neutrino masses from Fritzsch analysis with the neutrino mixing matrix of Harrison, Perkins and Scott, the baseline distances at the first two maxima of the neutrino intensity are Lsime281 and 9279 km. The intensity I at the first maximum conserves the flavor, while at the second maximum, the intensities violate the flavor, respectively, in the final and initial state. At the end some details are given as to how one should be able to verify experimentally these neutrino

  11. Astronomical constraints on properties of sterile neutrino dark matter

    NASA Astrophysics Data System (ADS)

    Chan, M. H.; Chu, M.-C.

    2011-04-01

    We consider sterile neutrinos as a component of dark matter in the Milky Way and clusters, and compare their rest mass, decay rate and the mixing angle. A radiative decaying rate of order Γ˜10-19 s-1 for sterile neutrino rest mass m s =18-19 keV can satisfactorily account for the cooling flow problem and heating source in Milky Way center simultaneously. Also, these ranges of decay rate and rest mass match the prediction of the mixing angle sin 22 θ˜10-3 with a low reheating temperature in the inflation model, which enables the sterile-active neutrino oscillation to be visible in future experiments. However, decaying sterile neutrinos have to be ruled out as a major component of dark matter because of the high decay rate.

  12. Radiative neutrino mass, dark matter, and leptogenesis

    SciTech Connect

    Gu Peihong; Sarkar, Utpal

    2008-05-15

    We propose an extension of the standard model, in which neutrinos are Dirac particles and their tiny masses originate from a one-loop radiative diagram. The new fields required by the neutrino mass generation also accommodate the explanation for the matter-antimatter asymmetry and dark matter in the Universe.

  13. Precision Measurements of Long-Baseline Neutrino Oscillation at LBNF

    DOE PAGESBeta

    Worcester, Elizabeth

    2015-08-06

    In a long-baseline neutrino oscillation experiment, the primary physics objectives are to determine the neutrino mass hierarchy, to determine the octant of the neutrino mixing angle θ23, to search for CP violation in neutrino oscillation, and to precisely measure the size of any CP-violating effect that is discovered. This presentation provides a brief introduction to these measurements and reports on efforts to optimize the design of a long-baseline neutrino oscillation experiment, the status of LBNE, and the transition to an international collaboration at LBNF.

  14. Precision Measurements of Long-Baseline Neutrino Oscillation at LBNF

    SciTech Connect

    Worcester, Elizabeth

    2015-08-06

    In a long-baseline neutrino oscillation experiment, the primary physics objectives are to determine the neutrino mass hierarchy, to determine the octant of the neutrino mixing angle θ23, to search for CP violation in neutrino oscillation, and to precisely measure the size of any CP-violating effect that is discovered. This presentation provides a brief introduction to these measurements and reports on efforts to optimize the design of a long-baseline neutrino oscillation experiment, the status of LBNE, and the transition to an international collaboration at LBNF.

  15. Diffuse supernova neutrinos: oscillation effects, stellar cooling and progenitor mass dependence

    SciTech Connect

    Lunardini, Cecilia; Tamborra, Irene E-mail: tamborra@mpp.mpg.de

    2012-07-01

    We estimate the diffuse supernova neutrino background (DSNB) using the recent progenitor-dependent, long-term supernova simulations from the Basel group and including neutrino oscillations at several post-bounce times. Assuming multi-angle matter suppression of collective effects during the accretion phase, we find that oscillation effects are dominated by the matter-driven MSW resonances, while neutrino-neutrino collective effects contribute at the 5–10% level. The impact of the neutrino mass hierarchy, of the time-dependent neutrino spectra and of the diverse progenitor star population is 10% or less, small compared to the uncertainty of at least 25% of the normalization of the supernova rate. Therefore, assuming that the sign of the neutrino mass hierarchy will be determined within the next decade, the future detection of the DSNB will deliver approximate information on the MSW-oscillated neutrino spectra. With a reliable model for neutrino emission, its detection will be a powerful instrument to provide complementary information on the star formation rate and for learning about stellar physics.

  16. Testing nonstandard neutrino matter interactions in atmospheric neutrino propagation

    NASA Astrophysics Data System (ADS)

    Chatterjee, Animesh; Mehta, Poonam; Choudhury, Debajyoti; Gandhi, Raj

    2016-05-01

    We study the effects of nonstandard interactions on the oscillation pattern of atmospheric neutrinos. We use neutrino oscillograms as our main tool to infer the role of nonstandard interactions (NSI) parameters at the probability level in the energy range, E ∈[1 ,20 ] GeV and zenith angle range, cos θ ∈[-1 ,0 ] . We compute the event rates for atmospheric neutrino events in presence of NSI parameters in the energy range E ∈[1 ,10 ] GeV for two different detector configurations—a magnetized iron calorimeter and an unmagnetized liquid argon time projection chamber which have different sensitivities to NSI parameters due to their complementary characteristics.

  17. Probing the Dark Matter mass and nature with neutrinos

    SciTech Connect

    Blennow, Mattias; Carrigan, Marcus; Martinez, Enrique Fernandez E-mail: carri@kth.se

    2013-06-01

    We study the possible indirect neutrino signal from dark matter annihilations inside the Sun's core for relatively light dark matter masses in the O(10) GeV range. Due to their excellent energy reconstruction capabilities, we focus on the detection of this flux in liquid argon or magnetized iron calorimeter detectors, proposed for the next generation of far detectors of neutrino oscillation experiments and neutrino telescopes. The aim of the study is to probe the ability of these detectors to determine fundamental properties of the dark matter nature such as its mass or its relative annihilation branching fractions to different channels. We find that these detectors will be able to accurately measure the dark matter mass as long as the dark matter annihilations have a significant branching into the neutrino or at least the τ channel. We have also discovered degeneracies between different dark matter masses and annihilation channels, where a hard τ channel spectrum for a lower dark matter mass may mimic that of a softer quark channel spectrum for a larger dark matter mass. Finally, we discuss the sensitivity of the detectors to the different branching ratios and find that it is between one and two orders of magnitude better than the current bounds from those coming from analysis of Super-Kamiokande data.

  18. Neutrino oscillations and the Landau-Zener formula

    SciTech Connect

    Kim, C.W.; Sze, W.K.; Nussinov, S.

    1987-06-15

    We discuss solar-neutrino oscillations and the Landau-Zener probability using a heuristic picture in analogy with an electron spin in a time-dependent magnetic field. The extreme nonadiabatic resonant oscillation is also briefly investigated.

  19. New Ambiguity in Probing CP Violation in Neutrino Oscillations.

    PubMed

    Miranda, O G; Tórtola, M; Valle, J W F

    2016-08-01

    If neutrinos get mass via the seesaw mechanism the mixing matrix describing neutrino oscillations can be effectively nonunitary. We show that in this case the neutrino appearance probabilities involve a new CP phase ϕ associated with nonunitarity. This leads to an ambiguity in extracting the "standard" three-neutrino phase δ_{CP}, which can survive even after neutrino and antineutrino channels are combined. Its existence should be taken into account in the planning of any oscillation experiment aiming at a robust measurement of δ_{CP}. PMID:27541461

  20. New Ambiguity in Probing C P Violation in Neutrino Oscillations

    NASA Astrophysics Data System (ADS)

    Miranda, O. G.; Tórtola, M.; Valle, J. W. F.

    2016-08-01

    If neutrinos get mass via the seesaw mechanism the mixing matrix describing neutrino oscillations can be effectively nonunitary. We show that in this case the neutrino appearance probabilities involve a new C P phase ϕ associated with nonunitarity. This leads to an ambiguity in extracting the "standard" three-neutrino phase δC P, which can survive even after neutrino and antineutrino channels are combined. Its existence should be taken into account in the planning of any oscillation experiment aiming at a robust measurement of δC P.

  1. Future long-baseline neutrino oscillations: View from Asia

    SciTech Connect

    Hayato, Yoshinari

    2015-07-15

    Accelerator based long-baseline neutrino oscillation experiments have been playing important roles in revealing the nature of neutrinos. However, it turned out that the current experiments are not sufficient to study two major remaining problems, the CP violation in the lepton sector and the mass hierarchy of neutrinos. Therefore, several new experiments have been proposed. Among of them, two accelerator based long-baseline neutrino oscillation experiments, the J-PARC neutrino beam and Hyper-Kamiokande, and MOMENT, have been proposed in Asia. These two projects are reviewed in this article.

  2. N-mode coherence in collective neutrino oscillations

    SciTech Connect

    Raffelt, Georg G.

    2011-05-15

    We study two-flavor neutrino oscillations in a homogeneous and isotropic ensemble under the influence of neutrino-neutrino interactions. For any density there exist forms of collective oscillations that show self-maintained coherence. They can be classified by a number N of linearly independent functions that describe all neutrino modes as linear superpositions. What is more, the dynamics is equivalent to another ensemble with the same effective density, consisting of N modes with discrete energies E{sub i} with i=1,...,N. We use this equivalence to derive the analytic solution for two-mode (bimodal) coherence, relevant for spectral-split formation in supernova neutrinos.

  3. Neutrino oscillations: Quantum mechanics vs. quantum field theory

    SciTech Connect

    Akhmedov, Evgeny Kh.; Kopp, Joachim

    2010-01-01

    A consistent description of neutrino oscillations requires either the quantum-mechanical (QM) wave packet approach or a quantum field theoretic (QFT) treatment. We compare these two approaches to neutrino oscillations and discuss the correspondence between them. In particular, we derive expressions for the QM neutrino wave packets from QFT and relate the free parameters of the QM framework, in particular the effective momentum uncertainty of the neutrino state, to the more fundamental parameters of the QFT approach. We include in our discussion the possibilities that some of the neutrino's interaction partners are not detected, that the neutrino is produced in the decay of an unstable parent particle, and that the overlap of the wave packets of the particles involved in the neutrino production (or detection) process is not maximal. Finally, we demonstrate how the properly normalized oscillation probabilities can be obtained in the QFT framework without an ad hoc normalization procedure employed in the QM approach.

  4. Analytical description of quasivacuum oscillations of solar neutrinos

    NASA Astrophysics Data System (ADS)

    Lisi, E.; Marrone, A.; Montanino, D.; Palazzo, A.; Petcov, S. T.

    2001-05-01

    We propose a simple prescription to calculate the solar neutrino survival probability Pee in the quasivacuum oscillation (QVO) regime. Such a prescription is obtained by matching perturbative and exact analytical results, which effectively take into account the density distribution in the Sun as provided by the standard solar model. The resulting analytical recipe for the calculation of Pee is shown to reach its highest accuracy (\\|ΔPee\\|<=2.6×10-2 in the whole QVO range) when the familiar prescription of choosing the solar density scale parameter r0 at the Mikheyev-Smirnov-Wolfenstein (MSW) resonance point is replaced by a new one, namely, when r0 is chosen at the point of ``maximal violation of adiabaticity'' (MVA) along the neutrino trajectory in the Sun. The MVA prescription admits a smooth transition from the QVO regime to the MSW transition one. We discuss in detail the phase acquired by neutrinos in the Sun, and show that it might be of relevance for the studies of relatively short time scale variations of the fluxes of the solar ν lines in the future real-time solar neutrino experiments. Finally, we elucidate the role of matter effects in the convective zone of the Sun.

  5. On a theory of neutrino oscillations with entanglement

    SciTech Connect

    Kayser, Boris; Kopp, Joachim; Roberston, R.G.Hamish; Vogel, Petr; /Caltech, Kellogg Lab

    2010-06-01

    We show that the standard expression for the neutrino oscillation length can be confirmed even in theoretical approaches that take into account entanglement between the neutrino and its interaction partners. We show this in particular for the formalism developed in arXiv:1004.1847. Finally, we shed some light on the question why plane-wave approaches to the neutrino oscillation problem can yield the correct result for the oscillation length even though they do not explicitly account for the localization of the neutrino source and the detector.

  6. Approach to the propagation of massive neutrinos in dense matter by Wigner functions

    NASA Astrophysics Data System (ADS)

    Sirera Tomas, Miguel

    The problem of massive neutrinos comes from Grant Unification Theories but also from the so called Neutrino Solar Puzzle. The solution of this puzzle seems to be in the neutrinos physics and to need that the neutrinos are particles with mass. The possible mass of the neutrinos is not only important for Solar Neutrinos but also in other astrophysical environments such as Supernovae, Neutron Stars or The Early Universe. If the neutrinos are particles with mass, or at least one of their generations, oscillations are produced in both vacuum and matter. The oscillation in matter could cause the so called MSW effect, that transforms a neutrino flavour to another. The problem of the propagation of neutrinos in matter has been dealt with by many authors who have usually solved the covariant motion equations, and sometimes by Green Functions. In this work, this has been done using statistical techniques by Wigner Functions, which do not only allow us to study the propagation ways but also to know the behavior of the neutrinos field in equilibrium. On the other hand, the astrophysical systems, that we have commented above, yield a great amount of neutrinos which spread through them and are finally emitted to space, and so it is important to have a transport equation that explain how a neutrinos distribution is spread which is not in equilibrium. It is possible to achieve this equation by motion equations of the Wigner Functions.

  7. Effects of neutrino oscillations on nucleosynthesis and neutrino signals for an 18 M⊙ supernova model

    NASA Astrophysics Data System (ADS)

    Wu, Meng-Ru; Qian, Yong-Zhong; Martínez-Pinedo, Gabriel; Fischer, Tobias; Huther, Lutz

    2015-03-01

    In this paper, we explore the effects of neutrino flavor oscillations on supernova nucleosynthesis and on the neutrino signals. Our study is based on detailed information about the neutrino spectra and their time evolution from a spherically symmetric supernova model for an 18 M⊙ progenitor. We find that collective neutrino oscillations are not only sensitive to the detailed neutrino energy and angular distributions at emission, but also to the time evolution of both the neutrino spectra and the electron density profile. We apply the results of neutrino oscillations to study the impact on supernova nucleosynthesis and on the neutrino signals from a Galactic supernova. We show that in our supernova model, collective neutrino oscillations enhance the production of rare isotopes 138La and 180Ta but have little impact on the ν p -process nucleosynthesis. In addition, the adiabatic Mikheyev-Smirnov-Wolfenstein flavor transformation, which occurs in the C /O and He shells of the supernova, may affect the production of light nuclei such as 7Li and 11B. For the neutrino signals, we calculate the rate of neutrino events in the Super-Kamiokande detector and in a hypothetical liquid argon detector. Our results suggest the possibility of using the time profiles of the events in both detectors, along with the spectral information of the detected neutrinos, to infer the neutrino mass hierarchy.

  8. Detecting CP violation in a single neutrino oscillation channel at very long baselines

    SciTech Connect

    Latimer, D. C.; Escamilla, J.; Ernst, D. J.

    2007-11-15

    We propose a way of detecting CP violation in a single neutrino oscillation channel at very long baselines (on the order of several thousands of kilometers), given precise knowledge of the smallest mass-squared difference. It is shown that CP violation can be characterized by a shift in L/E of the peak oscillation in the {nu}{sub e}-{nu}{sub {mu}} appearance channel, both in vacuum and in matter. In fact, matter effects enhance the shift at a fixed energy. We consider the case in which sub-GeV neutrinos are measured with varying baseline and also the case of a fixed baseline. For the varied baseline, accurate knowledge of the absolute neutrino flux would not be necessary; however, neutrinos must be distinguishable from antineutrinos. For the fixed baseline, it is shown that CP violation can be distinguished if the mixing angle {theta}{sub 13} were known.

  9. Global analyses of neutrino oscillation experiments

    NASA Astrophysics Data System (ADS)

    Gonzalez-Garcia, M. C.; Maltoni, Michele; Schwetz, Thomas

    2016-07-01

    We summarize the determination of some neutrino properties from the global analysis of solar, atmospheric, reactor, and accelerator neutrino data in the framework of three-neutrino mixing as well as in some extended scenarios such as the mixing with eV-scale sterile neutrinos invoked for the interpretation of the short baseline anomalies, and the presence of non-standard neutrino interactions.

  10. Neutrino signals from dark matter decay

    SciTech Connect

    Covi, Laura; Grefe, Michael; Ibarra, Alejandro; Tran, David E-mail: michael.grefe@desy.de E-mail: david.tran@ph.tum.de

    2010-04-01

    We investigate different neutrino signals from the decay of dark matter particles to determine the prospects for their detection, and more specifically if any spectral signature can be disentangled from the background in present and future neutrino observatories. If detected, such a signal could bring an independent confirmation of the dark matter interpretation of the dramatic rise in the positron fraction above 10 GeV recently observed by the PAMELA satellite experiment and offer the possibility of distinguishing between astrophysical sources and dark matter decay or annihilation. In combination with other signals, it may also be possible to distinguish among different dark matter decay channels.

  11. Optical simulation of neutrino oscillations in binary waveguide arrays.

    PubMed

    Marini, Andrea; Longhi, Stefano; Biancalana, Fabio

    2014-10-10

    We theoretically propose and investigate an optical analogue of neutrino oscillations in a pair of vertically displaced binary waveguide arrays with longitudinally modulated effective refractive index. Optical propagation is modeled through coupled-mode equations, which in the continuous limit converge to two coupled Dirac equations for fermionic particles with different mass states, analogously to neutrinos. In addition to simulating neutrino oscillation in the noninteracting regime, our optical setting enables us to explore neutrino interactions in extreme regimes that are expected to play an important role in massive supernova stars. In particular, we predict the quenching of neutrino oscillations and the existence of topological defects, i.e., neutrino solitons, which in our photonic simulator should be observable as excitation of optical gap solitons propagating along the binary arrays at high excitation intensities. PMID:25375692

  12. Active-sterile neutrino oscillations in the early universe with dynamical neutrino asymmetries

    NASA Astrophysics Data System (ADS)

    Saviano, Ninetta

    2013-04-01

    In the last recent years different anomalies observed in short-baseline neutrino oscillation experiments seem to point towards the existence of light sterile neutrinos. These sterile neutrinos can also be produced in the early universe by oscillations of the active neutrinos and can affect different cosmological observables. In order to quantify the abundance of sterile neutrinos, we perform a detailed study of the flavor evolution in (3+1) and (2+1) oscillation schemes, in presence of dynamical primordial neutrino asymmetries L. We find that for |L|≲10-4 eV sterile neutrinos would be completely thermalized creating a tension with the cosmological data. An asymmetry of |L|≳10-3 is then required in order to suppress the sterile production and to reconcile them with cosmology.

  13. Three flavor oscillation analysis of atmospheric neutrinos in Super-Kamiokande

    NASA Astrophysics Data System (ADS)

    Wendell, Roger Alexandre

    In this dissertation atmospheric neutrino data from the 50 kiloton water-Cherenkov detector, Super-Kamiokande, are studied in the context of neutrino oscillations. Data presented here are taken from the 1489-day SK-I and 803-day SK-II exposures. Super-Kamiokande's atmospheric neutrino sample exhibits a zenith angle dependent deficit of numu interactions which is well explained by maximal two-flavor numu↔nutau oscillations. This analysis extends the two-flavor framework to include all active neutrino flavors and searches for sub-dominant oscillation effects in the oscillations of atmospheric neutrinos. If the last unknown mixing angle, theta 13, is non-zero there is enhancement (suppression) of the nu mu→nue three-flavor oscillation probability in matter for several GeV neutrinos with long baselines under the normal (inverted) mass hierarchy. At Super-Kamiokande this effect would manifest itself as an increase in the high energy nue event rate coming from below the detector. Searching the SK-I, SK-II and their combined data finds no evidence of a rate excess and yields a best fit to theta 13 of zero assuming either hierarchy. This extended analysis remains consistent with the current knowledge of two-flavor atmospheric mixing finding best fit values sin2theta23 = 0.5 and Delta m2 = 2.6 x 10-3 eV2. No preference for either the normal or inverted mass hierarchy is found in the data.

  14. Future long-baseline neutrino oscillations: View from Europe

    NASA Astrophysics Data System (ADS)

    Patzak, T.

    2015-07-01

    Since about a decade the european physics community interested in neutrino and neutrino-astrophysics develops a plan to conceive the next generation large underground neutrino observatory. Recently, the LAGUNA-LBNO collaboration made the outcome of the FP7 design study public which shows a clear path for the realization of such experiment. In this paper the LAGUNA and LAGUNA-LBNO Design studies, resulting in a proposal for the LBNO experiment, will be discussed. The author will focus on the long baseline neutrino oscillation search, especially on the potential to discover the neutrino mass ordering and the search for CP violation in the lepton sector.

  15. Future long-baseline neutrino oscillations: View from Europe

    SciTech Connect

    Patzak, T.

    2015-07-15

    Since about a decade the european physics community interested in neutrino and neutrino-astrophysics develops a plan to conceive the next generation large underground neutrino observatory. Recently, the LAGUNA-LBNO collaboration made the outcome of the FP7 design study public which shows a clear path for the realization of such experiment. In this paper the LAGUNA and LAGUNA-LBNO Design studies, resulting in a proposal for the LBNO experiment, will be discussed. The author will focus on the long baseline neutrino oscillation search, especially on the potential to discover the neutrino mass ordering and the search for CP violation in the lepton sector.

  16. Solar oscillation frequency and solar neutrino predictions

    SciTech Connect

    Cox, A.N.

    1990-07-05

    The light and velocity variations of the Sun and solar-like stars are unique among intrinsic variable stars. Unlike all other standard classes, such as Cepheids, B stars, and white dwarfs, the pulsation driving is caused by coupling with the acoustic noise in the upper convection zone. Each global pulsation mode is just another degree of freedom for the turbulent convection, and energy is shared equally between these g{sup {minus}}-modes and the solar oscillation modes. This driving and damping, together with the normal stellar pulsation mechanisms produce extremely low amplitude solar oscillations. Actually, the surface layer radiative damping is strong, and the varying oscillation mode amplitudes manifest the stochastic convection driving and the steady damping. Thus stability calculations for solar-like pulsations are difficult and mostly inconclusive, but calculations of pulsation periods are as straightforward as for all the other classes of intrinsic variable stars. The issue that is important for the Sun is its internal structure, because the mass, radius, and luminosity are extremely well known. Conventionally, we need the pulsation constants for each of millions of modes. Unknown parameters for constructing solar models are the composition and its material pressure, energy, and opacity, as well as the convection mixing length. We treat the nuclear energy and neutrino production formulas as sufficiently well known. The presence of weakly interacting massive particles (WIMPs) orbiting the solar center affects the predicted oscillation frequencies so that they do not agree with observations as well as those for models without WIMPs. 34 refs., 4 figs.

  17. Constraints on neutrino-dark matter interactions from cosmic microwave background and large scale structure data

    SciTech Connect

    Serra, Paolo; Cooray, Asantha; Zalamea, Federico; Mangano, Gianpiero; Melchiorri, Alessandro

    2010-02-15

    We update a previous investigation of cosmological effects of a nonstandard interaction between neutrinos and dark matter. Parametrizing the elastic-scattering cross section between the two species as a function of the temperature of the Universe, the resulting neutrino-dark matter fluid has a nonzero pressure, which determines diffusion-damped oscillations in the matter power spectrum similar to the acoustic oscillations generated by the photon-baryon fluid. Using cosmic microwave background data in combination with large scale structure experiment results, we then put constraints on the fraction of the interacting dark matter component as well as on the corresponding opacity.

  18. Neutrinos from Inert Doublet dark matter

    SciTech Connect

    Andreas, Sarah; Tytgat, Michel H.G.; Swillens, Quentin E-mail: mtytgat@ulb.ac.be

    2009-04-15

    We investigate the signatures of neutrinos produced in the annihilation of WIMP dark matter in the Earth, the Sun and at the Galactic centre within the framework of the Inert Doublet Model and extensions. We consider a dark matter candidate, that we take to be one of the neutral components of an extra Higgs doublet, in three distinct mass ranges, which have all been shown previously to be consistent with both WMAP abundance and direct detection experiments exclusion limits. Specifically, we consider a light WIMP with mass between 4 and 8 GeV (low), a WIMP with mass around 60-70 GeV (middle) and a heavy WIMP with mass above 500 GeV (high). In the first case, we show that capture in the Sun may be constrained using Super-Kamiokande data. In the last two cases, we argue that indirect detection through neutrinos is challenging but not altogether excluded. For middle masses, we try to make the most benefit of the proximity of the so-called 'iron resonance' that might enhance the capture of the dark matter candidate by the Earth. The signal from the Earth is further enhanced if light right-handed Majorana neutrinos are introduced, in which case the scalar dark matter candidate may annihilate into pairs of mono-energetic neutrinos. In the case of high masses, detection of neutrinos from the Galactic centre might be possible, provided the dark matter abundance is substantially boosted.

  19. Future Long-Baseline Neutrino Oscillations: View from North America

    SciTech Connect

    Wilson, R. J.

    2015-06-01

    In late 2012 the US Department of Energy gave approval for the first phase of the Long-Baseline Neutrino Experiment (LBNE), that will conduct a broad scientific program including neutrino oscillations, neutrino scattering physics, search for baryon violation, supernova burst neutrinos and other related astrophysical phenomena. The project is now being reformulated as an international facility hosted by the United States. The facility will consist of an intense neutrino beam produced at Fermi National Accelerator Laboratory (Fermilab), a highly capable set of neutrino detectors on the Fermilab campus, and a large underground liquid argon time projection chamber at Sanford Underground Research Facility (SURF) in South Dakota 1300 km from Fermilab. With an intense beam and massive far detector, the experimental program at the facility will make detailed studies of neutrino oscillations, including measurements of the neutrino mass hierarchy and Charge-Parity symmetry violation, by measuring neutrino and anti-neutrino mixing separately. At the near site, the high-statistics neutrino scattering data will allow for many cross section measurements and precision tests of the Standard Model. This presentation will describe the configuration developed by the LBNE collaboration, the broad physics program, and the status of the formation of the international facility.

  20. Future long-baseline neutrino oscillations: View from North America

    SciTech Connect

    Wilson, Robert J.

    2015-07-15

    In late 2012 the US Department of Energy gave approval for the first phase of the Long-Baseline Neutrino Experiment (LBNE) that will conduct a broad scientific program including neutrino oscillations, neutrino scattering physics, search for baryon violation, supernova burst neutrinos and other related astrophysical phenomena. The project is now being reformulated as an international facility hosted by the United States. The facility will consist of an intense neutrino beam produced at Fermi National Accelerator Laboratory (Fermilab), a highly capable set of neutrino detectors on the Fermilab campus, and a large underground liquid argon time projection chamber at Sanford Underground Research Facility (SURF) in South Dakota 1300 km from Fermilab. With an intense beam and massive far detector, the experimental program at the facility will make detailed studies of neutrino oscillations, including measurements of the neutrino mass hierarchy and Charge-Parity symmetry violation, by measuring neutrino and anti-neutrino mixing separately. At the near site, the high-statistics neutrino scattering data will allow for many cross section measurements and precision tests of the Standard Model. This presentation will describe the configuration developed by the LBNE collaboration, the broad physics program, and the status of the formation of the international facility.

  1. Future long-baseline neutrino oscillations: View from North America

    NASA Astrophysics Data System (ADS)

    Wilson, Robert J.

    2015-07-01

    In late 2012 the US Department of Energy gave approval for the first phase of the Long-Baseline Neutrino Experiment (LBNE) that will conduct a broad scientific program including neutrino oscillations, neutrino scattering physics, search for baryon violation, supernova burst neutrinos and other related astrophysical phenomena. The project is now being reformulated as an international facility hosted by the United States. The facility will consist of an intense neutrino beam produced at Fermi National Accelerator Laboratory (Fermilab), a highly capable set of neutrino detectors on the Fermilab campus, and a large underground liquid argon time projection chamber at Sanford Underground Research Facility (SURF) in South Dakota 1300 km from Fermilab. With an intense beam and massive far detector, the experimental program at the facility will make detailed studies of neutrino oscillations, including measurements of the neutrino mass hierarchy and Charge-Parity symmetry violation, by measuring neutrino and anti-neutrino mixing separately. At the near site, the high-statistics neutrino scattering data will allow for many cross section measurements and precision tests of the Standard Model. This presentation will describe the configuration developed by the LBNE collaboration, the broad physics program, and the status of the formation of the international facility.

  2. Neutrino oscillation studies with IceCube-DeepCore

    NASA Astrophysics Data System (ADS)

    Aartsen, M. G.; Abraham, K.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Anderson, T.; Ansseau, I.; Archinger, M.; Arguelles, C.; Arlen, T. C.; Auffenberg, J.; Bai, X.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Becker Tjus, J.; Becker, K.-H.; Beiser, E.; Berghaus, P.; Berley, D.; Bernardini, E.; Bernhard, A.; Besson, D. Z.; Binder, G.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Börner, M.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Braun, J.; Brayeur, L.; Bretz, H.-P.; Buzinsky, N.; Casey, J.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Clark, K.; Classen, L.; Coenders, S.; Collin, G. H.; Conrad, J. M.; Cowen, D. F.; Cruz Silva, A. H.; Daughhetee, J.; Davis, J. C.; Day, M.; de André, J. P. A. M.; De Clercq, C.; del Pino Rosendo, E.; Dembinski, H.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; di Lorenzo, V.; Dumm, J. P.; Dunkman, M.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Euler, S.; Evenson, P. A.; Fahey, S.; Fazely, A. R.; Feintzeig, J.; Felde, J.; Filimonov, K.; Finley, C.; Flis, S.; Fösig, C.-C.; Fuchs, T.; Gaisser, T. K.; Gaior, R.; Gallagher, J.; Gerhardt, L.; Ghorbani, K.; Gier, D.; Gladstone, L.; Glagla, M.; Glüsenkamp, T.; Goldschmidt, A.; Golup, G.; Gonzalez, J. G.; Góra, D.; Grant, D.; Griffith, Z.; Groß, A.; Ha, C.; Haack, C.; Haj Ismail, A.; Hallgren, A.; Halzen, F.; Hansen, E.; Hansmann, B.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Holzapfel, K.; Homeier, A.; Hoshina, K.; Huang, F.; Huber, M.; Huelsnitz, W.; Hulth, P. O.; Hultqvist, K.; In, S.; Ishihara, A.; Jacobi, E.; Japaridze, G. S.; Jeong, M.; Jero, K.; Jones, B. J. P.; Jurkovic, M.; Kappes, A.; Karg, T.; Karle, A.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kemp, J.; Kheirandish, A.; Kiryluk, J.; Klein, S. R.; Kohnen, G.; Koirala, R.; Kolanoski, H.; Konietz, R.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, G.; Kroll, M.; Krückl, G.; Kunnen, J.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lesiak-Bzdak, M.; Leuermann, M.; Leuner, J.; Lu, L.; Lünemann, J.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Mandelartz, M.; Maruyama, R.; Mase, K.; Matis, H. S.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meli, A.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Middell, E.; Mohrmann, L.; Montaruli, T.; Morse, R.; Nahnhauer, R.; Naumann, U.; Neer, G.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke Pollmann, A.; Olivas, A.; Omairat, A.; O'Murchadha, A.; Palczewski, T.; Pandya, H.; Pankova, D. V.; Paul, L.; Pepper, J. A.; Pérez de los Heros, C.; Pfendner, C.; Pieloth, D.; Pinat, E.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Quinnan, M.; Raab, C.; Rädel, L.; Rameez, M.; Rawlins, K.; Reimann, R.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Richter, S.; Riedel, B.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Sabbatini, L.; Sander, H.-G.; Sandrock, A.; Sandroos, J.; Sarkar, S.; Schatto, K.; Schimp, M.; Schmidt, T.; Schoenen, S.; Schöneberg, S.; Schönwald, A.; Schulte, L.; Schumacher, L.; Seckel, D.; Seunarine, S.; Soldin, D.; Song, M.; Spiczak, G. M.; Spiering, C.; Stahlberg, M.; Stamatikos, M.; Stanev, T.; Stasik, A.; Steuer, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Ström, R.; Strotjohann, N. L.; Sullivan, G. W.; Sutherland, M.; Taavola, H.; Taboada, I.; Tatar, J.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Toscano, S.; Tosi, D.; Tselengidou, M.; Turcati, A.; Unger, E.; Usner, M.; Vallecorsa, S.; Vandenbroucke, J.; van Eijndhoven, N.; Vanheule, S.; van Santen, J.; Veenkamp, J.; Vehring, M.; Voge, M.; Vraeghe, M.; Walck, C.; Wallace, A.; Wallraff, M.; Wandkowsky, N.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whelan, B. J.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wills, L.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zoll, M.

    2016-07-01

    IceCube, a gigaton-scale neutrino detector located at the South Pole, was primarily designed to search for astrophysical neutrinos with energies of PeV and higher. This goal has been achieved with the detection of the highest energy neutrinos to date. At the other end of the energy spectrum, the DeepCore extension lowers the energy threshold of the detector to approximately 10 GeV and opens the door for oscillation studies using atmospheric neutrinos. An analysis of the disappearance of these neutrinos has been completed, with the results produced being complementary with dedicated oscillation experiments. Following a review of the detector principle and performance, the method used to make these calculations, as well as the results, is detailed. Finally, the future prospects of IceCube-DeepCore and the next generation of neutrino experiments at the South Pole (IceCube-Gen2, specifically the PINGU sub-detector) are briefly discussed.

  3. Neutrino signature of Inert Doublet Dark Matter

    NASA Astrophysics Data System (ADS)

    Andreas, Sarah

    2010-06-01

    In the framework of the Inert Doublet Model and extensions, the signature of neutrinos from dark matter annihilation in the Earth, the Sun and at the Galactic centre is presented. The model contains an extra Higgs doublet, a neutral component of which is chosen as dark matter candidate. There are three distinct mass ranges for which consistency both with WMAP abundance and direct searches can be obtained: a low (4-8 GeV), a middle (60-70 GeV) and a high (500-1500 GeV) WIMP mass range. The first case is of interest as we showed that the model can at the same time give the correct WMAP abundance and account for the positive DAMA results without contradicting other direct searches. We present how capture in the Sun can further constrain this scenario using Super-Kamiokande data. Indirect detection through neutrinos is challenging for the middle and high mass ranges. For the former, the presence of the so-called `iron resonance' gives rise to larger neutrino fluxes for WIMP masses around 60-70 GeV since capture by the Earth is enhanced. The addition of light right-handed Majo-rana neutrinos to the particle content of the model further increases the signal since it opens a direct annihilation channel into mono-energetic neutrinos. Neutrinos from the Galactic centre might be detected for heavy WIMPs if the dark matter density at the Galactic centre is substantially boosted.

  4. The Effects of Collective Neutrino Oscillations on Supernova Nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Seadrow, Shaquann; Frohlich, C.; Duan, H.; Friedland, A.; McLaughlin, G.; Keohane, J. W.

    2014-01-01

    A core-collapse supernova originates from the implosion of the electron degenerate core inside a massive star. Runaway electron capture produces on the order of 1057 neutrinos containing about 1053 erg of energy in total. While the vast majority of neutrinos are eventually released, during the first few seconds these neutrinos drive both the dynamics, and likewise the nucleosynthesis, inside the supernova. Recently, our understanding of oscillations among the different flavors of neutrinos (electron, muon, and tau) has significantly improved, allowing us to ask if neutrino flavor change has a significant effect on nucleosynthesis in a core-collapse supernova. To investigate the effects of collective neutrino flavor oscillations, we use the hydrodynamic conditions from a spherically-symmetrical model of the implosion, bounce, and explosion of the 1.4 solar mass core that is inside an 8.8 solar mass star (Huedepohl et al. 2009). We select 20 mass tracers in the ejecta, varying in initial radii, and follow these trajectories for the first 9 seconds following bounce. We include these trajectories into a nuclear reaction network in order to calculate the detailed nucleosynthesis. We use three sets of neutrino reaction rates, all of which are calculated consistently with the conditions in the supernova model: (i) no collective flavor oscillations, (ii) collective oscillations for normal neutrino mass hierarchy, and (iii) collective oscillations for inverted neutrino mass hierarchy. We calculate the detailed nucleosynthesis for each trajectory for all three sets of neutrino rates. We find that the inclusion of collective oscillations (ii or iii) significantly increases the free neutron abundance; however, we obtain similar results regardless of which hierarchy is used. The increase in free neutrons also increases the subsequent rate of neutron capture, but has only a small effect on the predicted final abundances. This work was performed as part of North Carolina State

  5. NEUTRINO PROCESSES IN PARTIALLY DEGENERATE NEUTRON MATTER

    SciTech Connect

    Bacca, S.; Hally, K.; Liebendoerfer, M.; Perego, A.; Pethick, C. J.; Schwenk, A.

    2012-10-10

    We investigate neutrino processes for conditions reached in simulations of core-collapse supernovae. In regions where neutrino-matter interactions play an important role, matter is partially degenerate, and we extend earlier work that addressed the degenerate regime. We derive expressions for the spin structure factor in neutron matter, which is a key quantity required for evaluating rates of neutrino processes. We show that, for essentially all conditions encountered in the post-bounce phase of core-collapse supernovae, it is a very good approximation to calculate the spin relaxation rates in the nondegenerate limit. We calculate spin relaxation rates based on chiral effective field theory interactions and find that they are typically a factor of two smaller than those obtained using the standard one-pion-exchange interaction alone.

  6. Particle production with left-right neutrino oscillations

    NASA Astrophysics Data System (ADS)

    Enomoto, Seishi; Matsuda, Tomohiro

    2016-03-01

    When the Higgs field starts oscillation after Higgs inflation, gauge bosons are produced nonperturbatively near the enhanced symmetry point (ESP). Just after the particle production, when the Higgs field is going away from the ESP, these gauge bosons gain mass and decay or annihilate into Standard Model (SM) fermions. Left-handed neutrinos can be generated in that way. If one assumes the seesaw mechanism, the mass matrix of a pair of left- and right-handed neutrinos is nondiagonal. Although their mixing in the mass eigenstates is negligible in the true vacuum, it could be significant near the edge of the Higgs oscillation, where the off-diagonal component is large. Therefore, the left-handed neutrinos generated from the gauge bosons can start neutrino oscillation between the right-handed neutrinos. We study the particle production when such left-right (L-R) neutrino oscillation is significant. For a working example, the nonthermal leptogenesis scenario after Higgs inflation is examined, which cannot be realized without the L-R neutrino oscillation. The same mechanism could be applied to other singlet particles whose abundance has been neglected.

  7. Pseudoscalar—sterile neutrino interactions: reconciling the cosmos with neutrino oscillations

    NASA Astrophysics Data System (ADS)

    Archidiacono, Maria; Gariazzo, Stefano; Giunti, Carlo; Hannestad, Steen; Hansen, Rasmus; Laveder, Marco; Tram, Thomas

    2016-08-01

    The Short BaseLine (SBL) neutrino oscillation anomalies hint at the presence of a sterile neutrino with a mass of around 1 eV. However, such a neutrino is incompatible with cosmological data, in particular observations of the Cosmic Microwave Background (CMB) anisotropies. However, this conclusion can change by invoking new physics. One possibility is to introduce a secret interaction in the sterile neutrino sector mediated by a light pseudoscalar. In this pseudoscalar model, CMB data prefer a sterile neutrino mass that is fully compatible with the mass ranges suggested by SBL anomalies. In addition, this model predicts a value of the Hubble parameter which is completely consistent with local measurements.

  8. New results for muon neutrino to electron neutrino oscillations in the MINOS experiment

    SciTech Connect

    Evans, Justin; Whitehead, Lisa; /Brookhaven

    2010-01-01

    MINOS is a long-baseline neutrino oscillation experiment situated along Fermilab's high-intensity NuMI neutrino beam. MINOS has completed an updated search for muon neutrino to electron neutrino transitions, observation of which would indicate a non-zero value for the neutrino mixing angle {theta}{sub 13}. The present 7 x 10{sup 20} protons-on-target data set represents more than double the exposure used in the previous analysis. The new result and its implications are presented.

  9. Radiative neutrino mass generation from WIMP dark matter

    NASA Astrophysics Data System (ADS)

    Lineros, Roberto A.

    2016-05-01

    The minimal seesaw extension of the Standard Model requires two electroweak singlet fermions in order to accommodate the neutrino oscillation parameters at tree level. Here we consider a next to minimal extension where light neutrino masses are generated radiatively by two electroweak fermions: one singlet and one triplet under SU(2). These should be odd under a parity symmetry and their mixing gives rise to a stable weakly interactive massive particle dark matter candidate. For mass in the GeV-TeV range, it reproduces the correct relic density, and provides an observable signal in nuclear recoil direct detection experiments. The fermion triplet component of the dark matter has gauge interactions, making it also detectable at present and near future collider experiments.

  10. Self-induced parametric resonance in collective neutrino oscillations

    SciTech Connect

    Raffelt, Georg G.

    2008-12-15

    We identify a generic new form of collective flavor oscillations in dense neutrino gases that amounts to a self-induced parametric resonance. It occurs in a homogeneous and isotropic ensemble when a range of neutrino modes is prepared in a different flavor than the neighboring modes with lower and higher energies. The flavor content of the intermediate spectral part librates relative to the other parts with a frequency corresponding to a typical {delta}m{sup 2}/2E. This libration persists in the limit of an arbitrarily large neutrino density where one would have expected synchronized flavor oscillations.

  11. SOX: Short distance neutrino Oscillations with BoreXino

    NASA Astrophysics Data System (ADS)

    Bellini, G.; Bick, D.; Bonfini, G.; Bravo, D.; Caccianiga, B.; Calaprice, F.; Caminata, A.; Cavalcante, P.; Chavarria, A.; Chepurnov, A.; D'Angelo, D.; Davini, S.; Derbin, A.; Etenko, A.; Fernandes, G.; Fomenko, K.; Franco, D.; Galbiati, C.; Ghiano, C.; Göger-Neff, M.; Goretti, A.; Hagner, C.; Hungerford, E.; Ianni, Aldo; Ianni, Andrea; Kobychev, V.; Korablev, D.; Korga, G.; Krasnicky, D.; Kryn, D.; Laubenstein, M.; Link, J. M.; Litvinovich, E.; Lombardi, F.; Lombardi, P.; Ludhova, L.; Lukyanchenko, G.; Machulin, I.; Manecki, S.; Maneschg, W.; Meroni, E.; Meyer, M.; Miramonti, L.; Misiaszek, M.; Mosteiro, P.; Muratova, V.; Oberauer, L.; Obolensky, M.; Ortica, F.; Otis, K.; Pallavicini, M.; Pantic, E.; Papp, L.; Perasso, S.; Pocar, A.; Ranucci, G.; Razeto, A.; Re, A.; Romani, A.; Rossi, N.; Saldanha, R.; Salvo, C.; Schönert, S.; Semenov, D.; Simgen, H.; Skorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Sukhotin, S.; Suvorov, Y.; Tartaglia, R.; Testera, G.; Unzhakov, E.; Vogelaar, R. B.; Wang, H.; Wojcik, M.; Wurm, M.; Zaimidoroga, O.; Zavatarelli, S.; Zuzel, G.

    2013-08-01

    The very low radioactive background of the Borexino detector, its large size, and the well proved capability to detect both low energy electron neutrinos and antineutrinos make an ideal case for the study of short distance neutrino oscillations with artificial sources at Gran Sasso. This paper describes the possible layouts of 51Cr ( ν e ) and 144Ce-144Pr source experiments in Borexino and shows the expected sensitivity to eV mass sterile neutrinos for three possible different phases of the experiment. Expected results on neutrino magnetic moment, electroweak mixing angle, and couplings to axial and vector currents are shown too.

  12. Solar neutrino experiments and a test for neutrino oscillations with radioactive sources

    SciTech Connect

    Cleveland, B.T.; Davis, R. Jr.; Rowley, J.K.

    1980-01-01

    The results of the Brookhaven solar neutrino experiment are given and compared to the most recent standard solar model calculations. The observations are about a factor of 4 below theoretical expectations. In view of the uncertainties involved in the theoretical models of the sun, the discrepancy is not considered to be evidence for neutrino oscillations. The status of the development of a gallium solar neutrino detector is described. Radiochemical neutrino detectors can be used to search for ..nu../sub e/ oscillations by using megacurie sources of monoenergetic neutrinos like /sup 65/Zn. A quantitative evaluation of possible experiments using the Brookhaven chlorine solar neutrino detector and a gallium detector is given. 6 figures, 3 tables.

  13. Neutrino Oscillation Parameter Sensitivity in Future Long-Baseline Experiments

    SciTech Connect

    Bass, Matthew

    2014-01-01

    The study of neutrino interactions and propagation has produced evidence for physics beyond the standard model and promises to continue to shed light on rare phenomena. Since the discovery of neutrino oscillations in the late 1990s there have been rapid advances in establishing the three flavor paradigm of neutrino oscillations. The 2012 discovery of a large value for the last unmeasured missing angle has opened the way for future experiments to search for charge-parity symmetry violation in the lepton sector. This thesis presents an analysis of the future sensitivity to neutrino oscillations in the three flavor paradigm for the T2K, NO A, LBNE, and T2HK experiments. The theory of the three flavor paradigm is explained and the methods to use these theoretical predictions to design long baseline neutrino experiments are described. The sensitivity to the oscillation parameters for each experiment is presented with a particular focus on the search for CP violation and the measurement of the neutrino mass hierarchy. The variations of these sensitivities with statistical considerations and experimental design optimizations taken into account are explored. The effects of systematic uncertainties in the neutrino flux, interaction, and detection predictions are also considered by incorporating more advanced simulations inputs from the LBNE experiment.

  14. Basic oscillation measurables in the neutrino pair beam

    NASA Astrophysics Data System (ADS)

    Asaka, T.; Tanaka, M.; Yoshimura, M.

    2016-09-01

    It was recently shown that the neutrino-pair emission may occur with large rates, their energy being extended to GeV region, if appropriate heavy ions are circulated in a quantum state of mixture. In the present work it is further demonstrated that the vector current contribution of neutrino interaction with electrons in ion, not necessarily suppressed in high atomic number ions, gives rise to the oscillating component, even when a single neutrino is detected alone. On the other hand, the single neutrino detection in Z-boson decay does not show the oscillating component, as known for some time. CP violation measurements in the neutrino pair beam may become a possibility, along with determination of mass hierarchical patterns.

  15. B-Meson and Neutrino Oscillation: A Unified Treatment

    SciTech Connect

    Kayser, Boris; /Fermilab

    2011-10-01

    We present a unified treatment of the quantum mechanics of B-factory and neutrino oscillation experiments. While our approach obtains the usual phenomenological predictions for these experiments, it does so without having to invoke perplexing Einstein-Podolsky-Rosen correlations or non-intuitive kinematical assumptions. The quantum mechanics of mixing during propagation is at the heart of both B-factory and neutrino oscillation experiments. In this paper, we will treat both these experiments in the same way. Our treatment has several advantages. In dealing with the B-factory experiments, it avoids having to invoke real but nonetheless puzzling Einstein-Podolsky-Rosen correlations. In dealing with neutrino oscillation, our approach avoids the non-intuitive assumption that all the interfering neutrino mass eigenstates in a beam have the same energy.

  16. Neutrino oscillations and uncertainty in the solar model

    NASA Astrophysics Data System (ADS)

    Dearborn, D. S.; Fuller, G. M.

    1989-06-01

    The Mikheyev-Smirnov-Wolfenstein (MSW) resonant neutrino oscillation mechanism is investigated for the Sun using a detailed numerical solar model and a modified version of the Parke-Walker technique for following the neutrino phases through the oscillation resonance. We present overall solar-neutrino spectra and the associated expected neutrino count rates for the 37Cl, 71Ga, and Kamiokande detectors for ranges of masses and vacuum mixing angles for two neutrino species. We also investigate the effects of uncertainties in the solar model. In particular, we examine the effect of opacity changes on the expected solar-neutrino spectrum and resulting parameter space for the MSW mechanism. We find that plausible uncertainties in the standard solar model, and in particular the opacity, translate into significant expansion in the constraints on neutrino masses and vacuum mixing angles from neutrino experiments. It is shown, however, that forthcoming results from the Kamiokande solar-neutrino experiment could put stringent constraints on even the expanded MSW parameter space.

  17. Barr-Freire-Zee mechanism for the hydrogen-ionizing decaying neutrino dark matter

    NASA Astrophysics Data System (ADS)

    Tommasini, Daniele

    1992-12-01

    We consider the scenario of the hydrogen-ionizing decaying neutrino dark matter, advocated by Sciama to solve several ionization problems in astrophysics and cosmology. We show that dangerously large neutrino oscillations are expected in general in the particle physics models introduced to provide the required neutrino masses and dark matter decay lifetime. However, the implementation of a mechanism recently discovered by Barr, Freire and Zee, allows to realize this scenario free of large neutrino oscillations. Furthermore, in this case a mass scale for the light neutrinos, which can be naturally the MSW solar neutrino scale ~ 10-3 eV, is automatically associated to the value ~ 1023 s of the dark matter decay lifetime, needed to solve the ionization problems. A realization of the mechanism in the supersymmetric standard model with broken R-parity is then considered as an example. In that case, the heavy neutrino providing the dark matter is made up mainly by the standard muon neutrino νμ.

  18. Sterile neutrinos as subdominant warm dark matter

    SciTech Connect

    Palazzo, A.; Cumberbatch, D.; Slosar, A.; Silk, J.

    2007-11-15

    In light of recent findings which seem to disfavor a scenario with (warm) dark matter entirely constituted of sterile neutrinos produced via the Dodelson-Widrow mechanism, we investigate the constraints attainable for this mechanism by relaxing the usual hypothesis that the relic neutrino abundance must necessarily account for all of the dark matter. We first study how to reinterpret the limits attainable from x-ray nondetection and Lyman-{alpha} forest measurements in the case that sterile neutrinos constitute only a fraction f{sub s} of the total amount of dark matter. Then, assuming that sterile neutrinos are generated in the early universe solely through the Dodelson-Widrow mechanism, we show how the x-ray and Lyman-{alpha} results jointly constrain the mass-mixing parameters governing their production. Furthermore, we show how the same data allow us to set a robust upper limit f{sub s} < or approx. 0.7 at the 2{sigma} level, rejecting the case of dominant dark matter (f{sub s}=1) at the {approx}3{sigma} level.

  19. Realistic Sterile Neutrino Dark Matter with KeV Mass does not Contradict Cosmological Bounds

    SciTech Connect

    Boyarsky, Alexey; Lesgourgues, Julien; Ruchayskiy, Oleg

    2009-05-22

    Previous fits of sterile neutrino dark matter (DM) models to cosmological data ruled out masses smaller than {approx}8 keV, assuming a production mechanism that is not the best motivated from a particle physics point of view. Here we focus on a realistic extension of the standard model with three sterile neutrinos, consistent with neutrino oscillation data and baryogenesis, with the lightest sterile neutrino being the DM particle. We show that for each mass {>=}2 keV there exists at least one model accounting for 100% of DM and consistent with Lyman-{alpha} and other cosmological, astrophysical, and particle physics data.

  20. Landau-Zener approximations for resonant neutrino oscillations

    SciTech Connect

    Whisnant, K.

    1988-07-15

    A simple method for calculating the effects of resonant neutrino oscillations using Landau-Zener approximations is presented. For any given set of oscillation parameters, the method is to use the Landau-Zener approximation which works best in that region.

  1. The analysis of solar models: Neutrinos and oscillations

    NASA Technical Reports Server (NTRS)

    Ulrich, R. K.; Rhodes, E. J., Jr.; Tomczyk, S.; Dumont, P. J.; Brunish, W. M.

    1983-01-01

    Tests of solar neutrino flux and solar oscillation frequencies were used to assess standard stellar structure theory. Standard and non-standard solar models are enumerated and discussed. The field of solar seismology, wherein the solar interior is studied from the measurement of solar oscillations, is introduced.

  2. Aspects of neutrino oscillation in alternative gravity theories

    NASA Astrophysics Data System (ADS)

    Chakraborty, Sumanta

    2015-10-01

    Neutrino spin and flavour oscillation in curved spacetime have been studied for the most general static spherically symmetric configuration. Having exploited the spherical symmetry we have confined ourselves to the equatorial plane in order to determine the spin and flavour oscillation frequency in this general set-up. Using the symmetry properties we have derived spin oscillation frequency for neutrino moving along a geodesic or in a circular orbit. Starting from the expression of neutrino spin oscillation frequency we have shown that even in this general context, in high energy limit the spin oscillation frequency for neutrino moving along circular orbit vanishes. We have verified previous results along this line by transforming to Schwarzschild coordinates under appropriate limit. This finally lends itself to the probability of neutrino helicity flip which turns out to be non-zero. While for neutrino flavour oscillation we have derived general results for oscillation phase, which subsequently have been applied to three different gravity theories. One, of them appears as low-energy approximation to string theory, where we have an additional field, namely, dilaton field coupled to Maxwell field tensor. This yields a realization of Reissner-Nordström solution in string theory at low-energy. Next one corresponds to generalization of Schwarzschild solution by introduction of quadratic curvature terms of all possible form to the Einstein-Hilbert action. Finally, we have also discussed regular black hole solutions. In all these cases the flavour oscillation probabilities can be determined for solar neutrinos and thus can be used to put bounds on the parameters of these gravity theories. While for spin oscillation probability, we have considered two cases, Gauss-Bonnet term added to the Einstein-Hilbert action and the f(R) gravity theory. In both these cases we could impose bounds on the parameters which are consistent with previous considerations. In a nutshell, in

  3. Supernova nucleosynthesis and the physics of neutrino oscillation

    SciTech Connect

    Kajino, Toshitaka

    2012-11-20

    We studied the explosive nucleosynthesis in core-collapse supernovae and found that several isotopes of rare elements like {sup 7}Li, {sup 11}B, {sup 138}La, {sup 180}Ta and others are predominantly produced by the neutrino interactions with several abundant nuclei. These isotopes are strongly affected by the neutrino flavor oscillation due to the MSW (Mikheyev-Smirnov-Wolfenstein) effect. We here first study how to know the suitable average neutrino temperatures in order to explain the observed solar system abundances of these isotopes, combined with Galactic chemical evolution of the light nuclei and the heavy r-process elements. We then study the neutrino oscillation effects on their abundances, and propose a new novel method to determine the neutrino oscillation parameters, {theta}{sub 13} and mass hierarchy, simultaneously. There is recent evidence that some SiC X grains from the Murchison meteorite may contain supernova-produced neutrino-process {sup 11}B and {sup 7}Li encapsulated in the grains. Combining the recent experimental constraints on {theta}{sub 13}, we show that although the uncertainties are still large, our method hints at a marginal preference for an inverted neutrino mass hierarchy for the first time.

  4. Measurement of atmospheric neutrino oscillations with IceCube.

    PubMed

    Aartsen, M G; Abbasi, R; Abdou, Y; Ackermann, M; Adams, J; Aguilar, J A; Ahlers, M; Altmann, D; Auffenberg, J; Bai, X; Baker, M; Barwick, S W; Baum, V; Bay, R; Beatty, J J; Bechet, S; Becker Tjus, J; Becker, K-H; Bell, M; Benabderrahmane, M L; Benzvi, S; Berdermann, J; Berghaus, P; Berley, D; Bernardini, E; Bernhard, A; Bertrand, D; Besson, D Z; Binder, G; Bindig, D; Bissok, M; Blaufuss, E; Blumenthal, J; Boersma, D J; Bohaichuk, S; Bohm, C; Bose, D; Böser, S; Botner, O; Brayeur, L; Bretz, H-P; Brown, A M; Bruijn, R; Brunner, J; Carson, M; Casey, J; Casier, M; Chirkin, D; Christov, A; Christy, B; Clark, K; Clevermann, F; Coenders, S; Cohen, S; Cowen, D F; Cruz Silva, A H; Danninger, M; Daughhetee, J; Davis, J C; De Clercq, C; De Ridder, S; Desiati, P; de With, M; DeYoung, T; Díaz-Vélez, J C; Dunkman, M; Eagan, R; Eberhardt, B; Eisch, J; Ellsworth, R W; Euler, S; Evenson, P A; Fadiran, O; Fazely, A R; Fedynitch, A; Feintzeig, J; Feusels, T; Filimonov, K; Finley, C; Fischer-Wasels, T; Flis, S; Franckowiak, A; Franke, R; Frantzen, K; Fuchs, T; Gaisser, T K; Gallagher, J; Gerhardt, L; Gladstone, L; Glüsenkamp, T; Goldschmidt, A; Golup, G; Gonzalez, J G; Goodman, J A; Góra, D; Grandmont, D T; Grant, D; Groß, A; Ha, C; Haj Ismail, A; Hallen, P; Hallgren, A; Halzen, F; Hanson, K; Heereman, D; Heinen, D; Helbing, K; Hellauer, R; Hickford, S; Hill, G C; Hoffman, K D; Hoffmann, R; Homeier, A; Hoshina, K; Huelsnitz, W; Hulth, P O; Hultqvist, K; Hussain, S; Ishihara, A; Jacobi, E; Jacobsen, J; Jagielski, K; Japaridze, G S; Jero, K; Jlelati, O; Kaminsky, B; Kappes, A; Karg, T; Karle, A; Kelley, J L; Kiryluk, J; Kislat, F; Kläs, J; Klein, S R; Köhne, J-H; Kohnen, G; Kolanoski, H; Köpke, L; Kopper, C; Kopper, S; Koskinen, D J; Kowalski, M; Krasberg, M; Krings, K; Kroll, G; Kunnen, J; Kurahashi, N; Kuwabara, T; Labare, M; Landsman, H; Larson, M J; Lesiak-Bzdak, M; Leuermann, M; Leute, J; Lünemann, J; Madsen, J; Maruyama, R; Mase, K; Matis, H S; McNally, F; Meagher, K; Merck, M; Mészáros, P; Meures, T; Miarecki, S; Middell, E; Milke, N; Miller, J; Mohrmann, L; Montaruli, T; Morse, R; Nahnhauer, R; Naumann, U; Niederhausen, H; Nowicki, S C; Nygren, D R; Obertacke, A; Odrowski, S; Olivas, A; Olivo, M; O'Murchadha, A; Palazzo, A; Paul, L; Pepper, J A; Pérez de los Heros, C; Pfendner, C; Pieloth, D; Pinat, E; Pirk, N; Posselt, J; Price, P B; Przybylski, G T; Rädel, L; Rameez, M; Rawlins, K; Redl, P; Reimann, R; Resconi, E; Rhode, W; Ribordy, M; Richman, M; Riedel, B; Rodrigues, J P; Rott, C; Ruhe, T; Ruzybayev, B; Ryckbosch, D; Saba, S M; Salameh, T; Sander, H-G; Santander, M; Sarkar, S; Schatto, K; Scheel, M; Scheriau, F; Schmidt, T; Schmitz, M; Schoenen, S; Schöneberg, S; Schönwald, A; Schukraft, A; Schulte, L; Schulz, O; Seckel, D; Sestayo, Y; Seunarine, S; Sheremata, C; Smith, M W E; Soldin, D; Spiczak, G M; Spiering, C; Stamatikos, M; Stanev, T; Stasik, A; Stezelberger, T; Stokstad, R G; Stößl, A; Strahler, E A; Ström, R; Sullivan, G W; Taavola, H; Taboada, I; Tamburro, A; Tepe, A; Ter-Antonyan, S; Tešić, G; Tilav, S; Toale, P A; Toscano, S; Usner, M; van der Drift, D; van Eijndhoven, N; Van Overloop, A; van Santen, J; Vehring, M; Voge, M; Vraeghe, M; Walck, C; Waldenmaier, T; Wallraff, M; Wasserman, R; Weaver, Ch; Wellons, M; Wendt, C; Westerhoff, S; Whitehorn, N; Wiebe, K; Wiebusch, C H; Williams, D R; Wissing, H; Wolf, M; Wood, T R; Woschnagg, K; Xu, C; Xu, D L; Xu, X W; Yanez, J P; Yodh, G; Yoshida, S; Zarzhitsky, P; Ziemann, J; Zierke, S; Zoll, M

    2013-08-23

    We present the first statistically significant detection of neutrino oscillations in the high-energy regime (>20 GeV) from an analysis of IceCube Neutrino Observatory data collected in 2010 and 2011. This measurement is made possible by the low-energy threshold of the DeepCore detector (~20 GeV) and benefits from the use of the IceCube detector as a veto against cosmic-ray-induced muon background. The oscillation signal was detected within a low-energy muon neutrino sample (20-100 GeV) extracted from data collected by DeepCore. A high-energy muon neutrino sample (100 GeV-10 TeV) was extracted from IceCube data to constrain systematic uncertainties. The disappearance of low-energy upward-going muon neutrinos was observed, and the nonoscillation hypothesis is rejected with more than 5σ significance. In a two-neutrino flavor formalism, our data are best described by the atmospheric neutrino oscillation parameters |Δm(32)(2)|=(2.3(-0.5)(+0.6))×10(-3) eV(2) and sin(2)(2θ(23))>0.93, and maximum mixing is favored. PMID:24010427

  5. A measurement of neutrino oscillations with muon neutrinos in the MINOS experiment

    SciTech Connect

    Coleman, Stephen James

    2011-05-01

    Experimental evidence has established that neutrino flavor states evolve over time. A neutrino of a particular flavor that travels some distance can be detected in a different neutrino flavor state. The Main Injector Neutrino Oscillation Search (MINOS) is a long-baseline experiment that is designed to study this phenomenon, called neutrino oscillations. MINOS is based at Fermilab near Chicago, IL, and consists of two detectors: the Near Detector located at Fermilab, and the Far Detector, which is located in an old iron mine in Soudan, MN. Both detectors are exposed to a beam of muon neutrinos from the NuMI beamline, and MINOS measures the fraction of muon neutrinos that disappear after traveling the 734 km between the two detectors. One can measure the atmospheric neutrino mass splitting and mixing angle by observing the energy-dependence of this muon neutrino disappearance. MINOS has made several prior measurements of these parameters. Here I describe recently-developed techniques used to enhance our sensitivity to the oscillation parameters, and I present the results obtained when they are applied to a dataset that is twice as large as has been previously analyzed. We measure the mass splitting Δm232 = (2.32-0.08+0.12) x 10-3 eV2/c4 and the mixing angle sin2(2θ32) > 0.90 at 90% C.L. These results comprise the world's best measurement of the atmospheric neutrino mass splitting. Alternative disappearance models are also tested. The neutrino decay hypothesis is disfavored at 7.2σ and the neutrino quantum decoherence hypothesis is disfavored at 9.0σ.

  6. The effect of short-baseline neutrino oscillations on LBNE

    SciTech Connect

    Louis, William C.

    2015-10-15

    Short-baseline neutrino oscillations can have a relatively big effect on long-baseline oscillations, due to the cross terms that arise from multiple mass scales. The existing short-baseline anomalies suggest that short-baseline oscillations can affect the ν{sub μ} → ν{sub e} appearance probabilities by up to 20-40%, depending on the values of the CP-violating parameters.

  7. Neutrino oscillations in a model with a source and detector

    NASA Astrophysics Data System (ADS)

    Kiers, Ken; Weiss, Nathan

    1998-03-01

    We study the oscillations of neutrinos in a model in which the neutrino is coupled to a localized, idealized source and detector. By varying the spatial and temporal resolution of the source and detector we are able to model the full range of source and detector types ranging from coherent to incoherent. We find that this approach is useful in understanding the interface between the quantum mechanical nature of neutrino oscillations on the one hand and the production and detection systems on the other hand. This method can easily be extended to study the oscillations of other particles such as the neutral K and B mesons. We find that this approach gives a reliable way to treat the various ambiguities which arise when one examines the oscillations from a wave packet point of view. We demonstrate that the conventional oscillation formula is correct in the relativistic limit and that several recent claims of an extra factor of 2 in the oscillation length are incorrect. We also demonstrate explicitly that the oscillations of neutrinos which have separated spatially may be ``revived'' by a long coherent measurement.

  8. Flavor distribution of UHE cosmic neutrino oscillations at neutrino telescopes

    NASA Astrophysics Data System (ADS)

    Xing, Zhi-Zhong

    2009-04-01

    If the ultrahigh-energy (UHE) cosmic neutrinos produced from a distant astrophysical source can be measured at a km-size neutrino telescope such as the IceCube or KM3NeT, they will open a new window to understand the nature of flavor mixing and to probe possible new physics. Considering the conventional UHE cosmic neutrino source with the flavor ratio φe:φμ:φτ=1:2:0, I point out two sets of conditions for the flavor democracy φeT:φμT:φτT=1:1:1 to show up at neutrino telescopes: either θ13=0 and θ23=π/4 (CP invariance) or δ=±π/2 and θ23=π/4 (CP violation) in the standard parametrization of the 3×3 neutrino mixing matrix V. Allowing for slight μ-τ symmetry breaking effects characterized by Δ∈[-0.1,+0.1], I find φeT:φμT:φτT=(1-2Δ):(1+Δ):(1+Δ) as a good approximation. Another possibility to constrain Δ is to detect the ν flux of E≈6.3PeV via the Glashow resonance channel νe→W→anything. I also give some brief comments on (1) possible non-unitarity of V in the seesaw framework and its effects on the flavor distribution at neutrino telescopes and (2) a generic description and determination of the cosmic neutrino flavor composition at distant astrophysical sources.

  9. Self-interacting dark matter and sterile neutrinos

    NASA Astrophysics Data System (ADS)

    Tang, Yong

    2016-05-01

    We discuss some possible astrophysical and cosmological connections between dark matter and sterile neutrinos. Both the controversies at small scales for traditional cold dark matter (CDM) and anomalies in neutrino experiments seem to suggest that there might be new self-interactions for dark matter and sterile neutrinos. Surprisingly, if the new interaction also mediates between dark matter and sterile neutrinos, “missing satellite problem” in CDM paradigm can also be solved. On the other hand, light sterile neutrinos with self-interacting can also satisfy the cosmological bounds.

  10. OscSNS: A Precision Short-Baseline Neutrino Oscillation Experiment

    NASA Astrophysics Data System (ADS)

    Louis, William

    2012-03-01

    Short baseline neutrino experiments are consistent with neutrino oscillations at a δm^2 of approximately 1 eV^2, and world neutrino and antineutrino data fit reasonably well to a 3+2 (active+sterile) neutrino oscillation model with CP violation. The OscSNS experiment at ORNL would be able to make precision short-baseline neutrino oscillation measurements and prove that sterile neutrinos exist. The OscSNS experiment will be described and the corresponding neutrino oscillation sensitivities will be discussed.

  11. Diluted equilibrium sterile neutrino dark matter

    NASA Astrophysics Data System (ADS)

    Patwardhan, Amol V.; Fuller, George M.; Kishimoto, Chad T.; Kusenko, Alexander

    2015-11-01

    We present a model where sterile neutrinos with rest masses in the range ˜keV to ˜MeV can be the dark matter and be consistent with all laboratory, cosmological, and large-scale structure, as well as x-ray constraints. These sterile neutrinos are assumed to freeze out of thermal and chemical equilibrium with matter and radiation in the very early Universe, prior to an epoch of prodigious entropy generation ("dilution") from out-of-equilibrium decay of heavy particles. In this work, we consider heavy, entropy-producing particles in the ˜TeV to ˜EeV rest-mass range, possibly associated with new physics at high-energy scales. The process of dilution can give the sterile neutrinos the appropriate relic densities, but it also alters their energy spectra so that they could act like cold dark matter, despite relatively low rest masses as compared to conventional dark matter candidates. Moreover, since the model does not rely on active-sterile mixing for producing the relic density, the mixing angles can be small enough to evade current x-ray or lifetime constraints. Nevertheless, we discuss how future x-ray observations, future lepton number constraints, and future observations and sophisticated simulations of large-scale structure could, in conjunction, provide evidence for this model and/or constrain and probe its parameters.

  12. Nuclear weak interactions, supernova nucleosynthesis and neutrino oscillation

    NASA Astrophysics Data System (ADS)

    Kajino, Toshitaka

    2013-07-01

    We study the nuclear weak response in light-to-heavy mass nuclei and calculate neutrino-nucleus cross sections. We apply these cross sections to the explosive nucleosynthesis in core-collapse supernovae and find that several isotopes of rare elements 7Li, 11B, 138La, 180Ta and several others are predominantly produced by the neutrino-process nucleosynthesis. We discuss how to determine the suitable neutrino spectra of three different flavors and their anti-particles in order to explain the observed solar system abundances of these isotopes, combined with Galactic chemical evolution of the light nuclei and the heavy r-process elements. Light-mass nuclei like 7Li and 11B, which are produced in outer He-layer, are strongly affected by the neutrino flavor oscillation due to the MSW (Mikheyev-Smirnov-Wolfenstein) effect, while heavy-mass nuclei like 138La, 180Ta and r-process elements, which are produced in the inner O-Ne-Mg layer or the atmosphere of proto-neutron star, are likely to be free from the MSW effect. Using such a different nature of the neutrino-process nucleosynthesis, we study the neutrino oscillation effects on their abundances, and propose a new novel method to determine the unknown neutrino oscillation parameters, θ13 and mass hierarchy, simultaneously. There is recent evidence that some SiC X grains from the Murchison meteorite may contain supernova-produced neutrino-process 11B and 7Li encapsulated in the grains. Combining the recent experimental constraints on θ13, we show that although the uncertainties are still large, our method hints at a marginal preference for an inverted neutrino mass hierarchy for the first time.

  13. Neutrino spin dynamics in dense matter and electromagnetic field

    NASA Astrophysics Data System (ADS)

    Arbuzova, E. V.; Lobanov, A. E.; Murchikova, E. M.

    2009-01-01

    A complete set of solutions to the Dirac-Pauli equation is derived for a massive neutrino that interacts with dense matter and a strong electromagnetic field. It is shown that these solutions may describe neutrino spin precession.

  14. Flavor entanglement in neutrino oscillations in the wave packet description

    NASA Astrophysics Data System (ADS)

    Blasone, Massimo; Dell'Anno, Fabio; De Siena, Silvio; Illuminati, Fabrizio

    2015-10-01

    The wave packet approach to neutrino oscillations provides an enlightening description of quantum decoherence induced, during propagation, by localization effects. Within this approach, we show that a deeper insight into the dynamical aspects of particle mixing can be obtained if one investigates the behavior of quantum correlations associated to flavor oscillations. By identifying the neutrino three-flavor modes with (suitably defined) three-qubit modes, the exploitation of tools of quantum information theory for mixed states allows a detailed analysis of the dynamical behavior of flavor entanglement during free propagation. This provides further elements leading to a more complete understanding of the phenomenon of neutrino oscillations, and a basis for possible applicative implementations. The analysis is carried out by studying the distribution of the flavor entanglement; to this aim, we perform combined investigations of the behaviors of the two-flavor concurrence and of the logarithmic negativities associated with specific bipartitions of the three flavors.

  15. The Effect of Neutrino Oscillations on Supernova Light Element Synthesis

    SciTech Connect

    Yoshida, Takashi; Kajino, Toshitaka; Yokomakura, Hidekazu; Kimura, Keiichi; Takamura, Akira; Hartmann, Dieter H.

    2006-07-12

    We investigate light element synthesis through the {nu}-process during supernova explosions considering neutrino oscillations and investigate the dependence of 7Li and 11B yields on neutrino oscillation parameters mass hierarchy and {theta}13. The adopted supernova explosion model for explosive nucleosynthesis corresponds to SN 1987A. The 7Li and 11B yields increase by about factors of 1.9 and 1.3 in the case of normal mass hierarchy and adiabatic 13-mixing resonance compared with the case without neutrino oscillations. In the case of inverted mass hierarchy or nonadiabatic 13-mixing resonance, the increase in 7Li and 11B yields is much smaller. Astronomical observations of 7Li/11B ratio in stars formed in regions strongly affected by prior generations of supernovae would constrain mass hierarchy and the range of {theta}13.

  16. Neutrino mass hierarchy, vacuum oscillations, and vanishing |U(e3)|

    SciTech Connect

    de Gouvea, Andre; Jenkins, James; Kayser, Boris; /Fermilab

    2005-03-01

    Is the relatively isolated member of the neutrino mass spectrum heavier or lighter than the two closely-spaced members? This question--the character of the neutrino mass hierarchy--is of great theoretical interest. All previously identified experiments for addressing it via neutrino oscillations require that the currently unknown size of the U{sub e3} element of the leptonic mixing matrix (parameterized by the unknown {theta}{sub 13} mixing angle) be sufficiently large, and will utterly fail in the limit {theta}{sub 13} {yields} 0. For this reason, we explore alternative oscillation approaches that would still succeed even if {theta}{sub 13} vanishes. We identify several alternatives that require neither a nonzero |U{sub e3}| nor the presence of significant matter effects. All include multiple percent-level neutrino oscillation measurements, usually involving muon-neutrino (or antineutrino) disappearance and very long baselines. We comment on the degree of promise that these alternative approaches show.

  17. Observing Muon Neutrino to Electron Neutrino Oscillations in the NOνA Experiment

    SciTech Connect

    Xin, Tian

    2016-01-01

    Neutrino oscillations offers an insight on new physics beyond the Standard Model. The three mixing angles (θ12, θ13 and θ23) and the two mass splittings (Δm2 and Αm2 ) have been measured by different neutrino oscillation experiments. Some other parameters including the mass ordering of different neutrino mass eigenstates and the CP violation phase are still unknown. NOνA is a long-baseline accelerator neutrino experiment, using neutrinos from the NuMI beam at Fermilab. The experiment is equipped with two functionally identical detectors about 810 kilometers apart and 14 mrad off the beam axis. In this configuration, the muon neutrinos from the NuMI beam reach the disappearance maximum in the far detector and a small fraction of that oscillates into electron neutrinos. The sensitivity to the mass ordering and CP viola- tion phase determination is greately enhanced. This thesis presents the νeappearance analysis using the neutrino data collected with the NOνA experiment between February 2014 and May 2015, which corresponds to 3.45 ×1020 protons-on-target (POT). The νe appearance analysis is performed by comparing the observed νe CC-like events to the estimated background at the far detector. The total background is predicted to be 0.95 events with 0.89 originated from beam events and 0.06 from cosmic ray events. The beam background is obtained by extrapolating near detector data through different oscillation channels, while the cosmic ray background is calculated based on out-of-time NuMI trigger data. A total of 6 electron neutrino candidates are observed in the end at the far detector which represents 3.3 σ excess over the predicted background. The NOνA result disfavors inverted mass hierarchy for δcp ϵ [0, 0.6π] at 90% C.L.

  18. Measuring Active-Sterile Neutrino Oscillations with a Stopped Pion Neutrino Source

    NASA Astrophysics Data System (ADS)

    van de Water, Richard; Louis, Bill; Mills, Geoff

    2007-04-01

    The question of the existence of light sterile neutrinos is of great interest in many areas of particle physics, astrophysics, and cosmology. Furthermore, should the MiniBooNE experiment at Fermilab confirm the LSND oscillation signal, then new measurements are required to identify the mechanism responsible for these oscillations. Possibilities include sterile neutrinos, CP or CPT violation, variable mass neutrinos, and Lorentz violation. Here we consider an experiment at a stopped pion neutrino source (the Spallation Neutron Source at ORNL) to determine if active-sterile neutrino oscillations with δm ^2 greater than 0.1 eV^2 can account for the signal. By exploiting stopped +circ decay to produce a monoenergetic νμ source, and measuring the rate of the neutral current reaction νx0.05in ^12C ->νx0.05in ^12C^*(15.11) as a function of distance from the source, we show that a convincing test for active-sterile neutrino oscillations can be performed.

  19. Measurement of neutrino oscillation parameters from muon neutrino disappearance with an off-axis beam.

    PubMed

    Abe, K; Adam, J; Aihara, H; Akiri, T; Andreopoulos, C; Aoki, S; Ariga, A; Ariga, T; Assylbekov, S; Autiero, D; Barbi, M; Barker, G J; Barr, G; Bass, M; Batkiewicz, M; Bay, F; Bentham, S W; Berardi, V; Berger, B E; Berkman, S; Bertram, I; Bhadra, S; Blaszczyk, F D M; Blondel, A; Bojechko, C; Bordoni, S; Boyd, S B; Brailsford, D; Bravar, A; Bronner, C; Buchanan, N; Calland, R G; Caravaca Rodríguez, J; Cartwright, S L; Castillo, R; Catanesi, M G; Cervera, A; Cherdack, D; Christodoulou, G; Clifton, A; Coleman, J; Coleman, S J; Collazuol, G; Connolly, K; Cremonesi, L; Curioni, A; Dabrowska, A; Danko, I; Das, R; Davis, S; de Perio, P; De Rosa, G; Dealtry, T; Dennis, S R; Densham, C; Di Lodovico, F; Di Luise, S; Drapier, O; Duboyski, T; Duffy, K; Dufour, F; Dumarchez, J; Dytman, S; Dziewiecki, M; Emery, S; Ereditato, A; Escudero, L; Finch, A J; Frank, E; Friend, M; Fujii, Y; Fukuda, Y; Furmanski, A P; Galymov, V; Gaudin, A; Giffin, S; Giganti, C; Gilje, K; Golan, T; Gomez-Cadenas, J J; Gonin, M; Grant, N; Gudin, D; Hadley, D R; Haesler, A; Haigh, M D; Hamilton, P; Hansen, D; Hara, T; Hartz, M; Hasegawa, T; Hastings, N C; Hayato, Y; Hearty, C; Helmer, R L; Hierholzer, M; Hignight, J; Hillairet, A; Himmel, A; Hiraki, T; Hirota, S; Holeczek, J; Horikawa, S; Huang, K; Ichikawa, A K; Ieki, K; Ieva, M; Ikeda, M; Imber, J; Insler, J; Irvine, T J; Ishida, T; Ishii, T; Ives, S J; Iyogi, K; Izmaylov, A; Jacob, A; Jamieson, B; Johnson, R A; Jo, J H; Jonsson, P; Joo, K K; Jung, C K; Kaboth, A C; Kajita, T; Kakuno, H; Kameda, J; Kanazawa, Y; Karlen, D; Karpikov, I; Kearns, E; Khabibullin, M; Khotjantsev, A; Kielczewska, D; Kikawa, T; Kilinski, A; Kim, J; Kim, S B; Kisiel, J; Kitching, P; Kobayashi, T; Kogan, G; Kolaceke, A; Konaka, A; Kormos, L L; Korzenev, A; Koseki, K; Koshio, Y; Kreslo, I; Kropp, W; Kubo, H; Kudenko, Y; Kumaratunga, S; Kurjata, R; Kutter, T; Lagoda, J; Laihem, K; Laveder, M; Lawe, M; Lazos, M; Lee, K P; Licciardi, C; Lim, I T; Lindner, T; Lister, C; Litchfield, R P; Longhin, A; Lopez, G D; Ludovici, L; Macaire, M; Magaletti, L; Mahn, K; Malek, M; Manly, S; Marino, A D; Marteau, J; Martin, J F; Maruyama, T; Marzec, J; Masliah, P; Mathie, E L; Matveev, V; Mavrokoridis, K; Mazzucato, E; McCarthy, M; McCauley, N; McFarland, K S; McGrew, C; Metelko, C; Mijakowski, P; Miller, C A; Minamino, A; Mineev, O; Mine, S; Missert, A; Miura, M; Monfregola, L; Moriyama, S; Mueller, Th A; Murakami, A; Murdoch, M; Murphy, S; Myslik, J; Nagasaki, T; Nakadaira, T; Nakahata, M; Nakai, T; Nakamura, K; Nakayama, S; Nakaya, T; Nakayoshi, K; Naples, D; Nielsen, C; Nirkko, M; Nishikawa, K; Nishimura, Y; O'Keeffe, H M; Ohta, R; Okumura, K; Okusawa, T; Oryszczak, W; Oser, S M; Otani, M; Owen, R A; Oyama, Y; Pac, M Y; Palladino, V; Paolone, V; Payne, D; Pearce, G F; Perevozchikov, O; Perkin, J D; Petrov, Y; Pinzon Guerra, E S; Pistillo, C; Plonski, P; Poplawska, E; Popov, B; Posiadala, M; Poutissou, J-M; Poutissou, R; Przewlocki, P; Quilain, B; Radicioni, E; Ratoff, P N; Ravonel, M; Rayner, M A M; Redij, A; Reeves, M; Reinherz-Aronis, E; Retiere, F; Robert, A; Rodrigues, P A; Rondio, E; Roth, S; Rubbia, A; Ruterbories, D; Sacco, R; Sakashita, K; Sánchez, F; Sato, F; Scantamburlo, E; Scholberg, K; Schwehr, J; Scott, M; Seiya, Y; Sekiguchi, T; Sekiya, H; Sgalaberna, D; Shiozawa, M; Short, S; Shustrov, Y; Sinclair, P; Smith, B; Smith, R J; Smy, M; Sobczyk, J T; Sobel, H; Sorel, M; Southwell, L; Stamoulis, P; Steinmann, J; Still, B; Suda, Y; Suzuki, A; Suzuki, K; Suzuki, S Y; Suzuki, Y; Szeglowski, T; Tacik, R; Tada, M; Takahashi, S; Takeda, A; Takeuchi, Y; Tanaka, H K; Tanaka, H A; Tanaka, M M; Taylor, I J; Terhorst, D; Terri, R; Thompson, L F; Thorley, A; Tobayama, S; Toki, W; Tomura, T; Totsuka, Y; Touramanis, C; Tsukamoto, T; Tzanov, M; Uchida, Y; Ueno, K; Vacheret, A; Vagins, M; Vasseur, G; Wachala, T; Waldron, A V; Walter, C W; Wark, D; Wascko, M O; Weber, A; Wendell, R; Wilkes, R J; Wilking, M J; Wilkinson, C; Williamson, Z; Wilson, J R; Wilson, R J; Wongjirad, T; Yamada, Y; Yamamoto, K; Yanagisawa, C; Yen, S; Yershov, N; Yokoyama, M; Yuan, T; Zalewska, A; Zalipska, J; Zambelli, L; Zaremba, K; Ziembicki, M; Zimmerman, E D; Zito, M; Zmuda, J

    2013-11-22

    The T2K Collaboration reports a precision measurement of muon neutrino disappearance with an off-axis neutrino beam with a peak energy of 0.6 GeV. Near detector measurements are used to constrain the neutrino flux and cross section parameters. The Super-Kamiokande far detector, which is 295 km downstream of the neutrino production target, collected data corresponding to 3.01×10(20) protons on target. In the absence of neutrino oscillations, 205±17 (syst) events are expected to be detected while only 58 muon neutrino event candidates are observed. A fit to the neutrino rate and energy spectrum, assuming three neutrino flavors and normal mass hierarchy yields a best-fit mixing angle sin2(θ23)=0.514±0.082 and mass splitting |Δm(32)(2)|=2.44(-0.15)(+0.17)×10(-3) eV2/c4. Our result corresponds to the maximal oscillation disappearance probability. PMID:24313479

  20. Decaying majoron dark matter and neutrino masses

    SciTech Connect

    Lattanzi, Massimiliano

    2008-01-03

    We review our recent proposal of the majoron as a suitable warm dark matter candidate. The majoron is the Goldstone boson associated to the spontaneous breaking of ungauged lepton number, one of the mechanisms proposed to give rise to neutrino masses. The majoron can acquire a mass through quantum gravity effects, and can possibly account for the observed dark matter component of the Universe. We present constraints on the majoron lifetime, mass and abundance obtained by the analysis of the cosmic microwave background data. We find that, in the case of thermal production, the limits for the majoron mass read 0.12 keV or approx. 250 Gyr. We also apply this results to a given seesaw model for the generation of neutrino masses, and find that this constraints the energy scale for the lepton number breaking phase transition to be > or approx. 10{sup 6} GeV. We thus find that the majoron decaying dark matter (DDM) scenario fits nicely in models where neutrino masses arise a la seesaw, and may lead to other possible cosmological implications.

  1. Measuring $\\theta_{13}$ via Muon Neutrino to Electron Neutrino Oscillations in the MINOS Experiment

    SciTech Connect

    Toner, Ruth B.

    2011-01-01

    One of the primary goals in neutrino physics at the present moment is to make a measurement of the neutrino oscillation parameter $\\theta_{13}$. This parameter, in addition to being unknown, could potentially allow for the introduction of CP violation into the lepton sector. The MINOS long-baseline neutrino oscillation experiment has the ability to make a measurement of this parameter, by looking for the oscillation of muon neutrinos to electron neutrinos between a Near and Far Detector over a distance of 735 km. This thesis discusses the development of an analysis framework to search for this oscillation mode. Two major improvements to pre-existing analysis techniques have been implemented by the author. First, a novel particle ID technique based on strip topology, known as the Library Event Matching (LEM) method, is optimized for use in MINOS. Second, a multiple bin likelihood method is developed to fit the data. These two improvements, when combined, increase MINOS' sensitivity to $\\sin^2(2\\theta_{13})$ by 27\\% over previous analyses. This thesis sees a small excess over background in the Far Detector. A Frequentist interpretation of the data rules out $\\theta_{13}=0$ at 91\\%. A Bayesian interpretation of the data is also presented, placing the most stringent upper boundary on the oscillation parameter to date, at $\\sin^2(2\\theta_{13})<0.09(0.015)$ for the Normal (Inverted) Hierarchy and $\\delta_{CP}=0$.

  2. The discovery reach of CP violation in neutrino oscillation with non-standard interaction effects

    NASA Astrophysics Data System (ADS)

    Rahman, Zini; Dasgupta, Arnab; Adhikari, Rathin

    2015-06-01

    We have studied the CP violation discovery reach in a neutrino oscillation experiment with superbeam, neutrino factory and monoenergetic neutrino beam from the electron capture process. For NSI satisfying model-dependent bound for shorter baselines (like CERN-Fréjus set-up) there is insignificant effect of NSI on the the discovery reach of CP violation due to δ. Particularly, for the superbeam and neutrino factory we have also considered relatively longer baselines for which there could be significant NSI effects on CP violation discovery reach for higher allowed values of NSI. For the monoenergetic beam only shorter baselines are considered to study CP violation with different nuclei as neutrino sources. Interestingly for non-standard interactions—{{\\varepsilon }eμ } and {{\\varepsilon }eτ } of neutrinos with matter during propagation in longer baselines in the superbeam, there is the possibility of better discovery reach of CP violation than that with only Standard Model interactions of neutrinos with matter. For complex NSI we have shown the CP violation discovery reach in the plane of Dirac phase δ and NSI phase {{φ }ij}. The CP violation due to some values of δ remain unobservable with present and near future experimental facilities in the superbeam and neutrino factory. However, in the presence of some ranges of off-diagonal NSI phase values there are some possibilities of discovering total CP violation for any {{δ }CP} value even at 5σ confidence level for neutrino factory. Our analysis indicates that for some values of NSI phases total CP violation may not be at all observable for any values of δ. Combination of shorter and longer baselines could indicate in some cases the presence of NSI. However, in general for NSIs ≲ 1 the CP violation discovery reach is better in neutrino factory set-ups. Using a neutrino beam from the electron capture process for nuclei 50110Sn and 152Yb, we have shown the discovery reach of CP violation in a neutrino

  3. Addendum to: Gen. Rel. Grav. 28 (1996) 1161, First Prize Essay for 1996: Neutrino Oscillations and Supernovae

    NASA Astrophysics Data System (ADS)

    Ahluwalia-Khalilova, D. V.

    2004-09-01

    In a 1996 JRO Fellowship Research Proposal (Los Alamos), the author suggested that neutrino oscillations may provide a powerful indirect energy transport mechanism to supernovae explosions. The principal aim of this addendum is to present the relevant unedited text of Section 1 of that proposal. We then briefly remind, (a) of an early suggestion of Mazurek on vacuum neutrino oscillations and their relevance to supernovae explosion, and (b) Wolfenstein's result on suppression of the effect by matter effects. We conclude that whether or not neutrino oscillations play a significant role in supernovae explosions shall depend if there are shells/regions of space in stellar collapse where matter effects play no essential role. Should such regions exist in actual astrophysical situations, the final outcome of neutrino oscillations on supernovae explosions shall depend, in part, on whether or not the LNSD signal is confirmed. Importantly, the reader is reminded that neutrino oscillations form a set of flavor-oscillation clocks and these clock suffer gravitational redshift which can be as large as 20 percent. This effect must be incorporated fully into any calculation of supernova explosion.

  4. Short baseline neutrino oscillations: When entanglement suppresses coherence

    NASA Astrophysics Data System (ADS)

    Boyanovsky, Daniel

    2011-09-01

    For neutrino oscillations to take place the entangled quantum state of a neutrino and a charged lepton produced via charged current interactions must be disentangled. Implementing a nonperturbative Wigner-Weisskopf method we obtain the correct entangled quantum state of neutrinos and charged leptons from the (two-body) decay of a parent particle. The source lifetime and disentanglement length scale lead to a suppression of the oscillation probabilities in short-baseline experiments. The suppression is determined by πLs/Losc where Ls is the smallest of the decay length of the parent particle or the disentanglement length scale. For Ls≥Losc coherence and oscillations are suppressed. These effects are more prominent in short base line experiments and at low neutrino energy. We obtain the corrections to the appearance and disappearance probabilities modified by both the lifetime of the source and the disentanglement scale and discuss their implications for accelerator and reactor experiments. These effects imply that fits to the experimental data based on the usual quantum mechanical formulation underestimate sin⁡2(2θ) and δm2, and are more dramatic for δm2≃eV2, the mass range for new generations of sterile neutrinos that could explain the short-baseline anomalies and long disentanglement length scales.

  5. First neutrino oscillation measurements in NOvA

    NASA Astrophysics Data System (ADS)

    Messier, M. D.

    2016-07-01

    The NOvA experiment uses the Fermilab NuMI neutrino beam and a newly constructed 14 kt detector to address several open questions in neutrino oscillations including the neutrino mass hierarchy, the precise value of the angle θ23, and the CP-violating phase δCP. The experiment has been running since 2014 and has recently released its first results from an equivalent exposure of 2.74 ×1020 protons-on-target equal to 8% of the eventual data set. Measurements of νμ →νμ oscillations find Δ m322 = (2.52-0.18+0.20) ×10-3 eV2 and 0.38 neutrino mass hierarchy. The experiment has observed νμ →νe oscillations at 3.3 σ C.L. in this early data and disfavors the inverted neutrino mass hierarchy in the range 0.1 π <δCP < 0.5 π at the 90% C.L.

  6. PPPC 4 DMν: a Poor Particle Physicist Cookbook for Neutrinos from Dark Matter annihilations in the Sun

    SciTech Connect

    Baratella, Pietro; Cirelli, Marco; Hektor, Andi; Pata, Joosep; Piibeleht, Morten; Strumia, Alessandro

    2014-03-27

    We provide ingredients and recipes for computing neutrino signals of TeV-scale Dark Matter (DM) annihilations in the Sun. For each annihilation channel and DM mass we present the energy spectra of neutrinos at production, including: state-of-the-art energy losses of primary particles in solar matter, secondary neutrinos, electroweak radiation. We then present the spectra after propagation to the Earth, including (vacuum and matter) flavor oscillations and interactions in solar matter. We also provide a numerical computation of the capture rate of DM particles in the Sun. These results are available in numerical form http://www.marcocirelli.net/PPPC4DMID.html.

  7. PPPC 4 DMν: a Poor Particle Physicist Cookbook for Neutrinos from Dark Matter annihilations in the Sun

    NASA Astrophysics Data System (ADS)

    Baratella, Pietro; Cirelli, Marco; Hektor, Andi; Pata, Joosep; Piibeleht, Morten; Strumia, Alessandro

    2014-03-01

    We provide ingredients and recipes for computing neutrino signals of TeV-scale Dark Matter (DM) annihilations in the Sun. For each annihilation channel and DM mass we present the energy spectra of neutrinos at production, including: state-of-the-art energy losses of primary particles in solar matter, secondary neutrinos, electroweak radiation. We then present the spectra after propagation to the Earth, including (vacuum and matter) flavor oscillations and interactions in solar matter. We also provide a numerical computation of the capture rate of DM particles in the Sun. These results are available in numerical form.

  8. The Unruh effect and oscillating neutrinos

    NASA Astrophysics Data System (ADS)

    Vir Ahluwalia, Dharam; Labun, Lance; Torrieri, Giorgio

    2016-04-01

    We give an overview of the issues and ambiguities associated with the Unruh effect, and argue that, as well as a very interesting phenomenon, it can also be used as a probe of fundamental physics. In particular, We point out that, because the detectable neutrino is not a mass Eigenstate, the Unruh effect works in a qualitatively different way than for any inertial process. For inertial processes, neutrinoes are produced as charged eigenstates, rather than as mass Eigenstates as in the comoving frame. This makes the Unruh effect detectable in microscopic processes, via, for example, p→ nl^+\\barνl decays. Such an experiment would be invaluable both as a tool to measure neutrino masses and mixing angles, and to investigate the fundamental quantization of fields.

  9. Effects of Recent Reactor Anti-neutrino Spectra on Neutrino Oscillations

    NASA Astrophysics Data System (ADS)

    Sterbenz, Ciara

    2015-10-01

    The β-decay of nuclear fission fragments produces a very large ve flux from nuclear reactions. The shape of the expected flux has previously been predicted by converting the measured β-electron spectrum to an ve spectrum. Recent reactor neutrino experiments, however, find a large shoulder in the observed ve spectrum relative to this prediction in the energy region 5 - 7 MeV. Accurate knowledge of the expected ve flux from reactors is important for oscillation experiments that only involve one neutrino detector. In this project, I examine the implications of these spectral changes on the ν oscillation result found by the KamLAND experiment. At the time of their finding, the spectral anomaly from 5 - 7 MeV had not be observed. I have re-derived the oscillation parameters Δm2 and sin2 (2 θ) using the anti-neutrino flux from Daya Bay and from nuclear database predictions. With these new expected fluxes, these oscillation parameters shifted and their uncertainties increased. I compare the new oscillation parameters with those derived from solar neutrino oscillation data.

  10. Violation of the Leggett-Garg Inequality in Neutrino Oscillations.

    PubMed

    Formaggio, J A; Kaiser, D I; Murskyj, M M; Weiss, T E

    2016-07-29

    The Leggett-Garg inequality, an analogue of Bell's inequality involving correlations of measurements on a system at different times, stands as one of the hallmark tests of quantum mechanics against classical predictions. The phenomenon of neutrino oscillations should adhere to quantum-mechanical predictions and provide an observable violation of the Leggett-Garg inequality. We demonstrate how oscillation phenomena can be used to test for violations of the classical bound by performing measurements on an ensemble of neutrinos at distinct energies, as opposed to a single neutrino at distinct times. A study of the MINOS experiment's data shows a greater than 6σ violation over a distance of 735 km, representing the longest distance over which either the Leggett-Garg inequality or Bell's inequality has been tested. PMID:27517759

  11. Violation of the Leggett-Garg Inequality in Neutrino Oscillations

    NASA Astrophysics Data System (ADS)

    Formaggio, J. A.; Kaiser, D. I.; Murskyj, M. M.; Weiss, T. E.

    2016-07-01

    The Leggett-Garg inequality, an analogue of Bell's inequality involving correlations of measurements on a system at different times, stands as one of the hallmark tests of quantum mechanics against classical predictions. The phenomenon of neutrino oscillations should adhere to quantum-mechanical predictions and provide an observable violation of the Leggett-Garg inequality. We demonstrate how oscillation phenomena can be used to test for violations of the classical bound by performing measurements on an ensemble of neutrinos at distinct energies, as opposed to a single neutrino at distinct times. A study of the MINOS experiment's data shows a greater than 6 σ violation over a distance of 735 km, representing the longest distance over which either the Leggett-Garg inequality or Bell's inequality has been tested.

  12. Oscillation degeneracy in non-standard neutrino interactions

    NASA Astrophysics Data System (ADS)

    Wright, Warren

    2016-06-01

    The standard theory describing neutrino oscillations only uses the interactions predicted by the Standard Model of particle physics. However, there is plenty of room for non-standard interactions (NSI) to exist. This is because extra interactions are allowed by experimental error bars and even expected at some level from effective theory arguments. This research is focused on examining the phenomenological consequences of the new physics of NSI at large atmospheric neutrino detectors like IceCube DeepCore. Of particular focus are the degeneracies between and within the standard neutrino oscillation parameters and the NSI parameters. These degeneracies will be explored both analytically and numerically, and strategies to lift them will also be discussed. This research is largely based on [1].

  13. Status of the Daya Bay Reactor Neutrino Oscillation Experiment

    SciTech Connect

    Daya Bay Collaboration; Lin, Cheng-Ju Stephen

    2010-12-15

    The last unknown neutrino mixing angle theta_13 is one of the fundamental parameters of nature; it is also a crucial parameter for determining the sensitivity of future long-baseline experiments aimed to study CP violation in the neutrino sector. Daya Bay is a reactor neutrino oscillation experiment designed to achieve a sensitivity on the value of sin^2(2*theta_13) to better than 0.01 at 90percent CL. The experiment consists of multiple identical detectors placed underground at different baselines to minimize systematic errors and suppress cosmogenic backgrounds. With the baseline design, the expected anti-neutrino signal at the far site is about 360 events per day and at each of the near sites is about 1500 events per day. An overview and current status of the experiment will be presented.

  14. Search for neutrino oscillations at the Brookhaven AGS

    SciTech Connect

    Ahrens, L.A.; Aronson, S.H.; Connolly, P.L.; Gibbard, B.G.; Murtagh, M.J.; Murtagh, S.J.; Terada, S.; White, D.H.; Callas, J.L.; Cutts, D.

    1985-02-20

    We report on a search for neutrino oscillations of the type nu/sub ..mu../ ..-->.. nu/sub e/ in a detector located an effective distance of 96m from the neutrino source in the wide band neutrino beam at the Brookhaven AGS. No excess of electron events was observed. The resulting upper limit on the strength of the mixing between nu/sub ..mu../ and nu/sub e/ in the case of large mass difference ..delta..m/sup 2/ = absolute value m/sub 1//sup 2/ - m/sub 2//sup 2/ between the neutrino mass eigenstates m/sub 1/ and m/sub 2/ is sin/sup 2/2..cap alpha.. less than or equal to 3.4 x 10/sup -3/ at 90% CL. The corresponding upper limit for small mass difference is ..delta..m/sup 2/sin2..cap alpha.. < 0.43 eV/sup 2/. 9 refs.

  15. Matter effect to T violation at a neutrino factory

    SciTech Connect

    Miura, Takahiro; Takasugi, Eiichi; Kuno, Yoshitaka; Yoshimura, Masaki

    2001-07-01

    We analyze T violation in neutrino oscillations by using perturbation methods with respect to {Delta}m{sub 21}{sup 2}L/2E and {delta}a(x)L/2E, where {delta}a(x) represents the matter density fluctuation from its average value. We find that the matter contribution to T violation arises from interference between {Delta}m{sub 21}{sup 2}L/2E and {delta}a(x)L/2E. To second order, the symmetric and asymmetric matter density fluctuations give effects to the sin{delta} (intrinsic) and the cos{delta} (fake) parts of T violation. We give their analytic forms and analyze the matter contribution to the sin{delta} and cos{delta} terms. We find that, for L=3000 km, both the symmetric and asymmetric matter density fluctuations give negligible contributions to T violation and that thus the constant (average) matter density gives a good approximation. On the other hand, we argue that, for L=7000 km or longer, T violation turns out to become very small due to the cancellation between the first and second order terms. This shows that the constant (average) matter approximation is not valid.

  16. Long baseline neutrino oscillation experiment at the AGS

    NASA Astrophysics Data System (ADS)

    Beavis, D.; Carroll, A.; Chiang, I.

    1995-04-01

    The authors present a design for a multidetector long baseline neutrino oscillation experiment at the BNL AGS. It has been approved by the BNL-HENP-PAC as AGS Experiment 889. The experiment will search for oscillations in the nu(sub mu) disappearance channel and the nu(sub mu) reversible reaction nu(sub e) appearance channel by means of four identical neutrino detectors located 1, 3, 24, and 68 km from the AGS neutrino source. Observed depletion of the nu(sub mu) flux (via quasi-elastic muon neutrino events, nu(sub mu)n yields mu(-)p) in the far detectors not attended by an observed proportional increase of the nu(sub e) flux (via quasi-elastic electron neutrino events, nu(sub e)n yields e(-)p) in those detectors will be prima facie evidence for the oscillation channel nu(sub mu) reversible reaction nu(sub tau). The experiment is directed toward exploration of the region of the neutrino oscillation parameters Delta m(exp 2) and sin(exp 2) 2 theta, suggested by the Kamiokande and IMB deep underground detectors but it will also explore a region more than two orders of magnitude larger than that of previous accelerator experiments. The experiment will run in a mode new to BNL. It will receive the fast extracted proton beam on the neutrino target approximately 20 hours per day when the AGS is not filling RHIC. A key aspect of the experimental design involves placing the detectors 1.5 degrees off the center line of the neutrino beam, which has the important advantage that the central value of the neutrino energy (approximately 1 GeV) and the beam spectral shape are, to a good approximation, the same in all four detectors. The proposed detectors are massive, imaging, water Cherenkov detectors similar in large part to the Kamiokande and IMB detectors. The design has profited from their decade-long experience, and from the detector designs of the forthcoming SNO and SuperKamiokande detectors.

  17. Experimental constraints on the neutrino oscillations and a simple model of three-flavor mixing

    SciTech Connect

    Raczka, P.A.; Szymacha, A. ); Tatur, S. )

    1994-02-01

    A simple model of neutrino mixing is considered which contains only one right-handed neutrino field coupled, via the mass term, to the three usual left-handed fields. This is the simplest model that allows for three-flavor neutrino oscillations. The existing experimental limits on the neutrino oscillations are used to obtain constraints on the two free-mixing parameters of the model. A specific sum rule relating the oscillation probabilities of different flavors is derived.

  18. Studying neutrino oscillations using quasi-elastic events in MINOS

    SciTech Connect

    Kumaratunga, Sujeewa Terasita; /Minnesota U.

    2008-02-01

    MINOS (Main Injector Neutrino Oscillation Search), is a long baseline neutrino experiment designed to search for neutrino oscillations using two detectors at Fermi National Accelerator Laboratory, IL (Near Detector) and Soudan, MN (Far Detector). It will study {nu}{sub {mu}} {yields} {nu}{sub {tau}} oscillations and make a measurement on the oscillation parameters, {Delta}m{sub 23}{sup 2} and sin{sup 2} 2{theta}{sub 23}, via a {nu}{sub {mu}} beam made at Fermilab. Charge current neutrino interactions in the MINOS detectors are of three types: quasi-elastic scattering (QEL), resonance scattering (RES) and deep inelastic scattering (DIS). Of these, quasi-elastic scattering leaves the cleanest signal with just one {mu} and one proton in the final state, thus rendering the reconstruction of the neutrino energy more accurate. This thesis will outline a method to separate QEL events from the others in the two detectors and perform a calculation of {Delta}m{sub 23}{sup 2} and sin{sup 2} 2{theta}{sub 23} using those events. The period under consideration was May 2005 to February 2006. The number of observed quasi-elastic events with energies below 10 GeV was 29, where the expected number was 60 {+-} 3. A fit to the energy distribution of these events gives {Delta}m{sub 23}{sup 2} = 2.91{sub -0.53}{sup +0.49}(stat){sub -0.09}{sup +0.08}(sys) x 10{sup -3} eV{sup 2} and sin{sup 2} 2{theta}{sub 23} = 0.990{sub -0.180}(stat){sub -0.030}(sys).

  19. Cosmologically safe eV-scale sterile neutrinos and improved dark matter structure.

    PubMed

    Dasgupta, Basudeb; Kopp, Joachim

    2014-01-24

    We show that sterile neutrinos with masses ≳1  eV, as motivated by several short baseline oscillation anomalies, can be consistent with cosmological constraints if they are charged under a hidden sector force mediated by a light boson. In this case, sterile neutrinos experience a large thermal potential that suppresses mixing between active and sterile neutrinos in the early Universe, even if vacuum mixing angles are large. Thus, the abundance of sterile neutrinos in the Universe remains very small, and their impact on big bang nucleosynthesis, cosmic microwave background, and large-scale structure formation is negligible. It is conceivable that the new gauge force also couples to dark matter, possibly ameliorating some of the small-scale structure problems associated with cold dark matter. PMID:24484131

  20. A study of muon neutrino to electron neutrino oscillations in the MINOS experiment

    SciTech Connect

    Yang, Tingjun

    2009-03-01

    The observation of neutrino oscillations (neutrino changing from one flavor to another) has provided compelling evidence that the neutrinos have non-zero masses and that leptons mix, which is not part of the original Standard Model of particle physics. The theoretical framework that describes neutrino oscillation involves two mass scales (Δmatm2 and Δmsol2), three mixing angles (θ12, θ23, and θ13) and one CP violating phase (δCP). Both mass scales and two of the mixing angles (θ12 and θ23) have been measured by many neutrino experiments. The mixing angle θ13, which is believed to be very small, remains unknown. The current best limit on θ13 comes from the CHOOZ experiment: θ13 < 11° at 90% C.L. at the atmospheric mass scale. δCP is also unknown today. MINOS, the Main Injector Neutrino Oscillation Search, is a long baseline neutrino experiment based at Fermi National Accelerator Laboratory. The experiment uses a muon neutrino beam, which is measured 1 km downstream from its origin in the Near Detector at Fermilab and then 735 km later in the Far Detector at the Soudan mine. By comparing these two measurements, MINOS can obtain parameters in the atmospheric sector of neutrino oscillations. MINOS has published results on the precise measurement of Δmatm2 and θ23 through the disappearance of muon neutrinos in the Far Detector and on a search for sterile neutrinos by looking for a deficit in the number of neutral current interactions seen in the Far Detector. MINOS also has the potential to improve the limit on the neutrino mixing angle θ13 or make the first measurement of its value by searching for an electron neutrino appearance signal in the Far Detector. This is the focus of the study presented in this thesis. We developed a neural network based algorithm to

  1. Neutrino Mass Hierarchy and Neutrino Oscillation Parameters with One Hundred Thousand Reactor Events

    NASA Astrophysics Data System (ADS)

    Capozzi, F.; Lisi, E.; Marrone, A.

    High-statistics reactor neutrino experiments at medium baselines will probe mass-mixing parameters governing neutrino oscillations at long wavelength, driven by the (δm2, θ12) and at short wavelength, driven by (Δm2, θ13).The interference between these two oscillations will allow to probe the mass hierarchy. The determination of the neutrino mass spectrum hierarchy, however, will require an unprecedented level of detector performance and collected statistics, and the control of several systematics at (sub)percent level. In this work we perform accurate theoretical calculations of reactor event spectra and refined statistical analyses to show that with O(105) reactor events, a typical sensitivity of ∼ 2σ could be achieved by an experiment such as JUNO. We also show the impact of the energy scale and spectrum shape systematics on the determination of the hierarchy.

  2. Panofsky Prize Lecture: Evidence for Oscillation of Atmospheric Neutrinos

    NASA Astrophysics Data System (ADS)

    Totsuka, Yoji

    2002-04-01

    Atmospheric neutrinos are decay products of pions and kaons (and of their decay products muons) produced by nuclear interactions of cosmic rays with air nuclei. Though their flux is not known well, only within 20 %, physics quantities that are independent of the flux uncertainty exist. The ratio of the number of muon neutrinos to the number of electron neutrinos is estimated to be accurate within 5 %. The other quantity is the shape of the zenith-angle distribution. Kamiokande and Super-Kamiokande are water Cherenkov detectors with 3,000 ton and 50,000 ton pure water, respectively. Kamiokande was operational in 1983 - 1996, and Super-K in 1996 - 2001 and 2003 - in future. We had already noted in 1988 that the observed μ/e ratio, which represented ν_mu/ν_e, was smaller by about 40 %. Later in 1994 we noted that the zenith angle distribution of muon neutrinos was strongly distorted, namely much fewer muons observed in the upward direction, while downward-going muons were what we expected. Electrons were quite normal. In 1996 Super-Kamiokande was ready. Its fiducial volume is 22.5 kton, much larger than Kamiokande's 1.04 kton. In 1998 based on 25.5 kton years of data we presented convincing results on the small μ/e ratio which was caused by fewer number of muons in the upward direction. The essential feature of the observed anomaly was that the disappearance of muon neutrinos depended strongly on their path length and on their energies. Electrons showed no anomaly within the experimental limit. These results were quantitatively and almost uniquely explained by oscillation of muon neutrinos to tau neutrinos, thus evidence for the finite but tiny mass of neutrinos.

  3. Wave-packet treatment of reactor neutrino oscillation experiments and its implications on determining the neutrino mass hierarchy

    NASA Astrophysics Data System (ADS)

    Chan, Yat-Long; Chu, M.-C.; Tsui, Ka Ming; Wong, Chan Fai; Xu, Jianyi

    2016-06-01

    We derive the neutrino flavor transition probabilities with the neutrino treated as a wave packet. The decoherence and dispersion effects from the wave-packet treatment show up as damping and phase-shifting of the plane-wave neutrino oscillation patterns. If the energy uncertainty in the initial neutrino wave packet is larger than around 0.01 of the neutrino energy, the decoherence and dispersion effects would degrade the sensitivity of reactor neutrino experiments to mass hierarchy measurement to lower than 3 σ confidence level.

  4. A combined muon-neutrino and electron-neutrino oscillation search at MiniBooNE

    SciTech Connect

    Monroe, Jocelyn R.; /Columbia U.

    2006-07-01

    MiniBooNE seeks to corroborate or refute the unconfirmed oscillation result from the LSND experiment. If correct, the result implies that a new kind of massive neutrino, with no weak interactions, participates in neutrino oscillations. MiniBooNE searches for {nu}{sub {mu}} {yields} {nu}{sub e} oscillations with the Fermi National Accelerator Laboratory 8 GeV beam line, which produces a {nu}{sub {mu}} beam with an average energy of {approx} 0.8 GeV and an intrinsic {nu}{sub e} content of 0.4%. The neutrino detector is a 6.1 m radius sphere filled with CH{sub 2}, viewed by 1540 photo-multiplier tubes, and located 541 m downstream from the source. This work focuses on the estimation of systematic errors associated with the neutrino flux and neutrino interaction cross section predictions, and in particular, on constraining these uncertainties using in-situ MiniBooNE {nu}{sub {mu}} charged current quasielastic (CCQE) scattering data. A data set with {approx} 100,000 events is identified, with 91% CCQE purity. This data set is used to measure several parameters of the CCQE cross section: the axial mass, the Fermi momentum, the binding energy, and the functional dependence of the axial form factor on four-momentum transfer squared. Constraints on the {nu}{sub {mu}} and {nu}{sub e} fluxes are derived using the {nu}{sub {mu}} CCQE data set. A Monte Carlo study of a combined {nu}{sub {mu}} disappearance and {nu}{sub e} appearance oscillation fit is presented, which improves the {nu}{sub {mu}} {yields} {nu}{sub e} oscillation sensitivity of MiniBooNE with respect to a {nu}{sub e} appearance-only fit by 1.2-1.5{sigma}, depending on the value of {Delta}m{sup 2}.

  5. Neutrino mass hierarchy and electron neutrino oscillation parameters with one hundred thousand reactor events

    NASA Astrophysics Data System (ADS)

    Capozzi, F.; Lisi, E.; Marrone, A.

    2014-01-01

    Proposed medium-baseline reactor neutrino experiments offer unprecedented opportunities to probe, at the same time, the mass-mixing parameters which govern νe oscillations both at long wavelength (δm2 and θ12) and at short wavelength (Δm2 and θ13), as well as their tiny interference effects related to the mass hierarchy (i.e., the relative sign of Δm2 and δm2). In order to take full advantage of these opportunities, precision calculations and refined statistical analyses of event spectra are required. In such a context, we revisit several input ingredients, including nucleon recoil in inverse beta decay and its impact on energy reconstruction and resolution, hierarchy and matter effects in the oscillation probability, spread of reactor distances, irreducible backgrounds from geoneutrinos and from far reactors, and degeneracies between energy scale and spectrum shape uncertainties. We also introduce a continuous parameter α, which interpolates smoothly between normal hierarchy (α =+1) and inverted hierarchy (α =-1). The determination of the hierarchy is then transformed from a test of hypothesis to a parameter estimation, with a sensitivity given by the distance of the true case (either α=+1 or α =-1) from the "undecidable" case (α=0). Numerical experiments are performed for the specific setup envisaged for the JUNO project, assuming a realistic sample of O(105) reactor events. We find a typical sensitivity of ˜2σ to the hierarchy in JUNO, which, however, can be challenged by energy scale and spectrum shape systematics, whose possible conspiracy effects are investigated. The prospective accuracy reachable for the other mass-mixing parameters is also discussed.

  6. Quantum simulations of neutrino oscillations and the Majorana equation

    NASA Astrophysics Data System (ADS)

    Noh, Changsuk; Rodriguez-Lara, Blas; Angelakis, Dimitris

    2013-03-01

    Two recent works on quantum simulations of relativistic equations are presented. The first is on neutrino oscillations with trapped ions as a generalization of Dirac equation simulation in 1 spatial dimension. It is shown that with two or more ion qubits it is possible to mimic the flavour oscillations of neutrinos. The second part is on quantum simulations of the Majorana equation based on the earlier work by Casanova et al. (PRX 1, 021018). We show that by decoupling the equation, it is possible to simulate with a smaller number of qubits given that one can perform complete tomography, including the spatial degrees of freedom. We acknowledge the financial support by the National Research Foundation and Ministry of Education, Singapore.

  7. Quantum mechanics of neutrino oscillations - hand waving for pedestrians.

    SciTech Connect

    Lipkin, H. J.

    1998-12-22

    Why Hand Waving? All calculations in books describe oscillations in time. But real experiments don't measure time. Hand waving is used to convert the results of a ''gedanken time experiment'' to the result of a real experiment measuring oscillations in space. Right hand waving gives the right answer; wrong hand waving gives the wrong answer. Many papers use wrong handwaving to get wrong answers. This talk explains how to do it right and also answers the following questions: (1) A neutrino which is a mixture of two mass eigenstates is emitted with muon in the decay of a pion at rest. This is a ''missing mass experiment'' where the muon energy determines the neutrino mass. Why are the two mass states coherent? (2) A neutrino which is a mixture of two mass eigenstates is emitted at time t=0. The two mass eigenstates move with different velocities and arrive at the detector at different times. Why are the two mass states coherent? (3) A neutrino is a mixture of two overlapping wave packets with different masses moving with different velocities. Will the wave packets eventually separate? If yes, when?

  8. Kinetic equations for baryogenesis via sterile neutrino oscillation

    NASA Astrophysics Data System (ADS)

    Asaka, Takehiko; Eijima, Sintaro; Ishida, Hiroyuki

    2012-02-01

    We investigate baryogenesis in the νMSM (neutrino Minimal Standard Model), which is the SM extended by three right-handed neutrinos with masses below the electroweak scale. The baryon asymmetry of the universe can be generated by the mechanism via flavor oscillation of right-handed (sterile) neutrinos which are responsible to masses of active neutrinos confirmed by various experiments. We present the kinetic equations for the matrix of densities of leptons which describe the generation of asymmetries. Especially, the momentum dependence of the matrix of densities is taken into account. By solving these equations numerically, it is found that the momentum distribution is significantly distorted from the equilibrium one, since the production for the modes with lower momenta k << T (T is the temperature of the universe) is enhanced, while suppressed for higher modes. As a result, the most important mode for the yields of sterile neutrinos as well as the baryon asymmetry is k simeq 2T, which is smaller than langlekrangle inferred from the thermal average. The comparison with the previous works is also discussed.

  9. Long-Range Lepton Flavor Interactions and Neutrino Oscillations

    SciTech Connect

    Davoudiasl, H.; Lee, H-S; Marciano, W.

    2011-03-31

    Recent results from the MINOS accelerator neutrino experiment suggest a possible difference between {nu}{sub {mu}} and {bar {nu}}{sub {mu}} disappearance oscillation parameters, which one may ascribe to a new long distance potential acting on neutrinos. As a specific example, we consider a model with gauged B - L{sub e} - 2L{sub {tau}} number which contains an extremely light new vector boson, m{sub Z}, < 10{sup -18} eV and extraordinarily weak coupling {alpha}{prime} {approx}< 10{sup -52}. In that case, differences between {nu}{sub {mu}} {yields} {nu}{sub {tau}} and {bar {nu}}{sub {mu}} {yields} {bar {nu}}{sub {tau}} oscillations can result from a long-range potential due to neutrons in the Earth and the Sun that distinguishes {nu}{sub {mu}} and {nu}{sub {tau}} on Earth, with a potential difference of {approx} 6 x 10{sup -14} eV, and changes sign for anti-neutrinos. We show that existing solar, reactor, accelerator, and atmospheric neutrino oscillation constraints can be largely accommodated for values of parameters that help explain the possible MINOS anomaly by this new physics, although there is some tension with atmospheric constraints. A long-range interaction, consistent with current bounds, could have very pronounced effects on atmospheric neutrino disappearance in the 20-50 GeV range that will be studied with the IceCube DeepCore array, currently in operation, and can have a significant effect on future high-precision long-baseline oscillation experiments which aim for {+-}1% sensitivity, in {nu}{sub {mu}} and {bar {nu}}{sub {mu}} disappearance, separately. Together, these experiments can extend the reach for new long-distance effects well beyond current bounds and test their relevance to the aforementioned MINOS anomaly. We also point out that long-range potentials originating from the Sun could lead to annual modulations of neutrino data at the percent level, due to the variation of the Earth-Sun distance. A similar phenomenology is shown to apply to

  10. Novel Frameworks for Dark Matter and Neutrino Masses

    NASA Astrophysics Data System (ADS)

    Schmidt, Daniel

    2013-12-01

    The established light neutrino masses and the Dark Matter of the Universe both require physics beyond the Standard Model for their theoretical explanation. Models that provide a common framework for these two issues are very attractive. In particular, radiative mechanisms naturally yield light neutrino masses due to loop suppression factors. These corrections can comprise a link to the physics of Dark Matter. In most considerations, the Dark Matter relic density is produced by freeze-out. This thesis contributes to the elds of radiative neutrino masses and frozen-out Dark Matter. In detail, it is shown that in the Ma-model, right-handed neutrino Dark Matter can be directly detected by photon exchange at one-loop level. The Zee{Babu-model is extended such that it enjoys a global symmetry based on baryon and lepton number. This symmetry generates light neutrino masses and a mass for a stable Dark Matter particle by its spontaneous breaking. Moreover, this thesis provides a new production mechanism for keV sterile neutrino Dark Mattetr, which is based on the freeze-in scenario. In particular, keV sterile neutrino Dark Matter produced by the decay of a frozen-in scalar is investigated.

  11. Sterile neutrino dark matter: Weak interactions in the strong coupling epoch

    NASA Astrophysics Data System (ADS)

    Venumadhav, Tejaswi; Cyr-Racine, Francis-Yan; Abazajian, Kevork N.; Hirata, Christopher M.

    2016-08-01

    We perform a detailed study of the weak interactions of standard model neutrinos with the primordial plasma and their effect on the resonant production of sterile neutrino dark matter. Motivated by issues in cosmological structure formation on small scales, and reported x-ray signals that could be due to sterile neutrino decay, we consider 7 keV-scale sterile neutrinos. Oscillation-driven production of such sterile neutrinos occurs at temperatures T ≳100 MeV , where we study two significant effects of weakly charged species in the primordial plasma: (1) the redistribution of an input lepton asymmetry; (2) the opacity for active neutrinos. We calculate the redistribution analytically above and below the quark-hadron transition, and match with lattice QCD calculations through the transition. We estimate opacities due to tree-level processes involving leptons and quarks above the quark-hadron transition, and the most important mesons below the transition. We report final sterile neutrino dark matter phase space densities that are significantly influenced by these effects, and yet relatively robust to remaining uncertainties in the nature of the quark-hadron transition. We also provide transfer functions for cosmological density fluctuations with cutoffs at k ≃10 h Mpc-1 , that are relevant to galactic structure formation.

  12. Nonstandard neutrino-neutrino refractive effects in dense neutrino gases

    SciTech Connect

    Blennow, Mattias; Mirizzi, Alessandro; Serpico, Pasquale D.; /CERN /Fermilab

    2008-10-01

    We investigate the effects of nonstandard four-fermion neutrino-neutrino interactions on the flavor evolution of dense neutrino gases. We find that in the regions where the neutrino-neutrino refractive index leads to collective flavor oscillations, the presence of new neutrino interactions can produce flavor equilibration in both normal and inverted neutrino mass hierarchy. In realistic supernova environments, these effects are significant if the nonstandard neutrino-neutrino interaction strength is comparable to the one expected in the standard case, dominating the ordinary matter potential. However, very small nonstandard neutrino-neutrino couplings are enough to trigger the usual collective neutrino flavor transformations in the inverted neutrino mass hierarchy, even if the mixing angle vanishes exactly.

  13. SHM of galaxies embedded within condensed neutrino matter

    NASA Astrophysics Data System (ADS)

    Morley, P. D.; Buettner, D. J.

    2015-11-01

    We re-examine the question of condensed neutrino objects (degenerate neutrino matter) based on new calculations. The potential show-stopper issue of free-streaming light neutrinos inhibiting galaxy formation is addressed. We compute the period associated with simple harmonic motion (SHM) of galaxies embedded within condensed neutrino objects. For observational consequences, we examine the rotational velocities of embedded galaxies using Hickson 88A (N6978) as the prototype. Finally, we point out that degenerate neutrino objects repel each other in overlap and we compute directly the repulsive force between two interesting and relevant configurations. An outstanding issue is whether the accompanying tidal forces generated by condensed neutrino matter on embedded galaxies give rise to galactic bulges and halos.

  14. Adiabatic and nonadiabatic perturbation theory for coherence vector description of neutrino oscillations

    NASA Astrophysics Data System (ADS)

    Hollenberg, Sebastian; Päs, Heinrich

    2012-01-01

    The standard wave function approach for the treatment of neutrino oscillations fails in situations where quantum ensembles at a finite temperature with or without an interacting background plasma are encountered. As a first step to treat such phenomena in a novel way, we propose a unified approach to both adiabatic and nonadiabatic two-flavor oscillations in neutrino ensembles with finite temperature and generic (e.g., matter) potentials. Neglecting effects of ensemble decoherence for now, we study the evolution of a neutrino ensemble governed by the associated quantum kinetic equations, which apply to systems with finite temperature. The quantum kinetic equations are solved formally using the Magnus expansion and it is shown that a convenient choice of the quantum mechanical picture (e.g., the interaction picture) reveals suitable parameters to characterize the physics of the underlying system (e.g., an effective oscillation length). It is understood that this method also provides a promising starting point for the treatment of the more general case in which decoherence is taken into account.

  15. Neutrino oscillation physics potential of the T2K experiment

    NASA Astrophysics Data System (ADS)

    T2K Collaboration; Abe, K.; Adam, J.; Aihara, H.; Akiri, T.; Andreopoulos, C.; Aoki, S.; Ariga, A.; Assylbekov, S.; Autiero, D.; Barbi, M.; Barker, G. J.; Barr, G.; Bartet-Friburg, P.; Bass, M.; Batkiewicz, M.; Bay, F.; Berardi, V.; Berger, B. E.; Berkman, S.; Bhadra, S.; Blaszczyk, F. d. M.; Blondel, A.; Bojechko, C.; Bordoni, S.; Boyd, S. B.; Brailsford, D.; Bravar, A.; Bronner, C.; Buchanan, N.; Calland, R. G.; Caravaca Rodríguez, J.; Cartwright, S. L.; Castillo, R.; Catanesi, M. G.; Cervera, A.; Cherdack, D.; Christodoulou, G.; Clifton, A.; Coleman, J.; Coleman, S. J.; Collazuol, G.; Connolly, K.; Cremonesi, L.; Dabrowska, A.; Danko, I.; Das, R.; Davis, S.; de Perio, P.; de Rosa, G.; Dealtry, T.; Dennis, S. R.; Densham, C.; Dewhurst, D.; Di Lodovico, F.; Di Luise, S.; Drapier, O.; Duboyski, T.; Duffy, K.; Dumarchez, J.; Dytman, S.; Dziewiecki, M.; Emery-Schrenk, S.; Ereditato, A.; Escudero, L.; Feusels, T.; Finch, A. J.; Fiorentini, G. A.; Friend, M.; Fujii, Y.; Fukuda, Y.; Furmanski, A. P.; Galymov, V.; Garcia, A.; Giffin, S.; Giganti, C.; Gilje, K.; Goeldi, D.; Golan, T.; Gonin, M.; Grant, N.; Gudin, D.; Hadley, D. R.; Haegel, L.; Haesler, A.; Haigh, M. D.; Hamilton, P.; Hansen, D.; Hara, T.; Hartz, M.; Hasegawa, T.; Hastings, N. C.; Hayashino, T.; Hayato, Y.; Hearty, C.; Helmer, R. L.; Hierholzer, M.; Hignight, J.; Hillairet, A.; Himmel, A.; Hiraki, T.; Hirota, S.; Holeczek, J.; Horikawa, S.; Huang, K.; Ichikawa, A. K.; Ieki, K.; Ieva, M.; Ikeda, M.; Imber, J.; Insler, J.; Irvine, T. J.; Ishida, T.; Ishii, T.; Iwai, E.; Iwamoto, K.; Iyogi, K.; Izmaylov, A.; Jacob, A.; Jamieson, B.; Johnson, R. A.; Johnson, S.; Jo, J. H.; Jonsson, P.; Jung, C. K.; Kabirnezhad, M.; Kaboth, A. C.; Kajita, T.; Kakuno, H.; Kameda, J.; Kanazawa, Y.; Karlen, D.; Karpikov, I.; Katori, T.; Kearns, E.; Khabibullin, M.; Khotjantsev, A.; Kielczewska, D.; Kikawa, T.; Kilinski, A.; Kim, J.; King, S.; Kisiel, J.; Kitching, P.; Kobayashi, T.; Koch, L.; Koga, T.; Kolaceke, A.; Konaka, A.; Kormos, L. L.; Korzenev, A.; Koshio, Y.; Kropp, W.; Kubo, H.; Kudenko, Y.; Kurjata, R.; Kutter, T.; Lagoda, J.; Laihem, K.; Lamont, I.; Larkin, E.; Laveder, M.; Lawe, M.; Lazos, M.; Lindner, T.; Lister, C.; Litchfield, R. P.; Longhin, A.; Lopez, J. P.; Ludovici, L.; Magaletti, L.; Mahn, K.; Malek, M.; Manly, S.; Marino, A. D.; Marteau, J.; Martin, J. F.; Martins, P.; Martynenko, S.; Maruyama, T.; Matveev, V.; Mavrokoridis, K.; Mazzucato, E.; McCarthy, M.; McCauley, N.; McFarland, K. S.; McGrew, C.; Mefodiev, A.; Metelko, C.; Mezzetto, M.; Mijakowski, P.; Miller, C. A.; Minamino, A.; Mineev, O.; Missert, A.; Miura, M.; Moriyama, S.; Mueller, Th. A.; Murakami, A.; Murdoch, M.; Murphy, S.; Myslik, J.; Nakadaira, T.; Nakahata, M.; Nakamura, K. G.; Nakamura, K.; Nakayama, S.; Nakaya, T.; Nakayoshi, K.; Nantais, C.; Nielsen, C.; Nirkko, M.; Nishikawa, K.; Nishimura, Y.; Nowak, J.; O'Keeffe, H. M.; Ohta, R.; Okumura, K.; Okusawa, T.; Oryszczak, W.; Oser, S. M.; Ovsyannikova, T.; Owen, R. A.; Oyama, Y.; Palladino, V.; Palomino, J. L.; Paolone, V.; Payne, D.; Perevozchikov, O.; Perkin, J. D.; Petrov, Y.; Pickard, L.; Pinzon Guerra, E. S.; Pistillo, C.; Plonski, P.; Poplawska, E.; Popov, B.; Posiadala-Zezula, M.; Poutissou, J.-M.; Poutissou, R.; Przewlocki, P.; Quilain, B.; Radicioni, E.; Ratoff, P. N.; Ravonel, M.; Rayner, M. A. M.; Redij, A.; Reeves, M.; Reinherz-Aronis, E.; Riccio, C.; Rodrigues, P. A.; Rojas, P.; Rondio, E.; Roth, S.; Rubbia, A.; Ruterbories, D.; Sacco, R.; Sakashita, K.; Sánchez, F.; Sato, F.; Scantamburlo, E.; Scholberg, K.; Schoppmann, S.; Schwehr, J.; Scott, M.; Seiya, Y.; Sekiguchi, T.; Sekiya, H.; Sgalaberna, D.; Shah, R.; Shaker, F.; Shiozawa, M.; Short, S.; Shustrov, Y.; Sinclair, P.; Smith, B.; Smy, M.; Sobczyk, J. T.; Sobel, H.; Sorel, M.; Southwell, L.; Stamoulis, P.; Steinmann, J.; Still, B.; Suda, Y.; Suzuki, A.; Suzuki, K.; Suzuki, S. Y.; Suzuki, Y.; Tacik, R.; Tada, M.; Takahashi, S.; Takeda, A.; Takeuchi, Y.; Tanaka, H. K.; Tanaka, H. A.; Tanaka, M. M.; Terhorst, D.; Terri, R.; Thompson, L. F.; Thorley, A.; Tobayama, S.; Toki, W.; Tomura, T.; Totsuka, Y.; Touramanis, C.; Tsukamoto, T.; Tzanov, M.; Uchida, Y.; Vacheret, A.; Vagins, M.; Vasseur, G.; Wachala, T.; Waldron, A. V.; Wakamatsu, K.; Walter, C. W.; Wark, D.; Warzycha, W.; Wascko, M. O.; Weber, A.; Wendell, R.; Wilkes, R. J.; Wilking, M. J.; Wilkinson, C.; Williamson, Z.; Wilson, J. R.; Wilson, R. J.; Wongjirad, T.; Yamada, Y.; Yamamoto, K.; Yanagisawa, C.; Yano, T.; Yen, S.; Yershov, N.; Yokoyama, M.; Yoshida, K.; Yuan, T.; Yu, M.; Zalewska, A.; Zalipska, J.; Zambelli, L.; Zaremba, K.; Ziembicki, M.; Zimmerman, E. D.; Zito, M.; Żmuda, J.

    2015-04-01

    The observation of the recent electron neutrino appearance in a muon neutrino beam and the high-precision measurement of the mixing angle θ _{13} have led to a re-evaluation of the physics potential of the T2K long-baseline neutrino oscillation experiment. Sensitivities are explored for CP violation in neutrinos, non-maximal sin ^22θ _{23}, the octant of θ _{23}, and the mass hierarchy, in addition to the measurements of δ _{CP}, sin ^2θ _{23}, and Δ m^2_{32}, for various combinations of ν-mode and bar {ν }-mode data-taking. With an exposure of 7.8× 10^{21} protons-on-target, T2K can achieve 1σ resolution of 0.050 (0.054) on sin ^2θ _{23} and 0.040 (0.045)× 10^{-3} {eV}^2 on Δ m^2_{32} for 100% (50%) neutrino beam mode running assuming sin ^2θ _{23}=0.5 and Δ m^2_{32} = 2.4× 10^{-3} eV^2. T2K will have sensitivity to the CP-violating phase δ _{CP} at 90% C.L. or better over a significant range. For example, if sin ^22θ _{23} is maximal (i.e. θ _{23}=45°) the range is -115° < δ _{CP}< -60° for normal hierarchy and +50° < δ _{CP}< +130° for inverted hierarchy. When T2K data is combined with data from the NOνA experiment, the region of oscillation parameter space where there is sensitivity to observe a non-zero δ _{CP} is substantially increased compared to if each experiment is analyzed alone.

  16. Residual Symmetries Applied to Neutrino Oscillations at NO ν A and T2K

    DOE PAGESBeta

    Hanlon, Andrew D.; Repko, Wayne W.; Dicus, Duane A.

    2014-01-01

    Tmore » he results previously obtained from the model-independent application of a generalized hidden horizontal Z 2 symmetry to the neutrino mass matrix are updated using the latest global fits for the neutrino oscillation parameters.he resulting prediction for the Dirac CP phase δ D is in agreement with recent results from2K.he distribution for the Jarlskog invariant J ν has become sharper and appears to be approaching a particular region.he approximate effects of matter on long-baseline neutrino experiments are explored, and it is shown how the weak interactions between the neutrinos and the particles that make up the Earth can help to determine the mass hierarchy. A similar strategy is employed to show how NO ν A and2K could determine the octant of θ a ( ≡ θ 23 ) . Finally, the exact effects of matter are obtained numerically in order to make comparisons with the form of the approximate solutions. From this analysis there emerge some interesting features of the effective mass eigenvalues.« less

  17. 11B and constraints on neutrino oscillations and spectra from neutrino nucleosynthesis.

    PubMed

    Austin, Sam M; Heger, Alexander; Tur, Clarisse

    2011-04-15

    We study the sensitivity to variations in the triple-alpha and 12C(α,γ)16O reaction rates, of the yield of the neutrino-process isotopes 7Li, 11B, 19F, 138La, and 180Ta in core-collapse supernovae. Compared to solar abundances, less than 15% of 7Li, about 25%-80% of 19F, and about half of 138La is produced in these stars. Over a range of ±2σ for each helium-burning rate, 11B is overproduced and the yield varies by an amount larger than the variation caused by the effects of neutrino oscillations. The total 11B yield, however, may eventually provide constraints on supernova neutrino spectra. PMID:21568548

  18. Neutrino mass, dark matter, and Baryon asymmetry via TeV-scale physics without fine-tuning.

    PubMed

    Aoki, Mayumi; Kanemura, Shinya; Seto, Osamu

    2009-02-01

    We propose an extended version of the standard model, in which neutrino oscillation, dark matter, and the baryon asymmetry of the Universe can be simultaneously explained by the TeV-scale physics without assuming a large hierarchy among the mass scales. Tiny neutrino masses are generated at the three-loop level due to the exact Z2 symmetry, by which the stability of the dark matter candidate is guaranteed. The extra Higgs doublet is required not only for the tiny neutrino masses but also for successful electroweak baryogenesis. The model provides discriminative predictions especially in Higgs phenomenology, so that it is testable at current and future collider experiments. PMID:19257506

  19. Neutrino Oscillations, the Higgs Boson, and the Private Higgs Model

    NASA Astrophysics Data System (ADS)

    BenTov, Jonathan

    "CESR, PEP, PETRA, ISABELLE, p-bar p colliders, LEP, the tevatron, and ep machines are at various levels of design or construction. They will study the properties of b-matter, see weak intermediaries, and perhaps find the t-quark and the Higgs boson. Never before was there such a bestiary waiting to be discovered; and what surprises will be found!" - S. L. Glashow ("The Future of Elementary Particle Physics," Quarks and Leptons, NATO Advanced Study Institutes Series Volume 61, 1980, pp 687-713) The situation in 1980 was clearly different from the present situation in 2013, in which we face the very real possibilty that no new degrees of freedom will ever again be within reach of a collider. In an intriguing twist of fate, this very fact results in a sharp paradox for fundamental physics: the Higgs mass should be MP/m h ˜ 1017 times larger than it actually is, and the vacuum energy density of the universe should be (M P/A)4 ˜ (1031)4 times larger than it actually is, and apparently nature refuses to give us any more clues as to why. These together are what I would call the main problem of 21st century physics: despite all of the predictive success of particle physics so far, we must find a way to suitably modify the rules of quantum field theory, lest we accept the unproductive defeatist attitude that our universe is simply fine-tuned. In the meantime, there is much interesting work to be done in more "traditional" particle physics: we have learned that neutrinos actually have tiny but nonzero masses, which is clear and unambiguous evidence for physics beyond the Standard Model. I will allocate the first third of this document to phenomena related to neutrino oscillations. In particular, I would like to argue that some of the apparent differences between neutrino mixing and quark mixing are to an extent illusory, and actually many aspects of the two sectors can be understood in a coherent framework for extending the Standard Model. The remaining two-thirds of this

  20. Flavor evolution of supernova neutrinos in turbulent matter

    SciTech Connect

    Lund, Tina; Kneller, James P.

    2014-01-01

    The neutrino signal from the next galactic supernova carries with it an enormous amount of information on the explosion mechanism of a core-collapse supernova, as well as on the stellar progenitor and on the neutrinos themselves. In order to extract this information we need to know how the neutrino flavor evolves over time due to the interplay of neutrino self-interactions and matter effects. Additional turbulence in the supernova matter may impart its own signatures on the neutrino spectrum, and could partly obscure the imprints of collective and matter effects. We investigate the neutrino flavor evolution due to neutrino self-interactions, matter effects due to the shock wave propagation, and turbulence in three progenitors with masses of 8.8 M⊙, 10.8 M⊙ and 18.0 M⊙. In the lightest progenitor we find that the impact of moderate turbulence of the order 10% is limited and occurs only briefly early on. This makes the signatures of collective and matter interactions relatively straightforward to interpret. Similarly, with moderate turbulence the two heavier progenitors exhibit only minor changes in the neutrino spectrum, and collective and matter signatures persists. However, when the turbulence is increased to 30% and 50% the high density matter resonance features in the neutrino spectrum get obscured, while new features arise in the low density resonance channel and in the non-resonant channels. We conclude that with moderate amounts of turbulence spectral features of collective and matter interactions survive in all three progenitors. For the larger amounts of turbulence in the 10.8 M⊙ and 18.0 M⊙ progenitor new features arise, as others disappear.

  1. A search for muon neutrino to electron neutrino oscillations in the MINOS Experiment

    SciTech Connect

    Ochoa Ricoux, Juan Pedro

    2009-01-01

    We perform a search for vμ → ve oscillations, a process which would manifest a nonzero value of the θ13 mixing angle, in the MINOS long-baseline neutrino oscillation experiment. The analysis consists of searching for an excess of ve charged-current candidate events over the predicted backgrounds, made mostly of neutral-current events with high electromagnetic content. A novel technique to select electron neutrino events is developed, which achieves an improved separation between the signal and the backgrounds, and which consequently yields a better reach in θ13. The backgrounds are predicted in the Far Detector from Near Detector measurements. An excess is observed in the Far Detector data over the predicted backgrounds, which is consistent with the background-only hypothesis at 1.2 standard deviations.

  2. A measurement of the atmospheric neutrino flux and oscillation parameters at the Sudbury Neutrino Observatory

    NASA Astrophysics Data System (ADS)

    Sonley, Thomas John

    Through-going muon events are analyzed as a function of their direction of travel through the Sudbury Neutrino Observatory. Based on simulations and previous measurements, muons with a zenith angle of -1 < cos( [straight theta] zenith ) < 0.4 are selected as atmospheric neutrino-induced muons. A two- neutrino analysis of these events agrees with the oscillation parameters observed by the Super Kamiokande and Minos experiments, and places 2-D limits of [Special characters omitted.] at the 68% confidence level, and sin 2 (2 [straight theta] 23 ) > 0.33 at the 90% confidence level. In addition, the flux of atmospheric neutrinos is measured in 1-D with a 68% confidence level to be [Special characters omitted.] times the prediction of the BARTOL group based on SNO data alone, and 1.27± 0.09 times the prediction when the oscillation parameters are constrained by the Super Kamiokande and Minos results. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139- 4307. Ph. 617-253-5668; Fax 617-253-1690.)

  3. Neutrino oscillations: what do we know about θ13

    NASA Astrophysics Data System (ADS)

    Ernst, David

    2008-10-01

    The phenomenon of neutrino oscillations is reviewed. A new analysis tool for the recent, more finely binned Super-K atmospheric data is outlined. This analysis incorporates the full three-neutrino oscillation probabilities, including the mixing angle θ13 to all orders, and a full three- neutrino treatment of the Earth's MSW effect. Combined with the K2K, MINOS, and CHOOZ data, the upper bound on θ13 is found to arise from the Super-K atmospheric data, while the lower bound arises from CHOOZ. This is caused by the linear in θ13 terms which are of particualr importance in the region L/E>10^4 m/MeV where the sub-dominant expansion is not convergent. In addition, the enhancement of θ12 by the Earth MSW effect is found to be important for this result. The best fit value of θ13 is found to be (statistically insignificantly) negative and given by θ13=-0.07^+0.18-0.11. In collaboration with Jesus Escamilla, Vanderbilt University and David Latimer, University of Kentucky.

  4. Neutrino spin dynamics in dense matter and electromagnetic field

    NASA Astrophysics Data System (ADS)

    Arbuzova, E. V.

    2008-11-01

    We discuss behavior of massive Dirac neutrino with anomalous magnetic moment propagating through dense magnetized matter on the basis of the obtained solutions of the Dirac-Pauli equation. This system of solutions demonstrates spin rotating properties and represents pure neutrino states.

  5. Light dark matter detection prospects at neutrino experiments

    NASA Astrophysics Data System (ADS)

    Kumar, Jason; Learned, John G.; Smith, Stefanie

    2009-12-01

    We consider the prospects for the detection of relatively light dark matter through direct annihilation to neutrinos. We specifically focus on the detection possibilities of water Cherenkov and liquid scintillator neutrino detection devices. We find, in particular, that liquid scintillator detectors may potentially provide excellent detection prospects for dark matter in the 4-10 GeV mass range. These experiments can provide excellent corroborative checks of the DAMA/LIBRA annual modulation signal, but may yield results for low mass dark matter in any case. We identify important tests of the ratio of electron to muon neutrino events (and neutrino versus antineutrino events), which discriminate against background atmospheric neutrinos. In addition, the fraction of events which arise from muon neutrinos or antineutrinos (Rμ and Rμ¯) can potentially yield information about the branching fractions of hypothetical dark matter annihilations into different neutrino flavors. These results apply to neutrinos from secondary and tertiary decays as well, but will suffer from decreased detectability.

  6. Impact of Neutrino Flavor Oscillations on the Neutrino-Driven Wind Nucleosynthesis of an Electron-Capture Supernova

    NASA Astrophysics Data System (ADS)

    Pllumbi, Else; Tamborra, Irene; Wanajo, Shinya; Janka, Hans-Thomas; Hüdepohl, Lorenz

    2015-08-01

    Neutrino oscillations, especially to light sterile states, can affect nucleosynthesis yields because of their possible feedback effect on the electron fraction (Ye). For the first time, we perform nucleosynthesis calculations for neutrino-driven wind trajectories from the neutrino-cooling phase of an 8.8 {M}⊙ electron-capture supernova (SN), whose hydrodynamic evolution was computed in spherical symmetry with sophisticated neutrino transport and whose Ye evolution was post-processed by including neutrino oscillations between both active and active-sterile flavors. We also take into account the α-effect as well as weak magnetism and recoil corrections in the neutrino absorption and emission processes. We observe effects on the Ye evolution that depend in a subtle way on the relative radial positions of the sterile Mikheyev-Smirnov-Wolfenstein resonances, on collective flavor transformations, and on the formation of α particles. For the adopted SN progenitor, we find that neutrino oscillations, also to a sterile state with eV mass, do not significantly affect the element formation and in particular cannot make the post-explosion wind outflow neutron-rich enough to activate a strong r-process. Our conclusions become even more robust when, in order to mimic equation-of-state-dependent corrections due to nucleon potential effects in the dense-medium neutrino opacities, six cases with reduced Ye in the wind are considered. In these cases, despite the conversion of active neutrinos to sterile neutrinos, Ye increases or is not significantly lowered compared to the values obtained without oscillations and active flavor transformations. This is a consequence of a complicated interplay between sterile-neutrino production, neutrino-neutrino interactions, and α-effect.

  7. Constraint on neutrino decay with medium-baseline reactor neutrino oscillation experiments

    NASA Astrophysics Data System (ADS)

    Abrahão, Thamys; Minakata, Hisakazu; Nunokawa, Hiroshi; Quiroga, Alexander A.

    2015-11-01

    The experimental bound on lifetime of ν 3, the neutrino mass eigenstate with the smallest ν e component, is much weaker than those of ν 1 and ν 2 by many orders of magnitude to which the astrophysical constraints apply. We argue that the future reactor neutrino oscillation experiments with medium-baseline (˜50 km), such as JUNO or RENO-50, has the best chance of placing the most stringent constraint on ν3 lifetime among all neutrino experiments which utilize the artificial source neutrinos. Assuming decay into invisible states, we show by a detailed χ 2 analysis that the ν 3 lifetime divided by its mass, τ 3 /m 3, can be constrained to be τ 3 /m 3 > 7 .5 (5 .5) × 10-11 s/eV at 95% (99%) C.L. by 100 kt·years exposure by JUNO. It may be further improved to the level comparable to the atmospheric neutrino bound by its longer run. We also discuss to what extent ν 3 decay affects mass-ordering determination and precision measurements of the mixing parameters.

  8. Dark matter vs. neutrinos: the effect of astrophysical uncertainties and timing information on the neutrino floor

    SciTech Connect

    Davis, Jonathan H.

    2015-03-09

    Future multi-tonne Direct Detection experiments will be sensitive to solar neutrino induced nuclear recoils which form an irreducible background to light Dark Matter searches. Indeed for masses around 6 GeV the spectra of neutrinos and Dark Matter are so similar that experiments are said to run into a neutrino floor, for which sensitivity increases only marginally with exposure past a certain cross section. In this work we show that this floor can be overcome using the different annual modulation expected from solar neutrinos and Dark Matter. Specifically for cross sections below the neutrino floor the DM signal is observable through a phase shift and a smaller amplitude for the time-dependent event rate. This allows the exclusion power to be improved by up to an order of magnitude for large exposures. In addition we demonstrate that, using only spectral information, the neutrino floor exists over a wider mass range than has been previously shown, since the large uncertainties in the Dark Matter velocity distribution make the signal spectrum harder to distinguish from the neutrino background. However for most velocity distributions it can still be surpassed using timing information, and so the neutrino floor is not an absolute limit on the sensitivity of Direct Detection experiments.

  9. Solar neutrinos and neutrino physics

    NASA Astrophysics Data System (ADS)

    Maltoni, Michele; Smirnov, Alexei Yu.

    2016-04-01

    Solar neutrino studies triggered and largely motivated the major developments in neutrino physics in the last 50 years. The theory of neutrino propagation in different media with matter and fields has been elaborated. It includes oscillations in vacuum and matter, resonance flavor conversion and resonance oscillations, spin and spin-flavor precession, etc. LMA MSW has been established as the true solution of the solar neutrino problem. Parameters θ_{12} and Δ m 2 21 have been measured; θ_{13} extracted from the solar data is in agreement with results from reactor experiments. Solar neutrino studies provide a sensitive way to test theory of neutrino oscillations and conversion. Characterized by long baseline, huge fluxes and low energies they are a powerful set-up to search for new physics beyond the standard 3 ν paradigm: new neutrino states, sterile neutrinos, non-standard neutrino interactions, effects of violation of fundamental symmetries, new dynamics of neutrino propagation, probes of space and time. These searches allow us to get stringent, and in some cases unique bounds on new physics. We summarize the results on physics of propagation, neutrino properties and physics beyond the standard model obtained from studies of solar neutrinos.

  10. Status of the San Onofre neutrino oscillation experiment

    SciTech Connect

    Hertenberger, R.; Chen, M.; Henrikson, H.; Mascarenhas, M.

    1993-10-01

    The San Onofre experiment is designed to investigate neutrino oscillations in the parameter space suggested by the atmospheric neutrino problem. A liquid-scintillator-based 12-ton detector will be installed at 650 m from the two units of the San Onofre power reactor. For the detection of the {anti v}{sub e}-induced inverse beta decay reaction a novel four-fold coincidence method is used allowing effective suppression of background at the relatively low shallow depth of 25 mwe. We report on the experimental method and demonstrate its feasibility by presenting results from recent test experiments performed with a prototype detector in the Tendon Gallery of the San Onofre Unit 2 reactor.