Sample records for neutrino nucleon scattering

  1. Neutrino Nucleon Elastic Scattering in MiniBooNE

    NASA Astrophysics Data System (ADS)

    Cox, D. Christopher

    2007-12-01

    Neutrino nucleon elastic scattering νN→νN is a fundamental process of the weak interaction, and can be used to study the structure of the nucleon. This is the third largest scattering process in MiniBooNE comprising ˜15% of all neutrino interactions. Analysis of this sample has yielded a neutral current elastic differential cross section as a function of Q2 that agrees within errors to model predictions.

  2. Nucleon-nucleon scattering in a strong external magnetic field and the neutrino emissivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bavarsad, E.; Mohammadi, R.; Haghighat, M.

    The nucleon-nucleon scattering in a large magnetic background is considered to find its potential to change the neutrino emissivity of the neutron stars. For this purpose, we consider the one-pion-exchange approximation to find the nucleon-nucleon (NN) cross section in a background field as large as 10{sup 15}-10{sup 18} G. We show that the NN cross section in neutron stars with temperatures in the range 0.1-5 MeV can be changed up to the 1 order of magnitude with respect to the one in the absence of the magnetic field. In the limit of the soft neutrino emission, the neutrino emissivity canmore » be written in terms of the NN-scattering amplitude; therefore, the large magnetic fields can dramatically change the neutrino emissivity of the neutron stars as well.« less

  3. Neutrino-Nucleon Deep Inelastic Scattering in MINERvA

    NASA Astrophysics Data System (ADS)

    Norrick, Anne; Minerva Collaboration

    2015-04-01

    Neutrino-Nucleon Deep Inelastic Scattering (DIS) events provide a probe into the structure of the nucleus that cannot be accessed via charged lepton-nucleon interactions. The MINERvA experiment is stationed in the Neutrinos from the Main Injector (NuMI) beam line at Fermi National Accelerator Laboratory. The projected sensitivity of nuclear structure function analyses using MINERvA's suite of nuclear targets (C, CH, Fe and Pb) in the upgraded 6 GeV neutrino energy NuMI beam will be explored, and their impact discussed.

  4. Tau lepton polarization in quasielastic neutrino-nucleon scattering

    NASA Astrophysics Data System (ADS)

    Kuzmin, Konstantin S.; Lyubushkin, Vladimir V.; Naumov, Vadim A.

    2005-02-01

    We derive structure functions for the quasielastic production of octet baryons in νn and νp interactions and study the polarization of τ leptons produced in the ΔY=0 reactions. Possible impact of the charged second-class currents is investigated by adopting a simple phenomenological parametrization for the nonstandard scalar and tensor nucleon form factors. Our choice of the unknown parameters is made to satisfy the limits obtained in the (anti)neutrino scattering experiments and rigid restrictions derived from the nuclear structure studies.

  5. Neutrino-driven Explosion of a 20 Solar-mass Star in Three Dimensions Enabled by Strange-quark Contributions to Neutrino-Nucleon Scattering

    NASA Astrophysics Data System (ADS)

    Melson, Tobias; Janka, Hans-Thomas; Bollig, Robert; Hanke, Florian; Marek, Andreas; Müller, Bernhard

    2015-08-01

    Interactions with neutrons and protons play a crucial role for the neutrino opacity of matter in the supernova core. Their current implementation in many simulation codes, however, is rather schematic and ignores not only modifications for the correlated nuclear medium of the nascent neutron star, but also free-space corrections from nucleon recoil, weak magnetism, or strange quarks, which can easily add up to changes of several 10% for neutrino energies in the spectral peak. In the Garching supernova simulations with the Prometheus-Vertex code, such sophistications have been included for a long time except for the strange-quark contributions to the nucleon spin, which affect neutral-current neutrino scattering. We demonstrate on the basis of a 20 {M}⊙ progenitor star that a moderate strangeness-dependent contribution of {g}{{a}}{{s}}=-0.2 to the axial-vector coupling constant {g}{{a}}≈ 1.26 can turn an unsuccessful three-dimensional (3D) model into a successful explosion. Such a modification is in the direction of current experimental results and reduces the neutral-current scattering opacity of neutrons, which dominate in the medium around and above the neutrinosphere. This leads to increased luminosities and mean energies of all neutrino species and strengthens the neutrino-energy deposition in the heating layer. Higher nonradial kinetic energy in the gain layer signals enhanced buoyancy activity that enables the onset of the explosion at ˜300 ms after bounce, in contrast to the model with vanishing strangeness contributions to neutrino-nucleon scattering. Our results demonstrate the close proximity to explosion of the previously published, unsuccessful 3D models of the Garching group.

  6. Vector and Axial Form Factors Applied to Neutrino Quasielastic Scattering

    NASA Astrophysics Data System (ADS)

    Budd, H.; Bodek, A.; Arrington, J.

    2005-02-01

    We calculate the quasielastic cross sections for neutrino scattering on nucleons using up to date fits to the nucleon elastic electromagnetic form factors GEp, GEn, GMp, GMn, and weak form factors. We show the extraction of F(q). We show the that F(q) has a different contribution to the anti-neutrino cross section, and how the anti-neutrino data can be used to check F(q) extracted from neutrino scattering. (Presented by Howard Budd at NuInt04, Mar. 2004, Laboratori Nazionali del Gran Sasso - INFN - Assergi, Italy [ http://nuint04.lngs.infn.it/])

  7. Supernova Neutrino Opacity from Nucleon-Nucleon Bremsstrahlung and Related Processes

    NASA Astrophysics Data System (ADS)

    Hannestad, Steen; Raffelt, Georg

    1998-11-01

    Elastic scattering on nucleons, νN --> Nν, is the dominant supernova (SN) opacity source for μ and τ neutrinos. The dominant energy- and number-changing processes were thought to be νe- --> e-ν and νν¯<-->e+e- until Suzuki showed that the bremsstrahlung process νν¯NN<-->NN was actually more important. We find that for energy exchange, the related ``inelastic scattering process'' νNN<-->NNν is even more effective by about a factor of 10. A simple estimate implies that the νμ and ντ spectra emitted during the Kelvin-Helmholtz cooling phase are much closer to that of ν¯e than had been thought previously. To facilitate a numerical study of the spectra formation we derive a scattering kernel that governs both bremsstrahlung and inelastic scattering and give an analytic approximation formula. We consider only neutron-neutron interactions; we use a one-pion exchange potential in Born approximation, nonrelativistic neutrons, and the long-wavelength limit, simplifications that appear justified for the surface layers of an SN core. We include the pion mass in the potential, and we allow for an arbitrary degree of neutron degeneracy. Our treatment does not include the neutron-proton process and does not include nucleon-nucleon correlations. Our perturbative approach applies only to the SN surface layers, i.e., to densities below about 1014 g cm-3.

  8. Measurement of sin2θw and ϱ in deep inelastic neutrino-nucleon scattering

    NASA Astrophysics Data System (ADS)

    Reutens, P. G.; Merritt, F. S.; Macfarlane, D. B.; Messner, R. L.; Novikoff, D. B.; Purohit, M. V.; Blair, R. E.; Sciulli, F. J.; Shaevitz, M. H.; Fisk, H. E.; Fukushima, Y.; Jin, B. N.; Kondo, T.; Rapidis, P. A.; Yovanovitch, D. D.; Bodek, A.; Coleman, R. N.; Marsh, W. L.; Fackler, O. D.; Jenkins, K. A.

    1985-03-01

    We describe a high statistics measurement from deep inelastic neutrino-nucleon scattering of the electroweak parameters ϱ and sin2θw, performed in the Fermilab narrow-band neutrino beam. Our measurement uses a radius-dependent cut in y = EH/Ev which reduces the systematic error in sin2θw, and incorporates electromagnetic and electroweak radiative corrections. In a renormalization scheme where sin2θw ≡ 1-m2W/m2Z, a value of sin2θw = 0.242+/-0.011+/-0.005 is obtained fixing ϱ = 1. If both sin2θw and ϱ are allowed to vary in a fit to our data, we measure ϱ = 0.991 +/- 0.025 +/- 0.009. Present address: IBM Thomas J. Watson Research Center, PO Box 218, Yorktown Heights, NY 10598, USA.

  9. Dark matter in the Sun: scattering off electrons vs nucleons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garani, Raghuveer; Palomares-Ruiz, Sergio, E-mail: garani@th.physik.uni-bonn.de, E-mail: sergiopr@ific.uv.es

    The annihilation of dark matter (DM) particles accumulated in the Sun could produce a flux of neutrinos, which is potentially detectable with neutrino detectors/telescopes and the DM elastic scattering cross section can be constrained. Although the process of DM capture in astrophysical objects like the Sun is commonly assumed to be due to interactions only with nucleons, there are scenarios in which tree-level DM couplings to quarks are absent, and even if loop-induced interactions with nucleons are allowed, scatterings off electrons could be the dominant capture mechanism. We consider this possibility and study in detail all the ingredients necessary tomore » compute the neutrino production rates from DM annihilations in the Sun (capture, annihilation and evaporation rates) for velocity-independent and isotropic, velocity-dependent and isotropic and momentum-dependent scattering cross sections for DM interactions with electrons and compare them with the results obtained for the case of interactions with nucleons. Moreover, we improve the usual calculations in a number of ways and provide analytical expressions in three appendices. Interestingly, we find that the evaporation mass in the case of interactions with electrons could be below the GeV range, depending on the high-velocity tail of the DM distribution in the Sun, which would open a new mass window for searching for this type of scenarios.« less

  10. Quasielastic neutrino charged-current scattering off 12C: Effects of the meson exchange currents and large nucleon axial mass

    NASA Astrophysics Data System (ADS)

    Butkevich, A. V.; Luchuk, S. V.

    2018-04-01

    The quasielastic scattering of muon neutrino and electrons on a carbon target are analyzed using the relativistic distorted-wave impulse approximation (RDWIA). We also evaluate the contribution of the two-particle and two-hole meson exchange current (2 p -2 h MEC) to electroweak response functions. The nuclear model dependence of the (anti)neutrino cross sections is studied within the RDWIA+MEC approach and RDWIA model with the large nucleon axial mass. It is shown that the results for the squared momentum transfer distribution d σ /d Q2 and for invariant mass of the final hadronic system distribution d σ /d W obtained within these models are substantially different.

  11. Electron Scattering Measurements applied to Neutrino Interactions on Nuclei

    NASA Astrophysics Data System (ADS)

    Christy, M. Eric

    2013-04-01

    The extraction of neutrino mass differences and flavor mixing parameters from oscillation experiments requires models of neutrino-nucleus scattering as input. With the reduction of other systematics, the uncertainties stemming from such models are expected to be one of the larger contributions to the systematic uncertainties for next generation oscillation experiments. The neutrino energy range sensitive to oscillations in long baseline experiments is typically the few GeV range, where the interactions with the nucleus and the subsequent production and propagation of hadrons within the nucleus is in the regime studied by nuclear physics experiments at facilities such as Jefferson Lab. While processes such as resonance production have been well studied in electron scattering, there is currently precious little corresponding data from neutrino scattering. Results from electron scattering experiments, therefore, have an important role to play in both building and constraining models for neutrino scattering. On the other hand, the study of nucleon structure via weak probes is very complementary to the program at Jefferson Lab utilizing electromagnetic probes. Neutrino scattering experiments such at MINERvA are expected to provide new experimental information on axial elastic and resonance transition form factors and on medium modifications via the axial coupling. This talk will focus on the application of electron scattering measurements to neutrino interactions on nuclei, but will also touch on where neutrino scattering measurements can add to our understanding of the nucleus.

  12. Electrons for Neutrinos: Using Electron Scattering to Develop New Energy Reconstruction for Future Deuterium-Based Neutrino Detectors

    NASA Astrophysics Data System (ADS)

    Silva, Adrian; Schmookler, Barak; Papadopoulou, Afroditi; Schmidt, Axel; Hen, Or; Khachatryan, Mariana; Weinstein, Lawrence

    2017-09-01

    Using wide phase-space electron scattering data, we study a novel technique for neutrino energy reconstruction for future neutrino oscillation experiments. Accelerator-based neutrino oscillation experiments require detailed understanding of neutrino-nucleus interactions, which are complicated by the underlying nuclear physics that governs the process. One area of concern is that neutrino energy must be reconstructed event-by-event from the final-state kinematics. In charged-current quasielastic scattering, Fermi motion of nucleons prevents exact energy reconstruction. However, in scattering from deuterium, the momentum of the electron and proton constrain the neutrino energy exactly, offering a new avenue for reducing systematic uncertainties. To test this approach, we analyzed d (e ,e' p) data taken with the CLAS detector at Jefferson Lab Hall B and made kinematic selection cuts to obtain quasielastic events. We estimated the remaining inelastic background by using d (e ,e' pπ-) events to produce a simulated dataset of events with an undetected π-. These results demonstrate the feasibility of energy reconstruction in a hypothetical future deuterium-based neutrino detector. Supported by the Paul E. Gray UROP Fund, MIT.

  13. Hyperon production from neutrino-nucleon reaction

    DOE PAGES

    Wu, Jia -Jun; Zou, Bing -Song

    2015-04-10

    The neutrino induced hyperon production processes ν¯ e/μ + p → e +/μ + + π + Λ/Σ may provide a unique clean place for studying low energy πΛ/Σ interaction and hyperon resonances below KN threshold. The production rates for some neutrino induced hyperon production processes are estimated with theoretical models. Lastly, suggestions are made for the study of hyperon production from neutrino–nucleon reaction at present and future neutrino facilities.

  14. Inclusive neutrino scattering off the deuteron from threshold to GeV energies

    NASA Astrophysics Data System (ADS)

    Shen, G.; Marcucci, L. E.; Carlson, J.; Gandolfi, S.; Schiavilla, R.

    2012-09-01

    Background: Neutrino-nucleus quasi-elastic scattering is crucial to interpret the neutrino oscillation results in long baseline neutrino experiments. There are rather large uncertainties in the cross section, due to insufficient knowledge on the role of two-body weak currents.Purpose: Determine the role of two-body weak currents in neutrino-deuteron quasi-elastic scattering up to GeV energies.Methods: Calculate cross sections for inclusive neutrino scattering off deuteron induced by neutral and charge-changing weak currents, from threshold up to GeV energies, using the Argonne v18 potential and consistent nuclear electroweak currents with one- and two-body terms.Results: Two-body contributions are found to be small, and increase the cross sections obtained with one-body currents by less than 10% over the whole range of energies. Total cross sections obtained by describing the final two-nucleon states with plane waves differ negligibly, for neutrino energies ≳ MeV, from those in which interaction effects in these states are fully accounted for. The sensitivity of the calculated cross sections to different models for the two-nucleon potential and/or two-body terms in the weak current is found to be weak. Comparing cross sections to those obtained in a naive model in which the deuteron is taken to consist of a free proton and neutron at rest, nuclear structure effects are illustrated to be non-negligible.Conclusion: Contributions of two-body currents in neutrino-deuteron quasi-elastic scattering up to GeV are found to be smaller than 10%. Finally, it should be stressed that the results reported in this work do not include pion production channels.

  15. Quark-hadron duality in lepton scattering off nucleons

    NASA Astrophysics Data System (ADS)

    Graczyk, Krzysztof M.

    2010-03-01

    Quark-hadron (QH) duality in lepton scattering off nucleons is studied with the resonance quark model. It is shown that in the case of neutrino scattering off an isoscalar target the duality is simultaneously observed for charged and neutral currents xF1νN, F2νN, and xF3νN weak structure functions. We demonstrate that the QH duality can be a useful property for modeling structure functions in the so-called resonance region. As an example it is shown that combining relativistic quark model predictions with duality arguments allows a construction of the inclusive resonance F2ep structure function.

  16. Exploring Nucleon Spin Structure Through Neutrino Neutral-Current Interactions in MicroBooNE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woodruff, Katherine

    2017-02-02

    The net contribution of the strange quark spins to the proton spin,more » $$\\Delta s$$, can be determined from neutral current elastic neutrino-proton interactions at low momentum transfer combined with data from electron-proton scattering. The probability of neutrino-proton interactions depends in part on the axial form factor, which represents the spin structure of the proton and can be separated into its quark flavor contributions. Low momentum transfer neutrino neutral current interactions can be measured in MicroBooNE, a high-resolution liquid argon time projection chamber (LArTPC) in its first year of running in the Booster Neutrino Beamline at Fermilab. The signal for these interactions in MicroBooNE is a single short proton track. We present our work on the automated reconstruction and classification of proton tracks in LArTPCs, an important step in the determination of neutrino- nucleon cross sections and the measurement of $$\\Delta s$$.« less

  17. Nuclear pasta in hot dense matter and its implications for neutrino scattering

    NASA Astrophysics Data System (ADS)

    Roggero, Alessandro; Margueron, Jérôme; Roberts, Luke F.; Reddy, Sanjay

    2018-04-01

    The abundance of large clusters of nucleons in neutron-rich matter at subnuclear density is found to be greatly reduced by finite-temperature effects when matter is close to β equilibrium, compared to the case where the electron fraction is fixed at Ye>0.1 , as often considered in the literature. Large nuclei and exotic nonspherical nuclear configurations called pasta, favored in the vicinity of the transition to uniform matter at T =0 , dissolve at a relatively low temperature Tu as protons leak out of nuclei and pasta. For matter at β equilibrium with a negligible neutrino chemical potential we find that Tuβ≃4 ±1 MeV for realistic equations of state. This is lower than the maximum temperature Tmaxβ≃9 ±1 MeV at which nuclei can coexist with a gas of nucleons and can be explained by a change in the nature of the transition to uniform matter called retrograde condensation. An important new finding is that coherent neutrino scattering from nuclei and pasta makes a modest contribution to the opacity under the conditions encountered in supernovas and neutron star mergers. This is because large nuclear clusters dissolve at most relevant temperatures, and at lower temperatures, when clusters are present, Coulomb correlations between them suppress coherent neutrino scattering off individual clusters. Implications for neutrino signals from galactic supernovas are briefly discussed.

  18. Nuclear pasta in hot dense matter and its implications for neutrino scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roggero, Alessandro; Margueron, Jerome; Roberts, Luke F.

    The abundance of large clusters of nucleons in neutron-rich matter at subnuclear density is found to be greatly reduced by finite-temperature effects when matter is close to β equilibrium, compared to the case where the electron fraction is fixed at Y e > 0.1 , as often considered in the literature. Large nuclei and exotic nonspherical nuclear configurations called pasta, favored in the vicinity of the transition to uniform matter at T = 0 , dissolve at a relatively low temperature T u as protons leak out of nuclei and pasta. For matter at β-equilibrium with a negligible neutrino chemical potential we find that Tmore » $$β\\atop{u}$$ ≃ 4 ± 1 MeV for realistic equations of state. This is lower than the maximum temperature T$$β\\atop{max}$$ ≃ 9 ± 1 MeV at which nuclei can coexist with a gas of nucleons and can be explained by a change in the nature of the transition to uniform matter called retrograde condensation. An important new finding is that coherent neutrino scattering from nuclei and pasta makes a modest contribution to the opacity under the conditions encountered in supernovas and neutron star mergers. This is because large nuclear clusters dissolve at most relevant temperatures, and at lower temperatures, when clusters are present, Coulomb correlations between them suppress coherent neutrino scattering off individual clusters. Lastly, implications for neutrino signals from galactic supernovas are briefly discussed.« less

  19. Nuclear pasta in hot dense matter and its implications for neutrino scattering

    DOE PAGES

    Roggero, Alessandro; Margueron, Jerome; Roberts, Luke F.; ...

    2018-04-16

    The abundance of large clusters of nucleons in neutron-rich matter at subnuclear density is found to be greatly reduced by finite-temperature effects when matter is close to β equilibrium, compared to the case where the electron fraction is fixed at Y e > 0.1 , as often considered in the literature. Large nuclei and exotic nonspherical nuclear configurations called pasta, favored in the vicinity of the transition to uniform matter at T = 0 , dissolve at a relatively low temperature T u as protons leak out of nuclei and pasta. For matter at β-equilibrium with a negligible neutrino chemical potential we find that Tmore » $$β\\atop{u}$$ ≃ 4 ± 1 MeV for realistic equations of state. This is lower than the maximum temperature T$$β\\atop{max}$$ ≃ 9 ± 1 MeV at which nuclei can coexist with a gas of nucleons and can be explained by a change in the nature of the transition to uniform matter called retrograde condensation. An important new finding is that coherent neutrino scattering from nuclei and pasta makes a modest contribution to the opacity under the conditions encountered in supernovas and neutron star mergers. This is because large nuclear clusters dissolve at most relevant temperatures, and at lower temperatures, when clusters are present, Coulomb correlations between them suppress coherent neutrino scattering off individual clusters. Lastly, implications for neutrino signals from galactic supernovas are briefly discussed.« less

  20. Axial mass in quasielastic antineutrino-nucleon scattering accompanied by strange-hyperon production

    NASA Astrophysics Data System (ADS)

    Kuzmin, K. S.; Naumov, V. A.

    2009-09-01

    Reactions of quasielastic Λ-, Σ--, and Σ0-hyperon production in antineutrino-nucleon interactions are studied. An axial-mass ( M A ) value that agrees with a fit to all accelerator data on exclusive and inclusive νN and νN reactions was extracted from a global statistical analysis of experimental data on differential and total cross sections for Δ Y = 0 and 1 quasielastic reactions of neutrino and antineutrino scattering on various nuclear targets.

  1. A phenomenological study of photon production in low energy neutrino nucleon scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jenkins, James P; Goldman, Terry J

    2009-01-01

    Low energy photon production is an important background to many current and future precision neutrino experiments. We present a phenomenological study of t-channel radiative corrections to neutral current neutrino nucleus scattering. After introducing the relevant processes and phenomenological coupling constants, we will explore the derived energy and angular distributions as well as total cross-section predictions along with their estimated uncertainties. This is supplemented throughout with comments on possible experimental signatures and implications. We conclude with a general discussion of the analysis in the context of complimentary methodologies. This is based on a talk presented at the DPF 2009 meeting inmore » Detroit MI.« less

  2. Nucleon and deuteron scattering cross sections from 25 MV/Nucleon to 22.5 GeV/Nucleon

    NASA Technical Reports Server (NTRS)

    Townsend, L. W.; Wilson, J. W.; Bidasaria, H. B.

    1983-01-01

    Within the context of a double-folding optical potential approximation to the exact nucleus-nucleus multiple-scattering series, eikonal scattering theory is used to generate tables of nucleon and deuteron total and absorption cross sections at kinetic energies between 25 MeV/nucleon and 22.5 GeV/nucleon for use in cosmic-ray transport and shielding studies. Comparisons of predictions for nucleon-nucleus and deuteron-nucleus absorption and total cross sections with experimental data are also made.

  3. The Nucleon Axial Form Factor and Staggered Lattice QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyer, Aaron Scott

    The study of neutrino oscillation physics is a major research goal of the worldwide particle physics program over the upcoming decade. Many new experiments are being built to study the properties of neutrinos and to answer questions about the phenomenon of neutrino oscillation. These experiments need precise theoretical cross sections in order to access fundamental neutrino properties. Neutrino oscillation experiments often use large atomic nuclei as scattering targets, which are challenging for theorists to model. Nuclear models rely on free-nucleon amplitudes as inputs. These amplitudes are constrained by scattering experiments with large nuclear targets that rely on the very samemore » nuclear models. The work in this dissertation is the rst step of a new initiative to isolate and compute elementary amplitudes with theoretical calculations to support the neutrino oscillation experimental program. Here, the eort focuses on computing the axial form factor, which is the largest contributor of systematic error in the primary signal measurement process for neutrino oscillation studies, quasielastic scattering. Two approaches are taken. First, neutrino scattering data on a deuterium target are reanalyzed with a model-independent parametrization of the axial form factor to quantify the present uncertainty in the free-nucleon amplitudes. The uncertainties on the free-nucleon cross section are found to be underestimated by about an order of magnitude compared to the ubiquitous dipole model parametrization. The second approach uses lattice QCD to perform a rst-principles computation of the nucleon axial form factor. The Highly Improved Staggered Quark (HISQ) action is employed for both valence and sea quarks. The results presented in this dissertation are computed at physical pion mass for one lattice spacing. This work presents a computation of the axial form factor at zero momentum transfer, and forms the basis for a computation of the axial form factor momentum

  4. Partial-wave analysis of nucleon-nucleon elastic scattering data

    DOE PAGES

    Workman, Ron L.; Briscoe, William J.; Strakovsky, Igor I.

    2016-12-19

    Energy-dependent and single-energy fits to the existing nucleon-nucleon database have been updated to incorporate recent measurements. The fits cover a region from threshold to 3 GeV, in the laboratory kinetic energy, for proton-proton scattering, with an upper limit of 1.3 GeV for neutron-proton scattering. Experiments carried out at the COSY-WASA and COSY-ANKE facilities have had a significant impact on the partial-wave solutions. Lastly, results are discussed in terms of both partial-wave and direct reconstruction amplitudes.

  5. Mu- and Tau-Neutrino Spectra Formation in Supernovae

    NASA Astrophysics Data System (ADS)

    Raffelt, Georg G.

    2001-11-01

    The μ- and τ-neutrinos emitted from a proto-neutron star are produced by nucleonic bremsstrahlung NN-->NNνν and pair annihilation e+e--->νν, reactions that freeze out at the ``energy sphere.'' Before escaping from there to infinity, the neutrinos diffuse through the ``scattering atmosphere,'' a layer in which their main interaction is elastic scattering on nucleons νN-->Nν. If these collisions are taken to be isoenergetic, as in all numerical supernova simulations, the neutrino flux spectrum escaping to infinity depends only on the medium temperature TES and the thermally averaged optical depth τES at the energy sphere. For τES=10-50, one finds for the spectral flux temperature of the escaping neutrinos Tflux=0.5-0.6TES. Including energy exchange (nucleon recoil) in νN-->Nν can shift Tflux both up and down. ΔTflux depends on τES, on the scattering atmosphere's temperature profile, and on TES. Based on a numerical study, we find that for typical conditions, ΔTflux/Tflux is between -10% and -20% and even for extreme parameter choices does not exceed -30%. The exact value of ΔTflux/Tflux is surprisingly insensitive to the assumed value of the nucleon mass; i.e., the exact efficiency of energy transfer between neutrinos and nucleons is not important as long as it can occur at all. Therefore, calculating the νμ and ντ spectra does not seem to require a precise knowledge of the nuclear medium's dynamical structure functions.

  6. Nucleon-nucleon scattering from fully dynamical lattice QCD.

    PubMed

    Beane, S R; Bedaque, P F; Orginos, K; Savage, M J

    2006-07-07

    We present results of the first fully dynamical lattice QCD determination of nucleon-nucleon scattering lengths in the 1S0 channel and 3S1 - 3D1 coupled channels. The calculations are performed with domain-wall valence quarks on the MILC staggered configurations with a lattice spacing of b = 0.125 fm in the isospin-symmetric limit, and in the absence of electromagnetic interactions.

  7. Deuterium target data for precision neutrino-nucleus cross sections

    DOE PAGES

    Meyer, Aaron S.; Betancourt, Minerba; Gran, Richard; ...

    2016-06-23

    Amplitudes derived from scattering data on elementary targets are basic inputs to neutrino-nucleus cross section predictions. A prominent example is the isovector axial nucleon form factor, F A(q 2), which controls charged current signal processes at accelerator-based neutrino oscillation experiments. Previous extractions of F A from neutrino-deuteron scattering data rely on a dipole shape assumption that introduces an unquantified error. A new analysis of world data for neutrino-deuteron scattering is performed using a model-independent, and systematically improvable, representation of F A. A complete error budget for the nucleon isovector axial radius leads to r A 2 = 0.46(22)fm 2, withmore » a much larger uncertainty than determined in the original analyses. The quasielastic neutrino-neutron cross section is determined as σ(ν μn → μ -p)| Ev=1 GeV = 10.1(0.9)×10 -39cm 2. The propagation of nucleon-level constraints and uncertainties to nuclear cross sections is illustrated using MINERvA data and the GENIE event generator. Furthermore, these techniques can be readily extended to other amplitudes and processes.« less

  8. Comparison of the structure function F 2 as measured by charged lepton and neutrino scattering from iron targets

    DOE PAGES

    Kalantarians, N.; Keppel, C.; Christy, M. E.

    2017-09-12

    A comparison study of world data for the structure function F 2 for Iron, as measured by both charged lepton and neutrino scattering experiments, is presented. Consistency of results for both charged lepton and neutrino scattering is observed for the full global data set in the valence regime. Consistency is also observed at low x for the various neutrino data sets, as well as for the charged lepton data sets, independently. However, data from the two probes exhibit differences on the order of 15% in the shadowing/anti-shadowing transition region where the Bjorken scaling variable x is < 0.15. This observationmore » is indicative that neutrino probes of nucleon structure might be sensitive to different nuclear effects than charged lepton probes. Details and results of the data comparison are here presented.« less

  9. Comparison of the structure function F 2 as measured by charged lepton and neutrino scattering from iron targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalantarians, N.; Keppel, C.; Christy, M. E.

    A comparison study of world data for the structure function F 2 for Iron, as measured by both charged lepton and neutrino scattering experiments, is presented. Consistency of results for both charged lepton and neutrino scattering is observed for the full global data set in the valence regime. Consistency is also observed at low x for the various neutrino data sets, as well as for the charged lepton data sets, independently. However, data from the two probes exhibit differences on the order of 15% in the shadowing/anti-shadowing transition region where the Bjorken scaling variable x is < 0.15. This observationmore » is indicative that neutrino probes of nucleon structure might be sensitive to different nuclear effects than charged lepton probes. Details and results of the data comparison are here presented.« less

  10. Probing the coupling of heavy dark matter to nucleons by detecting neutrino signature from the Earth's core

    NASA Astrophysics Data System (ADS)

    Lin, Guey-Lin; Lin, Yen-Hsun; Lee, Fei-Fan

    2015-02-01

    We argue that the detection of the neutrino signature from the Earth's core can effectively probe the coupling of heavy dark matter (mχ>104 GeV ) to nucleons. We first note that direct searches for dark matter (DM) in such a mass range provide much less stringent constraint than the constraint provided by such searches for mχ˜100 GeV . Furthermore, the energies of neutrinos arising from DM annihilation inside the Sun cannot exceed a few TeVs at the Sun's surface due to the attenuation effect. Therefore, the sensitivity to the heavy DM coupling is lost. Finally, the detection of the neutrino signature from the Galactic halo can only probe DM annihilation cross sections. We present neutrino event rates in IceCube and KM3NeT arising from the neutrino flux produced by annihilation of Earth-captured DM heavier than 104 GeV . The IceCube and KM3NeT sensitivities to spin-independent DM-proton scattering cross section σχ p in this mass range are presented for both isospin-symmetric and isospin-violating cases.

  11. Neutrino-induced meson productions off nucleon at forward limit in nucleon resonance region

    NASA Astrophysics Data System (ADS)

    Nakamura, S. X.; Kamano, H.; Lee, T.-S. H.; Sato, T.

    2015-05-01

    We study forward neutrino-induced meson production off the nucleon in the resonance region. Our calculation is based on a dynamical coupled-channels (DCC) model that reasonably describes π(γ)N → πN, ηN, KΛ, KΣ data in the resonance region. We apply the PCAC hypothesis to the DCC model to relate the πN reaction amplitude to the forward neutrino reaction amplitude. In this way, we give a prediction for νN → πN, ππN, ηN, KΛ, KΣ reaction cross sections. The predicted νN → ππN, ηN, KΛ, KΣ cross sections are, for the first time, based on a model extensively tested by data. We compare our results with those from the Rein-Sehgal model that has been very often used in the existing Monte Carlo simulators for neutrino experiments. We find a significant difference between them.

  12. Quasielastic charged-current neutrino scattering in the scaling model with relativistic effective mass

    NASA Astrophysics Data System (ADS)

    Ruiz Simo, I.; Martinez-Consentino, V. L.; Amaro, J. E.; Ruiz Arriola, E.

    2018-06-01

    We use a recent scaling analysis of the quasielastic electron scattering data from C 12 to predict the quasielastic charge-changing neutrino scattering cross sections within an uncertainty band. We use a scaling function extracted from a selection of the (e ,e') cross section data, and an effective nucleon mass inspired by the relativistic mean-field model of nuclear matter. The corresponding superscaling analysis with relativistic effective mass (SuSAM*) describes a large amount of the electron data lying inside a phenomenological quasielastic band. The effective mass incorporates the enhancement of the transverse current produced by the relativistic mean field. The scaling function incorporates nuclear effects beyond the impulse approximation, in particular meson-exchange currents and short-range correlations producing tails in the scaling function. Besides its simplicity, this model describes the neutrino data as reasonably well as other more sophisticated nuclear models.

  13. Linear vs non-linear QCD evolution in the neutrino-nucleon cross section

    NASA Astrophysics Data System (ADS)

    Albacete, Javier L.; Illana, José I.; Soto-Ontoso, Alba

    2016-03-01

    Evidence for an extraterrestrial flux of ultra-high-energy neutrinos, in the order of PeV, has opened a new era in Neutrino Astronomy. An essential ingredient for the determination of neutrino fluxes from the number of observed events is the precise knowledge of the neutrino-nucleon cross section. In this work, based on [1], we present a quantitative study of σνN in the neutrino energy range 104 < Eν < 1014 GeV within two transversal QCD approaches: NLO DGLAP evolution using different sets of PDFs and BK small-x evolution with running coupling and kinematical corrections. Further, we translate this theoretical uncertainty into upper bounds for the ultra-high-energy neutrino flux for different experiments.

  14. A measurement of the neutral current neutrino-nucleon elastic cross section at MiniBooNE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cox, David Christopher

    2008-02-01

    The neutral current neutrino-nucleon elastic interaction v N → v N is a fundamental process of the weak interaction ideally suited for characterizing the structure of the nucleon neutral weak current. This process comprises ~18% of neutrino events in the neutrino oscillation experiment, MiniBooNE, ranking it as the experiment's third largest process. Using ~10% of MiniBooNE's available neutrino data, a sample of these events were identified and analyzed to determine the differential cross section as a function of the momentum transfer of the interaction, Q 2. This is the first measurement of a differential cross section with MiniBooNE data. Frommore » this analysis, a value for the nucleon axial mass M A was extracted to be 1.34 ± 0.25 GeV consistent with previous measurements. The integrated cross section for the Q 2 range 0.189 → 1.13 GeV 2 was calculated to be (8.8 ± 0.6(stat) ± 0.2(syst)) x 10 -40 cm 2.« less

  15. Low-energy pion-nucleon scattering

    NASA Astrophysics Data System (ADS)

    Gibbs, W. R.; Ai, Li; Kaufmann, W. B.

    1998-02-01

    An analysis of low-energy charged pion-nucleon data from recent π+/-p experiments is presented. From the scattering lengths and the Goldberger-Miyazawa-Oehme (GMO) sum rule we find a value of the pion-nucleon coupling constant of f2=0.0756+/-0.0007. We also find, contrary to most previous analyses, that the scattering volumes for the P31 and P13 partial waves are equal, within errors, corresponding to a symmetry found in the Hamiltonian of many theories. For the potential models used, the amplitudes are extrapolated into the subthreshold region to estimate the value of the Σ term. Off-shell amplitudes are also provided.

  16. Measurement of neutrino flux from neutrino-electron elastic scattering

    DOE PAGES

    Park, J.; Aliaga, L.; Altinok, O.; ...

    2016-06-10

    Muon-neutrino elastic scattering on electrons is an observable neutrino process whose cross section is precisely known. Consequently, a measurement of this process in an accelerator-based ν μ beam can improve the knowledge of the absolute neutrino flux impinging upon the detector; typically this knowledge is limited to ~10% due to uncertainties in hadron production and focusing. We also isolated a sample of 135±17 neutrino-electron elastic scattering candidates in the segmented scintillator detector of MINERvA, after subtracting backgrounds and correcting for efficiency. We show how this sample can be used to reduce the total uncertainty on the NuMI ν μ fluxmore » from 9% to 6%. Finally, our measurement provides a flux constraint that is useful to other experiments using the NuMI beam, and this technique is applicable to future neutrino beams operating at multi-GeV energies.« less

  17. Measurement of neutrino flux from neutrino-electron elastic scattering

    NASA Astrophysics Data System (ADS)

    Park, J.; Aliaga, L.; Altinok, O.; Bellantoni, L.; Bercellie, A.; Betancourt, M.; Bodek, A.; Bravar, A.; Budd, H.; Cai, T.; Carneiro, M. F.; Christy, M. E.; Chvojka, J.; da Motta, H.; Dytman, S. A.; Díaz, G. A.; Eberly, B.; Felix, J.; Fields, L.; Fine, R.; Gago, A. M.; Galindo, R.; Ghosh, A.; Golan, T.; Gran, R.; Harris, D. A.; Higuera, A.; Kleykamp, J.; Kordosky, M.; Le, T.; Maher, E.; Manly, S.; Mann, W. A.; Marshall, C. M.; Martinez Caicedo, D. A.; McFarland, K. S.; McGivern, C. L.; McGowan, A. M.; Messerly, B.; Miller, J.; Mislivec, A.; Morfín, J. G.; Mousseau, J.; Naples, D.; Nelson, J. K.; Norrick, A.; Nuruzzaman; Osta, J.; Paolone, V.; Patrick, C. E.; Perdue, G. N.; Rakotondravohitra, L.; Ramirez, M. A.; Ray, H.; Ren, L.; Rimal, D.; Rodrigues, P. A.; Ruterbories, D.; Schellman, H.; Solano Salinas, C. J.; Tagg, N.; Tice, B. G.; Valencia, E.; Walton, T.; Wolcott, J.; Wospakrik, M.; Zavala, G.; Zhang, D.; Miner ν A Collaboration

    2016-06-01

    Muon-neutrino elastic scattering on electrons is an observable neutrino process whose cross section is precisely known. Consequently a measurement of this process in an accelerator-based νμ beam can improve the knowledge of the absolute neutrino flux impinging upon the detector; typically this knowledge is limited to ˜10 % due to uncertainties in hadron production and focusing. We have isolated a sample of 135 ±17 neutrino-electron elastic scattering candidates in the segmented scintillator detector of MINERvA, after subtracting backgrounds and correcting for efficiency. We show how this sample can be used to reduce the total uncertainty on the NuMI νμ flux from 9% to 6%. Our measurement provides a flux constraint that is useful to other experiments using the NuMI beam, and this technique is applicable to future neutrino beams operating at multi-GeV energies.

  18. Neutrino scattering and the reactor antineutrino anomaly

    NASA Astrophysics Data System (ADS)

    Garcés, Estela; Cañas, Blanca; Miranda, Omar; Parada, Alexander

    2017-12-01

    Low energy threshold reactor experiments have the potential to give insight into the light sterile neutrino signal provided by the reactor antineutrino anomaly and the gallium anomaly. In this work we analyze short baseline reactor experiments that detect by elastic neutrino electron scattering in the context of a light sterile neutrino signal. We also analyze the sensitivity of experimental proposals of coherent elastic neutrino nucleus scattering (CENNS) detectors in order to exclude or confirm the sterile neutrino signal with reactor antineutrinos.

  19. Highlights from High Energy Neutrino Experiments at CERN

    NASA Astrophysics Data System (ADS)

    Schlatter, W.-D.

    2015-07-01

    Experiments with high energy neutrino beams at CERN provided early quantitative tests of the Standard Model. This article describes results from studies of the nucleon quark structure and of the weak current, together with the precise measurement of the weak mixing angle. These results have established a new quality for tests of the electroweak model. In addition, the measurements of the nucleon structure functions in deep inelastic neutrino scattering allowed first quantitative tests of QCD.

  20. Roy-Steiner-equation analysis of pion-nucleon scattering

    NASA Astrophysics Data System (ADS)

    Meißner, U.-G.; Ruiz de Elvira, J.; Hoferichter, M.; Kubis, B.

    2017-03-01

    Low-energy pion-nucleon scattering is relevant for many areas in nuclear and hadronic physics, ranging from the scalar couplings of the nucleon to the long-range part of two-pion-exchange potentials and three-nucleon forces in Chiral Effective Field Theory. In this talk, we show how the fruitful combination of dispersion-theoretical methods, in particular in the form of Roy-Steiner equations, with modern high-precision data on hadronic atoms allows one to determine the pion-nucleon scattering amplitudes at low energies with unprecedented accuracy. Special attention will be paid to the extraction of the pion-nucleon σ-term, and we discuss in detail the current tension with recent lattice results, as well as the determination of the low-energy constants of chiral perturbation theory.

  1. Pion-nucleon scattering: from chiral perturbation theory to Roy-Steiner equations

    NASA Astrophysics Data System (ADS)

    Kubis, Bastian; Hoferichter, Martin; de Elvira, Jacobo Ruiz; Meißner, Ulf-G.

    2016-11-01

    Ever since Weinberg's seminal predictions of the pion-nucleon scattering amplitudes at threshold, this process has been of central interest for the study of chiral dynamics involving nucleons. The scattering lengths or the pion-nucleon σ-term are fundamental quantities characterizing the explicit breaking of chiral symmetry by means of the light quark masses. On the other hand, pion-nucleon dynamics also strongly affects the long-range part of nucleon-nucleon potentials, and hence has a far-reaching impact on nuclear physics. We discuss the fruitful combination of dispersion-theoretical methods, in the form of Roy-Steiner equations, with chiral dynamics to determine pion-nucleon scattering amplitudes at low energies with high precision.*

  2. Nuclear PDF for neutrino and charged lepton data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kovarik, K.

    2011-10-06

    Neutrino Deep Inelastic Scattering (DIS) on nuclei is an essential process to constrain the strange quark parton distribution functions (PDF) in the proton. The critical component on the way to using the neutrino DIS data in a proton PDF analysis is understanding the nuclear effects in parton distribution functions. We parametrize these effects by nuclear parton distribution functions (NPDF). Here we compare results from two analysis of NPDF both done at next-to-leading order in QCD. The first uses neutral current charged-lepton (l{sup {+-}A}) Deeply Inelastic Scattering (DIS) and Drell-Yan data for several nuclear targets and the second uses neutrino-nucleon DISmore » data. We compare the nuclear corrections factors (F{sub 2}{sup Fe}/F{sub 2}{sup D}) for the charged-lepton data with other results from the literature. In particular, we compare and contrast fits based upon the charged-lepton DIS data with those using neutrino-nucleon DIS data.« less

  3. Collaborative Research: Neutrinos & Nucleosynthesis in Hot Dense Matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reddy, Sanjay

    2013-09-06

    It is now firmly established that neutrinos, which are copiously produced in the hot and dense core of the supernova, play a role in the supernova explosion mechanism and in the synthesis of heavy elements through a phenomena known as r-process nucleosynthesis. They are also detectable in terrestrial neutrino experiments, and serve as a probe of the extreme environment and complex dynamics encountered in the supernova. The major goal of the UW research activity relevant to this project was to calculate the neutrino interaction rates in hot and dense matter of relevance to core collapse supernova. These serve as keymore » input physics in large scale computer simulations of the supernova dynamics and nucleosynthesis being pursued at national laboratories here in the United States and by other groups in Europe and Japan. Our calculations show that neutrino production and scattering rate are altered by the nuclear interactions and that these modifications have important implications for nucleosynthesis and terrestrial neutrino detection. The calculation of neutrino rates in dense matter are difficult because nucleons in the dense matter are strongly coupled. A neutrino interacts with several nucleons and the quantum interference between scattering off different nucleons depends on the nature of correlations between them in dense matter. To describe these correlations we used analytic methods based on mean field theory and hydrodynamics, and computational methods such as Quantum Monte Carlo. We found that due to nuclear effects neutrino production rates at relevant temperatures are enhanced, and that electron neutrinos are more easily absorbed than anti-electron neutrinos in dense matter. The latter, was shown to favor synthesis of heavy neutron-rich elements in the supernova.« less

  4. NuSTEC1 White Paper: Status and challenges of neutrino-nucleus scattering

    NASA Astrophysics Data System (ADS)

    Alvarez-Ruso, L.; Sajjad Athar, M.; Barbaro, M. B.; Cherdack, D.; Christy, M. E.; Coloma, P.; Donnelly, T. W.; Dytman, S.; de Gouvêa, A.; Hill, R. J.; Huber, P.; Jachowicz, N.; Katori, T.; Kronfeld, A. S.; Mahn, K.; Martini, M.; Morfín, J. G.; Nieves, J.; Perdue, G. N.; Petti, R.; Richards, D. G.; Sánchez, F.; Sato, T.; Sobczyk, J. T.; Zeller, G. P.

    2018-05-01

    The precise measurement of neutrino properties is among the highest priorities in fundamental particle physics, involving many experiments worldwide. Since the experiments rely on the interactions of neutrinos with bound nucleons inside atomic nuclei, the planned advances in the scope and precision of these experiments require a commensurate effort in the understanding and modeling of the hadronic and nuclear physics of these interactions, which is incorporated as a nuclear model in neutrino event generators. This model is essential to every phase of experimental analyses and its theoretical uncertainties play an important role in interpreting every result. In this White Paper we discuss in detail the impact of neutrino-nucleus interactions, especially the nuclear effects, on the measurement of neutrino properties using the determination of oscillation parameters as a central example. After an Executive Summary and a concise Overview of the issues, we explain how the neutrino event generators work, what can be learned from electron-nucleus interactions and how each underlying physics process - from quasi-elastic to deep inelastic scattering - is understood today. We then emphasize how our understanding must improve to meet the demands of future experiments. With every topic we find that the challenges can be met only with the active support and collaboration among specialists in strong interactions and electroweak physics that include theorists and experimentalists from both the nuclear and high energy physics communities.

  5. NuSTEC White Paper: Status and Challenges of Neutrino-Nucleus Scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alvarez-Ruso, L.; et al.

    The precise measurement of neutrino properties is among the highest priorities in fundamental particle physics, involving many experiments worldwide. Since the experiments rely on the interactions of neutrinos with bound nucleons inside atomic nuclei, the planned advances in the scope and precision of these experiments requires a commensurate effort in the understanding and modeling of the hadronic and nuclear physics of these interactions, which is incorporated as a nuclear model in neutrino event generators. This model is essential to every phase of experimental analyses and its theoretical uncertainties play an important role in interpreting every result. In this White Papermore » we discuss in detail the impact of neutrino-nucleus interactions, especially the nuclear effects, on the measurement of neutrino properties using the determination of oscillation parameters as a central example. After an Executive Summary and a concise Overview of the issues, we explain how the neutrino event generators work, what can be learned from electron-nucleus interactions and how each underlying physics process - from quasi-elastic to deep inelastic scattering - is understood today. We then emphasize how our understanding must improve to meet the demands of future experiments. With every topic we find that the challenges can be met only with the active support and collaboration among specialists in strong interactions and electroweak physics that include theorists and experimentalists from both the nuclear and high energy physics communities.« less

  6. Nucleon-deuteron scattering with the JISP16 potential

    NASA Astrophysics Data System (ADS)

    Skibiński, R.; Golak, J.; Topolnicki, K.; Witała, H.; Volkotrub, Yu.; Kamada, H.; Shirokov, A. M.; Okamoto, R.; Suzuki, K.; Vary, J. P.

    2018-01-01

    The nucleon-nucleon J -matrix inverse scattering potential JISP16 is applied to elastic nucleon-deuteron scattering and the deuteron breakup process at the laboratory nucleon energies up to 135 MeV. The formalism of the Faddeev equations is used to obtain three-nucleon scattering states. We compare predictions based on the JISP16 force with data and with results based on various two-body interactions, including the CD Bonn, the Argonne AV18, the chiral force with the semilocal regularization at the fifth order of the chiral expansion and with low-momentum interactions obtained from the CD Bonn force as well as with the predictions from the combination of the AV18 NN interaction and the Urbana IX 3 N force. JISP16 provides a satisfactory description of some observables at low energies but strong deviations from data as well as from standard and chiral potential predictions with increasing energy. However, there are also polarization observables at low energies for which the JISP16 predictions differ from those based on the other forces by a factor of two. The reason for such a behavior can be traced back to the P -wave components of the JISP16 force. At higher energies the deviations can be enhanced by an interference with higher partial waves and by the properties of the JISP16 deuteron wave function. In addition, we compare the energy and angular dependence of predictions based on the JISP16 force with the results of the low-momentum interactions obtained with different values of the momentum cutoff parameter. We found that such low-momentum forces can be employed to interpret the nucleon-deuteron elastic scattering data only below some specific energy which depends on the cutoff parameter. Since JISP16 is defined in a finite oscillator basis, it has properties similar to low momentum interactions and its application to the description of nucleon-deuteron scattering data is limited to a low momentum transfer region.

  7. Low-energy pion-nucleon scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gibbs, W.R.; Ai, L.; Kaufmann, W.B.

    An analysis of low-energy charged pion-nucleon data from recent {pi}{sup {plus_minus}}p experiments is presented. From the scattering lengths and the Goldberger-Miyazawa-Oehme (GMO) sum rule we find a value of the pion-nucleon coupling constant of f{sup 2}=0.0756{plus_minus}0.0007. We also find, contrary to most previous analyses, that the scattering volumes for the P{sub 31} and P{sub 13} partial waves are equal, within errors, corresponding to a symmetry found in the Hamiltonian of many theories. For the potential models used, the amplitudes are extrapolated into the subthreshold region to estimate the value of the {Sigma} term. Off-shell amplitudes are also provided. {copyright} {italmore » 1998} {ital The American Physical Society}« less

  8. Comparative study of the neutrino-nucleon cross section at ultrahigh energies

    NASA Astrophysics Data System (ADS)

    Gonçalves, V. P.; Hepp, P.

    2011-01-01

    The high-energy neutrino cross section is a crucial ingredient in the calculation of the event rate in high-energy neutrino telescopes. Currently, there are several approaches that predict different behaviors for its magnitude for ultrahigh energies. In this paper, we present a comparison between the predictions based on linear Dokshitzer-Gribov-Lipatov-Altarelli-Parisi dynamics, nonlinear QCD, and the imposition of a Froissart-like behavior at high energies. In particular, we update the predictions based on the color glass condensate, presenting for the first time the results for σνN using the solution of the running coupling Balitsky-Kovchegov equation. Our results demonstrate that the current theoretical uncertainty for the neutrino-nucleon cross section reaches a factor of three for neutrino energies around 1011GeV and increases to a factor of five for 1013GeV.

  9. Single pion production in neutrino-nucleon interactions

    NASA Astrophysics Data System (ADS)

    Kabirnezhad, M.

    2018-01-01

    This work represents an extension of the single pion production model proposed by Rein [Z. Phys. C 35, 43 (1987)., 10.1007/BF01561054]. The model consists of resonant pion production and nonresonant background contributions coming from three Born diagrams in the helicity basis. The new work includes lepton mass effects, and nonresonance interaction is described by five diagrams based on a nonlinear σ model. This work provides a full kinematic description of single pion production in the neutrino-nucleon interactions, including resonant and nonresonant interactions in the helicity basis, in order to study the interference effect.

  10. Nuclear effects in (anti)neutrino charge-current quasielastic scattering at MINER νA kinematics

    NASA Astrophysics Data System (ADS)

    Ivanov, M. V.; Antonov, A. N.; Megias, G. D.; González-Jiménez, R.; Barbaro, M. B.; Caballero, J. A.; Donnelly, T. W.; Udías, J. M.

    2018-05-01

    We compare the characteristics of the charged-current quasielastic (anti)neutrino scattering obtained in two different nuclear models, the phenomenological SuperScaling Approximation and the model using a realistic spectral function S(p, ɛ) that gives a scaling function in accordance with the (e, e‧ ) scattering data, with the recent data published by the MiniBooNE, MINER νA, and NOMAD collaborations. The spectral function accounts for the nucleon-nucleon (NN) correlations by using natural orbitals from the Jastrow correlation method and has a realistic energy dependence. Both models provide a good description of the MINER νA and NOMAD data without the need of an ad hoc increase of the value of the mass parameter in the axial-vector dipole form factor. The models considered in this work, based on the the impulse approximation (IA), underpredict the MiniBooNE data for the flux-averaged charged-current quasielastic {ν }μ ({\\bar{ν }}μ ){+}12\\text{C} differential cross section per nucleon and the total cross sections, although the shape of the cross sections is represented by the approaches. The discrepancy is most likely due to missing of the effects beyond the IA, e.g., those of the 2p–2h meson exchange currents that have contribution in the transverse responses.

  11. Nucleon-nucleon scattering parameters in the limit of SU(3) flavor symmetry

    NASA Astrophysics Data System (ADS)

    Beane, S. R.; Chang, E.; Cohen, S. D.; Detmold, W.; Junnarkar, P.; Lin, H. W.; Luu, T. C.; Orginos, K.; Parreño, A.; Savage, M. J.; Walker-Loud, A.

    2013-08-01

    The scattering lengths and effective ranges that describe low-energy nucleon-nucleon scattering are calculated in the limit of SU(3)-flavor symmetry at the physical strange-quark mass with lattice quantum chromodynamics. The calculations are performed with an isotropic clover discretization of the quark action in three volumes with spatial extents of L˜3.4fm, 4.5fm, and 6.7fm, and with a lattice spacing of b˜0.145fm. With determinations of the energies of the two-nucleon systems (both of which contain bound states at these up and down quark masses) at rest and moving in the lattice volume, Lüscher's method is used to determine the low-energy phase shifts in each channel, from which the scattering length and effective range are obtained. The scattering parameters, in the 1S0 channel are found to be mπa(1S0)=9.50-0.69+0.78-0.80+1.10 and mπr(1S0)=4.61-0.31+0.29-0.26+0.24, and in the 3S1 channel are mπa(3S1)=7.45-0.53+0.57-0.49+0.71 and mπr(3S1)=3.71-0.31+0.28-0.35+0.28. These values are consistent with the two-nucleon system exhibiting Wigner's supermultiplet symmetry, which becomes exact in the limit of large Nc. In both spin channels, the phase shifts change sign at higher momentum, near the start of the t-channel cut, indicating that the nuclear interactions have a repulsive core even at the SU(3)-symmetric point.

  12. Charm-Quark Production in Deep-Inelastic Neutrino Scattering at Next-to-Next-to-Leading Order in QCD.

    PubMed

    Berger, Edmond L; Gao, Jun; Li, Chong Sheng; Liu, Ze Long; Zhu, Hua Xing

    2016-05-27

    We present a fully differential next-to-next-to-leading order calculation of charm-quark production in charged-current deep-inelastic scattering, with full charm-quark mass dependence. The next-to-next-to-leading order corrections in perturbative quantum chromodynamics are found to be comparable in size to the next-to-leading order corrections in certain kinematic regions. We compare our predictions with data on dimuon production in (anti)neutrino scattering from a heavy nucleus. Our results can be used to improve the extraction of the parton distribution function of a strange quark in the nucleon.

  13. Roy-Steiner-equation analysis of pion-nucleon scattering

    NASA Astrophysics Data System (ADS)

    Hoferichter, Martin; Ruiz de Elvira, Jacobo; Kubis, Bastian; Meißner, Ulf-G.

    2016-04-01

    We review the structure of Roy-Steiner equations for pion-nucleon scattering, the solution for the partial waves of the t-channel process ππ → N ¯ N, as well as the high-accuracy extraction of the pion-nucleon S-wave scattering lengths from data on pionic hydrogen and deuterium. We then proceed to construct solutions for the lowest partial waves of the s-channel process πN → πN and demonstrate that accurate solutions can be found if the scattering lengths are imposed as constraints. Detailed error estimates of all input quantities in the solution procedure are performed and explicit parameterizations for the resulting low-energy phase shifts as well as results for subthreshold parameters and higher threshold parameters are presented. Furthermore, we discuss the extraction of the pion-nucleon σ-term via the Cheng-Dashen low-energy theorem, including the role of isospin-breaking corrections, to obtain a precision determination consistent with all constraints from analyticity, unitarity, crossing symmetry, and pionic-atom data. We perform the matching to chiral perturbation theory in the subthreshold region and detail the consequences for the chiral convergence of the threshold parameters and the nucleon mass.

  14. Effect of collisions on neutrino flavor inhomogeneity in a dense neutrino gas

    DOE PAGES

    Cirigliano, Vincenzo; Paris, Mark W.; Shalgar, Shashank

    2017-09-25

    We investigate the stability, with respect to spatial inhomogeneity, of a two-dimensional dense neutrino gas. The system exhibits growth of seed inhomogeneity due to nonlinear coherent neutrino self-interactions. In the absence of incoherent collisional effects, we also observe a dependence of this instability growth rate on the neutrino mass spectrum: the normal neutrino mass hierarchy exhibits spatial instability over a larger range of neutrino number density compared to that of the inverted case. Furthermore, we consider the effect of elastic incoherent collisions of the neutrinos with a static background of heavy, nucleon-like scatterers. At small scales, the growth of flavormore » instability can be suppressed by collisions. At large length scales we find, perhaps surprisingly, that for inverted neutrino mass hierarchy incoherent collisions fail to suppress flavor instabilities, independent of the coupling strength.« less

  15. Measurement of Muon Neutrino Quasielastic Scattering on Carbon

    NASA Astrophysics Data System (ADS)

    Aguilar-Arevalo, A. A.; Bazarko, A. O.; Brice, S. J.; Brown, B. C.; Bugel, L.; Cao, J.; Coney, L.; Conrad, J. M.; Cox, D. C.; Curioni, A.; Djurcic, Z.; Finley, D. A.; Fleming, B. T.; Ford, R.; Garcia, F. G.; Garvey, G. T.; Green, C.; Green, J. A.; Hart, T. L.; Hawker, E.; Imlay, R.; Johnson, R. A.; Kasper, P.; Katori, T.; Kobilarcik, T.; Kourbanis, I.; Koutsoliotas, S.; Laird, E. M.; Link, J. M.; Liu, Y.; Liu, Y.; Louis, W. C.; Mahn, K. B. M.; Marsh, W.; Martin, P. S.; McGregor, G.; Metcalf, W.; Meyers, P. D.; Mills, F.; Mills, G. B.; Monroe, J.; Moore, C. D.; Nelson, R. H.; Nienaber, P.; Ouedraogo, S.; Patterson, R. B.; Perevalov, D.; Polly, C. C.; Prebys, E.; Raaf, J. L.; Ray, H.; Roe, B. P.; Russell, A. D.; Sandberg, V.; Schirato, R.; Schmitz, D.; Shaevitz, M. H.; Shoemaker, F. C.; Smith, D.; Sorel, M.; Spentzouris, P.; Stancu, I.; Stefanski, R. J.; Sung, M.; Tanaka, H. A.; Tayloe, R.; Tzanov, M.; van de Water, R.; Wascko, M. O.; White, D. H.; Wilking, M. J.; Yang, H. J.; Zeller, G. P.; Zimmerman, E. D.

    2008-01-01

    The observation of neutrino oscillations is clear evidence for physics beyond the standard model. To make precise measurements of this phenomenon, neutrino oscillation experiments, including MiniBooNE, require an accurate description of neutrino charged current quasielastic (CCQE) cross sections to predict signal samples. Using a high-statistics sample of νμ CCQE events, MiniBooNE finds that a simple Fermi gas model, with appropriate adjustments, accurately characterizes the CCQE events observed in a carbon-based detector. The extracted parameters include an effective axial mass, MAeff=1.23±0.20GeV, that describes the four-momentum dependence of the axial-vector form factor of the nucleon, and a Pauli-suppression parameter, κ=1.019±0.011. Such a modified Fermi gas model may also be used by future accelerator-based experiments measuring neutrino oscillations on nuclear targets.

  16. Anti-Neutrino Charged-Current Reactions on Scintillator with Low Momentum Transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gran, R.; et al.

    2018-06-01

    We report on multi-nucleon effects in low momentum transfer (more » $< 0.8$ GeV/c) anti-neutrino interactions on scintillator. These data are from the 2010-11 anti-neutrino phase of the MINERvA experiment at Fermilab. The hadronic energy spectrum of this inclusive sample is well-described when a screening effect at low energy transfer and a two-nucleon knockout process are added to a relativistic Fermi gas model of quasi-elastic, $$\\Delta$$ resonance, and higher resonance processes. In this analysis, model elements introduced to describe previously published neutrino results have quantitatively similar benefits for this anti-neutrino sample. We present the results as a double-differential cross section to accelerate investigation of alternate models for anti-neutrino scattering off nuclei.« less

  17. Anti-Neutrino Charged-Current Reactions on Scintillator with Low Momentum Transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gran, R.; et al.

    2018-03-25

    We report on multi-nucleon effects in low momentum transfer (more » $< 0.8$ GeV/c) anti-neutrino interactions on scintillator. These data are from the 2010-11 anti-neutrino phase of the MINERvA experiment at Fermilab. The hadronic energy spectrum of this inclusive sample is well-described when a screening effect at low energy transfer and a two-nucleon knockout process are added to a relativistic Fermi gas model of quasi-elastic, $$\\Delta$$ resonance, and higher resonance processes. In this analysis, model elements introduced to describe previously published neutrino results have quantitatively similar benefits for this anti-neutrino sample. We present the results as a double-differential cross section to accelerate investigation of alternate models for anti-neutrino scattering off nuclei.« less

  18. Neutrino-nucleon cross sections at energies of Megaton-scale detectors

    NASA Astrophysics Data System (ADS)

    Gazizov, A.; Kowalski, M.; Kuzmin, K. S.; Naumov, V. A.; Spiering, Ch.

    2016-04-01

    An updated set of (anti)neutrino-nucleon charged and neutral current cross sections at 3 GeV ≲ Eν ≲100 GeV is presented. These cross sections are of particular interest for the detector optimization and data processing and interpretation in the future Megaton-scale experiments like PINGU, ORCA, and Hyper-Kamiokande. Finite masses of charged leptons and target mass corrections in exclusive and deep inelastic (ν̅)νN interactions are taken into account. A new set of QCD NNLO parton density functions, ABMP15, is used for calculation of the DIS cross sections. The sensitivity of the cross sections to phenomenological parameters and to extrapolations of the nucleon structure functions to small x and Q2 is studied. An agreement within the uncertainties of our calculations with experimental data is demonstrated.

  19. Modelling nuclear effects in neutrino scattering

    NASA Astrophysics Data System (ADS)

    Leitner, T.; Alvarez-Ruso, L.; Mosel, U.

    2006-07-01

    We have developed a model to describe the interactions of neutrinos with nucleons and nuclei via charged and neutral currents, focusing on the region of the quasielastic and Δ(1232) peaks. For νN collisions a fully relativistic formalism is used. The extension to finite nuclei has been done in the framework of a coupled-channel BUU transport model where we have studied exclusive channels taking into account in-medium effects and final state interactions.

  20. Neutrino Exclusive Charged Current Quasi-Elastic Scattering in MINERvA

    NASA Astrophysics Data System (ADS)

    Walton, Tammy

    2012-03-01

    The MINERvA experiment will measure neutrino and antineutrino quasi-elastic scattering on helium, water, carbon, iron, and lead for neutrinos in the few GeV range. We will present an overview of MINERvA analysis plan for neutrino exclusive charged current quasi-elastic scattering on lead, iron, and carbon.

  1. Neutrino quantum kinetic equations: The collision term

    DOE PAGES

    Blaschke, Daniel N.; Cirigliano, Vincenzo

    2016-08-01

    We derive the collision term relevant for neutrino quantum kinetic equations in the early universe and compact astrophysical objects, displaying its full matrix structure in both flavor and spin degrees of freedom. We include in our analysis neutrino-neutrino processes, scattering and annihilation with electrons and positrons, and neutrino scattering off nucleons (the latter in the low-density limit). After presenting the general structure of the collision terms, we take two instructive limiting cases. The one-flavor limit highlights the structure in helicity space and allows for a straightforward interpretation of the off-diagonal entries in terms of the product of scattering amplitudes ofmore » the two helicity states. As a result, the isotropic limit is relevant for studies of the early universe: in this case the terms involving spin coherence vanish and the collision term can be expressed in terms of two-dimensional integrals, suitable for computational implementation.« less

  2. Measurements of cross-section of charge current inclusive of antineutrino scattering off nucleons using carbon, iron, lead and scintillator at MINER$$\

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rakotondravohitra, Laza

    2015-08-18

    Neutrino physics is one of the most active fields in the domaine of high energy physics during the last century. The need of precise measurement of neutrino-nucleus interactions required by the neutrino oscillation experiments is a an exiting step. These measurements of cross-section are more than essential for neutrino oscillation experiment. Over the year, many measurements from varieties of experiments have been presented. MINERνA is one of the world leaders in measuring cross-section of neutrino and antineutrino -nucleus interactions. MINERνA is a neutrino-nucleus scattering experiment installed in the few-GeV NuMI beam line at Fermilab. In order to study nuclear dependence,more » MINERνA is endowed with different types of solid nuclear targets as well are liquid targets such as helium and water. This thesis presents measurements of cross-section of antineutrino scattering off nucleons using a variety of solid nuclear targets, carbon, iron, lead and also polystyrene scintillator (CH). The data set of antineutrino used for this analysis was taken between March and July 2010 with a total of 1.60X10 20 protons on target. Charged current inclusive interactions were selected by requiring a positive muon and kinematics limitation of acceptance of the muon spectrometer are applied. The analysis requires neutrino energy between 2GeV et 20GeV and the angle of muon θ mu < 17degree . The absolute cross-section # as function of neutrino energy and the differential cross-section dσ/ dx bj measured and shown the corresponding systematics for each nuclear targets. Data results are compared with prediction of the models implemented in the neutrino events generators GENIE 2.6.2 used by the experiment.« less

  3. The Method of Unitary Clothing Transformations in the Theory of Nucleon-Nucleon Scattering

    NASA Astrophysics Data System (ADS)

    Dubovyk, I.; Shebeko, O.

    2010-12-01

    The clothing procedure, put forward in quantum field theory (QFT) by Greenberg and Schweber, is applied for the description of nucleon-nucleon ( N- N) scattering. We consider pseudoscalar ( π and η), vector ( ρ and ω) and scalar ( δ and σ) meson fields interacting with 1/2 spin ( N and {bar{N}}) fermion ones via the Yukawa-type couplings to introduce trial interactions between “bare” particles. The subsequent unitary clothing transformations are found to express the total Hamiltonian through new interaction operators that refer to particles with physical (observable) properties, the so-called clothed particles. In this work, we are focused upon the Hermitian and energy-independent operators for the clothed nucleons, being built up in the second order in the coupling constants. The corresponding analytic expressions in momentum space are compared with the separate meson contributions to the one-boson-exchange potentials in the meson theory of nuclear forces. In order to evaluate the T matrix of the N- N scattering we have used an equivalence theorem that enables us to operate in the clothed particle representation (CPR) instead of the bare particle representation with its large amount of virtual processes. We have derived the Lippmann-Schwinger type equation for the CPR elements of the T-matrix for a given collision energy in the two-nucleon sector of the Hilbert space {mathcal{H}} of hadronic states.

  4. Numerical Exact Ab Initio Four-Nucleon Scattering Calculations: from Dream to Reality

    NASA Astrophysics Data System (ADS)

    Fonseca, A. C.; Deltuva, A.

    2017-03-01

    In the present manuscript we review the work of the last ten years on the pursuit to obtain numerical exact solutions of the four-nucleon scattering problem using the most advanced force models that fit two nucleon data up to pion production threshold with a χ ^2 per data point approximately one, together with the Coulomb interaction between protons; three- and four-nucleon forces are also included in the framework of a meson exchange potential model where NN couples to NΔ. Failure to describe the world data on four-nucleon scattering observables in the framework of a non relativistic scattering approach falls necessarily on the force models one uses. Four-nucleon observables pose very clear challenges, particular in the low energy region where there are a number of resonances whose position and width needs to be dynamically generated by the nucleon-nucleon (NN) interactions one uses. In addition, our calculations constitute the most advance piece of work where observables for all four-nucleon reactions involving isospin I=0, I=0 coupled to I=1 and isospin I=1 initial states are calculated at energies both below and above breakup threshold. We also present a very extensive comparison between calculated results and data for cross sections and spin observables. Therefore the present work reveals both the shortcomings and successes of some of the present NN force models in describing four-nucleon data and serve as a benchmark for future developments.

  5. A Measurement of Nuclear Structure Functions in the Large $X$ Large $$Q^{2}$$ Kinematic Region in Neutrino Deep Inelastic Scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vakili, Masoud

    1997-01-01

    Data from the CCFR E770 Neutrino Deep Inelastic Scatter- ing (DIS) experiment at Fermilab contain large Bjorken x, highmore » $Q^2$ events. A comparison of the data with a model, based on no nuclear effects at large $x$, shows an excess of events in the data. Addition of Fermi gas motion of the nucleons in the nucleus to the model does not explain the model's deficit. Adding higher momentum tail due to the formation of "quasi-deuterons" makes the agreement better. Certain models based on "multi- quark clusters" and "few-nucleon correlations" predict an exponentially falling behavior for $$F_2$$ as $$F_2 \\sim e^{s(x -x_0)}$$ at large $x$. We measure a $s$ = 8.3 $$\\pm$$ 0.8 for the best fit to our data. This corresponds to a value of $$F_2$$($$x = 1, Q^2 > 50) \\approx 2$$ x $$10^{-3}$$ in neutrino DIS. These values agree with results from theoretical models and the $SLAC$ $E133$ experiment but seem to be different from the result of the BCDMS experiment« less

  6. Emission of neutron–proton and proton–proton pairs in neutrino scattering

    DOE PAGES

    Ruiz Simo, I.; Amaro, J. E.; Barbaro, M. B.; ...

    2016-11-10

    For this paper, we use a recently developed model of relativistic meson-exchange currents to compute the neutron–proton and proton–proton yields in (νμ, μ -)scattering from 12C in the 2p–2h channel. We compute the response functions and cross sections with the relativistic Fermi gas model for different kinematics from intermediate to high momentum transfers. We find a large contribution of neutron–proton configurations in the initial state, as compared to proton–proton pairs. In the case of charge-changing neutrino scattering the 2p–2h cross section of proton–proton emission (i.e.,np in the initial state) is much larger than for neutron–proton emission (i.e.,two neutrons in themore » initial state) by a (ω, q)-dependent factor. The different emission probabilities of distinct species of nucleon pairs are produced in our model only by meson-exchange currents, mainly by the Δ isobar current. We also analyze other effects including exchange contributions and the effect of the axial and vector currents.« less

  7. Quantum Monte Carlo calculation of neutral-current ν -12C inclusive quasielastic scattering

    NASA Astrophysics Data System (ADS)

    Lovato, A.; Gandolfi, S.; Carlson, J.; Lusk, Ewing; Pieper, Steven C.; Schiavilla, R.

    2018-02-01

    Quasielastic neutrino scattering is an important aspect of the experimental program to study fundamental neutrino properties including neutrino masses, mixing angles, mass hierarchy, and charge-conjugation parity (CP)- violating phase. Proper interpretation of the experiments requires reliable theoretical calculations of neutrino-nucleus scattering. In this paper we present calculations of response functions and cross sections by neutral-current scattering of neutrinos off 12C. These calculations are based on realistic treatments of nuclear interactions and currents, the latter including the axial, vector, and vector-axial interference terms crucial for determining the difference between neutrino and antineutrino scattering and the CP-violating phase. We find that the strength and energy dependence of two-nucleon processes induced by correlation effects and interaction currents are crucial in providing the most accurate description of neutrino-nucleus scattering in the quasielastic regime.

  8. Quantum Monte Carlo calculation of neutral-current ν - C 12 inclusive quasielastic scattering

    DOE PAGES

    Lovato, A.; Gandolfi, S.; Carlson, J.; ...

    2018-02-28

    Quasielastic neutrino scattering is an important aspect of the experimental program to study fundamental neutrino properties including neutrino masses, mixing angles, the mass hierarchy and CP-violating phase. Proper interpretation of the experiments requires reliable theoretical calculations of neutrino-nucleus scattering. In this paper we present calculations of response functions and cross sections by neutral-current scattering of neutrinos offmore » $$^{12}$$C. These calculations are based on realistic treatments of nuclear interactions and currents, the latter including the axial, vector, and vector-axial interference terms crucial for determining the difference between neutrino and anti-neutrino scattering and the CP-violating phase. Here in this paper, we find that the strength and energy-dependence of two-nucleon processes induced by correlation effects and interaction currents are crucial in providing the most accurate description of neutrino-nucleus scattering in the quasielastic regime.« less

  9. Quantum Monte Carlo calculation of neutral-current ν - C 12 inclusive quasielastic scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lovato, A.; Gandolfi, S.; Carlson, J.

    Quasielastic neutrino scattering is an important aspect of the experimental program to study fundamental neutrino properties including neutrino masses, mixing angles, the mass hierarchy and CP-violating phase. Proper interpretation of the experiments requires reliable theoretical calculations of neutrino-nucleus scattering. In this paper we present calculations of response functions and cross sections by neutral-current scattering of neutrinos offmore » $$^{12}$$C. These calculations are based on realistic treatments of nuclear interactions and currents, the latter including the axial, vector, and vector-axial interference terms crucial for determining the difference between neutrino and anti-neutrino scattering and the CP-violating phase. Here in this paper, we find that the strength and energy-dependence of two-nucleon processes induced by correlation effects and interaction currents are crucial in providing the most accurate description of neutrino-nucleus scattering in the quasielastic regime.« less

  10. The method of unitary clothing transformations in the theory of nucleon-nucleon scattering

    NASA Astrophysics Data System (ADS)

    Dubovyk, I.; Shebeko, A.

    2010-04-01

    The clothing procedure, put forward in quantum field theory (QFT) by Greenberg and Schweber, is applied for the description of nucleon-nucleon (N -N) scattering. We consider pseudoscalar (π and η), vector (ρ and ω) and scalar (δ and σ) meson fields interacting with 1/2 spin (N and N) fermion ones via the Yukawa-type couplings to introduce trial interactions between “bare” particles. The subsequent unitary clothing transformations (UCTs) are found to express the total Hamiltonian through new interaction operators that refer to particles with physical (observable) properties, the so-called clothed particles. In this work, we are focused upon the Hermitian and energy-independent operators for the clothed nucleons, being built up in the second order in the coupling constants. The corresponding analytic expressions in momentum space are compared with the separate meson contributions to the one-boson-exchange potentials in the meson theory of nuclear forces. In order to evaluate the T matrix of the N-N scattering we have used an equivalence theorem that enables us to operate in the clothed particle representation (CPR) instead of the bare particle representation (BPR) with its huge amount of virtual processes. We have derived the Lippmann-Schwinger(LS)-type equation for the CPR elements of the T-matrix for a given collision energy in the two-nucleon sector of the Hilbert space H of hadronic states and elaborated a code for its numerical solution in momentum space.

  11. Robert Hofstadter, Electron Scattering, the Structure of the Nucleons, and

    Science.gov Websites

    , Electron Scattering, the Structure of the Nucleons, and Scintillation Counters Resources with Additional -point particles and therefore possessed structure. For this work Hofstadter was awarded the Nobel Prize structure of the nucleons, and scintillation counters is available in electronic documents and on the Web

  12. Probing neutrino coupling to a light scalar with coherent neutrino scattering

    NASA Astrophysics Data System (ADS)

    Farzan, Yasaman; Lindner, Manfred; Rodejohann, Werner; Xu, Xun-Jie

    2018-05-01

    Large neutrino event numbers in future experiments measuring coherent elastic neutrino nucleus scattering allow precision measurements of standard and new physics. We analyze the current and prospective limits of a light scalar particle coupling to neutrinos and quarks, using COHERENT and CONUS as examples. Both lepton number conserving and violating interactions are considered. It is shown that current (future) experiments can probe for scalar masses of a few MeV couplings down to the level of 10-4 (10-6). Scalars with masses around the neutrino energy allow to determine their mass via a characteristic spectrum shape distortion. Our present and future limits are compared with constraints from supernova evolution, Big Bang nucleosynthesis and neutrinoless double beta decay. We also outline UV-complete underlying models that include a light scalar with coupling to quarks for both lepton number violating and conserving coupling to neutrinos.

  13. Optical scattering lengths in large liquid-scintillator neutrino detectors.

    PubMed

    Wurm, M; von Feilitzsch, F; Göger-Neff, M; Hofmann, M; Lachenmaier, T; Lewke, T; Marrodán Undagoitia, T; Meindl, Q; Möllenberg, R; Oberauer, L; Potzel, W; Tippmann, M; Todor, S; Traunsteiner, C; Winter, J

    2010-05-01

    For liquid-scintillator neutrino detectors of kiloton scale, the transparency of the organic solvent is of central importance. The present paper reports on laboratory measurements of the optical scattering lengths of the organic solvents phenylxylylethane, linear alkylbenzene (LAB), and dodecane, which are under discussion for next-generation experiments such as SNO+ (Sudbury Neutrino Observatory), HanoHano, or LENA (Low Energy Neutrino Astronomy). Results comprise the wavelength range of 415-440 nm. The contributions from Rayleigh and Mie scattering as well as from absorption/re-emission processes are discussed. Based on the present results, LAB seems to be the preferred solvent for a large-volume detector.

  14. Optical scattering lengths in large liquid-scintillator neutrino detectors

    NASA Astrophysics Data System (ADS)

    Wurm, M.; von Feilitzsch, F.; Göger-Neff, M.; Hofmann, M.; Lachenmaier, T.; Lewke, T.; Undagoitia, T. Marrodán; Meindl, Q.; Möllenberg, R.; Oberauer, L.; Potzel, W.; Tippmann, M.; Todor, S.; Traunsteiner, C.; Winter, J.

    2010-05-01

    For liquid-scintillator neutrino detectors of kiloton scale, the transparency of the organic solvent is of central importance. The present paper reports on laboratory measurements of the optical scattering lengths of the organic solvents phenylxylylethane, linear alkylbenzene (LAB), and dodecane, which are under discussion for next-generation experiments such as SNO+ (Sudbury Neutrino Observatory), HanoHano, or LENA (Low Energy Neutrino Astronomy). Results comprise the wavelength range of 415-440 nm. The contributions from Rayleigh and Mie scattering as well as from absorption/re-emission processes are discussed. Based on the present results, LAB seems to be the preferred solvent for a large-volume detector.

  15. First measurement of the muon neutrino charged current quasielastic double differential cross section

    NASA Astrophysics Data System (ADS)

    Aguilar-Arevalo, A. A.; Anderson, C. E.; Bazarko, A. O.; Brice, S. J.; Brown, B. C.; Bugel, L.; Cao, J.; Coney, L.; Conrad, J. M.; Cox, D. C.; Curioni, A.; Djurcic, Z.; Finley, D. A.; Fleming, B. T.; Ford, R.; Garcia, F. G.; Garvey, G. T.; Grange, J.; Green, C.; Green, J. A.; Hart, T. L.; Hawker, E.; Imlay, R.; Johnson, R. A.; Karagiorgi, G.; Kasper, P.; Katori, T.; Kobilarcik, T.; Kourbanis, I.; Koutsoliotas, S.; Laird, E. M.; Linden, S. K.; Link, J. M.; Liu, Y.; Liu, Y.; Louis, W. C.; Mahn, K. B. M.; Marsh, W.; Mauger, C.; McGary, V. T.; McGregor, G.; Metcalf, W.; Meyers, P. D.; Mills, F.; Mills, G. B.; Monroe, J.; Moore, C. D.; Mousseau, J.; Nelson, R. H.; Nienaber, P.; Nowak, J. A.; Osmanov, B.; Ouedraogo, S.; Patterson, R. B.; Pavlovic, Z.; Perevalov, D.; Polly, C. C.; Prebys, E.; Raaf, J. L.; Ray, H.; Roe, B. P.; Russell, A. D.; Sandberg, V.; Schirato, R.; Schmitz, D.; Shaevitz, M. H.; Shoemaker, F. C.; Smith, D.; Soderberg, M.; Sorel, M.; Spentzouris, P.; Spitz, J.; Stancu, I.; Stefanski, R. J.; Sung, M.; Tanaka, H. A.; Tayloe, R.; Tzanov, M.; van de Water, R. G.; Wascko, M. O.; White, D. H.; Wilking, M. J.; Yang, H. J.; Zeller, G. P.; Zimmerman, E. D.; MiniBooNE Collaboration

    2010-05-01

    A high-statistics sample of charged-current muon neutrino scattering events collected with the MiniBooNE experiment is analyzed to extract the first measurement of the double differential cross section ((d2σ)/(dTμdcos⁡θμ)) for charged-current quasielastic (CCQE) scattering on carbon. This result features minimal model dependence and provides the most complete information on this process to date. With the assumption of CCQE scattering, the absolute cross section as a function of neutrino energy (σ[Eν]) and the single differential cross section ((dσ)/(dQ2)) are extracted to facilitate comparison with previous measurements. These quantities may be used to characterize an effective axial-vector form factor of the nucleon and to improve the modeling of low-energy neutrino interactions on nuclear targets. The results are relevant for experiments searching for neutrino oscillations.

  16. Muon-Neutrino Electron Elastic Scattering and a Search for the Muon-Neutrino Magnetic Moment in the NOvA Near Detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Biao

    We use the NOvA near detector and the NuMI beam at Fermilab to study the neutrino- electron elastic scattering and the muon neutrino magnetic process beyond the Standard Model physics. The particle identications of neutrino on electron elastic scattering are trained by using the multi-layer neural networks. This thesis provides a general discussion of this technique and shows a good agreement between data and MC for the neutrino-electron elastic weak scattering. So that beneting from the precise cross-section of this channel, we are able to tune the neutrino beam ux simulation in the future. Giving the exposure of 3:62 1020more » POT in the NOvA near detector, we report 1:58 10« less

  17. Coincidence (e,e'p) Scattering on 40Ar and 48Ti to Aid Precision Neutrino Oscillation Experiments

    NASA Astrophysics Data System (ADS)

    Abrams, Dan; E12-14-012 Collaboration

    2017-09-01

    Neutrino oscillations are an active area of research, with experiments such as DUNE (Deep Underground Neutrino Experiment). DUNE will make use of large liquid argon detectors to perform a precision measurement of the CP violating phase. Hence, an understanding of the argon nuclear ground state and its response to (anti-)neutrino interactions is of paramount importance. Information about the nuclear ground state is encapsulated in the spectral function, S (k , E) , the joint probability of removing a nucleon of momentum k = |k | from the ground state leaving the residual (A-1) system with excitation energy E. E12-14-012 at Jefferson Lab ran in early 2017 and has measured the argon spectral function through coincidence (e ,e' p) scattering on 40Ar and 48Ti. The results of E12-14-012 are important to both the neutrino and nuclear physics communities. A direct measurement of the coincidence (e ,e' p) cross section from 40Ar and 48Ti will provide valuable information about the argon nucleus, as well as the experimental input necessary to constrain theoretical models used to calculate S (k , E) , paving the way for reliable estimates of the neutrino cross sections. Data from E12-14-012 is currently being analyzed at UVA and Va. Tech. Supported in part by the Department of Energy Grant No: DE-FG02-96ER40950.

  18. Ab initio many-body calculations of nucleon- 4He scattering with three-nucleon forces

    DOE PAGES

    Hupin, Guillaume; Langhammer, Joachim; Navratil, Petr; ...

    2013-11-27

    We extend the ab initio no-core shell model/resonating-group method to include three-nucleon (3N) interactions for the description of nucleon-nucleus collisions. We outline the formalism, give algebraic expressions for the 3N-force integration kernels, and discuss computational aspects of two alternative implementations. The extended theoretical framework is then applied to nucleon- 4He elastic scattering using similarity-renormalization-group (SRG)-evolved nucleon-nucleon plus 3N potentials derived from chiral effective field theory. We analyze the convergence properties of the calculated phase shifts and explore their dependence upon the SRG evolution parameter. We include up to six excited states of the 4He target and find significant effects frommore » the inclusion of the chiral 3N force, e.g., it enhances the spin-orbit splitting between the 3/2 – and 1/2 – resonances and leads to an improved agreement with the phase shifts obtained from an accurate R-matrix analysis of the five-nucleon experimental data. As a result, we find remarkably good agreement with measured differential cross sections at various energies below the d+ 3H threshold, while analyzing powers manifest larger deviations from experiment for certain energies and angles.« less

  19. Earth Versus Neutrinos: Measuring the Total Muon-Neutrino-to-Nucleon Cross Section at Ultra-High Energies through Differential Earth Absorption of Muon Neutrinos from Cosmic Rays Using the IceCube Detector

    NASA Astrophysics Data System (ADS)

    Miarecki, Sandra Christine

    The IceCube Neutrino Detector at the South Pole was constructed to measure the flux of high-energy neutrinos and to try to identify their cosmic sources. In addition to these astrophysical neutrinos, IceCube also detects the neutrinos that result from cosmic ray interactions with the atmosphere. These atmospheric neutrinos can be used to measure the total muon neutrino-to-nucleon cross section by measuring neutrino absorption in the Earth. The measurement involves isolating a sample of 10,784 Earth-transiting muons detected by IceCube in its 79-string configuration. The cross-section is determined using a two-dimensional fit in measured muon energy and zenith angle and is presented as a multiple of the Standard Model expectation as calculated by Cooper-Sarkar, Mertsch, and Sarkar in 2011. A multiple of 1.0 would indicate agreement with the Standard Model. The results of this analysis find the multiple to be 1.30 (+0.21 -0.19 statistical) (+0.40 -0.44 systematic) for the neutrino energy range of 6.3 to 980 TeV, which is in agreement with the Standard Model expectation.

  20. Observation of coherent elastic neutrino-nucleus scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akimov, D.; Albert, J. B.; An, P.

    The coherent elastic scattering of neutrinos off nuclei has eluded detection for four decades, even though its predicted cross section is by far the largest of all low-energy neutrino couplings. This mode of interaction offers new opportunities to study neutrino properties and leads to a miniaturization of detector size, with potential technological applications. In this paper, we observed this process at a 6.7σ confidence level, using a low-background, 14.6-kilogram CsI[Na] scintillator exposed to the neutrino emissions from the Spallation Neutron Source at Oak Ridge National Laboratory. Characteristic signatures in energy and time, predicted by the standard model for this process,more » were observed in high signal-to-background conditions. Finally, improved constraints on nonstandard neutrino interactions with quarks are derived from this initial data set.« less

  1. Observation of coherent elastic neutrino-nucleus scattering

    DOE PAGES

    Akimov, D.; Albert, J. B.; An, P.; ...

    2017-08-03

    The coherent elastic scattering of neutrinos off nuclei has eluded detection for four decades, even though its predicted cross section is by far the largest of all low-energy neutrino couplings. This mode of interaction offers new opportunities to study neutrino properties and leads to a miniaturization of detector size, with potential technological applications. In this paper, we observed this process at a 6.7σ confidence level, using a low-background, 14.6-kilogram CsI[Na] scintillator exposed to the neutrino emissions from the Spallation Neutron Source at Oak Ridge National Laboratory. Characteristic signatures in energy and time, predicted by the standard model for this process,more » were observed in high signal-to-background conditions. Finally, improved constraints on nonstandard neutrino interactions with quarks are derived from this initial data set.« less

  2. Measurement of Neutrino and Antineutrino Charged-Current Inclusive Cross Sections with the MINERvA Detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Devan, Joshua D.

    2015-01-01

    Neutrinos are a nearly massless, neutral particle in the Standard Model that only interact via the weak interaction. Experimental confirmation of neutrino oscillations, in which a neutrino created as a particular type (electron, muon or tau) can be observed as a different type after propagating some distance, earned the 2015 Nobel Prize in Physics. Neutrino oscillation experiments rely on accurate measurements of neutrino interactions with matter, such as that presented here. Neutrinos also provide a unique probe of the nucleus, complementary to electron scattering experiments. This thesis presents a measurement of the charged-current inclusive cross section for muon neutrinos and antineutrinos in the energy range 2 to 50 GeV with the MINERvA detector. MINERvA is a neutrino scattering experiment in the NuMI neutrino beam at Fermilab, near Chicago. A cross section measures the probability of an interaction occurring, measured here as a function of neutrino energy. To extract a cross section from data, the observed rate of interactions is corrected for detector efficiency and divided by the number of scattering nucleons in the target and the flux of neutrinos in the beam. The neutrino flux is determined with the low-more » $$\

  3. Relativistic optical model on the basis of the Moscow potential and lower phase shifts for nucleon-nucleon scattering at laboratory energies of up to 3 GeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knyr, V. A.; Neudatchin, V. G.; Khokhlov, N. A.

    Data of a partial-wave analysis of nucleon-nucleon scattering at energies of up to E{sub lab} = 3 GeV (lower partial waves) and the properties of the deuteron are described within the relativistic optical model based on deep attractive quasipotentials involving forbidden states (as exemplified by the Moscow potential). Partial-wave potentials are derived by the inverse-scattering-problem method based on the Marchenko equation by using present-day data from the partial-wave analysis of nucleon-nucleon scattering at energies of up to 3 GeV. Channel coupling is taken into account. The imaginary parts of the potentials are deduced from the phase equation of the variable-phasemore » approach. The general situation around the manifestation of quark effects in nucleon-nucleon interaction is discussed.« less

  4. Implementing the correlated fermi gas nuclear model for quasielastic neutrino-nucleus scattering

    NASA Astrophysics Data System (ADS)

    Tockstein, Jameson

    2017-09-01

    When studying neutrino oscillations an understanding of charged current quasielastic (CCQE) neutrino-nucleus scattering is imperative. This interaction depends on a nuclear model as well as knowledge of form factors. Neutrino experiments, such as MiniBooNE, often use the Relativistic Fermi Gas (RFG) nuclear model. Recently, the Correlated Fermi Gas (CFG) nuclear model was suggested in, based on inclusive and exclusive scattering experiments at JLab. We implement the CFG model for CCQE scattering. In particular, we provide analytic expressions for this implementation that can be used to analyze current and future neutrino CCQE data. This project was supported through the Wayne State University REU program under NSF Grant PHY-1460853 and by the DOE Grant DE-SC0007983.

  5. Identification of nuclear effects in neutrino-carbon interactions at low three-momentum transfer

    DOE PAGES

    Rodrigues, P. A.

    2016-02-17

    Two different nuclear-medium effects are isolated using a low three-momentum transfer subsample of neutrino-carbon scattering data from the MINERvA neutrino experiment. The observed hadronic energy in charged-current νμ interactions is combined with muon kinematics to permit separation of the quasielastic and Δ(1232) resonance processes. First, we observe a small cross section at very low energy transfer that matches the expected screening effect of long-range nucleon correlations. Second, additions to the event rate in the kinematic region between the quasielastic and Δ resonance processes are needed to describe the data. The data in this kinematic region also have an enhanced populationmore » of multiproton final states. Contributions predicted for scattering from a nucleon pair have both properties; the model tested in this analysis is a significant improvement but does not fully describe the data. We present the results as a double-differential cross section to enable further investigation of nuclear models. Furthermore, improved description of the effects of the nuclear environment are required by current and future neutrino oscillation experiments.« less

  6. Sterile neutrinos and indirect dark matter searches in IceCube

    NASA Astrophysics Data System (ADS)

    Argüelles, Carlos A.; Kopp, Joachim

    2012-07-01

    If light sterile neutrinos exist and mix with the active neutrino flavors, this mixing will affect the propagation of high-energy neutrinos from dark matter annihilation in the Sun. In particular, new Mikheyev-Smirnov-Wolfenstein resonances can occur, leading to almost complete conversion of some active neutrino flavors into sterile states. We demonstrate how this can weaken IceCube limits on neutrino capture and annihilation in the Sun and how potential future conflicts between IceCube constraints and direct detection or collider data might be resolved by invoking sterile neutrinos. We also point out that, if the dark matter-nucleon scattering cross section and the allowed annihilation channels are precisely measured in direct detection and collider experiments in the future, IceCube can be used to constrain sterile neutrino models using neutrinos from the dark matter annihilation.

  7. Low energy peripheral scaling in nucleon-nucleon scattering and uncertainty quantification

    NASA Astrophysics Data System (ADS)

    Ruiz Simo, I.; Amaro, J. E.; Ruiz Arriola, E.; Navarro Pérez, R.

    2018-03-01

    We analyze the peripheral structure of the nucleon-nucleon interaction for LAB energies below 350 MeV. To this end we transform the scattering matrix into the impact parameter representation by analyzing the scaled phase shifts (L + 1/2) δ JLS (p) and the scaled mixing parameters (L + 1/2)ɛ JLS (p) in terms of the impact parameter b = (L + 1/2)/p. According to the eikonal approximation, at large angular momentum L these functions should become an universal function of b, independent on L. This allows to discuss in a rather transparent way the role of statistical and systematic uncertainties in the different long range components of the two-body potential. Implications for peripheral waves obtained in chiral perturbation theory interactions to fifth order (N5LO) or from the large body of NN data considered in the SAID partial wave analysis are also drawn from comparing them with other phenomenological high-quality interactions, constructed to fit scattering data as well. We find that both N5LO and SAID peripheral waves disagree more than 5σ with the Granada-2013 statistical analysis, more than 2σ with the 6 statistically equivalent potentials fitting the Granada-2013 database and about 1σ with the historical set of 13 high-quality potentials developed since the 1993 Nijmegen analysis.

  8. Measurement of partonic nuclear effects in deep-inelastic neutrino scattering using MINERvA

    NASA Astrophysics Data System (ADS)

    Mousseau, J.; Wospakrik, M.; Aliaga, L.; Altinok, O.; Bellantoni, L.; Bercellie, A.; Betancourt, M.; Bodek, A.; Bravar, A.; Budd, H.; Cai, T.; Carneiro, M. F.; Christy, M. E.; Chvojka, J.; da Motta, H.; Devan, J.; Dytman, S. A.; Díaz, G. A.; Eberly, B.; Felix, J.; Fields, L.; Fine, R.; Gago, A. M.; Galindo, R.; Gallagher, H.; Ghosh, A.; Golan, T.; Gran, R.; Harris, D. A.; Higuera, A.; Hurtado, K.; Kiveni, M.; Kleykamp, J.; Kordosky, M.; Le, T.; Maher, E.; Manly, S.; Mann, W. A.; Marshall, C. M.; Martinez Caicedo, D. A.; McFarland, K. S.; McGivern, C. L.; McGowan, A. M.; Messerly, B.; Miller, J.; Mislivec, A.; Morfín, J. G.; Naples, D.; Nelson, J. K.; Norrick, A.; Nuruzzaman; Osta, J.; Paolone, V.; Park, J.; Patrick, C. E.; Perdue, G. N.; Rakotondravohitra, L.; Ramirez, M. A.; Ransome, R. D.; Ray, H.; Ren, L.; Rimal, D.; Rodrigues, P. A.; Ruterbories, D.; Schellman, H.; Schmitz, D. W.; Solano Salinas, C. J.; Tagg, N.; Tice, B. G.; Valencia, E.; Walton, T.; Wolcott, J.; Zavala, G.; Zhang, D.; Minerν A Collaboration

    2016-04-01

    The MINERvA Collaboration reports a novel study of neutrino-nucleus charged-current deep inelastic scattering (DIS) using the same neutrino beam incident on targets of polystyrene, graphite, iron, and lead. Results are presented as ratios of C, Fe, and Pb to CH. The ratios of total DIS cross sections as a function of neutrino energy and flux-integrated differential cross sections as a function of the Bjorken scaling variable x are presented in the neutrino-energy range of 5-50 GeV. Based on the predictions of charged-lepton scattering ratios, good agreement is found between the data and prediction at medium x and low neutrino energy. However, the ratios appear to be below predictions in the vicinity of the nuclear shadowing region, x <0.1 . This apparent deficit, reflected in the DIS cross-section ratio at high Eν, is consistent with previous MINERvA observations [B. Tice et al. (MINERvA Collaboration), Phys. Rev. Lett. 112, 231801 (2014).] and with the predicted onset of nuclear shadowing with the axial-vector current in neutrino scattering.

  9. Measurement of partonic nuclear effects in deep-inelastic neutrino scattering using MINERvA

    DOE PAGES

    Mousseau, J.

    2016-04-19

    Here, the MINERvA Collaboration reports a novel study of neutrino-nucleus charged-current deep inelastic scattering (DIS) using the same neutrino beam incident on targets of polystyrene, graphite, iron, and lead. Results are presented as ratios of C, Fe, and Pb to CH. The ratios of total DIS cross sections as a function of neutrino energy and flux-integrated differential cross sections as a function of the Bjorken scaling variable x are presented in the neutrino-energy range of 5–50 GeV. Based on the predictions of charged-lepton scattering ratios, good agreement is found between the data and prediction at medium x and low neutrino energy.more » However, the ratios appear to be below predictions in the vicinity of the nuclear shadowing region, x < 0.1. This apparent deficit, reflected in the DIS cross-section ratio at high Eν, is consistent with previous MINERvA observations [B. Tice (MINERvA Collaboration), Phys. Rev. Lett. 112, 231801 (2014).] and with the predicted onset of nuclear shadowing with the axial-vector current in neutrino scattering.« less

  10. Determinacion del error sistematico del momentum de muones producidos por interacciones neutrino-nucleon en el detector MINER$$\

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diaz Bautista, Gonzalo A.

    El Modelo Estandar describe todas las partculas observadas en el naturaleza hasta el momento as como las caractersticas que gobiernan a las interacciones fundamentales entre ellas. En especial es posible identicar a las interacciones electromagnetica y debil, las cuales bajo determinadas condiciones de temperatura y energa pueden ser descritas a traves de una sola teora que engloba a ambas. A esta teora se le denomina electrodebil y tiene como nalidad caracterizar las propiedades de la interaccion maniesta a partir de la mezcla de las interacciones electromagnetica y debil, la que tambien lleva como nombre interaccion electrodebil. Particularmente, los neutrinos sonmore » de especial interes ya que, por un lado, interactuan por medio de la interaccion debil muy raramente en comparacion con otras partculas y, por el otro, no son acertadamente descritos por el Modelo Estandar. Por medio de observaciones experimentales que demostraban que los neutrinos cambian de sabor al propagarse, fenomeno llamado oscilaciones de neutrinos, se pudo llegar a la conclusion de que la implicancia de este fenomeno da como consecuencia que los neutrinos efectivamente s tienen masa, algo que entra en contradiccion con la descripcion inicial del Modelo Estandar, el cual los describe como partculas sin masa. Es de esta manera que las oscilaciones de neutrinos han sido y siguen siendo en la actualidad objeto de interes en la Fsica de Altas Energas tanto teorica como experimental. A n de poder realizar mediciones precisas de oscilaciones de neutrinos, los experimentos encargados de estas mediciones deben tratar de reducir sus incertidumbres en lo posible. Una de estas proviene de la caracterizacion de las secciones de choque de los neutrinos cuando interactuan con la materia, particularmente los nucleones al interior de los nucleos atomicos. El experimento MINERA esta orientado, entre otras cosas, a hacer una correcta caracterizacion de secciones de choque neutrino-nucleon por medio del

  11. Indirect signals from solar dark matter annihilation to long-lived right-handed neutrinos

    DOE PAGES

    Allahverdi, Rouzbeh; Gao, Yu; Knockel, Bradley; ...

    2017-04-04

    In this paper, we study indirect detection signals from solar annihilation of dark matter (DM) particles into light right-handed (RH) neutrinos with a mass in a 1–5 GeV range. These RH neutrinos can have a sufficiently long lifetime to allow them to decay outside the Sun, and their delayed decays can result in a signal in gamma rays from the otherwise “dark” solar direction, and also a neutrino signal that is not suppressed by the interactions with solar medium. We find that the latest Fermi-LAT and IceCube results place limits on the gamma ray and neutrino signals, respectively. Combined photonmore » and neutrino bounds can constrain the spin-independent DM-nucleon elastic scattering cross section better than direct detection experiments for DM masses from 200 GeV up to several TeV. Finally, the bounds on spin-dependent scattering are also much tighter than the strongest limits from direct detection experiments.« less

  12. Atmospheric neutrino oscillations from upward throughgoing muon multiple scattering in MACRO

    NASA Astrophysics Data System (ADS)

    MACRO Collaboration; Ambrosio, M.; Antolini, R.; Bakari, D.; Baldini, A.; Barbarino, G. C.; Barish, B. C.; Battistoni, G.; Becherini, Y.; Bellotti, R.; Bemporad, C.; Bernardini, P.; Bilokon, H.; Bloise, C.; Bower, C.; Brigida, M.; Bussino, S.; Cafagna, F.; Calicchio, M.; Campana, D.; Carboni, M.; Caruso, R.; Cecchini, S.; Cei, F.; Chiarella, V.; Chiarusi, T.; Choudhary, B. C.; Coutu, S.; Cozzi, M.; de Cataldo, G.; Dekhissi, H.; de Marzo, C.; de Mitri, I.; Derkaoui, J.; de Vincenzi, M.; di Credico, A.; Favuzzi, C.; Forti, C.; Fusco, P.; Giacomelli, G.; Giannini, G.; Giglietto, N.; Giorgini, M.; Grassi, M.; Grillo, A.; Gustavino, C.; Habig, A.; Hanson, K.; Heinz, R.; Iarocci, E.; Katsavounidis, E.; Katsavounidis, I.; Kearns, E.; Kim, H.; Kumar, A.; Kyriazopoulou, S.; Lamanna, E.; Lane, C.; Levin, D. S.; Lipari, P.; Longo, M. J.; Loparco, F.; Maaroufi, F.; Mancarella, G.; Mandrioli, G.; Manzoor, S.; Margiotta, A.; Marini, A.; Martello, D.; Marzari-Chiesa, A.; Mazziotta, M. N.; Michael, D. G.; Mikheyev, S.; Monacelli, P.; Montaruli, T.; Monteno, M.; Mufson, S.; Musser, J.; Nicolò, D.; Nolty, R.; Orth, C.; Osteria, G.; Palamara, O.; Patera, V.; Patrizii, L.; Pazzi, R.; Peck, C. W.; Perrone, L.; Petrera, S.; Popa, V.; Rainò, A.; Reynoldson, J.; Ronga, F.; Rrhioua, A.; Satriano, C.; Scapparone, E.; Scholberg, K.; Sciubba, A.; Serra, P.; Sioli, M.; Sirri, G.; Sitta, M.; Spinelli, P.; Spinetti, M.; Spurio, M.; Steinberg, R.; Stone, J. L.; Sulak, L. R.; Surdo, A.; Tarlè, G.; Togo, V.; Vakili, M.; Walter, C. W.; Webb, R.

    2003-07-01

    The energy of atmospheric neutrinos detected by MACRO was estimated using multiple Coulomb scattering of upward throughgoing muons. This analysis allows a test of atmospheric neutrino oscillations, relying on the distortion of the muon energy distribution. These results have been combined with those coming from the upward throughgoing muon angular distribution only. Both analyses are independent of the neutrino flux normalization and provide strong evidence, above the /4σ level, in favour of neutrino oscillations.

  13. New physics with ultra-high-energy neutrinos

    DOE PAGES

    Marfatia, D.; McKay, D. W.; Weiler, T. J.

    2015-07-03

    Now that PeV neutrinos have been discovered by IceCube, we optimistically entertain the possibility that neutrinos with energy above 100PeV exist. Here, we evaluate the dependence of event rates of such neutrinos on the neutrino-nucleon cross section at observatories that detect particles, atmospheric fluorescence, or Cherenkov radiation, initiated by neutrino interactions. We consider how (i)a simple scaling of the total standard model neutrino-nucleon cross section, (ii) a new elastic neutral current interaction, and (iii) anew completely inelastic interaction, individually impact event rates.

  14. Extracting the σ-term from low-energy pion-nucleon scattering

    NASA Astrophysics Data System (ADS)

    Ruiz de Elvira, Jacobo; Hoferichter, Martin; Kubis, Bastian; Meißner, Ulf-G.

    2018-02-01

    We present an extraction of the pion-nucleon (π N) scattering lengths from low-energy π N scattering, by fitting a representation based on Roy-Steiner equations to the low-energy data base. We show that the resulting values confirm the scattering-length determination from pionic atoms, and discuss the stability of the fit results regarding electromagnetic corrections and experimental normalization uncertainties in detail. Our results provide further evidence for a large π N σ-term, {σ }π N=58(5) {{MeV}}, in agreement with, albeit less precise than, the determination from pionic atoms.

  15. Time Dependent Channel Packet Calculation of Two Nucleon Scattering Matrix Elements

    DTIC Science & Technology

    2010-03-01

    solutions, 46 ( ) ( )1 1 11 ( ) cos sinL L L L Lr Akr j kr krψ δ η δ= −   (3.70) Here, A is an arbitrary constant, Lδ is the phase shift...iv AFIT/DS/ENP/10-M03 Abstract A new approach to calculating nucleon-nucleon scattering matrix...elements using a proven atomic time-dependent wave packet technique is investigated. Using this technique, reactant and product wave packets containing

  16. Neutrino nuclear responses for double beta decays and astro neutrinos by charge exchange reactions

    NASA Astrophysics Data System (ADS)

    Ejiri, Hiroyasu

    2014-09-01

    Neutrino nuclear responses are crucial for neutrino studies in nuclei. Charge exchange reactions (CER) are shown to be used to study charged current neutrino nuclear responses associated with double beta decays(DBD)and astro neutrino interactions. CERs to be used are high energy-resolution (He3 ,t) reactions at RCNP, photonuclear reactions via IAR at NewSUBARU and muon capture reactions at MUSIC RCNP and MLF J-PARC. The Gamow Teller (GT) strengths studied by CERs reproduce the observed 2 neutrino DBD matrix elements. The GT and spin dipole (SD) matrix elements are found to be reduced much due to the nucleon spin isospin correlations and the non-nucleonic (delta isobar) nuclear medium effects. Impacts of the reductions on the DBD matrix elements and astro neutrino interactions are discussed.

  17. Two-nucleon higher partial-wave scattering from lattice QCD

    DOE PAGES

    Berkowitz, Evan; Kurth, Thorsten; Nicholson, Amy; ...

    2016-12-14

    Here, we present a determination of nucleon-nucleon scattering phase shifts for L>0. The S,P,D and F phase shifts for both the spin-triplet and spin-singlet channels are computed for the first time with lattice Quantum ChromoDynamics. This required the design and implementation of novel lattice methods involving displaced sources and momentum-space cubic sinks. In order to demonstrate the utility of our approach, the calculations were performed in the SU(3)-flavor limit where the light quark masses have been tuned to the physical strange quark mass, corresponding to m π=m K≈800~MeV. Two spatial volumes of V ≈ (3.5 fm) 3 and V ≈more » (4.6 fm) 3 were used. Furthermore, the finite-volume spectrum is extracted from the exponential falloff of the correlation functions. Said spectrum is mapped onto the infinite volume phase shifts using the generalization of the Luscher formalism for two-nucleon systems.« less

  18. Roy-Steiner equations for pion-nucleon scattering

    NASA Astrophysics Data System (ADS)

    Ditsche, C.; Hoferichter, M.; Kubis, B.; Meißner, U.-G.

    2012-06-01

    Starting from hyperbolic dispersion relations, we derive a closed system of Roy-Steiner equations for pion-nucleon scattering that respects analyticity, unitarity, and crossing symmetry. We work out analytically all kernel functions and unitarity relations required for the lowest partial waves. In order to suppress the dependence on the high energy regime we also consider once- and twice-subtracted versions of the equations, where we identify the subtraction constants with subthreshold parameters. Assuming Mandelstam analyticity we determine the maximal range of validity of these equations. As a first step towards the solution of the full system we cast the equations for the π π to overline N N partial waves into the form of a Muskhelishvili-Omnès problem with finite matching point, which we solve numerically in the single-channel approximation. We investigate in detail the role of individual contributions to our solutions and discuss some consequences for the spectral functions of the nucleon electromagnetic form factors.

  19. Polarized lepton-nucleon elastic scattering and a search for a light scalar boson

    NASA Astrophysics Data System (ADS)

    Liu, Yu-Sheng; Miller, Gerald A.

    2015-09-01

    Lepton-nucleon elastic scattering, using the one-photon and one-scalar-boson exchange mechanisms considering all possible polarizations, is used to study searches for a new scalar boson and suggest new measurements of the nucleon form factors. A new light scalar boson, which feebly couples to leptons and nucleons, may account for the proton radius and muon g -2 puzzles. We show that the scalar boson produces relatively large effects in a certain kinematic region when using sufficient control of lepton and nucleon spin polarization. We generalize current techniques to measure the ratio GE:GM and present a new method to separately measure GM2 and GE2 using polarized incoming and outgoing muons.

  20. Shell-model computed cross sections for charged-current scattering of astrophysical neutrinos off 40Ar

    NASA Astrophysics Data System (ADS)

    Kostensalo, Joel; Suhonen, Jouni; Zuber, K.

    2018-03-01

    Charged-current (anti)neutrino-40Ar cross sections for astrophysical neutrinos have been calculated. The initial and final nuclear states were calculated using the nuclear shell model. The folded solar-neutrino scattering cross section was found to be 1.78 (23 ) ×10-42cm2 , which is higher than what the previous papers have reported. The contributions from the 1- and 2- multipoles were found to be significant at supernova-neutrino energies, confirming the random-phase approximation (RPA) result of a previous study. The effects of neutrino flavor conversions in dense stellar matter (matter oscillations) were found to enhance the neutrino-scattering cross sections significantly for both the normal and inverted mass hierarchies. For the antineutrino scattering, only a small difference between the nonoscillating and inverted-hierarchy cross sections was found, while the normal-hierarchy cross section was 2-3 times larger than that of the nonoscillating cross section, depending on the adopted parametrization of the Fermi-Dirac distribution. This property of the supernova-antineutrino signal could probably be used to distinguish between the two hierarchies in megaton LAr detectors.

  1. Ab initio many-body calculations of nucleon scattering on ^16O

    NASA Astrophysics Data System (ADS)

    Navratil, Petr; Quaglioni, Sofia; Roth, Robert

    2008-10-01

    We develop a new ab initio many-body approachootnotetextS. Quaglioni and P. Navratil, arXiv:0804.1560. capable of describing simultaneously both bound and scattering states in light nuclei, by combining the resonating-group methodootnotetextY. C. Tang et al., Phys. Rep. 47, 167 (1978); K. Langanke and H. Friedrich, Advances in Nuclear Physics, Plenum, New York, 1987. with the ab initio no-core shell model (NCSM).ootnotetextP. Navratil, J. P. Vary, and B. R. Barrett, Phys. Rev. Lett. 84, 5728 (2000); Phys. Rev. C 62, 054311 (2000). In this way, we complement a microscopic-cluster technique with the use of realistic interactions, and a microscopic and consistent description of the nucleon clusters, while preserving Pauli principle and translational symmetry. We will present results for low-energy nucleon scattering on ^16O and for A=17 bound states obtained using realistic nucleon-nucleon potentials. The ^16O wave functions are calculated within the importance-truncated NCSMootnotetextR. Roth and P. Navratil, Phys. Rev. Lett. 99, 092501 (2007). that allows the use of model spaces up to 18φ and ultimately enables to reach convergence of phase-shifts and other observables. Prepared by LLNL under Contract DE-AC52-07NA27344. Support from the U.S. DOE/SC/NP (Work Proposal No. SCW0498), and from the U. S. Department of Energy Grant DE-FC02-07ER41457 is acknowledged.

  2. Neutrino physics with multi-ton scale liquid xenon detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baudis, L.; Ferella, A.; Kish, A.

    2014-01-01

    We study the sensitivity of large-scale xenon detectors to low-energy solar neutrinos, to coherent neutrino-nucleus scattering and to neutrinoless double beta decay. As a concrete example, we consider the xenon part of the proposed DARWIN (Dark Matter WIMP Search with Noble Liquids) experiment. We perform detailed Monte Carlo simulations of the expected backgrounds, considering realistic energy resolutions and thresholds in the detector. In a low-energy window of 2–30 keV, where the sensitivity to solar pp and {sup 7}Be-neutrinos is highest, an integrated pp-neutrino rate of 5900 events can be reached in a fiducial mass of 14 tons of natural xenon,more » after 5 years of data. The pp-neutrino flux could thus be measured with a statistical uncertainty around 1%, reaching the precision of solar model predictions. These low-energy solar neutrinos will be the limiting background to the dark matter search channel for WIMP-nucleon cross sections below ∼ 2 × 10{sup −48} cm{sup 2} and WIMP masses around 50 GeV⋅c{sup −2}, for an assumed 99.5% rejection of electronic recoils due to elastic neutrino-electron scatters. Nuclear recoils from coherent scattering of solar neutrinos will limit the sensitivity to WIMP masses below ∼ 6 GeV⋅c{sup −2} to cross sections above ∼ 4 × 10{sup −45}cm{sup 2}. DARWIN could reach a competitive half-life sensitivity of 5.6 × 10{sup 26} y to the neutrinoless double beta decay of {sup 136}Xe after 5 years of data, using 6 tons of natural xenon in the central detector region.« less

  3. Short-Range Nucleon-Nucleon Correlations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Douglas Higinbotham

    2011-10-01

    Valence-shell nucleon knock-out experiments, such as 12C(e,e'p)11B, measure less strength then is predicted by independent particle shell model calculations. The theoretical solution to this problem is to include the correlations between the nucleons in the nucleus in the calculations. Motivated by these results, many electron scattering experiments have tried to directly observe these correlations in order to gain new insight into the short-range part of the nucleon-nucleon potential. Unfortunately, many competing mechanisms can cause the same observable final-state as an initial-state correlation, making truly isolating the signal extremely challenging. This paper reviews the recent experimental evidence for short-range correlations, asmore » well as explores the possibility that such correlations are responsible for the EMC effect in the 0.3 < xB < 0.7 deep inelastic scattering ratios.« less

  4. Measurement of the Parity-Violating Asymmetries in Electron-Deuteron Scattering in the Nucleon Resonance Region

    DOE PAGES

    Wang, Diancheng; Pan, Kai; Subedi, Ramesh R.; ...

    2013-08-22

    We report on parity-violating asymmetries in the nucleon resonance region measured using 5 - 6 GeV longitudinally polarized electrons scattering off an unpolarized deuterium target. These results are the first parity-violating asymmetry data in the resonance region beyond the Δ(1232), and provide a verification of quark-hadron duality in the nucleon electroweak γ Z interference structure functions at the (10-15)% level. The results are of particular interest to models relevant for calculating the γ Z box-diagram corrections to elastic parity-violating electron scattering measurements.

  5. Elastic pion-nucleon scattering in chiral perturbation theory: A fresh look

    NASA Astrophysics Data System (ADS)

    Siemens, D.; Bernard, V.; Epelbaum, E.; Gasparyan, A.; Krebs, H.; Meißner, Ulf-G.

    2016-07-01

    Elastic pion-nucleon scattering is analyzed in the framework of chiral perturbation theory up to fourth order within the heavy-baryon expansion and a covariant approach based on an extended on-mass-shell renormalization scheme. We discuss in detail the renormalization of the various low-energy constants and provide explicit expressions for the relevant β functions and the finite subtractions of the power-counting breaking terms within the covariant formulation. To estimate the theoretical uncertainty from the truncation of the chiral expansion, we employ an approach which has been successfully applied in the most recent analysis of the nuclear forces. This allows us to reliably extract the relevant low-energy constants from the available scattering data at low energy. The obtained results provide clear evidence that the breakdown scale of the chiral expansion for this reaction is related to the Δ resonance. The explicit inclusion of the leading contributions of the Δ isobar is demonstrated to substantially increase the range of applicability of the effective field theory. The resulting predictions for the phase shifts are in an excellent agreement with the predictions from the recent Roy-Steiner-equation analysis of pion-nucleon scattering.

  6. Neutrino Opacity in High Density Nuclear Matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santos, Sergio M. dos; Razeira, Moises; Vasconcellos, Cesar A.Z.

    2004-12-02

    We estimate the contribution of the nucleon weak magnetism on the neutrino absorption mean free path inside high density nuclear matter. In the mean field approach, three different ingredients are taken into account: (a) a relativistic generalization of the approach developed by Sanjay et al.; (b) the inclusion of the nucleon weak-magnetism (c) and the pseudo-scalar interaction involving the nucleons. Our main result shows that the neutrino absorption mean free path is three times the corresponding result obtained by those authors.

  7. Background studies for the MINER Coherent Neutrino Scattering reactor experiment

    NASA Astrophysics Data System (ADS)

    Agnolet, G.; Baker, W.; Barker, D.; Beck, R.; Carroll, T. J.; Cesar, J.; Cushman, P.; Dent, J. B.; De Rijck, S.; Dutta, B.; Flanagan, W.; Fritts, M.; Gao, Y.; Harris, H. R.; Hays, C. C.; Iyer, V.; Jastram, A.; Kadribasic, F.; Kennedy, A.; Kubik, A.; Lang, K.; Mahapatra, R.; Mandic, V.; Marianno, C.; Martin, R. D.; Mast, N.; McDeavitt, S.; Mirabolfathi, N.; Mohanty, B.; Nakajima, K.; Newhouse, J.; Newstead, J. L.; Ogawa, I.; Phan, D.; Proga, M.; Rajput, A.; Roberts, A.; Rogachev, G.; Salazar, R.; Sander, J.; Senapati, K.; Shimada, M.; Soubasis, B.; Strigari, L.; Tamagawa, Y.; Teizer, W.; Vermaak, J. I. C.; Villano, A. N.; Walker, J.; Webb, B.; Wetzel, Z.; Yadavalli, S. A.

    2017-05-01

    The proposed Mitchell Institute Neutrino Experiment at Reactor (MINER) experiment at the Nuclear Science Center at Texas A&M University will search for coherent elastic neutrino-nucleus scattering within close proximity (about 2 m) of a 1 MW TRIGA nuclear reactor core using low threshold, cryogenic germanium and silicon detectors. Given the Standard Model cross section of the scattering process and the proposed experimental proximity to the reactor, as many as 5-20 events/kg/day are expected. We discuss the status of preliminary measurements to characterize the main backgrounds for the proposed experiment. Both in situ measurements at the experimental site and simulations using the MCNP and GEANT4 codes are described. A strategy for monitoring backgrounds during data taking is briefly discussed.

  8. Electroweak radiative corrections to neutrino scattering at NuTeV

    NASA Astrophysics Data System (ADS)

    Park, Kwangwoo; Baur, Ulrich; Wackeroth, Doreen

    2007-04-01

    The W boson mass extracted by the NuTeV collaboration from the ratios of neutral and charged-current neutrino and anti-neutrino cross sections differs from direct measurements performed at LEP2 and the Fermilab Tevatron by about 3 σ. Several possible sources for the observed difference have been discussed in the literature, including new physics beyond the Standard Model (SM). However, in order to be able to pin down the cause of this discrepancy and to interpret this result as a deviation to the SM, it is important to include the complete electroweak one-loop corrections when extracting the W boson mass from neutrino scattering cross sections. We will present results of a Monte Carlo program for νN (νN) scattering including the complete electroweak O(α) corrections, which will be used to study the effects of these corrections on the extracted values for the electroweak parameters. We will briefly introduce some of the newly developed computational tools for generating Feynman diagrams and corresponding analytic expressions for one-loop matrix elements.

  9. Polarized lepton-nucleon scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, E.

    1994-12-01

    The author provides a summary of the proposed and published statistical (systematic) uncertainties from the world experiments on nucleon spin structure function integrals. By the time these programs are complete, there will be a vast resource of data on nucleon spin structure functions. Each program has quite different experimental approaches regarding the beams, targets, and spectrometers thus ensuring systematically independent tests of the spin structure function measurements. Since the field of spin structure function measurements began, there has been a result appearing approximately every five years. With advances in polarized target technology and high polarization in virtually all of themore » lepton beams, results are now coming out each year; this is a true signature of the growth in the field. Hopefully, the experiments will provide a consistent picture of nucleon spin structure at their completion. In summary, there are still many open questions regarding the internal spin structure of the nucleon. Tests of QCD via the investigation of the Bjorken sum rule is a prime motivator for the field, and will continue with the next round of precision experiments. The question of the origin of spin is still a fundamental problem. Researchers hope is that high-energy probes using spin will shed light on this intriguing mystery, in addition to characterizing the spin structure of the nucleon.« less

  10. Neutrino-nucleus neutral current elastic interactions measurement in MiniBooNE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perevalov, Denis

    2009-12-01

    The MiniBooNE experiment at the Fermi National Accelerator Laboratory (Fermilab) was designed to search for v μ → v e neutrino oscillations at Δm 2 ~ 1 eV 2 using an intense neutrino flux with an average energy E v ~ 700 MeV. From 2002 to 2009 MiniBooNE has accumulated more than 1.0 x 10 21 protons on target (POT) in both neutrino and antineutrino modes. MiniBooNE provides a perfect platform for detailed measurements of exclusive and semiinclusive neutrino cross-sections, for which MiniBooNE has the largest samples of events up to date, such as neutral current elastic (NCE), neutral currentmore » π 0, charged current quasi-elastic (CCQE), charged current π +, and other channels. These measured cross-sections, in turn, allow to improve the knowledge of nucleon structure. This thesis is devoted to the study of NCE interactions. Neutrino-nucleus neutral current elastic scattering (vN → vN) accounts for about 18% of all neutrino interactions in MiniBooNE. Using a high-statistics, high purity sample of NCE interactions in MiniBooNE, the flux-averaged NCE differential cross-section has been measured and is being reported here. Further study of the NCE cross-section allowed for probing the structure of nuclei. The main interest in the NCE cross-section is that it may be sensitive to the strange quark contribution to the nucleon spin, Δs, this however requires a separation of NCE proton (vp → vp) from NCE neutron (vn → vn) events, which in general is a challenging task. MiniBooNE uses a Cherenkov detector, which imposes restrictions on the measured nucleon kinematic variables, mainly due to the impossibility to reconstruct the nucleon direction below the Cherenkov threshold. However, at kinetic energies above this threshold MiniBooNE is able to identify NCE proton events that do not experience final state interactions (FSI). These events were used for the Δs measurement. In this thesis MiniBooNE reports the NCE (n+p) cross-section, the measurement of the

  11. Neutrino-nucleus neutral current elastic interactions measurement in MiniBooNE

    NASA Astrophysics Data System (ADS)

    Perevalov, Denis

    The MiniBooNE experiment at the Fermi National Accelerator Laboratory (Fermilab) was designed to search for numu → nu e neutrino oscillations at Deltam 2 ˜ 1 eV2 using an intense neutrino flux with an average energy Enu ˜ 700 MeV. From 2002 to 2009 MiniBooNE has accumulated more than 1.0x1021 protons on target (POT) in both neutrino and antineutrino modes. MiniBooNE provides a perfect platform for detailed measurements of exclusive and semi-inclusive neutrino cross-sections, for which MiniBooNE has the largest samples of events up to date, such as neutral current elastic (NCE), neutral current pi 0, charged current quasi-elastic (CCQE), charged current pi +, and other channels. These measured cross-sections, in turn, allow to improve the knowledge of nucleon structure. This thesis is devoted to the study of NCE interactions. Neutrino-nucleus neutral current elastic scattering (nuN → nu N) accounts for about 18% of all neutrino interactions in MiniBooNE. Using a high-statistics, high purity sample of NCE interactions in MiniBooNE, the flux-averaged NCE differential cross-section has been measured and is being reported here. Further study of the NCE cross-section allowed for probing the structure of nuclei. The main interest in the NCE cross-section is that it may be sensitive to the strange quark contribution to the nucleon spin, Deltas, this however requires a separation of NCE proton (nup → nu p) from NCE neutron (nun → nun ) events, which in general is a challenging task. MiniBooNE uses a Cherenkov detector, which imposes restrictions on the measured nucleon kinematic variables, mainly due to the impossibility to reconstruct the nucleon direction below the Cherenkov threshold. However, at kinetic energies above this threshold MiniBooNE is able to identify NCE proton events that do not experience final state interactions (FSI). These events were used for the Deltas measurement. In this thesis MiniBooNE reports the NCE (n+p) cross-section, the measurement

  12. Measurement of the Inclusive Electron Neutrino Charged Current Cross Section on Carbon with the T2K Near Detector

    NASA Astrophysics Data System (ADS)

    Abe, K.; Adam, J.; Aihara, H.; Akiri, T.; Andreopoulos, C.; Aoki, S.; Ariga, A.; Assylbekov, S.; Autiero, D.; Barbi, M.; Barker, G. J.; Barr, G.; Bass, M.; Batkiewicz, M.; Bay, F.; Berardi, V.; Berger, B. E.; Berkman, S.; Bhadra, S.; Blaszczyk, F. d. M.; Blondel, A.; Bojechko, C.; Bordoni, S.; Boyd, S. B.; Brailsford, D.; Bravar, A.; Bronner, C.; Buchanan, N.; Calland, R. G.; Caravaca Rodríguez, J.; Cartwright, S. L.; Castillo, R.; Catanesi, M. G.; Cervera, A.; Cherdack, D.; Christodoulou, G.; Clifton, A.; Coleman, J.; Coleman, S. J.; Collazuol, G.; Connolly, K.; Cremonesi, L.; Dabrowska, A.; Danko, I.; Das, R.; Davis, S.; de Perio, P.; De Rosa, G.; Dealtry, T.; Dennis, S. R.; Densham, C.; Dewhurst, D.; Di Lodovico, F.; Di Luise, S.; Drapier, O.; Duboyski, T.; Duffy, K.; Dumarchez, J.; Dytman, S.; Dziewiecki, M.; Emery-Schrenk, S.; Ereditato, A.; Escudero, L.; Finch, A. J.; Friend, M.; Fujii, Y.; Fukuda, Y.; Furmanski, A. P.; Galymov, V.; Giffin, S.; Giganti, C.; Gilje, K.; Goeldi, D.; Golan, T.; Gonin, M.; Grant, N.; Gudin, D.; Hadley, D. R.; Haesler, A.; Haigh, M. D.; Hamilton, P.; Hansen, D.; Hara, T.; Hartz, M.; Hasegawa, T.; Hastings, N. C.; Hayato, Y.; Hearty, C.; Helmer, R. L.; Hierholzer, M.; Hignight, J.; Hillairet, A.; Himmel, A.; Hiraki, T.; Hirota, S.; Holeczek, J.; Horikawa, S.; Huang, K.; Ichikawa, A. K.; Ieki, K.; Ieva, M.; Ikeda, M.; Imber, J.; Insler, J.; Irvine, T. J.; Ishida, T.; Ishii, T.; Iwai, E.; Iwamoto, K.; Iyogi, K.; Izmaylov, A.; Jacob, A.; Jamieson, B.; Johnson, R. A.; Jo, J. H.; Jonsson, P.; Jung, C. K.; Kabirnezhad, M.; Kaboth, A. C.; Kajita, T.; Kakuno, H.; Kameda, J.; Kanazawa, Y.; Karlen, D.; Karpikov, I.; Katori, T.; Kearns, E.; Khabibullin, M.; Khotjantsev, A.; Kielczewska, D.; Kikawa, T.; Kilinski, A.; Kim, J.; Kisiel, J.; Kitching, P.; Kobayashi, T.; Koch, L.; Kolaceke, A.; Konaka, A.; Kormos, L. L.; Korzenev, A.; Koshio, Y.; Kropp, W.; Kubo, H.; Kudenko, Y.; Kurjata, R.; Kutter, T.; Lagoda, J.; Lamont, I.; Larkin, E.; Laveder, M.; Lawe, M.; Lazos, M.; Lindner, T.; Lister, C.; Litchfield, R. P.; Longhin, A.; Ludovici, L.; Magaletti, L.; Mahn, K.; Malek, M.; Manly, S.; Marino, A. D.; Marteau, J.; Martin, J. F.; Martynenko, S.; Maruyama, T.; Matveev, V.; Mavrokoridis, K.; Mazzucato, E.; McCarthy, M.; McCauley, N.; McFarland, K. S.; McGrew, C.; Metelko, C.; Mijakowski, P.; Miller, C. A.; Minamino, A.; Mineev, O.; Missert, A.; Miura, M.; Moriyama, S.; Mueller, Th. A.; Murakami, A.; Murdoch, M.; Murphy, S.; Myslik, J.; Nakadaira, T.; Nakahata, M.; Nakamura, K.; Nakayama, S.; Nakaya, T.; Nakayoshi, K.; Nielsen, C.; Nirkko, M.; Nishikawa, K.; Nishimura, Y.; O'Keeffe, H. M.; Ohta, R.; Okumura, K.; Okusawa, T.; Oryszczak, W.; Oser, S. M.; Owen, R. A.; Oyama, Y.; Palladino, V.; Palomino, J. L.; Paolone, V.; Payne, D.; Perevozchikov, O.; Perkin, J. D.; Petrov, Y.; Pickard, L.; Pinzon Guerra, E. S.; Pistillo, C.; Plonski, P.; Poplawska, E.; Popov, B.; Posiadala, M.; Poutissou, J.-M.; Poutissou, R.; Przewlocki, P.; Quilain, B.; Radicioni, E.; Ratoff, P. N.; Ravonel, M.; Rayner, M. A. M.; Redij, A.; Reeves, M.; Reinherz-Aronis, E.; Rodrigues, P. A.; Rojas, P.; Rondio, E.; Roth, S.; Rubbia, A.; Ruterbories, D.; Sacco, R.; Sakashita, K.; Sánchez, F.; Sato, F.; Scantamburlo, E.; Scholberg, K.; Schoppmann, S.; Schwehr, J.; Scott, M.; Seiya, Y.; Sekiguchi, T.; Sekiya, H.; Sgalaberna, D.; Shiozawa, M.; Short, S.; Shustrov, Y.; Sinclair, P.; Smith, B.; Smy, M.; Sobczyk, J. T.; Sobel, H.; Sorel, M.; Southwell, L.; Stamoulis, P.; Steinmann, J.; Still, B.; Suda, Y.; Suzuki, A.; Suzuki, K.; Suzuki, S. Y.; Suzuki, Y.; Tacik, R.; Tada, M.; Takahashi, S.; Takeda, A.; Takeuchi, Y.; Tanaka, H. K.; Tanaka, H. A.; Tanaka, M. M.; Terhorst, D.; Terri, R.; Thompson, L. F.; Thorley, A.; Tobayama, S.; Toki, W.; Tomura, T.; Totsuka, Y.; Touramanis, C.; Tsukamoto, T.; Tzanov, M.; Uchida, Y.; Vacheret, A.; Vagins, M.; Vasseur, G.; Wachala, T.; Waldron, A. V.; Walter, C. W.; Wark, D.; Wascko, M. O.; Weber, A.; Wendell, R.; Wilkes, R. J.; Wilking, M. J.; Wilkinson, C.; Williamson, Z.; Wilson, J. R.; Wilson, R. J.; Wongjirad, T.; Yamada, Y.; Yamamoto, K.; Yanagisawa, C.; Yano, T.; Yen, S.; Yershov, N.; Yokoyama, M.; Yuan, T.; Yu, M.; Zalewska, A.; Zalipska, J.; Zambelli, L.; Zaremba, K.; Ziembicki, M.; Zimmerman, E. D.; Zito, M.; Żmuda, J.; T2K Collaboration

    2014-12-01

    The T2K off-axis near detector ND280 is used to make the first differential cross-section measurements of electron neutrino charged current interactions at energies ˜1 GeV as a function of electron momentum, electron scattering angle, and four-momentum transfer of the interaction. The total flux-averaged νe charged current cross section on carbon is measured to be ⟨σ ⟩ϕ =1.11 ±0.10 (stat)±0.18 (syst)×1 0-38 cm2/nucleon . The differential and total cross-section measurements agree with the predictions of two leading neutrino interaction generators, NEUT and GENIE. The NEUT prediction is 1.23 ×1 0-38 cm2/nucleon and the GENIE prediction is 1.08 ×1 0-38 cm2/nucleon . The total νe charged current cross-section result is also in agreement with data from the Gargamelle experiment.

  13. Measurement of Ratios of ν μ Charged-Current Cross Sections on C, Fe, and Pb to CH at Neutrino Energies 2–20 GeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tice, B. G.; Datta, M.; Mousseau, J.

    2014-06-01

    We present measurements of ν μ charged-current cross section ratios on carbon, iron, and lead relative to a scintillator (CH) using the fine-grained MINERvA detector exposed to the NuMI neutrino beam at Fermilab. The measurements utilize events of energies 2 < E ν < 20 GeV , with ( E ν more » ) = 8 GeV , which have a reconstructed μ - scattering angle less than 17° to extract ratios of inclusive total cross sections as a function of neutrino energy E ν and flux-integrated differential cross sections with respect to the Bjorken scaling variable x . These results provide the first high-statistics direct measurements of nuclear effects in neutrino scattering using different targets in the same neutrino beam. Measured cross section ratios exhibit a relative depletion at low x and enhancement at large x . Both become more pronounced as the nucleon number of the target nucleus increases. The data are not reproduced by GENIE, a conventional neutrino-nucleus scattering simulation, or by the alternative models for the nuclear dependence of inelastic scattering that are considered.« less

  14. A method for measuring coherent elastic neutrino-nucleus scattering at a far off-axis high-energy neutrino beam target

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brice, S. J.; Cooper, R. L.; DeJongh, F.

    2014-04-03

    We present an experimental method for measuring the process of coherent elastic neutrino-nucleus scattering (CENNS). This method uses a detector situated transverse to a high-energy neutrino beam production target. This detector would be sensitive to the low-energy neutrinos arising from decay-at-rest pions in the target. We discuss the physics motivation for making this measurement and outline the predicted backgrounds and sensitivities using this approach. We report a measurement of neutron backgrounds as found in an off-axis surface location of the Fermilab Booster Neutrino Beam (BNB) target. The results indicate that the Fermilab BNB target is a favorable location for amore » CENNS experiment.« less

  15. Muons and neutrinos

    NASA Technical Reports Server (NTRS)

    Stanev, T.

    1986-01-01

    The first generation of large and precise detectors, some initially dedicated to search for nucleon decay has accumulated significant statistics on neutrinos and high-energy muons. A second generation of even better and bigger detectors are already in operation or in advanced construction stage. The present set of experimental data on muon groups and neutrinos is qualitatively better than several years ago and the expectations for the following years are high. Composition studies with underground muon groups, neutrino detection, and expected extraterrestrial neutrino fluxes are discussed.

  16. Calculation of the nucleon structure function from the nucleon wave function

    NASA Technical Reports Server (NTRS)

    Hussar, Paul E.

    1993-01-01

    Harmonic oscillator wave functions have played an historically important role in our understanding of the structure of the nucleon, most notably by providing insight into the mass spectra of the low-lying states. High energy scattering experiments are known to give us a picture of the nucleon wave function at high-momentum transfer and in a frame in which the nucleon is traveling fast. A simple model that crosses the twin bridges of momentum scale and Lorentz frame that separate the pictures of the nucleon wave function provided by the deep inelastic scattering data and by the oscillator model is presented.

  17. DEEP UNDERGROUND NEUTRINO EXPERIMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, Robert J.

    2016-03-03

    The Deep Underground Neutrino Experiment (DUNE) collaboration will perform an experiment centered on accelerator-based long-baseline neutrino studies along with nucleon decay and topics in neutrino astrophysics. It will consist of a modular 40-kt (fiducial) mass liquid argon TPC detector located deep underground at the Sanford Underground Research Facility in South Dakota and a high-resolution near detector at Fermilab in Illinois. This conguration provides a 1300-km baseline in a megawatt-scale neutrino beam provided by the Fermilab- hosted international Long-Baseline Neutrino Facility.

  18. Accelerator and reactor complementarity in coherent neutrino-nucleus scattering

    NASA Astrophysics Data System (ADS)

    Dent, James B.; Dutta, Bhaskar; Liao, Shu; Newstead, Jayden L.; Strigari, Louis E.; Walker, Joel W.

    2018-02-01

    We study the complementarity between accelerator and reactor coherent elastic neutrino-nucleus elastic scattering (CE ν NS ) experiments for constraining new physics in the form of nonstandard neutrino interactions (NSI). First, considering just data from the recent observation by the Coherent experiment, we explore interpretive degeneracies that emerge when activating either two or four unknown NSI parameters. Next, we demonstrate that simultaneous treatment of reactor and accelerator experiments, each employing at least two distinct target materials, can break a degeneracy between up and down flavor-diagonal NSI terms that survives analysis of neutrino oscillation experiments. Considering four flavor-diagonal (e e /μ μ ) up- and down-type NSI parameters, we find that all terms can be measured with high local precision (to a width as small as ˜5 % in Fermi units) by next-generation experiments, although discrete reflection ambiguities persist.

  19. Neutrino-nucleus scattering of {sup 95,97}Mo and {sup 116}Cd

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ydrefors, E.; Almosly, W.; Suhonen, J.

    2013-12-30

    Accurate knowledge about the nuclear responses to supernova neutrinos for relevant nuclear targets is important both for neutrino detection and for astrophysical applications. In this paper we discuss the cross sections for the charged-current neutrino-nucleus scatterings off {sup 95,97}Mo and {sup 116}Cd. The microscopic quasiparticle-phonon model is adopted for the odd-even nuclei {sup 95,97}Mo. In the case of {sup 116}Cd we present cross sections both for the Bonn one-boson-exchange potential and self-consistent calculations based on modern Skyrme interactions.

  20. Neutrino-electron scattering: general constraints on Z ' and dark photon models

    NASA Astrophysics Data System (ADS)

    Lindner, Manfred; Queiroz, Farinaldo S.; Rodejohann, Werner; Xu, Xun-Jie

    2018-05-01

    We study the framework of U(1) X models with kinetic mixing and/or mass mixing terms. We give general and exact analytic formulas of fermion gauge interactions and the cross sections of neutrino-electron scattering in such models. Then we derive limits on a variety of U(1) X models that induce new physics contributions to neutrino-electron scattering, taking into account interference between the new physics and Standard Model contributions. Data from TEXONO, CHARM-II and GEMMA are analyzed and shown to be complementary to each other to provide the most restrictive bounds on masses of the new vector bosons. In particular, we demonstrate the validity of our results to dark photon-like as well as light Z ' models.

  1. Progress On Neutrino-Proton Neutral-Current Scattering In MicroBooNE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pate, Stephen

    2017-01-16

    The MicroBooNE Experiment at the Fermi National Accelerator Laboratory, an 89-ton active mass liquid argon time projection chamber, affords a unique opportunity to observe low-more » $Q^2$ neutral-current neutrino-proton scattering events. Neutral-current neutrino-proton scattering at $Q^2 < 1$ GeV$^2$ is dominated by the proton's axial form factor, which can be written as a combination of contributions from the up, down, and strange quarks: $$G_A(Q^2) = \\frac{1}{2}[-G_A^u(Q^2)+G_A^d(Q^2)+G_A^s(Q^2)]$$. The contribution from up and down quarks has been established in past charged-current measurements. The contribution from strange quarks at low $Q^2$ remains unmeasured; this is of great interest since the strange quark contribution to the proton spin can be determined from the low-$Q^2$ behavior: $$\\Delta S = G_A^s(Q^2=0)$$. MicroBooNE began operating in the Booster Neutrino Beam in October 2015. I will present the status in observing isolated proton tracks in the MicroBooNE detector as a signature for neutral-current neutrino-proton events. The sensitivity of the MicroBooNE experiment for measuring the strange quark contribution to the proton spin will be discussed.« less

  2. Determination of the pion-nucleon coupling constant and scattering lengths

    NASA Astrophysics Data System (ADS)

    Ericson, T. E.; Loiseau, B.; Thomas, A. W.

    2002-07-01

    We critically evaluate the isovector Goldberger-Miyazawa-Oehme (GMO) sum rule for forward πN scattering using the recent precision measurements of π-p and π-d scattering lengths from pionic atoms. We deduce the charged-pion-nucleon coupling constant, with careful attention to systematic and statistical uncertainties. This determination gives, directly from data, g2c(GMO)/ 4π=14.11+/-0.05(statistical)+/-0.19(systematic) or f2c/4π=0.0783(11). This value is intermediate between that of indirect methods and the direct determination from backward np differential scattering cross sections. We also use the pionic atom data to deduce the coherent symmetric and antisymmetric sums of the pion-proton and pion-neutron scattering lengths with high precision, namely, (aπ-p+aπ-n)/2=[- 12+/-2(statistical)+/-8(systematic)]×10-4 m-1π and (aπ-p-aπ- n)/2=[895+/-3(statistical)+/-13 (systematic)]×10-4 m-1π. For the need of the present analysis, we improve the theoretical description of the pion-deuteron scattering length.

  3. Freeze-in production of sterile neutrino dark matter in U(1){sub B−L} model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biswas, Anirban; Gupta, Aritra

    2016-09-27

    With the advent of new and more sensitive direct detection experiments, scope for a thermal WIMP explanation of dark matter (DM) has become extremely constricted. The non-observation of thermal WIMP in these experiments has put a strong upper bound on WIMP-nucleon scattering cross section and within a few years it is likely to overlap with the coherent neutrino-nucleon cross section. Hence in all probability, DM may have some non-thermal origin. In this work we explore in detail this possibility of a non-thermal sterile neutrino DM within the framework of U(1){sub B−L} model. The U(1){sub B−L} model on the other handmore » is a well-motivated and minimal way of extending the standard model so that it can explain the neutrino masses via Type-I see-saw mechanism. We have shown, besides explaining the neutrino mass, it can also accommodate a non-thermal sterile neutrino DM with correct relic density. In contrast with the existing literature, we have found that W{sup ±} decay can also be a dominant production mode of the sterile neutrino DM. To obtain the comoving number density of dark matter, we have solved here a coupled set of Boltzmann equations considering all possible decay as well as annihilation production modes of the sterile neutrino dark matter. The framework developed here though has been done for a U(1){sub B−L} model, can be applied quite generally for any models with an extra neutral gauge boson and a fermionic non-thermal dark matter.« less

  4. Probing the strange nature of the nucleon with phi photoproduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowry, M.M.

    1997-03-06

    The presence inside the nucleon of a significant component of strange-antistrange quark pairs has been invoked to explain a number of current puzzles in the low energy realm of QCD. The {sigma} term in {pi}N scattering is a venerable conundrum which can be explained with a 10%--20% admixture. The spin crisis brought on by the EMC result and follow on experiments was first interpreted as requiring a large strange content of s quarks whose spin helped cancel the contribution of the u and d quarks to the nucleon spin, again of order 10%. Excess phi meson production in p{anti p}more » annihilation at LEAR has also been explained in terms of up to a 19% admixture of s{anti s} pairs. Charm production in deep-inelastic neutrino scattering would appear to provide evidence for a 3% strange sea. It is clear that a definite probe of the strange quark content would be an invaluable tool in unraveling a number of mysteries. The longitudinal beam target asymmetry in {psi} photoproduction is a particularly sensitive probe of that content. It is explored here.« less

  5. Black holes at neutrino telescopes

    NASA Astrophysics Data System (ADS)

    Kowalski, M.; Ringwald, A.; Tu, H.

    2002-03-01

    In scenarios with extra dimensions and TeV-scale quantum gravity, black holes are expected to be produced in the collision of light particles at center-of-mass energies above the fundamental Planck scale with small impact parameters. Black hole production and evaporation may thus be studied in detail at the Large Hadron Collider (LHC). But even before the LHC starts operating, neutrino telescopes such as AMANDA/IceCube, ANTARES, Baikal, and RICE have an opportunity to search for black hole signatures. Black hole production in the scattering of ultrahigh energy cosmic neutrinos on nucleons in the ice or water may initiate cascades and through-going muons with distinct characteristics above the Standard Model rate. In this Letter, we investigate the sensitivity of neutrino telescopes to black hole production and compare it to the one expected at the Pierre Auger Observatory, an air shower array currently under construction, and at the LHC. We find that, already with the currently available data, AMANDA and RICE should be able to place sensible constraints in black hole production parameter space, which are competitive with the present ones from the air shower facilities Fly's Eye and AGASA. In the optimistic case that a ultrahigh energy cosmic neutrino flux significantly higher than the one expected from cosmic ray interactions with the cosmic microwave background radiation is realized in nature, one even has discovery potential for black holes at neutrino telescopes beyond the reach of LHC.

  6. SHiP: a new facility with a dedicated detector for studying tau-neutrino properties and nucleon structure functions

    NASA Astrophysics Data System (ADS)

    Bick, Daniel; SHiP Collaboration

    2017-09-01

    SHiP is a new general purpose fixed target facility, whose Technical Proposal has been recently reviewed by the CERN SPS Committee, who recommended that the experiment proceeds further to a Comprehensive Design phase. In its initial phase, the 400 GeV proton beam extracted from the SPS will be dumped on a heavy target with the aim of integrating 2 × 1020 pot in 5 years. A dedicated detector downstream of the target will allow to probe a variety of models with light long-lived exotic particles and masses below a few GeV/c2. Another dedicated detector will allow the study of neutrino cross-sections and angular distributions, which was the focus of the poster. ντ deep inelastic scattering cross sections will be measured with a statistics 1000 times larger than currently available, with the extraction of the F 4 and F 5 structure functions, never measured so far and allow for new tests of lepton non-universality with sensitivity to BSM physics. Moreover, ντ ’s will be distinguished from {\\displaystyle \\bar{ν }}τ ’s, thus providing the first observation of the {\\displaystyle \\bar{ν }}τ . With νµ scattering it will be possible to reduce by about 50% the current uncertainty on the strange content of the nucleon in the range of the x variable between 0.05 and 0.3, complementary to LHC measurements. The detector will be based on several techniques developed for the OPERA experiment at LNGS.

  7. Neutrino masses and mixings as an evidence of GUT, and the impact to (flavor changing) nucleon decay

    NASA Astrophysics Data System (ADS)

    Maekawa, Nobuhiro; Muramatsu, Yu

    2017-11-01

    First, we see that the observed data of quark and lepton masses and mixings, which has been completed by adding neutrino data, can be a qualitative signature of S U(5) grand unified theory (GUT). Actually, an assumption, 10 fields induce stronger hierarchy in Yukawa couplings than 5 ¯ fields, can explain all hierarchical structures of quark and lepton masses and mixings. Second, we see the attractiveness of E6 GUT, in which the above assumption in S U(5) GUT can be derived and as the result various Yukawa hierarchies of quarks and leptons can be obtained from only one basic hierarchy. Third, we compare the predictions for nucleon decay among several GUTs with S U(5), S O(10), and E6 unification group which satisfy the above important assumption for Yukawa hierarchy, since this understanding about Yukawa structures reduces the ambiguities in prediction of nucleon decay via superheavy gauge boson exchange. We stress the importance of observations for several decay modes. One of them is flavor changing nucleon decay, for example, P → π0 µ+, which is the decay mode that SuperKamiokande has reported two events in the signal region. This article is based on our works in Ref.[1, 2

  8. Detection of back-to-back proton pairs in charged-current neutrino interactions with the ArgoNeuT detector in the NuMI low energy beam line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acciarri, R.; Adams, C.; Asaadi, J.

    2014-07-01

    Short range nucleon-nucleon correlations in nuclei (NN SRC) carry important information on nuclear structure and dynamics. NN SRC have been extensively probed through two-nucleon knock- out reactions in both pion and electron scattering experiments. We report here on the detection of two-nucleon knock-out events from neutrino interactions and discuss their topological features as possibly involving NN SRC content in the target argon nuclei. The ArgoNeuT detector in the Main Injector neutrino beam at Fermilab has recorded a sample of 30 fully reconstructed charged current events where the leading muon is accompanied by a pair of protons at the interaction vertex,more » 19 of which have both protons above the Fermi momentum of the Ar nucleus. Out of these 19 events, four are found with the two protons in a strictly back-to-back high momenta configuration directly observed in the final state and can be associated to nucleon Resonance pionless mechanisms involving a pre-existing short range correlated np pair in the nucleus. Another fraction (four events) of the remaining 15 events have a reconstructed back-to-back configuration of a np pair in the initial state, a signature compatible with one-body Quasi Elastic interaction on a neutron in a SRC pair. The detection of these two subsamples of the collected (mu- + 2p) events suggests that mechanisms directly involving nucleon-nucleon SRC pairs in the nucleus are active and can be efficiently explored in neutrino-argon interactions with the LAr TPC technology.« less

  9. Measurement of Muon Antineutrino Quasielastic Scattering on a Hydrocarbon Target at E ν~3.5 GeV

    DOE PAGES

    Fields, L.; Chvojka, J.; Aliaga, L.; ...

    2013-07-11

    We have isolated ν¯ μ charged-current quasielastic (QE) interactions occurring in the segmented scintillator tracking region of the MINERvA detector running in the NuMI neutrino beam at Fermilab. We measure the flux-averaged differential cross section, dσ/dQ², and compare to several theoretical models of QE scattering. Good agreement is obtained with a model where the nucleon axial mass, M A, is set to 0.99 GeV/c² but the nucleon vector form factors are modified to account for the observed enhancement, relative to the free nucleon case, of the cross section for the exchange of transversely polarized photons in electron-nucleus scattering. Our datamore » at higher Q² favor this interpretation over an alternative in which the axial mass is increased.« less

  10. Measurement of the neutrino neutral-current elastic differential cross section on mineral oil at Eν˜1GeV

    NASA Astrophysics Data System (ADS)

    Aguilar-Arevalo, A. A.; Anderson, C. E.; Bazarko, A. O.; Brice, S. J.; Brown, B. C.; Bugel, L.; Cao, J.; Coney, L.; Conrad, J. M.; Cox, D. C.; Curioni, A.; Dharmapalan, R.; Djurcic, Z.; Finley, D. A.; Fleming, B. T.; Ford, R.; Garcia, F. G.; Garvey, G. T.; Grange, J.; Green, C.; Green, J. A.; Hart, T. L.; Hawker, E.; Imlay, R.; Johnson, R. A.; Karagiorgi, G.; Kasper, P.; Katori, T.; Kobilarcik, T.; Kourbanis, I.; Koutsoliotas, S.; Laird, E. M.; Linden, S. K.; Link, J. M.; Liu, Y.; Liu, Y.; Louis, W. C.; Mahn, K. B. M.; Marsh, W.; Mauger, C.; McGary, V. T.; McGregor, G.; Metcalf, W.; Meyers, P. D.; Mills, F.; Mills, G. B.; Monroe, J.; Moore, C. D.; Mousseau, J.; Nelson, R. H.; Nienaber, P.; Nowak, J. A.; Osmanov, B.; Ouedraogo, S.; Patterson, R. B.; Pavlovic, Z.; Perevalov, D.; Polly, C. C.; Prebys, E.; Raaf, J. L.; Ray, H.; Roe, B. P.; Russell, A. D.; Sandberg, V.; Schirato, R.; Schmitz, D.; Shaevitz, M. H.; Shoemaker, F. C.; Smith, D.; Soderberg, M.; Sorel, M.; Spentzouris, P.; Spitz, J.; Stancu, I.; Stefanski, R. J.; Sung, M.; Tanaka, H. A.; Tayloe, R.; Tzanov, M.; van de Water, R. G.; Wascko, M. O.; White, D. H.; Wilking, M. J.; Yang, H. J.; Zeller, G. P.; Zimmerman, E. D.

    2010-11-01

    We report a measurement of the flux-averaged neutral-current elastic differential cross section for neutrinos scattering on mineral oil (CH2) as a function of four-momentum transferred squared, Q2. It is obtained by measuring the kinematics of recoiling nucleons with kinetic energy greater than 50 MeV which are readily detected in MiniBooNE. This differential cross-section distribution is fit with fixed nucleon form factors apart from an axial mass MA that provides a best fit for MA=1.39±0.11GeV. Using the data from the charged-current neutrino interaction sample, a ratio of neutral-current to charged-current quasielastic cross sections as a function of Q2 has been measured. Additionally, single protons with kinetic energies above 350 MeV can be distinguished from neutrons and multiple nucleon events. Using this marker, the strange quark contribution to the neutral-current axial vector form factor at Q2=0, Δs, is found to be Δs=0.08±0.26.

  11. Supernovae neutrino pasta interaction

    NASA Astrophysics Data System (ADS)

    Lin, Zidu; Horowitz, Charles; Caplan, Matthew; Berry, Donald; Roberts, Luke

    2017-01-01

    In core-collapse supernovae, the neutron rich matter is believed to have complex structures, such as spherical, slablike, and rodlike shapes. They are collectively called ``nuclear pasta''. Supernovae neutrinos may scatter coherently on the ``nuclear pasta'' since the wavelength of the supernovae neutrinos are comparable to the nuclear pasta scale. Consequently, the neutrino pasta scattering is important to understand the neutrino opacity in the supernovae. In this work we simulated the ``nuclear pasta'' at different temperatures and densities using our semi-classical molecular dynamics and calculated the corresponding static structure factor that describes ν-pasta scattering. We found the neutrino opacities are greatly modified when the ``pasta'' exist and may have influence on the supernovae neutrino flux and average energy. Our neutrino-pasta scattering effect can finally be involved in the current supernovae simulations and we present preliminary proto neutron star cooling simulations including our pasta opacities.

  12. A survey of the alpha-nucleon interaction

    NASA Astrophysics Data System (ADS)

    Ali, S.; Ahmad, A. A. Z.; Ferdous, N.

    1985-10-01

    This paper gives a survey of the alpha-nucleon interaction and then describes experimental work on angular distributions of differential scattering cross sections and polarizations in proton-alpha and neutron-alpha scattering. The phenomenological approach, which includes the study of both local and nonlocal potentials reproducing the experimental alpha-nucleon scattering data, is discussed. Basic studies of the alpha-nucleon interaction attempting to build an interaction between an alpha particle and a nucleon from first principles are then described. The authors then present a critical discussion of the results with some concluding remarks suggesting the direction for further investigation.

  13. Status of the search of coherent neutrino nucleus elastic scattering at KSNL

    NASA Astrophysics Data System (ADS)

    Sharma, V.; Singh, V.; Subrahmanyam, V. S.; Wong, H. T.

    2018-04-01

    Status of search of coherent elastic neutrino-nucleus scattering (CEνNS) for reactor neutrino flux at Kuo-Sheng nuclear laboratory is discussed. Different detector candidates being used for CEνNS detection across the globe while Germanium detector with its well matured technology and sub-keV threshold, seem to open unseen experimental approach to CEνNS is widely discussed. Reactor neutrinos having energy below 10 MeV are ideal source for the study of CEνNS interaction. We studied about the possible CEνNS signals with associated uncertainties and limit on percentage of channeled nuclei in germanium crystal is quoted. Detection of flavourless CEνNS interaction can play a key role to open the new window on understanding of some unknown processes of the nature.

  14. Measurement of electron neutrino quasielastic and quasielasticlike scattering on hydrocarbon at $$\\langle E_{\

    DOE PAGES

    Wolcott, J.

    2016-02-25

    The first direct measurement of electron neutrino quasielastic and quasielasticlike scattering on hydrocarbon in the few-GeV region of incident neutrino energy has been carried out using the MINERvA detector in the NuMI beam at Fermilab. The flux-integrated differential cross sections in the electron production angle, electron energy, and Q 2 are presented. The ratio of the quasielastic, flux-integrated differential cross section in Q 2 for ν e with that of similarly selected ν μ-induced events from the same exposure is used to probe assumptions that underpin conventional treatments of charged-current νe interactions used by long-baseline neutrino oscillation experiments. Furthermore, themore » data are found to be consistent with lepton universality and are well described by the predictions of the neutrino event generator GENIE.« less

  15. Complete set of deuteron analyzing powers from d ⃗p elastic scattering at 190 MeV/nucleon

    NASA Astrophysics Data System (ADS)

    Sekiguchi, K.; Witała, H.; Akieda, T.; Eto, D.; Kon, H.; Wada, Y.; Watanabe, A.; Chebotaryov, S.; Dozono, M.; Golak, J.; Kamada, H.; Kawakami, S.; Kubota, Y.; Maeda, Y.; Miki, K.; Milman, E.; Ohkura, A.; Sakai, H.; Sakaguchi, S.; Sakamoto, N.; Sasano, M.; Shindo, Y.; Skibiński, R.; Suzuki, H.; Tabata, M.; Uesaka, T.; Wakasa, T.; Yako, K.; Yamamoto, T.; Yanagisawa, Y.; Yasuda, J.

    2017-12-01

    All deuteron analyzing powers for elastic deuteron-proton (d p ) scattering have been measured with a polarized deuteron beam at 186.6 MeV/nucleon. They are compared with results of three-nucleon Faddeev calculations based on the standard, high-precision nucleon-nucleon (N N ) potentials alone or combined with commonly used three-nucleon force (3 N F ) models such as the Tucson-Melbourne '99 or the Urbana IX. Predicted 3 N F effects localized at backward angles are supported only partially by the data. The data are also compared to predictions based on locally regularized chiral N N potentials. An estimation of theoretical truncation uncertainties in the consecutive orders of chiral expansion suggests that the observed discrepancies between this modern theory and the data could probably be explained by including chiral 3 N F 's in future calculations. A systematic comparison to the deuteron analyzing power data previously taken at incident energies from 70 to 294 MeV/nucleon clearly shows that not only the cross section but also the analyzing powers reveal growing 3 N F effects when the three-nucleon system energy is increased.

  16. Pion-nucleon scattering in covariant baryon chiral perturbation theory with explicit Delta resonances

    NASA Astrophysics Data System (ADS)

    Yao, De-Liang; Siemens, D.; Bernard, V.; Epelbaum, E.; Gasparyan, A. M.; Gegelia, J.; Krebs, H.; Meißner, Ulf-G.

    2016-05-01

    We present the results of a third order calculation of the pion-nucleon scattering amplitude in a chiral effective field theory with pions, nucleons and delta resonances as explicit degrees of freedom. We work in a manifestly Lorentz invariant formulation of baryon chiral perturbation theory using dimensional regularization and the extended on-mass-shell renormalization scheme. In the delta resonance sector, the on mass-shell renormalization is realized as a complex-mass scheme. By fitting the low-energy constants of the effective Lagrangian to the S- and P -partial waves a satisfactory description of the phase shifts from the analysis of the Roy-Steiner equations is obtained. We predict the phase shifts for the D and F waves and compare them with the results of the analysis of the George Washington University group. The threshold parameters are calculated both in the delta-less and delta-full cases. Based on the determined low-energy constants, we discuss the pion-nucleon sigma term. Additionally, in order to determine the strangeness content of the nucleon, we calculate the octet baryon masses in the presence of decuplet resonances up to next-to-next-to-leading order in SU(3) baryon chiral perturbation theory. The octet baryon sigma terms are predicted as a byproduct of this calculation.

  17. Parity Violating electron scattering from Hydrogen and Helium-4 and Strangness in the nucleon: Results from HAPPEX-II

    NASA Astrophysics Data System (ADS)

    Moffit, Bryan

    2006-11-01

    The quark-antiquark pairs that form the sea within the nucleon are well established within quantum chromodynamics. Several recent and ongoing experiments are motivated by determining how this sea, containing contributions from all quark flavors, plays a role in affecting the nucleon's overall properties. Of particular interest is the possible strange quark contribution to the nucleon's electric and magnetic form factors. The recently completed HAPPEX asymmetry measurements take advantage of parity violation in elastic electron scattering to probe the strange quark effects. The measurement using a hydrogen target is sensitive to a linear combination of GE^s and GM^s, the contribution to the electric and magnetic form factors due to strange quarks, respectively, whereas scattering from a spinless helium target cleanly isolates GE^s. The combination of the two measurements therefore allows these form factors to be separately determined. Final results will be presented from the complete data set, obtained in runs in 2004 and 2005, yielding results of unprecedented precision.

  18. Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE): Conceptual Design Report. Volume 1: The LBNF and DUNE Projects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acciarri, R.

    2016-01-22

    This document presents the Conceptual Design Report (CDR) put forward by an international neutrino community to pursue the Deep Underground Neutrino Experiment at the Long-Baseline Neutrino Facility (LBNF/DUNE), a groundbreaking science experiment for long-baseline neutrino oscillation studies and for neutrino astrophysics and nucleon decay searches. The DUNE far detector will be a very large modular liquid argon time-projection chamber (LArTPC) located deep underground, coupled to the LBNF multi-megawatt wide-band neutrino beam. DUNE will also have a high-resolution and high-precision near detector.

  19. QCD Precision Measurements and Structure Function Extraction at a High Statistics, High Energy Neutrino Scattering Experiment:. NuSOnG

    NASA Astrophysics Data System (ADS)

    Adams, T.; Batra, P.; Bugel, L.; Camilleri, L.; Conrad, J. M.; de Gouvêa, A.; Fisher, P. H.; Formaggio, J. A.; Jenkins, J.; Karagiorgi, G.; Kobilarcik, T. R.; Kopp, S.; Kyle, G.; Loinaz, W. A.; Mason, D. A.; Milner, R.; Moore, R.; Morfín, J. G.; Nakamura, M.; Naples, D.; Nienaber, P.; Olness, F. I.; Owens, J. F.; Pate, S. F.; Pronin, A.; Seligman, W. G.; Shaevitz, M. H.; Schellman, H.; Schienbein, I.; Syphers, M. J.; Tait, T. M. P.; Takeuchi, T.; Tan, C. Y.; van de Water, R. G.; Yamamoto, R. K.; Yu, J. Y.

    We extend the physics case for a new high-energy, ultra-high statistics neutrino scattering experiment, NuSOnG (Neutrino Scattering On Glass) to address a variety of issues including precision QCD measurements, extraction of structure functions, and the derived Parton Distribution Functions (PDF's). This experiment uses a Tevatron-based neutrino beam to obtain a sample of Deep Inelastic Scattering (DIS) events which is over two orders of magnitude larger than past samples. We outline an innovative method for fitting the structure functions using a parametrized energy shift which yields reduced systematic uncertainties. High statistics measurements, in combination with improved systematics, will enable NuSOnG to perform discerning tests of fundamental Standard Model parameters as we search for deviations which may hint of "Beyond the Standard Model" physics.

  20. Meson exchange current (MEC) models in neutrino interaction generators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katori, Teppei

    2015-05-15

    Understanding of the so-called 2 particle-2 hole (2p-2h) effect is an urgent program in neutrino interaction physics for current and future oscillation experiments. Such processes are believed to be responsible for the event excesses observed by recent neutrino experiments. The 2p-2h effect is dominated by the meson exchange current (MEC), and is accompanied by a 2-nucleon emission from the primary vertex, instead of a single nucleon emission from the charged-current quasi-elastic (CCQE) interaction. Current and future high resolution experiments can potentially nail down this effect. For this reason, there are world wide efforts to model and implement this process inmore » neutrino interaction simulations. In these proceedings, I would like to describe how this channel is modeled in neutrino interaction generators.« less

  1. Evidence of Coherent K+ Meson Production in Neutrino-Nucleus Scattering

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Marshall, C. M.; Aliaga, L.; Altinok, O.; Bellantoni, L.; Bercellie, A.; Betancourt, M.; Bodek, A.; Bravar, A.; Budd, H.; Cai, T.; Carneiro, M. F.; da Motta, H.; Dytman, S. A.; Díaz, G. A.; Eberly, B.; Endress, E.; Felix, J.; Fields, L.; Fine, R.; Galindo, R.; Gallagher, H.; Ghosh, A.; Golan, T.; Gran, R.; Harris, D. A.; Higuera, A.; Hurtado, K.; Kiveni, M.; Kleykamp, J.; Kordosky, M.; Le, T.; Maher, E.; Manly, S.; Mann, W. A.; Martinez Caicedo, D. A.; McFarland, K. S.; McGivern, C. L.; McGowan, A. M.; Messerly, B.; Miller, J.; Mislivec, A.; Morfín, J. G.; Mousseau, J.; Naples, D.; Nelson, J. K.; Norrick, A.; Nuruzzaman; Paolone, V.; Park, J.; Patrick, C. E.; Perdue, G. N.; Rakotondravohitra, L.; Ramirez, M. A.; Ransome, R. D.; Ray, H.; Ren, L.; Rimal, D.; Rodrigues, P. A.; Ruterbories, D.; Schellman, H.; Schmitz, D. W.; Simon, C.; Solano Salinas, C. J.; Tice, B. G.; Valencia, E.; Walton, T.; Wolcott, J.; Wospakrik, M.; Zavala, G.; Zhang, D.; Minerva Collaboration

    2016-08-01

    Neutrino-induced charged-current coherent kaon production νμA →μ-K+A is a rare, inelastic electroweak process that brings a K+ on shell and leaves the target nucleus intact in its ground state. This process is significantly lower in rate than the neutrino-induced charged-current coherent pion production because of Cabibbo suppression and a kinematic suppression due to the larger kaon mass. We search for such events in the scintillator tracker of MINERvA by observing the final state K+, μ-, and no other detector activity, and by using the kinematics of the final state particles to reconstruct the small momentum transfer to the nucleus, which is a model-independent characteristic of coherent scattering. We find the first experimental evidence for the process at 3 σ significance.

  2. Detectability of galactic supernova neutrinos coherently scattered on xenon nuclei in XMASS

    NASA Astrophysics Data System (ADS)

    Abe, K.; Hiraide, K.; Ichimura, K.; Kishimoto, Y.; Kobayashi, K.; Kobayashi, M.; Moriyama, S.; Nakagawa, K.; Nakahata, M.; Norita, T.; Ogawa, H.; Sekiya, H.; Takachio, O.; Takeda, A.; Yamashita, M.; Yang, B. S.; Kim, N. Y.; Kim, Y. D.; Tasaka, S.; Liu, J.; Martens, K.; Suzuki, Y.; Fujita, R.; Hosokawa, K.; Miuchi, K.; Oka, N.; Onishi, Y.; Takeuchi, Y.; Kim, Y. H.; Lee, J. S.; Lee, K. B.; Lee, M. K.; Fukuda, Y.; Itow, Y.; Kegasa, R.; Kobayashi, K.; Masuda, K.; Takiya, H.; Uchida, H.; Nishijima, K.; Fujii, K.; Murayama, I.; Nakamura, S.; Xmass Collaboration

    2017-03-01

    The coherent elastic neutrino-nucleus scattering (CEvNS) plays a crucial role at the final evolution of stars. The detection of it would be of importance in astroparticle physics. Among all available neutrino sources, galactic supernovae give the highest neutrino flux in the MeV range. Among all liquid xenon dark matter experiments, XMASS has the largest sensitive volume and light yield. The possibility to detect galactic supernova via the CEvNS-process on xenon nuclei in the current XMASS detector was investigated. The total number of events integrated in about 18 s after the explosion of a supernova 10 kpc away from the Earth was expected to be from 3.5 to 21.1, depending on the supernova model used to predict the neutrino flux, while the number of background events in the same time window was measured to be negligible. All lead to very high possibility to detect CEvNS experimentally for the first time utilizing the combination of galactic supernovae and the XMASS detector. In case of a supernova explosion as close as Betelgeuse, the total observable events can be more than ∼ 104, making it possible to distinguish different supernova models by examining the evolution of neutrino event rate in XMASS.

  3. Physics of neutrino flavor transformation through matter-neutrino resonances

    NASA Astrophysics Data System (ADS)

    Wu, Meng-Ru; Duan, Huaiyu; Qian, Yong-Zhong

    2016-01-01

    In astrophysical environments such as core-collapse supernovae and neutron star-neutron star or neutron star-black hole mergers where dense neutrino media are present, matter-neutrino resonances (MNRs) can occur when the neutrino propagation potentials due to neutrino-electron and neutrino-neutrino forward scattering nearly cancel each other. We show that neutrino flavor transformation through MNRs can be explained by multiple adiabatic solutions similar to the Mikheyev-Smirnov-Wolfenstein mechanism. We find that for the normal neutrino mass hierarchy, neutrino flavor evolution through MNRs can be sensitive to the shape of neutrino spectra and the adiabaticity of the system, but such sensitivity is absent for the inverted hierarchy.

  4. A dependence of quasielastic charged-current neutrino-nucleus cross sections

    NASA Astrophysics Data System (ADS)

    Van Dessel, N.; Jachowicz, N.; González-Jiménez, R.; Pandey, V.; Van Cuyck, T.

    2018-04-01

    Background: 12C has been and is still widely used in neutrino-nucleus scattering and oscillation experiments. More recently, 40Ar has emerged as an important nuclear target for current and future experiments. Liquid argon time projection chambers (LArTPCs) possess various advantages in measuring electroweak neutrino-nucleus cross sections. Concurrent theoretical research is an evident necessity. Purpose: 40Ar is larger than 12C , and one expects nuclear effects to play a bigger role in reactions. We present inclusive differential and total cross section results for charged-current neutrino scattering on 40Ar and perform a comparison with 12C , 16O , and 56Fe targets, to find out about the A -dependent behavior of model predictions. Method: Our model starts off with a Hartree-Fock description of the nucleus, with the nucleons interacting through a mean field generated by an effective Skyrme force. Long-range correlations are introduced by means of a continuum random phase approximation approach. Further methods to improve the accuracy of model predictions are also incorporated in the calculations. Results: We present calculations for 12C , 16O , 40Ar , and 56Fe , showcasing differential cross sections over a broad range of kinematic values in the quasielastic regime. We furthermore show flux-folded results for 40Ar and we discuss the differences between nuclear responses. Conclusions: At low incoming energies and forward scattering we identify an enhancement in the 40Ar cross section compared to 12C , as well as in the high ω (low Tμ) region across the entire studied Eν range. The contribution to the folded cross section of the reaction strength at values of ω lower than 50 MeV for forward scattering is sizable.

  5. Evidence of coherent $$K^{+}$$ meson production in neutrino-nucleus scattering

    DOE PAGES

    Wang, Z.

    2016-08-05

    Neutrino-induced charged-current coherent kaon production ν μA→μ -K +A is a rare, inelastic electroweak process that brings a K + on shell and leaves the target nucleus intact in its ground state. This process is significantly lower in rate than the neutrino-induced charged-current coherent pion production because of Cabibbo suppression and a kinematic suppression due to the larger kaon mass. We search for such events in the scintillator tracker of MINERvA by observing the final state K +, μ -, and no other detector activity, and by using the kinematics of the final state particles to reconstruct the small momentummore » transfer to the nucleus, which is a model-independent characteristic of coherent scattering. Furthermore, we find the first experimental evidence for the process at 3σ significance.« less

  6. a Search for Neutrino-Electron Elastic Scattering at the LAMPF Beam Stop.

    NASA Astrophysics Data System (ADS)

    Brooks, George Alfred

    Neutrino-electron elastic scattering reactions play an important role in tests of weak interaction theory. The four reactions which may be considered are:. (nu)(,e) + e('-) (--->) (nu)(,e) + e('-). (nu)(,e)(' )+ e('-) (--->) (nu)(,e) + e('-). (nu)(,(mu)) + e('-) (--->) (nu)(,(mu)) + e('-). (nu)(,(mu))(' )+ e('-) (--->) (nu)(,(mu)) + e(' -). The experimental study of these purely leptonic interactions severely tests basic theoretical ideas, and the reaction with (nu)(,e) has not yet been observed. The characteristics of Los Alamos Meson Physics Facility. (LAMPF) are such that (nu)(,e) is rarely produced, whereas (nu)(,e),(nu)(,(mu)), and(' ). (nu)(,(mu)) are present in equal numbers. Thus, data on all three processes(' ). will be collected simultaneously, but the (nu)(,e) reaction is expected to dominate. However, such studies are exceedingly difficult. The main problem arises from the nature of the event signature (an undetected particle enters the detector producing a single recoil electron) coupled with the miniscule cross sections expected (and therefore low event rates) amid numerous sources of background events. To learn how to reduce the rates of such backgrounds, the UCI Neutrino Group installed in the Neutrino Facility in 1974 a small scale detector system consisting of a sandwich of optical spark chambers and plastic scintillator slabs (0.38 metric tons) which was shielded by 2 1/2" of Pb and enclosed by tanks of liquid scintillator used as an anticoincidence. Electronics and instrumentation, including a CAMAC system interfaced with a PDP-11/05 computer, were housed in a nearby trailer. The 1974 study was carried out with the LAMPF Neutrino Facility shielded against cosmic rays by Fe walls 3' thick and a 4' Fe roof. Nevertheless, stopping cosmic ray muons appeared to give rise to the substantial number of background electron events observed. Several techniques were invoked to reduce the potential background for neutrino -electron elastic scattering to (1

  7. QCD analysis of neutrino charged current structure function F2 in deep inelastic scattering

    NASA Technical Reports Server (NTRS)

    Saleem, M.; Aleem, F.

    1985-01-01

    An analytic expression for the neutrino charged current structure function F sub 2 (x, Q sup 2) in deep inelastic scattering, consistent with quantum chromodynamics, is proposed. The calculated results are in good agreement with experiment.

  8. Neutron scattering from 208Pb at 30.4 and 40.0 MeV and isospin dependence of the nucleon optical potential

    NASA Astrophysics Data System (ADS)

    Devito, R. P.; Khoa, Dao T.; Austin, Sam M.; Berg, U. E. P.; Loc, Bui Minh

    2012-02-01

    Background: Analysis of data involving nuclei far from stability often requires the optical potential (OP) for neutron scattering. Because neutron data are seldom available, whereas proton scattering data are more abundant, it is useful to have estimates of the difference of the neutron and proton optical potentials. This information is contained in the isospin dependence of the nucleon OP. Here we attempt to provide it for the nucleon-208Pb system.Purpose: The goal of this paper is to obtain accurate n+208Pb scattering data and use it, together with existing p+208Pb and 208Pb(p,n)208BiIAS* data, to obtain an accurate estimate of the isospin dependence of the nucleon OP at energies in the 30-60-MeV range.Method: Cross sections for n+208Pb scattering were measured at 30.4 and 40.0 MeV, with a typical relative (normalization) accuracy of 2-4% (3%). An angular range of 15∘ to 130∘ was covered using the beam-swinger time-of-flight system at Michigan State University. These data were analyzed by a consistent optical-model study of the neutron data and of elastic p+208Pb scattering at 45 and 54 MeV. These results were combined with a coupled-channel analysis of the 208Pb(p,n) reaction at 45 MeV, exciting the 0+ isobaric analog state (IAS) in 208Bi.Results: The new data and analysis give an accurate estimate of the isospin impurity of the nucleon-208Pb OP at 30.4 MeV caused by the Coulomb correction to the proton OP. The corrections to the real proton OP given by the CH89 global systematics were found to be only a few percent, whereas for the imaginary potential it was greater than 20% at the nuclear surface. On the basis of the analysis of the measured elastic n+208Pb data at 40 MeV, a Coulomb correction of similar strength and shape was also predicted for the p+208Pb OP at energies around 54 MeV.Conclusions: Accurate neutron scattering data can be used in combination with proton scattering data and (p,n) charge exchange data leading to the IAS to obtain reliable

  9. Remarks on the pion-nucleon σ-term

    NASA Astrophysics Data System (ADS)

    Hoferichter, Martin; Ruiz de Elvira, Jacobo; Kubis, Bastian; Meißner, Ulf-G.

    2016-09-01

    The pion-nucleon σ-term can be stringently constrained by the combination of analyticity, unitarity, and crossing symmetry with phenomenological information on the pion-nucleon scattering lengths. Recently, lattice calculations at the physical point have been reported that find lower values by about 3σ with respect to the phenomenological determination. We point out that a lattice measurement of the pion-nucleon scattering lengths could help resolve the situation by testing the values extracted from spectroscopy measurements in pionic atoms.

  10. Few-Nucleon Research at TUNL: Probing Two- and Three-Nucleon Interactions with Neutrons

    NASA Astrophysics Data System (ADS)

    Howell, C. R.; Tornow, W.; Witała, H.

    2016-03-01

    The central goal of few-nucleon research at the Triangle Universities Nuclear Laboratory (TUNL) is to perform measurements that contribute to advancing ab-initio calculations of nuclear structure and reactions. The program aims include evaluating theoretical treatments of few-nucleon reaction dynamics through strategically comparing theory predictions to data, determining properties of the neutron-neutron interaction that are not accessible in two-nucleon reactions, and searching for evidence of longrange features of three-nucleon interactions, e.g., spin and isospin dependence. This paper will review studies of three- and four-nucleon systems at TUNL conducted using unpolarized and polarized neutron beams. Measurements of neutron-induced reactions performed by groups at TUNL over the last six years are described in comparison with theory predictions. The results are discussed in the context of the program goals stated above. Measurements of vector analyzing powers for elastic scattering in A=3 and A=4 systems, differential cross sections for neutron-deuteron elastic scattering and neutrondeuteron breakup in several final-state configurations are described. The findings from these studies and plans for the coming three years are presented in the context of worldwide activities in this front, in particular, research presented in this session.

  11. Transverse enhancement model and MiniBooNE charge current quasi-elastic neutrino scattering data

    NASA Astrophysics Data System (ADS)

    Sobczyk, Jan T.

    2012-01-01

    Recently proposed Transverse Enhancement Model of nuclear effects in Charge Current Quasi-Elastic neutrino scattering (A. Bodek, H.S. Budd, M.E. Christy, Eur. Phys. J. C 71:1726, 2011) is confronted with the MiniBooNE high statistics experimental data.

  12. Superscaling in electron-nucleus scattering and its link to CC and NC QE neutrino-nucleus scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barbaro, M. B.; Amaro, J. E.; Caballero, J. A.

    2015-05-15

    The superscaling approach (SuSA) to neutrino-nucleus scattering, based on the assumed universality of the scaling function for electromagnetic and weak interactions, is reviewed. The predictions of the SuSA model for bot CC and NC differential and total cross sections are presented and compared with the MiniBooNE data. The role of scaling violations, in particular the contribution of meson exchange currents in the two-particle two-hole sector, is explored.

  13. Nucleon decay and atmospheric neutrinos in the Mont Blanc experiment

    NASA Technical Reports Server (NTRS)

    Battistoni, G.; Bellotti, E.; Bologne, G.; Campana, P.; Castagnoli, C.; Chiarella, V.; Ciocio, A.; Cundy, D. C.; Dettorepiazzoli, B.; Fiorini, E.

    1985-01-01

    In the NUSEX experiment, during 2.8 years of operation, 31 fully contained events have been collected; 3 among them are nucleon decay candidates, while the others have been attributed to upsilon interactions. Limits on nucleon lifetime and determinations of upsilon interaction rates are presented.

  14. Physics of neutrino flavor transformation through matter–neutrino resonances

    DOE PAGES

    Wu, Meng -Ru; Duan, Huaiyu; Qian, Yong -Zhong

    2015-11-17

    In astrophysical environments such as core-collapse supernovae and neutron star–neutron star or neutron star–black hole mergers where dense neutrino media are present, matter–neutrino resonances (MNRs) can occur when the neutrino propagation potentials due to neutrino–electron and neutrino–neutrino for-ward scattering nearly cancel each other. We show that neutrino flavor transformation through MNRs can be explained by multiple adiabatic solutions similar to the Mikheyev–Smirnov–Wolfenstein mecha-nism. As a result, we find that for the normal neutrino mass hierarchy, neutrino flavor evolution through MNRs can be sensitive to the shape of neutrino spectra and the adiabaticity of the system, but such sensitivity is absentmore » for the inverted hierarchy.« less

  15. Weak η production off the nucleon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alam, M. Rafi; Athar, M. Sajjad; Alvarez-Ruso, L.

    2015-05-15

    The weak η-meson production off the nucleon induced by (anti)neutrinos is studied at low and intermediate energies, the range of interest for several ongoing and future neutrino experiments. We consider Born diagrams and the excitation of N{sup *} (1535)S{sub 11} and N{sup *} (1650)S{sub 11} resonances. The vector part of the N-S{sub 11} transition form factors has been obtained from the MAID helicity amplitudes while the poorly known axial part is constrained with the help of the partial conservation of the axial current (PCAC) and assuming the pion-pole dominance of the pseudoscalar form factor.

  16. Probing short-range nucleon-nucleon interactions with an electron-ion collider

    DOE PAGES

    Miller, Gerald A.; Sievert, Matthew D.; Venugopalan, Raju

    2016-04-07

    For this research, we derive the cross section for exclusive vector meson production in high-energy deeply inelastic scattering off a deuteron target that disintegrates into a proton and a neutron carrying large relative momentum in the final state. This cross section can be expressed in terms of a novel gluon transition generalized parton distribution (T-GPD); the hard scale in the final state makes the T-GPD sensitive to the short-distance nucleon-nucleon interaction. We perform a toy model computation of this process in a perturbative framework and discuss the time scales that allow the separation of initial- and final-state dynamics in themore » T-GPD. We outline the more general computation based on the factorization suggested by the toy computation: In particular, we discuss the relative role of “pointlike” and “geometric” Fock configurations that control the parton dynamics of short-range nucleon-nucleon scattering. With the aid of exclusive J/ψ production data at the Hadron-Electron Ring Accelerator at DESY, as well as elastic nucleon-nucleon cross sections, we estimate rates for exclusive deuteron photodisintegration at a future Electron-Ion Collider (EIC). Our results, obtained using conservative estimates of EIC integrated luminosities, suggest that center-of-mass energies sNN ~12GeV 2 of the neutron-proton subsystem can be accessed. We argue that the high energies of the EIC can address outstanding dynamical questions regarding the short-range quark-gluon structure of nuclear forces by providing clean gluon probes of such “knockout” exclusive reactions in light and heavy nuclei.« less

  17. Strangeness S =-1 hyperon-nucleon scattering in covariant chiral effective field theory

    NASA Astrophysics Data System (ADS)

    Li, Kai-Wen; Ren, Xiu-Lei; Geng, Li-Sheng; Long, Bingwei

    2016-07-01

    Motivated by the successes of covariant baryon chiral perturbation theory in one-baryon systems and in heavy-light systems, we study relevance of relativistic effects in hyperon-nucleon interactions with strangeness S =-1 . In this exploratory work, we follow the covariant framework developed by Epelbaum and Gegelia to calculate the Y N scattering amplitude at leading order. By fitting the five low-energy constants to the experimental data, we find that the cutoff dependence is mitigated, compared with the heavy-baryon approach. Nevertheless, the description of the experimental data remains quantitatively similar at leading order.

  18. a Phenomenological Determination of the Pion-Nucleon Scattering Lengths from Pionic Hydrogen

    NASA Astrophysics Data System (ADS)

    Ericson, T. E. O.; Loiseau, B.; Wycech, S.

    A model independent expression for the electromagnetic corrections to a phenomenological hadronic pion-nucleon (πN) scattering length ah, extracted from pionic hydrogen, is obtained. In a non-relativistic approach and using an extended charge distribution, these corrections are derived up to terms of order α2 log α in the limit of a short-range hadronic interaction. We infer ahπ ^-p=0.0870(5)m-1π which gives for the πNN coupling through the GMO relation g2π ^± pn/(4π )=14.04(17).

  19. Neutrino Processes in Neutron Stars

    NASA Astrophysics Data System (ADS)

    Kolomeitsev, E. E.; Voskresensky, D. N.

    2010-10-01

    The aim of these lectures is to introduce basic processes responsible for cooling of neutron stars and to show how to calculate the neutrino production rate in dense strongly interacting nuclear medium. The formalism is presented that treats on equal footing one-nucleon and multiple-nucleon processes and reactions with virtual bosonic modes and condensates. We demonstrate that neutrino emission from dense hadronic component in neutron stars is subject of strong modifications due to collective effects in the nuclear matter. With the most important in-medium processes incorporated in the cooling code an overall agreement with available soft X ray data can be easily achieved. With these findings the so-called “standard” and “non-standard” cooling scenarios are replaced by one general “nuclear medium cooling scenario” which relates slow and rapid neutron star coolings to the star masses (interior densities). The lectures are split in four parts. Part I: After short introduction to the neutron star cooling problem we show how to calculate neutrino reaction rates of the most efficient one-nucleon and two-nucleon processes. No medium effects are taken into account in this instance. The effects of a possible nucleon pairing are discussed. We demonstrate that the data on neutron star cooling cannot be described without inclusion of medium effects. It motivates an assumption that masses of the neutron stars are different and that neutrino reaction rates should be strongly density dependent. Part II: We introduce the Green’s function diagram technique for systems in and out of equilibrium and the optical theorem formalism. The latter allows to perform calculations of production rates with full Green’s functions including all off-mass-shell effects. We demonstrate how this formalism works within the quasiparticle approximation. Part III: The basic concepts of the nuclear Fermi liquid approach are introduced. We show how strong interaction effects can be

  20. Two-Nucleon Systems in a Finite Volume

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Briceno, Raul

    2014-11-01

    I present the formalism and methodology for determining the nucleon-nucleon scattering parameters from the finite volume spectra obtained from lattice quantum chromodynamics calculations. Using the recently derived energy quantization conditions and the experimentally determined scattering parameters, the bound state spectra for finite volume systems with overlap with the 3S1-3D3 channel are predicted for a range of volumes. It is shown that the extractions of the infinite-volume deuteron binding energy and the low-energy scattering parameters, including the S-D mixing angle, are possible from Lattice QCD calculations of two-nucleon systems with boosts of |P| <= 2pi sqrt{3}/L in volumes with spatial extentsmore » L satisfying fm <~ L <~ 14 fm.« less

  1. Longitudinal-Transverse Separation of Deep-Inelastic Scattering at Low Q² on Nucleons and Nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tvaskis, Vladas

    2004-12-06

    Since the early experiments at SLAC, which discovered the nucleon substructure and led to the development of the quark parton model, deep inelastic scattering (DIS) has been the most powerful tool to investigate the partonic substructure of the nucleon. After about 30 years of experiments with electron and muon beams the nucleon structure function F 2(x,Q 2) is known with high precision over about four orders of magnitude in x and Q 2. In the region of Q 2 > 1 (GeV/c) 2 the results of the DIS measurements are interpreted in terms of partons (quarks and gluons). The theoreticalmore » framework is provided in this case by perturbative Quantum Chromo Dynamics (pQCD), which includes scaling violations, as described by the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) equations. The description starts to fail when Q 2 becomes of the order of 1 (GeV/c) 2, where non-perturbative effects (higher-twist effects), which are still not fully understood, become important (non-pQCD). The sensitivity for order-n twist effects increases with decreasing Q 2, since they include a factor 1/(Q 2n) (n ≥ 1).« less

  2. Electron-deuteron deep-inelastic scattering with spectator nucleon tagging and final-state interactions at intermediate x

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strikman, Mark; Weiss, Christian

    We consider electron-deuteron deep-inelastic scattering (DIS) with detection of a proton in the nuclear fragmentation region ("spectator tagging") as a method for extracting the free neutron structure functions and studying their nuclear modifications. Such measurements could be performed at a future Electron-Ion Collider (EIC) with suitable forward detectors. The measured proton recoil momentum (≲ 100 MeV in the deuteron rest frame) specifies the deuteron configuration during the high-energy process and permits a controlled theoretical treatment of nuclear effects. Nuclear and nucleonic structure are separated using methods of light-front quantum mechanics. The impulse approximation (IA) to the tagged DIS cross sectionmore » contains the free neutron pole, which can be reached by on-shell extrapolation in the recoil momentum. Final-state interactions (FSI) distort the recoil momentum distribution away from the pole. In the intermediate-x region 0.1 < x < 0.5 FSI arise predominantly from interactions of the spectator proton with slow hadrons produced in the DIS process on the neutron (rest frame momenta ≲1 GeV, target fragmentation region). We construct a schematic model describing this effect, using final-state hadron distributions measured in nucleon DIS experiments and low-energy hadron scattering amplitudes. We investigate the magnitude of FSI, their dependence on the recoil momentum (angular dependence, forward/backward regions), their analytic properties, and their effect on the on-shell extrapolation. We comment on the prospects for neutron structure extraction in tagged DIS with EIC. Finally, we discuss possible extensions of the FSI model to other kinematic regions (large/small x). In tagged DIS at x << 0.1 FSI resulting from diffractive scattering on the nucleons become important and require separate treatment.« less

  3. Electron-deuteron deep-inelastic scattering with spectator nucleon tagging and final-state interactions at intermediate x

    DOE PAGES

    Strikman, Mark; Weiss, Christian

    2018-03-27

    We consider electron-deuteron deep-inelastic scattering (DIS) with detection of a proton in the nuclear fragmentation region ("spectator tagging") as a method for extracting the free neutron structure functions and studying their nuclear modifications. Such measurements could be performed at a future Electron-Ion Collider (EIC) with suitable forward detectors. The measured proton recoil momentum (≲ 100 MeV in the deuteron rest frame) specifies the deuteron configuration during the high-energy process and permits a controlled theoretical treatment of nuclear effects. Nuclear and nucleonic structure are separated using methods of light-front quantum mechanics. The impulse approximation (IA) to the tagged DIS cross sectionmore » contains the free neutron pole, which can be reached by on-shell extrapolation in the recoil momentum. Final-state interactions (FSI) distort the recoil momentum distribution away from the pole. In the intermediate-x region 0.1 < x < 0.5 FSI arise predominantly from interactions of the spectator proton with slow hadrons produced in the DIS process on the neutron (rest frame momenta ≲1 GeV, target fragmentation region). We construct a schematic model describing this effect, using final-state hadron distributions measured in nucleon DIS experiments and low-energy hadron scattering amplitudes. We investigate the magnitude of FSI, their dependence on the recoil momentum (angular dependence, forward/backward regions), their analytic properties, and their effect on the on-shell extrapolation. We comment on the prospects for neutron structure extraction in tagged DIS with EIC. Finally, we discuss possible extensions of the FSI model to other kinematic regions (large/small x). In tagged DIS at x << 0.1 FSI resulting from diffractive scattering on the nucleons become important and require separate treatment.« less

  4. Electron-deuteron deep-inelastic scattering with spectator nucleon tagging and final-state interactions at intermediate x

    NASA Astrophysics Data System (ADS)

    Strikman, M.; Weiss, C.

    2018-03-01

    We consider electron-deuteron deep-inelastic scattering (DIS) with detection of a proton in the nuclear fragmentation region ("spectator tagging") as a method for extracting the free neutron structure functions and studying their nuclear modifications. Such measurements could be performed at a future electron-ion collider (EIC) with suitable forward detectors. The measured proton recoil momentum (≲100 MeV in the deuteron rest frame) specifies the deuteron configuration during the high-energy process and permits a controlled theoretical treatment of nuclear effects. Nuclear and nucleonic structure are separated using methods of light-front quantum mechanics. The impulse approximation to the tagged DIS cross section contains the free neutron pole, which can be reached by on-shell extrapolation in the recoil momentum. Final-state interactions (FSIs) distort the recoil momentum distribution away from the pole. In the intermediate-x region 0.1 nucleon DIS experiments and low-energy hadron scattering amplitudes. We investigate the magnitude of FSIs, their dependence on the recoil momentum (angular dependence, forward/backward regions), their analytic properties, and their effect on the on-shell extrapolation. We comment on the prospects for neutron structure extraction in tagged DIS with an EIC. We discuss possible extensions of the FSI model to other kinematic regions (large/small x ). In tagged DIS at x ≪0.1 FSIs resulting from diffractive scattering on the nucleons become important and require separate treatment.

  5. Proton and antiproton production in deep inelastic muon-nucleon scattering at 280 GeV

    NASA Astrophysics Data System (ADS)

    Arneodo, M.; Arvidson, A.; Aubert, J. J.; Badelek, B.; Beaufays, J.; Bee, C. P.; Benchouk, C.; Berghoff, G.; Bird, I.; Blum, D.; Böhm, E.; de Bouard, X.; Brasse, F. W.; Braun, H.; Broll, C.; Brown, S.; Brück, H.; Calen, H.; Chima, J. S.; Ciborowski, J.; Clifft, R.; Coignet, G.; Combley, F.; Coughlan, J.; D'Agostini, G.; Dahlgren, S.; Dengler, F.; Derado, I.; Dreyer, T.; Drees, J.; Düren, M.; Eckardt, V.; Edwards, A.; Edwards, M.; Ernst, T.; Eszes, G.; Favier, J.; Ferrero, M. I.; Figiel, J.; Flauger, W.; Foster, J.; Gabathuler, E.; Gajewski, J.; Gamet, R.; Gayler, J.; Geddes, N.; Grafström, P.; Grard, F.; Haas, J.; Hagberg, E.; Hasert, F. J.; Hayman, P.; Heusse, P.; Jaffré, M.; Jacholkowska, A.; Janata, F.; Jansco, G.; Johnson, A. S.; Kabuss, E. M.; Kellner, G.; Korbel, V.; Krüger, A.; Krüger, J.; Kullander, S.; Landgraf, U.; Lanske, D.; Loken, J.; Long, K.; Maire, M.; Malecki, P.; Manz, A.; Maselli, S.; Mohr, W.; Montanet, F.; Montgomery, H. E.; Nagy, E.; Nassalski, J.; Norton, P. R.; Oakham, F. G.; Osborne, A. M.; Pascaud, C.; Pawlik, B.; Payre, P.; Peroni, C.; Peschel, H.; Pessard, H.; Pettingale, J.; Pietrzyk, B.; Poensgen, B.; Pötsch, M.; Renton, P.; Ribarics, P.; Rith, K.; Rondio, E.; Sandacz, A.; Scheer, M.; Schlagböhmer, A.; Schiemann, H.; Schmitz, N.; Schneegans, M.; Scholz, M.; Schouten, M.; Schröder, T.; Schultze, K.; Sloan, T.; Stier, H. E.; Studt, M.; Taylor, G. N.; Thénard, J. M.; Thompson, J. C.; de La Torre, A.; Toth, J.; Urban, L.; Wallucks, W.; Whalley, M.; Wheeler, S.; Williams, W. S. C.; Wimpenny, S. J.; Windmolders, R.; Wolf, G.

    1987-12-01

    New results on proton and antiproton production in the target and current fragmentation regions of high energy muon-nucleon scattering are presented. Proton and antiproton production is investigated as a function of Feynman x and rapidity. No significant difference is observed between production on hydrogen and deuterium targets. Correlations between pp,pbar p andbar pbar p pairs are analysed and the results are compared with the predictions of the Lund fragmentation model.

  6. MINERνA neutrino detector calibration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patrick, Cheryl

    MINERνA is a neutrino scattering experiment that uses Fermilab’s NuMI beamline. Its goal is to measure cross-sections for neutrino scattering from different nuclei. Precise knowledge of these cross-sections is vital for current and future neutrino oscillation experiments. In order to measure these values to a high degree of accuracy, it is essential that the detector be carefully calibrated. Here, we describe in-situ calibration and cross-checks.

  7. E sub 6 leptoquarks and the solar neutrino problem

    NASA Technical Reports Server (NTRS)

    Roulet, Esteban

    1991-01-01

    The possibility that non-conventional neutrino oscillations take place in the superstring inspired E sub 6 models is considered. In this context, the influence of leptoquark mediated interactions of the neutrinos with nucleons in the resonant flavor conversion is discussed. It is shown that this effect can be significant for v sub e - v sub tau oscillations if these neutrinos have masses required in the ordinary Mikheyev-Smirnov-Wolfenstein (MSW) effect, and may lead to a solution of the solar neutrino problem even in the absence of vacuum mixings. On the other hand, this model cannot lead to a resonant behavior in the sun if the neutrinos are massless.

  8. The frozen nucleon approximation in two-particle two-hole response functions

    DOE PAGES

    Ruiz Simo, I.; Amaro, J. E.; Barbaro, M. B.; ...

    2017-07-10

    Here, we present a fast and efficient method to compute the inclusive two-particle two-hole (2p–2h) electroweak responses in the neutrino and electron quasielastic inclusive cross sections. The method is based on two approximations. The first neglects the motion of the two initial nucleons below the Fermi momentum, which are considered to be at rest. This approximation, which is reasonable for high values of the momentum transfer, turns out also to be quite good for moderate values of the momentum transfer q ≳kF. The second approximation involves using in the “frozen” meson-exchange currents (MEC) an effective Δ-propagator averaged over the Fermimore » sea. Within the resulting “frozen nucleon approximation”, the inclusive 2p–2h responses are accurately calculated with only a one-dimensional integral over the emission angle of one of the final nucleons, thus drastically simplifying the calculation and reducing the computational time. The latter makes this method especially well-suited for implementation in Monte Carlo neutrino event generators.« less

  9. The frozen nucleon approximation in two-particle two-hole response functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruiz Simo, I.; Amaro, J. E.; Barbaro, M. B.

    Here, we present a fast and efficient method to compute the inclusive two-particle two-hole (2p–2h) electroweak responses in the neutrino and electron quasielastic inclusive cross sections. The method is based on two approximations. The first neglects the motion of the two initial nucleons below the Fermi momentum, which are considered to be at rest. This approximation, which is reasonable for high values of the momentum transfer, turns out also to be quite good for moderate values of the momentum transfer q ≳kF. The second approximation involves using in the “frozen” meson-exchange currents (MEC) an effective Δ-propagator averaged over the Fermimore » sea. Within the resulting “frozen nucleon approximation”, the inclusive 2p–2h responses are accurately calculated with only a one-dimensional integral over the emission angle of one of the final nucleons, thus drastically simplifying the calculation and reducing the computational time. The latter makes this method especially well-suited for implementation in Monte Carlo neutrino event generators.« less

  10. Hard breakup of two nucleons from the He3 nucleus

    NASA Astrophysics Data System (ADS)

    Sargsian, Misak M.; Granados, Carlos

    2009-07-01

    We investigate a large angle photodisintegration of two nucleons from the He3 nucleus within the framework of the hard rescattering model (HRM). In the HRM a quark of one nucleon knocked out by an incoming photon rescatters with a quark of the other nucleon leading to the production of two nucleons with large relative momentum. Assuming the dominance of the quark-interchange mechanism in a hard nucleon-nucleon scattering, the HRM allows the expression of the amplitude of a two-nucleon breakup reaction through the convolution of photon-quark scattering, NN hard scattering amplitude, and nuclear spectral function, which can be calculated using a nonrelativistic He3 wave function. The photon-quark scattering amplitude can be explicitly calculated in the high energy regime, whereas for NN scattering one uses the fit of the available experimental data. The HRM predicts several specific features for the hard breakup reaction. First, the cross section will approximately scale as s-11. Second, the s11 weighted cross section will have the shape of energy dependence similar to that of s10 weighted NN elastic scattering cross section. Also one predicts an enhancement of the pp breakup relative to the pn breakup cross section as compared to the results from low energy kinematics. Another result is the prediction of different spectator momentum dependencies of pp and pn breakup cross sections. This is due to the fact that the same-helicity pp-component is strongly suppressed in the ground state wave function of He3. Because of this suppression the HRM predicts significantly different asymmetries for the cross section of polarization transfer NN breakup reactions for circularly polarized photons. For the pp breakup this asymmetry is predicted to be zero while for the pn it is close to (2)/(3).

  11. Constraining neutrinos as background to wimp-nucleon dark matter particle searches for DaMIC: CCD physics analysis and electronics development

    NASA Astrophysics Data System (ADS)

    Butner, Melissa Jean

    The DaMIC (Dark Matter in CCDs) experiment searches for dark matter particles using charge coupled devices (CCDs) operated at a low detection threshold of ˜40 eV electron equivalent energy (eVee). A multiplexor board is tested for DAMIC100+ which has the ability to control up to 16 CCDs at one time allowing for the selection of a single CCD for readout while leaving all others static and maintaining sub-electron noise. A dark matter limit is produced using the results of physics data taken with the DAMIC experiment. Next, the contribution from neutrino-nucleus coherent scattering is investigated using data from the Coherent Neutrino Nucleus Interaction Experiment (CONnuIE) using the same CCD technology. The results are used to explore the performance of CCD detectors that ultimately will limit the ability to differentiate incident solar and atmospheric neutrinos from dark matter particles.

  12. Power corrections to the universal heavy WIMP-nucleon cross section

    NASA Astrophysics Data System (ADS)

    Chen, Chien-Yi; Hill, Richard J.; Solon, Mikhail P.; Wijangco, Alexander M.

    2018-06-01

    WIMP-nucleon scattering is analyzed at order 1 / M in Heavy WIMP Effective Theory. The 1 / M power corrections, where M ≫mW is the WIMP mass, distinguish between different underlying UV models with the same universal limit and their impact on direct detection rates can be enhanced relative to naive expectations due to generic amplitude-level cancellations at leading order. The necessary one- and two-loop matching calculations onto the low-energy effective theory for WIMP interactions with Standard Model quarks and gluons are performed for the case of an electroweak SU(2) triplet WIMP, considering both the cases of elementary fermions and composite scalars. The low-velocity WIMP-nucleon scattering cross section is evaluated and compared with current experimental limits and projected future sensitivities. Our results provide the most robust prediction for electroweak triplet Majorana fermion dark matter direct detection rates; for this case, a cancellation between two sources of power corrections yields a small total 1 / M correction, and a total cross section close to the universal limit for M ≳ few × 100GeV. For the SU(2) composite scalar, the 1 / M corrections introduce dependence on underlying strong dynamics. Using a leading chiral logarithm evaluation, the total 1 / M correction has a larger magnitude and uncertainty than in the fermionic case, with a sign that further suppresses the total cross section. These examples provide definite targets for future direct detection experiments and motivate large scale detectors capable of probing to the neutrino floor in the TeV mass regime.

  13. Simulation of coherent nonlinear neutrino flavor transformation in the supernova environment: Correlated neutrino trajectories

    NASA Astrophysics Data System (ADS)

    Duan, Huaiyu; Fuller, George M.; Carlson, J.; Qian, Yong-Zhong

    2006-11-01

    We present results of large-scale numerical simulations of the evolution of neutrino and antineutrino flavors in the region above the late-time post-supernova-explosion proto-neutron star. Our calculations are the first to allow explicit flavor evolution histories on different neutrino trajectories and to self-consistently couple flavor development on these trajectories through forward scattering-induced quantum coupling. Employing the atmospheric-scale neutrino mass-squared difference (|δm2|≃3×10-3eV2) and values of θ13 allowed by current bounds, we find transformation of neutrino and antineutrino flavors over broad ranges of energy and luminosity in roughly the “bi-polar” collective mode. We find that this large-scale flavor conversion, largely driven by the flavor off-diagonal neutrino-neutrino forward scattering potential, sets in much closer to the proto-neutron star than simple estimates based on flavor-diagonal potentials and Mikheyev-Smirnov-Wolfenstein evolution would indicate. In turn, this suggests that models of r-process nucleosynthesis sited in the neutrino-driven wind could be affected substantially by active-active neutrino flavor mixing, even with the small measured neutrino mass-squared differences.

  14. Probing light sterile neutrino signatures at reactor and Spallation Neutron Source neutrino experiments

    NASA Astrophysics Data System (ADS)

    Kosmas, T. S.; Papoulias, D. K.; Tórtola, M.; Valle, J. W. F.

    2017-09-01

    We investigate the impact of a fourth sterile neutrino at reactor and Spallation Neutron Source neutrino detectors. Specifically, we explore the discovery potential of the TEXONO and COHERENT experiments to subleading sterile neutrino effects through the measurement of the coherent elastic neutrino-nucleus scattering event rate. Our dedicated χ2-sensitivity analysis employs realistic nuclear structure calculations adequate for high purity sub-keV threshold Germanium detectors.

  15. Majorana neutrino and the vacuum of Bogoliubov quasiparticle

    NASA Astrophysics Data System (ADS)

    Fujikawa, Kazuo

    2018-06-01

    The Lagrangian of the seesaw mechanism is C violating but the same Lagrangian when re-written in terms of Majorana neutrinos is manifestly C invariant. To resolve this puzzling feature, a relativistic analogue of Bogoliubov transformation, which preserves CP but explicitly breaks C and P separately, was introduced together with the notions of a Bogoliubov quasiparticle and an analogue of the energy gap in BCS theory. The idea of Majorana neutrino as Bogoliubov quasiparticle was then suggested. In this paper, we study the vacuum structure of the Bogoliubov quasiparticle which becomes heavy by absorbing the C-breaking. By treating an infinitesimally small C violating term as an analogue of the chiral symmetry breaking nucleon mass in the model of Nambu and Jona-Lasinio, we construct an explicit form of the vacuum of the Bogoliubov quasiparticle which defines Majorana neutrinos in seesaw mechanism. The vacuum of the Bogoliubov quasiparticle thus constructed has an analogous condensate structure as the vacuum of the quasiparticle (nucleon) in the Nambu-Jona-Lasinio model.

  16. Phenomenology of ultrahigh energy neutrino interactions and fluxes

    NASA Astrophysics Data System (ADS)

    Hussain, Shahid

    There are several models that predict the existence of high and ultrahigh energy (UHE) neutrinos; neutrinos that have amazingly high energies---energies above 10 15 eV. No man-made machines, existing or planned, can produce any particles of this high energies. It is the energies of these neutrinos that make them very interesting for the particle physics and astrophysics community; these neutrinos can be a unique tool to study the unknown regimes of energy, space, and time. Consequently, there is intense experimental activity focused on the detection of these neutrinos; no UHE neutrinos have been detected by these experiments so far. However, most of the UHE neutrino flux models predict that the fluxes of these neutrinos might be too small to be detected by the current detectors. Therefore, more powerful detectors are being built and we are at the beginning of a new and exciting era in neutrino astronomy. The interactions and fluxes of UHE neutrinos both are unknown experimentally. Our focus here is to explore, by numerically calculating observable signals from these neutrinos, different scenarios that can arise by the inter play of UHE neutrino interaction and flux models. Given several AGN and cosmogenic neutrino flux models, we look at two possibilities for neutrino interactions: (i) Neutrinos have standard model weak interactions at ultrahigh energies. (ii) neutrino interactions are enhanced around a TeV mass-scale, as implied by low scale gravity models with extra dimensions. The standard model weak and low scale gravity enhanced neutrino-nucleon interactions of UHE neutrinos both produce observable signals. In standard model, the charged current neutrino-nucleon interactions give muons, taus, and particle showers, and the neutral current interactions give particle showers. In low scale gravity, the micro black hole formation (and its subsequent decay) and the graviton exchange both give particle showers. Muons, taus, and the showers can be detected by the

  17. Active-sterile neutrino conversion: consequences for the r-process and supernova neutrino detection

    NASA Astrophysics Data System (ADS)

    Fetter, J.; McLaughlin, G. C.; Balantekin, A. B.; Fuller, G. M.

    2003-02-01

    We examine active-sterile neutrino conversion in the late time post-core-bounce supernova environment. By including the effect of feedback on the Mikheyev-Smirnov-Wolfenstein (MSW) conversion potential, we obtain a large range of neutrino mixing parameters which produce a favorable environment for the r-process. We look at the signature of this effect in the current generation of neutrino detectors now coming on line. We also investigate the impact of the neutrino-neutrino forward-scattering-induced potential on the MSW conversion.

  18. Rapid Neutrino Cooling in the Neutron Star MXB 1659-29.

    PubMed

    Brown, Edward F; Cumming, Andrew; Fattoyev, Farrukh J; Horowitz, C J; Page, Dany; Reddy, Sanjay

    2018-05-04

    We show that the neutron star in the transient system MXB 1659-29 has a core neutrino luminosity that substantially exceeds that of the modified Urca reactions (i.e., n+n→n+p+e^{-}+ν[over ¯]_{e} and inverse) and is consistent with the direct Urca (n→p+e^{-}+ν[over ¯]_{e} and inverse) reaction occurring in a small fraction of the core. Observations of the thermal relaxation of the neutron star crust following 2.5 yr of accretion allow us to measure the energy deposited into the core during accretion, which is then reradiated as neutrinos, and infer the core temperature. For a nucleonic core, this requires that the nucleons are unpaired and that the proton fraction exceeds a critical value to allow the direct Urca reaction to proceed. The neutron star in MXB 1659-29 is the first with a firmly detected thermal component in its x-ray spectrum that needs a fast neutrino-cooling process. Measurements of the temperature variation of the neutron star core during quiescence would place an upper limit on the core specific heat and serve as a check on the fraction of the neutron star core in which nucleons are unpaired.

  19. Rapid Neutrino Cooling in the Neutron Star MXB 1659-29

    NASA Astrophysics Data System (ADS)

    Brown, Edward F.; Cumming, Andrew; Fattoyev, Farrukh J.; Horowitz, C. J.; Page, Dany; Reddy, Sanjay

    2018-05-01

    We show that the neutron star in the transient system MXB 1659-29 has a core neutrino luminosity that substantially exceeds that of the modified Urca reactions (i.e., n +n →n +p +e-+ν¯ e and inverse) and is consistent with the direct Urca (n →p +e-+ν¯e and inverse) reaction occurring in a small fraction of the core. Observations of the thermal relaxation of the neutron star crust following 2.5 yr of accretion allow us to measure the energy deposited into the core during accretion, which is then reradiated as neutrinos, and infer the core temperature. For a nucleonic core, this requires that the nucleons are unpaired and that the proton fraction exceeds a critical value to allow the direct Urca reaction to proceed. The neutron star in MXB 1659-29 is the first with a firmly detected thermal component in its x-ray spectrum that needs a fast neutrino-cooling process. Measurements of the temperature variation of the neutron star core during quiescence would place an upper limit on the core specific heat and serve as a check on the fraction of the neutron star core in which nucleons are unpaired.

  20. Microscopic description of elastic and direct inelastic nucleon scattering off spherical nuclei

    NASA Astrophysics Data System (ADS)

    Dupuis, M.

    2017-05-01

    The purpose of this study is to improve the modeling of nucleon direct inelastic scattering to the continuum using a microscopic and parameter-free approach. For the first time, direct elastic scattering, inelastic scattering to discrete excitations and to the continuum are described within a microscopic approach without adjustable parameters. Proton scattering off 90Zr and 208Pb are the reactions used as test case examples of the calculations. The model uses the Melbourne g-matrix and the Random Phase Approximation description of nuclear states, implemented with the Gogny D1S interaction. The relevant optical and transition potentials in a finite nucleus are calculated within a local density approximation. As we use the nuclear matter approach we limit our study to incident energies above 40 MeV. We first checked that this model provides an accurate account of measured cross sections for elastic scattering and inelastic scattering to discrete states. It is then applied to the direct inelastic scattering to the continuum considering all one-phonon excitations predicted within the RPA approach. This accounts for a part of the direct pre-equilibrium emission, often labeled as the one-step direct process in quantum-based approaches. Our approach provides a very accurate description of angular distributions where the one-step process dominates. The impact of collective excitations is shown to be non negligible for energy transfer to the target up to 20 MeV, decreasing as the incident energy increases. For incident energies above 80 MeV, our modeling provides a good account of direct proton emission for an energy transfer to the target up to 30 MeV. However, the proton emission we predict underestimates the measured cross sections for incident energies below 80 MeV. We compare our prediction to those of the phenomenological exciton model to help interpret this result. Directions that may improve our modeling are discussed.

  1. Pion-nucleon scattering in the Roper channel from lattice QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lang, Christian B.; Leskovec, L.; Padmanath, M.

    We present a lattice QCD study ofmore » $$N\\pi$$ scattering in the positive-parity nucleon channel, where the puzzling Roper resonance $N^*(1440)$ resides in experiment. The study is based on the PACS-CS ensemble of gauge configurations with $$N_f=2+1$$ Wilson-clover dynamical fermions, $$m_\\pi \\simeq 156~$$MeV and $$L\\simeq 2.9~$$fm. In addition to a number of $qqq$ interpolating fields, we implement operators for $$N\\pi$$ in $p$-wave and $$N\\sigma$$ in $s$-wave. In the center-of-momentum frame we find three eigenstates below 1.65 GeV. They are dominated by $N(0)$, $$N(0)\\pi(0)\\pi(0)$$ (mixed with $$N(0)\\sigma(0)$$) and $$N(p)\\pi(-p)$$ with $$p\\simeq 2\\pi/L$$, where momenta are given in parentheses. This is the first simulation where the expected multi-hadron states are found in this channel. The experimental $$N\\pi$$ phase-shift would -- in the approximation of purely elastic $$N\\pi$$ scattering -- imply an additional eigenstate near the Roper mass $$m_R\\simeq 1.43~$$GeV for our lattice size. We do not observe any such additional eigenstate, which indicates that $$N\\pi$$ elastic scattering alone does not render a low-lying Roper. Coupling with other channels, most notably with $$N\\pi\\pi$$, seems to be important for generating the Roper resonance, reinforcing the notion that this state could be a dynamically generated resonance. Our results are in line with most of previous lattice studies based just on $qqq$ interpolators, that did not find a Roper eigenstate below $1.65~$GeV. As a result, the study of the coupled-channel scattering including a three-particle decay $$N\\pi\\pi$$ remains a challenge.« less

  2. Pion-nucleon scattering in the Roper channel from lattice QCD

    DOE PAGES

    Lang, Christian B.; Leskovec, L.; Padmanath, M.; ...

    2017-01-31

    We present a lattice QCD study ofmore » $$N\\pi$$ scattering in the positive-parity nucleon channel, where the puzzling Roper resonance $N^*(1440)$ resides in experiment. The study is based on the PACS-CS ensemble of gauge configurations with $$N_f=2+1$$ Wilson-clover dynamical fermions, $$m_\\pi \\simeq 156~$$MeV and $$L\\simeq 2.9~$$fm. In addition to a number of $qqq$ interpolating fields, we implement operators for $$N\\pi$$ in $p$-wave and $$N\\sigma$$ in $s$-wave. In the center-of-momentum frame we find three eigenstates below 1.65 GeV. They are dominated by $N(0)$, $$N(0)\\pi(0)\\pi(0)$$ (mixed with $$N(0)\\sigma(0)$$) and $$N(p)\\pi(-p)$$ with $$p\\simeq 2\\pi/L$$, where momenta are given in parentheses. This is the first simulation where the expected multi-hadron states are found in this channel. The experimental $$N\\pi$$ phase-shift would -- in the approximation of purely elastic $$N\\pi$$ scattering -- imply an additional eigenstate near the Roper mass $$m_R\\simeq 1.43~$$GeV for our lattice size. We do not observe any such additional eigenstate, which indicates that $$N\\pi$$ elastic scattering alone does not render a low-lying Roper. Coupling with other channels, most notably with $$N\\pi\\pi$$, seems to be important for generating the Roper resonance, reinforcing the notion that this state could be a dynamically generated resonance. Our results are in line with most of previous lattice studies based just on $qqq$ interpolators, that did not find a Roper eigenstate below $1.65~$GeV. As a result, the study of the coupled-channel scattering including a three-particle decay $$N\\pi\\pi$$ remains a challenge.« less

  3. Neutrino mixing and big bang nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Bell, Nicole

    2003-04-01

    We analyse active-active neutrino mixing in the early universe and show that transformation of neutrino-antineutrino asymmetries between flavours is unavoidable when neutrino mixing angles are large. This process is a standard Mikheyev-Smirnov-Wolfenstein flavour transformation, modified by the synchronisation of momentum states which results from neutrino-neutrino forward scattering. The new constraints placed on neutrino asymmetries eliminate the possibility of degenerate big bang nucleosynthesis.Implications of active-sterile neutrino mixing will also be reviewed.

  4. Effects of chiral three-nucleon forces on 4He-nucleus scattering in a wide range of incident energies

    NASA Astrophysics Data System (ADS)

    Toyokawa, Masakazu; Yahiro, Masanobu; Matsumoto, Takuma; Kohno, Michio

    2018-02-01

    An important current subject is to clarify the properties of chiral three-nucleon forces (3NFs) not only in nuclear matter but also in scattering between finite-size nuclei. Particularly for elastic scattering, this study has just started and the properties are not understood for a wide range of incident energies (E_in). We investigate basic properties of chiral 3NFs in nuclear matter with positive energies by using the Brueckner-Hartree-Fock method with chiral two-nucleon forces at N3LO and 3NFs at NNLO, and analyze the effects of chiral 3NFs on 4He elastic scattering from targets ^{208}Pb, ^{58}Ni, and ^{40}Ca over a wide range of 30 ≲ E_in/A_P ≲ 200 MeV by using the g-matrix folding model, where A_P is the mass number of the projectile. In symmetric nuclear matter with positive energies, chiral 3NFs make the single-particle potential less attractive and more absorptive. The effects mainly come from the Fujita-Miyazawa 2π-exchange 3NF and become slightly larger as E_in increases. These effects persist in the optical potentials of 4He scattering. As for the differential cross sections of 4He scattering, chiral-3NF effects are large for E_in/A_P ≳ 60 MeV and improve the agreement of the theoretical results with the measured ones. Particularly for E_in/A_P ≳ 100 MeV, the folding model reproduces measured differential cross sections pretty well. Cutoff (Λ) dependence is investigated for both nuclear matter and 4He scattering by considering two cases of Λ=450 and 550 MeV. The uncertainty coming from the dependence is smaller than chiral-3NF effects even at E_in/A_P=175 MeV.

  5. Strangeness production in deep inelastic muon nucleon scattering at 280 GeV

    NASA Astrophysics Data System (ADS)

    Arneodo, M.; Arvidson, A.; Aubert, J. J.; Badelek, B.; Beaufays, J.; Bee, C. P.; Benchouk, C.; Berghoff, G.; Bird, I.; Blum, D.; Böhm, E.; de Bouard, X.; Brasse, F. W.; Braun, H.; Broll, C.; Brown, S.; Brück, H.; Calen, H.; Chima, J. S.; Ciborowski, J.; Clifft, R.; Coignet, G.; Combley, F.; Coughlan, J.; D'Agostini, G.; Dahlgren, S.; Dengler, F.; Derado, I.; Dreyer, T.; Drees, J.; Düren, M.; Eckhardt, V.; Edwards, A.; Edwards, M.; Ernst, T.; Eszes, G.; Favier, J.; Ferrero, M. I.; Figiel, J.; Flauger, W.; Foster, J.; Gabathuler, E.; Gajewski, J.; Gamet, R.; Gayler, J.; Geddes, N.; Grafström, P.; Grard, F.; Haas, J.; Hagberg, E.; Hasert, F. J.; Hayman, P.; Heusse, P.; Jaffré, M.; Jacholkowska, A.; Janata, F.; Jancso, G.; Johnson, A. S.; Kabuss, E. M.; Kellner, G.; Korbel, V.; Krüger, J.; Kullander, S.; Landgraf, U.; Lanske, D.; Loken, J.; Long, K.; Maire, M.; Malecki, P.; Manz, A.; Maselli, S.; Mohr, W.; Montanet, F.; Montgomery, H. E.; Nagy, E.; Nassalski, J.; Norton, P. R.; Oakham, F. G.; Osborne, A. M.; Pascaud, C.; Pawlik, B.; Payre, P.; Peroni, C.; Peschel, H.; Pessard, H.; Pettingale, J.; Pietrzyk, B.; Pönsgen, B.; Pötsch, M.; Renton, P.; Ribarics, P.; Rith, K.; Rondio, E.; Sandacz, A.; Scheer, M.; Schlagböhmer, A.; Schiemann, H.; Schmifz, N.; Schneegans, M.; Scholz, M.; Schröder, T.; Schouten, M.; Schultze, K.; Sloan, T.; Stier, H. E.; Studt, M.; Taylor, G. N.; Thénard, J. M.; Thompson, J. C.; de La Torre, A.; Toth, J.; Urban, L.; Wallucks, W.; Whalley, M.; Wheeler, S.; Williams, W. S. C.; Wimpenny, S. J.; Windmolders, R.

    1987-09-01

    The production of strange particles has been studied in a 280 GeV muon nucleon scattering experiment with acceptance and particle identification over a large kinematical range. The data show that at large values of x Bj the interactions take place mostly on a u valence quark in agreement with the basic quarkparton model predictions. This feature results in a strong forward-backward asymmetry in the distribution of strangeness along the rapidity axis. The data are compatible with a strange to non-strange quark suppression factor of ≈0.3 and with a strong suppression of strange diquarks. The distributions of K + K - pairs show that the two kaons are preferentially produced at neighbouring values of rapidity.

  6. REVIEWS OF TOPICAL PROBLEMS: Ultrahigh-energy neutrinos from astrophysical sources and superheavy particle decays

    NASA Astrophysics Data System (ADS)

    Ryabov, Vladimir A.

    2006-09-01

    Problems in the fields of neutrino astronomy and ultrahigh-energy astrophysics are reviewed. Neutrino fluxes produced in various astrophysical sources (bottom-up acceleration scenarios) and resulting from the decay of superheavy particles (top-down scenarios) are considered. Neutrino oscillation processes and the absorption and regeneration of neutrinos inside the earth are analyzed and some other factors affecting the intensity and flavor composition of astrophysical neutrino fluxes are discussed. Details of ultrahigh-energy neutrino interactions are discussed within the Standard Model, as well as using nonstandard scenarios predicting an anomalous increase in the inelastic neutrino-nucleon cross section. Ultrahigh-energy neutrino detection techniques currently in use in new-generation neutrino telescopes and cosmic ray detectors are also discussed.

  7. An SO(10) × SO(10)' model for common origin of neutrino masses, ordinary and dark matter-antimatter asymmetries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, Pei-Hong, E-mail: peihong.gu@sjtu.edu.cn

    2014-12-01

    We propose an SO(10) × SO(10)' model to simultaneously realize a seesaw for Dirac neutrino masses and a leptogenesis for ordinary and dark matter-antimatter asymmetries. A (16 × 1-bar 6-bar '){sub H} scalar crossing the SO(10) and SO(10)' sectors plays an essential role in this seesaw-leptogenesis scenario. As a result of lepton number conservation, the lightest dark nucleon as the dark matter particle should have a determined mass around 15 GeV to explain the comparable fractions of ordinary and dark matter in the present universe. The (16 × 1-bar 6-bar '){sub H} scalar also mediates a U(1){sub em} × U(1)'{submore » em} kinetic mixing after the ordinary and dark left-right symmetry breaking so that we can expect a dark nucleon scattering in direct detection experiments and/or a dark nucleon decay in indirect detection experiments. Furthermore, we can impose a softly broken mirror symmetry to simplify the parameter choice.« less

  8. Evidence for neutrino oscillations in the Sudbury Neutrino Observatory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marino, Alysia Diane

    2004-01-01

    The Sudbury Neutrino Observatory (SNO) is a large-volume heavy water Cerenkov detector designed to resolve the solar neutrino problem. SNO observes charged-current interactions with electron neutrinos, neutral-current interactions with all active neutrinos, and elastic-scattering interactions primarily with electron neutrinos with some sensitivity to other flavors. This dissertation presents an analysis of the solar neutrino flux observed in SNO in the second phase of operation, while ~2 tonnes of salt (NaCl) were dissolved in the heavy water. The dataset here represents 391 live days of data. Only the events above a visible energy threshold of 5.5 MeV and inside a fiducial volume within 550 cm of the center of the detector are studied. The neutrino flux observed via the charged-current interaction is [1.71 ± 0.065(stat.)±more » $$0.065\\atop{0.068}$$(sys.)±0.02(theor.)] x 10 6cm -2s -1, via the elastic-scattering interaction is [2.21±0.22(stat.)±$$0.12\\atop{0.11}$$(sys.)±0.01(theor.)] x 10 6cm -2s -1, and via the neutral-current interaction is [5.05±0.23(stat.)±$$0.31\\atop{0.37}$$(sys.)±0.06(theor.)] x 10 6cm -2s -1. The electron-only flux seen via the charged-current interaction is more than 7σ below the total active flux seen via the neutral-current interaction, providing strong evidence that neutrinos are undergoing flavor transformation as they travel from the core of the Sun to the Earth. The most likely origin of the flavor transformation is matter-induced flavor oscillation.« less

  9. Peripheral elastic and inelastic scattering of 17,18O on light targets at 12 MeV/nucleon

    NASA Astrophysics Data System (ADS)

    Carstoiu, F.; Al-Abdullah, T.; Gagliardi, C. A.; Trache, L.

    2015-02-01

    The elastic and inelastic scattering of 17,18O with light targets has been undertaken at 12 MeV/nucleon in order to determine the optical potentials needed for the transfer reaction 13C (17O ,18O )12C . Optical potentials in both incoming and outgoing channels have been determined in a single experiment. This transfer reaction was used to infer the direct capture rate to the 17F ( p ,γ)18Ne which is essential to estimate the production of 18F at stellar energies in ONe novae. We demonstrate the stability of the ANC method and OMP results using good quality elastic and inelastic scattering data with stable beams. The peripherality of our reaction is inferred from a semiclassical decomposition of the total scattering amplitude into barrier and internal barrier components. Comparison between elastic scattering of 17O , 18O and 16O projectiles is made.

  10. Leading order relativistic hyperon-nucleon interactions in chiral effective field theory

    NASA Astrophysics Data System (ADS)

    Li, Kai-Wen; Ren, Xiu-Lei; Geng, Li-Sheng; Long, Bing-Wei

    2018-01-01

    We apply a recently proposed covariant power counting in nucleon-nucleon interactions to study strangeness S=-1 {{\\varLambda }}N-{{\\varSigma }}N interactions in chiral effective field theory. At leading order, Lorentz invariance introduces 12 low energy constants, in contrast to the heavy baryon approach, where only five appear. The Kadyshevsky equation is adopted to resum the potential in order to account for the non-perturbative nature of hyperon-nucleon interactions. A fit to the 36 hyperon-nucleon scattering data points yields {χ }2≃ 16, which is comparable with the sophisticated phenomenological models and the next-to-leading order heavy baryon approach. However, one cannot achieve a simultaneous description of the nucleon-nucleon phase shifts and strangeness S=-1 hyperon-nucleon scattering data at leading order. Supported by the National Natural Science Foundation of China (11375024, 11522539, 11375120), the China Postdoctoral Science Foundation (2016M600845, 2017T100008) and the Fundamental Research Funds for the Central Universities

  11. Study of generalized parton distributions and deeply virtual compton scattering on the nucleon with the CLAS and CLAS12 detectors at the Jefferson Laboratory

    NASA Astrophysics Data System (ADS)

    Guegan, Baptiste

    The Generalized Parton Distributions (GPDs) provide a new description of the nucleon structure in terms of its elementary constituents, the quarks and the gluons. The GPDs give access to a unified picture of the nucleon, correlating the information obtained from the measurements of the Form Factors and the Parton Distribution Functions. They describe the correlation between the transverse position and the longitudinal momentum fraction of the partons in the nucleon. Deeply Virtual Compton Scattering (DVCS), the electroproduction of a real photon on a single quark of the nucleon eN → eN'gamma , is the most straightforward exclusive process allowing access to the GPDs. The DVCS process interferes with the Bethe-Heitler (BH) process, in which the real photon is emitted by either the incoming or the scattered electron instead of the nucleon. A dedicated experiment to study DVCS with the CLAS detector of Jefferson Lab has been carried out using a 5.883 GeV polarized electron beam and an unpolarized hydrogen target, allowing to collect DVCS events in the widest kinematic range ever explored in the valence region : 1 < Q2 < 4.6 GeV2, 0.1 < xB < 0.58, 0.09 < -t < 3 GeV2. We will present preliminary results on the extraction of the unpolarized and the difference of polarized DVCS cross sections. We will show a preliminary extraction of the GPDs using the latest fitting code procedure on our data, and a preliminary interpretation of the results.

  12. Accessing the nucleon transverse structure in inclusive deep inelastic scattering

    DOE PAGES

    Accardi, Alberto; Bacchetta, Alessandro

    2017-09-06

    Here, we revisit the standard analysis of inclusive Deep Inelastic Scattering off nucleons taking into account the fact that on-shell quarks cannot be present in the final state, but they rather decay into hadrons - a process that can be described in terms of suitable "jet" correlators. As a consequence, a spin-flip term associated with the invariant mass of the produced hadrons is generated non perturbatively and couples to the target's transversity distribution function. In inclusive cross sections, this provides an hitherto neglected and large contribution to the twist-3 part of the g 2 structure function, that can explain themore » discrepancy between recent calculations and fits of this quantity. It also provides an extension of the Burkhardt-Cottingham sum rule, putting constraints on the small-x behavior of the transversity function, as well as an extension of the Efremov-Teryaev-Leader sum rule, suggesting a novel way to measure the tensor charge of the proton.« less

  13. Measurement of the multi-TeV neutrino interaction cross-section with IceCube using Earth absorption

    NASA Astrophysics Data System (ADS)

    Aartsen, M. G.; Hill, G. C.; Kyriacou, A.; Robertson, S.; Wallace, A.; Whelan, B. J.; Ackermann, M.; Bernardini, E.; Blot, S.; Bradascio, F.; Bretz, H.-P.; Brostean-Kaiser, J.; Franckowiak, A.; Jacobi, E.; Karg, T.; Kintscher, T.; Kunwar, S.; Nahnhauer, R.; Satalecka, K.; Spiering, C.; Stachurska, J.; Stasik, A.; Strotjohann, N. L.; Terliuk, A.; Usner, M.; van Santen, J.; Adams, J.; Bagherpour, H.; Aguilar, J. A.; Ansseau, I.; Heereman, D.; Meagher, K.; Meures, T.; O'Murchadha, A.; Pinat, E.; Raab, C.; Ahlers, M.; Koskinen, D. J.; Larson, M. J.; Medici, M.; Rameez, M.; Ahrens, M.; Bohm, C.; Dumm, J. P.; Finley, C.; Flis, S.; Hultqvist, K.; Walck, C.; Zoll, M.; Al Samarai, I.; Bron, S.; Carver, T.; Christov, A.; Montaruli, T.; Altmann, D.; Anton, G.; Glüsenkamp, T.; Katz, U.; Kittler, T.; Tselengidou, M.; Andeen, K.; Plum, M.; Anderson, T.; Delaunay, J. J.; Dunkman, M.; Eller, P.; Huang, F.; Keivani, A.; Lanfranchi, J. L.; Pankova, D. V.; Teši´, G.; Turley, C. F.; Weiss, M. J.; Argüelles, C.; Axani, S.; Collin, G. H.; Conrad, J. M.; Moulai, M.; Auffenberg, J.; Brenzke, M.; Glauch, T.; Haack, C.; Kalaczynski, P.; Koschinsky, J. P.; Leuermann, M.; Rädel, L.; Reimann, R.; Rongen, M.; Sälzer, T.; Schoenen, S.; Schumacher, L.; Stettner, J.; Vehring, M.; Vogel, E.; Wallraff, M.; Waza, A.; Wiebusch, C. H.; Bai, X.; Barron, J. P.; Giang, W.; Grant, D.; Kopper, C.; Moore, R. W.; Nowicki, S. C.; Herrera, S. E. Sanchez; Sarkar, S.; Wandler, F. D.; Weaver, C.; Wood, T. R.; Woolsey, E.; Yanez, J. P.; Barwick, S. W.; Yodh, G.; Baum, V.; Böser, S.; di Lorenzo, V.; Eberhardt, B.; Ehrhardt, T.; Köpke, L.; Krückl, G.; Momenté, G.; Peiffer, P.; Sandroos, J.; Steuer, A.; Wiebe, K.; Bay, R.; Filimonov, K.; Price, P. B.; Woschnagg, K.; Beatty, J. J.; Tjus, J. Becker; Bos, F.; Eichmann, B.; Kroll, M.; Schöneberg, S.; Tenholt, F.; Becker, K.-H.; Bindig, D.; Helbing, K.; Hickford, S.; Hoffmann, R.; Lauber, F.; Naumann, U.; Pollmann, A. Obertacke; Soldin, D.; Benzvi, S.; Cross, R.; Berley, D.; Blaufuss, E.; Cheung, E.; Felde, J.; Friedman, E.; Hellauer, R.; Hoffman, K. D.; Maunu, R.; Olivas, A.; Schmidt, T.; Song, M.; Sullivan, G. W.; Besson, D. Z.; Binder, G.; Klein, S. R.; Miarecki, S.; Palczewski, T.; Tatar, J.; Börner, M.; Fuchs, T.; Hünnefeld, M.; Meier, M.; Menne, T.; Pieloth, D.; Rhode, W.; Ruhe, T.; Sandrock, A.; Schlunder, P.; Soedingrekso, J.; Werthebach, J.; Bose, D.; Dujmovic, H.; in, S.; Jeong, M.; Kang, W.; Kim, J.; Rott, C.; Botner, O.; Burgman, A.; Hallgren, A.; Pérez de Los Heros, C.; Unger, E.; Bourbeau, J.; Braun, J.; Casey, J.; Chirkin, D.; Day, M.; Desiati, P.; Díaz-Vélez, J. C.; Fahey, S.; Ghorbani, K.; Griffith, Z.; Halzen, F.; Hanson, K.; Hokanson-Fasig, B.; Hoshina, K.; Jero, K.; Karle, A.; Kauer, M.; Kelley, J. L.; Kheirandish, A.; Liu, Q. R.; Luszczak, W.; Mancina, S.; McNally, F.; Merino, G.; Schneider, A.; Tobin, M. N.; Tosi, D.; Ty, B.; Vandenbroucke, J.; Wandkowsky, N.; Wendt, C.; Westerhoff, S.; Wille, L.; Wolf, M.; Wood, J.; Xu, D. L.; Yuan, T.; Brayeur, L.; Casier, M.; de Clercq, C.; de Vries, K. D.; de Wasseige, G.; Kunnen, J.; Lünemann, J.; Maggi, G.; Toscano, S.; van Eijndhoven, N.; Clark, K.; Classen, L.; Kappes, A.; Coenders, S.; Huber, M.; Krings, K.; Rea, I. C.; Resconi, E.; Turcati, A.; Cowen, D. F.; de André, J. P. A. M.; Deyoung, T.; Hignight, J.; Lennarz, D.; Mahn, K. B. M.; Micallef, J.; Neer, G.; Rysewyk, D.; Dembinski, H.; Evenson, P. A.; Gaisser, T. K.; Gonzalez, J. G.; Koirala, R.; Pandya, H.; Seckel, D.; Stanev, T.; Tilav, S.; De Ridder, S.; Labare, M.; Ryckbosch, D.; van Driessche, W.; Vanheule, S.; Vraeghe, M.; de With, M.; Hebecker, D.; Kolanoski, H.; Fazely, A. R.; Ter-Antonyan, S.; Xu, X. W.; Gallagher, J.; Gerhardt, L.; Goldschmidt, A.; Nygren, D. R.; Przybylski, G. T.; Stezelberger, T.; Stokstad, R. G.; Ishihara, A.; Kim, M.; Kuwabara, T.; Lu, L.; Mase, K.; Relich, M.; Stößl, A.; Yoshida, S.; Japaridze, G. S.; Jones, B. J. P.; Kiryluk, J.; Lesiak-Bzdak, M.; Niederhausen, H.; Xu, Y.; Kohnen, G.; Kopper, S.; Nakarmi, P.; Pepper, J. A.; Toale, P. A.; Williams, D. R.; Kowalski, M.; Kurahashi, N.; Relethford, B.; Richman, M.; Wills, L.; Madsen, J.; Seunarine, S.; Spiczak, G. M.; Maruyama, R.; Rawlins, K.; Sarkar, S.; Sutherland, M.; Taboada, I.; Tung, C. F.; IceCube Collaboration

    2017-11-01

    Neutrinos interact only very weakly, so they are extremely penetrating. The theoretical neutrino-nucleon interaction cross-section, however, increases with increasing neutrino energy, and neutrinos with energies above 40 teraelectronvolts (TeV) are expected to be absorbed as they pass through the Earth. Experimentally, the cross-section has been determined only at the relatively low energies (below 0.4 TeV) that are available at neutrino beams from accelerators. Here we report a measurement of neutrino absorption by the Earth using a sample of 10,784 energetic upward-going neutrino-induced muons. The flux of high-energy neutrinos transiting long paths through the Earth is attenuated compared to a reference sample that follows shorter trajectories. Using a fit to the two-dimensional distribution of muon energy and zenith angle, we determine the neutrino-nucleon interaction cross-section for neutrino energies 6.3-980 TeV, more than an order of magnitude higher than previous measurements. The measured cross-section is about 1.3 times the prediction of the standard model, consistent with the expectations for charged- and neutral-current interactions. We do not observe a large increase in the cross-section with neutrino energy, in contrast with the predictions of some theoretical models, including those invoking more compact spatial dimensions or the production of leptoquarks. This cross-section measurement can be used to set limits on the existence of some hypothesized beyond-standard-model particles, including leptoquarks.

  14. Measurement of the multi-TeV neutrino interaction cross-section with IceCube using Earth absorption.

    PubMed

    2017-11-30

    Neutrinos interact only very weakly, so they are extremely penetrating. The theoretical neutrino-nucleon interaction cross-section, however, increases with increasing neutrino energy, and neutrinos with energies above 40 teraelectronvolts (TeV) are expected to be absorbed as they pass through the Earth. Experimentally, the cross-section has been determined only at the relatively low energies (below 0.4 TeV) that are available at neutrino beams from accelerators. Here we report a measurement of neutrino absorption by the Earth using a sample of 10,784 energetic upward-going neutrino-induced muons. The flux of high-energy neutrinos transiting long paths through the Earth is attenuated compared to a reference sample that follows shorter trajectories. Using a fit to the two-dimensional distribution of muon energy and zenith angle, we determine the neutrino-nucleon interaction cross-section for neutrino energies 6.3-980 TeV, more than an order of magnitude higher than previous measurements. The measured cross-section is about 1.3 times the prediction of the standard model, consistent with the expectations for charged- and neutral-current interactions. We do not observe a large increase in the cross-section with neutrino energy, in contrast with the predictions of some theoretical models, including those invoking more compact spatial dimensions or the production of leptoquarks. This cross-section measurement can be used to set limits on the existence of some hypothesized beyond-standard-model particles, including leptoquarks.

  15. Threshold e- p⟶ nνe scattering and the electron neutrino mass

    NASA Astrophysics Data System (ADS)

    Ciborowski, Jacek; Rembieliński, Jakub

    2017-12-01

    The most precise measurement of the electron neutrino mass has been obtained from the shape of the electron energy spectrum near the endpoint in tritium decay. The Mainz and Troitsk experiments indicated an excess instead of expected depletion of counts in that region. Results derived from such measurements are subject to numerous atomic corrections which are absent in the scattering e- p ⟶ nνe. This new idea is presented in the article, with its advantages and difficulties, and is compared to the method of tritium decay.

  16. Impact of Neutrino Flavor Oscillations on the Neutrino-driven Wind Nucleosynthesis of an Electron-capture Supernova

    NASA Astrophysics Data System (ADS)

    Pllumbi, Else; Tamborra, Irene; Wanajo, Shinya; Janka, Hans-Thomas; Hüdepohl, Lorenz

    2015-08-01

    Neutrino oscillations, especially to light sterile states, can affect nucleosynthesis yields because of their possible feedback effect on the electron fraction (Ye). For the first time, we perform nucleosynthesis calculations for neutrino-driven wind trajectories from the neutrino-cooling phase of an 8.8 {M}⊙ electron-capture supernova (SN), whose hydrodynamic evolution was computed in spherical symmetry with sophisticated neutrino transport and whose Ye evolution was post-processed by including neutrino oscillations between both active and active-sterile flavors. We also take into account the α-effect as well as weak magnetism and recoil corrections in the neutrino absorption and emission processes. We observe effects on the Ye evolution that depend in a subtle way on the relative radial positions of the sterile Mikheyev-Smirnov-Wolfenstein resonances, on collective flavor transformations, and on the formation of α particles. For the adopted SN progenitor, we find that neutrino oscillations, also to a sterile state with eV mass, do not significantly affect the element formation and in particular cannot make the post-explosion wind outflow neutron-rich enough to activate a strong r-process. Our conclusions become even more robust when, in order to mimic equation-of-state-dependent corrections due to nucleon potential effects in the dense-medium neutrino opacities, six cases with reduced Ye in the wind are considered. In these cases, despite the conversion of active neutrinos to sterile neutrinos, Ye increases or is not significantly lowered compared to the values obtained without oscillations and active flavor transformations. This is a consequence of a complicated interplay between sterile-neutrino production, neutrino-neutrino interactions, and α-effect.

  17. Calculation of the Nucleon Axial Form Factor Using Staggered Lattice QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyer, Aaron S.; Hill, Richard J.; Kronfeld, Andreas S.

    The nucleon axial form factor is a dominant contribution to errors in neutrino oscillation studies. Lattice QCD calculations can help control theory errors by providing first-principles information on nucleon form factors. In these proceedings, we present preliminary results on a blinded calculation ofmore » $$g_A$$ and the axial form factor using HISQ staggered baryons with 2+1+1 flavors of sea quarks. Calculations are done using physical light quark masses and are absolutely normalized. We discuss fitting form factor data with the model-independent $z$ expansion parametrization.« less

  18. Neutron-proton effective mass splitting in neutron-rich matter at normal density from analyzing nucleon-nucleus scattering data within an isospin dependent optical model

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Hua; Guo, Wen-Jun; Li, Bao-An; Chen, Lie-Wen; Fattoyev, Farrukh J.; Newton, William G.

    2015-04-01

    The neutron-proton effective mass splitting in asymmetric nucleonic matter of isospin asymmetry δ and normal density is found to be mn-p* ≡ (mn* - mp*) / m = (0.41 ± 0.15) δ from analyzing globally 1088 sets of reaction and angular differential cross sections of proton elastic scattering on 130 targets with beam energies from 0.783 MeV to 200 MeV, and 1161 sets of data of neutron elastic scattering on 104 targets with beam energies from 0.05 MeV to 200 MeV within an isospin dependent non-relativistic optical potential model. It sets a useful reference for testing model predictions on the momentum dependence of the nucleon isovector potential necessary for understanding novel structures and reactions of rare isotopes.

  19. Search for Neutrinos from Annihilation of Captured Low-Mass Dark Matter Particles in the Sun by Super-Kamiokande

    NASA Astrophysics Data System (ADS)

    Choi, K.; Abe, K.; Haga, Y.; Hayato, Y.; Iyogi, K.; Kameda, J.; Kishimoto, Y.; Miura, M.; Moriyama, S.; Nakahata, M.; Nakano, Y.; Nakayama, S.; Sekiya, H.; Shiozawa, M.; Suzuki, Y.; Takeda, A.; Tomura, T.; Wendell, R. A.; Irvine, T.; Kajita, T.; Kametani, I.; Kaneyuki, K.; Lee, K. P.; Nishimura, Y.; Okumura, K.; McLachlan, T.; Labarga, L.; Kearns, E.; Raaf, J. L.; Stone, J. L.; Sulak, L. R.; Berkman, S.; Tanaka, H. A.; Tobayama, S.; Goldhaber, M.; Carminati, G.; Kropp, W. R.; Mine, S.; Renshaw, A.; Smy, M. B.; Sobel, H. W.; Ganezer, K. S.; Hill, J.; Hong, N.; Kim, J. Y.; Lim, I. T.; Akiri, T.; Himmel, A.; Scholberg, K.; Walter, C. W.; Wongjirad, T.; Ishizuka, T.; Tasaka, S.; Jang, J. S.; Learned, J. G.; Matsuno, S.; Smith, S. N.; Hasegawa, T.; Ishida, T.; Ishii, T.; Kobayashi, T.; Nakadaira, T.; Nakamura, K.; Oyama, Y.; Sakashita, K.; Sekiguchi, T.; Tsukamoto, T.; Suzuki, A. T.; Takeuchi, Y.; Bronner, C.; Hirota, S.; Huang, K.; Ieki, K.; Ikeda, M.; Kikawa, T.; Minamino, A.; Nakaya, T.; Suzuki, K.; Takahashi, S.; Fukuda, Y.; Itow, Y.; Mitsuka, G.; Mijakowski, P.; Hignight, J.; Imber, J.; Jung, C. K.; Yanagisawa, C.; Ishino, H.; Kibayashi, A.; Koshio, Y.; Mori, T.; Sakuda, M.; Yano, T.; Kuno, Y.; Tacik, R.; Kim, S. B.; Okazawa, H.; Choi, Y.; Nishijima, K.; Koshiba, M.; Totsuka, Y.; Yokoyama, M.; Martens, K.; Marti, Ll.; Vagins, M. R.; Martin, J. F.; de Perio, P.; Konaka, A.; Wilking, M. J.; Chen, S.; Zhang, Y.; Wilkes, R. J.; Super-Kamiokande Collaboration

    2015-04-01

    Super-Kamiokande (SK) can search for weakly interacting massive particles (WIMPs) by detecting neutrinos produced from WIMP annihilations occurring inside the Sun. In this analysis, we include neutrino events with interaction vertices in the detector in addition to upward-going muons produced in the surrounding rock. Compared to the previous result, which used the upward-going muons only, the signal acceptances for light (few-GeV /c2-200 -GeV /c2 ) WIMPs are significantly increased. We fit 3903 days of SK data to search for the contribution of neutrinos from WIMP annihilation in the Sun. We found no significant excess over expected atmospheric-neutrino background and the result is interpreted in terms of upper limits on WIMP-nucleon elastic scattering cross sections under different assumptions about the annihilation channel. We set the current best limits on the spin-dependent WIMP-proton cross section for WIMP masses below 200 GeV /c2 (at 10 GeV /c2 , 1.49 ×10-39 cm2 for χ χ →b b ¯ and 1.31 ×10-40 cm2 for χ χ →τ+τ- annihilation channels), also ruling out some fraction of WIMP candidates with spin-independent coupling in the few-GeV /c2 mass range.

  20. Solar atmospheric neutrinos: A new neutrino floor for dark matter searches

    NASA Astrophysics Data System (ADS)

    Ng, Kenny C. Y.; Beacom, John F.; Peter, Annika H. G.; Rott, Carsten

    2017-11-01

    As is well known, dark matter direct detection experiments will ultimately be limited by a "neutrino floor," due to the scattering of nuclei by MeV neutrinos from, e.g., nuclear fusion in the Sun. Here we point out the existence of a new neutrino floor that will similarly limit indirect detection with the Sun, due to high-energy neutrinos from cosmic-ray interactions with the solar atmosphere. We have two key findings. First, solar atmospheric neutrinos ≲1 TeV cause a sensitivity floor for standard weakly interacting massive particles (WIMP) scenarios, for which higher-energy neutrinos are absorbed in the Sun. This floor will be reached once the present sensitivity is improved by just 1 order of magnitude. Second, for neutrinos ≳1 TeV , which can be isolated by muon energy loss rate, solar atmospheric neutrinos should soon be detectable in IceCube. Discovery will help probe the complicated effects of solar magnetic fields on cosmic rays. These events will be backgrounds to WIMP scenarios with long-lived mediators, for which higher-energy neutrinos can escape from the Sun.

  1. Future Long-Baseline Neutrino Facilities and Detectors

    DOE PAGES

    Diwan, Milind; Edgecock, Rob; Hasegawa, Takuya; ...

    2013-01-01

    We review the ongoing effort in the US, Japan, and Europe of the scientific community to study the location and the detector performance of the next-generation long-baseline neutrino facility. For many decades, research on the properties of neutrinos and the use of neutrinos to study the fundamental building blocks of matter has unveiled new, unexpected laws of nature. Results of neutrino experiments have triggered a tremendous amount of development in theory: theories beyond the standard model or at least extensions of it and development of the standard solar model and modeling of supernova explosions as well as the development ofmore » theories to explain the matter-antimatter asymmetry in the universe. Neutrino physics is one of the most dynamic and exciting fields of research in fundamental particle physics and astrophysics. The next-generation neutrino detector will address two aspects: fundamental properties of the neutrino like mass hierarchy, mixing angles, and the CP phase, and low-energy neutrino astronomy with solar, atmospheric, and supernova neutrinos. Such a new detector naturally allows for major improvements in the search for nucleon decay. A next-generation neutrino observatory needs a huge, megaton scale detector which in turn has to be installed in a new, international underground laboratory, capable of hosting such a huge detector.« less

  2. Diffractive production of charmed strange mesons by neutrinos and antineutrinos

    NASA Astrophysics Data System (ADS)

    Asratyan, A. E.; Aderholz, M.; Ammosov, V. V.; Burkot, W.; Clayton, E. F.; Coghen, T.; Erriquez, O.; Gapienko, G. S.; Gapienko, V. A.; Guy, J.; Hantke, D.; Jones, G. T.; Kaftanov, V. S.; Katz, U. F.; Kern, J.; Korotkov, V. A.; Krutchinin, S. P.; Kubantsev, M. A.; Marage, P.; Miller, D. B.; Mobayyen, M. M.; Morrison, D. R. O.; Neveu, M.; Sacton, J.; Schmitz, N.; Varvell, K.; Venus, W.; Wittek, W.; Zaetz, V. G.

    1993-03-01

    The diffractive production of charmed strange D {s/*} and possibly D s mesons by neutrinos and antineutrinos on nucleons in hydrogen, deuterium and neon targets is observed. The slope parameter of the t distribution is 3.3±0.8 (GeV)-2. The production rate per charged current neutrino interaction with an isoscalar target times the D{s/+}→φτ+ branching fraction is (1.03±0.27)×10-4.

  3. Direct Measurement of Nuclear Dependence of Charged Current Quasielasticlike Neutrino Interactions Using MINERvA

    NASA Astrophysics Data System (ADS)

    Betancourt, M.; Ghosh, A.; Walton, T.; Altinok, O.; Bellantoni, L.; Bercellie, A.; Bodek, A.; Bravar, A.; Cai, T.; Martinez Caicedo, D. A.; Carneiro, M. F.; Dytman, S. A.; Díaz, G. A.; Felix, J.; Fields, L.; Fine, R.; Galindo, R.; Gallagher, H.; Ghosh, A.; Golan, T.; Gran, R.; Harris, D. A.; Higuera, A.; Hurtado, K.; Kiveni, M.; Kleykamp, J.; Le, T.; Maher, E.; Manly, S.; Mann, W. A.; Marshall, C. M.; McFarland, K. S.; McGivern, C. L.; McGowan, A. M.; Messerly, B.; Miller, J.; Mislivec, A.; Morfín, J. G.; Mousseau, J.; Naples, D.; Nelson, J. K.; Norrick, A.; Nuruzzaman, Patrick, C. E.; Perdue, G. N.; Ramírez, M. A.; Ren, L.; Rimal, D.; Rodrigues, P. A.; Ruterbories, D.; Schellman, H.; Sobczyk, J. T.; Solano Salinas, C. J.; Sánchez Falero, S.; Valencia, E.; Wolcott, J.; Wospakrik, M.; Yaeggy, B.; Minerva Collaboration

    2017-08-01

    Charged-current νμ interactions on carbon, iron, and lead with a final state hadronic system of one or more protons with zero mesons are used to investigate the influence of the nuclear environment on quasielasticlike interactions. The transferred four-momentum squared to the target nucleus, Q2, is reconstructed based on the kinematics of the leading proton, and differential cross sections versus Q2 and the cross-section ratios of iron, lead, and carbon to scintillator are measured for the first time in a single experiment. The measurements show a dependence on the atomic number. While the quasielasticlike scattering on carbon is compatible with predictions, the trends exhibited by scattering on iron and lead favor a prediction with intranuclear rescattering of hadrons accounted for by a conventional particle cascade treatment. These measurements help discriminate between different models of both initial state nucleons and final state interactions used in the neutrino oscillation experiments.

  4. Direct Measurement of Nuclear Dependence of Charged Current Quasielasticlike Neutrino Interactions Using MINERvA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Betancourt, M.; Ghosh, A.; Walton, T.

    Charged-current νμ interactions on carbon, iron, and lead with a final state hadronic system of one or more protons with zero mesons are used to investigate the influence of the nuclear environment on quasielasticlike interactions. The transferred four-momentum squared to the target nucleus, Q2, is reconstructed based on the kinematics of the leading proton, and differential cross sections versus Q2 and the cross-section ratios of iron, lead, and carbon to scintillator are measured for the first time in a single experiment. The measurements show a dependence on the atomic number. While the quasielasticlike scattering on carbon is compatible with predictions,more » the trends exhibited by scattering on iron and lead favor a prediction with intranuclear rescattering of hadrons accounted for by a conventional particle cascade treatment. These measurements help discriminate between different models of both initial state nucleons and final state interactions used in the neutrino oscillation experiments.« less

  5. Neutrino Observations from the Sudbury Neutrino Observatory

    DOE R&D Accomplishments Database

    Q. R. Ahmad, R. C. Allen, T. C. Andersen, J. D. Anglin, G. B?hler, J. C. Barton, E. W. Beier, M. Bercovitch, J. Bigu, S. Biller, R. A. Black, I. Blevis, R. J. Boardman, J. Boger, E. Bonvin, M. G. Boulay, M. G. Bowler, T. J. Bowles, S. J. Brice, M. C. Browne, T. V. Bullard, T. H. Burritt, K. Cameron, J. Cameron, Y. D. Chan, M. Chen, H. H. Chen, X. Chen, M. C. Chon, B. T. Cleveland, E. T. H. Clifford, J. H. M. Cowan, D. F. Cowen, G. A. Cox, Y. Dai, X. Dai, F. Dalnoki-Veress, W. F. Davidson, P. J. Doe, G. Doucas, M. R. Dragowsky, C. A. Duba, F. A. Duncan, J. Dunmore, E. D. Earle, S. R. Elliott, H. C. Evans, G. T. Ewan, J. Farine, H. Fergani, A. P. Ferraris, R. J. Ford, M. M. Fowler, K. Frame, E. D. Frank, W. Frati, J. V. Germani, S. Gil, A. Goldschmidt, D. R. Grant, R. L. Hahn, A. L. Hallin, E. D. Hallman, A. Hamer, A. A. Hamian, R. U. Haq, C. K. Hargrove, P. J. Harvey, R. Hazama, R. Heaton, K. M. Heeger, W. J. Heintzelman, J. Heise, R. L. Helmer, J. D. Hepburn, H. Heron, J. Hewett, A. Hime, M. Howe, J. G. Hykawy, M. C. P. Isaac, P. Jagam, N. A. Jelley, C. Jillings, G. Jonkmans, J. Karn, P. T. Keener, K. Kirch, J. R. Klein, A. B. Knox, R. J. Komar, R. Kouzes, T. Kutter, C. C. M. Kyba, J. Law, I. T. Lawson, M. Lay, H. W. Lee, K. T. Lesko, J. R. Leslie, I. Levine, W. Locke, M. M. Lowry, S. Luoma, J. Lyon, S. Majerus, H. B. Mak, A. D. Marino, N. McCauley, A. B. McDonald, D. S. McDonald, K. McFarlane, G. McGregor, W. McLatchie, R. Meijer Drees, H. Mes, C. Mifflin, G. G. Miller, G. Milton, B. A. Moffat, M. Moorhead, C. W. Nally, M. S. Neubauer, F. M. Newcomer, H. S. Ng, A. J. Noble, E. B. Norman, V. M. Novikov, M. O'Neill, C. E. Okada, R. W. Ollerhead, M. Omori, J. L. Orrell, S. M. Oser, A. W. P. Poon, T. J. Radcliffe, A. Roberge, B. C. Robertson, R. G. H. Robertson, J. K. Rowley, V. L. Rusu, E. Saettler, K. K. Schaffer, A. Schuelke, M. H. Schwendener, H. Seifert, M. Shatkay, J. J. Simpson, D. Sinclair, P. Skensved, A. R. Smith, M. W. E. Smith, N. Starinsky, T. D. Steiger, R. G. Stokstad, R. S. Storey, B. Sur, R. Tafirout, N. Tagg, N. W. Tanner, R. K. Taplin, M. Thorman, P. Thornewell, P. T. Trent, Y. I. Tserkovnyak, R. Van Berg, R. G. Van de Water, C. J. Virtue, C. E. Waltham, J.-X. Wang, D. L. Wark, N. West, J. B. Wilhelmy, J. F. Wilkerson, J. Wilson, P. Wittich, J. M. Wouters, and M. Yeh

    2001-09-24

    The Sudbury Neutrino Observatory (SNO) is a water imaging Cherenkov detector. Its usage of 1000 metric tons of D{sub 2}O as target allows the SNO detector to make a solar-model independent test of the neutrino oscillation hypothesis by simultaneously measuring the solar {nu}{sub e} flux and the total flux of all active neutrino species. Solar neutrinos from the decay of {sup 8}B have been detected at SNO by the charged-current (CC) interaction on the deuteron and by the elastic scattering (ES) of electrons. While the CC reaction is sensitive exclusively to {nu}{sub e}, the ES reaction also has a small sensitivity to {nu}{sub {mu}} and {nu}{sub {tau}}. In this paper, recent solar neutrino results from the SNO experiment are presented. It is demonstrated that the solar flux from {sup 8}B decay as measured from the ES reaction rate under the no-oscillation assumption is consistent with the high precision ES measurement by the Super-Kamiokande experiment. The {nu}{sub e} flux deduced from the CC reaction rate in SNO differs from the Super-Kamiokande ES results by 3.3{sigma}. This is evidence for an active neutrino component, in additional to {nu}{sub e}, in the solar neutrino flux. These results also allow the first experimental determination of the total active {sup 8}B neutrino flux from the Sun, and is found to be in good agreement with solar model predictions.

  6. Dark matter and neutrino masses from a scale-invariant multi-Higgs portal

    NASA Astrophysics Data System (ADS)

    Karam, Alexandros; Tamvakis, Kyriakos

    2015-10-01

    We consider a classically scale invariant version of the Standard Model, extended by an extra dark S U (2 )X gauge group. Apart from the dark gauge bosons and a dark scalar doublet which is coupled to the Standard Model Higgs through a portal coupling, we incorporate right-handed neutrinos and an additional real singlet scalar field. After symmetry breaking à la Coleman-Weinberg, we examine the multi-Higgs sector and impose theoretical and experimental constraints. In addition, by computing the dark matter relic abundance and the spin-independent scattering cross section off a nucleon we determine the viable dark matter mass range in accordance with present limits. The model can be tested in the near future by collider experiments and direct detection searches such as XENON 1T.

  7. Dispersive analysis of the scalar form factor of the nucleon

    NASA Astrophysics Data System (ADS)

    Hoferichter, M.; Ditsche, C.; Kubis, B.; Meißner, U.-G.

    2012-06-01

    Based on the recently proposed Roy-Steiner equations for pion-nucleon ( πN) scattering [1], we derive a system of coupled integral equations for the π π to overline N N and overline K K to overline N N S-waves. These equations take the form of a two-channel Muskhelishvili-Omnès problem, whose solution in the presence of a finite matching point is discussed. We use these results to update the dispersive analysis of the scalar form factor of the nucleon fully including overline K K intermediate states. In particular, we determine the correction {Δ_{σ }} = σ ( {2M_{π }^2} ) - {σ_{{π N}}} , which is needed for the extraction of the pion-nucleon σ term from πN scattering, as a function of pion-nucleon subthreshold parameters and the πN coupling constant.

  8. Timelike Compton Scattering off the nucleon: observables and experimental perspectives for JLab at 12 GeV

    NASA Astrophysics Data System (ADS)

    Boër, Marie

    2016-03-01

    Hard exclusive processes such as photoproduction or electroproduction of photon or meson off the nucleon provide access to the Generalized Parton Distributions (GPDs), in the regime where the scattering amplitude is factorized into a hard and a soft part. GPDs contain the correlation between the longitudinal momentum fraction and the transverse spatial densities of quarks and gluons in the nucleon. Timelike Compton Scattering (TCS) correspond to the reaction γN → γ*N → e+e-N, where the photon is scattered off a quark. It is measured through its interference with the associated Bethe-Heitler process, which has the same final state. TCS allows to access the GPDs and test their universality by comparison to the results obtained with the DVCS process (eN → eγN). Also, results obtained with TCS provide additional independent constrains to the GPDs parameterization. We will present the physical motivations for TCS, with our theoretical predictions for TCS observables and their dependencies. We calculated for JLab 12 GeV energies all the single and double beam and/or target polarization observables off the proton and off the neutron. We will also present the experimental perspectives for the next years at JLab. Two proposals were already accepted at JLab: in Hall B, with the CLAS12 spectrometer, in order to measure the unpolarized cross section and in Hall A, with the SoLID spectrometer, in order to measure the unpolarized cross section and the beam spin asymmetry at high intensity. A Letter Of Intent was also submitted in order to measure the transverse target spin asymmetries in Hall C. We will discuss the merits of this different experiments and present some of the expected results.

  9. Neutrino factory

    DOE PAGES

    Bogomilov, M.; Matev, R.; Tsenov, R.; ...

    2014-12-08

    The properties of the neutrino provide a unique window on physics beyond that described by the standard model. The study of subleading effects in neutrino oscillations, and the race to discover CP-invariance violation in the lepton sector, has begun with the recent discovery that theta(13) > 0. The measured value of theta(13) is large, emphasizing the need for a facility at which the systematic uncertainties can be reduced to the percent level. The neutrino factory, in which intense neutrino beams are produced from the decay of muons, has been shown to outperform all realistic alternatives and to be capable ofmore » making measurements of the requisite precision. Its unique discovery potential arises from the fact that only at the neutrino factory is it practical to produce high-energy electron (anti) neutrino beams of the required intensity. This paper presents the conceptual design of the neutrino factory accelerator facility developed by the European Commission Framework Programme 7 EURO nu. Design Study consortium. EURO nu coordinated the European contributions to the International Design Study for the Neutrino Factory (the IDS-NF) collaboration. The EURO nu baseline accelerator facility will provide 10(21) muon decays per year from 12.6 GeV stored muon beams serving a single neutrino detector situated at a source-detector distance of between 1 500 km and 2 500 km. A suite of near detectors will allow definitive neutrino-scattering experiments to be performed.« less

  10. Crucial Physical Dependencies of the Core-Collapse Supernova Mechanism

    NASA Astrophysics Data System (ADS)

    Burrows, A.; Vartanyan, D.; Dolence, J. C.; Skinner, M. A.; Radice, D.

    2018-02-01

    We explore with self-consistent 2D F ornax simulations the dependence of the outcome of collapse on many-body corrections to neutrino-nucleon cross sections, the nucleon-nucleon bremsstrahlung rate, electron capture on heavy nuclei, pre-collapse seed perturbations, and inelastic neutrino-electron and neutrino-nucleon scattering. Importantly, proximity to criticality amplifies the role of even small changes in the neutrino-matter couplings, and such changes can together add to produce outsized effects. When close to the critical condition the cumulative result of a few small effects (including seeds) that individually have only modest consequence can convert an anemic into a robust explosion, or even a dud into a blast. Such sensitivity is not seen in one dimension and may explain the apparent heterogeneity in the outcomes of detailed simulations performed internationally. A natural conclusion is that the different groups collectively are closer to a realistic understanding of the mechanism of core-collapse supernovae than might have seemed apparent.

  11. Study of Neutrino-Induced Neutrons in Dark Matter Detectors for Supernova Burst Neutrinos

    NASA Astrophysics Data System (ADS)

    Kwan, Newton; Scholberg, Kate

    2017-09-01

    When supernova burst neutrinos (1-50 MeV) pass through the Earth, they occasionally interact with the passive shielding surrounding dark matter detectors. When the neutrinos interact, one or two roughly 2 MeV neutrons are scattered isotropically and uniformly, often leaving undetected. Occasionally, these neutrino-induced neutrons (NINs) interact with the detector and leave a background signal similar to a WIMP. The purpose of this study is to understand the effects of NINs on active dark matter detectors during a supernova burst.

  12. Neutrino Charged Current Quasi-Elastic Analysis at MINERvA

    NASA Astrophysics Data System (ADS)

    Hurtado Anampa, Kenyi; Osta, Jyotsna

    2014-03-01

    MINERvA is a few GeV neutrino-nucleus scattering experiment designed to study low energy neutrino interactions both in support of neutrino oscillation experiments and as a pure weak probe of the nuclear medium. The experiment uses a fine-grained, high resolution detector. The active region is composed of plastic scintillator with additional targets of helium, carbon, iron, lead and water placed upstream of the active region. We present kinematic distributions from the double differential cross section analysis that aims to study quasi-elastic scattering of neutrinos in the active region as a function of the muon and proton observables. This analysis will use the low energy neutrino dataset recorded from November 2009 to April 2012.

  13. Measurement of Muon Neutrino Quasielastic Scattering on a Hydrocarbon Target at E ν~3.5 GeV

    DOE PAGES

    Fiorentini, G. A.; Schmitz, D. W.; Rodrigues, P. A.; ...

    2013-07-11

    We report a study of ν μ charged-current quasielastic events in the segmented scintillator inner tracker of the MINERvA experiment running in the NuMI neutrino beam at Fermilab. The events were selected by requiring a μ⁻ and low calorimetric recoil energy separated from the interaction vertex. We measure the flux-averaged differential cross section, dσ/dQ², and study the low energy particle content of the final state. Deviations are found between the measured dσ/dQ² and the expectations of a model of independent nucleons in a relativistic Fermi gas. We also observe an excess of energy near the vertex consistent with multiple protonsmore » in the final state.« less

  14. Structure of the Nucleon and its Excitations

    NASA Astrophysics Data System (ADS)

    Kamleh, Waseem; Leinweber, Derek; Liu, Zhan-wei; Stokes, Finn; Thomas, Anthony; Thomas, Samuel; Wu, Jia-jun

    2018-03-01

    The structure of the ground state nucleon and its finite-volume excitations are examined from three different perspectives. Using new techniques to extract the relativistic components of the nucleon wave function, the node structure of both the upper and lower components of the nucleon wave function are illustrated. A non-trivial role for gluonic components is manifest. In the second approach, the parity-expanded variational analysis (PEVA) technique is utilised to isolate states at finite momenta, enabling a novel examination of the electric and magnetic form factors of nucleon excitations. Here the magnetic form factors of low-lying odd-parity nucleons are particularly interesting. Finally, the structure of the nucleon spectrum is examined in a Hamiltonian effective field theory analysis incorporating recent lattice-QCD determinations of low-lying two-particle scattering-state energies in the finite volume. The Roper resonance of Nature is observed to originate from multi-particle coupled-channel interactions while the first radial excitation of the nucleon sits much higher at approximately 1.9 GeV.

  15. Scattering calculations and confining interactions

    NASA Technical Reports Server (NTRS)

    Buck, Warren W.; Maung, Khin M.

    1993-01-01

    Most of the research work performed under this grant were concerned with strong interaction processes ranging from kaon-nucleon interaction to proton-nucleus scattering calculations. Research performed under this grant can be categorized into three groups: (1) parametrization of fundamental interactions, (2) development of formal theory, and (3) calculations based upon the first two. Parametrizations of certain fundamental interactions, such as kaon-nucleon interaction, for example, were necessary because kaon-nucleon scattering amplitude was needed to perform kaon-nucleus scattering calculations. It was possible to calculate kaon-nucleon amplitudes from the first principle, but it was unnecessary for the purpose of the project. Similar work was also done for example for anti-protons and anti-nuclei. Formal developments to some extent were also pursued so that consistent calculations can be done.

  16. From eV to EeV: Neutrino cross sections across energy scales

    NASA Astrophysics Data System (ADS)

    Formaggio, J. A.; Zeller, G. P.

    2012-07-01

    Since its original postulation by Wolfgang Pauli in 1930, the neutrino has played a prominent role in our understanding of nuclear and particle physics. In the intervening 80 years, scientists have detected and measured neutrinos from a variety of sources, both man made and natural. Underlying all of these observations, and any inferences we may have made from them, is an understanding of how neutrinos interact with matter. Knowledge of neutrino interaction cross sections is an important and necessary ingredient in any neutrino measurement. With the advent of new precision experiments, the demands on our understanding of neutrino interactions is becoming even greater. The purpose of this article is to survey our current knowledge of neutrino cross sections across all known energy scales: from the very lowest energies to the highest that we hope to observe. The article covers a wide range of neutrino interactions including coherent scattering, neutrino capture, inverse beta decay, low-energy nuclear interactions, quasielastic scattering, resonant pion production, kaon production, deep inelastic scattering, and ultrahigh energy interactions. Strong emphasis is placed on experimental data whenever such measurements are available.

  17. Observation of shadowing of neutrino- and antineutrino-nucleus interactions and comparison with PCAC predictions

    NASA Astrophysics Data System (ADS)

    Allport, P. P.; Erriquez, O.; Guy, J.; Venus, W.; Aderholz, M.; Berggren, M.; Bullock, F. W.; Calicchio, M.; Coghen, T.; Cooper-Sarkar, A. M.; Jones, G. T.; Marage, P.; Mobayyen, M.; Morrison, D. R. O.; Neveu, M.; Parker, M. A.; Radojicic, D.; Sansum, R. A.; Saitta, B.; Schmitz, N.; Simopoulou, E.; O'neale, S.; Van Apeldoorn, G.; Varvell, K.; Vayaki, A.; Wachsmuth, H.; Wittek, W.; BEBC WA59 Collaboration

    1989-12-01

    Comparing the kinematical distributions of events obtained on neon and deuterium targets in similar experimental conditions reveals a reduction of the neutrino and antineutrino charged current cross section per nucleon in neon at low Q2. The effect, interpreted as due to geometric shadowing of the weak propagator in interactions of neutrinos and antineutrinos with nuclei, agrees well with predictions derived from PCAC.

  18. νΛMDM: A model for sterile neutrino and dark matter reconciles cosmological and neutrino oscillation data after BICEP2

    NASA Astrophysics Data System (ADS)

    Ko, P.; Tang, Yong

    2014-12-01

    We propose an ultraviolet complete theory for cold dark matter (CDM) and sterile neutrinos that can accommodate both cosmological data and neutrino oscillation experiments within 1σ level. We assume a new U(1)X dark gauge symmetry which is broken at ∼ O (MeV) scale resulting light dark photon. Such a light mediator for DM's self-scattering and scattering-off sterile neutrinos can resolve three controversies for cold DM on small cosmological scales: cusp vs. core, too-big-to-fail and missing satellites. We can also accommodate ∼ O (1) eV scale sterile neutrinos as the hot dark matter (HDM) and can fit some neutrino anomalies from neutrino oscillation experiments within 1σ. Finally, the right amount of HDM can make a sizable contribution to dark radiation, and also helps to reconcile the tension between the data on the tensor-to-scalar ratio reported by Planck and BICEP2 Collaborations.

  19. Neutrino Production of Opposite Sign Dimuons at the Fnal TEVATRON*.

    NASA Astrophysics Data System (ADS)

    Foudas, Constantinos

    Neutrino-Nucleon (nu-N) interactions with two opposite sign muons (mu ^-mu^+) in the final state have been studied using the CCFR Detector and the Fermilab Quad Triplet Beam (FNAL-E744). In a sample of 670,000 nu-N and 124,000 |nu -N charged-current interactions, a total of 1522 nu-induced and 275 | nu-induced mu^-mu ^+ events have been observed, with 30 GeV < E_{nu} < 600 GeV and P_ {mu} > 9 GeV/c for both muons. The opposite sign dimuon data are consistent with the slow rescaling hypothesis of charm production in nu-N scattering, and within this formalism yield, a value of the charm quark mass parameter m_ c = 1.31_sp{ -0.48}{+0.64} GeV/c^2 . Using the opposite sign dimuon data after background subtraction we measured the strange quark content of the nucleon eta_ s = 0.057 _sp{-0.008}{+0.012} and the Kobayashi-Maskawa (KM) matrix element | V_{cd}| = 0.220_sp{ -0.018}{+0.015}. The nucleon momentum fraction carried by the strange quarks relative to non -strange quarks in the quark sea is kappa = 0.44_sp{-0.07}{+0.11 } which is approximately half that expected for an SU(3) flavor symmetric quark sea, and the strange quark momentum distribution is consistent with that of | u and | d. ftn*Research supported by the National Science Foundation. Submitted in partial fulfillment of the requirement for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences, Columbia University.

  20. High proton momenta and nucleon-nucleon correlations in the reaction /sup 3/He(e,e'p)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marchand, C.; Bernheim, M.; Dunn, P.C.

    1988-04-25

    Electron-scattering cross sections for the reaction /sup 3/He(e,e'p) have been measured for recoil momenta between 300 and 600 MeV/c and for missing energies up to 90 MeV. Proton momentum distributions in /sup 3/He, corrected for final-state--interaction and meson-exchange effects, have been obtained from 318 to 600 MeV/c for the pd channel and from 290 to 515 MeV/c for the ppn channel. Explicit evidence for nucleon-nucleon correlations is presented.

  1. Chiral Three-Nucleon Interactions in Light Nuclei, Neutron-α Scattering, and Neutron Matter

    DOE PAGES

    Lynn, J. E.; Tews, I.; Carlson, Joseph Allen; ...

    2016-02-09

    Here we present quantum Monte Carlo calculations of light nuclei, neutron- scattering, and neutron matter using local two- and three-nucleon (3N) interactions derived from chiral e effective fi eld theory up to next-to-next-to-leading order (N 2LO). The two undetermined 3N low-energy couplings are fi t to the 4He binding energy and, for the first time, to the spin-orbit splitting in the neutron- P-wave phase shifts. Furthermore, we investigate different choices of local 3N-operator structures and find that chiral interactions at N 2LO are able to simultaneously reproduce the properties of A = 3; 4; 5 systems and of neutron matter,more » in contrast to commonly used phenomenological 3N interactions.« less

  2. Chiral Three-Nucleon Interactions in Light Nuclei, Neutron-α Scattering, and Neutron Matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lynn, J. E.; Tews, I.; Carlson, Joseph Allen

    Here we present quantum Monte Carlo calculations of light nuclei, neutron- scattering, and neutron matter using local two- and three-nucleon (3N) interactions derived from chiral e effective fi eld theory up to next-to-next-to-leading order (N 2LO). The two undetermined 3N low-energy couplings are fi t to the 4He binding energy and, for the first time, to the spin-orbit splitting in the neutron- P-wave phase shifts. Furthermore, we investigate different choices of local 3N-operator structures and find that chiral interactions at N 2LO are able to simultaneously reproduce the properties of A = 3; 4; 5 systems and of neutron matter,more » in contrast to commonly used phenomenological 3N interactions.« less

  3. First Search for the EMC Effect and Nuclear Shadowing in Neutrino Nucleus Deep Inelastic Scattering at MINERvA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mousseau, Joel A.

    2015-01-01

    Decades of research in electron-nucleus deep inelastic scattering (DIS) have provided a clear picture of nuclear physics at high momentum transfer. While these effects have been clearly demonstrated by experiment, the theoretical explanation of their origin in some kinematic regions has been lacking. Particularly, the effects in the intermediate regions of Bjorken-x, anti-shadowing and the EMC effect have no universally accepted quantum mechanical explanation. In addition, these effects have not been measured systematically with neutrino-nucleus deep inelastic scattering, due to experiments lacking multiple heavy targets.

  4. The pion nucleon scattering lengths from pionic hydrogen and deuterium

    NASA Astrophysics Data System (ADS)

    Schröder, H.-Ch.; Badertscher, A.; Goudsmit, P. F. A.; Janousch, M.; Leisi, H. J.; Matsinos, E.; Sigg, D.; Zhao, Z. G.; Chatellard, D.; Egger, J.-P.; Gabathuler, K.; Hauser, P.; Simons, L. M.; Rusi El Hassani, A. J.

    2001-07-01

    This is the final publication of the ETH Zurich Neuchâtel PSI collaboration on the pionic hydrogen and deuterium precision X-ray experiments. We describe the recent hydrogen 3 p 1 s measurement, report on the determination of the Doppler effect correction to the transition line width, analyze the deuterium shift measurement and discuss implications of the combined hydrogen and deuterium results. From the pionic hydrogen 3 p 1 s transition experiments we obtain the strong-interaction energy level shift \\varepsilon_{1s} = -7.108±0.013 (stat.)±0.034 (syst.) eV and the total decay width Γ_{1s} = 0.868±0.040 (stat.)±0.038 (syst.) eV of the 1s state. Taking into account the electromagnetic corrections we find the hadronic π N s-wave scattering amplitude a_{π-prightarrowπ-p} = 0.0883±0.0008 m_{π}^{-1} for elastic scattering and a_{π-prightarrowπ0n} = -0.128±0.006 m_{π} ^{-1} for single charge exchange, respectively. We then combine the pionic hydrogen results with the 1 s level shift measurement on pionic deuterium and test isospin symmetry of the strong interaction: our data are still compatible with isospin symmetry. The isoscalar and isovector π N scattering lengths (within the framework of isospin symmetry) are found to be b_0 = -0.0001^{+0.0009}_{-0.0021} m_{π}^{-1} and b1 = -0.0885^{+0.0010}_{-0.0021} m_{π} ^{-1}, respectively. Using the GMO sum rule, we obtain from b_1 a new value of the π N coupling constant (g_{π N} = 13.21_{-0.05}^{+0.11}) from which follows the Goldberger Treiman discrepancy Δ_{{GT}} =0.027_{-0.008}^{+0.012}. The new values of b_0 and g_{π N} imply an increase of the nucleon sigma term by at least 9 MeV.

  5. Charged mediators in dark matter scattering

    NASA Astrophysics Data System (ADS)

    Stengel, Patrick

    2017-11-01

    We consider a scenario, within the framework of the MSSM, in which dark matter is bino-like and dark matter-nucleon spin-independent scattering occurs via the exchange of light squarks which exhibit left-right mixing. We show that direct detection experiments such as LUX and SuperCDMS will be sensitive to a wide class of such models through spin-independent scattering. The dominant nuclear physics uncertainty is the quark content of the nucleon, particularly the strangeness content. We also investigate parameter space with nearly degenerate neutralino and squark masses, thus enhancing dark matter annihilation and nucleon scattering event rates.

  6. Electron-neutrino charged-current quasi-elastic scattering in MINERvA

    NASA Astrophysics Data System (ADS)

    Wolcott, Jeremy

    2014-03-01

    The electron-neutrino charged-current quasi-elastic (CCQE) cross-section on nuclei is an important input parameter to appearance-type neutrino oscillation experiments. Current experiments typically work from the muon neutrino CCQE cross-section and apply corrections from theoretical arguments to obtain a prediction for the electron neutrino CCQE cross-section, but to date there has been no precise experimental verification of these estimates at an energy scale appropriate to such experiments. We present the current status of a direct measurement of the electron neutrino CCQE differential cross-section as a function of the squared four-momentum transfer to the nucleus, Q2, in MINERvA. This talk will discuss event selection, background constraints, and the flux prediction used in the calculation.

  7. DAMA confronts null searches in the effective theory of dark matter-nucleon interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Catena, Riccardo; Ibarra, Alejandro; Wild, Sebastian

    2016-05-17

    We examine the dark matter interpretation of the modulation signal reported by the DAMA experiment from the perspective of effective field theories displaying Galilean invariance. We consider the most general effective coupling leading to the elastic scattering of a dark matter particle with spin 0 or 1/2 off a nucleon, and we analyze the compatibility of the DAMA signal with the null results from other direct detection experiments, as well as with the non-observation of a high energy neutrino flux in the direction of the Sun from dark matter annihilation. To this end, we develop a novel semi-analytical approach formore » comparing experimental results in the high-dimensional parameter space of the non-relativistic effective theory. Assuming the standard halo model, we find a strong tension between the dark matter interpretation of the DAMA modulation signal and the null result experiments. We also list possible ways-out of this conclusion.« less

  8. Mean-field study of hot β -stable protoneutron star matter: Impact of the symmetry energy and nucleon effective mass

    NASA Astrophysics Data System (ADS)

    Tan, Ngo Hai; Loan, Doan Thi; Khoa, Dao T.; Margueron, Jerome

    2016-03-01

    A consistent Hartree-Fock study of the equation of state (EOS) of asymmetric nuclear matter at finite temperature has been performed using realistic choices of the effective, density-dependent nucleon-nucleon (NN ) interaction, which were successfully used in different nuclear structure and reaction studies. Given the importance of the nuclear symmetry energy in the neutron star formation, EOSs associated with different behaviors of the symmetry energy were used to study hot asymmetric nuclear matter. The slope of the symmetry energy and nucleon effective mass with increasing baryon density was found to affect the thermal properties of nuclear matter significantly. Different density-dependent NN interactions were further used to study the EOS of hot protoneutron star (PNS) matter of the n p e μ ν composition in β equilibrium. The hydrostatic configurations of PNS in terms of the maximal gravitational mass Mmax and radius, central density, pressure, and temperature at the total entropy per baryon S /A =1 ,2 , and 4 have been determined in both the neutrino-free and neutrino-trapped scenarios. The obtained results show consistently a strong impact of the symmetry energy and nucleon effective mass on thermal properties and composition of hot PNS matter. Mmax values obtained for the (neutrino-free) β -stable PNS at S /A =4 were used to assess time tBH of the collapse of a 40 M⊙ protoneutron progenitor to a black hole, based on a correlation between tBH and Mmax found from the hydrodynamic simulation by Hempel et al. [Astrophys. J. 748, 70 (2012), 10.1088/0004-637X/748/1/70].

  9. Resolving neutrino mass hierarchy from supernova (anti)neutrino-nucleus reactions

    NASA Astrophysics Data System (ADS)

    Vale, Deni; Paar, Nils

    2015-10-01

    Recently a hybrid method has been introduced to determine neutrino mass hierarchy by simultaneous measurements of detector responses induced by antineutrino and neutrino fluxes from accretion and cooling phase of type II supernova. The (anti)neutrino-nucleus cross sections for 12C, 16O, 56Fe and 208Pb are calculated in the framework of relativistic nuclear energy density functional and weak interaction Hamiltonian, while the cross sections for inelastic scattering on free protons in mineral oil and water, p (v¯e,e+)n are obtained using heavy-baryon chiral perturbation theory. The simulations of (anti)neutrino fluxes emitted from a proto-neutron star in a core-collapse supernova include collective and Mikheyev-Smirnov-Wolfenstein effects inside star. It is shown that simultaneous use of ve/v¯e detectors with different target material allow to determine the neutrino mass hierarchy from the ratios of ve/v¯e induced particle emissions. The hybrid method favors detectors with heavier target nuclei (208Pb) for the neutrino sector, while for antineutrinos the use of free protons in mineral oil and water is more appropriate.

  10. Neutrino-nucleus interactions at the LBNF near detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mosel, Ulrich

    2015-10-15

    The reaction mechanisms for neutrino interactions with an {sup 40}Ar nucleus with the LBNF flux are calculated with the Giessen-Boltzmann-Uehling-Uhlenbeck (GiBUU) transport-theoretical implementation of these interactions. Quasielastic scattering, many-body effects, pion production and absorption and Deep Inelastic Scattering are discussed; they all play a role at the LBNF energies and are experimentally entangled with each other. Quasielastic scattering makes up for only about 1/3 of the total cross section whereas pion production channels make up about 2/3 of the total. This underlines the need for a consistent description of the neutrino-nucleus reaction that treats all channels on an equal, consistentmore » footing. The results discussed here can also serve as useful guideposts for the Intermediate Neutrino Program.« less

  11. The MOLLER Experiment: ``An Ultra-precise Measurement of the Weak Charge of the Electron using moller Scattering''

    NASA Astrophysics Data System (ADS)

    Beminiwattha, Rakitha; Moller Collaboration

    2017-09-01

    Parity Violating Electron Scattering (PVES) is an extremely successful precision frontier tool that has been used for testing the Standard Model (SM) and understanding nucleon structure. Several generations of highly successful PVES programs at SLAC, MIT-Bates, MAMI-Mainz, and Jefferson Lab have contributed to the understanding of nucleon structure and testing the SM. But missing phenomena like matter-antimatter asymmetry, neutrino flavor oscillations, and dark matter and energy suggest that the SM is only a `low energy' effective theory. The MOLLER experiment at Jefferson Lab will measure the weak charge of the electron, QWe = 1 - 4sin2θW , with a precision of 2.4 % by measuring the parity violating asymmetry in electron-electron () scattering and will be sensitive to subtle but measurable deviations from precisely calculable predictions from the SM. The MOLLER experiment will provide the best contact interaction search for leptons at low OR high energy makes it a probe of physics beyond the Standard Model with sensitivities to mass-scales of new PV physics up to 7.5 TeV. Overview of the experiment and recent pre-R&D progress will be reported.

  12. Coherent propagation of PeV neutrinos and the dip in the neutrino spectrum at IceCube

    NASA Astrophysics Data System (ADS)

    Kamada, Ayuki; Yu, Hai-Bo

    2015-12-01

    The energy spectrum of high-energy neutrinos reported by the IceCube Collaboration shows a dip between 400 TeV and 1 PeV. One intriguing explanation is that high-energy neutrinos scatter with the cosmic neutrino background through an ˜MeV mediator. Taking the density matrix approach, we develop a formalism to study the propagation of PeV neutrinos in the presence of the new neutrino interaction. If the interaction is flavored such as the gauged Lμ-Lτ model we consider, the resonant collision may not suppress the PeV neutrino flux completely. The new force mediator may also contribute to the number of effectively massless degrees of freedom in the early Universe and change the diffusion time of neutrinos from the supernova core. Astrophysical observations such as big bang nucleosynthesis and supernova cooling provide an interesting test for the explanation.

  13. Nucleon measurements at the precision frontier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlson, Carl E.

    We comment on nucleon measurements at the precision frontier. As examples of what can be learned, we concentrate on three topics, which are parity violating scattering experiments, the proton radius puzzle, and the symbiosis between nuclear and atomic physics.

  14. The direct detection of boosted dark matter at high energies and PeV events at IceCube

    DOE PAGES

    Bhattacharya, A.; Gandhi, R.; Gupta, A.

    2015-03-13

    We study the possibility of detecting dark matter directly via a small but energetic component that is allowed within present-day constraints. Drawing closely upon the fact that neutral current neutrino nucleon interactions are indistinguishable from DM-nucleon interactions at low energies, we extend this feature to high energies for a small, non-thermal but highly energetic population of DM particle χ, created via the decay of a significantly more massive and long-lived non-thermal relic Φ, which forms the bulk of DM. If χ interacts with nucleons, its cross-section, like the neutrino-nucleus coherent cross-section, can rise sharply with energy leading to deep inelasticmore » scattering, similar to neutral current neutrino-nucleon interactions at high energies. Thus, its direct detection may be possible via cascades in very large neutrino detectors. As a specific example, we apply this notion to the recently reported three ultra-high energy PeV cascade events clustered around 1 – 2 PeV at IceCube (IC). We discuss the features which may help discriminate this scenario from one in which only astrophysical neutrinos constitute the event sample in detectors like IC.« less

  15. Personal History of Nucleon Polarization Experiments

    DOE R&D Accomplishments Database

    Chamberlain, O.

    1984-09-01

    The history of nucleon scattering experiments is reviewed, starting with the observation of large proton polarizations in scattering from light elements such as carbon, and ending with the acceleration of polarized proton beams in high-energy synchrotrons. Special mention is made about significant contributions made by C.L. Oxley, L. Wolfenstein, R.D. Tripp, T. Ypsilantis, A. Abragam, M. Borghini, T. Niinikoski, Froissart, Stora, A.D. Krisch, and L.G. Ratner.

  16. Impact of neutrino background prediction for next generation dark matter xenon detector

    NASA Astrophysics Data System (ADS)

    Cadeddu, M.; Picciau, E.

    2018-01-01

    Next generation direct dark matter detectors will have the sensitivity to detect neutrinos from several sources, among which atmospheric and diffuse supernova neutrinos, through the Standard Model reaction of Coherent Elastic Neutrino Scattering on nucleus. This reaction represents an irreducible background that can be expressed as a limit in the Weakly Interacting Massive Particles parameters plane. This limit is known as the “neutrino floor” and it has been obtained by other authors considering standard hypotheses for the neutrino-nucleus form factor and for the coherence of the scattering process. Since the coherent scattering has never been observed experimentally, it is licit to relax some hypotheses in the differential cross section and to evaluate the effect of such modifications on the neutrino floor prediction. In this contribution, we show a more accurate neutrino-nucleus form factor and we discuss the coherence hypothesis of the process in two extreme cases, namely the total coherence and the total decoherence regime. We derive the neutrino background event rate under these new assumptions, considering xenon as a target. The differences between the number of neutrino events and the implication for the next generation dark matter detectors, such as XENON1T/XENONnT, LZ and DARWIN, are discussed.

  17. Nucleon resonances in exclusive reactions of photo- and electroproduction of mesons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skorodumina, Iu. A.; Burkert, V. D.; Golovach, E. N.

    2015-11-01

    Methods for extracting nucleon resonance parameters from experimental data are reviewed. The formalism for the description of exclusive reactions of meson photo- and electroproduction off nucleons is discussed. Recent experimental data on exclusive meson production in the scattering of electrons and photons off protons are analyzed.

  18. Electron-neutrino scattering off nuclei from two different theoretical perspectives

    NASA Astrophysics Data System (ADS)

    Martini, M.; Jachowicz, N.; Ericson, M.; Pandey, V.; Van Cuyck, T.; Van Dessel, N.

    2016-07-01

    We analyze charged-current electron-neutrino cross sections on carbon. We consider two different theoretical approaches, on one hand the continuum random phase approximation (CRPA) which allows a description of giant resonances and quasielastic excitations, on the other hand the RPA-based calculations which are able to describe multinucleon emission and coherent and incoherent pion production as well as quasielastic excitations. We compare the two approaches in the genuine quasielastic channel, and find a satisfactory agreement between them at large energies while at low energies the collective giant resonances show up only in the CRPA approach. We also compare electron-neutrino cross sections with the corresponding muon-neutrino ones in order to investigate the impact of the different charged-lepton masses. Finally, restricting to the RPA-based approach, we compare the sum of quasielastic, multinucleon emission, coherent, and incoherent one-pion production cross sections (folded with the electron-neutrino T2K flux) with the charged-current inclusive electron-neutrino differential cross sections on carbon measured by T2K. We find a good agreement with the data. The multinucleon component is needed in order to reproduce the T2K electron-neutrino inclusive cross sections.

  19. Measurement of the muon neutrino inclusive charged-current cross section in the energy range of 1-3 GeV with the T2K INGRID detector

    NASA Astrophysics Data System (ADS)

    Abe, K.; Andreopoulos, C.; Antonova, M.; Aoki, S.; Ariga, A.; Assylbekov, S.; Autiero, D.; Barbi, M.; Barker, G. J.; Barr, G.; Bartet-Friburg, P.; Batkiewicz, M.; Bay, F.; Berardi, V.; Berkman, S.; Bhadra, S.; Blondel, A.; Bolognesi, S.; Bordoni, S.; Boyd, S. B.; Brailsford, D.; Bravar, A.; Bronner, C.; Calland, R. G.; Cao, S.; Caravaca Rodríguez, J.; Cartwright, S. L.; Castillo, R.; Catanesi, M. G.; Cervera, A.; Cherdack, D.; Chikuma, N.; Christodoulou, G.; Clifton, A.; Coleman, J.; Collazuol, G.; Cremonesi, L.; Dabrowska, A.; De Rosa, G.; Dealtry, T.; Dennis, S. R.; Densham, C.; Dewhurst, D.; Di Lodovico, F.; Di Luise, S.; Dolan, S.; Drapier, O.; Duffy, K.; Dumarchez, J.; Dytman, S.; Dziewiecki, M.; Emery-Schrenk, S.; Ereditato, A.; Feusels, T.; Finch, A. J.; Fiorentini, G. A.; Friend, M.; Fujii, Y.; Fukuda, D.; Fukuda, Y.; Furmanski, A. P.; Galymov, V.; Garcia, A.; Giffin, S.; Giganti, C.; Gilje, K.; Gonin, M.; Grant, N.; Hadley, D. R.; Haegel, L.; Haigh, M. D.; Hamilton, P.; Hansen, D.; Hara, T.; Hartz, M.; Hasegawa, T.; Hastings, N. C.; Hayashino, T.; Hayato, Y.; Helmer, R. L.; Hierholzer, M.; Hillairet, A.; Himmel, A.; Hiraki, T.; Hirota, S.; Holeczek, J.; Horikawa, S.; Hosomi, F.; Huang, K.; Ichikawa, A. K.; Ieki, K.; Ikeda, M.; Imber, J.; Insler, J.; Intonti, R. A.; Irvine, T. J.; Ishida, T.; Ishii, T.; Iwai, E.; Iwamoto, K.; Izmaylov, A.; Jacob, A.; Jamieson, B.; Jiang, M.; Johnson, S.; Jo, J. H.; Jonsson, P.; Jung, C. K.; Kabirnezhad, M.; Kaboth, A. C.; Kajita, T.; Kakuno, H.; Kameda, J.; Karlen, D.; Karpikov, I.; Katori, T.; Kearns, E.; Khabibullin, M.; Khotjantsev, A.; Kielczewska, D.; Kikawa, T.; Kim, H.; Kim, J.; King, S.; Kisiel, J.; Kobayashi, T.; Koch, L.; Koga, T.; Konaka, A.; Kondo, K.; Kopylov, A.; Kormos, L. L.; Korzenev, A.; Koshio, Y.; Kropp, W.; Kudenko, Y.; Kurjata, R.; Kutter, T.; Lagoda, J.; Lamont, I.; Larkin, E.; Laveder, M.; Lawe, M.; Lazos, M.; Lindner, T.; Liptak, Z. J.; Litchfield, R. P.; Longhin, A.; Lopez, J. P.; Ludovici, L.; Lu, X.; Magaletti, L.; Mahn, K.; Malek, M.; Manly, S.; Marino, A. D.; Marteau, J.; Martin, J. F.; Martins, P.; Martynenko, S.; Maruyama, T.; Matveev, V.; Mavrokoridis, K.; Ma, W. Y.; Mazzucato, E.; McCarthy, M.; McCauley, N.; McFarland, K. S.; McGrew, C.; Mefodiev, A.; Mezzetto, M.; Mijakowski, P.; Miller, C. A.; Minamino, A.; Mineev, O.; Mine, S.; Missert, A.; Miura, M.; Moriyama, S.; Mueller, Th. A.; Murphy, S.; Myslik, J.; Nakadaira, T.; Nakahata, M.; Nakamura, K. G.; Nakamura, K.; Nakamura, K. D.; Nakayama, S.; Nakaya, T.; Nakayoshi, K.; Nantais, C.; Nielsen, C.; Nirkko, M.; Nishikawa, K.; Nishimura, Y.; Nowak, J.; O'Keeffe, H. M.; Ohta, R.; Okumura, K.; Okusawa, T.; Oryszczak, W.; Oser, S. M.; Ovsyannikova, T.; Owen, R. A.; Oyama, Y.; Palladino, V.; Palomino, J. L.; Paolone, V.; Payne, D.; Perkin, J. D.; Petrov, Y.; Pickard, L.; Pickering, L.; Pinzon Guerra, E. S.; Pistillo, C.; Popov, B.; Posiadala-Zezula, M.; Poutissou, J.-M.; Poutissou, R.; Przewlocki, P.; Quilain, B.; Radicioni, E.; Ratoff, P. N.; Ravonel, M.; Rayner, M. A. M.; Redij, A.; Reinherz-Aronis, E.; Riccio, C.; Rojas, P.; Rondio, E.; Roth, S.; Rubbia, A.; Rychter, A.; Sacco, R.; Sakashita, K.; Sánchez, F.; Sato, F.; Scantamburlo, E.; Scholberg, K.; Schoppmann, S.; Schwehr, J. D.; Scott, M.; Seiya, Y.; Sekiguchi, T.; Sekiya, H.; Sgalaberna, D.; Shah, R.; Shaikhiev, A.; Shaker, F.; Shaw, D.; Shiozawa, M.; Shirahige, T.; Short, S.; Smy, M.; Sobczyk, J. T.; Sorel, M.; Southwell, L.; Stamoulis, P.; Steinmann, J.; Stewart, T.; Suda, Y.; Suvorov, S.; Suzuki, A.; Suzuki, K.; Suzuki, S. Y.; Suzuki, Y.; Tacik, R.; Tada, M.; Takahashi, S.; Takeda, A.; Takeuchi, Y.; Tanaka, H. K.; Tanaka, H. A.; Terhorst, D.; Terri, R.; Thompson, L. F.; Tobayama, S.; Toki, W.; Tomura, T.; Touramanis, C.; Tsukamoto, T.; Tzanov, M.; Uchida, Y.; Vacheret, A.; Vagins, M.; Vallari, Z.; Vasseur, G.; Wachala, T.; Wakamatsu, K.; Walter, C. W.; Wark, D.; Warzycha, W.; Wascko, M. O.; Weber, A.; Wendell, R.; Wilkes, R. J.; Wilking, M. J.; Wilkinson, C.; Wilson, J. R.; Wilson, R. J.; Yamada, Y.; Yamamoto, K.; Yamamoto, M.; Yanagisawa, C.; Yano, T.; Yen, S.; Yershov, N.; Yokoyama, M.; Yoo, J.; Yoshida, K.; Yuan, T.; Yu, M.; Zalewska, A.; Zalipska, J.; Zambelli, L.; Zaremba, K.; Ziembicki, M.; Zimmerman, E. D.; Zito, M.; Żmuda, J.; T2K Collaboration

    2016-04-01

    We report a measurement of the νμ-nucleus inclusive charged-current cross section (=σc c ) on iron using data from the INGRID detector exposed to the J-PARC neutrino beam. The detector consists of 14 modules in total, which are spread over a range of off-axis angles from 0° to 1.1°. The variation in the neutrino energy spectrum as a function of the off-axis angle, combined with event topology information, is used to calculate this cross section as a function of neutrino energy. The cross section is measured to be σc c(1.1 GeV )=1.10 ±0.15 (1 0-38 cm2/nucleon) , σc c(2.0 GeV )=2.07 ±0.27 (1 0-38 cm2/nucleon) , and σc c(3.3 GeV )=2.29 ±0.45 (1 0-38 cm2/nucleon), at energies of 1.1, 2.0, and 3.3 GeV, respectively. These results are consistent with the cross section calculated by the neutrino interaction generators currently used by T2K. More importantly, the method described here opens up a new way to determine the energy dependence of neutrino-nucleus cross sections.

  20. Antineutrino Charged-Current Reactions on Hydrocarbon with Low Momentum Transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gran, R.; Betancourt, M.; Elkins, M.

    We report on multi-nucleon effects in low momentum transfer (more » $< 0.8$ GeV/c) anti-neutrino interactions on scintillator. These data are from the 2010-11 anti-neutrino phase of the MINERvA experiment at Fermilab. The hadronic energy spectrum of this inclusive sample is well-described when a screening effect at low energy transfer and a two-nucleon knockout process are added to a relativistic Fermi gas model of quasi-elastic, $$\\Delta$$ resonance, and higher resonance processes. In this analysis, model elements introduced to describe previously published neutrino results have quantitatively similar benefits for this anti-neutrino sample. We present the results as a double-differential cross section to accelerate investigation of alternate models for anti-neutrino scattering off nuclei.« less

  1. Antineutrino Charged-Current Reactions on Hydrocarbon with Low Momentum Transfer

    DOE PAGES

    Gran, R.; Betancourt, M.; Elkins, M.; ...

    2018-06-01

    We report on multi-nucleon effects in low momentum transfer (more » $< 0.8$ GeV/c) anti-neutrino interactions on scintillator. These data are from the 2010-11 anti-neutrino phase of the MINERvA experiment at Fermilab. The hadronic energy spectrum of this inclusive sample is well-described when a screening effect at low energy transfer and a two-nucleon knockout process are added to a relativistic Fermi gas model of quasi-elastic, $$\\Delta$$ resonance, and higher resonance processes. In this analysis, model elements introduced to describe previously published neutrino results have quantitatively similar benefits for this anti-neutrino sample. We present the results as a double-differential cross section to accelerate investigation of alternate models for anti-neutrino scattering off nuclei.« less

  2. Curtailing the dark side in non-standard neutrino interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coloma, Pilar; Denton, Peter B.; Gonzalez-Garcia, Maria C.

    In presence of non-standard neutrino interactions the neutrino flavor evolution equation is affected by a degeneracy which leads to the so-called LMA-Dark solution. It requires a solar mixing angle in the second octant and implies an ambiguity in the neutrino mass ordering. Non-oscillation experiments are required to break this degeneracy. We perform a combined analysis of data from oscillation experiments with the neutrino scattering experiments CHARM and NuTeV. We find that the degeneracy can be lifted if the non-standard neutrino interactions take place with down quarks, but it remains for up quarks. However, CHARM and NuTeV constraints apply only ifmore » the new interactions take place through mediators not much lighter than the electroweak scale. For light mediators we consider the possibility to resolve the degeneracy by using data from future coherent neutrino-nucleus scattering experiments. Here we find that, for an experiment using a stopped-pion neutrino source, the LMA-Dark degeneracy will either be resolved, or the presence of new interactions in the neutrino sector will be established with high significance.« less

  3. Curtailing the dark side in non-standard neutrino interactions

    DOE PAGES

    Coloma, Pilar; Denton, Peter B.; Gonzalez-Garcia, Maria C.; ...

    2017-04-20

    In presence of non-standard neutrino interactions the neutrino flavor evolution equation is affected by a degeneracy which leads to the so-called LMA-Dark solution. It requires a solar mixing angle in the second octant and implies an ambiguity in the neutrino mass ordering. Non-oscillation experiments are required to break this degeneracy. We perform a combined analysis of data from oscillation experiments with the neutrino scattering experiments CHARM and NuTeV. We find that the degeneracy can be lifted if the non-standard neutrino interactions take place with down quarks, but it remains for up quarks. However, CHARM and NuTeV constraints apply only ifmore » the new interactions take place through mediators not much lighter than the electroweak scale. For light mediators we consider the possibility to resolve the degeneracy by using data from future coherent neutrino-nucleus scattering experiments. Here we find that, for an experiment using a stopped-pion neutrino source, the LMA-Dark degeneracy will either be resolved, or the presence of new interactions in the neutrino sector will be established with high significance.« less

  4. Solar neutrino detection in a large volume double-phase liquid argon experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franco, D.; Agnes, P.; Giganti, C.

    2016-08-01

    Precision measurements of solar neutrinos emitted by specific nuclear reaction chains in the Sun are of great interest for developing an improved understanding of star formation and evolution. Given the expected neutrino fluxes and known detection reactions, such measurements require detectors capable of collecting neutrino-electron scattering data in exposures on the order of 1 ktonne-yr, with good energy resolution and extremely low background. Two-phase liquid argon time projection chambers (LAr TPCs) are under development for direct Dark Matter WIMP searches, which possess very large sensitive mass, high scintillation light yield, good energy resolution, and good spatial resolution in all threemore » cartesian directions. While enabling Dark Matter searches with sensitivity extending to the ''neutrino floor'' (given by the rate of nuclear recoil events from solar neutrino coherent scattering), such detectors could also enable precision measurements of solar neutrino fluxes using the neutrino-electron elastic scattering events. Modeling results are presented for the cosmogenic and radiogenic backgrounds affecting solar neutrino detection in a 300 tonne (100 tonne fiducial) LAr TPC operating at LNGS depth (3,800 meters of water equivalent). The results show that such a detector could measure the CNO neutrino rate with ∼15% precision, and significantly improve the precision of the {sup 7}Be and pep neutrino rates compared to the currently available results from the Borexino organic liquid scintillator detector.« less

  5. Predicting the optical observables for nucleon scattering on even-even actinides

    NASA Astrophysics Data System (ADS)

    Martyanov, D. S.; Soukhovitskiĩ, E. Sh.; Capote, R.; Quesada, J. M.; Chiba, S.

    2017-09-01

    The previously derived Lane consistent dispersive coupled-channel optical model for nucleon scattering on 232Th and 238U nuclei is extended to describe scattering on even-even actinides with Z = 90-98. A soft-rotator-model (SRM) description of the low-lying nuclear structure is used, where the SRM Hamiltonian parameters are adjusted to the observed collective levels of the target nucleus. SRM nuclear wave functions (mixed in K quantum number) have been used to calculate the coupling matrix elements of the generalized optical model. The “effective” deformations that define inter-band couplings are derived from the SRM Hamiltonian parameters. Conservation of nuclear volume is enforced by introducing a dynamic monopolar term to the deformed potential, leading to additional couplings between rotational bands. The fitted static deformation parameters are in very good agreement with those derived by Wang and collaborators using the Weizsäcker-Skyrme global mass model (WS4), allowing use of the latter to predict cross sections for nuclei without experimental data. A good description of the scarce “optical” experimental database is achieved. SRM couplings and volume conservation allow a precise calculation of the compound-nucleus formation cross sections, which is significantly different from that calculated with rigid-rotor potentials coupling the ground-state rotational band. The derived parameters can be used to describe both neutron- and proton-induced reactions. Supported by International Atomic Energy Agency, through the IAEA Research Contract 19263, by the Spanish Ministry of Economy and Competitivity under Contracts FPA2014-53290-C2-2-P and FPA2016-77689-C2-1-R.

  6. Tachyon dynamics — for neutrinos?

    NASA Astrophysics Data System (ADS)

    Schwartz, Charles

    2018-04-01

    Following earlier studies that provided a consistent theory of kinematics for tachyons (faster-than-light particles), we here embark on a study of tachyon dynamics, both in classical physics and in the quantum theory. Examining a general scattering process, we come to recognize that the labels given to “in” and “out” states are not Lorentz invariant for tachyons; and this lets us find a sensible interpretation of negative energy states. For statistical mechanics, as well as for scattering problems, we study what should be the proper expression for density of states for tachyons. We review the previous work on quantization of a Dirac field for tachyons and go on to expand earlier considerations of neutrinos as tachyons in the context of cosmology. We stumble into the realization that tachyon neutrinos would contribute to gravitation with the opposite sign compared to tachyon antineutrinos. This leads to the gobsmacking prediction that the Cosmic Neutrino Background, if they are indeed tachyons, might explain both phenomena of Dark Matter and Dark Energy. This theoretical study also makes contact with the anticipated results from the experiments KATRIN and PTOLEMY, which focus on beta decay and neutrino absorption by Tritium.

  7. Insights into nucleon structure from parton distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melnitchouk, Wally

    2017-05-01

    We review recent progress in understanding the substructure of the nucleon from global QCD analysis of parton distribution functions (PDFs). New high-precision data onW-boson production in p ¯ p collisions have significantly reduced the uncertainty on the d=u PDF ratio at large values of x, indirectly constraining models of the medium modification of bound nucleons. Drell-Yan data from pp and pd scattering reveal new information on the d¯-u¯ asymmetry, clarifying the role of chiral symmetry breaking in the nucleon. In the strange sector, a new chiral SU(3) analysis finds a valence-like component of the strange-quark PDF, giving rise to amore » nontrivial s- ¯ s asymmetry at moderate x values. We also review recent analyses of charm in the nucleon, which have found conflicting indications of the size of the nonperturbative charm component.« less

  8. Nuclear chiral axial currents and applications to few-nucleon systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baroni, Alessandro

    This Thesis is divided into three main parts. The first part discusses basic aspects of chiral effective field theory and the formalism, based on time ordered perturbation theory, used to to derive the nuclear potentials and currents from the chiral Lagrangians. The second part deals with the actual derivation, up to one loop, of the two-nucleon potential and one- and two-nucleon weak axial charge and current. In both derivations ultraviolet divergences generated by loop corrections are isolated using dimensional regularization. The resulting axial current is finite and conserved in the chiral limit, while the axial charge requires renormalization. A completemore » set of contact terms for the axial charge up to the relevant order in the power counting is constructed. The third part of this Thesis discusses two applications: (i) the calculation of the Gamow-Teller matrix element of tritium, used to constrain the single low-energy constant entering the axial current; (ii) the calculation of neutrino-deuteron inclusive cross sections at low energies. These results have confirmed previous predictions obtained in phenomenological approaches. These latter studies have played an important role in the analysis and interpretation of experiments at the Sudbury Neutrino Observatory.« less

  9. CAPTAIN-Minerνa. Neutrino-Argon Scattering in a Medium-Energy Neutrino Beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mauger, Christopher M.

    2015-10-29

    The NuMI facility at Fermilab is currently providing an extremely intense beam of neutrinos for the NOνA, MINERνA and MINOS+ experiments. By installing the 5-ton CAPTAIN liquid argon TPC in front of the MINERνA detector in the NuMI beamline and combining the data from the CAPTAIN, MINERνA and MINOS+ detectors, a broad program of few-GeV neutrino cross section measurements on argon can be pursued. These measurements will be extremely helpful for future oscillation experiments. By directly comparing the cross sections on argon to MINERνA’s scintillator (CH) target, a new level of precision can be achieved in the measurements of themore » effects of the nucleus on neutrino interactions. These effects are of interest to not only the particle physics but also the nuclear physics community. This document describes in detail the physics goals of the CAPTAIN-MINERνA experiment, in addition to a first estimate of the technical resources required to install, commission and operate the CAPTAIN detector in front of the MINERVA detector.« less

  10. Semilocal momentum-space regularized chiral two-nucleon potentials up to fifth order

    NASA Astrophysics Data System (ADS)

    Reinert, P.; Krebs, H.; Epelbaum, E.

    2018-05-01

    We introduce new semilocal two-nucleon potentials up to fifth order in the chiral expansion. We employ a simple regularization approach for the pion exchange contributions which i) maintains the long-range part of the interaction, ii) is implemented in momentum space and iii) can be straightforwardly applied to regularize many-body forces and current operators. We discuss in detail the two-nucleon contact interactions at fourth order and demonstrate that three terms out of fifteen used in previous calculations can be eliminated via suitably chosen unitary transformations. The removal of the redundant contact terms results in a drastic simplification of the fits to scattering data and leads to interactions which are much softer ( i.e., more perturbative) than our recent semilocal coordinate-space regularized potentials. Using the pion-nucleon low-energy constants from matching pion-nucleon Roy-Steiner equations to chiral perturbation theory, we perform a comprehensive analysis of nucleon-nucleon scattering and the deuteron properties up to fifth chiral order and study the impact of the leading F-wave two-nucleon contact interactions which appear at sixth order. The resulting chiral potentials at fifth order lead to an outstanding description of the proton-proton and neutron-proton scattering data from the self-consistent Granada-2013 database below the pion production threshold, which is significantly better than for any other chiral potential. For the first time, the chiral potentials match in precision and even outperform the available high-precision phenomenological potentials, while the number of adjustable parameters is, at the same time, reduced by about ˜ 40%. Last but not least, we perform a detailed error analysis and, in particular, quantify for the first time the statistical uncertainties of the fourth- and the considered sixth-order contact interactions.

  11. Hybrid method to resolve the neutrino mass hierarchy by supernova (anti)neutrino induced reactions

    NASA Astrophysics Data System (ADS)

    Vale, D.; Rauscher, T.; Paar, N.

    2016-02-01

    We introduce a hybrid method to determine the neutrino mass hierarchy by simultaneous measurements of responses of at least two detectors to antineutrino and neutrino fluxes from accretion and cooling phases of core-collapse supernovae. The (anti)neutrino-nucleus cross sections for 56Fe and 208Pb are calculated in the framework of the relativistic nuclear energy density functional and weak interaction Hamiltonian, while the cross sections for inelastic scattering on free protons p(bar nue,e+)n are obtained using heavy-baryon chiral perturbation theory. The modelling of (anti)neutrino fluxes emitted from a protoneutron star in a core-collapse supernova include collective and Mikheyev-Smirnov-Wolfenstein effects inside the exploding star. The particle emission rates from the elementary decay modes of the daughter nuclei are calculated for normal and inverted neutrino mass hierarchy. It is shown that simultaneous use of (anti)neutrino detectors with different target material allows to determine the neutrino mass hierarchy from the ratios of νe- and bar nue-induced particle emissions. This hybrid method favors neutrinos from the supernova cooling phase and the implementation of detectors with heavier target nuclei (208Pb) for the neutrino sector, while for antineutrinos the use of free protons in mineral oil or water is the appropriate choice.

  12. Neutrino flux prediction at MiniBooNE

    NASA Astrophysics Data System (ADS)

    Aguilar-Arevalo, A. A.; Anderson, C. E.; Bazarko, A. O.; Brice, S. J.; Brown, B. C.; Bugel, L.; Cao, J.; Coney, L.; Conrad, J. M.; Cox, D. C.; Curioni, A.; Djurcic, Z.; Finley, D. A.; Fleming, B. T.; Ford, R.; Garcia, F. G.; Garvey, G. T.; Green, C.; Green, J. A.; Hart, T. L.; Hawker, E.; Imlay, R.; Johnson, R. A.; Karagiorgi, G.; Kasper, P.; Katori, T.; Kobilarcik, T.; Kourbanis, I.; Koutsoliotas, S.; Laird, E. M.; Linden, S. K.; Link, J. M.; Liu, Y.; Liu, Y.; Louis, W. C.; Mahn, K. B. M.; Marsh, W.; Martin, P. S.; McGregor, G.; Metcalf, W.; Meyers, P. D.; Mills, F.; Mills, G. B.; Monroe, J.; Moore, C. D.; Nelson, R. H.; Nguyen, V. T.; Nienaber, P.; Nowak, J. A.; Ouedraogo, S.; Patterson, R. B.; Perevalov, D.; Polly, C. C.; Prebys, E.; Raaf, J. L.; Ray, H.; Roe, B. P.; Russell, A. D.; Sandberg, V.; Schirato, R.; Schmitz, D.; Shaevitz, M. H.; Shoemaker, F. C.; Smith, D.; Soderberg, M.; Sorel, M.; Spentzouris, P.; Stancu, I.; Stefanski, R. J.; Sung, M.; Tanaka, H. A.; Tayloe, R.; Tzanov, M.; van de Water, R.; Wascko, M. O.; White, D. H.; Wilking, M. J.; Yang, H. J.; Zeller, G. P.; Zimmerman, E. D.

    2009-04-01

    The booster neutrino experiment (MiniBooNE) searches for νμ→νe oscillations using the O(1GeV) neutrino beam produced by the booster synchrotron at the Fermi National Accelerator Laboratory). The booster delivers protons with 8 GeV kinetic energy (8.89GeV/c momentum) to a beryllium target, producing neutrinos from the decay of secondary particles in the beam line. We describe the Monte Carlo simulation methods used to estimate the flux of neutrinos from the beam line incident on the MiniBooNE detector for both polarities of the focusing horn. The simulation uses the Geant4 framework for propagating particles, accounting for electromagnetic processes and hadronic interactions in the beam line materials, as well as the decay of particles. The absolute double differential cross sections of pion and kaon production in the simulation have been tuned to match external measurements, as have the hadronic cross sections for nucleons and pions. The statistical precision of the flux predictions is enhanced through reweighting and resampling techniques. Systematic errors in the flux estimation have been determined by varying parameters within their uncertainties, accounting for correlations where appropriate.

  13. Nucleon-nucleon elastic scattering analysis to 2.5 GeV

    NASA Astrophysics Data System (ADS)

    Arndt, Richard A.; Heon Oh, Chang; Strakovsky, Igor I.; Workman, Ron L.; Dohrmann, Frank

    1997-12-01

    A partial-wave analysis of NN elastic scattering data has been completed. This analysis covers an expanded energy range, from threshold to a laboratory kinetic energy of 2.5 GeV, in order to include recent elastic pp scattering data from the EDDA Collaboration. The results of both single-energy and energy-dependent analyses are described.

  14. New Measurements of High-Momentum Nucleons and Short-Range Structures in Nuclei

    DOE PAGES

    Fomin, N.; Arrington, J.; Asaturyan, R.; ...

    2012-02-01

    We present new, high-Q 2 measurements of inclusive electron scattering from high-momentum nucleons in nuclei. This yields an improved extraction of the strength of two-nucleon correlations for several nuclei, including light nuclei where clustering effects can, for the first time, be examined. The data extend to the kinematic regime where three-nucleon correlations are expected to dominate and we observe significantly greater strength in this region than previous measurements.

  15. RICE bounds on cosmogenic neutrino fluxes and interactions

    NASA Astrophysics Data System (ADS)

    Hussain, Shahid

    2005-04-01

    Assuming standard model interactions we calculate shower rates induced by cosmogenic neutrinos in ice, and we bound the cosmogenic neutrino fluxes using RICE 2000-2004 results. Next we assume new interactions due to extra- dimensional, low-scale gravity (i.e. black hole production and decay; graviton mediated deep inelastic scattering) and calculate enhanced shower rates induced by cosmogenic neutrinos in ice. With the help of RICE 2000-2004 results, we survey bounds on low scale gravity parameters for a range of cosmogenic neutrino flux models.

  16. Interactions of neutrinos with matter

    NASA Astrophysics Data System (ADS)

    Vannucci, F.

    2017-07-01

    Neutrinos are elementary particles electrically neutral which belong to the family of leptons. As a consequence and in first approximation they only undergo weak processes. This gives them very special properties. They are ideal tools to study precisely the weak interactions, but there is a price to pay: neutrinos are characterized by extremely low probabilities of interactions, they easily penetrate large amount of matter without being stopped. Consequently, it is hard to perform neutrino physics measurements. In practice the difficulty is twofold: in order to accumulate enough statistics, experiments must rely on huge fluxes traversing huge detectors, the number of interactions being obviously proportional to these two factors. As a corollary, backgrounds are difficult to handle because they appear much more commonly than good events. Nevertheless, neutrino interactions have been detected from a variety of sources, both man-made and natural, from very low to very large energies. The aim of this review is to survey our current knowledge about interaction cross sections of neutrinos with matter across all pertinent energy scales. We will see that neutrino interactions cover a large range of processes: nuclear capture, inverse beta-decay, quasi-elastic scattering, resonant pion production, deep inelastic scattering and ultra-high energy interactions. All the gathered information will be used to study weak properties of matter but it will also allow to explore the properties of the neutrinos themselves. In particular, the known three different flavors of neutrinos have different behaviors inside matter and this will be relevant to give some precious understanding about their intrinsic parameters in particular their masses and mixings. As a second order process, neutrinos can undergo electromagnetic interactions. This will also be discussed. Although the corresponding phenomena are not yet experimentally proven by actual measurements, the theory is able to calculate

  17. Generalized mass ordering degeneracy in neutrino oscillation experiments

    DOE PAGES

    Coloma, Pilar; Schwetz, Thomas

    2016-09-07

    Here, we consider the impact of neutral-current (NC) nonstandard neutrino interactions (NSI) on the determination of the neutrino mass ordering. We show that in the presence of NSI there is an exact degeneracy which makes it impossible to determine the neutrino mass ordering and the octant of the solar mixing angle θ 12 at oscillation experiments. The degeneracy holds at the probability level and for arbitrary matter density profiles, and hence solar, atmospheric, reactor, and accelerator neutrino experiments are affected simultaneously. The degeneracy requires order-1 corrections from NSI to the NC electron neutrino-quark interaction and can be tested in electronmore » neutrino NC scattering experiments.« less

  18. Inclusive neutrino scattering off the deuteron at low energies in chiral effective field theory

    DOE PAGES

    Baroni, A.; Schiavilla, R.

    2017-07-19

    Cross sections for inclusive neutrino scattering off deuteron induced by neutral and charge-changing weak currents are calculated from threshold up to 150 MeV energies in a chiral effective field theory including high orders in the power counting. The contributions beyond leading order (LO) in the weak current are found to be small, and increase the cross sections obtained with the LO transition operators by a couple of percent over the whole energy range (0--150) MeV. Furthermore, the cutoff dependence is negligible, and the predicted cross sections are within ~2% of, albeit consistently larger than, corresponding predictions obtained in conventional meson-exchangemore » frameworks.« less

  19. Nucleon decay in non-minimal supersymmetric SO(10)

    NASA Astrophysics Data System (ADS)

    Macpherson, Alick L.

    1996-02-01

    Evaluation of nucleon decay modes and branching ratios in a non-minimal supersymmetric SO(10) grand unified theory is presented. The non-minimal GUT considered is the supersymmetrised version of the 'realistic' SO(10) model originally proposed by Harvey, Reiss and Ramond, which is realistic in that it gives acceptable charged fermion and neutrino masses within the context of a phenomenological fit to the low-energy standard model inputs. Despite a complicated Higgs sector, the SO(10) 10 Higgs superfield mass insertion is found to be the sole contribution to the tree-level F-term governing nucleon decay. The resulting dimension-5 operators that mediate nucleon decay give branching ratio predictions parameterised by a single parameter, the ratio of the Yukawa couplings of the 10 to the fermion generations. For parameter values corresponding to a lack of dominance of the third family self-coupling, the dominant nucleon decay modes are p → K + + overlineνμand n → K 0 + overlineνμ as expected. Further, the charged muon decay modes are enhanced by two orders of magnitude over the standard minimal SUSY SU(5) predictions, thus predicting a distinct spectrum of 'visible' modes. These charged muon decay modes, along with p → π + + overlineνμand n → π 0 + overlineνμ, which are moderately enhanced over the SUSY SU(5) prediction, suggest a distinguishing fingerprint of this particular GUT model, and if nucleon decay is observed at Super-KAMIOKANDE the predicted branching ratio spectrum can be used to determine the validity of this 'realistic' SO(10) SUSY GUT model.

  20. The not-so-sterile 4th neutrino: constraints on new gauge interactions from neutrino oscillation experiments

    NASA Astrophysics Data System (ADS)

    Kopp, Joachim; Welter, Johannes

    2014-12-01

    Sterile neutrino models with new gauge interactions in the sterile sector are phenomenologically interesting since they can lead to novel effects in neutrino oscillation experiments, in cosmology and in dark matter detectors, possibly even explaining some of the observed anomalies in these experiments. Here, we use data from neutrino oscillation experiments, in particular from MiniBooNE, MINOS and solar neutrino experiments, to constrain such models. We focus in particular on the case where the sterile sector gauge boson A ' couples also to Standard Model particles (for instance to the baryon number current) and thus induces a large Mikheyev-Smirnov-Wolfenstein potential. For eV-scale sterile neutrinos, we obtain strong constraints especially from MINOS, which restricts the strength of the new interaction to be less than ˜ 10 times that of the Standard Model weak interaction unless active-sterile neutrino mixing is very small (sin2 θ 24 ≲ 10-3). This rules out gauge forces large enough to affect short-baseline experiments like MiniBooNE and it imposes nontrivial constraints on signals from sterile neutrino scattering in dark matter experiments.

  1. Using Nucleon Multiplicities to Analyze Anti-Neutrino Interactions with Nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elkins, Miranda J.

    The most commonly used, simple interaction models have not accurately described the nuclear effects on either neutrino-nucleus or anti-neutrino-nucleus interactions. Comparison of data collected by the MINERvA experiment and these models shows a discrepancy in the reconstructed hadronic energy distribution at momentum transfers below 0.8 GeV. Two nuclear model effects that were previously not modeled are possible culprits of this discrepancy. The first is known as random-phase-approximation and the second is the addition of a meson exchange current process, also known as two-particle two-hole due to its result in two particles leaving the nucleus with two holes left in theirmore » place. For the first time a neutron counting software algorithm has been created and used to compare the multiplicity and spatial distributions of neutrons between the simulation and data. There is localized sensitivity to the RPA and 2p2h effects and both help the simulation better describe the data. Ad ditional systematic or model effects are present which cause the simulation to overproduce neutrons, and potential causes are discussed.« less

  2. Measurement of muon plus proton final states in muon neutrinos interactions on CH at 4.2 GeV

    NASA Astrophysics Data System (ADS)

    Rakotondravohitra, Laza; Minerva Collaboration

    2015-04-01

    MINERvA (Main INjector Experiment for v-A) is a neutrino scattering experiment in Fermilab's NuMI high-intensity neutrino beam. MINERvA was designed to make precision measurements of neutrino and antineutrino cross sections on a variety of materials including plastic scintillator(CH), C, Fe, Pb, He and water. We present a result of charged-current muon neutrino scattering on hydrocarbon (CH) at an average neutrino energy of 4.2 GeV in which the final state includes a muon, at least one proton, and no pions exiting the nucleus . Although this signature has the topology of neutrino quasielastic scattering from neutrons, the event sample contains contributions from both quasielastic and inelastic processes where pions are absorbed in the nucleus.

  3. Nucleon-nucleon interactions from dispersion relations: Elastic partial waves

    NASA Astrophysics Data System (ADS)

    Albaladejo, M.; Oller, J. A.

    2011-11-01

    We consider nucleon-nucleon (NN) interactions from chiral effective field theory. In this work we restrict ourselves to the elastic NN scattering. We apply the N/D method to calculate the NN partial waves taking as input the one-pion exchange discontinuity along the left-hand cut. This discontinuity is amenable to a chiral power counting as discussed by Lacour, Oller, and Meißner [Ann. Phys. (NY)APNYA60003-491610.1016/j.aop.2010.06.012 326, 241 (2011)], with one-pion exchange as its leading order contribution. The resulting linear integral equation for a partial wave with orbital angular momentum ℓ≥2 is solved in the presence of ℓ-1 constraints, so as to guarantee the right behavior of the D- and higher partial waves near threshold. The calculated NN partial waves are based on dispersion relations and are independent of regulator. This method can also be applied to higher orders in the calculation of the discontinuity along the left-hand cut and extended to triplet coupled partial waves.

  4. Matching Pion-Nucleon Roy-Steiner Equations to Chiral Perturbation Theory.

    PubMed

    Hoferichter, Martin; Ruiz de Elvira, Jacobo; Kubis, Bastian; Meissner, Ulf-G

    2015-11-06

    We match the results for the subthreshold parameters of pion-nucleon scattering obtained from a solution of Roy-Steiner equations to chiral perturbation theory up to next-to-next-to-next-to-leading order, to extract the pertinent low-energy constants including a comprehensive analysis of systematic uncertainties and correlations. We study the convergence of the chiral series by investigating the chiral expansion of threshold parameters up to the same order and discuss the role of the Δ(1232) resonance in this context. Results for the low-energy constants are also presented in the counting scheme usually applied in chiral nuclear effective field theory, where they serve as crucial input to determine the long-range part of the nucleon-nucleon potential as well as three-nucleon forces.

  5. Matching Pion-Nucleon Roy-Steiner Equations to Chiral Perturbation Theory

    NASA Astrophysics Data System (ADS)

    Hoferichter, Martin; Ruiz de Elvira, Jacobo; Kubis, Bastian; Meißner, Ulf-G.

    2015-11-01

    We match the results for the subthreshold parameters of pion-nucleon scattering obtained from a solution of Roy-Steiner equations to chiral perturbation theory up to next-to-next-to-next-to-leading order, to extract the pertinent low-energy constants including a comprehensive analysis of systematic uncertainties and correlations. We study the convergence of the chiral series by investigating the chiral expansion of threshold parameters up to the same order and discuss the role of the Δ (1232 ) resonance in this context. Results for the low-energy constants are also presented in the counting scheme usually applied in chiral nuclear effective field theory, where they serve as crucial input to determine the long-range part of the nucleon-nucleon potential as well as three-nucleon forces.

  6. COHERENT constraints to conventional and exotic neutrino physics

    NASA Astrophysics Data System (ADS)

    Papoulias, D. K.; Kosmas, T. S.

    2018-02-01

    The process of neutral-current coherent elastic neutrino-nucleus scattering, consistent with the Standard Model (SM) expectation, has been recently measured by the COHERENT experiment at the Spallation Neutron Source. On the basis of the observed signal and our nuclear calculations for the relevant Cs and I isotopes, the extracted constraints on both conventional and exotic neutrino physics are updated. The present study concentrates on various SM extensions involving vector and tensor nonstandard interactions as well as neutrino electromagnetic properties, with an emphasis on the neutrino magnetic moment and the neutrino charge radius. Furthermore, models addressing a light sterile neutrino state and scenarios with new propagator fields—such as vector Z' and scalar bosons—are examined, and the corresponding regions excluded by the COHERENT experiment are presented.

  7. Supernova neutrino detection in LZ

    NASA Astrophysics Data System (ADS)

    Khaitan, D.

    2018-02-01

    In the first 10 seconds of a core-collapse supernova, almost all of its progenitor's gravitational potential, O(1053 ergs), is carried away in the form of neutrinos. These neutrinos, with O(10 MeV) kinetic energy, can interact via coherent elastic neutrino-nucleus scattering (CEνNS) depositing O(1 keV) in detectors. In this work we describe the performances of low-background dark matter detectors, such as LUX-ZEPLIN (LZ), optimized for detecting low-energy depositions, in detecting these neutrino interactions. For instance, a 27 Msolar supernova at 10 kpc is expected to produce ~350 neutrino interactions in the 7-tonne liquid xenon active volume of LZ. Based on the LS220 EoS neutrino flux model for a SN, the Noble Element Simulation Technique (NEST), and predicted CEνNS cross-sections for xenon, to study energy deposition and detection of SN neutrinos in LZ. We simulate the response of the LZ data acquisition system (DAQ) and demonstrate its capability and limitations in handling this interaction rate. We present an overview of the LZ detector, focusing on the benefits of liquid xenon for supernova neutrino detection. We discuss energy deposition and detector response simulations and their results. We present an analysis technique to reconstruct the total number of neutrinos and the time of the supernova core bounce.

  8. The nucleon as a test case to calculate vector-isovector form factors at low energies

    NASA Astrophysics Data System (ADS)

    Leupold, Stefan

    2018-01-01

    Extending a recent suggestion for hyperon form factors to the nucleon case, dispersion theory is used to relate the low-energy vector-isovector form factors of the nucleon to the pion vector form factor. The additionally required input, i.e. the pion-nucleon scattering amplitudes are determined from relativistic next-to-leading-order (NLO) baryon chiral perturbation theory including the nucleons and optionally the Delta baryons. Two methods to include pion rescattering are compared: a) solving the Muskhelishvili-Omnès (MO) equation and b) using an N/D approach. It turns out that the results differ strongly from each other. Furthermore the results are compared to a fully dispersive calculation of the (subthreshold) pion-nucleon amplitudes based on Roy-Steiner (RS) equations. In full agreement with the findings from the hyperon sector it turns out that the inclusion of Delta baryons is not an option but a necessity to obtain reasonable results. The magnetic isovector form factor depends strongly on a low-energy constant of the NLO Lagrangian. If it is adjusted such that the corresponding magnetic radius is reproduced, then the results for the corresponding pion-nucleon scattering amplitude (based on the MO equation) agree very well with the RS results. Also in the electric sector the Delta degrees of freedom are needed to obtain the correct order of magnitude for the isovector charge and the corresponding electric radius. Yet quantitative agreement is not achieved. If the subtraction constant that appears in the solution of the MO equation is not taken from nucleon+Delta chiral perturbation theory but adjusted such that the electric radius is reproduced, then one obtains also in this sector a pion-nucleon scattering amplitude that agrees well with the RS results.

  9. The Neutrino: A Better Understanding Through Astrophysics: Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kneller, James P.

    The final report for the award "The Neutrino: A Better Understanding Through Astrophysics" is given. The goals of the work were the following: to construct new theoretical approaches to the problem of neutrino propagation in media including where neutrino-neutrino interactions are important; to pioneer the use of new approaches, including super-scattering operators, for the evolution of neutrino thermal and statistical ensembles; to implement these new approaches in computer codes to study neutrino evolution in supernovae and other hot, dense environments; to increase the realism of simulated signals of a Galactic supernovae neutrino burst in current and future neutrino detectors; tomore » study the simulated signals to determine the ability to extract information on the missing neutrino mixing parameters and the dynamics of the supernova explosion; and to study sterile neutrinos and non-standard interactions of neutrinos in supernovae and their effect upon the signal. Accomplishments made in these areas are described.« less

  10. Atmospheric neutrino oscillations for Earth tomography

    NASA Astrophysics Data System (ADS)

    Winter, Walter

    2016-07-01

    Modern proposed atmospheric neutrino oscillation experiments, such as PINGU in the Antarctic ice or ORCA in Mediterranean sea water, aim for precision measurements of the oscillation parameters including the ordering of the neutrino masses. They can, however, go far beyond that: Since neutrino oscillations are affected by the coherent forward scattering with matter, neutrinos can provide a new view on the interior of the earth. We show that the proposed atmospheric oscillation experiments can measure the lower mantle density of the earth with a precision at the level of a few percent, including the uncertainties of the oscillation parameters and correlations among different density layers. While the earth's core is, in principle, accessible by the angular resolution, new technology would be required to extract degeneracy-free information.

  11. Measurement of Two- and Three-Nucleon Short-Range Correlation Probabilities in Nuclei

    NASA Astrophysics Data System (ADS)

    Egiyan, K. S.; Dashyan, N. B.; Sargsian, M. M.; Strikman, M. I.; Weinstein, L. B.; Adams, G.; Ambrozewicz, P.; Anghinolfi, M.; Asavapibhop, B.; Asryan, G.; Avakian, H.; Baghdasaryan, H.; Baillie, N.; Ball, J. P.; Baltzell, N. A.; Batourine, V.; Battaglieri, M.; Bedlinskiy, I.; Bektasoglu, M.; Bellis, M.; Benmouna, N.; Biselli, A. S.; Bonner, B. E.; Bouchigny, S.; Boiarinov, S.; Bradford, R.; Branford, D.; Brooks, W. K.; Bültmann, S.; Burkert, V. D.; Bultuceanu, C.; Calarco, J. R.; Careccia, S. L.; Carman, D. S.; Carnahan, B.; Chen, S.; Cole, P. L.; Coltharp, P.; Corvisiero, P.; Crabb, D.; Crannell, H.; Cummings, J. P.; Sanctis, E. De; Devita, R.; Degtyarenko, P. V.; Denizli, H.; Dennis, L.; Dharmawardane, K. V.; Djalali, C.; Dodge, G. E.; Donnelly, J.; Doughty, D.; Dragovitsch, P.; Dugger, M.; Dytman, S.; Dzyubak, O. P.; Egiyan, H.; Elouadrhiri, L.; Empl, A.; Eugenio, P.; Fatemi, R.; Fedotov, G.; Feuerbach, R. J.; Forest, T. A.; Funsten, H.; Gavalian, G.; Gevorgyan, N. G.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guillo, M.; Guler, N.; Guo, L.; Gyurjyan, V.; Hadjidakis, C.; Hardie, J.; Hersman, F. W.; Hicks, K.; Hleiqawi, I.; Holtrop, M.; Hu, J.; Huertas, M.; Hyde-Wright, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Ito, M. M.; Jenkins, D.; Jo, H. S.; Joo, K.; Juengst, H. G.; Kellie, J. D.; Khandaker, M.; Kim, K. Y.; Kim, K.; Kim, W.; Klein, A.; Klein, F. J.; Klimenko, A.; Klusman, M.; Kramer, L. H.; Kubarovsky, V.; Kuhn, J.; Kuhn, S. E.; Kuleshov, S.; Lachniet, J.; Laget, J. M.; Langheinrich, J.; Lawrence, D.; Lee, T.; Livingston, K.; Maximon, L. C.; McAleer, S.; McKinnon, B.; McNabb, J. W.; Mecking, B. A.; Mestayer, M. D.; Meyer, C. A.; Mibe, T.; Mikhailov, K.; Minehart, R.; Mirazita, M.; Miskimen, R.; Mokeev, V.; Morrow, S. A.; Mueller, J.; Mutchler, G. S.; Nadel-Turonski, P.; Napolitano, J.; Nasseripour, R.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Niczyporuk, B. B.; Niyazov, R. A.; O'Rielly, G. V.; Osipenko, M.; Ostrovidov, A. I.; Park, K.; Pasyuk, E.; Peterson, C.; Pierce, J.; Pivnyuk, N.; Pocanic, D.; Pogorelko, O.; Polli, E.; Pozdniakov, S.; Preedom, B. M.; Price, J. W.; Prok, Y.; Protopopescu, D.; Qin, L. M.; Raue, B. A.; Riccardi, G.; Ricco, G.; Ripani, M.; Ritchie, B. G.; Ronchetti, F.; Rosner, G.; Rossi, P.; Rowntree, D.; Rubin, P. D.; Sabatié, F.; Salgado, C.; Santoro, J. P.; Sapunenko, V.; Schumacher, R. A.; Serov, V. S.; Sharabian, Y. G.; Shaw, J.; Smith, E. S.; Smith, L. C.; Sober, D. I.; Stavinsky, A.; Stepanyan, S.; Stokes, B. E.; Stoler, P.; Strauch, S.; Suleiman, R.; Taiuti, M.; Taylor, S.; Tedeschi, D. J.; Thompson, R.; Tkabladze, A.; Tkachenko, S.; Todor, L.; Tur, C.; Ungaro, M.; Vineyard, M. F.; Vlassov, A. V.; Weygand, D. P.; Williams, M.; Wolin, E.; Wood, M. H.; Yegneswaran, A.; Yun, J.; Zana, L.; Zhang, J.

    2006-03-01

    The ratios of inclusive electron scattering cross sections of 4He, 12C, and 56Fe to 3He have been measured at 11.4 GeV2, the ratios exhibit two separate plateaus, at 1.52.25. This pattern is predicted by models that include 2- and 3-nucleon short-range correlations (SRC). Relative to A=3, the per-nucleon probabilities of 3-nucleon SRC are 2.3, 3.1, and 4.4 times larger for A=4, 12, and 56. This is the first measurement of 3-nucleon SRC probabilities in nuclei.

  12. Low energy neutrinos in Super-Kamiokande

    NASA Astrophysics Data System (ADS)

    Sekiya, Hiroyuki

    2016-05-01

    Super-Kamiokande (SK), a 50 kton water Cherenkov detector, observes 8B solar neutrinos via neutrino-electron elastic scattering. The analysis threshold was successfully lowered to 3.5 MeV (recoil electron kinetic energy) in SK-IV. To date SK has observed solar neutrinos for 18 years. An analysis regarding possible correlations between the solar neutrino flux and the 11 year solar activity cycle is shown. With large statistics, SK searches for distortions of the solar neutrino energy spectrum caused by the MSW resonance in the core of the sun. SK also searches for a day/night solar neutrino flux asymmetry induced by the matter in the Earth. The Super-Kamiokande Gd (SK-Gd) project is the upgrade of the SK detector via the addition of water-soluble gadolinium (Gd) salt. This modification will enable it to efficiently identify low energy anti-neutrinos. SK-Gd will pursue low energy physics currently inaccessible to SK due to backgrounds. The most important will be the world’s first observation of the diffuse supernova neutrino background. The main R&D program towards SK-Gd is EG ADS: a 200 ton, fully instrumented tank built in a new cavern in the Kamioka mine.

  13. Two-loop neutrino model with exotic leptons

    NASA Astrophysics Data System (ADS)

    Okada, Hiroshi; Orikasa, Yuta

    2016-01-01

    We propose a two-loop induced neutrino mass model, in which we show some bench mark points to satisfy the observed neutrino oscillation, the constraints of lepton flavor violations, and the relic density in the coannihilation system satisfying the current upper bound on the spin independent scattering cross section with nuclei. We also discuss new sources of muon anomalous magnetic moments.

  14. Search for three-nucleon short-range correlations in light nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Z.; Solvignon, P.; Nguyen, D.

    Here, we present new data probing short-range correlations (SRCs) in nuclei through the measurement of electron scattering off high-momentum nucleons in nuclei. The inclusive 4He/ 3He cross section ratio is observed to be both x and Q 2 independent for 1.5 < x < 2, confirming the dominance of two- nucleon (2N) short-range correlations (SRCs). For x > 2, our data do not support a previous claim of three-nucleon (3N) correlation dominance. While contributions beyond those from stationary 2N- SRCs are observed, our data show that isolating 3N-SRCs is more complicated than for 2N-SRCs.

  15. Search for three-nucleon short-range correlations in light nuclei

    DOE PAGES

    Ye, Z.; Solvignon, P.; Nguyen, D.; ...

    2018-06-18

    Here, we present new data probing short-range correlations (SRCs) in nuclei through the measurement of electron scattering off high-momentum nucleons in nuclei. The inclusive 4He/ 3He cross section ratio is observed to be both x and Q 2 independent for 1.5 < x < 2, confirming the dominance of two- nucleon (2N) short-range correlations (SRCs). For x > 2, our data do not support a previous claim of three-nucleon (3N) correlation dominance. While contributions beyond those from stationary 2N- SRCs are observed, our data show that isolating 3N-SRCs is more complicated than for 2N-SRCs.

  16. Nucleon matter equation of state, particle number fluctuations, and shear viscosity within UrQMD box calculations

    NASA Astrophysics Data System (ADS)

    Motornenko, A.; Bravina, L.; Gorenstein, M. I.; Magner, A. G.; Zabrodin, E.

    2018-03-01

    Properties of equilibrated nucleon system are studied within the ultra-relativistic quantum molecular dynamics (UrQMD) transport model. The UrQMD calculations are done within a finite box with periodic boundary conditions. The system achieves thermal equilibrium due to nucleon-nucleon elastic scattering. For the UrQMD-equilibrium state, nucleon energy spectra, equation of state, particle number fluctuations, and shear viscosity η are calculated. The UrQMD results are compared with both, statistical mechanics and Chapman-Enskog kinetic theory, for a classical system of nucleons with hard-core repulsion.

  17. Quantum Kinetics and the Zeno Ansatz: Sterile Neutrino Dark Matter in the Early Universe

    NASA Astrophysics Data System (ADS)

    Dvornikov, Olexiy V.

    We solved the quantum kinetic equations for the evolution of neutrino states in the early universe. Starting at high temperatures, we evolve neutrino states to observe the resonant conversion of active-to-sterile neutrinos in a lepton asymmetric (more neutrinos than anti-neutrinos) universe. We find that at high temperatures, the high neutrino scattering and oscillation rates enforce a local equilibrium that balances the growth of coherence at the oscillation rate and the damping of coherence through scattering. This equilibrium, which we call a "quantum kinetic equilibrium," appears to approximately hold throughout the neutrino evolution, from the initial conditions through resonances that may be non adiabatic. Using this quantum kinetic equilibrium informs a proper choice of the initial conditions of the neutrino state and the relaxation process that occurs to this equilibrium when the initial conditions (as are typically chosen in the literature) are not coincident with the equilibrium values. We also discuss how to use this equilibrium to reduce the computational expense of solving the full quantum kinetic equations for neutrino states evolving in the early universe.

  18. The reactor antineutrino anomaly and low energy threshold neutrino experiments

    NASA Astrophysics Data System (ADS)

    Cañas, B. C.; Garcés, E. A.; Miranda, O. G.; Parada, A.

    2018-01-01

    Short distance reactor antineutrino experiments measure an antineutrino spectrum a few percent lower than expected from theoretical predictions. In this work we study the potential of low energy threshold reactor experiments in the context of a light sterile neutrino signal. We discuss the perspectives of the recently detected coherent elastic neutrino-nucleus scattering in future reactor antineutrino experiments. We find that the expectations to improve the current constraints on the mixing with sterile neutrinos are promising. We also analyze the measurements of antineutrino scattering off electrons from short distance reactor experiments. In this case, the statistics is not competitive with inverse beta decay experiments, although future experiments might play a role when compare it with the Gallium anomaly.

  19. Measurement of the inclusive νμ charged current cross section on iron and hydrocarbon in the T2K on-axis neutrino beam

    NASA Astrophysics Data System (ADS)

    Abe, K.; Adam, J.; Aihara, H.; Akiri, T.; Andreopoulos, C.; Aoki, S.; Ariga, A.; Assylbekov, S.; Autiero, D.; Barbi, M.; Barker, G. J.; Barr, G.; Bass, M.; Batkiewicz, M.; Bay, F.; Berardi, V.; Berger, B. E.; Berkman, S.; Bhadra, S.; Blaszczyk, F. d. M.; Blondel, A.; Bojechko, C.; Bordoni, S.; Boyd, S. B.; Brailsford, D.; Bravar, A.; Bronner, C.; Buchanan, N.; Calland, R. G.; Caravaca Rodríguez, J.; Cartwright, S. L.; Castillo, R.; Catanesi, M. G.; Cervera, A.; Cherdack, D.; Christodoulou, G.; Clifton, A.; Coleman, J.; Coleman, S. J.; Collazuol, G.; Connolly, K.; Cremonesi, L.; Dabrowska, A.; Danko, I.; Das, R.; Davis, S.; de Perio, P.; De Rosa, G.; Dealtry, T.; Dennis, S. R.; Densham, C.; Dewhurst, D.; Di Lodovico, F.; Di Luise, S.; Drapier, O.; Duboyski, T.; Duffy, K.; Dumarchez, J.; Dytman, S.; Dziewiecki, M.; Emery-Schrenk, S.; Ereditato, A.; Escudero, L.; Finch, A. J.; Friend, M.; Fujii, Y.; Fukuda, Y.; Furmanski, A. P.; Galymov, V.; Giffin, S.; Giganti, C.; Gilje, K.; Goeldi, D.; Golan, T.; Gonin, M.; Grant, N.; Gudin, D.; Hadley, D. R.; Haesler, A.; Haigh, M. D.; Hamilton, P.; Hansen, D.; Hara, T.; Hartz, M.; Hasegawa, T.; Hastings, N. C.; Hayato, Y.; Hearty, C.; Helmer, R. L.; Hierholzer, M.; Hignight, J.; Hillairet, A.; Himmel, A.; Hiraki, T.; Hirota, S.; Holeczek, J.; Horikawa, S.; Huang, K.; Ichikawa, A. K.; Ieki, K.; Ieva, M.; Ikeda, M.; Imber, J.; Insler, J.; Irvine, T. J.; Ishida, T.; Ishii, T.; Iwai, E.; Iwamoto, K.; Iyogi, K.; Izmaylov, A.; Jacob, A.; Jamieson, B.; Johnson, R. A.; Jo, J. H.; Jonsson, P.; Jung, C. K.; Kabirnezhad, M.; Kaboth, A. C.; Kajita, T.; Kakuno, H.; Kameda, J.; Kanazawa, Y.; Karlen, D.; Karpikov, I.; Katori, T.; Kearns, E.; Khabibullin, M.; Khotjantsev, A.; Kielczewska, D.; Kikawa, T.; Kilinski, A.; Kim, J.; Kisiel, J.; Kitching, P.; Kobayashi, T.; Koch, L.; Kolaceke, A.; Konaka, A.; Kormos, L. L.; Korzenev, A.; Koseki, K.; Koshio, Y.; Kreslo, I.; Kropp, W.; Kubo, H.; Kudenko, Y.; Kurjata, R.; Kutter, T.; Lagoda, J.; Laihem, K.; Lamont, I.; Larkin, E.; Laveder, M.; Lawe, M.; Lazos, M.; Lindner, T.; Lister, C.; Litchfield, R. P.; Longhin, A.; Ludovici, L.; Magaletti, L.; Mahn, K.; Malek, M.; Manly, S.; Marino, A. D.; Marteau, J.; Martin, J. F.; Martynenko, S.; Maruyama, T.; Matveev, V.; Mavrokoridis, K.; Mazzucato, E.; McCarthy, M.; McCauley, N.; McFarland, K. S.; McGrew, C.; Metelko, C.; Mijakowski, P.; Miller, C. A.; Minamino, A.; Mineev, O.; Missert, A.; Miura, M.; Moriyama, S.; Mueller, Th. A.; Murakami, A.; Murdoch, M.; Murphy, S.; Myslik, J.; Nakadaira, T.; Nakahata, M.; Nakamura, K.; Nakayama, S.; Nakaya, T.; Nakayoshi, K.; Nielsen, C.; Nirkko, M.; Nishikawa, K.; Nishimura, Y.; O'Keeffe, H. M.; Ohta, R.; Okumura, K.; Okusawa, T.; Oryszczak, W.; Oser, S. M.; Otani, M.; Owen, R. A.; Oyama, Y.; Palladino, V.; Palomino, J. L.; Paolone, V.; Payne, D.; Perevozchikov, O.; Perkin, J. D.; Petrov, Y.; Pickard, L.; Pinzon Guerra, E. S.; Pistillo, C.; Plonski, P.; Poplawska, E.; Popov, B.; Posiadala, M.; Poutissou, J.-M.; Poutissou, R.; Przewlocki, P.; Quilain, B.; Radicioni, E.; Ratoff, P. N.; Ravonel, M.; Rayner, M. A. M.; Redij, A.; Reeves, M.; Reinherz-Aronis, E.; Retiere, F.; Rodrigues, P. A.; Rojas, P.; Rondio, E.; Roth, S.; Rubbia, A.; Ruterbories, D.; Sacco, R.; Sakashita, K.; Sánchez, F.; Sato, F.; Scantamburlo, E.; Scholberg, K.; Schoppmann, S.; Schwehr, J.; Scott, M.; Seiya, Y.; Sekiguchi, T.; Sekiya, H.; Sgalaberna, D.; Shiozawa, M.; Short, S.; Shustrov, Y.; Sinclair, P.; Smith, B.; Smy, M.; Sobczyk, J. T.; Sobel, H.; Sorel, M.; Southwell, L.; Stamoulis, P.; Steinmann, J.; Still, B.; Suda, Y.; Suzuki, A.; Suzuki, K.; Suzuki, S. Y.; Suzuki, Y.; Szeglowski, T.; Tacik, R.; Tada, M.; Takahashi, S.; Takeda, A.; Takeuchi, Y.; Tanaka, H. K.; Tanaka, H. A.; Tanaka, M. M.; Terhorst, D.; Terri, R.; Thompson, L. F.; Thorley, A.; Tobayama, S.; Toki, W.; Tomura, T.; Totsuka, Y.; Touramanis, C.; Tsukamoto, T.; Tzanov, M.; Uchida, Y.; Vacheret, A.; Vagins, M.; Vasseur, G.; Wachala, T.; Waldron, A. V.; Walter, C. W.; Wark, D.; Wascko, M. O.; Weber, A.; Wendell, R.; Wilkes, R. J.; Wilking, M. J.; Wilkinson, C.; Williamson, Z.; Wilson, J. R.; Wilson, R. J.; Wongjirad, T.; Yamada, Y.; Yamamoto, K.; Yanagisawa, C.; Yano, T.; Yen, S.; Yershov, N.; Yokoyama, M.; Yuan, T.; Yu, M.; Zalewska, A.; Zalipska, J.; Zambelli, L.; Zaremba, K.; Ziembicki, M.; Zimmerman, E. D.; Zito, M.; Żmuda, J.; T2K Collaboration

    2014-09-01

    We report a measurement of the νμ inclusive charged current cross sections on iron and hydrocarbon in the Tokai-to-Kamioka (T2K) on-axis neutrino beam. The measured inclusive charged current cross sections on iron and hydrocarbon averaged over the T2K on-axis flux with a mean neutrino energy of 1.51 GeV are (1.444±0.002(stat)-0.157+0.189(syst))×10-38 cm2/nucleon and (1.379±0.009(stat)-0.147+0.178(syst))×10-38 cm2/nucleon, respectively, and their cross-section ratio is 1.047±0.007(stat)±0.035(syst). These results agree well with the predictions of the neutrino interaction model, and thus we checked the correct treatment of the nuclear effect for iron and hydrocarbon targets in the model within the measurement precisions.

  20. Unitary limit of two-nucleon interactions in strong magnetic fields

    DOE PAGES

    Detmold, William; Orginos, Kostas; Parreño, Assumpta; ...

    2016-03-14

    In this study, two-nucleon systems are shown to exhibit large scattering lengths in strong magnetic fields at unphysical quark masses, and the trends toward the physical values indicate that such features may exist in nature. Lattice QCD calculations of the energies of one and two nucleons systems are performed at pion masses of m π ~ 450 and 806 MeV in uniform, time-independent magnetic fields of strength |B| ~ 10 19 – 10 20 Gauss to determine the response of these hadronic systems to large magnetic fields. Fields of this strength may exist inside magnetars and in peripheral relativistic heavymore » ion collisions, and the unitary behavior at large scattering lengths may have important consequences for these systems.« less

  1. COHERENT enlightenment of the neutrino dark side

    NASA Astrophysics Data System (ADS)

    Coloma, Pilar; Gonzalez-Garcia, M. C.; Maltoni, Michele; Schwetz, Thomas

    2017-12-01

    In the presence of nonstandard neutrino interactions (NSI), oscillation data are affected by a degeneracy which allows the solar mixing angle to be in the second octant (also known as the dark side) and implies a sign flip of the atmospheric mass-squared difference. This leads to an ambiguity in the determination of the ordering of neutrino masses, one of the main goals of the current and future experimental neutrino program. We show that the recent observation of coherent neutrino-nucleus scattering by the COHERENT experiment, in combination with global oscillation data, excludes the NSI degeneracy at the 3.1 σ (3.6 σ ) C.L. for NSI with up (down) quarks.

  2. Dark matter, baryogenesis and neutrino oscillations from right-handed neutrinos

    NASA Astrophysics Data System (ADS)

    Canetti, Laurent; Drewes, Marco; Frossard, Tibor; Shaposhnikov, Mikhail

    2013-05-01

    We show that, leaving aside accelerated cosmic expansion, all experimental data in high energy physics that are commonly agreed to require physics beyond the Standard Model can be explained when completing the model by three right-handed neutrinos that can be searched for using present-day experimental techniques. The model that realizes this scenario is known as the Neutrino Minimal Standard Model (νMSM). In this article we give a comprehensive summary of all known constraints in the νMSM, along with a pedagogical introduction to the model. We present the first complete quantitative study of the parameter space of the model where no physics beyond the νMSM is needed to simultaneously explain neutrino oscillations, dark matter, and the baryon asymmetry of the Universe. The key new point of our analysis is leptogenesis after sphaleron freeze-out, which leads to resonant dark matter production, thus evading the constraints on sterile neutrino dark matter from structure formation and x-ray searches. This requires one to track the time evolution of left- and right-handed neutrino abundances from hot big bang initial conditions down to temperatures below the QCD scale. We find that the interplay of resonant amplifications, CP-violating flavor oscillations, scatterings, and decays leads to a number of previously unknown constraints on the sterile neutrino properties. We furthermore reanalyze bounds from past collider experiments and big bang nucleosynthesis in the face of recent evidence for a nonzero neutrino mixing angle θ13. We combine all our results with existing constraints on dark matter properties from astrophysics and cosmology. Our results provide a guideline for future experimental searches for sterile neutrinos. A summary of the constraints on sterile neutrino masses and mixings has appeared in Canetti et al. [Phys. Rev. Lett. 110, 061801 (2013)PRLTAO0031-9007]. In this article we provide all details of our calculations and give constraints on other model

  3. Nucleon Spin Structure and Constituent Quark Model

    NASA Astrophysics Data System (ADS)

    Wang, Fan; Qing, Di; Chen, Xiang-Song; Goldman, T.

    1998-10-01

    The success of the constituent quark model has been challenged by the nucleon spin structure discovered in polarized deep inelastic scattering (DIS). We find that this puzzle is due to misidentifying the axial charge Δ q and the nonrelativistic quark spin. The space component of the quark axial vector current operator, int d^3x\\overlineψ γγ_5ψ =2s_q, defines the quark spin operator s_q, including not only the Pauli spin operator, which corresponds to the nonrelativistic quark spin s_q^NR, but also relativistic and quark-antiquark pair creation (annihilation) correction terms. Both of these suppress the quark spin contribution for a nucleon at rest due to transverse motion of the quark. The relativistic quark orbital angular momentum operator L_q=int d^3x\\overlineψ x× fracpartial iψ includes L^NRq and two correction terms which are exactly the same as those of sq but of opposite sign. They provide compensation which keeps the total nucleon spin frac 12 untouched no matter what kind of quark model is used. Nucleon spin can be decomposed either as s_q+Lq or as s_q^NR+L_q^NR. (The gluon degree of freedom is assumed to be frozen in the nucleon ground state at low energy scales.) The tensor charge δ q=int d^3x\\overlineψ Σ ψ of the nucleon is predicted to have similar but smaller corrections.

  4. A new method for detection of distant supernova neutrino bursts

    NASA Astrophysics Data System (ADS)

    Cline, D.; Fenyves, E.; Foshe, T.; Fuller, G.; Meyer, B.; Wilson, J.

    1990-03-01

    The feasibility of astrophysical neutrino detectors is studied, which is based on the detection of neutrons produced in neutrino-nucleus inelastic scattering events. Collective nuclear effects greatly enhancing the relevant interaction cross sections over those of single particle interactions are discussed. These effects can help to reduce the mass required for neutrino detectors. An example of a simple detector based on CaCO3 neutrino targets and BF3 neutron counters is presented. Neutron background limitations are discussed and the possibility of forming a coincidence between neutrino detectors and future gravity wave detectors is also considered.

  5. Exclusive Neutrino Charged Current Coherent Pion Production Cross Section Measurements in MINERvA

    NASA Astrophysics Data System (ADS)

    Higuera, A.

    2012-03-01

    MINERvA (Main Injector Experiment for v-A) is a neutrino scattering experiment in the 1-10 GeV energy range in the NuMI high-intensity neutrino beam at Fermi National Accelerator Laboratory. MINERvA is measuring neutrino/antineutrino scattering off a variety of different nuclear materials (C, Fe, Pb, He, H2O) and plans to measure the A-dependence of the Charged Current Coherent Pion Production cross section. We provide an outline of this measurement including the expected event rates and our methods for differentiating signal from background.

  6. Prospects for future experiments to search for nucleon decay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ayres, D.S.; Heller, K.; LoSecco, J.

    1982-01-01

    We review the status of theoretical expectations and experimental searches for nucleon decay, and predict the sensitivities which could be reached by future experiments. For the immediate future, we concur with the conclusions of the 1982 Summer Workshop on Proton Decay Experiments: all detectors now in operation or construction will be relatively insensitive to some potentially important decay modes. Next-generation experiments must therefore be designed to search for these modes, and should be undertaken whether or not present experiments detect nucleon decay in other modes. These future experiments should be designed to push the lifetime limits on all decay modesmore » to the levels at which irreducible cosmic-ray neutrino-induced backgrounds become important. Since the technology for these next-generation experiments is available now, the timetable for starting work on them will be determined by funding constraints and not by the need for extensive development of detectors. Efforts to develop advanced detector techniques should also be pursued, in order to mount more sensitive searches than can be envisioned using current technology, or to provide the most precise measurements possible of the properties of the nucleon decay interaction if it should occur at a detectable rate.« less

  7. Hard Break-Up of Two-Nucleons and QCD Dynamics of NN Interaction

    NASA Astrophysics Data System (ADS)

    Sargsian, Misak; Granados, Carlos

    2009-05-01

    We investigate hard photodisintegration of two nucleons from ^3He nucleus within the framework of hard rescattering model (HRM). In HRM a quark of one nucleon knocked-out by incoming photon rescatters with a quark of the other nucleon leading to the production of two nucleons with high relative momentum. HRM allows to express the amplitude of two-nucleon break-up reaction through the convolution of photon-quark scattering, NN hard scattering amplitude and nuclear spectral function which can be calculated using nonrelativistic ^3He wave function. HRM predicts several specific features for hard break-up reaction. First, the cross section will approximately scale as s-11. Also one predicts comparable or larger cross section for pp break up as compared to that of pn break-up, which is opposite to what is observed in low energy kinematics. Another result is the prediction of different spectator momentum dependencies of pp and pn break-up cross sections. This is due to the fact that same-helicity pp-component is strongly suppressed in the ground state wave function of ^3He. Due to this suppression HRM predicts significantly different asymmetries for the cross section of polarization transfer NN break-up reactions for circularly polarized photons. For the pp break-up this asymmetry is predicted to be zero while for the pn it is close to 23.

  8. Lepton-number-charged scalars and neutrino beamstrahlung

    NASA Astrophysics Data System (ADS)

    Berryman, Jeffrey M.; de Gouvêa, André; Kelly, Kevin J.; Zhang, Yue

    2018-04-01

    Experimentally, baryon number minus lepton number, B -L , appears to be a good global symmetry of nature. We explore the consequences of the existence of gauge-singlet scalar fields charged under B -L -dubbed lepton-number-charged scalars (LeNCSs)—and postulate that these couple to the standard model degrees of freedom in such a way that B -L is conserved even at the nonrenormalizable level. In this framework, neutrinos are Dirac fermions. Including only the lowest mass-dimension effective operators, some of the LeNCSs couple predominantly to neutrinos and may be produced in terrestrial neutrino experiments. We examine several existing constraints from particle physics, astrophysics, and cosmology to the existence of a LeNCS carrying B -L charge equal to two, and discuss the emission of LeNCSs via "neutrino beamstrahlung," which occurs every once in a while when neutrinos scatter off of ordinary matter. We identify regions of the parameter space where existing and future neutrino experiments, including the Deep Underground Neutrino Experiment, are at the frontier of searches for such new phenomena.

  9. Neutrino physics with DARWIN

    NASA Astrophysics Data System (ADS)

    Benabderrahmane, M. L.

    2017-09-01

    DARWIN (DARk matter WImp search with liquid xenoN) will be a multi-ton dark matter detector with the primary goal of exploring the entire experimentally accessible parameter space for weakly interacting massive particles (WIMPs) over a wide mass-range. With its 40 tonne active liquid xenon target, low-energy threshold and ultra-low background level, DARWIN can also search for other rare interactions. Here we present its sensitivity to low-energy solar neutrinos and to neutrinoless double beta decay. In a low-energy window of 2-30 keV a rate of 105/year, from pp and 7Be neutrinos can be reached. Such a measurement, with 1% precision will allow testing neutrinos models. DARWIN could also reach a competitive half-life sensitivity of 8.5 · 1027 y to the neutrinoless double beta decay (0νββ) of 136Xe after an exposure of 140 t×y of natural xenon. Nuclear recoils from coherent scattering of solar neutrinos will limit the sensitivity to WIMP masses below 5 GeV/c2, and the event rate from 8B neutrinos would range from a few to a few tens of events per tonne and year, depending on the energy threshold of the detector. Deviations from the predicted but yet unmeasured neutrino flux would be an indication for physics beyond the Standard Model

  10. Nucleon effective masses in neutron-rich matter

    NASA Astrophysics Data System (ADS)

    Li, Bao-An; Cai, Bao-Jun; Chen, Lie-Wen; Xu, Jun

    2018-03-01

    Various kinds of isovector nucleon effective masses are used in the literature to characterize the momentum/energy dependence of the nucleon symmetry potential or self-energy due to the space/time non-locality of the underlying isovector strong interaction in neutron-rich nucleonic matter. The multifaceted studies on nucleon isovector effective masses are multi-disciplinary in nature. Besides structures, masses and low-lying excited states of nuclei as well as nuclear reactions, studies of the isospin dependence of short-range correlations in nuclei from scatterings of high-energy electrons and protons on heavy nuclei also help understand nucleon effective masses especially the so-called E-mass in neutron-rich matter. A thorough understanding of all kinds of nucleon effective masses has multiple impacts on many interesting issues in both nuclear physics and astrophysics. Indeed, essentially all microscopic many-body theories and phenomenological models with various nuclear forces available in the literature have been used to calculate single-nucleon potentials and the associated nucleon effective masses in neutron-rich matter. There are also fundamental principles connecting different aspects and impacts of isovector strong interactions. In particular, the Hugenholtz-Van Hove theorem connects analytically nuclear symmetry energy with both isoscalar and isovector nucleon effective masses as well as their own momentum dependences. It also reveals how the isospin-quartic term in the equation of state of neutron-rich matter depends on the high-order momentum-derivatives of both isoscalar and isovector nucleon potentials. The Migdal-Luttinger theorem facilitates the extraction of nucleon E-mass and its isospin dependence from experimentally constrained single-nucleon momentum distributions. The momentum/energy dependence of the symmetry potential and the corresponding neutron-proton effective mass splitting also affect transport properties and the liquid-gas phase

  11. Semi-inclusive charged-current neutrino-nucleus reactions

    DOE PAGES

    Moreno, O.; Donnelly, T. W.; Van Orden, J. W.; ...

    2014-07-17

    The general, universal formalism for semi-inclusive charged-current (anti)neutrino-nucleus reactions is given for studies of any hadronic system, namely, either nuclei or the nucleon itself. The detailed developments are presented with the former in mind and are further specialized to cases where the final-state charged lepton and an ejected nucleon are presumed to be detected. General kinematics for such processes are summarized and then explicit expressions are developed for the leptonic and hadronic tensors involved and for the corresponding responses according to the usual charge, longitudinal and transverse projections, keeping finite the masses of all particles involved. In the case ofmore » the hadronic responses, general symmetry principles are invoked to determine which contributions can occur. As a result, the general leptonic-hadronic tensor contraction is given as well as the cross section for the process.« less

  12. Cosmological and supernova neutrinos

    NASA Astrophysics Data System (ADS)

    Kajino, T.; Aoki, W.; Balantekin, A. B.; Cheoun, M.-K.; Hayakawa, T.; Hidaka, J.; Hirai, Y.; Kusakabe, M.; Mathews, G. J.; Nakamura, K.; Pehlivan, Y.; Shibagaki, S.; Suzuki, T.

    2014-06-01

    The Big Bang nucleosynthesis (BBN) and the cosmic microwave background (CMB) anisotropies are the pillars of modern cosmology. It has recently been suggested that axion which is a dark matter candidate in the framework of the standard model could condensate in the early universe and induce photon cooling before the epoch of the photon last scattering. Although this may render a solution to the overproduction problem of primordial 7Li abundance, there arises another serious difficulty of overproducing D abundance. We propose a hybrid dark matter model with both axions and relic supersymmetric (SUSY) particles to solve both overproduction problems of the primordial D and 7Li abundances simultaneously. The BBN also serves to constrain the nature of neutrinos. Considering non-thermal photons produced in the decay of the heavy sterile neutrinos due to the magnetic moment, we explore the cosmological constraint on the strength of neutrino magnetic moment consistent with the observed light element abundances. Core-collapse supernovae eject huge flux of energetic neutrinos which affect explosive nucleosynthesis of rare isotopes like 7Li, 11B, 92Nb, 138La and 180Ta and r-process elements. Several isotopes depend strongly on the neutrino flavor oscillation due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. Combining the recent experimental constraints on θ13 with predicted and observed supernova-produced abundance ratio 11B/7Li encapsulated in the presolar grains from the Murchison meteorite, we show a marginal preference for an inverted neutrino mass hierarchy. We also discuss supernova relic neutrinos (SRN) that may indicate the softness of the equation of state (EoS) of nuclear matter and adiabatic conditions of the neutrino oscillation.

  13. Initial condition for baryogenesis via neutrino oscillation

    NASA Astrophysics Data System (ADS)

    Asaka, Takehiko; Eijima, Shintaro; Ishida, Hiroyuki; Minogawa, Kosuke; Yoshii, Tomoya

    2017-10-01

    We consider a baryogenesis scenario via the oscillation of right-handed neutrinos with Majorana masses of the order of GeV, which are also responsible for neutrino masses by the seesaw mechanism. We study how the initial condition alters the prediction of the present baryon asymmetry by this mechanism. It is usually assumed that the abundance of right-handed neutrinos is zero after the reheating of the inflationary universe and they are produced in scattering processes by the renomalizable Yukawa interaction. However, the higher-dimensional operator with right-handed neutrinos may provide an additional production which is most effective at the reheating epoch. It is shown that such an initial abundance of right-handed neutrinos can significantly modify the prediction when the strong washout of the asymmetry is absent. This leads to the parameter space of the model for the successful baryogenesis being enlarged.

  14. A study of muon neutrino to electron neutrino oscillations in the MINOS experiment

    NASA Astrophysics Data System (ADS)

    Yang, Tingjun

    done through extrapolation. The number of background events is measured at the Near Detector, then extrapolated to the Far Detector. Since different background sources extrapolate differently, some knowledge about the relative contribution from different background sources is necessary. We developed a method that can be used to obtain relative contributions of various background sources from comparison of background rates in the horn-on and horn-off configurations. We also described our effort to improve two aspects of the Monte Carlo simulation which are very important for the nu e appearance analysis: one is the hadronization model in the neutrino-nucleon interactions, the other is the modeling of PMT crosstalk. We performed a blind analysis and examined several sidebands before looking at the signal region. After we opened the box, we observed a 1.4 sigma excess of nue-like events in the Far Detector compared with the number of predicted background events. The excess is well within the statistical fluctuation of the background events. If we interpret the excess as a nue signal from numu → nu e oscillation, the best fit sin2 2theta 13 value is consistent with the CHOOZ limit. However we want to emphasize that our result is consistent with theta13 = 0 at 90% C.L.

  15. A search for matter enhanced neutrino oscillations through measurements of day and night solar neutrino fluxes at the Sudbury Neutrino Observatory

    NASA Astrophysics Data System (ADS)

    Miknaitis, Kathryn Kelly Schaffer

    The Sudbury Neutrino Observatory (SNO) is a heavy-water Cherenkov detector designed to study 8B neutrinos from the sun. Through the charged-current (CC) and neutral-current (NC) reactions of neutrinos on deuterium, SNO separately determines the flux of electron neutrinos and the flux of all active flavors of solar 8B neutrinos. SNO is also sensitive to the elastic scattering (ES) of neutrinos on electrons in the heavy water. Measurements of the CC and NC rates in SNO have conclusively demonstrated solar neutrino flavor change. This flavor change is believed to be caused by matter-enhanced oscillations in the sun, through the Mikheyev-Smirnov-Wolfenstein (MSW) effect. Matter effects could also change the flavor composition of neutrinos that traverse the earth. A comparison of the day and night measured CC flux at SNO directly tests for the MSW effect and contributes to constraints on neutrino oscillation parameters in the MSW model. We perform measurements of the day and night neutrino fluxes using data from the second phase of SNO, in which salt (NaCl) was added to the heavy water to enhance sensitivity to the NC reaction. Better discrimination between CC and NC events in the salt phase allows the fluxes to be determined without constraining the neutrino energy spectrum. The day-night asymmetry in the CC flux measured in this model-independent analysis is ACC = [-5.6 +/- 7.4(stat.) +/- 5.3(syst.)]%, where the asymmetry is defined as the difference between the night and day values divided by their average. The asymmetries in the NC and ES fluxes are ANC = [4.2 +/- 8.6(stat.) +/- 7.2(syst.)]%, and AES = (14.6 +/- 19.8(stat.) +/- 3.3(syst.)]%. The neutral current asymmetry is expected to be zero assuming standard neutrino oscillations. When we constrain it to be zero, we obtain ACC = [-3.7 +/- 6.3(stat.) +/- 3.2(syst.)]% and AES = [15.3 +/- 19.8(stat.) +/- 3.0(syst.)]%. The day and night energy spectra from the CC reaction have been measured and show no evidence for

  16. 0 ν β β -decay nuclear matrix element for light and heavy neutrino mass mechanisms from deformed quasiparticle random-phase approximation calculations for 76Ge, 82Se, 130Te, 136Xe, and 150Nd with isospin restoration

    NASA Astrophysics Data System (ADS)

    Fang, Dong-Liang; Faessler, Amand; Šimkovic, Fedor

    2018-04-01

    In this paper, with restored isospin symmetry, we evaluated the neutrinoless double-β -decay nuclear matrix elements for 76Ge, 82Se, 130Te, 136Xe, and 150Nd for both the light and heavy neutrino mass mechanisms using the deformed quasiparticle random-phase approximation approach with realistic forces. We give detailed decompositions of the nuclear matrix elements over different intermediate states and nucleon pairs, and discuss how these decompositions are affected by the model space truncations. Compared to the spherical calculations, our results show reductions from 30 % to about 60 % of the nuclear matrix elements for the calculated isotopes mainly due to the presence of the BCS overlap factor between the initial and final ground states. The comparison between different nucleon-nucleon (NN) forces with corresponding short-range correlations shows that the choice of the NN force gives roughly 20 % deviations for the light exchange neutrino mechanism and much larger deviations for the heavy neutrino exchange mechanism.

  17. Probing new physics with long-lived charged particles produced by atmospheric and astrophysical neutrinos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ando, Shin'ichiro; Profumo, Stefano; Beacom, John F

    As suggested by some extensions of the standard model of particle physics, dark matter may be a super-weakly-interacting lightest stable particle, while the next-to-lightest particle (NLP) is charged and metastable. One could test such a possibility with neutrino telescopes, by detecting the charged NLPs produced in high-energy neutrino collisions with Earth matter. We study the production of charged NLPs by both atmospheric and astrophysical neutrinos; only the latter, which is largely uncertain and has not been detected yet, was the focus of previous studies. We compute the resulting fluxes of the charged NLPs, compare those of different origins and analyzemore » the dependence on the underlying particle physics set-up. We point out that, even if the astrophysical neutrino flux is very small, atmospheric neutrinos, especially those from the prompt decay of charmed mesons, may provide a detectable flux of NLP pairs at neutrino telescopes such as IceCube. We also comment on the flux of charged NLPs expected from proton-nucleon collisions and show that, for theoretically motivated and phenomenologically viable models, it is typically subdominant and below detectable rates.« less

  18. Neutrino trident production: a powerful probe of new physics with neutrino beams.

    PubMed

    Altmannshofer, Wolfgang; Gori, Stefania; Pospelov, Maxim; Yavin, Itay

    2014-08-29

    The production of a μ+ μ- pair from the scattering of a muon neutrino off the Coulomb field of a nucleus, known as neutrino trident production, is a subweak process that has been observed in only a couple of experiments. As such, we show that it constitutes an exquisitely sensitive probe in the search for new neutral currents among leptons, putting the strongest constraints on well-motivated and well-hidden extensions of the standard model gauge group, including the one coupled to the difference of the lepton number between the muon and tau flavor, Lμ-Lτ. The new gauge boson Z', increases the rate of neutrino trident production by inducing additional (μγαμ)(νγ(α)ν) interactions, which interfere constructively with the standard model contribution. Existing experimental results put significant restrictions on the parameter space of any model coupled to muon number Lμ, and disfavor a putative resolution to the muon g-2 discrepancy via the loop of Z' for any mass mZ'≳400  MeV. The reach to the models' parameter space can be widened with future searches of the trident production at high-intensity neutrino facilities such as the LBNE.

  19. Surface-peaked medium effects in the interaction of nucleons with finite nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aguayo, F. J.; Arellano, H. F.

    We investigate the asymptotic separation of the optical model potential for nucleon-nucleus scattering in momentum space, where the potential is split into a medium-independent term and another depending exclusively on the gradient of the density-dependent g matrix. This decomposition confines the medium sensitivity of the nucleon-nucleus coupling to the surface of the nucleus. We examine this feature in the context of proton-nucleus scattering at beam energies between 30 and 100 MeV and find that the pn coupling accounts for most of this sensitivity. Additionally, based on this general structure of the optical potential we are able to treat both, themore » medium dependence of the effective interaction and the full mixed density as described by single-particle shell models. The calculated scattering observables agree within 10% with those obtained by Arellano, Brieva, and Love in their momentum-space g-folding approach.« less

  20. DUMAND Summer Workshop, University of California, La Jolla, Calif., July 24-September 2, 1978, Proceedings. Volume 2 - UHE interactions, neutrino astronomy

    NASA Technical Reports Server (NTRS)

    Roberts, A.

    1979-01-01

    The volume covers categories on inelastic neutrino scattering and the W-boson, and other ultra-high-energy processes, on pulsars, quasars and galactic nuclei, as well as other point sources and constants from gamma ray astronomy. Individual subjects include weak intermediate vector bosons and DUMAND, the Monte Carlo simulation of inelastic neutrino scattering in DUMAND, and Higgs boson production by very high-energy neutrinos. The observability of the neutrino flux from the inner region of the galactic disk, the diffuse fluxes of high-energy neutrinos, as well as the significance of gamma ray observations for neutrino astronomy are also among the topics covered.

  1. Lepton-number-charged scalars and neutrino beamstrahlung

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berryman, Jeffrey M.; de Gouvea, Andre; Kelly, Kevin J.

    Experimentally, baryon number minus lepton number, $B-L$, appears to be a good global symmetry of nature. We explore the consequences of the existence of gauge-singlet scalar fields charged under $B-L$ $-$dubbed lepton-number-charged scalars, LeNCS $-$and postulate that these couple to the standard model degrees of freedom in such a way that $B-L$ is conserved even at the non-renormalizable level. In this framework, neutrinos are Dirac fermions. Including only the lowest mass-dimension effective operators, some of the LeNCS couple predominantly to neutrinos and may be produced in terrestrial neutrino experiments. We examine several existing constraints from particle physics, astrophysics, and cosmologymore » to the existence of a LeNCS carrying $B-L$ charge equal to two, and discuss the emission of LeNCS's via "neutrino beamstrahlung," which occurs every once in a while when neutrinos scatter off of ordinary matter. In conclusion, we identify regions of the parameter space where existing and future neutrino experiments, including the Deep Underground Neutrino Experiment, are at the frontier of searches for such new phenomena.« less

  2. Lepton-number-charged scalars and neutrino beamstrahlung

    DOE PAGES

    Berryman, Jeffrey M.; de Gouvea, Andre; Kelly, Kevin J.; ...

    2018-04-23

    Experimentally, baryon number minus lepton number, $B-L$, appears to be a good global symmetry of nature. We explore the consequences of the existence of gauge-singlet scalar fields charged under $B-L$ $-$dubbed lepton-number-charged scalars, LeNCS $-$and postulate that these couple to the standard model degrees of freedom in such a way that $B-L$ is conserved even at the non-renormalizable level. In this framework, neutrinos are Dirac fermions. Including only the lowest mass-dimension effective operators, some of the LeNCS couple predominantly to neutrinos and may be produced in terrestrial neutrino experiments. We examine several existing constraints from particle physics, astrophysics, and cosmologymore » to the existence of a LeNCS carrying $B-L$ charge equal to two, and discuss the emission of LeNCS's via "neutrino beamstrahlung," which occurs every once in a while when neutrinos scatter off of ordinary matter. In conclusion, we identify regions of the parameter space where existing and future neutrino experiments, including the Deep Underground Neutrino Experiment, are at the frontier of searches for such new phenomena.« less

  3. Neutrino-induced reactions on nuclei

    NASA Astrophysics Data System (ADS)

    Gallmeister, K.; Mosel, U.; Weil, J.

    2016-09-01

    Background: Long-baseline experiments such as the planned deep underground neutrino experiment (DUNE) require theoretical descriptions of the complete event in a neutrino-nucleus reaction. Since nuclear targets are used this requires a good understanding of neutrino-nucleus interactions. Purpose: Develop a consistent theory and code framework for the description of lepton-nucleus interactions that can be used to describe not only inclusive cross sections, but also the complete final state of the reaction. Methods: The Giessen-Boltzmann-Uehling-Uhlenbeck (GiBUU) implementation of quantum-kinetic transport theory is used, with improvements in its treatment of the nuclear ground state and of 2p2h interactions. For the latter an empirical structure function from electron scattering data is used as a basis. Results: Results for electron-induced inclusive cross sections are given as a necessary check for the overall quality of this approach. The calculated neutrino-induced inclusive double-differential cross sections show good agreement data from neutrino and antineutrino reactions for different neutrino flavors at MiniBooNE and T2K. Inclusive double-differential cross sections for MicroBooNE, NOvA, MINERvA, and LBNF/DUNE are given. Conclusions: Based on the GiBUU model of lepton-nucleus interactions a good theoretical description of inclusive electron-, neutrino-, and antineutrino-nucleus data over a wide range of energies, different neutrino flavors, and different experiments is now possible. Since no tuning is involved this theory and code should be reliable also for new energy regimes and target masses.

  4. Possibility of measuring Adler angles in charged current single pion neutrino-nucleus interactions

    NASA Astrophysics Data System (ADS)

    Sánchez, F.

    2016-05-01

    Uncertainties in modeling neutrino-nucleus interactions are a major contribution to systematic errors in long-baseline neutrino oscillation experiments. Accurate modeling of neutrino interactions requires additional experimental observables such as the Adler angles which carry information about the polarization of the Δ resonance and the interference with nonresonant single pion production. The Adler angles were measured with limited statistics in bubble chamber neutrino experiments as well as in electron-proton scattering experiments. We discuss the viability of measuring these angles in neutrino interactions with nuclei.

  5. New light Higgs boson and short-baseline neutrino anomalies

    NASA Astrophysics Data System (ADS)

    Asaadi, J.; Church, E.; Guenette, R.; Jones, B. J. P.; Szelc, A. M.

    2018-04-01

    The low-energy excesses observed by the MiniBooNE experiment have, to date, defied a convincing explanation under the standard model even with accommodation for nonzero neutrino mass. In this paper we explore a new oscillation mechanism to explain these anomalies, invoking a light neutrinophilic Higgs boson, conceived to induce a low Dirac neutrino mass in accord with experimental limits. Beam neutrinos forward scattering off of a locally overdense relic neutrino background give rise to a novel matter effect with an energy-specific resonance. An enhanced oscillation around this resonance peak produces flavor transitions which are highly consistent with the MiniBooNE neutrino- and antineutrino-mode data sets. The model provides substantially improved χ2 values beyond either the no-oscillation hypothesis or the more commonly explored 3 +1 sterile neutrino hypothesis. This mechanism would introduce distinctive signatures at each baseline in the upcoming short-baseline neutrino program at Fermilab, presenting opportunities for further exploration.

  6. New light Higgs boson and short-baseline neutrino anomalies

    DOE PAGES

    Asaadi, J.; Church, E.; Guenette, R.; ...

    2018-04-16

    Here, the low-energy excesses observed by the MiniBooNE experiment have, to date, defied a convincing explanation under the standard model even with accommodation for nonzero neutrino mass. In this paper we explore a new oscillation mechanism to explain these anomalies, invoking a light neutrinophilic Higgs boson, conceived to induce a low Dirac neutrino mass in accord with experimental limits. Beam neutrinos forward scattering off of a locally overdense relic neutrino background give rise to a novel matter effect with an energy-specific resonance. An enhanced oscillation around this resonance peak produces flavor transitions which are highly consistent with the MiniBooNE neutrino-more » and antineutrino-mode data sets. The model provides substantially improved χ2 values beyond either the no-oscillation hypothesis or the more commonly explored 3+1 sterile neutrino hypothesis. This mechanism would introduce distinctive signatures at each baseline in the upcoming short-baseline neutrino program at Fermilab, presenting opportunities for further exploration.« less

  7. New light Higgs boson and short-baseline neutrino anomalies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asaadi, J.; Church, E.; Guenette, R.

    Here, the low-energy excesses observed by the MiniBooNE experiment have, to date, defied a convincing explanation under the standard model even with accommodation for nonzero neutrino mass. In this paper we explore a new oscillation mechanism to explain these anomalies, invoking a light neutrinophilic Higgs boson, conceived to induce a low Dirac neutrino mass in accord with experimental limits. Beam neutrinos forward scattering off of a locally overdense relic neutrino background give rise to a novel matter effect with an energy-specific resonance. An enhanced oscillation around this resonance peak produces flavor transitions which are highly consistent with the MiniBooNE neutrino-more » and antineutrino-mode data sets. The model provides substantially improved χ2 values beyond either the no-oscillation hypothesis or the more commonly explored 3+1 sterile neutrino hypothesis. This mechanism would introduce distinctive signatures at each baseline in the upcoming short-baseline neutrino program at Fermilab, presenting opportunities for further exploration.« less

  8. Potential of CCDs for the study of sterile neutrino oscillations via Coherent Neutrino-Nucleus Elastic Scattering

    NASA Astrophysics Data System (ADS)

    Chávez-Estrada, Marisol; Aguilar-Arevalo, Alexis A.

    2017-10-01

    We study the potential of a detector based on CCD sensors (CONNIE experiment) to study neutrino oscillations to sterile states using reactor neutrinos. We calculate the number of events expected in a 1 kg detector and determine the sensitivity to oscillations νe → νs in the Δ m412 vs. sin2 θes parameter space for various exposures. The sensitivity is compared with the regions excluded by the Daya Bay experiment under the assumption θ 24 = θ 34 = 0. This work was carried out independently of the CONNIE Collaboration using published information, and its results are not official.

  9. Precision Measurement of the Beryllium-7 Solar Neutrino Interaction Rate in Borexino

    NASA Astrophysics Data System (ADS)

    Saldanha, Richard Nigel

    Solar neutrinos, since their first detection nearly forty years ago, have revealed valuable information regarding the source of energy production in the Sun, and have demonstrated that neutrino oscillations are well described by the Large Mixing Angle (LMA) oscillation parameters with matter interactions due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. This thesis presents a precision measurement of the 7Be solar neutrino interaction rate within Borexino, an underground liquid scintillator detector that is designed to measure solar neutrino interactions through neutrino-electron elastic scattering. The thesis includes a detailed description of the analysis techniques developed and used for this measurement as well as an evaluation of the relevant systematic uncertainties that affect the precision of the result. The rate of neutrino-electron elastic scattering from 0.862 MeV 7Be neutrinos is determined to be 45.4 +/- 1.6 (stat) +/- 1.5 (sys) counts/day/100 ton. Due to extensive detector calibrations and improved analysis methods, the systematic uncertainty in the interaction rate has been reduced by more than a factor of two from the previous evaluation. In the no-oscillation hypothesis, the interaction rate corresponds to a 0.862 MeV 7Be electron neutrino flux of (2.75 +/- 0.13) x 10 9 cm-2 sec-1. Including the predicted neutrino flux from the Standard Solar Model yields an electron neutrino survival probability of Pee 0.51 +/- 0.07 and rules out the no-oscillation hypothesis at 5.1sigma The LMA-MSW neutrino oscillation model predicts a transition in the solar Pee value between low (< 1 MeV) and high (> 10 MeV) energies which has not yet been experimentally confirmed. This result, in conjunction with the Standard Solar Model, represents the most precise measurement of the electron neutrino survival probability for solar neutrinos at sub-MeV energies.

  10. Synchronized Neutrino Oscillations from Self-interaction and Associated Applications

    NASA Astrophysics Data System (ADS)

    Wong, Yvonne Y. Y.

    2003-02-01

    A recent revival of interest in synchronised oscillations due to neutrino-neutrino forward scattering in dense gases has led to two interesting applications with notable outcomes: (i) cosmological bounds on neutrino-antineutrino asymmetries are improved owing to flavour equilibration prior to the onset of big bang nucleosynthesis, and (ii) a neutron-rich environment required for r-process nucleosynthesis is shown to be always maintained in a supernova hot bubble irrespective of flavour oscillations, contrary to results from previous studies. I present in this talk a pedagogical review of these works.

  11. Calibration of Sudbury Neutrino Observatory for the detection of boron-8 neutrinos

    NASA Astrophysics Data System (ADS)

    Ford, Richard James

    1999-08-01

    The Sudbury Neutrino Observatory (SNO) is a second generation water Čerenkov detector using 1000 tonnes of heavy water to study neutrino astrophysics. Using deuterium neutrino reactions, SNO will measure the flux and energy spectrum of solar electron neutrinos, and will measure the flavour-blind flux of neutrinos. A nitrogen/multi-dye laser diffuser ball has been designed and installed in SNO for calibration of the electronics, photomultiplier tubes (PMTs) and optical parameters. The laser provides pulsed radiation at 337.1 nm with a 600 psec width and pulse rate up to 50 Hz. The laser can be used directly or as a pump for one of four dye laser resonators, which provides five wavelength selections from 337-500 nm. The light is delivered to a pseudo-isotropic diffuser ball (the laserball) by a 100 μm UV-VIS fibre bundle with less than 1 nsec dispersion at 337 nm. The laserball can be deployed throughout the detector with the rope manipulator system. The laserball output is adjustable from 0.01 to 1000 photo-electrons (PE) and has a pulsewidth of 0.90 nsec at 386 nm and 1.18 nsec at 337.1 nm. A method has been developed for measuring the optical attenuation and scattering in SNO using the laserball and single photo-electron (SPE) PMT time histograms. At SPE intensity the nanosecond PMT timing can be used to separate direct and scattered light, and the extinction coefficients determined using varying path lengths from the source. A calibration function has been developed that accounts for the position and direction dependence of the response for electrons and gamma rays. The calibration function uses simplified or parameterized distributions for the Čerenkov output and detector geometry. The function is fast enough to be built in to neutrino spectrum analysis and can be used to evaluate the uncertainties in the position response. The laserball system has been tested and used to provide a PMT and electronics calibration of the detector for analysis of the airfill

  12. The Geminga neutron star: Evidence for nucleon superfluidity at very high density

    NASA Technical Reports Server (NTRS)

    Page, Dany

    1993-01-01

    A comparison of the recent age and temperature estimates of the Geminga neutron star with cooling models is presented. This star is already in the photon cooling era and it is shown that its temperature can be understood within both the slow and fast neutrino emission scenarios and consequently will not allow discrimination between these two scenarios. However in both cases agreement of the theoretical cooling curves with the observed temperature depends crucially on the presence of nucleon pairing in most, if not all, of the core.

  13. The neutrino opacity of neutron rich matter

    NASA Astrophysics Data System (ADS)

    Alcain, P. N.; Dorso, C. O.

    2017-05-01

    The study of neutron rich matter, present in neutron star, proto-neutron stars and core-collapse supernovae, can lead to further understanding of the behavior of nuclear matter in highly asymmetric nuclei. Heterogeneous structures are expected to exist in these systems, often referred to as nuclear pasta. We have carried out a systematic study of neutrino opacity for different thermodynamic conditions in order to assess the impact that the structure has on it. We studied the dynamics of the neutrino opacity of the heterogeneous matter at different thermodynamic conditions with semiclassical molecular dynamics model already used to study nuclear multifragmentation. For different densities, proton fractions and temperature, we calculate the very long range opacity and the cluster distribution. The neutrino opacity is of crucial importance for the evolution of the core-collapse supernovae and the neutrino scattering.

  14. Charm dimuon production in neutrino-nucleon interactions in the NOMAD experiment

    NASA Astrophysics Data System (ADS)

    Petti, Roberto; Samoylov, Oleg

    2012-09-01

    We present our new measurement of charm dimuon production in neutrino-iron interactions based upon the full statistics collected by the NOMAD experiment. After background subtraction we observe 15,340 charm dimuon events, providing the largest sample currently available. The analysis exploits the large inclusive charged current sample (about 9 million events after all analysis cuts) to constrain the total systematic uncertainty to about 2%. The extraction of strange sea and charm production parameters is also discussed.

  15. Charm dimuon production in neutrino-nucleon interactions in the NOMAD experiment

    NASA Astrophysics Data System (ADS)

    Petti, R.; Samoylov, O. B.

    2011-12-01

    We present our new measurement of charm dimuon production in neutrino-iron interactions based upon the full statistics collected by the NOMAD experiment. After background subtraction we observe 15,340 charm dimuon events, providing the largest sample currently available. The analysis exploits the large inclusive charged current sample (about 9 million events after all analysis cuts) to constrain the total systematic uncertainty to ˜2%. The extraction of strange sea and charm production parameters is also discussed.

  16. Discovering Tau and Muon Solar Neutrino Flares above Backgrounds

    NASA Astrophysics Data System (ADS)

    Fargion, D.; Moscato, F.

    2005-01-01

    Solar neutrino flares astronomy is at the edge of its discover. High energy flare particles (protons, alpha) whose self scattering within the solar corona is source of a rich prompt charged pions are also source of sharp solar neutrino "burst" (at tens-hundred MeV) produced by their pion-muon primary decay in flight. This brief (minute) solar neutrino "burst" at largest peak overcome by four-five order of magnitude the steady atmospheric neutrino noise at the Earth. Later on, solar flare particles hitting the terrestrial atmosphere may marginally increase the atmospheric neutrino flux without relevant consequences. Largest prompt "burst" solar neutrino flare may be detected in present or better in future largest neutrino underground neutrino detectors. Our estimate for the recent and exceptional October - November 2003 solar flares gives a number of events above or just near unity for Super-Kamiokande. The neutrino spectra may reflect in a subtle way the neutrino flavour mixing in flight. A surprising tau appearance may even occur for a hard ({E}_{nu}_{mu}--> {E}_{nu}_{tau} > 4 GeV) flare spectra. A comparison of the solar neutrino flare (at their birth place on Sun and after oscillation on the arrival on the Earth) with other neutrino foreground is here described and it offer an independent road map to disentangle the neutrino flavour puzzles and its secret flavour mixing angles .

  17. Review of indirect detection of dark matter with neutrinos

    NASA Astrophysics Data System (ADS)

    Danninger, Matthias

    2017-09-01

    Dark Matter could be detected indirectly through the observation of neutrinos produced in dark matter self-annihilations or decays. Searches for such neutrino signals have resulted in stringent constraints on the dark matter self-annihilation cross section and the scattering cross section with matter. In recent years these searches have made significant progress in sensitivity through new search methodologies, new detection channels, and through the availability of rich datasets from neutrino telescopes and detectors, like IceCube, ANTARES, Super-Kamiokande, etc. We review recent experimental results and put them in context with respect to other direct and indirect dark matter searches. We also discuss prospects for discoveries at current and next generation neutrino detectors.

  18. Theoretical estimates of supernova-neutrino cross sections for the stable even-even lead isotopes: Charged-current reactions

    NASA Astrophysics Data System (ADS)

    Almosly, W.; Carlsson, B. G.; Suhonen, J.; Toivanen, J.; Ydrefors, E.

    2016-10-01

    A detailed study of the charged-current supernova electron neutrino and electron antineutrino scattering off the stable even-mass lead isotopes A =204 , 206, and 208 is reported in this work. The proton-neutron quasiparticle random-phase approximation (pnQRPA) is adopted to construct the nuclear final and initial states. Three different Skyrme interactions are tested for their isospin and spin-isospin properties and then applied to produce (anti)neutrino-nucleus scattering cross sections for (anti)neutrino energies below 80 MeV. Realistic estimates of the nuclear responses to supernova (anti)neutrinos are computed by folding the computed cross sections with a two-parameter Fermi-Dirac distribution of the electron (anti)neutrino energies. The computed cross sections are compared with earlier calculations and the analyses are extended to take into account the effects coming from the neutrino oscillations.

  19. SIDDHARTA results and implications of the results on antikaon-nucleon interaction

    NASA Astrophysics Data System (ADS)

    Marton, J.; Bazzi, M.; Beer, G.; Berucci, C.; Bellotti, G.; Bosnar, D.; Bragadireanu, A. M.; Cargnelli, M.; Clozza, A.; Curceanu, C.; Butt, A. Dawood; Fiorini, C.; Ghio, F.; Guaraldo, C.; Hayano, R.; Iliescu, M.; Iwasaki, M.; Sandri, P. Levi; Okada, S.; Pietreanu, D.; Piscicchia, K.; Vidal, A. Romero; Scordo, A.; Shi, H.; Sirghi, D. L.; Sirghi, F.; Tatsuno, H.; Doce, O. Vazquez; Widmann, E.; Zmeskal, J.

    2016-05-01

    The interaction of antikaons (K-) with nucleons and nuclei in the low-energy regime represents an active research field in hadron physics. There are important open questions like the existence of antikaon nuclear bound states like the prototype system being K- pp. Unique and rather direct experimental access to the antikaon-nucleon scattering lengths is provided by precision X-ray spectroscopy of transitions in low-lying states in light kaonic atoms like kaonic hydrogen and helium isotopes. In the SIDDHARTA experiment at the electron-positron collider DAΦNE of LNF-INFN we measured the most precise values of the strong interaction observables, i.e. the strong interaction on the 1s ground state of the electromagnetically bound K-p atom leading to energy shift and broadening of the 1s state. The SIDDHARTA result triggered new theoretical work, which achieved major progress in the understanding of the low-energy strong interaction with strangeness reflected by the antikaon-nucleon scattering lengths calculated with the K--proton amplitudes constrained by the SIDDHARTA data. The most important open question is the experimental determination of the hadronic energy shift and width of kaonic deuterium which is planned by the SIDDHARTA-2 Collaboration.

  20. Conditions for shock revival by neutrino heating in core-collapse supernovae

    NASA Astrophysics Data System (ADS)

    Janka, H.-Th.

    2001-03-01

    lead to delayed explosions and in this sense supplements detailed numerical simulations. On grounds of the model developed here, a criterion is derived for the requirements of shock revival. It confirms the existence of a minimum neutrino luminosity that is needed for shock expansion, but also demonstrates the importance of a sufficiently large mass infall rate to the shock. If the neutrinospheric luminosity or accretion rate by the shock are too low, the shock is weakened because the gain layer loses more mass than is resupplied by inflow. On the other hand, very high infall rates damp the shock expansion and above some threshold, the development of positive total energy in the neutrino-heating layer is prevented. Time-dependent solutions for the evolution of the gain layer show that the total specific energy transferred to nucleons by neutrinos is limited by about 1052 erg Msun-1 ( ~ 5 MeV per nucleon). This excludes the possibility of very energetic explosions by the neutrino-heating mechanism, because the typical mass in the gain layer is about 0.1 Msun and does not exceed a few tenths of a solar mass. The toy model also allows for a crude discussion of the global effects of convective energy transport in the neutrino-heating layer. Transfer of energy from the region of maximum heating to radii closer behind the shock mainly reduces the loss of energy by the inward flow of neutrino-heated matter through the gain radius.

  1. Probing new physics with atmospheric neutrinos at KM3NeT-ORCA

    NASA Astrophysics Data System (ADS)

    Coelho, João A. B.; KM3NeT Collaboration

    2017-09-01

    We present the prospects of ORCA searches for new physics phenomena using atmospheric neutrinos. Focus is given to exploiting the impact of strong matter effects on the oscillation of atmospheric neutrinos in light of expanded models, such as sterile neutrinos and non-standard interactions. In the presence of light sterile neutrinos that mix with active neutrinos, additional resonances and suppressions may occur at different energies. One may also use neutrino oscillations to probe the properties of the coherent forward scattering which may be altered by new interactions beyond the Standard Model. Preliminary studies show that ORCA would be able to probe some parameters of these models with sensitivity up to one order of magnitude better than current constraints.

  2. Systematic uncertainties in long-baseline neutrino-oscillation experiments

    NASA Astrophysics Data System (ADS)

    Ankowski, Artur M.; Mariani, Camillo

    2017-05-01

    Future neutrino-oscillation experiments are expected to bring definite answers to the questions of neutrino-mass hierarchy and violation of charge-parity symmetry in the lepton-sector. To realize this ambitious program it is necessary to ensure a significant reduction of uncertainties, particularly those related to neutrino-energy reconstruction. In this paper, we discuss different sources of systematic uncertainties, paying special attention to those arising from nuclear effects and detector response. By analyzing nuclear effects we show the importance of developing accurate theoretical models, capable of providing a quantitative description of neutrino cross sections, together with the relevance of their implementation in Monte Carlo generators and extensive testing against lepton-scattering data. We also point out the fundamental role of efforts aiming to determine detector responses in test-beam exposures.

  3. Two nucleon systems at m π ~ 450 MeV from lattice QCD

    DOE PAGES

    Orginos, Kostas; Parreño, Assumpta; Savage, Martin J.; ...

    2015-12-23

    Nucleon-nucleon systems are studied with lattice quantum chromodynamics at a pion mass ofmore » $$m_\\pi\\sim 450~{\\rm MeV}$$ in three spatial volumes using $$n_f=2+1$$ flavors of light quarks. At the quark masses employed in this work, the deuteron binding energy is calculated to be $$B_d = 14.4^{+3.2}_{-2.6} ~{\\rm MeV}$$, while the dineutron is bound by $$B_{nn} = 12.5^{+3.0}_{-5.0}~{\\rm MeV}$$. Over the range of energies that are studied, the S-wave scattering phase shifts calculated in the 1S0 and 3S1-3D1 channels are found to be similar to those in nature, and indicate repulsive short-range components of the interactions, consistent with phenomenological nucleon-nucleon interactions. In both channels, the phase shifts are determined at three energies that lie within the radius of convergence of the effective range expansion, allowing for constraints to be placed on the inverse scattering lengths and effective ranges. Thus, the extracted phase shifts allow for matching to nuclear effective field theories, from which low energy counterterms are extracted and issues of convergence are investigated. As part of the analysis, a detailed investigation of the single hadron sector is performed, enabling a precise determination of the violation of the Gell-Mann–Okubo mass relation.« less

  4. Differential Cross Sections for Proton-Proton Elastic Scattering

    NASA Technical Reports Server (NTRS)

    Norman, Ryan B.; Dick, Frank; Norbury, John W.; Blattnig, Steve R.

    2009-01-01

    Proton-proton elastic scattering is investigated within the framework of the one pion exchange model in an attempt to model nucleon-nucleon interactions spanning the large range of energies important to cosmic ray shielding. A quantum field theoretic calculation is used to compute both differential and total cross sections. A scalar theory is then presented and compared to the one pion exchange model. The theoretical cross sections are compared to proton-proton scattering data to determine the validity of the models.

  5. Measurement of Coherent π+ Production in Low Energy Neutrino-Carbon Scattering

    NASA Astrophysics Data System (ADS)

    Abe, K.; Andreopoulos, C.; Antonova, M.; Aoki, S.; Ariga, A.; Assylbekov, S.; Autiero, D.; Ban, S.; Barbi, M.; Barker, G. J.; Barr, G.; Bartet-Friburg, P.; Batkiewicz, M.; Bay, F.; Berardi, V.; Berkman, S.; Bhadra, S.; Blondel, A.; Bolognesi, S.; Bordoni, S.; Boyd, S. B.; Brailsford, D.; Bravar, A.; Bronner, C.; Buizza Avanzini, M.; Calland, R. G.; Campbell, T.; Cao, S.; Caravaca Rodríguez, J.; Cartwright, S. L.; Castillo, R.; Catanesi, M. G.; Cervera, A.; Cherdack, D.; Chikuma, N.; Christodoulou, G.; Clifton, A.; Coleman, J.; Collazuol, G.; Coplowe, D.; Cremonesi, L.; Dabrowska, A.; De Rosa, G.; Dealtry, T.; Denner, P. F.; Dennis, S. R.; Densham, C.; Dewhurst, D.; Di Lodovico, F.; Di Luise, S.; Dolan, S.; Drapier, O.; Duffy, K. E.; Dumarchez, J.; Dytman, S.; Dziewiecki, M.; Emery-Schrenk, S.; Ereditato, A.; Feusels, T.; Finch, A. J.; Fiorentini, G. A.; Friend, M.; Fujii, Y.; Fukuda, D.; Fukuda, Y.; Furmanski, A. P.; Galymov, V.; Garcia, A.; Giffin, S. G.; Giganti, C.; Gizzarelli, F.; Gonin, M.; Grant, N.; Hadley, D. R.; Haegel, L.; Haigh, M. D.; Hamilton, P.; Hansen, D.; Harada, J.; Hara, T.; Hartz, M.; Hasegawa, T.; Hastings, N. C.; Hayashino, T.; Hayato, Y.; Helmer, R. L.; Hierholzer, M.; Hillairet, A.; Himmel, A.; Hiraki, T.; Hirota, S.; Hogan, M.; Holeczek, J.; Horikawa, S.; Hosomi, F.; Huang, K.; Ichikawa, A. K.; Ieki, K.; Ikeda, M.; Imber, J.; Insler, J.; Intonti, R. A.; Irvine, T. J.; Ishida, T.; Ishii, T.; Iwai, E.; Iwamoto, K.; Izmaylov, A.; Jacob, A.; Jamieson, B.; Jiang, M.; Johnson, S.; Jo, J. H.; Jonsson, P.; Jung, C. K.; Kabirnezhad, M.; Kaboth, A. C.; Kajita, T.; Kakuno, H.; Kameda, J.; Karlen, D.; Karpikov, I.; Katori, T.; Kearns, E.; Khabibullin, M.; Khotjantsev, A.; Kielczewska, D.; Kikawa, T.; Kim, H.; Kim, J.; King, S.; Kisiel, J.; Knight, A.; Knox, A.; Kobayashi, T.; Koch, L.; Koga, T.; Konaka, A.; Kondo, K.; Kopylov, A.; Kormos, L. L.; Korzenev, A.; Koshio, Y.; Kropp, W.; Kudenko, Y.; Kurjata, R.; Kutter, T.; Lagoda, J.; Lamont, I.; Larkin, E.; Lasorak, P.; Laveder, M.; Lawe, M.; Lazos, M.; Lindner, T.; Liptak, Z. J.; Litchfield, R. P.; Li, X.; Longhin, A.; Lopez, J. P.; Ludovici, L.; Lu, X.; Magaletti, L.; Mahn, K.; Malek, M.; Manly, S.; Marino, A. D.; Marteau, J.; Martin, J. F.; Martins, P.; Martynenko, S.; Maruyama, T.; Matveev, V.; Mavrokoridis, K.; Ma, W. Y.; Mazzucato, E.; McCarthy, M.; McCauley, N.; McFarland, K. S.; McGrew, C.; Mefodiev, A.; Metelko, C.; Mezzetto, M.; Mijakowski, P.; Minamino, A.; Mineev, O.; Mine, S.; Missert, A.; Miura, M.; Moriyama, S.; Mueller, Th. A.; Murphy, S.; Myslik, J.; Nakadaira, T.; Nakahata, M.; Nakamura, K. G.; Nakamura, K.; Nakamura, K. D.; Nakayama, S.; Nakaya, T.; Nakayoshi, K.; Nantais, C.; Nielsen, C.; Nirkko, M.; Nishikawa, K.; Nishimura, Y.; Novella, P.; Nowak, J.; O'Keeffe, H. M.; Ohta, R.; Okumura, K.; Okusawa, T.; Oryszczak, W.; Oser, S. M.; Ovsyannikova, T.; Owen, R. A.; Oyama, Y.; Palladino, V.; Palomino, J. L.; Paolone, V.; Patel, N. D.; Pavin, M.; Payne, D.; Perkin, J. D.; Petrov, Y.; Pickard, L.; Pickering, L.; Pinzon Guerra, E. S.; Pistillo, C.; Popov, B.; Posiadala-Zezula, M.; Poutissou, J.-M.; Poutissou, R.; Przewlocki, P.; Quilain, B.; Radermacher, T.; Radicioni, E.; Ratoff, P. N.; Ravonel, M.; Rayner, M. A. M.; Redij, A.; Reinherz-Aronis, E.; Riccio, C.; Rojas, P.; Rondio, E.; Roth, S.; Rubbia, A.; Rychter, A.; Sacco, R.; Sakashita, K.; Sánchez, F.; Sato, F.; Scantamburlo, E.; Scholberg, K.; Schoppmann, S.; Schwehr, J.; Scott, M.; Seiya, Y.; Sekiguchi, T.; Sekiya, H.; Sgalaberna, D.; Shah, R.; Shaikhiev, A.; Shaker, F.; Shaw, D.; Shiozawa, M.; Shirahige, T.; Short, S.; Smy, M.; Sobczyk, J. T.; Sobel, H.; Sorel, M.; Southwell, L.; Stamoulis, P.; Steinmann, J.; Stewart, T.; Stowell, P.; Suda, Y.; Suvorov, S.; Suzuki, A.; Suzuki, K.; Suzuki, S. Y.; Suzuki, Y.; Tacik, R.; Tada, M.; Takahashi, S.; Takeda, A.; Takeuchi, Y.; Tanaka, H. K.; Tanaka, H. A.; Terhorst, D.; Terri, R.; Thakore, T.; Thompson, L. F.; Tobayama, S.; Toki, W.; Tomura, T.; Touramanis, C.; Tsukamoto, T.; Tzanov, M.; Uchida, Y.; Vacheret, A.; Vagins, M.; Vallari, Z.; Vasseur, G.; Wachala, T.; Wakamatsu, K.; Walter, C. W.; Wark, D.; Warzycha, W.; Wascko, M. O.; Weber, A.; Wendell, R.; Wilkes, R. J.; Wilking, M. J.; Wilkinson, C.; Wilson, J. R.; Wilson, R. J.; Yamada, Y.; Yamamoto, K.; Yamamoto, M.; Yanagisawa, C.; Yano, T.; Yen, S.; Yershov, N.; Yokoyama, M.; Yoo, J.; Yoshida, K.; Yuan, T.; Yu, M.; Zalewska, A.; Zalipska, J.; Zambelli, L.; Zaremba, K.; Ziembicki, M.; Zimmerman, E. D.; Zito, M.; Żmuda, J.; T2K Collaboration

    2016-11-01

    We report the first measurement of the flux-averaged cross section for charged current coherent π+ production on carbon for neutrino energies less than 1.5 GeV, and with a restriction on the final state phase space volume in the T2K near detector, ND280. Comparisons are made with predictions from the Rein-Sehgal coherent production model and the model by Alvarez-Ruso et al., the latter representing the first implementation of an instance of the new class of microscopic coherent models in a neutrino interaction Monte Carlo event generator. We observe a clear event excess above background, disagreeing with the null results reported by K2K and SciBooNE in a similar neutrino energy region. The measured flux-averaged cross sections are below those predicted by both the Rein-Sehgal and Alvarez-Ruso et al. models.

  6. New light Higgs boson and short-baseline neutrino anomalies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asaadi, J.; Church, E.; Guenette, R.

    The low-energy excesses observed by the MiniBooNE experiment have, to date, defied a convincing explanation under the standard model even with accommodation for non-zero neutrino mass. In this paper we explore a new oscillation mechanism to explain these anomalies, invoking a light neutrinophilic Higgs boson, conceived to induce a low Dirac neutrino mass in accord with experimental limits. Beam neutrinos forward-scattering off of a locally over-dense relic neutrino background give rise to a novel matter-effect with an energy-specific resonance. An enhanced oscillation around this resonance peak produces flavor transitions which are highly consistent with the MiniBooNE neutrino- and antineutrino-mode data sets. The model provides substantially improvedmore » $$\\chi^2$$ values beyond either the no-oscillation hypothesis or the more commonly explored 3+1 sterile neutrino hypothesis. This mechanism would introduce distinctive signatures at each baseline in the upcoming SBN program at Fermilab, presenting opportunities for further exploration.« less

  7. What can we learn on supernova neutrino spectra with water Cherenkov detectors?

    NASA Astrophysics Data System (ADS)

    Gallo Rosso, Andrea; Vissani, Francesco; Volpe, Maria Cristina

    2018-04-01

    We investigate the precision with which the supernova neutrino spectra can be reconstructed in water Cherenkov detectors, in particular the large scale Hyper-Kamiokande and Super-Kamiokande. To this aim, we consider quasi-thermal neutrino spectra modified by the Mikheev-Smirnov-Wolfenstein effect for the case of normal ordering. We perform three 9 degrees of freedom likelihood analyses including first inverse-beta decay only, then the combination of inverse beta decay and elastic scattering on electrons and finally a third analysis that also includes neutral scattering neutrino-oxygen events. A tenth parameter is added in the analyses to account for the theoretical uncertainty on the neutral current neutrino-oxygen cross section. By assuming a 100% efficiency in Hyper-Kamiokande, we show that one can reconstruct the electron antineutrino average energy and pinching parameter with an accuracy of ~2% and ~7% percent respectively, while the antineutrino integrated luminosity can be pinned down at ~3% percent level. As for the muon and tau neutrinos, the average energy and the integrated luminosity can be measured with ~7% precision. These results represent a significant improvement with respect Super-Kamiokande, particularly for the pinching parameter defining the electron antineutrino spectra. As for electron neutrinos, the determination of the emission parameters requires the addition of supplementary detection channels.

  8. The Role of the Isospin 3/2 Component in Elastic Neutron-Deuteron Scattering and in the Deuteron Breakup Reaction

    NASA Astrophysics Data System (ADS)

    Witała, H.; Golak, J.; Skibiński, R.; Topolnicki, K.; Kamada, H.

    We discuss the importance of the three-nucleon isospin T = 3/2 component in elastic neutron-deuteron scattering and in the deuteron breakup reaction. The contribution of this amplitude originates from charge-independence breaking of the nucleon-nucleon potential. We study the magnitude of that contribution to the elastic scattering and breakup observables, taking the Av18 nucleon-nucleon potential alone or combined with the Urbana IX three-nucleon force as well as the locally regularized chiral N4LO nucleon-nucleon potential alone or supplemented by the chiral N2LO three-nucleon force. We find that the isospin T = 3/2 component is important for the breakup reaction and the proper treatment of charge-independence breaking in this case requires the inclusion of the 1S 0 state with isospin T = 3/2. For neutron-deuteron elastic scattering the T = 3/2 contributions are insignificant and charge-independence breaking can be accounted for by neglecting T = 3/2 component and using the effective t-matrix generated with the so-called “2/3 ‑ 1/3″ rule.

  9. Super-Kamiokande Solar Neutrino Results and NSI Analysis

    NASA Astrophysics Data System (ADS)

    Weatherly, Pierce; Super-Kamiokande Collaboration

    2017-09-01

    Super-Kamiokande (SK) detects the Cerenkov light from elastic scattering of solar 8B neutrinos with electrons in its ultra-pure water. The directionality, energy, and timing of the recoil electrons determines the interaction rate, the flight path, as well as the energy dependence of the 8B neutrinos’ electron-flavor survival probability P ee . While the P ee below 1 MeV is equivalent to averaged vacuum neutrino flavor oscillations, the P ee above 7 MeV is suppressed by the Mikheyev-Smirnov-Wolfenstein (MSW) resonance resulting from the interaction of the solar neutrinos with solar matter. In the same way, Earth matter effects influence Pee, leading to an apparent Day/Night effect. Non-standard interactions (NSI) extend the MSW model to include interactions between the quarks in matter and neutrinos, thereby modifying P ee . We present the signatures of matter effects on solar neutrinos in Super-Kamiokande and present limits on NSI parameters, in particular couplings to the down quark.

  10. Photoproduction of Mesons on Quasi-Free Nucleons

    NASA Astrophysics Data System (ADS)

    Keshelashvili, I.

    2014-11-01

    The investigation of excited baryon states is important to understand the underling nature/symmetries of hadronic matter. Historically, the first nucleon excitation experiments have been done using charged pion and kaon secondary beams. Later the antiproton-proton scattering has also been involved. However, since the beginning of the 90's meson photoproduction reactions have been considered as a powerful tool in baryon spectroscopy. In this contribution, we overview our experimental programs conducted at the bremsstrahlung photon beams of the MAMI accelerator in Mainz and the ELSA accelerator in Bonn. The results are differential and total cross sections for photoproduction of light neutral mesons and of meson pairs off quasi-free nucleons bound in the deuteron (and sometimes other light nuclei). The scientific programs of this experiments also include single and double polarization measurements as well.

  11. The State of the Art of Neutrino Cross Section Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harris, Deborah A.

    2015-06-08

    The study of neutrino interactions has recently experienced a renaissance, motivated by the fact that neutrino oscillation experiments depend critically on an accurate models of neutrino interactions. These models have to predict not only the signal and background populations that oscillation experiments see at near and far detectors, but they must also predict how the neutrino's energy which enters a nucleus gets transferred to energies of the particles that leave the nucleus after the neutrino interacts. Over the past year there have been a number of new results on many different neutrino (and antineutrino) interaction channels using several different targetmore » nuclei. These results are often not in agreement with predictions extraolated from charged lepton scattering measurements, or even from predictions anchored to neutrino measurements on deuterium. These new measurements are starting to give the community the handles needed to improve the theoretical description of neutrino interactions, which ultimately pave the way for precision oscillation measurements. This report briefly summarizes recent results and points out where those results differ from the predictions based on current models.« less

  12. Self-induced flavor conversion of supernova neutrinos on small scales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakraborty, S.; Hansen, R. S.; Izaguirre, I.

    2016-01-15

    Self-induced flavor conversion of supernova (SN) neutrinos is a generic feature of neutrino-neutrino dispersion. The corresponding run-away modes in flavor space can spontaneously break the original symmetries of the neutrino flux and in particular can spontaneously produce small-scale features as shown in recent schematic studies. However, the unavoidable “multi-angle matter effect” shifts these small-scale instabilities into regions of matter and neutrino density which are not encountered on the way out from a SN. The traditional modes which are uniform on the largest scales are most prone for instabilities and thus provide the most sensitive test for the appearance of self-inducedmore » flavor conversion. As a by-product we clarify the relation between the time evolution of an expanding neutrino gas and the radial evolution of a stationary SN neutrino flux. Our results depend on several simplifying assumptions, notably stationarity of the solution, the absence of a “backward” neutrino flux caused by residual scattering, and global spherical symmetry of emission.« less

  13. Self-induced flavor conversion of supernova neutrinos on small scales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakraborty, S.; Izaguirre, I.; Raffelt, G.G.

    2016-01-01

    Self-induced flavor conversion of supernova (SN) neutrinos is a generic feature of neutrino-neutrino dispersion. The corresponding run-away modes in flavor space can spontaneously break the original symmetries of the neutrino flux and in particular can spontaneously produce small-scale features as shown in recent schematic studies. However, the unavoidable ''multi-angle matter effect'' shifts these small-scale instabilities into regions of matter and neutrino density which are not encountered on the way out from a SN. The traditional modes which are uniform on the largest scales are most prone for instabilities and thus provide the most sensitive test for the appearance of self-inducedmore » flavor conversion. As a by-product we clarify the relation between the time evolution of an expanding neutrino gas and the radial evolution of a stationary SN neutrino flux. Our results depend on several simplifying assumptions, notably stationarity of the solution, the absence of a ''backward'' neutrino flux caused by residual scattering, and global spherical symmetry of emission.« less

  14. Measurement of Coherent π^{+} Production in Low Energy Neutrino-Carbon Scattering.

    PubMed

    Abe, K; Andreopoulos, C; Antonova, M; Aoki, S; Ariga, A; Assylbekov, S; Autiero, D; Ban, S; Barbi, M; Barker, G J; Barr, G; Bartet-Friburg, P; Batkiewicz, M; Bay, F; Berardi, V; Berkman, S; Bhadra, S; Blondel, A; Bolognesi, S; Bordoni, S; Boyd, S B; Brailsford, D; Bravar, A; Bronner, C; Buizza Avanzini, M; Calland, R G; Campbell, T; Cao, S; Caravaca Rodríguez, J; Cartwright, S L; Castillo, R; Catanesi, M G; Cervera, A; Cherdack, D; Chikuma, N; Christodoulou, G; Clifton, A; Coleman, J; Collazuol, G; Coplowe, D; Cremonesi, L; Dabrowska, A; De Rosa, G; Dealtry, T; Denner, P F; Dennis, S R; Densham, C; Dewhurst, D; Di Lodovico, F; Di Luise, S; Dolan, S; Drapier, O; Duffy, K E; Dumarchez, J; Dytman, S; Dziewiecki, M; Emery-Schrenk, S; Ereditato, A; Feusels, T; Finch, A J; Fiorentini, G A; Friend, M; Fujii, Y; Fukuda, D; Fukuda, Y; Furmanski, A P; Galymov, V; Garcia, A; Giffin, S G; Giganti, C; Gizzarelli, F; Gonin, M; Grant, N; Hadley, D R; Haegel, L; Haigh, M D; Hamilton, P; Hansen, D; Harada, J; Hara, T; Hartz, M; Hasegawa, T; Hastings, N C; Hayashino, T; Hayato, Y; Helmer, R L; Hierholzer, M; Hillairet, A; Himmel, A; Hiraki, T; Hirota, S; Hogan, M; Holeczek, J; Horikawa, S; Hosomi, F; Huang, K; Ichikawa, A K; Ieki, K; Ikeda, M; Imber, J; Insler, J; Intonti, R A; Irvine, T J; Ishida, T; Ishii, T; Iwai, E; Iwamoto, K; Izmaylov, A; Jacob, A; Jamieson, B; Jiang, M; Johnson, S; Jo, J H; Jonsson, P; Jung, C K; Kabirnezhad, M; Kaboth, A C; Kajita, T; Kakuno, H; Kameda, J; Karlen, D; Karpikov, I; Katori, T; Kearns, E; Khabibullin, M; Khotjantsev, A; Kielczewska, D; Kikawa, T; Kim, H; Kim, J; King, S; Kisiel, J; Knight, A; Knox, A; Kobayashi, T; Koch, L; Koga, T; Konaka, A; Kondo, K; Kopylov, A; Kormos, L L; Korzenev, A; Koshio, Y; Kropp, W; Kudenko, Y; Kurjata, R; Kutter, T; Lagoda, J; Lamont, I; Larkin, E; Lasorak, P; Laveder, M; Lawe, M; Lazos, M; Lindner, T; Liptak, Z J; Litchfield, R P; Li, X; Longhin, A; Lopez, J P; Ludovici, L; Lu, X; Magaletti, L; Mahn, K; Malek, M; Manly, S; Marino, A D; Marteau, J; Martin, J F; Martins, P; Martynenko, S; Maruyama, T; Matveev, V; Mavrokoridis, K; Ma, W Y; Mazzucato, E; McCarthy, M; McCauley, N; McFarland, K S; McGrew, C; Mefodiev, A; Metelko, C; Mezzetto, M; Mijakowski, P; Minamino, A; Mineev, O; Mine, S; Missert, A; Miura, M; Moriyama, S; Mueller, Th A; Murphy, S; Myslik, J; Nakadaira, T; Nakahata, M; Nakamura, K G; Nakamura, K; Nakamura, K D; Nakayama, S; Nakaya, T; Nakayoshi, K; Nantais, C; Nielsen, C; Nirkko, M; Nishikawa, K; Nishimura, Y; Novella, P; Nowak, J; O'Keeffe, H M; Ohta, R; Okumura, K; Okusawa, T; Oryszczak, W; Oser, S M; Ovsyannikova, T; Owen, R A; Oyama, Y; Palladino, V; Palomino, J L; Paolone, V; Patel, N D; Pavin, M; Payne, D; Perkin, J D; Petrov, Y; Pickard, L; Pickering, L; Pinzon Guerra, E S; Pistillo, C; Popov, B; Posiadala-Zezula, M; Poutissou, J-M; Poutissou, R; Przewlocki, P; Quilain, B; Radermacher, T; Radicioni, E; Ratoff, P N; Ravonel, M; Rayner, M A M; Redij, A; Reinherz-Aronis, E; Riccio, C; Rojas, P; Rondio, E; Roth, S; Rubbia, A; Rychter, A; Sacco, R; Sakashita, K; Sánchez, F; Sato, F; Scantamburlo, E; Scholberg, K; Schoppmann, S; Schwehr, J; Scott, M; Seiya, Y; Sekiguchi, T; Sekiya, H; Sgalaberna, D; Shah, R; Shaikhiev, A; Shaker, F; Shaw, D; Shiozawa, M; Shirahige, T; Short, S; Smy, M; Sobczyk, J T; Sobel, H; Sorel, M; Southwell, L; Stamoulis, P; Steinmann, J; Stewart, T; Stowell, P; Suda, Y; Suvorov, S; Suzuki, A; Suzuki, K; Suzuki, S Y; Suzuki, Y; Tacik, R; Tada, M; Takahashi, S; Takeda, A; Takeuchi, Y; Tanaka, H K; Tanaka, H A; Terhorst, D; Terri, R; Thakore, T; Thompson, L F; Tobayama, S; Toki, W; Tomura, T; Touramanis, C; Tsukamoto, T; Tzanov, M; Uchida, Y; Vacheret, A; Vagins, M; Vallari, Z; Vasseur, G; Wachala, T; Wakamatsu, K; Walter, C W; Wark, D; Warzycha, W; Wascko, M O; Weber, A; Wendell, R; Wilkes, R J; Wilking, M J; Wilkinson, C; Wilson, J R; Wilson, R J; Yamada, Y; Yamamoto, K; Yamamoto, M; Yanagisawa, C; Yano, T; Yen, S; Yershov, N; Yokoyama, M; Yoo, J; Yoshida, K; Yuan, T; Yu, M; Zalewska, A; Zalipska, J; Zambelli, L; Zaremba, K; Ziembicki, M; Zimmerman, E D; Zito, M; Żmuda, J

    2016-11-04

    We report the first measurement of the flux-averaged cross section for charged current coherent π^{+} production on carbon for neutrino energies less than 1.5 GeV, and with a restriction on the final state phase space volume in the T2K near detector, ND280. Comparisons are made with predictions from the Rein-Sehgal coherent production model and the model by Alvarez-Ruso et al., the latter representing the first implementation of an instance of the new class of microscopic coherent models in a neutrino interaction Monte Carlo event generator. We observe a clear event excess above background, disagreeing with the null results reported by K2K and SciBooNE in a similar neutrino energy region. The measured flux-averaged cross sections are below those predicted by both the Rein-Sehgal and Alvarez-Ruso et al.

  15. Implications of new GALLEX results for the Mikheyev-Smirnov-Wolfenstein solution of the solar neutrino problem

    NASA Technical Reports Server (NTRS)

    Gelb, James M.; Kwong, Waikwok; Rosen, S. P.

    1992-01-01

    We compare the implications for Be-7 and pp neutrinos of the two Mikheyev-Smirnov-Wolfenstein fits to the new GALLEX solar neutrino measurements. Small-mixing-angle solutions tend to suppress the former as electron neutrinos, but not the latter, and large-angle solutions tend to reduce both by about a factor of two. The consequences for BOREXINO and similar solar neutrino-electron scattering experiments are discussed.

  16. Nuclear medium effects in structure functions of nucleon at moderate Q2

    NASA Astrophysics Data System (ADS)

    Haider, H.; Zaidi, F.; Sajjad Athar, M.; Singh, S. K.; Ruiz Simo, I.

    2015-11-01

    Recent experiments performed on inclusive electron scattering from nuclear targets have measured the nucleon electromagnetic structure functions F1 (x ,Q2), F2 (x ,Q2) and FL (x ,Q2) in 12C, 27Al, 56Fe and 64Cu nuclei. The measurements have been done in the energy region of 1 GeV2 nucleon correlations, mesonic contributions from pion and rho mesons and shadowing effects. The calculations are performed in a local density approximation using a relativistic nucleon spectral function which includes nucleon correlations. The numerical results are compared with the recent experimental data from JLab and also with some earlier experiments.

  17. Extraction of In-Medium Nucleon-Nucleon Amplitude From Experiment

    NASA Technical Reports Server (NTRS)

    Tripathi, R. K.; Cucinotta, Francis A.; Wilson, John W.

    1998-01-01

    The in-medium nucleon-nucleon amplitudes are extracted from the available proton-nucleus total reaction cross sections data. The retrieval of the information from the experiment makes the estimate of reaction cross sections very reliable. Simple expressions are given for the in-medium nucleon-nucleon amplitudes for any system of colliding nuclei as a function of energy. Excellent agreement with experimental observations is demonstrated in the ion-nucleus interactions.

  18. Model-independent description of quartet nd scattering at low energies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grinyuk, B.E.; Simenog, I.V.; Sitnichenko, A.I.

    1984-02-01

    Asymptotic expansions are obtained for the scattering length a/sub 3//sub ///sub 2/ and the effective range r/sub 3//sub ///sub 2/ for the quartet state of three nucleons in the form of series in powers of the two-nucleon triplet effective range r/sub 0t/. This allows a model-independent description of these parameters and of the quartet phase shift of nd scattering in the effective-range approximation. Correlations between the parameters of three- and two-nucleon scattering are proposed and explained; these correlations allow the systematization of numerical calculations of a/sub 3//sub ///sub 2/ and r/sub 3//sub ///sub 2/ for different forms of interaction potentials.more » The influence of the energy dependence of the interaction on a/sub 3//sub ///sub 2/ is also considered.« less

  19. Overview of the COMPASS results on the nucleon spin

    NASA Astrophysics Data System (ADS)

    Franco, Celso; COMPASS Collaboration

    2016-04-01

    The COMPASS experiment [COMPASS, P. Abbon et al., The COMPASS experiment at CERN, Nucl. Inst. Meth. A577, 455 (2007)] at CERN is one of the leading experiments studying the nucleon spin. These studies are being carried on since 2002, by measuring hadrons produced in deep inelastic scattering (DIS) of 160 GeV/c and 200 GeV/c polarised muons off different polarised targets (NH3 for polarised protons and 6LiD for polarised deuterons). One of the main goals is to determine how the total longitudinal spin projection of the nucleon, 1/2, is distributed among its constituents, quarks and gluons. We review here the recent results on the quark and gluon helicities obtained by COMPASS. The other major goal, whose fulfilment is needed for a complete understanding of the nucleon spin, is the determination of the transverse momentum dependent parton distributions (TMDs). Regarding this topic, the latest results on the Collins and Sivers asymmetries will be shown. The former is sensitive to the transverse spin structure of the nucleon, while the latter reflects the correlations between the quarks transverse momentum and the nucleon spin. This overview will conclude with a summary of the approved plans of COMPASS for the near future: the study of TMDs with a pioneering polarised Drell-Yan experiment and the measurement of generalised parton distributions (GPDs).

  20. Neutrino-pair emission from nuclear de-excitation in core-collapse supernova simulations

    NASA Astrophysics Data System (ADS)

    Fischer, T.; Langanke, K.; Martínez-Pinedo, G.

    2013-12-01

    We study the impact of neutrino-pair production from the de-excitation of highly excited heavy nuclei on core-collapse supernova simulations, following the evolution up to several 100 ms after core bounce. Our study is based on the agile-boltztransupernova code, which features general relativistic radiation hydrodynamics and accurate three-flavor Boltzmann neutrino transport in spherical symmetry. In our simulations the nuclear de-excitation process is described in two different ways. At first we follow the approach proposed by Fuller and Meyer [Astrophys. J.AJLEEY0004-637X10.1086/170317 376, 701 (1991)], which is based on strength functions derived in the framework of the nuclear Fermi-gas model of noninteracting nucleons. Second, we parametrize the allowed and forbidden strength distributions in accordance with measurements for selected nuclear ground states. We determine the de-excitation strength by applying the Brink hypothesis and detailed balance. For both approaches, we find that nuclear de-excitation has no effect on the supernova dynamics. However, we find that nuclear de-excitation is the leading source for the production of electron antineutrinos as well as heavy-lepton-flavor (anti)neutrinos during the collapse phase. At sufficiently high densities, the associated neutrino spectra are influenced by interactions with the surrounding matter, making proper simulations of neutrino transport important for the determination of the neutrino-energy loss rate. We find that, even including nuclear de-excitations, the energy loss during the collapse phase is overwhelmingly dominated by electron neutrinos produced by electron capture.

  1. 7Be solar neutrino measurement with KamLAND

    NASA Astrophysics Data System (ADS)

    Gando, A.; Gando, Y.; Hanakago, H.; Ikeda, H.; Inoue, K.; Ishidoshiro, K.; Ishikawa, H.; Kishimoto, Y.; Koga, M.; Matsuda, R.; Matsuda, S.; Mitsui, T.; Motoki, D.; Nakajima, K.; Nakamura, K.; Obata, A.; Oki, A.; Oki, Y.; Otani, M.; Shimizu, I.; Shirai, J.; Suzuki, A.; Tamae, K.; Ueshima, K.; Watanabe, H.; Xu, B. D.; Yamada, S.; Yamauchi, Y.; Yoshida, H.; Kozlov, A.; Takemoto, Y.; Yoshida, S.; Grant, C.; Keefer, G.; McKee, D. W.; Piepke, A.; Banks, T. I.; Bloxham, T.; Freedman, S. J.; Fujikawa, B. K.; Han, K.; Hsu, L.; Ichimura, K.; Murayama, H.; O'Donnell, T.; Steiner, H. M.; Winslow, L. A.; Dwyer, D.; Mauger, C.; McKeown, R. D.; Zhang, C.; Berger, B. E.; Lane, C. E.; Maricic, J.; Miletic, T.; Learned, J. G.; Sakai, M.; Horton-Smith, G. A.; Tang, A.; Downum, K. E.; Tolich, K.; Efremenko, Y.; Kamyshkov, Y.; Perevozchikov, O.; Karwowski, H. J.; Markoff, D. M.; Tornow, W.; Detwiler, J. A.; Enomoto, S.; Heeger, K.; Decowski, M. P.; KamLAND Collaboration

    2015-11-01

    We report a measurement of the neutrino-electron elastic scattering rate of 862 keV 7Be solar neutrinos based on a 165.4 kt d exposure of KamLAND. The observed rate is 582 ±94 (kt d)-1, which corresponds to an 862-keV 7Be solar neutrino flux of (3.26 ±0.52 ) ×109cm-2s-1 , assuming a pure electron-flavor flux. Comparing this flux with the standard solar model prediction and further assuming three-flavor mixing, a νe survival probability of 0.66 ±0.15 is determined from the KamLAND data. Utilizing a global three-flavor oscillation analysis, we obtain a total 7Be solar neutrino flux of (5.82 ±1.02 ) ×109cm-2s-1 , which is consistent with the standard solar model predictions.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allahverdi, Rouzbeh; Gao, Yu; Knockel, Bradley

    In this paper, we study indirect detection signals from solar annihilation of dark matter (DM) particles into light right-handed (RH) neutrinos with a mass in a 1–5 GeV range. These RH neutrinos can have a sufficiently long lifetime to allow them to decay outside the Sun, and their delayed decays can result in a signal in gamma rays from the otherwise “dark” solar direction, and also a neutrino signal that is not suppressed by the interactions with solar medium. We find that the latest Fermi-LAT and IceCube results place limits on the gamma ray and neutrino signals, respectively. Combined photonmore » and neutrino bounds can constrain the spin-independent DM-nucleon elastic scattering cross section better than direct detection experiments for DM masses from 200 GeV up to several TeV. Finally, the bounds on spin-dependent scattering are also much tighter than the strongest limits from direct detection experiments.« less

  3. Experimental Neutrino Physics and Astrophysics with the IMB-3 Detector

    NASA Astrophysics Data System (ADS)

    Casper, David William

    1990-01-01

    Description of the universe on the smallest (elementary particle physics) and largest (cosmology) scales has become dependent on the properties of the most weakly interacting fundamental particle known, the neutrino. The IMB experiment, designed to study nucleon decay, is also the world's largest detector of neutrinos. The experiment uses 6800 tons (3300 tons fiducial) of water as both target and detecting medium. Relativistic charges particles traversing the water radiate Cerenkov light. The distinctive ring patterns are imaged by 2048 light collectors (each a photo-multiplier tube coupled with a wavelength-shifting plate) distributed over the surfaces of the tank. This dissertation describes the IMB-3 detector, a four-fold increase in sensitivity over the original apparatus. Neutrino interactions of both atmospheric and extragalactic origin were collected during a 3.4 kiloton-year exposure. A consequence of non-zero neutrino mass could be oscillation of neutrino flavor. The energies and long flight distances of atmospheric neutrinos offer a unique opportunity to explore this possibility. To study the composition of the atmospheric neutrinos, single-ring events are classified as showering or non-showering using the geometry of the Cerenkov pattern. A simulation of neutrino interactions and a model of atmospheric neutrino production are used to predict the composition of the sample. The showering/non-showering character of an event is strongly correlated with the flavor of its neutrino parent. In the lepton momentum range p < 1500 MeV/c, non-showering events comprise 41 +/- 3(stat.) +/- 2(syst.)% of the total. The fraction expected is 51 +/- 5(syst.)%. Although this is evidence for an anomaly in the composition of atmospheric neutrinos, the 2sigma deviation is not sufficient to require neutrino oscillations. Eight interactions recorded over a six second interval on February 23, 1987 are coincident with the discovery of Supernova 1987a. These data, together with

  4. High Energy Neutrinos Produced in the Accretion Disks by Neutrons from Nuclei Disintegrated in the AGN Jets

    NASA Astrophysics Data System (ADS)

    Bednarek, W.

    2016-12-01

    We investigate the consequences of acceleration of nuclei in jets of active galaxies not far from the surface of an accretion disk. The nuclei can be accelerated in the re-connection regions in the jet and/or at the jet boundary, between the relativistic jet and its cocoon. It is shown that the relativistic nuclei can efficiently fragment onto specific nucleons in collisions with the disk radiation. Neutrons, directed toward the accretion disk, take a significant part of energy from the relativistic nuclei. These neutrons develop a cascade in the dense accretion disk. We calculate the neutrino spectra produced in such a hadronic cascade within the accretion disk. We propose that the neutrinos produced in such a scenario, from the whole population of super-massive black holes in active galaxies, can explain the extragalactic neutrino background recently measured by the IceCube neutrino detector, provided that a 5% fraction of galaxies have an active galactic nucleus and a few percent of neutrons reach the accretion disk. We predict that the neutrino signals in the present neutrino detectors, produced in terms of such a model, will not be detectable even from the nearby radio galaxies similar to M87.

  5. Relic neutrinos, monopoles, and cosmic rays above ~1020 eV

    NASA Astrophysics Data System (ADS)

    Weiler, Thomas J.

    1998-06-01

    The observation of cosmic ray events above the Greisen-Kuzmin-Zatsepin (GZK) cut-off of 5×1019 eV offers an enormous opportunity for the discovery of new physics. We explore two possible origins for these super-GZK events. The first example uses Standard Model (SM) physics augmented only by <~ eV neutrino masses as suggested by solar, atmospheric, and terrestrial neutrino detection, and by the cosmological need for a hot dark matter component. In this example, cosmic ray neutrinos from distant, highest energy sources annihilate relatively nearby on the relic neutrino background to produce ``Z-bursts,'' highly collimated, highly boosted (γZ~1011) hadronic jets. The SM and hot Big Bang cosmology give the probability for each neutrino flavor at its resonant energy to annihilate within the halo of our galactic supercluster as likely within an order of magnitude of 1%. The kinematics are completely determined by the neutrino masses and the properties of the Z boson. The burst energy is ER=4 (eV/mν)×1021 eV, and the burst content includes, on average, thirty photons and 2.7 nucleons with super-GZK energies. The second example goes beyond SM physics to invoke relativistic magnetic monopoles as the cosmic ray primaries. Motivations for this hypothesis are twofold: (i) conventional primaries are problematic, while monopoles are naturally accelerated to E~1020 eV by galactic magnetic fields; (ii) the observed highest energy cosmic ray flux is just a few orders of magnitude below the Parker flux limit for monopoles. By matching the cosmic monopole production mechanism to the observed highest energy cosmic ray flux we estimate the monopole mass to be <~1010 GeV. Several tests of the neutrino annihilation and monopole hypotheses are indicated.

  6. Constraints on the neutrino flux in NOvA using the near detector data

    DOE PAGES

    Maan, Kuldeep K.

    2016-12-19

    NOvA, a long-baseline neutrino oscillation experiment at Fermilab, is designed to measure electron-neutrino appearance and muon-neutrino disappearance in the NuMI beam. NOvA comprises of two finely segmented liquid scintillator detectors at 14 mrad off-axis in the NuMI beam. An accurate prediction of the neutrino flux is needed for precision oscillation and cross-section measurements. Data from the hadron-production experiments and, importantly, from the NOvA Near Detector provide powerful constraints on the muon-neutrino and electron-neutrino fluxes. In particular, the measurement of the neutrino-electron elastic scattering provides an in situ constraint on the absolute flux. Lastly, this poster presents the data-driven predictions ofmore » the NOvA muonneutrino and electron-neutrino flux, and outlines future improvements in the flux determination.« less

  7. Atmospheric neutrinos and discovery of neutrino oscillations

    PubMed Central

    Kajita, Takaaki

    2010-01-01

    Neutrino oscillation was discovered through studies of neutrinos produced by cosmic-ray interactions in the atmosphere. These neutrinos are called atmospheric neutrinos. They are produced as decay products in hadronic showers resulting from collisions of cosmic rays with nuclei in the atmosphere. Electron-neutrinos and muon-neutrinos are produced mainly by the decay chain of charged pions to muons to electrons. Atmospheric neutrino experiments observed zenith-angle and energy dependent deficit of muon-neutrino events. Neutrino oscillations between muon-neutrinos and tau-neutrinos explain these data well. Neutrino oscillations imply that neutrinos have small but non-zero masses. The small neutrino masses have profound implications to our understanding of elementary particle physics and the Universe. This article discusses the experimental discovery of neutrino oscillations. PMID:20431258

  8. Kaon-nucleus scattering

    NASA Technical Reports Server (NTRS)

    Hong, Byungsik; Buck, Warren W.; Maung, Khin M.

    1989-01-01

    Two kinds of number density distributions of the nucleus, harmonic well and Woods-Saxon models, are used with the t-matrix that is taken from the scattering experiments to find a simple optical potential. The parameterized two body inputs, which are kaon-nucleon total cross sections, elastic slope parameters, and the ratio of the real to imaginary part of the forward elastic scattering amplitude, are shown. The eikonal approximation was chosen as the solution method to estimate the total and absorptive cross sections for the kaon-nucleus scattering.

  9. BOUNDS ON LEPTON FLAVOR CHANGING CURRENTS AND THE SOLAR NEUTRINO PUZZLE:. Bounds on Lepton Flavor Changing Currents

    NASA Astrophysics Data System (ADS)

    degl'Innocenti, Scilla; Ricci, Barbara

    We present a phenomenological analysis of a lepton flavor changing current, considering the case of interactions among leptons which change the neutrino flavor and are diagonal in the charged lepton sector. In the case of νe↔νµ transition, we derive a bound on the vector coupling constant GV≤0.16 GF from experimental data on νµ-e scattering. For a transition νe↔νx, from (anti) νe-e scattering experiments and from the analysis of advanced stellar evolutionary phases, we find GV≤0.55 GF. We discuss the compatibility of these data with a possible explanation of the solar neutrino puzzle. We also analyze how the present bounds can be improved in future long baseline neutrino experiments and atmospheric neutrino detectors.

  10. Measurement of the νμ charged current quasielastic cross section on carbon with the T2K on-axis neutrino beam

    NASA Astrophysics Data System (ADS)

    Abe, K.; Adam, J.; Aihara, H.; Andreopoulos, C.; Aoki, S.; Ariga, A.; Assylbekov, S.; Autiero, D.; Barbi, M.; Barker, G. J.; Barr, G.; Bartet-Friburg, P.; Bass, M.; Batkiewicz, M.; Bay, F.; Berardi, V.; Berger, B. E.; Berkman, S.; Bhadra, S.; Blaszczyk, F. d. M.; Blondel, A.; Bolognesi, S.; Bordoni, S.; Boyd, S. B.; Brailsford, D.; Bravar, A.; Bronner, C.; Buchanan, N.; Calland, R. G.; Caravaca Rodríguez, J.; Cartwright, S. L.; Castillo, R.; Catanesi, M. G.; Cervera, A.; Cherdack, D.; Chikuma, N.; Christodoulou, G.; Clifton, A.; Coleman, J.; Coleman, S. J.; Collazuol, G.; Connolly, K.; Cremonesi, L.; Dabrowska, A.; Danko, I.; Das, R.; Davis, S.; de Perio, P.; De Rosa, G.; Dealtry, T.; Dennis, S. R.; Densham, C.; Dewhurst, D.; Di Lodovico, F.; Di Luise, S.; Dolan, S.; Drapier, O.; Duffy, K.; Dumarchez, J.; Dytman, S.; Dziewiecki, M.; Emery-Schrenk, S.; Ereditato, A.; Escudero, L.; Ferchichi, C.; Feusels, T.; Finch, A. J.; Fiorentini, G. A.; Friend, M.; Fujii, Y.; Fukuda, Y.; Furmanski, A. P.; Galymov, V.; Garcia, A.; Giffin, S.; Giganti, C.; Gilje, K.; Goeldi, D.; Golan, T.; Gonin, M.; Grant, N.; Gudin, D.; Hadley, D. R.; Haegel, L.; Haesler, A.; Haigh, M. D.; Hamilton, P.; Hansen, D.; Hara, T.; Hartz, M.; Hasegawa, T.; Hastings, N. C.; Hayashino, T.; Hayato, Y.; Hearty, C.; Helmer, R. L.; Hierholzer, M.; Hignight, J.; Hillairet, A.; Himmel, A.; Hiraki, T.; Hirota, S.; Holeczek, J.; Horikawa, S.; Hosomi, F.; Huang, K.; Ichikawa, A. K.; Ieki, K.; Ieva, M.; Ikeda, M.; Imber, J.; Insler, J.; Irvine, T. J.; Ishida, T.; Ishii, T.; Iwai, E.; Iwamoto, K.; Iyogi, K.; Izmaylov, A.; Jacob, A.; Jamieson, B.; Jiang, M.; Johnson, S.; Jo, J. H.; Jonsson, P.; Jung, C. K.; Kabirnezhad, M.; Kaboth, A. C.; Kajita, T.; Kakuno, H.; Kameda, J.; Kanazawa, Y.; Karlen, D.; Karpikov, I.; Katori, T.; Kearns, E.; Khabibullin, M.; Khotjantsev, A.; Kielczewska, D.; Kikawa, T.; Kilinski, A.; Kim, J.; King, S.; Kisiel, J.; Kitching, P.; Kobayashi, T.; Koch, L.; Koga, T.; Kolaceke, A.; Konaka, A.; Kopylov, A.; Kormos, L. L.; Korzenev, A.; Koshio, Y.; Kropp, W.; Kubo, H.; Kudenko, Y.; Kurjata, R.; Kutter, T.; Lagoda, J.; Lamont, I.; Larkin, E.; Laveder, M.; Lawe, M.; Lazos, M.; Lindner, T.; Lister, C.; Litchfield, R. P.; Longhin, A.; Lopez, J. P.; Ludovici, L.; Magaletti, L.; Mahn, K.; Malek, M.; Manly, S.; Marino, A. D.; Marteau, J.; Martin, J. F.; Martins, P.; Martynenko, S.; Maruyama, T.; Matveev, V.; Mavrokoridis, K.; Mazzucato, E.; McCarthy, M.; McCauley, N.; McFarland, K. S.; McGrew, C.; Mefodiev, A.; Metelko, C.; Mezzetto, M.; Mijakowski, P.; Miller, C. A.; Minamino, A.; Mineev, O.; Missert, A.; Miura, M.; Moriyama, S.; Mueller, Th. A.; Murakami, A.; Murdoch, M.; Murphy, S.; Myslik, J.; Nakadaira, T.; Nakahata, M.; Nakamura, K. G.; Nakamura, K.; Nakayama, S.; Nakaya, T.; Nakayoshi, K.; Nantais, C.; Nielsen, C.; Nirkko, M.; Nishikawa, K.; Nishimura, Y.; Nowak, J.; O'Keeffe, H. M.; Ohta, R.; Okumura, K.; Okusawa, T.; Oryszczak, W.; Oser, S. M.; Ovsyannikova, T.; Owen, R. A.; Oyama, Y.; Palladino, V.; Palomino, J. L.; Paolone, V.; Payne, D.; Perevozchikov, O.; Perkin, J. D.; Petrov, Y.; Pickard, L.; Pinzon Guerra, E. S.; Pistillo, C.; Plonski, P.; Poplawska, E.; Popov, B.; Posiadala-Zezula, M.; Poutissou, J.-M.; Poutissou, R.; Przewlocki, P.; Quilain, B.; Radicioni, E.; Ratoff, P. N.; Ravonel, M.; Rayner, M. A. M.; Redij, A.; Reeves, M.; Reinherz-Aronis, E.; Riccio, C.; Rodrigues, P. A.; Rojas, P.; Rondio, E.; Roth, S.; Rubbia, A.; Ruterbories, D.; Rychter, A.; Sacco, R.; Sakashita, K.; Sánchez, F.; Sato, F.; Scantamburlo, E.; Scholberg, K.; Schoppmann, S.; Schwehr, J.; Scott, M.; Seiya, Y.; Sekiguchi, T.; Sekiya, H.; Sgalaberna, D.; Shah, R.; Shaker, F.; Shaw, D.; Shiozawa, M.; Short, S.; Shustrov, Y.; Sinclair, P.; Smith, B.; Smy, M.; Sobczyk, J. T.; Sobel, H.; Sorel, M.; Southwell, L.; Stamoulis, P.; Steinmann, J.; Still, B.; Suda, Y.; Suzuki, A.; Suzuki, K.; Suzuki, S. Y.; Suzuki, Y.; Tacik, R.; Tada, M.; Takahashi, S.; Takeda, A.; Takeuchi, Y.; Tanaka, H. K.; Tanaka, H. A.; Tanaka, M. M.; Terhorst, D.; Terri, R.; Thompson, L. F.; Thorley, A.; Tobayama, S.; Toki, W.; Tomura, T.; Totsuka, Y.; Touramanis, C.; Tsukamoto, T.; Tzanov, M.; Uchida, Y.; Vacheret, A.; Vagins, M.; Vasseur, G.; Wachala, T.; Wakamatsu, K.; Walter, C. W.; Wark, D.; Warzycha, W.; Wascko, M. O.; Weber, A.; Wendell, R.; Wilkes, R. J.; Wilking, M. J.; Wilkinson, C.; Williamson, Z.; Wilson, J. R.; Wilson, R. J.; Wongjirad, T.; Yamada, Y.; Yamamoto, K.; Yanagisawa, C.; Yano, T.; Yen, S.; Yershov, N.; Yokoyama, M.; Yoo, J.; Yoshida, K.; Yuan, T.; Yu, M.; Zalewska, A.; Zalipska, J.; Zambelli, L.; Zaremba, K.; Ziembicki, M.; Zimmerman, E. D.; Zito, M.; Żmuda, J.; T2K Collaboration

    2015-06-01

    We report a measurement of the νμ charged current quasielastic cross-sections on carbon in the T2K on-axis neutrino beam. The measured charged current quasielastic cross-sections on carbon at mean neutrino energies of 1.94 GeV and 0.93 GeV are (11.95 ±0.19 (stat)-1.47+1.82(syst))×1 0-39 cm2/neutron , and (10.64 ±0.37 (stat)-1.65+2.03(syst))×1 0-39 cm2/neutron , respectively. These results agree well with the predictions of neutrino interaction models. In addition, we investigated the effects of the nuclear model and the multi-nucleon interaction.

  11. Neutrino flavor transformation in the lepton-asymmetric universe

    DOE PAGES

    Johns, Lucas Andrew; Mina, Mattia; Cirigliano, Vincenzo; ...

    2016-10-01

    We investigate neutrino flavor transformation in the early Universe in the presence of a lepton asymmetry, focusing on a two-flavor system with 1–3 mixing parameters. We identify five distinct regimes that emerge in an approximate treatment neglecting collisions as the initial lepton asymmetry at high temperature is varied from values comparable to current constraints on the lepton number down to values at which the neutrino-neutrino forward-scattering potential is negligible. The characteristic phenomena occurring in these regimes are (1) large synchronized oscillations, (2) minimal flavor transformation, (3) asymmetric (ν- or ν¯-only) MSW, (4) partial MSW, and (5) symmetric MSW. We examinemore » our numerical results in the framework of adiabaticity, and we illustrate how they are modified by collisional damping. Lastly, we point out the existence of matter-neutrino resonances in the early Universe and show that they suffer from nonadiabaticity.« less

  12. Neutrino flavor transformation in the lepton-asymmetric universe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johns, Lucas Andrew; Mina, Mattia; Cirigliano, Vincenzo

    We investigate neutrino flavor transformation in the early Universe in the presence of a lepton asymmetry, focusing on a two-flavor system with 1–3 mixing parameters. We identify five distinct regimes that emerge in an approximate treatment neglecting collisions as the initial lepton asymmetry at high temperature is varied from values comparable to current constraints on the lepton number down to values at which the neutrino-neutrino forward-scattering potential is negligible. The characteristic phenomena occurring in these regimes are (1) large synchronized oscillations, (2) minimal flavor transformation, (3) asymmetric (ν- or ν¯-only) MSW, (4) partial MSW, and (5) symmetric MSW. We examinemore » our numerical results in the framework of adiabaticity, and we illustrate how they are modified by collisional damping. Lastly, we point out the existence of matter-neutrino resonances in the early Universe and show that they suffer from nonadiabaticity.« less

  13. Be 7 solar neutrino measurement with KamLAND

    DOE PAGES

    Gando, A.; Gando, Y.; Hanakago, H.; ...

    2015-11-30

    In this article, we report a measurement of the neutrino-electron elastic scattering rate of 862 keV 7Be solar neutrinos based on a 165.4 kt d exposure of KamLAND. The observed rate is 582 ± 94 (kt d) -1, which corresponds to an 862-keV 7Be solar neutrino flux of (3.26 ± 0.52) × 10 9 cm -2s -1, assuming a pure electron-flavor flux. Comparing this flux with the standard solar model prediction and further assuming three-flavor mixing, a ν e survival probability of 0.66 ± 0.15 is determined from the KamLAND data. Utilizing a global three-flavor oscillation analysis, we obtain amore » total 7Be solar neutrino flux of (5.82 ± 1.02) × 10 9 cm -2s -1, which is consistent with the standard solar model predictions.« less

  14. Kaon-nucleus scattering

    NASA Technical Reports Server (NTRS)

    Hong, Byungsik; Maung, Khin Maung; Wilson, John W.; Buck, Warren W.

    1989-01-01

    The derivations of the Lippmann-Schwinger equation and Watson multiple scattering are given. A simple optical potential is found to be the first term of that series. The number density distribution models of the nucleus, harmonic well, and Woods-Saxon are used without t-matrix taken from the scattering experiments. The parameterized two-body inputs, which are kaon-nucleon total cross sections, elastic slope parameters, and the ratio of the real to the imaginary part of the forward elastic scattering amplitude, are presented. The eikonal approximation was chosen as our solution method to estimate the total and absorptive cross sections for the kaon-nucleus scattering.

  15. BBN with electron-sterile neutrino oscillations — the finest leptometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirilova, Daniela, E-mail: dani@astro.bas.bg

    2012-06-01

    A relic lepton asymmetry orders of magnitude bigger than the baryon one may hide in the relic neutrino background. No direct theoretical or experimental limitations on its magnitude and sign are known. Only indirect cosmological constraints exist ranging from |L| < 0.01 to L < 10. Here we discuss a Big Bang Nucleosynthesis (BBN) model with late electron-sterile neutrino oscillations. The influence of L on neutrino oscillations and on nucleons freezing in the pre-BBN epoch is numerically analyzed in the full range of the oscillation parameters of the model and for |L| ≥ 10{sup −10}. The asymmetry-oscillations interplay is studiedmore » in detail and the behavior of L for different oscillation parameters is found. L effect on the primordially produced {sup 4}He is precisely studied. It is shown that this BBN model is a fine leptometer, capable of feeling extremely small relic lepton asymmetry — |L| > 10{sup −8}. The case of oscillations generated asymmetry by late electron-sterile oscillations and its effect on the primordial {sup 4}He is also briefly discussed. The instability region of the asymmetry growth is obtained.« less

  16. Measurement of Charged Current Coherent Pion Production by Neutrinos on Carbon at MINER$$\

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mislivec, Aaron Robert

    Neutrino-nucleus coherent pion production is a rare neutrino scattering process where the squared four-momentum transferred to the nucleus is small, a lepton and pion are produced in the forward direction, and the nucleus remains in its initial state. This process is an important background in neutrino oscillation experiments. Measurements of coherent pion production are needed to constrain models which are used to predict coherent pion production in oscillation experiments. This thesis reports measurements of νµ and νµ charged current coherent pion production on carbon for neutrino energies in the range 2 < Eν < 20 GeV. The measurements were mademore » using data from MINERνA, which is a dedicated neutrino-nucleus scattering experiment that uses a fi scintillator tracking detector in the high-intensity NuMI neutrino beam at Fermilab. Coherent interactions were isolated from the data using only model-independent signatures of the reaction, which are a forward muon and pion, no evidence of nuclear breakup, and small four-momentum transfer to the nucleus. The measurements were compared to the coherent pion production model used by oscillation experiments. The data and model agree in the total interaction rate and are similar in the dependence of the interaction rate on the squared four- momentum transferred from the neutrino. The data and model disagree significantly in the pion kinematics. The measured νµ and νµ interaction rates are consistent, which supports model predictions that the neutrino and antineutrino interaction rates are equal.« less

  17. Sum rules for quasifree scattering of hadrons

    NASA Astrophysics Data System (ADS)

    Peterson, R. J.

    2018-02-01

    The areas d σ /d Ω of fitted quasifree scattering peaks from bound nucleons for continuum hadron-nucleus spectra measuring d2σ /d Ω d ω are converted to sum rules akin to the Coulomb sums familiar from continuum electron scattering spectra from nuclear charge. Hadronic spectra with or without charge exchange of the beam are considered. These sums are compared to the simple expectations of a nonrelativistic Fermi gas, including a Pauli blocking factor. For scattering without charge exchange, the hadronic sums are below this expectation, as also observed with Coulomb sums. For charge exchange spectra, the sums are near or above the simple expectation, with larger uncertainties. The strong role of hadron-nucleon in-medium total cross sections is noted from use of the Glauber model.

  18. Neutrino-antineutrino pair production by hadronic bremsstrahlung

    NASA Astrophysics Data System (ADS)

    Bacca, Sonia

    2016-09-01

    I will report on recent calculations of neutrino-antineutrino pair production from bremsstrahlung processes in hadronic collisions and consider temperature conditions relevant for core collapse supernovae. Earlier studies on bremsstrahlung from neutron-neutron collisions showed that the approximation used in typical supernova simulation to model this process differs by about a factor of 2 from predictions based on chiral effective field theory, where the chiral expansion of two-body forces is considered up to the next-to-next-to-next-to-leading order. When the density of neutrons is large enough this process may compete with other non-hadronic reactions in the production of neutrinos, in particular in the case of μ and τ neutrinos, which are not generated by charged-current reactions. A natural question to ask is then: what is the effect of neutrino pair production from collisions of neutrons with finite nuclei? To tackle this question, we recently have addressed the case of neutron- α collisions, given that in the P-wave channels the neutron- α scattering features a resonance near 1 MeV. We find that the resonance leads to an enhanced contribution in the neutron spin structure function at temperatures in the range of 0 . 1 - 4 MeV. For significant density fractions of α in this temperature range, this process is competitive with contributions from neutron-neutron scattering. TRIUMF receives federal funding via a contribution agreement with the National Research Council of Canada. This work was supported in parts by the Natural Sciences and Engineering Research Council (Grant Number SAPIN-2015-0003).

  19. Nucleon resonance structure in the finite volume of lattice QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Jia -Jun; Kamano, H.; Lee, T. -S. H.

    An approach for relating the nucleon resonances extracted from πN reaction data to lattice QCD calculations has been developed by using the finite-volume Hamiltonian method. Within models of πN reactions, bare states are introduced to parametrize the intrinsic excitations of the nucleon. We show that the resonance can be related to the probability P N*(E) of finding the bare state, N*, in the πN scattering states in infinite volume. We further demonstrate that the probability P V N*(E) of finding the same bare states in the eigenfunctions of the underlying Hamiltonian in finite volume approaches P N*(E) as the volumemore » increases. Our findings suggest that the comparison of P N*(E) and P V N*(E) can be used to examine whether the nucleon resonances extracted from the πN reaction data within the dynamical models are consistent with lattice QCD calculation. We also discuss the measurement of P V N*(E) directly from lattice QCD. Furthermore, the practical differences between our approach and the approach using the Lüscher formalism to relate LQCD calculations to the nucleon resonance poles embedded in the data are also discussed.« less

  20. Nucleon resonance structure in the finite volume of lattice QCD

    DOE PAGES

    Wu, Jia -Jun; Kamano, H.; Lee, T. -S. H.; ...

    2017-06-19

    An approach for relating the nucleon resonances extracted from πN reaction data to lattice QCD calculations has been developed by using the finite-volume Hamiltonian method. Within models of πN reactions, bare states are introduced to parametrize the intrinsic excitations of the nucleon. We show that the resonance can be related to the probability P N*(E) of finding the bare state, N*, in the πN scattering states in infinite volume. We further demonstrate that the probability P V N*(E) of finding the same bare states in the eigenfunctions of the underlying Hamiltonian in finite volume approaches P N*(E) as the volumemore » increases. Our findings suggest that the comparison of P N*(E) and P V N*(E) can be used to examine whether the nucleon resonances extracted from the πN reaction data within the dynamical models are consistent with lattice QCD calculation. We also discuss the measurement of P V N*(E) directly from lattice QCD. Furthermore, the practical differences between our approach and the approach using the Lüscher formalism to relate LQCD calculations to the nucleon resonance poles embedded in the data are also discussed.« less

  1. Analyzing power Ay(θ) of n-3He elastic scattering between 1.60 and 5.54 MeV.

    PubMed

    Esterline, J; Tornow, W; Deltuva, A; Fonseca, A C

    2013-04-12

    Comprehensive and high-accuracy n-3He elastic scattering analyzing power Ay(θ) angular distributions were obtained at five incident neutron energies between 1.60 and 5.54 MeV. The data are compared to rigorous four-nucleon calculations using high-precision nucleon-nucleon potential models; three-nucleon force effects are found to be very small. The agreement between data and calculations is fair at the lower energies and becomes less satisfactory with increasing neutron energy. Comparison to p-3He scattering over the same energy range exhibits unexpectedly large isospin effects.

  2. First Measurement of Monoenergetic Muon Neutrino Charged Current Interactions

    NASA Astrophysics Data System (ADS)

    Aguilar-Arevalo, A. A.; Brown, B. C.; Bugel, L.; Cheng, G.; Church, E. D.; Conrad, J. M.; Cooper, R. L.; Dharmapalan, R.; Djurcic, Z.; Finley, D. A.; Fitzpatrick, R. S.; Ford, R.; Garcia, F. G.; Garvey, G. T.; Grange, J.; Huelsnitz, W.; Ignarra, C.; Imlay, R.; Johnson, R. A.; Jordan, J. R.; Karagiorgi, G.; Katori, T.; Kobilarcik, T.; Louis, W. C.; Mahn, K.; Mariani, C.; Marsh, W.; Mills, G. B.; Mirabal, J.; Moore, C. D.; Mousseau, J.; Nienaber, P.; Osmanov, B.; Pavlovic, Z.; Perevalov, D.; Ray, H.; Roe, B. P.; Russell, A. D.; Shaevitz, M. H.; Spitz, J.; Stancu, I.; Tayloe, R.; Thornton, R. T.; Van de Water, R. G.; Wascko, M. O.; White, D. H.; Wickremasinghe, D. A.; Zeller, G. P.; Zimmerman, E. D.; MiniBooNE Collaboration

    2018-04-01

    We report the first measurement of monoenergetic muon neutrino charged current interactions. MiniBooNE has isolated 236 MeV muon neutrino events originating from charged kaon decay at rest (K+→μ+νμ) at the NuMI beamline absorber. These signal νμ -carbon events are distinguished from primarily pion decay in flight νμ and ν¯μ backgrounds produced at the target station and decay pipe using their arrival time and reconstructed muon energy. The significance of the signal observation is at the 3.9 σ level. The muon kinetic energy, neutrino-nucleus energy transfer (ω =Eν-Eμ), and total cross section for these events are extracted. This result is the first known-energy, weak-interaction-only probe of the nucleus to yield a measurement of ω using neutrinos, a quantity thus far only accessible through electron scattering.

  3. Studies of the nucleon structure in back-to-back SIDIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avakian, Harut

    2016-03-01

    The Deep Inelastic Scattering (DIS) proved to be a great tool in testing of the theory of strong interactions, which was a major focus in last decades. Semi-Inclusive DIS (SIDIS), with detection of an additional hadron allowed first studies of 3D structure of the nucleon, moving the main focus from testing the QCD to understanding of strong interactions and quark gluon dynamics to address a number of puzzles accumulated in recent years. Detection of two hadrons in SIDIS, which is even more complicated, provides access to details of quark gluon interactions inaccessible in single-hadron SIDIS, providing a new avenue tomore » study the complex nucleon structure. Large acceptance of the Electron Ion Collider, allowing detection of two hadrons, produced back-to-back in the current and target fragmentation regions, combined with clear separation of two regions, would provide a unique possibility to study the nucleon structure in target fragmentation region, and correlations of target and current fragmentation regions.« less

  4. Generalized polarizabilities of the nucleon in baryon chiral perturbation theory

    NASA Astrophysics Data System (ADS)

    Lensky, Vadim; Pascalutsa, Vladimir; Vanderhaeghen, Marc

    2017-02-01

    The nucleon generalized polarizabilities (GPs), probed in virtual Compton scattering (VCS), describe the spatial distribution of the polarization density in a nucleon. They are accessed experimentally via the process of electron-proton bremsstrahlung (ep→ epγ ) at electron-beam facilities, such as MIT-Bates, CEBAF (Jefferson Lab), and MAMI (Mainz). We present the calculation of the nucleon GPs and VCS observables at next-to-leading order in baryon chiral perturbation theory (Bχ PT), and confront the results with the empirical information. At this order our results are predictions, in the sense that all the parameters are well known from elsewhere. Within the relatively large uncertainties of our calculation we find good agreement with the experimental observations of VCS and the empirical extractions of the GPs. We find large discrepancies with previous chiral calculations - all done in heavy-baryon χ PT (HBχ PT) - and discuss the differences between Bχ PT and HBχ PT responsible for these discrepancies.

  5. Precision Measurement of the Be7 Solar Neutrino Interaction Rate in Borexino

    NASA Astrophysics Data System (ADS)

    Bellini, G.; Benziger, J.; Bick, D.; Bonetti, S.; Bonfini, G.; Buizza Avanzini, M.; Caccianiga, B.; Cadonati, L.; Calaprice, F.; Carraro, C.; Cavalcante, P.; Chavarria, A.; D'Angelo, D.; Davini, S.; Derbin, A.; Etenko, A.; Fomenko, K.; Franco, D.; Galbiati, C.; Gazzana, S.; Ghiano, C.; Giammarchi, M.; Goeger-Neff, M.; Goretti, A.; Grandi, L.; Guardincerri, E.; Hardy, S.; Ianni, Aldo; Ianni, Andrea; Kobychev, V.; Korablev, D.; Korga, G.; Koshio, Y.; Kryn, D.; Laubenstein, M.; Lewke, T.; Litvinovich, E.; Loer, B.; Lombardi, F.; Lombardi, P.; Ludhova, L.; Machulin, I.; Manecki, S.; Maneschg, W.; Manuzio, G.; Meindl, Q.; Meroni, E.; Miramonti, L.; Misiaszek, M.; Montanari, D.; Mosteiro, P.; Muratova, V.; Oberauer, L.; Obolensky, M.; Ortica, F.; Pallavicini, M.; Papp, L.; Peña-Garay, C.; Perasso, L.; Perasso, S.; Pocar, A.; Raghavan, R. S.; Ranucci, G.; Razeto, A.; Re, A.; Romani, A.; Sabelnikov, A.; Saldanha, R.; Salvo, C.; Schönert, S.; Simgen, H.; Skorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Sukhotin, S.; Suvorov, Y.; Tartaglia, R.; Testera, G.; Vignaud, D.; Vogelaar, R. B.; von Feilitzsch, F.; Winter, J.; Wojcik, M.; Wright, A.; Wurm, M.; Xu, J.; Zaimidoroga, O.; Zavatarelli, S.; Zuzel, G.

    2011-09-01

    The rate of neutrino-electron elastic scattering interactions from 862 keV Be7 solar neutrinos in Borexino is determined to be 46.0±1.5(stat)-1.6+1.5(syst)counts/(day·100ton). This corresponds to a νe-equivalent Be7 solar neutrino flux of (3.10±0.15)×109cm-2s-1 and, under the assumption of νe transition to other active neutrino flavours, yields an electron neutrino survival probability of 0.51±0.07 at 862 keV. The no flavor change hypothesis is ruled out at 5.0σ. A global solar neutrino analysis with free fluxes determines Φpp=6.06-0.06+0.02×1010cm-2s-1 and ΦCNO<1.3×109cm-2s-1 (95% C.L.). These results significantly improve the precision with which the Mikheyev-Smirnov-Wolfenstein large mixing angle neutrino oscillation model is experimentally tested at low energy.

  6. First Measurement of one Pion Production in Charged Current Neutrino and Antineutrino events on Argon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scanavini, Scanavini,Giacomo

    This thesis presents a work done in the context of the Fermilab Neutrino Intensity Frontier. In this analysis, the cross section of single charged pion production in charged-current neutrino and antineutrino interactions with the argon nucleus target are measured. These measurements are performed using the Argon Neutrino Test (ArgoNeuT) detector exposed to the Fermilab Neutrino From The Main Injector (NuMI) beam operating in the low energy antineutrino mode. The signal is a charged-current μ interaction in the detector, with exactly one charged pion exiting the target nucleus, with momentum above 100 MeV/c. There shouldn’t be any 0 or kaons inmore » the final state. There is no restriction on other mesons or nucleons. Total and differential cross section measurements are presented. The results are reported in terms of outgoing muon angle and momentum, outgoing pion angle and angle between outgoing pion and muon. The total cross sections, averaged over the flux, are found to be 8.2 ± 0.9 (stat) +0.9 -1.1 (syst) × 10-38 cm2 per argon nuclei and 2.5 ± 0.4 (stat) ± 0.5 (syst) × 10-37 cm2 per argon nuclei for antineutrino and neutrino respectively at a mean neutrino energy of 3.6 GeV (antineutrinos) and 9.6 GeV (neutrinos). This is the first time the single pion production in charged-current interactions cross section is measured on argon nuclei.« less

  7. High-Precision Determination of the Pion-Nucleon σ Term from Roy-Steiner Equations

    NASA Astrophysics Data System (ADS)

    Hoferichter, Martin; Ruiz de Elvira, Jacobo; Kubis, Bastian; Meißner, Ulf-G.

    2015-08-01

    We present a determination of the pion-nucleon (π N ) σ term σπ N based on the Cheng-Dashen low-energy theorem (LET), taking advantage of the recent high-precision data from pionic atoms to pin down the π N scattering lengths as well as of constraints from analyticity, unitarity, and crossing symmetry in the form of Roy-Steiner equations to perform the extrapolation to the Cheng-Dashen point in a reliable manner. With isospin-violating corrections included both in the scattering lengths and the LET, we obtain σπ N=(59.1 ±1.9 ±3.0 ) MeV =(59.1 ±3.5 ) MeV , where the first error refers to uncertainties in the π N amplitude and the second to the LET. Consequences for the scalar nucleon couplings relevant for the direct detection of dark matter are discussed.

  8. Be 7 solar neutrino measurement with KamLAND

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gando, A.; Gando, Y.; Hanakago, H.

    2015-11-30

    We report a measurement of the neutrino-electron elastic scattering rate of 862 keV 7Be solar neutrinos based on a 165.4 kt d exposure of KamLAND. The observed rate is 582±94(kt d) ₋1, which corresponds to an 862-keV 7Be solar neutrino flux of (3.26±0.52)×10 9cm ₋2s ₋1, assuming a pure electron-flavor flux. Comparing this flux with the standard solar model prediction and further assuming three-flavor mixing, a ν e survival probability of 0.66±0.15 is determined from the KamLAND data. Lastly, utilizing a global three-flavor oscillation analysis, we obtain a total 7Be solar neutrino flux of (5.82±1.02)×10 9cm ₋2s ₋1, which ismore » consistent with the standard solar model predictions.« less

  9. Sneutrino dark matter in gauged inverse seesaw models for neutrinos.

    PubMed

    An, Haipeng; Dev, P S Bhupal; Cai, Yi; Mohapatra, R N

    2012-02-24

    Extending the minimal supersymmetric standard model to explain small neutrino masses via the inverse seesaw mechanism can lead to a new light supersymmetric scalar partner which can play the role of inelastic dark matter (IDM). It is a linear combination of the superpartners of the neutral fermions in the theory (the light left-handed neutrino and two heavy standard model singlet neutrinos) which can be very light with mass in ~5-20 GeV range, as suggested by some current direct detection experiments. The IDM in this class of models has keV-scale mass splitting, which is intimately connected to the small Majorana masses of neutrinos. We predict the differential scattering rate and annual modulation of the IDM signal which can be testable at future germanium- and xenon-based detectors.

  10. Nucleon effective E-mass in neutron-rich matter from the Migdal–Luttinger jump

    DOE PAGES

    Cai, Bao-Jun; Li, Bao-An

    2016-03-25

    The well-known Migdal-Luttinger theorem states that the jump of the single-nucleon momentum distribution at the Fermi surface is equal to the inverse of the nucleon effective E-mass. Recent experiments studying short-range correlations (SRC) in nuclei using electron-nucleus scatterings at the Jefferson National Laboratory (JLAB) together with model calculations constrained significantly the Migdal-Luttinger jump at saturation density of nuclear matter. We show that the corresponding nucleon effective E-mass is consequently constrained to M-0(*,E)/M approximate to 2.22 +/- 0.35 in symmetric nuclear matter (SNM) and the E-mass of neutrons is smaller than that of protons in neutron-rich matter. Moreover, the average depletionmore » of the nucleon Fermi sea increases (decreases) approximately linearly with the isospin asymmetry delta according to kappa(p/n) approximate to 0.21 +/- 0.06 +/- (0.19 +/- 0.08)delta for protons (neutrons). These results will help improve our knowledge about the space-time non-locality of the single-nucleon potential in neutron-rich nucleonic matter Useful in both nuclear physics and astrophysics. (C) 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP(3).« less

  11. Nuclear surface diffuseness revealed in nucleon-nucleus diffraction

    NASA Astrophysics Data System (ADS)

    Hatakeyama, S.; Horiuchi, W.; Kohama, A.

    2018-05-01

    The nuclear surface provides useful information on nuclear radius, nuclear structure, as well as properties of nuclear matter. We discuss the relationship between the nuclear surface diffuseness and elastic scattering differential cross section at the first diffraction peak of high-energy nucleon-nucleus scattering as an efficient tool in order to extract the nuclear surface information from limited experimental data involving short-lived unstable nuclei. The high-energy reaction is described by a reliable microscopic reaction theory, the Glauber model. Extending the idea of the black sphere model, we find one-to-one correspondence between the nuclear bulk structure information and proton-nucleus elastic scattering diffraction peak. This implies that we can extract both the nuclear radius and diffuseness simultaneously, using the position of the first diffraction peak and its magnitude of the elastic scattering differential cross section. We confirm the reliability of this approach by using realistic density distributions obtained by a mean-field model.

  12. Neutrino Oscillations and the Sudbury Neutrino Observatory

    NASA Astrophysics Data System (ADS)

    Wark, David

    2001-04-01

    When the existence of the neutrino was almost apologetically first proposed by Wolfgang Pauli it was intended to explain the mysterious apparent absence of energy and momentum in beta decay. 70 years later the neutrino has indeed solved that mystery, but it has generated still more of its own. Are neutrinos massive? Is it possible to create a neutrino with its spin in the same direction as its momentum? What fraction of the mass of the Universe is made up of neutrinos? Are the flavour labels which we put on neutrinos, like electron and muon, really fixed or can they change? Why does no experiment see the predicted flux of neutrinos from the Sun? Why do there appear to be roughly equal numbers of muon and electron neutrinos created in our atmosphere, rather than the 2:1 ratio we would expect? Many of these questions were coupled when Bruno Pontecorvo first suggested that the shortfall in solar neutrino measurements were caused by neutrino oscillations - neutrinos spontaneously changing flavour as they travel from the Sun. 30 years later we still await definitive proof of that conjecture, and providing that proof is the reason for the Sudbury Neutrino Observatory. The talk will discuss the current state of neutrino oscillations studies, and show how the unique capabilities of the Sudbury Neutrino Observatory can provide definitive proof of whether neutrino oscillations are the long-sought answer to the solar neutrino problem.

  13. A next-to-leading-order QCD analysis of neutrino-iron structure functions at the Tevatron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seligman, William Glenn

    1997-01-01

    Nucleon structure functions measured in neutrino-iron and antineutrino-iron charged-current interactions are presented. The data were taken in two high-energy high-statistics runs by the LAB-E detector at the Fermilab Tevatron. Structure functions are extracted from a sample of 950,000 neutrino and 170,000 antineutrino events with neutrino energies from 30 to 360 GeV. The structure functions F 2 and xF 3 are compared with the predictions of perturbative Quantum Chromodynamics (PQCD). The combined non-singlet and singlet evolution in the context of PQCD gives value of ΛNLO,(4)/MS = 337 ± 28 (exp.) MeV, which corresponds to α S(M Z 2) = 0.119 ±more » 0.002 (exp.) ± 0.004 (theory), and with a gluon distribution given by xG(x,Q 0 2 = 5GeV 2) = (2.22 ± 0.34) x (1 - x) 4.65±0.68.« less

  14. A Next-to-Leading Order QCD Analysis of Neutrino - Iron Structure Functions at the Tevatron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seligman, William Glenn

    1997-01-01

    Nucleon structure functions measured in neutrino-iron and antineutrinoiron charged-current interactions are presented. The data were taken in two high-energy high-statistics runs by the LAB-E detector at the Fermilab Tevatron. Structure functions are extracted from a sample of 950,000 neutrino and 170,000 antineutrino events with neutrino energies from 30 to 360 Ge V. The structure functionsmore » $$F_2$$ and $$xF_3$$ are compared with the the predictions of perturbative Quantum Chromodynamics (PQCD). The combined non-singlet and singlet evolution in the context of PQCD gives NL0(4) . 2 value of $$\\Lambda^{NLO,(4)}_{\\overline MS}$$ = 337 ± 28 (exp.) MeV, which corresponds to $$\\alpha_s$$ ($$M^2_z$$) = 0.119 ± 0.002 (exp.) ± 0.004 (theory), and with a gluon distribution given by $$xG(x,Q^2_0 = 5 GeV^2$$ ) = (2.22±0.34) x ($$1-x)^{4.65 \\pm 0.68}$$« less

  15. Quark-mass dependence of two-nucleon observables

    NASA Astrophysics Data System (ADS)

    Chen, Jiunn-Wei; Lee, Tze-Kei; Liu, C.-P.; Liu, Yu-Sheng

    2012-11-01

    We study the potential implications of lattice QCD determinations of the S-wave nucleon-nucleon scattering lengths with unphysical light quark masses. If the light quark masses are small enough such that nuclear effective field theory (NEFT) can be used to perform quark-mass extrapolations, then the leading quark-mass dependence of not only the effective range and the two-body current, but also all the low-energy deuteron matrix elements up to next-to-leading-order in NEFT can be obtained. As a proof of principle, we compute the quark-mass dependence of the deuteron charge radius, magnetic moment, polarizability, and the deuteron photodisintegration cross section using the lattice calculation of the scattering lengths at 354 MeV pion mass by the ``Nuclear Physics with Lattice QCD'' (NPLQCD) collaboration and the NEFT power counting scheme of Beane, Kaplan, and Vuorinen (BKV), even though it is not yet established that the 354 MeV pion mass is within the radius of convergence of the BKV scheme. Once the lattice result with quark mass within the NEFT radius of convergence is obtained, our observation can be used to constrain the time variation of isoscalar combination of u and d quark mass mq, to help the anthropic principle study to find the mq range that allows the existence of life, and to provide a weak test of the multiverse conjecture.

  16. Exclusion limits on the WIMP nucleon elastic scattering cross-section from the Cryogenic Dark Matter Search

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golwala, Sunil Ramanlal

    2000-01-01

    Extensive evidence indicates that a large fraction of the matter in the universe is nonluminous, nonbaryonic, and “cold” — nonrelativistic at the time matter began to dominate the energy density of the universe. Weakly Interacting Massive Particles (WIMPs) are an excellent candidate for nonbaryonic, cold dark matter. Minimal supersymmetry provides a natural WIMP candidate in the form of the lightest superpartner, with a typical mass Mδ ~ 100 GeV c-2 . WIMPs are expected to have collapsed into a roughly isothermal, spherical halo within which the visible portion of our galaxy resides. They would scatter off nuclei via the weakmore » interaction, potentially allowingtheir direct detection. The Cryogenic Dark Matter Search (CDMS) employs Ge and Si detectors to search for WIMPs via their elastic-scatteringinteractions with nuclei while discriminatingagainst interactions of background particles. The former yield nuclear recoils while the latter produce electron recoils. The ionization yield (the ratio of ionization production to recoil energy in a semiconductor) of a particle interaction differs greatly for nuclear and electron recoils. CDMS detectors measure phonon and electron-hole-pair production to determine recoil energy and ionization yield for each event and thereby discriminate nuclear recoils from electron recoils. This dissertation reports new limits on the spin-independent WIMP-nucleon elastic-scattering cross section that exclude unexplored parameter space above 10 GeV c-2 WIMP mass and, at > 75% CL, the entire 3σ allowed region for the WIMP signal reported by the DAMA experiment. The experimental apparatus, detector performance, and data analysis are fully described.« less

  17. Neutrino production in electromagnetic cascades: An extra component of cosmogenic neutrino at ultrahigh energies

    NASA Astrophysics Data System (ADS)

    Wang, Kai; Liu, Ruo-Yu; Li, Zhuo; Dai, Zi-Gao

    2017-03-01

    Muon pairs can be produced in the annihilation of ultrahigh energy (UHE, E ≳1 018 eV ) photons with low energy cosmic background radiation in the intergalactic space, giving birth to neutrinos. Although the branching ratio of muon pair production is low, products of other channels, which are mainly electron/positron pairs, will probably transfer most of their energies into the new generated UHE photon in the subsequent interaction with the cosmic background radiation via Compton scattering in deep Klein-Nishina regime. The regeneration of these new UHE photons then provides a second chance to produce the muon pairs, enhancing the neutrino flux. We investigate the neutrino production in the propagation of UHE photons in the intergalactic space at different redshifts, considering various competing processes such as pair production, double pair production for UHE photons, and triplet production and synchrotron radiation for UHE electrons. Following the analytic method raised by Gould and Rephaeli, we firstly study the electromagnetic cascade initiated by an UHE photon, with paying particular attention to the leading particle in the cascade process. Regarding the least energetic outgoing particles as energy loss, we obtain the effective penetration length of the leading particle, as well as energy loss rate including the neutrino emission rate in the cascade process. Finally, we find that an extra component of UHE neutrinos will arise from the propagation of UHE cosmic rays due to the generated UHE photons and electron/positrons. However, the flux of this component is quite small, with a flux of at most 10% of that of the conventional cosmogenic neutrino at a few EeV, in the absence of a strong intergalactic magnetic field and a strong cosmic radio background. The precise contribution of extra component depends on several factors, e.g., cosmic radio background, intergalactic magnetic field, and the spectrum of proton, which are discussed in this work.

  18. Energetic neutrinos from heavy-neutralino annihilation in the Sun. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Kamionkowski, Marc

    1991-01-01

    Neutralinos may be captured in the sun and annihilated therein producing high-energy neutrinos. Present limits on the flux of such neutrinos from underground detectors such as IMB and Kamiokande 2 may be used to rule out certain supersymmetric dark matter candidates, while in many other supersymmetric models the rates are large enough that if neutralinos do reside in the galactic halo, observation of a neutrino signal may be possible in the near future. Neutralinos that are either nearly pure Higgsino or a Higgsino/gaugino combination are generally captured in the sun by coherent scattering off nuclei via exchange of the lightest Higgs boson. If the squark mass is not much greater than the neutralino mass, then capture of neutralinos that are primarily gaugino occurs predominantly by spin-dependent scattering off hydrogen in the sun. The neutrino signal from annihilation of WIMPs with masses in the range of 80 to 1000 GeV in the sun should generally be stronger than that from weakly interacting massive particle (WIMP) annihilation in the earth, and detection rates for mixed-state neutralinos are generally higher than those for Higgsinos or gauginos.

  19. CNO neutrino Grand Prix: the race to solve the solar metallicity problem

    NASA Astrophysics Data System (ADS)

    Cerdeño, David G.; Davis, Jonathan H.; Fairbairn, Malcolm; Vincent, Aaron C.

    2018-04-01

    Several next-generation experiments aim to make the first measurement of the neutrino flux from the Carbon-Nitrogen-Oxygen (CNO) solar fusion cycle. We calculate how much time these experiments will need to run for in order to measure this flux with enough precision to tell us the metal content of the Sun's core, and thereby help to solve the solar metallicity problem. For experiments looking at neutrino-electron scattering, we find that SNO+ will measure this CNO neutrino flux with enough precision after five years in its pure scintillator mode, provided its 210Bi background is measured to 1% accuracy. By comparison, a 100 ton liquid argon experiment such as Argo will take ten years in Gran Sasso lab, or five years in SNOLAB or Jinping. Borexino could obtain this precision in ten years, but this projection is very sensitive to background assumptions. For experiments looking at neutrino-nucleus scattering, the best prospects are obtained for low-threshold solid state detectors (employing either germanium or silicon). These would require new technologies to lower the experimental threshold close to detection of single electron-hole pairs, and exposures beyond those projected for next-generation dark matter detectors.

  20. Neutron Measurements and the Weak Nucleon-Nucleon Interaction

    PubMed Central

    Snow, W. M.

    2005-01-01

    The weak interaction between nucleons remains one of the most poorly-understood sectors of the Standard Model. A quantitative description of this interaction is needed to understand weak interaction phenomena in atomic, nuclear, and hadronic systems. This paper summarizes briefly what is known about the weak nucleon-nucleon interaction, tries to place this phenomenon in the context of other studies of the weak and strong interactions, and outlines a set of measurements involving low energy neutrons which can lead to significant experimental progress. PMID:27308120

  1. Proceedings of RIKEN BNL Research Center Workshop: Brookhaven Summer Program on Nucleon Spin Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aschenauer, A.; Qiu, Jianwei; Vogelsang, W.

    Understanding the structure of the nucleon is of fundamental importance in sub-atomic physics. Already the experimental studies on the electro-magnetic form factors in the 1950s showed that the nucleon has a nontrivial internal structure, and the deep inelastic scattering experiments in the 1970s revealed the partonic substructure of the nucleon. Modern research focuses in particular on the spin and the gluonic structure of the nucleon. Experiments using deep inelastic scattering or polarized p-p collisions are carried out in the US at the CEBAF and RHIC facilities, respectively, and there are other experimental facilities around the world. More than twenty yearsmore » ago, the European Muon Collaboration published their first experimental results on the proton spin structure as revealed in polarized deep inelastic lepton-nucleon scattering, and concluded that quarks contribute very little to the proton's spin. With additional experimental and theoretical investigations and progress in the following years, it is now established that, contrary to naive quark model expectations, quarks and anti-quarks carry only about 30% of the total spin of the proton. Twenty years later, the discovery from the polarized hadron collider at RHIC was equally surprising. For the phase space probed by existing RHIC experiments, gluons do not seem to contribute any to the proton's spin. To find out what carries the remaining part of proton's spin is a key focus in current hadronic physics and also a major driving force for the new generation of spin experiments at RHIC and Jefferson Lab and at a future Electron Ion Collider. It is therefore very important and timely to organize a series of annual spin physics meetings to summarize the status of proton spin physics, to focus the effort, and to layout the future perspectives. This summer program on 'Nucleon Spin Physics' held at Brookhaven National Laboratory (BNL) on July 14-27, 2010 [http://www.bnl.gov/spnsp/] is the second one

  2. Nuclear medium effects in muonic neutrino interactions with energies from 0.2 to 1.5 GeV

    NASA Astrophysics Data System (ADS)

    Vargas, D.; Samana, A. R.; Velasco, F. G.; Hoyos, O. R.; Guzmán, F.; Bernal-Castillo, J. L.; Andrade-II, E.; Perez, R.; Deppman, A.; Barbero, C. A.; Mariano, A. E.

    2017-11-01

    Nuclear reactions induced by muon neutrinos with energies from 0.2 to 1.5 GeV in the Monte Carlo calculation framework in the intranuclear cascade model are studied. This study was done by comparing the available experimental data and theoretical values of total cross section, and the energy distribution of emitted lepton energy in the reaction muon neutrino nucleus, using the targets 12C, 16O, 27Al, 40Ar, 56Fe, and 208Pb. A phenomenological model of primary neutrino-nucleon interaction gives good agreement between our theoretical inclusive neutrino nucleus cross section and the available experimental data. Some interesting results on the behavior of the cross section as function of 1 p -1 n and higher contributions are also sketched. The previous results on the fraction of fake events in available experiments in 12C were expanded for the set of studied nuclei. With the increase of mass targets, the nuclear effects in the cross sections were observed and the importance of taking into account fake events in the reactions was noted.

  3. Proportional Counter Calibration and Analysis for 12C + p Resonance Scattering

    NASA Astrophysics Data System (ADS)

    Nelson, Austin; Rogachev, Grigory; Uberseder, Ethan; Hooker, Josh; Koshchiy, Yevgen

    2014-09-01

    Light exotic nuclei provide a unique opportunity to test the predictions of modern ab initio theoretical calculations near the drip line. In ab initio approaches, nuclear structure is described starting from bare nucleon-nucleon and three-nucleon interactions. Calculations are very heavy and can only be performed for the lightest nuclei (A < 16). Experimental information on the structure of light exotic nuclei is crucial to determine the validity of these calculations and to fix the parameters for the three-nucleon forces. Resonance scattering with rare isotope beams is a very effective tool to study spectroscopy of nuclei near the drip line. A new setup was developed at the Cyclotron Institute for effective resonance scattering measurements. The setup includes ionization chamber, silicon array, and an array of proportional counters. The proportional counter array, consisting of 8 anode wires arranged in a parallel cellular grid, is used for particle identification and to track the positioning of light recoils. The main objective of this project was to test the performance and perform position calibration of this proportional counter array. The test was done using 12C beam. The excitation function for 12C + p elastic scattering was measured and calibration of the proportional counter was performed using known resonances in 13N. The method of calibration, including solid angle calculations, normalization corrections, and position calibration will be presented. Light exotic nuclei provide a unique opportunity to test the predictions of modern ab initio theoretical calculations near the drip line. In ab initio approaches, nuclear structure is described starting from bare nucleon-nucleon and three-nucleon interactions. Calculations are very heavy and can only be performed for the lightest nuclei (A < 16). Experimental information on the structure of light exotic nuclei is crucial to determine the validity of these calculations and to fix the parameters for the three-nucleon

  4. Renormalization of the Brazilian chiral nucleon-nucleon potential

    NASA Astrophysics Data System (ADS)

    Da Rocha, Carlos A.; Timóteo, Varese S.

    2013-03-01

    In this work we present a renormalization of the Brazilian nucleon-nucleon (NN) potential using a subtractive method. We show that the exchange of correlated two pion is important for isovector channels, mainly in tensor and central potentials.

  5. High-Precision Determination of the Pion-Nucleon σ Term from Roy-Steiner Equations.

    PubMed

    Hoferichter, Martin; Ruiz de Elvira, Jacobo; Kubis, Bastian; Meißner, Ulf-G

    2015-08-28

    We present a determination of the pion-nucleon (πN) σ term σ_{πN} based on the Cheng-Dashen low-energy theorem (LET), taking advantage of the recent high-precision data from pionic atoms to pin down the πN scattering lengths as well as of constraints from analyticity, unitarity, and crossing symmetry in the form of Roy-Steiner equations to perform the extrapolation to the Cheng-Dashen point in a reliable manner. With isospin-violating corrections included both in the scattering lengths and the LET, we obtain σ_{πN}=(59.1±1.9±3.0)  MeV=(59.1±3.5)  MeV, where the first error refers to uncertainties in the πN amplitude and the second to the LET. Consequences for the scalar nucleon couplings relevant for the direct detection of dark matter are discussed.

  6. Measurement of the single π0 production rate in neutral current neutrino interactions on water

    NASA Astrophysics Data System (ADS)

    Abe, K.; Amey, J.; Andreopoulos, C.; Antonova, M.; Aoki, S.; Ariga, A.; Ashida, Y.; Assylbekov, S.; Autiero, D.; Ban, S.; Barbi, M.; Barker, G. J.; Barr, G.; Barry, C.; Bartet-Friburg, P.; Batkiewicz, M.; Berardi, V.; Berkman, S.; Bhadra, S.; Bienstock, S.; Blondel, A.; Bolognesi, S.; Bordoni, S.; Boyd, S. B.; Brailsford, D.; Bravar, A.; Bronner, C.; Buizza Avanzini, M.; Calland, R. G.; Campbell, T.; Cao, S.; Cartwright, S. L.; Castillo, R.; Catanesi, M. G.; Cervera, A.; Chappell, A.; Checchia, C.; Cherdack, D.; Chikuma, N.; Christodoulou, G.; Clifton, A.; Coleman, J.; Collazuol, G.; Coplowe, D.; Cremonesi, L.; Cudd, A.; Dabrowska, A.; De Rosa, G.; Dealtry, T.; Denner, P. F.; Dennis, S. R.; Densham, C.; Dewhurst, D.; Di Lodovico, F.; Di Luise, S.; Dolan, S.; Drapier, O.; Duffy, K. E.; Dumarchez, J.; Dunkman, M.; Dunne, P.; Dziewiecki, M.; Emery-Schrenk, S.; Ereditato, A.; Feusels, T.; Finch, A. J.; Fiorentini, G. A.; Friend, M.; Fujii, Y.; Fukuda, D.; Fukuda, Y.; Furmanski, A. P.; Galymov, V.; Garcia, A.; Giffin, S. G.; Giganti, C.; Gilje, K.; Gizzarelli, F.; Golan, T.; Gonin, M.; Grant, N.; Hadley, D. R.; Haegel, L.; Haigh, J. T.; Hamilton, P.; Hansen, D.; Harada, J.; Hara, T.; Hartz, M.; Hasegawa, T.; Hastings, N. C.; Hayashino, T.; Hayato, Y.; Helmer, R. L.; Hierholzer, M.; Hillairet, A.; Himmel, A.; Hiraki, T.; Hiramoto, A.; Hirota, S.; Hogan, M.; Holeczek, J.; Hosomi, F.; Huang, K.; Ichikawa, A. K.; Ieki, K.; Ikeda, M.; Imber, J.; Insler, J.; Intonti, R. A.; Irvine, T. J.; Ishida, T.; Ishii, T.; Iwai, E.; Iwamoto, K.; Izmaylov, A.; Jacob, A.; Jamieson, B.; Jiang, M.; Johnson, S.; Jo, J. H.; Jonsson, P.; Jung, C. K.; Kabirnezhad, M.; Kaboth, A. C.; Kajita, T.; Kakuno, H.; Kameda, J.; Karlen, D.; Karpikov, I.; Katori, T.; Kearns, E.; Khabibullin, M.; Khotjantsev, A.; Kielczewska, D.; Kikawa, T.; Kim, H.; Kim, J.; King, S.; Kisiel, J.; Knight, A.; Knox, A.; Kobayashi, T.; Koch, L.; Koga, T.; Koller, P. P.; Konaka, A.; Kondo, K.; Kopylov, A.; Kormos, L. L.; Korzenev, A.; Koshio, Y.; Kowalik, K.; Kropp, W.; Kudenko, Y.; Kurjata, R.; Kutter, T.; Lagoda, J.; Lamont, I.; Lamoureux, M.; Larkin, E.; Lasorak, P.; Laveder, M.; Lawe, M.; Lazos, M.; Licciardi, M.; Lindner, T.; Liptak, Z. J.; Litchfield, R. P.; Li, X.; Longhin, A.; Lopez, J. P.; Lou, T.; Ludovici, L.; Lu, X.; Magaletti, L.; Mahn, K.; Malek, M.; Manly, S.; Maret, L.; Marino, A. D.; Marteau, J.; Martin, J. F.; Martins, P.; Martynenko, S.; Maruyama, T.; Matveev, V.; Mavrokoridis, K.; Ma, W. Y.; Mazzucato, E.; McCarthy, M.; McCauley, N.; McFarland, K. S.; McGrew, C.; Mefodiev, A.; Metelko, C.; Mezzetto, M.; Mijakowski, P.; Minamino, A.; Mineev, O.; Mine, S.; Missert, A.; Miura, M.; Moriyama, S.; Morrison, J.; Mueller, Th. A.; Murphy, S.; Myslik, J.; Nakadaira, T.; Nakahata, M.; Nakamura, K. G.; Nakamura, K.; Nakamura, K. D.; Nakanishi, Y.; Nakayama, S.; Nakaya, T.; Nakayoshi, K.; Nantais, C.; Nielsen, C.; Nirkko, M.; Nishikawa, K.; Nishimura, Y.; Novella, P.; Nowak, J.; O'Keeffe, H. M.; Ohta, R.; Okumura, K.; Okusawa, T.; Oryszczak, W.; Oser, S. M.; Ovsyannikova, T.; Owen, R. A.; Oyama, Y.; Palladino, V.; Palomino, J. L.; Paolone, V.; Patel, N. D.; Paudyal, P.; Pavin, M.; Payne, D.; Perkin, J. D.; Petrov, Y.; Pickard, L.; Pickering, L.; Pinzon Guerra, E. S.; Pistillo, C.; Popov, B.; Posiadala-Zezula, M.; Poutissou, J.-M.; Poutissou, R.; Pritchard, A.; Przewlocki, P.; Quilain, B.; Radermacher, T.; Radicioni, E.; Ratoff, P. N.; Ravonel, M.; Rayner, M. A.; Redij, A.; Reinherz-Aronis, E.; Riccio, C.; Rojas, P.; Rondio, E.; Rossi, B.; Roth, S.; Rubbia, A.; Ruggeri, A. C.; Rychter, A.; Sacco, R.; Sakashita, K.; Sánchez, F.; Sato, F.; Scantamburlo, E.; Scholberg, K.; Schwehr, J.; Scott, M.; Seiya, Y.; Sekiguchi, T.; Sekiya, H.; Sgalaberna, D.; Shah, R.; Shaikhiev, A.; Shaker, F.; Shaw, D.; Shiozawa, M.; Shirahige, T.; Short, S.; Smy, M.; Sobczyk, J. T.; Sobel, H.; Sorel, M.; Southwell, L.; Stamoulis, P.; Steinmann, J.; Stewart, T.; Stowell, P.; Suda, Y.; Suvorov, S.; Suzuki, A.; Suzuki, K.; Suzuki, S. Y.; Suzuki, Y.; Tacik, R.; Tada, M.; Takahashi, S.; Takeda, A.; Takeuchi, Y.; Tamura, R.; Tanaka, H. K.; Tanaka, H. A.; Terhorst, D.; Terri, R.; Thakore, T.; Thompson, L. F.; Tobayama, S.; Toki, W.; Tomura, T.; Touramanis, C.; Tsukamoto, T.; Tzanov, M.; Uchida, Y.; Vacheret, A.; Vagins, M.; Vallari, Z.; Vasseur, G.; Vilela, C.; Vladisavljevic, T.; Wachala, T.; Wakamatsu, K.; Walter, C. W.; Wark, D.; Warzycha, W.; Wascko, M. O.; Weber, A.; Wendell, R.; Wilkes, R. J.; Wilking, M. J.; Wilkinson, C.; Wilson, J. R.; Wilson, R. J.; Wret, C.; Yamada, Y.; Yamamoto, K.; Yamamoto, M.; Yanagisawa, C.; Yano, T.; Yen, S.; Yershov, N.; Yokoyama, M.; Yoo, J.; Yoshida, K.; Yuan, T.; Yu, M.; Zalewska, A.; Zalipska, J.; Zambelli, L.; Zaremba, K.; Ziembicki, M.; Zimmerman, E. D.; Zito, M.; Żmuda, J.; T2K Collaboration

    2018-02-01

    The single π0 production rate in neutral current neutrino interactions on water in a neutrino beam with a peak neutrino energy of 0.6 GeV has been measured using the PØD, one of the subdetectors of the T2K near detector. The production rate was measured for data taking periods when the PØD contained water (2.64 ×1020 protons-on-target) and also periods without water (3.49 ×1020 protons-on-target). A measurement of the neutral current single π0 production rate on water is made using appropriate subtraction of the production rate with water in from the rate with water out of the target region. The subtraction analysis yields 106 ±41 ±69 signal events where the uncertainties are statistical (stat.) and systematic (sys.) respectively. This is consistent with the prediction of 157 events from the nominal simulation. The measured to expected ratio is 0.68 ±0.26 (stat ) ±0.44 (sys ) ±0.12 (flux ) . The nominal simulation uses a flux integrated cross section of 7.63 ×10-39 cm2 per nucleon with an average neutrino interaction energy of 1.3 GeV.

  7. Sum rules across the unpolarized Compton processes involving generalized polarizabilities and moments of nucleon structure functions

    NASA Astrophysics Data System (ADS)

    Lensky, Vadim; Hagelstein, Franziska; Pascalutsa, Vladimir; Vanderhaeghen, Marc

    2018-04-01

    We derive two new sum rules for the unpolarized doubly virtual Compton scattering process on a nucleon, which establish novel low-Q2 relations involving the nucleon's generalized polarizabilities and moments of the nucleon's unpolarized structure functions F1(x ,Q2) and F2(x ,Q2). These relations facilitate the determination of some structure constants which can only be accessed in off-forward doubly virtual Compton scattering, not experimentally accessible at present. We perform an empirical determination for the proton and compare our results with a next-to-leading-order chiral perturbation theory prediction. We also show how these relations may be useful for a model-independent determination of the low-Q2 subtraction function in the Compton amplitude, which enters the two-photon-exchange contribution to the Lamb shift of (muonic) hydrogen. An explicit calculation of the Δ (1232 )-resonance contribution to the muonic-hydrogen 2 P -2 S Lamb shift yields -1 ±1 μ eV , confirming the previously conjectured smallness of this effect.

  8. Robust constraints and novel gamma-ray signatures of dark matter that interacts strongly with nucleons

    NASA Astrophysics Data System (ADS)

    Hooper, Dan; McDermott, Samuel D.

    2018-06-01

    Due to shielding, direct detection experiments are in some cases insensitive to dark matter candidates with very large scattering cross sections with nucleons. In this paper, we revisit this class of models and derive a simple analytic criterion for conservative but robust direct detection limits. While large spin-independent cross sections seem to be ruled out, we identify potentially viable parameter space for dark matter with a spin-dependent cross section with nucleons in the range of 10-27 cm2≲σDM -p≲10-24 cm2 . With these parameters, cosmic-ray scattering with dark matter in the extended halo of the Milky Way could generate a novel and distinctive gamma-ray signal at high galactic latitudes. Such a signal could be observable by Fermi or future space-based gamma-ray telescopes.

  9. Dark matter searches for monoenergetic neutrinos arising from stopped meson decay in the Sun

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rott, Carsten; In, Seongjin; Kumar, Jason

    Dark matter can be gravitationally captured by the Sun after scattering off solar nuclei. Annihilations of the dark matter trapped and accumulated in the centre of the Sun could result in one of the most detectable and recognizable signals for dark matter. Searches for high-energy neutrinos produced in the decay of annihilation products have yielded extremely competitive constraints on the spin-dependent scattering cross sections of dark matter with nuclei. Recently, the low energy neutrino signal arising from dark-matter annihilation to quarks which then hadronize and shower has been suggested as a competitive and complementary search strategy. These high-multiplicity hadronic showersmore » give rise to a large amount of pions which will come to rest in the Sun and decay, leading to a unique sub-GeV neutrino signal. We here improve on previous works by considering the monoenergetic neutrino signal arising from both pion and kaon decay. We consider searches at liquid scintillation, liquid argon, and water Cherenkov detectors and find very competitive sensitivities for few-GeV dark matter masses.« less

  10. Measurements of Polarization Transfers in Real Compton Scattering by a proton target at JLAB. A new source of information on the 3D shape of the nucleon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fanelli, Cristiano V.

    2015-03-01

    In this thesis work, results of the analysis of the polarization transfers measured in real Compton scattering (RCS) by the Collaboration E07-002 at the Je fferson Lab Hall-C are presented. The data were collected at large scattering angle (theta_cm = 70deg) and with a polarized incident photon beam at an average energy of 3.8 GeV. Such a kind of experiments allows one to understand more deeply the reaction mechanism, that involves a real photon, by extracting both Compton form factors and Generalized Parton Distributions (GPDs) (also relevant for possibly shedding light on the total angular momentum of the nucleon). Themore » obtained results for the longitudinal and transverse polarization transfers K_LL and K_LT, are of crucial importance, since they confirm unambiguously the disagreement between experimental data and pQCD prediction, as it was found in E99-114 experiment, and favor the Handbag mechanism. The E99-114 and E07-002 results can contribute to attract new interest on the great yield of the Compton scattering by a nucleon target, as demonstrated by the recent approval of an experimental proposal submitted to the Jefferson Lab PAC 42 for a Wide-angle Compton Scattering experiment, at 8 and 10 GeV Photon Energies. The new experiments approved to run with the updated 12 GeV electron beam at JLab, are characterized by much higher luminosities, and a new GEM tracker is under development to tackle the challenging backgrounds. Within this context, we present a new multistep tracking algorithm, based on (i) a Neural Network (NN) designed for a fast and efficient association of the hits measured by the GEM detector which allows the track identification, and (ii) the application of both a Kalman filter and Rauch-Tung-Striebel smoother to further improve the track reconstruction. The full procedure, i.e. NN and filtering, appears very promising, with high performances in terms of both association effciency and reconstruction accuracy, and these preliminary

  11. Neutrino masses, neutrino oscillations, and cosmological implications

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1982-01-01

    Theoretical concepts and motivations for considering neutrinos having finite masses are discussed and the experimental situation on searches for neutrino masses and oscillations is summarized. The solar neutrino problem, reactor, deep mine and accelerator data, tri decay experiments and double beta-decay data are considered and cosmological implications and astrophysical data relating to neutrino masses are reviewed. The neutrino oscillation solution to the solar neutrino problem, the missing mass problem in galaxy halos and galaxy cluster galaxy formation and clustering, and radiative neutrino decay and the cosmic ultraviolet background radiation are examined.

  12. Final-state interactions in semi-inclusive deep inelastic scattering off the Deuteron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wim Cosyn, Misak Sargsian

    2011-07-01

    Semi-inclusive deep inelastic scattering off the Deuteron with production of a slow nucleon in recoil kinematics is studied in the virtual nucleon approximation, in which the final state interaction (FSI) is calculated within general eikonal approximation. The cross section is derived in a factorized approach, with a factor describing the virtual photon interaction with the off-shell nucleon and a distorted spectral function accounting for the final-state interactions. One of the main goals of the study is to understand how much the general features of the diffractive high energy soft rescattering accounts for the observed features of FSI in deep inelasticmore » scattering (DIS). Comparison with the Jefferson Lab data shows good agreement in the covered range of kinematics. Most importantly, our calculation correctly reproduces the rise of the FSI in the forward direction of the slow nucleon production angle. By fitting our calculation to the data we extracted the W and Q{sup 2} dependences of the total cross section and slope factor of the interaction of DIS products, X, off the spectator nucleon. This analysis shows the XN scattering cross section rising with W and decreasing with an increase of Q{sup 2}. Finally, our analysis points at a largely suppressed off-shell part of the rescattering amplitude.« less

  13. Nucleon-Nucleon Total Cross Section

    NASA Technical Reports Server (NTRS)

    Norbury, John W.

    2008-01-01

    The total proton-proton and neutron-proton cross sections currently used in the transport code HZETRN show significant disagreement with experiment in the GeV and EeV energy ranges. The GeV range is near the region of maximum cosmic ray intensity. It is therefore important to correct these cross sections, so that predictions of space radiation environments will be accurate. Parameterizations of nucleon-nucleon total cross sections are developed which are accurate over the entire energy range of the cosmic ray spectrum.

  14. Precision measurement of the (7)Be solar neutrino interaction rate in Borexino.

    PubMed

    Bellini, G; Benziger, J; Bick, D; Bonetti, S; Bonfini, G; Buizza Avanzini, M; Caccianiga, B; Cadonati, L; Calaprice, F; Carraro, C; Cavalcante, P; Chavarria, A; D'Angelo, D; Davini, S; Derbin, A; Etenko, A; Fomenko, K; Franco, D; Galbiati, C; Gazzana, S; Ghiano, C; Giammarchi, M; Goeger-Neff, M; Goretti, A; Grandi, L; Guardincerri, E; Hardy, S; Ianni, Aldo; Ianni, Andrea; Kobychev, V; Korablev, D; Korga, G; Koshio, Y; Kryn, D; Laubenstein, M; Lewke, T; Litvinovich, E; Loer, B; Lombardi, F; Lombardi, P; Ludhova, L; Machulin, I; Manecki, S; Maneschg, W; Manuzio, G; Meindl, Q; Meroni, E; Miramonti, L; Misiaszek, M; Montanari, D; Mosteiro, P; Muratova, V; Oberauer, L; Obolensky, M; Ortica, F; Pallavicini, M; Papp, L; Peña-Garay, C; Perasso, L; Perasso, S; Pocar, A; Raghavan, R S; Ranucci, G; Razeto, A; Re, A; Romani, A; Sabelnikov, A; Saldanha, R; Salvo, C; Schönert, S; Simgen, H; Skorokhvatov, M; Smirnov, O; Sotnikov, A; Sukhotin, S; Suvorov, Y; Tartaglia, R; Testera, G; Vignaud, D; Vogelaar, R B; von Feilitzsch, F; Winter, J; Wojcik, M; Wright, A; Wurm, M; Xu, J; Zaimidoroga, O; Zavatarelli, S; Zuzel, G

    2011-09-30

    The rate of neutrino-electron elastic scattering interactions from 862 keV (7)Be solar neutrinos in Borexino is determined to be 46.0±1.5(stat)(-1.6)(+1.5)(syst) counts/(day·100  ton). This corresponds to a ν(e)-equivalent (7)Be solar neutrino flux of (3.10±0.15)×10(9)  cm(-2) s(-1) and, under the assumption of ν(e) transition to other active neutrino flavours, yields an electron neutrino survival probability of 0.51±0.07 at 862 keV. The no flavor change hypothesis is ruled out at 5.0 σ. A global solar neutrino analysis with free fluxes determines Φ(pp)=6.06(-0.06)(+0.02)×10(10)  cm(-2) s(-1) and Φ(CNO)<1.3×10(9)  cm(-2) s(-1) (95% C.L.). These results significantly improve the precision with which the Mikheyev-Smirnov-Wolfenstein large mixing angle neutrino oscillation model is experimentally tested at low energy.

  15. Summary of the seventh international symposium on meson-nucleon physics and the structure of the nucleon, MENU'97

    NASA Astrophysics Data System (ADS)

    Nefkens, B. M. K.

    1998-05-01

    MENU'97 covered many stunning successes of chiral symmetry in intermediate energy reactions, especially of processes that involve pions. These successes include coupling constants, scattering lengths, threshold meson production, electric and magnetic polarizabilities of pions and nucleons, peripheral NN scattering, π, η and K decay rates and spectra. The πN data bank at low energy, which in the past was notorious for the inconsistencies of different data sets, is shown to become consistent by deleting a modest number of previously accepted data sub-sets. There is a consensus on a better value for the pion-nucleon coupling constant, which has been a bone of contention earlier, namely, fπNN2/4π=(75.4±0.4)×10-3 in satisfactory agreement with the Goldberger-Treiman relation. The mass-spin/parity distribution of the experimentally established πN resonances does not support the prediction of the harmonic oscillator type quark model. Some massive Δ++ resonances decay by η emission to the π+pη final state. In contrast to this the decay of massive N* states to π-pη in small, less than 5% of Δ++→π+pη. A new s-wave η decay has been identified, D33(1700)→P33(1232)+η. There is interesting new threshold data from CELSIUS on np→dη as well as on pp→ppη and np→npη.

  16. Weak production of strange particles and η mesons off the nucleon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alam, M. Rafi; Athar, M. Sajjad; Simo, I. Ruiz

    2015-10-15

    The strange particle production induced by (anti)neutrino off nucleon has been studied for |ΔS| = 0 and |ΔS| = 1 channels. The reactions those we have considered are for the production of single kaon/antikaon, eta and associated particle production processes. We have developed a microscopical model based on the SU(3) chiral Lagrangian. The basic parameters of the model are f{sub π}, the pion decay constant, Cabibbo angle, the proton and neutron magnetic moments and the axial vector coupling constants for the baryons octet. For antikaon production we have also included Σ*(1385) resonance and for eta production S{sub 11}(1535) and S{submore » 11}(1650) resonances are included.« less

  17. Tests of neutrino interaction models with the MicroBooNE detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rafique, Aleena

    2018-01-01

    I measure a large set of observables in inclusive charged current muon neutrino scattering on argon with the MicroBooNE liquid argon time projection chamber operating at Fermilab. I evaluate three neutrino interaction models based on the widely used GENIE event generator using these observables. The measurement uses a data set consisting of neutrino interactions with a final state muon candidate fully contained within the MicroBooNE detector. These data were collected in 2016 with the Fermilab Booster Neutrino Beam, which has an average neutrino energy ofmore » $800$ MeV, using an exposure corresponding to $$5.0\\times10^{19}$$ protons-on-target. The analysis employs fully automatic event selection and charged particle track reconstruction and uses a data-driven technique to separate neutrino interactions from cosmic ray background events. I find that GENIE models consistently describe the shapes of a large number of kinematic distributions for fixed observed multiplicity, but I show an indication that the observed multiplicity fractions deviate from GENIE expectations.« less

  18. Collective neutrino oscillations and neutrino wave packets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akhmedov, Evgeny; Lindner, Manfred; Kopp, Joachim, E-mail: akhmedov@mpi-hd.mpg.de, E-mail: jkopp@uni-mainz.de, E-mail: lindner@mpi-hd.mpg.de

    Effects of decoherence by wave packet separation on collective neutrino oscillations in dense neutrino gases are considered. We estimate the length of the wave packets of neutrinos produced in core collapse supernovae and the expected neutrino coherence length, and then proceed to consider the decoherence effects within the density matrix formalism of neutrino flavour transitions. First, we demonstrate that for neutrino oscillations in vacuum the decoherence effects are described by a damping term in the equation of motion of the density matrix of a neutrino as a whole (as contrasted to that of the fixed-momentum components of the neutrino densitymore » matrix). Next, we consider neutrino oscillations in ordinary matter and dense neutrino backgrounds, both in the adiabatic and non-adiabatic regimes. In the latter case we study two specific models of adiabaticity violation—one with short-term and another with extended non-adiabaticity. It is demonstrated that, while in the adiabatic case a damping term is present in the equation of motion of the neutrino density matrix (just like in the vacuum oscillation case), no such term in general appears in the non-adiabatic regime.« less

  19. Solar neutrino detectors as sterile neutrino hunters

    NASA Astrophysics Data System (ADS)

    Pallavicini, Marco; Borexino-SOX Collaboration; Agostini, M.; Altenmüller, K.; Appel, S.; Atroshchenko, V.; Bellini, G.; Benziger, J.; Berton, N.; Bick, D.; Bonfini, G.; Bravo, D.; Caccianiga, B.; Calaprice, F.; Caminata, A.; Carlini, M.; Cavalcante, P.; Chepurnov, A.; Choi, K.; Cloué, O.; Cribier, M.; D'Angelo, D.; Davini, S.; Derbin, A.; Di Noto, L.; Drachnev, I.; Durero, M.; Etenko, A.; Farinon, S.; Fischer, V.; Fomenko, K.; Franco, D.; Gabriele, F.; Gaffiot, J.; Galbiati, C.; Gschwender, M.; Ghiano, C.; Giammarchi, M.; Goeger-Neff, M.; Goretti, A.; Gromov, M.; Hagner, C.; Houdy, Th.; Hungerford, E.; Ianni, Aldo; Ianni, Andrea; Jany, A.; Jedrzejczak, K.; Jeschke, D.; Jonquères, N.; Kobychev, V.; Korablev, D.; Korga, G.; Kornoukhov, V.; Kryn, D.; Lachenmaier, T.; Lasserre, T.; Laubenstein, M.; Lehnert, B.; Link, J.; Litvinovich, E.; Lombardi, F.; Lombardi, P.; Ludhova, L.; Lukyanchenko, G.; Machulin, I.; Manecki, S.; Maneschg, W.; Marcocci, S.; Maricic, J.; Mention, G.; Meroni, E.; Meyer, M.; Miramonti, L.; Misiaszek, M.; Montuschi, M.; Mosteiro, P.; Muratova, V.; Musenich, R.; Neumair, B.; Oberauer, L.; Ortica, F.; Papp, L.; Pocar, A.; Ranucci, G.; Razeto, A.; Re, A.; Reinert, Y.; Romani, A.; Roncin, R.; Rossi, N.; Schönert, S.; Scola, L.; Semenov, D.; Skorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Suvorov, Y.; Tartaglia, R.; Testera, G.; Thurn, J.; Toropova, M.; Unzhakov, E.; Veyssière, C.; Vishneva, A.; Vivier, M.; Vogelaar, R. B.; von Feilitzsch, F.; Wang, H.; Weinz, S.; Winter, J.; Wojcik, M.; Wurm, M.; Yokley, Z.; Zaimidoroga, O.; Zavatarelli, S.; Zuber, K.; Zuzel, G.

    2017-09-01

    The large size and the very low radioactive background of solar neutrino detectors such as Borexino at the Gran Sasso Laboratory in Italy offer a unique opportunity to probe the existence of neutrino oscillations into new sterile components by means of carefully designed and well calibrated anti-neutrino and neutrino artificial sources. In this paper we briefly summarise the key elements of the SOX experiment, a program for the search of sterile neutrinos (and other short distance effects) by means of a 144Ce-144Pr anti-neutrino source and, possibly in the medium term future, with a 51Cr neutrino source.

  20. Semi-inclusive polarised lepton-nucleon scattering and the anomalous gluon contribution

    NASA Astrophysics Data System (ADS)

    Güllenstern, St.; Veltri, M.; Górnicki, P.; Mankiewicz, L.; Schäfer, A.

    1993-08-01

    We discuss a new observable for semi-inclusive pion production in polarised lepton-nucleon collisions. This observable is sensitive to the polarised and unpolarised strange quark distribution and the anomalous gluon contribution, provided that their fragmentation functions into pions differ substantially from that of light quarks. From Monte Carlo data generated with our PEPSI code we conclude that HERMES might be able to decide whether the polarized strange quark and gluon distributions are large.

  1. Exploring the hidden interior of the Earth with directional neutrino measurements

    DOE PAGES

    Leyton, Michael; Dye, Stephen; Monroe, Jocelyn

    2017-07-10

    Roughly 40% of the Earth’s total heat flow is powered by radioactive decays in the crust and mantle. Geo-neutrinos produced by these decays provide important clues about the origin, formation and thermal evolution of our planet, as well as the composition of its interior. Previous measurements of geo-neutrinos have all relied on the detection of inverse beta decay reactions, which are insensitive to the contribution from potassium and do not provide model-independent information about the spatial distribution of geo-neutrino sources within the Earth. Here in this paper we present a method for measuring previously unresolved components of Earth’s radiogenic heatingmore » using neutrino-electron elastic scattering and low-background, direction-sensitive tracking detectors.We calculate the exposures needed to probe various contributions to the total geo-neutrino flux, specifically those associated to potassium, the mantle and the core. The measurements proposed here chart a course for pioneering exploration of the veiled inner workings of the Earth.« less

  2. Exploring the hidden interior of the Earth with directional neutrino measurements.

    PubMed

    Leyton, Michael; Dye, Stephen; Monroe, Jocelyn

    2017-07-10

    Roughly 40% of the Earth's total heat flow is powered by radioactive decays in the crust and mantle. Geo-neutrinos produced by these decays provide important clues about the origin, formation and thermal evolution of our planet, as well as the composition of its interior. Previous measurements of geo-neutrinos have all relied on the detection of inverse beta decay reactions, which are insensitive to the contribution from potassium and do not provide model-independent information about the spatial distribution of geo-neutrino sources within the Earth. Here we present a method for measuring previously unresolved components of Earth's radiogenic heating using neutrino-electron elastic scattering and low-background, direction-sensitive tracking detectors. We calculate the exposures needed to probe various contributions to the total geo-neutrino flux, specifically those associated to potassium, the mantle and the core. The measurements proposed here chart a course for pioneering exploration of the veiled inner workings of the Earth.

  3. Exploring the hidden interior of the Earth with directional neutrino measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leyton, Michael; Dye, Stephen; Monroe, Jocelyn

    Roughly 40% of the Earth’s total heat flow is powered by radioactive decays in the crust and mantle. Geo-neutrinos produced by these decays provide important clues about the origin, formation and thermal evolution of our planet, as well as the composition of its interior. Previous measurements of geo-neutrinos have all relied on the detection of inverse beta decay reactions, which are insensitive to the contribution from potassium and do not provide model-independent information about the spatial distribution of geo-neutrino sources within the Earth. Here in this paper we present a method for measuring previously unresolved components of Earth’s radiogenic heatingmore » using neutrino-electron elastic scattering and low-background, direction-sensitive tracking detectors.We calculate the exposures needed to probe various contributions to the total geo-neutrino flux, specifically those associated to potassium, the mantle and the core. The measurements proposed here chart a course for pioneering exploration of the veiled inner workings of the Earth.« less

  4. Exploring the hidden interior of the Earth with directional neutrino measurements

    PubMed Central

    Leyton, Michael; Dye, Stephen; Monroe, Jocelyn

    2017-01-01

    Roughly 40% of the Earth’s total heat flow is powered by radioactive decays in the crust and mantle. Geo-neutrinos produced by these decays provide important clues about the origin, formation and thermal evolution of our planet, as well as the composition of its interior. Previous measurements of geo-neutrinos have all relied on the detection of inverse beta decay reactions, which are insensitive to the contribution from potassium and do not provide model-independent information about the spatial distribution of geo-neutrino sources within the Earth. Here we present a method for measuring previously unresolved components of Earth’s radiogenic heating using neutrino-electron elastic scattering and low-background, direction-sensitive tracking detectors. We calculate the exposures needed to probe various contributions to the total geo-neutrino flux, specifically those associated to potassium, the mantle and the core. The measurements proposed here chart a course for pioneering exploration of the veiled inner workings of the Earth. PMID:28691700

  5. Elastic neutron scattering studies at 96 MeV for transmutation.

    PubMed

    Osterlund, M; Blomgren, J; Hayashi, M; Mermod, P; Nilsson, L; Pomp, S; Ohrn, A; Prokofiev, A V; Tippawan, U

    2007-01-01

    Elastic neutron scattering from (12)C, (14)N, (16)O, (28)Si, (40)Ca, (56)Fe, (89)Y and (208)Pb has been studied at 96 MeV in the10-70 degrees interval, using the SCANDAL (SCAttered Nucleon Detection AssembLy) facility. The results for (12)C and (208)Pb have recently been published, while the data on the other nuclei are under analysis. The achieved energy resolution, 3.7 MeV, is about an order of magnitude better than for any previous experiment above 65 MeV incident energy. A novel method for normalisation of the absolute scale of the cross section has been used. The estimated normalisation uncertainty, 3%, is unprecedented for a neutron-induced differential cross section measurement on a nuclear target. Elastic neutron scattering is of utmost importance for a vast number of applications. Besides its fundamental importance as a laboratory for tests of isospin dependence in the nucleon-nucleon, and nucleon-nucleus, interaction, knowledge of the optical potentials derived from elastic scattering come into play in virtually every application where a detailed understanding of nuclear processes is important. Applications for these measurements are dose effects due to fast neutrons, including fast neutron therapy, as well as nuclear waste incineration and single event upsets in electronics. The results at light nuclei of medical relevance ((12)C, (14)N and (16)O) are presented separately. In the present contribution, results on the heavier nuclei are presented, among which several are of relevance to shielding of fast neutrons.

  6. A covariant multiple scattering series for elastic projectile-target scattering

    NASA Technical Reports Server (NTRS)

    Gross, Franz; Maung-Maung, Khin

    1989-01-01

    A covariant formulation of the multiple scattering series for the optical potential is presented. The case of a scalar nucleon interacting with a spin zero isospin zero A-body target through meson exchange, is considered. It is shown that a covariant equation for the projectile-target t-matrix can be obtained which sums the ladder and crossed ladder diagrams efficiently. From this equation, a multiple scattering series for the optical potential is derived, and it is shown that in the impulse approximation, the two-body t-matrix associated with the first order optical potential is the one in which one particle is kept on mass-shell. The meaning of various terms in the multiple scattering series is given. The construction of the first-order optical potential for elastic scattering calculations is described.

  7. Nucleon and heavy-ion total and absorption cross section for selected nuclei

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Costner, C. M.

    1975-01-01

    Approximate solutions of the coupled-channel equations for high-energy composite particle scattering are obtained and are applied to the nuclear scattering problem. Relationships between several approximation procedures are established and discussed. The eikonal formalism is used with a small-angle approximation to calculate the coherent elastic scattered amplitude from which total and absorption cross sections are derived. Detailed comparisons with nucleon-nucleus experiments show agreement within 5 percent except at lower energies where the eikonal approximation is of questionable accuracy. Even at these lower energies, agreement is within 15 percent. Tables of cross sections required for cosmic heavy-ion transport and shielding studies are presented.

  8. Neutrinoless double-β decay in effective field theory: The light-Majorana neutrino-exchange mechanism

    NASA Astrophysics Data System (ADS)

    Cirigliano, Vincenzo; Dekens, Wouter; Mereghetti, Emanuele; Walker-Loud, André

    2018-06-01

    We present the first chiral effective theory derivation of the neutrinoless double-β decay n n →p p potential induced by light Majorana neutrino exchange. The effective-field-theory framework has allowed us to identify and parametrize short- and long-range contributions previously missed in the literature. These contributions cannot be absorbed into parametrizations of the single-nucleon form factors. Starting from the quark and gluon level, we perform the matching onto chiral effective field theory and subsequently onto the nuclear potential. To derive the nuclear potential mediating neutrinoless double-β decay, the hard, soft, and potential neutrino modes must be integrated out. This is performed through next-to-next-to-leading order in the chiral power counting, in both the Weinberg and pionless schemes. At next-to-next-to-leading order, the amplitude receives additional contributions from the exchange of ultrasoft neutrinos, which can be expressed in terms of nuclear matrix elements of the weak current and excitation energies of the intermediate nucleus. These quantities also control the two-neutrino double-β decay amplitude. Finally, we outline strategies to determine the low-energy constants that appear in the potentials, by relating them to electromagnetic couplings and/or by matching to lattice QCD calculations.

  9. Results on the Spin-Dependent Scattering of Weakly Interacting Massive Particles on Nucleons from the Run 3 Data of the LUX Experiment

    NASA Astrophysics Data System (ADS)

    Akerib, D. S.; Araújo, H. M.; Bai, X.; Bailey, A. J.; Balajthy, J.; Beltrame, P.; Bernard, E. P.; Bernstein, A.; Biesiadzinski, T. P.; Boulton, E. M.; Bradley, A.; Bramante, R.; Cahn, S. B.; Carmona-Benitez, M. C.; Chan, C.; Chapman, J. J.; Chiller, A. A.; Chiller, C.; Currie, A.; Cutter, J. E.; Davison, T. J. R.; de Viveiros, L.; Dobi, A.; Dobson, J. E. Y.; Druszkiewicz, E.; Edwards, B. N.; Faham, C. H.; Fiorucci, S.; Gaitskell, R. J.; Gehman, V. M.; Ghag, C.; Gibson, K. R.; Gilchriese, M. G. D.; Hall, C. R.; Hanhardt, M.; Haselschwardt, S. J.; Hertel, S. A.; Hogan, D. P.; Horn, M.; Huang, D. Q.; Ignarra, C. M.; Ihm, M.; Jacobsen, R. G.; Ji, W.; Kazkaz, K.; Khaitan, D.; Knoche, R.; Larsen, N. A.; Lee, C.; Lenardo, B. G.; Lesko, K. T.; Lindote, A.; Lopes, M. I.; Malling, D. C.; Manalaysay, A.; Mannino, R. L.; Marzioni, M. F.; McKinsey, D. N.; Mei, D.-M.; Mock, J.; Moongweluwan, M.; Morad, J. A.; Murphy, A. St. J.; Nehrkorn, C.; Nelson, H. N.; Neves, F.; O'Sullivan, K.; Oliver-Mallory, K. C.; Ott, R. A.; Palladino, K. J.; Pangilinan, M.; Pease, E. K.; Phelps, P.; Reichhart, L.; Rhyne, C.; Shaw, S.; Shutt, T. A.; Silva, C.; Solovov, V. N.; Sorensen, P.; Stephenson, S.; Sumner, T. J.; Szydagis, M.; Taylor, D. J.; Taylor, W.; Tennyson, B. P.; Terman, P. A.; Tiedt, D. R.; To, W. H.; Tripathi, M.; Tvrznikova, L.; Uvarov, S.; Verbus, J. R.; Webb, R. C.; White, J. T.; Whitis, T. J.; Witherell, M. S.; Wolfs, F. L. H.; Yazdani, K.; Young, S. K.; Zhang, C.; LUX Collaboration

    2016-04-01

    We present experimental constraints on the spin-dependent WIMP (weakly interacting massive particle)-nucleon elastic cross sections from LUX data acquired in 2013. LUX is a dual-phase xenon time projection chamber operating at the Sanford Underground Research Facility (Lead, South Dakota), which is designed to observe the recoil signature of galactic WIMPs scattering from xenon nuclei. A profile likelihood ratio analysis of 1.4 ×104 kg day of fiducial exposure allows 90% C.L. upper limits to be set on the WIMP-neutron (WIMP-proton) cross section of σn=9.4 ×10-41 cm2 (σp=2.9 ×10-39 cm2 ) at 33 GeV /c2 . The spin-dependent WIMP-neutron limit is the most sensitive constraint to date.

  10. Solar neutrino measurements in Super-Kamiokande-IV

    NASA Astrophysics Data System (ADS)

    Abe, K.; Haga, Y.; Hayato, Y.; Ikeda, M.; Iyogi, K.; Kameda, J.; Kishimoto, Y.; Marti, Ll.; Miura, M.; Moriyama, S.; Nakahata, M.; Nakajima, T.; Nakayama, S.; Orii, A.; Sekiya, H.; Shiozawa, M.; Sonoda, Y.; Takeda, A.; Tanaka, H.; Takenaga, Y.; Tasaka, S.; Tomura, T.; Ueno, K.; Yokozawa, T.; Akutsu, R.; Irvine, T.; Kaji, H.; Kajita, T.; Kametani, I.; Kaneyuki, K.; Lee, K. P.; Nishimura, Y.; McLachlan, T.; Okumura, K.; Richard, E.; Labarga, L.; Fernandez, P.; Blaszczyk, F. d. M.; Gustafson, J.; Kachulis, C.; Kearns, E.; Raaf, J. L.; Stone, J. L.; Sulak, L. R.; Berkman, S.; Tobayama, S.; Goldhaber, M.; Bays, K.; Carminati, G.; Griskevich, N. J.; Kropp, W. R.; Mine, S.; Renshaw, A.; Smy, M. B.; Sobel, H. W.; Takhistov, V.; Weatherly, P.; Ganezer, K. S.; Hartfiel, B. L.; Hill, J.; Keig, W. E.; Hong, N.; Kim, J. Y.; Lim, I. T.; Park, R. G.; Akiri, T.; Albert, J. B.; Himmel, A.; Li, Z.; O'Sullivan, E.; Scholberg, K.; Walter, C. W.; Wongjirad, T.; Ishizuka, T.; Nakamura, T.; Jang, J. S.; Choi, K.; Learned, J. G.; Matsuno, S.; Smith, S. N.; Friend, M.; Hasegawa, T.; Ishida, T.; Ishii, T.; Kobayashi, T.; Nakadaira, T.; Nakamura, K.; Nishikawa, K.; Oyama, Y.; Sakashita, K.; Sekiguchi, T.; Tsukamoto, T.; Nakano, Y.; Suzuki, A. T.; Takeuchi, Y.; Yano, T.; Cao, S. V.; Hayashino, T.; Hiraki, T.; Hirota, S.; Huang, K.; Ieki, K.; Jiang, M.; Kikawa, T.; Minamino, A.; Murakami, A.; Nakaya, T.; Patel, N. D.; Suzuki, K.; Takahashi, S.; Wendell, R. A.; Fukuda, Y.; Itow, Y.; Mitsuka, G.; Muto, F.; Suzuki, T.; Mijakowski, P.; Frankiewicz, K.; Hignight, J.; Imber, J.; Jung, C. K.; Li, X.; Palomino, J. L.; Santucci, G.; Taylor, I.; Vilela, C.; Wilking, M. J.; Yanagisawa, C.; Fukuda, D.; Ishino, H.; Kayano, T.; Kibayashi, A.; Koshio, Y.; Mori, T.; Sakuda, M.; Takeuchi, J.; Yamaguchi, R.; Kuno, Y.; Tacik, R.; Kim, S. B.; Okazawa, H.; Choi, Y.; Ito, K.; Nishijima, K.; Koshiba, M.; Totsuka, Y.; Suda, Y.; Yokoyama, M.; Bronner, C.; Calland, R. G.; Hartz, M.; Martens, K.; Obayashi, Y.; Suzuki, Y.; Vagins, M. R.; Nantais, C. M.; Martin, J. F.; de Perio, P.; Tanaka, H. A.; Konaka, A.; Chen, S.; Sui, H.; Wan, L.; Yang, Z.; Zhang, H.; Zhang, Y.; Connolly, K.; Dziomba, M.; Wilkes, R. J.; Super-Kamiokande Collaboration

    2016-09-01

    Upgraded electronics, improved water system dynamics, better calibration and analysis techniques allowed Super-Kamiokande-IV to clearly observe very low-energy 8B solar neutrino interactions, with recoil electron kinetic energies as low as ˜3.5 MeV . Super-Kamiokande-IV data-taking began in September of 2008; this paper includes data until February 2014, a total livetime of 1664 days. The measured solar neutrino flux is (2.308 ±0.020 (stat)-0.040 +0.039(syst ))×1 06/(cm2 sec ) assuming no oscillations. The observed recoil electron energy spectrum is consistent with no distortions due to neutrino oscillations. An extended maximum likelihood fit to the amplitude of the expected solar zenith angle variation of the neutrino-electron elastic scattering rate in SK-IV results in a day/night asymmetry of (-3.6 ±1.6 (stat )±0.6 (syst ))% . The SK-IV solar neutrino data determine the solar mixing angle as sin2θ12=0.327-0.031+0.026 , all SK solar data (SK-I, SK-II, SK III and SK-IV) measures this angle to be sin2θ12=0.334-0.023+0.027 , the determined mass-squared splitting is Δ m212=4.8-0.8+1.5×10-5 eV2 .

  11. Plasma Lens for Muon and Neutrino Beams

    NASA Astrophysics Data System (ADS)

    Kahn, Stephen; Korenev, Sergey; Bishai, Mary; Diwan, Milind; Gallardo, Juan; Hershcovitch, Ady; Johnson, Brant

    2008-04-01

    The plasma lens is examined as an alternate to focusing horns and solenoids for use in a neutrino or muon beam facility. The plasma lens concept is based on a combined high-current lens/target configuration. The current is fed at electrodes located upstream and downstream from the target where pion capturing is needed. The current flows primarily in the plasma, which has a lower resistivity than the target. A second plasma lens section, with an additional current feed, follows the target to provide shaping of the plasma stability. The geometry of the plasma is shaped to provide optimal pion capture. Simulations of this plasma lens system have shown a 25% higher neutrino production than the horn system. A plasma lens has additional advantage: larger axial current than horns, minimal neutrino contamination during antineutrino running, and negligible pion absorption or scattering. Results from particle simulations using a plasma lens will be presented.

  12. Quasi-elastic nuclear scattering at high energies

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Townsend, Lawrence W.; Wilson, John W.

    1992-01-01

    The quasi-elastic scattering of two nuclei is considered in the high-energy optical model. Energy loss and momentum transfer spectra for projectile ions are evaluated in terms of an inelastic multiple-scattering series corresponding to multiple knockout of target nucleons. The leading-order correction to the coherent projectile approximation is evaluated. Calculations are compared with experiments.

  13. Acceptances for space-based and ground-based fluorescence detectors, and inference of the neutrino-nucleon cross-section above 1019eV

    NASA Astrophysics Data System (ADS)

    Palomares-Ruiz, Sergio; Irimia, Andrei; Weiler, Thomas J.

    2006-04-01

    Detection of ultrahigh energy neutrinos will be useful for unraveling the dynamics of the most violent sources in the cosmos and for revealing the neutrino cross-section at extreme energy. If there exists a Greisen-Zatsepin-Kuz’min (GZK) suppression of cosmic-ray events above EGZK˜5×1019eV, as predicted by theory, then the only messengers of energies beyond EGZK are neutrinos. Cosmic neutrino fluxes can initiate air-showers through interaction in the atmosphere, or in the Earth. Neutrino trajectories will be downgoing to nearly horizontal in the former case, and “Earth-skimming” in the latter case. Thus it is important to know the acceptances (event rate/flux) of proposed air-shower experiments for detecting both types of neutrino-initiated events. We calculate these acceptances for fluorescence detectors, both space-based as with the EUSO and OWL proposals, and ground-based, as with Auger, HiRes and Telescope Array. The neutrino cross-section σνNCC is unknown at energies above 5.2×1013eV. Although the popular QCD extrapolation of lower-energy physics offers the cross-section value of 0.54×10-31(Eν/1020eV)0.36cm2, new physics could raise or lower this value. Therefore, we present the acceptances of horizontal (HAS) and upgoing (UAS) air-showers as a function of σνNCC over the range 10-34 to 10-30cm2. The dependences of acceptances on neutrino energy, shower-threshold energy, shower length, and shower column density are also studied. We introduce a cloud layer, and study its effect on rates as viewed from space and from the ground. For UAS, we present acceptances for events over land (rock), and over the ocean (water). Acceptances over water are larger by about an order of magnitude, thus favoring space-based detectors. We revisit the idea of Kusenko and Weiler [Phys. Rev. Lett. 88, 161101 (2002)PRLTAO0031-900710.1103/PhysRevLett.88.161101] to infer σνNCC at Eν≳1020 from the ratio of HAS-to-UAS events, and obtain favorable results. Included in

  14. Mini-LENS: developing a charged-current approach to measuring CNO and pp solar neutrinos

    NASA Astrophysics Data System (ADS)

    Vogelaar, R. Bruce

    2014-03-01

    The Low-Energy Neutrino Spectroscopy (LENS) experiment is based on neutrino detection via a charged-current interaction with 115In and offers the ability to cleanly observe both pp and CNO neutrinos. In contrast, elastic-scattering detectors, such as Borexino and SNO + suffer from virtually inseparable backgrounds. Thus, LENS might be uniquely positioned to resolve the solar metallicity question via measurement of the CNO neutrino flux, as well as test the predicted equivalence of solar luminosity as measured by photons versus neutrinos The mini-LENS program is testing the performance of the optically-segmented 3D lattice geometry unique to LENS. This first-of-a-kind lattice design is also suited for a range of other applications where high segmentation and large light collection are required (eg: sterile neutrinos with sources, double beta decay, and surface detection of reactor neutrinos). The current status and recent design changes of miniLENS at KURF will be presented. funded by NSF: 1001394.

  15. The ratio of the nucleon structure functions F2N for iron and deuterium

    NASA Astrophysics Data System (ADS)

    Aubert, J. J.; Bassompierre, G.; Becks, K. H.; Best, C.; Böhm, E.; de Bouard, X.; Brasse, F. W.; Broll, C.; Brown, S.; Carr, J.; Clifft, R. W.; Cobb, J. H.; Coignet, G.; Combley, F.; Court, G. R.; D'Agostini, G.; Dau, W. D.; Davies, J. K.; Déclais, Y.; Dobinson, R. W.; Dosselli, U.; Drees, J.; Edwards, A. W.; Edwards, M.; Favier, J.; Ferrero, M. I.; Flauger, W.; Gabathuler, E.; Gamet, R.; Gayler, J.; Gerhardt, V.; Gössling, C.; Haas, J.; Hamacher, K.; Hayman, P.; Henckes, M.; Korbel, V.; Landgraf, U.; Leenen, M.; Maire, M.; Minssieux, H.; Mohr, W.; Montgomery, H. E.; Moser, K.; Mount, R. P.; Norton, P. R.; McNicholas, J.; Osborne, A. M.; Payre, P.; Peroni, C.; Pessard, H.; Pietrzyk, U.; Rith, K.; Schneegans, M.; Sloan, T.; Stier, H. E.; Stockhausen, W.; Thénard, J. M.; Thompson, J. C.; Urban, L.; Villers, M.; Wahlen, H.; Whalley, M.; Williams, D.; Williams, W. S. C.; Williamson, J.; Wimpenny, S. J.

    1983-03-01

    Using the data on deep inelastic muon scattering on iron and deuterium the ratio of the nucleon structure functions F2N(Fe)/F2N(D) is presented. The observed x-dependence of this ratio is in disagreement with existing theoretical predictions.

  16. Proton scattering by short lived sulfur isotopes

    NASA Astrophysics Data System (ADS)

    Maréchal, F.; Suomijärvi, T.; Blumenfeld, Y.; Azhari, A.; Bauge, E.; Bazin, D.; Brown, J. A.; Cottle, P. D.; Delaroche, J. P.; Fauerbach, M.; Girod, M.; Glasmacher, T.; Hirzebruch, S. E.; Jewell, J. K.; Kelley, J. H.; Kemper, K. W.; Mantica, P. F.; Morrissey, D. J.; Riley, L. A.; Scarpaci, J. A.; Scheit, H.; Steiner, M.

    1999-09-01

    Elastic and inelastic proton scattering has been measured in inverse kinematics on the unstable nucleus 40S. A phenomenological distorted wave Born approximation analysis yields a quadrupole deformation parameter β2=0.35+/-0.05 for the 2+1 state. Consistent phenomenological and microscopic proton scattering analyses have been applied to all even-even sulfur isotopes from A=32 to A=40. The second analysis used microscopic collective model densities and a modified Jeukenne-Lejeune-Mahaux nucleon-nucleon effective interaction. This microscopic analysis suggests the presence of a neutron skin in the heavy sulfur isotopes. The analysis is consistent with normalization values for λv and λw of 0.95 for both the real and imaginary parts of the Jeukenne-Lejeune-Mahaux potential.

  17. Excited Nucleons and Hadron Structure - Proceedings of the Nstar 2000 Conference

    NASA Astrophysics Data System (ADS)

    Burkert, V. D.; Elouadrhiri, L.; Kelly, J. J.; Minehart, R. C.

    The Table of Contents for the book is as follows: * Probing the Structure of Nucleons in the Resonance Region * Pion Photoproduction Results from MAMI * Pion Production and Compton Scattering at LEGS * Electroproduction Multipoles from ELSA * Baryon Resonance Production at Jefferson Lab at High Q2 * A Dynamical Model for the Resonant Multipoles and the Δ Structure * Relations between N and Δ Electromagnetic Form Factors * Measurement of the Recoil Polarization in the [p(ěc e ,{e^prime}ěc p ){π ^0}] Reaction at the Energy of the Δ(1232) Resonance * Electroproduction Results from CLAS * S11 (1535) Resonance Production at Jefferson Lab at High Q2 * η and η' Electro- and Photoproduction with the CEBAF Large Acceptance Spectrometer * η Production in Hadronic Interactions * Electromagnetic Production of η and η' Mesons * The Crystal Barrel Experiment at ELSA * Measurement of π-p → Neutrals Using the Crystal Ball * π+π0 and η Photoproduction at GRAAL * Partial Wave Analysis of Pion Photoproduction with Constraints from Fixed-t Dispersion Relations * N* Resonances in e+e- Collisions at BEPC * What is the Structure of the Roper Resonance? * Hybrid Baryon Signatures * Mixing Angles Determination via the Process γp → ηp * SU(6) Breaking Effects in the Nucleon Elastic Electromagnetic Form Factors * The Hypercentral Constituent Quark Model * Baryon Resonance Decays Within Constituent Quark Models * Pion Production Model - Connection between Dynamics and Quark Models * N* Investigation via Two Pion Electroproduction with the CLAS Detector at Jefferson Laboratory * Isobar Model for Studies of N* Excitation in Charged Double Pion Production by Real and Virtual Photons * Double Pion Photoproduction in the Second Resonance Region * CLAS Electroproduction of ω(783) Mesons * Electromagnetic Production of Vector Mesons at Low Energies * Polarized Target Developments for GRAAL and Prospects * Analytic Structure of a Multichannel Model * Missing Nucleon Resonances

  18. Robust Constraints and Novel Gamma-Ray Signatures of Dark Matter That Interacts Strongly With Nucleons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hooper, Dan; McDermott, Samuel D.

    Due to shielding, direct detection experiments are in some cases insensitive to dark matter candidates with very large scattering cross sections with nucleons. In this paper, we revisit this class of models, and derive a simple analytic criterion for conservative but robust direct detection limits. While large spin-independent cross sections seem to be ruled out, we identify potentially viable parameter space for dark matter with a spin-dependent cross section with nucleons in the range ofmore » $$10^{-27} {\\rm cm}^2 < \\sigma_{{\\rm DM}-p} < 10^{-24} \\, {\\rm cm}^{2}$$. With these parameters, cosmic-ray scattering with dark matter in the extended halo of the Milky Way could generate a novel and distinctive gamma-ray signal at high galactic latitudes. Such a signal could be observable by Fermi or future space-based gamma-ray telescopes.« less

  19. Precision calculation of threshold πd scattering, πN scattering lengths, and the GMO sum rule

    NASA Astrophysics Data System (ADS)

    Baru, V.; Hanhart, C.; Hoferichter, M.; Kubis, B.; Nogga, A.; Phillips, D. R.

    2011-12-01

    We use chiral perturbation theory (ChPT) to calculate the πd scattering length with an accuracy of a few percent, including isospin-violating corrections in both the two- and three-body sectors. In particular, we provide the technical details of a recent letter (Baru et al., 2011) [1], where we used data on pionic deuterium and pionic hydrogen atoms to extract the isoscalar and isovector pion-nucleon scattering lengths a and a. We study isospin-breaking contributions to the three-body part of a due to mass differences, isospin violation in the πN scattering lengths, and virtual photons. This last class of effects is ostensibly infrared enhanced due to the smallness of the deuteron binding energy. However, we show that the leading virtual-photon effects that might undergo such enhancement cancel, and hence the standard ChPT counting provides a reliable estimate of isospin violation in a due to virtual photons. Finally, we discuss the validity of the Goldberger-Miyazawa-Oehme sum rule in the presence of isospin violation, and use it to determine the charged-pion-nucleon coupling constant.

  20. Quark cluster model for deep-inelastic lepton-deuteron scattering

    NASA Astrophysics Data System (ADS)

    Yen, G.; Vary, J. P.; Harindranath, A.; Pirner, H. J.

    1990-10-01

    We evaluate the contribution of quasifree nucleon knockout and of inelastic lepton-nucleon scattering in inclusive electron-deuteron reactions at large momentum transfer. We examine the degree of quantitative agreement with deuteron wave functions from the Reid soft-core and Bonn realistic nucleon-nucleon interactions. For the range of data available there is strong sensitivity to the tensor correlations which are distinctively different in these two deuteron models. At this stage of the analyses the Reid soft-core wave function provides a reasonable description of the data while the Bonn wave function does not. We then include a six-quark cluster component whose relative contribution is based on an overlap criterion and obtain a good description of all the data with both interactions. The critical separation at which overlap occurs (formation of six-quark clusters) is taken to be 1.0 fm and the six-quark cluster probability is 4.7% for Reid and 5.4% for Bonn. As a consequence the quark cluster model with either Reid or Bonn wave function describe the SLAC inclusive electron-deuteron scattering data equally well. We then show how additional data would be decisive in resolving which model is ultimately more correct.

  1. Hard Break-Up of Two-Nucleons and QCD Dynamics of NN Interaction

    NASA Astrophysics Data System (ADS)

    Sargsian, Misak

    2008-10-01

    We discus recent developments in theory of high energy two-body break-up of few-nucleon systems. The characteristics of these reactions are such that the hard two-body quasielastic subprocess can be clearly separated from the accompanying soft subprocesses. We discuss in details the hard rescattering model (HRM) in which hard photodisintegration develops in two stages. At first, photon knocks-out an energetic quark which rescatters subsequently with a quark of the other nucleon. The latter provides a mechanism of sharing the initial high momentum of the photon between two outgoing nucleons. This final state hard rescattering can be expressed through the hard NN scattering amplitude. Within HRM we discuss hard break-up reactions involving D and 3He targets and demonstrate how these reactions are sensitive to the dynamics of hard pn and pp interaction. Another development of HRM is the prediction of new helicity selection mechanism for hard two-body reactions, which was apparently confirmed in the recent JLab experiment.

  2. Transmission of light in deep sea water at the site of the ANTARES neutrino telescope

    NASA Astrophysics Data System (ADS)

    ANTARES Collaboration; Aguilar, J. A.; Albert, A.; Amram, P.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardellier-Desages, F. E.; Aslanides, E.; Aubert, J.-J.; Azoulay, R.; Bailey, D.; Basa, S.; Battaglieri, M.; Becherini, Y.; Bellotti, R.; Beltramelli, J.; Bertin, V.; Billault, M.; Blaes, R.; Blanc, F.; Bland, R. W.; de Botton, N.; Boulesteix, J.; Bouwhuis, M. C.; Brooks, C. B.; Bradbury, S. M.; Bruijn, R.; Brunner, J.; Bugeon, F.; Burgio, G. F.; Cafagna, F.; Calzas, A.; Caponetto, L.; Carmona, E.; Carr, J.; Cartwright, S. L.; Cecchini, S.; Charvis, P.; Circella, M.; Colnard, C.; Compère, C.; Croquette, J.; Cooper, S.; Coyle, P.; Cuneo, S.; Damy, G.; van Dantzig, R.; Deschamps, A.; de Marzo, C.; Destelle, J.-J.; de Vita, R.; Dinkelspiler, B.; Dispau, G.; Drougou, J.-F.; Druillole, F.; Engelen, J.; Favard, S.; Feinstein, F.; Ferry, S.; Festy, D.; Fopma, J.; Fuda, J.-L.; Gallone, J.-M.; Giacomelli, G.; Girard, N.; Goret, P.; Gournay, J.-F.; Hallewell, G.; Hartmann, B.; Heijboer, A.; Hello, Y.; Hernández-Rey, J. J.; Herrouin, G.; Hößl, J.; Hoffmann, C.; Hubbard, J. R.; Jaquet, M.; de Jong, M.; Jouvenot, F.; Kappes, A.; Karg, T.; Karkar, S.; Karolak, M.; Katz, U.; Keller, P.; Kooijman, P.; Korolkova, E. V.; Kouchner, A.; Kretschmer, W.; Kudryavtsev, V. A.; Lafoux, H.; Lagier, P.; Lamare, P.; Languillat, J.-C.; Laubier, L.; Legou, T.; Le Guen, Y.; Le Provost, H.; Le van Suu, A.; Lo Nigro, L.; Lo Presti, D.; Loucatos, S.; Louis, F.; Lyashuk, V.; Magnier, P.; Marcelin, M.; Margiotta, A.; Maron, C.; Massol, A.; Mazéas, F.; Mazeau, B.; Mazure, A.; McMillan, J. E.; Michel, J.-L.; Millot, C.; Milovanovic, A.; Montanet, F.; Montaruli, T.; Morel, J.-P.; Moscoso, L.; Nezri, E.; Niess, V.; Nooren, G. J.; Ogden, P.; Olivetto, C.; Palanque-Delabrouille, N.; Payre, P.; Petta, C.; Pineau, J.-P.; Poinsignon, J.; Popa, V.; Potheau, R.; Pradier, T.; Racca, C.; Randazzo, N.; Real, D.; van Rens, B. A. P.; Réthoré, F.; Ripani, M.; Roca-Blay, V.; Romeyer, A.; Rollin, J.-F.; Romita, M.; Rose, H. J.; Rostovtsev, A.; Ruppi, M.; Russo, G. V.; Sacquin, Y.; Saouter, S.; Schuller, J.-P.; Schuster, W.; Sokalski, I.; Suvorova, O.; Spooner, N. J. C.; Spurio, M.; Stolarczyk, T.; Stubert, D.; Taiuti, M.; Thompson, L. F.; Tilav, S.; Usik, A.; Valdy, P.; Vallage, B.; Vaudaine, G.; Vernin, P.; Virieux, J.; Vladimirsky, E.; de Vries, G.; de Witt Huberts, P.; de Wolf, E.; Zaborov, D.; Zaccone, H.; Zakharov, V.; Zavatarelli, S.; de Zornoza, J. D.; Zúñiga, J.

    2005-02-01

    The ANTARES neutrino telescope is a large photomultiplier array designed to detect neutrino-induced upward-going muons by their Cherenkov radiation. Understanding the absorption and scattering of light in the deep Mediterranean is fundamental to optimising the design and performance of the detector. This paper presents measurements of blue and UV light transmission at the ANTARES site taken between 1997 and 2000. The derived values for the scattering length and the angular distribution of particulate scattering were found to be highly correlated, and results are therefore presented in terms of an absorption length λabs and an effective scattering length λscteff. The values for blue (UV) light are found to be λabs ≃ 60(26) m, λscteff≃265(122)m, with significant (˜15%) time variability. Finally, the results of ANTARES simulations showing the effect of these water properties on the anticipated performance of the detector are presented.

  3. Measurement of the absolute v μ-CCQE cross section at the SciBooNE experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aunion, Jose Luis Alcaraz

    2010-07-01

    This thesis presents the measurement of the charged current quasi-elastic (CCQE) neutrino-nucleon cross section at neutrino energies around 1 GeV. This measurement has two main physical motivations. On one hand, the neutrino-nucleon interactions at few GeV is a region where existing old data are sparse and with low statistics. The current measurement populates low energy regions with higher statistics and precision than previous experiments. On the other hand, the CCQE interaction is the most useful interaction in neutrino oscillation experiments. The CCQE channel is used to measure the initial and final neutrino fluxes in order to determine the neutrino fractionmore » that disappeared. The neutrino oscillation experiments work at low neutrino energies, so precise measurement of CCQE interactions are essential for flux measurements. The main goal of this thesis is to measure the CCQE absolute neutrino cross section from the SciBooNE data. The SciBar Booster Neutrino Experiment (SciBooNE) is a neutrino and anti-neutrino scattering off experiment. The neutrino energy spectrum works at energies around 1 GeV. SciBooNE was running from June 8th 2007 to August 18th 2008. In that period, the experiment collected a total of 2.65 x 10 20 protons on target (POT). This thesis has used full data collection in neutrino mode 0.99 x 10 20 POT. A CCQE selection cut has been performed, achieving around 70% pure CCQE sample. A fit method has been exclusively developed to determine the absolute CCQE cross section, presenting results in a neutrino energy range from 0.2 to 2 GeV. The results are compatible with the NEUT predictions. The SciBooNE measurement has been compared with both Carbon (MiniBoonE) and deuterium (ANL and BNL) target experiments, showing a good agreement in both cases.« less

  4. Contribution of three nucleon force investigated in deuteron-proton breakup reaction

    NASA Astrophysics Data System (ADS)

    Parol, W.; Kozela, A.; Ciepał, I.; Bodek, K.; Jamroz, B.; Kalantar-Nayestanaki, N.; Khatri, G.; Kistryn, St.; Kłos, B.; Kuboś, J.; Kulessa, P.; Magiera, A.; Mazumdar, I.; Messchendorp, J. G.; Rozpędzik, D.; Rusnok, A.; Skwira-Chalot, I.; Stephan, E.; Wilczek, A.; Włoch, B.; Wrońska, A.; Zejma, J.

    2016-11-01

    The elastic scattering and deuteron breakup data were collected in the experiment performed at KVI (Groningen) with use of unpolarized deuteron beam with energy of 80 MeV per nucleon, impinging on hydrogen target. The procedure applied to determine total integrated luminosity is presented. The result will be used for normalization of the differential cross section for the deuteron-proton breakup reaction.

  5. One-nucleon pickup reactions and compound-nuclear decays

    NASA Astrophysics Data System (ADS)

    Escher, J. E.; Burke, J. T.; Casperson, R. J.; Hughes, R. O.; Scielzo, N. D.

    2018-05-01

    One-nucleon transfer reactions, long used as a tool to study the structure of nuclei, are potentially valuable for determining reaction cross sections indirectly. This is significant, as many reactions of interest to astrophysics and other applications involve short-lived isotopes and cannot be measured directly. We describe a procedure for obtaining constraints for calculations of neutron capture cross sections using observables from experiments with transfer reactions. As a first step toward demonstrating the method, we outline the theory developments used to properly describe the production of the compound nucleus 88Y* via the one-nucleon pickup reaction 89Y(p,d)88Y* and test the description with data from a recent experiment. We indicate how this development can be used to extract the unknown 87Y(n,γ) cross section from 89Y(p,dγ) data. The example illustrates a more generally applicable method for determining unknown cross sections via a combination of theory and transfer (or inelastic scattering) experiments.

  6. Recent QCD Results from NuTeV/CCFR Collaboration

    NASA Astrophysics Data System (ADS)

    Adams, T.; Alton, A.; Arroyo, C. G.; Avvakumov, S.; de Barbaro, L.; de Barbaro, P.; Bazarko, A. O.; Bernstein, R. H.; Bodek, A.; Bolton, T.; Brau, J.; Buchholz, D.; Budd, H.; Bugel, L.; Conrad, J. M.; Drucker, R. B.; Formaggio, J. A.; Frey, R.; Goldman, J.; Goncharov, M.; Harris, D. A.; Johnson, R. A.; Kim, J. H.; King, B. J.; Kinnel, T.; Koutsoliotas, S.; Lamm, M. J.; Marsh, W.; Mason, D.; McFarland, K. S.; McNulty, C.; Mishra, S. R.; Naples, D.; Nienaber, P.; Romosan, A.; Sakumoto, W. K.; Schellman, H. M.; Sculli, F. J.; Seligman, W. G.; Shaevitz, M. H.; Smith, W. H.; Spentzouris, P.; Stern, E. G.; Tamminga, B. M.; Vakili, M.; Vaitaitis, A.; Wu, V.; Yang, U. K.; Yu, J.; Zeller, G. P.

    2000-06-01

    Fermilab experiments CCFR and its successor NuTeV study nucleon structure through deep inelastic scattering of neutrino beams off an iron target. We report on the most recent CCFR measurement of the νN differential cross section and resulting structure functions ΔxF 3 = xF ν3 - xF overlineν3, and R long = {σ L}/{σ T}, in the framework of massive charm quark. ΔxF3 in sensitive to strange and charm content of the nucleon. NuTeV's preliminary direct measurement of the strange sea, from dimuon charged-current production, and nucleon charm content probed by neutral-current νN interaction, are also presented.

  7. Acquiring information about neutrino parameters by detecting supernova neutrinos

    NASA Astrophysics Data System (ADS)

    Huang, Ming-Yang; Guo, Xin-Heng; Young, Bing-Lin

    2010-08-01

    We consider the supernova shock effects, the Mikheyev-Smirnov-Wolfenstein effects, the collective effects, and the Earth matter effects in the detection of type II supernova neutrinos on the Earth. It is found that the event number of supernova neutrinos depends on the neutrino mass hierarchy, the neutrino mixing angle θ13, and neutrino masses. Therefore, we propose possible methods to identify the mass hierarchy and acquire information about θ13 and neutrino masses by detecting supernova neutrinos. We apply these methods to some current neutrino experiments.

  8. The GENIE Neutrino Monte Carlo Generator: Physics and User Manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andreopoulos, Costas; Barry, Christopher; Dytman, Steve

    2015-10-20

    GENIE is a suite of products for the experimental neutrino physics community. This suite includes i) a modern software framework for implementing neutrino event generators, a state-of-the-art comprehensive physics model and tools to support neutrino interaction simulation for realistic experimental setups (the Generator product), ii) extensive archives of neutrino, charged-lepton and hadron scattering data and software to produce a comprehensive set of data/MC comparisons (the Comparisons product), and iii) a generator tuning framework and fitting applications (the Tuning product). This book provides the definite guide for the GENIE Generator: It presents the software architecture and a detailed description of itsmore » physics model and official tunes. In addition, it provides a rich set of data/MC comparisons that characterise the physics performance of GENIE. Detailed step-by-step instructions on how to install and configure the Generator, run its applications and analyze its outputs are also included.« less

  9. Supernova neutrino physics with xenon dark matter detectors: A timely perspective

    NASA Astrophysics Data System (ADS)

    Lang, Rafael F.; McCabe, Christopher; Reichard, Shayne; Selvi, Marco; Tamborra, Irene

    2016-11-01

    Dark matter detectors that utilize liquid xenon have now achieved tonne-scale targets, giving them sensitivity to all flavors of supernova neutrinos via coherent elastic neutrino-nucleus scattering. Considering for the first time a realistic detector model, we simulate the expected supernova neutrino signal for different progenitor masses and nuclear equations of state in existing and upcoming dual-phase liquid xenon experiments. We show that the proportional scintillation signal (S2) of a dual-phase detector allows for a clear observation of the neutrino signal and guarantees a particularly low energy threshold, while the backgrounds are rendered negligible during the supernova burst. XENON1T (XENONnT and LZ; DARWIN) experiments will be sensitive to a supernova burst up to 25 (35; 65) kpc from Earth at a significance of more than 5 σ , observing approximately 35 (123; 704) events from a 27 M⊙ supernova progenitor at 10 kpc. Moreover, it will be possible to measure the average neutrino energy of all flavors, to constrain the total explosion energy, and to reconstruct the supernova neutrino light curve. Our results suggest that a large xenon detector such as DARWIN will be competitive with dedicated neutrino telescopes, while providing complementary information that is not otherwise accessible.

  10. First Monte Carlo Global Analysis of Nucleon Transversity with Lattice QCD Constraints

    NASA Astrophysics Data System (ADS)

    Lin, H.-W.; Melnitchouk, W.; Prokudin, A.; Sato, N.; Shows, H.; Jefferson Lab Angular Momentum JAM Collaboration

    2018-04-01

    We report on the first global QCD analysis of the quark transversity distributions in the nucleon from semi-inclusive deep-inelastic scattering (SIDIS), using a new Monte Carlo method based on nested sampling and constraints on the isovector tensor charge gT from lattice QCD. A simultaneous fit to the available SIDIS Collins asymmetry data is compatible with gT values extracted from a comprehensive reanalysis of existing lattice simulations, in contrast to previous analyses, which found significantly smaller gT values. The contributions to the nucleon tensor charge from u and d quarks are found to be δ u =0.3 (2 ) and δ d =-0.7 (2 ) at a scale Q2=2 GeV2.

  11. Deuteron Compton scattering below pion photoproduction threshold

    NASA Astrophysics Data System (ADS)

    Levchuk, M. I.; L'vov, A. I.

    2000-07-01

    Deuteron Compton scattering below pion photoproduction threshold is considered in the framework of the nonrelativistic diagrammatic approach with the Bonn OBE potential. A complete gauge-invariant set of diagrams is taken into account which includes resonance diagrams without and with NN-rescattering and diagrams with one- and two-body seagulls. The seagull operators are analyzed in detail, and their relations with free- and bound-nucleon polarizabilities are discussed. It is found that both dipole and higher-order polarizabilities of the nucleon are required for a quantitative description of recent experimental data. An estimate of the isospin-averaged dipole electromagnetic polarizabilities of the nucleon and the polarizabilities of the neutron is obtained from the data.

  12. Neutrinos

    Science.gov Websites

    Neutrinos What are they? Neutrinos are members of the Standard Model, belonging to a class of the mass could be and the mass differences between flavors of neutrinos, although there are many current experiments designed to probe this question. The difficulty lies in the fact that neutrinos are

  13. Nucleon Viewed as a Borromean Bound-State

    NASA Astrophysics Data System (ADS)

    Segovia, Jorge; Mezrag, Cédric; Chang, Lei; Roberts, Craig D.

    2018-05-01

    We explain how the emergent phenomenon of dynamical chiral symmetry breaking ensures that Poincaré covariant analyses of the three valence-quark scattering problem in continuum quantum field theory yield a picture of the nucleon as a Borromean bound-state, in which binding arises primarily through the sum of two separate contributions. One involves aspects of the non-Abelian character of Quantum Chromodynamics that are expressed in the strong running coupling and generate tight, dynamical color-antitriplet quark-quark correlations in the scalar-isoscalar and pseudovector-isotriplet channels. This attraction is magnified by quark exchange associated with diquark breakup and reformation, which is required in order to ensure that each valence-quark participates in all diquark correlations to the complete extent allowed by its quantum numbers. Combining these effects, we arrive at a properly antisymmetrised Faddeev wave function for the nucleon and calculate, e.g. the flavor-separated versions of the Dirac and Pauli form factors and the proton's leading-twist parton distribution amplitude. We conclude that available data and planned experiments are capable of validating the proposed picture.

  14. Neutrino Detectors

    NASA Astrophysics Data System (ADS)

    von Feilitzsch, Franz; Lanfranchi, Jean-Côme; Wurm, Michael

    The neutrino was postulated by Wolfgang Pauli in the early 1930s, but could only be detected for the first time in the 1950s. Ever since scientists all around the world have worked on the detection and understanding of this particle which so scarcely interacts with matter. Depending on the origin and nature of the neutrino, various types of experiments have been developed and operated. In this entry, we will review neutrino detectors in terms of neutrino energy and associated detection technique as well as the scientific outcome of some selected examples. After a brief historical introduction, the detection of low-energy neutrinos originating from nuclear reactors or from the Earth is used to illustrate the principles and difficulties which are encountered in detecting neutrinos. In the context of solar neutrino spectroscopy, where the neutrino is used as a probe for astrophysics, three different types of neutrino detectors are presented - water Čerenkov, radiochemical, and liquid-scintillator detectors. Moving to higher neutrino energies, we discuss neutrinos produced by astrophysical sources and from accelerators. The entry concludes with an overview of a selection of future neutrino experiments and their scientific goals.

  15. Induced Hyperon-Nucleon-Nucleon Interactions and the Hyperon Puzzle.

    PubMed

    Wirth, Roland; Roth, Robert

    2016-10-28

    We present the first ab initio calculations for p-shell hypernuclei including hyperon-nucleon-nucleon (YNN) contributions induced by a similarity renormalization group transformation of the initial hyperon-nucleon interaction. The transformation including the YNN terms conserves the spectrum of the Hamiltonian while drastically improving model-space convergence of the importance-truncated no-core model, allowing a precise extraction of binding and excitation energies. Results using a hyperon-nucleon interaction at leading order in chiral effective field theory for lower- to mid-p-shell hypernuclei show a good reproduction of experimental excitation energies while hyperon separation energies are typically overestimated. The induced YNN contributions are strongly repulsive and we show that they are related to a decoupling of the Σ hyperons from the hypernuclear system, i.e., a suppression of the Λ-Σ conversion terms in the Hamiltonian. This is linked to the so-called hyperon puzzle in neutron-star physics and provides a basic mechanism for the explanation of strong ΛNN three-baryon forces.

  16. Impact of pairing on clustering and neutrino transport properties in low-density stellar matter

    NASA Astrophysics Data System (ADS)

    Burrello, S.; Colonna, M.; Matera, F.

    2017-11-01

    We analyze the effects of pairing correlations on the behavior of stellar matter, focusing on thermodynamical conditions close to the onset of the liquid-gas phase transition, which are characterized by quite large density fluctuations and where clustering phenomena occur. We concentrate on the neutrino transport properties and we show, within a thermodynamical treatment, that at moderate temperatures, where pairing effects are still active, the scattering of neutrinos in the nuclear medium is significantly affected by the matter superfluidity. The pairing correlations can indeed enhance neutrino trapping and reduce the energy flux carried out by neutrino emission. New hints about an important impact of pairing on the cooling mechanism, by neutrino emission, are so envisaged and therefore this study could be of relevant interest for the evolution of proto-neutron stars and in modelization of supernova explosions.

  17. A glimpse of gluons through deeply virtual compton scattering on the proton.

    PubMed

    Defurne, M; Jiménez-Argüello, A Martí; Ahmed, Z; Albataineh, H; Allada, K; Aniol, K A; Bellini, V; Benali, M; Boeglin, W; Bertin, P; Brossard, M; Camsonne, A; Canan, M; Chandavar, S; Chen, C; Chen, J-P; de Jager, C W; de Leo, R; Desnault, C; Deur, A; El Fassi, L; Ent, R; Flay, D; Friend, M; Fuchey, E; Frullani, S; Garibaldi, F; Gaskell, D; Giusa, A; Glamazdin, O; Golge, S; Gomez, J; Hansen, O; Higinbotham, D; Holmstrom, T; Horn, T; Huang, J; Huang, M; Hyde, C E; Iqbal, S; Itard, F; Kang, H; Kelleher, A; Keppel, C; Koirala, S; Korover, I; LeRose, J J; Lindgren, R; Long, E; Magne, M; Mammei, J; Margaziotis, D J; Markowitz, P; Mazouz, M; Meddi, F; Meekins, D; Michaels, R; Mihovilovic, M; Camacho, C Muñoz; Nadel-Turonski, P; Nuruzzaman, N; Paremuzyan, R; Puckett, A; Punjabi, V; Qiang, Y; Rakhman, A; Rashad, M N H; Riordan, S; Roche, J; Russo, G; Sabatié, F; Saenboonruang, K; Saha, A; Sawatzky, B; Selvy, L; Shahinyan, A; Sirca, S; Solvignon, P; Sperduto, M L; Subedi, R; Sulkosky, V; Sutera, C; Tobias, W A; Urciuoli, G M; Wang, D; Wojtsekhowski, B; Yao, H; Ye, Z; Zhan, X; Zhang, J; Zhao, B; Zhao, Z; Zheng, X; Zhu, P

    2017-11-10

    The internal structure of nucleons (protons and neutrons) remains one of the greatest outstanding problems in modern nuclear physics. By scattering high-energy electrons off a proton we are able to resolve its fundamental constituents and probe their momenta and positions. Here we investigate the dynamics of quarks and gluons inside nucleons using deeply virtual Compton scattering (DVCS)-a highly virtual photon scatters off the proton, which subsequently radiates a photon. DVCS interferes with the Bethe-Heitler (BH) process, where the photon is emitted by the electron rather than the proton. We report herein the full determination of the BH-DVCS interference by exploiting the distinct energy dependences of the DVCS and BH amplitudes. In the regime where the scattering is expected to occur off a single quark, measurements show an intriguing sensitivity to gluons, the carriers of the strong interaction.

  18. Measuring neutrino mass imprinted on the anisotropic galaxy clustering

    NASA Astrophysics Data System (ADS)

    Oh, Minji; Song, Yong-Seon

    2017-04-01

    The anisotropic galaxy clustering of large scale structure observed by the Baryon Oscillation Spectroscopic Survey Data Release 11 is analyzed to probe the sum of neutrino masses in the small mν lesssim 1 eV limit in which the early broadband shape determined before the last scattering surface is immune from the variation of mν. The signature of mν is imprinted on the altered shape of the power spectrum at later epoch, which provides an opportunity to access the non-trivial mν through the measured anisotropic correlation function in redshift space (hereafter RSD instead of Redshift Space Distortion). The non-linear RSD corrections with massive neutrinos in the quasi linear regime are approximately estimated using one-loop order terms. We suggest an approach to probe mν simultaneously with all other distance measures and coherent growth functions, exploiting this deformation of the early broadband shape of the spectrum at later epoch. If the origin of cosmic acceleration is unknown, mν is poorly determined after marginalizing over all other observables. However, we find that the measured distances and coherent growth functions are minimally affected by the presence of mild neutrino mass. Although the standard model of cosmic acceleration is assumed to be the cosmological constant, the constraint on mν is little improved. Interestingly, the measured Cosmic Microwave Background (hereafter CMB) distance to the last scattering surface sharply slices the degeneracy between the matter content and mν, and the mν is observed to be mν = 0.19+0.28-0.17 eV which is different from massless neutrino at 68% confidence.

  19. Spin structure of the 'Forward' nucleon charge-exchange reaction n + p {yields} p + n and the deuteron charge-exchange breakup

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyuboshitz, V. L., E-mail: Valery.Lyuboshitz@jinr.ru; Lyuboshitz, V. V.

    2011-02-15

    The structure of the nucleon charge-exchange process n + p {yields} p + n is investigated basing on the isotopic invariance of the nucleon-nucleon scattering. Using the operator of permutation of the spin projections of the neutron and proton, the connection between the spin matrices, describing the amplitude of the nucleon charge-exchange process at zero angle and the amplitude of the elastic scattering of the neutron on the proton in the 'backward' direction, has been considered. Due to the optical theorem, the spin-independent part of the differential cross section of the process n + p {yields} p + n atmore » zero angle for unpolarized particles is expressed through the difference of total cross sections of unpolarized proton-proton and neutron-proton scattering. Meantime, the spin-dependent part of this cross section is proportional to the differential cross section of the deuteron charge-exchange breakup d + p {yields} (pp) + n at zero angle at the deuteron momentum k{sub d} = 2 k{sub n} (k{sub n} is the initial neutron momentum). Analysis shows that, assuming the real part of the spin-independent term of the 'forward' amplitude of the process n + p {yields} p + n to be smaller or of the same order as compared with the imaginary part, in the wide range of neutron laboratory momenta k{sub n} > 700 MeV/c the main contribution into the differential cross section of the process n + p {yields} p + n at zero angle is provided namely by the spin-dependent term.« less

  20. Generalized Parton Distributions of the nucleon from exclusive lepto- and photo-production of lepton pairs

    NASA Astrophysics Data System (ADS)

    Boer, Marie

    2017-09-01

    Generalized Parton Distributions (GPDs) contain the correlation between the parton's longitudinal momentum and their transverse distribution. They are accessed through hard exclusive processes such as exclusive Compton processes, where two photons are exchanged with a quark of the nucleon, and at least one of them has a high virtuality. Exclusive Compton processes are considered ``golden'' channels, as the only non-perturbative part of the process corresponds to the GPDs. Deeply Virtual Compton Scattering (DVCS) corresponds to the lepto-production of a real photon and has been intensively studied in the past decade. We propose to access GPDs with the two other cases of exclusive Compton processes: Timelike Compton Scattering (TCS) corresponds to the photo-production of a lepton pair, and Double Deeply Virtual Compton Scattering (DDVCS) corresponds to the lepto-production of a lepton pair. The study of these two reactions is complementary to DVCS and will bring new constraints on our understanding of the nucleon structure, in particular for a tomographic interpretation of GPDs. We will discuss the interest of TCS and DDVCS in terms of GPD studies, and present the efforts held at Jefferson Lab for new experiments aiming at measuring TCS and DDVCS.

  1. Two-nucleon S10 amplitude zero in chiral effective field theory

    NASA Astrophysics Data System (ADS)

    Sánchez, M. Sánchez; Yang, C.-J.; Long, Bingwei; van Kolck, U.

    2018-02-01

    We present a new rearrangement of short-range interactions in the S10 nucleon-nucleon channel within chiral effective field theory. This is intended to address the slow convergence of Weinberg's scheme, which we attribute to its failure to reproduce the amplitude zero (scattering momentum ≃340 MeV) at leading order. After the power counting scheme is modified to accommodate the zero at leading order, it includes subleading corrections perturbatively in a way that is consistent with renormalization-group invariance. Systematic improvement is shown at next-to-leading order, and we obtain results that fit empirical phase shifts remarkably well all the way up to the pion-production threshold. An approach in which pions have been integrated out is included, which allows us to derive analytic results that also fit phenomenology surprisingly well.

  2. On possibility of time reversal symmetry violation in neutrino elastic scattering on polarized electron target

    NASA Astrophysics Data System (ADS)

    Sobków, W.; Błaut, A.

    2018-03-01

    In this paper we indicate a possibility of utilizing the elastic scattering of Dirac low-energy (˜ 1 MeV) electron neutrinos (ν _es) on a polarized electron target (PET) in testing the time reversal symmetry violation (TRSV). We consider a scenario in which the incoming ν _e beam is a superposition of left chiral (LC) and right chiral (RC) states. LC ν _e interact mainly by the standard V-A and small admixture of non-standard scalar S_L, pseudoscalar P_L, tensor T_L interactions, while RC ones are only detected by the exotic V + A and S_R, P_R, T_R interactions. As a result of the superposition of the two chiralities the transverse components of ν e spin polarization (T-even and T-odd) may appear. We compute the differential cross section as a function of the recoil electron azimuthal angle and scattered electron energy, and show how the interference terms between standard V-A and exotic S_R, P_R, T_R couplings depend on the various angular correlations among the transversal ν _e spin polarization, the polarization of the electron target, the incoming neutrino momentum and the outgoing electron momentum in the limit of relativistic ν _e. We illustrate how the maximal value of recoil electrons azimuthal asymmetry and the asymmetry axis location of outgoing electrons depend on the azimuthal angle of the transversal component of the ν _e spin polarization, both for the time reversal symmetry conservation (TRSC) and TRSV. Next, we display that the electron energy spectrum and polar angle distribution of the recoil electrons are also sensitive to the interference terms between V-A and S_R, P_R, T_R couplings, proportional to the T-even and T-odd angular correlations among the transversal ν _e polarization, the electron polarization of the target, and the incoming ν _e momentum, respectively. We also discuss the possibility of testing the TRSV by observing the azimuthal asymmetry of outgoing electrons, using the PET without the impact of the transversal

  3. Probing Neutrino Properties with Long-Baseline Neutrino Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marino, Alysia

    2015-06-29

    This final report on an Early Career Award grant began in April 15, 2010 and concluded on April 14, 2015. Alysia Marino's research is focussed on making precise measurements of neutrino properties using intense accelerator-generated neutrino beams. As a part of this grant, she is collaborating on the Tokai-to-Kamioka (T2K) long-baseline neutrino experiment, currently taking data in Japan, and on the Deep Underground Neutrino Experiment (DUNE) design effort for a future Long-Baseline Neutrino Facility (LBNF) in the US. She is also a member of the NA61/SHINE particle production experiment at CERN, but as that effort is supported by other funds,more » it will not be discussed further here. T2K was designed to search for the disappearance of muon neutrinos (ν μ) and the appearance of electron neutrinos (ν e), using a beam of muon neutrino beam that travels 295 km across Japan towards the Super-Kamiokande detector. In 2011 T2K first reported indications of ν e appearance, a previously unobserved mode of neutrino oscillations. In the past year, T2K has published a combined analysis of ν μ disappearance and ν e appearance, and began collecting taking data with a beam of anti-neutrinos, instead of neutrinos, to search for hints of violation of the CP symmetry of the universe. The proposed DUNE experiment has similar physics goals to T2K, but will be much more sensitive due to its more massive detectors and new higher-intensity neutrino beam. This effort will be very high-priority particle physics project in the US over the next decade.« less

  4. First Monte Carlo Global Analysis of Nucleon Transversity with Lattice QCD Constraints

    DOE PAGES

    Lin, Huey-Wen; Melnitchouk, Wally; Prokudin, Alexei; ...

    2018-04-11

    We report on the first global QCD analysis of the quark transversity distributions in the nucleon from semi-inclusive deep-inelastic scattering (SIDIS), using a new Monte Carlo method based on nested sampling and constraints on the isovector tensor chargemore » $$g_T$$ from lattice QCD. A simultaneous fit to the available SIDIS Collins asymmetry data is compatible with $$g_T$$ values extracted from a comprehensive reanalysis of existing lattice simulations, in contrast to previous analyses, which found significantly smaller $$g_T$$ values. The contributions to the nucleon tensor charge from $u$ and $d$ quarks are found to be $$\\delta u = 0.3(2)$$ and $$\\delta d = -0.7(2)$$ at a scale $Q^2 = 2$ GeV$^2$.« less

  5. First Monte Carlo Global Analysis of Nucleon Transversity with Lattice QCD Constraints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Huey-Wen; Melnitchouk, Wally; Prokudin, Alexei

    We report on the first global QCD analysis of the quark transversity distributions in the nucleon from semi-inclusive deep-inelastic scattering (SIDIS), using a new Monte Carlo method based on nested sampling and constraints on the isovector tensor chargemore » $$g_T$$ from lattice QCD. A simultaneous fit to the available SIDIS Collins asymmetry data is compatible with $$g_T$$ values extracted from a comprehensive reanalysis of existing lattice simulations, in contrast to previous analyses, which found significantly smaller $$g_T$$ values. The contributions to the nucleon tensor charge from $u$ and $d$ quarks are found to be $$\\delta u = 0.3(2)$$ and $$\\delta d = -0.7(2)$$ at a scale $Q^2 = 2$ GeV$^2$.« less

  6. Solar neutrinos as a signal and background in direct-detection experiments searching for sub-GeV dark matter with electron recoils

    NASA Astrophysics Data System (ADS)

    Essig, Rouven; Sholapurkar, Mukul; Yu, Tien-Tien

    2018-05-01

    Direct-detection experiments sensitive to low-energy electron recoils from sub-GeV dark matter interactions will also be sensitive to solar neutrinos via coherent neutrino-nucleus scattering (CNS), since the recoiling nucleus can produce a small ionization signal. Solar neutrinos constitute both an interesting signal in their own right and a potential background to a dark matter search that cannot be controlled or reduced by improved shielding, material purification and handling, or improved detector design. We explore these two possibilities in detail for semiconductor (silicon and germanium) and xenon targets, considering several possibilities for the unmeasured ionization efficiency at low energies. For dark-matter-electron-scattering searches, neutrinos start being an important background for exposures larger than ˜1 - 10 kg -years in silicon and germanium, and for exposures larger than ˜0.1 - 1 kg -year in xenon. For the absorption of bosonic dark matter (dark photons and axion-like particles) by electrons, neutrinos are most relevant for masses below ˜1 keV and again slightly more important in xenon. Treating the neutrinos as a signal, we find that the CNS of 8B neutrinos can be observed with ˜2 σ significance with exposures of ˜2 , 7, and 20 kg-years in xenon, germanium, and silicon, respectively, assuming there are no other backgrounds. We give an example for how this would constrain nonstandard neutrino interactions. Neutrino components at lower energy can only be detected if the ionization efficiency is sufficiently large. In this case, observing pep neutrinos via CNS requires exposures ≳10 - 100 kg -years in silicon or germanium (˜1000 kg -years in xenon), and observing CNO neutrinos would require an order of magnitude more exposure. Only silicon could potentially detect 7Be neutrinos. These measurements would allow for a direct measurement of the electron-neutrino survival probability over a wide energy range.

  7. Folding model analyses of 12C-12C and 16O-16O elastic scattering using the density-dependent LOCV-averaged effective interaction

    NASA Astrophysics Data System (ADS)

    Rahmat, M.; Modarres, M.

    2018-03-01

    The averaged effective two-body interaction (AEI), which can be generated through the lowest order constrained variational (LOCV) method for symmetric nuclear matter (SNM) with the input [Reid68, Ann. Phys. 50, 411 (1968), 10.1016/0003-4916(68)90126-7] nucleon-nucleon potential, is used as the effective nucleon-nucleon potential in the folding model to describe the heavy-ion (HI) elastic scattering cross sections. The elastic scattering cross sections of 12C-12C and 16O-16O systems are calculated in the above framework. The results are compared with the corresponding calculations coming from the fitting procedures with the input finite range D D M 3 Y 1 -Reid potential and the available experimental data at different incident energies. It is shown that a reasonable description of the elastic 12C-12C and 16O-16O scattering data at the low and medium energies can be obtained by using the above LOCV AEI, without any need to define a parametrized density-dependent function in the effective nucleon-nucleon potential, which is formally considered in the typical D D M 3 Y 1 -Reid interactions.

  8. Results on the Spin-Dependent Scattering of Weakly Interacting Massive Particles on Nucleons from the Run 3 Data of the LUX Experiment.

    PubMed

    Akerib, D S; Araújo, H M; Bai, X; Bailey, A J; Balajthy, J; Beltrame, P; Bernard, E P; Bernstein, A; Biesiadzinski, T P; Boulton, E M; Bradley, A; Bramante, R; Cahn, S B; Carmona-Benitez, M C; Chan, C; Chapman, J J; Chiller, A A; Chiller, C; Currie, A; Cutter, J E; Davison, T J R; de Viveiros, L; Dobi, A; Dobson, J E Y; Druszkiewicz, E; Edwards, B N; Faham, C H; Fiorucci, S; Gaitskell, R J; Gehman, V M; Ghag, C; Gibson, K R; Gilchriese, M G D; Hall, C R; Hanhardt, M; Haselschwardt, S J; Hertel, S A; Hogan, D P; Horn, M; Huang, D Q; Ignarra, C M; Ihm, M; Jacobsen, R G; Ji, W; Kazkaz, K; Khaitan, D; Knoche, R; Larsen, N A; Lee, C; Lenardo, B G; Lesko, K T; Lindote, A; Lopes, M I; Malling, D C; Manalaysay, A; Mannino, R L; Marzioni, M F; McKinsey, D N; Mei, D-M; Mock, J; Moongweluwan, M; Morad, J A; Murphy, A St J; Nehrkorn, C; Nelson, H N; Neves, F; O'Sullivan, K; Oliver-Mallory, K C; Ott, R A; Palladino, K J; Pangilinan, M; Pease, E K; Phelps, P; Reichhart, L; Rhyne, C; Shaw, S; Shutt, T A; Silva, C; Solovov, V N; Sorensen, P; Stephenson, S; Sumner, T J; Szydagis, M; Taylor, D J; Taylor, W; Tennyson, B P; Terman, P A; Tiedt, D R; To, W H; Tripathi, M; Tvrznikova, L; Uvarov, S; Verbus, J R; Webb, R C; White, J T; Whitis, T J; Witherell, M S; Wolfs, F L H; Yazdani, K; Young, S K; Zhang, C

    2016-04-22

    We present experimental constraints on the spin-dependent WIMP (weakly interacting massive particle)-nucleon elastic cross sections from LUX data acquired in 2013. LUX is a dual-phase xenon time projection chamber operating at the Sanford Underground Research Facility (Lead, South Dakota), which is designed to observe the recoil signature of galactic WIMPs scattering from xenon nuclei. A profile likelihood ratio analysis of 1.4×10^{4}  kg day of fiducial exposure allows 90% C.L. upper limits to be set on the WIMP-neutron (WIMP-proton) cross section of σ_{n}=9.4×10^{-41}  cm^{2} (σ_{p}=2.9×10^{-39}  cm^{2}) at 33  GeV/c^{2}. The spin-dependent WIMP-neutron limit is the most sensitive constraint to date.

  9. Results on the spin-dependent scattering of weakly interacting massive particles on nucleons from the Run 3 Data of the LUX Experiment

    DOE PAGES

    Akerib, D. S.

    2016-04-20

    Here, we present experimental constraints on the spin-dependent WIMP (weakly interacting massive particle)-nucleon elastic cross sections from LUX data acquired in 2013. LUX is a dual-phase xenon time projection chamber operating at the Sanford Underground Research Facility (Lead, South Dakota), which is designed to observe the recoil signature of galactic WIMPs scattering from xenon nuclei. A profile likelihood ratio analysis of 1.4 × 10 4 kg day of fiducial exposure allows 90% C.L. upper limits to be set on the WIMP-neutron (WIMP-proton) cross section of σ n = 9.4 × 10 –41 cm 2 (σ p = 2.9 × 10more » –39 cm 2) at 33 GeV/c 2. The spin-dependent WIMP-neutron limit is the most sensitive constraint to date.« less

  10. Study of 11Li+p elastic scattering using BHF formalism with three body force

    NASA Astrophysics Data System (ADS)

    Sharma, Manjari; Haider, W.

    2018-04-01

    In the present work we have analyzed the elastic scattering data of 11Li + p at 62, 68.4 and 75 MeV/nucleon, using the microscopic optical potential calculated within the framework of Brueckner-Hartree-Fock formalism (BHF). The calculation uses Argonne v18 and Urbana v14 inter-nucleon potentials and the Urbana IX (UVIX) model of three body force. The required nucleon-density distributions for 11Li are obtained using the semi-phenomenological model for nuclear density distributions. The optical potential has been obtained by folding the g-matrices as calculated in BHF (with and without three body forces) over the nucleon density distributions. We have used the exact method for calculating both the direct and the exchange parts of the spin-orbit potential. Our results reveal that the spin-orbit potential significantly contributes to 11Li+p elastic scattering at all three incident energies. Further, the calculated spin-orbit potential in BHF is much smaller and more diffused as compared with the phenomenological spin-orbit potential. The analysis reveals that the calculated microscopic optical potentials, with and without three body force using BHF approach with phenomenological form of density distribution, provides satisfactory agreement with the elastic scattering data for 11Li+p.

  11. From Atmospheric Neutrinos to the Neutrino Mass Hierarchy

    NASA Astrophysics Data System (ADS)

    Kappes, A.

    2015-08-01

    After a brief introduction to neutrino oscillation, the article discusses how proposed detectors like PINGU and ORCA can use atmospheric neutrinos in the GeV range to determine the neutrino mass hierarchy, one of the crucial unknowns in the neutrino sector of particle physics, and what uncertainties on external input parameters have to be taken into account.

  12. Unexplained Excess of Electronlike Events from a 1-GeV Neutrino Beam

    NASA Astrophysics Data System (ADS)

    Aguilar-Arevalo, A. A.; Anderson, C. E.; Bazarko, A. O.; Brice, S. J.; Brown, B. C.; Bugel, L.; Cao, J.; Coney, L.; Conrad, J. M.; Cox, D. C.; Curioni, A.; Djurcic, Z.; Finley, D. A.; Fleming, B. T.; Ford, R.; Garcia, F. G.; Garvey, G. T.; Green, C.; Green, J. A.; Hart, T. L.; Hawker, E.; Imlay, R.; Johnson, R. A.; Karagiorgi, G.; Kasper, P.; Katori, T.; Kobilarcik, T.; Kourbanis, I.; Koutsoliotas, S.; Laird, E. M.; Linden, S. K.; Link, J. M.; Liu, Y.; Liu, Y.; Louis, W. C.; Mahn, K. B. M.; Marsh, W.; McGregor, G.; Metcalf, W.; Meyers, P. D.; Mills, F.; Mills, G. B.; Monroe, J.; Moore, C. D.; Nelson, R. H.; Nguyen, V. T.; Nienaber, P.; Nowak, J. A.; Ouedraogo, S.; Patterson, R. B.; Perevalov, D.; Polly, C. C.; Prebys, E.; Raaf, J. L.; Ray, H.; Roe, B. P.; Russell, A. D.; Sandberg, V.; Schirato, R.; Schmitz, D.; Shaevitz, M. H.; Shoemaker, F. C.; Smith, D.; Sodeberg, M.; Sorel, M.; Spentzouris, P.; Stancu, I.; Stefanski, R. J.; Sung, M.; Tanaka, H. A.; Tayloe, R.; Tzanov, M.; van de Water, R.; Wascko, M. O.; White, D. H.; Wilking, M. J.; Yang, H. J.; Zeller, G. P.; Zimmerman, E. D.

    2009-03-01

    The MiniBooNE Collaboration observes unexplained electronlike events in the reconstructed neutrino energy range from 200 to 475 MeV. With 6.46×1020 protons on target, 544 electronlike events are observed in this energy range, compared to an expectation of 415.2±43.4 events, corresponding to an excess of 128.8±20.4±38.3 events. The shape of the excess in several kinematic variables is consistent with being due to either νe and ν¯e charged-current scattering or νμ neutral-current scattering with a photon in the final state. No significant excess of events is observed in the reconstructed neutrino energy range from 475 to 1250 MeV, where 408 events are observed compared to an expectation of 385.9±35.7 events.

  13. Refractive effects and Airy structure in inelastic 16O+12C rainbow scattering

    NASA Astrophysics Data System (ADS)

    Ohkubo, S.; Hirabayashi, Y.; Ogloblin, A. A.; Gloukhov, Yu. A.; Dem'yanova, A. S.; Trzaska, W. H.

    2014-12-01

    Inelastic 16O+12C rainbow scattering to the 2+ (4.44 MeV) state of 12C was measured at the incident energies, EL = 170, 181, 200, 260, and 281 MeV. A systematic analysis of the experimental angular distributions was performed using the coupled-channels method with an extended double folding potential derived from realistic wave functions for 12C and 16O calculated with a microscopic α cluster model and a finite-range density-dependent nucleon-nucleon force. The coupled-channels analysis of the measured inelastic-scattering data shows consistently some Airy-like structure in the inelastic-scattering cross sections for the first 2+ state of 12C, which is somewhat obscured and still not clearly visible in the measured data. The Airy minimum was identified from the analysis and the systematic energy evolution of the Airy structure was studied. The Airy minimum in inelastic scattering is found to be shifted backward compared with that in elastic scattering.

  14. Coincidence charged-current neutrino-induced deuteron disintegration for 2H2 16O

    NASA Astrophysics Data System (ADS)

    Van Orden, J. W.; Donnelly, T. W.; Moreno, O.

    2017-12-01

    Semi-inclusive charge-changing neutrino reactions on targets of heavy water are investigated with the goal of determining the relative contributions to the total cross section of deuterium and oxygen in kinematics chosen to emphasize the former. The study is undertaken for conditions where the typical neutrino beam energies are in the few GeV region, and hence relativistic modeling is essential. For this, the previous relativistic approach for the deuteron is employed, together with a spectral function approach for the case of oxygen. Upon optimizing the kinematics of the final-state particles assumed to be detected (typically a muon and a proton) it is shown that the oxygen contribution to the total cross section is suppressed by roughly an order of magnitude compared with the deuterium cross section, thereby confirming that CC ν studies of heavy water can effectively yield the cross sections for deuterium, with acceptable backgrounds from oxygen. This opens the possibility of using deuterium to determine the incident neutrino flux distribution, to have it serve as a target for which the nuclear structure issues are minimal, and possibly to use deuterium to provide improved knowledge of specific aspects of hadronic structure, such as to explore the momentum transfer dependence of the isovector axial-vector form factor of the nucleon.

  15. Nuclear pasta in protoneutron stars: simulations of neutrino emission from nucelar de-excitation

    NASA Astrophysics Data System (ADS)

    Witt, Matthew Charles; Newton, William

    2017-01-01

    Nuclear pasta is an exotic phase of matter with densities near ρ ≈ ρ0 = 1014 g cm-3 that consists of complex structures with geometries resembling spaghetti, lasagna, gnocchi, and other types of pasta. It is predicted to appear in the inner crust of neutron stars, protoneutron stars, and the collapsing cores of massive stars. It is hypothesized that nuclear pasta has a significant effect on transport and neutrino scattering properties of neutron and protoneutron stars. If this is true, then it is possible to find observational signatures of nuclear pasta. We present a calculation of neutrino emmissivity of pasta phases due to de-excitation of neutrons. We discuss observational implications on the neutrino signal of protoneutron stars.

  16. Reconciling threshold and subthreshold expansions for pion-nucleon scattering

    NASA Astrophysics Data System (ADS)

    Siemens, D.; Ruiz de Elvira, J.; Epelbaum, E.; Hoferichter, M.; Krebs, H.; Kubis, B.; Meißner, U.-G.

    2017-07-01

    Heavy-baryon chiral perturbation theory (ChPT) at one loop fails in relating the pion-nucleon amplitude in the physical region and for subthreshold kinematics due to loop effects enhanced by large low-energy constants. Studying the chiral convergence of threshold and subthreshold parameters up to fourth order in the small-scale expansion, we address the question to what extent this tension can be mitigated by including the Δ (1232) as an explicit degree of freedom and/or using a covariant formulation of baryon ChPT. We find that the inclusion of the Δ indeed reduces the low-energy constants to more natural values and thereby improves consistency between threshold and subthreshold kinematics. In addition, even in the Δ-less theory the resummation of 1 /mN corrections in the covariant scheme improves the results markedly over the heavy-baryon formulation, in line with previous observations in the single-baryon sector of ChPT that so far have evaded a profound theoretical explanation.

  17. Measurement of Muon Neutrino Charged Current Single $$\\pi^0$$ Production on Hydrocarbon using MINERvA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Altinok, Ozgur

    A sample of charged-current single pion production events for the semi- exclusive channel ν µ + CH → µ -π 0 + nucleon(s) has been obtained using neutrino exposures of the MINERvA detector. Differential cross sections for muon momentum, muon production angle, pion momentum, pion production angle, and four-momentum transfer square Q 2 are reported and are compared to a GENIE-based simulation. The cross section versus neutrino energy is also re- ported. The effects of pion final-state interactions on these cross sections are investigated. The effect of baryon resonance suppression at low Q 2 is examined and an event re-weight used by two previous experiments is shown to improve the data versus simulation agreement. The differential cross sections for Q 2 for Eν < 4.0 GeV and E ν ≥ 4.0 GeV are examined and the shapes of these distributions are compared to those from the experiment’smore » $$\\bar{v}$$ µ-CC (π 0) measurement. The polarization of the pπ 0 system is measured and compared to the simulation predictions. The hadronic invariant mass W distribution is examined for evidence of resonance content, and a search is reported for evidence of a two-particle two-hole (2p2h) contribution. All of the differential cross-section measurements of this Thesis are compared with published MINERvA measurements for ν µ-CC (π +) and \\bar{v}$ µ-CC (π 0) processes.« less

  18. 3D Animations for Exploring Nucleon Structure

    NASA Astrophysics Data System (ADS)

    Gorman, Waverly; Burkardt, Matthias

    2016-09-01

    Over the last few years many intuitive pictures have been developed for the interpretation of electron hadron scattering experiments, such as a mechanism for transverse single-spin asymmetries in semi-inclusive deep-inelastic scattering experiments. While Dr. Burkardt's pictures have been helpful for many researchers in the field, they are still difficult to visualize for broader audiences since they rely mostly on 2-dimensional static images. In order to make more accessible for a broader audience what can be learned from Jefferson Lab experiments, we have started to work on developing 3-dimensional animations for these processes. The goal is to enable the viewer to repeatedly look at the same microscopic mechanism for a specific reaction, with the viewpoint of the observer changing. This should help an audience that is not so familiar with these reactions to better understand what can be learned from various experiments at Jefferson Lab aimed at exploring the nucleon structure. Jefferson Lab Minority/Female Undergraduate Research Assistantship.

  19. Neutrino astronomy with supernova neutrinos

    NASA Astrophysics Data System (ADS)

    Brdar, Vedran; Lindner, Manfred; Xu, Xun-Jie

    2018-04-01

    Modern neutrino facilities will be able to detect a large number of neutrinos from the next Galactic supernova. We investigate the viability of the triangulation method to locate a core-collapse supernova by employing the neutrino arrival time differences at various detectors. We perform detailed numerical fits in order to determine the uncertainties of these time differences for the cases when the core collapses into a neutron star or a black hole. We provide a global picture by combining all the relevant current and future neutrino detectors. Our findings indicate that in the scenario of a neutron star formation, supernova can be located with precision of 1.5 and 3.5 degrees in declination and right ascension, respectively. For the black hole scenario, sub-degree precision can be reached.

  20. Supernova Neutrino-Process and Implication in Neutrino Oscillation

    NASA Astrophysics Data System (ADS)

    Kajino, T.; Aoki, W.; Fujiya, W.; Mathews, G. J.; Yoshida, T.; Shaku, K.; Nakamura, K.; Hayakawa, T.

    2012-08-01

    We studied the supernova nucleosynthesis induced by neutrino interactions and found that several isotopes of rare elements like 7Li, 11B, 138La, 180Ta and many others are predominantly produced by the neutrino-process in core-collapse supernovae. These isotopes are strongly affected by the neutrino flavor oscillation due to the MSW (Mikheyev-Smirnov-Wolfenstein) effect. We here propose a new novel method to determine the unknown neutrino oscillation parameters, θ13 and mass hierarchy simultaneously from the supernova neutrino-process, combined with the r-process for heavy-element synthsis and the Galactic chemical evolution on light nuclei.

  1. Dispersive approach to two-photon exchange in elastic electron-proton scattering

    DOE PAGES

    Blunden, P. G.; Melnitchouk, W.

    2017-06-14

    We examine the two-photon exchange corrections to elastic electron-nucleon scattering within a dispersive approach, including contributions from both nucleon and Δ intermediate states. The dispersive analysis avoids off-shell uncertainties inherent in traditional approaches based on direct evaluation of loop diagrams, and guarantees the correct unitary behavior in the high energy limit. Using empirical information on the electromagnetic nucleon elastic and NΔ transition form factors, we compute the two-photon exchange corrections both algebraically and numerically. Finally, results are compared with recent measurements of e + p to e - p cross section ratios from the CLAS, VEPP-3 and OLYMPUS experiments.

  2. Comparison of the F2 Structure Function in Iron as Measured by Charged Lepton and Neutrino Probes

    NASA Astrophysics Data System (ADS)

    Kalantarians, Narbe; Christy, Eric; Keppel, Cynthia

    2017-09-01

    World data for the F2 structure function for Iron, as measured by multiple charged lepton and neutrino deep inelastic scattering experiments, are compared. Data obtained from charged lepton and neutrino scattering at larger values of x are in remarkably good agreement with a simple invocation of the 18/5 rule, while a discrepancy in the behavior of the data obtained from the different probes well beyond the data uncertainties is observed in the shadowing/anti-shadowing transition region where the Bjorken scaling variable x is less than 0.15. The data are compared to theoretical calculations. Details and results of the data comparison will be presented, along with future plans.

  3. Proton-Nucleus Elastic Cross Sections Using Two-Body In-Medium Scattering Amplitudes

    NASA Technical Reports Server (NTRS)

    Tripathi, R. K.; Wilson, John W.; Cucinotta, Francis A.

    2001-01-01

    Recently, a method was developed of extracting nucleon-nucleon (NN) cross sections in the medium directly from experiment. The in-medium NN cross sections form the basic ingredients of several heavy-ion scattering approaches including the coupled-channel approach developed at the Langley Research Center. The ratio of the real to the imaginary part of the two-body scattering amplitude in the medium was investigated. These ratios are used in combination with the in-medium NN cross sections to calculate elastic proton-nucleus cross sections. The agreement is excellent with the available experimental data. These cross sections are needed for the radiation risk assessment of space missions.

  4. Ab initio optical potentials and nucleon scattering on medium mass nuclei

    NASA Astrophysics Data System (ADS)

    Idini, A.; Barbieri, C.; Navrátil, P.

    2018-03-01

    We show first results for the elastic scattering of neutrons off oxygen and calcium isotopes obtained from ab initio optical potentials. The potential is derived using self-consistent Green’s function theory (SCGF) with the saturating chiral interaction NNLOsat. Calculations are compared to available scattering data and show that it is possible to reproduce low energy scattering observables in medium mass nuclei from first principles.

  5. First Monte Carlo Global Analysis of Nucleon Transversity with Lattice QCD Constraints.

    PubMed

    Lin, H-W; Melnitchouk, W; Prokudin, A; Sato, N; Shows, H

    2018-04-13

    We report on the first global QCD analysis of the quark transversity distributions in the nucleon from semi-inclusive deep-inelastic scattering (SIDIS), using a new Monte Carlo method based on nested sampling and constraints on the isovector tensor charge g_{T} from lattice QCD. A simultaneous fit to the available SIDIS Collins asymmetry data is compatible with g_{T} values extracted from a comprehensive reanalysis of existing lattice simulations, in contrast to previous analyses, which found significantly smaller g_{T} values. The contributions to the nucleon tensor charge from u and d quarks are found to be δu=0.3(2) and δd=-0.7(2) at a scale Q^{2}=2  GeV^{2}.

  6. Scaling within the spectral function approach

    NASA Astrophysics Data System (ADS)

    Sobczyk, J. E.; Rocco, N.; Lovato, A.; Nieves, J.

    2018-03-01

    Scaling features of the nuclear electromagnetic response functions unveil aspects of nuclear dynamics that are crucial for interpreting neutrino- and electron-scattering data. In the large momentum-transfer regime, the nucleon-density response function defines a universal scaling function, which is independent of the nature of the probe. In this work, we analyze the nucleon-density response function of 12C, neglecting collective excitations. We employ particle and hole spectral functions obtained within two distinct many-body methods, both widely used to describe electroweak reactions in nuclei. We show that the two approaches provide compatible nucleon-density scaling functions that for large momentum transfers satisfy first-kind scaling. Both methods yield scaling functions characterized by an asymmetric shape, although less pronounced than that of experimental scaling functions. This asymmetry, only mildly affected by final state interactions, is mostly due to nucleon-nucleon correlations, encoded in the continuum component of the hole spectral function.

  7. Neutrino experiments

    DOE PAGES

    Lesko, K. T.

    2004-02-24

    This review examines a wide variety of experiments investigating neutrino interactions and neutrino properties from a variety of neutrino sources. We have witnessed remarkable progress in the past two years in settling long standing problems in neutrino physics and uncovering the first evidence for physics beyond the Standard Model in nearly 30 years. Here this paper briefly reviews this recent progress in the field of neutrino physics and highlights several significant experimental arenas and topics for the coming decade of particular interest. These highlighted experiments include the precision determination of oscillation parameters including θ 13, θ 12, Δm 12 2more » and Δm 23 2 as well as a number of fundamental properties are likely to be probed included nature of the neutrino (Majorana versus Dirac), the number of neutrino families and the neutrino’s absolute mass.« less

  8. Probing Novel Properties of Nucleons and Nuclei via Parity Violating Electron Scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mercado, Luis

    2012-05-01

    This thesis reports on two experiments conducted by the HAPPEx (Hall A Proton Parity Experiment) collaboration at the Thomas Jefferson National Accelerator Facility. For both, the weak neutral current interaction (WNC, mediated by the Z 0 boson) is used to probe novel properties of hadronic targets. The WNC interaction amplitude is extracted by measuring the parity-violating asymmetry in the elastic scattering of longitudinally polarized electrons o unpolarized target hadrons. HAPPEx-III, conducted in the Fall of 2009, used a liquid hydrogen target at a momentum transfer of Q 2 = 0.62 GeV 2. The measured asymmetry was used to set newmore » constraints on the contribution of strange quark form factors (G s E,M ) to the nucleon electromagnetic form factors. A value of A PV = -23.803±} 0.778 (stat)± 0.359 (syst) ppm resulted in G s E + 0.517G s M = 0.003± 0.010 (stat)± 0.004 (syst)± 0.009 (FF). PREx, conducted in the Spring of 2010, used a polarized electron beam on a 208Pb target at a momentum transfer of Q 2 = 0.009 GeV 2. This parity-violating asymmetry can be used to obtain a clean measurement of the root-mean-square radius of the neutrons in the 208Pb nucleus. The Z 0 boson couples mainly to neutrons; the neutron weak charge is much larger than that of the proton. The value of this asymmetry is at the sub-ppm level and has a projected experimental fractional precision of 3%. We will describe the accelerator setup used to set controls on helicity-correlated beam asymmetries and the analysis methods for finding the raw asymmetry for HAPPEx-III. We will also discuss in some detail the preparations to meet the experimental challenges associated with measuring such a small asymmetry with the degree of precision required for PREx.« less

  9. Low-energy neutrinos

    NASA Astrophysics Data System (ADS)

    Ludhova, Livia

    2016-05-01

    There exist several kinds of sources emitting neutrinos in the MeV energy range. These low-energy neutrinos from different sources can be often detected by the same multipurpose detectors. The status-of-art of the field of solar neutrinos, geoneutrinos, and the search for sterile neutrino with artificial neutrino sources is provided here; other neutrino sources, as for example reactor or high-energy neutrinos, are described elsewhere. For each of these three fields, the present-day motivation and open questions, as well as the latest experimental results and future perspectives are discussed.

  10. Neutrino Oscillation Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kayser, Boris

    2012-06-01

    To complement the neutrino-physics lectures given at the 2011 International School on Astro Particle Physics devoted to Neutrino Physics and Astrophysics (ISAPP 2011; Varenna, Italy), at the 2011 European School of High Energy Physics (ESHEP 2011; Cheila Gradistei, Romania), and, in modified form, at other summer schools, we present here a written description of the physics of neutrino oscillation. This description is centered on a new way of deriving the oscillation probability. We also provide a brief guide to references relevant to topics other than neutrino oscillation that were covered in the lectures. Neutrinos and photons are by far themore » most abundant elementary particles in the universe. Thus, if we would like to comprehend the universe, we must understand the neutrinos. Of course, studying the neutrinos is challenging, since the only known forces through which these electrically-neutral leptons interact are the weak force and gravity. Consequently, interactions of neutrinos in a detector are very rare events, so that very large detectors and intense neutrino sources are needed to make experiments feasible. Nevertheless, we have confirmed that the weak interactions of neutrinos are correctly described by the Standard Model (SM) of elementary particle physics. Moreover, in the last 14 years, we have discovered that neutrinos have nonzero masses, and that leptons mix. These discoveries have been based on the observation that neutrinos can change from one 'flavor' to another - the phenomenon known as neutrino oscillation. We shall explain the physics of neutrino oscillation, deriving the probability of oscillation in a new way. We shall also provide a very brief guide to references that can be used to study some major neutrino-physics topics other than neutrino oscillation.« less

  11. STRUCTURED JETS IN BL LAC OBJECTS: EFFICIENT PeV NEUTRINO FACTORIES?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tavecchio, Fabrizio; Ghisellini, Gabriele; Guetta, Dafne

    2014-09-20

    The origin of high-energy neutrinos (0.1–1 PeV range) detected by IceCube remains a mystery. In this work, we explore the possibility that efficient neutrino production can occur in structured jets of BL Lac objects, characterized by a fast inner spine surrounded by a slower layer. This scenario has been widely discussed in the framework of the high-energy emission models for BL Lac objects and radio galaxies. One of the relevant consequences of a velocity structure is the enhancement of the inverse Compton emission caused by the radiative coupling of the two zones. We show that a similar boosting could occurmore » for the neutrino output of the spine through the photo-meson reaction of high-energy protons scattering off the amplified soft target photon field of the layer. Assuming the local density and the cosmological evolution of γ-ray BL Lac object derived from Fermi Large Area Telescope data, we calculate the expected diffuse neutrino intensity, which can match the IceCube data for a reasonable choice of parameters.« less

  12. Neutrino Physics

    DOE R&D Accomplishments Database

    Lederman, L. M.

    1963-01-09

    The prediction and verification of the neutrino are reviewed, together with the V A theory for its interactions (particularly the difficulties with the apparent existence of two neutrinos and the high energy cross section). The Brookhaven experiment confirming the existence of two neutrinos and the cross section increase with momentum is then described, and future neutrino experiments are considered. (D.C.W.)

  13. Matter-neutrino resonance in a multiangle neutrino bulb model

    NASA Astrophysics Data System (ADS)

    Vlasenko, Alexey; McLaughlin, G. C.

    2018-04-01

    Simulations of neutrino flavor evolution in compact merger environments have shown that neutrino flavor, and hence nucleosynthesis, can be strongly affected by the presence of matter-neutrino resonances (MNRs), where there is a cancelation between the matter and the neutrino potential. Simulations performed thus far follow flavor evolution along a single neutrino trajectory, but self-consistency requires all trajectories to be treated simultaneously, and it has not been known whether MNR phenomena would still occur in multiangle models. In this paper, we present the first fully multi-angle calculations of MNR. We find that familiar MNR phenomena, where neutrinos transform to a greater extent than anti-neutrinos and a feedback mechanism maintains the cancellation between the matter and neutrino potential, still occurs for a subset of angular bins, although the flavor transformation is not as efficient as in the single-angle case. In addition, we find other types of flavor transformation that are not seen in single-angle simulations. These flavor transformation phenomena appear to be robust and are present for a wide range of model parameters, as long as an MNR is present. Although computational constraints currently limit us to models with spherical symmetry, our results suggest that the presence of an MNR generally leads to large-scale neutrino flavor evolution in multiangle systems.

  14. Structure of the two-neutrino double-β decay matrix elements within perturbation theory

    NASA Astrophysics Data System (ADS)

    Štefánik, Dušan; Šimkovic, Fedor; Faessler, Amand

    2015-06-01

    The two-neutrino double-β Gamow-Teller and Fermi transitions are studied within an exactly solvable model, which allows a violation of both spin-isospin SU(4) and isospin SU(2) symmetries, and is expressed with generators of the SO(8) group. It is found that this model reproduces the main features of realistic calculation within the quasiparticle random-phase approximation with isospin symmetry restoration concerning the dependence of the two-neutrino double-β decay matrix elements on isovector and isoscalar particle-particle interactions. By using perturbation theory an explicit dependence of the two-neutrino double-β decay matrix elements on the like-nucleon pairing, particle-particle T =0 and T =1 , and particle-hole proton-neutron interactions is obtained. It is found that double-β decay matrix elements do not depend on the mean field part of Hamiltonian and that they are governed by a weak violation of both SU(2) and SU(4) symmetries by the particle-particle interaction of Hamiltonian. It is pointed out that there is a dominance of two-neutrino double-β decay transition through a single state of intermediate nucleus. The energy position of this state relative to energies of initial and final ground states is given by a combination of strengths of residual interactions. Further, energy-weighted Fermi and Gamow-Teller sum rules connecting Δ Z =2 nuclei are discussed. It is proposed that these sum rules can be used to study the residual interactions of the nuclear Hamiltonian, which are relevant for charge-changing nuclear transitions.

  15. High-energy neutrinos from FR0 radio galaxies?

    NASA Astrophysics Data System (ADS)

    Tavecchio, F.; Righi, C.; Capetti, A.; Grandi, P.; Ghisellini, G.

    2018-04-01

    The sources responsible for the emission of high-energy (≳100 TeV) neutrinos detected by IceCube are still unknown. Among the possible candidates, active galactic nuclei with relativistic jets are often examined, since the outflowing plasma seems to offer the ideal environment to accelerate the required parent high-energy cosmic rays. The non-detection of single-point sources or - almost equivalently - the absence, in the IceCube events, of multiplets originating from the same sky position - constrains the cosmic density and the neutrino output of these sources, pointing to a numerous population of faint sources. Here we explore the possibility that FR0 radio galaxies, the population of compact sources recently identified in large radio and optical surveys and representing the bulk of radio-loud AGN population, can represent suitable candidates for neutrino emission. Modelling the spectral energy distribution of an FR0 radio galaxy recently associated with a γ-ray source detected by the Large Area Telescope onboard Fermi, we derive the physical parameters of its jet, in particular the power carried by it. We consider the possible mechanisms of neutrino production, concluding that pγ reactions in the jet between protons and ambient radiation is too inefficient to sustain the required output. We propose an alternative scenario, in which protons, accelerated in the jet, escape from it and diffuse in the host galaxy, producing neutrinos as a result of pp scattering with the interstellar gas, in strict analogy with the processes taking place in star-forming galaxies.

  16. Reconciling threshold and subthreshold expansions for pion–nucleon scattering

    DOE PAGES

    Siemens, D.; Ruiz de Elvira, J.; Epelbaum, E.; ...

    2017-04-21

    Heavy-baryon chiral perturbation theory (ChPT) at one loop fails in relating the pion–nucleon amplitude in the physical region and for subthreshold kinematics due to loop effects enhanced by large low-energy constants. Studying the chiral convergence of threshold and subthreshold parameters up to fourth order in the small-scale expansion, we address the question to what extent this tension can be mitigated by including the Δ(1232) as an explicit degree of freedom and/or using a covariant formulation of baryon ChPT. We find that the inclusion of the Δ indeed reduces the low-energy constants to more natural values and thereby improves consistency betweenmore » threshold and subthreshold kinematics. In addition, even in the Δ-less theory the resummation of 1/m N corrections in the covariant scheme improves the results markedly over the heavy-baryon formulation, in line with previous observations in the single-baryon sector of ChPT that so far have evaded a profound theoretical explanation.« less

  17. Non-unitarity, sterile neutrinos, and non-standard neutrino interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blennow, Mattias; Coloma, Pilar; Fernandez-Martinez, Enrique

    The simplest Standard Model extension to explain neutrino masses involves the addition of right-handed neutrinos. At some level, this extension will impact neutrino oscillation searches. In this work we explore the differences and similarities between the case in which these neutrinos are kinematically accessible (sterile neutrinos) or not (mixing matrix non-unitarity). We clarify apparent inconsistencies in the present literature when using different parametrizations to describe these effects and recast both limits in the popular neutrino non-standard interaction (NSI) formalism. We find that, in the limit in which sterile oscillations are averaged out at the near detector, their effects at themore » far detector coincide with non-unitarity at leading order, even in presence of a matter potential. We also summarize the present bounds existing in both limits and compare them with the expected sensitivities of near future facilities taking the DUNE proposal as a benchmark. We conclude that non-unitarity effects are too constrained to impact present or near future neutrino oscillation facilities but that sterile neutrinos can play an important role at long baseline experiments. As a result, the role of the near detector is also discussed in detail.« less

  18. Non-unitarity, sterile neutrinos, and non-standard neutrino interactions

    DOE PAGES

    Blennow, Mattias; Coloma, Pilar; Fernandez-Martinez, Enrique; ...

    2017-04-27

    The simplest Standard Model extension to explain neutrino masses involves the addition of right-handed neutrinos. At some level, this extension will impact neutrino oscillation searches. In this work we explore the differences and similarities between the case in which these neutrinos are kinematically accessible (sterile neutrinos) or not (mixing matrix non-unitarity). We clarify apparent inconsistencies in the present literature when using different parametrizations to describe these effects and recast both limits in the popular neutrino non-standard interaction (NSI) formalism. We find that, in the limit in which sterile oscillations are averaged out at the near detector, their effects at themore » far detector coincide with non-unitarity at leading order, even in presence of a matter potential. We also summarize the present bounds existing in both limits and compare them with the expected sensitivities of near future facilities taking the DUNE proposal as a benchmark. We conclude that non-unitarity effects are too constrained to impact present or near future neutrino oscillation facilities but that sterile neutrinos can play an important role at long baseline experiments. As a result, the role of the near detector is also discussed in detail.« less

  19. Formulation of spin 7/2 and 9/2 nucleon resonance amplitudes for kaon photoproduction off a proton

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clymton, S., E-mail: samsonclymton@gmail.com; Mart, T.

    2016-04-19

    We have constructed the formulation of scattering amplitude for kaon photoproduction off a proton that includes nucleon resonances with spins 7/2 and 9/2. To this end we start with the formalism of projection operator for higher spins and derive the spins 7/2 and 9/2 projection operators. The corresponding Feynman propagators are obtained from these projection operators. To calculate the scattering amplitude we use the vertex factor proposed by Pascalutsa. The scattering amplitudes are then decomposed into six Lorentz- and gauge-invariant amplitudes, from which the cross section and polarization observables can be calculated.

  20. New neutrino physics and the altered shapes of solar neutrino spectra

    NASA Astrophysics Data System (ADS)

    Lopes, Ilídio

    2017-01-01

    Neutrinos coming from the Sun's core have been measured with high precision, and fundamental neutrino oscillation parameters have been determined with good accuracy. In this work, we estimate the impact that a new neutrino physics model, the so-called generalized Mikheyev-Smirnov-Wolfenstein (MSW) oscillation mechanism, has on the shape of some of leading solar neutrino spectra, some of which will be partially tested by the next generation of solar neutrino experiments. In these calculations, we use a high-precision standard solar model in good agreement with helioseismology data. We found that the neutrino spectra of the different solar nuclear reactions of the pp chains and carbon-nitrogen-oxygen cycle have quite distinct sensitivities to the new neutrino physics. The He P and 8B neutrino spectra are the ones in which their shapes are more affected when neutrinos interact with quarks in addition to electrons. The shapes of the 15O and 17F neutrino spectra are also modified, although in these cases the impact is much smaller. Finally, the impact in the shapes of the P P and 13N neutrino spectra is practically negligible.

  1. Limiting neutrino magnetic moments with Borexino Phase-II solar neutrino data

    NASA Astrophysics Data System (ADS)

    Agostini, M.; Altenmüller, K.; Appel, S.; Atroshchenko, V.; Bagdasarian, Z.; Basilico, D.; Bellini, G.; Benziger, J.; Bick, D.; Bonfini, G.; Bravo, D.; Caccianiga, B.; Calaprice, F.; Caminata, A.; Caprioli, S.; Carlini, M.; Cavalcante, P.; Chepurnov, A.; Choi, K.; Collica, L.; D'Angelo, D.; Davini, S.; Derbin, A.; Ding, X. F.; Di Ludovico, A.; Di Noto, L.; Drachnev, I.; Fomenko, K.; Formozov, A.; Franco, D.; Froborg, F.; Gabriele, F.; Galbiati, C.; Ghiano, C.; Giammarchi, M.; Goretti, A.; Gromov, M.; Guffanti, D.; Hagner, C.; Houdy, T.; Hungerford, E.; Ianni, Aldo; Ianni, Andrea; Jany, A.; Jeschke, D.; Kobychev, V.; Korablev, D.; Korga, G.; Kryn, D.; Laubenstein, M.; Litvinovich, E.; Lombardi, F.; Lombardi, P.; Ludhova, L.; Lukyanchenko, G.; Lukyanchenko, L.; Machulin, I.; Manuzio, G.; Marcocci, S.; Martyn, J.; Meroni, E.; Meyer, M.; Miramonti, L.; Misiaszek, M.; Muratova, V.; Neumair, B.; Oberauer, L.; Opitz, B.; Orekhov, V.; Ortica, F.; Pallavicini, M.; Papp, L.; Penek, Ã.-.; Pilipenko, N.; Pocar, A.; Porcelli, A.; Ranucci, G.; Razeto, A.; Re, A.; Redchuk, M.; Romani, A.; Roncin, R.; Rossi, N.; Schönert, S.; Semenov, D.; Skorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Stokes, L. F. F.; Suvorov, Y.; Tartaglia, R.; Testera, G.; Thurn, J.; Toropova, M.; Unzhakov, E.; Vishneva, A.; Vogelaar, R. B.; von Feilitzsch, F.; Wang, H.; Weinz, S.; Wojcik, M.; Wurm, M.; Yokley, Z.; Zaimidoroga, O.; Zavatarelli, S.; Zuber, K.; Zuzel, G.; Borexino Collaboration

    2017-11-01

    A search for the solar neutrino effective magnetic moment has been performed using data from 1291.5 days exposure during the second phase of the Borexino experiment. No significant deviations from the expected shape of the electron recoil spectrum from solar neutrinos have been found, and a new upper limit on the effective neutrino magnetic moment of μνeff<2.8×10 -11 μB at 90% C.L. has been set using constraints on the sum of the solar neutrino fluxes implied by the radiochemical gallium experiments. Using the limit for the effective neutrino moment, new limits for the magnetic moments of the neutrino flavor states, and for the elements of the neutrino magnetic moments matrix for Dirac and Majorana neutrinos, are derived.

  2. Search for sterile neutrino oscillations in muon neutrino disappearance at MINOS/MINOS+

    NASA Astrophysics Data System (ADS)

    Todd, Jacob; Minos+ Collaboration

    2017-01-01

    A wide variety of neutrino oscillation phenomena are well-described by the standard three-flavour neutrino model, but some anomalies exist. The LSND and MiniBooNE experiments have measured electron antineutrino appearance in excess of standard oscillation predictions, which points to the possibility of a sterile neutrino with higher mass than the presently known states. MINOS, a two-detector, long-baseline neutrino oscillation experiment, was optimized for the measurement of muon neutrino disappearance in the NuMI neutrino beam. A sterile neutrino responsible for the LSND and MiniBooNE excesses would cause distortions in the charged current and neutral current MINOS spectra, which permits the search for sterile neutrinos at MINOS. In close collaboration with the Daya Bay reactor neutrino experiment, MINOS has placed strong constraints on the sterile neutrino parameter space for a model with one additional sterile neutrino. Further, the extension of data collection with MINOS+, which samples the NuMI beam in a medium energy configuration, markedly increases the sensitivity of the combined MINOS and MINOS+ sample to a 3+1-flavour sterile neutrino model.

  3. A search for muon neutrino to electron neutrino oscillation mediated by sterile neutrinos in MINOS+

    NASA Astrophysics Data System (ADS)

    Germani, Stefano; Schreckenberger, Adam P.

    2017-09-01

    The MINOS experiment made precision measurements of the neutrino oscillation parameters that are governed by the atmospheric mass-squared splitting. These measurements were made with data that were collected while the NuMI muon neutrino beam operated in a low energy mode that peaks around 3 GeV. Today the NuMI beam is running with a higher energy mode that produces a neutrino energy spectrum that peaks around 7 GeV, allowing the MINOS+ experiment to probe neutrino oscillation phenomena that could potentially be governed by a fourth mass-squared splitting. If observed, the presence of a fourth mass-squared splitting would be compelling evidence for a sterile neutrino state. In this analysis, we will present the results of a search for νµ → νe oscillation mediated by sterile neutrinos in MINOS+. The results will be contrasted against the measurements made by the LSND experiment.

  4. Elastic electron-deuteron scattering within a relativistic potential model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khokhlov, N. A., E-mail: nikolakhokhlov@yandex.ru; Vakulyuk, A. A.

    Elastic electron-deuteron scattering was considered in the point form of relativistic quantum mechanics. Observables of this process and the dependence of the deuteron form factors on the 4-momentum transfer Q up to 8 fm{sup −1} were calculated. The nucleon-nucleon potentials used in the calculations included the Nijmegen potentials NijmI and NijmII, the Bonn potential CD-Bonn, and the Moscow potential involving forbidden states. A parametrization of the nucleon form factors that complies with present-day experimental results was used as input data. The results of the calculations that employ all of the above potential types describe experimental data at least up tomore » Q ≈ 5 fm{sup −}1.« less

  5. Muon energy estimate through multiple scattering with the MACRO detector

    NASA Astrophysics Data System (ADS)

    Ambrosio, M.; Antolini, R.; Auriemma, G.; Bakari, D.; Baldini, A.; Barbarino, G. C.; Barish, B. C.; Battistoni, G.; Becherini, Y.; Bellotti, R.; Bemporad, C.; Bernardini, P.; Bilokon, H.; Bloise, C.; Bower, C.; Brigida, M.; Bussino, S.; Cafagna, F.; Calicchio, M.; Campana, D.; Candela, A.; Carboni, M.; Caruso, R.; Cassese, F.; Cecchini, S.; Cei, F.; Chiarella, V.; Choudhary, B. C.; Coutu, S.; Cozzi, M.; de Cataldo, G.; de Deo, M.; Dekhissi, H.; de Marzo, C.; de Mitri, I.; Derkaoui, J.; de Vincenzi, M.; di Credico, A.; Dincecco, M.; Erriquez, O.; Favuzzi, C.; Forti, C.; Fusco, P.; Giacomelli, G.; Giannini, G.; Giglietto, N.; Giorgini, M.; Grassi, M.; Gray, L.; Grillo, A.; Guarino, F.; Gustavino, C.; Habig, A.; Hanson, K.; Heinz, R.; Iarocci, E.; Katsavounidis, E.; Katsavounidis, I.; Kearns, E.; Kim, H.; Kyriazopoulou, S.; Lamanna, E.; Lane, C.; Levin, D. S.; Lindozzi, M.; Lipari, P.; Longley, N. P.; Longo, M. J.; Loparco, F.; Maaroufi, F.; Mancarella, G.; Mandrioli, G.; Margiotta, A.; Marini, A.; Martello, D.; Marzari-Chiesa, A.; Mazziotta, M. N.; Michael, D. G.; Monacelli, P.; Montaruli, T.; Monteno, M.; Mufson, S.; Musser, J.; Nicolo, D.; Nolty, R.; Orth, C.; Osteria, G.; Palamara, O.; Patera, V.; Patrizii, L.; Pazzi, R.; Peck, C. W.; Perrone, L.; Petrera, S.; Pistilli, P.; Popa, V.; Raino, A.; Reynoldson, J.; Ronga, F.; Rrhioua, A.; Satriano, C.; Scapparone, E.; Scholberg, K.; Sciubba, A.; Serra, P.; Sioli, M.; Sirri, G.; Sitta, M.; Spinelli, P.; Spinetti, M.; Spurio, M.; Steinberg, R.; Stone, J. L.; Sulak, L. R.; Surdo, A.; Tarle, G.; Tatananni, E.; Togo, V.; Vakili, M.; Walter, C. W.; Webb, R.; MACRO Collaboration

    2002-10-01

    Muon energy measurement represents an important issue for any experiment addressing neutrino-induced up-going muon studies. Since the neutrino oscillation probability depends on the neutrino energy, a measurement of the muon energy adds an important piece of information concerning the neutrino system. We show in this paper how the MACRO limited streamer tube system can be operated in drift mode by using the TDCs included in the QTPs, an electronics designed for magnetic monopole search. An improvement of the space resolution is obtained, through an analysis of the multiple scattering of muon tracks as they pass through our detector. This information can be used further to obtain an estimate of the energy of muons crossing the detector. Here we present the results of two dedicated tests, performed at CERN PS-T9 and SPS-X7 beam lines, to provide a full check of the electronics and to exploit the feasibility of such a multiple scattering analysis. We show that by using a neural network approach, we are able to reconstruct the muon energy for E μ<40 GeV. The test beam data provide an absolute energy calibration, which allows us to apply this method to MACRO data.

  6. Borexino's search for low-energy neutrino and antineutrino signals correlated with gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Agostini, M.; Altenmüller, K.; Appel, S.; Atroshchenko, V.; Bellini, G.; Benziger, J.; Bick, D.; Bonfini, G.; Bravo, D.; Caccianiga, B.; Calaprice, F.; Caminata, A.; Carlini, M.; Cavalcante, P.; Chepurnov, A.; Choi, K.; D'Angelo, D.; Davini, S.; de Kerret, H.; Derbin, A.; Di Noto, L.; Drachnev, I.; Etenko, A.; Fomenko, K.; Franco, D.; Gabriele, F.; Galbiati, C.; Ghiano, C.; Giammarchi, M.; Goeger-Neff, M.; Goretti, A.; Gromov, M.; Hagner, C.; Hungerford, E.; Ianni, Aldo; Ianni, Andrea; Jany, A.; Jedrzejczak, K.; Jeschke, D.; Kobychev, V.; Korablev, D.; Korga, G.; Kryn, D.; Laubenstein, M.; Lehnert, B.; Litvinovich, E.; Lombardi, F.; Lombardi, P.; Ludhova, L.; Lukyanchenko, G.; Machulin, I.; Manecki, S.; Maneschg, W.; Manuzio, G.; Marcocci, S.; Meroni, E.; Meyer, M.; Miramonti, L.; Misiaszek, M.; Montuschi, M.; Mosteiro, P.; Muratova, V.; Neumair, B.; Oberauer, L.; Obolensky, M.; Ortica, F.; Pallavicini, M.; Papp, L.; Pocar, A.; Ranucci, G.; Razeto, A.; Re, A.; Romani, A.; Roncin, R.; Rossi, N.; Schönert, S.; Semenov, D.; Skorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Sukhotin, S.; Suvorov, Y.; Tartaglia, R.; Testera, G.; Thurn, J.; Toropova, M.; Unzhakov, E.; Vishneva, A.; Vogelaar, R. B.; von Feilitzsch, F.; Wang, H.; Weinz, S.; Winter, J.; Wojcik, M.; Wurm, M.; Yokley, Z.; Zaimidoroga, O.; Zavatarelli, S.; Zuber, K.; Zuzel, G.; Borexino Collaboration

    2017-01-01

    A search for neutrino and antineutrino events correlated with 2350 gamma-ray bursts (GRBs) is performed with Borexino data collected between December 2007 and November 2015. No statistically significant excess over background is observed. We look for electron antineutrinos (νbare) that inverse beta decay on protons with energies from 1.8 MeV to 15 MeV and set the best limit on the neutrino fluence from GRBs below 8 MeV. The signals from neutrinos and antineutrinos from GRBs that scatter on electrons are also searched for, a detection channel made possible by the particularly radio-pure scintillator of Borexino. We obtain currently the best limits on the neutrino fluence of all flavors and species below 7 MeV. Finally, time correlations between GRBs and bursts of events are investigated. Our analysis combines two semi-independent data acquisition systems for the first time: the primary Borexino readout optimized for solar neutrino physics up to a few MeV, and a fast waveform digitizer system tuned for events above 1 MeV.

  7. Nucleon Structure Functions from a Chiral Soliton

    NASA Astrophysics Data System (ADS)

    Weigel, Herbert

    1998-10-01

    In an attempt to merge the parton model description of deep inelastic scattering with the phenomenologically successful picture of baryons as chiral solitons we study nucleon structure functions in the Nambu--Jona--Lasinio (NJL) chiral soliton model(R. Alkofer, H. Reinhardt and H. Weigel, Phys. Rep. 265) (1996) 139.. We compute the unpolarized structure function for electron--nucleon scattering which enters the Gottfried sum rule, S_G. The model calculation not only explains the observed deviation from the historical value S_G=1/3 but also reproduces the gross features of the exerimental data when accounting for projection and Q^2--evolution(H. Weigel, L. Gamberg and H. Reinhardt, Mod. Phys. Lett. A11) (1996) 3021; Phys. Lett. B399 (1997) 287.. The latter operation further serves to determine the low--momentum scale, Q_0^2, of the model. Subsequently we turn to the polarized structure functions g_1(x,Q^2) and g_2(x,Q^2)(H. Weigel, L. Gamberg and H. Reinhardt, Phys. Rev. D55) (1997) 6910.. These are particularly interesting in the present model because chiral soliton models nicely account for the smallness of the first moment of g_1(x,Q^2). In addition we report on the calculation(L. Gamberg, H. Reinhardt and H. Weigel, Phys. Rev. D58) (1998) 054014. of the chiral odd quark distributions and the corresponding structure functions h_T(x,Q^2) and h_L(x,Q^2). At the low model scale, Q_0^2, we find that the leading twist effective quark distributions, f_1^(q)(x,Q_0^2), g_1^(q)(x,Q_0^2) and h_T^(q)(x,Q_0^2) satisfy Soffer's inequality for both quark flavors q=u,d. The Q^2 evolution of the twist--2 contributions is performed according to the standard GLAP formalism while the twist--three pieces, \\overlineg_2(x) and \\overlineh_L(x), are evolved according to the large NC scheme. Finally we explain the generalization of chiral soliton models to three flavors and discuss the strange quark contribution to g1 as an example(box[t]15cm)O. Schröder, H. Reinhardt and H. Weigel

  8. Hard QCD rescattering in few nucleon systems

    NASA Astrophysics Data System (ADS)

    Maheswari, Dhiraj; Sargsian, Misak

    2017-01-01

    The theoretical framework of hard QCD rescattering mechanism (HRM) is extended to calculate the high energy γ3 He -> pd reaction at 900 center of mass angle. In HRM model , the incoming high energy photon strikes a quark from one of the nucleons in the target which subsequently undergoes hard rescattering with the quarks from the other nucleons generating hard two-body baryonic system in the final state of the reaction. Based on the HRM, a parameter free expression for the differential cross section for the reaction is derived, expressed through the 3 He -> pd transition spectral function, hard pd -> pd elastic scattering cross section and the effective charge of the quarks being interchanged in the hard rescattering process. The numerical estimates obtained from this expression for the differential cross section are in a good agreement with the data recently obtained at the Jefferson Lab experiment, showing the energy scaling of cross section with an exponent of s-17, also consistent with the quark counting rule. The angular and energy dependences of the cross section are also predicted within HRM which are in good agreement with the preliminary data of these distributions. Research is supported by the US Department of Energy.

  9. Neutrino Physics at Drexel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lane, Charles; Dolinski, Michelle; Neilson, Russell

    Our primary goal is to improve the understanding of the properties and interactions of neutrinos. We are pursuing this by means of the DUNE long-baseline and PROSPECT short-baseline neutrino experiments. For DUNE, a neutrino beam from Fermilab will be detected at the SURF facility in South Dakota, with the aim of determining the neutrino mass hierarchy (the mass ordering of neutrino flavors), and a measurement or limit on CP-violation via neutrinos. Our near-term experimental goal is to improve the characterization of the neutrino beam by measurements of muons produced as a byproduct of neutrino beam generation, to quantify the beammore » composition and flux. The short-range neutrino program has the aim of using the HFIR reactor at Oak Ridge as a neutrino source, with a detector placed nearby to find if there are short-distance oscillations to sterile neutrino flavors, and to resolve the 'reactor neutrino spectral anomaly' which has shown up as an unexplained 'bump' in the neutrino energy spectrum in recent experiments.« less

  10. A Simple Method for Nucleon-Nucleon Cross Sections in a Nucleus

    NASA Technical Reports Server (NTRS)

    Tripathi, R. K.; Cucinotta, Francis A.; Wilson, John W.

    1999-01-01

    A simple reliable formalism is presented for obtaining nucleon-nucleon cross sections within a nucleus in nuclear collisions for a given projectile and target nucleus combination at a given energy for use in transport, Monte Carlo, and other calculations. The method relies on extraction of these values from experiments and has been tested and found to give excellent results.

  11. Sea quarks contribution to the nucleon magnetic moment and charge radius at the physical point

    NASA Astrophysics Data System (ADS)

    Sufian, Raza Sabbir; Yang, Yi-Bo; Liang, Jian; Draper, Terrence; Liu, Keh-Fei; χ QCD Collaboration

    2017-12-01

    We report a comprehensive analysis of the light and strange disconnected-sea quarks contribution to the nucleon magnetic moment, charge radius, and the electric and magnetic form factors. The lattice QCD calculation includes ensembles across several lattice volumes and lattice spacings with one of the ensembles at the physical pion mass. We adopt a model-independent extrapolation of the nucleon magnetic moment and the charge radius. We have performed a simultaneous chiral, infinite volume, and continuum extrapolation in a global fit to calculate results in the continuum limit. We find that the combined light and strange disconnected-sea quarks contribution to the nucleon magnetic moment is μM(DI )=-0.022 (11 )(09 ) μN and to the nucleon mean square charge radius is ⟨r2⟩E(DI ) =-0.019 (05 )(05 ) fm2 which is about 1 /3 of the difference between the ⟨rp2⟩E of electron-proton scattering and that of a muonic atom and so cannot be ignored in obtaining the proton charge radius in the lattice QCD calculation. The most important outcome of this lattice QCD calculation is that while the combined light-sea and strange quarks contribution to the nucleon magnetic moment is small at about 1%, a negative 2.5(9)% contribution to the proton mean square charge radius and a relatively larger positive 16.3(6.1)% contribution to the neutron mean square charge radius come from the sea quarks in the nucleon. For the first time, by performing global fits, we also give predictions of the light and strange disconnected-sea quarks contributions to the nucleon electric and magnetic form factors at the physical point and in the continuum and infinite volume limits in the momentum transfer range of 0 ≤Q2≤0.5 GeV2 .

  12. Chiral symmetry and the nucleon-nucleon interaction

    DOE PAGES

    Machleidt, Ruprecht

    2016-04-20

    We review how nuclear forces emerge from low-energy quantum chromodynamics (QCD) via chiral effective field theory (EFT). During the past two decades, this approach has evolved into a powerful tool to derive nuclear two- and many-body forces in a systematic and model-independent way. We then focus on the nucleon-nucleon (NN) interaction and show in detail how, governed by chiral symmetry, the long- and intermediate-range of the NN potential builds up order by order. We proceed up to sixth order in small momenta, where convergence is achieved. Lastly, the final result allows for a full assessment of the validity of themore » chiral EFT approach to the NN interaction.« less

  13. Application of relativistic mean field and effective field theory densities to scattering observables for Ca isotopes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhuyan, M.; School of Physics, Sambalpur University, Jyotivihar, Burla 768 019; Panda, R. N.

    In the framework of relativistic mean field (RMF) theory, we have calculated the density distribution of protons and neutrons for {sup 40,42,44,48}Ca with NL3 and G2 parameter sets. The microscopic proton-nucleus optical potentials for p+{sup 40,42,44,48}Ca systems are evaluated from the Dirac nucleon-nucleon scattering amplitude and the density of the target nucleus using relativistic-Love-Franey and McNeil-Ray-Wallace parametrizations. We have estimated the scattering observables, such as the elastic differential scattering cross section, analyzing power and the spin observables with the relativistic impulse approximation (RIA). The results have been compared with the experimental data for a few selective cases and we findmore » that the use of density as well as the scattering matrix parametrizations are crucial for the theoretical prediction.« less

  14. Limits on spin-dependent WIMP-nucleon cross sections from the XENON10 experiment.

    PubMed

    Angle, J; Aprile, E; Arneodo, F; Baudis, L; Bernstein, A; Bolozdynya, A; Coelho, L C C; Dahl, C E; DeViveiros, L; Ferella, A D; Fernandes, L M P; Fiorucci, S; Gaitskell, R J; Giboni, K L; Gomez, R; Hasty, R; Kastens, L; Kwong, J; Lopes, J A M; Madden, N; Manalaysay, A; Manzur, A; McKinsey, D N; Monzani, M E; Ni, K; Oberlack, U; Orboeck, J; Plante, G; Santorelli, R; dos Santos, J M F; Shagin, P; Shutt, T; Sorensen, P; Schulte, S; Winant, C; Yamashita, M

    2008-08-29

    XENON10 is an experiment to directly detect weakly interacting massive particles (WIMPs), which may comprise the bulk of the nonbaryonic dark matter in our Universe. We report new results for spin-dependent WIMP-nucleon interactions with 129Xe and 131Xe from 58.6 live days of operation at the Laboratori Nazionali del Gran Sasso. Based on the nonobservation of a WIMP signal in 5.4 kg of fiducial liquid xenon mass, we exclude previously unexplored regions in the theoretically allowed parameter space for neutralinos. We also exclude a heavy Majorana neutrino with a mass in the range of approximately 10 GeV/c2-2 TeV/c2 as a dark matter candidate under standard assumptions for its density and distribution in the galactic halo.

  15. Geometric phase of neutrinos: Differences between Dirac and Majorana neutrinos

    NASA Astrophysics Data System (ADS)

    Capolupo, A.; Giampaolo, S. M.; Hiesmayr, B. C.; Vitiello, G.

    2018-05-01

    We analyze the non-cyclic geometric phase for neutrinos. We find that the geometric phase and the total phase associated to the mixing phenomenon provide a theoretical tool to distinguish between Dirac and Majorana neutrinos. Our results hold for neutrinos propagating in vacuum and through the matter. We feed the values of the experimental parameters in our formulas in order to make contact with experiments. Although it remains an open question how the geometric phase of neutrinos could be detected, our theoretical results may open new scenarios in the investigation of the neutrino nature.

  16. Solar Neutrinos

    DOE R&D Accomplishments Database

    Davis, R. Jr.; Harmer, D. S.

    1964-12-01

    The prospect of studying the solar energy generation process directly by observing the solar neutrino radiation has been discussed for many years. The main difficulty with this approach is that the sun emits predominantly low energy neutrinos, and detectors for observing low fluxes of low energy neutrinos have not been developed. However, experimental techniques have been developed for observing neutrinos, and one can foresee that in the near future these techniques will be improved sufficiently in sensitivity to observe solar neutrinos. At the present several experiments are being designed and hopefully will be operating in the next year or so. We will discuss an experiment based upon a neutrino capture reaction that is the inverse of the electron-capture radioactive decay of argon-37. The method depends upon exposing a large volume of a chlorine compound, removing the radioactive argon-37 and observing the characteristic decay in a small low-level counter.

  17. Oscillation properties of active and sterile neutrinos and neutrino anomalies at short distances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khruschov, V. V., E-mail: khruschov-vv@nrcki.ru; Fomichev, S. V., E-mail: fomichev-sv@nrcki.ru; Titov, O. A., E-mail: titov-oa@nrcki.ru

    2016-09-15

    A generalized phenomenological (3 + 2 + 1) model featuring three active and three sterile neutrinos that is intended for calculating oscillation properties of neutrinos for the case of a normal active neutrino mass hierarchy and a large splitting between the mass of one sterile neutrino and the masses of the other two sterile neutrinos is considered. A new parametrization and a specific form of the general mixing matrix are proposed for active and sterile neutrinos with allowance for possible CP violation in the lepton sector, and test values are chosen for the neutrino masses and mixing parameters. The probabilitiesmore » for the transitions between different neutrino flavors are calculated, and graphs representing the probabilities for the disappearance of muon neutrinos/antineutrinos and the appearance of electron neutrinos/antineutrinos in a beam of muon neutrinos/antineutrinos versus the distance from the neutrino source for various values of admissible model parameters at neutrino energies not higher than 50 MeV, as well as versus the ratio of this distance to the neutrino energy, are plotted. It is shown that the short-distance accelerator anomaly in neutrino data (LNSD anomaly) can be explained in the case of a specific mixing matrix for active and sterile neutrinos (which belongs to the a{sub 2} type) at the chosen parameter values. The same applies to the short-distance reactor and gallium anomalies. The theoretical results obtained in the present study can be used to interpret and predict the results of ground-based neutrino experiments aimed at searches for sterile neutrinos, as well as to analyze some astrophysical observational data.« less

  18. Oscillation properties of active and sterile neutrinos and neutrino anomalies at short distances

    NASA Astrophysics Data System (ADS)

    Khruschov, V. V.; Fomichev, S. V.; Titov, O. A.

    2016-09-01

    A generalized phenomenological (3 + 2 + 1) model featuring three active and three sterile neutrinos that is intended for calculating oscillation properties of neutrinos for the case of a normal activeneutrino mass hierarchy and a large splitting between the mass of one sterile neutrino and the masses of the other two sterile neutrinos is considered. A new parametrization and a specific form of the general mixing matrix are proposed for active and sterile neutrinos with allowance for possible CP violation in the lepton sector, and test values are chosen for the neutrino masses and mixing parameters. The probabilities for the transitions between different neutrino flavors are calculated, and graphs representing the probabilities for the disappearance of muon neutrinos/antineutrinos and the appearance of electron neutrinos/antineutrinos in a beam of muon neutrinos/antineutrinos versus the distance from the neutrino source for various values of admissible model parameters at neutrino energies not higher than 50 MeV, as well as versus the ratio of this distance to the neutrino energy, are plotted. It is shown that the short-distance accelerator anomaly in neutrino data (LNSD anomaly) can be explained in the case of a specific mixing matrix for active and sterile neutrinos (which belongs to the a 2 type) at the chosen parameter values. The same applies to the short-distance reactor and gallium anomalies. The theoretical results obtained in the present study can be used to interpret and predict the results of ground-based neutrino experiments aimed at searches for sterile neutrinos, as well as to analyze some astrophysical observational data.

  19. Measurement of total cross sections for neutrino and antineutrino charged-current interactions in hydrogen and neon

    NASA Astrophysics Data System (ADS)

    Aderholz, M.; Corrigan, G.; Hoffmann, E.; Jones, G. T.; Jones, R. W. L.; Kennedy, B. W.; Miller, D. B.; Mobayyen, M. M.; Morrison, D. R. O.; Myatt, G.; Radojicic, D.; Schmid, P.; Schmitz, N.; Shotton, P. N.; Towers, S. J.; Wittek, W.; Barnham, K. W. J.; Baton, J. P.; Berggren, M.; Bertrand, D.; Bullock, F. W.; Calicchio, M.; Clayton, E. F.; Coghen, T.; Cooper-Sarkar, A. M.; Erriquez, O.; Fitch, P. J.; Fogli-Muciaccia, M. T.; Guy, J. G.; Hamisi, F.; Hulth, P. O.; Kasper, P.; Klein, H.; Lagraa, M.; Marage, P.; Middleton, R. P.; O'Neale, S. W.; Parker, M. A.; Sacton, J.; Sansum, R. A.; Simopoulou, E.; Vallée, C.; Varvell, K.; Vayaki, A.; Venus, W.; Wachmuth, H.; Wells, J.

    1986-06-01

    BEBC filled in turn with hydrogen, and with a neon-hydrogen mixture, was exposed to the CERN SPS wide band neutrino and antineutrino beams. The ratios of the charged-current cross sections per nucleon, σ(νH2)/σ(νNe) and σ(νH2)/σ(νNe), between 20 and 300 GeV were found to be 0.656 +/- 0.020 and 1.425 +/- 0.052, respectively. Multiplying these ratios by the revised cross sections in neon, σ(νNe)/E = (0.723 +/- 0.038) × 10-38 cm2/GeV per nucleon and σ(νNe)/E = (0.351 +/- 0.019) × 10-38 cm2/GeV per nucleon, and their ratio, σ(νNe)/σ(νNe) = 0.485 +/- 0.020,, yields values for the total charged-current cross sections on protons, σ(νp)/E and σ(νp)/E, of (0.474 +/- 0.029) × 10-38 cm2/GeV and (0.500 +/- 0.032) × 10-38 cm2/GeV. respectively, and a value for the ratio σ(νp)/σ(νp) of 1.053 +/- 0.066. Present address: University of Glasgow, Glasgow G12 8QQ, UK.

  20. Charmonium-nucleon interactions from the time-dependent HAL QCD method

    NASA Astrophysics Data System (ADS)

    Sugiura, Takuya; Ikeda, Yoichi; Ishii, Noriyoshi

    2018-03-01

    The charmonium-nucleon effective central interactions have been computed by the time-dependent HAL QCD method. This gives an updated result of a previous study based on the time-independent method, which is now known to be problematic because of the difficulty in achieving the ground-state saturation. We discuss that the result is consistent with the heavy quark symmetry. No bound state is observed from the analysis of the scattering phase shift; however, this shall lead to a future search of the hidden-charm pentaquarks by considering channel-coupling effects.