Science.gov

Sample records for neutron beam instruments

  1. BEAM INSTRUMENTATION FOR THE SPALLATION NEUTRON SOURCE RING.

    SciTech Connect

    WITKOVER,R.L.; CAMERON,P.R.; SHEA,T.J.; CONNOLLY,R.C.; KESSELMAN,M.

    1999-03-29

    The Spallation Neutron Source (SNS) will be constructed by a multi-laboratory collaboration with BNL responsible for the transfer lines and ring. [1] The 1 MW beam power necessitates careful monitoring to minimize un-controlled loss. This high beam power will influence the design of the monitors in the high energy beam transport line (HEBT) from linac to ring, in the ring, and in the ring-to-target transfer line (RTBT). The ring instrumentation must cover a 3-decade range of beam intensity during accumulation. Beam loss monitoring will be especially critical since un-controlled beam loss must be kept below 10{sup -4}. A Beam-In-Gap (BIG) monitor is being designed to assure out-of-bucket beam will not be lost in the ring.

  2. Diamonds for beam instrumentation

    SciTech Connect

    Griesmayer, Erich

    2013-04-19

    Diamond is perhaps the most versatile, efficient and radiation tolerant material available for use in beam detectors with a correspondingly wide range of applications in beam instrumentation. Numerous practical applications have demonstrated and exploited the sensitivity of diamond to charged particles, photons and neutrons. In this paper, a brief description of a generic diamond detector is given and the interaction of the CVD diamond detector material with protons, electrons, photons and neutrons is presented. Latest results of the interaction of sCVD diamond with 14 MeV mono-energetic neutrons are shown.

  3. Flux and instrumentation upgrade for the epithermal neutron beam facility at Washington State University.

    PubMed

    Nigg, D W; Venhuizen, J R; Wemple, C A; Tripard, G E; Sharp, S; Fox, K

    2004-11-01

    An epithermal neutron beam facility for preclinical neutron capture therapy research has been constructed at the Washington State University TRIGA research reactor installation. Subsequent to a recent upgrade, this new facility offers a high-purity epithermal beam with intensity on the order of 1.2x10(9)n/cm(2)s. Key features include a fluoride-based design for the neutron filtering and moderating components as well as a novel collimator design that allows ease of assembly and disassembly of the beamline components. PMID:15308181

  4. Flux and Instrumentation Upgrade for the Epithermal Neutron Beam Facility at Washington State University

    SciTech Connect

    David W. Nigg; J.R. Venhuizen; C.E. Wemple; G. E. Tripard; S. Sharp; K. Fox

    2004-11-01

    An epithermal neutron beam facility for preclinical neutron capture therapy research has been constructed at the Washington State University TRIGA research reactor installation. Subsequent to a recent upgrade, this new facility offers a high-purity epithermal beam with intensity on the order of 1.2×109 n/cm2 s. Key features include a fluoride-based design for the neutron filtering and moderating components as well as a novel collimator design that allows ease of assembly and disassembly of the beamline components.

  5. Neutron instrumentation for biology

    SciTech Connect

    Mason, S.A.

    1994-12-31

    In the October 1994 round of proposals at the ILL, the external biology review sub- committee was asked to allocate neutron beam time to a wide range of experiments, on almost half the total number of scheduled neutron instruments: on 3 diffractometers, on 3 small angle scattering instruments, and on some 6 inelastic scattering spectrometers. In the 3.5 years since the temporary reactor shutdown, the ILL`s management structure has been optimized, budgets and staff have been trimmed, the ILL reactor has been re-built, and many of the instruments up-graded, many powerful (mainly Unix) workstations have been introduced, and the neighboring European Synchrotron Radiation Facility has established itself as the leading synchrotron radiation source and has started its official user program. The ILL reactor remains the world`s most intense dedicated neutron source. In this challenging context, it is of interest to review briefly the park of ILL instruments used to study the structure and energetics of small and large biological systems. A brief summary will be made of each class of experiments actually proposed in the latest ILL proposal round.

  6. Epithermal neutron instrumentation at ISIS

    NASA Astrophysics Data System (ADS)

    Gorini, G.; Festa, G.; Andreani, C.

    2014-12-01

    The advent of pulsed neutron sources makes available high epithermal neutron fluxes (in the energy range between 500 meV and 100 eV). New dedicated instrumentation, such as Resonance Detectors, was developed at ISIS spallation neutron source in the last years to apply the specific properties of this kind of neutron beam to the study of condensed matter. New detection strategies like Filter Difference method and Foil Cycling Technique were also developed in parallel to the detector improvement at the VESUVIO beamline. Recently, epithermal neutron beams were also used at the INES beamline to study elemental and isotopic composition of materials, with special application to cultural heritage studies. In this paper we review a series of epithermal neutron instrumentation developed at ISIS, their evolution over time and main results obtained.

  7. Micromegas neutron beam monitor neutronics.

    PubMed

    Stephan, Andrew C; Miller, Laurence F

    2005-01-01

    The Micromegas is a type of ionising radiation detector that consists of a gas chamber sandwiched between two parallel plate electrodes, with the gas chamber divided by a Frisch grid into drift and amplification gaps. Investigators have applied it to a number of different applications, such as charged particle, X-ray and neutron detection. A Micromegas device has been tested as a neutron beam monitor at CERN and is expected to be used for that purpose at the Spallation Neutron Source (SNS) under construction in Oak Ridge, TN. For the Micromegas to function effectively as neutron beam monitor, it should cause minimal disruption to the neutron beam in question. Specifically, it should scatter as few neutrons as possible and avoid neutron absorption when it does not contribute to generating useful information concerning the neutron beam. Here, we present the results of Monte Carlo calculations of the effect of different types of wall materials and detector gases on neutron beams and suggest methods for minimising disruption to the beam. PMID:16381746

  8. NEUTRONIC REACTOR CORE INSTRUMENT

    DOEpatents

    Mims, L.S.

    1961-08-22

    A multi-purpose instrument for measuring neutron flux, coolant flow rate, and coolant temperature in a nuclear reactor is described. The device consists essentially of a hollow thimble containing a heat conducting element protruding from the inner wall, the element containing on its innermost end an amount of fissionsble materinl to function as a heat source when subjected to neutron flux irradiation. Thermocouple type temperature sensing means are placed on the heat conducting element adjacent the fissionable material and at a point spaced therefrom, and at a point on the thimble which is in contact with the coolant fluid. The temperature differentials measured between the thermocouples are determinative of the neutron flux, coolant flow, and temperature being measured. The device may be utilized as a probe or may be incorporated in a reactor core. (AE C)

  9. INSTRUMENTS AND METHODS OF INVESTIGATION: Giant pulses of thermal neutrons in large accelerator beam dumps. Possibilities for experiments

    NASA Astrophysics Data System (ADS)

    Stavissky, Yurii Ya

    2006-12-01

    A short review is presented of the development in Russia of intense pulsed neutron sources for physical research — the pulsating fast reactors IBR-1, IBR-30, IBR-2 (Joint Institute for Nuclear Research, Dubna), and the neutron-radiation complex of the Moscow meson factory — the 'Troitsk Trinity' (RAS Institute for Nuclear Research, Troitsk, Moscow region). The possibility of generating giant neutron pulses in beam dumps of superhigh energy accelerators is discussed. In particular, the possibility of producing giant pulsed thermal neutron fluxes in modified beam dumps of the large hadron collider (LHD) under construction at CERN is considered. It is shown that in the case of one-turn extraction ov 7-TeV protons accumulated in the LHC main rings on heavy targets with water or zirconium-hydride moderators placed in the front part of the LHC graphite beam-dump blocks, every 10 hours relatively short (from ~100 µs) thermal neutron pulses with a peak flux density of up to ~1020 neutrons cm-2 s-1 may be produced. The possibility of applying such neutron pulses in physical research is discussed.

  10. New sources and instrumentation for neutron science

    NASA Astrophysics Data System (ADS)

    Gil, Alina

    2011-04-01

    Neutron-scattering research has a lot to do with our everyday lives. Things like medicine, food, electronics, cars and airplanes have all been improved by neutron-scattering research. Neutron research also helps scientists improve materials used in a multitude of different products, such as high-temperature superconductors, powerful lightweight magnets, stronger, lighter plastic products etc. Neutron scattering is one of the most effective ways to obtain information on both, the structure and the dynamics of condensed matter. Most of the world's neutron sources were built decades ago, and although the uses and demand for neutrons have increased throughout the years, few new sources have been built. The new construction, accelerator-based neutron source, the spallation source will provide the most intense pulsed neutron beams in the world for scientific research and industrial development. In this paper it will be described what neutrons are and what unique properties make them useful for science, how spallation source is designed to produce neutron beams and the experimental instruments that will use those beams. Finally, it will be described how past neutron research has affected our everyday lives and what we might expect from the most exciting future applications.

  11. Directionally positionable neutron beam

    SciTech Connect

    Bumgardner, H.M.; Dance, W.E.

    1981-11-10

    Disclosed is apparatus for forming and directionally positioning a neutron beam. The apparatus includes an enclosed housing rotatable about a first axis with a neutron source axially positionable on the axis of rotation of the enclosed housing but rotationally fixed with respect to the housing. The rotatable housing is carried by a vertically positionable arm carried on a mobile transport. A collimator is supported by the rotatable housing and projects into the housing to orientationally position its inlet window at an adjustably fixed axial and radial spacing from the neutron source so that rotation of the enclosed housing causes the inlet window to rotate about a circle which is a fixed axial distance from the neutron source and has the axis of rotation of the housing as its center.

  12. Neutron beam measurement dosimetry

    SciTech Connect

    Amaro, C.R.

    1995-11-01

    This report describes animal dosimetry studies and phantom measurements. During 1994, 12 dogs were irradiated at BMRR as part of a 4 fraction dose tolerance study. The animals were first infused with BSH and irradiated daily for 4 consecutive days. BNL irradiated 2 beagles as part of their dose tolerance study using BPA fructose. In addition, a dog at WSU was irradiated at BMRR after an infusion of BPA fructose. During 1994, the INEL BNCT dosimetry team measured neutron flux and gamma dose profiles in two phantoms exposed to the epithermal neutron beam at the BMRR. These measurements were performed as a preparatory step to the commencement of human clinical trials in progress at the BMRR.

  13. Design Analyses and Shielding of HFIR Cold Neutron Scattering Instruments

    SciTech Connect

    Gallmeier, F.X.; Selby, D.L.; Winn, B.; Stoica, D.; Jones, A.B.; Crow, L.

    2011-07-01

    Research reactor geometries and special characteristics present unique dosimetry analysis and measurement issues. The introduction of a cold neutron moderator and the production of cold neutron beams at the Oak Ridge National Laboratory High Flux Isotope Reactor have created the need for modified methods and devices for analyzing and measuring low energy neutron fields (0.01 to 100 meV). These methods include modifications to an MCNPX version to provide modeling of neutron mirror reflection capability. This code has been used to analyze the HFIR cold neutron beams and to design new instrument equipment that will use the beams. Calculations have been compared with time-of-flight measurements performed at the start of the neutron guides and at the end of one of the guides. The results indicate that we have a good tool for analyzing the transport of these low energy beams through neutron mirror and guide systems for distance up to 60 meters from the reactor. (authors)

  14. Neutron beam design, development, and performance for neutron capture therapy

    SciTech Connect

    Harling, O.K.; Bernard, J.A. ); Zamenhof, R.G. )

    1990-01-01

    The report presents topics presented at a workshop on neutron beams and neutron capture therapy. Topics include: neutron beam design; reactor-based neutron beams; accelerator-based neutron beams; and dosimetry and treatment planning. Individual projects are processed separately for the databases. (CBS)

  15. A neutron detector to monitor the intensity of transmitted neutrons for small-angle neutron scattering instruments

    NASA Astrophysics Data System (ADS)

    De Lurgio, Patrick M.; Klann, Raymond T.; Fink, Charles L.; McGregor, Douglas S.; Thiyagarajan, Pappannan; Naday, Istvan

    2003-06-01

    A semiconductor-based neutron detector was developed at Argonne National Laboratory (ANL) for use as a neutron beam monitor for small-angle neutron scattering instruments. The detector is constructed using a coating of 10B on a gallium-arsenide semiconductor detector and is mounted directly within a cylindrical (2.2 cm dia. and 4.4 cm long) enriched 10B 4C beam stop in the time-of-flight Small Angle Neutron Diffractometer (SAND) instrument at the Intense Pulsed Neutron Source (IPNS) facility at ANL. The neutron beam viewed by the SAND is from a pulsed spallation source moderated by a solid methane moderator that produces useful neutrons in the wavelength range of 0.5-14 Å. The SAND instrument uses all detected neutrons in the above wavelength range sorted by time-of-flight into 68 constant Δ T/ T=0.05 channels. This new detector continuously monitors the transmitted neutron beam through the sample during scattering measurements and takes data concurrently with the other detectors in the instrument. The 10B coating on the GaAs detector allows the detection of the cold neutron spectrum with reasonable efficiency. This paper describes the details of the detector fabrication, the beam stop monitor design, and includes a discussion of results from preliminary tests using the detector during several run cycles at the IPNS.

  16. Neutron filters for producing monoenergetic neutron beams

    SciTech Connect

    Harvey, J.A.; Hill, N.W.; Harvey, J.R.

    1982-01-01

    Neutron transmission measurements have been made on high-purity, highly-enriched samples of /sup 58/Ni (99.9%), /sup 60/Ni (99.7%), /sup 64/Zn (97.9%) and /sup 184/W (94.5%) to measure their neutron windows and to assess their potential usefulness for producing monoenergetic beams of intermediate energies from a reactor. Transmission measurements on the Los Alamos Sc filter (44.26 cm Sc and 1.0 cm Ti) have been made to determine the characteristics of the transmitted neutron beam and to measure the total cross section of Sc at the 2.0 keV minimum. When corrected for the Ti and impurities, a value of 0.35 +- 0.03 b was obtained for this minimum.

  17. Development of pulsed neutron uranium logging instrument

    SciTech Connect

    Wang, Xin-guang; Liu, Dan; Zhang, Feng

    2015-03-15

    This article introduces a development of pulsed neutron uranium logging instrument. By analyzing the temporal distribution of epithermal neutrons generated from the thermal fission of {sup 235}U, we propose a new method with a uranium-bearing index to calculate the uranium content in the formation. An instrument employing a D-T neutron generator and two epithermal neutron detectors has been developed. The logging response is studied using Monte Carlo simulation and experiments in calibration wells. The simulation and experimental results show that the uranium-bearing index is linearly correlated with the uranium content, and the porosity and thermal neutron lifetime of the formation can be acquired simultaneously.

  18. Development of pulsed neutron uranium logging instrument.

    PubMed

    Wang, Xin-guang; Liu, Dan; Zhang, Feng

    2015-03-01

    This article introduces a development of pulsed neutron uranium logging instrument. By analyzing the temporal distribution of epithermal neutrons generated from the thermal fission of (235)U, we propose a new method with a uranium-bearing index to calculate the uranium content in the formation. An instrument employing a D-T neutron generator and two epithermal neutron detectors has been developed. The logging response is studied using Monte Carlo simulation and experiments in calibration wells. The simulation and experimental results show that the uranium-bearing index is linearly correlated with the uranium content, and the porosity and thermal neutron lifetime of the formation can be acquired simultaneously. PMID:25832251

  19. Intercomparison of radiation protection instrumentation in a pulsed neutron field

    NASA Astrophysics Data System (ADS)

    Caresana, M.; Denker, A.; Esposito, A.; Ferrarini, M.; Golnik, N.; Hohmann, E.; Leuschner, A.; Luszik-Bhadra, M.; Manessi, G.; Mayer, S.; Ott, K.; Röhrich, J.; Silari, M.; Trompier, F.; Volnhals, M.; Wielunski, M.

    2014-02-01

    In the framework of the EURADOS working group 11, an intercomparison of active neutron survey meters was performed in a pulsed neutron field (PNF). The aim of the exercise was to evaluate the performances of various neutron instruments, including commercially available rem-counters, personal dosemeters and instrument prototypes. The measurements took place at the cyclotron of the Helmholtz-Zentrum Berlin für Materialien und Energie GmbH. The cyclotron is routinely used for proton therapy of ocular tumours, but an experimental area is also available. For the therapy the machine accelerates protons to 68 MeV. The interaction of the proton beam with a thick tungsten target produces a neutron field with energy up to about 60 MeV. One interesting feature of the cyclotron is that the beam can be delivered in bursts, with the possibility to modify in a simple and flexible way the burst length and the ion current. Through this possibility one can obtain radiation bursts of variable duration and intensity. All instruments were placed in a reference position and irradiated with neutrons delivered in bursts of different intensity. The analysis of the instrument response as a function of the burst charge (the total electric charge of the protons in the burst shot onto the tungsten target) permitted to assess for each device the dose underestimation due to the time structure of the radiation field. The personal neutron dosemeters were exposed on a standard PMMA slab phantom and the response linearity was evaluated.

  20. Neutron beam characterization at the Intense Pulsed Neutron Source.

    SciTech Connect

    Iverson, E. B.

    1998-05-18

    The Intense Pulsed Neutron Source (IPNS) at Argonne National Laboratory is a spallation neutron source dedicated to materials research. Its three cryogenic methane moderators provide twelve neutron beams to fourteen neutron scattering instruments and test facilities. The moderators at IPNS are of cryogenic methane (CH{sub 4}); one of liquid methane at 100 K, and two of solid methane at 30 K. These moderators produce intense beams of both cold and thermal neutrons. The moderators are each of a different physical configuration in order to tailor their performance for the instruments and facilities that operate on the neutron beams. As part of the ongoing operation of IPNS, as well as new enhancements to the target, moderator, and reflector systems, we have performed experiments characterizing the energy and time distribution of neutrons in the various beams. These measurements provide absolutely normalized energy spectra using foil activation techniques joined with time-of-flight measurements, and energy-dependent time distributions using a time-focused crystal analyzer. The IPNS accelerator system delivers 14 {micro}A of 450 MeV protons, in 100 ns pulses at 30 Hz, to a target composed of water-cooled depleted uranium disks. The solid methane ''H'' moderator is 100 by 100 by 45 mm in size, centerline poisoned with 0.25 mg/mm{sup 2} gadolinium, and decoupled from the graphite reflector with 0.5 mm of cadmium. The liquid methane ''F'' moderator, which is viewed from both faces, is also 100 by 100 by 45 mm in size, gadolinium poisoned 16 mm below each of the two viewed surfaces, and decoupled from the graphite reflector with cadmium. The solid methane ''C'' moderator has a re-entrant ''grooved'' geometry. The moderator is 100 by 100 by 80 mm overall, with 40 mm deep 12 mm wide horizontal grooves in the viewed surface. These grooves cover 50% of the viewed surface area. The ''C'' moderator is unpoisoned, but is decoupled from the graphite reflector with 0.5 mm of cadmium.

  1. NONDESTRUCTIVE MULTIELEMENT INSTRUMENTAL NEUTRON ACTIVATION ANALYSIS

    EPA Science Inventory

    A nondestructive instrumental neutron activation analysis procedure permitted accurate and sensitive measurement of most elements with atomic numbers between 11 and 92. The sensitivity of the procedure was dependent on each element's intrinsic characteristics and the sample matri...

  2. Ground level neutron monitoring instruments

    NASA Astrophysics Data System (ADS)

    Philippov, Maxim; Makhmutov, Vladimir; Stozhkov, Yuri; Maksumov, Osman; Viktorov, Sergey; Kvashnin, Alexander; Kvashnin, Aleksandr

    In the scope of scientific collaboration between Lebedev Physical Institute RAS, University Mackenzie (Brazil) and National Space Institute (INPE, Brazil) we are currenty involved in the developing of neutron detector. This experimental device will help us to study high energy phenomena at the Sun and dynamic processes in the Earth's atmosphere. The device consists of several detecting modules. Each of them includes neutron detectors, pressure and temperature sensors. To receive data from each detecting module uses interface module that connects to computer via serial interface. We present and discuss first experimental results obtained by constructed neutron detector.

  3. Production of Epithermal Neutron Beams for BNCT

    SciTech Connect

    Colangelo, P.; Colonna, N.; Santorelli, P.; Variale, V.; Paticchio, V.; Maggipinto, G.

    1999-12-31

    Boron Neutron Capture Therapy, a promising modality for the treatment of malignant tumors, relies on the use of neutron beams of suitable energy and intensity. For deep-seated tumors, simulations indicate that the optimal neutron energy is in the epithermal region, and in particular between 1 and 10 keV. Therapeutic neutron beams of high spectral purity could be produced with low-energy accelerators, through a suitable neutron producing reaction. In this talk we present an overview of some recently investigated reactions for the production of intense epithermal neutron beams for BNCT, and their potential use towards the setup of an hospital-based BNCT facility.

  4. The neutron instrument simulation package, NISP.

    SciTech Connect

    Seeger, P. A.; Daemen, L. L.

    2004-01-01

    The Neutron Instrument Simulation Package (NISP) performs complete source-to-detector simulations of neutron instruments, including neutrons that do not follow the expected path. The original user interface (MC{_}Web) is a web-based application, http://strider.lansce.lanl.gov/NISP/Welcome.html. This report describes in detail the newer standalone Windows version, NISP{_}Win. Instruments are assembled from menu-selected elements, including neutron sources, collimation and transport elements, samples, analyzers, and detectors. Magnetic field regions may also be specified for the propagation of polarized neutrons including spin precession. Either interface writes a geometry file that is used as input to the Monte Carlo engine (MC{_}Run) in the user's computer. Both the interface and the engine rely on a subroutine library, MCLIB. The package is completely open source. New features include capillary optics, temperature dependence of Al and Be, revised source files for ISIS, and visualization of neutron trajectories at run time. Also, a single-crystal sample type has been successfully imported from McStas (with more generalized geometry), demonstrating the capability of including algorithms from other sources, and NISP{_}Win may render the instrument in a virtual reality file. Results are shown for two instruments under development.

  5. The neutron instrument simulation package, NISP

    NASA Astrophysics Data System (ADS)

    Seeger, Philip A.; Daemen, Luke L.

    2004-10-01

    The Neutron Instrument Simulation Package (NISP) performs complete source-to-detector simulations of neutron instruments, including neutrons that do not follow the expected path. The original user interface (MC_Web) is a web-based application, http://strider.lansce.lanl.gov/NISP/Welcome.html. This report describes in detail the newer stand-alone Windows version, NISP_Win. Instruments are assembled from menu-selected elements, including neutron sources, collimation and transport elements, samples, analyzers, and detectors. Magnetic field regions may also be specified for the propagation of polarized neutrons including spin precession. Either interface writes a geometry file that is used as input to the Monte Carlo engine (MC_Run) in the user's computer. Both the interface and the engine rely on a subroutine library, MCLIB. The package is completely open source. New features include capillary optics, temperature dependence of Al and Be, revised source files for ISIS, and visualization of neutron trajectories at run time. Also, a single-crystal sample type has been successfully imported from McStas (with more generalized geometry), demonstrating the capability of including algorithms from other sources, and NISP_Win may render the instrument in a virtual reality file. Results are shown for two instruments under development.

  6. Shaping micron-sized cold neutron beams

    NASA Astrophysics Data System (ADS)

    Ott, Frédéric; Kozhevnikov, Sergey; Thiaville, André; Torrejón, Jacob; Vázquez, Manuel

    2015-07-01

    In the field of neutron scattering, the need for micro-sized (1-50 μm) thermal or cold neutron beams has recently appeared, typically in the field of neutron imaging to probe samples with a high spatial resolution. We discuss various possibilities of producing such micro-sized neutron beams. The advantages and drawbacks of the different techniques are discussed. We show that reflective optics offers the most flexible way of producing tiny neutron beams together with an enhanced signal to background ratio. The use of such micro beams is illustrated by the study of micrometric diameter magnetic wires.

  7. A multitask neutron beam line for spallation neutron sources

    NASA Astrophysics Data System (ADS)

    Pietropaolo, A.; Festa, G.; Grazzi, F.; Barzagli, E.; Scherillo, A.; Schooneveld, E. M.; Civita, F.

    2011-08-01

    Here we present a new concept for a time-of-flight neutron scattering instrument allowing for simultaneous application of three different techniques: time-of-flight neutron diffraction, neutron resonance capture analysis and Bragg edge transmission analysis. The instrument can provide average resolution neutron radiography too. The potential of the proposed concept was explored by implementing the necessary equipment on INES (Italian Neutron Experimental Station) at the ISIS spallation neutron source (UK). The results obtained show the effectiveness of the proposed instrument to acquire relevant quantitative information in a non-invasive way on a historical metallurgical sample, namely a Japanese hand guard (tsuba). The aforementioned neutron techniques simultaneously exploited the extended neutron energy range available from 10 meV to 1 keV. This allowed a fully satisfactory characterization of the sample in terms of metal components and their combination in different phases, and forging and assembling methods.

  8. LEDA and APT beam diagnostics instrumentation

    SciTech Connect

    Gilpatrick, J.D.; Johnson, K.F.; Hodapp, T.R.

    1997-10-01

    A 20-MeV 100-mA-cw proton-accelerator, Low Energy Demonstration Accelerator (LEDA), is presently being developed, fabricated, and tested at Los Alamos National Laboratory (LANL). The beam diagnostic instrumentation for LEDA and the final 1700-GeV Accelerator Production of Tritium (APT) are classified into two categories: operation and characterization instrumentation. The operational instrumentation does not intercept or minimally-intercepts the beam and are sufficiently prompt and robust to provide accurate information to the operators and commissioners during full-current cw beam operation. The characterization instrumentation, primarily utilized during commissioning project-phases, operates under more traditional 100-mA-peak and approximately 0.1-mA-average beam-current conditions. This paper will review some of the LEDA and APT operational beam diagnostic instrumentation.

  9. Neutron beam testing of triblades

    SciTech Connect

    Michalak, Sarah E; Du Bois, Andrew J; Storlie, Curtis B; Rust, William N; Du Bois, David H; Modl, David G; Quinn, Heather M; Blanchard, Sean P; Manuzzato, Andrea

    2010-12-16

    Four IBM Triblades were tested in the Irradiation of Chips and Electronics facility at the Los Alamos Neutron Science Center. Triblades include two dual-core Opteron processors and four PowerXCell 8i (Cell) processors. The Triblades were tested in their field configuration while running different applications, with the beam aimed at the Cell processor or the Opteron running the application. Testing focused on the Cell processors, which were tested while running five different applications and an idle condition. While neither application nor Triblade was statistically important in predicting the hazard rate, the hazard rate when the beam was aimed at the Opterons was significantly higher than when it was aimed at the Cell processors. In addition, four Cell blades (one in each Triblade) suffered voltage shorts, leading to their inoperability. The hardware tested is the same as that in the Roadrunner supercomputer.

  10. Monte Carlo simulation of neutron scattering instruments

    SciTech Connect

    Seeger, P.A.

    1995-12-31

    A library of Monte Carlo subroutines has been developed for the purpose of design of neutron scattering instruments. Using small-angle scattering as an example, the philosophy and structure of the library are described and the programs are used to compare instruments at continuous wave (CW) and long-pulse spallation source (LPSS) neutron facilities. The Monte Carlo results give a count-rate gain of a factor between 2 and 4 using time-of-flight analysis. This is comparable to scaling arguments based on the ratio of wavelength bandwidth to resolution width.

  11. Progress in KEKB beam instrumentation systems

    NASA Astrophysics Data System (ADS)

    Arinaga, Mitsuhiro; Flanagan, John W.; Fukuma, Hitoshi; Furuya, Takaaki; Hiramatsu, Shigenori; Ikeda, Hitomi; Ishii, Hitoshi; Kikutani, Eiji; Mitsuhashi, Toshiyuki; Mori, Kenji; Tejima, Masaki; Tobiyama, Makoto

    2013-03-01

    The paper describes several topics relating to the beam instrumentation systems at the KEKB B-factory (KEKB) from 2003 to the end of its operation. It covers 1) measurement of the tilt angle of a bunch caused by a crab cavity, 2) a diagnostic system for beam aborts, 3) bunch feedback and related systems, and 4) progress in the beam position monitor system.

  12. Intermediate energy neutron beams from the MURR

    SciTech Connect

    Brugger, R.M.; Herleth, W.H. )

    1990-01-01

    Several reactors in the United States are potential candidates to deli1ver beams of intermediate energy neutrons for NCT. At this time, moderators, as compared to filters, appear to be the more effective means of tailoring the flux of these reactors. The objective is to sufficiently reduce the flux of fast neutrons while producing enough intermediate energy neutrons for treatments. At the University of Missouri Research Reactor (MURR), the code MCNP has recently been used to calculate doses in a phantom. First, ideal beams of 1, 35, and 1000 eV neutrons were analyzed to determine doses and advantage depths in the phantom. Second, a high quality beam that had been designed to fit in the thermal column of the MURR, was reanalyzed. MCNP calculations of the dose in phantom in this beam confirmed previous calculations and showed that this beam would be a nearly ideal one with neutrons of the desired energy and also a high neutron current. However, installation of this beam will require a significant modification of the thermal column of the MURR. Therefore, a second beam that is less difficult to build and install, but of lower neutron current, has been designed to fit in MURR port F. This beam is designed using inexpensive A1, S, and Pb. The doses calculated in the phantom placed in this beam show that it will be satisfactory for sample tests, animal tests, and possible initial patient trials. Producing this beam will require only modest modifications of the existing tube.

  13. Beam instrumentation for the SSC RFQ

    SciTech Connect

    Datte, P.; Jamieson, G.; Aiello, R.; Beechy, D.; Jones, A.; Martin, D.; Riordon, J.; Webber, R.; Wood, F.

    1993-05-01

    A detailed description of the SSC RFQ beam instrumentation is presented. Most of the instrumentation is located in the RFQ end walls. The upstream end wall contains a segmented Faraday cup, a segmented aperture and a wire scanner. The down stream end wall contains a segmented aperture and wire scanner. Two current toroids are used to measure the transmission through the RFQ. The output of the RFQ is a low emittance, pulsed 2.5 Mev H{sup {minus}} beam with peak current of 25 mA and maximum pulse length of 35 {mu}s. Typical beam data are shown with the emphasis being on instrumentation performance.

  14. IB: a Monte Carlo Simulation Tool for Neutron Scattering Instrument Design under Parallel Virtual Machine

    SciTech Connect

    Zhao, Jinkui

    2011-01-01

    IB is a Monte Carlo simulation tool for aiding neutron scattering instrument designs. It is written in C++ and implemented under Parallel Virtual Machine. The program has a few basic components, or modules, that can be used to build a virtual neutron scattering instrument. More complex components, such as neutron guides and multichannel beam benders, can be constructed using the grouping technique unique to IB. Users can specify a collection of modules as a group. For example, a neutron guide can be constructed by grouping four neutron mirrors together that make up the four sides of the guide. IB s simulation engine ensures that neutrons entering a group will be properly operated upon by all members of the group. For simulations that require higher computer speed, the program can be run in parallel mode under the PVM architecture. Initially, the program was written for designing instruments on pulsed neutron sources, it has since been used to simulate reactor based instruments as well.

  15. LEDA BEAM DIAGNOSTICS INSTRUMENTATION: BEAM POSITION MONITORS

    SciTech Connect

    D. BARR; ET AL

    2000-05-01

    The Low Energy Demonstration Accelerator (LEDA) facility located at Los Alamos National Laboratory (LANL) accelerates protons to an energy of 6.7-MeV and current of 100-mA operating in either a pulsed or cw mode. Of key importance to the commissioning and operations effort is the Beam Position Monitor system (BPM). The LEDA BPM system uses five micro-stripline beam position monitors processed by log ratio processing electronics with data acquisition via a series of custom TMS32OC40 Digital Signal Processing (DSP) boards. Of special interest to this paper is the operation of the system, the log ratio processing, and the system calibration technique. This paper will also cover the DSP system operations and their interaction with the main accelerator control system.

  16. Beam characterization at the Neutron Radiography Reactor

    SciTech Connect

    Sarah W. Morgan; Jeffrey C. King; Chad L. Pope

    2013-12-01

    The quality of a neutron-imaging beam directly impacts the quality of radiographic images produced using that beam. Fully characterizing a neutron beam, including determination of the beam's effective length-to-diameter ratio, neutron flux profile, energy spectrum, potential image quality, and beam divergence, is vital for producing quality radiographic images. This paper provides a characterization of the east neutron imaging beamline at the Idaho National Laboratory Neutron Radiography Reactor (NRAD). The experiments which measured the beam's effective length-to-diameter ratio and potential image quality are based on American Society for Testing and Materials (ASTM) standards. An analysis of the image produced by a calibrated phantom measured the beam divergence. The energy spectrum measurements consist of a series of foil irradiations using a selection of activation foils, compared to the results produced by a Monte Carlo n-Particle (MCNP) model of the beamline. The NRAD has an effective collimation ratio greater than 125, a beam divergence of 0.3 +_ 0.1 degrees, and a gold foil cadmium ratio of 2.7. The flux profile has been quantified and the facility is an ASTM Category 1 radiographic facility. Based on bare and cadmium covered foil activation results, the neutron energy spectrum used in the current MCNP model of the radiography beamline over-samples the thermal region of the neutron energy spectrum.

  17. Neutron fan beam source for neutron radiography purpose

    SciTech Connect

    Le Tourneur, P.; Bach, P.; Dance, W. E.

    1999-06-10

    The development of the DIANE neutron radiography system included a sealed-tube neutron generator for this purpose and the optimization of the system's neutron beam quality in terms of divergence and useful thermal neutron yield for each 14-MeV neutron produced. Following this development, the concept of a DIANE fan beam source is herewith introduced. The goal which drives this design is one of economy: by simply increasing the aperture dimension of a conventional DIANE beam in one plane of its collimator axis to a small-angle, fan-shaped output, the useful beam area for neutron radiography would be substantially increased. Thus with the same source, the throughput, or number of objects under examination at any given time, would be augmented significantly. Presented here are the design of this thermal neutron source and the initial Monte Carlo calculations. Taking into account the experience with the conventional DIANE neutron radiography system, these result are discussed and the potential of and interest in such a fan-beam source are explored.

  18. Neutron beam imaging at neutron spectrometers at Dhruva

    SciTech Connect

    Desai, Shraddha S.; Rao, Mala N.

    2012-06-05

    A low efficiency, 2-Dimensional Position Sensitive Neutron Detector based on delay line position encoding is developed. It is designed to handle beam flux of 10{sup 6}-10{sup 7} n/cm{sup 2}/s and for monitoring intensity profiles of neutron beams. The present detector can be mounted in transmission mode, as the hardware allows maximum neutron transmission in sensitive region. Position resolution of 1.2 mm in X and Y directions, is obtained. Online monitoring of beam images and intensity profile of various neutron scattering spectrometers at Dhruva are presented. It shows better dynamic range of intensity over commercial neutron camera and is also time effective over the traditionally used photographic method.

  19. Neutron tomography instrument CONRAD at HZB

    NASA Astrophysics Data System (ADS)

    Kardjilov, N.; Hilger, A.; Manke, I.; Strobl, M.; Dawson, M.; Williams, S.; Banhart, J.

    2011-09-01

    The neutron tomography instrument CONRAD has been in operation since 2005 at the Hahn-Meitner research reactor at Helmholtz-Zentrum Berlin (HZB). Over the last 5 years, significant developmental work has been performed to expand the radiographic and tomographic capabilities of the beamline [1-3]. New techniques have been implemented, including imaging with polarized neutrons [4-9], Bragg-edge mapping [10,11], high-resolution neutron imaging and grating interferometry [12-15]. These methods have been provided to the user community as tools to help address scientific problems over a broad range of topics such as superconductivity, materials research, life sciences [16,17], cultural heritage and paleontology [18,19]. Industrial applications including fuel cell research [20-27] have also been improved through these new developments. Descriptions and parameters of the developed options will be presented, along with prominent examples.

  20. LEDA beam diagnostics instrumentation: Beam current measurement

    NASA Astrophysics Data System (ADS)

    Barr, D.; Day, L.; Gilpatrick, J. D.; Kasemir, K.-U.; Martinez, D.; Power, J. F.; Shurter, R.; Stettler, M.

    2000-11-01

    The Low Energy Demonstration Accelerator (LEDA) facility located at Los Alamos National Laboratory (LANL) accelerates protons to an energy of 6.7 MeV and current of 100 mA operating in either a pulsed or cw mode. Two types of current measurements are used. The first is an AC or pulsed-current measurement which uses three LANL built toroids. They are placed in the beamline in such a way as to measure important transmission parameters and act as a differential current-loss machine protection system. The second system is a DC current measurement used to measure cw beam characteristics and uses toroids from Bergoz Inc. There are two of these systems, so they can also be used for transmission measurements. The AC system uses custom processing electronics whereas the DC system uses a modified Bergoz® electronics system. Both systems feature data acquisition via a series of custom TMS320C40 Digital Signal Processing (DSP) boards. Of special interest to this paper is the operation of these systems, the calibration technique, the differential current loss measurements and fast-protection processing, current droop characteristics for the AC system, and existing system noise levels. This paper will also cover the DSP system operations and their interaction with the main accelerator control system.

  1. Practical implications of neutron survey instrument performance.

    PubMed

    Tanner, R J; Bartlett, D T; Hager, L G; Jones, L N; Molinos, C; Roberts, N J; Taylor, G C; Thomas, D J

    2004-01-01

    Improvements have been made to the Monte Carlo modelling used to calculate the response of the neutron survey instruments most commonly used in the UK, for neutron energies up to 20 MeV. The improved modelling of the devices includes the electronics and battery pack, allowing better calculations of both the energy and angle dependence of response. These data are used to calculate the response of the instruments in rotationally and fully isotropic, as well as unidirectional fields. Experimental measurements with radionuclide sources and monoenergetic neutron fields have been, and continue to be made, to test the calculated response characteristics. The enhancements to the calculations have involved simulation of the sensitivity of the response to variations in instrument manufacture, and will include the influence of the user and floor during measurements. The practical implications of the energy and angle dependence of response, variations in manufacture, and the influence of the user are assessed by folding the response characteristics with workplace energy and direction distributions. PMID:15353745

  2. Tailoring phase-space in neutron beam extraction

    NASA Astrophysics Data System (ADS)

    Weichselbaumer, S.; Brandl, G.; Georgii, R.; Stahn, J.; Panzner, T.; Böni, P.

    2015-09-01

    In view of the trend towards smaller samples and experiments under extreme conditions it is important to deliver small and homogeneous neutron beams to the sample area. For this purpose, elliptic and/or Montel mirrors are ideally suited as the phase space of the neutrons can be defined far away from the sample. Therefore, only the useful neutrons will arrive at the sample position leading to a very low background. We demonstrate the ease of designing neutron transport systems using simple numeric tools, which are verified using Monte-Carlo simulations that allow taking into account effects of gravity and finite beam size. It is shown that a significant part of the brilliance can be transferred from the moderator to the sample. Our results may have a serious impact on the design of instruments at spallation sources such as the European Spallation Source (ESS) in Lund, Sweden.

  3. Instrument resolution of the vertical-type cold-neutron reflectometer at HANARO

    NASA Astrophysics Data System (ADS)

    Lee, Jeong Soo

    2016-05-01

    The characteristics of the instrument resolution of the vertical-type cold-neutron reflectometer installed at HANARO, a research reactor in Korea, are estimated. In order to ascertain differences in the instrument resolution according to two scan modes, i.e., the fixed-slit and the variable-slit scan modes, for the measurement of the neutron reflectivity profile, we estimated the beam status of the instrument. Moreover, because the footprint effect and the limitation of the neutron beam window arise during measurements of the neutron reflectivity profiles and affect the instrument resolution, the causes of their occurrence were determined and a correction method was devised. The neutron reflectivity profiles of a SiO2 standard thin-film sample were measured in a Q range up to 0.2 Å-1 by using the two scan modes, and the sample structure was analyzed with the weighted least-squares fitting program Parratt32. During the process of the least-squares fitting of the neutron reflectivity profiles for the structural analysis, the method used to correct for the footprint effect and the limitation of neutron beam window was found to be reasonable. Also, the modified instrument resolutions in the two scan modes for the vertical-type cold-neutron reflectometer were found to be suitable.

  4. Design of multidirectional neutron beams for boron neutron capture synovectomy

    SciTech Connect

    Gierga, D.P.; Yanch, J.C.; Shefer, R.E.

    1997-12-01

    Boron neutron capture synovectomy (BNCS) is a potential application of the {sup 10}B(n, a) {sup 7}Li reaction for the treatment of rheumatoid arthritis. The target of therapy is the synovial membrane. Rheumatoid synovium is greatly inflamed and is the source of the discomfort and disability associated with the disease. The BNCS proposes to destroy the synovium by first injecting a boron-labeled compound into the joint space and then irradiating the joint with a neutron beam. This study discusses the design of a multidirectional neutron beam for BNCS.

  5. Neutron cross section standards and instrumentation

    NASA Astrophysics Data System (ADS)

    1992-09-01

    This report from the National Institute of Standards and Technology contains a summary of the accomplishments of the Neutron Cross Section Standards and Instrumentation Project during the second year of a three-year interagency agreement. This program includes a broad range of data measurements and evaluations. An emphasis has been focused on the (sup 10)B cross sections where serious discrepancies in the nuclear data base remain. In particular, there are important problems with the interpretation of the helium gas production associated with diagnostic measurements of interest in nuclear technology. The enhanced use of this isotope for medical treatment is also of significance. New measurements of neutron reaction cross sections for (sup 10)B are in progress in collaboration with scientists at the Oak Ridge National Laboratory. New experiments are in progress on the important dosimetry standards (sup 237)Np(n,f) and (sup 239)Pu(n,f) below 1 MeV neutron energy. In addition, new measurements of charged-particle production in basic biological elements for medical applications are underway. Further measurements are planned or in progress in collaborations which include fission fragment energy and angular distributions, and neutron energy spectra and angular distributions from neutron-induced fission. Also measurements of angular distributions of neutrons from scattering on protons, and determinations of capture cross section of gold are planned for a later time. Data evaluation will shift to include a unified international effort to motivate new measurements and evaluations. In response to the requests of the measurement community, NIST is beginning the formation of a national depository for fissionable isotope mass standards. This action will preserve for future measurements the valuable and irreplaceable critical samples whose masses and composition have been carefully determined and documented over the past 30 years of the nuclear program.

  6. Beam characterization at the neutron radiography reactor

    NASA Astrophysics Data System (ADS)

    Morgan, Sarah

    The quality of a neutron imaging beam directly impacts the quality of radiographic images produced using that beam. Fully characterizing a neutron beam, including determination of the beam's effective length-to-diameter ratio, neutron flux profile, energy spectrum, image quality, and beam divergence, is vital for producing quality radiographic images. This thesis characterized the east neutron imaging beamline at the Idaho National Laboratory Neutron Radiography Reactor (NRAD). The experiments which measured the beam's effective length-to-diameter ratio and image quality are based on American Society for Testing and Materials (ASTM) standards. An analysis of the image produced by a calibrated phantom measured the beam divergence. The energy spectrum measurements consist of a series of foil irradiations using a selection of activation foils, compared to the results produced by a Monte Carlo n-Particle (MCNP) model of the beamline. Improvement of the existing NRAD MCNP beamline model includes validation of the model's energy spectrum and the development of enhanced image simulation methods. The image simulation methods predict the radiographic image of an object based on the foil reaction rate data obtained by placing a model of the object in front of the image plane in an MCNP beamline model.

  7. Demonstration of the importance of a dedicated neutron beam monitoring system for BNCT facility.

    PubMed

    Chao, Der-Sheng; Liu, Yuan-Hao; Jiang, Shiang-Huei

    2016-01-01

    The neutron beam monitoring system is indispensable to BNCT facility in order to achieve an accurate patient dose delivery. The neutron beam monitoring of a reactor-based BNCT (RB-BNCT) facility can be implemented through the instrumentation and control system of a reactor provided that the reactor power level remains constant during reactor operation. However, since the neutron flux in reactor core is highly correlative to complicated reactor kinetics resulting from such as fuel depletion, poison production, and control blade movement, some extent of variation may occur in the spatial distribution of neutron flux in reactor core. Therefore, a dedicated neutron beam monitoring system is needed to be installed in the vicinity of the beam path close to the beam exit of the RB-BNCT facility, where it can measure the BNCT beam intensity as closely as possible and be free from the influence of the objects present around the beam exit. In this study, in order to demonstrate the importance of a dedicated BNCT neutron beam monitoring system, the signals originating from the two in-core neutron detectors installed at THOR were extracted and compared with the three dedicated neutron beam monitors of the THOR BNCT facility. The correlation of the readings between the in-core neutron detectors and the BNCT neutron beam monitors was established to evaluate the improvable quality of the beam intensity measurement inferred by the in-core neutron detectors. In 29 sampled intervals within 16 days of measurement, the fluctuations in the mean value of the normalized ratios between readings of the three BNCT neutron beam monitors lay within 0.2%. However, the normalized ratios of readings of the two in-core neutron detectors to one of the BNCT neutron beam monitors show great fluctuations of 5.9% and 17.5%, respectively. PMID:26595774

  8. Neutron scattering instrumentation for biology at spallation neutron sources

    SciTech Connect

    Pynn, R.

    1994-12-31

    Conventional wisdom holds that since biological entities are large, they must be studied with cold neutrons, a domain in which reactor sources of neutrons are often supposed to be pre-eminent. In fact, the current generation of pulsed spallation neutron sources, such as LANSCE at Los Alamos and ISIS in the United Kingdom, has demonstrated a capability for small angle scattering (SANS) - a typical cold- neutron application - that was not anticipated five years ago. Although no one has yet built a Laue diffractometer at a pulsed spallation source, calculations show that such an instrument would provide an exceptional capability for protein crystallography at one of the existing high-power spoliation sources. Even more exciting is the prospect of installing such spectrometers either at a next-generation, short-pulse spallation source or at a long-pulse spallation source. A recent Los Alamos study has shown that a one-megawatt, short-pulse source, which is an order of magnitude more powerful than LANSCE, could be built with today`s technology. In Europe, a preconceptual design study for a five-megawatt source is under way. Although such short-pulse sources are likely to be the wave of the future, they may not be necessary for some applications - such as Laue diffraction - which can be performed very well at a long-pulse spoliation source. Recently, it has been argued by Mezei that a facility that combines a short-pulse spallation source similar to LANSCE, with a one-megawatt, long-pulse spallation source would provide a cost-effective solution to the global shortage of neutrons for research. The basis for this assertion as well as the performance of some existing neutron spectrometers at short-pulse sources will be examined in this presentation.

  9. New sources and instrumentation for neutrons in biology

    PubMed Central

    Teixeira, S.C.M.; Ankner, J.; Bellissent-Funel, M.C.; Bewley, R.; Blakeley, M.P.; Coates, L.; Dahint, R.; Dalgliesh, R.; Dencher, N.; Dhont, J.; Fischer, P.; Forsyth, V.T.; Fragneto, G.; Frick, B.; Geue, T.; Gilles, R.; Gutberlet, T.; Haertlein, M.; Hauß, T.; Häußler, W.; Heller, W.T.; Herwig, K.; Holderer, O.; Juranyi, F.; Kampmann, R.; Knott, R.; Kohlbrecher, J.; Kreuger, S.; Langan, P.; Lechner, R.; Lynn, G.; Majkrzak, C.; May, R.; Meilleur, F.; Mo, Y.; Mortensen, K.; Myles, D.A.A.; Natali, F.; Neylon, C.; Niimura, N.; Ollivier, J.; Ostermann, A.; Peters, J.; Pieper, J.; Rühm, A.; Schwahn, D.; Shibata, K.; Soper, A.K.; Straessle, T.; Suzuki, U.-i.; Tanaka, I.; Tehei, M.; Timmins, P.; Torikai, N.; Unruh, T.; Urban, V.; Vavrin, R.; Weiss, K.; Zaccai, G.

    2008-01-01

    Neutron radiation offers significant advantages for the study of biological molecular structure and dynamics. A broad and significant effort towards instrumental and methodological development to facilitate biology experiments at neutron sources worldwide is reviewed. PMID:19132140

  10. Neutron beam imaging with GEM detectors

    NASA Astrophysics Data System (ADS)

    Albani, G.; Croci, G.; Cazzaniga, C.; Cavenago, M.; Claps, G.; Muraro, A.; Murtas, F.; Pasqualotto, R.; Perelli Cippo, E.; Rebai, M.; Tardocchi, M.; Gorini, G.

    2015-04-01

    Neutron GEM-based detectors represent a new frontier of devices in neutron physics applications where a very high neutron flux must be measured such as future fusion experiments (e.g. ITER Neutral beam Injector) and spallation sources (e.g. the European Spallation source). This kind of detectors can be properly adapted to be used both as beam monitors but also as neutron diffraction detectors that could represent a valid alternative for the 3He detectors replacement. Fast neutron GEM detectors (nGEM) feature a cathode composed by one layer of polyethylene and one of aluminium (neutron scattering on hydrogen generates protons that are detected in the gas) while thermal neutron GEM detectors (bGEM) are equipped with a borated aluminium cathode (charged particles are generated through the 10B(n,α)7Li reaction). GEM detectors can be realized in large area (1 m2) and their readout can be pixelated. Three different prototypes of nGEM and one prototype of bGEM detectors of different areas and equipped with different types of readout have been built and tested. All the detectors have been used to measure the fast and thermal neutron 2D beam image at the ISIS-VESUVIO beamline. The different kinds of readout patterns (different areas of the pixels) have been compared in similar conditions. All the detectors measured a width of the beam profile consitent with the expected one. The imaging property of each detector was then tested by inserting samples of different material and shape in the beam. All the samples were correctly reconstructed and the definition of the reconstruction depends on the type of readout anode. The fast neutron beam profile reconstruction was then compared to the one obtained by diamond detectors positioned on the same beamline while the thermal neutron one was compared to the imaged obtained by cadmium-coupled x-rays films. Also efficiency and the gamma background rejection have been determined. These prototypes represent the first step towards the

  11. Beam Characterization at the Neutron Radiography Facility

    SciTech Connect

    Sarah Morgan; Jeffrey King

    2013-01-01

    The quality of a neutron imaging beam directly impacts the quality of radiographic images produced using that beam. Fully characterizing a neutron beam, including determination of the beam’s effective length-to-diameter ratio, neutron flux profile, energy spectrum, image quality, and beam divergence, is vital for producing quality radiographic images. This project characterized the east neutron imaging beamline at the Idaho National Laboratory Neutron Radiography Reactor (NRAD). The experiments which measured the beam’s effective length-to-diameter ratio and image quality are based on American Society for Testing and Materials (ASTM) standards. An analysis of the image produced by a calibrated phantom measured the beam divergence. The energy spectrum measurements consist of a series of foil irradiations using a selection of activation foils, compared to the results produced by a Monte Carlo n-Particle (MCNP) model of the beamline. Improvement of the existing NRAD MCNP beamline model includes validation of the model’s energy spectrum and the development of enhanced image simulation methods. The image simulation methods predict the radiographic image of an object based on the foil reaction rate data obtained by placing a model of the object in front of the image plane in an MCNP beamline model.

  12. Monte Carlo code for neutron scattering instrumentation design and analysis

    SciTech Connect

    Daemen, L.; Fitzsimmons, M.; Hjelm, R.; Olah, G.; Roberts, J.; Seeger, P.; Smith, G.; Thelliez, T.

    1996-09-01

    This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) at the Los Alamos National Laboratory (LANL). The development of next generation, accelerator based neutron sources calls for the design of new instruments for neutron scattering studies of materials. It will be necessary, in the near future, to evaluate accurately and rapidly the performance of new and traditional neutron instruments at short- and long-pulse spallation neutron sources, as well as continuous sources. We have developed a code that is a design tool to assist the instrument designer model new or existing instruments, test their performance, and optimize their most important features.

  13. A white beam neutron spin splitter

    SciTech Connect

    Krist, T.; Klose, F.; Felcher, G.P.

    1997-07-23

    The polarization of a narrow, highly collimated polychromatic neutron beam is tested by a neutron spin splitter that permits the simultaneous measurement of both spin states. The device consists of a Si-Co{sub 0.11} Fe{sub 0.89} supermirror, which totally reflects one spin state up to a momentum transfer q=0.04 {angstrom}{sup -1}, whilst transmits neutrons of the opposite spin state. The supermirror is sandwitched between two thick silicon wafers and is magnetically saturated by a magnetic field of 400 Oe parallel to its surface. The neutron beam enters through the edge of one of the two silicon wavers, its spin components are split by the supermirror and exit from the opposite edges of the two silicon wafers and are recorded at different channels of a position-sensitive detector. The device is shown to have excellent efficiency over a broad range of wavelengths.

  14. Beam instrumentation for the Tevatron Collider

    SciTech Connect

    Moore, Ronald S.; Jansson, Andreas; Shiltsev, Vladimir; /Fermilab

    2009-10-01

    The Tevatron in Collider Run II (2001-present) is operating with six times more bunches and many times higher beam intensities and luminosities than in Run I (1992-1995). Beam diagnostics were crucial for the machine start-up and the never-ending luminosity upgrade campaign. We present the overall picture of the Tevatron diagnostics development for Run II, outline machine needs for new instrumentation, present several notable examples that led to Tevatron performance improvements, and discuss the lessons for future colliders.

  15. Accelerator Based Neutron Beams for Neutron Capture Therapy

    SciTech Connect

    Yanch, Jacquelyn C.

    2003-04-11

    The DOE-funded accelerator BNCT program at the Massachusetts Institute of Technology has resulted in the only operating accelerator-based epithermal neutron beam facility capable of generating significant dose rates in the world. With five separate beamlines and two different epithermal neutron beam assemblies installed, we are currently capable of treating patients with rheumatoid arthritis in less than 15 minutes (knee joints) or 4 minutes (finger joints) or irradiating patients with shallow brain tumors to a healthy tissue dose of 12.6 Gy in 3.6 hours. The accelerator, designed by Newton scientific Incorporated, is located in dedicated laboratory space that MIT renovated specifically for this project. The Laboratory for Accelerator Beam Applications consists of an accelerator room, a control room, a shielded radiation vault, and additional laboratory space nearby. In addition to the design, construction and characterization of the tandem electrostatic accelerator, this program also resulted in other significant accomplishments. Assemblies for generating epithermal neutron beams were designed, constructed and experimentally evaluated using mixed-field dosimetry techniques. Strategies for target construction and target cooling were implemented and tested. We demonstrated that the method of submerged jet impingement using water as the coolant is capable of handling power densities of up to 6 x 10(sup 7) W/m(sup 2) with heat transfer coefficients of 10(sup 6)W/m(sup 2)-K. Experiments with the liquid metal gallium demonstrated its superiority compared with water with little effect on the neutronic properties of the epithermal beam. Monoenergetic proton beams generated using the accelerator were used to evaluate proton RBE as a function of LET and demonstrated a maximum RBE at approximately 30-40 keV/um, a finding consistent with results published by other researchers. We also developed an experimental approach to biological intercomparison of epithermal beams and

  16. Neutron resonance averaging with filtered beams

    SciTech Connect

    Chrien, R.E.

    1985-01-01

    Neutron resonance averaging using filtered beams from a reactor source has proven to be an effective nuclear structure tool within certain limitations. These limitations are imposed by the nature of the averaging process, which produces fluctuations in radiative intensities. The fluctuations have been studied quantitatively. Resonance averaging also gives us information about initial or capture state parameters, in particular the photon strength function. Suitable modifications of the filtered beams are suggested for the enhancement of non-resonant processes.

  17. Status of the Neutron Imaging and Diffraction Instrument IMAT

    NASA Astrophysics Data System (ADS)

    Kockelmann, Winfried; Burca, Genoveva; Kelleher, Joe F.; Kabra, Saurabh; Zhang, Shu-Yan; Rhodes, Nigel J.; Schooneveld, Erik M.; Sykora, Jeff; Pooley, Daniel E.; Nightingale, Jim B.; Aliotta, Francesco; Ponterio, Rosa C.; Salvato, Gabriele; Tresoldi, Dario; Vasi, Cirino; McPhate, Jason B.; Tremsin, Anton S.

    A cold neutron imaging and diffraction instrument, IMAT, is currently being constructed at the ISIS second target station. IMAT will capitalize on time-of-flight transmission and diffraction techniques available at a pulsed neutron source. Analytical techniques will include neutron radiography, neutron tomography, energy-selective neutron imaging, and spatially resolved diffraction scans for residual strain and texture determination. Commissioning of the instrument will start in 2015, with time-resolving imaging detectors and two diffraction detector prototype modules. IMAT will be operated as a user facility for material science applications and will be open for developments of time-of-flight imaging methods.

  18. A Comparison of Neutron Beams for BNCT

    SciTech Connect

    Blue, Thomas E.; Woollard, Jeffrey E.

    2001-06-17

    The potential of the Ohio State University Research Reactor (OSURR) with a fission converter plate (FCP) for clinical boron neutron capture therapy (BNCT) is evaluated. The evaluation used design methods that were developed for the analysis of the OSU design of an accelerator-based neutron source (ABNS) for BNCT. The paper compares an FCP epithermal neutron beam, which is based on the OSURR, with the ABNS. Neutron and gamma-ray absorbed dose rates and the boron-10 specific absorbed dose rate were calculated. A major goal of the analysis was to determine if a 500-kW reactor with an FCP can produce a neutron field with sufficient intensity to allow a patient to be treated in an acceptable treatment time with adequate beam quality. The answer obtained was positive, provided that the patient is treated with at least four fractions. Although the quality of the neutron field for the FCP is slightly inferior to that of the ABNS, it was judged to be acceptable.

  19. The new cold neutron radiography and tomography instrument CONRAD at HMI Berlin

    NASA Astrophysics Data System (ADS)

    Hilger, A.; Kardjilov, N.; Strobl, M.; Treimer, W.; Banhart, J.

    2006-11-01

    The new cold neutron radiography instrument CONRAD is a multifunctional facility for radiography and tomography with cold neutrons at Hahn-Meitner Institut, Berlin. It is located at the end of a curved neutron guide, which faces the cold-neutron source of the BER-II research reactor. The geometry provides a cold-neutron beam with wavelengths between 2 and 12 Å. Two measuring positions are available for radiography and tomography investigations. The first one is placed at the end of the guide and it is optimized for in situ experiments in which a high neutron flux is required. The available flux at this position is approximately 10 8 cm -2 s -1. The second measuring position uses a pin-hole geometry which allows better beam collimation ( L/ D up to 1000) and higher image resolution in the range of 200 μm in the CCD based detector system (10×10 cm 2). The use of cold neutrons for radiography purposes increases the image contrast and improves the sensibility e.g., the detection of small amounts of water and hydrogen-containing materials in metal matrixes. On the other hand the cold-neutron beam can be modified easily by using diffraction and neutron optical techniques. This enables to perform radiography and tomography experiments with more sophisticated measuring techniques. Recent examples of research and industrial applications will be presented.

  20. Development and Test of a Neutron Imaging Setup at the PGAA Instrument at FRM II

    NASA Astrophysics Data System (ADS)

    Söllradl, S.; Mühlbauer, M. J.; Kudejova, P.; Türler, A.

    We report on the developments of a neutron tomography setup at the instrument for prompt gamma-ray activation analysis (PGAA) at the Maier-Leibnitz Zentrum(MLZ). The recent developments are driven by the idea of combining the spatial information obtained with neutron tomography with the elemental information determined with PGAA, i.e. to further combine both techniques to an investigative technique called prompt gamma activation imaging (PGAI).At the PGAA instrument, a cold neutron flux of up to 6 x 1010 cm-2 s-1 (thermal equivalent) is available in the focus of an elliptically tapered neutron guide. In the reported experiments, the divergence of the neutron beam was investigated, the resolution of the installed detector system tested, and a proof-of-principle tomography experiment performed. In our study a formerly used camera box was upgraded with a better camera and an optical resolution of 8 line pairs/mm was achieved. The divergence of the neutron beam was measured by a systematic scan along the beam axis. Based on the acquired data, a neutron imaging setup with a L/D ratio of 200 was installed. The resolution of the setup was testedin combination with a gadolinium test target and different scintillator screens. The test target was irradiated at two positions to determine the maximum resolution and the resolution at the actual sample position. The performance of the installed tomography setup was demonstrated bya tomography experiment of an electric amplifier tube.

  1. The New Uppsala Neutron Beam Facility

    SciTech Connect

    Pomp, S.; Blomgren, J.; Hildebrand, A.; Johansson, C.; Mermod, P.; Oesterlund, M.; Prokofiev, A.V.; Bystroem, O.; Ekstroem, C.; Haag, N.; Jonsson, O.; Reistad, D.; Renberg, P.-U.; Wessman, D.; Ziemann, V.; Nilsson, L.; Olsson, N.; Tippawan, U.

    2005-05-24

    A new quasi-monoenergetic neutron beam facility has been constructed at the The Svedberg Laboratory (TSL) in Uppsala, Sweden. Key features include an energy range of 20 to 175 MeV, high fluxes, and the possibility of large-area fields. Besides cross-section measurements, the new facility has been designed specifically to provide optimal conditions for testing of single-event effects in electronics and for dosimetry development. First results of the beam characterization measurements performed in early 2004 are reported.

  2. Quantifying the information measured by neutron scattering instruments

    SciTech Connect

    Johnson, M.W.

    1997-09-01

    The concept of the information content of a scientific measurement is introduced, and a theory is presented which enables the information that may be obtained by a neutron scattering instrument to be calculated. When combined with the time taken to perform the measurement the bandwidth of the instrument is obtained. This bandwidth is effectively a figure of merit which is of use in three respects: in the design of neutron instrumentation, the optimisation of measurements, and in the comparison of one instrument with another.

  3. Grazing incidence neutron spin echo spectroscopy: instrumentation aspects and scientific opportunities

    NASA Astrophysics Data System (ADS)

    Holderer, O.; Frielinghaus, H.; Wellert, S.; Lipfert, F.; Monkenbusch, M.; von Klitzing, R.; Richter, D.

    2014-07-01

    Grazing Incidence Neutron Spin Echo Spectroscopy (GINSES) opens new possibilities for observing the thermally driven dynamics of macromolecules close to a rigid interface. The information about the dynamics can be retrieved as a function of scattering depth of the evanescent neutron wave, on the length scale in the range of some 10-100 nm. Using a classical neutron spin echo spectrometer with a laterally collimated beam, dynamics can be measured in grazing incidence geometry. We show examples of how the interface modifies the dynamics of microemulsions, membranes and microgels. Instrumental details and possible improvements for this technique will be presented. The key issue is the low intensity for dynamics measurements with an evanescent neutron wave. Conceptual questions how a specialised instrument could improve the experimental technique will be discussed.

  4. SPALLATION NEUTRON SOURCE BEAM CURRENT MONITOR ELECTRONICS.

    SciTech Connect

    KESSELMAN,M.; DAWSON,W.C.

    2002-05-06

    This paper will discuss the present electronics design for the beam current monitor system to be used throughout the Spallation Neutron Source (SNS) under construction at Oak Ridge National Laboratory. The beam is composed of a micro-pulse structure due to the 402.5MHz RF, and is chopped into mini-pulses of 645ns duration with a 300ns gap, providing a macro-pulse of 1060 mini-pulses repeating at a 60Hz rate. Ring beam current will vary from about 15ma peak during studies, to about 50Amps peak (design to 100 amps). A digital approach to droop compensation has been implemented and initial test results presented.

  5. Magnetic compound refractive lens for focusing and polarizing cold neutron beams.

    PubMed

    Littrell, K C; te Velthuis, S G E; Felcher, G P; Park, S; Kirby, B J; Fitzsimmons, M R

    2007-03-01

    Biconcave cylindrical lenses are used to focus beams of x rays or neutrons using the refractive properties of matter. In the case of neutrons, the refractive properties of magnetic induction can similarly focus and simultaneously polarize the neutron beam without the concomitant attenuation of matter. This concept of a magnetic refractive lens was tested using a compound lens consisting of 99 pairs of cylindrical permanent magnets. The assembly successfully focused the intensity of a white beam of cold neutrons of one spin state at the detector, while defocusing the other. This experiment confirmed that a lens of this nature may boost the intensity locally by almost an order of magnitude and create a polarized beam. An estimate of the performance of a more practically dimensioned device suitable for incorporation in reflectometers and slit-geometry small angle scattering instruments is given. PMID:17411211

  6. Backscattering at a pulsed neutron source, the MUSICAL instrument

    NASA Astrophysics Data System (ADS)

    Alefeld, B.

    1995-02-01

    In the first part the principles of the neutron backscattering method are described and some simple considerations about the energy resolution and the intensity are presented. A prototype of a backscattering instrument, the first Jülich instrument, is explained in some detail and a representative measurement is shown which was performed on the backscattering instrument IN10 at the ILL in Grenoble. In the second part a backscattering instrument designed for a pulsed neutron source is proposed. It is shown that a rather simple modification, which consists in the replacement of the Doppler drive of the conventional backscattering instrument by a multi silicon monochromator cryst al (MUSICAL) leads to a very effective instrument, benefitting from the peak flux of the pulsed source.

  7. Planetary Geochemistry Using Active Neutron and Gamma Ray Instrumentation

    NASA Technical Reports Server (NTRS)

    Parsons, A.; Bodnarik, J.; Evans, L.; Floyd, S.; Lim, L.; McClanahan, T.; Namkung, M.; Schweitzer, J.; Starr, R.; Trombka, J.

    2010-01-01

    The Pulsed Neutron Generator-Gamma Ray And Neutron Detector (PNG-GRAND) experiment is an innovative application of the active neutron-gamma ray technology so successfully used in oil field well logging and mineral exploration on Earth, The objective of our active neutron-gamma ray technology program at NASA Goddard Space Flight Center (NASA/GSFC) is to bring the PNG-GRAND instrument to the point where it can be flown on a variety of surface lander or rover missions to the Moon, Mars, Venus, asterOIds, comets and the satellites of the outer planets, Gamma-Ray Spectrometers have been incorporated into numerous orbital planetary science missions and, especially in the case of Mars Odyssey, have contributed detailed maps of the elemental composition over the entire surface of Mars, Neutron detectors have also been placed onboard orbital missions such as the Lunar Reconnaissance Orbiter and Lunar Prospector to measure the hydrogen content of the surface of the moon, The DAN in situ experiment on the Mars Science Laboratory not only includes neutron detectors, but also has its own neutron generator, However, no one has ever combined the three into one instrument PNG-GRAND combines a pulsed neutron generator (PNG) with gamma ray and neutron detectors to produce a landed instrument that can determine subsurface elemental composition without drilling. We are testing PNG-GRAND at a unique outdoor neutron instrumentation test facility recently constructed at NASA/GSFC that consists of a 2 m x 2 m x 1 m granite structure in an empty field, We will present data from the operation of PNG-GRAND in various experimental configurations on a known sample in a geometry that is identical to that which can be achieved on a planetary surface. We will also compare the material composition results inferred from our experiments to both an independent laboratory elemental composition analysis and MCNPX computer modeling results,

  8. Application of Pixel-cell Detector Technology for Advanced Neutron Beam Monitors

    SciTech Connect

    Kopp, Daniel M.

    2011-01-11

    Application of Pixel-Cell Detector Technology for Advanced Neutron Beam Monitors Specifications of currently available neutron beam detectors limit their usefulness at intense neutron beams of large-scale national user facilities used for the advanced study of materials. A large number of neutron-scattering experiments require beam monitors to operate in an intense neutron beam flux of >10E+7 neutrons per second per square centimeter. For instance, a 4 cm x 4 cm intense beam flux of 6.25 x 10E+7 n/s/cm2 at the Spallation Neutron Source will put a flux of 1.00 x 10E+9 n/s at the beam monitor. Currently available beam monitors with a typical efficiency of 1 x 10E-4 will need to be replaced in less than two years of operation due to wire and gas degradation issues. There is also a need at some instruments for beam position information that are beyond the capabilities of currently available He-3 and BF3 neutron beam monitors. ORDELA, Inc.’s research under USDOE SBIR Grant (DE-FG02-07ER84844) studied the feasibility of using pixel-cell technology for developing a new generation of stable, long-life neutron beam monitors. The research effort has led to the development and commercialization of advanced neutron beam detectors that will directly benefit the Spallation Neutron Source and other intense neutron sources such as the High Flux Isotope Reactor. A prototypical Pixel-Cell Neutron Beam Monitor was designed and constructed during this research effort. This prototype beam monitor was exposed to an intense neutron beam at the HFIR SNS HB-2 test beam site. Initial measurements on efficiency, uniformity across the detector, and position resolution yielded excellent results. The development and test results have provided the required data to initiate the fabrication and commercialization of this next generation of neutron-detector systems. ORDELA, Inc. has (1) identified low-cost design and fabrication strategies, (2) developed and built pixel-cell detectors and

  9. High intensity multi beam design of SANS instrument for Dhruva reactor

    NASA Astrophysics Data System (ADS)

    Abbas, Sohrab; Désert, S.; Aswal, V. K.

    2016-05-01

    A new and versatile design of Small Angle Neutron Scattering (SANS) instrument based on utilization of multi-beam is presented. The multi-pinholes and multi-slits as SANS collimator for medium flux Dhruva rearctor have been proposed and their designs have been validated using McStas simulations. Various instrument configurations to achieve different minimum wave vector transfers in scattering experiments are envisioned. These options enable smooth access to minimum wave vector transfers as low as ~ 6×10-4 Å-1 with a significant improvement in neutron intensity, allowing faster measurements. Such angularly well defined and intense neutron beam will allow faster SANS studies of agglomerates larger than few tens of nm.

  10. Working group session report: Neutron beam line shielding.

    SciTech Connect

    Russell, G. J.; Ikedo, Y.

    2001-01-01

    We have examined the differences between a 2-D model and a 3-D model for designing the beam-line shield for the HIPPO instrument at the Lujan Center at the Los Alamos National Laboratory. We have calculated the total (neutron and gamma ray) dose equivalent rate coming out of the personal access ports from the HIPPO instrument experiment cave. In order to answer this question, we have investigated two possible worst-case scenarios: (a) failure of the T{sub 0}-chopper and no sample at the sample position; and (b) failure of the T{sub 0}-chopper with a thick sample (a piece of Inconel-718, 10 cm diam by 30 cm long) at the sample position.

  11. Modularized Parallel Neutron Instrument Simulation on the TeraGrid

    SciTech Connect

    Chen, Meili; Cobb, John W; Hagen, Mark E; Miller, Stephen D; Lynch, Vickie E

    2007-01-01

    In order to build a bridge between the TeraGrid (TG), a national scale cyberinfrastructure resource, and neutron science, the Neutron Science TeraGrid Gateway (NSTG) is focused on introducing productive HPC usage to the neutron science community, primarily the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL). Monte Carlo simulations are used as a powerful tool for instrument design and optimization at SNS. One of the successful efforts of a collaboration team composed of NSTG HPC experts and SNS instrument scientists is the development of a software facility named PSoNI, Parallelizing Simulations of Neutron Instruments. Parallelizing the traditional serial instrument simulation on TeraGrid resources, PSoNI quickly computes full instrument simulation at sufficient statistical levels in instrument de-sign. Upon SNS successful commissioning, to the end of 2007, three out of five commissioned instruments in SNS target station will be available for initial users. Advanced instrument study, proposal feasibility evalua-tion, and experiment planning are on the immediate schedule of SNS, which pose further requirements such as flexibility and high runtime efficiency on fast instrument simulation. PSoNI has been redesigned to meet the new challenges and a preliminary version is developed on TeraGrid. This paper explores the motivation and goals of the new design, and the improved software structure. Further, it describes the realized new fea-tures seen from MPI parallelized McStas running high resolution design simulations of the SEQUOIA and BSS instruments at SNS. A discussion regarding future work, which is targeted to do fast simulation for automated experiment adjustment and comparing models to data in analysis, is also presented.

  12. Characterization of the high-energy neutron beam of the PRISMA beamline using a diamond detector

    NASA Astrophysics Data System (ADS)

    Cazzaniga, C.; Frost, C. D.; Minniti, T.; Schooneveld, E.; Perelli Cippo, E.; Tardocchi, M.; Rebai, M.; Gorini, G.

    2016-07-01

    The high-energy neutron component (En > 10 MeV) of the neutron spectrum of PRISMA, a beam-line at the ISIS spallation source, has been characterized for the first time. Neutron measurements using a Single-crystal Diamond Detector at a short-pulse source are obtained by a combination of pulse height and time of flight analysis. An XY scan provides a 2D map of the high-energy neutron beam which has a diameter of about 40 mm. The high neutron flux, that has been found to be (3.8 ± 0.7) · 105 cm‑2s‑1 for En > 10 MeV in the centre, opens up for a possible application of the beam-line as a high-energy neutron irradiation position. Results are of interest for the development of the ChipIR beam-line, which will feature an atmospheric-like neutron spectrum for chip irradiation experiment. Furthermore, these results demonstrate that diamond detectors can be used at spallation sources to investigate the transport of high-energy neutrons down instruments which is of interest in general to designers as high-energy neutrons are a source of background in thermal beamlines.

  13. Spallation neutron source beam loss monitor system

    NASA Astrophysics Data System (ADS)

    Gassner, D.; Witkover, R.; Cameron, P.; Power, J.

    2000-11-01

    The Spallation Neutron Source facility to be built at ORNL is designed to accumulate 2×1014 protons at 1.0 GeV and deliver them to the experimental target in one bunch at 60 Hz. To achieve this goal and protect the machine from excessive radiation activation, an uncontrolled loss criteria of 1 part in 104 (1 W/m) has been specified. Measured losses will be conditioned to provide machine tuning data, a beam abort trigger, and logging of loss history. The design of the distributed loss monitor system utilizing argon-filled glass ionization chambers and scintillator-photomultipliers will be presented.

  14. A New Cold Neutron Imaging Instrument at NIST

    NASA Astrophysics Data System (ADS)

    Hussey, D. S.; Brocker, C.; Cook, J. C.; Jacobson, D. L.; Gentile, T. R.; Chen, W. C.; Baltic, E.; Baxter, D. V.; Doskow, J.; Arif, M.

    The NIST neutron imaging program will build a new imaging instrument in the NCNR guide hall at the end of the neutron guide NG-6, beginning operation in summer of 2015. The NG-6 guide has a spectrum that is strongly peaked at a neutron wavelength of 0.5 nm, with a fluence rate of 2 × 109 cm-2 s-1 before a bismuth filter that is cooled by liquid nitrogen. The instrument will be developed in a phased manner and with an emphasis on maintaining a flexible space to conduct experiments and test new instrument concepts. In the initial phase of the instrument, the available space will permit a flight path of about 9 m, and will provide a platform for standard neutron radiography and tomography, wavelength selective imaging with a double crystal monochromator, and phase imaging based on a Talbot-Lau interferometer. The novel feature of the instrument will be the incorporation of Wolter optics to create a neutron microscope. Initially, prototype optics will be used in the microscope configuration to assess optic characteristics and image acquisition techniques. In the final form, the microscope will enable users to acquire images with ˜10 μm resolution 10-100x faster than current practice, and with a 10x magnifying optic to acquire images with ˜1 μm spatial resolution with image acquisition time similar to that for current images with ˜10 μm resolution.

  15. Methods and Instruments for Fast Neutron Detection

    SciTech Connect

    Jordan, David V.; Reeder, Paul L.; Cooper, Matthew W.; McCormick, Kathleen R.; Peurrung, Anthony J.; Warren, Glen A.

    2005-05-01

    Pacific Northwest National Laboratory evaluated the performance of a large-area (~0.7 m2) plastic scintillator time-of-flight (TOF) sensor for direct detection of fast neutrons. This type of sensor is a readily area-scalable technology that provides broad-area geometrical coverage at a reasonably low cost. It can yield intrinsic detection efficiencies that compare favorably with moderator-based detection methods. The timing resolution achievable should permit substantially more precise time windowing of return neutron flux than would otherwise be possible with moderated detectors. The energy-deposition threshold imposed on each scintillator contributing to the event-definition trigger in a TOF system can be set to blind the sensor to direct emission from the neutron generator. The primary technical challenge addressed in the project was to understand the capabilities of a neutron TOF sensor in the limit of large scintillator area and small scintillator separation, a size regime in which the neutral particle’s flight path between the two scintillators is not tightly constrained.

  16. Operational Performance of LCLS Beam Instrumentation

    SciTech Connect

    Loos, Henrik; Akre, R.; Brachmann, A.; Coffee, R.; Decker, F.-J.; Ding, Y.; Dowell, D.; Edstrom, S.; Emma, P.; Fisher, A.; Frisch, J.; Gilevich, S.; Hays, G.; Hering, Ph.; Huang, Z.; Iverson, R.; Messerschmidt, M.; Miahnahri, A.; Moeller, S.; Nuhn, H.-D.; Ratner, D.; /SLAC /LLNL, Livermore

    2010-06-15

    The Linac Coherent Light Source (LCLS) X-ray FEL utilizing the last km of the SLAC linac has been operational since April 2009 and finished its first successful user run last December. The various diagnostics for electron beam properties including beam position monitors, wire scanners, beam profile monitors, and bunch length diagnostics are presented as well as diagnostics for the X-ray beam. The low emittance and ultra-short electron beam required for X-ray FEL operation has implications on the transverse and longitudinal diagnostics. The coherence effects of the beam profile monitors and the challenges of measuring fs long bunches are discussed.

  17. New developments in the McStas neutron instrument simulation package

    NASA Astrophysics Data System (ADS)

    Willendrup, P. K.; Knudsen, E. B.; Klinkby, E.; Nielsen, T.; Farhi, E.; Filges, U.; Lefmann, K.

    2014-07-01

    The McStas neutron ray-tracing software package is a versatile tool for building accurate simulators of neutron scattering instruments at reactors, short- and long-pulsed spallation sources such as the European Spallation Source. McStas is extensively used for design and optimization of instruments, virtual experiments, data analysis and user training. McStas was founded as a scientific, open-source collaborative code in 1997. This contribution presents the project at its current state and gives an overview of the main new developments in McStas 2.0 (December 2012) and McStas 2.1 (expected fall 2013), including many new components, component parameter uniformisation, partial loss of backward compatibility, updated source brilliance descriptions, developments toward new tools and user interfaces, web interfaces and a new method for estimating beam losses and background from neutron optics.

  18. Experiment Automation with a Robot Arm using the Liquids Reflectometer Instrument at the Spallation Neutron Source

    SciTech Connect

    Zolnierczuk, Piotr A; Vacaliuc, Bogdan; Sundaram, Madhan; Parizzi, Andre A; Halbert, Candice E; Hoffmann, Michael C; Greene, Gayle C; Browning, Jim; Ankner, John Francis

    2013-01-01

    The Liquids Reflectometer instrument installed at the Spallation Neutron Source (SNS) enables observations of chemical kinetics, solid-state reactions and phase-transitions of thin film materials at both solid and liquid surfaces. Effective measurement of these behaviors requires each sample to be calibrated dynamically using the neutron beam and the data acquisition system in a feedback loop. Since the SNS is an intense neutron source, the time needed to perform the measurement can be the same as the alignment process, leading to a labor-intensive operation that is exhausting to users. An update to the instrument control system, completed in March 2013, implemented the key features of automated sample alignment and robot-driven sample management, allowing for unattended operation over extended periods, lasting as long as 20 hours. We present a case study of the effort, detailing the mechanical, electrical and software modifications that were made as well as the lessons learned during the integration, verification and testing process.

  19. Search for Neutron Anti-Neutron Oscillation using Cold Neutron Beams with Focusing Optics

    NASA Astrophysics Data System (ADS)

    Shimizu, Hirohiko; NNBar Collaboration

    2014-09-01

    The electric charge of neutrons is experimentally known as less than 10-21 e and considered as exactly zero and the transition between neutron and anti-neutron is allowed in terms of the conservation of the electric charge but is considered forbidden according to the empirical conservation law of the baryon number. On the other hand, the existence of physical processes which violates the conservation of the baryon number is required in the Sakharov's conditions to explain the baryon assymmetry in the big-bang cosmology. The search for the neutron antineutron (n n) oscillation offers information the baryon number violation with the Δ (B - L) = 2 complementary to the attempts with Δ (B - L) = 0 . The sensitivity to the n n oscillation has been improved by searching for the instability of nuclei via n n oscillation in large-scale deep-underground experiments, which are now limited by the background. On the other hand, the improvement of accelerator-driven neutron sources and transport optics of slow neutron beams have introduced new possibility to improve the sensitivity to n n by orders of magnitude. In this paper, we discuss the experimental sensitivity to n n oscillation with accelerator-based neutron sources and neutron focusing optics.

  20. Neutrons and music: Imaging investigation of ancient wind musical instruments

    NASA Astrophysics Data System (ADS)

    Festa, G.; Tardino, G.; Pontecorvo, L.; Mannes, D. C.; Senesi, R.; Gorini, G.; Andreani, C.

    2014-10-01

    A set of seven musical instruments and two instruments cares from the 'Fondo Antico della Biblioteca del Sacro Convento' in Assisi, Italy, were investigated through neutron and X-ray imaging techniques. Historical and scientific interests around ancient musical instruments motivate an intense research effort for their characterization using non-destructive and non-invasive techniques. X-ray and neutron tomography/radiography were applied to the study of composite material samples containing wood, hide and metals. The study was carried out at the NEUTRA beamline, PSI (Paul Scherrer Institute, Switzerland). Results of the measurements provided new information on the composite and multi-scale structure, such as: the internal structure of the samples, position of added materials like metals, wood fiber displays, deformations, presence of adhesives and their spatial distribution and novel insight about construction methods to guide the instruments' restoration process.

  1. Neutron beam characterization measurements at the Manuel Lujan Jr. neutron scattering center

    SciTech Connect

    Mocko, Michal; Muhrer, Guenter; Daemen, Luke L; Kelsey, Charles T; Duran, Michael A; Tovesson, Fredrik K

    2010-01-01

    We have measured the neutron beam characteristics of neutron moderators at the Manuel Lujan Jr. Neutron Scattering Center at LANSCE. The absolute thermal neutron flux, energy spectra and time emission spectra were measured for the high resolution and high intensity decoupled water, partially coupled liquid hydrogen and partially coupled water moderators. The results of our experimental study will provide an insight into aging of different target-moderator-reflector-shield components as well as new experimental data for benchmarking of neutron transport codes.

  2. Beam instrumentation for future high intense hadron accelerators at Fermilab

    SciTech Connect

    Wendt, M.; Hu, M.; Tassotto, G.; Thurman-Keup, R.; Scarpine, V.; Shin, S.; Zagel, J.; /Fermilab

    2008-08-01

    High intensity hadron beams of up to 2 MW beam power are a key element of new proposed experimental facilities at Fermilab. Project X, which includes a SCRF 8 GeV H{sup -} linac, will be the centerpiece of future HEP activities in the neutrino sector. After a short overview of this, and other proposed projects, we present the current status of the beam instrumentation activities at Fermilab with a few examples. With upgrades and improvements they can meet the requirements of the new beam facilities, however design and development of new instruments is needed, as shown by the prototype and conceptual examples in the last section.

  3. The MCLIB library: Monte Carlo simulation of neutron scattering instruments

    SciTech Connect

    Seeger, P.A.

    1995-09-01

    Monte Carlo is a method to integrate over a large number of variables. Random numbers are used to select a value for each variable, and the integrand is evaluated. The process is repeated a large number of times and the resulting values are averaged. For a neutron transport problem, first select a neutron from the source distribution, and project it through the instrument using either deterministic or probabilistic algorithms to describe its interaction whenever it hits something, and then (if it hits the detector) tally it in a histogram representing where and when it was detected. This is intended to simulate the process of running an actual experiment (but it is much slower). This report describes the philosophy and structure of MCLIB, a Fortran library of Monte Carlo subroutines which has been developed for design of neutron scattering instruments. A pair of programs (LQDGEOM and MC{_}RUN) which use the library are shown as an example.

  4. The neutron instrument Monte Carlo library MCLIB: Recent developments

    SciTech Connect

    Seeger, P.A.; Daemen, L.L.; Hjelm, R.P. Jr.; Thelliez, T.G.

    1998-12-31

    A brief review is given of the developments since the ICANS-XIII meeting made in the neutron instrument design codes using the Monte Carlo library MCLIB. Much of the effort has been to assure that the library and the executing code MC{_}RUN connect efficiently with the World Wide Web application MC-WEB as part of the Los Alamos Neutron Instrument Simulation Package (NISP). Since one of the most important features of MCLIB is its open structure and capability to incorporate any possible neutron transport or scattering algorithm, this document describes the current procedure that would be used by an outside user to add a feature to MCLIB. Details of the calling sequence of the core subroutine OPERATE are discussed, and questions of style are considered and additional guidelines given. Suggestions for standardization are solicited, as well as code for new algorithms.

  5. A neutron diagnostic for high current deuterium beams

    SciTech Connect

    Rebai, M.; Perelli Cippo, E.; Cavenago, M.; Dalla Palma, M.; Pasqualotto, R.; Tollin, M.; Croci, G.; Gervasini, G.; Ghezzi, F.; Grosso, G.; Tardocchi, M.; Murtas, F.; Gorini, G.

    2012-02-15

    A neutron diagnostic for high current deuterium beams is proposed for installation on the spectral shear interferometry for direct electric field reconstruction (SPIDER, Source for Production of Ion of Deuterium Extracted from RF plasma) test beam facility. The proposed detection system is called Close-contact Neutron Emission Surface Mapping (CNESM). The diagnostic aims at providing the map of the neutron emission on the beam dump surface by placing a detector in close contact, right behind the dump. CNESM uses gas electron multiplier detectors equipped with a cathode that also serves as neutron-proton converter foil. The cathode is made of a thin polythene film and an aluminium film; it is designed for detection of neutrons of energy >2.2 MeV with an incidence angle < 45 deg. CNESM was designed on the basis of simulations of the different steps from the deuteron beam interaction with the beam dump to the neutron detection in the nGEM. Neutron scattering was simulated with the MCNPX code. CNESM on SPIDER is a first step towards the application of this diagnostic technique to the MITICA beam test facility, where it will be used to resolve the horizontal profile of the beam intensity.

  6. Beam Instrumentation of the PXIE LEBT Beamline

    SciTech Connect

    D'Arcy, R.; Hanna, B.; Prost, L.; Scarpine, v.; Shemyakin, A.

    2015-06-01

    The PXIE accelerator [1] is the front-end test stand of the proposed Proton Improvement Plan (PIP-II) [2] initiative: a CW-compatible pulsed H- superconducting RF linac upgrade to Fermilab’s injection system. The PXIE Ion Source and Low-Energy Beam Transport (LEBT) section are designed to create and transfer a 1-10 mA $H^{-}$ beam, in either pulsed (0.001–16 ms) or DC mode, from the ion source through to the injection point of the RFQ. This paper discusses the range of diagnostic tools – Allison-type Emittance Scanner, Faraday Cup, Toroid, DCCT, electrically isolated diaphragms – involved in the commissioning of the beam line and preparation of the beam for injection into the RFQ.

  7. Tuning the beam: a physics perspective on beam diagnostic instrumentation

    SciTech Connect

    Gulley, Mark S

    2010-01-01

    In a nutshell, the role of a beam diagnostic measurement is to provide information needed to get a particle beam from Point A (injection point) to Point B (a target) in a useable condition, with 'useable' meaning the right energy and size and with acceptable losses. Specifications and performance requirements of diagnostics are based on the physics of the particle beam to be measured, with typical customers of beam parameter measurements being the accelerator operators and accelerator physicists. This tutorial will be a physics-oriented discussion of the interplay between tuning evolutions and the beam diagnostics systems that support the machine tune. This will include the differences between developing a tune and maintaining a tune, among other things. Practical longitudinal and transverse tuning issues and techniques from a variety of proton and electron machines will also be discussed.

  8. Compact Instrument for Measuring Profile of a Light Beam

    NASA Technical Reports Server (NTRS)

    Papanyan, Valeri

    2004-01-01

    The beamviewer is an optical device designed to be attached to a charge-coupled-device (CCD) image detector for measuring the spatial distribution of intensity of a beam of light (the beam profile ) at a designated plane intersecting the beam. The beamviewer-and-CCD combination is particularly well suited for measuring the radiant- power profile (for a steady beam) or the radiant-energy profile (for a pulsed beam) impinging on the input face or emerging from the output face of a bundle of optical fibers. The beamviewer and-CCD combination could also be used as a general laboratory instrument for profiling light beams, including beams emerging through small holes and laser beams in free space.

  9. Enhancing Neutron Beam Production with a Convoluted Moderator

    SciTech Connect

    Iverson, Erik B; Baxter, David V; Muhrer, Guenter; Ansell, Stuart; Gallmeier, Franz X; Dalgliesh, Robert; Lu, Wei; Kaiser, Helmut

    2014-10-01

    We describe a new concept for a neutron moderating assembly resulting in the more efficient production of slow neutron beams. The Convoluted Moderator, a heterogeneous stack of interleaved moderating material and nearly transparent single-crystal spacers, is a directionally-enhanced neutron beam source, improving beam effectiveness over an angular range comparable to the range accepted by neutron beam lines and guides. We have demonstrated gains of 50% in slow neutron intensity for a given fast neutron production rate while simultaneously reducing the wavelength-dependent emission time dispersion by 25%, both coming from a geometric effect in which the neutron beam lines view a large surface area of moderating material in a relatively small volume. Additionally, we have confirmed a Bragg-enhancement effect arising from coherent scattering within the single-crystal spacers. We have not observed hypothesized refractive effects leading to additional gains at long wavelength. In addition to confirmation of the validity of the Convoluted Moderator concept, our measurements provide a series of benchmark experiments suitable for developing simulation and analysis techniques for practical optimization and eventual implementation at slow neutron source facilities.

  10. Neutron beam characterization at the Neutron Radiography Reactor (NRAD)

    SciTech Connect

    Imel, G.R.; Urbatsch, T.; Pruett, D.P.; Ross, J.R.

    1990-01-01

    The Neutron Radiography Reactor (NRAD) is a 250-kW TRIGA Reactor operated by Argonne National Laboratory and is located near Idaho Falls, Idaho. The reactor and its facilities regarding radiography are detailed in another paper at this conference; this paper summarizes neutron flux measurements and calculations that have been performed to better understand and potentially improve the neutronics characteristics of the reactor.

  11. A telescope proton recoil spectrometer for fast neutron beam-lines

    NASA Astrophysics Data System (ADS)

    Cazzaniga, C.; Rebai, M.; Tardocchi, M.; Croci, G.; Nocente, M.; Ansell, S.; Frost, C. D.; Gorini, G.

    2015-07-01

    Fast neutron measurements were performed on the VESUVIO beam-line at the ISIS spallation source using a new telescope proton recoil spectrometer. Neutrons interact on a plastic target. Proton production is mainly due to elastic scattering on hydrogen nuclei and secondly due to interaction with carbon nuclei. Recoil protons are measured by a proton spectrometer, which uses in coincidence a 2.54 cm thick YAP scintillator and a 500μm thick silicon detector, measuring the full proton recoil energy and the partial deposited energy in transmission, respectively. Recoil proton spectroscopy measurements (up to Ep = 60MeV) have been interpreted by using Monte Carlo simulations of the beam-line. This instrument is of particular interest for the characterization of the ChipIr beam-line at ISIS, which was designed to feature an atmospheric-like neutron spectrum for the irradiation of micro-electronics.

  12. Overview of the Conceptual Design of the Future VENUS Neutron Imaging Beam Line at the Spallation Neutron Source

    NASA Astrophysics Data System (ADS)

    Bilheux, Hassina; Herwig, Ken; Keener, Scott; Davis, Larry

    VENUS (Versatile Neutron Imaging Beam line at the Spallation Neutron Source) will be a world-class neutron-imaging instrument that will uniquely utilize the Spallation Neutron Source (SNS) time-of-flight (TOF) capabilities to measure and characterize objects across several length scales (mm to μm). When completed, VENUS will provide academia, industry and government laboratories with the opportunity to advance scientific research in areas such as energy, materials, additive manufacturing, geosciences, transportation, engineering, plant physiology, biology, etc. It is anticipated that a good portion of the VENUS user community will have a strong engineering/industrial research focus. Installed at Beam line 10 (BL10), VENUS will be a 25-m neutron imaging facility with the capability to fully illuminate (i.e., umbra illumination) a 20 cm x 20 cm detector area. The design allows for a 28 cm x 28 cm field of view when using the penumbra to 80% of the full illumination flux. A sample position at 20 m will be implemented for magnification measurements. The optical components are comprised of a series of selected apertures, T0 and bandwidth choppers, beam scrapers, a fast shutter to limit sample activation, and flight tubes filled with Helium. Techniques such as energy selective, Bragg edge and epithermal imaging will be available at VENUS.

  13. Neutron cross section standards and instrumentation. Annual report

    SciTech Connect

    Wasson, O.A.

    1993-07-01

    The objective of this interagency program is to provide accurate neutron interaction measurements for the US Department of Energy nuclear programs which include waste disposal, fusion, safeguards, defense, fission, and personnel protection. These measurements are also useful to other energy programs which indirectly use the unique properties of the neutron for diagnostic and analytical purposes. The work includes the measurement of reference cross sections and related neutron data employing unique facilities and capabilities at NIST and other laboratories as required; leadership and participation in international intercomparisons and collaborations; the preservation of standard reference deposits and the development of improved neutron detectors and measurement methods. A related and essential element of the program is critical evaluation of neutron interaction data including international coordinations. Data testing of critical data for important applications is included. The program is jointly supported by the Department of Energy and the National Institute of Standards and Technology. This report from the National Institute of Standards and Technology contains a summary of the accomplishments of the Neutron Cross Section Standards and Instrumentation Project during the third year of this three-year interagency agreement. The proposed program and required budget for the following three years are also presented. The program continues the shifts in priority instituted in order to broaden the program base.

  14. Beam Instrumentation Challenges at the International Linear Collider

    SciTech Connect

    Tenenbaum, Peter; /SLAC

    2006-05-16

    The International Linear Collider (ILC) is a proposed facility for the study of high energy physics through electron-positron collisions at center-of-mass energies up to 500 GeV and luminosities up to 2 x 10{sup 34} cm{sup -2} sec{sup -1}. Meeting the ILC's goals will require an extremely sophisticated suite of beam instruments for the preservation of beam emittance, the diagnosis of optical errors and mismatches, the determination of beam properties required for particle physics purposes, and machine protection. The instrumentation foreseen for the ILC is qualitatively similar to equipment in use at other accelerator facilities in the world, but in many cases the precision, accuracy, stability, or dynamic range required by the ILC exceed what is typically available in today's accelerators. In this paper we survey the beam instrumentation requirements of the ILC and describe the system components which are expected to meet those requirements.

  15. Data acquisition and instrument control system for neutron spectrometers

    NASA Astrophysics Data System (ADS)

    Naik, S. S.; Kotwal, Ismat; Chandak, R. M.; Gaonkar, V. G.

    2004-08-01

    A personal computer (PC)-based data acquisition and instrument control system has been developed for neutron spectrometers in Dhruva reactor hall and Guide Tube laboratory. Efforts have been made to make the system versatile so that it can be used for controlling various neutron spectrometers using single end-on detector in step scan mode. Commercially available PC add-on cards have been used for input--output and timer-counter operations. An interface card and DC motor driver card have been developed indigenously. Software for the system has been written in Visual C++ language using MS Windows operating system. This data acquisition and instrument control system is successfully controlling four spectrometers at Dhruva reactor.

  16. Neutron measurements from beam-target reactions at the ELISE neutral beam test facility

    SciTech Connect

    Xufei, X. Fan, T.; Nocente, M.; Gorini, G.; Bonomo, F.; Franzen, P.; Fröschle, M.; Grosso, G.; Tardocchi, M.; Grünauer, F.; Pasqualotto, R.

    2014-11-15

    Measurements of 2.5 MeV neutron emission from beam-target reactions performed at the ELISE neutral beam test facility are presented in this paper. The measurements are used to study the penetration of a deuterium beam in a copper dump, based on the observation of the time evolution of the neutron counting rate from beam-target reactions with a liquid scintillation detector. A calculation based on a local mixing model of deuterium deposition in the target up to a concentration of 20% at saturation is used to evaluate the expected neutron yield for comparison with data. The results are of relevance to understand neutron emission associated to beam penetration in a solid target, with applications to diagnostic systems for the SPIDER and MITICA Neutral Beam Injection prototypes.

  17. THE METHODS OF PRODUCING AND ANALYZING POLARIZED NEUTRON BEAMS FOR HYSPEC AT THE SNS.

    SciTech Connect

    SHAPIRO, S.M.; PASSELL, L.; ZALIZNYAK, A.; GHOSH, V.J.; LEONHARDT, W.L.; HAGEN, M.E.

    2005-04-25

    The Hybrid Spectrometer (HYSPEC), under construction at the SNS on beam line 14B, is the only inelastic scattering instrument designed to enable polarization of the incident and the scattered neutron beams. A Heusler monochromator will replace the graphite crystal for producing polarized neutrons. In the scattered beam it is planned to use a collimator--multi-channel supermirror bender array to analyze the polarization of the scattered beam over the final energy range from 5-20 meV. Other methods of polarization analysis under consideration such as transmission filters using He{sup 3}, Sm, and polarized protons are considered. Their performance is estimated and a comparison of the various methods of polarization is made.

  18. New analytical approach for neutron beam-hardening correction.

    PubMed

    Hachouf, N; Kharfi, F; Hachouf, M; Boucenna, A

    2016-01-01

    In neutron imaging, the beam-hardening effect has a significant effect on quantitative and qualitative image interpretation. This study aims to propose a linearization method for beam-hardening correction. The proposed method is based on a new analytical approach establishing the attenuation coefficient as a function of neutron energy. Spectrum energy shift due to beam hardening is studied on the basis of Monte Carlo N-Particle (MCNP) simulated data and the analytical data. Good agreement between MCNP and analytical values has been found. Indeed, the beam-hardening effect is well supported in the proposed method. A correction procedure is developed to correct the errors of beam-hardening effect in neutron transmission, and therefore for projection data correction. The effectiveness of this procedure is determined by its application in correcting reconstructed images. PMID:26609685

  19. High-energy in-beam neutron measurements of metal-based shielding for accelerator-driven spallation neutron sources

    NASA Astrophysics Data System (ADS)

    DiJulio, D. D.; Cooper-Jensen, C. P.; Björgvinsdóttir, H.; Kokai, Z.; Bentley, P. M.

    2016-05-01

    Metal-based shielding plays an important role in the attenuation of harmful and unwanted radiation at an accelerator-driven spallation neutron source. At the European Spallation Source, currently under construction in Lund, Sweden, metal-based materials are planned to be used extensively as neutron guide substrates in addition to other shielding structures around neutron guides. The usage of metal-based materials in the vicinity of neutron guides however requires careful consideration in order to minimize potential background effects in a neutron instrument at the facility. Therefore, we have carried out a combined study involving high-energy neutron measurements and Monte Carlo simulations of metal-based shielding, both to validate the simulation methodology and also to investigate the benefits and drawbacks of different metal-based solutions. The measurements were carried out at The Svedberg Laboratory in Uppsala, Sweden, using a 174.1 MeV neutron beam and various thicknesses of aluminum-, iron-, and copper-based shielding blocks. The results were compared to geant4 simulations and revealed excellent agreement. Our combined study highlights the particular situations where one type of metal-based solution may be preferred over another.

  20. Beam instrumentation for the BNL Heavy Ion Transfer Line

    SciTech Connect

    Witkover, R.L.; Buxton, W.; Castillo, V.; Feigenbaum, I.; Lazos, A.; Li, Z.G.; Smith, G.; Stoehr, R.

    1987-01-01

    The Heavy Ion Transfer Line (HITL) was constructed to transport beams from the BNL Tandem Van de Graaff (TVDG) to be injected into the AGS. Because the beam line is approximately 2000 feet long and the particle rigidity is so low, 20 beam monitor boxes were placed along the line. The intensity ranges from 1 to 100 nanoAmps for the dc trace beam used for line set-up, to over 100 ..mu..A for the pulsed beam to be injected into the AGS. Profiles are measured using multiwire arrays (HARPS) while Faraday cups and beam transformers monitor the intensity. The electronics stations are operated through 3 Instrumentation Controllers networked to Apollo workstations in the TVDG and AGS control rooms. Details of the detectors and electronics designs and performance will be given.

  1. The Spallation Neutron Source Beam Commissioning and Initial Operations

    SciTech Connect

    Henderson, Stuart; Aleksandrov, Alexander V.; Allen, Christopher K.; Assadi, Saeed; Bartoski, Dirk; Blokland, Willem; Casagrande, F.; Campisi, I.; Chu, C.; Cousineau, Sarah M.; Crofford, Mark T.; Danilov, Viatcheslav; Deibele, Craig E.; Dodson, George W.; Feshenko, A.; Galambos, John D.; Han, Baoxi; Hardek, T.; Holmes, Jeffrey A.; Holtkamp, N.; Howell, Matthew P.; Jeon, D.; Kang, Yoon W.; Kasemir, Kay; Kim, Sang-Ho; Kravchuk, L.; Long, Cary D.; McManamy, T.; Pelaia, II, Tom; Piller, Chip; Plum, Michael A.; Pogge, James R.; Purcell, John David; Shea, T.; Shishlo, Andrei P; Sibley, C.; Stockli, Martin P.; Stout, D.; Tanke, E.; Welton, Robert F; Zhang, Y.; Zhukov, Alexander P

    2015-09-01

    The Spallation Neutron Source (SNS) accelerator delivers a one mega-Watt beam to a mercury target to produce neutrons used for neutron scattering materials research. It delivers ~ 1 GeV protons in short (< 1 us) pulses at 60 Hz. At an average power of ~ one mega-Watt, it is the highest-powered pulsed proton accelerator. The accelerator includes the first use of superconducting RF acceleration for a pulsed protons at this energy. The storage ring used to create the short time structure has record peak particle per pulse intensity. Beam commissioning took place in a staged manner during the construction phase of SNS. After the construction, neutron production operations began within a few months, and one mega-Watt operation was achieved within three years. The methods used to commission the beam and the experiences during initial operation are discussed.

  2. Ion Beam Analysis of Targets Used in Controlatron Neutron Generators

    SciTech Connect

    Banks, James C.; Doyle, Barney L.; Walla, Lisa A.; Walsh, David S.

    2009-03-10

    Controlatron neutron generators are used for testing neutron detection systems at Sandia National Laboratories. To provide for increased tube lifetimes for the moderate neutron flux output of these generators, metal hydride (ZrT{sub 2}) target fabrication processes have been developed. To provide for manufacturing quality control of these targets, ion beam analysis techniques are used to determine film composition. The load ratios (i.e. T/Zr concentration ratios) of ZrT{sub 2} Controlatron neutron generator targets have been successfully measured by simultaneously acquiring RBS and ERD data using a He{sup ++} beam energy of 10 MeV. Several targets were measured and the film thicknesses obtained from RBS measurements agreed within {+-}2% with Dektak profilometer measurements. The target fabrication process and ion beam analysis techniques will be presented.

  3. Delayed neutron detection with an integrated differential die-away and delayed neutron instrument

    SciTech Connect

    Blanc, Pauline; Tobin, Stephen J; Lee, Taehoon; Hu, Jianwei S; Hendricks, John; Croft, Stephen

    2010-01-01

    The Next Generation Safeguards Initiative (NGSI) of the U.S. Department of Energy (DOE) has funded a multilab/university collaboration to quantify the plutonium (Pu) mass and detect the diversion of pins from spent nuclear fuel. The first two years of this NGSI effort was focused on quantifying the capability of a range of nondestructive assay (NDA) techniques with Monte Carlo (MCNPX) modeling and the second current phase involves measuring Spent Fuel. One of the techniques of interest in this paper involves measuring delayed neutrons. A delayed neutron instrument using 36 fission chambers and a 14 MeV neutron generator so called DT generator (Deuterium + Tritium) surrounding the fuel was previously studied as part of the NGSI effort. This paper will quantify the capability of a standalone delayed neutron instrument using 4 {sup 3}He gas filled tubes and a DT generator with significant spectrum tailoring, located far from the fuel. So that future research can assess how well a delayed neutron instrument will function as part of an integrated NDA system. A new design is going to be used to respond to the need of the techniques. This design has been modeled for a water media and is currently being optimized for borated water and air media as part of ongoing research. This new design was selected in order to minimize the fission of {sup 238}U, to use a more realistic neutron generator design in the model, to reduce cost and facilitate the integration of a delayed neutron (DN) with a differential die-away (DDA) instrument. Since this paper will focus on delayed neutron detection, the goal is to quantify the signal from {sup 235}U, {sup 239}Pu and {sup 241}Pu, which are the isotopes present in Spent Fuel that respond significantly to a neutron interrogation. This report will quantify the capability of this new delayed neutron design to measure the combined mass of {sup 235}U, {sup 239}Pu and {sup 241}Pu for 16 of the 64 assemblies of the NGSI Spent Fuel library in one

  4. Fast neutron beams--prospects for the coming decade.

    PubMed

    Blomgren, J

    2007-01-01

    The present status of neutron beam production techniques above 20 MeV is discussed. Presently, two main methods are used; white beams and quasi-monoenergetic beams. The performances of these two techniques are discussed, as well as the use of such facilities for measurements of nuclear data for fundamental and applied research. Recently, two novel ideas on how to produce extremely intense neutron beams in the 100-500 MeV range have been proposed. Decay in flight of beta delayed neutron-emitting nuclei could provide beam intensities five orders of magnitudes larger than present facilities. A typical neutron energy spectrum would be essentially monoenergetic, i.e., the energy spread is about 1 MeV with essentially no low-energy tail. A second option would be to produce beams of (6)He and dissociate the (6)He nuclei into alpha particles and neutrons. The basic features of these concepts are outlined, and the potential for improved nuclear data research is discussed. PMID:17502317

  5. Neutron transport study of a beam port based dynamic neutron radiography facility

    NASA Astrophysics Data System (ADS)

    Khaial, Anas M.

    Neutron radiography has the ability to differentiate between gas and liquid in two-phase flow due both to the density difference and the high neutron scattering probability of hydrogen. Previous studies have used dynamic neutron radiography -- in both real-time and high-speed -- for air-water, steam-water and gas-liquid metal two-phase flow measurements. Radiography with thermal neutrons is straightforward and efficient as thermal neutrons are easier to detect with relatively higher efficiency and can be easily extracted from nuclear reactor beam ports. The quality of images obtained using neutron radiography and the imaging speed depend on the neutron beam intensity at the imaging plane. A high quality neutron beam, with thermal neutron intensity greater than 3.0x 10 6 n/cm2-s and a collimation ratio greater than 100 at the imaging plane, is required for effective dynamic neutron radiography up to 2000 frames per second. The primary objectives of this work are: (1) to optimize a neutron radiography facility for dynamic neutron radiography applications and (2) to investigate a new technique for three-dimensional neutron radiography using information obtained from neutron scattering. In this work, neutron transport analysis and experimental validation of a dynamic neutron radiography facility is studied with consideration of real-time and high-speed neutron radiography requirements. A beam port based dynamic neutron radiography facility, for a target thermal neutron flux of 1.0x107 n/cm2-s, has been analyzed, constructed and experimentally verified at the McMaster Nuclear Reactor. The neutron source strength at the beam tube entrance is evaluated experimentally by measuring the thermal and fast neutron fluxes using copper activation flux-mapping technique. The development of different facility components, such as beam tube liner, gamma ray filter, beam shutter and biological shield, is achieved analytically using neutron attenuation and divergence theories. Monte

  6. Overview and status of beam instrumentation at the SSC

    SciTech Connect

    Webber, R.C.

    1993-05-01

    An overview of beam instrumentation requirements at the SSC and a status report on work progress is given. Small transverse emittance beams, ranging in energy from 30 KeV to 20 TeV, must be commissioned, measured, and diagnosed. Instrumentation plans and current design and development efforts for BPMs and other systems are presented. Monitors and electronics soon to be delivered for use in the Linac are described. Design of the Linac systems has been done with requirements and applications in the synchrotron in mind and thus should provide a basis for design of much of that hardware. The useful commonality of design across the machines is discussed.

  7. BEAM LOSS MITIGATION IN THE OAK RIDGE SPALLATION NEUTRON SOURCE

    SciTech Connect

    Plum, Michael A

    2012-01-01

    The Oak Ridge Spallation Neutron Source (SNS) accelerator complex routinely delivers 1 MW of beam power to the spallation target. Due to this high beam power, understanding and minimizing the beam loss is an ongoing focus area of the accelerator physics program. In some areas of the accelerator facility the equipment parameters corresponding to the minimum loss are very different from the design parameters. In this presentation we will summarize the SNS beam loss measurements, the methods used to minimize the beam loss, and compare the design vs. the loss-minimized equipment parameters.

  8. Fast ion beam chopping system for neutron generators

    NASA Astrophysics Data System (ADS)

    Hahto, S. K.; Hahto, S. T.; Leung, K. N.; Reijonen, J.; Miller, T. G.; Van Staagen, P. K.

    2005-02-01

    Fast deuterium (D+) and tritium (T+) ion beam pulses are needed in some neutron-based imaging systems. A compact, integrated fast ion beam extraction and chopping system has been developed and tested at the Lawrence Berkeley National Laboratory for these applications, and beam pulses with 15ns full width at half maximum have been achieved. Computer simulations together with experimental tests indicate that even faster pulses are achievable by shortening the chopper voltage rise time. This chopper arrangement will be implemented in a coaxial neutron generator, in which a small point-like neutron source is created by multiple 120keV D+ ion beams hitting a titanium target at the center of the source.

  9. Fast ion beam chopping system for neutron generators

    SciTech Connect

    Hahto, S.K.; Hahto, S.T.; Leung, K.N.; Reijonen, J.; Miller, T.G.; Van Staagen, P.K.

    2005-02-01

    Fast deuterium (D{sup +}) and tritium (T{sup +}) ion beam pulses are needed in some neutron-based imaging systems. A compact, integrated fast ion beam extraction and chopping system has been developed and tested at the Lawrence Berkeley National Laboratory for these applications, and beam pulses with 15 ns full width at half maximum have been achieved. Computer simulations together with experimental tests indicate that even faster pulses are achievable by shortening the chopper voltage rise time. This chopper arrangement will be implemented in a coaxial neutron generator, in which a small point-like neutron source is created by multiple 120 keV D{sup +} ion beams hitting a titanium target at the center of the source.

  10. Instrument and method for focusing x rays, gamma rays, and neutrons

    DOEpatents

    Smither, R.K.

    1981-04-20

    A crystal diffraction instrument is described which has an improved crystalline structure having a face for receiving a beam of photons or neutrons and diffraction planar spacing along that face with the spacing increasing progressively along the face to provide a decreasing Bragg angle and thereby increasing the usable area and acceptance angle. The increased planar spacing is provided by the use of a temperature differential across the crystalline structure, by assembling a plurality of crystalline structure with different compositions, by an individual crystalline structure with a varying composition and thereby a changing planar spacing along its face, and by combinations of these techniques.

  11. Two-dimensional differential calibration method for a neutron dosemeter using a thermal neutron beam.

    PubMed

    Matsumoto, Tetsuro; Harano, Hideki; Masuda, Akihiko; Nishiyama, Jun; Matsue, Hideaki; Uritani, Akira; Nunomiya, Tomoya

    2013-08-01

    A new thermal neutron calibration method to experimentally determine the energy response function of a neutron detector using a pulse parallel beam and the time-of-flight (TOF) technique is developed. The calibration method was experimentally demonstrated for a (3)He proportional counter and an electric personal dosemeter using a pulsed thermal neutron beam from the research reactor JRR-3M. The responses of the detectors were successfully obtained as a function of neutron energy. However, detailed information on the detector structure is required to obtain the spatial response distribution for the detector. The authors further propose an improved calibration method obtaining the spatial response distribution using a pulsed narrow beam, the TOF technique and a beam scanning technique. PMID:23509397

  12. Measuring formation properties through well casing with pulsed neutron instrumentation

    NASA Astrophysics Data System (ADS)

    Trcka, Darryl

    2010-05-01

    Measuring formation properties through well casing with pulsed neutron instrumentation In the process of developing an oil or gas reservoir, the exploration team first confirms the existence of a potential reservoir with a discovery well. Then the size, content, and character of the reservoir are mapped with roughly six to twelve delineation wells. From this information the development team plans a development program to produce the oil and gas, which can run into hundreds of wells. Whereas the exploration and delineation wellbores are left open to the formation to allow measurement of the reservoir properties, the development wellbores are cased with cemented-in-place steel casing to isolate zones and allow targeting of specific oil or gas layers for production (which is accomplished by perforating the casing in the target zones with explosive charges). Once the casing is in place it obviously becomes more difficult to measure reservoir and formation properties since one-quarter to one-half inch of steel casing plus another inch or so of cement between the formation and the borehole greatly restrict the measurement methods that can be used. But there are over a million cased wellbores penetrating the earth's crust, many plugged, cemented, and abandoned, but many still producing oil and gas or otherwise available for logging. However difficult it may be, formation measurements through the steel casing are of importance to oil and gas production companies, and they could be of some value to earth scientists. Since 1964 when the first instrument was introduced, pulsed neutron instrumentation for oil and gas well logging has been used to measure formation properties through casing. The basic downhole instrumentation consists of a pulsed fusion reactor for a source of high energy neutrons and gamma ray detectors for gamma ray spectroscopy. The early generation instruments measured water and oil proportions crudely and only in reservoirs where the connate water was

  13. Multimode laser beam analyzer instrument using electrically programmable optics

    NASA Astrophysics Data System (ADS)

    Marraccini, Philip J.; Riza, Nabeel A.

    2011-12-01

    Presented is a novel design of a multimode laser beam analyzer using a digital micromirror device (DMD) and an electronically controlled variable focus lens (ECVFL) that serve as the digital and analog agile optics, respectively. The proposed analyzer is a broadband laser characterization instrument that uses the agile optics to smartly direct light to the required point photodetectors to enable beam measurements of minimum beam waist size, minimum waist location, divergence, and the beam propagation parameter M2. Experimental results successfully demonstrate these measurements for a 500 mW multimode test laser beam with a wavelength of 532 nm. The minimum beam waist, divergence, and M2 experimental results for the test laser are found to be 257.61 μm, 2.103 mrad, 1.600 and 326.67 μm, 2.682 mrad, 2.587 for the vertical and horizontal directions, respectively. These measurements are compared to a traditional scan method and the results of the beam waist are found to be within error tolerance of the demonstrated instrument.

  14. Numerical study of neutron beam divergence in a beam-fusion scenario employing laser driven ions

    NASA Astrophysics Data System (ADS)

    Alejo, A.; Green, A.; Ahmed, H.; Robinson, A. P. L.; Cerchez, M.; Clarke, R.; Doria, D.; Dorkings, S.; Fernandez, J.; McKenna, P.; Mirfayzi, S. R.; Naughton, K.; Neely, D.; Norreys, P.; Peth, C.; Powell, H.; Ruiz, J. A.; Swain, J.; Willi, O.; Borghesi, M.; Kar, S.

    2016-09-01

    The most established route to create a laser-based neutron source is by employing laser accelerated, low atomic-number ions in fusion reactions. In addition to the high reaction cross-sections at moderate energies of the projectile ions, the anisotropy in neutron emission is another important feature of beam-fusion reactions. Using a simple numerical model based on neutron generation in a pitcher-catcher scenario, anisotropy in neutron emission was studied for the deuterium-deuterium fusion reaction. Simulation results are consistent with the narrow-divergence (∼ 70 ° full width at half maximum) neutron beam recently served in an experiment employing multi-MeV deuteron beams of narrow divergence (up to 30° FWHM, depending on the ion energy) accelerated by a sub-petawatt laser pulse from thin deuterated plastic foils via the Target Normal Sheath Acceleration mechanism. By varying the input ion beam parameters, simulations show that a further improvement in the neutron beam directionality (i.e. reduction in the beam divergence) can be obtained by increasing the projectile ion beam temperature and cut-off energy, as expected from interactions employing higher power lasers at upcoming facilities.

  15. On-line neutron beam monitoring of the Finnish BNCT facility

    NASA Astrophysics Data System (ADS)

    Tanner, Vesa; Auterinen, Iiro; Helin, Jori; Kosunen, Antti; Savolainen, Sauli

    1999-02-01

    A Boron Neutron Capture Therapy (BNCT) facility has been built at the FiR 1 research reactor of VTT Chemical Technology in Espoo, Finland. The facility is currently undergoing dosimetry characterisation and neutron beam operation research for clinical trials. The healthy tissue tolerance study, which was carried out in the new facility during spring 1998, demonstrated the reliability and user-friendliness of the new on-line beam monitoring system designed and constructed for BNCT by VTT Chemical Technology. The epithermal neutron beam is monitored at a bismuth gamma shield after an aluminiumfluoride-aluminium moderator. The detectors are three pulse mode U 235-fission chambers for epithermal neutron fluence rate and one current mode ionisation chamber for gamma dose rate. By using different detector sensitivities the beam intensity can be measured over a wide range of reactor power levels (0.001-250 kW). The detector signals are monitored on-line with a virtual instrumentation (LabView) based PC-program, which records and displays the actual count rates and total counts of the detectors in the beam. Also reactor in-core power instrumentation and control rod positions can be monitored via another LabView application. The main purpose of the monitoring system is to provide a dosimetric link to the dose in a patient during the treatment, as the fission chamber count rates have been calibrated to the induced thermal neutron fluence rate and to the absorbed dose rate at reference conditions in a tissue substitute phantom.

  16. Epithermal neutron beams from the 7 Li(p,n) reaction near the threshold for neutron capture therapy

    NASA Astrophysics Data System (ADS)

    Porras, I.; Praena, J.; Arias de Saavedra, F.; Pedrosa, M.; Esquinas, P.; L. Jiménez-Bonilla, P.

    2016-11-01

    Two applications for neutron capture therapy of epithermal neutron beams calculated from the 7Li ( p , n reaction are discussed. In particular, i) for a proton beam of 1920 keV of a 30 mA, a neutron beam of adequate features for BNCT is found at an angle of 80° from the forward direction; and ii) for a proton beam of 1910 keV, a neutron beam is obtained at the forward direction suitable for performing radiobiology experiments for the determination of the biological weighting factors of the fast dose component in neutron capture therapy.

  17. An electron beam profile instrument based on FBGs.

    PubMed

    Sporea, Dan; Stăncălie, Andrei; Becherescu, Nicu; Becker, Martin; Rothhardt, Manfred

    2014-01-01

    Along with the dose rate and the total irradiation dose measurements, the knowledge of the beam localization and the beam profile/energy distribution in the beam are parameters of interest for charged particle accelerator installations when they are used in scientific investigations, industrial applications or medical treatments. The transverse profile of the beam, its position, its centroid location, and its focus or flatness depend on the instrument operating conditions or on the beam exit setup. Proof-of-concept of a new type of charged particle beam diagnostics based on fiber Bragg gratings (FBGs) was demonstrated. Its operating principle relies on the measurement of the peak wavelength changes for an array of FBG sensors as function of the temperature following the exposure to an electron beam. Periodically, the sensor irradiation is stopped and the FBG are force cooled to a reference temperature with which the temperature influencing each sensor during beam exposure is compared. Commercially available FBGs, and FBGs written in radiation resistant optical fibers, were tested under electron beam irradiation in order to study their possible use in this application. PMID:25157554

  18. An Electron Beam Profile Instrument Based on FBGs

    PubMed Central

    Sporea, Dan; Stăncălie, Andrei; Becherescu, Nicu; Becker, Martin; Rothhardt, Manfred

    2014-01-01

    Along with the dose rate and the total irradiation dose measurements, the knowledge of the beam localization and the beam profile/energy distribution in the beam are parameters of interest for charged particle accelerator installations when they are used in scientific investigations, industrial applications or medical treatments. The transverse profile of the beam, its position, its centroid location, and its focus or flatness depend on the instrument operating conditions or on the beam exit setup. Proof-of-concept of a new type of charged particle beam diagnostics based on fiber Bragg gratings (FBGs) was demonstrated. Its operating principle relies on the measurement of the peak wavelength changes for an array of FBG sensors as function of the temperature following the exposure to an electron beam. Periodically, the sensor irradiation is stopped and the FBG are force cooled to a reference temperature with which the temperature influencing each sensor during beam exposure is compared. Commercially available FBGs, and FBGs written in radiation resistant optical fibers, were tested under electron beam irradiation in order to study their possible use in this application. PMID:25157554

  19. Lyoluminescence dosimetry in photon and fast neutron beams.

    PubMed

    Puite, K J; Crebolder, D L

    1977-11-01

    The lyoluminescence (LL) technique using mannose, a monosaccharide, is described. Dose-response curves for 60Co-gamma-rays (5 rad to 120 krad), fission neutrons, 5.3 MeV and 15 MeV neutrons (100 rad to 20 krad) have been measured. The close tissue-equivalence of mannose makes this material well suited for dosimetric use in low energy X-ray fields for radiotherapy and radiobiology. It also provides a cheap, simple and reproducible dosemeter in industrial applications of radiation (sprouting inhibition of onions and potatoes; control of insect infestation). After correction for the gamma contamination of the neutron beam the LL signal per rad in ICRU muscle tissue from the neutron irradiations has been derived and the relative effectiveness of the LL signal for fast neutrons in mannose has been calculated as 0.34 +/- 0.03 (fission neutrons), 0.63 +/- 0.07 (5.3 MeV neutrons) and 0.74 +/- 0.05 (15 MeV neutrons). These results are compared with data from other systems. It is concluded that mannose can be used as a transfer system in neutron dosimetry, if its variation in sensitivity with neutron energy is taken into account. PMID:594143

  20. Fast slit-beam extraction and chopping for neutron generator

    NASA Astrophysics Data System (ADS)

    Kalvas, T.; Hahto, S. K.; Gicquel, F.; King, M.; Vainionpää, J. H.; Reijonen, J.; Leung, K. N.; Miller, T. G.

    2006-03-01

    High-intensity fast white neutron pulses are needed for pulsed fast neutron transmission spectroscopy (PFNTS). A compact tritium-tritium fusion reaction neutron generator with an integrated ion beam chopping system has been designed, simulated, and tested for PFNTS. The design consists of a toroidal plasma chamber with 20 extraction slits, concentric cylindrical electrodes, chopper plates, and a central titanium-coated beam target. The total ion beam current is 1A. The beam chopping is done at 30keV energy with a parallel-plate deflector integrated with an Einzel lens. Beam pulses with 5ns width can be achieved with a 15ns rise/fall time ±1500V sweep on the chopper plates. The neutrons are produced at 120keV energy. A three-dimensional simulation code based on Vlasov iteration was developed for simulating the ion optics of this system. The results with this code were found to be consistent with other simulation codes. So far we have measured 50ns ion beam pulses from the system.

  1. Fast slit-beam extraction and chopping for neutron generator

    SciTech Connect

    Kalvas, T.; Hahto, S.K.; Gicquel, F.; King, M.; Vainionpaeae, J.H.; Reijonen, J.; Leung, K.N.; Miller, T.G.

    2006-03-15

    High-intensity fast white neutron pulses are needed for pulsed fast neutron transmission spectroscopy (PFNTS). A compact tritium-tritium fusion reaction neutron generator with an integrated ion beam chopping system has been designed, simulated, and tested for PFNTS. The design consists of a toroidal plasma chamber with 20 extraction slits, concentric cylindrical electrodes, chopper plates, and a central titanium-coated beam target. The total ion beam current is 1 A. The beam chopping is done at 30 keV energy with a parallel-plate deflector integrated with an Einzel lens. Beam pulses with 5 ns width can be achieved with a 15 ns rise/fall time {+-}1500 V sweep on the chopper plates. The neutrons are produced at 120 keV energy. A three-dimensional simulation code based on Vlasov iteration was developed for simulating the ion optics of this system. The results with this code were found to be consistent with other simulation codes. So far we have measured 50 ns ion beam pulses from the system.

  2. The beam diagnostic instruments in Beijing radioactive ion-beam facilities isotope separator on-line

    SciTech Connect

    Ma, Y. Cui, B.; Ma, R.; Tang, B.; Chen, L.; Huang, Q.; Jiang, W.

    2014-02-15

    The beam diagnostic instruments for Beijing Radioactive Ion-beam Facilities Isotope Separator On-Line are introduced [B. Q. Cui, Z. H. Peng, Y. J. Ma, R. G. Ma, B. Tang, T. Zhang, and W. S. Jiang, Nucl. Instrum. Methods 266, 4113 (2008); T. J. Zhang, X. L. Guan, and B. Q. Cui, in Proceedings of APAC 2004, Gyeongju, Korea, 2004, http://www.jacow.org , p. 267]. For low intensity ion beam [30–300 keV/1 pA–10 μA], the beam profile monitor, the emittance measurement unit, and the analyzing slit will be installed. For the primary proton beam [100 MeV/200 μA], the beam profile scanner will be installed. For identification of the nuclide, a beam identification unit will be installed. The details of prototype of the beam diagnostic units and some experiment results will be described in this article.

  3. Determination of the neutron and photon spectra of a clinical fast neutron beam.

    PubMed

    Moyers, M F; Horton, J L

    1990-01-01

    A simple technique to determine the neutron and photon spectra of a clinical fast neutron beam is described. This technique involves making narrow beam attenuation measurements with a pair of ionization chambers and an iterative fitting program to analyze the data. A method is also described for determining the first-guess neutron spectrum for input into the iterative program. The results of the analysis yield spectra suitable for use in dose calculation algorithms and dosimetry protocols. Presented here is the first-known published photon spectrum from a clinical machine. PMID:2120558

  4. Low-energy beam transport studies supporting the Spallation Neutron Source 1-MW beam operationa

    SciTech Connect

    Han, Baoxi; Kalvas, T.; Tarvainen, O.; Welton, Robert F; Murray Jr, S N; Pennisi, Terry R; Santana, Manuel; Stockli, Martin P

    2012-01-01

    The H- injector consisting of a cesium enhanced RF-driven ion source and a 2-lens electrostatic low-energy beam transport (LEBT) system supports the Spallation Neutron Source 1-MW beam operation with ~38 mA beam current in the linac at 60 Hz with a pulse length of up to ~1.0 ms. In this work, two important issues associated with the low-energy beam transport are discussed: 1) inconsistent dependence of the post-RFQ beam current on the ion source tilt angle, and 2) high power beam losses on the LEBT electrodes under some off-nominal conditions compromising their reliability.

  5. Instrument and method for focusing X-rays, gamma rays and neutrons

    DOEpatents

    Smither, Robert K.

    1984-01-01

    A crystal diffraction instrument or diffraction grating instrument with an improved crystalline structure or grating spacing structure having a face for receiving a beam of photons or neutrons and diffraction planar spacing or grating spacing along that face with the spacing increasing progressively along the face to provide a decreasing Bragg diffraction angle for a monochromatic radiation and thereby increasing the usable area and acceptance angle. The increased planar spacing for the diffraction crystal is provided by the use of a temperature differential across the crystalline structure, by assembling a plurality of crystalline structures with different compositions, by an individual crystalline structure with a varying composition and thereby a changing planar spacing along its face, and by combinations of these techniques. The increased diffraction grating element spacing is generated during the fabrication of the diffraction grating by controlling the cutting tool that is cutting the grooves or controlling the laser beam, electron beam or ion beam that is exposing the resist layer, etc. It is also possible to vary this variation in grating spacing by applying a thermal gradient to the diffraction grating in much the same manner as is done in the crystal diffraction case.

  6. Instrument and method for focusing x rays, gamma rays, and neutrons

    DOEpatents

    Smither, R.K.

    1982-03-25

    A crystal-diffraction instrument or diffraction-grating instrument is described with an improved crystalline structure or grating spacing structure having a face for receiving a beam of photons or neutrons and diffraction planar spacing or grating spacing along that face with the spacing increasing progressively along the face to provide a decreasing Bragg diffraction angle for a monochromatic radiation and thereby increasing the usable area and acceptance angle. The increased planar spacing for the diffraction crystal is provided by the use of a temperature differential across the line structures with different compositions, by an individual crystalline structure with a varying composition and thereby a changing planar spacing along its face, and by combinations of these techniques. The increased diffraction grating element spacing is generated during the fabrication of the diffraction grating by controlling the cutting tool that is cutting the grooves or controlling the laser beam, electron beam, or ion beam that is exposing the resist layer, etc. It is also possible to vary this variation in grating spacing by applying a thermal gradient to the diffraction grating in much the same manner as is done in the crystal-diffraction case.

  7. Polarized Neutron Beam at the SANS Diffractometer KWS2 of the JCNS

    NASA Astrophysics Data System (ADS)

    Ioffe, A.; Feoktystov, A.; Staringer, S.; Radulescu, A.; Babcock, E.; Salhi, Z.

    This article describes a high-efficiency transmission polarizer that has been installed at the high-intensity SANS diffractometer KWS2 of the Jülich Centre for Neutron Science. The polarizer is primarily designed to be used in the low resolution/high Q-range mode of this diffractometer for the purpose of the separation of coherent scattering on biological objects from an intrinsic background caused by incoherent scattering on their hydrogen atoms. The polarizer operates with a rather divergent incident beam and is placed at about 2m from the sample (upstream in the beam). The diffuse spin-flip scattering that would become critical for such geometry is suppressed due to the use of a strong, about 0.14T, magnetic field. The polarizer has been characterized by a 3He neutron spin filter and provides very high polarization - 93% at 4.5 Å and 99.7% for neutrons with wavelength above 6 Å - for the SANS collimation 4m. The polarizer transmission at 4.5 Å amounts to 94% of the desired spin component. The polarizer is placed in the collimation base of the instrument and can be easily put in and out of the beam thus allowing for "an instant" switch between polarized and non-polarized neutron beams.

  8. Monochromatic neutron beam production at Brazilian nuclear research reactors

    NASA Astrophysics Data System (ADS)

    Stasiulevicius, Roberto; Rodrigues, Claudio; Parente, Carlos B. R.; Voi, Dante L.; Rogers, John D.

    2000-12-01

    Monochomatic beams of neutrons are obtained form a nuclear reactor polychromatic beam by the diffraction process, suing a single crystal energy selector. In Brazil, two nuclear research reactors, the swimming pool model IEA-R1 and the Argonaut type IEN-R1 have been used to carry out measurements with this technique. Neutron spectra have been measured using crystal spectrometers installed on the main beam lines of each reactor. The performance of conventional- artificial and natural selected crystals has been verified by the multipurpose neutron diffractometers installed at IEA-R1 and simple crystal spectrometer in operator at IEN- R1. A practical figure of merit formula was introduced to evaluate the performance and relative reflectivity of the selected planes of a single crystal. The total of 16 natural crystals were selected for use in the neutron monochromator, including a total of 24 families of planes. Twelve of these natural crystal types and respective best family of planes were measured directly with the multipurpose neutron diffractometers. The neutron spectrometer installed at IEN- R1 was used to confirm test results of the better specimens. The usually conventional-artificial crystal spacing distance range is limited to 3.4 angstrom. The interplane distance range has now been increased to approximately 10 angstrom by use of naturally occurring crystals. The neutron diffraction technique with conventional and natural crystals for energy selection and filtering can be utilized to obtain monochromatic sub and thermal neutrons with energies in the range of 0.001 to 10 eV. The thermal neutron is considered a good tool or probe for general applications in various fields, such as condensed matter, chemistry, biology, industrial applications and others.

  9. Analysis of epithermal neutron beam experiments at the HIFAR reactor

    SciTech Connect

    Harrington, B.V.; Constantine, G.

    1995-01-01

    A calculated model of the entire core of the DIDO class reactor HIFAR has been used to analyze epithermal neutron beam experiments. In the experiments, an off-center fuel element was replaced by a dummy fuel element voided by a dry liner in which an aluminium spectrum shifter was suspended at core center to extract the beam. Various combinations of the filter materials aluminum, iron, sulfur, titanium, and cadmium were inserted near the top of the dry liner, and liquid argon was placed in a cryostat above the dummy element. Reaction rates were measured in a fission chamber, sandwiched between various thicknesses of polyethylene, in order to assess the accuracy of the calculational model for different regions of the neutron energy spectrum of the beam. The neutron source distribution of the HIFAR core was obtained from a three-dimensional diffusion calculation, with burnup-dependent fuel compositions and fission products included, using the AUS modular code scheme. Argon cross sections were generated from ENDL-84 data and resonance parameters taken from Neutron Cross Sections (1984). A whole-core MCNP source calculation was used to analyze the experiments giving good agreement between measured and calculated reaction rates. This whole-core model of HIFAR may be applied with confidence to predict the performance of filtered beams for boron neutron capture therapy and also to other HIFAR calculations.

  10. Evaluation of an iron-filtered epithermal neutron beam for neutron-capture therapy

    SciTech Connect

    Musolino, S.V. ); McGinley, P.H. ); Greenwood, R.C. ); Kliauga, P. ); Fairchild, R.G. )

    1991-07-01

    An epithermal neutron filter using iron, aluminum, and sulfur was evaluated to determine if the therapeutic performance could be improved with respect to aluminum--sulfur-based filters. An empirically optimized filter was developed that delivered a 93% pure beam of 24-keV epithermal neutrons. It was expected that a thick filter using iron with a density thickness {gt}200 g/cm{sup 2} would eliminate the excess gamma contamination found in Al--S filters. This research showed that prompt gamma production from neutron interactions in iron was the dominant dose component. Dosimetric parameters of the beam were determined from the measurement of absorbed dose in air, thermal neutron flux in a head phantom, neutron and gamma spectroscopy, and microdosimetry.

  11. Diamond detector for high rate monitors of fast neutrons beams

    SciTech Connect

    Giacomelli, L.; Rebai, M.; Cippo, E. Perelli; Tardocchi, M.; Fazzi, A.; Andreani, C.; Pietropaolo, A.; Frost, C. D.; Rhodes, N.; Schooneveld, E.; Gorini, G.

    2012-06-19

    A fast neutron detection system suitable for high rate measurements is presented. The detector is based on a commercial high purity single crystal diamond (SDD) coupled to a fast digital data acquisition system. The detector was tested at the ISIS pulsed spallation neutron source. The SDD event signal was digitized at 1 GHz to reconstruct the deposited energy (pulse amplitude) and neutron arrival time; the event time of flight (ToF) was obtained relative to the recorded proton beam signal t{sub 0}. Fast acquisition is needed since the peak count rate is very high ({approx}800 kHz) due to the pulsed structure of the neutron beam. Measurements at ISIS indicate that three characteristics regions exist in the biparametric spectrum: i) background gamma events of low pulse amplitudes; ii) low pulse amplitude neutron events in the energy range E{sub dep}= 1.5-7 MeV ascribed to neutron elastic scattering on {sup 12}C; iii) large pulse amplitude neutron events with E{sub n} < 7 MeV ascribed to {sup 12}C(n,{alpha}){sup 9}Be and 12C(n,n')3{alpha}.

  12. Characteristics of the new THOR epithermal neutron beam for BNCT.

    PubMed

    Tung, C J; Wang, Y L; Hsu, F Y; Chang, S L; Liu, Y-W H

    2004-11-01

    A characterization of the new Tsing Hua open-pool reactor (THOR) epithermal neutron beam designed for boron neutron capture therapy (BNCT) has been performed. The facility is currently under construction and expected in completion in March 2004. The designed epithermal neutron flux for 1 MW power is 1.7x10(9)n cm(-2)s(-1) in air at the beam exit, accompanied by photon and fast neutron absorbed dose rates of 0.21 and 0.47 mGys(-1), respectively. With (10)B concentrations in normal tissue and tumor of 11.4 and 40 ppm, the calculated advantage depth dose rate to the modified Snyder head phantom is 0.53RBE-Gymin(-1) at the advantage depth of 85 mm, giving an advantage ratio of 4.8. The dose patterns determined by the NCTPlan treatment planning system using the new THOR beam for a patient treated in the Harvard-MIT clinical trial were compared with results of the MITR-II M67 beam. The present study confirms the suitability of the new THOR beam for possible BNCT clinical trials. PMID:15308158

  13. Design of a Thermal Neutron Beam for a New Neutron Imaging Facility at Tehran Research Reactor

    NASA Astrophysics Data System (ADS)

    Dastjerdi, Mohammad Hossein Choopan; Khalafi, Hossein

    A new neutron imaging facility will be built around the Tehran Research Reactor (TRR). The TRR is an open pool light water moderated5 MW research reactor with six beam tubes. The neutron energy spectrum near the reactor core at the entrance of the beam tube was measured by the foil activation method using the SAND-II code and calculated by the MCNP Monte Carlo code. There was a good similarity between calculated and simulated spectra. The principal component of this facility is its neutron collimator. The collimator is a beam-forming assembly which determines the geometric properties of the beam. In addition, it may contain filters to modify the energy spectrum or to reduce the gamma ray content of the beam. The optimum thickness of filters, the position of the aperture and other details of the neutron collimator were calculated using MCNP Monte Carlo simulations. In this design, the L/D ratio of this facility had the value of 120. The thermal neutron flux at the image plane was about 7.8×106 n/cm2.s and n/γ ratio about 106 n/cm2.μSv.

  14. Designing accelerator-based epithermal neutron beams for boron neutron capture therapy

    SciTech Connect

    Bleuel, D.L.; Donahue, R.J.; Ludewigt, B.A.; Vujic, J.

    1998-09-01

    The {sup 7}Li(p,n){sup 7}Be reaction has been investigated as an accelerator-driven neutron source for proton energies between 2.1 and 2.6 MeV. Epithermal neutron beams shaped by three moderator materials, Al/AlF{sub 3}, {sup 7}LiF, and D{sub 2}O, have been analyzed and their usefulness for boron neutron capture therapy (BNCT) treatments evaluated. Radiation transport through the moderator assembly has been simulated with the Monte Carlo {ital N}-particle code (MCNP). Fluence and dose distributions in a head phantom were calculated using BNCT treatment planning software. Depth-dose distributions and treatment times were studied as a function of proton beam energy and moderator thickness. It was found that an accelerator-based neutron source with Al/AlF{sub 3} or {sup 7}LiF as moderator material can produce depth-dose distributions superior to those calculated for a previously published neutron beam design for the Brookhaven Medical Research Reactor, achieving up to {approximately}50{percent} higher doses near the midline of the brain. For a single beam treatment, a proton beam current of 20 mA, and a {sup 7}LiF moderator, the treatment time was estimated to be about 40 min. The tumor dose deposited at a depth of 8 cm was calculated to be about 21 Gy-Eq. {copyright} {ital 1998 American Association of Physicists in Medicine.}

  15. Million revolution accelerator beam instrument for logging and evaluation

    SciTech Connect

    Peggs, S.; Saltmarsh, C.; Talman, R.

    1988-03-01

    A data acquisition and analysis instrument for the processing of accelerator beam position monitor (BPM) signals has been assembled and used preliminarily for beam diagnosis of the Fermilab accelerators. Up to eight BPM (or other analogue) channels are digitized and transmitted to an acquisition Sun workstation and from there both to a monitor workstation and a workstation for off-line (but immediate) data analysis. A coherent data description format permits fast data object transfers to and from memory, disk and tape, across the Sun ethernet. This has helped the development of both general purpose and experiment-specific data analysis, presentation and control tools. Flexible software permits immediate graphical display in both time and frequency domains. The instrument acts simultaneously as a digital oscilloscope, as a network analyzer and as a correlating, noise-reducing spectrum analyzer. 2 refs., 3 figs.

  16. Physics with Ultracold and Thermal Neutron Beams

    SciTech Connect

    Steyerl, Albert

    2004-08-10

    This project has been focused on a measurement of the mean lifetime {tau}{sub n} of the free neutron with a precision better than 0.1%. The neutron {beta}-decay n {yields} p + e{sup -} + {bar {nu}}{sub e} + 783 keV into a proton, electron and electron antineutrino is the prototype semi-leptonic weak decay, involving both leptons and hadrons in the first generation of elementary particles. Within the standard V-A theory of weak interaction, it is governed by only two constants: the vector coupling constant g{sub V}, and axial vector constant g{sub A}. The neutron lifetime has been measured many times over decades, and the present (2004) world-average, {tau}{sub n} = 885.7 {+-} 0.8 s, has a weighted error of {approx}0.1% while individual uncertainties are typically 2-10 seconds for high precision data. The highest precision claimed by an individual measurement is {approx}0.15%. An improvement is required to resolve issues of the Standard Model of the electro-weak interaction as well as of astrophysics and of Big Bang theories. The focus in astrophysics is the solar neutrino deficit problem, which requires a precise value of g{sub A}. Big Bang theories require a precise {tau}{sub n}-value to understand the primordial He/H ratio. The strong interest of particle physicists in {tau}{sub n} is mainly based on a possible difficulty with the Cabibbo Kobayashi Maskawa (CKM) matrix, which describes the mixing of quark mass states by the weak interaction. Nuclear, neutron, and pion decay data, probing the mixing amplitude V{sub ud} within the first quark generation, in combination with K and B meson decay data, which probe the second and third generation (V{sub us} and V{sub ub}), indicate a departure from the unitarity demanded by all gauge-invariant theories. The deviation of the first-row sum |V{sub ud}|{sup 2} + |V{sub us}|{sup 2} + |V{sub ub}|{sup 2} from unity is on the 2.3 sigma level. Including a new value for V{sub us} would remove the discrepancy; but the authors of

  17. Neutron scattering and diffraction instrument for structural study on biology in Japan

    SciTech Connect

    Niimura, Nobuo

    1994-12-31

    Neutron scattering and diffraction instruments in Japan which can be used for structural studies in biology are briefly introduced. Main specifications and general layouts of the instruments are shown.

  18. Scattering from condensates in turbulent jets. [for crossed beam instruments

    NASA Technical Reports Server (NTRS)

    Wilson, L. N.; Dennen, R. S.

    1970-01-01

    An analysis is made of the scattering signal levels to be expected from condensed water vapor droplets for crossed-beam instruments operating in the wavelength region. 18 to 4.3 microns. The results show that scattering should not present a problem for the infrared system operating under conditions typical of the IITRI jet facility. Actual measurements made for comparison indicate that scattering levels are appreciable, and presumably result from oil mist added by the facility air compressors.

  19. Genetic Algorithms: A New Method for Neutron Beam Spectral Characterization

    SciTech Connect

    David W. Freeman

    2000-06-04

    A revolutionary new concept for solving the neutron spectrum unfolding problem using genetic algorithms (GAs) has recently been introduced. GAs are part of a new field of evolutionary solution techniques that mimic living systems with computer-simulated chromosome solutions that mate, mutate, and evolve to create improved solutions. The original motivation for the research was to improve spectral characterization of neutron beams associated with boron neutron capture therapy (BNCT). The GA unfolding technique has been successfully applied to problems with moderate energy resolution (up to 47 energy groups). Initial research indicates that the GA unfolding technique may well be superior to popular unfolding methods in common use. Research now under way at Kansas State University is focused on optimizing the unfolding algorithm and expanding its energy resolution to unfold detailed beam spectra based on multiple foil measurements. Indications are that the final code will significantly outperform current, state-of-the-art codes in use by the scientific community.

  20. Instrumentation system for long-pulse MFTF neutral beams

    SciTech Connect

    Risch, D.M.

    1981-09-30

    The instrumentation system for long pulse neutral beams for MFTFS consists of monitoring and protective circuitry. Global synchronization of high speed monitoring data across twenty-four neutral beams is achieved via an experiment wide fiber optic timing system. Fiber optics are also used as a means of isolating signals at elevated voltages. An excess current monitor, interrupt monitor, sparkdown detector, spot detector and gradient grid ratio detector form the primary protection for the neutral beam source. A unique hierarchical interlocking scheme allows other protective devices to be factored into the shutdown circuitry of the power supply so that the initiating cause of a shutdown can be isolated and even allows some non-critical devices to be safely ignored for a period of time.

  1. Optimal Neutron Source & Beam Shaping Assembly for Boron Neutron Capture Therapy

    SciTech Connect

    J. Vujic; E. Greenspan; W.E. Kastenber; Y. Karni; D. Regev; J.M. Verbeke, K.N. Leung; D. Chivers; S. Guess; L. Kim; W. Waldron; Y. Zhu

    2003-04-30

    There were three objectives to this project: (1) The development of the 2-D Swan code for the optimization of the nuclear design of facilities for medical applications of radiation, radiation shields, blankets of accelerator-driven systems, fusion facilities, etc. (2) Identification of the maximum beam quality that can be obtained for Boron Neutron Capture Therapy (BNCT) from different reactor-, and accelerator-based neutron sources. The optimal beam-shaping assembly (BSA) design for each neutron source was also to e obtained. (3) Feasibility assessment of a new neutron source for NCT and other medical and industrial applications. This source consists of a state-of-the-art proton or deuteron accelerator driving and inherently safe, proliferation resistant, small subcritical fission assembly.

  2. Proceedings of a workshop on methods for neutron scattering instrumentation design

    SciTech Connect

    Hjelm, R.P.

    1997-09-01

    The future of neutron and x-ray scattering instrument development and international cooperation was the focus of the workshop. The international gathering of about 50 participants representing 15 national facilities, universities and corporations featured oral presentations, posters, discussions and demonstrations. Participants looked at a number of issues concerning neutron scattering instruments and the tools used in instrument design. Objectives included: (1) determining the needs of the neutron scattering community in instrument design computer code and information sharing to aid future instrument development, (2) providing for a means of training scientists in neutron scattering and neutron instrument techniques, and (3) facilitating the involvement of other scientists in determining the characteristics of new instruments that meet future scientific objectives, and (4) fostering international cooperation in meeting these needs. The scope of the meeting included: (1) a review of x-ray scattering instrument design tools, (2) a look at the present status of neutron scattering instrument design tools and models of neutron optical elements, and (3) discussions of the present and future needs of the neutron scattering community. Selected papers were abstracted separately for inclusion to the Energy Science and Technology Database.

  3. Neutron capture cross section measurements at the beam line 04 of J-PARC/MLF

    SciTech Connect

    Igashira, Masayuki; Harada, Hideo; Kiyanagi, Yoshiaki

    2012-11-12

    An Accurate Neutron-Nucleus Reaction measurement Instrument (ANNRI) at the beam line 04 of MLF (Material and Life Sciences Experimental Facilities) of J-PARC (Japan Proton Accelerator Research Complex) was installed to measure neutron capture cross sections related to the research and development of innovative nuclear systems, the study on nuclear astrophysics, etc. ANNRI has two gamma-ray spectrometers: one is a Ge detector array placed at 22 m from the coupled type moderator of the spallation neutron source of J-PARC/MLF and the other is a pair of NaI(Tl) detectors at 28 m. Until the 11th of March, 2011, when we had big earthquakes, we measured capture cross sections of Zr-93, Tc-99, Pd-107, I-129, Cm-244, Cm-246, etc. After checking and repairing ANNRI, we restarted measurements, and ANNRI has been open to worldwide users at present.

  4. Neutron guide optimisation for a time-of-flight neutron imaging instrument at the European Spallation Source.

    PubMed

    Hilger, A; Kardjilov, N; Manke, I; Zendler, C; Lieutenant, K; Habicht, K; Banhart, J; Strobl, M

    2015-01-12

    A neutron transport system for the planned imaging instrument ODIN at the future European Spallation Source (ESS) based on neutron optical components was designed and optimized. Different ways of prompt pulse suppression were studied. The spectral performance of the optimal neutron guide configuration is presented. In addition, the influence of the gaps in the guide system needed for the required chopper configuration was investigated. Given that the requirements for an imaging instrument located on a long guide system and hosting a complex chopper system are extremely demanding in terms of spectral and divergence needs, this study can be beneficial for a wide range of instruments in various ways. PMID:25835677

  5. Optimizations in angular dispersive neutron powder diffraction using divergent beam geometries

    NASA Astrophysics Data System (ADS)

    Buchsteiner, Alexandra; Stüßer, Norbert

    2009-01-01

    Angular dispersive neutron powder diffractometers are usually built using beam divergencies defined by Soller type collimators. To account for the needs of resolution for crystal structure refinement a good in-pile collimation α1, a high take-off angle above 90∘ at the monochromator and a good collimation α3 in front of the detector bank are chosen whereas the value of α2 for the collimation between monochromator and sample is less crucial. During the last years new strategies were developed at our institute using wide divergent beam geometries defined by fan collimators or slit-type diaphragms which correlate ray direction and wavelength within the beam. Here we present the performance of a newly developed fan collimator, which enables one to adjust the opening of the collimator channels on both sides independently. This fan collimator is positioned in front of the monochromator at the instrument E6 at the Helmholtz Centre Berlin (formerly Hahn-Meitner-Institut Berlin). It will be shown that control of the beam divergency allows optimization of the resolution in a large angular diffraction range. Hence the resolution and intensity can be adapted to the needs of powder diffraction. Monte Carlo simulations using McStas are used to check and prove the optimal setting of the instrument. We obtain a very good agreement between experimental and simulated data and demonstrate the superior outcome of the new instrument configuration with respect to Soller type instruments.

  6. Simulation of spatial fuel assay using HANARO neutron beam

    PubMed

    Lee; Chang; Lee; Kim

    2000-10-01

    A sensitivity simulation of neutron tomography was performed for the analysis of the spatial distribution of nuclear materials in the HANARO fuel rod. The internal distribution of the nuclear materials in the fuel rod is very important for the increase of the safety and economics of fuel burnup in the reactor. The neutron radiography facility installed at HANARO will be used for the spatial fuel analysis with a real-time image processing system. Monte Carlo simulation was performed to study the feasibility and sensitivity of the HANARO neutron beam for the spatial fuel assay and to find the optimum conditions for neutron detection. From the sensitivity simulation, the location of the nuclear materials in the rod was evident as expected. PMID:11003495

  7. Instrumental neutron activation analysis of sectioned hair strands for arsenic

    SciTech Connect

    Guinn, V.P.

    1996-12-31

    Instrumental neutron activation analysis (INAA) is a valuable and proven method for the quantitative analysis of sectioned human head hair specimens for arsenic - and, if arsenic is found to be present at high concentrations, the approximate times when it was ingested. Reactor-flux thermal-neutron activation of the hair samples produces 26.3-h {sup 76}As, which is then detected by germanium gamma-ray spectrometry, measuring the 559.1-keV gamma-ray peak of {sup 76}As. Even normal levels of arsenic in hair, in the range of <1 ppm up to a few parts per million of arsenic can be measured - and the far higher levels associated with large internal doses of arsenic, levels approaching or exceeding 100 ppm arsenic, are readily and accurately measurable. However, all phases of forensic investigations of possible chronic (or in some cases, acute) arsenic poisoning are important, i.e., not just the analysis phase. All of these phases are discussed in this paper, based on the author`s experience and the experience of others, in criminal cases. Cases of chronic arsenic poisoning often reveal a series of two to four doses, perhaps a few months apart, with increasing doses.

  8. Characteristics of proton beams and secondary neutrons arising from two different beam nozzles

    NASA Astrophysics Data System (ADS)

    Choi, Yeon-Gyeong; Kim, Yu-Seok

    2015-10-01

    A tandem or a Van de Graaff accelerator with an energy of 3 MeV is typically used for Proton Induced X-ray Emission (PIXE) analysis. In this study, the beam line design used in the PIXE analysis, instead of the typical low-energy accelerator, was used to increase the production of isotopes from a 13-MeV cyclotron. For the PIXE analysis, the proton beam should be focused at the target through a nozzle after degrading the proton beams energy from 13 MeV to 3 MeV by using an energy degrader. Previous studies have been conducted to determine the most appropriate material for and the thickness of the energy degrader. From the energy distribution of the degraded proton beam and the neutron occurrence rate at the degrader, an aluminum nozzle of X thickness was determined to be the most appropriate nozzle construction. Neutrons are created by the collision of 3-MeV protons in the nozzle after passage through the energy degrader. In addition, a proton beam of sufficient intensity is required for a non-destructive PIXE analysis. Therefore, if nozzle design is to be optimized, the number of neutrons that arise from the collision of protons inside the nozzle, as well as the track direction of the generated secondary neutrons, must be considered, with the primary aim of ensuring that a sufficient number of protons pass through the nozzle as a direct beam. A number of laboratories are currently conducting research related to the design of nozzles used in accelerator fields, mostly medical fields. This paper presents a comparative analysis of two typical nozzle shapes in order to minimize the loss of protons and the generation of secondary neutrons. The neutron occurrence rate and the number of protons that pass through the nozzle were analyzed by using a Particle and Heavy Ion Transport code System (PHITS) program in order to identify the nozzle that generated the strongest proton beam.

  9. Performance of the vertical optical filter for the NG-3 30 m SANS instrument at the National Institute of Standards and Technology's Center for Neutron Research

    SciTech Connect

    Cook, Jeremy C.; Glinka, Charles J.; Schroeder, Ivan G.

    2005-02-01

    The straight neutron guide and crystal filter formerly used to supply a cold neutron beam to the NG-3 30 m small angle scattering instrument at the National Institute of Standards and Technology Center for Neutron Research has been replaced by a vertically-kinked 'optical filter' neutron guide that eliminates direct lines-of-sight between the instrument and the neutron source. Due to pre-existing lateral spatial constraints, the optical filter bend is in a vertical plane requiring a vertical displacement of the sample-detector axis by about 14 cm. The optical filter is successful in excluding unwanted fast neutrons and gamma rays from the beam at the sample position without the use of crystal filters. We show that the optical filter provides neutron current density gains at the sample by a factor of about 1.8 at 15 A neutron wavelength with negligible increase in the beam divergence, whilst allowing some measurement capability at wavelengths shorter than 4 A (previously excluded by the beryllium-bismuth crystal filter)

  10. Fast fall-time ion beam in neutron generators

    SciTech Connect

    Ji, Q.; Kwan, J.; Regis, M.; Wu, Y.; Wilde, S.B.; Wallig, J.

    2008-08-10

    Ion beam with a fast fall time is useful in building neutron generators for the application of detecting hidden, gamma-shielded SNM using differential die-away (DDA) technique. Typically a fall time of less than 1 {micro}s can't be achieved by just turning off the power to the ion source due to the slow decay of plasma density (partly determined by the fall time of the RF power in the circuit). In this paper, we discuss the method of using an array of mini-apertures (instead of one large aperture beam) such that gating the beamlets can be done with low voltage and a small gap. This geometry minimizes the problem of voltage breakdown as well as reducing the time of flight to produce fast gating. We have designed and fabricated an array of 16 apertures (4 x 4) for a beam extraction experiment. Using a gating voltage of 1400 V and a gap distance of 1 mm, the fall time of extracted ion beam pulses is less than 1 {micro}s at various beam energies ranging between 400 eV to 800 eV. Usually merging an array of beamlets suffers the loss of beam brightness, i.e., emittance growth, but that is not an important issue for neutron source applications.

  11. Feasibility of sealed D-T neutron generator as neutron source for liver BNCT and its beam shaping assembly.

    PubMed

    Liu, Zheng; Li, Gang; Liu, Linmao

    2014-04-01

    This paper involves the feasibility of boron neutron capture therapy (BNCT) for liver tumor with four sealed neutron generators as neutron source. Two generators are placed on each side of the liver. The high energy of these emitted neutrons should be reduced by designing a beam shaping assembly (BSA) to make them useable for BNCT. However, the neutron flux decreases as neutrons pass through different materials of BSA. Therefore, it is essential to find ways to increase the neutron flux. In this paper, the feasibility of using low enrichment uranium as a neutron multiplier is investigated to increase the number of neutrons emitted from D-T neutron generators. The neutron spectrum related to our system has a proper epithermal flux, and the fast and thermal neutron fluxes comply with the IAEA recommended values. PMID:24448270

  12. Neutron production from beam-modifying devices in a modern double scattering proton therapy beam delivery system

    PubMed Central

    Pérez-Andújar, Angélica; Newhauser, Wayne D; DeLuca, Paul M

    2014-01-01

    In this work the neutron production in a passive beam delivery system was investigated. Secondary particles including neutrons are created as the proton beam interacts with beam shaping devices in the treatment head. Stray neutron exposure to the whole body may increase the risk that the patient develops a radiogenic cancer years or decades after radiotherapy. We simulated a passive proton beam delivery system with double scattering technology to determine the neutron production and energy distribution at 200 MeV proton energy. Specifically, we studied the neutron absorbed dose per therapeutic absorbed dose, the neutron absorbed dose per source particle and the neutron energy spectrum at various locations around the nozzle. We also investigated the neutron production along the nozzle's central axis. The absorbed doses and neutron spectra were simulated with the MCNPX Monte Carlo code. The simulations revealed that the range modulation wheel (RMW) is the most intense neutron source of any of the beam spreading devices within the nozzle. This finding suggests that it may be helpful to refine the design of the RMW assembly, e.g., by adding local shielding, to suppress neutron-induced damage to components in the nozzle and to reduce the shielding thickness of the treatment vault. The simulations also revealed that the neutron dose to the patient is predominated by neutrons produced in the field defining collimator assembly, located just upstream of the patient. PMID:19147903

  13. Neutron production from beam-modifying devices in a modern double scattering proton therapy beam delivery system.

    PubMed

    Pérez-Andújar, Angélica; Newhauser, Wayne D; Deluca, Paul M

    2009-02-21

    In this work the neutron production in a passive beam delivery system was investigated. Secondary particles including neutrons are created as the proton beam interacts with beam shaping devices in the treatment head. Stray neutron exposure to the whole body may increase the risk that the patient develops a radiogenic cancer years or decades after radiotherapy. We simulated a passive proton beam delivery system with double scattering technology to determine the neutron production and energy distribution at 200 MeV proton energy. Specifically, we studied the neutron absorbed dose per therapeutic absorbed dose, the neutron absorbed dose per source particle and the neutron energy spectrum at various locations around the nozzle. We also investigated the neutron production along the nozzle's central axis. The absorbed doses and neutron spectra were simulated with the MCNPX Monte Carlo code. The simulations revealed that the range modulation wheel (RMW) is the most intense neutron source of any of the beam spreading devices within the nozzle. This finding suggests that it may be helpful to refine the design of the RMW assembly, e.g., by adding local shielding, to suppress neutron-induced damage to components in the nozzle and to reduce the shielding thickness of the treatment vault. The simulations also revealed that the neutron dose to the patient is predominated by neutrons produced in the field defining collimator assembly, located just upstream of the patient. PMID:19147903

  14. Neutron capture studies of 206Pb at a cold neutron beam

    NASA Astrophysics Data System (ADS)

    Schillebeeckx, P.; Belgya, T.; Borella, A.; Kopecky, S.; Mengoni, A.; Quétel, C. R.; Szentmiklósi, L.; Trešl, I.; Wynants, R.

    2013-11-01

    Gamma-ray transitions following neutron capture in 206Pb have been studied at the cold neutron beam facility of the Budapest Neutron Centre using a metallic sample enriched in 206Pb and a natural lead nitrate powder pellet. The measurements were performed using a coaxial HPGe detector with Compton suppression. The observed -rays have been incorporated into a decay scheme for neutron capture in 206Pb . Partial capture cross sections for 206Pb(n,) at thermal energy have been derived relative to the cross section for the 1884keV transition after neutron capture in 14N . From the average crossing sum a total thermal neutron capture cross section of mb was derived for the 206Pb(n,) reaction. The thermal neutron capture cross section for 206Pb has been compared with contributions due to both direct capture and distant unbound s-wave resonances. From the same measurements a thermal neutron-induced capture cross section of mb was determined for the 207Pb(n,) reaction.

  15. Beam intensity increases at the intense pulsed neutron source accelerator

    SciTech Connect

    Potts, C.; Brumwell, F.; Norem, J.; Rauchas, A.; Stipp, V.; Volk, G.

    1985-01-01

    The Intense Pulsed Neutron Source (IPNS) accelerator system has managed a 40% increase in time average beam current over the last two years. Currents of up to 15.6..mu..A (3.25 x 10/sup 12/ protons at 30 Hz) have been successfully accelerated and cleanly extracted. Our high current operation demands low loss beam handling to permit hands-on maintenance. Synchrotron beam handling efficiencies of 90% are routine. A new H/sup -/ ion source which was installed in March of 1983 offered the opportunity to get above 8 ..mu..A but an instability caused unacceptable losses when attempting to operate at 10 ..mu..A and above. Simple techniques to control the instabilities were introduced and have worked well. These techniques are discussed below. Other improvements in the regulation of various power supplies have provided greatly improved low energy orbit stability and contributed substantially to the increased beam current.

  16. Design of neutron beams for neutron capture therapy using a 300-kW slab TRIGA reactor

    SciTech Connect

    Liu, H.B.

    1995-03-01

    A design for a slab reactor to produce an epithermal neutron beam and a thermal neutron beam for use in neutron capture therapy (NCT) is described. A thin reactor with two large-area faces, a ``slab`` reactor, was planned using eighty-six 20% enriched TRIGA fuel elements and four B{sub 4}C control rods. Two neutron beams were designed: an epithermal neutron beam from one face and a thermal neutron beam from the other. The planned facility, based on this slab-reactor core with a maximum operating power of 300 kW, will provide an epithermal neutron beam of 1.8 {times} 10{sup 9} n{sub epi}/cm{sup 2}{center_dot}s intensity with low contamination by fast neutrons and gamma rays and a thermal neutron beam of 9.0 {times} 10{sup 9}n{sub th}/cm{sup 2}{center_dot}s intensity with low fast-neutron dose and gamma dose. Both neutron beams will be forward directed. Each beam can be turned on and off independently through its individual shutter. A complete NCT treatment using the designed epithermal or thermal neutron beam would take 30 or 20 min, respectively, under the condition of assuming 10{mu}g {sup 10}B/g in the blood. Such exposure times should be sufficiently short to maintain near-optimal target (e.g., {sup 10}B, {sup 157}Gd, and {sup 235}U) distribution in tumor versus normal tissues throughout the irradiation. With a low operating power of 300 kW, the heat generated in the core can be removed by natural convection through a pool of light water. The proposed design in this study could be constructed for a dedicated clinical NCT facility that would operate very safely.

  17. System and method for delivery of neutron beams for medical therapy

    DOEpatents

    Nigg, D.W.; Wemple, C.A.

    1999-07-06

    A neutron delivery system that provides improved capability for tumor control during medical therapy is disclosed. The system creates a unique neutron beam that has a bimodal or multi-modal energy spectrum. This unique neutron beam can be used for fast-neutron therapy, boron neutron capture therapy (BNCT), or both. The invention includes both an apparatus and a method for accomplishing the purposes of the invention. 5 figs.

  18. System and method for delivery of neutron beams for medical therapy

    DOEpatents

    Nigg, David W.; Wemple, Charles A.

    1999-01-01

    A neutron delivery system that provides improved capability for tumor control during medical therapy. The system creates a unique neutron beam that has a bimodal or multi-modal energy spectrum. This unique neutron beam can be used for fast-neutron therapy, boron neutron capture therapy (BNCT), or both. The invention includes both an apparatus and a method for accomplishing the purposes of the invention.

  19. Neutronics Assessments for a RIA Fragmentation Line Beam Dump Concept

    SciTech Connect

    Boles, J L; Reyes, S; Ahle, L E; Stein, W

    2005-05-13

    Heavy ion and radiation transport calculations are in progress for conceptual beam dump designs for the fragmentation line of the proposed Rare Isotope Accelerator (RIA). Using the computer code PHITS, a preliminary design of a motor-driven rotating wheel beam dump and adjacent downstream multipole has been modeled. Selected results of these calculations are given, including neutron and proton flux in the wheel, absorbed dose and displacements per atom in the hub materials, and heating from prompt radiation and from decay heat in the multipole.

  20. Beam-transport optimization for cold-neutron spectrometer

    NASA Astrophysics Data System (ADS)

    Nakajima, Kenji; Ohira-Kawamura, Seiko; Kikuchi, Tatsuya; Kajimoto, Ryoichi; Takahashi, Nobuaki; Nakamura, Mitsutaka; Soyama, Kazuhiko; Osakabe, Toyotaka

    2015-01-01

    We report the design of the beam-transport system (especially the vertical geometry) for a cold-neutron disk-chopper spectrometer AMATERAS at J-PARC. Based on the elliptical shape, which is one of the most effective geometries for a ballistic mirror, the design was optimized to obtain, at the sample position, a neutron beam with high flux without serious degrading in divergence and spacial homogeneity within the boundary conditions required from actual spectrometer construction. The optimum focal point was examined. An ideal elliptical shape was modified to reduce its height without serious loss of transmission. The final result was adapted to the construction requirements of AMATERAS. Although the ideas studied in this paper are considered for the AMATERAS case, they can be useful also to other spectrometers in similar situations.

  1. Microdosimetric spectra of the THOR neutron beam for boron neutron capture therapy.

    PubMed

    Hsu, F Y; Tung, C J; Watt, D E

    2003-01-01

    A primary objective of the BNCT project in Taiwan, involving THOR (Tsing Hua Open Pool Reactor), was to examine the potential treatment of hepatoma. To characterise the epithermal neutron beam in THOR, the microdosimetry distributions in lineal energy were determined using paired tissue-equivalent proportional counters with and without boron microfoils. Microdosimetry results were obtained in free-air and at various depths in a PMMA phantom near the exit of the beam port. A biological weighting function, dependent on lineal energy, was used to estimate the relative biological effectiveness of the beam. An effective RBE of 2.7 was found at several depths in the phantom. PMID:12918789

  2. Reactions induced by beams of neutron and proton halo nuclei

    NASA Astrophysics Data System (ADS)

    Penionzhkevich, Yu. E.

    1997-02-01

    Within the collaboration Dubna-GANIL (Caen, France) - IPN (Orsay, France) - NPI (Rez, Czech Republic) - IAP (Bucharest, Romania) at GANIL and the Dubna U400M accelerator, experiments have been carried out to study elastic scattering, fusion and fission using secondary ion beams of 6He, 11Li and 8B. The fission cross-section for the 6He isotopes has been found to be significantly higher than for the 4He nuclei. This enhancement depends mainly on the entrance channel and it is connected with the neutron skin of the 6He nuclei. Also, investigation of the elastic scattering of 11Li (neutron halo), 7Be and 8B (proton halo) has been performed. The microscopic analysis supports the existence of a neutron halo in 11Li and the proton skin in 8B and 7Be. Perspectives for investigations in this field at the Laboratory of Nuclear Reactions JINR are also discussed.

  3. Low-energy beam transport studies supporting the spallation neutron source 1-MW beam operation

    SciTech Connect

    Han, B. X.; Welton, R. F.; Murray, S. N. Jr.; Pennisi, T. R.; Santana, M.; Stockli, M. P.; Kalvas, T.; Tarvainen, O.

    2012-02-15

    The H{sup -} injector consisting of a cesium enhanced RF-driven ion source and a 2-lens electrostatic low-energy beam transport (LEBT) system supports the spallation neutron source 1 MW beam operation with {approx}38 mA beam current in the linac at 60 Hz with a pulse length of up to {approx}1.0 ms. In this work, two important issues associated with the low-energy beam transport are discussed: (1) inconsistent dependence of the post-radio frequency quadrupole accelerator beam current on the ion source tilt angle and (2) high power beam losses on the LEBT electrodes under some off-nominal conditions compromising their reliability.

  4. Low-energy beam transport studies supporting the spallation neutron source 1-MW beam operation

    SciTech Connect

    Kalvas, T.; Welton, Robert F; Pennisi, Terry R

    2012-01-01

    The H{sup -} injector consisting of a cesium enhanced RF-driven ion source and a 2-lens electrostatic low-energy beam transport (LEBT) system supports the spallation neutron source 1 MW beam operation with {approx}38 mA beam current in the linac at 60 Hz with a pulse length of up to {approx}1.0 ms. In this work, two important issues associated with the low-energy beam transport are discussed: (1) inconsistent dependence of the post-radio frequency quadrupole accelerator beam current on the ion source tilt angle and (2) high power beam losses on the LEBT electrodes under some off-nominal conditions compromising their reliability.

  5. Energetic neutron beams generated from femtosecond laser plasma interactions

    SciTech Connect

    Zulick, C.; Dollar, F.; Chvykov, V.; Kalinchenko, G.; Maksimchuk, A.; Raymond, A.; Thomas, A. G. R.; Willingale, L.; Yanovsky, V.; Krushelnick, K.; Davis, J.; Petrov, G. M.

    2013-03-25

    Experiments at the HERCULES laser facility have produced directional neutron beams with energies up to 16.8({+-}0.3) MeV using {sub 1}{sup 2}d(d,n){sub 2}{sup 3}He,{sub 7}{sup 3}Li(p,n){sub 4}{sup 7}Be,and{sub 3}{sup 7}Li(d,n){sub 4}{sup 8}Be reactions. Efficient {sub 1}{sup 2}Li(d,n){sub 4}{sup 8}Be reactions required the selective acceleration of deuterons through the introduction of a deuterated plastic or cryogenically frozen D{sub 2}O layer on the surface of a thin film target. The measured neutron yield was {<=}1.0 ({+-}0.5) Multiplication-Sign 10{sup 7} neutrons/sr with a flux 6.2({+-}3.7) times higher in the forward direction than at 90{sup Degree-Sign }. This demonstrates that femtosecond lasers are capable of providing a time averaged neutron flux equivalent to commercial {sub 1}{sup 2}d(d,n){sub 2}{sup 3}He generators with the advantage of a directional beam with picosecond bunch duration.

  6. Beamed neutron emission driven by laser accelerated light ions

    NASA Astrophysics Data System (ADS)

    Kar, S.; Green, A.; Ahmed, H.; Alejo, A.; Robinson, A. P. L.; Cerchez, M.; Clarke, R.; Doria, D.; Dorkings, S.; Fernandez, J.; Mirfayzi, S. R.; McKenna, P.; Naughton, K.; Neely, D.; Norreys, P.; Peth, C.; Powell, H.; Ruiz, J. A.; Swain, J.; Willi, O.; Borghesi, M.

    2016-05-01

    Highly anisotropic, beam-like neutron emission with peak flux of the order of 109 n/sr was obtained from light nuclei reactions in a pitcher–catcher scenario, by employing MeV ions driven by a sub-petawatt laser. The spatial profile of the neutron beam, fully captured for the first time by employing a CR39 nuclear track detector, shows a FWHM divergence angle of ∼ 70^\\circ , with a peak flux nearly an order of magnitude higher than the isotropic component elsewhere. The observed beamed flux of neutrons is highly favourable for a wide range of applications, and indeed for further transport and moderation to thermal energies. A systematic study employing various combinations of pitcher–catcher materials indicates the dominant reactions being d(p, n+p)1H and d(d,n)3He. Albeit insufficient cross-section data are available for modelling, the observed anisotropy in the neutrons’ spatial and spectral profiles is most likely related to the directionality and high energy of the projectile ions.

  7. Design of a neutron polarizer using polarizing super mirrors for the TOF-SANS instrument at the J-PARC

    NASA Astrophysics Data System (ADS)

    Shinohara, Takenao; Suzuki, Jun-ichi; Oku, Takayuki; Takata, Shin-ichi; Kira, Hiroshi; Suzuya, Kentaro; Aizawa, Kazuya; Arai, Masatoshi; Otomo, Toshiya; Sugiyama, Masaaki

    2009-09-01

    Small-angle neutron scattering technique using polarized neutrons is powerful for studying structures in the range between nm and μm of magnetic materials. In addition, they have been used for the incident beam of focusing-geometry SANS instruments using a magnetic neutron lens, where a high polarization degree of about 99.9% is necessary because the imperfectness of the neutron polarization increases the background level. We are going to install such a magnetic focusing system on the new time-of-flight SANS (TOF-SANS) instrument at the J-PARC so as to make q min smaller than 10 -3 Å -1 and improve the resolution of the conventional TOF-SANS at low q. As a polarizing device of the instrument, two V-shaped polarizing super mirrors arranged in crossed geometry to enhance the polarization degree has been considered. In this paper, we present the concept and the detailed design of this device and its performance estimated by Monte Carlo simulations.

  8. Modification of the neutron beam spectrum for neutron radiography at Tehran Research Reactor (TRR)

    NASA Astrophysics Data System (ADS)

    Moghadam, K. Kamali; Ziaie, F.

    1996-02-01

    Recently due to the replacement of the High Enriched Uranium (HEU) fuel with the Low Enriched Uranium (LEU) fuel and the changes in the reactor core configuration at TRR, the existing Neutron Radiography (NR) system was no longer efficient. Thus, it was decided to modify the system in order to increase the neutron flux and to improve the characteristics of the system. The neutron energy spectrum was measured by foil activation method using SAND-II code and calculated by ANISN/PC code. The general trend of the calculated and measured spectra show good similarity. By introducing different sizes of moderator and gamma absorber behind the collimator, the optimum thermal neutron flux impinge the collimator was calculated using ANISN/PC code. The inlet diameter of the collimator was changed from 1.8 to 5 cm in order to increase the neutron flux at the sample position, which should result in an increase of 8 fold in spite of a small increase in the geometrical unsharpness. The new beam characteristics at the sample position are predicted as an average thermal neutron flux of about 10 6 n cm 2 s 1 and a neutron to gamma ratio of about 10 6 n cm 2 mR -1.

  9. Tagged fast neutron beams En > 6 MeV

    SciTech Connect

    Favela, F.; Huerta, A.; Santa Rita, P.; Ramos, A. T.; Lucio, O. de; Andrade, E.; Ortiz, M. E.; Araujo, V.; Chávez, E.; Acosta, L.; Murillo, G.; Policroniades, R.

    2015-07-23

    Controlled flux of neutrons are produced through the {sup 14}N(d,n){sup 15}O nuclear reaction. Deuteron beams (2-4 MeV) are delivered by the CN-Van de Graaff accelerator and directed with full intensity to our Nitrogen target at SUGAR (SUpersonic GAs jet taRget). Each neutron is electronically tagged by the detection of the associated{sup 15}O. Its energy and direction are known and “beams” of fast monochromatic tagged neutrons (E{sub n}> 6 MeV) are available for basic research and applied work. MONDE is a large area (158 × 63 cm{sup 2}) plastic scintillating slab (5 cm thick), viewed by 16 PMTs from the sides. Fast neutrons (MeV) entering the detector will produce a recoiling proton that induces a light spark at the spot. Signals from the 16 detectors are processed to deduce the position of the spark. Time logic signals from both the {sup 15}O detector and MONDE are combined to deduce a time of flight (TOF) signal. Finally, the position information together with the TOF yields the full momentum vector of each detected neutron.

  10. Neutron beam studies for a medical therapy reactor.

    PubMed

    Neuman, W A

    1990-01-01

    A conceptual design of a Medical Therapy Reactor (MTR) for neutron capture therapy (NCT) has been performed at the Idaho National Engineering Laboratory (INEL). The initial emphasis of the conceptual design was toward the treatment of glioblastoma multiforme and other presently incurable cancers. The design goal of the facility is to provide routine patient treatments both in brief time intervals (approximately 10 minutes) and inexpensively. The conceptual study has shown this goal to be achievable by locating an MTR at a major medical facility. This paper addresses the next step in the conceptual design process: a guide to the optimization of the epithermal-neutron filter and collimator assembly for the treatment of brain tumors. The current scope includes the sensitivity of the treatment beam to variations in filter length, gamma shield length, and collimator lengths as well as exit beam aperture size. The study shows the areas which can provide the greatest latitude in improving beam intensity and quality. Suggestions are given for future areas of optimization of beam filtering and collimation. PMID:2268234

  11. Neutron productions in the fragmentation of relativistic heavy nuclei and formation of a beam of high-energy neutrons

    NASA Astrophysics Data System (ADS)

    Yurevich, V. I.

    2016-03-01

    The production of quasimonoenergetic high-energy neutrons at zero angle (0°) in the spallation of relativistic heavy nuclei is discussed by considering the example of the interaction of lead nuclei with light target nuclei. It is shown that this process can be used to generate a beam of high-energy neutrons at existing heavy ion accelerators. At the same time, itmay lead to the appearance of a parasitic neutron beam because of the interaction of the heavy-ion beam used with beam line and experimental setup materials.

  12. Design, construction and characterization of a new neutron beam for neutron radiography at the Tehran Research Reactor

    NASA Astrophysics Data System (ADS)

    Choopan Dastjerdi, M. H.; Khalafi, H.; Kasesaz, Y.; Mirvakili, S. M.; Emami, J.; Ghods, H.; Ezzati, A.

    2016-05-01

    To obtain a thermal neutron beam for neutron radiography applications, a neutron collimator has been designed and implemented at the Tehran Research Reactor (TRR). TRR is a 5 MW open pool light water moderated reactor with seven beam tubes. The neutron collimator is implemented in the E beam tube of the TRR. The design of the neutron collimator was performed using MCNPX Monte Carlo code. In this work, polycrystalline bismuth and graphite have been used as a gamma filter and an illuminator, respectively. The L/D parameter of the facility was chosen in the range of 150-250. The thermal neutron flux at the image plane can be varied from 2.26×106 to 6.5×106 n cm-2 s-1. Characterization of the beam was performed by ASTM standard IQI and foil activation technique to determine the quality of neutron beam. The results show that the obtained neutron beam has a good quality for neutron radiography applications.

  13. A Technique for Determining Neutron Beam Fluence to 0.01% Uncertainty

    SciTech Connect

    Yue, A. T.; Dewey, M. S.; Gilliam, D. M.; Nico, J. S.; Fomin, N.; Greene, G. L.; Snow, W. M.; Wietfeldt, F. E.

    2014-01-01

    The achievable uncertainty in neutron lifetime measurements using the beam technique has been limited by the uncertainty in the determination of the neutron density in the decay volume. In the Sussex-ILL-NIST series of beam lifetime experiments, the density was determined with a neutron fluence mon itor that detected the charged particle products from neutron absorption in a thin layer of 6Li or lOB. In each of the experiments, the absolute detection efficiency of the neutron monitor was determined from the measured density of the neutron absorber, the thermal neutron cross section for the absorbing ma terial, and the solid angle of the charged particle detectors. The efficiency of the neutron monitor used in the most recent beam lifetime experiment has since been measured directly by operating it on a monochromatic neutron beam in which the total neutron rate is determined with a totally absorbing neutron detector. The absolute nature of this technique does not rely on any knowl edge of neutron absorption cross sections or a measurement of the density of the neutron absorbing deposit. This technique has been used to measure the neutron monitor efficiency to 0.06% uncertainty. VVe show that a new monitor and absolute neutron detector employing the same technique would be capable of achieving determining neutron fluence to an uncertainty of 0.01%.

  14. IB: A Monte Carlo simulation tool for neutron scattering instrument design under PVM and MPI

    NASA Astrophysics Data System (ADS)

    Zhao, Jinkui

    2011-12-01

    Design of modern neutron scattering instruments relies heavily on Monte Carlo simulation tools for optimization. IB is one such tool written in C++ and implemented under Parallel Virtual Machine and the Message Passing Interface. The program was initially written for the design and optimization of the EQ-SANS instrument at the Spallation Neutron Source. One of its features is the ability to group simple instrument components into more complex ones at the user input level, e.g. grouping neutron mirrors into neutron guides and curved benders. The simulation engine manages the grouped components such that neutrons entering a group are properly operated upon by all components, multiple times if needed, before exiting the group. Thus, only a few basic optical modules are needed at the programming level. For simulations that require higher computer speeds, the program can be compiled and run in parallel modes using either the PVM or the MPI architectures.

  15. Global Maps of Lunar Neutron Fluxes from the LEND Instrument

    NASA Technical Reports Server (NTRS)

    Litvak, M. L.; Mitrofanov, I. G.; Sanin, A.; Malakhov, A.; Boynton, W. V.; Chin, G.; Droege, G.; Evans, L. G.; Garvin, J.; Golovin, D. V.; Harshman, K.; McClanahan, T. P.; Mokrousov, M. I.; Mazarico, E.; Milikh, G.; Neumann, G.; Sagdeev, R.; Smith, D. E.; Starr, R.; Zuber, M. T.

    2012-01-01

    The latest neutron spectrometer measurements with the Lunar Exploration Neutron Detector (LEND) onboard the Lunar Reconnaissance Orbiter (LRO) are presented. It covers more than 1 year of mapping phase starting on 15 September 2009. In our analyses we have created global maps showing regional variations in the flux of thermal (energy range < 0.015 eV) and fast neutrons (>0.5 MeV), and compared these fluxes to variances in soil elemental composition, and with previous results obtained by the Lunar Prospector Neutron Spectrometer (LPNS). We also processed data from LEND collimated detectors and derived a value for the collimated signal of epithermal neutrons based on the comparative analysis with the LEND omnidirectional detectors. Finally, we have compared our final (after the data reduction) global epithermal neutron map with LPNS data.

  16. Understanding inelastically scattered neutrons from water on a time-of-flight small-angle neutron scattering (SANS) instrument

    NASA Astrophysics Data System (ADS)

    Do, Changwoo; Heller, William T.; Stanley, Christopher; Gallmeier, Franz X.; Doucet, Mathieu; Smith, Gregory S.

    2014-02-01

    It is generally assumed by most of the small-angle neutron scattering (SANS) user community that a neutron's energy is unchanged during SANS measurements. Here, the scattering from water, specifically light water, was measured on the EQ-SANS instrument, a time-of-flight (TOF) SANS instrument located at the Spallation Neutron Source of Oak Ridge National Laboratory. A significant inelastic process was observed in the TOF spectra of neutrons scattered from water. Analysis of the TOF spectra from the sample showed that the scattered neutrons have energies consistent with room-temperature thermal energies (~20 meV) regardless of the incident neutron's energy. With the aid of Monte Carlo particle transport simulations, we conclude that the thermalization process within the sample results in faster neutrons that arrive at the detector earlier than expected based on the incident neutron energies. This thermalization process impacts the measured SANS intensities in a manner that will ultimately be sample- and temperature-dependent, necessitating careful processing of the raw data into the SANS cross-section.

  17. Embedded design based virtual instrument program for positron beam automation

    NASA Astrophysics Data System (ADS)

    Jayapandian, J.; Gururaj, K.; Abhaya, S.; Parimala, J.; Amarendra, G.

    2008-10-01

    Automation of positron beam experiment with a single chip embedded design using a programmable system on chip (PSoC) which provides easy interfacing of the high-voltage DC power supply is reported. Virtual Instrument (VI) control program written in Visual Basic 6.0 ensures the following functions (i) adjusting of sample high voltage by interacting with the programmed PSoC hardware, (ii) control of personal computer (PC) based multi channel analyzer (MCA) card for energy spectroscopy, (iii) analysis of the obtained spectrum to extract the relevant line shape parameters, (iv) plotting of relevant parameters and (v) saving the file in the appropriate format. The present study highlights the hardware features of the PSoC hardware module as well as the control of MCA and other units through programming in Visual Basic.

  18. Thirty meters small angle neutron scattering instrument at China advanced research reactor

    NASA Astrophysics Data System (ADS)

    Zhang, Hongxia; Cheng, He; Yuan, Guangcui; Han, Charles C.; Zhang, Li; Li, Tianfu; Wang, Hongli; Liu, Yun Tao; Chen, Dongfeng

    2014-01-01

    A high resolution 30 m small angle neutron scattering (SANS) instrument has been constructed by the Institute of Chemistry, Chinese Academy of Sciences (ICCAS), and installed at China Advanced Research Reactor (CARR). It is equipped with a mechanical velocity selector, pinhole (including multi-pinhole) collimation system, sample chamber, and high resolution two dimensional 3He position sensitive neutron detector. The flexible variations of incident neutron wavelength, source to sample distance, sample to detector distance and the presence of neutron focusing lenses enable a wide Q range from 0.001 Å-1 to 0.5 Å-1 in reciprocal space and to optimize the resolution required. The instrument is the first SANS instrument in China, and can be widely used for the structure characterization of various materials, as well as kinetic and dynamic observation during external stimulation. The design and characteristics of the instrument are presented in the manuscript.

  19. Progress on the realization of a new GEM based neutron diagnostic concept for high flux neutron beams

    SciTech Connect

    Croci, G.; Tardocchi, M.; Rebai, M.; Cippo, E. Perelli; Gorini, G.; Cazzaniga, C.; Palma, M. Dalla; Pasqualotto, R.; Tollin, M.; Grosso, G.; Muraro, A.; Murtas, F.; Claps, G.; Cavenago, M.

    2014-08-21

    Fusion reactors will need high flux neutron detectors to diagnose the deuterium-deuterium and deuterium-tritium. A candidate detection technique is the Gas Electron Multiplier (GEM). New GEM based detectors are being developed for application to a neutral deuterium beam test facility. The proposed detection system is called Close-contact Neutron Emission Surface Mapping (CNESM). The diagnostic aims at providing the map of the neutron emission due to interaction of the deuterium beam with the deuterons implanted in the beam dump surface. This is done by placing a detector in close contact, right behind the dump. CNESM uses nGEM detectors, i.e. GEM detectors equipped with a cathode that also serves as neutron-proton converter foil. After the realization and test of several small area prototypes, a full size prototype has been realized and tested with laboratory sources. Test on neutron beams are foreseen for the next months.

  20. Progress on the realization of a new GEM based neutron diagnostic concept for high flux neutron beams

    NASA Astrophysics Data System (ADS)

    Croci, G.; Rebai, M.; Cazzaniga, C.; Palma, M. Dalla; Grosso, G.; Muraro, A.; Murtas, F.; Claps, G.; Pasqualotto, R.; Cippo, E. Perelli; Tardocchi, M.; Tollin, M.; Cavenago, M.; Gorini, G.

    2014-08-01

    Fusion reactors will need high flux neutron detectors to diagnose the deuterium-deuterium and deuterium-tritium. A candidate detection technique is the Gas Electron Multiplier (GEM). New GEM based detectors are being developed for application to a neutral deuterium beam test facility. The proposed detection system is called Close-contact Neutron Emission Surface Mapping (CNESM). The diagnostic aims at providing the map of the neutron emission due to interaction of the deuterium beam with the deuterons implanted in the beam dump surface. This is done by placing a detector in close contact, right behind the dump. CNESM uses nGEM detectors, i.e. GEM detectors equipped with a cathode that also serves as neutron-proton converter foil. After the realization and test of several small area prototypes, a full size prototype has been realized and tested with laboratory sources. Test on neutron beams are foreseen for the next months.

  1. New Pulsed Cold Neutron Beam Line for Fundamental Nuclear Physics at LANSCE.

    PubMed

    Seo, P-N; Bowman, J D; Gericke, M; Gillis, R C; Greene, G L; Leuschner, M B; Long, J; Mahurin, R; Mitchell, G S; Penttila, S I; Peralta, G; Sharapov, E I; Wilburn, W S

    2005-01-01

    The NPDGamma collaboration has completed the construction of a pulsed cold neutron beam line on flight path12 at the Los Alamos Neutron Science Center (LANSCE). We describe the new beam line and characteristics of the beam. We report results of the moderator brightness and the guide performance measurements. FP12 has the highest pulsed cold neutron intensity for nuclear physics in the world. PMID:27308111

  2. New Pulsed Cold Neutron Beam Line for Fundamental Nuclear Physics at LANSCE

    PubMed Central

    Seo, P.-N.; Bowman, J. D.; Gericke, M.; Gillis, R. C.; Greene, G. L.; Leuschner, M. B.; Long, J.; Mahurin, R.; Mitchell, G. S.; Penttila, S. I.; Peralta, G.; Sharapov, E. I.; Wilburn, W. S.

    2005-01-01

    The NPDGamma collaboration has completed the construction of a pulsed cold neutron beam line on flight path12 at the Los Alamos Neutron Science Center (LANSCE). We describe the new beam line and characteristics of the beam. We report results of the moderator brightness and the guide performance measurements. FP12 has the highest pulsed cold neutron intensity for nuclear physics in the world. PMID:27308111

  3. np Elastic-scattering experiments with polarized neutron beams

    SciTech Connect

    Chalmers, J.S.; Ditzler, W.R.; Hill, D.; Hoftiezer, J.; Johnson, K.; Shima, T.; Shimizu, H.; Spinka, H.; Stanek, R.; Underwood, D.

    1985-01-01

    Measurements of the spin transfer parameters, K/sub NN/ and K/sub LL/, at 500, 650, and 800 MeV are presented for the reaction p-vector d ..-->.. n-vector pp at 0/sup 0/. The data are useful input to the NN data base and indicate that the quasi-free charge exchange (CEX) reaction is a useful mechanism for producing neutrons with at least 40% polarization at energies as low as 500 MeV. Measurements of np elastic scattering observables C/sub LL/ and C/sub SL/ covering 35/sup 0/ to 172/sup 0/ are performed using a polarized neutron beam at 500, 650, and 800 MeV. Preliminary results are presented. 3 refs., 6 figs.

  4. Dehydration process of fish analyzed by neutron beam imaging

    NASA Astrophysics Data System (ADS)

    Tanoi, K.; Hamada, Y.; Seyama, S.; Saito, T.; Iikura, H.; Nakanishi, T. M.

    2009-06-01

    Since regulation of water content of the dried fish is an important factor for the quality of the fish, water-losing process during drying (squid and Japanese horse mackerel) was analyzed through neutron beam imaging. The neutron image showed that around the shoulder of mackerel, there was a part where water content was liable to maintain high during drying. To analyze water-losing process more in detail, spatial image was produced. From the images, it was clearly indicated that the decrease of water content was regulated around the shoulder part. It was suggested that to prevent deterioration around the shoulder part of the dried fish is an important factor to keep quality of the dried fish in the storage.

  5. Physics data base for the Beam Plasma Neutron Source (BPNS)

    NASA Astrophysics Data System (ADS)

    Coensgen, F. H.; Casper, T. A.; Correll, D. L.; Damm, C. C.; Futch, A. H.; Molvik, A. W.

    1990-10-01

    A 14-MeV deuterium-tritium (D-T) neutron source for accelerated end-of-life testing of fusion reactor materials has been designed on the basis of a linear two-component collisional plasma system. An intense flux (up to 5 x 10(exp 18)/sq m sec) of 14 MeV neutrons is produced in a fully ionized high-density (n sub e approx. = 3 x 10(exp 21) per cu m) tritium target by transverse injection of 60 MW of neutral beam power. Power deposited in the target is removed by thermal electron conduction to large end chambers, where it is deposited in gaseous plasma collectors. We show in this paper that the major physics issues have now been experimentally demonstrated. These include magnetohydrodynamic (MHD) equilibrium and stability, microstability, startup, fueling, Spitzer electron thermal conductivity, and power deposition in a gaseous plasma collector. However, an integrated system was not demonstrated.

  6. GEANT4 used for neutron beam design of a neutron imaging facility at TRIGA reactor in Morocco

    NASA Astrophysics Data System (ADS)

    Ouardi, A.; Machmach, A.; Alami, R.; Bensitel, A.; Hommada, A.

    2011-09-01

    Neutron imaging has a broad scope of applications and has played a pivotal role in visualizing and quantifying hydrogenous masses in metallic matrices. The field continues to expand into new applications with the installation of new neutron imaging facilities. In this scope, a neutron imaging facility for computed tomography and real-time neutron radiography is currently being developed around 2.0MW TRIGA MARK-II reactor at Maamora Nuclear Research Center in Morocco (Reuscher et al., 1990 [1]; de Menezes et al., 2003 [2]; Deinert et al., 2005 [3]). The neutron imaging facility consists of neutron collimator, real-time neutron imaging system and imaging process systems. In order to reduce the gamma-ray content in the neutron beam, the tangential channel was selected. For power of 250 kW, the corresponding thermal neutron flux measured at the inlet of the tangential channel is around 3×10 11 ncm 2/s. This facility will be based on a conical neutron collimator with two circular diaphragms with diameters of 4 and 2 cm corresponding to L/D-ratio of 165 and 325, respectively. These diaphragms' sizes allow reaching a compromise between good flux and efficient L/D-ratio. Convergent-divergent collimator geometry has been adopted. The beam line consists of a gamma filter, fast neutrons filter, neutron moderator, neutron and gamma shutters, biological shielding around the collimator and several stages of neutron collimator. Monte Carlo calculations by a fully 3D numerical code GEANT4 were used to design the neutron beam line ( http://www.info.cern.ch/asd/geant4/geant4.html[4]). To enhance the neutron thermal beam in terms of quality, several materials, mainly bismuth (Bi) and sapphire (Al 2O 3) were examined as gamma and neutron filters respectively. The GEANT4 simulations showed that the gamma and epithermal and fast neutron could be filtered using the bismuth (Bi) and sapphire (Al 2O 3) filters, respectively. To get a good cadmium ratio, GEANT 4 simulations were used to

  7. Filtered epithermal quasi-monoenergetic neutron beams at research reactor facilities.

    PubMed

    Mansy, M S; Bashter, I I; El-Mesiry, M S; Habib, N; Adib, M

    2015-03-01

    Filtered neutron techniques were applied to produce quasi-monoenergetic neutron beams in the energy range of 1.5-133keV at research reactors. A simulation study was performed to characterize the filter components and transmitted beam lines. The filtered beams were characterized in terms of the optimal thickness of the main and additive components. The filtered neutron beams had high purity and intensity, with low contamination from the accompanying thermal emission, fast neutrons and γ-rays. A computer code named "QMNB" was developed in the "MATLAB" programming language to perform the required calculations. PMID:25544666

  8. Renovation of epithermal neutron beam for BNCT at THOR.

    PubMed

    Liu, Y-W H; Huang, T T; Jiang, S H; Liu, H M

    2004-11-01

    Heading for possible use for clinical trial, THOR (Tsing Hua Open-pool Reactor) at Taiwan was shutdown for renovation of a new epithermal neutron beam in January 2003. In November 2003, concrete cutting was finished for closer distance from core and larger treatment room. This article presents the design base that the construction of the new beam is based on. The filter/moderator design along the beam is Cd(0.1cm)+Al(10 cm)+FLUENTAL (16 cm)+Al(10 cm)+FLUENTAL(24 cm)+Void(18 cm)+Cd(0.1cm)+Bi(10 cm) with 6 cm Pb as reflector. Following the filter/moderator is an 88 cm long, 6 cm thick Bi-lined collimator with Li(2)CO(3)-PE at the end. The collimator is surrounded by Li(2)CO(3)-PE and Pb. The calculated beam parameters under 2 MW at the beam exit is phi(epi) = 3.4 x 10(9) n/cm(2)/s, Df/phi(epi) = 2.8 x 10(-11) cGy cm(2)/n, Dgamma/phi(epi) = 1.3 x 10(-11) cGy cm(2)/n, and J+/phi = 0.8. For a phantom placed 10 cm from beam exit, MCNP calculation shows that the advantage depth is 8.9 cm, and advantage ratio is 5.6 if boron concentration in tumor and normal tissue are assumed to be 65 and 18 ppm. The maximum dose rate for normal tissue is 50 cGy/min. The maximum therapeutic ratio is 6. The construction of the beam is scheduled to be finished by the end of April 2004. PMID:15308189

  9. Optimization study for an epithermal neutron beam for boron neutron capture therapy at the University of Virginia Research Reactor

    SciTech Connect

    Burns, T.D. Jr.

    1995-05-01

    The non-surgical brain cancer treatment modality, Boron Neutron Capture Therapy (BNCT), requires the use of an epithermal neutron beam. This purpose of this thesis was to design an epithermal neutron beam at the University of Virginia Research Reactor (UVAR) suitable for BNCT applications. A suitable epithermal neutron beam for BNCT must have minimal fast neutron and gamma radiation contamination, and yet retain an appreciable intensity. The low power of the UVAR core makes reaching a balance between beam quality and intensity a very challenging design endeavor. The MCNP monte carlo neutron transport code was used to develop an equivalent core radiation source, and to perform the subsequent neutron transport calculations necessary for beam model analysis and development. The code accuracy was validated by benchmarking output against experimental criticality measurements. An epithermal beam was designed for the UVAR, with performance characteristics comparable to beams at facilities with cores of higher power. The epithermal neutron intensity of this beam is 2.2 {times} 10{sup 8} n/cm{sup 2} {center_dot} s. The fast neutron and gamma radiation KERMA factors are 10 {times} 10{sup {minus}11}cGy{center_dot}cm{sup 2}/n{sub epi} and 20 {times} 10{sup {minus}11} cGy{center_dot}cm{sup 2}/n{sub epi}, respectively, and the current-to-flux ratio is 0.85. This thesis has shown that the UVAR has the capability to provide BNCT treatments, however the performance characteristics of the final beam of this study were limited by the low core power.

  10. Initial Performance Characterization for a Thermalized Neutron Beam for Neutron Capture Therapy Research at Washington State University

    SciTech Connect

    David W. Nigg; P.E> Sloan; J.R. Venhuizen; C.A. Wemple

    2005-11-01

    The Idaho National Engineering and Environmental Laboratory (INEEL) and Washington State University (WSU) have constructed a new epithermal-neutron beam for collaborative Boron Neutron Capture Therapy (BNCT) preclinical research at the WSU TRIGATM research reactor facility1. More recently, additional beamline components were developed to permit the optional thermalization of the beam for certain types of studies where it is advantageous to use a thermal neutron source rather than an epithermal source. This article summarizes the results of some initial neutronic performance measurements for the thermalized system, with a comparison to the expected performance from the design computations.

  11. Silicon detectors for monitoring neutron beams in n-TOF beamlines

    SciTech Connect

    Cosentino, L.; Pappalardo, A.; Piscopo, M.; Finocchiaro, P.; Musumarra, A.; Barbagallo, M.; Colonna, N.; Damone, L.

    2015-07-15

    During 2014, the second experimental area (EAR2) was completed at the n-TOF neutron beam facility at CERN (n-TOF indicates neutron beam measurements by means of time of flight technique). The neutrons are produced via spallation, by means of a high-intensity 20 GeV pulsed proton beam impinging on a thick target. The resulting neutron beam covers the energy range from thermal to several GeV. In this paper, we describe two beam diagnostic devices, both exploiting silicon detectors coupled with neutron converter foils containing {sup 6}Li. The first one is based on four silicon pads and allows monitoring of the neutron beam flux as a function of the neutron energy. The second one, in beam and based on position sensitive silicon detectors, is intended for the reconstruction of the beam profile, again as a function of the neutron energy. Several electronic setups have been explored in order to overcome the issues related to the gamma flash, namely, a huge pulse present at the start of each neutron bunch which may blind the detectors for some time. The two devices were characterized with radioactive sources and also tested at the n-TOF facility at CERN. The wide energy and intensity range they proved capable of sustaining made them attractive and suitable to be used in both EAR1 and EAR2 n-TOF experimental areas, where they became immediately operational.

  12. Silicon detectors for monitoring neutron beams in n-TOF beamlines

    NASA Astrophysics Data System (ADS)

    Cosentino, L.; Musumarra, A.; Barbagallo, M.; Colonna, N.; Damone, L.; Pappalardo, A.; Piscopo, M.; Finocchiaro, P.

    2015-07-01

    During 2014, the second experimental area (EAR2) was completed at the n-TOF neutron beam facility at CERN (n-TOF indicates neutron beam measurements by means of time of flight technique). The neutrons are produced via spallation, by means of a high-intensity 20 GeV pulsed proton beam impinging on a thick target. The resulting neutron beam covers the energy range from thermal to several GeV. In this paper, we describe two beam diagnostic devices, both exploiting silicon detectors coupled with neutron converter foils containing 6Li. The first one is based on four silicon pads and allows monitoring of the neutron beam flux as a function of the neutron energy. The second one, in beam and based on position sensitive silicon detectors, is intended for the reconstruction of the beam profile, again as a function of the neutron energy. Several electronic setups have been explored in order to overcome the issues related to the gamma flash, namely, a huge pulse present at the start of each neutron bunch which may blind the detectors for some time. The two devices were characterized with radioactive sources and also tested at the n-TOF facility at CERN. The wide energy and intensity range they proved capable of sustaining made them attractive and suitable to be used in both EAR1 and EAR2 n-TOF experimental areas, where they became immediately operational.

  13. Silicon detectors for monitoring neutron beams in n-TOF beamlines.

    PubMed

    Cosentino, L; Musumarra, A; Barbagallo, M; Colonna, N; Damone, L; Pappalardo, A; Piscopo, M; Finocchiaro, P

    2015-07-01

    During 2014, the second experimental area (EAR2) was completed at the n-TOF neutron beam facility at CERN (n-TOF indicates neutron beam measurements by means of time of flight technique). The neutrons are produced via spallation, by means of a high-intensity 20 GeV pulsed proton beam impinging on a thick target. The resulting neutron beam covers the energy range from thermal to several GeV. In this paper, we describe two beam diagnostic devices, both exploiting silicon detectors coupled with neutron converter foils containing (6)Li. The first one is based on four silicon pads and allows monitoring of the neutron beam flux as a function of the neutron energy. The second one, in beam and based on position sensitive silicon detectors, is intended for the reconstruction of the beam profile, again as a function of the neutron energy. Several electronic setups have been explored in order to overcome the issues related to the gamma flash, namely, a huge pulse present at the start of each neutron bunch which may blind the detectors for some time. The two devices were characterized with radioactive sources and also tested at the n-TOF facility at CERN. The wide energy and intensity range they proved capable of sustaining made them attractive and suitable to be used in both EAR1 and EAR2 n-TOF experimental areas, where they became immediately operational. PMID:26233385

  14. Active Neutron and Gamma-Ray Instrumentation for In Situ Planetary Science Applications

    NASA Technical Reports Server (NTRS)

    Parsons, A.; Bodnarik, J.; Evans, L.; Floyd, A.; Lim, L.; McClanahan, T.; Namkung, M.; Nowicki, S.; Schweitzer, J.; Starr, R.; Trombka, J.

    2011-01-01

    We describe the development of an instrument capable of detailed in situ bulk geochemical analysis of the surface of planets, moons, asteroids, and comets. This instrument technology uses a pulsed neutron generator to excite the solid materials of a planet and measures the resulting neutron and gamma-ray emission with its detector system. These time-resolved neutron and gamma-ray data provide detailed information about the bulk elemental composition, chemical context, and density distribution of the soil within 50 cm of the surface. While active neutron scattering and neutron-induced gamma-ray techniques have been used extensively for terrestrial nuclear well logging applications, our goal is to apply these techniques to surface instruments for use on any solid solar system body. As described, experiments at NASA Goddard Space Flight Center use a prototype neutron-induced gamma-ray instrument and the resulting data presented show the promise of this technique for becoming a versatile, robust, workhorse technology for planetary science, and exploration of any of the solid bodies in the solar system. The detection of neutrons at the surface also provides useful information about the material. This paper focuses on the data provided by the gamma-ray detector.

  15. Planetary Geochemistry Techniques: Probing In-Situ with Neutron and Gamma Rays (PING) Instrument

    NASA Technical Reports Server (NTRS)

    Parsons, A.; Bodnarik, J.; Burger, D.; Evans, L.; Floyd, S.; Lin, L.; McClanahan, T.; Nankung, M.; Nowicki, S.; Schweitzer, J.; Starr, R.; Trombka, J.

    2011-01-01

    The Probing In situ with Neutrons and Gamma rays (PING) instrument is a promising planetary science application of the active neutron-gamma ray technology so successfully used in oil field well logging and mineral exploration on Earth. The objective of our technology development program at NASA Goddard Space Flight Center's (NASA/GSFC) Astrochemistry Laboratory is to extend the application of neutron interrogation techniques to landed in situ planetary composition measurements by using a 14 MeV Pulsed Neutron Generator (PNG) combined with neutron and gamma ray detectors, to probe the surface and subsurface of planetary bodies without the need to drill. We are thus working to bring the PING instrument to the point where it can be flown on a variety of surface lander or rover missions to the Moon, Mars, Venus, asteroids, comets and the satellites of the outer planets.

  16. Space neutron spectrometer design with SSPM-based instrumentation

    NASA Astrophysics Data System (ADS)

    Stapels, Christopher J.; Johnson, Erik B.; Chen, Xiao J.; Prettyman, Thomas H.; Benton, Eric R.; Christian, James F.

    2011-10-01

    The compact, robust nature of the CMOS solid-state photomultiplier (SSPM) allows the creation of small, low-power scintillation-based radiation measurement devices. Monitoring space radiation including solar protons and secondary neutrons generated from high-energy protons impinging on spacecraft is required to determine the dose to astronauts. Small size and highly integrated design are desired to minimize consumption of payload resources. RMD is developing prototype radiation measurement and personal dosimeter devices using emerging scintillation materials coupled to CMOS SSPM's for multiple applications. Spectroscopic measurements of high-energy protons and gamma-rays using tissue-equivalent, inorganic scintillators coupled to SSPM devices demonstrate the ability of an SSPM device to monitor the dose from proton and heavy ion particles, providing real time feedback to astronauts. Measurement of the dose from secondary neutrons introduces additional challenges due to the need to discriminate neutrons from other particle types and to accurately determine their energy deposition. We present strategies for measuring neutron signatures and assessing neutron dose including simulations of relevant environments and detector materials.

  17. Prediction of In-Phantom Dose Distribution Using In-Air Neutron Beam Characteristics for Boron Neutron Capture Synovectomy

    SciTech Connect

    Verbeke, Jerome M.; Chen, Allen S.; Vujic, Jasmina L.; Leung, Ka-Ngo

    2000-08-15

    A monoenergetic neutron beam simulation study was carried out to determine the optimal neutron energy range for treatment of rheumatoid arthritis using radiation synovectomy. The goal of the treatment is the ablation of diseased synovial membranes in joints such as knees and fingers. This study focuses on human knee joints. Two figures of merit are used to measure the neutron beam quality, the ratio of the synovium-absorbed dose to the skin-absorbed dose, and the ratio of the synovium-absorbed dose to the bone-absorbed dose. It was found that (a) thermal neutron beams are optimal for treatment and that (b) similar absorbed dose rates and therapeutic ratios are obtained with monodirectional and isotropic neutron beams. Computation of the dose distribution in a human knee requires the simulation of particle transport from the neutron source to the knee phantom through the moderator. A method was developed to predict the dose distribution in a knee phantom from any neutron and photon beam spectra incident on the knee. This method was revealed to be reasonably accurate and enabled one to reduce the particle transport simulation time by a factor of 10 by modeling the moderator only.

  18. Filter/moderator system for a BNCT beam of epithermal neutrons at nuclear reactor MARIA

    NASA Astrophysics Data System (ADS)

    Tyminska, Katarzyna

    2009-01-01

    Boron Neutron Capture Therapy is a very promising form of cancer therapy, consisting in irradiating a stable isotope of boron (10B) concentrated in tumor cells with a low energy neutron beam. This technique makes it possible to destroy tumor cells, leaving healthy tissues practically unaffected. In order to carry out the therapy in the proper way, the proper range of the neutron beam energy has to be chosen. In this paper we present a filter/moderator system modeled with MCNP code in order to obtain an epithermal neutron beam for BNCT post at MARIA reactor in Swierk.

  19. Dose homogeneity in boron neutron capture therapy using an epithermal neutron beam

    SciTech Connect

    Konijnenberg, M.W.; Dewit, L.G.H.; Mijnheer, B.J.

    1995-06-01

    Simulation models based on the neutron and photon Monte Carlo code MCNP were used to study the therapeutic possibilities of the HB11 epithermal neutron beam at the High Flux Reactor in Petten. Irradiations were simulated in two types of phantoms filled with water or tissue-equivalent material for benchmark treatment planning calculations. In a cuboid phantom the influence of different field sizes on the thermal-neutron-induced dose distribution was investigated. Various shapes of collimators were studied to test their efficacy in optimizing the thermal-neutron distribution over a planning target volume and healthy tissues. Using circular collimators of 8, 12 and 15 cm diameter it was shown that with the 15-cm field a relatively larger volume within 85% of the maximum neutron-induced dose was obtained than with the 8- or 12-cm-diameter field. However, even for this large field the maximum diameter of this volume was 7.5 cm. In an ellipsoid head phantom the neutron-induced dose was calculated assuming the skull to contain 10 ppm {sup 10}B, the brain 5 ppm {sup 10}B and the tumor 30 ppm {sup 10}B. It was found that with a single 15-cm-diameter circular beam a very inhomogeneous dose distribution in a typical target volume was obtained. Applying two equally weighted opposing 15-cm-diameter fields, however, a dose homogeneity within {+-} 10% in this planning target volume was obtained. The dose in the surrounding healthy brain tissue is 30% at maximum of the dose in the center of the target volume. Contrary to the situation for the 8-cm field, combining four fields of 15 cm diameter gave no large improvement of the dose homogeneity over the target volume or a lower maximum dose in the healthy brain. Therapy with BNCT on brain tumors must be performed either with an 8-cm four-field irradiation or with two opposing 15- or 12-cm fields to obtain an optimal dose distribution. 27 refs., 10 figs., 3 tabs.

  20. Design of neutron beams at the Argonne Continuous Wave Linac (ACWL) for boron neutron capture therapy and neutron radiography

    SciTech Connect

    Zhou, X.L.; McMichael, G.E.

    1994-10-01

    Neutron beams are designed for capture therapy based on p-Li and p-Sc reactions using the Argonne Continuous Wave Linac (ACWL). The p-Li beam will provide a 2.5 {times} 10{sup 9} n/cm{sup 2}s epithermal flux with 7 {times} 10{sup 5} {gamma}/cm{sup 2}s contamination. On a human brain phantom, this beam allows an advantage depth (AD) of 10 cm, an advantage depth dose rate (ADDR) of 78 cGy/min and an advantage ratio (AR) of 3.2. The p-Sc beam offers 5.9 {times} 10{sup 7} n/cm{sup 2}s and a dose performance of AD = 8 cm and AR = 3.5, suggesting the potential of near-threshold (p,n) reactions such as the p-Li reaction at E{sub p} = 1.92 MeV. A thermal radiography beam could also be obtained from ACWL.

  1. Optimizing Laser-accelerated Ion Beams for a Collimated Neutron Source

    SciTech Connect

    C.L. Ellison and J. Fuchs

    2010-09-23

    High-flux neutrons for imaging and materials analysis applications have typically been provided by accelerator- and reactor-based neutron sources. A novel approach is to use ultraintense (>1018W/cm2) lasers to generate picosecond, collimated neutrons from a dual target configuration. In this article, the production capabilities of present and upcoming laser facilities are estimated while independently maximizing neutron yields and minimizing beam divergence. A Monte-Carlo code calculates angular and energy distributions of neutrons generated by D-D fusion events occurring within a deuterated target for a given incident beam of D+ ions. Tailoring of the incident distribution via laser parameters and microlens focusing modifies the emerging neutrons. Projected neutron yields and distributions are compared to conventional sources, yielding comparable on-target fluxes per discharge, shorter time resolution, larger neutron energies and greater collimation.

  2. The upgraded cold neutron triple-axis spectrometer FLEXX - enhanced capabilities by new instrumental options

    NASA Astrophysics Data System (ADS)

    Habicht, Klaus; Lucía Quintero-Castro, Diana; Toft-Petersen, Rasmus; Kure, Mathias; Mäde, Lucas; Groitl, Felix; Le, Manh Duc

    2015-01-01

    The upgrade of the cold neutron triple axis spectrometer FLEXX, a work-horse instrument for inelastic neutron scattering matching the sample environment capabilities at Helmholtz-Zentrum Berlin, has been successfully accomplished. Experiments confirmed an order of magnitude gain in flux now allowing for intensity demanding options to be fully exploited at FLEXX. In this article, we describe the layout and design of two newly available FLEXX instrument options in detail. The new Heusler analyzer gives an increase of the detected polarized neutron flux due to its superior focusing properties, significantly improving the feasibility of future polarized and neutron resonance spin echo experiments. The MultiFLEXX option provides simultaneous access to large regions in wavevector and energy space for inelastic excitations thus adding mapping capabilities to the spectrometer.

  3. Estimating Background and Lunar Contribution to Neutrons Detected by the Lunar Reconnaissance Orbiter (LRO) Lunar Exploration Neutron Detector (LEND) Instrument

    NASA Astrophysics Data System (ADS)

    Livengood, T. A.; Mitrofanov, I. G.; Chin, G.; Boynton, W. V.; Evans, L. G.; Litvak, M. L.; McClanahan, T. P.; Sagdeev, R.; Sanin, A. B.; Starr, R. D.; Su, J. J.

    2014-12-01

    The fraction of hydrogen-bearing species embedded in planetary regolith can be determined from the ratio between measured epithermal neutron leakage flux and the flux measured from similar dry regolith. The Lunar Reconnaissance Orbiter (LRO) spacecraft is equipped with the Lunar Exploration Neutron Detector (LEND) instrument to measure embedded hydrogen in the Moon's polar regions and elsewhere. We have investigated the relative contribution of lunar and non-lunar (spacecraft-sourced) neutrons by modeling maps of the measured count rate from three of the LEND detector systems using linear combinations of maps compiled from the Lunar Prospector Neutron Spectrometer (LPNS) and the LEND detectors, demonstrating that the two systems are compatible and enabling reference signal to be inferred to enable detecting hydrogen and hydrogen-bearing volatiles. The pole-to-equator contrast ratio in epithermal neutrons indicates that the average concentration of hydrogen in the Moon's polar regolith above 80° north or south latitude is ~110 ppmw, or 0.10±0.01 wt% water-equivalent hydrogen. Above 88° north or south, the concentration increases to ~140 ppmw, or 0.13±0.02 wt% water-equivalent hydrogen. Nearly identical suppression of neutron flux at both the north and south poles, despite differences in topography and distribution of permanently-shadowed regions, supports the contention that hydrogen is broadly distributed in the polar regions and increasingly concentrated approaching the poles. Similarity in the degree of neutron suppression in low-energy and high-energy epithermal neutrons suggests that the hydrogen fraction is relatively uniform with depth down to ~1 m; the neutron leakage flux is insensitive to greater depth.

  4. OPTIMIZATION OF THE EPITHERMAL NEUTRON BEAM FOR BORON NEUTRON CAPTURE THERAPY AT THE BROOKHAVEN MEDICAL RESEARCH REACTOR.

    SciTech Connect

    HU,J.P.; RORER,D.C.; RECINIELLO,R.N.; HOLDEN,N.E.

    2002-08-18

    Clinical trials of Boron Neutron Capture Therapy for patients with malignant brain tumor had been carried out for half a decade, using an epithermal neutron beam at the Brookhaven's Medical Reactor. The decision to permanently close this reactor in 2000 cut short the efforts to implement a new conceptual design to optimize this beam in preparation for use with possible new protocols. Details of the conceptual design to produce a higher intensity, more forward-directed neutron beam with less contamination from gamma rays, fast and thermal neutrons are presented here for their potential applicability to other reactor facilities. Monte Carlo calculations were used to predict the flux and absorbed dose produced by the proposed design. The results were benchmarked by the dose rate and flux measurements taken at the facility then in use.

  5. Optimization of the Epithermal Neutron Beam for Boron Neutron Capture Therapy at the Brookhaven Medical Research Reactor

    SciTech Connect

    Hu, J.P.; Reciniello, R.N.; Holden, N.E.

    2004-05-01

    Clinical trials of Boron Neutron Capture Therapy for patients with malignant brain tumor had been carried out for half a decade, using an epithermal neutron beam at the Brookhaven Medical Reactor. The decision to permanently close this reactor in 2000 cut short the efforts to implement a new conceptual design to optimize this beam in preparation for use with possible new protocols. Details of the conceptual design to produce a higher intensity, more forward-directed neutron beam with less contamination from gamma rays, fast and thermal neutrons are presented here for their potential applicability to other reactor facilities. Monte Carlo calculations were used to predict the flux and absorbed dose produced by the proposed design. The results were benchmarked by the dose rate and flux measurements taken at the facility then in use.

  6. Bragg optics computer codes for neutron scattering instrument design

    SciTech Connect

    Popovici, M.; Yelon, W.B.; Berliner, R.R.; Stoica, A.D.

    1997-09-01

    Computer codes for neutron crystal spectrometer design, optimization and experiment planning are described. Phase space distributions, linewidths and absolute intensities are calculated by matrix methods in an extension of the Cooper-Nathans resolution function formalism. For modeling the Bragg reflection on bent crystals the lamellar approximation is used. Optimization is done by satisfying conditions of focusing in scattering and in real space, and by numerically maximizing figures of merit. Examples for three-axis and two-axis spectrometers are given.

  7. SU-E-T-542: Measurement of Internal Neutrons for Uniform Scanning Proton Beams

    SciTech Connect

    Islam, M; Ahmad, S; Zheng, Y; Rana, S; Collums, T; Monsoon, J; Benton, E

    2015-06-15

    Purpose: In proton radiotherapy, the production of neutrons is a wellknown problem since neutron exposure can lead to increased risk of secondary cancers later in the patient’s lifetime. The assessment of neutron exposure is, therefore, important for the overall quality of proton radiotherapy. This study investigates the secondary neutrons created inside the patient from uniform scanning proton beams. Methods: Dose equivalent due to secondary neutrons was measured outside the primary field as a function of distance from beam isocenter at three different angles, 45, 90 and 135 degree, relative to beam axis. Plastic track nuclear detector (CR-39 PNTD) was used for the measurement of neutron dose. Two experimental configurations, in-air and cylindrical-phantom, were designed. In a cylindrical-phantom configuration, a cylindrical phantom of 5.5 cm diameter and 35 cm long was placed along the beam direction and in an in-air configuration, no phantom was used. All the detectors were placed at nearly identical locations in both configurations. Three proton beams of range 5 cm, 18 cm, and 32 cm with 4 cm modulation width and a 5 cm diameter aperture were used. The contribution from internal neutrons was estimated from the differences in measured dose equivalent between in-air and cylindrical-phantom configurations at respective locations. Results: The measured ratio of neutron dose equivalent to the primary proton dose (H/D) dropped off with distance and ranged from 27 to 0.3 mSv/Gy. The contribution of internal neutrons near the treatment field edge was found to be up to 64 % of the total neutron exposure. As the distance from the field edge became larger, the external neutrons from the nozzle appear to dominate and the internal neutrons became less prominent. Conclusion: This study suggests that the contribution of internal neutrons could be significant to the total neutron dose equivalent.

  8. Guiding Criteria for Instrument Design at Long-pulse Neutron Sources

    NASA Astrophysics Data System (ADS)

    de Vicente, J. P.; Sordo, F.; Perlado, J. M.; Bermejo, F. J.; Fernandez-Alonso, F.

    2015-11-01

    We introduce and describe general criteria which characterize long-pulse neutron sources, with a view to guiding and facilitating subsequent instrument design and optimization for specific applications. The ensuing analysis shows that a long-pulse neutron source allows for the possibility of a wide range of flexible instrument concepts with variable resolution and dynamic range, tasks which invariably require the implementation of pulse-modulation techniques in the time domain, particularly for high-resolution applications. We also consider in some detail yet-to-be-tapped opportunities in the use of shorter proton pulses, characterised by a duration commensurate with typical moderation times at spallation sources.

  9. Dysprosium detector for neutron dosimetry in external beam radiotherapy

    NASA Astrophysics Data System (ADS)

    Ostinelli, A.; Berlusconi, C.; Conti, V.; Duchini, M.; Gelosa, S.; Guallini, F.; Vallazza, E.; Prest, M.

    2014-09-01

    Radiotherapy treatments with high-energy (>8 MeV) photon beams are a standard procedure in clinical practice, given the skin and near-target volumes sparing effect, the accurate penetration and the uniform spatial dose distribution. On the other hand, despite these advantages, neutrons may be produced via the photo-nuclear (γ,n) reactions of the high-energy photons with the high-Z materials in the accelerator head, in the treatment room and in the patient, resulting in an unwanted dose contribution which is of concern, given its potential to induce secondary cancers, and which has to be monitored. This work presents the design and the test of a portable Dysprosium dosimeter to be used during clinical treatments to estimate the "in vivo" dose to the patient. The dosimeter has been characterized and validated with tissue-equivalent phantom studies with a Varian Clinical iX 18 MV photon beam, before using it with a group of patients treated at the S. Anna Hospital in Como. The working principle of the dosimeter together with the readout chain and the results in terms of delivered dose are presented.

  10. A compact neutron beam generator system designed for prompt gamma nuclear activation analysis.

    PubMed

    Ghassoun, J; Mostacci, D

    2011-08-01

    In this work a compact system was designed for bulk sample analysis using the technique of PGNAA. The system consists of (252)Cf fission neutron source, a moderator/reflector/filter assembly, and a suitable enclosure to delimit the resulting neutron beam. The moderator/reflector/filter arrangement has been optimised to maximise the thermal neutron component useful for samples analysis with a suitably low level of beam contamination. The neutron beam delivered by this compact system is used to irradiate the sample and the prompt gamma rays produced by neutron reactions within the sample elements are detected by appropriate gamma rays detector. Neutron and gamma rays transport calculations have been performed using the Monte Carlo N-Particle transport code (MCNP5). PMID:21129990

  11. Simulation study of accelerator based quasi-mono-energetic epithermal neutron beams for BNCT.

    PubMed

    Adib, M; Habib, N; Bashter, I I; El-Mesiry, M S; Mansy, M S

    2016-01-01

    Filtered neutron techniques were applied to produce quasi-mono-energetic neutron beams in the energy range of 1.5-7.5 keV at the accelerator port using the generated neutron spectrum from a Li (p, n) Be reaction. A simulation study was performed to characterize the filter components and transmitted beam lines. The feature of the filtered beams is detailed in terms of optimal thickness of the primary and additive components. A computer code named "QMNB-AS" was developed to carry out the required calculations. The filtered neutron beams had high purity and intensity with low contamination from the accompanying thermal, fast neutrons and γ-rays. PMID:26474209

  12. Feasibility study of using laser-generated neutron beam for BNCT.

    PubMed

    Kasesaz, Y; Rahmani, F; Khalafi, H

    2015-09-01

    The feasibility of using a laser-accelerated proton beam to produce a neutron source, via (p,n) reaction, for Boron Neutron Capture Therapy (BNCT) applications has been studied by MCNPX Monte Carlo code. After optimization of the target material and its thickness, a Beam Shaping Assembly (BSA) has been designed and optimized to provide appropriate neutron beam according to the recommended criteria by International Atomic Energy Agency. It was found that the considered laser-accelerated proton beam can provide epithermal neutron flux of ∼2×10(6) n/cm(2) shot. To achieve an appropriate epithermal neutron flux for BNCT treatment, the laser must operate at repetition rates of 1 kHz, which is rather ambitious at this moment. But it can be used in some BNCT researches field such as biological research. PMID:26115204

  13. A neutron imaging device for sample alignment in a pulsed neutron scattering instrument

    SciTech Connect

    Grazzi, F.; Scherillo, A.; Zoppi, M.

    2009-09-15

    A neutron-imaging device for alignment purposes has been tested on the INES beamline at ISIS, the pulsed neutron source of Rutherford Appleton Laboratory (U.K.). Its use, in conjunction with a set of movable jaws, turns out extremely useful for scattering application to complex samples where a precise and well-defined determination of the scattering volume is needed.

  14. Neutron monitoring systems including gamma thermometers and methods of calibrating nuclear instruments using gamma thermometers

    SciTech Connect

    Moen, Stephan Craig; Meyers, Craig Glenn; Petzen, John Alexander; Foard, Adam Muhling

    2012-08-07

    A method of calibrating a nuclear instrument using a gamma thermometer may include: measuring, in the instrument, local neutron flux; generating, from the instrument, a first signal proportional to the neutron flux; measuring, in the gamma thermometer, local gamma flux; generating, from the gamma thermometer, a second signal proportional to the gamma flux; compensating the second signal; and calibrating a gain of the instrument based on the compensated second signal. Compensating the second signal may include: calculating selected yield fractions for specific groups of delayed gamma sources; calculating time constants for the specific groups; calculating a third signal that corresponds to delayed local gamma flux based on the selected yield fractions and time constants; and calculating the compensated second signal by subtracting the third signal from the second signal. The specific groups may have decay time constants greater than 5.times.10.sup.-1 seconds and less than 5.times.10.sup.5 seconds.

  15. A new 40 m small angle neutron scattering instrument at HANARO, Korea

    NASA Astrophysics Data System (ADS)

    Han, Young-Soo; Choi, Sung-Min; Kim, Tae-Hwan; Lee, Chang-Hee; Cho, Sang-Jin; Seong, Baek-Seok

    2013-09-01

    A new 40 m Small Angle Neutron Scattering (SANS) instrument was constructed, and has been opened to outside users since November 2010 at HANARO, Korea. The instrument is equipped with state-of-the-art components, and the performance of the instrument is comparable to that of advanced SANS instruments. The flux at the sample position is measured as 2.9×107/cm2 s with a wavelength of 5 Å and a collimation length of 1.7 m. The Q-range of the instrument covers from 0.0007 to 1.1 Å-1 when the lens option is applied. In this paper, the design and characteristics of the 40 m SANS instrument are described, and data showing their performance are presented.

  16. Fusion-neutron production in the TFTR with deuterium neutral beam injection

    SciTech Connect

    Hendel, H.W.; England, A.C.; Jassby, D.L.; Mirin, A.A.; Nieschmidt, E.B.

    1986-06-01

    We report measurements of the fusion reaction rate in the Tokamak Fusion Test Reactor (TFTR) covering a wide range of plasma conditions and injected neutral beam powers up to 6.3 MW. The fusion-neutron production rate in beam-injected plasmas decreases slightly with increasing plasma density n/sub e/, even though the energy confinement parameter n/sub e/tau/sub E/ generally increases with density. The measurements indicate and Fokker-Planck simulations show that with increasing density the source of fusion neutrons evolves from mainly beam-beam and beam-target reactions at very low n/sub e/ to a combination of beam-target and thermonuclear reactions at high n/sub e/. At a given plasma current, the reduction in neutron source strength at higher n/sub e/ is due to both a decrease in electron temperature and in beam-beam reaction rate. The Fokker-Planck simulations also show that at low n/sub e/, plasma rotation can appreciably reduce the beam-target reaction rate for experiments with co-injection only. The variation of neutron source strength with plasma and beam parameters is as expected for beam-dominated regimes. However, the Fokker-Planck simulations systematically overestimate the measured source strength by a factor of 2 to 3; the source of this discrepancy has not yet been identified.

  17. Characterization of a thermal neutron beam monitor based on gas electron multiplier technology

    NASA Astrophysics Data System (ADS)

    Croci, Gabriele; Cazzaniga, Carlo; Claps, Gerardo; Tardocchi, Marco; Rebai, Marica; Murtas, Fabrizio; Vassallo, Espedito; Caniello, Roberto; Cippo, Enrico Perelli; Grosso, Giovanni; Rigato, Valentino; Gorini, Giuseppe

    2014-08-01

    Research into valid alternatives to 3He detectors is fundamental to the affordability of new neutron spallation sources like the European Spallation Source (ESS). In the case of ESS it is also essential to develop high-rate detectors that can fully exploit the increase of neutron flux relative to present neutron sources. One of the technologies fulfilling these requirements is the gas electron multiplier (GEM), since it can combine a high rate capability (MHz/mm2), a coverage area up to 1 m2 and a space resolution better than 0.5 mm. Its use as a neutron detector requires conversion of neutrons into charged particles. This paper describes the realization and characterization of a thermal neutron GEM-based beam monitor equipped with a cathode containing ^{10}B for neutron conversion. This device is constituted by a triple GEM detector whose cathode is made of an aluminum sheet covered by a 1 μ m thick ^{{nat}}B4C layer. The method used to realize a long-lasting ^{{nat}}B4C layer is described and the properties of such a layer have been determined. The detector performances (measured on the ISIS-VESUVIO beam line) in terms of beam profile reconstruction, imaging, and measurement of the thermal neutron beam energy spectrum are compatible with those obtained by standard beam monitors.

  18. The MICE Muon Beam on ISIS and the beam-line instrumentation of the Muon Ionization Cooling Experiment

    SciTech Connect

    Bogomilov, M.; et al.

    2012-05-01

    The international Muon Ionization Cooling Experiment (MICE), which is under construction at the Rutherford Appleton Laboratory (RAL), will demonstrate the principle of ionization cooling as a technique for the reduction of the phase-space volume occupied by a muon beam. Ionization cooling channels are required for the Neutrino Factory and the Muon Collider. MICE will evaluate in detail the performance of a single lattice cell of the Feasibility Study 2 cooling channel. The MICE Muon Beam has been constructed at the ISIS synchrotron at RAL, and in MICE Step I, it has been characterized using the MICE beam-instrumentation system. In this paper, the MICE Muon Beam and beam-line instrumentation are described. The muon rate is presented as a function of the beam loss generated by the MICE target dipping into the ISIS proton beam. For a 1 V signal from the ISIS beam-loss monitors downstream of our target we obtain a 30 KHz instantaneous muon rate, with a neglible pion contamination in the beam.

  19. Neutron beam optimization for boron neutron capture therapy using the D-D and D-T high-energy neutron sources

    SciTech Connect

    Verbeke, J.M.; Vujic, J.L.; Leung, K.N.

    2000-02-01

    A monoenergetic neutron beam simulation study is carried out to determine the most suitable neutron energy for treatment of shallow and deep-seated brain tumors in the context of boron neutron capture therapy. Two figures-of-merit--the absorbed skin dose and the absorbed tumor dose at a given depth in the brain--are used to measure the neutron beam quality. Based on the results of this study, moderators, reflectors, and delimiters are designed and optimized to moderate the high-energy neutrons from the fusion reactions {sup 2}H(d,n){sup 3}He and {sup 3}H(d,n){sup 4}He down to a suitable energy spectrum. Two different computational models (MCNP and BNCT-RTPE) have been used to study the dose distribution in the brain. With the optimal beam-shaping assembly, a 1-A mixed deuteron/triton beam of energy 150 keV accelerated onto a titanium target leads to a treatment time of 1 h. The dose near the center of the brain obtained with this configuration is > 65% higher than the dose from a typical spectrum produced by the Brookhaven Medical Research Reactor and is comparable to the dose obtained by other accelerator-produced neutron beams.

  20. Modelling of neutron survey instrument performance and experimental validation of those calculated response data.

    PubMed

    Tanner, R J; Bartlett, D T; Hager, L G; Jones, L N; Molinos, C; Roberts, N J; Taylor, G C; Thomas, D J

    2005-01-01

    Three moderator-type neutron survey instruments have been modelled for energy and angle dependence of the response, in greater detail than before. These response data have been verified by comparison with published experimental measurements and measurements made specifically for this project. Influences on the instrument response have also been investigated. These have included its mode-of-use and perturbations caused by variations in the instrument manufacture. The implications of these new response data have been assessed by an extensive programme of folding the responses with workplace energy distributions. PMID:16604669

  1. Fan analyzer of neutron beam polarization on REMUR spectrometer at IBR-2 pulsed reactor

    NASA Astrophysics Data System (ADS)

    Nikitenko, Yu. V.; Ul'yanov, V. A.; Pusenkov, V. M.; Kozhevnikov, S. V.; Jernenkov, K. N.; Pleshanov, N. K.; Peskov, B. G.; Petrenko, A. V.; Proglyado, V. V.; Syromyatnikov, V. G.; Schebetov, A. F.

    2006-08-01

    The new spectrometer of polarized neutrons REMUR has been created and put in operation in the Frank Laboratory of Neutron Physics (JINR, Dubna). The spectrometer is dedicated to investigations of multiplayer structures and surfaces by registering the reflection of polarized neutrons and of the inhomogeneous state of solid matter by measuring the small-angle scattering of polarized neutrons. The spectrometer's working range of neutron wavelengths is 1.5-10 Å. The spectrometer is equipped with a linear position-sensitive detector and a focused supermirror polarization analyzer (fan-like polarization analyzer) with a solid angle of neutron detection of 2.2×10 -4 rad. This article describes the design and the principle of operation of the fan analyzer of neutron polarization together with the results of its tests on a polarized neutron beam.

  2. Laser Doppler instrument measures fluid velocity without reference beam

    NASA Technical Reports Server (NTRS)

    Bourquin, K. R.; Shigemoto, F. H.

    1971-01-01

    Fluid velocity is measured by focusing laser beam on moving fluid and measuring Doppler shift in frequency which results when radiation is scattered by particles either originally present or deliberately injected into moving fluid.

  3. Polymer gel dosimetry for neutron beam in the Neutron Exposure Accelerator System for Biological Effect Experiments (NASBEE)

    NASA Astrophysics Data System (ADS)

    Kawamura, H.; Sato, H.; Hamano, T.; Suda, M.; Yoshii, H.

    2015-01-01

    This study aimed to investigate whether gel dosimetry could be used to measure neutron beams. We irradiated a BANG3-type polymer gel dosimeter using neutron beams in the Neutron exposure Accelerator System for Biological Effect Experiments (NASBEE) at the National Institute of Radiological Sciences (NIRS) in Japan. First, the polymer gels were irradiated from 0 to 7.0 Gy to investigate the dose-R2 responses. Irradiated gels were evaluated using 1.5-T magnetic resonance R2 images. Second, the polymer gels were irradiated to 1.0, 3.0, and 5.0 Gy to acquire a depth-R2 response curve. The dose-R2 response curve was linear up to approximately 7 Gy, with a slope of 1.25 Gy-1·s-1. Additionally, compared with the photon- irradiated gels, the neutron-irradiated gels had lower R2 values. The acquired depth-R2 curves of the central axis from the 3.0- and 5.0-Gy neutron dose-irradiated gels exhibited an initial build-up. Although, a detailed investigation is needed, polymer gel dosimetry is effective for measuring the dose-related R2 linearity and depth-R2 relationships of neutron beams.

  4. Instrumentation for treatment of cancer using proton and light-ion beams

    NASA Astrophysics Data System (ADS)

    Chu, W. T.; Ludewigt, B. A.; Renner, T. R.

    1993-08-01

    Clinical trials using accelerated heavy charged-particle beams for treating cancer and other diseases have been performed for nearly four decades. Recently there have been worldwide efforts to construct hospital-based medically dedicated proton or light-ion accelerator facilities. To make such accelerated heavy charged-particle beams clinically useful, specialized instruments must be developed to modify the physical characteristics of the particle beams in order to optimize their biological and clinical effects. This article reviews the beam modifying devices and associated dosimetric equipment developed specifically for controlling and monitoring the clinical beams.

  5. The ion beam sputtering facility at KURRI: Coatings for advanced neutron optical devices

    NASA Astrophysics Data System (ADS)

    Hino, Masahiro; Oda, Tatsuro; Kitaguchi, Masaaki; Yamada, Norifumi L.; Tasaki, Seiji; Kawabata, Yuji

    2015-10-01

    We describe a film coating facility for the development of multilayer mirrors for use in neutron optical devices that handle slow neutron beams. Recently, we succeeded in fabricating a large neutron supermirror with high reflectivity using an ion beam sputtering system (KUR-IBS), as well as all neutron supermirrors in two neutron guide tubes at BL06 at J-PARC/MLF. We also realized a large flexible self-standing m=5 NiC/Ti supermirror and very small d-spacing (d=1.65 nm) multilayer sheets. In this paper, we present an overview of the performance and utility of non-magnetic neutron multilayer mirrors fabricated with the KUR-IBS

  6. Spatial and spectral characteristics of a compact system neutron beam designed for BNCT facility.

    PubMed

    Ghassoun, J; Chkillou, B; Jehouani, A

    2009-04-01

    The development of suitable neutron sources and neutron beam is critical to the success of Boron Neutron Capture Therapy (BNCT). In this work a compact system designed for BNCT is presented. The system consists of (252)Cf fission neutron source and a moderator/reflector/filter/shield assembly. The moderator/reflector/filter arrangement has been optimized to maximize the epithermal neutron component which is useful for BNCT treatment of deep seated tumors with the suitably low level of beam contamination. The MCMP5 code has been used to calculate the different components of neutrons, secondary gamma rays originating from (252)Cf source and the primary gamma rays emitted directly by this source at the exit face of the compact system. The fluence rate distributions of such particles were also computed along the central axis of a human head phantom. PMID:19168369

  7. Measuring the free neutron lifetime to <= 0.3s via the beam method

    NASA Astrophysics Data System (ADS)

    Mulholland, Jonathan; Fomin, Nadia; BL3 Collaboration

    2015-10-01

    Neutron beta decay is an archetype for all semi-leptonic charged-current weak processes. A precise value for the neutron lifetime is required for consistency tests of the Standard Model and is needed to predict the primordial 4He abundance from the theory of Big Bang Nucleosynthesis. An effort has begun for an in-beam measurement of the neutron lifetime with an projected <=0.3s uncertainty. This effort is part of a phased campaign of neutron lifetime measurements based at the NIST Center for Neutron Research, using the Sussex-ILL-NIST technique. Recent advances in neutron fluence measurement techniques as well as new large area silicon detector technology address the two largest sources of uncertainty of in-beam measurements, paving the way for a new measurement. The experimental design and projected uncertainties for the 0.3s measurement will be discussed.

  8. Measuring the free neutron lifetime to <= 0.3s via the beam method

    NASA Astrophysics Data System (ADS)

    Fomin, Nadia; Mulholland, Jonathan

    2015-04-01

    Neutron beta decay is an archetype for all semi-leptonic charged-current weak processes. A precise value for the neutron lifetime is required for consistency tests of the Standard Model and is needed to predict the primordial 4 He abundance from the theory of Big Bang Nucleosynthesis. An effort has begun for an in-beam measurement of the neutron lifetime with an projected <=0.3s uncertainty. This effort is part of a phased campaign of neutron lifetime measurements based at the NIST Center for Neutron Research, using the Sussex-ILL-NIST technique. Recent advances in neutron fluence measurement techniques as well as new large area silicon detector technology address the two largest sources of uncertainty of in-beam measurements, paving the way for a new measurement. The experimental design and projected uncertainties for the 0.3s measurement will be discussed. This work is supported by the DOE office of Science, NIST and NSF.

  9. Dose measurements and calculations in the epithermal neutron beam at the Brookhaven Medical Research Reactor (BMRR)

    SciTech Connect

    Fairchild, R.G.; Greenberg, D.; Kamen, Y.; Fiarman, S. . Medical Dept.); Benary, V. . Medical Dept. Tel Aviv Univ. ); Kalef-Ezra, J. . Medical Dept. Ioannina Univ. ); Wielopolski, L. . Medical Dept. State Univ. of New

    1990-01-01

    The characteristics of the epithermal neutron beam at BMRR were measured, calculated, and reported. This beam has already been used for animal irradiations. We anticipate that it will be used for clinical trials. Thermal and epithermal neutron flux densities distributions, and dose rate distributions, as a function of depth were measured in a lucite dog-head phantom. Monte Carlo calculations were performed and compared with the measured values. 2 refs., 4 figs., 1 tab.

  10. Measurements of neutron dose equivalent for a proton therapy center using uniform scanning proton beams

    SciTech Connect

    Zheng Yuanshui; Liu Yaxi; Zeidan, Omar; Schreuder, Andries Niek; Keole, Sameer

    2012-06-15

    Purpose: Neutron exposure is of concern in proton therapy, and varies with beam delivery technique, nozzle design, and treatment conditions. Uniform scanning is an emerging treatment technique in proton therapy, but neutron exposure for this technique has not been fully studied. The purpose of this study is to investigate the neutron dose equivalent per therapeutic dose, H/D, under various treatment conditions for uniform scanning beams employed at our proton therapy center. Methods: Using a wide energy neutron dose equivalent detector (SWENDI-II, ThermoScientific, MA), the authors measured H/D at 50 cm lateral to the isocenter as a function of proton range, modulation width, beam scanning area, collimated field size, and snout position. They also studied the influence of other factors on neutron dose equivalent, such as aperture material, the presence of a compensator, and measurement locations. They measured H/D for various treatment sites using patient-specific treatment parameters. Finally, they compared H/D values for various beam delivery techniques at various facilities under similar conditions. Results: H/D increased rapidly with proton range and modulation width, varying from about 0.2 mSv/Gy for a 5 cm range and 2 cm modulation width beam to 2.7 mSv/Gy for a 30 cm range and 30 cm modulation width beam when 18 Multiplication-Sign 18 cm{sup 2} uniform scanning beams were used. H/D increased linearly with the beam scanning area, and decreased slowly with aperture size and snout retraction. The presence of a compensator reduced the H/D slightly compared with that without a compensator present. Aperture material and compensator material also have an influence on neutron dose equivalent, but the influence is relatively small. H/D varied from about 0.5 mSv/Gy for a brain tumor treatment to about 3.5 mSv/Gy for a pelvic case. Conclusions: This study presents H/D as a function of various treatment parameters for uniform scanning proton beams. For similar treatment

  11. Three-port beam splitter for slow neutrons using holographic nanoparticle-polymer composite diffraction gratings

    SciTech Connect

    Klepp, J.; Fally, M.; Tomita, Y.; Pruner, C.; Kohlbrecher, J.

    2012-10-08

    Diffraction of slow neutrons by nanoparticle-polymer composite gratings has been observed. By carefully choosing grating parameters such as grating thickness and spacing, a three-port beam splitter operation for slow neutrons - splitting the incident neutron intensity equally into the {+-}1st and the 0th diffraction orders - has been realized. As a possible application, a Zernike three-path interferometer is briefly discussed.

  12. Production cross section of neutron-rich isotopes with radioactive and stable beams

    NASA Astrophysics Data System (ADS)

    Mun, Myeong-Hwan; Adamian, G. G.; Antonenko, N. V.; Oh, Yongseok; Kim, Youngman

    2014-03-01

    The production cross section of neutron-rich isotopes of Ca, Zn, Te, Xe, and Pt are predicted in the diffusive multinucleon transfer reactions with stable and radioactive beams. With these isotopes one can treat the neutron shell evolution beyond N =28, 50, 82, and 126. Because of the small cross sections, the production of nuclei near the neutron drip line requires the optimal choice of reaction partners and bombarding energies.

  13. In-beam spectroscopic studies of shape coexistence and collectivity in the neutron-deficient Z ≈ 82 nuclei

    NASA Astrophysics Data System (ADS)

    Julin, R.; Grahn, T.; Pakarinen, J.; Rahkila, P.

    2016-02-01

    In the present paper we focus on studies of shape coexistence in even-mass nuclei in the neutron-deficient Pb region. They are based on experiments carried out using tagging techniques in the Accelerator Laboratory of the University of Jyväskylä, Finland. Excited states in many of these nuclei can only be accessed via fusion-evaporation reactions employing high-intensity stable-ion beams. The key features in these experiments are high selectivity, clean spectra and instrumentation that enables high count rates. We review three spectroscopic highlights in this region.

  14. Prediction of in-phantom dose distribution using in-air neutron beam characteristics for BNCS

    SciTech Connect

    Verbeke, Jerome M.

    1999-12-14

    A monoenergetic neutron beam simulation study is carried out to determine the optimal neutron energy range for treatment of rheumatoid arthritis using radiation synovectomy. The goal of the treatment is the ablation of diseased synovial membranes in joints, such as knees and fingers. This study focuses on human knee joints. Two figures-of-merit are used to measure the neutron beam quality, the ratio of the synovium absorbed dose to the skin absorbed dose, and the ratio of the synovium absorbed dose to the bone absorbed dose. It was found that (a) thermal neutron beams are optimal for treatment, (b) similar absorbed dose rates and therapeutic ratios are obtained with monodirectional and isotropic neutron beams. Computation of the dose distribution in a human knee requires the simulation of particle transport from the neutron source to the knee phantom through the moderator. A method was developed to predict the dose distribution in a knee phantom from any neutron and photon beam spectra incident on the knee. This method was revealed to be reasonably accurate and enabled one to reduce by a factor of 10 the particle transport simulation time by modeling the moderator only.

  15. Toward neutron-rich nuclei via transfer reactions with stable and radioactive beams

    NASA Astrophysics Data System (ADS)

    Mun, Myeong-Hwan; Adamian, G. G.; Antonenko, N. V.; Oh, Yongseok; Kim, Youngman

    2015-05-01

    The possibilities of production of yet-undiscovered neutron-rich isotopes of Ca, Gd, Dy, Er, Yb, Hf, W, Os, Hg, Pb, and Th are explored in various multinucleon transfer reactions with stable and radioactive beams. The probable projectile-target combinations and bombarding energies to produce these neutron-rich isotopes are suggested for future experiments.

  16. LANSCE beam instrumentation and the LANSCE refurbishment project

    SciTech Connect

    Mccrady, Rodney C; Blind, Barbara; Gilpatrick, John D; Pillai, Chandra; Power, John F; Rybarcyk, Lawrence J; Sedillo, James D; Gruchalla, Michael E

    2010-01-01

    The heart of the LANSCE accelerator complex consists of Cockroft-Walton-type injectors, a drift-tube linac (DTL) and a side-coupled linac (CCL). These systems are approaching 40 years of age and a project to re-establish high-power capability and to extend the lifetime is underway. Many of the present beam diagnostic systems are difficult to maintain, and the original beam position monitors don't provide any data at all. These deficiencies hamper beam tuning and trouble-shooting efforts. One thrust of the refurbishment project is to restore reliable operation of the diagnostic systems. This paper describes the present diagnostics systems and their limitations and the envisaged next-generation systems. The emphasis will be on the uses and requirements for the systems rather than the solutions and engineering aspects of the refurbishment.

  17. Performance of orbital neutron instruments for spatially resolved hydrogen measurements of airless planetary bodies.

    PubMed

    Lawrence, David J; Elphic, Richard C; Feldman, William C; Funsten, Herbert O; Prettyman, Thomas H

    2010-03-01

    Orbital neutron spectroscopy has become a standard technique for measuring planetary surface compositions from orbit. While this technique has led to important discoveries, such as the deposits of hydrogen at the Moon and Mars, a limitation is its poor spatial resolution. For omni-directional neutron sensors, spatial resolutions are 1-1.5 times the spacecraft's altitude above the planetary surface (or 40-600 km for typical orbital altitudes). Neutron sensors with enhanced spatial resolution have been proposed, and one with a collimated field of view is scheduled to fly on a mission to measure lunar polar hydrogen. No quantitative studies or analyses have been published that evaluate in detail the detection and sensitivity limits of spatially resolved neutron measurements. Here, we describe two complementary techniques for evaluating the hydrogen sensitivity of spatially resolved neutron sensors: an analytic, closed-form expression that has been validated with Lunar Prospector neutron data, and a three-dimensional modeling technique. The analytic technique, called the Spatially resolved Neutron Analytic Sensitivity Approximation (SNASA), provides a straightforward method to evaluate spatially resolved neutron data from existing instruments as well as to plan for future mission scenarios. We conclude that the existing detector--the Lunar Exploration Neutron Detector (LEND)--scheduled to launch on the Lunar Reconnaissance Orbiter will have hydrogen sensitivities that are over an order of magnitude poorer than previously estimated. We further conclude that a sensor with a geometric factor of approximately 100 cm(2) Sr (compared to the LEND geometric factor of approximately 10.9 cm(2) Sr) could make substantially improved measurements of the lunar polar hydrogen spatial distribution. PMID:20298147

  18. Performance of Orbital Neutron Instruments for Spatially Resolved Hydrogen Measurements of Airless Planetary Bodies

    PubMed Central

    Elphic, Richard C.; Feldman, William C.; Funsten, Herbert O.; Prettyman, Thomas H.

    2010-01-01

    Abstract Orbital neutron spectroscopy has become a standard technique for measuring planetary surface compositions from orbit. While this technique has led to important discoveries, such as the deposits of hydrogen at the Moon and Mars, a limitation is its poor spatial resolution. For omni-directional neutron sensors, spatial resolutions are 1–1.5 times the spacecraft's altitude above the planetary surface (or 40–600 km for typical orbital altitudes). Neutron sensors with enhanced spatial resolution have been proposed, and one with a collimated field of view is scheduled to fly on a mission to measure lunar polar hydrogen. No quantitative studies or analyses have been published that evaluate in detail the detection and sensitivity limits of spatially resolved neutron measurements. Here, we describe two complementary techniques for evaluating the hydrogen sensitivity of spatially resolved neutron sensors: an analytic, closed-form expression that has been validated with Lunar Prospector neutron data, and a three-dimensional modeling technique. The analytic technique, called the Spatially resolved Neutron Analytic Sensitivity Approximation (SNASA), provides a straightforward method to evaluate spatially resolved neutron data from existing instruments as well as to plan for future mission scenarios. We conclude that the existing detector—the Lunar Exploration Neutron Detector (LEND)—scheduled to launch on the Lunar Reconnaissance Orbiter will have hydrogen sensitivities that are over an order of magnitude poorer than previously estimated. We further conclude that a sensor with a geometric factor of ∼ 100 cm2 Sr (compared to the LEND geometric factor of ∼ 10.9 cm2 Sr) could make substantially improved measurements of the lunar polar hydrogen spatial distribution. Key Words: Planetary instrumentation—Planetary science—Moon—Spacecraft experiments—Hydrogen. Astrobiology 10, 183–200. PMID:20298147

  19. Instrumentation for diagnostics and control of laser-accelerated proton (ion) beams.

    PubMed

    Bolton, P R; Borghesi, M; Brenner, C; Carroll, D C; De Martinis, C; Fiorini, Francesca; Flacco, A; Floquet, V; Fuchs, J; Gallegos, P; Giove, D; Green, J S; Green, S; Jones, B; Kirby, D; McKenna, P; Neely, D; Nuesslin, F; Prasad, R; Reinhardt, S; Roth, M; Schramm, U; Scott, G G; Ter-Avetisyan, S; Tolley, M; Turchetti, G; Wilkens, J J

    2014-05-01

    Suitable instrumentation for laser-accelerated proton (ion) beams is critical for development of integrated, laser-driven ion accelerator systems. Instrumentation aimed at beam diagnostics and control must be applied to the driving laser pulse, the laser-plasma that forms at the target and the emergent proton (ion) bunch in a correlated way to develop these novel accelerators. This report is a brief overview of established diagnostic techniques and new developments based on material presented at the first workshop on 'Instrumentation for Diagnostics and Control of Laser-accelerated Proton (Ion) Beams' in Abingdon, UK. It includes radiochromic film (RCF), image plates (IP), micro-channel plates (MCP), Thomson spectrometers, prompt inline scintillators, time and space-resolved interferometry (TASRI) and nuclear activation schemes. Repetition-rated instrumentation requirements for target metrology are also addressed. PMID:24100298

  20. A Unique Outside Neutron and Gamma Ray Instrumentation Development Test Facility at NASA's Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Bodnarik, J.; Evans, L.; Floyd, S.; Lim, L.; McClanahan, T.; Namkung, M.; Parsons, A.; Schweitzer, J.; Starr, R.; Trombka, J.

    2010-01-01

    An outside neutron and gamma ray instrumentation test facility has been constructed at NASA's Goddard Space Flight Center (GSFC) to evaluate conceptual designs of gamma ray and neutron systems that we intend to propose for future planetary lander and rover missions. We will describe this test facility and its current capabilities for operation of planetary in situ instrumentation, utilizing a l4 MeV pulsed neutron generator as the gamma ray excitation source with gamma ray and neutron detectors, in an open field with the ability to remotely monitor and operate experiments from a safe distance at an on-site building. The advantage of a permanent test facility with the ability to operate a neutron generator outside and the flexibility to modify testing configurations is essential for efficient testing of this type of technology. Until now, there have been no outdoor test facilities for realistically testing neutron and gamma ray instruments planned for solar system exploration

  1. The Probing In-Situ With Neutron and Gamma Rays (PING) Instrument for Planetary Composition Measurements

    NASA Technical Reports Server (NTRS)

    Parsons, A.; Bodnarik, J.; Evans, L.; McClanahan, T.; Namkung, M.; Nowicki, S.; Schweitzer, J.; Starr, R.

    2012-01-01

    The Probing In situ with Neutrons and Gamma rays (PING) instrument (formerly named PNG-GRAND) [I] experiment is an innovative application of the active neutron-gamma ray technology successfully used in oil field well logging and mineral exploration on Earth over many decades. The objective of our active neutron-gamma ray technology program at NASA Goddard Space Flight Center (NASA/GSFC) is to bring PING to the point where it can be flown on a variety of surface lander or rover missions to the Moon, Mars, Venus, asteroids, comets and the satellites of the outer planets and measure their bulk surface and subsurface elemental composition without the need to drill into the surface. Gamma-Ray Spectrometers (GRS) have been incorporated into numerous orbital planetary science missions. While orbital measurements can map a planet, they have low spatial and elemental sensitivity due to the low surface gamma ray emission rates reSUlting from using cosmic rays as an excitation source, PING overcomes this limitation in situ by incorporating a powerful neutron excitation source that permits significantly higher elemental sensitivity elemental composition measurements. PING combines a 14 MeV deuterium-tritium Pulsed Neutron Generator (PNG) with a gamma ray spectrometer and two neutron detectors to produce a landed instrument that can determine the elemental composition of a planet down to 30 - 50 cm below the planet's surface, The penetrating nature of .5 - 10 MeV gamma rays and 14 MeV neutrons allows such sub-surface composition measurements to be made without the need to drill into or otherwise disturb the planetary surface, thus greatly simplifying the lander design, We are cun'ently testing a PING prototype at a unique outdoor neutron instrumentation test facility at NASA/GSFC that provides two large (1.8 m x 1.8 m x ,9 m) granite and basalt test formations placed outdoors in an empty field, Since an independent trace elemental analysis has been performed on both these

  2. Planck 2013 results. IV. Low Frequency Instrument beams and window functions

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J. J.; Bonaldi, A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R. C.; Cardoso, J.-F.; Catalano, A.; Chamballu, A.; Chiang, L.-Y.; Christensen, P. R.; Church, S.; Colombi, S.; Colombo, L. P. L.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Gaier, T. C.; Galeotta, S.; Ganga, K.; Giard, M.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Hanson, D.; Harrison, D.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Jaffe, A. H.; Jaffe, T. R.; Jewell, J.; Jones, W. C.; Juvela, M.; Kangaslahti, P.; Keihänen, E.; Keskitalo, R.; Kiiveri, K.; Kisner, T. S.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Leahy, J. P.; Leonardi, R.; Lesgourgues, J.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; Lindholm, V.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maino, D.; Mandolesi, N.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Naselsky, P.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Novikov, D.; Novikov, I.; O'Dwyer, I. J.; Osborne, S.; Paci, F.; Pagano, L.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Platania, P.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Ricciardi, S.; Riller, T.; Rocha, G.; Rosset, C.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Starck, J.-L.; Stolyarov, V.; Stompor, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Türler, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Varis, J.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Zacchei, A.; Zonca, A.

    2014-11-01

    This paper presents the characterization of the in-flight beams, the beam window functions, and the associated uncertainties for the Planck Low Frequency Instrument (LFI). Knowledge of the beam profiles is necessary for determining the transfer function to go from the observed to the actual sky anisotropy power spectrum. The main beam distortions affect the beam window function, complicating the reconstruction of the anisotropy power spectrum at high multipoles, whereas the sidelobes affect the low and intermediate multipoles. The in-flight assessment of the LFI main beams relies on the measurements performed during Jupiter observations. By stacking the datafrom multiple Jupiter transits, the main beam profiles are measured down to -20 dB at 30 and 44 GHz, and down to -25 dB at 70 GHz. The main beam solid angles are determined to better than 0.2% at each LFI frequency band. The Planck pre-launch optical model is conveniently tuned to characterize the main beams independently of any noise effects. This approach provides an optical model whose beams fully reproduce the measurements in the main beam region, but also allows a description of the beams at power levels lower than can be achieved by the Jupiter measurements themselves. The agreement between the simulated beams and the measured beams is better than 1% at each LFI frequency band. The simulated beams are used for the computation of the window functions for the effective beams. The error budget for the window functions is estimated from both main beam and sidelobe contributions, and accounts for the radiometer bandshapes. The total uncertainties in the effective beam window functions are: 2% and 1.2% at 30 and 44 GHz, respectively (at ℓ ≈ 600), and 0.7% at 70 GHz (at ℓ ≈ 1000).

  3. Microdosimetric measurements of radiation quality variations in homogeneous phantoms irradiated by fast neutron beams

    SciTech Connect

    Beach, J.L.; Milavickas, L.R.

    1982-01-01

    The Dual Radiation Action Theory of Kellerer and Rossi (DRA), along with presently available microdosimetric techniques, is applied to the detrmination of radiation quality variation within tissue equivalent phantoms irradiated by collimated fast neutron beams. The neutron beams investigated were produced by the bombardment of 22.5 and 16 MeV d+ on beryllium and by the T(d,n)/sup 4/He reaction (15-MeV neutrons). Microdosimetric spectra were obtained at points of varying depth and lateral distance from the central axis within a tissue equivalent phantom, including points within the penumbra. From the microdosimetric spectra the parameter RQ, a first approximation to RBE derived from DRA theory, is calculated for each point. All RQ values are calculated for the same level of effect. For these three different beams the results show that the RQ values for the total radiation spectrum of neutron and gamma radiation remain fairly constant with depth and with lateral distance from the beam axis at 2 and 10 cm depths. The largest central axis variation in RQ is 8% for the d(16)+Be beam. The largest variation between a penumbra and an on-axis RQ value is 4% at 2 cm depth in the d(22.5)+Be beam. The results for the d(22.5)+Be beam disagree with previously reported radiobiological results while the 15 MeV beam results are in good agreement.

  4. BEAM-LOSS DRIVEN DESIGN OPTIMIZATION FOR THE SPALLATION NEUTRON SOURCE (SNS) RING.

    SciTech Connect

    WEI,J.; BEEBE-WANG,J.; BLASKIEWICZ,M.; CAMERON,P.; DANBY,G.; GARDNER,C.J.; JACKSON,J.; LEE,Y.Y.; LUDEWIG,H.; MALITSKY,N.; RAPARIA,D.; TSOUPAS,N.; WENG,W.T.; ZHANG,S.Y.

    1999-03-29

    This paper summarizes three-stage design optimization for the Spallation Neutron Source (SNS) ring: linear machine design (lattice, aperture, injection, magnet field errors and misalignment), beam core manipulation (painting, space charge, instabilities, RF requirements), and beam halo consideration (collimation, envelope variation, e-p issues etc.).

  5. Induction of Micronuclei in Human Fibroblasts from the Los Alamos High Energy Neutron Beam

    NASA Technical Reports Server (NTRS)

    Cox, Bradley

    2009-01-01

    The space radiation field includes a broad spectrum of high energy neutrons. Interactions between these neutrons and a spacecraft, or other material, significantly contribute to the dose equivalent for astronauts. The 15 degree beam line in the Weapons Neutron Research beam at Los Alamos Nuclear Science Center generates a neutron spectrum relatively similar to that seen in space. Human foreskin fibroblast (AG1522) samples were irradiated behind 0 to 20 cm of water equivalent shielding. The cells were exposed to either a 0.05 or 0.2 Gy entrance dose. Following irradiation, micronuclei were counted to see how the water shield affects the beam and its damage to cell nuclei. Micronuclei induction was then compared with dose equivalent data provided from a tissue equivalent proportional counter.

  6. Ion beam and neutron output from a sub-kilojoule dense plasma focus

    SciTech Connect

    Ellsworth, J. L. Falabella, S. Schmidt, A. Tang, V.

    2014-12-15

    We are seeking to gain a better fundamental understanding of the ion beam acceleration and neutron production dense plasma focus (DPF) device. Experiments were performed on a kilojoule level, fast rise time DPF located at LLNL. Ion beam spectra and neutron yield were measured for deuterium pinches. Visible light images of the pinch are used to determine the pinch length. In addition, an RF probe was placed just outside the cathode to measure fluctuations in E{sub z} up to 6 GHz, which is within the range of the lower hybrid frequencies. We find these oscillations arise at a characteristic frequency near 4 GHz during the pinch. Comparisons of the neutron yield and ion beam characteristics are presented. The neutron yield is also compared to scaling laws.

  7. Characterization of deuterium beam operation on RHEPP-1 for future neutron generation applications.

    SciTech Connect

    Schall, Michael; Cooper, Gary Wayne; Renk, Timothy Jerome

    2009-12-01

    We investigate the potential for neutron generation using the 1 MeV RHEPP-1 intense pulsed ion beam facility at Sandia National Laboratories for a number of emerging applications. Among these are interrogation of cargo for detection of special nuclear materials (SNM). Ions from single-stage sources driven by pulsed power represent a potential source of significant neutron bursts. While a number of applications require higher ion energies (e.g. tens of MeV) than that provided by RHEPP-1, its ability to generate deuterium beams allow for neutron generation at and below 1 MeV. This report details the successful generation and characterization of deuterium ion beams, and their use in generating up to 3 x 10{sup 10} neutrons into 4{pi} per 5kA ion pulse.

  8. Radiation transport calculations for the ANS (Advanced Neutron Source) beam tubes

    SciTech Connect

    Engle, W.W., Jr.; Lillie, R.A.; Slater, C.O.

    1988-01-01

    The Advanced Neutron Source facility (ANS) will incorporate a large number of both radial and no-line-of-sight (NLS) beam tubes to provide very large thermal neutron fluxes to experimental facilities. The purpose of this work was to obtain comparisons for the ANS single- and split-core designs of the thermal and damage neutron and gamma-ray scalar fluxes in these beams tubes. For experimental locations far from the reactor cores, angular flux data are required; however, for close-in experimental locations, the scalar fluxes within each beam tube provide a credible estimate of the various signal to noise ratios. In this paper, the coupled two- and three-dimensional radiation transport calculations employed to estimate the scalar neutron and gamma-ray fluxes will be described and the results from these calculations will be discussed. 6 refs., 2 figs.

  9. The Berkeley Instrumental Neutron Generator (BINGE) for 40Ar/39Ar geochronology

    NASA Astrophysics Data System (ADS)

    Renne, P. R.; Becker, T. A.; Bernstein, L.; Firestone, R. B.; Kirsch, L.; Leung, K. N.; Rogers, A.; Van Bibber, K.; Waltz, C.

    2014-12-01

    The Berkeley Instrumental Neutron Generator (BINGE) facility is the product of a consortium involving the Berkeley Geochronology Center (BGC), the U.C. Berkeley Nuclear Engineering Dept. (UCB/NE), and Lawrence Berkeley (LBNL) and Lawrence Livermore (LLNL) National Labs. BINGE was initially designed (and funded by NSF) for 40Ar/39Ar geochronology. BINGE uses a plasma-based deuteron ion source and a self-loading Ti-surfaced target to induce deuteron-deuterium (DD) fusion via the reaction 2H(d,n)3He, producing 2.45 MeV neutrons. The limited neutron energy spectrum is aimed at reducing recoil effects, interfering nuclear reactions, and unwanted radioactive byproducts, all of which are undesirable consequences of conventional irradiation with 235U fission spectrum neutrons. Minimization of interfering reactions such as 40Ca(n,na)36Ar greatly reduces penalties for over-irradiation, enabling improved signal/background measurement of e.g. 39Ar. BINGE will also be used for a variety of nuclear physics and engineering experiments that require a high flux of monoenergetic neutrons. Neutron energies lower than 2.45 MeV can be obtained via irradiation ports within and external to polyethylene shielding. Initial commissioning produced a neutron flux of 108 n/sec/cm2 at 1 mA source current and 100 kV anode voltage, as expected. When scaled up to the 1 A source current as planned, this indicates that BINGE will achieve the design objective neutron flux of 1011 n/sec/cm2. Further progress towards this goal will be reported. Supported by NSF (grant #EAR-0960138), BGC, UCB/NE, University of California Office of the President, and DOE through LLNL under contract #DE-AC52-07NA27344 and LBNL under contract #DE-AC02-05CH11231.

  10. Clinical evaluation of neutron beam therapy. Current results and prospects, 1983

    SciTech Connect

    Cohen, L.; Hendrickson, F.R.; Kurup, P.D.; Mansell, J.A.; Awschalom, M.; Rosenberg, I.; Ten Haken, R.K.

    1985-01-01

    Some 9000 patients throughout the world have been treated by some form of neutron beam therapy. These include patients with advanced nonresectable tumors in many different sites treated with a variety of neutron beam generators varying widely in beam energy. Protocols were largely nonrandomized and included both mixed beam studies (neutrons + photons) and neutrons alone in varying doses. In spite of wide variation in equipment, treatment technique, and philosophy, some consistent trends have been identified: (1) in general, the neutron results have been at least as good as those of the photon controls measured in terms of local control, although the incidence of significant side effects have been higher; (2) in none of the randomized studies conducted so far, largely comprising epidermoid carcinomas of the head and neck, has a clear survival advantage for neutrons over photon controls been demonstrated at a statistically significant level; (3) results with mixed beam studies have been uniformly equivocal, with marginally significant differences in favor of the experimental groups compared with the photon controls; (4) adenocarcinomas of the gastrointestinal tract (GI) tract, including tumors of the salivary gland, pancreas, stomach, and bowel, appear to be responsive to high linear energy transfer (LET) radiation; (5) nonepidermoid, radioresistant tumors (sarcoma of bone and soft tissue and melanoma) yield a consistantly high local control rate, with neutron irradiation strikingly superior to those reported with photon therapy; and (6) in the central nervous system, both normal tissues and tumors appear to be exceptionally sensitive to neutron irradiation, therapeutic ratios are small, and the prospect of cure remains remote. It is concluded that neutrons are efficacious for certain specific tumor types, but that essentially new study designs, based on nonrandomized matched case comparisons, will be required to prove the merit of the new modality.

  11. Neutron-beam CT of magmatic rocks: Method development and applications

    NASA Astrophysics Data System (ADS)

    Wilding, M. C.; Shields, K. E.; Heister, L.; Simpson, J.; Gibbons, M.; Richards, W. J.; Lesher, C. E.

    2001-12-01

    A 2-megawatt TRIGA reactor, now owned and operated by UC Davis as a research facility, was especially designed and built by the USAF with a large L/D for neutron-beam radiography of aircraft parts. More recent efforts in computed tomography (CT) have established capabilities of 3-D imaging of a broad range of geological materials, including textured igneous rocks up to 10's cm in size. Neutron-beam imaging is complementary to X-ray CT, especially because of the high neutron cross-sections for many light elements that are not easily detected by X-rays. Our goal is to optimize neutron-beam CT techniques for quantitative studies of igneous textures and mineralogy. To this end, we have made improvements in both image acquisition and data processing. Specifically, we have measured the attenuation coefficient for diabase for beam-hardening corrections. We have characterized the dark charge contribution and developed new strategies for flat field corrections. We have increased our sampling density to 360 images per 180º of rotation, and now correct for beam divergence. Each of these procedures contribute to a reduction in ring artifacts and thus improve image resolution. To maximize attenuation contrast, we collect images with a Cd-filtered neutron-beam. Other energy filtering techniques are also being explored. We will show examples of this imaging technique as well as applications to gabbroic rocks of the Skaergaard intrusion which involve the quantification of compaction gradients.

  12. The modeling of a linear multi-beam deuteron compact accelerator for neutron generation

    NASA Astrophysics Data System (ADS)

    Araujo, Wagner L.; Campos, Tarcisio P. R.

    2012-07-01

    There is a prominent interest in obtaining high-flux neutron generators due to its wide range of applications and possibilities. The beam current that reaches the target is one of the main factors for determining the performance of the generator. In the present paper we address the modeling of a deuteron compact accelerator for neutron generation underlying the electrode placement and providing an optimized multiple beam accelerator geometry. The methodology consists of electrode displacement calculations and simulations of the deuteron and neutron beam transport. A phenomenological model has been proposed based on experimental data, which provides two electrode configuration patterns. Both configurations were compared through electromagnetic simulations considering a single-beam accelerator-type. The configuration with highest ion current has led to a new geometry incorporating multiple beams. The final prototype presents an interesting beam profile achieving deuteron kinetic energy in the order of 180 keV and current up to 198 mA. Estimated yield for this generator was 1012 n/s. A shield was designed, based on Monte Carlo simulations. Dose calculation was appraised showing a neutron and photon dose rate of 7.73 and 14.50 mGy h-1 in front of 46 cm shield. The achieved design offers a suitable performance toward a compact high-flux neutron generator.

  13. Neutrons in proton pencil beam scanning: parameterization of energy, quality factors and RBE

    NASA Astrophysics Data System (ADS)

    Schneider, Uwe; Hälg, Roger A.; Baiocco, Giorgio; Lomax, Tony

    2016-08-01

    The biological effectiveness of neutrons produced during proton therapy in inducing cancer is unknown, but potentially large. In particular, since neutron biological effectiveness is energy dependent, it is necessary to estimate, besides the dose, also the energy spectra, in order to obtain quantities which could be a measure of the biological effectiveness and test current models and new approaches against epidemiological studies on cancer induction after proton therapy. For patients treated with proton pencil beam scanning, this work aims to predict the spatially localized neutron energies, the effective quality factor, the weighting factor according to ICRP, and two RBE values, the first obtained from the saturation corrected dose mean lineal energy and the second from DSB cluster induction. A proton pencil beam was Monte Carlo simulated using GEANT. Based on the simulated neutron spectra for three different proton beam energies a parameterization of energy, quality factors and RBE was calculated. The pencil beam algorithm used for treatment planning at PSI has been extended using the developed parameterizations in order to calculate the spatially localized neutron energy, quality factors and RBE for each treated patient. The parameterization represents the simple quantification of neutron energy in two energy bins and the quality factors and RBE with a satisfying precision up to 85 cm away from the proton pencil beam when compared to the results based on 3D Monte Carlo simulations. The root mean square error of the energy estimate between Monte Carlo simulation based results and the parameterization is 3.9%. For the quality factors and RBE estimates it is smaller than 0.9%. The model was successfully integrated into the PSI treatment planning system. It was found that the parameterizations for neutron energy, quality factors and RBE were independent of proton energy in the investigated energy range of interest for proton therapy. The pencil beam algorithm has

  14. Neutrons in proton pencil beam scanning: parameterization of energy, quality factors and RBE.

    PubMed

    Schneider, Uwe; Hälg, Roger A; Baiocco, Giorgio; Lomax, Tony

    2016-08-21

    The biological effectiveness of neutrons produced during proton therapy in inducing cancer is unknown, but potentially large. In particular, since neutron biological effectiveness is energy dependent, it is necessary to estimate, besides the dose, also the energy spectra, in order to obtain quantities which could be a measure of the biological effectiveness and test current models and new approaches against epidemiological studies on cancer induction after proton therapy. For patients treated with proton pencil beam scanning, this work aims to predict the spatially localized neutron energies, the effective quality factor, the weighting factor according to ICRP, and two RBE values, the first obtained from the saturation corrected dose mean lineal energy and the second from DSB cluster induction. A proton pencil beam was Monte Carlo simulated using GEANT. Based on the simulated neutron spectra for three different proton beam energies a parameterization of energy, quality factors and RBE was calculated. The pencil beam algorithm used for treatment planning at PSI has been extended using the developed parameterizations in order to calculate the spatially localized neutron energy, quality factors and RBE for each treated patient. The parameterization represents the simple quantification of neutron energy in two energy bins and the quality factors and RBE with a satisfying precision up to 85 cm away from the proton pencil beam when compared to the results based on 3D Monte Carlo simulations. The root mean square error of the energy estimate between Monte Carlo simulation based results and the parameterization is 3.9%. For the quality factors and RBE estimates it is smaller than 0.9%. The model was successfully integrated into the PSI treatment planning system. It was found that the parameterizations for neutron energy, quality factors and RBE were independent of proton energy in the investigated energy range of interest for proton therapy. The pencil beam algorithm has

  15. Report on the workshop on Monte Carlo simulation of neutron scattering instruments

    SciTech Connect

    Crawford, R.K.

    1998-01-09

    The main purpose of this workshop was to reach a consensus concerning the desired features of a general computer program for source-to-detector Monte Carlo simulation of neutron scattering instruments. A second goal was to decide on a strategy for achieving this and to begin to portion out the tasks involved to avoid duplication of efforts among the various groups. The meeting was organized by Kent Crawford (Argonne National Laboratory) and attended by representatives of all the major US neutron scattering facilities and several of the European neutron scattering facilities. This document is a summary of the discussions that took place during the workshop. A copy of the meeting schedule is attached, as well as a list of participants.

  16. Active Neutron and Gamma Ray Instrumentation for In Situ Planetary Science Applications

    NASA Technical Reports Server (NTRS)

    Parsons, A.; Bodnarik, J.; Evans, L.; Floyd, S.; Lim, L.; McClanahan, T.; Namkung, M.; Schweitzer, J.; Starr, R.; Trombka, J.

    2010-01-01

    The Pulsed Neutron Generator-Gamma Ray And Neutron Detectors (PNG-GRAND) experiment is an innovative application of the active neutron-gamma ray technology so successfully used in oil field well logging and mineral exploration on Earth. The objective of our active neutron-gamma ray technology program at NASA Goddard Space Flight Center (NASA-GSFC) is to bring the PNG-GRAND instrument to the point where it can be flown on a variety of surface lander or rover missions to the Moon, Mars, Menus, asteroids, comets and the satellites of the outer planets. Gamma-Ray Spectrometers (GRS) have been incorporated into numerous orbital planetary science missions and, especially its the case of the Mars Odyssey GRS, have contributed detailed maps of the elemental composition over the entire surface of Mars. However, orbital gamma ray measurements have low spatial sensitivity (100's of km) due to their low surface emission rates from cosmic rays and subsequent need to be averaged over large surface areas. PNG-GRAND overcomes this impediment by incorporating a powerful neutron excitation source that permits high sensitivity surface and subsurface measurements of bulk elemental compositions. PNG-GRAND combines a pulsed neutron generator (PNG) with gamma ray and neutron detectors to produce a landed instrument to determine subsurface elemental composition without needing to drill into a planet's surface a great advantage in mission design. We are currently testing PNG-GRAND prototypes at a unique outdoor neutron instrumentation test facility recently constructed at NASA/GSFC that consists of a 2 m x 2 in x 1 m granite structure placed outdoors in an empty field. Because an independent trace elemental analysis has been performed on the material, this granite sample is a known standard with which to compare both Monte Carlo simulations and our experimentally measured elemental composition data. We will present data from operating PNG-GRAND in various experimental configurations on a

  17. Performance characteristics of the new detector array for the SANS2d instrument on the ISIS spallation neutron source

    NASA Astrophysics Data System (ADS)

    Duxbury, D.; Heenan, R.; McPhail, D.; Raspino, D.; Rhodes, N.; Rogers, S.; Schooneveld, E.; Spill, E.; Terry, A.

    2014-12-01

    The performance of the new position sensitive neutron detector arrays of the Small Angle Neutron Scattering (SANS) instrument SANS2d is described. The SANS2d instrument is one of the seven instruments currently available for users on the second target station (TS2) of the ISIS spallation neutron source. Since the instrument became operational in 2009 it has used two one metre square multi-wire proportional detectors (MWPC). However, these detectors suffer from a low count rate capability, are easily damaged by excess beam and are then expensive to repair. The new detector arrays each consist of 120 individual position sensitive detector tubes, filled with 15 bar of 3He. Each of the tubes is one metre long and has a diameter of 8mm giving a detector array with an overall area of one square metre. Two such arrays have been built and installed in the SANS2d vacuum tank where they are currently taking user data. For SANS measurements operation of the detector within a vacuum is essential in order to reduce air scattering. A novel, fully engineered approach has been utilised to ensure that the high voltage connections and preamps are located inside the SANS2d vacuum tank at atmospheric pressure, within air tubes and air boxes respectively. The signal processing electronics and data acquisition system are located remotely in a counting house outside of the blockhouse. This allows easy access for maintenance purposes, without the need to remove the detectors from the vacuum tank. The design will be described in detail. A position resolution of 8mm FWHM or less has been measured along the length of the tubes. The initial measurements taken from a standard sample indicate that whilst the detector arrays themselves only represent a moderate improvement in overall detection efficiency (~ 20%), compared to the previous detector, the count rate capability is increased by a factor of 100. A significant advantage of the new array is the ability to change a single tube in situ

  18. Neutron xyz - polarization analysis at a time-of-flight instrument

    SciTech Connect

    Ehlers, Georg; Stewart, John Ross; Andersen, Ken

    2015-01-01

    When implementing a dedicated polarization analysis setup at a neutron time-of-flight instrument with a large area detector, one faces enormous challenges. Nevertheless, significant progress has been made towards this goal over the last few years. This paper addresses systematic limitations of the traditional method that is used to make these measurements, and a possible strategy to overcome these limitations. This will be important, for diffraction as well as inelastic experiments, where the scattering occurs mostly out-of-plane.

  19. Instrumental neutron activation analysis of soil and sediment samples from Siwa Oasis, Egypt

    NASA Astrophysics Data System (ADS)

    Badawy, Wael M.; Ali, Khaled; El-Samman, Hussein M.; Frontasyeva, Marina V.; Gundorina, Svetlana F.; Duliu, Octavian G.

    2015-07-01

    Instrumental neutron activation analysis was used to study geochemical peculiarities of the Siwa Oasis in the Western Egyptian Desert. A total of 34 elements were determined in soil and sediment samples (Na, Mg, Al, Cl, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Zn, As, Br, Rb, Sr, Zr, Sb, I, Cs, Ba, La, Ce, Nd, Eu, Tb, Dy, Tm, Yb, Hf, Ta, Th, and U). For data interpretation Cluster analysis was applied. Comparison with the available literature data was carried out.

  20. Multifunction Instrument Tree (MIT) Neutron and Gamma Probe Acceptance for Beneficial Use (ABU)

    SciTech Connect

    CANNON, N.S.

    1999-08-08

    The multifunction instrument tree (MIT) probe program has been developed to modify existing Liquid Observation Well (LOW) neutron and gamma probes for use in the validation shafts of the two MITs installed in Tank 241-SY-101. One of the program objectives is that the modified MIT probes be completely compatible with the existing LOW van instrumentation and procedures. The major program objective is to produce neutron and gamma scans from Tank 241-SY-101 that would assist in evaluating waste feature structure and elevation. The MIT probe program is described in greater detail in the engineering task plan (HNF-3322). In accordance with the engineering task plan, a test plan (HNF-3595) was written, reduced diameter (allowing insertion into the MIT validation tube) neutron and gamma probes were acquired, an acceptance and operational test procedure (HNF-3838) was written, acceptance and operational testing of the MIT probes was performed, and a report of these test results (HNF-4369) has been issued. A number of neutron and gamma probe scans have been obtained from the Tank 241-SY-101 MITs, starting on February 8, 1999, in cooperation with Operations. Now that the MIT probes are fully demonstrated, this document transfers ownership of these probes to Operations, utilizing the final acceptance for beneficial use (ABU) form that follows in Section 3.0.

  1. Characterisation of an accelerator-based neutron source for BNCT versus beam energy

    NASA Astrophysics Data System (ADS)

    Agosteo, S.; Curzio, G.; d'Errico, F.; Nath, R.; Tinti, R.

    2002-01-01

    Neutron capture in 10B produces energetic alpha particles that have a high linear energy transfer in tissue. This results in higher cell killing and a higher relative biological effectiveness compared to photons. Using suitably designed boron compounds which preferentially localize in cancerous cells instead of healthy tissues, boron neutron capture therapy (BNCT) has the potential of providing a higher tumor cure rate within minimal toxicity to normal tissues. This clinical approach requires a thermal neutron source, generally a nuclear reactor, with a fluence rate sufficient to deliver tumorcidal doses within a reasonable treatment time (minutes). Thermal neutrons do not penetrate deeply in tissue, therefore BNCT is limited to lesions which are either superficial or otherwise accessible. In this work, we investigate the feasibility of an accelerator-based thermal neutron source for the BNCT of skin melanomas. The source was designed via MCNP Monte Carlo simulations of the thermalization of a fast neutron beam, generated by 7 MeV deuterons impinging on a thick target of beryllium. The neutron field was characterized at several deuteron energies (3.0-6.5 MeV) in an experimental structure installed at the Van De Graaff accelerator of the Laboratori Nazionali di Legnaro, in Italy. Thermal and epithermal neutron fluences were measured with activation techniques and fast neutron spectra were determined with superheated drop detectors (SDD). These neutron spectrometry and dosimetry studies indicated that the fast neutron dose is unacceptably high in the current design. Modifications to the current design to overcome this problem are presented.

  2. Coarse-scaling adjustment of fine-group neutron spectra for epithermal neutron beams in BNCT using multiple activation detectors

    NASA Astrophysics Data System (ADS)

    Liu, Yuan-Hao; Nievaart, Sander; Tsai, Pi-En; Liu, Hong-Ming; Moss, Ray; Jiang, Shiang-Huei

    2009-01-01

    In order to provide an improved and reliable neutron source description for treatment planning in boron neutron capture therapy (BNCT), a spectrum adjustment procedure named coarse-scaling adjustment has been developed and applied to the neutron spectrum measurements of both the Tsing Hua Open-pool Reactor (THOR) epithermal neutron beam in Taiwan and the High Flux Reactor (HFR) in The Netherlands, using multiple activation detectors. The coarse-scaling adjustment utilizes a similar idea as the well-known two-foil method, which adjusts the thermal and epithermal neutron fluxes according to the Maxwellian distribution for thermal neutrons and 1/ E distribution over the epithermal neutron energy region. The coarse-scaling adjustment can effectively suppress the number of oscillations appearing in the adjusted spectrum and provide better smoothness. This paper also presents a sophisticated 9-step process utilizing twice the coarse-scaling adjustment which can adjust a given coarse-group spectrum into a fine-group structure, i.e. 640 groups, with satisfactory continuity and excellently matched reaction rates between measurements and calculation. The spectrum adjustment algorithm applied in this study is the same as the well-known SAND-II.

  3. SPIDER: A new instrument for fission fragment research at the Los Alamos Neutron Science Center

    NASA Astrophysics Data System (ADS)

    Tovesson, Fredrik; Arnold, Charles; Blakeley, Rick; Hecht, Adam; Laptev, Alexander; Mader, Drew; Meierbachtol, Krista; Snyder, Lucas; White, Morgan

    2013-12-01

    The study of fission fragment yields and how they behave as a function of excitation energy provides insight into the process in which they are formed. Fission yields are also important for nuclear applications, as they can be used as a diagnostic tool. A new instrument, SPIDER (Spectrometer for Ion DEtermination in fission Research), is being developed for measuring fission yields as a function of incident neutron energy at the Los Alamos Neutron Science Center. The instrument employs a time-of-flight mass spectrometry method in which the velocity and kinetic energy of the fragments are measured in order to determine their mass. Additionally, by using Bragg peak spectroscopy, the charge of the fragments can be identified. A prototype instrument has been developed and preliminary results indicate that ˜ 1 mass unit resolution is feasible using this approach. A larger detector array is currently being designed, and will be used at study fission yields from thermal neutron energies up to at least 20 MeV.

  4. Advances in Neutron Spectroscopy and High Magnetic Field Instrumentation for studies of Correlated Electron Systems

    SciTech Connect

    Granroth, Garrett E

    2011-01-01

    Neutron Spectroscopy has provided critical information on the magnetism in correlated electron systems. Specifically quantum magnets, superconductors, and multi-ferroics are areas of productive research. A discussion of recent measurements on the SEQUOIA spectrometer will provide examples of how novel instrumentation concepts are used on the latest generation of spectrometers to extend our knowledge in such systems. The now ubiquitous function of sample rotation allows for full mapping of volumes of $Q$ and $\\omega$ space. An instrument focused on low angles could extend these maps to cover more of the first Brillioun zone. Innovative chopper cascades allow two unique modes of operation. Multiplexed measurements allow the simultaneous measurement of high and low energy features in an excitation spectrum. Alternatively by limiting the neutron bandwidth incident on the Fermi Chopper, background from subsequent time frames is removed, enabling the observation of weak, large energy transfer features. Finally the implementation of event-based detection for neutron experiments is time correlated experiments. Diffraction studies of the high field spin states in MnWO$_4$ using magnetic fields up to 30 T, provided by a pulsed magnet, illustrate this method. Expanding the high field studies to spectroscopy will require a novel instrument, focused around a world class DC magnet, like Zeemans proposed for the SNS.

  5. SIMULATION OF NEUTRON BACKGROUNDS FROM THE ILC EXTRACTION LINE BEAM DUMP

    SciTech Connect

    Darbha, S; Keller, L.; Maruyama, T.

    2008-01-01

    The operation of the International Linear Collider (ILC) as a precision measurement machine is dependent upon the quality of the charge-coupled device (CCD) silicon vertex detector. An integrated fl ux of 1010 neutrons/cm2 incident upon the vertex detector will degrade its performance by causing displacement damage in the silicon. One source of the neutron background arises from the dumping of the spent electron and positron beams into the extraction line beam dumps. The Monte Carlo program FLUKA was used to simulate the collision of the electron beam with the dump and to determine the resulting neutron fl ux at the interaction point (IP). A collimator and tunnel were added and their effect on the fl ux was analyzed. A neutron source was then generated and directed along the extraction line towards a model of the vertex detector to determine the neutron fl ux in its silicon layers. Models of the beampipe and BeamCal, a silicon-tungsten electromagnetic calorimeter in the very forward region of the detector, were placed in the extraction line and their effects on scattering were studied. The IP fl uence was determined to be 3.7x1010 +/- 2.3x1010 neutrons/cm2/year when the tunnel and collimator were in place, with no appreciable increase in statistics when the tunnel was removed. The BeamCal was discovered to act as a collimator by signifi cantly impeding the fl ow of neutrons towards the detector. The majority of damage done to the fi rst layer of the detector was found to come from neutrons with a direct line of sight from the fi rst extraction line quadrupole QDEX1, with only a small fraction scattering off of the beampipe and into the detector. The 1 MeV equivalent neutron fl uence was determined to be 9.3x108 neutrons/cm2/year from the electron beam alone. The two beams collectively contribute double to this fl uence, which is 19% of the threshold value in one year. Future work will improve the detector model and other sources of neutron backgrounds will be

  6. Comparative study of MC-50 and ANITA neutron beams by using 55 nm SRAM

    NASA Astrophysics Data System (ADS)

    Baeg, Sanghyeon; Lee, Soonyoung; Bak, Geun Yong; Jeong, Hyunsoo; Jeon, Sang Hoon

    2012-09-01

    Single event upset (SEU) is mainly caused by neutrons in the terrestrial environment. In addition, SEU effects become more and more problematic as technology scales. It is, therefore, important to understand the SEU behaviors of semiconductor devices under neutron reactions. ANITA (atmospheric-like neutrons from thick target) in TSL (The Svedberg Laboratory), Sweden, resembles the neutron energy and flux spectrum to neutrons at the terrestrial level and are typically used to estimate the soft error rate (SER). On the other hand, the neutron energy and flux spectrum from the MC-50 cyclotron at KIRAMS (Korea Institute of Radiological & Medical Sciences) differs greatly from the atmospheric environment. The main objective of this work is finding the efficacy of the neutron beam at KIRAMS for a SEU analysis by using a comparative analysis; 55 nm SRAM is used to determine SEU difference under the beams at two different locations. Since MCU (multi-cell upset) is the dominant effect in emerging technologies with smaller critical charges, the MCU cross sections from the two different beam tests are compared.

  7. Optimum design and criticality safety of a beam-shaping assembly with an accelerator-driven subcritical neutron multiplier for boron neutron capture therapies.

    PubMed

    Hiraga, F

    2015-12-01

    The beam-shaping assembly for boron neutron capture therapies with a compact accelerator-driven subcritical neutron multiplier was designed so that an epithermal neutron flux of 1.9×10(9) cm(-2) s(-1) at the treatment position was generated by 5 MeV protons in a beam current of 2 mA. Changes in the atomic density of (135)Xe in the nuclear fuel due to the operation of the beam-shaping assembly were estimated. The criticality safety of the beam-shaping assembly in terms of Xe poisoning is discussed. PMID:26235186

  8. SU-E-T-304: Study of Secondary Neutrons From Uniform Scanning Proton Beams

    SciTech Connect

    Islam, M; Zheng, Y; Benton, E

    2014-06-01

    Purpose: Secondary neutrons are unwanted byproducts from proton therapy and exposure from secondary radiation during treatment could increase risk of developing a secondary cancer later in a patient's lifetime. The purpose of this study is to investigate secondary neutrons from uniform scanning proton beams under various beam conditions using both measurements and Monte Carlo simulations. Methods: CR-39 Plastic Track Nuclear Detectors (PNTD) were used for the measurement. CR-39 PNTD has tissue like sensitivity to the secondary neutrons but insensitive to the therapeutic protons. In this study, we devised two experimental conditions: a) hollow-phantom; phantom is bored with a hollow cylinder along the direction of the beam so that the primary proton passes through the phantom without interacting with the phantom material, b) cylindrical-phantom; a solid cylinder of diameter close to the beam diameter is placed along the beam path. CR-39 PNTDs were placed laterally inside a 60X20X35 cm3 phantom (hollow-phantom) and in air (cylindrical-phantom) at various angles with respect to the primary beam axis. We studied for three different proton energies (78 MeV, 162 MeV and 226 MeV), using a 4 cm modulation width and 5cm diameter brass aperture for the entire experiment and simulation. A comparison of the experiment was performed using the Monte Carlo code FLUKA. Results: The measured secondary neutron dose equivalent per therapeutic primary proton dose (H/D) ranges from 2.1 ± 0.2 to 25.42 ± 2.3 mSv/Gy for the hollow phantom study, and 2.7 ± 0.3 to 46.4 ± 3.4 mSv/Gy for the cylindrical phantom study. Monte Carlo simulations predicated neutron dose equivalent from measurements within a factor of 5. Conclusion: The study suggests that the production of external neutrons is significantly higher than the production of internal neutrons.

  9. Performance of a Medium-Size Area nGEM Detector for Neutron Beam Diagnostics

    NASA Astrophysics Data System (ADS)

    Croci, G.; Cazzaniga, C.; Albani, G.; Muraro, A.; Claps, G.; Cavenago, M.; Grosso, G.; Murtas, F.; Pasqualotto, R.; Cippo, E. Perelli; Rebai, M.; Tardocchi, M.; Gorini, G.

    Fast neutron detectors with a sub-centimetric space resolution are required in order to qualify neutron beams in applications related to magnetically-controlled nuclear fusion plasmas and to spallation sources. Based on the results obtained with small area prototypes, the first medium-size (20 x 35.2 cm2 active area) nGEM detector has been realized for both the CNESM diagnostic system of the SPIDER NBI prototype for ITER and as a beam monitor for fast neutrons beam lines at spallation sources, too. The nGEM is a Triple GEM gaseous detector equipped with polyethylene layers used to convert fast neutrons into recoil protons through the elastic scattering process. This paper describes the performance of the medium-size nGEM detector tested at the VESUVIO beam line of the ISIS spallation source. Being this detector the actual largest area fast neutron detector based on the GEM technology, particular attention was paid in the study of detector response in different points over the active area. Measurements of GEM counting rate (both as a function of VGEM and of time) and of the capability of the detector to reconstruct the beam in different positions are presented. This detector serves as a basis for the realization of an even larger area detector that will be used in the MITICA NBI prototype for ITER that represents the evolution of SPIDER.

  10. Overview of Beam Instrumentation and Diagnostics for the NSLS-II Project

    SciTech Connect

    Singh,O.

    2008-05-04

    A new, ultra-bright 3rd generation light source, the NSLS-II Project, is planned to be built at Brookhaven National Laboratory. The light source being developed will have unprecedently small beam horizontal emittance and will provide the radiation sources with a brightness of 3 x 10{sup 21} photons/sec/0.1%BW/mm{sup 2}/mrad{sup 2}. In this paper we present the detailed specifications and a comprehensive description of the planned beam instrumentation system and the first results of the ongoing instrumentation R&D activities on beyond state-of-the-art subsystems.

  11. Laser wire beam profile monitor in the spallation neutron source (SNS) superconducting linac

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Aleksandrov, A.; Assadi, S.; Blokland, W.; Deibele, C.; Grice, W.; Long, C.; Pelaia, T.; Webster, A.

    2010-01-01

    The spallation neutron source (SNS) at Oak Ridge National Laboratory is an accelerator-based, neutron-scattering facility. SNS uses a large-scale, high-energy superconducting linac (SCL) to provide high beam power utilizing hydrogen ion (H -) beams. For the diagnostics of high-brightness H - beams in the SCL, nonintrusive methods are preferred. This paper describes design, implementation, theoretical analysis, and experimental demonstration of a nonintrusive profile monitor system based on photodetachment, also known as laser wire, installed in the SNS SCL. The SNS laser wire system is the world's largest of its kind with a capability of measuring horizontal and vertical profiles of an operational H - beam at each of the 23 cryomodule stations along the SCL beam line by employing a single light source. Presently 9 laser wire stations have been commissioned that measure profiles of the H - beam at energy levels from 200 MeV to 1 GeV. The laser wire diagnostics has no moving parts inside the beam pipe, causes no contamination on the superconducting cavity, and can be run parasitically on an operational neutron production H - beam.

  12. Differential Die-Away Instrument: Report on Benchmark Measurements and Comparison with Simulation for the Effects of Neutron Poisons

    SciTech Connect

    Goodsell, Alison Victoria; Swinhoe, Martyn Thomas; Henzl, Vladimir; Rael, Carlos D.; Desimone, David J.

    2015-03-30

    In this report, new experimental data and MCNPX simulation results of the differential die-away (DDA) instrument response to the presence of neutron absorbers are evaluated. In our previous fresh nuclear fuel experiments and simulations, no neutron absorbers or poisons were included in the fuel definition. These new results showcase the capability of the DDA instrument to acquire data from a system that better mimics spent nuclear fuel.

  13. Peregrine monte carlo dose calculations for radiotherapy using clinically realistic neutron and proton beams

    SciTech Connect

    Cox, L. J., LLNL

    1997-06-16

    Lawrence Livermore National Laboratory (LLNL) has developed an all-particle Monte Carlo radiotherapy dose calculation code--PEREGRINE--for use in clinical radiation oncology. For PEREGRINE, we have assembled high-energy evaluated nuclear databases; created radiation source characterization and sampling algorithms; and simulated and characterized clinical beams for treatment with photons, neutrons and protons. Spectra are available for the Harper Hospital (Detroit, U.S.A.) Be(d,n) neutron therapy beam, the National Accelerator Centre (NAC, Faure, S.A.) Be(p,n) neutron therapy beam and many of the operating modes of the Loma Linda University Medical Center (LLUMC, Loma Linda, USA) proton treatment center. These beam descriptions are being used in PEREGRINE for Monte Carlo dose calculations on clinical configurations for comparisons to measurements. The methods of defining and sampling the beam phase space characterizations are discussed. We show calculations using these clinical beams compared to measurements in homogeneous water phantoms. The state of PEREGRINE's high energy neutron and proton transport database, PCSL, is reviewed and the remaining issues involving nuclear data needs for PEREGRINE are addressed.

  14. A Drabkin-type spin resonator as tunable neutron beam monochromator

    NASA Astrophysics Data System (ADS)

    Piegsa, F. M.; Ries, D.; Filges, U.; Hautle, P.

    2015-09-01

    A Drabkin-type spin resonator was designed and successfully implemented at the multi-purpose beam line BOA at the spallation neutron source SINQ at the Paul Scherrer Institute. The device selectively acts on the magnetic moment of neutrons within an adjustable velocity band and hence can be utilized as a tunable neutron beam monochromator. Several neutron time-of-flight (TOF) spectra have been recorded employing various settings in order to characterize its performance. In a first test application the velocity dependent transmission of a beryllium filter was determined. In addition, we demonstrate that using an exponential current distribution in the spin resonator coil the side-maxima in the TOF spectra usually associated with a Drabkin setup can be strongly suppressed.

  15. Neutron spectra at two beam ports of a TRIGA Mark III reactor loaded with HEU fuel.

    PubMed

    Vega-Carrillo, H R; Hernández-Dávila, V M; Aguilar, F; Paredes, L; Rivera, T

    2014-01-01

    The neutron spectra have been measured in two beam ports, one radial and another tangential, of the TRIGA Mark III nuclear reactor from the National Institute of Nuclear Research in Mexico. Measurements were carried out with the reactor core loaded with high enriched uranium fuel. Two reactor powers, 5 and 10 W, were used during neutron spectra measurements using a Bonner sphere spectrometer with a (6)LiI(Eu) scintillator and 2, 3, 5, 8, 10 and 12 in.-diameter high-density polyethylene spheres. The neutron spectra were unfolded using the NSDUAZ unfolding code. For each spectrum total flux, mean energy and ambient dose equivalent were determined. Measured spectra show fission, epithermal and thermal neutrons, being harder in the radial beam port. PMID:23746708

  16. Effects On Beam Alignment Due To Neutron-Irradiated CCD Images At The National Ignition Facility

    SciTech Connect

    Awwal, A; Manuel, A; Datte, P; Burkhart, S

    2011-02-28

    The 192 laser beams in the National Ignition Facility (NIF) are automatically aligned to the target-chamber center using images obtained through charged coupled device (CCD) cameras. Several of these cameras are in and around the target chamber during an experiment. Current experiments for the National Ignition Campaign are attempting to achieve nuclear fusion. Neutron yields from these high energy fusion shots expose the alignment cameras to neutron radiation. The present work explores modeling and predicting laser alignment performance degradation due to neutron radiation effects, and demonstrates techniques to mitigate performance degradation. Camera performance models have been created based on the measured camera noise from the cumulative single-shot fluence at the camera location. We have found that the effect of the neutron-generated noise for all shots to date have been well within the alignment tolerance of half a pixel, and image processing techniques can be utilized to reduce the effect even further on the beam alignment.

  17. The new vertical neutron beam line at the CERN n_TOF facility design and outlook on the performance

    NASA Astrophysics Data System (ADS)

    Weiß, C.; Chiaveri, E.; Girod, S.; Vlachoudis, V.; Aberle, O.; Barros, S.; Bergström, I.; Berthoumieux, E.; Calviani, M.; Guerrero, C.; Sabaté-Gilarte, M.; Tsinganis, A.; Andrzejewski, J.; Audouin, L.; Bacak, M.; Balibrea-Correa, J.; Barbagallo, M.; Bécares, V.; Beinrucker, C.; Belloni, F.; Bečvář, F.; Billowes, J.; Bosnar, D.; Brugger, M.; Caamaño, M.; Calviño, F.; Cano-Ott, D.; Cerutti, F.; Colonna, N.; Cortés, G.; Cortés-Giraldo, M. A.; Cosentino, L.; Damone, L.; Deo, K.; Diakaki, M.; Domingo-Pardo, C.; Dupont, E.; Durán, I.; Dressler, R.; Fernández-Domínguez, B.; Ferrari, A.; Ferreira, P.; Finocchiaro, P.; Frost, R.; Furman, V.; Ganesan, S.; Gheorghe, A.; Glodariu, T.; Göbel, K.; Gonçalves, I. F.; González-Romero, E.; Goverdovski, A.; Griesmayer, E.; Gunsing, F.; Harada, H.; Heftrich, T.; Heinitz, S.; Hernández-Prieto, A.; Heyse, J.; Jenkins, D. G.; Jericha, E.; Kadi, Y.; Käppeler, F.; Katabuchi, T.; Kavrigin, P.; Ketlerov, V.; Khryachkov, V.; Kimura, A.; Kivel, N.; Kokkoris, M.; Krtička, M.; Leal-Cidoncha, E.; Lederer, C.; Leeb, H.; Lerendegui, J.; Licata, M.; Lo Meo, S.; López, D.; Losito, R.; Macina, D.; Marganiec, J.; Martínez, T.; Massimi, C.; Mastinu, P. F.; Mastromarco, M.; Matteucci, F.; Mendoza, E.; Mengoni, A.; Milazzo, P. M.; Mingrone, F.; Mirea, M.; Montesano, S.; Musumarra, A.; Nolte, R.; Palomo Pinto, R.; Paradela, C.; Patronis, N.; Pavlik, A.; Perkowski, J.; Porras, I.; Praena, J.; Quesada, J. M.; Rauscher, T.; Reifarth, R.; Riego-Perez, A.; Robles, M. S.; Rubbia, C.; Ryan, J.; Saxena, A.; Schillebeeckx, P.; Schmidt, S.; Schumann, D.; Sedyshev, P.; Smith, G.; Stamatopoulos, A.; Steinegger, P.; Suryanarayana, S. V.; Tagliente, G.; Tain, J. L.; Tarifeño-Saldivia, A.; Tassan-Got, L.; Valenta, S.; Vannini, G.; Variale, V.; Vaz, P.; Ventura, A.; Vlastou, R.; Wallner, A.; Warren, S.; Weigand, M.; Wright, T.; Žugec, P.

    2015-11-01

    At the neutron time-of-flight facility n_TOF at CERN a new vertical beam line was constructed in 2014, in order to extend the experimental possibilities at this facility to an even wider range of challenging cross-section measurements of interest in astrophysics, nuclear technology and medical physics. The design of the beam line and the experimental hall was based on FLUKA Monte Carlo simulations, aiming at maximizing the neutron flux, reducing the beam halo and minimizing the background from neutrons interacting with the collimator or back-scattered in the beam dump. The present paper gives an overview on the design of the beam line and the relevant elements and provides an outlook on the expected performance regarding the neutron beam intensity, shape and energy resolution, as well as the neutron and photon backgrounds.

  18. Geant4 simulation of the n_TOF-EAR2 neutron beam: Characteristics and prospects

    NASA Astrophysics Data System (ADS)

    Lerendegui-Marco, J.; Lo Meo, S.; Guerrero, C.; Cortés-Giraldo, M. A.; Massimi, C.; Quesada, J. M.; Barbagallo, M.; Colonna, N.; Mancusi, D.; Mingrone, F.; Sabaté-Gilarte, M.; Vannini, G.; Vlachoudis, V.

    2016-04-01

    The characteristics of the neutron beam at the new n_TOF-EAR2 facility have been simulated with the Geant4 code with the aim of providing useful data for both the analysis and planning of the upcoming measurements. The spatial and energy distributions of the neutrons, the resolution function and the in-beam γ-ray background have been studied in detail and their implications in the forthcoming experiments have been discussed. The results confirm that, with this new short (18.5m flight path) beam line, reaching an instantaneous neutron flux beyond 105n/μs/pulse in the keV region, n_TOF is one of the few facilities where challenging measurements can be performed, involving in particular short-lived radioisotopes.

  19. LANSCE beam current limiter

    SciTech Connect

    Gallegos, F.R.

    1996-06-01

    The Radiation Security System (RSS) at the Los Alamos Neutron Science Center (LANSCE) provides personnel protection from prompt radiation due to accelerated beam. Active instrumentation, such as the Beam Current Limiter, is a component of the RSS. The current limiter is designed to limit the average current in a beam line below a specific level, thus minimizing the maximum current available for a beam spill accident. The beam current limiter is a self-contained, electrically isolated toroidal beam transformer which continuously monitors beam current. It is designed as fail-safe instrumentation. The design philosophy, hardware design, operation, and limitations of the device are described.

  20. Proceedings of the Oak Ridge National Laboratory/Brookhaven National Laboratory workshop on neutron scattering instrumentation at high-flux reactors

    SciTech Connect

    McBee, M.R.; Axe, J.D.; Hayter, J.B.

    1990-07-01

    For the first three decades following World War II, the US, which pioneered the field of neutron scattering research, enjoyed uncontested leadership in the field. By the mid-1970's, other countries, most notably through the West European consortium at Institut Laue-Langevin (ILL) in Grenoble, France, had begun funding neutron scattering on a scale unmatched in this country. By the early 1980's, observers charged with defining US scientific priorities began to stress the need for upgrading and expansion of US research reactor facilities. The conceptual design of the ANS facility is now well under way, and line-item funding for more advanced design is being sought for FY 1992. This should lead to a construction request in FY 1994 and start-up in FY 1999, assuming an optimal funding profile. While it may be too early to finalize designs for instruments whose construction is nearly a decade removed, it is imperative that we begin to develop the necessary concepts to ensure state-of-the-art instrumentation for the ANS. It is in this context that this Instrumentation Workshop was planned. The workshop touched upon many ideas that must be considered for the ANS, and as anticipated, several of the discussions and findings were relevant to the planning of the HFBR Upgrade. In addition, this report recognizes numerous opportunities for further breakthroughs on neutron instrumentation in areas such as improved detection schemes (including better tailored scintillation materials and image plates, and increased speed in both detection and data handling), in-beam monitors, transmission white beam polarizers, multilayers and supermirrors, and more. Each individual report has been cataloged separately.

  1. Measurements of gamma dose and thermal neutron fluence in phantoms exposed to a BNCT epithermal beam with TLD-700.

    PubMed

    Gambarini, G; Magni, D; Regazzoni, V; Borroni, M; Carrara, M; Pignoli, E; Burian, J; Marek, M; Klupak, V; Viererbl, L

    2014-10-01

    Gamma dose and thermal neutron fluence in a phantom exposed to an epithermal neutron beam for boron neutron capture therapy (BNCT) can be measured by means of a single thermoluminescence dosemeter (TLD-700). The method exploits the shape of the glow curve (GC) and requires the gamma-calibration GC (to obtain gamma dose) and the thermal-neutron-calibration GC (to obtain neutron fluence). The method is applicable for BNCT dosimetry in case of epithermal neutron beams from a reactor because, in most irradiation configurations, thermal neutrons give a not negligible contribution to the TLD-700 GC. The thermal neutron calibration is not simple, because of the impossibility of having thermal neutron fields without gamma contamination, but a calibration method is here proposed, strictly bound to the method itself of dose separation. PMID:24435913

  2. Development and demonstration of a multi-channel spheroidal focusing device for neutron beams

    NASA Astrophysics Data System (ADS)

    Hayashida, H.; Soyama, K.; Yamazaki, D.; Maruyama, R.; Yamamura, K.

    2014-07-01

    A multi-channel neutron focusing mirror is a compact device that can effectively enhance neutron intensity because the multi-channel structure can cover a large divergence of a neutron beam. In this study, we attempted to develop a compact multi-channel spheroidal (MS) neutron focusing device for two-dimensional focusing. A prototype of the MS mirror consists of three spheroidal mirrors of different diameters. The mirrors are fabricated through the copper plating method without supermirror coating and are aligned coaxially using ring-shaped spacers. The MS mirror was demonstrated at beam line 10 NOBORU port at J-PARC, which provides neutron beams with time-of-flight spectra. A gain factor of 6 in neutron intensity was obtained over wavelengths greater than 0.5 nm, and an imaging test with sample scanning could be performed with an exposure time of 10 s. A Gd-patterned standard sample was employed and a 2D image with a spatial resolution of 200 μm was successfully obtained.

  3. Resumption of JRR-4 and characteristics of neutron beam for BNCT.

    PubMed

    Nakamura, T; Horiguchi, H; Kishi, T; Motohashi, J; Sasajima, F; Kumada, H

    2011-12-01

    The clinical trials of Boron Neutron Capture Therapy (BNCT) have been conducted using Japan Research Reactor No. 4 (JRR-4) at Japan Atomic Energy Agency (JAEA). On December 28th, 2007, a crack of a graphite reflector in the reactor core was found on the weld of the aluminum cladding. For this reason, specifications of graphite reflectors were renewed; dimensions of the graphite were reduced and gaps of water were increased. All existing graphite reflectors of JRR-4 were replaced by new graphite reflectors. In February 2010 the resumption of JRR-4 was carried out with new graphite reflectors. We measured the characteristics of neutron beam at the JRR-4 Neutron Beam Facility. A cylindrical water phantom of 18.6 cm diameter and 24 cm depth was set in front of the beam port with 1cm gap. TLDs and gold wires were inserted within the phantom when the phantom was irradiated. The results of the measured thermal neutron flux and the gamma dose in water were compared with that of MCNP calculation. The neutron energy spectrum of the calculation model with new reflector had little variation compared to that with old reflector, but intensities of the neutron flux and gamma dose with new reflector were rather smaller than those with old reflector. The calculated results showed the same tendency as that of the experimental results. Therefore, the clinical trials of BNCT in JRR-4 could be restarted. PMID:21621416

  4. Validation of the Pinnacle³ photon convolution-superposition algorithm applied to fast neutron beams.

    PubMed

    Kalet, Alan M; Sandison, George A; Phillips, Mark H; Parvathaneni, Upendra

    2013-01-01

    We evaluate a photon convolution-superposition algorithm used to model a fast neutron therapy beam in a commercial treatment planning system (TPS). The neutron beam modeled was the Clinical Neutron Therapy System (CNTS) fast neutron beam produced by 50 MeV protons on a Be target at our facility, and we implemented the Pinnacle3 dose calculation model for computing neutron doses. Measured neutron data were acquired by an IC30 ion chamber flowing 5 cc/min of tissue equivalent gas. Output factors and profile scans for open and wedged fields were measured according to the Pinnacle physics reference guide recommendations for photon beams in a Wellhofer water tank scanning system. Following the construction of a neutron beam model, computed doses were then generated using 100 monitor units (MUs) beams incident on a water-equivalent phantom for open and wedged square fields, as well as multileaf collimator (MLC)-shaped irregular fields. We compared Pinnacle dose profiles, central axis doses, and off-axis doses (in irregular fields) with 1) doses computed using the Prism treatment planning system, and 2) doses measured in a water phantom and having matching geometry to the computation setup. We found that the Pinnacle photon model may be used to model most of the important dosimetric features of the CNTS fast neutron beam. Pinnacle-calculated dose points among open and wedged square fields exhibit dose differences within 3.9 cGy of both Prism and measured doses along the central axis, and within 5 cGy difference of measurement in the penumbra region. Pinnacle dose point calculations using irregular treatment type fields showed a dose difference up to 9 cGy from measured dose points, although most points of comparison were below 5 cGy. Comparisons of dose points that were chosen from cases planned in both Pinnacle and Prism show an average dose difference less than 0.6%, except in certain fields which incorporate both wedges and heavy blocking of the central axis. All

  5. Compact D-D Neutron Source-Driven Subcritical Multiplier and Beam-Shaping Assembly for Boron Neutron Capture Therapy

    SciTech Connect

    Francesco Ganda; Jasmina Vujic; Ehud Greenspan; Ka-Ngo Leung

    2010-12-01

    This work assesses the feasibility of using a small, safe, and inexpensive keff 0.98 subcritical fission assembly [subcritical neutron multiplier (SCM)] to amplify the treatment neutron beam intensity attainable from a compact deuterium-deuterium (D-D) fusion neutron source delivering [approximately]1012 n/s. The objective is to reduce the treatment time for deep-seated brain tumors to [approximately]1 h. The paper describes the optimal SCM design and two optimal beam-shaping assemblies (BSAs) - one designed to maximize the dose rate and the other designed to maximize the total dose that can be delivered to a deep-seated tumor. The neutron beam intensity amplification achieved with the optimized SCM and BSA results in an increase in the treatment dose rate by a factor of 18: from 0.56 Gy/h without the SCM to 10.1 Gy/h. The entire SCM is encased in an aluminum structure. The total amount of 20% enriched uranium required for the SCM is 8.5 kg, and the cost (not including fabrication) is estimated to be less than $60,000. The SCM power level is estimated at 400 W when driven by a 1012 n/s D-D neutron source. This translates into consumption of only [approximately]0.6% of the initially loaded 235U atoms during 50 years of continuous operation and implies that the SCM could operate continuously for the entire lifetime of the facility without refueling. Cooling the SCM does not pose a challenge; it may be accomplished by natural circulation as the maximum heat flux is only 0.034 W/cm2.

  6. Monte Carlo simulation of neutron noise effects on beam position determination at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Awwal, Abdul A. S.; Leach, Richard R.; Datte, Philip; Manuel, Anastacia

    2013-09-01

    Images obtained through charged coupled device (CCD) cameras in the National Ignition Facility (NIF) are crucial to precise alignment of the 192 laser beams to the NIF target-chamber center (TCC). Cameras in and around the target chamber are increasingly exposed to the effects of neutron radiation as the laser power is increased for high energy fusion experiments. NIF was carefully designed to operate under these conditions. The present work examines the degradation of the measured TCC camera position accuracy resulting from the effects of neutron radiation on the sensor and verifies operation within design specifications. Both synthetic and real beam images are used for measuring position degradation. Monte Carlo simulations based on camera performance models are used to create images with added neutron noise. These models predict neutron induced camera noise based on exposure estimates of the cumulative single-shot fluence in the NIF environment. The neutron induced noise images are used to measure beam positions on a target calculated from the alignment images with the added noise. The effects of this noise are also determined using noise artifacts from real camera images viewing TCC to estimate beam position uncertainty.

  7. Initial Experimental Verification of the Neutron Beam Modeling for the LBNL BNCT Facility

    SciTech Connect

    Bleuel, D.L.; Chu, W.T.; Donahue, R.J.; Ludewigt, B.A.; McDonald, R.J.; Smith, A.R.; Stone, N.A.; Vuji, J.

    1999-01-19

    In preparation for future clinical BNCT trials, neutron production via the 7Li(p,n) reaction as well as subsequent moderation to produce epithermal neutrons have been studied. Proper design of a moderator and filter assembly is crucial in producing an optimal epithermal neutron spectrum for brain tumor treatments. Based on in-phantom figures-of-merit,desirable assemblies have been identified. Experiments were performed at the Lawrence Berkeley National Laboratory's 88-inch cyclotron to characterize epithermal neutron beams created using several microampere of 2.5 MeV protons on a lithium target. The neutron moderating assembly consisted of Al/AlF3 and Teflon, with a lead reflector to produce an epithermal spectrum strongly peaked at 10-20 keV. The thermal neutron fluence was measured as a function of depth in a cubic lucite head phantom by neutron activation in gold foils. Portions of the neutron spectrum were measured by in-air activation of six cadmium-covered materials (Au, Mn, In, Cu, Co, W) with high epithermal neutron absorption resonances. The results are reasonably reproduced in Monte Carlo computational models, confirming their validity.

  8. Simple microscope using a compound refractive lens and a wide-bandwidth thermal neutron beam

    SciTech Connect

    Cremer, J. T.; Park, H.; Piestrup, M. A.; Gary, C. K.; Pantell, R. H.; Flocchini, R. G.; Egbert, H. P.; Kloh, M. D.; Walker, R. B.

    2007-04-02

    The results of imaging experiments using biconcave, spherical compound refractive lenses (CRLs) and a wide-bandwidth thermal neutron beam are presented. Two CRLs were used, consisting of 155 beryllium and 120 copper lenses. The experiments were performed using a thermal neutron beam line at McClellan Nuclear Radiation Center reactor. The authors obtained micrographs of cadmium slits with up to 5x magnification and 0.3 mm resolution. The CRL resolution was superior to a pinhole camera with the same aperture diameter. The modulation transfer function (MTF) of the CRL was calculated and compared with the measured MTF at five spatial frequencies, showing good agreement.

  9. Study of muon-induced neutron production using accelerator muon beam at CERN

    SciTech Connect

    Nakajima, Y.; Lin, C. J.; Ochoa-Ricoux, J. P.; Draeger, E.; White, C. G.; Luk, K. B.; Steiner, H.

    2015-08-17

    Cosmogenic muon-induced neutrons are one of the most problematic backgrounds for various underground experiments for rare event searches. In order to accurately understand such backgrounds, experimental data with high-statistics and well-controlled systematics is essential. We performed a test experiment to measure muon-induced neutron production yield and energy spectrum using a high-energy accelerator muon beam at CERN. We successfully observed neutrons from 160 GeV/c muon interaction on lead, and measured kinetic energy distributions for various production angles. Works towards evaluation of absolute neutron production yield is underway. This work also demonstrates that the setup is feasible for a future large-scale experiment for more comprehensive study of muon-induced neutron production.

  10. Dosimetry of fast neutron beams using CaSO 4:Dy (TLD-900) pellets

    NASA Astrophysics Data System (ADS)

    Pradhan, A. S.; Rassow, J.; Meissner, P.

    1985-05-01

    This paper describes the use of commercially avialable CaSO 4:Dy (TLD-900) pellets for the measurement of absorbed doses of fast neutrons and gamma rays in mixed fields with one single detector. The gamma ray absorbed doses could be estimated by recording the thermoluminiscence (TL) induced during the neutron beam irradiations, whereas the fast neutron absorbed doses were measured by employing a post-irradiation TL accumulation due to activation of sulphur by the threshold nuclear reaction 32S(n, p) 32P in CaSO 4:Dy.

  11. Radiation damage in silicon due to albedo neutrons emitted from hadronic beam dumps (Fe and U)

    SciTech Connect

    Gabriel, T.A.; Bishop, B.L.

    1987-01-01

    Calculations have been carried out to determine the level of radiation damage that can be expected from albedo neutrons when 1- and 5-GeV negative pions are incident on iron and uranium beam dumps. The calculated damage data are presented in several ways including neutron fluence above 0.111 MeV, 1 MeV equivalent neutron fluence, damage energy deposition, and DPA or displacements per atom. Details are presented as to the method of calculation. 14 refs., 1 fig., 1 tab.

  12. Neutron spectra from beam-target reactions in dense Z-pinches

    SciTech Connect

    Appelbe, B. Chittenden, J.

    2015-10-15

    The energy spectrum of neutrons emitted by a range of deuterium and deuterium-tritium Z-pinch devices is investigated computationally using a hybrid kinetic-MHD model. 3D MHD simulations are used to model the implosion, stagnation, and break-up of dense plasma focus devices at currents of 70 kA, 500 kA, and 2 MA and also a 15 MA gas puff. Instabilities in the MHD simulations generate large electric and magnetic fields, which accelerate ions during the stagnation and break-up phases. A kinetic model is used to calculate the trajectories of these ions and the neutron spectra produced due to the interaction of these ions with the background plasma. It is found that these beam-target neutron spectra are sensitive to the electric and magnetic fields at stagnation resulting in significant differences in the spectra emitted by each device. Most notably, magnetization of the accelerated ions causes the beam-target spectra to be isotropic for the gas puff simulations. It is also shown that beam-target spectra can have a peak intensity located at a lower energy than the peak intensity of a thermonuclear spectrum. A number of other differences in the shapes of beam-target and thermonuclear spectra are also observed for each device. Finally, significant differences between the shapes of beam-target DD and DT neutron spectra, due to differences in the reaction cross-sections, are illustrated.

  13. Reactor beam calculations to determine optimum delivery of epithermal neutrons for treatment of brain tumors

    SciTech Connect

    Wheeler, F.J.; Nigg, D.W.; Capala, J.

    1997-10-01

    Studies were performed to assess theoretical tumor control probability (TCP) for brain-tumor treatment with boron neutron capture therapy (BNCT) using epithermal neutron sources from reactors. The existing epithermal-neutron beams at the Brookhaven Medical Research Reactor Facility (BMRR), the Petten High Flux Reactor Facility (HWR) and the Finnish Research Reactor 1 (FIR1) have been analyzed and characterized using common analytical and measurement methods allowing for this inter-comparison. Each of these three facilities is unique and each offers an advantage in some aspect of BNCT, but none of these existing facilities excel in all neutron-beam attributes as related to BNCT. A comparison is therefore also shown for a near-optimum reactor beam which does not currently exist but which would be feasible with existing technology. This hypothetical beam is designated BNCT-1 and has a spectrum similar to the FIR-1, the mono-directionality of the HFR and the intensity of the BMRR. A beam very similar to the BNCT-1 could perhaps be achieved with modification of the BMRR, HFR, or FIR, and could certainly be realized in a new facility with today`s technology.

  14. Neutron spectra from beam-target reactions in dense Z-pinches

    NASA Astrophysics Data System (ADS)

    Appelbe, B.; Chittenden, J.

    2015-10-01

    The energy spectrum of neutrons emitted by a range of deuterium and deuterium-tritium Z-pinch devices is investigated computationally using a hybrid kinetic-MHD model. 3D MHD simulations are used to model the implosion, stagnation, and break-up of dense plasma focus devices at currents of 70 kA, 500 kA, and 2 MA and also a 15 MA gas puff. Instabilities in the MHD simulations generate large electric and magnetic fields, which accelerate ions during the stagnation and break-up phases. A kinetic model is used to calculate the trajectories of these ions and the neutron spectra produced due to the interaction of these ions with the background plasma. It is found that these beam-target neutron spectra are sensitive to the electric and magnetic fields at stagnation resulting in significant differences in the spectra emitted by each device. Most notably, magnetization of the accelerated ions causes the beam-target spectra to be isotropic for the gas puff simulations. It is also shown that beam-target spectra can have a peak intensity located at a lower energy than the peak intensity of a thermonuclear spectrum. A number of other differences in the shapes of beam-target and thermonuclear spectra are also observed for each device. Finally, significant differences between the shapes of beam-target DD and DT neutron spectra, due to differences in the reaction cross-sections, are illustrated.

  15. Polychromatic X-ray Micro- and Nano-Beam Science and Instrumentation

    SciTech Connect

    Ice, Gene E; Larson, Ben C; Liu, Wenjun; Barabash, Rozaliya; Specht, Eliot D; Pang, Judy; Budai, John D; Tischler, Jonathan Zachary; Khounsary, Ali; Liu, Chian; Macrander, Albert T.; Assoufid, Lahsen

    2007-01-01

    Polychromatic x-ray micro- and nano-beam diffraction is an emerging nondestructive tool for the study of local crystalline structure and defect distributions. Both long-standing fundamental materials science issues, and technologically important questions about specific materials systems can be uniquely addressed. Spatial resolution is determined by the beam size at the sample and by a knife-edge technique called differential aperture microscopy that decodes the origin of scattering from along the penetrating x-ray beam. First-generation instrumentation on station 34-ID-E at the Advanced Photon Source (APS) allows for nondestructive automated recovery of the three-dimensional (3D) local crystal phase and orientation. Also recovered are the local elastic-strain and the dislocation tensor distributions. New instrumentation now under development will further extend the applications of polychromatic microdiffraction and will revolutionize materials characterization.

  16. Polychromatic X-ray Micro- and Nano-Beam Science and Instrumentation

    SciTech Connect

    Ice, G. E.; Larson, B. C.; Liu, W.; Barabash, R. I.; Specht, E. D.; Pang, J. W. L.; Budai, J. D.; Tischler, J. Z.; Khounsary, A.; Liu, C.; Macrander, A. T.; Assoufid, L.

    2007-01-19

    Polychromatic x-ray micro- and nano-beam diffraction is an emerging nondestructive tool for the study of local crystalline structure and defect distributions. Both long-standing fundamental materials science issues, and technologically important questions about specific materials systems can be uniquely addressed. Spatial resolution is determined by the beam size at the sample and by a knife-edge technique called differential aperture microscopy that decodes the origin of scattering from along the penetrating x-ray beam. First-generation instrumentation on station 34-ID-E at the Advanced Photon Source (APS) allows for nondestructive automated recovery of the three-dimensional (3D) local crystal phase and orientation. Also recovered are the local elastic-strain and the dislocation tensor distributions. New instrumentation now under development will further extend the applications of polychromatic microdiffraction and will revolutionize materials characterization.

  17. The formation of an ion beam in a vacuum neutron tube

    NASA Astrophysics Data System (ADS)

    Agafonov, A. V.; Tarakanov, V. P.

    2014-09-01

    The formation of a deuteron beam in a diode with a plasma emitter that is integrated into the structure of a vacuum neutron tube is considered. Computations are carried out for plasma with given time dependences of parameters (density, relative concentration, and expansion velocity) at the inlet to an accelerating gap. It is shown that it is possible to increase the ion-beam current possible by sectioning the diode at the given external parameters.

  18. RESULTS OF BACKGROUND SUBTRACTION TECHNIQUES ON THE SPALLATION NEUTRON SOURCE BEAM LOSS MONITORS

    SciTech Connect

    Pogge, James R; Zhukov, Alexander P

    2010-01-01

    Recent improvements to the Spallation Neutron Source (SNS) beam loss monitor (BLM) designs have been made with the goal of significantly reducing background noise. This paper outlines this effort and analyzes the results. The significance of this noise reduction is the ability to use the BLM sensors [1], [2], [3] distributed throughout the SNS accelerator as a method to monitor activation of components as well as monitor beam losses.

  19. SU-F-BRE-11: Neutron Measurements Around the Varian TrueBeam Linac

    SciTech Connect

    Maglieri, R; Seuntjens, J; Kildea, J; Liang, L; DeBlois, F; Evans, M; Licea, A; Dubeau, J; Witharana, S

    2014-06-15

    Purpose: With the emergence of flattening filter free (FFF) photon beams, several authors have noted many advantages to their use. One such advantage is the decrease in neutron production by photonuclear reactions in the linac head. In the present work we investigate the reduction in neutrons from a Varian TrueBeam linac using the Nested Neutron Spectrometer (NNS, Detec). The neutron spectrum, total fluence and source strength were measured and compared for 10 MV with and without flattening filter and the effect of moderation by the room and maze was studied for the 15 MV beam. Methods: The NNS, similar to traditional Bonner sphere detectors but operated in current mode, was used to measure the neutron fluence and spectrum. The NNS was validated for use in high dose rate environments using Monte Carlo simulations and calibrated at NIST and NRC Canada. Measurements were performed at several positions within the treatment room and maze with the linac jaws closed to maximize neutron production. Results: The measurements showed a total fluence reduction between 35-40% in the room and maze when the flattening filter was removed. The neutron source strength Qn was calculated from in-room fluence measurements and was found to be 0.042 × 10{sup 2} n/Gy, 0.026 × 10{sup 2} n/Gy and 0.59 × 101{sup 2} n/Gy for the 10 MV, the 10 MV FFF and 15 MV beams, respectively. We measured ambient equivalent doses of 11 mSv/hr, 7 mSv/hr and 218 mSv/hr for the 10 MV, 10 MV FFF and 15 MV by the head. Conclusion: Our measurements revealed a decrease in total fluence, neutron source strength and equivalent dose of approximately 35-40% across the treatment room for the FFF compared to FF modes. This demonstrates, as expected, that the flattening filter is a major component of the neutron production for the TrueBeam. The authors greatly acknowledge support form the Canadian Nuclear Commission and the Natural Sciences and Engineering Research Council of Canada through the CREATE program. Co

  20. Evaluation of homogeneity of a certified reference material by instrumental neutron activation analysis

    SciTech Connect

    Kratochvil, B.; Duke, M.J.M.; Ng, D.

    1986-01-01

    The homogeneity of the marine reference material TORT-1, a spray-dried and acetone-extracted hepatopancreatic material from the lobster, was tested for 26 elements by instrumental neutron activation analysis (INAA). Through a one-way analysis of variance based on six analyses on each of six bottles of TORT-1, it was concluded that the between-bottle heterogeneity is no greater than the within-bottle heterogeneity. The analytical results for those elements for which values were provided by NRC agree with the NRC values within 95% confidence limits. 8 references, 6 tables.

  1. Small-angle neutron scattering instrument of Institute for Solid State Physics, the Univeristy of Tokyo (SANS-U) and its application to biology

    SciTech Connect

    Ito, Yuji; Imai, Masayuki; Takahashi, Shiro

    1994-12-31

    A small-angle neutron spectrometer (SANS-U) suitable for the study of mesoscopic structure in the field of polymer chemistry and biology, has been constructed at the guide hall of JRR-3M reactor at the Japan Atomic Energy Research Institute. The instrument is 32m long and utilizes a mechanical velocity selector and pinhole collimation to provide a continuous beam with variable wavelength in the range from 5 to 10{Angstrom}. The neutron detector is a 65 x 65cm{sup 2} 2D position sensitive proportional counter. The practical Q range of SANS-U is 0.0008 to 0.45{Angstrom}{sup -1}. The design, characteristics and performance of SANS-U are described with some biological studies using SANS-U.

  2. Small-angle neutron scattering instrument of institute for solid state physics, the University of Tokyo (SANS-U) and its application to biology.

    PubMed

    Ito, Y; Imai, M; Takahashi, S

    1996-01-01

    A small-angle neutron spectrometer (SANS-U) suitable for the study of mesoscopic structure in the field of polymer chemistry and biology, has been constructed at the guide hall of JRR-3M reactor at the Japan Atomic Energy Research Institute. The instrument is 32m long and utilizes a mechanical velocity selector and pinhole collimation to provide a continuous beam with variable wavelength in the range from 5 to 10 A. The neutron detector is a 65 x 65 cm2 2D position sensitive proportional counter. The practical Q range of SANS-U is 0.0008 to 0.45 A-1. The design, characteristics and performance of SANS-U are described with some biological studies using SANS-U. PMID:9031507

  3. Novel neutralized-beam intense neutron source for fusion technology development

    SciTech Connect

    Osher, J.E.; Perkins, L.J.

    1983-07-08

    We describe a neutralized-beam intense neutron source (NBINS) as a relevant application of fusion technology for the type of high-current ion sources and neutral beamlines now being developed for heating and fueling of magnetic-fusion-energy confinement systems. This near-term application would support parallel development of highly reliable steady-state higher-voltage neutral D/sup 0/ and T/sup 0/ beams and provide a relatively inexpensive source of fusion neutrons for materials testing at up to reactor-like wall conditions. Beam-target examples described incude a 50-A mixed D-T total (ions plus neutrals) space-charge-neutralized beam at 120 keV incident on a liquid Li drive-in target, or a 50-A T/sup 0/ + T/sup +/ space-charge-neutralized beam incident on either a LiD or gas D/sub 2/ target with calculated 14-MeV neutron yields of 2 x 10/sup 15//s, 7 x 10/sup 15//s, or 1.6 x 10/sup 16//s, respectively. The severe local heat loading on the target surface is expected to limit the allowed beam focus and minimum target size to greater than or equal to 25 cm/sup 2/.

  4. Implementation of gamma-ray instrumentation for solid solar system bodies using neutron activation method

    NASA Astrophysics Data System (ADS)

    Litvak, M. L.; Golovin, D. V.; Jun, I.; Kozyrev, A. S.; Mitrofanov, I. G.; Sanin, A. B.; Shvetsov, V. N.; Timoshenko, G. N.; Zontikov, A.

    2016-06-01

    In this paper we present the results of ground tests performed with a flight model and with industry prototypes of passive and active gamma ray spectrometers with the objective of understanding their capability to distinguish the elemental composition of planetary bodies in the solar system. The gamma instrumentation, which was developed for future space missions was used in the measurements at a special ground test facility where a simulant of planetary material was fabricated with a martian-like composition. In this study, a special attention was paid to the gamma lines from activation reaction products generated by a pulsed neutron generator. The instrumentation was able to detect and identify gamma lines attributed to O, Na, Mg, Al, Si, K, Ca and Fe.

  5. First negative ion beam measurement by the Short-Time Retractable Instrumented Kalorimeter Experiment (STRIKE)

    SciTech Connect

    Serianni, G. De Muri, M.; Veltri, P.; Bonomo, F.; Chitarin, G.; Pasqualotto, R.; Pavei, M.; Rizzolo, A.; Valente, M.; Muraro, A.; Franzen, P.; Ruf, B.; Schiesko, L.

    2014-02-15

    The Source for Production of Ion of Deuterium Extracted from Rf plasma (SPIDER) test facility is under construction in Padova to optimise the operation of the beam source of ITER neutral beam injectors. The SPIDER beam will be characterised by the instrumented calorimeter STRIKE, whose main components are one-directional carbon-fibre-carbon-composite tiles. A small-scale version of the entire system has been employed in the BAvarian Test MAchine for Negative ions (BATMAN) testbed by arranging two prototype tiles in the vertical direction. The paper presents a description of the mini-STRIKE system and of the data analysis procedures, as well as some results concerning the BATMAN beam under varying operating conditions.

  6. Design of a high-flux epithermal neutron beam using 235U fission plates at the Brookhaven Medical Research Reactor.

    PubMed

    Liu, H B; Brugger, R M; Rorer, D C; Tichler, P R; Hu, J P

    1994-10-01

    Beams of epithermal neutrons are being used in the development of boron neutron capture therapy for cancer. This report describes a design study in which 235U fission plates and moderators are used to produce an epithermal neutron beam with higher intensity and better quality than the beam currently in use at the Brookhaven Medical Research Reactor (BMRR). Monte Carlo calculations are used to predict the neutron and gamma fluxes and absorbed doses produced by the proposed design. Neutron flux measurements at the present epithermal treatment facility (ETF) were made to verify and compare with the computed results where feasible. The calculations indicate that an epithermal neutron beam produced by a fission-plate converter could have an epithermal neutron intensity of 1.2 x 10(10) n/cm2.s and a fast neutron dose per epithermal neutron of 2.8 x 10(-11) cGy.cm2/nepi plus being forward directed. This beam would be built into the beam shutter of the ETF at the BMRR. The feasibility of remodeling the facility is discussed. PMID:7869995

  7. Characterization of a tunable quasi-monoenergetic neutron beam from deuteron breakup

    NASA Astrophysics Data System (ADS)

    Bleuel, D. L.; McMahan, M. A.; Ahle, L.; Barquest, B. R.; Cerny, J.; Heilbronn, L. H.; Jewett, C. C.

    2007-08-01

    A neutron irradiation facility is being developed at the 88-inch cyclotron at Lawrence Berkeley National Laboratory for the purposes of measuring neutron reaction cross sections on radioactive targets and for radiation effects testing. Applications are of benefit to stockpile stewardship, nuclear astrophysics, next generation advanced fuel reactors and cosmic radiation biology and electronics in space. The facility will supply a tunable, quasi-monoenergetic neutron beam in the range of 10-30 MeV or a white neutron source, produced by deuteron breakup reactions on thin and thick targets, respectively. Because the deuteron breakup reaction has not been well studied at intermediate incident deuteron energies, above the target Coulomb barrier and below 56 MeV, a detailed characterization was necessary of the neutron spectra produced by thin targets. Neutron time-of-flight (TOF) methods have been used to measure the neutron spectra produced on thin targets of low-Z (titanium) and high-Z (tantalum) materials at incident deuteron energies of 20 MeV and 29 MeV at 0°. Breakup neutrons at both energies from low-Z targets appear to peak at roughly half of the available kinetic energy, while neutrons from high-Z interactions peak somewhat lower in energy, owing to the increased proton energy due to breakup within the Coulomb field. Furthermore, neutron spectra appear narrower for high-Z targets. These centroids are consistent with recent preliminary proton energy measurements using silicon telescope detectors conducted at LBNL, though there is a notable discrepancy with spectral widths. Prospects for producing a tunable, quasi-monoenergetic neutron facility of 106-108 n/cm2/s at LBNL are promising.

  8. Measurements of Neutron Capture Cross-Section for Tantalum at the Neutron Filtered Beams

    NASA Astrophysics Data System (ADS)

    Gritzay, Olena; Libman, Volodymyr

    2009-08-01

    The neutron capture cross sections of tantalum have been measured for the neutron energies 2 and 59 keV using the WWR-M Kyiv Research Reactor (KRR) of the Institute for Nuclear Research of the National Academy of Science of Ukraine. The cross sections of 181Ta (n, γ) 182Ta reaction were obtained by the activation method using a gamma-spectrometer with Ge(Li)-detector. The obtained neutron capture cross sections were compared with the known experimental data from database EXFOR/CSISRS and the ENDF libraries.

  9. A beam-modification assembly for experimental neutron capture therapy of brain tumors

    SciTech Connect

    Slatkin, D.N.; Kalef-Ezra, J.A.; Saraf, S.K.; Joel, D.D.

    1989-01-01

    Recent attempts to treat intracerebral rat gliomas by boron neutron capture therapy (BNCT) have been somewhat disappointing, perhaps in part because of excessive whole-body and nasopharyngeal irradiation. Intracerebral rat gliomas were treated by BNCT with more success using a new beam-modification assembly. 3 refs., 2 figs.

  10. Beam asymmetry {Sigma} measurements of {pi}{sup -} photoproduction on neutrons

    SciTech Connect

    Mandaglio, G.; Manganaro, M.; Giardina, G.; Mammoliti, F.; Bellini, V.; Giusa, A.; Randieri, C.; Russo, G.; Sperduto, M. L.; Bocquet, J. P.; Lleres, A.; Rebreyend, D.; D'Angelo, A.; Fantini, A.; Franco, D.; Schaerf, C.; Vegna, V.

    2010-10-15

    The -beam asymmetry {Sigma} in the photoproduction of negative pions on quasi-free neutrons in a deuterium target was measured at the Grenoble Anneau Accelerateur Laser in the energy interval 700-1500 MeV and over a wide angular range, using polarized and tagged photons. Results are compared with recent partial-wave analyses.

  11. Feasibility of the Utilization of BNCT in the Fast Neutron Therapy Beam at Fermilab

    DOE R&D Accomplishments Database

    Langen, Katja; Lennox, Arlene J.; Kroc, Thomas K.; DeLuca, Jr., Paul M.

    2000-06-01

    The Neutron Therapy Facility at Fermilab has treated cancer patients since 1976. Since then more than 2,300 patients have been treated and a wealth of clinical information accumulated. The therapeutic neutron beam at Fermilab is produced by bombarding a beryllium target with 66 MeV protons. The resulting continuous neutron spectrum ranges from thermal to 66 MeV in neutron energy. It is clear that this spectrum is not well suited for the treatment of tumors with boron neutron capture therapy (BNCT) only However, since this spectrum contains thermal and epithermal components the authors are investigating whether BNCT can be used in this beam to boost the tumor dose. There are clinical scenarios in which a selective tumor dose boost of 10 - 15% could be clinically significant. For these cases the principal treatment would still be fast neutron therapy but a tumor boost could be used either to deliver a higher dose to the tumor tissue or to reduce the dose to the normal healthy tissue while maintaining the absorbed dose level in the tumor tissue.

  12. Neutron contamination of Varian Clinac iX 10 MV photon beam using Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Yani, S.; Tursinah, R.; Rhani, M. F.; Soh, R. C. X.; Haryanto, F.; Arif, I.

    2016-03-01

    High energy medical accelerators are commonly used in radiotherapy to increase the effectiveness of treatments. As we know neutrons can be emitted from a medical accelerator if there is an incident of X-ray that hits any of its materials. This issue becomes a point of view of many researchers. The neutron contamination has caused many problems such as image resolution and radiation protection for patients and radio oncologists. This study concerns the simulation of neutron contamination emitted from Varian Clinac iX 10 MV using Monte Carlo code system. As neutron production process is very complex, Monte Carlo simulation with MCNPX code system was carried out to study this contamination. The design of this medical accelerator was modelled based on the actual materials and geometry. The maximum energy of photons and neutron in the scoring plane was 10.5 and 2.239 MeV, respectively. The number and energy of the particles produced depend on the depth and distance from beam axis. From these results, it is pointed out that the neutron produced by linac 10 MV photon beam in a typical treatment is not negligible.

  13. Feasibility of the utilization of BNCT in the fast neutron therapy beam at Fermilab

    SciTech Connect

    Langen, Katja; Lennox, Arlene J.; Kroc, Thomas K.; DeLuca, Jr., Paul M.

    2000-06-23

    The Neutron Therapy Facility at Fermilab has treated cancer patients since 1976. Since then more than 2,300 patients have been treated and a wealth of clinical information accumulated. The therapeutic neutron beam at Fermilab is produced by bombarding a beryllium target with 66 MeV protons. The resulting continuous neutron spectrum ranges from thermal to 66 MeV in neutron energy. It is clear that this spectrum is not well suited for the treatment of tumors with boron neutron capture therapy (BNCT) only However, since this spectrum contains thermal and epithermal components the authors are investigating whether BNCT can be used in this beam to boost the tumor dose. There are clinical scenarios in which a selective tumor dose boost of 10 - 15% could be clinically significant. For these cases the principal treatment would still be fast neutron therapy but a tumor boost could be used either to deliver a higher dose to the tumor tissue or to reduce the dose to the normal healthy tissue while maintaining the absorbed dose level in the tumor tissue.

  14. CCD detectors for fast neutron radiography and tomography with a cone beam

    NASA Astrophysics Data System (ADS)

    Bogolubov, E.; Bugaenko, O.; Kuzin, S.; Mikerov, V.; Monitch, E.; Monitch, A.; Pertsov, A.

    2005-04-01

    Two new types of luminescent CCD-detectors intended for fast neutron radiography and tomography with a cone neutron beam are described in the paper. A 6 cm thick luminescent screen made of polystyrene is used in the first one to convert fast neutrons. A special optics has been developed to transfer the optical image from the screen to the CCD-matrix. The optics design helps not to loose spatial resolution due to the beam divergence and screen thickness. The second detector is based on the use of a fiber optical screen made of luminescent fibers in the form of a rectangular truncated pyramid. Principles of the detectors operation have been experimentally proved. The obtained results show that the detectors provide a spatial resolution of about 2 mm.

  15. Mechanical research and development of a monocrystalline silicon neutron beam window for CSNS

    NASA Astrophysics Data System (ADS)

    Zhou, Liang; Qu, Hua-Min

    2015-09-01

    The monocrystalline silicon neutron beam window is one of the key components of a neutron spectrometer. Monocrystalline silicon is brittle and its strength is generally described by a Weibull distribution due to the material inhomogeneity. The window is designed not simply according to the mean strength but also according to the survival rate. The total stress of the window is stress-linearized into a combination of membrane stress and bending stress by finite element analysis. The window is a thin circular plate, so bending deformation is the main cause of failure and tensile deformation is secondary and negligible. Based on the Weibull distribution of bending strength of monocrystalline silicon, the optimized neutron beam window is designed to be 1.5 mm thick. Its survival rate is 0.9994 and its transmittance is 0.98447, which meets both physical and mechanical requirements.

  16. Neutron spectra measurement and comparison of the HFR and THOR BNCT beams.

    PubMed

    Liu, Yuan-Hao; Nievaart, Sander; Tsai, Pi-En; Liu, Hong-Ming; Moss, Ray; Jiang, Shiang-Huei

    2009-07-01

    This paper aims to measure the spectra of HB11 (high flux reactor, HFR) and the Tsing Hua open-pool reactor (THOR) boron neutron capture therapy (BNCT) beams by multiple activation foils. The self-shielding corrections were made with the aid of MCNP calculations. The initial spectra were adjusted by a sophisticated process named coarse-scaling adjustment using SAND-EX, which can adjust a given coarse-group spectrum into a fine-group structure, i.e. 640 groups, with excellent continuity. The epithermal neutron flux of the THOR beam is about three times of HB11. The thermal neutron flux, boron and gold reaction rates along the central axis of a PMMA phantom are calculated for both adjusted spectra for comparison. PMID:19409798

  17. Determination of multielements in a typical Japanese diet certified reference material by instrumental neutron activation analysis.

    PubMed

    Suzuki, Shogo; Okada, Yukiko; Hirai, Shoji

    2003-08-01

    Multielements in a typical Japanese diet certified reference material prepared at the National Institute for Environmental Studies (NIES) of Japan, in collaboration with the National Institute of Radiological Sciences (NIRS) of Japan were determined by instrumental neutron activation analysis (INAA). Five samples (ca. 510-1000 mg) and comparative standards were irradiated for a short time (10 s) at a thermal neutron flux of 1.5 x 10(12) n cm(-2) s(-1) (pneumatic transfer) and for a long time (6 h) at a thermal neutron flux of 3.7 x 10(12) n cm(-2) s(-1) (central thimble) in the Rikkyo University Research Reactor (TRIGA Mark-II, 100 kW). The irradiated samples were measured by conventional gama-ray spectrometry using a coaxial Ge detector, and by anti-coincidence and coincidence gamma-ray spectrometry with a coaxial Ge detector and a well-type NaI(Tl) detector. The concentrations of 38 elements were determined by these methods. PMID:12945682

  18. Generation and detection of neutron beams with orbital angular momentum

    NASA Astrophysics Data System (ADS)

    Pushin, Dmitry A.; Barankov, Roman A.; Clark, Charles W.; Huber, Michael G.; Arif, Muhammad; Cory, David G.

    2015-05-01

    Orbital angular momentum (OAM) states of light, in which photons carry lℏ units of angular momentum along their direction of propagation, are of interest in a variety of applications. The Schrödinger equation for massive particles also supports OAM solutions, and OAM states have been demonstrated with ultracold atoms and electrons. Here we report the first generation and detection of OAM states of neutrons, with l up to 7. These are made using spiral phase plates (SPP), milled out of 6061 aluminum alloy dowels with a high-resolution computer-controlled milling machine. When a SPP is placed in one arm of a Mach-Zehnder neutron interferometer, the interferogram reveals the characteristic patterns of OAM states. Addition of angular momenta is effected by concatenation of SPPs with different values of l; we have found the experimental result 1 + 2 = 3 , in reasonable agreement with theory. The advent of OAM provides an additional, quantized, degree of freedom to neutron interferometry, enlarging the qubit structure available for tests of quantum information processing and foundations of quantum physics.

  19. LANSCE beam current limiter

    SciTech Connect

    Gallegos, F.R.

    1997-01-01

    The Radiation Security System (RSS) at the Los Alamos Neutron Science Center (LANSCE) provides personnel protection from prompt radiation due to accelerated beam. Active instrumentation, such as the beam current limiter, is a component of the RSS. The current limiter is designed to limit the average current in a beamline below a specific level, thus minimizing the maximum current available for a beam spill accident. The beam current limiter is a self-contained, electrically isolated toroidal beam transformer which continuously monitors beam current. It is designed as fail-safe instrumentation. The design philosophy, hardware design, operation, and limitations of the device are described. {copyright} {ital 1997 American Institute of Physics.}

  20. Optimizing a neutron-beam focusing device for the direct geometry time-of-flight spectrometer TOFTOF at the FRM II reactor source

    NASA Astrophysics Data System (ADS)

    Rasmussen, N. G.; Simeoni, G. G.; Lefmann, K.

    2016-04-01

    A dedicated beam-focusing device has been designed for the direct geometry thermal-cold neutron time-of-flight spectrometer TOFTOF at the neutron facility FRM II (Garching, Germany). The prototype, based on the compressed Archimedes' mirror concept, benefits from the adaptive-optics technology (adjustable supermirror curvature) and the compact size (only 0.5 m long). We have simulated the neutron transport across the entire guide system. We present a detailed computer characterization of the existing device, along with the study of the factors mostly influencing the future improvement. We have optimized the simulated prototype as a function of the neutron wavelength, accounting also for all relevant features of a real instrument like the non-reflecting side edges. The results confirm the "chromatic" displacement of the focal point (flux density maximum) at fixed supermirror curvature, and the ability of a variable curvature to keep the focal point at the sample position. Our simulations are in excellent agreement with theoretical predictions and the experimentally measured beam profile. With respect to the possibility of a further upgrade, we find that supermirror coatings with m-values higher than 3.5 would have only marginal influence on the optimal behaviour, whereas comparable spectrometers could take advantage of longer focusing segments, with particular impact for the thermal region of the neutron spectrum.

  1. Ion source and beam guiding studies for an API neutron generator

    SciTech Connect

    Sy, A.; Ji, Q.; Persaud, A.; Ludewigt, B. A.; Schenkel, T.

    2013-04-19

    Recently developed neutron imaging methods require high neutron yields for fast imaging times and small beam widths for good imaging resolution. For ion sources with low current density to be viable for these types of imaging methods, large extraction apertures and beam focusing must be used. We present recent work on the optimization of a Penning-type ion source for neutron generator applications. Two multi-cusp magnet configurations have been tested and are shown to increase the extracted ion current density over operation without multi-cusp magnetic fields. The use of multi-cusp magnetic confinement and gold electrode surfaces have resulted in increased ion current density, up to 2.2 mA/cm{sup 2}. Passive beam focusing using tapered dielectric capillaries has been explored due to its potential for beam compression without the cost and complexity issues associated with active focusing elements. Initial results from first experiments indicate the possibility of beam compression. Further work is required to evaluate the viability of such focusing methods for associated particle imaging (API) systems.

  2. Enhancement of the epithermal neutron beam at the Brookhaven Medical Research Reactor

    SciTech Connect

    Liu, Hungyuan B.; Brugger, R.M.; Rorer, D.C.

    1992-12-31

    Improvements for the Brookhaven Medical Research Reactor (BMRR) epithermal neutron beam have been evaluated by MCNP calculations and measurements. Different dosimetric measurements have been made after one fuel element was in place of the graphite stringer in the core. Measurements show an 18% increase of beam intensity without reducing the beam quality. These results are consistent with the predictions of an MCNP calculation. Major changes to enhance the beam include rearranging the fuel elements in the core, placing aluminum pellets in the moderator tank C, redesigning the moderator assembly, replacing the outer bismuth by lead plus 0.05% atomic number density of {sup 6}Li, and modifying the irradiation port to accommodate an air indentation. The MCNP calculated values for the present and new designs were compared to demonstrate the improvements. The results show that the epithermal flux can be increased by 80% at the irradiation port. The neutron dose per epithermal neutron can be reduced by 30%. The beam directionality can be improved by 7%.

  3. Enhancement of the epithermal neutron beam at the Brookhaven Medical Research Reactor

    SciTech Connect

    Liu, Hungyuan B.; Brugger, R.M.; Rorer, D.C.

    1992-01-01

    Improvements for the Brookhaven Medical Research Reactor (BMRR) epithermal neutron beam have been evaluated by MCNP calculations and measurements. Different dosimetric measurements have been made after one fuel element was in place of the graphite stringer in the core. Measurements show an 18% increase of beam intensity without reducing the beam quality. These results are consistent with the predictions of an MCNP calculation. Major changes to enhance the beam include rearranging the fuel elements in the core, placing aluminum pellets in the moderator tank C, redesigning the moderator assembly, replacing the outer bismuth by lead plus 0.05% atomic number density of [sup 6]Li, and modifying the irradiation port to accommodate an air indentation. The MCNP calculated values for the present and new designs were compared to demonstrate the improvements. The results show that the epithermal flux can be increased by 80% at the irradiation port. The neutron dose per epithermal neutron can be reduced by 30%. The beam directionality can be improved by 7%.

  4. Concept for a time-of-flight Small Angle Neutron Scattering instrument at the European Spallation Source

    NASA Astrophysics Data System (ADS)

    Jaksch, S.; Martin-Rodriguez, D.; Ostermann, A.; Jestin, J.; Duarte Pinto, S.; Bouwman, W. G.; Uher, J.; Engels, R.; Frielinghaus, H.

    2014-10-01

    A new Small Angle Neutron Scattering instrument is proposed for the European Spallation Source. The pulsed source requires a time-of-flight analysis of the gathered neutrons at the detector. The optimal instrument length is found to be rather large, which allows for a polarizer and a versatile collimation. The polarizer allows for studying magnetic samples and incoherent background subtraction. The wide collimation will host VSANS and SESANS options that increase the resolution of the instrument towards μm and tens of μm, respectively. Two 1 m2 area detectors will cover a large solid angle simultaneously. The expected gains for this new instrument will lie in the range between 20 and 36, depending on the assessment criteria, when compared to up-to-date reactor based instruments. This will open new perspectives for fast kinetics, weakly scattering samples, and multi-dimensional contrast variation studies.

  5. Peripheral photon and neutron doses from prostate cancer external beam irradiation.

    PubMed

    Bezak, Eva; Takam, Rundgham; Marcu, Loredana G

    2015-12-01

    Peripheral photon and neutron doses from external beam radiotherapy (EBRT) are associated with increased risk of carcinogenesis in the out-of-field organs; thus, dose estimations of secondary radiation are imperative. Peripheral photon and neutron doses from EBRT of prostate carcinoma were measured in Rando phantom. (6)LiF:Mg,Cu,P and (7)LiF:Mg,Cu,P glass-rod thermoluminescence dosemeters (TLDs) were inserted in slices of a Rando phantom followed by exposure to 80 Gy with 18-MV photon four-field 3D-CRT technique. The TLDs were calibrated using 6- and 18-MV X-ray beam. Neutron dose equivalents measured with CR-39 etch-track detectors were used to derive readout-to-neutron dose conversion factor for (6)LiF:Mg,Cu,P TLDs. Average neutron dose equivalents per 1 Gy of isocentre dose were 3.8±0.9 mSv Gy(-1) for thyroid and 7.0±5.4 mSv Gy(-1) for colon. For photons, the average dose equivalents per 1 Gy of isocentre dose were 0.2±0.1 mSv Gy(-1) for thyroid and 8.1±9.7 mSv Gy(-1) for colon. Paired (6)LiF:Mg,Cu,P and (7)LiF:Mg,Cu,P TLDs can be used to measure photon and neutron doses simultaneously. Organs in close proximity to target received larger doses from photons than those from neutrons whereas distally located organs received higher neutron versus photon dose. PMID:25564673

  6. Experimental imaging and profiling of absorbed dose in phantoms exposed to epithermal neutron beams for neutron capture therapy

    SciTech Connect

    Gambarini, G.; Colombi, C.

    2003-08-26

    Absorbed-dose images and depth-dose profiles have been measured in a tissue-equivalent phantom exposed to an epithermal neutron beam designed for neutron capture therapy. The spatial distribution of absorbed dose has been measured by means of gel dosimeters, imaged with optical analysis. From differential measurements with gels having different isotopic composition, the contributions of all the components of the neutron field have been separated. This separation is important, owing to the different biological effectiveness of the various kinds of emitted radiation. The doses coming from the reactions 1H(n,{gamma})2H and 14N(n,p)14C and the fast-neutron dose have been imaged. Moreover, a volume simulating a tumour with accumulation of 10B and/or 157Gd has been incorporated in the phantom and the doses due to the reactions with such isotopes have been imaged and profiled too. The results have been compared with those obtained with other experimental techniques and the agreement is very satisfactory.

  7. Investigation on the reflector/moderator geometry and its effect on the neutron beam design in BNCT.

    PubMed

    Kasesaz, Y; Rahmani, F; Khalafi, H

    2015-12-01

    In order to provide an appropriate neutron beam for Boron Neutron Capture Therapy (BNCT), a special Beam Shaping Assembly (BSA) must be designed based on the neutron source specifications. A typical BSA includes moderator, reflector, collimator, thermal neutron filter, and gamma filter. In common BSA, the reflector is considered as a layer which covers the sides of the moderator materials. In this paper, new reflector/moderator geometries including multi-layer and hexagonal lattice have been suggested and the effect of them has been investigated by MCNP4C Monte Carlo code. It was found that the proposed configurations have a significant effect to improve the thermal to epithermal neutron flux ratio which is an important neutron beam parameter. PMID:26298435

  8. Monte-Carlo simulation of an ultra small-angle neutron scattering instrument based on Soller slits

    SciTech Connect

    Rieker, T.; Hubbard, P.

    1997-09-01

    Monte Carlo simulations are used to investigate an ultra small-angle neutron scattering instrument for use at a pulsed source based on a Soller slit collimator and analyzer. The simulations show that for a q{sub min} of {approximately}le-4 {angstrom}{sup -1} (15 {angstrom} neutrons) a few tenths of a percent of the incident flux is transmitted through both collimators at q=0.

  9. Development of the Probing In-Situ with Neutron and Gamma Rays (PING) Instrument for Planetary Science Applications

    NASA Technical Reports Server (NTRS)

    Parsons, A.; Bodnarik, J.; Burger, D.; Evans, L.; Floyd, S; Lim, L.; McClanahan, T.; Namkung, M.; Nowicki, S.; Schweitzer, J.; Starr, R.; Trombka, J.

    2011-01-01

    The Probing In situ with Neutrons and Gamma rays (PING) instrument is a promising planetary science application of the active neutron-gamma ray technology that has been used successfully in oil field well logging and mineral exploration on Earth for decades. Similar techniques can be very powerful for non-invasive in situ measurements of the subsurface elemental composition on other planets. The objective of our active neutron-gamma ray technology program at NASA Goddard Space Flight Center (NASA/GSFC) is to bring instruments using this technology to the point where they can be flown on a variety of surface lander or rover missions to the Moon, Mars, Venus, asteroids, comets and the satellites of the outer planets. PING combines a 14 MeV deuterium-tritium pulsed neutron generator with a gamma ray spectrometer and two neutron detectors to produce a landed instrument that can determine the elemental composition of a planet down to 30 - 50 cm below the planet's surface. The penetrating nature of.5 - 10 MeV gamma rays and 14 MeV neutrons allows such sub-surface composition measurements to be made without the need to drill into or otherwise disturb the planetary surface, thus greatly simplifying the lander design. We are currently testing a PING prototype at a unique outdoor neutron instrumentation test facility at NASA/GSFC that provides two large (1.8 m x 1.8 m x.9 m) granite and basalt test formations placed outdoors in an empty field. Since an independent trace elemental analysis has been performed on both the Columbia River basalt and Concord Gray granite materials, these samples present two known standards with which to compare PING's experimentally measured elemental composition results. We will present experimental results from PING measurements of both the granite and basalt test formations and show how and why the optimum PING instrument operating parameters differ for studying the two materials.

  10. A small angle neutron scattering (SANS) experiment using very cold neutrons (VCN)

    NASA Astrophysics Data System (ADS)

    Bleuel, M.; Carpenter, J. M.; Micklich, B. J.; Geltenbort, P.; Mishima, K.; Shimizu, H. M.; Iwashita, Y.; Hirota, K.; Hino, M.; Kennedy, S. J.; Lal, J.

    2009-09-01

    This paper describes the results of SANS measurements of small samples using the very cold neutron (VCN) beam of the PF2 instrument at the Institut Laue Langevin (ILL), France. In addition to a classical SANS pinhole collimation, the experiment used a polarizing supermirror as a monochromator and a magnetic sextupole lens to focus the neutron beam in order to gain intensity and avoid any material in the neutron beam besides the sample.

  11. Neutronic performance of the MEGAPIE spallation target under high power proton beam

    NASA Astrophysics Data System (ADS)

    Michel-Sendis, F.; Chabod, S.; Letourneau, A.; Panebianco, S.; Zanini, L.

    2010-07-01

    The MEGAPIE project, aiming at the construction and operation of a megawatt liquid lead-bismuth spallation target, constitutes the first step in demonstrating the feasibility of liquid heavy metal target technologies as spallation neutron sources. In particular, MEGAPIE is meant to assess the coupling of a high power proton beam with a window-concept heavy liquid metal target. The experiment has been set at the Paul Scherrer Institute (PSI) in Switzerland and, after a 4-month long irradiation, has provided unique data for a better understanding of the behavior of such a target under realistic irradiation conditions. A complex neutron detector has been developed to provide an on-line measurement of the neutron fluency inside the target and close to the proton beam. The detector is based on micrometric fission chambers and activation foils. These two complementary detection techniques have provided a characterization of the neutron flux inside the target for different positions along its axis. Measurements and simulation results presented in this paper aim to provide important recommendations for future accelerator driven systems (ADS) and neutron source developments.

  12. Measurement of Neutrons Produced by Beam-Target Interactions via a Coaxial Plasma Accelerator

    NASA Astrophysics Data System (ADS)

    Cauble, Scott; Poehlmann, Flavio; Rieker, Gregory; Cappelli, Mark

    2011-10-01

    This poster presents a method to measure neutron yield from a coaxial plasma accelerator. Stored electrical energies between 1 and 19 kJ are discharged within a few microseconds across the electrodes of the coaxial gun, accelerating deuterium gas samples to plasma beam energies well beyond the keV energy range. The focus of this study is to examine the interaction of the plasma beam with a deuterated target by designing and fabricating a detector to measure neutron yield. Given the strong electromagnetic pulse associated with our accelerator, indirect measurement of neutrons via threshold-dependent nuclear activation serves as both a reliable and definitive indicator of high-energy particles for our application. Upon bombardment with neutrons, discs or stacks of metal foils placed near the deuterated target undergo nuclear activation reactions, yielding gamma-emitting isotopes whose decay is measured by a scintillation detector system. By collecting gamma ray spectra over time and considering nuclear cross sections, the magnitude of the original neutron pulse is inferred.

  13. Lifetime increased cancer risk in mice following exposure to clinical proton beam generated neutrons

    PubMed Central

    Gerweck, Leo E.; Huang, Peigen; Lu, Hsiao-Ming; Paganetti, Harald; Zhou, Yenong

    2014-01-01

    Purpose To evaluate the lifespan and risk of cancer following whole-body exposure of mice to neutrons generated by a passively scattered clinical SOBP proton beam. Methods and Materials Three hundred young adult female FVB/N mice, 152 test and 148 control, were entered into the experiment. Mice were placed in an annular cassette around a cylindrical phantom, which was positioned lateral to the mid SOBP of a 165 MeV, clinical proton beam. The average distance from the edge of the mid SOBP to the conscious active mice was 21.5 cm. The phantom was irradiated with once daily fractions of 25 Gy, 4 days per week, for 6 weeks. The age at death and cause of death, i.e., cancer and type vs. non-cancer causes, were assessed over the lifespan of the mice. Results Exposure of mice to a dose of 600 Gy of proton beam generated neutrons, reduced the median lifespan of the mice by 4.2% (Kaplan-Meier cumulative survival, P = 0.053). The relative risk of death from cancer in neutron exposed vs. control mice was 1.40 for cancer of all types (P = 0.0006) and 1.22 for solid cancers (P = 0.09). For a typical 60 Gy dose of clinical protons, the observed 22% increased risk of solid cancer would be expected to decrease by a factor of 10. Conclusions Exposure of mice to neutrons generated by a proton dose which exceeds a typical course of radiotherapy by a factor of 10, resulted in a statistically significant increase in the background incidence of leukemia and a marginally significant increase in solid cancer. The results indicate that the risk of out-of-field 2nd solid cancers from SOBP proton generated neutrons and typical treatment schedules, is 6 - 10 times less than is suggested by current neutron risk estimates. PMID:24725699

  14. The Macromolecular Neutron Diffractometer MaNDi at the Spallation Neutron Source

    SciTech Connect

    Coates, Leighton; Cuneo, Matthew J.; Frost, Matthew J.; He, Junhong; Weiss, Kevin L.; McFeeters, Hana; Tomanicek, Stephen J.; Vandavasi, Venu Gopal; Langan, Paul; Iverson, Erik B.

    2015-07-18

    The Macromolecular Neutron Diffractometer (MaNDi) is located on beamline 11B of the Spallation Neutron Source at Oak Ridge National Laboratory. Moreover, the instrument is a neutron time-of-flight wavelength-resolved Laue diffractometer optimized to collect diffraction data from single crystals. Finally, the instrument has been designed to provide flexibility in several instrumental parameters, such as beam divergence and wavelength bandwidth, to allow data collection from a range of macromolecular systems.

  15. The Macromolecular Neutron Diffractometer MaNDi at the Spallation Neutron Source

    DOE PAGESBeta

    Coates, Leighton; Cuneo, Matthew J.; Frost, Matthew J.; He, Junhong; Weiss, Kevin L.; McFeeters, Hana; Tomanicek, Stephen J.; Vandavasi, Venu Gopal; Langan, Paul; Iverson, Erik B.

    2015-07-18

    The Macromolecular Neutron Diffractometer (MaNDi) is located on beamline 11B of the Spallation Neutron Source at Oak Ridge National Laboratory. Moreover, the instrument is a neutron time-of-flight wavelength-resolved Laue diffractometer optimized to collect diffraction data from single crystals. Finally, the instrument has been designed to provide flexibility in several instrumental parameters, such as beam divergence and wavelength bandwidth, to allow data collection from a range of macromolecular systems.

  16. Final report: DOE Grant ''Development of focusing monochromators for neutron scattering instruments'' (DE-FG02-96ER45599)

    SciTech Connect

    Popovici, Mihai P.

    2000-03-21

    Bent crystal monochromators were developed for the neutron scattering community: (1) doubly focusing bulk silicon, for high-resolution neutron diffraction; (2) doubly focusing multi-wafer silicon, for residual stress instruments; (3) silicon-wafer: (a) with pneumatic spherical bending, (b) with mechanical cylindrical bending, (c) with mechanical two-dimensional bending, for high-resolution three-axis spectrometry; (4) doubly focusing multi-wafer silicon, for epithermal (eV range) neutrons; (5) doubly focusing composite pyrolytic graphite (low-cost), for high-flux applications.

  17. Accelerator systems and instrumentation for the NuMI neutrino beam

    NASA Astrophysics Data System (ADS)

    Zwaska, Robert Miles

    The Neutrinos at the Main Injector (NuMI) neutrino beam facility began operating at the Fermi National Accelerator Laboratory in 2005. NuMI produces an intense, muon-neutrino beam to a number of experiments. Fore most of these experiments is MINOS---the Main Injector Neutrino Oscillation Search---that uses two neutrino detectors in the beam, one at Fermilab and one in northern Minnesota, to investigate the phenomenon of neutrino oscillations. NuMI is a conventional, horn-focused neutrino beam. It is designed to accept a 400 kW, 120 GeV proton beam from the Fermilab Main Injector accelerator. The proton beam is steered onto a target, producing a secondary beam of mesons which are focused into a long evacuated volume where they decay to muons and neutrinos. Pulsed toroidal magnets (horns) focus an adjustable meson momentum range. Design of the beamline and its components is challenged by the 400 kW average proton beam power. To achieve such high proton power, the Fermilab Main Injector (MI) must store and accelerate ˜ 4x1013 protons per acceleration cycle. This requires the MI to be loaded with 6 or more batches of protons from the 8 GeV Booster accelerator. Such multiple-batch injection involves a synchronization of the two machines not previously required by the Fermilab accelerators. In this dissertation, we investigate timing errors that can arise between the two accelerators, and a feedback system which enables multiple Booster transfers into the Main Injector without significant loss of beam. Using this method of synchronous transfer, the Main Injector has delivered as many as 3x1013 protons per pulse to the NuMI beam. The instrumentation to assess the quality of the neutrino beam includes arrays of radiation-tolerant ionization chambers downstream of the decay volume. These arrays detect the remnant hadrons and tertiary muons produced with the neutrinos. This thesis discusses measurements using the arrays, including diagnostics of potential beam errors and

  18. Note: Detector collimators for the nanoscale ordered materials diffractometer instrument at the Spallation Neutron Source

    DOE PAGESBeta

    Tamalonis, A.; Weber, J. K. R.; Neuefeind, J. C.; Carruth, J.; Skinner, L. B.; Alderman, O. L. G.; Benmore, C. J.

    2015-09-09

    We constructed and tested five neutron collimator designs using the nanoscale ordered materials diffractometer (NOMAD) instrument. Collimators were made from High Density PolyEthylene (HDPE) or 5% borated HDPE. In all cases, collimators improved the signal to background ratio and reduced detection of secondary scattering. Moreover, in the Q-range 10-20 Å-1, signal to background ratio improved by factors of approximately 1.6 and 2.0 for 50 and 100 mm deep collimators, respectively. In the Q-range 40-50 Å-1, the improvement factors were 1.8 and 2.7. Secondary scattering as measured at Q similar to 9.5 Å-1 was significantly decreased when the collimators were installed.

  19. Polarized neutron imaging at the CONRAD instrument at Helmholtz Centre Berlin

    NASA Astrophysics Data System (ADS)

    Manke, Ingo; Kardjilov, Nikolay; Hilger, André; Strobl, Markus; Dawson, Martin; Banhart, John

    2009-06-01

    Neutrons are highly sensitive to magnetic fields because of their intrinsic magnetic moment. At the same time, their zero net electrical charge allows them to penetrate thick layers of matter. In combination with standard radiographic and tomographic imaging techniques, these properties have been exploited to visualize magnetic fields in free space and within the bulk of solid, massive, opaque samples. In this paper, the basic principle of this new technique and its realization at the CONRAD instrument at the Helmholtz Centre Berlin (formerly Hahn-Meitner Institute Berlin) are explained. Two application examples will be given: the visualization of the magnetic field around a permanent magnet and the investigation of the displacement of the current density from the core of a conductor to the surface (the skin effect).

  20. Note: Detector collimators for the nanoscale ordered materials diffractometer instrument at the Spallation Neutron Source

    SciTech Connect

    Tamalonis, A.; Weber, J. K. R.; Neuefeind, J. C.; Carruth, J.; Skinner, L. B.; Alderman, O. L. G.; Benmore, C. J.

    2015-09-09

    We constructed and tested five neutron collimator designs using the nanoscale ordered materials diffractometer (NOMAD) instrument. Collimators were made from High Density PolyEthylene (HDPE) or 5% borated HDPE. In all cases, collimators improved the signal to background ratio and reduced detection of secondary scattering. Moreover, in the Q-range 10-20 Å-1, signal to background ratio improved by factors of approximately 1.6 and 2.0 for 50 and 100 mm deep collimators, respectively. In the Q-range 40-50 Å-1, the improvement factors were 1.8 and 2.7. Secondary scattering as measured at Q similar to 9.5 Å-1 was significantly decreased when the collimators were installed.

  1. Radiological and instrumental neutron activation analysis determined characteristics of size-fractionated fly ash.

    PubMed

    Peppas, T K; Karfopoulos, K L; Karangelos, D J; Rouni, P K; Anagnostakis, M J; Simopoulos, S E

    2010-09-15

    The concentration of trace elements and radionuclides in fly ash particles of different size can exhibit significant variation, due to the various processes taking place during combustion inside a coal-fired power plant. An investigation of this effect has been performed by analyzing samples of fly ash originating in two different coal-fired power plants, after separation into size fractions by sieving. The samples were analyzed by gamma-ray spectrometry, including low-energy techniques, radon exhalation measurement and instrumental neutron activation analysis for the determination of Al, As, Ga, K, La, Na, Mn, Mg, Sr, Sc, and V. Variations are observed in the results of various samples analyzed, while the activity balances calculated from the results of individual size fractions are consistent with those of the raw ash samples. Correlations among the radionuclides examined are also observed, while individual nuclide behavior varies between the two types of fly ash examined. PMID:20605322

  2. Chemical characterization of gas- and oil-bearing shales by instrumental neutron activation analysis

    USGS Publications Warehouse

    Frost, J.K.; Koszykowski, R.F.; Klemm, R.C.

    1982-01-01

    The concentration of As, Ba, Ca, Co, Cr, Cs, Dy, Eu, Fe, Ga, Hf, K, La, Lu, Mn, Mo, Na, Ni, Rb, Sb, Sc, Se, Sm, Sr, Ta, Tb, Th, U, Yb, and Zn were determined by instrumental neutron activation analysis in block shale samples of the New Albany Group (Devonian-Mississippian) in the in the Illinois Basin. Uranium content of the samples was as high as 75 ppm and interfered in the determination of samarium, molybdenum, barium and cerium. In the determination of selenium a correction was made for interference from tantalum. U, As, Co, Mo, Ni and Sb as well as Cu, V and pyritic sulphur which were determined by other methods, were found to correlate positively with the organic carbon content of the samples. ?? 1982 Akade??miai Kiado??.

  3. Instrumental neutron activation analysis data for cloud-water particulate samples, Mount Bamboo, Taiwan

    USGS Publications Warehouse

    Lin, Neng-Huei; Sheu, Guey-Rong; Wetherbee, Gregory A.; Debey, Timothy M.

    2013-01-01

    Cloud water was sampled on Mount Bamboo in northern Taiwan during March 22-24, 2002. Cloud-water samples were filtered using 0.45-micron filters to remove particulate material from the water samples. Filtered particulates were analyzed by instrumental neutron activation analysis (INAA) at the U.S. Geological Survey National Reactor Facility in Denver, Colorado, in February 2012. INAA elemental composition data for the particulate materials are presented. These data complement analyses of the aqueous portion of the cloud-water samples, which were performed earlier by the Department of Atmospheric Sciences, National Central University, Taiwan. The data are intended for evaluation of atmospheric transport processes and air-pollution sources in Southeast Asia.

  4. Note: Detector collimators for the nanoscale ordered materials diffractometer instrument at the Spallation Neutron Source

    SciTech Connect

    Tamalonis, A.; Weber, J. K. R. Alderman, O. L. G.; Neuefeind, J. C.; Carruth, J.; Skinner, L. B.; Benmore, C. J.

    2015-09-15

    Five neutron collimator designs were constructed and tested at the nanoscale ordered materials diffractometer (NOMAD) instrument. Collimators were made from High Density PolyEthylene (HDPE) or 5% borated HDPE. In all cases, collimators improved the signal to background ratio and reduced detection of secondary scattering. In the Q-range 10-20 Å{sup −1}, signal to background ratio improved by factors of approximately 1.6 and 2.0 for 50 and 100 mm deep collimators, respectively. In the Q-range 40-50 Å{sup −1}, the improvement factors were 1.8 and 2.7. Secondary scattering as measured at Q ∼ 9.5 Å{sup −1} was significantly decreased when the collimators were installed.

  5. Note: Detector collimators for the nanoscale ordered materials diffractometer instrument at the Spallation Neutron Source.

    PubMed

    Tamalonis, A; Weber, J K R; Neuefeind, J C; Carruth, J; Skinner, L B; Alderman, O L G; Benmore, C J

    2015-09-01

    Five neutron collimator designs were constructed and tested at the nanoscale ordered materials diffractometer (NOMAD) instrument. Collimators were made from High Density PolyEthylene (HDPE) or 5% borated HDPE. In all cases, collimators improved the signal to background ratio and reduced detection of secondary scattering. In the Q-range 10-20 Å(-1), signal to background ratio improved by factors of approximately 1.6 and 2.0 for 50 and 100 mm deep collimators, respectively. In the Q-range 40-50 Å(-1), the improvement factors were 1.8 and 2.7. Secondary scattering as measured at Q ∼ 9.5 Å(-1) was significantly decreased when the collimators were installed. PMID:26429492

  6. Differential Die-Away Instrument: Report on Fuel Assembly Mock-up Measurements with Neutron Generator

    SciTech Connect

    Goodsell, Alison Victoria; Swinhoe, Martyn Thomas; Henzl, Vladimir; Rael, Carlos D.; Desimone, David J.

    2014-09-18

    Fresh fuel experiments for the differential die-away (DDA) project were performed using a DT neutron generator, a 15x15 PWR fuel assembly, and nine 3He detectors in a water tank inside of a shielded cell at Los Alamos National Laboratory (LANL). Eight different fuel enrichments were created using low enriched (LEU) and depleted uranium (DU) dioxide fuel rods. A list-mode data acquisition system recorded the time-dependent signal and analysis of the DDA signal die-away time was performed. The die-away time depended on the amount of fissile material in the fuel assembly and the position of the detector. These experiments were performed in support of the spent nuclear fuel Next Generation Safeguards Initiative DDA project. Lessons learned from the fresh fuel DDA instrument experiments and simulations will provide useful information to the spent fuel project.

  7. EDITORIAL: Instrumentation and Methods for Neutron Scattering—papers from the 4th European Conference on Neutron Scattering in Lund, Sweden, June 2007

    NASA Astrophysics Data System (ADS)

    Rennie, Adrian R.

    2008-03-01

    Neutron scattering is used as a tool to study problems in disciplines that include chemistry, materials science, biology and condensed matter physics as well as problems from neighbouring disciplines such as geology, environmental sciences and archaeology. Equipment for these studies is found at laboratories with research reactors or spallation neutron sources and there are many recent or current developments with new instruments and even entirely new facilities such as the Spallation Neutron Source at Oak Ridge, USA, the OPAL reactor at Lucas Heights, Australia and the second target station at the ISIS facility in the UK. Design and optimization of the instruments at these facilities involves work with many research laboratories and groups in universities. Every four years the European Conference on Neutron Scattering (ECNS) brings together both the specialists in neutron instrumentation and the community of users (in intervening years there are International and American conferences). In June 2007 about 700 delegates came to the 4th ECNS that was held in Lund, Sweden. There were more than 600 presentations as talks and posters. The opportunity to publish papers in Measurement Science and Technology that relate to neutron scattering instrumentation and method development was offered to the participants, and the papers that follow describe some of the recent activity in this field. Accounts of work on condensed matter science and the applications of neutron scattering appear separately in Journal of Physics: Condensed Matter. There are, of course, many features of neutron instrumentation that are specific to this particular field of measurement. However, there are also many elements of apparatus and experiment design that can usefully be shared with a broader community. It is hoped that this issue with papers from ECNS will find a broad community of interest. Apart from descriptions of overall design of diffractometers and spectrometers there are accounts of new

  8. Elemental characterization of Hazm El-Jalamid phosphorite by instrumental neutron activation analysis.

    PubMed

    El-Taher, A; Khater, Ashraf E M

    2016-08-01

    Instrumental neutron activation analyses (INAA) have been used to achieve accurate knowledge about the elemental analysis of phosphate ore deposits collected from Hazm El-Jalamid Northeast of Saudi Arabia. The samples were prepared for irradiation by thermal neutrons using a thermal neutron flux of 7×10(12)ncm(-2)s(-1) at ACT Lab Canada. The concentrations of 19 elements were determined. These included 12 major, minor and trace elements (Au, As, Ba, Br, Cr, Mo, Sb, Sc, Sr, Th, U and Zn) and 7 rare earth elements (REEs) (La, Ce, Nd, Sm, Eu, Yb and Lu). Major elements (Si, Al, Fe, Ca, Mg, Na, K, Cr, Ti, Mn, P, Sr and Ba) were determined using an inductively coupled plasma-mass spectrometer (ICP-MS). The comparison of the concentration of U and the REEs in the Hazm El-Jalamid phosphate samples with those of the Umm Wu'al phosphate from Saudi Arabia and El-Sibayia and El Hamrawein phosphate from Egypt shows that the contents of U and REEs are clearly higher in the Umm Wu'al, El-Sibayia and El Hamrawein phosphates than in the Hazm El-Jalamid phosphate samples. The results of major, trace elements, uranium and rare earth elements (REE) from El Jalamid phosphate have been compared with the global values of these elements. The concentrations for most of the elements studied are lower than the concentrations reported in the literature. The acquired data will serve as a reference for the follow-up studies to assess the agronomic effectiveness of the Hazm El-Jalamid phosphate rocks. PMID:27235886

  9. Design of the Small Angle Neutron Scattering instrument at the Indiana University Low Energy Neutron Source: Applications to the study of nanostructured materials

    NASA Astrophysics Data System (ADS)

    Remmes, Nicholas B.

    The Low Energy Neutron Source (LENS) located at the Indiana University Cyclotron Facility (IUCF) is a prototypical long-pulse accelerator-based neutron source. The Small Angle Neutron Scattering (SANS) instrument is one of several planned instruments at the LENS facility. The SANS instrument is a time-of-flight instrument which utilizes a pinhole collimation system and neutron wavelengths up to 20A giving it a q range from about 0.006A-1 to 0.5A-1 with a maximum divergence at the sample of about +/-8mrad. The neutron flux on the sample at the anticipated 8kW mode of operation is anticipated to be greater than 2 x 104n/s.cm 2. The design, calibration, and testing of the LENS SANS instrument is discussed, including Monte-Carlo simulations and analytical calculations used to optimize the collimation design, the placement and design of the pulse-overlap chopper system, and other aspects of the instrument's geometry. The expected resolution, count rates, and other general performance parameters of the instrument are presented and, where possible, compared with experimental results. SANS measurements of a family of tripodal organo-silicon dendrimer molecules using the IPNS SAND and the NCNR NG3 SANS instruments are presented. Variations in the scattering curves are compared for solutions of the dendrimers at multiple concentrations in d-heptane, d-DCM, and d-toluene. Models of both the particle form factor and the structure factor are presented. The measurements suggest a distinct difference between the size and behavior of the highest generation dendrimer in two of the solvents (d-DCM and d-toluene) as compared to a third (d-heptane). Additionally, the dendrimer molecules appear to be forming short chains in solution. A brief study of iron oxide magnetic nanoparticles is also presented. This study includes a presentation of the magnetic measurements of the nanoparticles using a SQUID magnetometer. The measurements indicate contributions by a larger dispersion of

  10. Rare earth elements in core marine sediments of coastal East Malaysia by instrumental neutron activation analysis.

    PubMed

    Ashraf, Ahmadreza; Saion, Elias; Gharibshahi, Elham; Kamari, Halimah Mohamed; Kong, Yap Chee; Hamzah, Mohd Suhaimi; Elias, Md Suhaimi

    2016-01-01

    A study was carried out on the concentration of REEs (Dy, Sm, Eu,Yb, Lu, La and Ce) that are present in the core marine sediments of East Malaysia from three locations at South China Sea and one location each at Sulu Sea and Sulawesi Sea. The sediment samples were collected at a depth of between 49 and 109 m, dried, and crushed to powdery form. The entire core sediments prepared for Instrumental Neutron Activation Analysis (INAA) were weighted approximately 0.0500 g to 0.1000 g for short irradiation and 0.1500 g to 0.2000 g for long irradiation. The samples were irradiated with a thermal neutron flux of 4.0×10(12) cm(-2) s(-1) in a TRIGA Mark II research reactor operated at 750 kW. Blank samples and standard reference materials SL-1 were also irradiated for calibration and quality control purposes. It was found that the concentration of REEs varies in the range from 0.11 to 36.84 mg/kg. The chondrite-normalized REEs for different stations suggest that all the REEs are from similar origins. There was no significant REEs contamination as the enrichment factors normalized for Fe fall in the range of 0.42-2.82. PMID:26405840

  11. Rare-earth elements in Egyptian granite by instrumental neutron activation analysis.

    PubMed

    El-Taher, A

    2007-04-01

    The mobilization of rare-earth elements (REEs) in the environment requires monitoring of these elements in environmental matrices, in which they are mainly present at trace levels. The similarity in REEs chemical behavior makes the separate determination of each element by chemical methods difficult; instrumental neutron activation analysis (INAA), based on nuclear properties of the elements to be determined, is a method of choice in trace analysis of REEs and related elements. Therefore, INAA was applied as a sensitive nondestructive analytical tool for the determination of REEs to find out what information could be obtained about the REEs of some Egyptian granite collected from four locations in Aswan area in south Egypt as follows wadi El-Allaqi, El-Shelal, Gabel Ibrahim Pasha and from Sehyel Island and to estimate the accuracy, reproducibility and detection limit of NAA method in case of the given samples. The samples were properly prepared together with standards and simultaneously irradiated in a neutron flux of 7 x 10(11)n/cm(2)s in the TRIGA Mainz research reactor facilities. The following elements have been determined: La, Ce, Nd, Sm, Eu, Yb and Lu. The gamma spectra was collected by HPGe detector and the analysis was done by means of computerized multichannel analyzer. The X-ray fluorescence (XRF) was also used. PMID:17208446

  12. Development of a fast traveling-wave beam chopper for the National Spallation Neutron Source

    SciTech Connect

    Kurennoy, S.S.; Jason, A.J.; Krawczyk, F.L.; Power, J.

    1997-10-01

    High current and severe restrictions on beam losses, below 1 nA/m, in the designed linac for the National Spallation Neutron Source (NSNS) require clean and fast--with the rise time from 2% to 98% less than 2.5 ns to accommodate a 402.5-MHz beam structure--beam chopping in its front end, at the beam energy 2.5 MeV. The R and D program includes both modification of the existing LANSCE coax-plate chopper to reduce parasitic coupling between adjacent plates, and development of new traveling-wave deflecting structures, in particular, based on a meander line. Using analytical methods and three-dimensional time-domain computer simulations the authors study transient effects in such structures to choose an optimal chopper design.

  13. The integrated optics beam combiner assembly of the GRAVITY/VLTI instrument

    NASA Astrophysics Data System (ADS)

    Jocou, L.; Perraut, K.; Nolot, A.; Moulin, T.; Magnard, Y.; Labeye, P.; Lapras, V.; Eisenhauer, F.; Perrin, G.; Amorim, A.; Brandner, W.; Straubmeier, C.

    2012-07-01

    Gravity aims at enhancing infrared imaging at VLTI to significantly improve our understanding of the physical processes related to gravitation and accretion within compact objects. With its fiber-fed integrated optics, infrared wavefront sensors, fringe tracker, beam stabilization and a novel metrology concept, GRAVITY will push the sensitivity and accuracy of astrometry and interferometric imaging far beyond what is offered today. Four telescopes will be combined in dual feed in the K band providing precision astrometry of order 10 micro-arcseconds, and imaging with 4- milliarcsecond resolution. The fringe tracker and the scientific instrument host an identical integrated optics beam combiner made by silica-on-silicon etching technology that is put inside a cryogenic vessel and cooled down to 200K to reduce thermal background and increase sensitivity. This paper gives the design of the integrated beam combiner and of its fibered array that allows feeding the combiner with stellar light. Lab measurement of spectral throughput and interferometric performance for beam combiners made by Flame Hydrolysis Deposition and by Plasma-Enhanced Chemical Vapor Deposition (PECVD) are given. The procedure to glue together the beam combiner and its fibered array is described as well as the tests to validate the performance and the ageing effects at low temperature. Finally the thermal analysis and the eigen-frequency study of the whole device are presented.

  14. Comparing the Coronal Flaring Efficacy of Five Different Instruments Using Cone-Beam Computed Tomography

    PubMed Central

    Homayoon, Amin; Hamidi, Mahmood Reza; Haddadi, Azam; Madani, Zahra Sadat; Moudi, Ehsan; Bijani, Ali

    2015-01-01

    Introduction: Fearless removal of tooth structure during canal preparation and shaping has negative effects on the prognosis of treatment. On the other hand, sufficient pre-enlargement facilitates exact measurement of the apical size. The present in vitro study aimed to compare the efficacy of Gates-Glidden drills, K3, ProTaper, FlexMaster and RaCe instruments in dentin removal during coronal flaring using cone-beam computed tomography (CBCT). Methods and Materials: A total of 40 mandibular molars were selected and the coronal areas of their mesiobuccal and mesiolingual root canals were randomly prepared with either mentioned instruments. Pre- and post-instrumentation CBCT images were taken and the thickness of canal walls was measured in 1.5- and 3-mm distances from the furcation area. Data were analyzed using the one-way ANOVA. Tukey’s post hoc tests were used for two-by-two comparisons. Results: At 1.5-mm distance, there was no significant difference between different instruments. However, at 3-mm distances, Gates-Glidden drills removed significantly more dentin compared to FlexMaster files (mean=0.18 mm) (P<0.02); however, two-by-two comparisons did not reveal any significant differences between the other groups. Conclusion: All tested instruments can be effectively used in clinical settings for coronal pre-enlargement. PMID:26525955

  15. Recent improvements to the DIII-D neutral beam instrumentation and control system

    SciTech Connect

    Kellman, D.H.; Hong, R.

    1997-11-01

    The DIII-D neutral beam (NB) instrumentation and control (I and C) system provides for operational control and synchronization of the eight DIII-D neutral beam injection systems, as well as for pertinent data acquisition and safety interlocking. Recently, improvements were made to the I and C system. With the replacement of the NB control computers, new signal interfacing was required to accommodate the elimination of physical operator panels, in favor of graphical user interface control pages on computer terminal screens. The program in the mode control (MC) programmable logic controller (PLC), which serves as a logic-processing interface between the NB control computers and system hardware, was modified to improve the availability of NB heating of DIII-D plasmas in the event that one or more individual beam systems suddenly become unavailable while preparing for a tokamak experimental shot sequences. An upgraded computer platform was adopted for the NB control system operator interface and new graphical user interface pages were developed to more efficiently display system status data. A failure mode of the armor tile infrared thermometers (pyrometers), which serve to terminate beam pulsing if beam shine-through overheats wall thermal shielding inside the DIII-D tokamak, was characterized such that impending failures can be detected and repairs effected to mitigate beam system down-time. The hardware that controls gas flow to the beamline neutralizer cells was upgraded to reduce susceptibility to electromagnetic interference (EMI), and interlocking was provided to terminate beam pulsing in the event of insufficient neutralizer gas flow. Motivation, implementation, and results of these improvements are presented.

  16. Reference instrument complement for IPNS Upgrade

    SciTech Connect

    Crawford, R.K.

    1993-07-01

    A feasibility study for a new 1 MW pulsed neutron source has recently been completed at Argonne. As part of this feasibility study, an instrument package to instrument 24 of the 36 beam ports has been considered. This complement of instruments is outlined, and details of some of the instruments are discussed. Developments required before some of these instruments can be built are also indicated.

  17. LICORNE: A new and unique facility for producing intense, kinematically focused neutron beams at the IPN Orsay

    NASA Astrophysics Data System (ADS)

    Wilson, J. N.; Lebois, M.; Halipre, P.; Leniau, B.; Matea, I.; Verney, D.; Oberstedt, S.; Billnert, R.; Oberstedt, A.; Georgiev, G.; Ljungvall, J.

    2013-12-01

    LICORNE is a new neutron source recently installed at the tandem accelerator of the Institut de Physique Nucléaire d'Orsay, where a Li7-beam is used to bombard a hydrogen-containing target to produce an intense forward-directed neutron beam. The directionality of the beam, which is the unique characteristic of LICORNE, will permit the installation of γ-ray detectors dedicated to the investigation of fission fragment de-excitation which are unimpeded by neutrons from the source. A first experimental program will focus on the measurement of prompt γ-ray emission in the neutron-induced fission of fertile and fissile isotopes at incident neutron energies relevant for the core design of Generation-IV nuclear reactors. Other potential uses of the LICORNE facility for both fundamental and applied physics research are also presented.

  18. A new measurement of Beam Asymmetry in Pion Photoproduction from the Neutron using CLAS

    SciTech Connect

    D. Sokhan, D. Watts, D. Branford, F. Klein

    2010-08-01

    We present a preliminary analysis of the photon beam asymmetry observable (Sigma) from the photoproduction reaction channel gamma+ n -> p + pi-. This new data was obtained using the near-4pi CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Laboratory, USA, employing a linearly polarised photon beam with an energy range 1.1 - 2.3 GeV. The measurement will provide new data to address the poorly established neutron excitation spectrum and will greatly expand the sparse world data-set both in energy and angle.

  19. Measurement of neutron spectra generated by a 62 AMeV carbon-ion beam on a PMMA phantom using extended range Bonner sphere spectrometers

    NASA Astrophysics Data System (ADS)

    Bedogni, R.; Amgarou, K.; Domingo, C.; Russo, S.; Cirrone, G. A. P.; Pelliccioni, M.; Esposito, A.; Pola, A.; Introini, M. V.; Gentile, A.

    2012-07-01

    Neutrons constitute an important component of the radiation environment in hadron therapy accelerators. Their energy distribution may span from thermal up to hundred of MeV. The characterization of these fields in terms of dosimetric or spectrometric quantities is crucial for either the patient protection or the facility design aspects. To date, the Extended Range Bonner Sphere Spectrometer (ERBSS) is the only instrument able to simultaneously determine all spectral components in such workplaces. With the aim of providing useful data to the scientific community involved in neutron measurements at hadron therapy facilities, a measurement campaign was carried out at the Centro di AdroTerapia e Applicazioni Nucleari Avanzate (CATANA) of INFN-LNS (Laboratori Nazionali del Sud), where a 62 AMeV carbon ion is available. The beam was directed towards a PMMA phantom, simulating the patient, and two neutron measurement points were established at 0° and 90° with respect to the beam-line. The ERBSSs of UAB (Universidad Autónoma de Barcelona-Grup de Física de les Radiacions) and INFN (Istituto Nazionale di Fisica Nucleare-Laboratori Nazionali di Frascati) were used to measure the resulting neutron fields. The two ERBSSs use different detectors and sphere diameters, and have been independently calibrated. The FRUIT code was used to unfold the results.

  20. Performance evaluation of the source description of the THOR BNCT epithermal neutron beam.

    PubMed

    Liu, Yuan-Hao; Tsai, Pi-En; Yu, Hui-Ting; Lin, Yi-Chun; Huang, Yu-Shiang; Huang, Chun-Kai; Liu, Yen-Wan Hsueh; Liu, Hong-Ming; Jiang, Shiang-Huei

    2011-12-01

    This paper aims to evaluate the performance of the source description of the THOR BNCT beam via different measurement techniques in different phantoms. The measurement included (1) the absolute reaction rate measurement of a set of triple activation foils, (2) the neutron and gamma-ray dose rates measured using the paired ionization chamber method, and (3) the relative reaction rate distributions obtained using the indirect neutron radiography. Three source descriptions, THOR-Y09, surface source file RSSA, and THOR-50C, were tested. The comparison results concluded that THOR-Y09 is a well-tested source description not only for neutron components, but also for gamma-ray component. PMID:21570855

  1. 3D imaging using combined neutron-photon fan-beam tomography: A Monte Carlo study.

    PubMed

    Hartman, J; Yazdanpanah, A Pour; Barzilov, A; Regentova, E

    2016-05-01

    The application of combined neutron-photon tomography for 3D imaging is examined using MCNP5 simulations for objects of simple shapes and different materials. Two-dimensional transmission projections were simulated for fan-beam scans using 2.5MeV deuterium-deuterium and 14MeV deuterium-tritium neutron sources, and high-energy X-ray sources, such as 1MeV, 6MeV and 9MeV. Photons enable assessment of electron density and related mass density, neutrons aid in estimating the product of density and material-specific microscopic cross section- the ratio between the two provides the composition, while CT allows shape evaluation. Using a developed imaging technique, objects and their material compositions have been visualized. PMID:26953978

  2. GRAVITY: a four-telescope beam combiner instrument for the VLTI

    NASA Astrophysics Data System (ADS)

    Gillessen, S.; Eisenhauer, F.; Perrin, G.; Brandner, W.; Straubmeier, C.; Perraut, K.; Amorim, A.; Schöller, M.; Araujo-Hauck, C.; Bartko, H.; Baumeister, H.; Berger, J.-P.; Carvas, P.; Cassaing, F.; Chapron, F.; Choquet, E.; Clenet, Y.; Collin, C.; Eckart, A.; Fedou, P.; Fischer, S.; Gendron, E.; Genzel, R.; Gitton, P.; Gonte, F.; Gräter, A.; Haguenauer, P.; Haug, M.; Haubois, X.; Henning, T.; Hippler, S.; Hofmann, R.; Jocou, L.; Kellner, S.; Kervella, P.; Klein, R.; Kudryavtseva, N.; Lacour, S.; Lapeyrere, V.; Laun, W.; Lena, P.; Lenzen, R.; Lima, J.; Moratschke, D.; Moch, D.; Moulin, T.; Naranjo, V.; Neumann, U.; Nolot, A.; Paumard, T.; Pfuhl, O.; Rabien, S.; Ramos, J.; Rees, J. M.; Rohloff, R.-R.; Rouan, D.; Rousset, G.; Sevin, A.; Thiel, M.; Wagner, K.; Wiest, M.; Yazici, S.; Ziegler, D.

    2010-07-01

    GRAVITY is an adaptive optics assisted Beam Combiner for the second generation VLTI instrumentation. The instrument will provide high-precision narrow-angle astrometry and phase-referenced interferometric imaging in the astronomical K-band for faint objects. We describe the wide range of science that will be tackled with this instrument, highlighting the unique capabilities of the VLTI in combination with GRAVITY. The most prominent goal is to observe highly relativistic motions of matter close to the event horizon of Sgr A*, the massive black hole at center of the Milky Way. We present the preliminary design that fulfils the requirements that follow from the key science drivers: It includes an integrated optics, 4-telescope, dual feed beam combiner operated in a cryogenic vessel; near-infrared wavefrontsensing adaptive optics; fringe-tracking on secondary sources within the field of view of the VLTI and a novel metrology concept. Simulations show that 10 μas astrometry within few minutes is feasible for a source with a magnitude of mK = 15 like Sgr A*, given the availability of suitable phase reference sources (mK = 10). Using the same setup, imaging of mK = 18 stellar sources in the interferometric field of view is possible, assuming a full night of observations and the corresponding UV coverage of the VLTI.

  3. The beam combiners of Gravity VLTI instrument: concept, development, and performance in laboratory

    NASA Astrophysics Data System (ADS)

    Jocou, L.; Perraut, K.; Moulin, T.; Magnard, Y.; Labeye, P.; Lapras, V.; Nolot, A.; Perrin, G.; Eisenhauer, F.; Holmes, C.; Amorim, A.; Brandner, W.; Straubmeier, C.

    2014-07-01

    Gravity is one of the second-generation instruments of the Very Large Telescope Interferometer that operates in the near infrared range and that is designed for precision narrow-angle astrometry and interferometric imaging. With its infrared wavefront sensors, pupil stabilization, fringe tracker, and metrology, the instrument is tailored to provide a high sensitivity, imaging with 4-millisecond resolution, and astrometry with a 10μarcsec precision. It will probe physics close to the event horizon of the Galactic Centre black hole, and allow to study mass accretion and jets in young stellar objects and active galactic nuclei, planet formation in circumstellar discs, or detect and measure the masses of black holes in massive star clusters throughout the Milky Way. As the instrument required an outstanding level of precision and stability, integrated optics has been chosen to collect and combine the four VLTI beams in the K band. A dedicated integrated optics chip glued to a fiber array has been developed. Technology breakthroughs have been mandatory to fulfill all the specifications. This paper is focused on the interferometric beam combination system of Gravity. Once the combiner concept described, the paper details the developments that have been led, the integration and the performance of the assemblies.

  4. A measurement of the fast-neutron sensitivity of a Geiger - Müller detector in the pulsed neutron beam from a superconducting cyclotron

    NASA Astrophysics Data System (ADS)

    Maughan, R. L.; Yudelev, M.; Kota, C.

    1996-08-01

    The value of a commercially available miniature energy compensated Geiger - Müller (GM) detector has been determined using the modified lead attenuation method of Hough. The measurements were made in a d(48.5) - Be neutron beam produced by the superconducting cyclotron based neutron therapy facility at Harper Hospital. The unique problems associated with making measurements in a 2 ms duration pulsed beam with a 20% duty cycle are discussed. The beam monitoring system, which allows the beam pulse shape at low beam intensities to be measured, is described. By gating the GM output with a discriminator pulse derived from the beam pulse shape, the gamma-ray count rates and dead-time corrections within the 2 ms pulse and between pulses can be measured separately. The value of determined for this GM detector is consistent with the values measured by other workers with identical and similar detectors in neutron beams with comparable, but not identical, neutron spectra.

  5. Measurement of the neutron fields produced by a 62 MeV proton beam on a PMMA phantom using extended range Bonner sphere spectrometers

    NASA Astrophysics Data System (ADS)

    Amgarou, K.; Bedogni, R.; Domingo, C.; Esposito, A.; Gentile, A.; Carinci, G.; Russo, S.

    2011-10-01

    The experimental characterization of the neutron fields produced as parasitic effect in medical accelerators is assuming an increased importance for either the patient protection or the facility design aspects. Medical accelerators are diverse in terms of particle type (electrons or hadrons) and energy, but the radiation fields around them have in common (provided that a given threshold energy is reached) the presence of neutrons with energy span over several orders of magnitude. Due to the large variability of neutron energy, field or dosimetry measurements in these workplaces are very complex, and in general, cannot be performed with ready-to-use commercial instruments. In spite of its poor energy resolution, the Bonner Sphere Spectrometer (BSS) is the only instrument able to simultaneously determine all spectral components in such workplaces. The energy range of this instrument is limited to E<20 MeV if only polyethylene spheres are used, but can be extended to hundreds of MeV by including metal-loaded spheres (extended range BSS, indicated with ERBSS). With the aim of providing useful data to the scientific community involved in neutron measurements at hadron therapy facilities, an ERBSS experiment was carried out at the Centro di AdroTerapia e Applicazioni Nucleari Avanzate (CATANA) of INFN—LNS (Laboratori Nazionali del Sud), where a proton beam routinely used for ophthalmic cancer treatments is available. The 62 MeV beam was directed towards a PMMA phantom, simulating the patient, and two neutron measurement points were established at 0° and 90° with respect to the beam-line. Here the ERBSS of UAB (Universidad Autónoma de Barcelona— Grup de Física de les Radiacions) and INFN (Istituto Nazionale di Fisica Nucleare—Laboratori Nazionali di Frascati) were exposed to characterize the "forward" and "sideward" proton-induced neutron fields. The use of two ERBSS characterized by different set of spheres, central detectors, and independently established and

  6. Designing a minimum-functionality neutron and gamma measurement instrument with a focus on authentication

    SciTech Connect

    Karpius, Peter J; Williams, Richard B

    2009-01-01

    During the design and construction of the Next-Generation Attribute-Measurement System, which included a largely commercial off-the-shelf (COTS), nondestructive assay (NDA) system, we realized that commercial NDA equipment tends to include numerous features that are not required for an attribute-measurement system. Authentication of the hardware, firmware, and software in these instruments is still required, even for those features not used in this application. However, such a process adds to the complexity, cost, and time required for authentication. To avoid these added authenticat ion difficulties, we began to design NDA systems capable of performing neutron multiplicity and gamma-ray spectrometry measurements by using simplified hardware and software that avoids unused features and complexity. This paper discusses one possible approach to this design: A hardware-centric system that attempts to perform signal analysis as much as possible in the hardware. Simpler processors and minimal firmware are used because computational requirements are kept to a bare minimum. By hard-coding the majority of the device's operational parameters, we could cull large sections of flexible, configurable hardware and software found in COTS instruments, thus yielding a functional core that is more straightforward to authenticate.

  7. Prompt gamma-ray analysis using cold and thermal guided neutron beams at JAERI.

    PubMed

    Yonezawa, C

    1999-01-01

    A highly sensitive neutron-induced prompt gamma-ray analysis (PGA) system, usable at both cold and thermal neutron beam guides of JRR-3M, has been constructed. The system was designed to achieve the lowest gamma-ray background by using lithium fluoride tiles as neutron shielding, by placing the samples in a He atmosphere and by using a Ge-bismuth germanate detector system for Compton suppression. The gamma-ray spectrometer can acquire three modes of spectra simultaneously: single, Compton suppression, and pair modes. Because of the low-energy guided neutron beams and the low-background system, analytical sensitivities and detection limits better than those in usual PGA systems have been achieved. Boron and multielemental determination by a comparative standardization have been investigated, and accuracy, precision, and detection limits for the elements in various materials were evaluated. The system has been applied to the determination of B and multielements in samples of various fields such as medical, environmental, and geological sciences. PMID:10676516

  8. UCN sources at external beams of thermal neutrons. An example of PIK reactor

    NASA Astrophysics Data System (ADS)

    Lychagin, E. V.; Mityukhlyaev, V. A.; Muzychka, A. Yu.; Nekhaev, G. V.; Nesvizhevsky, V. V.; Onegin, M. S.; Sharapov, E. I.; Strelkov, A. V.

    2016-07-01

    We consider ultracold neutron (UCN) sources based on a new method of UCN production in superfluid helium (4He). The PIK reactor is chosen as a perspective example of application of this idea, which consists of installing 4He UCN source in the beam of thermal or cold neutrons and surrounding the source with moderator-reflector, which plays the role of cold neutron (CN) source feeding the UCN source. CN flux in the source can be several times larger than the incident flux, due to multiple neutron reflections from the moderator-reflector. We show that such a source at the PIK reactor would provide an order of magnitude larger density and production rate than an analogous source at the ILL reactor. We estimate parameters of 4He source with solid methane (CH4) or/and liquid deuterium (D2) moderator-reflector. We show that such a source with CH4 moderator-reflector at the PIK reactor would provide the UCN density of ~1·105 cm-3, and the UCN production rate of ~2·107 s-1. These values are respectively 1000 and 20 times larger than those for the most intense UCN user source. The UCN density in a source with D2 moderator-reflector would reach the value of ~2·105 cm-3, and the UCN production rate would be equal ~8·107 s-1. Installation of such a source in a beam of CNs would slightly increase the density and production rate.

  9. Determination of twenty-nine elements in eight argonne premium coal samples by instrumental neutron activation analysis

    USGS Publications Warehouse

    Palmer, C.A.

    1990-01-01

    Twenty-nine elements have been determined in triplicate splits of the eight Argonne National Laboratory Premium Coal Samples by instrumental neutron activtaion analysis. Data for control samples NBS 1633 (fly ash) and NBS 1632b are also reported. The factors that could lead to errors in analysis for these samples, such as spectral overlaps, low sensitivity, and interfering nuclear reactions, are discussed.

  10. Pulsed neutron-beam focusing by modulating a permanent-magnet sextupole lens

    NASA Astrophysics Data System (ADS)

    Yamada, Masako; Iwashita, Yoshihisa; Ichikawa, Masahiro; Fuwa, Yasuhiro; Tongu, Hiromu; Shimizu, Hirohiko M.; Mishima, Kenji; Yamada, Norifumi L.; Hirota, Katsuya; Otake, Yoshie; Seki, Yoshichika; Yamagata, Yutaka; Hino, Masahiro; Kitaguchi, Masaaki; Garbe, Ulf; Kennedy, Shane J.; Tung Lee, Wai; Andersen, Ken H.; Guerard, Bruno; Manzin, Giuliana; Geltenbort, Peter

    2015-04-01

    We have developed a compact permanent-magnet sextupole lens for neutrons that can focus a pulsed beam with a wide wavelength range-the maximum wavelength being more than double the minimum-while sufficiently suppressing the effect of chromatic aberration. The bore diameter is #x00F8;15 mm. Three units of a double-ring sextupole with a length of 66 mm are cascaded, resulting in a total length of 198 mm. The dynamic modulation range of the unit-averaged field gradient is 1.06 × 104-5.86 × 104Tm^{-2}. Permanent magnets and newly developed torque-canceling elements make the device compact, its production costs low, and its operation simpler than that of other magnetic lenses. The efficacy of this lens was verified using very cold neutrons. The diameter of the focused beam spots over the wavelength range of 27-55 Å was the same as that of the source aperture (2 mm diameter) when the magnification of the optical arrangement was unity. The total beam flux over this wavelength range was enhanced by a factor of 43. The focusing distance from the source to the detector was 1.84 m. In addition, in a demonstration of neutron image magnification, the image of a sample mask magnified by a factor of 4.1 was observed when the magnification of the optical arrangement was 5.0.

  11. Radiobiological intercomparison of clinical neutron beams for growth inhibition in Vicia faba bean roots

    SciTech Connect

    Beauduin, M.; Gueulette, J.; Vynckier, S.; Wambersie, A.

    1989-02-01

    Relative biological effectiveness (RBE) and oxygen enhancement ratio (OER) values of different neutron beams produced at the variable energy cyclotron Cyclone of Louvain-la-Neuve (Belgium) were determined. The neutrons were obtained by bombarding a beryllium target with 34-, 45-, 65-, or 75-MeV protons or with 50-MeV deuterons. The biological system was growth inhibition in Vicia faba bean roots. Taking the p(65) + Be neutron beam as a reference, RBE values were found equal to 1.36 +/- 0.2, 1.20 +/- 0.1, 1.00 (ref), 0.98 +/- 0.1, and 1.18 +/- 0.1, respectively; the doses corresponding to 50% growth inhibition were 0.39, 0.44, 0.53, 0.54, and 0.45 Gy. For the same beams, OER values were found equal to 1.55 +/- 0.1, 1.38 +/- 0.1, 1.29 +/- 0.1, 1.41 +/- 0.1, and 1.60 +/- 0.2, respectively.

  12. Effect of Driver Impedance on Dense Plasma Focus Z-Pinch Neutron Yield and Beam Acceleration

    NASA Astrophysics Data System (ADS)

    Sears, J.; Link, A.; Ellsworth, J.; Falabella, S.; Rusnak, B.; Tang, V.; Schmidt, A.; Welch, D.

    2014-10-01

    We explore the effect of driver characteristics on dense plasma focus (DPF) neutron yield and beam acceleration using particle-in-cell (PIC) simulations of a kJ-scale DPF. Our PIC simulations are fluid for the run-down phase and transition to fully kinetic for the pinch phase. The anode-cathode boundary is driven by a circuit model of the capacitive driver, including system inductance, the load of the railgap switches, the guard resistors, and the coaxial transmission line parameters. Simulations are benchmarked to measurements of a table top kJ DPF experiment with neutron yield measured with He3-based detectors. Simulated neutron yield scales approximately with the fourth power of peak current, I4. We also probe the accelerating fields by measuring the acceleration of a 4 MeV deuteron beam and by measuring the DPF self-generated beam energy distribution, finding gradients higher than 50 MV/m. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and supported by the Laboratory Directed Research and Development Program (11-ERD-063) at LLNL.

  13. Portable transfer digital dosemeter for beam output measurements with X and gamma rays, electrons and neutrons.

    PubMed

    Sankaran, A; Gokarn, R S; Gangadharan, P

    1981-04-01

    This instrument was developed in response to a requirement for an accurate, stable and portable transfer dosemeter for calibration, at therapy dose levels, of equipment used for generating X and gamma rays, electrons and neutrons. The detector is a 0.5 cm3 ionization chamber capable of fitting various wall materials reproducibly at the end of the chamber stem. The measuring system uniquely combines the features of a MOSFET electrometer and an automatic Townsend balance. When used for X, gamma and neutron radiations, the instrument measures the tissue kerma in free air on two ranges: 0.001 - 1.999 Gy (0.1 - 199.9 rad) and 0.01 - 19.99 Gy (1 - 1999 rad) or their exposure equivalents, with autoranging feature when the first range is exceeded. The polarizing voltage (180 V) can be reversed for electron and neutron dosimetry. The dosemeter has a measuring accuracy of +/- 0.2% FS +/- 1 digit and operates on four 1.5 V torchlight cells or on AC mains (200-250 V, 50 - 60 Hz). It utilizes solid state devices, CMOS integrated circuits and displays, and is not affected by RF fields. The instrument is enclosed in a brief-case for portability and is easy to operate and maintain in a hospital. PMID:7225720

  14. PERFORMING DIAGNOSTICS ON THE SPALLATION NEUTRON SOURCE VISION BEAM LINE TO ELIMINATE HIGH VIBRATION LEVELS AND PROVIDE A SUSTAINABLE OPERATION

    SciTech Connect

    Van Hoy, Blake W

    2014-01-01

    The Spallation Neutron Source (SNS) at the Oak Ridge National Laboratory (ORNL) provides variable energy neutrons for a variety of experiments. The neutrons proceed down beam lines to the experiment hall, which houses a variety of experiments and test articles. Each beam line has one or more neutron choppers which filter the neutron beam based on the neutron energy by using a rotating neutron absorbing material passing through the neutron beam. Excessive vibration of the Vision beam line, believed to be caused by the T0 chopper, prevented the Vision beam line from operating at full capacity. This problem had been addressed several times by rebalancing/reworking the T0 beam chopper but the problem stubbornly persisted. To determine the cause of the high vibration, dynamic testing was performed. Twenty-seven accelerometer and motor current channels of data were collected during drive up, drive down, coast down, and steady-state conditions; resonance testing and motor current signature analysis were also performed. The data was analyzed for traditional mechanical/machinery issues such as misalignment and imbalance using time series analysis, frequency domain analysis, and operating deflection shape analysis. The analysis showed that the chopper base plate was experiencing an amplified response to the excitation provided by the T0 beam chopper. The amplified response was diagnosed to be caused by higher than expected base plate flexibility, possibly due to improper grouting or loose floor anchors. Based on this diagnosis, a decision was made to dismantle the beam line chopper and remount the base plate. Neutron activation of the beam line components make modifications to the beam line especially expensive and time consuming due to the radiation handling requirements, so this decision had significant financial and schedule implications. It was found that the base plate was indeed loose because of improper grouting during its initial installation. The base plate was

  15. Instrumentation and control of the Doublet III Neutral Beam Injector System

    SciTech Connect

    Kohli, J.C.; Moore, C.D.; Drobnis, D.D.; Elischer, V.P.; Kilgore, R.; Uber, D.

    1980-03-01

    The hardware and software required for the operation of the Doublet III Neutral Beam Injector System (NBIS) are described. Development and implementation of this Instrumentation and Control System was divided between the major participants - General Atomic Company and Lawrence Berkeley Laboratory. The subdivision of responsibilities and the coordination of the participants' activities are described with reference to hardware and software requirements in support of the entire system. Included are a description of the operators' consoles, the interlock system and the CAMAC system. One feature of the control software is source modeling. This feature includes feedback on a shot to shot basis and adaptive control. Adaptive control permits the computer system to automatically adjust parameters after a shot, and to control the system to automatically compensate for time varying NBIS components. The Neutral Beam Power Supply features power supply modeling, fiber optic transmission of analog signals and digital control of power supply power-up/interlocks.

  16. Recent Beam Measurements and New Instrumentation at the Advanced Light Source

    SciTech Connect

    Sannibale, F.; Baptiste, K.; Barry, W.; Chin, M.; Filippetto, D.; Jaegerhofer, L.; Julian, J.; Kwiatkowski, S.; Low, R.; Plate, D.; Portmann, G.; Robin, D.; Scarvie, T.; Stupakov, G.; Weber, J.; Zolotorev, M.; /LBL, Berkeley

    2012-04-11

    The Advanced Light Source (ALS) in Berkeley was the first of the soft x-ray third generation light source ever built, and since 1993 has been in continuous and successful operation serving a large community of users in the VUV and soft x-ray community. During these years the storage ring underwent through several important upgrades that allowed maintaining the performance of this veteran facility at the forefront. The ALS beam diagnostics and instrumentation have followed a similar path of innovation and upgrade and nowadays include most of the modem and last generation devices and technologies that are commercially available and used in the recently constructed third generation light sources. In this paper we will not focus on such already widely known systems, but we will concentrate our effort in the description of some measurements techniques, instrumentation and diagnostic systems specifically developed at the ALS and used during the last few years.

  17. RECENT BEAM MEASUREMENTS AND NEW INSTRUMENTATION AT THE ADVANCED LIGHT SOURCE

    SciTech Connect

    Sannibale, Fernando; Baptiste, Kenneth; Barry, Walter; Chin, Michael; Filippetto, Daniele; Jaegerhofer, Lukas; Julian, James; Kwiatkowski, Slawomir; Low, Raymond; Plate, David; Portmann, Gregory; Robin, David; Scarvie, Tomas; Stupakov, Gennady; Weber, Jonah; Zolotorev, Max

    2008-05-05

    The Advanced Light Source (ALS) in Berkeley was the first of the soft x-ray third generation light source ever built, and since 1993 has been in continuous and successful operation serving a large community of users in the VUV and soft x-ray community. During these years the storage ring underwent through several important upgrades that allowed maintaining the performance of this veteran facility at the forefront. The ALS beam diagnostics and instrumentation have followed a similar path of innovation and upgrade and nowadays include most of the modem and last generation devices and technologies that are commercially available and used in the recently constructed third generation light sources. In this paper we will not focus on such already widely known systems, but we will concentrate our effort in the description of some measurements techniques, instrumentation and diagnostic systems specifically developed at the ALS and used during the last few years.

  18. Radioactive ion beams produced by neutron-induced fission at ISOLDE

    NASA Astrophysics Data System (ADS)

    Isolde Collaboration; Catherall, R.; Lettry, J.; Gilardoni, S.; Köster, U.

    2003-05-01

    The production rates of neutron-rich fission products for the next-generation radioactive beam facility EURISOL [EU-RTD Project EURISOL (HPRI-CT-1999-50001)] are mainly limited by the maximum amount of power deposited by protons in the target. An alternative approach is to use neutron beams to induce fission in actinide targets. This has the advantage of reducing: the energy deposited by the proton beam in the target; contamination from neutron-deficient isobars that would be produced by spallation; and mechanical stress on the target. At ISOLDE CERN [E. Kugler, Hyperfine Interact. 129 (2000) 23], tests have been made on standard ISOLDE actinide targets using fast-neutron bunches produced by bombarding thick, high-/Z metal converters with 1 and 1.4 GeV proton pulses. This paper reviews the first applications of converters used at ISOLDE. It highlights the different geometries and the techniques used to compare fission yields produced by the proton beam directly on the target with neutron-induced fission. Results from the six targets already tested, namely UC2/graphite and ThO2 targets with tungsten and tantalum converters, are presented. To gain further knowledge for the design of a dedicated target as required by the TARGISOL project [EU-RTD Project TARGISOL (HPRI-CT-2001-50033)], the results are compared to simulations, using the MARS [N.V. Mokhov, S.I. Striganov, A. Van Ginneken, S.G. Mashnik, A.J. Sierk, J. Ranft, MARS code developments, in: 4th Workshop on Simulating Accelerator Radiation Environments, SARE-4, Knoxville, USA, 14-15.9.1998, FERMILAB-PUB-98-379, nucl-th/9812038; N.V. Mokhov, The Mars Code System User's Guide, Fermilab-FN-628, 1995; N.V. Mokhov, MARS Code Developments, Benchmarking and Applications, Fermilab-Conf-00-066, 2000; O.E. Krivosheev, N.V. Mokhov, A New MARS and its Applications, Fermilab-Conf-98/43, 1998] code interfaced with MCNP [J.S. Hendrics, MCNP4C LANL Memo X-5; JSH-2000-3; J.F. Briemesteir (Ed.), MCNP - A General Montecarlo N

  19. Dose evaluation of boron neutron capture synovectomy using the THOR epithermal neutron beam: a feasibility study

    NASA Astrophysics Data System (ADS)

    Wu, Jay; Chang, Shu-Jun; Chuang, Keh-Shih; Hsueh, Yen-Wan; Yeh, Kuan-Chuan; Wang, Jeng-Ning; Tsai, Wen-Pin

    2007-03-01

    Rheumatoid arthritis is one of the most common epidemic diseases in the world. For some patients, the treatment with steroids or nonsteroidal anti-inflammatory drugs is not effective, thus necessitating physical removal of the inflamed synovium. Alternative approaches other than surgery will provide appropriate disease control and improve the patient's quality of life. In this research, we evaluated the feasibility of conducting boron neutron capture synovectomy (BNCS) with the Tsing Hua open-pool reactor (THOR) as a neutron source. Monte Carlo simulations were performed with arthritic joint models and uncertainties were within 5%. The collimator, reflector and boron concentration were optimized to reduce the treatment time and normal tissue doses. For the knee joint, polyethylene with 40%-enriched Li2CO3 was used as the collimator material, and a rear reflector of 15 cm thick graphite and side reflector of 10 cm thick graphite were chosen. The optimized treatment time was 5.4 min for the parallel-opposed irradiation. For the finger joint, polymethyl methacrylate was used as the reflector material. The treatment time can be reduced to 3.1 min, while skin and bone doses can be effectively reduced by approximately 9% compared with treatment using the graphite reflector. We conclude that using THOR as a treatment modality for BNCS could be a feasible alternative in clinical practice.

  20. Dose evaluation of boron neutron capture synovectomy using the THOR epithermal neutron beam: a feasibility study.

    PubMed

    Wu, Jay; Chang, Shu-Jun; Chuang, Keh-Shih; Hsueh, Yen-Wan; Yeh, Kuan-Chuan; Wang, Jeng-Ning; Tsai, Wen-Pin

    2007-03-21

    Rheumatoid arthritis is one of the most common epidemic diseases in the world. For some patients, the treatment with steroids or nonsteroidal anti-inflammatory drugs is not effective, thus necessitating physical removal of the inflamed synovium. Alternative approaches other than surgery will provide appropriate disease control and improve the patient's quality of life. In this research, we evaluated the feasibility of conducting boron neutron capture synovectomy (BNCS) with the Tsing Hua open-pool reactor (THOR) as a neutron source. Monte Carlo simulations were performed with arthritic joint models and uncertainties were within 5%. The collimator, reflector and boron concentration were optimized to reduce the treatment time and normal tissue doses. For the knee joint, polyethylene with 40%-enriched Li(2)CO(3) was used as the collimator material, and a rear reflector of 15 cm thick graphite and side reflector of 10 cm thick graphite were chosen. The optimized treatment time was 5.4 min for the parallel-opposed irradiation. For the finger joint, polymethyl methacrylate was used as the reflector material. The treatment time can be reduced to 3.1 min, while skin and bone doses can be effectively reduced by approximately 9% compared with treatment using the graphite reflector. We conclude that using THOR as a treatment modality for BNCS could be a feasible alternative in clinical practice. PMID:17327660

  1. SU-E-T-602: Beryllium Seeds Implant for Photo-Neutron Yield Using External Beam Therapy

    SciTech Connect

    Koren, S; Veltchev, I; Furhang, E

    2014-06-01

    Purpose: To evaluate the Neutron yield obtained during prostate external beam irradiation. Methods: Neutrons, that are commonly a radiation safety concern for photon beams with energy above 10 MV, are induced inside a PTV from Beryllium implemented seeds. A high megavoltage photon beam delivered to a prostate will yield neutrons via the reaction Be-9(γ,n)2?. Beryllium was chosen for its low gamma,n reaction cross-section threshold (1.67 MeV) to be combined with a high feasible 25 MV photon beam. This beam spectra has a most probable photon energy of 2.5 to 3.0 MeV and an average photon energy of about 5.8 MeV. For this feasibility study we simulated a Beryllium-made common seed dimension (0.1 cm diameter and 0.5 cm height) without taking into account encapsulation. We created a 0.5 cm grid loading pattern excluding the Urethra, using Variseed (Varian inc.) A total of 156 seeds were exported to a 4cm diameter prostate sphere, created in Fluka, a particle transport Monte Carlo Code. Two opposed 25 MV beams were simulated. The evaluation of the neutron dose was done by adjusting the simulated photon dose to a common prostate delivery (e.g. 7560 cGy in 42 fractions) and finding the corresponding neutron dose yield from the simulation. A variance reduction technique was conducted for the neutrons yield and transported. Results: An effective dose of 3.65 cGy due to neutrons was found in the prostate volume. The dose to central areas of the prostate was found to be about 10 cGy. Conclusion: The neutron dose yielded does not justify a clinical implant of Beryllium seeds. Nevertheless, one should investigate the Neutron dose obtained when a larger Beryllium loading is combined with commercially available 40 MeV Linacs.

  2. Neutron Imaging and Applications

    SciTech Connect

    Anderson, Ian S; McGreevy, Robert L; Bilheux, Hassina Z

    2009-04-01

    Neutron Imaging and Applications offers an introduction to the basics of neutron beam production and instrumentation in addition to the wide scope of techniques that provide unique imaging capabilities over a broad and diverse range of applications. An instructional overview of neutron sources, optics and detectors, allows readers to delve more deeply into the discussions of radiography, tomography, phase contrast imaging and prospective applications using advanced neutron holography techniques and polarized beams. A section devoted to overviews in a growing range of applications describes imaging of fuel cells and hydrogen storage devices for a robust hydrogen economy; new directions in material science and engineering; the investigation of precious artifacts of cultural heritage importance; determination of plant physiology and growth processes; imaging of biological tissues and macromolecules, and the practical elements of neutron imaging for homeland security and contraband detection. Written by key experts in the field, researchers and engineers involved with imaging technologies will find Neutron Imaging and Applications a valuable reference.

  3. Microwave Ion Source and Beam Injection for an Accelerator-drivenNeutron Source

    SciTech Connect

    Vainionpaa, J.H.; Gough, R.; Hoff, M.; Kwan, J.W.; Ludewigt,B.A.; Regis, M.J.; Wallig, J.G.; Wells, R.

    2007-02-15

    An over-dense microwave driven ion source capable ofproducing deuterium (or hydrogen) beams at 100-200 mA/cm2 and with atomicfraction>90 percent was designed and tested with an electrostaticlow energy beam transport section (LEBT). This ion source wasincorporatedinto the design of an Accelerator Driven Neutron Source(ADNS). The other key components in the ADNS include a 6 MeV RFQaccelerator, a beam bending and scanning system, and a deuterium gastarget. In this design a 40 mA D+ beam is produced from a 6 mm diameteraperture using a 60 kV extraction voltage. The LEBT section consists of 5electrodes arranged to form 2 Einzel lenses that focus the beam into theRFQ entrance. To create the ECR condition, 2 induction coils are used tocreate ~; 875 Gauss on axis inside the source chamber. To prevent HVbreakdown in the LEBT a magnetic field clamp is necessary to minimize thefield in this region. Matching of the microwave power from the waveguideto the plasma is done by an autotuner. We observed significantimprovement of the beam quality after installing a boron nitride linerinside the ion source. The measured emittance data are compared withPBGUNS simulations.

  4. Instrument performance study on the short and long pulse options of the second Spallation Neutron Source target station

    SciTech Connect

    Zhao, J. K.; Herwig, Kenneth W.; Robertson, J. L.; Gallmeier, Franz X.; Riemer, Bernard W.

    2013-10-15

    The Spallation Neutron Source (SNS) facility at the Oak Ridge National Laboratory is designed with an upgrade option for a future low repetition rate, long wavelength second target station. This second target station is intended to complement the scientific capabilities of the 1.4 MW, 60 Hz high power first target station. Two upgrade possibilities have been considered, the short and the long pulse options. In the short pulse mode, proton extraction occurs after the pulse compression in the accumulator ring. The proton pulse structure is thus the same as that for the first target station with a pulse width of ∼0.7 μs. In the long pulse mode, protons are extracted as they are produced by the linac, with no compression in the accumulator ring. The time width of the uncompressed proton pulse is ∼1 ms. This difference in proton pulse structure means that neutron pulses will also be different. Neutron scattering instruments thus have to be designed and optimized very differently for these two source options which will directly impact the overall scientific capabilities of the SNS facility. In order to assess the merits of the short and long pulse target stations, we investigated a representative suit of neutron scattering instruments and evaluated their performance under each option. Our results indicate that the short pulse option will offer significantly better performance for the instruments and is the preferred choice for the SNS facility.

  5. Kolkhida instrument for experimental investigations of interactions of polarized neutrons with polarized nuclei

    NASA Astrophysics Data System (ADS)

    Abov, Yu. G.; Alfimenkov, V. P.; Lason, L.; Mareev, Yu. D.; Pikelner, L. B.; Tsulaya, V. M.; Tsulaya, M. I.; Salamatin, I. M.

    2009-04-01

    In JINR at the IBR-2 pulsed reactor [Ananiev, Blokhincev, Bulkin, et al., IET(ras.) 5 (1977) 17.] the "Kolkhida" setup intended for studies of neutron optics phenomena in interactions of polarized neutrons with polarized nuclei has been constructed. In particular, studies of nuclear precession of neutron spin in a wide energy range from thermal to neutron resonance energies are planned. The setup also makes it possible to investigate magnetic properties using polarized neutrons. In the given paper we present the description of the setup, its key parameters, as well as the result of computer simulation of the experiment on neutron paramagnetic resonance shift.

  6. Development of an instrument for non-destructive identification of Unexploded Ordnance using tagged neutrons - a proof of concept study

    SciTech Connect

    Mitra, S.; Dioszegi, I.

    2011-10-23

    Range clearance operations at munitions testing grounds must discriminate Unexploded Ordnance (UXO) from clutter items and distinguish UXO filled with High Explosives (HE) from those with inert fillers. Non-destructive technologies are thus necessary for the cost-effective disposal of UXO during remediation of such sites. The only technique showing promise so far for the non-destructive elemental characterization of UXO fillers utilizes neutron interactions with the material to detect carbon (C), nitrogen (N) and oxygen (O) which have unique ratios in HE. However, several unresolved issues hinder the wide application of this potentially very suitable technique. The most important one is that neutrons interact with all surrounding matter in addition to the interrogated material, leading to a very high gamma-ray background in the detector. Systems requiring bulky shielding and having poor signal-to-noise ratios (SNRs) for measuring elements are unsuitable for field deployment. The inadequacies of conventional neutron interrogation methods are overcome by using the tagged-neutron approach, and the availability of compact sealed neutron generators exploiting this technique offers field deployment of non-intrusive measurement systems for detecting threat materials, like explosives and drugs. By accelerating deuterium ions into a tritium target, the subsequent fusion reaction generates nearly back-to-back emissions of neutrons and alpha particles of energy 14.1 and 3.5 MeV respectively. A position-sensitive detector recognizes the associated alpha particle, thus furnishing the direction of the neutron. The tagged neutrons interact with the nuclei of the interrogated object, producing element-specific prompt gamma-rays that the gamma detectors recognize. Measuring the delay between the detections of the alpha particle and the gamma-ray determines where the reaction occurred along the axis of the neutron beam (14.1 MeV neutrons travel at 5 cm/nanosecond, while gamma rays

  7. Analysis and simulation of a small-angle neutron scattering instrument on a 1 MW long pulse spallation source

    SciTech Connect

    Olah, G.A.; Hjelm, R.P.; Lujan, M. Jr.

    1996-12-31

    We studied the design and performance of a small-angle neutron scattering (SANS) instrument for a proposed 1 MW, 60 Hz long pulsed spallation source at the Los Alamos Neutron Science Center (LANSCE). An analysis of the effects of source characteristics and chopper performance combined with instrument simulations using the LANSCE Monte Carlo instrument simulations package shows that the T{sub 0} chopper should be no more than 5 m from the source with the frame overlap and frame definition choppers at 5.6 and greater than 7 m, respectively. The study showed that an optimal pulse structure has an exponential decaying tail with {tau} {approx} 750 {mu}s. The Monte Carlo simulations were used to optimize the LPSS SANS, showing that an optimal length is 18 m. The simulations show that an instrument with variable length is best to match the needs of a given measurement. The performance of the optimized LPSS instrument was found to be comparable with present world standard instruments.

  8. Development of an inner profile measurement instrument using a ring beam device

    NASA Astrophysics Data System (ADS)

    Yoshizawa, T.; Wakayama, T.

    2010-11-01

    Inner profile measurement is an important matter in such fields as medicine, dentistry and anthropology as well as mechanical engineering and other industrial applications. Here we describe recent development of our measurement principle for inner diameter of pipes and/or holes. The key device in this technique is a ring beam device which consists of a conical mirror and a laser diode. And the fundamental principle is based on optical sectioning without using any contact type stylus. The optically sectioned profile of an inner wall of a pipe-like object is analyzed to give the inner profile in addition to the inner diameter. This optical instrument with a simple and small configuration is now under development for practical uses. In our hitherto trial experimental works, the availability of this instrument has been evaluated in many cases and availability for practical applications is expected, especially, for measurement and inspection of mechanical components and elements besides pipes. This ring beam device consisting of a conical mirror and a LD is assembled to form a disk-like light sheet. We show measurement result of pipes and holes, and, at the same time, report a compact inner profile measuring instrument at this point. Both the ring beam device and a miniaturized CCD camera are fabricated into a glass tube. Availability of this instrument is shown by measuring the inner profiles of various pipes. In response to this trial, there appeared a strong request that not only the internal but external profiles should be measured simultaneously. Therefore we propose potentially possible method for measurement of external profile at the same time with internal profile. If one pair of concave mirrors are used in our arrangement, external profile is captured. In combination with inner profile measurement technique, simultaneous measurement of inner and outer profiles becomes attainable. A measurement result on a bevel gear shows availability of here proposed

  9. It may be Possible to Use a Neutron Beam as Propulsion for Spacecraft

    NASA Astrophysics Data System (ADS)

    Kriske, Richard M.

    2016-01-01

    It may be possible to keep Xenon 135 in a Superpositioned state with Xe-136 and Cs 135, the two decay products of Xenon 135. This may be done using a Gamma Ray or an X-ray Laser. At first glance it has the look and feel of yet another Noble Gas Laser. The difference is that it uses Neutron states within the Nucleus. The Neutrons would be emitted with a modulated Gamma or X-ray photon. In essence it may be possible to have a totally new type of Laser---This author calls them "Matter Lasers", where a lower energy photon with fewer Quantum Numbers would be used with a Noble Gas to produce a particle beam with higher energy and more Quantum Numbers. It may be possible to replace cumbersome particle accelerators with this type of Laser, to make mass from energy, via a Neutron Gas. This would be a great technological advance in Rocket Propulsion as well; low mass photon to high mass particle, such as a Higgs particle or a Top Quark. The Xenon 135, could come from a Fission Reactor within the Space Craft, as it is a reactor poison. The workings of an X-ray laser is already known and table top versions of it have been developed. Gamma Ray lasers are already in use and have been tested. A Laser would have a columnated beam with a very precise direction, unlike just a Neutron source which would go in all directions. Of course this beam could be used as a spectroscopic tool as well, in order to determine the composition of the matter that the spacecraft encounters. The spectroscopic tool could look for "Dark Matter" and other exotic types of matter that may occur in outerspace. The spacecraft could potentially reach "near speed of light velocities" in a fairly short time, since the Laser would be firing off massive particles, with great momentum. Lastly the precise Neutron beam could be used as a very powerful weapon or as a way of clearing space debri, since it could "force Nuclear Reactions" onto the object being fired upon, making it the ultimate space weapon, and

  10. Characterization of HPGe gamma spectrometric detectors systems for Instrumental Neutron Activation Analysis (INAA) at the Colombian Geological Survey

    NASA Astrophysics Data System (ADS)

    Sierra, O.; Parrado, G.; Cañón, Y.; Porras, A.; Alonso, D.; Herrera, D. C.; Peña, M.; Orozco, J.

    2016-07-01

    This paper presents the progress made by the Neutron Activation Analysis (NAA) laboratory at the Colombian Geological Survey (SGC in its Spanish acronym), towards the characterization of its gamma spectrometric systems for Instrumental Neutron Activation Analysis (INAA), with the aim of introducing corrections to the measurements by variations in sample geometry. Characterization includes the empirical determination of the interaction point of gamma radiation inside the Germanium crystal, through the application of a linear model and the use of a fast Monte Carlo N-Particle (MCNP) software to estimate correction factors for differences in counting efficiency that arise from variations in sample density between samples and standards.

  11. Changes in biological effectiveness with depth of the Medicyc neutron therapy beam.

    PubMed

    Courdi, A; Brassart, N; Hérault, J; Gabillat, J M; Mari, D; Pignol, J P; Chauvel, P

    1996-01-01

    V79 cells were exposed to fast neutrons generated by 60 MeV p-->Be produced by the cyclotron Medicyc at four different depths: 1.3, 25.8, 72.2 and 116.8 mm. Survival was assessed by the in vitro colony method. Mean inactivation doses (MID) were significantly different among the four points. The ratio of MID was used to determine the relative efficiency of the neutron beam at these points. Compared to 25.8 mm depth, a 40% increase in biological effect was observed at the superficial point versus a 14 to 16% decrease in effect for the deeper points. This is ascribed to absorption of low energy neutrons near the surface and to beam hardening with depth. Taking in consideration the relative physical dose delivered, these findings suggest that skin-sparing may be markedly reduced and that the lower effectiveness with depth should be kept in mind when dealing with deep tumours. PMID:8949751

  12. Monte Carlo Simulations on Neutron Transport and Absorbed Dose in Tissue-Equivalent Phantoms Exposed to High-Flux Epithermal Neutron Beams

    NASA Astrophysics Data System (ADS)

    Bartesaghi, G.; Gambarini, G.; Negri, A.; Carrara, M.; Burian, J.; Viererbl, L.

    2010-04-01

    Presently there are no standard protocols for dosimetry in neutron beams for boron neutron capture therapy (BNCT) treatments. Because of the high radiation intensity and of the presence at the same time of radiation components having different linear energy transfer and therefore different biological weighting factors, treatment planning in epithermal neutron fields for BNCT is usually performed by means of Monte Carlo calculations; experimental measurements are required in order to characterize the neutron source and to validate the treatment planning. In this work Monte Carlo simulations in two kinds of tissue-equivalent phantoms are described. The neutron transport has been studied, together with the distribution of the boron dose; simulation results are compared with data taken with Fricke gel dosimeters in form of layers, showing a good agreement.

  13. Microdosimetric study for secondary neutrons in phantom produced by a 290 MeV/nucleon carbon beam

    SciTech Connect

    Endo, Satoru; Tanaka, Kenichi; Takada, Masashi; Onizuka, Yoshihiko; Miyahara, Nobuyuki; Sato, Tatsuhiko; Ishikawa, Masayori; Maeda, Naoko; Hayabuchi, Naofumi; Shizuma, Kiyoshi; Hoshi, Masaharu

    2007-09-15

    Absorbed doses from main charged-particle beams and charged-particle fragments have been measured with high accuracy for particle therapy, but there are few reports for doses from neutron components produced as fragments. This study describes the measurements on neutron doses produced by carbon beams; microdosimetric distributions of secondary neutrons produced by 290 MeV/nucleon carbon beams have been measured by using a tissue equivalent proportional counter at the Heavy Ion Medical Accelerator in Chiba, Japan at the National Institute of Radiological Sciences. The microdosimetric distributions of the secondary neutron were measured on the distal and lateral faces of a body-simulated acrylic phantom (300 mm heightx300 mm widthx253 mm thickness). To confirm the dose measurements, the neutron energy spectra produced by incident carbon beams in the acrylic phantom were simulated by the particle and heavy ion transport code system. The absorbed doses obtained by multiplying the simulated neutron energy spectra with the kerma factor calculated by MCNPX agree with the corresponding experimental data fairly well. Downstream of the Bragg peak, the ratio of the neutron dose to the carbon dose at the Bragg peak was found to be a maximum of 1.4x10{sup -4} and the ratio of neutron dose was a maximum of 3.0x10{sup -7} at a lateral face of the acrylic phantom. The ratios of neutrons to charged particle fragments were 11% to 89% in the absorbed doses at the lateral and the distal faces of the acrylic phantom. We can conclude that the treatment dose will not induce serious secondary neutron effects at distances greater than 90 mm from the Bragg peak in carbon particle therapy.

  14. The cryostat for the GRAVITY beam combiner instrument at the VLTI

    NASA Astrophysics Data System (ADS)

    Haug, M.; Haussmann, F.; Kellner, S.; Hofmann, R.; Eder, J.; Eisenhauer, F.; Lizon, J.-L.; Thummes, G.; Weisz, H.

    2012-07-01

    GRAVITY is a second generation VLTI instrument for high-precision narrow-angle astrometry and phase-referenced interferometric imaging in the astronomical K-band. The cryostat of the beam combiner instrument provides the required temperatures for the various subunits ranging from 40K to 290K with a milli-Kelvin temperature stability for some selected units. The bath cryostat is cooled with liquid nitrogen and makes use of the exhaust gas to cool the main optical bench to an intermediate temperature of 240K. The fringe tracking detector will be cooled separately by a single-stage pulse tube cooler to a temperature of 40K. The pulse tube cooler is optimized for minimum vibrations. In particular its warm side is connected to the 80K reservoir of the LN2 cryostat to minimize the required input power. All temperature levels are actively stabilized by electric heaters. The cold bench is supported separately from the vacuum vessel and the liquid nitrogen reservoir to minimize the transfer of acoustic noise onto the instrument.

  15. Determination of trace elements by instrumental neutron activation analysis in Anatolian bentonitic clays

    NASA Astrophysics Data System (ADS)

    Güngör, N.; Tulun, T.; Alemdar, A.

    1998-08-01

    Instrumental Neutron Activation Analysis (INAA) was carried out for the determination of trace elements in non-swelling type bentonitic clays. Samples were irradiated in Triga Mark II type of reactor at the Nuclear Institute of Technical University of Istanbul. Irradiation was performed in two steps for "short and long lived" isotopes. The γ spectra of short lived isotopes were interpreted with respect to Al, Ca, Mg, Na, K, Ti, Mn, V qualitatively and that of long lived isotopes with respect to Sc, Cr, Br, Sb, Cs, La, Ce, Sm, Yb, Hf quantitatively. The relative richness of the trace elements (Al, Ti, Ca, Mg, Na, K) observed in the Sampo 90 program was obtained using Atomic Absorption technique by normalizing its value to that of sodium. The silicon content of samples was determined by gravimetry. The results indicated that Sample I contained relatively higher amount of REE, Sb, Ca and Na than Sample II. The amount of Sc, Cr and Br were about similar in both samples. Concentrations of La, Ce, Sm and Yb are higher than REE abundances found in all natural waters. These results suggest that Ca-bentonite samples are representative of primary deposition environment. In addition, the Sc content of both the samples indicates that Ca-bentonite deposits originated from continental crust. The relatively high amount of REE might bring about porosity problems in the use of Ca-bentonite in cement and concrete production.

  16. Studies of generalized elemental imbalances in neurological disease patients using INAA (instrumental neutron activation analysis)

    SciTech Connect

    Ehmann, W.D.; Vance, D.E.; Khare, S.S.; Kasarskis, E.J.; Markesbery, W.R.

    1988-01-01

    Evidence has been presented in the literature to implicate trace elements in the etiology of several age-related neurological diseases. Most of these studies are based on brain analyses. Using instrumental neutron activation analysis (INAA), we have observed trace element imbalances in brains of patients with Alzheimer's disease, amyotrophic lateral sclerosis (ALS), and Picks's disease. The most prevalent elemental imbalances found in the brain were for bromine, mercury, and the alkali metals. In this study the authors report INAA studies of trace elements in nonneural tissues from Alzheimer's disease and ALS patients. Samples from household relatives were collected for use as controls wherever possible. Hair samples were washed according to the International Atomic Energy Agency recommended procedure. Fingernail samples were scraped with a quartz knife prior to washing by the same procedure. For ALS patients, blood samples were also collected. These data indicate that elemental imbalances in Alzheimer's disease and ALS are not restricted to the brain. Many elements perturbed in the brain are also altered in the several nonneural tissues examined to date. The imbalances in different tissues, however, are not always in the same direction. The changes observed may represent causes, effects, or simply epiphenomena. Longitudinal studies of nonneural tissues and blood, as well as tissue microprobe analyses at the cellular and subcellular level, will be required in order to better assess the role of trace elements in the etiology of these diseases.

  17. Breast Milk Concentration of Rubidium in Lactating Mothers by Instrumental Neutron Activation Analysis Method

    PubMed Central

    Khatami, Seyedeh-Fatemeh; Parvaresh, Pouya; Parvaresh, Parviz; Madani Kouchak, Sara Sadat; Khorsandi, Jamshid

    2014-01-01

    Objective: Relatively little is known about the trace elements content of human milk from different countries. This has not been fully investigated especially among Iranian women. This study aimed to assess the concentration of Rubidium (Rb) as a poisonous trace element in transitional breast milk of lactating mothers living in Mashhad. Methods: Forty nursing mothers in early lactation 3 days to 15 days postpartum, free from any medical disorder and/or medication were randomly selected. We have applied Instrumental Neutron Activation Analysis (INAA) to assess the long-lived isotope trace element Rb in transitional milk of these economically moderate 18–39 year old Iranian women. Findings: The average concentration level of Rb was 32.176 ppm dry weight (min 8.660, max 107.210 ppm). No significant correlation was observed between Rb concentration and maternal weight and age (P=0.06, P=0.05 respectively) and newborns’ weight, age and sex (P=0.07, P=0.2, P=0.2 respectively). Conclusion: Although the Rubidium concentration found in this study is among the highest reported in the literature, it could not be compared to other studies because of differences in analytical performance, state of lactation, and unavailable reference ranges, so this finding needs further investigations. PMID:26019773

  18. Accurate measurement of bromine contents in plastic samples by instrumental neutron activation analysis.

    PubMed

    Kim, I J; Lee, K S; Hwang, E; Min, H S; Yim, Y H

    2013-03-26

    Accurate measurements of bromine contents in plastic samples were made by the direct comparator instrumental neutron activation analysis (INAA). Individual factors affecting the measurements were comprehensively evaluated and compensated, including the volatility loss of bromine from standard comparators, the background bromine level in the filter papers used for preparation of the standard comparators, nuclear interference, γ-ray spectral interference and the variance among replicates of the samples. Uncertainty contributions from those factors were thoroughly evaluated and included in the uncertainty budgeting of the INAA measurement. (81)Br was chosen as the target isotope, and the INAA measurements for bromine were experimentally confirmed to exhibit good linearity within a bromine content range of 10-170 μg. The established method has been applied to the analysis of eight plastic samples: four commercially available certified reference materials (CRMs) of polyethylene and polystyrene and four acrylonitrile butadiene styrene (ABS) samples prepared as the candidate reference materials (KRISS CRM 113-01-012, -013, -014 and -015). The bromine contents of the samples were calculated at three different γ-ray energies and compared, showing good agreement. The results of the four CRMs also showed good consistency with their certified values within the stated uncertainties. Finally, the bromine contents of the ABS samples were determined with expanded uncertainties (at a 95% level of confidence) between 2.5% and 5% in a bromine content range of 25-900 mg kg(-1). PMID:23498117

  19. Quality assurance program for the determination of selenium in foods and diets by instrumental neutron activation

    SciTech Connect

    Zhang, W.H.; Chatt, A.

    1996-12-31

    The biological essentially of selenium for animals was first evidenced in 1957. However, it was not until 1973 that an enzyme called glutathione peroxidase was proven to be a selenoenzyme. At present, selenium is known to be a normal component of several enzymes, proteins, and some aminoacryl transfer nucleic acids. A few selenium compounds have been reported to possess anticarcinogenic properties. There is an increasing interest in understanding the role of selenium in human nutrition and metabolism. Analytical methods are being developed in several laboratories for the determination of total and species-specific selenium in whole blood, serum, urine, soft and hard tissues, food, water, proteins, etc. We have developed several instrumental neutron activation analysis (INAA) methods using the, Dalhousie University SLOWPOKE-2 reactor facility for the determination of parts-per-billion levels of selenium. These methods include cyclic INAA (CINAA) and pseudocyclic INAA (PCINAA) using both conventional and anticoincidence gamma-ray spectrometry. Considering the immense health significance, it is imperative that the selenium levels in foods and diets be measured under an extensive quality assurance program for routine monitoring purposes.

  20. Experimental and Simulated Characterization of a Beam Shaping Assembly for Accelerator- Based Boron Neutron Capture Therapy (AB-BNCT)

    NASA Astrophysics Data System (ADS)

    Burlon, Alejandro A.; Girola, Santiago; Valda, Alejandro A.; Minsky, Daniel M.; Kreiner, Andrés J.

    2010-08-01

    In the frame of the construction of a Tandem Electrostatic Quadrupole Accelerator facility devoted to the Accelerator-Based Boron Neutron Capture Therapy, a Beam Shaping Assembly has been characterized by means of Monte-Carlo simulations and measurements. The neutrons were generated via the 7Li(p, n)7Be reaction by irradiating a thick LiF target with a 2.3 MeV proton beam delivered by the TANDAR accelerator at CNEA. The emerging neutron flux was measured by means of activation foils while the beam quality and directionality was evaluated by means of Monte Carlo simulations. The parameters show compliance with those suggested by IAEA. Finally, an improvement adding a beam collimator has been evaluated.

  1. Experimental and Simulated Characterization of a Beam Shaping Assembly for Accelerator- Based Boron Neutron Capture Therapy (AB-BNCT)

    SciTech Connect

    Burlon, Alejandro A.; Valda, Alejandro A.; Girola, Santiago; Minsky, Daniel M.; Kreiner, Andres J.

    2010-08-04

    In the frame of the construction of a Tandem Electrostatic Quadrupole Accelerator facility devoted to the Accelerator-Based Boron Neutron Capture Therapy, a Beam Shaping Assembly has been characterized by means of Monte-Carlo simulations and measurements. The neutrons were generated via the {sup 7}Li(p, n){sup 7}Be reaction by irradiating a thick LiF target with a 2.3 MeV proton beam delivered by the TANDAR accelerator at CNEA. The emerging neutron flux was measured by means of activation foils while the beam quality and directionality was evaluated by means of Monte Carlo simulations. The parameters show compliance with those suggested by IAEA. Finally, an improvement adding a beam collimator has been evaluated.

  2. Radiation injury of boron neutron capture therapy using mixed epithermal- and thermal neutron beams in patients with malignant glioma.

    PubMed

    Kageji, T; Nagahiro, S; Mizobuchi, Y; Toi, H; Nakagawa, Y; Kumada, H

    2004-11-01

    The purpose of this study was to clarify the radiation injury in acute or delayed stage after boron neutron capture therapy (BNCT) using mixed epithermal- and thermal neutron beams in patients with malignant glioma. Eighteen patients with malignant glioma underwent mixed epithermal- and thermal neutron beam and sodium borocaptate between 1998 and 2004. The radiation dose (i.e. physical dose of boron n-alpha reaction) in the protocol used between 1998 and 2000 (Protocol A, n = 8) prescribed a maximum tumor volume dose of 15 Gy. In 2001, a new dose-escalated protocol was introduced (Protocol B, n = 4); it prescribes a minimum tumor volume dose of 18 Gy or, alternatively, a minimum target volume dose of 15 Gy. Since 2002, the radiation dose was reduced to 80-90% dose of Protocol B because of acute radiation injury. A new Protocol was applied to 6 glioblastoma patients (Protocol C, n = 6). The average values of the maximum vascular dose of brain surface in Protocol A, B and C were 11.4+/-4.2 Gy, 15.7+/-1.2 and 13.9+/-3.6 Gy, respectively. Acute radiation injury such as a generalized convulsion within 1 week after BNCT was recognized in three patients of Protocol B. Delayed radiation injury such as a neurological deterioration appeared 3-6 months after BNCT, and it was recognized in 1 patient in Protocol A, 5 patients in Protocol B. According to acute radiation injury, the maximum vascular dose was 15.8+/-1.3 Gy in positive and was 12.6+/-4.3 Gy in negative. There was no significant difference between them. According to the delayed radiation injury, the maximum vascular dose was 13.8+/-3.8 Gy in positive and was 13.6+/-4.9 Gy in negative. There was no significant difference between them. The dose escalation is limited because most patients in Protocol B suffered from acute radiation injury. We conclude that the maximum vascular dose does not exceed over 12 Gy to avoid the delayed radiation injury, especially, it should be limited under 10 Gy in the case that tumor

  3. Spallation neutron source target station design, development, and commissioning

    NASA Astrophysics Data System (ADS)

    Haines, J. R.; McManamy, T. J.; Gabriel, T. A.; Battle, R. E.; Chipley, K. K.; Crabtree, J. A.; Jacobs, L. L.; Lousteau, D. C.; Rennich, M. J.; Riemer, B. W.

    2014-11-01

    The spallation neutron source target station is designed to safely, reliably, and efficiently convert a 1 GeV beam of protons to a high flux of about 1 meV neutrons that are available at 24 neutron scattering instrument beam lines. Research and development findings, design requirements, design description, initial checkout testing, and results from early operation with beam are discussed for each of the primary target subsystems, including the mercury target, neutron moderators and reflector, surrounding vessels and shielding, utilities, remote handling equipment, and instrumentation and controls. Future plans for the mercury target development program are also briefly discussed.

  4. Photo neutron dose equivalent rate in 15 MV X-ray beam from a Siemens Primus Linac.

    PubMed

    Ghasemi, A; Pourfallah, T Allahverdi; Akbari, M R; Babapour, H; Shahidi, M

    2015-01-01

    Fast and thermal neutron fluence rates from a 15 MV X-ray beams of a Siemens Primus Linac were measured using bare and moderated BF3 proportional counter inside the treatment room at different locations. Fluence rate values were converted to dose equivalent rate (DER) utilizing conversion factors of American Association of Physicist in Medicine's (AAPM) report number 19. For thermal neutrons, maximum and minimum DERs were 3.46 × 10(-6) (3 m from isocenter in +Y direction, 0 × 0 field size) and 8.36 × 10(-8) Sv/min (in maze, 40 × 40 field size), respectively. For fast neutrons, maximum DERs using 9" and 3" moderators were 1.6 × 10(-5) and 1.74 × 10(-5) Sv/min (2 m from isocenter in +Y direction, 0 × 0 field size), respectively. By changing the field size, the variation in thermal neutron DER was more than the fast neutron DER and the changes in fast neutron DER were not significant in the bunker except inside the radiation field. This study showed that at all points and distances, by decreasing field size of the beam, thermal and fast neutron DER increases and the number of thermal neutrons is more than fast neutrons. PMID:26170555

  5. Photo neutron dose equivalent rate in 15 MV X-ray beam from a Siemens Primus Linac

    PubMed Central

    Ghasemi, A.; Pourfallah, T. Allahverdi; Akbari, M. R.; Babapour, H.; Shahidi, M.

    2015-01-01

    Fast and thermal neutron fluence rates from a 15 MV X-ray beams of a Siemens Primus Linac were measured using bare and moderated BF3 proportional counter inside the treatment room at different locations. Fluence rate values were converted to dose equivalent rate (DER) utilizing conversion factors of American Association of Physicist in Medicine's (AAPM) report number 19. For thermal neutrons, maximum and minimum DERs were 3.46 × 10-6 (3 m from isocenter in +Y direction, 0 × 0 field size) and 8.36 × 10-8 Sv/min (in maze, 40 × 40 field size), respectively. For fast neutrons, maximum DERs using 9” and 3” moderators were 1.6 × 10-5 and 1.74 × 10-5 Sv/min (2 m from isocenter in +Y direction, 0 × 0 field size), respectively. By changing the field size, the variation in thermal neutron DER was more than the fast neutron DER and the changes in fast neutron DER were not significant in the bunker except inside the radiation field. This study showed that at all points and distances, by decreasing field size of the beam, thermal and fast neutron DER increases and the number of thermal neutrons is more than fast neutrons. PMID:26170555

  6. Out-of-field doses and neutron dose equivalents for electron beams from modern Varian and Elekta linear accelerators.

    PubMed

    Cardenas, Carlos E; Nitsch, Paige L; Kudchadker, Rajat J; Howell, Rebecca M; Kry, Stephen F

    2016-01-01

    Out-of-field doses from radiotherapy can cause harmful side effects or eventually lead to secondary cancers. Scattered doses outside the applicator field, neutron source strength values, and neutron dose equivalents have not been broadly investigated for high-energy electron beams. To better understand the extent of these exposures, we measured out-of-field dose characteristics of electron applicators for high-energy electron beams on two Varian 21iXs, a Varian TrueBeam, and an Elekta Versa HD operating at various energy levels. Out-of-field dose profiles and percent depth-dose curves were measured in a Wellhofer water phantom using a Farmer ion chamber. Neutron dose was assessed using a combination of moderator buckets and gold activation foils placed on the treatment couch at various locations in the patient plane on both the Varian 21iX and Elekta Versa HD linear accelerators. Our findings showed that out-of-field electron doses were highest for the highest electron energies. These doses typically decreased with increasing distance from the field edge but showed substantial increases over some distance ranges. The Elekta linear accelerator had higher electron out-of-field doses than the Varian units examined, and the Elekta dose profiles exhibited a second dose peak about 20 to 30 cm from central-axis, which was found to be higher than typical out-of-field doses from photon beams. Electron doses decreased sharply with depth before becoming nearly constant; the dose was found to decrease to a depth of approximately E(MeV)/4 in cm. With respect to neutron dosimetry, Q values and neutron dose equivalents increased with electron beam energy. Neutron contamination from electron beams was found to be much lower than that from photon beams. Even though the neutron dose equivalent for electron beams represented a small portion of neutron doses observed under photon beams, neutron doses from electron beams may need to be considered for special cases. PMID:27455499

  7. Design and construction of a thermal neutron beam for BNCT at Tehran Research Reactor.

    PubMed

    Kasesaz, Yaser; Khalafi, Hossein; Rahmani, Faezeh; Ezzati, Arsalan; Keyvani, Mehdi; Hossnirokh, Ashkan; Shamami, Mehrdad Azizi; Amini, Sepideh

    2014-12-01

    An irradiation facility has been designed and constructed at Tehran Research Reactor (TRR) for the treatment of shallow tumors using Boron Neutron Capture Therapy (BNCT). TRR has a thermal column which is about 3m in length with a wide square cross section of 1.2×1.2m(2). This facility is filled with removable graphite blocks. The aim of this work is to perform the necessary modifications in the thermal column structure to meet thermal BNCT beam criteria recommended by International Atomic Energy Agency. The main modifications consist of rearranging graphite blocks and reducing the gamma dose rate at the beam exit. Activation foils and TLD700 dosimeter have been used to measure in-air characteristics of the neutron beam. According to the measurements, a thermal flux is 5.6×10(8) (ncm(-2)s(-1)), a cadmium ratio is 186 for gold foils and a gamma dose rate is 0.57Gy h(-1). PMID:25195172

  8. One-dimensional neutron focusing with large beam divergence by 400mm-long elliptical supermirror

    NASA Astrophysics Data System (ADS)

    Nagano, M.; Yamaga, F.; Yamazaki, D.; Maruyama, R.; Hayashida, H.; Soyama, K.; Yamamura, K.

    2012-02-01

    Reflective optics is one of the most useful techniques for focusing a neutron beam with a wide wavelength range since there is no chromatic aberration. Neutrons can be focused within a small area of less than 1 mm2 by high-performance aspherical supermirrors with high figure accuracy and a low smooth substrate surface and a multilayer interface. Increasing the mirror size is essential for increasing the focusing gain. We have developed a fabrication process that combines conventional precision grinding, HF dip etching, numerically controlled local wet etching (NC-LWE) figuring, low-pressure polishing and ion beam sputtering deposition of the supermirror coating to fabricate a large aspherical supermirror. We designed and fabricated an piano-elliptical mirror with large clear aperture size using the developed fabrication process. We obtained a figure error of 0.43 μm p-v and an rms roughness of less than 0.2 nm within an effective reflective length of 370 mm. A NiC/Ti supermirror with m = 4 was deposited on the substrate using ion beam sputtering equipment. The results of focusing experiments show that a focusing gain of 52 at the peak intensity was achieved compared with the case without focusing. Furthermore, the result of imaging plate measurements indicated that the FWHM focusing width of the fabricated mirror is 0.128 mm.

  9. Combined electron and focused ion beam system for improvement of secondary ion yield in secondary ion mass spectrometry instrument

    SciTech Connect

    Ji, L.; Ji, Q.; Leung, K.-N.; Gough, R. A.

    2006-10-16

    Using a combined electron and focused ion beam system to improve performance of secondary ion mass spectrometry instruments has been investigated experimentally. The secondary ion yield for an Al target has been enhanced to about one order of magnitude higher with the postionization induced by the low energy electrons in the combined beam. It can be further improved with the increase of electron beam current. When the combined beam is applied to insulating targets, sample charging is also eliminated. For Teflon targets, the secondary ion signal is increased by more than a factor of 20.

  10. Design of an Aluminum Proton Beam Window for the Spallation Neutron Source

    SciTech Connect

    Janney, Jim G; McClintock, David A

    2012-01-01

    An aluminum proton beam window design is being considered at the Spallation Neutron Source primarily to increase the lifetime of the window, with secondary advantages of higher beam transport efficiency and lower activation. The window separates the core vessel, the location of the mercury target, from the vacuum of the accelerator, while withstanding the pass through of a proton beam of up to 2 MW with 1.0 GeV proton energy. The current aluminum alloy being investigated for the window material is 6061-T651 due to its combination of high strength, high thermal conductivity, and good resistance to aqueous corrosion, as well as demonstrated dependability in previous high-radiation environments. The window design will feature a thin plate with closely spaced cross drilled cooling holes. An analytical approach was used to optimize the dimensions of the window before finite element analysis was used to simulate temperature profiles and stress fields resulting from thermal and static pressure loading. The resulting maximum temperature of 60 C and Von Mises stress of 71 MPa are very low compared to allowables for Al 6061-T651. A significant challenge in designing an aluminum proton beam window for SNS is integrating the window with the current 316L SS shield blocks. Explosion bonding was chosen as a joining technique because of the large bonding area required. A test program has commenced to prove explosion bonding can produce a robust vacuum joint. Pending successful explosion bond testing, the aluminum proton beam window design will be proven acceptable for service in the Spallation Neutron Source.

  11. Neutron diffraction of titanium aluminides formed by continuous electron-beam treatment

    NASA Astrophysics Data System (ADS)

    Valkov, S.; Neov, D.; Luytov, D.; Petrov, P.

    2016-03-01

    Ti-Al-based alloys were produced by hybrid electron-beam technologies. A composite Ti-Al film was deposited on a Ti substrate by electron-beam evaporation (EBE), followed by electron-beam treatment (EBT) by a continuously scanned electron beam. The speed of the specimens motion during the EBT were V 1 = 1 cm/sec and V 2 = 5 cm/sec, in order to realize two different alloying mechanisms -- by surface melting and by electron-beam irradiation without melting the surface. The samples prepared were characterized by XRD and neutron diffraction to study the crystal structure on the surface and in depth. SEM/EDX analysis was conducted to explore the surface structure and analyze the chemical composition. Nanoindentation measurements were also carried out. No intermetallic phases were registered in the sample treated at velocity V 1, while the sample treated at V 2 exhibited a Ti3Al/TiAl structure on the surface, transformed to Ti/TiAl in depth. The nanoindentation test demonstrated a significant negative hardness gradient from the surface to the depth of the sample.

  12. Neutron beam measurement of industrial polymer materials for composition and bulk integrity

    NASA Astrophysics Data System (ADS)

    Rogante, M.; Rosta, L.; Heaton, M. E.

    2013-10-01

    Neutron beam techniques, among other non-destructive diagnostics, are particularly irreplaceable in the complete analysis of industrial materials and components when supplying fundamental information. In this paper, nanoscale small-angle neutron scattering analysis and prompt gamma activation analysis for the characterization of industrial polymers are considered. The basic theoretical aspects are briefly introduced and some applications are presented. The investigations of the SU-8 polymer in axial airflow microturbines—i.e. microelectromechanical systems—are presented foremost. Also presented are full and feasibility studies on polyurethanes, composites based on cross-linked polymers reinforced by carbon fibres and polymer cement concrete. The obtained results have provided a substantial contribution to the improvement of the considered materials, and indeed confirmed the industrial applicability of the adopted techniques in the analysis of polymers.

  13. Cluster-transfer reactions with radioactive beams: A spectroscopic tool for neutron-rich nuclei

    NASA Astrophysics Data System (ADS)

    Bottoni, S.; Leoni, S.; Fornal, B.; Raabe, R.; Rusek, K.; Benzoni, G.; Bracco, A.; Crespi, F. C. L.; Morales, A. I.; Bednarczyk, P.; Cieplicka-Oryńczak, N.; Królas, W.; Maj, A.; Szpak, B.; Callens, M.; Bouma, J.; Elseviers, J.; De Witte, H.; Flavigny, F.; Orlandi, R.; Reiter, P.; Seidlitz, M.; Warr, N.; Siebeck, B.; Hellgartner, S.; Mücher, D.; Pakarinen, J.; Vermeulen, M.; Bauer, C.; Georgiev, G.; Janssens, R. V. F.; Balabanski, D.; Sferrazza, M.; Kowalska, M.; Rapisarda, E.; Voulot, D.; Lozano Benito, M.; Wenander, F.

    2015-08-01

    An exploratory experiment performed at REX-ISOLDE to investigate cluster-transfer reactions with radioactive beams in inverse kinematics is presented. The aim of the experiment was to test the potential of cluster-transfer reactions at the Coulomb barrier as a mechanism to explore the structure of exotic neutron-rich nuclei. The reactions 7Li(98Rb,α xn ) and 7Li(98Rb,t xn ) were studied through particle-γ coincidence measurements, and the results are presented in terms of the observed excitation energies and spins. Moreover, the reaction mechanism is qualitatively discussed as a transfer of a clusterlike particle within a distorted-wave Born approximation framework. The results indicate that cluster-transfer reactions can be described well as a direct process and that they can be an efficient method to investigate the structure of neutron-rich nuclei at medium-high excitation energies and spins.

  14. Neutron spectrometry of JET discharges with ICRH-acceleration of helium beam ions

    SciTech Connect

    Gatu Johnson, M.; Sunden, E. Andersson; Cecconello, M.; Conroy, S.; Ericsson, G.; Eriksson, J.; Hellesen, C.; Sangaroon, S.; Weiszflog, M.; Gorini, G.; Nocente, M.; Tardocchi, M.; Kiptily, V.; Sharapov, S. E. [JET-EFDA, Culham Science Centre, OX14 3DB, Abingdon; Euratom Eester, D. van [JET-EFDA, Culham Science Centre, OX14 3DB, Abingdon; LPP-ERM Collaboration: JET EFDA Contributors

    2010-10-15

    Recent experiments at JET aimed at producing {sup 4}He ions in the MeV range through third harmonic ion cyclotron resonance heating (ICRH) acceleration of {sup 4}He beams in a {sup 4}He dominated plasma. MeV range D was also present through parasitic ICRH absorption on residual D. In this contribution, we analyze TOFOR neutron spectrometer data from these experiments. A consistent description of the data is obtained with d(d,n){sup 3}He and {sup 9}Be({alpha},n){sup 12}C neutron components calculated using Stix distributions for the fast D and {sup 4}He, taking finite Larmor radius effects into account and with a ICRH power partition of P{sub D}{sup RF}=0.01xP{sub 4He}{sup RF}, in agreement with TOMCAT simulations.

  15. Exploring the structure of biological macromolecules in solution using Quokka, the small angle neutron scattering instrument, at ANSTO

    NASA Astrophysics Data System (ADS)

    Wood, Kathleen; Jeffries, Cy M.; Knott, Robert B.; Sokolova, Anna; Jacques, David A.; Duff, Anthony P.

    2015-10-01

    Small angle neutron scattering (SANS) is widely used to extract structural parameters, shape and other types of information from a vast array of materials. The technique is applied to biological macromolecules and their complexes in solution to reveal information often not accessible by other techniques. SANS measurements on biomolecules present some particular challenges however, one of which is suitable instrumentation. This review details SANS experiments performed on two well-characterised globular proteins (lysozyme and glucose isomerase) using Quokka, the recently commissioned SANS instrument at the Australian Nuclear Science and Technology Organisation (ANSTO). The instrument configuration as well as data collection and reduction strategies for biological investigations are discussed and act as a general reference for structural biologists who use the instrument. Both model independent analysis of the two proteins and ab initio modelling illustrate that Quokka-SANS data can be used to successfully model the overall shapes of proteins in solution, providing a benchmark for users.

  16. BNCT dose distribution in liver with epithermal D-D and D-T fusion-based neutron beams.

    PubMed

    Koivunoro, H; Bleuel, D L; Nastasi, U; Lou, T P; Reijonen, J; Leung, K-N

    2004-11-01

    Recently, a new application of boron neutron capture therapy (BNCT) treatment has been introduced. Results have indicated that liver tumors can be treated by BNCT after removal of the liver from the body. At Lawrence Berkeley National Laboratory, compact neutron generators based on (2)H(d,n)(3)He (D-D) or (3)H(t,n)(4)He (D-T) fusion reactions are being developed. Preliminary simulations of the applicability of 2.45 MeV D-D fusion and 14.1 MeV D-T fusion neutrons for in vivo liver tumor BNCT, without removing the liver from the body, have been carried out. MCNP simulations were performed in order to find a moderator configuration for creating a neutron beam of optimal neutron energy and to create a source model for dose calculations with the simulation environment for radiotherapy applications (SERA) treatment planning program. SERA dose calculations were performed in a patient model based on CT scans of the body. The BNCT dose distribution in liver and surrounding healthy organs was calculated with rectangular beam aperture sizes of 20 cm x 20 cm and 25 cm x 25 cm. Collimator thicknesses of 10 and 15 cm were used. The beam strength to obtain a practical treatment time was studied. In this paper, the beam shaping assemblies for D-D and D-T neutron generators and dose calculation results are presented. PMID:15308157

  17. Beam shaping assembly of a D-T neutron source for BNCT and its dosimetry simulation in deeply-seated tumor

    NASA Astrophysics Data System (ADS)

    Faghihi, F.; Khalili, S.

    2013-08-01

    This article involves two aims for BNCT. First case includes a beam shaping assembly estimation for a D-T neutron source to find epi-thermal neutrons which are the goal in the BNCT. Second issue is the percent depth dose calculation in the adult Snyder head phantom. Monte-Carlo simulations and verification of a suggested beam shaping assembly (including internal neutron multiplier, moderator, filter, external neutron multiplier, collimator, and reflector dimensions) for thermalizing a D-T neutron source as well as increasing neutron flux are carried out and our results are given herein. Finally, we have simulated its corresponding doses for treatment planning of a deeply-seated tumor.

  18. Neutron beam irradiation study of workload dependence of SER in a microprocessor

    SciTech Connect

    Michalak, Sarah E; Graves, Todd L; Hong, Ted; Ackaret, Jerry; Sonny, Rao; Subhasish, Mitra; Pia, Sanda

    2009-01-01

    It is known that workloads are an important factor in soft error rates (SER), but it is proving difficult to find differentiating workloads for microprocessors. We have performed neutron beam irradiation studies of a commercial microprocessor under a wide variety of workload conditions from idle, performing no operations, to very busy workloads resembling real HPC, graphics, and business applications. There is evidence that the mean times to first indication of failure, MTFIF defined in Section II, may be different for some of the applications.

  19. Elemental analysis of Anethum gravedlens, Sismbrium Irio Linn and Veronia Anthelmintica seeds by instrumental neutron activation analysis.

    PubMed

    Fatima, I; Waheed, S; Zaidi, J H

    2013-01-01

    Instrumental neutron activation analysis has been used to characterize As, Ba, Br, Ce, Cl, Co, Cr, Cs, Eu, Fe, Hg, K, Mn, Na, Rb, Sb, Se and Zn, and Sc in seeds of Anethum graveolens (Dill), Sisymbrium irio Linn. (Wild Mustard) and Vernonia anthelmintica (Iron Weed). Dill seed was found to contain high K while Wild Mustard has high Fe, Mn and Na levels. Iron Weed has highest Cl, Co, Cr and Zn content with least concentration of Fe. PMID:23103327

  20. Instrumental activation analysis of coal and fly ash with thermal and epithermal neutrons and short-lived nuclides

    USGS Publications Warehouse

    Steinnes, E.; Rowe, J.J.

    1976-01-01

    Instrumental neutron activation analysis is applied to the determination of about 25 elements in coals and fly ash by means of nuclides with half-lives of less than 48 h ; thermal and epithermal irradiations are used. The results indicate that epithermal activation is preferable for twelve of the elements (Ga, As, Br, Sr, In, Cs, Ba, La, Sm, Ho, W and U). Data for SRM 1632 (coal) and SRM 1633 (fly ash) compare favorably with the results obtained by other investigators. ?? 1976.

  1. Neutron and gamma ray streaming calculations for the ETF neutral beam injectors

    NASA Astrophysics Data System (ADS)

    Lillie, R. A.; Santoro, R. T.; Alsmiller, R. G., Jr.; Barnes, J. M.

    1981-02-01

    Two dimensional radiation transport methods were used to estimate the effects of neutron and gamma ray streaming on the performance of the engineering test facility neutral beam injectors. The calculations take into account the spatial, angular, and spectral distributions of the radiation entering the injector duct. The instantaneous nuclear heating rate averaged over the length of the cryopumping panel in the injector is 7.5 x 10(+3) MW/m(3) which implies a total heat load of 2.2 x 10(+4) MW. The instantaneous dose rate to the ion gun insulators was estimated to be 3200 rad/s. The radial dependence of the instantaneous dose equivalent rate in the neutral beam injector duct shield was also calculated.

  2. Optical characterization of a reference instrument for gloss measurements in both a collimated and a converging beam geometry.

    PubMed

    Noël, Mario; Zwinkels, Joanne; Liu, Jian

    2006-06-01

    A reference instrument has been developed at the National Research Council of Canada for rapid, reproducible specular gloss measurements. The design and validation of this instrument for specular gloss measurements in accordance with standard methods for paints and plastics at 20 degree, 60 degree, and 85 degree geometries [American Society for Testing and Materials (ASTM) D523 and the International Organization for Standards (ISO) 2813] have been recently reported. These standard methods require a collimated beam geometry. Here we present the optical design considerations and characterization of this instrument to extend its gloss measurement capabilities to specular gloss measurements of paper samples at 75 degree geometry in accordance with standard test methods requiring a converging beam geometry (ASTM D1223 and TAPPI T480). This is, to the best of our knowledge, the first reported reference instrument that provides direct traceability for both types of standard gloss method and applications. The design challenge was to convert from a collimated beam to converging beam geometry while meeting the rigorous requirements of beam uniformity at the sample and receptor apertures specified in the 75 degree geometry test methods. We describe the innovative design to achieve this degree of functionality and reference instrument performance. The instrument's optical performance has been characterized theoretically and by comparison with measurement results. The light collection and detection systems have been analyzed via Monte Carlo simulation and ray tracing. The instrument validation includes comparison of the measurement results with theoretical gloss values for quartz, black glass, Vitrolite, and mirror gloss working standards, giving agreement of better than 0.32%. Measurement validation also involved participation in the Collaborative Testing Services program interlaboratory comparison measurements of 75 degree gloss for white papers. PMID:16724127

  3. Optical characterization of a reference instrument for gloss measurements in both a collimated and a converging beam geometry

    NASA Astrophysics Data System (ADS)

    Noël, Mario; Zwinkels, Joanne; Liu, Jian

    2006-06-01

    A reference instrument has been developed at the National Research Council of Canada for rapid, reproducible specular gloss measurements. The design and validation of this instrument for specular gloss measurements in accordance with standard methods for paints and plastics at 20°, 60°, and 85° geometries [American Society for Testing and Materials (ASTM) D523 and the International Organization for Standards (ISO) 2813] have been recently reported. These standard methods require a collimated beam geometry. Here we present the optical design considerations and characterization of this instrument to extend its gloss measurement capabilities to specular gloss measurements of paper samples at 75° geometry in accordance with standard test methods requiring a converging beam geometry (ASTM D1223 and TAPPI T480). This is, to the best of our knowledge, the first reported reference instrument that provides direct traceability for both types of standard gloss method and applications. The design challenge was to convert from a collimated beam to converging beam geometry while meeting the rigorous requirements of beam uniformity at the sample and receptor apertures specified in the 75° geometry test methods. We describe the innovative design to achieve this degree of functionality and reference instrument performance. The instrument's optical performance has been characterized theoretically and by comparison with measurement results. The light collection and detection systems have been analyzed via Monte Carlo simulation and ray tracing. The instrument validation includes comparison of the measurement results with theoretical gloss values for quartz, black glass, Vitrolite, and mirror gloss working standards, giving agreement of better than 0.32%. Measurement validation also involved participation in the Collaborative Testing Services program interlaboratory comparison measurements of 75° gloss for white papers.

  4. Separation of beam and electrons in the spallation neutron source H{sup -} ion source

    SciTech Connect

    Whealton, J.H.; Raridon, R.J.; Leung, K.N.

    1997-12-01

    The Spallation Neutron Source (SNS) requires an ion source producing an H{sup {minus}} beam with a peak current of 35mA at a 6.2 percent duty factor. For the design of this ion source, extracted electrons must be transported and dumped without adversely affecting the H{sup {minus}} beam optics. Two issues are considered: (1) electron containment transport and controlled removal; and (2) first-order H{sup {minus}} beam steering. For electron containment, various magnetic, geometric and electrode biasing configurations are analyzed. A kinetic description for the negative ions and electrons is employed with self-consistent fields obtained from a steady-state solution to Poisson`s equation. Guiding center electron trajectories are used when the gyroradius is sufficiently small. The magnetic fields used to control the transport of the electrons and the asymmetric sheath produced by the gyrating electrons steer the ion beam. Scenarios for correcting this steering by split acceleration and focusing electrodes will be considered in some detail.

  5. Investigation of the combined effect of neutron irradiation and electron beam exposure on pure tungsten

    NASA Astrophysics Data System (ADS)

    Van Renterghem, W.; Uytdenhouwen, I.

    2016-08-01

    Pure tungsten samples were neutron irradiated in the BR2 reactor of SCK·CEN to fluences of 1.47 × 1020 n/cm2 and 4.74 × 1020 n/cm2 at 300 °C under Helium atmosphere and exposed to the electron beam of the Judith 1 installation The effect of these treatments on the defect structure was studied with transmission electron microscopy. In the irradiated samples the defect structure in the bulk is compared to the structure at the surface. The neutron irradiation created a large amount of a/2‹111› type dislocation loops forming dislocation rafts. The loop density increased from 8.5 × 1021/m³ to 9 × 1022/m³ with increasing dose, while the loop size decreased from 5.2 nm to 3.5 nm. The electron beam exposure induced significant annealing of the defects and almost all of the dislocation loops were removed. The number of line dislocations in that area increased as a result of the thermal stresses from the thermal shock.

  6. Neutronics analysis of three beam-filter assemblies for an accelerator-based BNCT facility

    SciTech Connect

    Bleuel, D.L.; Costes, S.V.; Donahue, R.J.; Ludewigt, B.A.

    1997-08-01

    Three moderator materials, AlF{sub 3}/Al, D{sub 2}O and LiF, have been analyzed for clinical usefulness using the reaction {sup 7}Li(p,n) as an accelerator driven neutron source. Proton energies between 2.1 MeV and 2.6 MeV have been investigated. Radiation transport in the reflector/moderator assembly is simulated using the MCNP program. Depth-dose distributions in a head phanton are calculated with the BNCT-RTPE patient treatment planning program from INEEL using the MCNP generated neutron and photon spectra as the subsequent source. Clinical efficacy is compared using the current BMRR protocol for all designs. Depth-dose distributions are compared for a fixed normal tissue tolerance dose of 12.5 Gy-Eq. Radiation analyses also include a complete anthropomorphic phantom. Results of organ and whole body dose components are presented for several designs. Results indicate that high quality accelerator beams may produce clinically favorable treatments to deep-seated tumors when compared to the BMRR beam. Also discussed are problems identified in comparing accelerator and reactor based designs using in-air figures of merit as well as some results of spectrum-averaged RBE`s.

  7. Spectrum and density of neutron flux in the irradiation beam line no. 3 of the IBR-2 reactor

    NASA Astrophysics Data System (ADS)

    Shabalin, E. P.; Verkhoglyadov, A. E.; Bulavin, M. V.; Rogov, A. D.; Kulagin, E. N.; Kulikov, S. A.

    2015-03-01

    Methodology and results of measuring the differential density of the neutron flux in irradiation beam line no. 3 of the IBR-2 reactor using neutron activation analysis (NAA) are presented in the paper. The results are compared to the calculation performed on the basis of the 3D MCNP model. The data that are obtained are required to determine the integrated radiation dose of the studied samples at various distances from the reactor.

  8. Using parabolic supermirror lenses to focus and de-focus a neutron beam

    NASA Astrophysics Data System (ADS)

    Rantsiou, Emmanouela; Panzner, Tobias; Hautle, Patrick; Filges, Uwe

    2014-07-01

    We designed a focus/defocus neutron optics system, in order to investigate the performance, precision, efficiency, and operational and designing challenges of such coupled 2- lens systems, which could potentially find applications where small beam cross sections are beneficial, e.g., virtual neutron source concepts and high efficiency chopper systems. Our particular prototype (as described and discussed in this paper) has already been used in an on-going experiment, involving neutron spin filtering with dynamically polarized protons. After the designing and construction phases, we continued by performing a long series of simulations and measurements, in order to facilitate the alignment of the lenses, and investigate and understand the behaviour and output of the system. All measurements were performed at the BOA beamline at PSI. The simulations were particularly useful in aligning the lenses: tilts as small as 0.04° could easily be accounted for in our simulations and guide successfully the experimental aligning procedure of the first lens. Although harder to do in the case of two lenses, we were still able to reproduce fairly successfully with our simulations, tilts from both lenses. We have noticed (both in our experiments and simulations) that the sensitivity of such a set-up is ~ 0.01°.

  9. Study for s-process using neutron beam provided from ANNRI of J-PARC

    NASA Astrophysics Data System (ADS)

    Hayakawa, Takehioto; Toh, Yosuke; Kimura, Akira; Nakamura, Shoji; Shizuma, Toshiyuki; Harada, Hideo

    2016-06-01

    Most isotopes heavier than iron are synthesized by the slow neutron capture reaction process (s-process) in stars. Isomers in stable isotopes have sometimes an important role as a branching point in nucleosynthesis flow in the s-process. An isomer with a half-life of 14.1 y in 113Cd is a branching point from which a nucleosynthesis flow reaches to a rare isotope 115Sn. The astrophysical origin of 115Sn has remained still an open question. The s-process abundance of 115Sn depends on the ratio of the 112Cd(n, γ) 113Cdm reaction cross section to the 112Cd(n, γ) 113Cdgs reaction cross section. However, the isomer production ratio following the neutron capture reaction has not been measured in the energy region higher than the thermal energy. An intense neutron beam experimental system, ANNRI, in J-PARC has a high purity germanium (HPGe) detector system consisting of two cluster detectors. We have measured γ-rays decaying to the ground state and the isomer using the HPGe detectors in conjunction with a time-offlight method at ANNRI.

  10. Active beam position stabilization of pulsed lasers for long-distance ion profile diagnostics at the Spallation Neutron Source (SNS)

    SciTech Connect

    Hardin, Robert A; Liu, Yun; Long, Cary D; Aleksandrov, Alexander V; Blokland, Willem

    2011-01-01

    A high peak-power Q-switched laser has been used to monitor the ion beam profiles in the superconducting linac at the Spallation Neutron Source (SNS). The laser beam suffers from position drift due to movement, vibration, or thermal effects on the optical components in the 250-meter long laser beam transport line. We have designed, bench-tested, and implemented a beam position stabilization system by using an Ethernet CMOS camera, computer image processing and analysis, and a piezo-driven mirror platform. The system can respond at frequencies up to 30 Hz with a high position detection accuracy. With the beam stabilization system, we have achieved a laser beam pointing stability within a range of 2 rad (horizontal) to 4 rad (vertical), corresponding to beam drifts of only 0.5 mm 1 mm at the furthest measurement station located 250 meters away from the light source.

  11. Performance of a New Composite Single-Crystal Filtered Thermal Neutron Beam for Neutron Capture Therapy Research at the University of Missouri

    SciTech Connect

    John D. Brockman; David W. Nigg; M. Frederick Hawthorne; Charles McKibben

    2008-11-01

    The University of Missouri (MU) Institute for Nano and Molecular Medicine, the Idaho National Laboratory (INL) and the University of Missouri Research Reactor (MURR) have undertaken a new collaborative research initiative to further the development of improved boron delivery agents for BNCT. The first step of this effort has involved the design and construction of a new thermal neutron beam irradiation facility for cell and small-animal radiobological research at the MURR. In this paper we present the beamline design with the results of pertinent neutronic design calculations. Results of neutronic performance measurements, initiated in February 2008, will also be available for inclusion in the final paper. The new beam will be located in an existing 152.4 mm (6’) diameter MURR beam tube extending from the core to the right in Figure 1. The neutron beam that emanates from the berylium reflector around the reactor is filtered with single-crystal silicon and single-crystal bismuth segments to remove high energy, fission spectrum neutrons and reactor gamma ray contamination. The irradiation chamber is downstream of the bismuth filter section, and approximately 3.95 m from the central axis of the reactor. There is sufficient neutron flux available from the MURR at its rated power of 10 MW to avoid the need for cryogenic cooling of the crystals. The MURR operates on average 150 hours per week, 52 weeks a year. In order to take advantage of 7800 hours of operation time per year the small animal BNCT facility will incorparate a shutter constucuted of boral, lead, steel and polyethylene that will allow experimenters to access the irradiation chamber a few minutes after irradiation. Independent deterministic and stochastic models of the coupled reactor core and beamline were developed using the DORT two-dimensional radiation transport code and the MCNP-5 Monte Carlo code, respectively. The BUGLE-80 47-neutron, 20-gamma group cross section library was employed for the DORT

  12. Radio metric errors due to mismatch and offset between a DSN antenna beam and the beam of a troposphere calibration instrument

    NASA Technical Reports Server (NTRS)

    Linfield, R. P.; Wilcox, J. Z.

    1993-01-01

    Two components of the error of a troposphere calibration measurement were quantified by theoretical calculations. The first component is a beam mismatch error, which occurs when the calibration instrument senses a conical volume different from the cylindrical volume sampled by a Deep Space Network (DSN) antenna. The second component is a beam offset error, which occurs if the calibration instrument is not mounted on the axis of the DSN antenna. These two error sources were calculated for both delay (e.g., VLBI) and delay rate (e.g., Doppler) measurements. The beam mismatch error for both delay and delay rate drops rapidly as the beamwidth of the troposphere calibration instrument (e.g., a water vapor radiometer or an infrared Fourier transform spectrometer) is reduced. At a 10-deg elevation angle, the instantaneous beam mismatch error is 1.0 mm for a 6-deg beamwidth and 0.09 mm for a 0.5-deg beam (these are the full angular widths of a circular beam with uniform gain out to a sharp cutoff). Time averaging for 60-100 sec will reduce these errors by factors of 1.2-2.2. At a 20-deg elevation angle, the lower limit for current Doppler observations, the beam-mismatch delay rate error is an Allan standard deviation over 100 sec of 1.1 x 10(exp -14) with a 4-deg beam and 1.3 x 10(exp -l5) for a 0.5-deg beam. A 50-m beam offset would result in a fairly modest (compared to other expected error sources) delay error (less than or equal to 0.3 mm for 60-sec integrations at any elevation angle is greater than or equal to 6 deg). However, the same offset would cause a large error in delay rate measurements (e.g., an Allan standard deviation of 1.2 x 10(exp -14) over 100 sec at a 20-deg elevation angle), which would dominate over other known error sources if the beamwidth is 2 deg or smaller. An on-axis location is essential for accurate troposphere calibration of delay rate measurements. A half-power beamwidth (for a beam with a tapered gain profile) of 1.2 deg or smaller is

  13. Delayed cerebral radiation necrosis after neutron beam radiation of a parotid adenocarcinoma: a case report and review of the literature.

    PubMed

    Hong, Christopher S; Gokozan, Hamza N; Otero, José J; Guiou, Michael; Elder, J Bradley

    2014-01-01

    Cerebral radiation necrosis (CRN) is a well described possible complication of radiation for treatment of intracranial pathology. However, CRN as sequelae of radiation to extracranial sites is rare. Neutron beam radiation is a highly potent form of radiotherapy that may be used to treat malignant tumors of the salivary glands. This report describes a patient who underwent neutron beam radiation for a parotid adenocarcinoma and who developed biopsy-confirmed temporal lobe radiation necrosis thirty months later. This represents the longest time interval described to date, from initial neutron radiation for extracranial pathology to development of CRN. Two other detailed case studies exist in the literature and are described in this report. These reports as well as our patient's case are reviewed, and additional recommendations are made to minimize the development of CRN after extracranial neutron beam radiation. Physicians should include the possible diagnosis of CRN in any patient with new neurologic signs or symptoms and a history of head and neck radiation that included planned fields extending to the base of the skull. Counseling of patients prior to neutron beam radiation should include potential neurologic complications associated with CRN and risks of treatment for CRN including neurosurgical intervention. PMID:25349750

  14. Maximum Alpha to Minimum Fission Pulse Amplitude for a Parallel-Plate and Hemispherical Cf-252 Ion-Chamber Instrumented Neutron Source

    SciTech Connect

    Oberer, R.B.

    2000-12-07

    In an instrumented Cf-252 neutron source, it is desirable to distinguish fission events which produce neutrons from alpha decay events. A comparison of the maximum amplitude of a pulse from an alpha decay with the minimum amplitude of a fission pulse shows that the hemispherical configuration of the ion chamber is superior to the parallel-plate ion chamber.

  15. Wire Scanner Beam Profile Measurements: LANSCE Facility Beam Development

    SciTech Connect

    Gilpatrick, John D.; Batygin, Yuri K.; Gonzales, Fermin; Gruchalla, Michael E.; Kutac, Vincent G.; Martinez, Derwin; Sedillo, James Daniel; Pillai, Chandra; Rodriguez Esparza, Sergio; Smith, Brian G.

    2012-05-15

    The Los Alamos Neutron Science Center (LANSCE) is replacing Wire Scanner (WS) beam profile measurement systems. Three beam development tests have taken place to test the new wire scanners under beam conditions. These beam development tests have integrated the WS actuator, cable plant, electronics processors and associated software and have used H{sup -} beams of different beam energy and current conditions. In addition, the WS measurement-system beam tests verified actuator control systems for minimum profile bin repeatability and speed, checked for actuator backlash and positional stability, tested the replacement of simple broadband potentiometers with narrow band resolvers, and tested resolver use with National Instruments Compact Reconfigurable Input and Output (cRIO) Virtual Instrumentation. These beam tests also have verified how trans-impedance amplifiers react with various types of beam line background noise and how noise currents were not generated. This paper will describe these beam development tests and show some resulting data.

  16. Solar gamma-ray and neutron registration capabilities of the GRIS instrument onboard the International Space Station

    NASA Astrophysics Data System (ADS)

    Trofimov, Yury; Kochemasov, Alexey; Yurov, Vitaly; Glyanenko, Alexander; Kotov, Yury; Lupar, Evgeny; Faradzhaev, Rodion

    2016-07-01

    GRIS (Gamma and Roentgen radiation of the Sun) is a prospective hard X-ray and gamma-ray spectrometer of solar flares with the energy range from 50 keV to 200 MeV. It is also designed for registration of high energy neutron fluxes (>30 MeV). The apparatus will be mounted on an oriented platform outside the Russian Orbital Segment of the International Space Station. The instrument includes two detector heads: a low energy spectrometer (LES) based on a fast scintillator with relatively high energy resolution 3.5-4.5% at 662 keV (LaBr _{3}(Ce) or CeBr _{3}) and size of ø7.62×7.62 cm, and a high energy spectrometer (HES) based on ø12×15 cm CsI(Tl) scintillator. Thanks to n/γ discrimination capability of CsI(Tl) crystals, the HES spectrometer is also intended for neutron registration. To estimate GRIS instrument registration capabilities, simulation of the HES neutron and gamma registration channels response to background radiation and to solar flares of different magnitude and spectral compositions was performed. Expected spectral and n/γ discrimination performances based on measurements with detectors prototypes are represented.

  17. SU-E-T-567: Neutron Dose Equivalent Evaluation for Pencil Beam Scanning Proton Therapy with Apertures

    SciTech Connect

    Geng, C; Schuemann, J; Moteabbed, M; Paganetti, H

    2015-06-15

    Purpose: To determine the neutron contamination from the aperture in pencil beam scanning during proton therapy. Methods: A Monte Carlo based proton therapy research platform TOPAS and the UF-series hybrid pediatric phantoms were used to perform this study. First, pencil beam scanning (PBS) treatment pediatric plans with average spot size of 10 mm at iso-center were created and optimized for three patients with and without apertures. Then, the plans were imported into TOPAS. A scripting method was developed to automatically replace the patient CT with a whole body phantom positioned according to the original plan iso-center. The neutron dose equivalent was calculated using organ specific quality factors for two phantoms resembling a 4- and 14-years old patient. Results: The neutron dose equivalent generated by the apertures in PBS is 4–10% of the total neutron dose equivalent for organs near the target, while roughly 40% for organs far from the target. Compared to the neutron dose equivalent caused by PBS without aperture, the results show that the neutron dose equivalent with aperture is reduced in the organs near the target, and moderately increased for those organs located further from the target. This is due to the reduction of the proton dose around the edge of the CTV, which causes fewer neutrons generated in the patient. Conclusion: Clinically, for pediatric patients, one might consider adding an aperture to get a more conformal treatment plan if the spot size is too large. This work shows the somewhat surprising fact that adding an aperture for beam scanning for facilities with large spot sizes reduces instead of increases a potential neutron background in regions near target. Changran Geng is supported by the Chinese Scholarship Council (CSC) and the National Natural Science Foundation of China (Grant No. 11475087)

  18. Nanodosimetry in a clinical neutron therapy beam using the variance-covariance method and Monte Carlo simulations.

    PubMed

    Lillhök, J E; Grindborg, J-E; Lindborg, L; Gudowska, I; Carlsson, G Alm; Söderberg, J; Kopeć, M; Medin, J

    2007-08-21

    Nanodosimetric single-event distributions or their mean values may contribute to a better understanding of how radiation induced biological damages are produced. They may also provide means for radiation quality characterization in therapy beams. Experimental nanodosimetry is however technically challenging and Monte Carlo simulations are valuable as a complementary tool for such investigations. The dose-mean lineal energy was determined in a therapeutic p(65)+Be neutron beam and in a (60)Co gamma beam using low-pressure gas detectors and the variance-covariance method. The neutron beam was simulated using the condensed history Monte Carlo codes MCNPX and SHIELD-HIT. The dose-mean lineal energy was calculated using the simulated dose and fluence spectra together with published data from track-structure simulations. A comparison between simulated and measured results revealed some systematic differences and different dependencies on the simulated object size. The results show that both experimental and theoretical approaches are needed for an accurate dosimetry in the nanometer region. In line with previously reported results, the dose-mean lineal energy determined at 10 nm was shown to be related to clinical RBE values in the neutron beam and in a simulated 175 MeV proton beam as well. PMID:17671346

  19. Nanodosimetry in a clinical neutron therapy beam using the variance-covariance method and Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Lillhök, J. E.; Grindborg, J.-E.; Lindborg, L.; Gudowska, I.; Alm Carlsson, G.; Söderberg, J.; Kopeć, M.; Medin, J.

    2007-08-01

    Nanodosimetric single-event distributions or their mean values may contribute to a better understanding of how radiation induced biological damages are produced. They may also provide means for radiation quality characterization in therapy beams. Experimental nanodosimetry is however technically challenging and Monte Carlo simulations are valuable as a complementary tool for such investigations. The dose-mean lineal energy was determined in a therapeutic p(65)+Be neutron beam and in a 60Co γ beam using low-pressure gas detectors and the variance-covariance method. The neutron beam was simulated using the condensed history Monte Carlo codes MCNPX and SHIELD-HIT. The dose-mean lineal energy was calculated using the simulated dose and fluence spectra together with published data from track-structure simulations. A comparison between simulated and measured results revealed some systematic differences and different dependencies on the simulated object size. The results show that both experimental and theoretical approaches are needed for an accurate dosimetry in the nanometer region. In line with previously reported results, the dose-mean lineal energy determined at 10 nm was shown to be related to clinical RBE values in the neutron beam and in a simulated 175 MeV proton beam as well.

  20. Cavity Misalignment and Off-Axis Field Effects on Transverse Beam Dynamic in Spallation Neutron Source Superconducting Linac

    SciTech Connect

    J. Stovall; Marc Doleans; J. Galambos; Eugene Tanke; Sang-ho Kim; Ronald Sundelin

    2001-05-01

    For highly relativistic beams, transverse motion due to off-axis fields is not a concern because the transverse RF magnetic and electric forces for off-axis particles cancel each other. Since The Spallation Neutron Source (SNS) will accelerate moderately relativistic H- particle beam, transverse motion due to off-axis fields has to be checked. Misaligned cavities have physically the same transverse effect on particles moving on axis as off-axis particles passing through perfectly aligned cavities. The main purpose of this paper is to calculate the impact on the transverse motion of the beam from the superconducting cavity (SC) misalignment in SNS. Quadrupole misalignment is then added to obtain a more general statement for the transverse behavior of the beam under alignment errors. For this issue, we use on-axis and off-axis electromagnetic field data from Superfish to calculate beam properties of the SNS beam all along the SC linac with misaligned cavities.

  1. Pressure/temperature fluid cell apparatus for the neutron powder diffractometer instrument: Probing atomic structure in situ

    NASA Astrophysics Data System (ADS)

    Wang, Hsiu-Wen; Fanelli, Victor R.; Reiche, Helmut M.; Larson, Eric; Taylor, Mark A.; Xu, Hongwu; Zhu, Jinlong; Siewenie, Joan; Page, Katharine

    2014-12-01

    This contribution describes a new local structure compatible gas/liquid cell apparatus for probing disordered materials at high pressures and variable temperatures in the Neutron Powder Diffraction instrument at the Lujan Neutron Scattering Center, Los Alamos National Laboratory. The new sample environment offers choices for sample canister thickness and canister material type. Finite element modeling is utilized to establish maximum allowable working pressures of 414 MPa at 15 K and 121 MPa at 600 K. High quality atomic pair distribution function data extraction and modeling have been demonstrated for a calibration standard (Si powder) and for supercritical and subcritical CO2 measurements. The new sample environment was designed to specifically target experimental studies of the local atomic structures involved in geologic CO2 sequestration, but will be equally applicable to a wide variety of energy applications, including sorption of fluids on nano/meso-porous solids, clathrate hydrate formation, catalysis, carbon capture, and H2 and natural gas uptake/storage.

  2. In situ neutron spectroscopy on the martian surface: modeling the hydra instrument for different mission scenarios

    SciTech Connect

    Lawrence, David J. ,; Elphic, R. C.; Feldman, W. C.; Moore, K. R.; Prettyman, T. H.; Weins, R. C.

    2003-01-01

    Neutron spectroscopy has proven to be highly successful in remotely detecting and measuring the abundance of water on planetary surfaces such as Mars and the Moon. Because of the central role played by water on Mars and the need to make in situ measurements of water abundances for landed missions, neutron spectroscopy is being investigated as a technique for quickly determining the near-surface water abundance for fhture Mars missions, such as the Mars Smart Larider (MSL).

  3. Neutron spectrum measurements at a radial beam port of the NUR research reactor using a Bonner spheres spectrometer.

    PubMed

    Mazrou, H; Nedjar, A; Seguini, T

    2016-08-01

    This paper describes the measurement campaign held around the neutron radiography (NR) facility of the Algerian 1MW NUR research reactor. The main objective of this work is to characterize accurately the neutron beam provided at one of the radial channels of the NUR research reactor taking benefit of the acquired CRNA Bonner spheres spectrometer (BSS). The specific objective was to improve the image quality of the NR facility. The spectrometric system in use is based on a central spherical (3)He thermal neutron proportional counter combined with high density polyethylene spheres of different diameters ranging from 3 to 12in. This counting system has good gamma ray discrimination and is able to cover an energy range from thermal to 20MeV. The measurements were performed at the sample distance of 0.6m from the beam port and at a height of 1.2m from the facility floor. During the BSS measurements, the reactor was operating at low power (100W) to avoid large dead times, pulse pileup and high level radiation exposures, in particular, during spheres handling. Thereafter, the neutron spectrum at the sample position was unfolded by means of GRAVEL and MAXED computer codes. The thermal, epithermal and fast neutron fluxes, the total neutron flux, the mean energy and the Cadmium ratio (RCd) were provided. A sensitivity analysis was performed taking into account various defaults spectra and ultimately a different response functions in the unfolding procedure. Overall, from the obtained results it reveals, unexpectedly, that the measured neutron spectrum at the sample position of the neutron radiography of the NUR reactor is being harder with a predominance of fast neutrons (>100keV) by about 60%. Finally, those results were compared to previous and more recent measurements obtained by activation foils detectors. The agreement was fairly good highlighting thereby the consistency of our findings. PMID:27203706

  4. A Positional X-ray Instrumentation Test Stand For Beam-Line Experiments

    NASA Astrophysics Data System (ADS)

    Nikoleyczik, Jonathan; Prieskorn, Z.; Burrows, D. N.; Falcone, A.

    2014-01-01

    A multi-axis, motion controlled test stand has been built in the PSU 47 m X-ray beam-line for the purpose of testing X-ray instrumentation and mirrors using parallel rays. The test stand is capable of translation along two axes and rotation about two axes with motorized fine position control. The translation stages have a range of motion of 200 mm with a movement accuracy of ± 2.5 microns. Rotation is accomplished with a two-axis gimbal which can rotate 360° about one axis and 240° about another; movement with ± 35 arcsecond accuracy are achieved in both axes. The position and status are monitored using a LabView program. An XCalibr source with multiple target materials is used as an X-ray source and can produce multiple lines between 0.8 and 8 keV. Some sample spectra are shown from a Si-PIN diode detector. This system is well suited for testing X-ray mirror segments which are currently being developed.

  5. Ramping up the Spallation Neutron Source beam power with the H{sup -} source using 0 mg Cs/day

    SciTech Connect

    Stockli, M. P.; Han, B.; Murray, S. N.; Pennisi, T. R.; Santana, M.; Welton, R. F.

    2010-02-15

    This paper describes the ramp up of the beam power for the Spallation Neutron Source by ramping up the pulse length, the repetition rate, and the beam current emerging from the H{sup -} source. Starting out with low repetition rates ({<=}10 Hz) and short pulse lengths ({<=}0.2 ms), the H{sup -} source and low-energy beam transport delivered from Lawrence Berkeley National Laboratory exceeded the requirements with almost perfect availability. This paper discusses the modifications that were required to exceed 0.2 ms pulse length and 0.2% duty factor with acceptable availability and performance. Currently, the source is supporting neutron production at 1 MW with 38 mA linac beam current at 60 Hz and 0.9 ms pulse length. The pulse length will be increased to {approx}1.1 ms to meet the requirements for neutron production with a power between 1 and 1.4 MW. A medium-energy beam transport (MEBT) beam current of 46 mA with a 5.4% duty factor has been demonstrated for 32 h. A 56 mA MEBT beam current with a 4.1% duty factor has been demonstrated for 20 min at the conclusion of a 12-day production run. This is close to the 59 mA needed for 3 MW neutron productions. Also notable is the Cs{sub 2}CrO{sub 4} cesium system, which dispenses {approx}10 mg of Cs during the startup of the ion source, sufficient for producing the required 38 mA for 4 weeks without significant degradation.

  6. Effective dose evaluation for BNCT treatment in the epithermal neutron beam at THOR.

    PubMed

    Wang, J N; Huang, C K; Tsai, W C; Liu, Y H; Jiang, S H

    2011-12-01

    This paper aims to evaluate the effective dose as well as equivalent doses of several organs of an adult hermaphrodite mathematical phantom according to the definition of ICRP Publication 60 for BNCT treatments of brain tumors in the epithermal neutron beam at THOR. The MCNP5 Monte Carlo code was used for the calculation of the average absorbed dose of each organ. The effective doses for a typical brain tumor treatment with a tumor treatment dose of 20 Gy-eq were evaluated to be 0.59 and 0.35 Sv for the LLAT and TOP irradiation geometries, respectively. In addition to the stochastic effect, it was found that it is also likely to produce deterministic effects, such as cataracts and depression of haematopoiesis. PMID:21530281

  7. Instruments to study fast neutrons fluxes in the upper atmosphere with the use of high-altitude balloons

    NASA Astrophysics Data System (ADS)

    Iyudin, A. F.; Bogomolov, V. V.; Galkin, V. I.; Golovanov, I. A.; Krasnov, A.; Markelova, A. K.; Markelov, I.; Morgunova, Yu.; Osedlo, V. I.; Panasyuk, M. I.; Rozhkov, G.; Svertilov, S. I.

    2015-11-01

    The successful circumpolar flight of the X-ray polarimeter PoGOLite in the northern hemisphere during the summer campaign of 2013 inspired us, the team consisting mostly of students and senior researchers, to develop a Modular Monitor of the Cosmic Neutral Emission (MMCNE) prototype that can be flown on the high-altitude balloons to study two components of neutral emission, namely spectra of neutrons and of gamma-rays in the upper layers of Earth atmosphere. Instrument modular concept, and some of the simulated detection characteristics for the selected layout will be presented in this paper.

  8. RBE variation between fast neutron beams as a function of energy. Intercomparison involving 7 neutrontherapy facilities.

    PubMed

    Gueulette, J; Beauduin, M; Grégoire, V; Vynckier, S; De Coster, B M; Octave-Prignot, M; Wambersie, A; Strijkmans, K; De Schrijver, A; El-Akkad, S; Böhm, L; Slabbert, J P; Jones, D T; Maughan, R; Onoda, J; Yudelev, M; Porter, A T; Powers, W E; Sabattier, R; Breteau, N; Courdi, A; Brassart, N; Chauvel, P

    1996-01-01

    In fast neutron therapy, the relative biological effectiveness (RBE) of a given beam varies to a large extent with the neutron energy spectrum. This spectrum depends primarily on the energy of the incident particles and on the nuclear reaction used for neutron production. However, it also depends on other factors which are specific to the local facility, eg, target, collimation system, etc. Therefore direct radiobiological intercomparisons are justified. The present paper reports the results of an intercomparison performed at seven neutrontherapy centres: Orléans, France (p(34)+Be), Riyadh, Saudi Arabia (p(26)+Be), Ghent, Belgium (d(14.5)+Be), Faure, South Africa (p(66)+Be), Detroit, USA (d(48)+Be), Nice, France (p(65)+Be) and Louvain-la-Neuve, Belgium (p(65)+Be). The selected radiobiological system was intestinal crypt regeneration in mice after single fraction irradiation. The observed RBE values (ref cobalt-60 gamma-rays) were 1.79 +/- 0.10, 1.84 +/- 0.07, 2.24 +/- 0.11, 1.55 +/- 0.04, 1.51 +/- 0.03, 1.50 +/- 0.04 and 1.52 +/- 0.04, respectively. When machine availability permitted, additional factors were studied: two vs one fraction (Ghent, Louvain-la-Neuve), dose rate (Detroit), influence of depth in phantom (Faure, Detroit, Nice, Louvain-la-Neuve). In addition, at Orléans and Ghent, RBEs were also determined for LD50 at 6 days after selective abdominal irradiation and were found to be equal to the RBEs for crypt regeneration. The radiobiological intercomparisons were always combined with direct dosimetric intercomparisons and, when possible in some centres, with microdosimetric investigations. PMID:8949753

  9. Fusion neutron generation computations in a stellarator-mirror hybrid with neutral beam injection

    SciTech Connect

    Moiseenko, V. E.; Agren, O.

    2012-06-19

    In the paper [Moiseenko V.E., Noack K., Agren O. 'Stellarator-mirror based fusion driven fission reactor' J Fusion Energy 29 (2010) 65.], a version of a fusion driven system (FDS), i.e. a sub-critical fast fission assembly with a fusion plasma neutron source, is proposed. The plasma part of the reactor is based on a stellarator with a small mirror part. Hot ions with high perpendicular energy are assumed to be trapped in the magnetic mirror part. The stellarator part which connects to the mirror part and provides confinement for the bulk (deuterium) plasma. In the magnetic well of the mirror part, fusion reactions occur from collisions between a of hot ion component (tritium) with cold background plasma ions. RF heating is one option to heat the tritium. A more conventional method to sustain the hot ions is neutral beam injection (NBI), which is here studied numerically for the above-mentioned hybrid scheme. For these studies, a new kinetic code, KNBIM, has been developed. The code takes into account Coulomb collisions between the hot ions and the background plasma. The geometry of the confining magnetic field is arbitrary for the code. It is accounted for via a numerical bounce averaging procedure. Along with the kinetic calculations the neutron generation intensity and its spatial distribution are computed.

  10. New opportunities provided by modernized small-angle neutron scattering two-detector system instrument (YuMO)

    NASA Astrophysics Data System (ADS)

    Kuklin, A. I.; Soloviov, D. V.; Rogachev, A. V.; Utrobin, P. K.; Kovalev, Yu S.; Balasoiu, M.; Ivankov, O. I.; Sirotin, A. P.; Murugova, T. N.; Petukhova, T. B.; Gorshkova, Yu E.; Erhan, R. V.; Kutuzov, S. A.; Soloviev, A. G.; Gordeliy, V. I.

    2011-04-01

    Main features of the modernized small-angle neutron scattering spectrometer (YuMO) at IBR-2M pulsed reactor are described. New installations for sample environment of the spectrometer are highlighted. The modernized SANS instrument (YuMO) is equipped with a new type of position sensitive detector as well as two detector system which provide a unique dynamic range (Qmax/Qmin ratio is about 90). Sample environment is extended with a magnetic system (magnetic field about 2.5 Tesla), automated high pressure setup which allows simultaneous SANS and volumetric high pressure studies and light illumination system. In particular, these developments led to considerable improvements of resolution of the instrument (about 1%) and opened the possibility to study anisotropic materials and perform efficient high pressure studies.

  11. Combined reactor neutron beam and {sup 60}Co γ-ray radiation effects on CMOS APS image sensors

    SciTech Connect

    Wang, Zujun Chen, Wei; Sheng, Jiangkun; Liu, Yan; Xiao, Zhigang; Huang, Shaoyan; Liu, Minbo

    2015-02-15

    The combined reactor neutron beam and {sup 60}Co γ-ray radiation effects on complementary metal-oxide semiconductor (CMOS) active pixel sensors (APS) have been discussed and some new experimental phenomena are presented. The samples are manufactured in the standard 0.35-μm CMOS technology. Two samples were first exposed to {sup 60}Co γ-rays up to the total ionizing dose (TID) level of 200 krad(Si) at the dose rates of 50.0 and 0.2 rad(Si)/s, and then exposed to neutron fluence up to 1 × 10{sup 11} n/cm{sup 2} (1-MeV equivalent neutron fluence). One sample was first exposed to neutron fluence up to 1 × 10{sup 11} n/cm{sup 2} (1-MeV equivalent neutron fluence), and then exposed to {sup 60}Co γ-rays up to the TID level of 200 krad(Si) at the dose rate of 0.2 rad(Si)/s. The mean dark signal (K{sub D}), the dark signal non-uniformity (DSNU), and the noise (V{sub N}) versus the total dose and neutron fluence has been investigated. The degradation mechanisms of CMOS APS image sensors have been analyzed, especially for the interaction induced by neutron displacement damage and TID damage.

  12. 235U Determination using In-Beam Delayed Neutron Counting Technique at the NRU Reactor

    SciTech Connect

    Andrews, M. T.; Bentoumi, G.; Corcoran, E. C.; Dimayuga, I.; Kelly, D. G.; Li, L.; Sur, B.; Rogge, R. B.

    2015-11-17

    This paper describes a collaborative effort that saw the Royal Military College of Canada (RMC)’s delayed neutron and gamma counting apparatus transported to Canadian Nuclear Laboratories (CNL) for use in the neutron beamline at the National Research Universal (NRU) reactor. Samples containing mg quantities of fissile material were re-interrogated, and their delayed neutron emissions measured. This collaboration offers significant advantages to previous delayed neutron research at both CNL and RMC. This paper details the determination of 235U content in enriched uranium via the assay of in-beam delayed neutron magnitudes and temporal behavior. 235U mass was determined with an average absolute error of ± 2.7 %. This error is lower than that obtained at RMCC for the assay of 235U content in aqueous solutions (3.6 %) using delayed neutron counting. Delayed neutron counting has been demonstrated to be a rapid, accurate, and precise method for special nuclear material detection and identification.

  13. The design of an intense accelerator-based epithermal neutron beam prototype for BNCT using near-threshold reactions

    NASA Astrophysics Data System (ADS)

    Lee, Charles L.

    Near-threshold boron neutron capture therapy (BNCT) uses proton energies only tens of rev above the (pan) reaction threshold in lithium in order to reduce the moderation requirements of the neutron source. The goals of this research were to prove the feasibility of this near-threshold concept for BNCT applications, using both calculation and experiment, and design a compact neutron source prototype from these results. This required a multidisciplinary development of methods for calculation of neutron yields, head phantom dosimetry, and accelerator target heat removal. First, a method was developed to accurately calculate thick target neutron yields for both near-threshold and higher energy proton beams, in lithium metal as well as lithium compounds. After these yields were experimentally verified, they were used as neutron sources for Monte Carlo (MCNP) simulations of neutron and photon transport in head phantoms. The theoretical and experimental determination of heat removal from a target backing with multiple fins, as well as numerical calculations of heat deposition profiles based on proton energy loss in target and backing materials, demonstrated that lithium integrity can be maintained for proton beam currents up to 2.5 mA. The final design uses a proton beam energy of 1.95 MeV and has a centerline epithermal neutron flux of 2.2 × 108 n/cm2- sec/mA, an advantage depth of 5.7 cm, an advantage ratio of 4.3, and an advantage depth dose rate of 6.7 RBE- cGy/min/mA, corresponding to an irradiation time of 38 minutes with a 5 mA beam. Moderator, reflector, and shielding weigh substantially less than other accelerator BNCT designs based on higher proton energies, e.g. 2.5 MeV. The near-threshold concept is useful as a portable neutron source for hospital settings, with applications ranging from glioblastomas to melanomas and synovectomy. (Copies available exclusively from MIT Libraries, Rm. 14- 0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.)

  14. Neutron beam optimization based on a 7Li(p,n)7Be reaction for treatment of deep-seated brain tumors by BNCT

    NASA Astrophysics Data System (ADS)

    Zahra Ahmadi, Ganjeh; S. Farhad, Masoudi

    2014-10-01

    Neutron beam optimization for accelerator-based Boron Neutron Capture Therapy (BNCT) is investigated using a 7Li(p,n)7Be reaction. Design and optimization have been carried out for the target, cooling system, moderator, filter, reflector, and collimator to achieve a high flux of epithermal neutron and satisfy the IAEA criteria. Also, the performance of the designed beam in tissue is assessed by using a simulated Snyder head phantom. The results show that the optimization of the collimator and reflector is critical to finding the best neutron beam based on the 7Li(p,n)7Be reaction. Our designed beam has 2.49×109n/cm2s epithermal neutron flux and is suitable for BNCT of deep-seated brain tumors.

  15. A New Automated Sample Transfer System for Instrumental Neutron Activation Analysis

    PubMed Central

    Ismail, S. S.

    2010-01-01

    A fully automated and fast pneumatic transport system for short-time activation analysis was recently developed. It is suitable for small nuclear research reactors or laboratories that are using neutron generators and other neutron sources. It is equipped with a programmable logic controller, software package, and 12 devices to facilitate optimal analytical procedures. 550 ms were only necessary to transfer the irradiated capsule (diameter: 15 mm, length: 50 mm, weight: 4 gram) to the counting chamber at a distance of 20 meters using pressurized air (4 bars) as a transport gas. PMID:20369063

  16. Water detection at the moon, Mars and comets with a combined neutron gamma ray instrument

    NASA Technical Reports Server (NTRS)

    Metzger, Albert E.; Haines, Eldon L.

    1991-01-01

    Measuring the fluxes of thermal and epithermal neutrons at a planetary object in conjunction with gamma-ray spectroscopic observations will provide information about the chemical composition of the surface which is less model dependent than the gamma ray measurements by themselves. Researchers devised a passive neutron detector for this purpose. An experimental model was designed and built. Three variables provided the basis for a set of experiments: thickness of the Sm and B layers, the presence or absence of the ACS, and the position of the source relative to the PND's cylindrical axis. Experimental results are given.

  17. Neutron range spectrometer

    DOEpatents

    Manglos, S.H.

    1988-03-10

    A neutron range spectrometer and method for determining the neutron energy spectrum of a neutron emitting source are disclosed. Neutrons from the source are colliminated along a collimation axis and a position sensitive neutron counter is disposed in the path of the collimated neutron beam. The counter determines positions along the collimation axis of interactions between the neutrons in the neutron beam and a neutron-absorbing material in the counter. From the interaction positions, a computer analyzes the data and determines the neutron energy spectrum of the neutron beam. The counter is preferably shielded and a suitable neutron-absorbing material is He-3. 1 fig.

  18. Design of a rotating facility for extracorporal treatment of an explanted liver with disseminated metastases by boron neutron capture therapy with an epithermal neutron beam.

    PubMed

    Nievaart, V A; Moss, R L; Kloosterman, J L; van der Hagen, T H J J; van Dam, H; Wittig, A; Malago, M; Sauerwein, W

    2006-07-01

    In 2001, at the TRIGA reactor of the University of Pavia (Italy), a patient suffering from diffuse liver metastases from an adenocarcinoma of the sigmoid was successfully treated by boron neutron capture therapy (BNCT). The procedure involved boron infusion prior to hepatectomy, irradiation of the explanted liver at the thermal column of the reactor, and subsequent reimplantation. A complete response was observed. This encouraging outcome stimulated the Essen/Petten BNCT group to investigate whether such an extracorporal irradiation could be performed at the BNCT irradiation facility at the HFR Petten (The Netherlands), which has very different irradiation characteristics than the Pavia facility. A computational study has been carried out. A rotating PMMA container with a liver, surrounded by PMMA and graphite, is simulated using the Monte Carlo code MCNP. Due to the rotation and neutron moderation of the PMMA container, the initial epithermal neutron beam provides a nearly homogeneous thermal neutron field in the liver. The main conditions for treatment as reported from the Pavia experiment, i.e. a thermal neutron fluence of 4 x 10(12) +/- 20% cm(-2), can be closely met at the HFR in an acceptable time, which, depending on the defined conditions, is between 140 and 180 min. PMID:16808623

  19. New Spherical Gamma-Ray and Neutron Emitting Sources for Testing of Radiation Detection Instruments

    PubMed Central

    Lucas, L.; Pibida, L.

    2009-01-01

    The National Institute of Standards and Technology (NIST) has developed new gamma-ray and neutron emitting sources for testing radiation detection systems. These radioactive sources were developed for testing of detection systems in maritime applications. This required special source characteristics.

  20. A novel approach to neutron scattering instrumentation for probing multiscale dynamics in soft and biological matter

    DOE PAGESBeta

    Mamontov, Eugene

    2016-06-29

    We present a concept and ray-tracing simulation results of a mechanical device that will enable inelastic neutron scattering measurements where the data at energy transfers from a few eV to several hundred meV can be collected in a single, gapless spectrum. Besides covering 5 orders of magnitude on the energy (time) scale, the device provides data over 2 orders of magnitude on the scattering momentum (length) scale in a single measurement. Such capabilities are geared primarily toward soft and biological matter, where the broad dynamical features of relaxation origin largely overlap with vibration features, thus necessitating gapless spectral coverage overmore » several orders of magnitude in time and space. Furthermore, neutron scattering experiments with such a device are performed with a fixed neutron final energy, which enables measurements, with neutron energy loss in the sample, at arbitrarily low temperatures over the same broad spectral range. Lastly, this capability is also invaluable in biological and soft matter research, as the variable temperature dependence of different relaxation components allows their separation in the scattering spectra as a function of temperature.« less

  1. A novel approach to neutron scattering instrumentation for probing multiscale dynamics in soft and biological matter

    NASA Astrophysics Data System (ADS)

    Mamontov, Eugene

    2016-09-01

    We present a concept and ray-tracing simulation of a mechanical device that will enable inelastic neutron scattering measurements where the data at energy transfers from a few μeV to several hundred meV can be collected in a single, gapless spectrum. Besides covering 5 orders of magnitude on the energy (time) scale, the device provides data over 2 orders of magnitude on the scattering momentum (length) scale in a single measurement. Such capabilities are geared primarily toward soft and biological matter, where the broad dynamical features of relaxation origin largely overlap with vibration features, thus necessitating gapless spectral coverage over several orders of magnitude in time and space. Furthermore, neutron scattering experiments with such a device are performed with a fixed neutron final energy, which enables measurements, with neutron energy loss in the sample, at arbitrarily low temperatures over the same broad spectral range. This capability is also invaluable in biological and soft matter research, as the variable temperature dependence of different relaxation components allows their separation in the scattering spectra as a function of temperature.

  2. A novel approach to neutron scattering instrumentation for probing multiscale dynamics in soft and biological matter.

    PubMed

    Mamontov, Eugene

    2016-09-01

    We present a concept and ray-tracing simulation of a mechanical device that will enable inelastic neutron scattering measurements where the data at energy transfers from a few μeV to several hundred meV can be collected in a single, gapless spectrum. Besides covering 5 orders of magnitude on the energy (time) scale, the device provides data over 2 orders of magnitude on the scattering momentum (length) scale in a single measurement. Such capabilities are geared primarily toward soft and biological matter, where the broad dynamical features of relaxation origin largely overlap with vibration features, thus necessitating gapless spectral coverage over several orders of magnitude in time and space. Furthermore, neutron scattering experiments with such a device are performed with a fixed neutron final energy, which enables measurements, with neutron energy loss in the sample, at arbitrarily low temperatures over the same broad spectral range. This capability is also invaluable in biological and soft matter research, as the variable temperature dependence of different relaxation components allows their separation in the scattering spectra as a function of temperature. PMID:27355223

  3. Extracting source parameters from beam monitors on a chopper spectrometer

    SciTech Connect

    Abernathy, Douglas L; Niedziela, Jennifer L; Stone, Matthew B

    2015-01-01

    The intensity distributions of beam monitors in direct-geometry time-of-flight neutron spectrometers provide important information about the instrument resolution. For short-pulse spallation neutron sources in particular, the asymmetry of the source pulse may be extracted and compared to Monte Carlo source simulations. An explicit formula using a Gaussian-convolved Ikeda-Carpenter distribution is given and compared to data from the ARCS instrument at the Spallation Neutron Source.

  4. The NIST NBSR and Cold Neutron Research Facility

    SciTech Connect

    Rush, J.J.

    1994-12-31

    The 20 MW Neutron Beam Split-Core Reactor (NBSR) has nine radial thermal beam tubes, and a large, highly accessible (35cm) cold source serving an extensive network of eight guide tubes. In operation or under construction are twenty-five neutron beam instruments (20 for neutron scattering) and about a dozen other facilities for neutron trace analysis, dosimetry and irradiation. The 6 x 15cm cold neutron guides are coated with {sup 58}Ni, and the last three being installed this fall are coated top and bottom with supermirrors for further increases in intensity. The new semi-spherical liquid hydrogen source will be described, along with the eight scattering instruments (reflectometry, SANS and high-resolution spectroscopy) which have, or will have, an extensive use in biological research. These instruments will likely provide the best overall capability in the U.S. for the next decade for a number of applications in biomolecular structure and dynamics.

  5. Determination and validation of prompt k0-factors with a monochromatic neutron beam at the Dhruva reactor

    NASA Astrophysics Data System (ADS)

    Nair, A. G. C.; Acharya, R.; Sudarshan, K.; Tripathi, R.; Reddy, A. V. R.; Goswami, A.

    2006-08-01

    Prompt Gamma-ray Neutron Activation Analysis (PGNAA) was carried out using a reflected neutron beam of 0.018 eV energy at the Dhruva research reactor, Bhabha Atomic Research Centre, Mumbai, India. The neutron beam characteristics, such as dimension, homogeneity and thermal equivalent flux were evaluated. The prompt k0-factors of about 15 elements were determined versus the 1951.1 keV gamma-ray of the 35Cl(n,γ) reaction. These prompt k0-factors are compared with the recommended k0-values for thermal neutrons and were found to be in good agreement, except for Gd, Cd and Hg. The internal mono-standard method was applied to analyze a meteorite and a stainless steel alloy (SS 316 M) using the recommended k0-values from the literature. As to the alloy, the measured concentrations were in good agreement with the nominal composition. For the meteorite sample, the concentrations of the major elements were in good agreement with the values determined using conventional neutron activation analysis.

  6. Dynamic imaging with a triggered and intensified CCD camera system in a high-intensity neutron beam

    NASA Astrophysics Data System (ADS)

    Vontobel, P.; Frei, G.; Brunner, J.; Gildemeister, A. E.; Engelhardt, M.

    2005-04-01

    When time-dependent processes within metallic structures should be inspected and visualized, neutrons are well suited due to their high penetration through Al, Ag, Ti or even steel. Then it becomes possible to inspect the propagation, distribution and evaporation of organic liquids as lubricants, fuel or water. The principle set-up of a suited real-time system was implemented and tested at the radiography facility NEUTRA of PSI. The highest beam intensity there is 2×107 cm s, which enables to observe sequences in a reasonable time and quality. The heart of the detection system is the MCP intensified CCD camera PI-Max with a Peltier cooled chip (1300×1340 pixels). The intensifier was used for both gating and image enhancement, where as the information was accumulated over many single frames on the chip before readout. Although, a 16-bit dynamic range is advertised by the camera manufacturers, it must be less due to the inherent noise level from the intensifier. The obtained result should be seen as the starting point to go ahead to fit the different requirements of car producers in respect to fuel injection, lubricant distribution, mechanical stability and operation control. Similar inspections will be possible for all devices with repetitive operation principle. Here, we report about two measurements dealing with the lubricant distribution in a running motorcycle motor turning at 1200 rpm. We were monitoring the periodic stationary movements of piston, valves and camshaft with a micro-channel plate intensified CCD camera system (PI-Max 1300RB, Princeton Instruments) triggered at exactly chosen time points.

  7. Active Interrogation of Sensitive Nuclear Material Using Laser Driven Neutron Beams

    SciTech Connect

    Favalli, Andrea; Roth, Markus

    2015-05-01

    An investigation of the viability of a laser-driven neutron source for active interrogation is reported. The need is for a fast, movable, operationally safe neutron source which is energy tunable and has high-intensity, directional neutron production. Reasons for the choice of neutrons and lasers are set forth. Results from the interrogation of an enriched U sample are shown.

  8. MCNP5 and GEANT4 comparisons for preliminary Fast Neutron Pencil Beam design at the University of Utah TRIGA system

    NASA Astrophysics Data System (ADS)

    Adjei, Christian Amevi

    The main objective of this thesis is twofold. The starting objective was to develop a model for meaningful benchmarking of different versions of GEANT4 against an experimental set-up and MCNP5 pertaining to photon transport and interactions. The following objective was to develop a preliminary design of a Fast Neutron Pencil Beam (FNPB) Facility to be applicable for the University of Utah research reactor (UUTR) using MCNP5 and GEANT4. The three various GEANT4 code versions, GEANT4.9.4, GEANT4.9.3, and GEANT4.9.2, were compared to MCNP5 and the experimental measurements of gamma attenuation in air. The average gamma dose rate was measured in the laboratory experiment at various distances from a shielded cesium source using a Ludlum model 19 portable NaI detector. As it was expected, the gamma dose rate decreased with distance. All three GEANT4 code versions agreed well with both the experimental data and the MCNP5 simulation. Additionally, a simple GEANT4 and MCNP5 model was developed to compare the code agreements for neutron interactions in various materials. Preliminary FNPB design was developed using MCNP5; a semi-accurate model was developed using GEANT4 (because GEANT4 does not support the reactor physics modeling, the reactor was represented as a surface neutron source, thus a semi-accurate model). Based on the MCNP5 model, the fast neutron flux in a sample holder of the FNPB is obtained to be 6.52×107 n/cm2s, which is one order of magnitude lower than gigantic fast neutron pencil beam facilities existing elsewhere. The MCNP5 model-based neutron spectrum indicates that the maximum expected fast neutron flux is at a neutron energy of ~1 MeV. In addition, the MCNP5 model provided information on gamma flux to be expected in this preliminary FNPB design; specifically, in the sample holder, the gamma flux is to be expected to be around 108 γ/cm 2s, delivering a gamma dose of 4.54×103 rem/hr. This value is one to two orders of magnitudes below the gamma

  9. Studies of the behavior of a reactor neutron beam at the sample position of a diffractometer using silicon monochromators

    NASA Astrophysics Data System (ADS)

    Ahmed, F. U.; Ahsan, M. H.; Khan, Aysha A.; Kamal, I.; Awal, M. A.; Ahmad, A. A. Z.

    1992-02-01

    A computer program TISTA has been developed for calculation of different aspects of designing a double axis neutron spectrometer at the TRIGA Mark II research reactor of the Atomic Energy Research Establishment, Dhaka, Bangladesh. The mathematical algorithms used in this program are based on the formalisms used by Fischer, Sabine and Bacon. Angle and energy resolutions and flux density as functions of neutron wave length, beam collimation, crystal asymmetry and deviation from zero-Bragg-angle position for different silicon crystal planes (111, 220, 311) have been calculated.

  10. Production of neutron-rich Ca, Sn, and Xe isotopes in transfer-type reactions with radioactive beams

    SciTech Connect

    Adamian, G. G.; Antonenko, N. V.; Lacroix, D.

    2010-12-15

    The production cross sections of neutron-rich isotopes {sup 52,54,56,58,60}Ca, {sup 136,138,140,142}Sn, and {sup 146,148,150,152}Xe are predicted for future experiments in the diffusive multinucleon transfer reactions {sup 86,90,92,94}Kr, {sup 124,130,132,134}Sn, {sup 136,140,142,146}Xe, and {sup 138,144,146}Ba+{sup 48}Ca with stable and radioactive beams at incident energies close to the Coulomb barrier. Because of the small cross sections, the production of neutron-rich isotopes requires the optimal choice of projectile-target combinations and bombarding energies.

  11. Cone-beam computed tomography analysis of curved root canals after mechanical preparation with three nickel-titanium rotary instruments

    PubMed Central

    Elsherief, Samia M.; Zayet, Mohamed K.; Hamouda, Ibrahim M.

    2013-01-01

    Cone beam computed tomography is a 3-dimensional high resolution imaging method. The purpose of this study was to compare the effects of 3 different NiTi rotary instruments used to prepare curved root canals on the final shape of the curved canals and total amount of root canal transportation by using cone-beam computed tomography. A total of 81 mesial root canals from 42 extracted human mandibular molars, with a curvature ranging from 15 to 45 degrees, were selected. Canals were randomly divided into 3 groups of 27 each. After preparation with Protaper, Revo-S and Hero Shaper, the amount of transportation and centering ability that occurred were assessed by using cone beam computed tomography. Utilizing pre- and post-instrumentation radiographs, straightening of the canal curvatures was determined with a computer image analysis program. Canals were metrically assessed for changes (surface area, changes in curvature and transportation) during canal preparation by using software SimPlant; instrument failures were also recorded. Mean total widths and outer and inner width measurements were determined on each central canal path and differences were statistically analyzed. The results showed that all instruments maintained the original canal curvature well with no significant differences between the different files (P = 0.226). During preparation there was failure of only one file (the protaper group). In conclusion, under the conditions of this study, all instruments maintained the original canal curvature well and were safe to use. Areas of uninstrumented root canal wall were left in all regions using the various systems. PMID:23885273

  12. A Monte Carlo model system for core analysis and epithermal neutron beam design at the Washington State University Radiation Center

    SciTech Connect

    Burns, T.D. Jr.

    1996-05-01

    The Monte Carlo Model System (MCMS) for the Washington State University (WSU) Radiation Center provides a means through which core criticality and power distributions can be calculated, as well as providing a method for neutron and photon transport necessary for BNCT epithermal neutron beam design. The computational code used in this Model System is MCNP4A. The geometric capability of this Monte Carlo code allows the WSU system to be modeled very accurately. A working knowledge of the MCNP4A neutron transport code increases the flexibility of the Model System and is recommended, however, the eigenvalue/power density problems can be run with little direct knowledge of MCNP4A. Neutron and photon particle transport require more experience with the MCNP4A code. The Model System consists of two coupled subsystems; the Core Analysis and Source Plane Generator Model (CASP), and the BeamPort Shell Particle Transport Model (BSPT). The CASP Model incorporates the S({alpha}, {beta}) thermal treatment, and is run as a criticality problem yielding, the system eigenvalue (k{sub eff}), the core power distribution, and an implicit surface source for subsequent particle transport in the BSPT Model. The BSPT Model uses the source plane generated by a CASP run to transport particles through the thermal column beamport. The user can create filter arrangements in the beamport and then calculate characteristics necessary for assessing the BNCT potential of the given filter want. Examples of the characteristics to be calculated are: neutron fluxes, neutron currents, fast neutron KERMAs and gamma KERMAs. The MCMS is a useful tool for the WSU system. Those unfamiliar with the MCNP4A code can use the MCMS transparently for core analysis, while more experienced users will find the particle transport capabilities very powerful for BNCT filter design.

  13. Measuring the noble metal and iodine composition of extracted noble metal phase from spent nuclear fuel using instrumental neutron activation analysis.

    PubMed

    Palomares, R I; Dayman, K J; Landsberger, S; Biegalski, S R; Soderquist, C Z; Casella, A J; Brady Raap, M C; Schwantes, J M

    2015-04-01

    Masses of noble metal and iodine nuclides in the metallic noble metal phase extracted from spent fuel are measured using instrumental neutron activation analysis. Nuclide presence is predicted using fission yield analysis, and radionuclides are identified and the masses quantified using neutron activation analysis. The nuclide compositions of noble metal phase derived from two dissolution methods, UO2 fuel dissolved in nitric acid and UO2 fuel dissolved in ammonium-carbonate and hydrogen-peroxide solution, are compared. PMID:25644079

  14. Determination of gold in two Egyptian gold ores using instrumental neutron activation analysis

    NASA Astrophysics Data System (ADS)

    El-Taher, A.; Kratz, K.-L.; Nossair, A.; Azzam, A. H.

    2003-12-01

    The applicability of thermal neutron activation analysis for the determination of gold and other elements in two Egyptian gold ores has been studied. Ten samples collected from El Sukari and Atud in the Eastern Desert-Egypt have been analyzed. The samples were properly prepared together with their standards and simultaneously irradiated in a neutron flux of the order 7×10 11 n/cm 2 s using the TRIGA research reactor at Mainz. Short-term (1 and 5 m) irradiation in the pneumatic system was also used for detection of the elements with shorter half-lives. After activation, the samples were subjected to γ-ray spectrometry using a high-purity germanium detection system and computerized multichannel analyzer. The results show that the concentration of gold is 42.4% in El-Sukari, and 25.7% in Atud. In addition, we determine the concentrations of 31 elements beside gold.

  15. Analyses of 24 Unmelted Antarctic Meteorites by Instrumental Neutron Activation Analysis

    NASA Astrophysics Data System (ADS)

    Lindstrom, D. J.; Klock, W.

    1992-07-01

    Ultra-high sensitivity instrumental Neutron Activation Analysis (INAA) techniques developed for the analysis of individual stratospheric dust particles (Lindstrom, 1990) have been applied to 24 "unmelted" Antarctic micrometeorites (AMM) in the size range 50-100 micrometers. These weigh about 0.05-1.7 micrograms, or about 10-100x more than the Interplanetary Dust Particles (IDPs) previously analyzed. Samples were collected at Cap Prudhomme (Maurette et al., 1991). Four of the samples broke during handling and were analyzed separately. In all cases, the splits were very similar in composition, showing that sampling is not a serious problem. Two samples (B-5-24 and 91-19-11) had clearly terrestrial signatures, including low Ir contents (<0.07 and <0.014 ppm, respectively). One sample (B3-3-31) had the unmistakable compositional characteristics of a CAI: high CaO, REE, Hf, Th, and Sc, and low Fe, Cr, Co, and Ni. This is a fine-grained particle with a very flat (Group I) REE pattern at about 23x chondrites. A two sigma upper limit for Eu corresponds to 20x CI, so there is no positive Eu anomaly, suggesting that it is a Type B inclusion (e.g., Grossman, 1980). The remainder of the samples have approximately chondritic compositions, but with occasional outliers and some systematic differences that may provide valuable information on the processes that these particles have undergone, including atmospheric entry heating and weathering in the Antarctic ice. For example, seven of the 22 micrometeorite particles contain apparent U abundances of more than one ppm (>100 x CI). These seven include smaller particles and three of the four (porous?) particles that broke during handling, suggesting that the U contents are surface correlated. Most likely these small amounts of U (about 10^9 atoms) are leached from small amounts of terrestrial volcanic ash in the melted ice (in the relatively stable form of uranyl ion, UO(sub)2^2+) and adsorbed on the surfaces of the particles. These U

  16. Improving the neutron-to-photon discrimination capability of detectors used for neutron dosimetry in high energy photon beam radiotherapy.

    PubMed

    Irazola, L; Terrón, J A; Bedogni, R; Pola, A; Lorenzoli, M; Sánchez-Nieto, B; Gómez, F; Sánchez-Doblado, F

    2016-09-01

    The increasing interest of the medical community to radioinduced second malignancies due to photoneutrons in patients undergoing high-energy radiotherapy, has stimulated in recent years the study of peripheral doses, including the development of some dedicated active detectors. Although these devices are designed to respond to neutrons only, their parasitic photon response is usually not identically zero and anisotropic. The impact of these facts on measurement accuracy can be important, especially in points close to the photon field-edge. A simple method to estimate the photon contribution to detector readings is to cover it with a thermal neutron absorber with reduced secondary photon emission, such as a borated rubber. This technique was applied to the TNRD (Thermal Neutron Rate Detector), recently validated for thermal neutron measurements in high-energy photon radiotherapy. The positive results, together with the accessibility of the method, encourage its application to other detectors and different clinical scenarios. PMID:27337649

  17. Stripping of H- beams by residual gas in the linac at the Los Alamos neutron science center

    SciTech Connect

    Mccrady, Rodney C; Ito, Takeyasu; Cooper, Martin D; Alexander, Saunders

    2010-09-07

    The linear accelerator at the Los Alamos Neutron Science Center (LANSCE) accelerates both protons and H{sup -} ions using Cockroft-Walton-type injectors, a drift-tube linac and a coupled-cavity linac. The vacuum is maintained in the range of 10{sup -6} to 10{sup -7} Torr; the residual gas in the vacuum system results in some stripping of the electrons from the H{sup -} ions resulting in beam spill and the potential for unwanted proton beams delivered to experiments. We have measured the amount of fully-stripped H{sup -} beam (protons) that end up at approximately 800 MeV in the beam switchyard at LANSCE using image plates as very sensitive detectors. We present here the motivation for the measurement, the measurement technique and results.

  18. Characterization of Infrared Diode Laser Beams and Atmospheric CO Imaging Instrument

    NASA Technical Reports Server (NTRS)

    Miles, Jonathan J.

    1999-01-01

    quantities of CO to provide a means for system characterization. Two related research efforts were undertaken during the term of the study reported here - continued development of an atmospheric CO imaging instrument and characterization of diode-laser beams. Both efforts were successful and are described within the body of this report. A second objective was to provide a means for undergraduate ISAT majors to become involved with the research described, to be afforded the opportunity to learn the technologies associated with the work performed. Two ISAT students gained a comprehensive understanding and interest in missions supported by NASA through direct involvement in this project. Many more students were exposed to these technologies through demonstrations, laboratory tours, and explanations provided in lectures.

  19. Testing The High-Energy Prompt Neutron Signature At Low Beam Energies

    SciTech Connect

    Thompson, Scott J.; Kinlaw, Mathew T.; Hunt, Alan W.

    2011-06-01

    Prompt fission neutrons continue to be examined as a signature for detecting the presence of fissionable material. This technique exploits the neutron energy limitations inherent with photonuclear emissions from non-fissionable material, allowing prompt fission neutrons to be identified and engaged for detecting nuclear material. Prompt neutron signal measurements were acquired with bremsstrahlung endpoint energies of 6 MeV for 18 targets comprised of both fissionable and non-fissionable material; delayed neutron measurements were also collected as a reference. The {sup 238}U target was also shielded with increasing thicknesses of lead or borated polyethylene to compare the resulting detection rates of the prompt and delayed fission neutron signals.

  20. Micromachining of commodity plastics by proton beam writing and fabrication of spatial resolution test-chart for neutron radiography

    NASA Astrophysics Data System (ADS)

    Sakai, T.; Yasuda, R.; Iikura, H.; Nojima, T.; Matsubayashi, M.; Kada, W.; Kohka, M.; Satoh, T.; Ohkubo, T.; Ishii, Y.; Takano, K.

    2013-07-01

    Proton beam writing is a direct-write technique and a promising method for the micromachining of commodity plastics such as acrylic resins. Herein, we describe the fabrication of microscopic devices made from a relatively thick (∼75 μm) acrylic sheet using proton beam writing. In addition, a software package that converts image pixels into coordinates data was developed, and the successful fabrication of a very fine jigsaw puzzle was achieved. The size of the jigsaw puzzle pieces was 50 × 50 μm. For practical use, a prototype of a line and space test-chart was also successfully fabricated for the determination of spatial resolution in neutron radiography.

  1. Optimization of a moderator-neutron guide system for diffractometers of beam line 7A of the IBR-2M reactor

    NASA Astrophysics Data System (ADS)

    Manoshin, S. A.; Belushkin, A. V.; Kulikov, S. A.; Shabalin, E. P.; Walther, K.; Scheffzuek, C.; Zhuravlev, V. V.

    2009-09-01

    Neutron guides are widely used to transport the neutrons from the moderator to the sample. Due to the constructive features of the ring corridor of the fast pulsed reactor IBR-2, the minimal distance between the moderator and the guide entrance is around 6 m. The main goal of the paper is to optimize the neutron optical system between the moderator and the entrance of the new neutron guides. Using Monte Carlo simulations we calculate the possible best gain of the neutron flux density at the guide exit. After the described optimization process, the optimal system is obtained. The recommendations for construction of the new beam line are provided too. Similar technique and the proposed system could be easily adapted for another similar beam line at the neutron sources.

  2. Instrument for spatially resolved simultaneous measurements of forces and currents in particle beams

    NASA Astrophysics Data System (ADS)

    Spethmann, A.; Trottenberg, T.; Kersten, H.

    2015-01-01

    The article presents a device for spatially resolved and simultaneous measurements of forces and currents in particle beams, especially in beams composed of ions and neutral atoms. The forces are exerted by the impinging beam particles on a plane circular conductive target plate of 20 mm diameter mounted on a pendulum with electromagnetic force compensation. The force measurement in the micronewton range is achieved by electromagnetic compensation by means of static Helmholtz coils and permanent magnets attached to the pendulum. Exemplary measurements are performed in the 1.2 keV beam of a broad beam ion source. The simultaneous measurements of forces and currents onto the same target are compared with each other and with Faraday cup measurements.

  3. Instrument for spatially resolved simultaneous measurements of forces and currents in particle beams.

    PubMed

    Spethmann, A; Trottenberg, T; Kersten, H

    2015-01-01

    The article presents a device for spatially resolved and simultaneous measurements of forces and currents in particle beams, especially in beams composed of ions and neutral atoms. The forces are exerted by the impinging beam particles on a plane circular conductive target plate of 20 mm diameter mounted on a pendulum with electromagnetic force compensation. The force measurement in the micronewton range is achieved by electromagnetic compensation by means of static Helmholtz coils and permanent magnets attached to the pendulum. Exemplary measurements are performed in the 1.2 keV beam of a broad beam ion source. The simultaneous measurements of forces and currents onto the same target are compared with each other and with Faraday cup measurements. PMID:25638122

  4. Instrument for spatially resolved simultaneous measurements of forces and currents in particle beams

    SciTech Connect

    Spethmann, A. Trottenberg, T. Kersten, H.

    2015-01-15

    The article presents a device for spatially resolved and simultaneous measurements of forces and currents in particle beams, especially in beams composed of ions and neutral atoms. The forces are exerted by the impinging beam particles on a plane circular conductive target plate of 20 mm diameter mounted on a pendulum with electromagnetic force compensation. The force measurement in the micronewton range is achieved by electromagnetic compensation by means of static Helmholtz coils and permanent magnets attached to the pendulum. Exemplary measurements are performed in the 1.2 keV beam of a broad beam ion source. The simultaneous measurements of forces and currents onto the same target are compared with each other and with Faraday cup measurements.

  5. Characterization of an explosively bonded aluminum proton beam window for the Spallation Neutron Source

    SciTech Connect

    McClintock, David A; Janney, Jim G; Parish, Chad M

    2014-01-01

    An effort is underway at the Spallation Neutron Source (SNS) to change the design of the 1st Generation high-nickel alloy proton beam window (PBW) to one that utilizes aluminum for the window material. One of the key challenges to implementation of an aluminum PBW at the SNS was selection of an appropriate joining method to bond an aluminum window to the stainless steel bulk shielding of the PBW assembly. An explosively formed bond was selected as the most promising joining method for the aluminum PBW design. A testing campaign was conducted to evaluate the strength and efficacy of explosively formed bonds that were produced using two different interlayer materials: niobium and titanium. The characterization methods reported here include tensile testing, thermal-shock leak testing, optical microscopy, and advanced scanning electron microscopy. All tensile specimens examined failed in the aluminum interlayer and measured tensile strengths were all slightly greater than the native properties of the aluminum interlayer, while elongation values were all slightly lower. A leak developed in the test vessel with a niobium interlayer joint after repeated thermal-shock cycles, and was attributed to an extensive crack network that formed in a layer of niobium-rich intermetallics located on the bond interfaces of the niobium interlayer; the test vessel with a titanium interlayer did not develop a leak under the conditions tested. Due to the experience gained from these characterizations, the explosively formed bond with a titanium interlayer was selected for the aluminum PBW design at the SNS.

  6. Experimental parameters optimization of instrumental neutron activation analysis in order to determine selected elements in some industrial soils in Turkey

    NASA Astrophysics Data System (ADS)

    Haciyakupoglu, Sevilay; Nur Esen, Ayse; Erenturk, Sema

    2014-08-01

    The purpose of this study is optimization of the experimental parameters for analysis of soil matrix by instrumental neutron activation analysis and quantitative determination of barium, cerium, lanthanum, rubidium, scandium and thorium in soil samples collected from industrialized urban areas near Istanbul. Samples were irradiated in TRIGA MARK II Research Reactor of Istanbul Technical University. Two types of reference materials were used to check the accuracy of the applied method. The achieved results were found to be in compliance with certified values of the reference materials. The calculated En numbers for mentioned elements were found to be less than 1. The presented data of element concentrations in soil samples will help to trace the pollution as an impact of urbanization and industrialization, as well as providing database for future studies.

  7. The level of selenium and some other trace elements in different Libyan arable soils using instrumental neutron activation analysis.

    PubMed

    El-Ghawi, U M; Al-Fakhri, S M; Al-Sadeq, A A; Bejey, M M; Doubali, K K

    2007-10-01

    Elemental analysis of soils from two different arable regions in Libya was carried out to measure the level of many trace elements. Instrumental neutron activation analysis was used for the determination of 10 elements, viz., (Ba, Ce, Co, Cr, Cs, Fe, Sc, Se, Th, and Zn), using their long-lived radionuclides. The accuracy of the measurements has been evaluated by analyzing two IAEA soil reference materials: IAEA Soil-7 and IAEA leak sediment SL-1; precision has been estimated by triplicate analysis of the sample and that of the reference material. Irradiations were carried out at the Tajura Research Center reactor, at 5-MW power level. It is clear that in the Libyan soil selenium concentration is somewhat lower than in other countries. The results show that trace metal concentrations in Libyan clay surface soil are higher than the sandy soil. PMID:17914223

  8. Using instrumental neutron activation analysis for geochemical analyses of terrestrial impact structures: current analytical procedures at the university of vienna geochemistry activation analysis laboratory.

    PubMed

    Mader, Dieter; Koeberl, Christian

    2009-12-01

    The Instrumental Neutron Activation Analysis Gamma Spectroscopy Laboratory at the Department of Lithospheric Research, University of Vienna, has been upgraded in the year 2006. This paper describes the sample preparation, new instrumentation and data evaluation for hundreds of rock samples of two terrestrial impact structures. The measurement and data evaluation are done by using Genie 2000 and a custom-made batch software for the used analysis sequences. PMID:19481467

  9. Rare earth elements content in geological samples from eastern desert, Egypt, determined by instrumental neutron activation analysis.

    PubMed

    El-Taher, A

    2010-09-01

    Twenty representative geological samples (tonalite, granodiorite, adamellite, syenogranite, rapakivi syenogranite, alkali feldspar granite and monzogranite) were collected from G. Kattar area in Eastern Desert, Egypt, for analysis by instrumental neutron activation as a sensitive nondestructive analytical tool for the determination of 14 rare earth elements (REEs) and to find out the following: (1) what information could be obtained about the REEs and distribution patterns of REEs in geological samples under investigation, (2) to estimate the accuracy, reproducibility and detection limit of the INAA method in case of the given samples. The samples were properly prepared together with standard reference material and simultaneously irradiated in a neutron flux of 7x10(11)n/cm(2)s in the TRIGA Mainz research reactor facilities. The gamma spectra were collected by an HPGe detector and the analysis was done by means of a computerized multichannel analyzer. The choice of the nuclear reaction, irradiation and decay times, and of the proper gamma radiation in counting are presented and discussed. The results are found to be in good agreement with certified values. PMID:20236830

  10. Pressure/temperature fluid cell apparatus for the neutron powder diffractometer instrument: Probing atomic structure in situ

    DOE PAGESBeta

    Wang, Hsiu -Wen; Fanelli, Victor R.; Reiche, Helmut M.; Larson, Eric; Taylor, Mark A.; Xu, Hongwu; Zhu, Jinlong; Siewenie, Joan; Page, Katharine

    2014-12-01

    This contribution describes a new local structure compatible gas/liquid cell apparatus for probing disordered materials at high pressures and variable temperatures in the Neutron Powder Diffraction instrument at the Lujan Neutron Scattering Center, Los Alamos National Laboratory. The new sample environment offers choices for sample canister thickness and canister material type. Finite element modeling is utilized to establish maximum allowable working pressures of 414 MPa at 15 K and 121 MPa at 600 K. High quality atomic pair distribution function data extraction and modeling have been demonstrated for a calibration standard (Si powder) and for supercritical and subcritical CO2measurements. Asmore » a result, the new sample environment was designed to specifically target experimental studies of the local atomic structures involved in geologic CO2 sequestration, but will be equally applicable to a wide variety of energy applications, including sorption of fluids on nano/meso-porous solids, clathrate hydrate formation, catalysis, carbon capture, and H2 and natural gas uptake/storage.« less

  11. Pressure/temperature fluid cell apparatus for the neutron powder diffractometer instrument: Probing atomic structure in situ

    SciTech Connect

    Wang, Hsiu-Wen; Fanelli, Victor R.; Reiche, Helmut M.; Larson, Eric; Taylor, Mark A.; Siewenie, Joan; Xu, Hongwu; Zhu, Jinlong; Page, Katharine

    2014-12-15

    This contribution describes a new local structure compatible gas/liquid cell apparatus for probing disordered materials at high pressures and variable temperatures in the Neutron Powder Diffraction instrument at the Lujan Neutron Scattering Center, Los Alamos National Laboratory. The new sample environment offers choices for sample canister thickness and canister material type. Finite element modeling is utilized to establish maximum allowable working pressures of 414 MPa at 15 K and 121 MPa at 600 K. High quality atomic pair distribution function data extraction and modeling have been demonstrated for a calibration standard (Si powder) and for supercritical and subcritical CO{sub 2} measurements. The new sample environment was designed to specifically target experimental studies of the local atomic structures involved in geologic CO{sub 2} sequestration, but will be equally applicable to a wide variety of energy applications, including sorption of fluids on nano/meso-porous solids, clathrate hydrate formation, catalysis, carbon capture, and H{sub 2} and natural gas uptake/storage.

  12. Elemental analysis of granite by instrumental neutron activation analysis (INAA) and X-ray fluorescence analysis (XRF).

    PubMed

    El-Taher, A

    2012-01-01

    The instrumental neutron activation analysis technique (INAA) was used for qualitative and quantitative analysis of granite samples collected from four locations in the Aswan area in South Egypt. The samples were prepared together with their standards and simultaneously irradiated in a neutron flux of 7×10(11)n/cm(2)s in the TRIGA Mainz research reactor. Gamma-ray spectra from an hyper-pure germanium detector were analyzed. The present study provides the basic data of elemental concentrations of granite rocks. The following elements have been determined Na, Mg, K, Fe, Mn, Sc, Cr, Ti, Co, Zn, Ga, Rb, Zr, Nb, Sn, Ba, Cs, La, Ce, Nd, Sm, Eu, Yb, Lu, Hf, Ta, Th and U. The X-ray fluorescence (XRF) was used for comparison and to detect elements, which can be detected only by XRF such as F, S, Cl, Co, Cu, Mo, Ni, Pb, Se and V. The data presented here are our contribution to understanding the elemental composition of the granite rocks. Because there are no existing databases for the elemental analysis of granite, our results are a start to establishing a database for the Egyptian granite. It is hoped that the data presented here will be useful to those dealing with geochemistry, granite chemistry and related fields. PMID:21992845

  13. Multielement analysis of human hair and kidney stones by instrumental neutron activation analysis with the k0-standardization method.

    PubMed

    Abugassa, I; Sarmani, S B; Samat, S B

    1999-06-01

    This paper focuses on the evaluation of the k0 method of instrumental neutron activation analysis in biological materials. The method has been applied in multielement analysis of human hair standard reference materials from IAEA, No. 085, No. 086 and from NIES (National Institute for Environmental Sciences) No. 5. Hair samples from people resident in different parts of Malaysia, in addition to a sample from Japan, were analyzed. In addition, human kidney stones from members of the Malaysian population have been analyzed for minor and trace elements. More than 25 elements have been determined. The samples were irradiated in the rotary rack (Lazy Susan) at the TRIGA Mark II reactor of the Malaysian Institute for Nuclear Technology and Research (MINT). The accuracy of the method was ascertained by analysis of other reference materials, including 1573 tomato leaves and 1572 citrus leaves. In this method the deviation of the 1/E1+ alpha epithermal neutron flux distribution from the 1/E law (P/T ratio) for true coincidence effects of the gamma-ray cascade and the HPGe detector efficiency were determined and corrected for. PMID:10355102

  14. Pressure/temperature fluid cell apparatus for the neutron powder diffractometer instrument: probing atomic structure in situ.

    PubMed

    Wang, Hsiu-Wen; Fanelli, Victor R; Reiche, Helmut M; Larson, Eric; Taylor, Mark A; Xu, Hongwu; Zhu, Jinlong; Siewenie, Joan; Page, Katharine

    2014-12-01

    This contribution describes a new local structure compatible gas/liquid cell apparatus for probing disordered materials at high pressures and variable temperatures in the Neutron Powder Diffraction instrument at the Lujan Neutron Scattering Center, Los Alamos National Laboratory. The new sample environment offers choices for sample canister thickness and canister material type. Finite element modeling is utilized to establish maximum allowable working pressures of 414 MPa at 15 K and 121 MPa at 600 K. High quality atomic pair distribution function data extraction and modeling have been demonstrated for a calibration standard (Si powder) and for supercritical and subcritical CO2 measurements. The new sample environment was designed to specifically target experimental studies of the local atomic structures involved in geologic CO2 sequestration, but will be equally applicable to a wide variety of energy applications, including sorption of fluids on nano/meso-porous solids, clathrate hydrate formation, catalysis, carbon capture, and H2 and natural gas uptake/storage. PMID:25554335

  15. Mixed-Field Dosimetry of a Fast Neutron Beam at the Portuguese Research Reactor for the Irradiation of Electronic Circuits - Measurements and Calculations

    NASA Astrophysics Data System (ADS)

    Fernandes, A. C.; Gonçalves, I. C.; Marques, J. G.; Santos, J.; Ramalho, A. J. G.; Osvay, M.

    2003-06-01

    The neutron and photon fields present at the Fast Neutron Beam of RPI were simulated with MCNP-4C and measured with activation foils, TLDs and ionisation chambers. In general, there is a good agreement between calculations and measurements, although the model overestimates the thermal neutron component. Aluminum oxide TLDs were found to be promising for monitoring the photon dose in actual irradiations of circuits.

  16. Current Status and Future Works of Neutron Scattering Laboratory at BATAN in Serpong

    SciTech Connect

    Ikram, A.

    2008-03-17

    Current status of neutron beam instruments using neutrons produced by the Multi Purpose Research Reactor--30MWth (MPR 30, RSG GA Siwabessy) located in Serpong is presented. Description of the reactor as the neutron source is mentioned briefly. There are six neutron beam tubes coming from the beryllium reflector surrounding half of the reactor core providing neutrons in the experimental hall of the reactor (XHR). Four of them are dedicated to R and D in materials science using neutron scattering techniques. Neutron Radiography Facility (NRF), Triple Axis Spectrometer (TAS) and Residual Stress Measurement (RSM) Diffractometer are installed respectively at beam tubes S2, S4 and S6. The largest neutron beam tube (S5) is exploited to accommodate two neutron guide tubes that transfer the neutrons to a neighbouring building called neutron guide hall (NGH). There are three other neutron beam instruments installed in this building, namely Small Angle Neutron Scattering (SANS) Spectrometer (SMARTer), High Resolution SANS (HRSANS) Spectrometer and High Resolution Powder Diffractometer (HRPD). In the XHR, a Four Circle and Texture Diffractometer (FCD/TD) is attached to one of the neutron guide tubes. These seven instruments were installed to utilize the neutrons for materials science research, and recently the RSM diffractometer has shown its capabilities in identifying different amount of stress left due to different treatments of welding in fuel cladding, while the SANS spectrometer is now gaining capabilities in identifying different sizes and shapes of macromolecules in polymers as well as investigations of magnetic samples. In the mean time, non-destructive tests using the NRF is gathering more confidence from some latest real time measurements eventhough there are still some shortcomings in the components and their alignments. Future works including improvement of each facility and its components, even replacement of some parts are necessary and have to be carried out

  17. Current Status and Future Works of Neutron Scattering Laboratory at BATAN in Serpong

    NASA Astrophysics Data System (ADS)

    Ikram, A.

    2008-03-01

    Current status of neutron beam instruments using neutrons produced by the Multi Purpose Research Reactor—30MWth (MPR 30, RSG GA Siwabessy) located in Serpong is presented. Description of the reactor as the neutron source is mentioned briefly. There are six neutron beam tubes coming from the beryllium reflector surrounding half of the reactor core providing neutrons in the experimental hall of the reactor (XHR). Four of them are dedicated to R&D in materials science using neutron scattering techniques. Neutron Radiography Facility (NRF), Triple Axis Spectrometer (TAS) and Residual Stress Measurement (RSM) Diffractometer are installed respectively at beam tubes S2, S4 and S6. The largest neutron beam tube (S5) is exploited to accommodate two neutron guide tubes that transfer the neutrons to a neighbouring building called neutron guide hall (NGH). There are three other neutron beam instruments installed in this building, namely Small Angle Neutron Scattering (SANS) Spectrometer (SMARTer), High Resolution SANS (HRSANS) Spectrometer and High Resolution Powder Diffractometer (HRPD). In the XHR, a Four Circle and Texture Diffractometer (FCD/TD) is attached to one of the neutron guide tubes. These seven instruments were installed to utilize the neutrons for materials science research, and recently the RSM diffractometer has shown its capabilities in identifying different amount of stress left due to different treatments of welding in fuel cladding, while the SANS spectrometer is now gaining capabilities in identifying different sizes and shapes of macromolecules in polymers as well as investigations of magnetic samples. In the mean time, non-destructive tests using the NRF is gathering more confidence from some latest real time measurements eventhough there are still some shortcomings in the components and their alignments. Future works including improvement of each facility and its components, even replacement of some parts are necessary and have to be carried out

  18. [Simulation of an instrumental head for 6 MeV electron beam therapy].

    PubMed

    Albini, E; Belletti, S; Corrado, F; Galelli, M; Mascaro, L

    1990-10-01

    Simulation of a therapy head for 6 MeV electron beams. We present the results of a simulation, performed using a Monte Carlo method, of depth dose curves in water for electron beams of initial kinetic energy of 6.4 MeV, generated by a radiotherapy microtron MM22 Scanditronix. The Fortran code in EGS4: comparison is made between simulated curves, obtained using various approximation criteria, and the experimental one. PMID:2251422

  19. Differential Die-Away Instrument: Report on Neutron Detector Recovery Performance and Proposed Improvements

    SciTech Connect

    Goodsell, Alison Victoria; Swinhoe, Martyn Thomas; Henzl, Vladimir; Ianakiev, Kiril Dimitrov; Iliev, Metodi; Rael, Carlos D.; Desimone, David J.

    2014-09-22

    Four helium-3 (3He) detector/preamplifier packages (¾”/KM200, DDSI/PDT-A111, DDA/PDT-A111, and DDA/PDT10A) were experimentally tested to determine the deadtime effects at different DT neutron generator output settings. At very high count rates, the ¾”/KM200 package performed best. At high count rates, the ¾”/KM200 and the DDSI/PDT-A111 packages performed very well, with the DDSI/PDT-A111 operating with slightly higher efficiency. All of the packages performed similarly at mid to low count rates. Proposed improvements include using a fast recovery LANL-made dual channel preamplifier, testing smaller diameter 3He tubes, and further investigating quench gases.

  20. Aspects of radiation beam quality and their effect on the dose response of polymer gels: Photons, electrons and fast neutrons

    NASA Astrophysics Data System (ADS)

    Berg, Andreas; Bayreder, Christian; Georg, Dietmar; Bankamp, Achim; Wolber, Gerd

    2009-05-01

    Polymer gels are generally assumed to exhibit no significant dependence of the dose response on the energy or type of irradiation for clinically used beam qualities. Based on reports on differences in dose response for low energy photons and particle beams with high linear energy transfer (LET) we here investigate the dose response and energy dependence for a normoxic methacrylic acid polymer gel (MAGAT) for X-rays (100 kV), high energy photon beams (E = 1.2 MeV (60Co), 6 MV and 15 MV) and for three different electron energies (4, 12 and 20 MeV). Due to the possible impact also the sensitivity of the dose response to the dose rate is reported. A reduction in polymer gel relaxation rate has been observed for proton and carbon beams due to the high Linear Energy Transfer (LET) of these types of radiations. We here report on the dose response of an acryl-amide polymer gel (PAG) in a fast neutron field along with collimation as proposed for Boron neutron capture therapy (BNCT).