Science.gov

Sample records for neutron dose quantities

  1. Advantage and limitations of weighting factors and weighted dose quantities and their units in boron neutron capture therapy.

    PubMed

    Rassow, J; Sauerwein, W; Wittig, A; Bourhis-Martin, E; Hideghéty, K; Moss, R

    2004-05-01

    Defining the parameters influencing the biological reaction due to absorbed dose is a continuous topic of research. The main goal of radiobiological research is to translate the measurable dose of ionizing radiation to a quantitative expression of biological effect. Mathematical models based on different biological approaches (e.g., skin reaction, cell culture) provide some estimations that are often misleading and, to some extent, dangerous. Conventional radiotherapy is the simplest case because the primary radiation and secondary radiation are both low linear energy transfer (LET) radiation and have about the same relative biological effectiveness (RBE). Nevertheless, for this one-dose-component case, the dose-effect curves are not linear. In fact, the total absorbed dose and the absorbed dose per fraction as well as the time schedule of the fractionation scheme influence the biological effects. Mathematical models such as the linear-quadratic model can only approximate biological effects. With regard to biological effects, fast neutron therapy is more complex than conventional radiotherapy. Fast neutron beams are always contaminated by gamma rays. As a consequence, biological effects are due to two components, a high-LET component (neutrons) and a low-LET component (photons). A straight transfer of knowledge from conventional radiotherapy to fast neutron therapy is, therefore, not possible: RBE depends on the delivered dose and several other parameters. For dose reporting, the European protocol for fast neutron dosimetry recommends that the total absorbed dose with gamma-ray absorbed dose in brackets is stated. However, boron neutron capture therapy (BNCT) is an even more complex case, because the total absorbed dose is due to four dose components with different LET and RBE. In addition, the terminology and units used by the different BNCT groups is confusing: absorbed dose and weighted dose are both to be stated in grays and are never "photon equivalent." The

  2. Neutron dose equivalent meter

    DOEpatents

    Olsher, Richard H.; Hsu, Hsiao-Hua; Casson, William H.; Vasilik, Dennis G.; Kleck, Jeffrey H.; Beverding, Anthony

    1996-01-01

    A neutron dose equivalent detector for measuring neutron dose capable of accurately responding to neutron energies according to published fluence to dose curves. The neutron dose equivalent meter has an inner sphere of polyethylene, with a middle shell overlying the inner sphere, the middle shell comprising RTV.RTM. silicone (organosiloxane) loaded with boron. An outer shell overlies the middle shell and comprises polyethylene loaded with tungsten. The neutron dose equivalent meter defines a channel through the outer shell, the middle shell, and the inner sphere for accepting a neutron counter tube. The outer shell is loaded with tungsten to provide neutron generation, increasing the neutron dose equivalent meter's response sensitivity above 8 MeV.

  3. Dose equivalent neutron dosimeter

    DOEpatents

    Griffith, Richard V.; Hankins, Dale E.; Tomasino, Luigi; Gomaa, Mohamed A. M.

    1983-01-01

    A neutron dosimeter is disclosed which provides a single measurements indicating the amount of potential biological damage resulting from the neutron exposure of the wearer, for a wide range of neutron energies. The dosimeter includes a detecting sheet of track etch detecting material such as a carbonate plastic, for detecting higher energy neutrons, and a radiator layer containing conversion material such as .sup.6 Li and .sup.10 B lying adjacent to the detecting sheet for converting moderate energy neutrons to alpha particles that produce tracks in the adjacent detecting sheet. The density of conversion material in the radiator layer is of an amount which is chosen so that the density of tracks produced in the detecting sheet is proportional to the biological damage done by neutrons, regardless of whether the tracks are produced as the result of moderate energy neutrons striking the radiator layer or as the result of higher energy neutrons striking the sheet of track etch material.

  4. Age-dependent protection quantities for external neutron irradiation.

    PubMed

    Chou, D P; Wang, J N; Chen, I J; Chang, B J

    2003-01-01

    Based on the recommendations issued by the International Commission on Radiological Protection (ICRP), equivalent doses and effective doses for different ages are obtained for external neutron sources. The calculations at 28 neutron energies from 1 x 10(-9) MeV to 20 MeV are carried out for six irradiation geometries: AP, PA, RLAT, LLAT, ROT and ISO. An age-dependent anthropomorphic mathematical phantom series of six age groups: newborn, 1, 5, 10, 15 years old and adult is used with the Monte Carlo computer code MCNP for the dose evaluations. The results for adults are compared with those in ICRP Publication 74 and are in good agreement. At low energies the effective doses increase as the phantom age increases, but at high energics they decrease with increasing age for the AP, PA, ROT and ISO irradiation geometries. In the whole energy region the effective doses decrease as the phantom age increases for the RLAT and LLAT irradiation geometries. The age-dependent equivalent doses behave similarly to the effective doses, with some exceptions caused by the influence of the organ position. PMID:12862238

  5. Variation in lunar neutron dose estimates.

    PubMed

    Slaba, Tony C; Blattnig, Steve R; Clowdsley, Martha S

    2011-12-01

    The radiation environment on the Moon includes albedo neutrons produced by primary particles interacting with the lunar surface. In this work, HZETRN2010 is used to calculate the albedo neutron contribution to effective dose as a function of shielding thickness for four different space radiation environments and to determine to what extent various factors affect such estimates. First, albedo neutron spectra computed with HZETRN2010 are compared to Monte Carlo results in various radiation environments. Next, the impact of lunar regolith composition on the albedo neutron spectrum is examined, and the variation on effective dose caused by neutron fluence-to-effective dose conversion coefficients is studied. A methodology for computing effective dose in detailed human phantoms using HZETRN2010 is also discussed and compared. Finally, the combined variation caused by environmental models, shielding materials, shielding thickness, regolith composition and conversion coefficients on the albedo neutron contribution to effective dose is determined. It is shown that a single percentage number for characterizing the albedo neutron contribution to effective dose can be misleading. In general, the albedo neutron contribution to effective dose is found to vary between 1-32%, with the environmental model, shielding material and shielding thickness being the driving factors that determine the exact contribution. It is also shown that polyethylene or other hydrogen-rich materials may be used to mitigate the albedo neutron exposure. PMID:21859325

  6. Quantity and Quality of Inhaled Dose Predicts Immunopathology in Tuberculosis

    PubMed Central

    Fennelly, Kevin P.; Jones-López, Edward C.

    2015-01-01

    Experimental animal models of tuberculosis (TB) have convincingly demonstrated that inhaled dose predicts immunopathology and survival. In contrast, the importance of inhaled dose has generally not been appreciated in TB epidemiology, clinical science, or the practice of TB control. Infectiousness of TB patients has traditionally been assessed using microscopy for acid-fast bacilli in the sputum, which should be considered only a risk factor. We have recently demonstrated that cough aerosol cultures from index cases with pulmonary TB are the best predictors of new infection among household contacts. We suggest that cough aerosols of M. tuberculosis are the best surrogates of inhaled dose, and we hypothesize that the quantity of cough aerosols is associated with TB infection versus disease. Although several factors affect the quality of infectious aerosols, we propose that the particle size distribution of cough aerosols is an important predictor of primary upper airway disease and cervical lymphadenitis and of immune responses in exposed hosts. We hypothesize that large droplet aerosols (>5 μ) containing M. tuberculosis deposit in the upper airway and can induce immune responses without establishing infection. We suggest that this may partially explain the large proportion of humans who never develop TB disease in spite of having immunological evidence of M. tuberculosis infection (e.g., positive tuberculin skin test or interferon gamma release assay). If these hypotheses are proven true, they would alter the current paradigm of latent TB infection and reactivation, further demonstrating the need for better biomarkers or methods of assessing TB infection and the risk of developing disease. PMID:26175730

  7. Radiation Dose from Lunar Neutron Albedo

    NASA Technical Reports Server (NTRS)

    Adams, J. H., Jr.; Bhattacharya, M.; Lin, Zi-Wei; Pendleton, G.

    2006-01-01

    The lunar neutron albedo from thermal energies to 8 MeV was measured on the Lunar Prospector Mission in 1998-1999. Using GEANT4 we have calculated the neutron albedo due to cosmic ray bombardment of the moon and found a good-agreement with the measured fast neutron spectra. We then calculated the total effective dose from neutron albedo of all energies, and made comparisons with the effective dose contributions from both galactic cosmic rays and solar particle events to be expected on the lunar surface.

  8. Dose measurements around spallation neutron sources.

    PubMed

    Fragopoulou, M; Stoulos, S; Manolopoulou, M; Krivopustov, M; Zamani, M

    2008-01-01

    Neutron dose measurements and calculations around spallation sources appear to be of great importance in shielding research. Two spallation sources were irradiated by high-energy proton beams delivered by the Nuclotron accelerator (JINR), Dubna. Neutrons produced by the spallation sources were measured by using solid-state nuclear track detectors. In addition, neutron dose was calculated after polyethylene and concrete, using a phenomenological model based on empirical relations applied in high-energy physics. The study provides an analytical and experimental neutron benchmark analysis using the transmission factor and a comparison between the experimental results and calculations. PMID:18957519

  9. PACKAGING CERTIFICATION PROGRAM METHODOLOGY FOR DETERMINING DOSE RATES FOR SMALL GRAM QUANTITIES IN SHIPPING PACKAGINGS

    SciTech Connect

    Nathan, S.; Loftin, B.; Abramczyk, G.; Bellamy, S.

    2012-05-09

    The Small Gram Quantity (SGQ) concept is based on the understanding that small amounts of hazardous materials, in this case radioactive materials (RAM), are significantly less hazardous than large amounts of the same materials. This paper describes a methodology designed to estimate an SGQ for several neutron and gamma emitting isotopes that can be shipped in a package compliant with 10 CFR Part 71 external radiation level limits regulations. These regulations require packaging for the shipment of radioactive materials, under both normal and accident conditions, to perform the essential functions of material containment, subcriticality, and maintain external radiation levels within the specified limits. By placing the contents in a helium leak-tight containment vessel, and limiting the mass to ensure subcriticality, the first two essential functions are readily met. Some isotopes emit sufficiently strong photon radiation that small amounts of material can yield a large dose rate outside the package. Quantifying the dose rate for a proposed content is a challenging issue for the SGQ approach. It is essential to quantify external radiation levels from several common gamma and neutron sources that can be safely placed in a specific packaging, to ensure compliance with federal regulations. The Packaging Certification Program (PCP) Methodology for Determining Dose Rate for Small Gram Quantities in Shipping Packagings provides bounding shielding calculations that define mass limits compliant with 10 CFR 71.47 for a set of proposed SGQ isotopes. The approach is based on energy superposition with dose response calculated for a set of spectral groups for a baseline physical packaging configuration. The methodology includes using the MCNP radiation transport code to evaluate a family of neutron and photon spectral groups using the 9977 shipping package and its associated shielded containers as the base case. This results in a set of multipliers for 'dose per particle' for

  10. Dose-equivalent neutron dosimeter

    DOEpatents

    Griffith, R.V.; Hankins, D.E.; Tomasino, L.; Gomaa, M.A.M.

    1981-01-07

    A neutron dosimeter is disclosed which provides a single measurement indicating the amount of potential biological damage resulting from the neutron exposure of the wearer, for a wide range of neutron energies. The dosimeter includes a detecting sheet of track etch detecting material such as a carbonate plastic, for detecting higher energy neutrons, and a radiator layer contaning conversion material such as /sup 6/Li and /sup 10/B lying adjacent to the detecting sheet for converting moderate energy neutrons to alpha particles that produce tracks in the adjacent detecting sheet.

  11. PCP METHODOLOGY FOR DETERMINING DOSE RATES FOR SMALL GRAM QUANTITIES IN SHIPPING PACKAGINGS

    SciTech Connect

    Nathan, S.

    2011-08-23

    The Small Gram Quantity (SGQ) concept is based on the understanding that small amounts of hazardous materials, in this case radioactive materials, are significantly less hazardous than large amounts of the same materials. This study describes a methodology designed to estimate an SGQ for several neutron and gamma emitting isotopes that can be shipped in a package compliant with 10 CFR Part 71 external radiation level limits regulations. These regulations require packaging for the shipment of radioactive materials perform, under both normal and accident conditions, the essential functions of material containment, subcriticality, and maintain external radiation levels within regulatory limits. 10 CFR 71.33(b)(1)(2)&(3) state radioactive and fissile materials must be identified and their maximum quantity, chemical and physical forms be included in an application. Furthermore, the U.S. Federal Regulations require application contain an evaluation demonstrating the package (i.e., the packaging and its contents) satisfies the external radiation standards for all packages (10 CFR 71.31(2), 71.35(a), & 71.47). By placing the contents in a He leak-tight containment vessel, and limiting the mass to ensure subcriticality, the first two essential functions are readily met. Some isotopes emit sufficiently strong photon radiation that small amounts of material can yield a large external dose rate. Quantifying of the dose rate for a proposed content is a challenging issue for the SGQ approach. It is essential to quantify external radiation levels from several common gamma and neutron sources that can be safely placed in a specific packaging, to ensure compliance with federal regulations. The Packaging Certification Program (PCP) Methodology for Determining Dose Rate for Small Gram Quantities in Shipping Packagings described in this report provides bounding mass limits for a set of proposed SGQ isotopes. Methodology calculations were performed to estimate external radiation levels

  12. Dose spectra from energetic particles and neutrons

    NASA Astrophysics Data System (ADS)

    Schwadron, Nathan; Bancroft, Chris; Bloser, Peter; Legere, Jason; Ryan, James; Smith, Sonya; Spence, Harlan; Mazur, Joe; Zeitlin, Cary

    2013-10-01

    spectra from energetic particles and neutrons (DoSEN) are an early-stage space technology research project that combines two advanced complementary radiation detection concepts with fundamental advantages over traditional dosimetry. DoSEN measures not only the energy but also the charge distribution (including neutrons) of energetic particles that affect human (and robotic) health in a way not presently possible with current dosimeters. For heavy ions and protons, DoSEN provides a direct measurement of the lineal energy transfer (LET) spectra behind shielding material. For LET measurements, DoSEN contains stacks of thin-thick Si detectors similar in design to those used for the Cosmic Ray Telescope for the Effects of Radiation. With LET spectra, we can now directly break down the observed spectrum of radiation into its constituent heavy-ion components and through biologically based quality factors that provide not only doses and dose rates but also dose equivalents, associated rates, and even organ doses. DoSEN also measures neutrons from 10 to 100 MeV, which requires enough sensitive mass to fully absorb recoil particles that the neutrons produce. DoSEN develops the new concept of combining these independent measurements and using the coincidence of LET measurements and neutron detection to significantly reduce backgrounds in each measurement. The background suppression through the use of coincidence allows for significant reductions in size, mass, and power needed to provide measurements of dose, neutron dose, dose equivalents, LET spectra, and organ doses. Thus, we introduce the DoSEN concept: a promising low-mass instrument that detects the full spectrum of energetic particles, heavy ions, and neutrons to determine biological impact of radiation in space.

  13. A GREEN'S FUNCTION APPROACH FOR DETERMINING DOSE RATES FOR SMALL GRAM QUANTITIES IN SHIPPING PACKAGINGS

    SciTech Connect

    Nathan, S.

    2012-06-14

    The Small Gram Quantity (SGQ) concept is based on the understanding that small amounts of hazardous materials, in this case radioactive materials (RAM), are significantly less hazardous than large amounts of the same materials. This paper describes a methodology designed to estimate an SGQ for several neutron and gamma emitting isotopes that can be shipped in a package in compliance with 10 CFR Part 71 external radiation level limits regulations. The neutron and photon sources were calculated using both ORIGEN-S and RASTA. The response from a unit source in each neutron and photon group was calculated using MCNP5 with each unshielded and shielded container configuration. Effects of self-shielding on both neutron and photon response were evaluated by including either plutonium oxide or iron in the source region for the case with no shielded container. For the cases of actinides mixed with light elements, beryllium is the bounding light element. The added beryllium (10 to 90 percent of the actinide mass) in the cases studied represents between 9 and 47 percent concentration of the total mixture mass. For beryllium concentrations larger than 50 percent, the increase in the neutron source term and dose rate tend to increase at a much lower rate than at concentrations lower than 50%. The intimately mixed actinide-beryllium form used in these models is very conservative and thus the limits presented in this report are practical bounds on the mass that can be safely shipped. The calculated dose rate from one gram of each isotope was then used to determin the maximum amount of a single isotope that could be shipped in the Model 9977 Package (or packagings having the same or larger external dimensions as well as similar structural materials) and have the external radiation level within the regulatory dose limits at the surface of the package. The estimates of the mass limits presented would also serve as conservative limits for both the Models 9975 and 9978 packages. If a

  14. Verification of an effective dose equivalent model for neutrons

    SciTech Connect

    Tanner, J.E.; Piper, R.K.; Leonowich, J.A.; Faust, L.G.

    1991-10-01

    Since the effective dose equivalent, based on the weighted sum of organ dose equivalents, is not a directly measurable quantity, it must be estimated with the assistance of computer modeling techniques and a knowledge of the radiation field. Although extreme accuracy is not necessary for radiation protection purposes, a few well-chosen measurements are required to confirm the theoretical models. Neutron measurements were performed in a RANDO phantom using thermoluminescent dosemeters, track etch dosemeters, and a 1/2-in. (1.27-cm) tissue equivalent proportional counter in order to estimate neutron doses and dose equivalents within the phantom at specific locations. The phantom was exposed to bare and D{sub 2}O-moderated {sup 252}Cf neutrons at the Pacific Northwest Laboratory's Low Scatter Facility. The Monte Carlo code MCNP with the MIRD-V mathematical phantom was used to model the human body and calculate organ doses and dose equivalents. The experimental methods are described and the results of the measurements are compared to the calculations. 8 refs., 3 figs., 3 tabs.

  15. Verification of an effective dose equivalent model for neutrons

    NASA Astrophysics Data System (ADS)

    Tanner, J. E.; Piper, R. K.; Leonowich, J. A.; Faust, L. G.

    1991-10-01

    Since the effective dose equivalent, based on the weighted sum of organ dose equivalents, is not a directly measurable quantity, it must be estimated with the assistance of computer modeling techniques and a knowledge of the radiation field. Although extreme accuracy is not necessary for radiation protection purposes, a few well chosen measurements are required to confirm the theoretical models. Neutron measurements were performed in a RANDO phantom using thermoluminescent dosemeters, track etch dosemeters, and a 1/2 in. (1.27 cm) tissue equivalent proportional counter in order to estimate neutron doses and dose equivalents within the phantom at specific locations. The phantom was exposed to bare and D2O-moderated Cf-252 neutrons at the Pacific Northwest Laboratory's Low Scatter Facility. The Monte Carlo code MCNP with the MIRD-V mathematical phantom was used to model the human body and calculate organ doses and dose equivalents. The experimental methods are described and the results of the measurements are compared to the calculations.

  16. Measurement of the neutron spectrum and ambient neutron dose rate equivalent from the small 252Cf source at 1 meter

    SciTech Connect

    Radev, R.

    2015-07-07

    NASA Langley Research Center requested a measurement of the neutron spectral distribution and fluence from the 252Cf source (model NS-120, LLNL serial # 7001677, referred as the SMALL Cf source) and determination of the ambient neutron dose rate equivalent and kerma at 100 cm for the Radiation Budget Instrument Experiment (Rad-X). The dosimetric quantities should be based on the neutron spectrum and the current neutron-to-dose conversion coefficients.

  17. Low dose neutron late effects: Cataractogenesis

    SciTech Connect

    Worgul, B.V.

    1991-12-01

    The work is formulated to resolve the uncertainty regarding the relative biological effectiveness (RBE) of low dose neutron radiation. The study exploits the fact that cataractogenesis is sensitive to the inverse dose-rate effect as has been observed with heavy ions and was an endpoint considered in the follow-up of the A-bomb survivors. The neutron radiations were initiated at the Radiological Research Accelerator facility (RARAF) of the Nevis Laboratory of Columbia University. Four week old ({plus minus} 1 day) rats were divided into eight dose groups each receiving single or fractionated total doses of 0.2, 1.0, 5.0 and 25.0 cGy of monoenergetic 435 KeV neutrons. Special restraining jigs insured that the eye, at the midpoint of the lens, received the appropriate energy and dose with a relative error of {plus minus}5%. The fractionation regimen consisted of four exposures, each administered at three hour ({plus minus}) intervals. The neutron irradiated groups are being compared to rats irradiated with 250kVp X-rays in doses ranging from 0.5 to 7 Gy. The animals are being examined on a biweekly basis utilizing conventional slit-lamp biomicroscopy and the Scheimpflug Slit Lamp Imaging System (Zeiss). The follows-ups, entering their second year, will continue throughout the life-span of the animals. This is essential inasmuch as given the extremely low doses which are being utilized clinically detectable opacities were not anticipated until a significant fraction of the life span has lapsed. Current data support this contention. At this juncture cataracts in the irradiated groups are beginning to exceed control levels.

  18. Neutron/gamma dose characterization for use with TLD

    SciTech Connect

    Kee, J.C.; Magee, L.; Hefley, T.

    1991-01-01

    The work described in this paper was performed in preparation for establishing a thermoluminescent dosimetry (TLD) system for workers exposed to spontaneous fission neutrons from mixed plutonium isotopes, {sup 232}Th, and depleted uranium at the US Department of Energy (DOE) Pantex facility. The method proposed uses a neutron-insensitive thermoluminescent dosimeter to measure the gamma dose and apply a neutron dose/gamma dose ratio to calculate the neutron dose equivalent. This approach, while requiring multibadge dosimetry for each individual, provides a more accurate neutron dose calculation than was previously in use and reduces the maximum missed dose and falsely reported dose.

  19. Multigroup neutron dose calculations for proton therapy

    SciTech Connect

    Kelsey Iv, Charles T; Prinja, Anil K

    2009-01-01

    We have developed tools for the preparation of coupled multigroup proton/neutron cross section libraries. Our method is to use NJOY to process evaluated nuclear data files for incident particles below 150 MeV and MCNPX to produce data for higher energies. We modified the XSEX3 program of the MCNPX code system to produce Legendre expansions of scattering matrices generated by sampling the physics models that are comparable to the output of the GROUPR routine of NJOY. Our code combines the low and high energy scattering data with user input stopping powers and energy deposition cross sections that we also calculated using MCNPX. Our code also calculates momentum transfer coefficients for the library and optionally applies an energy straggling model to the scattering cross sections and stopping powers. The motivation was initially for deterministic solution of space radiation shielding calculations using Attila, but noting that proton therapy treatment planning may neglect secondary neutron dose assessments because of difficulty and expense, we have also investigated the feasibility of multi group methods for this application. We have shown that multigroup MCNPX solutions for secondary neutron dose compare well with continuous energy solutions and are obtainable with less than half computational cost. This efficiency comparison neglects the cost of preparing the library data, but this becomes negligible when distributed over many multi group calculations. Our deterministic calculations illustrate recognized obstacles that may have to be overcome before discrete ordinates methods can be efficient alternatives for proton therapy neutron dose calculations.

  20. The ICRP protection quantities, equivalent and effective dose: their basis and application.

    PubMed

    Harrison, J D; Streffer, C

    2007-01-01

    Equivalent and effective dose are protection quantities defined by the The International Commission on Radiological Protection (ICRP). They are frequently referred to simply as dose and may be misused. They provide a method for the summation of doses received from external sources and from intakes of radionuclides for comparison with dose limits and constraints, set to limit the risk of cancer and hereditary effects. For the assessment of internal doses, ICRP provides dose coefficients (Sv Bq(-1)) for the ingestion or inhalation of radionuclides by workers and members of the public, including children. Dose coefficients have also been calculated for in utero exposures following maternal intakes and for the transfer of radionuclides in breast milk. In each case, values are given of committed equivalent doses to organs and tissues and committed effective dose. Their calculation involves the use of defined biokinetic and dosimetric models, including the use of reference phantoms representing the human body. Radiation weighting factors are used as a simple representation of the different effectiveness of different radiations in causing stochastic effects at low doses. A single set of tissue weighting factors is used to take account of the contribution of individual organs and tissues to overall detriment from cancer and hereditary effects, despite age- and gender-related differences in estimates of risk and contributions to risk. The results are quantities that are not individual specific but are reference values for protection purposes, relating to doses to phantoms. The ICRP protection quantities are not intended for detailed assessments of dose and risk to individuals. They should not be used in epidemiological analyses or the assessment of the possibility of occurrence and severity of tissue reactions (deterministic effects) at higher doses. Dose coefficients are published as reference values and as such have no associated uncertainty. Assessments of uncertainties

  1. The neutron dose conversion coefficients calculation in human tooth enamel in an anthropomorphic phantom.

    PubMed

    Khailov, A M; Ivannikov, A I; Skvortsov, V G; Stepanenko, V F; Tsyb, A F; Trompier, F; Hoshi, M

    2010-02-01

    In the present study, MCNP4B simulation code is used to simulate neutron and photon transport. It gives the conversion coefficients that relate neutron fluence to the dose in tooth enamel (molars and pre-molars only) for 20 energy groups of monoenergetic neutrons with energies from 10-9 to 20 MeV for five different irradiation geometries. The data presented are intended to provide the basis for connection between EPR dose values and standard protection quantities defined in ICRP Publication 74. The results of the calculations for critical organs were found to be consistent with ICRP data, with discrepancies generally less than 10% for the fast neutrons. The absorbed dose in enamel was found to depend strongly on the incident neutron energy for neutrons over 10 keV. The dependence of the data on the irradiation geometry is also shown. Lower bound estimates of enamel radiation sensitivity to neutrons were made using obtained coefficients for the secondary photons. Depending on neutron energy, tooth enamel was shown to register 10-120% of the total neutron dose in the human body in the case of pure neutron exposure and AP irradiation geometry. PMID:20065707

  2. Low dose neutron late effects: Cataractogenesis

    SciTech Connect

    Worgul, B.V.

    1991-04-01

    The work is formulated to resolve the uncertainty regarding the relative biological effectiveness. The endpoint which is being utilized is cataractogenesis. The advantages conferred by this system stems primarily from the non-invasive longitudinal analysis which it allows. It also exploits a well defined system and one which has demonstrated sensitivity to the inverse dose rate effect observed with heavy ions. Four week old rats were divided into 8 dose groups which received single or fractionated total doses of .2, 1.0, 5.0 and 25 cGy of monoenergetic 435 keV neutrons. Special restraining jigs were devised to insure that the eye at the midpoint of the lens received the appropriate energy and dose with a relative error of {plus minus} 5%. The fractionated regimen consisted of four exposures, each administered at 3 hour intervals. The reference radiations, 250 kVp X-rays, were administered in the same fashion but in doses ranging from .5 to 6.0 Gy. The animals are examined on a bi-weekly basis utilizing conventional slit-lamp biomicroscopy and the Scheimpflug Slit-lamp Imaging System. The follow-ups will continue throughout the lifespan of the animals. When opacification begins full documentation will involve the Zeiss imaging system and Oxford retroillumination photography. The processing routinely employs the Merriam/Focht scoring system for cross-referencing with previous cataract studies and establish cataractogenecity using a proven scoring method.

  3. Determination of neutron absorbed doses in lithium aluminates.

    PubMed

    Delfín Loya, A; Carrera, L M; Ureña-Núñez, F; Palacios, O; Bosch, P

    2003-04-01

    Lithium-based ceramics have been proposed as tritium breeders for fusion reactors. The lithium aluminate (gamma phase) seems to be thermally and structurally stable, the damages produced by neutron irradiation depend on the absorbed dose. A method based on the measurement of neutron activation of foils through neutron capture has been developed to obtain the neutron absorbed dose in lithium aluminates irradiated in the thermal column facility and in the fixed irradiation system of a Triga Mark III Nuclear Reactor. PMID:12672632

  4. Solid cancer risk coefficient for fast neutrons in terms of effective dose.

    PubMed

    Kellerer, Albrecht M; Walsh, Linda

    2002-07-01

    Cancer mortality risk coefficients for neutrons have recently been assessed by a procedure that postulates for the neutrons a linear dose dependence, invokes the excess risk of the A-bomb survivors at a gamma-ray dose D(1) of 1 Gy, and assumes a neutron RBE as a function of D(1) between 20 and 50. The excess relative risk (ERR) of 0.008/mGy has been obtained for R(1) = 20 and 0.016/mGy for R(1) = 50. To compare these results to the current ICRP nominal risk coefficient for solid cancer mortality (0.045/Sv for a population of all ages; 0.036/Sv for a working population), the ERR is translated into lifetime attributable risk and is then related to effective dose. The conversion is not trivial, because the neutron effective dose has been defined by ICRP not as a weighted genuine neutron dose (neutron kerma), but as a weighted dose that includes the dose from gamma rays that are induced by neutrons in the body. If this is accounted for, the solid cancer mortality risk for a working population is found to agree with the ICRP nominal risk coefficient for neutrons in their most effective energy range, 0.2 MeV to 0.5 MeV. In radiation protection practice, there is an added level of safety, because the effective dose, E, is-for monitoring purposes-assessed in terms of the operational quantity H*, which overestimates E substantially for neutrons between 0.01 MeV and 2 MeV. PMID:12071804

  5. Calculation of effective dose from measurements of secondary neutron spectra and scattered photon dose from dynamic MLC IMRT for 6 MV, 15 MV, and 18 MV beam energies.

    PubMed

    Howell, Rebecca M; Hertel, Nolan E; Wang, Zhonglu; Hutchinson, Jesson; Fullerton, Gary D

    2006-02-01

    Effective doses were calculated from the delivery of 6 MV, 15 MV, and 18 MV conventional and intensity-modulated radiation therapy (IMRT) prostate treatment plans. ICRP-60 tissue weighting factors were used for the calculations. Photon doses were measured in phantom for all beam energies. Neutron spectra were measured for 15 MV and 18 MV and ICRP-74 quality conversion factors used to calculate ambient dose equivalents. The ambient dose equivalents were corrected for each tissue using neutron depth dose data from the literature. The depth corrected neutron doses were then used as a measure of the neutron component of the ICRP protection quantity, organ equivalent dose. IMRT resulted in an increased photon dose to many organs. However, the IMRT treatments resulted in an overall decrease in effective dose compared to conventional radiotherapy. This decrease correlates to the ability of an intensity-modulated field to minimize dose to critical normal structures in close proximity to the treatment volume. In a comparison of the three beam energies used for the IMRT treatments, 6 MV resulted in the lowest effective dose, while 18 MV resulted in the highest effective dose. This is attributed to the large neutron contribution for 18 MV compared to no neutron contribution for 6 MV. PMID:16532941

  6. Neutron Spectra and Dose Equivalent Inside Nuclear Power Reactor Containment

    SciTech Connect

    Aldrich, J. M.

    1981-08-01

    This study was conducted to determine absorbed dose, dose-equivalent rates, and neutron spectra inside containment at nuclear power plants. We gratefully acknowledge funding support by the Nuclear Regulatory Commission. The purpose of this study is: 1) measure dose-equivalent rates with various commercial types of rem meters, such as the Snoopy and Rascal, and neutron absorbed dose rates with a tissue-equivalent proportional counter 2) determine neutron spectra using the multi sphere or Bonner sphere technique and a helium-3 spectrometer 3) compare several types of personnel neutron dosimeter responses such as NTA film, polycarbonates, TLD albedo, and a recently introduced proton recoil track etch dosimeter, and CR-39. These measurements were made inside containments of pressurized water reactors (PWRs) and outside containment penetrations of boiling water reactors (BWRs) operating at full power. The neutron spectral information, absorbed dose. and dose-equivalent measurements are needed for proper interpretation of instrument and personnel dosimeter responses.

  7. Correlation between effective and ambient neutron doses in radiation fields of nuclear-physics facilities at the joint institute for nuclear research

    NASA Astrophysics Data System (ADS)

    Guseva, S. V.; Lesovaya, E. N.; Timoshenko, G. N.

    2015-01-01

    The questions of a correlation between normative and operational quantities in the dosimetry of ionizing radiation still attract the attention of professionals working in the field. Since the neutron fields of nuclear-physics facilities at the Joint Institute for Nuclear Research (JINR) are highly varied, the question of whether the ambient neutron dose always serves as a conservative estimate of the effective dose (in the terms of which the dose limits are set) is of practical importance for radiation monitoring at JINR. We studied the correlation between the calculated values of effective and ambient neutron doses obtained based on a representative set of neutron spectra measured at JINR with the use of a multisphere neutron spectrometer. It is demonstrated that measuring the ambient neutron dose may not serve as a confirmation of compliance with the set dose limits in "hard" neutron fields.

  8. On the reassessment of thermal neutron doses in TLD-100 by measuring the residual dose.

    PubMed

    Abraham, A; Weinstein, M; German, U; Alfassi, Z B

    2007-01-01

    By employing second readouts and the Phototransferred thermoluminescence (PTTL) method, high doses may be reassessed on the basis of residual dose information. It was shown in the past that for TLD-100, gamma doses can be reassessed by using a simple and efficient method, which consists of expanding the heating time to 30 s. In the present study, the 'extended time' method and the PTTL residual dose evaluations are used for reassessing thermal neutron doses when using TLD-100 crystals. Reassessment characteristics are presented for relatively low thermal neutron doses, in the range between approximately 1 and 18 mSv gamma dose equivalent. PMID:17507383

  9. Analytic estimates of secondary neutron dose in proton therapy

    NASA Astrophysics Data System (ADS)

    Anferov, V.

    2010-12-01

    Proton beam losses in various components of a treatment nozzle generate secondary neutrons, which bring unwanted out of field dose during treatments. The purpose of this study was to develop an analytic method for estimating neutron dose to a distant organ at risk during proton therapy. Based on radiation shielding calculation methods proposed by Sullivan, we developed an analytical model for converting the proton beam losses in the nozzle components and in the treatment volume into the secondary neutron dose at a point of interest. Using the MCNPx Monte Carlo code, we benchmarked the neutron dose rates generated by the proton beam stopped at various media. The Monte Carlo calculations confirmed the validity of the analytical model for simple beam stop geometry. The analytical model was then applied to neutron dose equivalent measurements performed on double scattering and uniform scanning nozzles at the Midwest Proton Radiotherapy Institute (MPRI). Good agreement was obtained between the model predictions and the data measured at MPRI. This work provides a method for estimating analytically the neutron dose equivalent to a distant organ at risk. This method can be used as a tool for optimizing dose delivery techniques in proton therapy.

  10. Neutron dose and energy spectra measurements at Savannah River Plant

    SciTech Connect

    Brackenbush, L.W.; Soldat, K.L.; Haggard, D.L.; Faust, L.G.; Tomeraasen, P.L.

    1987-08-01

    Because some workers have a high potential for significant neutron exposure, the Savannah River Plant (SRP) contracted with Pacific Northwest Laboratory (PNL) to verify the accuracy of neutron dosimetry at the plant. Energy spectrum and neutron dose measurements were made at the SRP calibrations laboratory and at several other locations. The energy spectra measurements were made using multisphere or Bonner sphere spectrometers,/sup 3/He spectrometers, and NE-213 liquid scintillator spectrometers. Neutron dose equivalent determinations were made using these instruments and others specifically designed to determine dose equivalent, such as the tissue equivalent proportional counter (TEPC). Survey instruments, such as the Eberline PNR-4, and the thermoluminescent dosimeter (TLD)-albedo and track etch dosimeters (TEDs) were also used. The TEPC, subjectively judged to provide the most accurate estimation of true dose equivalent, was used as the reference for comparison with other devices. 29 refs., 43 figs., 13 tabs.

  11. Evaluation of absorbed dose in Gadolinium neutron capture therapy

    NASA Astrophysics Data System (ADS)

    Abdullaeva, Gayane; Djuraeva, Gulnara; Kim, Andrey; Koblik, Yuriy; Kulabdullaev, Gairatulla; Rakhmonov, Turdimukhammad; Saytjanov, Shavkat

    2015-02-01

    Gadolinium neutron capture therapy (GdNCT) is used for treatment of radioresistant malignant tumors. The absorbed dose in GdNCT can be divided into four primary dose components: thermal neutron, fast neutron, photon and natural gadolinium doses. The most significant is the dose created by natural gadolinium. The amount of gadolinium at the irradiated region is changeable and depends on the gadolinium delivery agent and on the structure of the location where the agent is injected. To de- fine the time dependence of the gadolinium concentration ρ(t) in the irradiated region the pharmacokinetics of gadolinium delivery agent (Magnevist) was studied at intratumoral injection in mice and intramuscular injection in rats. A polynomial approximation was applied to the experimental data and the influence of ρ(t) on the relative change of the absorbed dose of gadolinium was studied.

  12. Measurement of neutron energy spectra and neutron dose rates from 7Li(p,n)7Be reaction induced on thin LiF target

    NASA Astrophysics Data System (ADS)

    Atanackovic, Jovica; Matysiak, Witold; Dubeau, Jacques; Witharana, Sampath; Waker, Anthony

    2015-02-01

    The measurements of neutron energy spectra and neutron dose rates were performed using the KN Van de Graaff accelerator, located at the McMaster University Accelerator Laboratory (MAL). Protons were accelerated on the thin lithium fluoride (LiF) target and produced mono-energetic neutrons which were measured using three different spectrometers: Bonner Sphere Spectrometer (BSS), Nested Neutron Spectrometer (NNS), and Rotational Proton Recoil Spectrometer (ROSPEC). The purpose of this work is (1) measurement and quantification of low energy accelerator neutron fields in terms of neutron fluence and dose, (2) comparison of results obtained by three different instruments, (3) comparison of measurements with Monte Carlo simulations based on theoretical neutron yields from 7Li(p,n)7Be nuclear reaction, and (4) comparison of results obtained using different neutron spectral unfolding methods. The nominal thickness of the LiF target used in the experiment was 50 μg /cm2, which corresponds to the linear thickness of 0.19 μm and results in approximately 6 keV energy loss for the proton energies used in the experiment (2.2, 2.3, 2.4 and 2.5 MeV). For each of the proton energies, neutron fluence per incident proton charge was measured and several dosimetric quantities of interest in radiation protection were derived. In addition, theoretical neutron yield calculations together with the results of Monte Carlo (MCNP) modeling of the neutron spectra are reported. Consistent neutron fluence spectra were obtained with three detectors and good agreement was observed between theoretically calculated and measured neutron fluences and derived dosimetric quantities for investigated proton energies at 2.3, 2.4 and 2.5 MeV. In the case of 2.2 MeV, some plausibly explainable discrepancies were observed.

  13. Estimated neutron dose to embryo and foetus during commercial flight.

    PubMed

    Chen, J; Lewis, B J; Bennett, L G I; Green, A R; Tracy, B L

    2005-01-01

    A study has been carried out to assess the radiation exposure from cosmic-ray neutrons to the embryo and foetus of pregnant aircrew and air travellers in consideration of the radiation exposure from cosmic-ray neutrons to the embryo and foetus. A Monte Carlo analysis was performed to determine the equivalent dose from neutrons to the brain and body of an embryo at 8 weeks and to the foetus at the 3, 6 and 9 month periods. Neutron fluence-to-absorbed dose conversion coefficients for the foetal brain and for the entire foetal body (isotropic irradiation geometry) have been determined at the four developmental stages. The equivalent dose rate to the foetus during commercial flights has been further evaluated considering the fluence-to-absorbed dose conversion coefficients, a neutron spectrum measured at an altitude of 11.3 km and an ICRP-92 radiation-weighting factor for neutrons. This study indicates that the foetus can exceed the annual dose limit of 1 mSv for the general public after, for example, 15 round trips on commercial trans-Atlantic flights. PMID:15860538

  14. Low doses of neutrons induce changes in gene expression

    SciTech Connect

    Woloschak, G.E.; Chang-Liu, C.M. ); Panozzo, J.; Libertin, C.R. )

    1993-01-01

    Studies were designed to identify genes induced following low-dose neutron but not following [gamma]-ray exposure in fibroblasts. Our past work had shown differences in the expression of [beta]-protein kinase C and c-fos genes, both being induced following [gamma]-ray but not neutron exposure. We have identified two genes that are induced following neutron, but not [gamma]-ray, exposure: Rp-8 (a gene induced by apoptosis) and the long terminal repeat (LTR) of the human immunodeficiency (HIV). Rp-8 mRNA induction was demonstrated in Syrian hamster embryo fibroblasts and was found to be induced in cells exposed to neutrons administered at low (0.5 cGy/min) and at high dose rate (12 cGy/min). The induction of transcription from the LTR of HIV was demonstrated in HeLa cells bearing a transfected construct of the chloramphenicol acetyl transferase (CAT) gene driven by the HIV-LTR promoter. Measures of CAT activity and CAT transcripts following irradiation demonstrated an unresponsiveness to [gamma] rays over a broad range of doses. Twofold induction of the HIV-LTR was detected following neutron exposure (48 cGy) administered at low (0.5 cGy/min) but not high (12 cGy/min) dose rates. Ultraviolet-mediated HIV-LTR induction was inhibited by low-dose-rate neutron exposure.

  15. Low doses of neutrons induce changes in gene expression

    SciTech Connect

    Woloschak, G.E.; Chang-Liu, C.M.; Panozzo, J.; Libertin, C.R.

    1993-06-01

    Studies were designed to identify genes induced following low-dose neutron but not following {gamma}-ray exposure in fibroblasts. Our past work had shown differences in the expression of {beta}-protein kinase C and c-fos genes, both being induced following {gamma}-ray but not neutron exposure. We have identified two genes that are induced following neutron, but not {gamma}-ray, exposure: Rp-8 (a gene induced by apoptosis) and the long terminal repeat (LTR) of the human immunodeficiency (HIV). Rp-8 mRNA induction was demonstrated in Syrian hamster embryo fibroblasts and was found to be induced in cells exposed to neutrons administered at low (0.5 cGy/min) and at high dose rate (12 cGy/min). The induction of transcription from the LTR of HIV was demonstrated in HeLa cells bearing a transfected construct of the chloramphenicol acetyl transferase (CAT) gene driven by the HIV-LTR promoter. Measures of CAT activity and CAT transcripts following irradiation demonstrated an unresponsiveness to {gamma} rays over a broad range of doses. Twofold induction of the HIV-LTR was detected following neutron exposure (48 cGy) administered at low (0.5 cGy/min) but not high (12 cGy/min) dose rates. Ultraviolet-mediated HIV-LTR induction was inhibited by low-dose-rate neutron exposure.

  16. Neutron detector simultaneously measures fluence and dose equivalent

    NASA Technical Reports Server (NTRS)

    Dvorak, R. F.; Dyer, N. C.

    1967-01-01

    Neutron detector acts as both an area monitoring instrument and a criticality dosimeter by simultaneously measuring dose equivalent and fluence. The fluence is determined by activation of six foils one inch below the surface of the moderator. Dose equivalent is determined from activation of three interlocked foils at the center of the moderator.

  17. Estimation of Secondary Neutron Dose during Proton Therapy

    NASA Astrophysics Data System (ADS)

    Urban, Tomas; Klusoň, Jaroslav

    2014-06-01

    During proton radiotherapy, secondary neutrons are produced by nuclear interactions in the material along the beam path, in the treatment nozzle (including the fixed scatterer, range modulator, etc.) and, of course, after entering the patient. The dose equivalent deposited by these neutrons is usually not considered in routine treatment planning. In this study, there has been estimated the neutron dose in patient (in as well as around the target volume) during proton radiotherapy using scattering and scanning techniques. The proton induced neutrons (and photons) have been simulated in the simple geometry of the single scattering and the pencil beam scanning universal nozzles and in geometry of the plastic phantom (made of tissue equivalent material - RW3 - imitate the patient). In simulations of the scattering nozzle, different types of brass collimators have been used as well. Calculated data have been used as an approximation of the radiation field in and around the chosen/potential target volume in the patient (plastic phantom). For the dose equivalent evaluation, fluence-to-dose conversion factors from ICRP report have been employed. The results of calculated dose from neutrons in various distances from the spot for different treatment technique and for different energies of incident protons have been compared and evaluated in the context of the dose deposited in the target volume. This work was supported by RVO: 68407700 and Grant Agency of the CTU in Prague, grant No. SGS12/200/OHK4/3T/14.

  18. Quantitative aspects of informed consent: considering the dose response curve when estimating quantity of information.

    PubMed

    Lynöe, N; Hoeyer, K

    2005-12-01

    Information is usually supposed to be a prerequisite for people making decisions on whether or not to participate in a clinical trial. Previously conducted studies and research ethics scandals indicate that participants have sometimes lacked important pieces of information. Over the past few decades the quantity of information believed to be adequate has increased significantly, and in some instances a new maxim seems to be in place: the more information, the better the ethics in terms of respecting a participant's autonomy. The authors hypothesise that the dose-response curve from pharmacology or toxicology serves as a model to illustrate that a large amount of written information does not equal optimality. Using the curve as a pedagogical analogy when teaching ethics to students in clinical sciences, and also in engaging in dialogue with research institutions, may promote reflection on how to adjust information in relation to the preferences of individual participants, thereby transgressing the maxim that more information means better ethics. PMID:16319241

  19. Photon and neutron dose contributions and mean quality factors in phantoms of different size irradiated by monoenergetic neutrons

    SciTech Connect

    Dietze, G.; Siebert, B.R.L.

    1994-10-01

    The International Commission on Radiological Protection (ICRP) in its Publication 60 introduced important changes in the concept of risk-related quantities. For external neutron radiation in particular the introduction of the equivalent dose with the radiation weighting factor w{sub R} instead of the dose equivalent concept with the quality factor Q(L) has many consequences. The value of w{sub R} is defined by the external neutron radiation field, while the radiation quality in the phantom depends on the radiation field at the position of interest and hence on the size of and the position in the phantom. It has been investigated to what extent the size of the phantom influences the mean irradiation quality in the phantoms. For incident monoenergetic neutrons, mean photon dose contributions and mean quality factors have been calculated. Results are presented for various phantoms which characterize the conditions for a mouse, a rat, the ICRU sphere and a human body. 9 refs., 2 figs., 1 tab.

  20. Personnel neutron dose assessment upgrade: Volume 2, Field neutron spectrometer for health physics applications

    SciTech Connect

    Brackenbush, L.W.; Reece, W.D.; Miller, S.D.; Endres, G.W.R.; Durham, J.S.; Scherpelz, R.I.; Tomeraasen, P.L.; Stroud, C.M.; Faust, L.G.; Vallario, E.J.

    1988-07-01

    Both the (ICRP) and the (NCPR) have recommended an increase in neutron quality factors and the adoption of effective dose equivalent methods. The series of reports entitled Personnel Neutron Dose Assessment Upgrade (PNL-6620) addresses these changes. Volume 1 in this series of reports (Personnel Neutron Dosimetry Assessment) provided guidance on the characteristics, use, and calibration of personnel neutron dosimeters in order to meet the new recommendations. This report, Volume 2: Field Neutron Spectrometer for Health Physics Applications describes the development of a portable field spectrometer which can be set up for use in a few minutes by a single person. The field spectrometer described herein represents a significant advance in improving the accuracy of neutron dose assessment. It permits an immediate analysis of the energy spectral distribution associated with the radiation from which neutron quality factor can be determined. It is now possible to depart from the use of maximum Q by determining and realistically applying a lower Q based on spectral data. The field spectrometer is made up of two modules: a detector module with built-in electronics and an analysis module with a IBM PC/reg sign/-compatible computer to control the data acquisition and analysis of data in the field. The unit is simple enough to allow the operator to perform spectral measurements with minimal training. The instrument is intended for use in steady-state radiation fields with neutrons energies covering the fission spectrum range. The prototype field spectrometer has been field tested in plutonium processing facilities, and has been proven to operate satisfactorily. The prototype field spectrometer uses a /sup 3/He proportional counter to measure the neutron energy spectrum between 50 keV and 5 MeV and a tissue equivalent proportional counter (TEPC) to measure absorbed neutron dose.

  1. Dose Calibration of the ISS-RAD Fast Neutron Detector

    NASA Technical Reports Server (NTRS)

    Zeitlin, C.

    2015-01-01

    The ISS-RAD instrument has been fabricated by Southwest Research Institute and delivered to NASA for flight to the ISS in late 2015 or early 2016. ISS-RAD is essentially two instruments that share a common interface to ISS. The two instruments are the Charged Particle Detector (CPD), which is very similar to the MSL-RAD detector on Mars, and the Fast Neutron Detector (FND), which is a boron-loaded plastic scintillator with readout optimized for the 0.5 to 10 MeV energy range. As the FND is completely new, it has been necessary to develop methodology to allow it to be used to measure the neutron dose and dose equivalent. This talk will focus on the methods developed and their implementation using calibration data obtained in quasi-monoenergetic (QMN) neutron fields at the PTB facility in Braunschweig, Germany. The QMN data allow us to determine an approximate response function, from which we estimate dose and dose equivalent contributions per detected neutron as a function of the pulse height. We refer to these as the "pSv per count" curves for dose equivalent and the "pGy per count" curves for dose. The FND is required to provide a dose equivalent measurement with an accuracy of ?10% of the known value in a calibrated AmBe field. Four variants of the analysis method were developed, corresponding to two different approximations of the pSv per count curve, and two different implementations, one for real-time analysis onboard ISS and one for ground analysis. We will show that the preferred method, when applied in either real-time or ground analysis, yields good accuracy for the AmBe field. We find that the real-time algorithm is more susceptible to chance-coincidence background than is the algorithm used in ground analysis, so that the best estimates will come from the latter.

  2. An analytic model of neutron ambient dose equivalent and equivalent dose for proton radiotherapy

    PubMed Central

    Zhang, Rui; Pérez-Andújar, Angélica; Fontenot, Jonas D; Taddei, Phillip J; Newhauser, Wayne D

    2010-01-01

    Stray neutrons generated in passively scattered proton therapy are of concern because they increase the risk that a patient will develop a second cancer. Several investigations characterized stray neutrons in proton therapy using experimental measurements and Monte Carlo simulations, but capabilities of analytical methods to predict neutron exposures are less well developed. The goal of this study was to develop a new analytical model to calculate neutron ambient dose equivalent in air and equivalent dose in phantom based on Monte Carlo modeling of a passively scattered proton therapy unit. The accuracy of the new analytical model is superior to a previous analytical model and comparable to the accuracy of typical Monte Carlo simulations and measurements. Predictions from the new analytical model agreed reasonably well with corresponding values predicted by a Monte Carlo code using an anthropomorphic phantom. PMID:21076197

  3. New calculations of neutron kerma coefficients and dose equivalent.

    PubMed

    Liu, Zhenzhou; Chen, Jinxiang

    2008-06-01

    For neutron energies ranging from 1 keV to 20 MeV, the kerma coefficients for elements H, C, N, O, light water, and ICRU tissue were deduced respectively from microscopic cross sections and Monte Carlo simulation (MCNP code). The results are consistent within admitted uncertainties with values evaluated by an international group (Chadwick et al 1999 Med. Phys. 26 974-91). The ambient dose equivalent generated in the ISO-recommended neutron field for an Am-Be neutron source (ISO 8529-1: 2001(E)) was obtained from the kerma coefficients and Monte Carlo calculation. In addition, it was calculated directly by multiplying the neutron fluence by the fluence-to-ambient dose conversion coefficients recommended by ICRP (ICRP 1996 ICRP Publication 74 (Oxford: Pergamon)). The two results agree well with each other. The main feature of this work is our Monte Carlo simulation design and the treatments differing from the work of others in the calculation of neutron energy transfer in non-elastic processes. PMID:18495982

  4. Scaling neutron absorbed dose distributions from one medium to another

    SciTech Connect

    Awschalom, M.; Rosenberg, I.; Ten Haken, R.K.

    1982-11-01

    Central axis depth dose (CADD) and off-axis absorbed dose ratio (OAR) measurements were made in water, muscle and whole skeletal bone TE-solutions, mineral oil and glycerin with a clinical neutron therapy beam. These measurements show that, for a given neutron beam quality and field size, there is a universal CADD distribution at infinity if the depth in the phantom is expressed in terms of appropriate scaling lengths. These are essentially the kerma-weighted neutron mean free paths in the media. The method used in ICRU No. 26 to scale the CADD by the ratio of the densities is shown to give incorrect results. the OAR's measured in different media at depths proportional to the respective mean free paths were also found to be independent of the media to a good approximation. It is recommended that relative CADD and OAR measurements be performed in water because of its universality and convenience. A table of calculated scaling lengths is given for various neutron energy spectra and for various tissues and materials of practical importance in neutron dosimetry.

  5. Cation disorder in high-dose, neutron-irradiated spinel

    SciTech Connect

    Sickafus, K.E.; Larson, A.C.; Yu, N.

    1995-04-01

    The objective of this effort is to determine whether MgAl{sub 2}O{sub 4} spinel is a suitable ceramic for fusion applications. The crystal structures of MgAl{sub 2}O{sub 4} spinel single crystals irradiated to high neutron fluences [>5{times}10{sup 26} n/m{sup 2} (E{sub n}>0.1 MeV)] were examined by neutron diffraction. Crystal structure refinement of the highese dose sample indicated that the average scattering strength of the tetrahedral crystal sites decreased by {approx}20% while increasing by {approx}8% on octahedral sites.

  6. Dose homogeneity in boron neutron capture therapy using an epithermal neutron beam

    SciTech Connect

    Konijnenberg, M.W.; Dewit, L.G.H.; Mijnheer, B.J.

    1995-06-01

    Simulation models based on the neutron and photon Monte Carlo code MCNP were used to study the therapeutic possibilities of the HB11 epithermal neutron beam at the High Flux Reactor in Petten. Irradiations were simulated in two types of phantoms filled with water or tissue-equivalent material for benchmark treatment planning calculations. In a cuboid phantom the influence of different field sizes on the thermal-neutron-induced dose distribution was investigated. Various shapes of collimators were studied to test their efficacy in optimizing the thermal-neutron distribution over a planning target volume and healthy tissues. Using circular collimators of 8, 12 and 15 cm diameter it was shown that with the 15-cm field a relatively larger volume within 85% of the maximum neutron-induced dose was obtained than with the 8- or 12-cm-diameter field. However, even for this large field the maximum diameter of this volume was 7.5 cm. In an ellipsoid head phantom the neutron-induced dose was calculated assuming the skull to contain 10 ppm {sup 10}B, the brain 5 ppm {sup 10}B and the tumor 30 ppm {sup 10}B. It was found that with a single 15-cm-diameter circular beam a very inhomogeneous dose distribution in a typical target volume was obtained. Applying two equally weighted opposing 15-cm-diameter fields, however, a dose homogeneity within {+-} 10% in this planning target volume was obtained. The dose in the surrounding healthy brain tissue is 30% at maximum of the dose in the center of the target volume. Contrary to the situation for the 8-cm field, combining four fields of 15 cm diameter gave no large improvement of the dose homogeneity over the target volume or a lower maximum dose in the healthy brain. Therapy with BNCT on brain tumors must be performed either with an 8-cm four-field irradiation or with two opposing 15- or 12-cm fields to obtain an optimal dose distribution. 27 refs., 10 figs., 3 tabs.

  7. Personnel neutron dose assessment upgrade: Volume 1, Personnel neutron dosimetry assessment: (Final report)

    SciTech Connect

    Hadlock, D.E.; Brackenbush, L.W.; Griffith, R.V.; Hankins, D.E.; Parkhurst, M.A.; Stroud, C.M.; Faust, L.G.; Vallario, E.J.

    1988-07-01

    This report provides guidance on the characteristics, use, and calibration criteria for personnel neutron dosimeters. The report is applicable for neutrons with energies ranging from thermal to less than 20 MeV. Background for general neutron dosimetry requirements is provided, as is relevant federal regulations and other standards. The characteristics of personnel neutron dosimeters are discussed, with particular attention paid to passive neutron dosimetry systems. Two of the systems discussed are used at DOE and DOE-contractor facilities (nuclear track emulsion and thermoluminescent-albedo) and another (the combination TLD/TED) was recently developed. Topics discussed in the field applications of these dosimeters include their theory of operation, their processing, readout, and interpretation, and their advantages and disadvantages for field use. The procedures required for occupational neutron dosimetry are discussed, including radiation monitoring and the wearing of dosimeters, their exchange periods, dose equivalent evaluations, and the documenting of neutron exposures. The coverage of dosimeter testing, maintenance, and calibration includes guidance on the selection of calibration sources, the effects of irradiation geometries, lower limits of detectability, fading, frequency of calibration, spectrometry, and quality control. 49 refs., 6 figs., 8 tabs.

  8. Neutron-Proton pairing effect on the thermodynamical quantities of even-even proton-rich nuclei

    NASA Astrophysics Data System (ADS)

    Belabbas, M.; Fellah, M.; Allal, N. H.; Ami, I.

    2012-02-01

    Expressions of the thermodynamical quantities, i.e. the energy E, the entropy S and the heat capacity C are established by including the isovector neutron-proton (np) pairing effect. They are deduced using temperature-dependent gap equations . E, S and C are numerically studied as a function of the temperature for some even-even proton-rich nuclei. The single-particle energies used are those of a Woods-Saxon deformed mean field. It is shown that the isovector pairing effect on E, S and C is non-negligible, not only in the 0 <= T <= Tcnp region (Tcnp being the critical temperature beyond which the np pairing vanishes), but also in the Tcnp <= T <= Tcn region (Tcn being the neutron-system critical temperature).

  9. Comparison of Image Filters for Low Dose Neutron Imaging

    NASA Astrophysics Data System (ADS)

    Hungler, P. C.; Bennett, L. G. I.; Lewis, W. J.; Bevan, G.; Metzler, J.

    Neutron imaging using low flux sources, such as accelerators or low flux nuclear reactors, produces images which contain significant amounts of noise. The noise indications are a result of high energy gamma radiation and some neutron scattering which hit the CCD detector despite heavy shielding. The amount of noise in an image is a factor of the exposure time required to produce images with adequate dynamic ranges. Minimization of noise and maximization of the dynamic range are inversely proportional and the exposure time is often extended to increase incident neutrons at the expense of noise. The resultant noise can be reduced using image filters; however, these filters usually increase the signal to noise ratio (SNR) at the expense of spatial resolution. Three filters were applied to low dose neutron images acquired at RMC; a median filter, a Z-projection filter and a hybrid PDE filter. The median filter and the hybrid PDE filter showed similar performance in 3D with regards to SNR and spatial resolution, however, the median filter created numerous artefacts in the resultant tomogram. The Z-projection filter using 5 projections had the best performance in 2D improving the SNR of the raw image from 10.2 ± 0.767 to 22.5 ± 1.52 and the spatial resolution from 331 ± 2.89 to 309 ± 0.846, respectively. The Z-projection filter was not evaluated in 3D due to facility induced constraints.

  10. Personal dose equivalent conversion coefficients for neutron fluence over the energy range of 20-250 MeV.

    PubMed

    Olsher, R H; McLean, T D; Justus, A L; Devine, R T; Gadd, M S

    2010-03-01

    Monte Carlo simulations were performed to extend existing neutron personal dose equivalent fluence-to-dose conversion coefficients to an energy of 250 MeV. Presently, conversion coefficients, H(p,slab)(10,alpha)/Phi, are given by ICRP-74 and ICRU-57 for a range of angles of radiation incidence (alpha = 0, 15, 30, 45, 60 and 75 degrees ) in the energy range from thermal to 20 MeV. Standard practice has been to base operational dose quantity calculations <20 MeV on the kerma approximation, which assumes that charged particle secondaries are locally deposited, or at least that charged particle equilibrium exists within the tally cell volume. However, with increasing neutron energy the kerma approximation may no longer be valid for some energetic secondaries such as protons. The Los Alamos Monte Carlo radiation transport code MCNPX was used for all absorbed dose calculations. Transport models and collision-based energy deposition tallies were used for neutron energies >20 MeV. Both light and heavy ions (HIs) (carbon, nitrogen and oxygen recoil nuclei) were transported down to a lower energy limit (1 keV for light ions and 5 MeV for HIs). Track energy below the limit was assumed to be locally deposited. For neutron tracks <20 MeV, kerma factors were used to obtain absorbed dose. Results are presented for a discrete set of angles of incidence on an ICRU tissue slab phantom. PMID:19887515

  11. Personal dose equivalent conversion coefficients for neutron fluence over the energy range of 20 to 250 MeV

    SciTech Connect

    Mclean, Thomas D; Justus, Alan L; Gadd, S Milan; Olsher, Richard H; Devine, Robert T

    2009-01-01

    Monte Carlo simulations were performed to extend existing neutron personal dose equivalent fluence-to-dose conversion coefficients to an energy of 250 MeV. Presently, conversion coefficients, H(p,slab)(10,alpha)/Phi, are given by ICRP-74 and ICRU-57 for a range of angles of radiation incidence (alpha = 0, 15, 30, 45, 60 and 75 degrees ) in the energy range from thermal to 20 MeV. Standard practice has been to base operational dose quantity calculations <20 MeV on the kerma approximation, which assumes that charged particle secondaries are locally deposited, or at least that charged particle equilibrium exists within the tally cell volume. However, with increasing neutron energy the kerma approximation may no longer be valid for some energetic secondaries such as protons. The Los Alamos Monte Carlo radiation transport code MCNPX was used for all absorbed dose calculations. Transport models and collision-based energy deposition tallies were used for neutron energies >20 MeV. Both light and heavy ions (HIs) (carbon, nitrogen and oxygen recoil nuclei) were transported down to a lower energy limit (1 keV for light ions and 5 MeV for HIs). Track energy below the limit was assumed to be locally deposited. For neutron tracks <20 MeV, kerma factors were used to obtain absorbed dose. Results are presented for a discrete set of angles of incidence on an ICRU tissue slab phantom.

  12. Use of prompt gamma emissions from polyethylene to estimate neutron ambient dose equivalent

    NASA Astrophysics Data System (ADS)

    Priyada, P.; Sarkar, P. K.

    2015-06-01

    The possibility of using measured prompt gamma emissions from polyethylene to estimate neutron ambient dose equivalent is explored theoretically. Monte Carlo simulations have been carried out using the FLUKA code to calculate the response of a high density polyethylene cylinder to emit prompt gammas from interaction of neutrons with the nuclei of hydrogen and carbon present in polyethylene. The neutron energy dependent responses of hydrogen and carbon nuclei are combined appropriately to match the energy dependent neutron fluence to ambient dose equivalent conversion coefficients. The proposed method is tested initially with simulated spectra and then validated using experimental measurements with an Am-Be neutron source. Experimental measurements and theoretical simulations have established the feasibility of estimating neutron ambient dose equivalent using measured neutron induced prompt gammas emitted from polyethylene with an overestimation of neutron dose at very low energies.

  13. Low-dose neutron dose response of zebrafish embryos obtained from the Neutron exposure Accelerator System for Biological Effect Experiments (NASBEE) facility

    NASA Astrophysics Data System (ADS)

    Ng, C. Y. P.; Kong, E. Y.; Konishi, T.; Kobayashi, A.; Suya, N.; Cheng, S. H.; Yu, K. N.

    2015-09-01

    The dose response of embryos of the zebrafish, Danio rerio, irradiated at 5 h post fertilization (hpf) by 2-MeV neutrons with ≤100 mGy was determined. The neutron irradiations were made at the Neutron exposure Accelerator System for Biological Effect Experiments (NASBEE) facility in the National Institute of Radiological Sciences (NIRS), Chiba, Japan. A total of 10 neutron doses ranging from 0.6 to 100 mGy were employed (with a gamma-ray contribution of 14% to the total dose), and the biological effects were studied through quantification of apoptosis at 25 hpf. The responses for neutron doses of 10, 20, 25, and 50 mGy approximately fitted on a straight line, while those for neutron doses of 0.6, 1 and 2.5 mGy exhibited neutron hormetic effects. As such, hormetic responses were generically developed by different kinds of ionizing radiations with different linear energy transfer (LET) values. The responses for neutron doses of 70 and 100 mGy were significantly below the lower 95% confidence band of the best-fit line, which strongly suggested the presence of gamma-ray hormesis.

  14. Improvement of depth dose distribution using multiple-field irradiation in boron neutron capture therapy.

    PubMed

    Fujimoto, N; Tanaka, H; Sakurai, Y; Takata, T; Kondo, N; Narabayashi, M; Nakagawa, Y; Watanabe, T; Kinashi, Y; Masunaga, S; Maruhashi, A; Ono, K; Suzuki, M

    2015-12-01

    It is important that improvements are made to depth dose distribution in boron neutron capture therapy, because the neutrons do not reach the innermost regions of the human body. Here, we evaluated the dose distribution obtained using multiple-field irradiation in simulation. From a dose volume histogram analysis, it was found that the mean and minimum tumor doses were increased using two-field irradiation, because of improved dose distribution for deeper-sited tumors. PMID:26282566

  15. Out-of-field doses and neutron dose equivalents for electron beams from modern Varian and Elekta linear accelerators.

    PubMed

    Cardenas, Carlos E; Nitsch, Paige L; Kudchadker, Rajat J; Howell, Rebecca M; Kry, Stephen F

    2016-01-01

    Out-of-field doses from radiotherapy can cause harmful side effects or eventually lead to secondary cancers. Scattered doses outside the applicator field, neutron source strength values, and neutron dose equivalents have not been broadly investigated for high-energy electron beams. To better understand the extent of these exposures, we measured out-of-field dose characteristics of electron applicators for high-energy electron beams on two Varian 21iXs, a Varian TrueBeam, and an Elekta Versa HD operating at various energy levels. Out-of-field dose profiles and percent depth-dose curves were measured in a Wellhofer water phantom using a Farmer ion chamber. Neutron dose was assessed using a combination of moderator buckets and gold activation foils placed on the treatment couch at various locations in the patient plane on both the Varian 21iX and Elekta Versa HD linear accelerators. Our findings showed that out-of-field electron doses were highest for the highest electron energies. These doses typically decreased with increasing distance from the field edge but showed substantial increases over some distance ranges. The Elekta linear accelerator had higher electron out-of-field doses than the Varian units examined, and the Elekta dose profiles exhibited a second dose peak about 20 to 30 cm from central-axis, which was found to be higher than typical out-of-field doses from photon beams. Electron doses decreased sharply with depth before becoming nearly constant; the dose was found to decrease to a depth of approximately E(MeV)/4 in cm. With respect to neutron dosimetry, Q values and neutron dose equivalents increased with electron beam energy. Neutron contamination from electron beams was found to be much lower than that from photon beams. Even though the neutron dose equivalent for electron beams represented a small portion of neutron doses observed under photon beams, neutron doses from electron beams may need to be considered for special cases. PMID:27455499

  16. Prediction of In-Phantom Dose Distribution Using In-Air Neutron Beam Characteristics for Boron Neutron Capture Synovectomy

    SciTech Connect

    Verbeke, Jerome M.; Chen, Allen S.; Vujic, Jasmina L.; Leung, Ka-Ngo

    2000-08-15

    A monoenergetic neutron beam simulation study was carried out to determine the optimal neutron energy range for treatment of rheumatoid arthritis using radiation synovectomy. The goal of the treatment is the ablation of diseased synovial membranes in joints such as knees and fingers. This study focuses on human knee joints. Two figures of merit are used to measure the neutron beam quality, the ratio of the synovium-absorbed dose to the skin-absorbed dose, and the ratio of the synovium-absorbed dose to the bone-absorbed dose. It was found that (a) thermal neutron beams are optimal for treatment and that (b) similar absorbed dose rates and therapeutic ratios are obtained with monodirectional and isotropic neutron beams. Computation of the dose distribution in a human knee requires the simulation of particle transport from the neutron source to the knee phantom through the moderator. A method was developed to predict the dose distribution in a knee phantom from any neutron and photon beam spectra incident on the knee. This method was revealed to be reasonably accurate and enabled one to reduce the particle transport simulation time by a factor of 10 by modeling the moderator only.

  17. Neutron spectra and dose equivalents calculated in tissue for high-energy radiation therapy

    SciTech Connect

    Kry, Stephen F.; Howell, Rebecca M.; Salehpour, Mohammad; Followill, David S.

    2009-04-15

    Neutrons are by-products of high-energy radiation therapy and a source of dose to normal tissues. Thus, the presence of neutrons increases a patient's risk of radiation-induced secondary cancer. Although neutrons have been thoroughly studied in air, little research has been focused on neutrons at depths in the patient where radiosensitive structures may exist, resulting in wide variations in neutron dose equivalents between studies. In this study, we characterized properties of neutrons produced during high-energy radiation therapy as a function of their depth in tissue and for different field sizes and different source-to-surface distances (SSD). We used a previously developed Monte Carlo model of an accelerator operated at 18 MV to calculate the neutron fluences, energy spectra, quality factors, and dose equivalents in air and in tissue at depths ranging from 0.1 to 25 cm. In conjunction with the sharply decreasing dose equivalent with increased depth in tissue, the authors found that the neutron energy spectrum changed drastically as a function of depth in tissue. The neutron fluence decreased gradually as the depth increased, while the average neutron energy decreased sharply with increasing depth until a depth of approximately 7.5 cm in tissue, after which it remained nearly constant. There was minimal variation in the quality factor as a function of depth. At a given depth in tissue, the neutron dose equivalent increased slightly with increasing field size and decreasing SSD; however, the percentage depth-dose equivalent curve remained constant outside the primary photon field. Because the neutron dose equivalent, fluence, and energy spectrum changed substantially with depth in tissue, we concluded that when the neutron dose equivalent is being determined at a depth within a patient, the spectrum and quality factor used should be appropriate for depth rather than for in-air conditions. Alternately, an appropriate percent depth-dose equivalent curve should be

  18. Determining organ dose conversion coefficients for external neutron irradiation by using a voxel mouse model.

    PubMed

    Zhang, Xiaomin; Xie, Xiangdong; Qu, Decheng; Ning, Jing; Zhou, Hongmei; Pan, Jie; Yang, Guoshan

    2016-03-01

    A set of fluence-to-dose conversion coefficients has been calculated for neutrons with energies <20 MeV using a developed voxel mouse model and Monte Carlo N-particle code (MCNP), for the purpose of neutron radiation effect evaluation. The calculation used 37 monodirectional monoenergetic neutron beams in the energy range 10(-9) MeV to 20 MeV, under five different source irradiation configurations: left lateral, right lateral, dorsal-ventral, ventral-dorsal, and isotropic. Neutron fluence-to-dose conversion coefficients for selected organs of the body were presented in the paper, and the effect of irradiation geometry conditions, neutron energy and the organ location on the organ dose was discussed. The results indicated that neutron dose conversion coefficients clearly show sensitivity to irradiation geometry at neutron energy below 1 MeV. PMID:26661852

  19. Determining organ dose conversion coefficients for external neutron irradiation by using a voxel mouse model

    PubMed Central

    Zhang, Xiaomin; Xie, Xiangdong; Qu, Decheng; Ning, Jing; Zhou, Hongmei; Pan, Jie; Yang, Guoshan

    2016-01-01

    A set of fluence-to-dose conversion coefficients has been calculated for neutrons with energies <20 MeV using a developed voxel mouse model and Monte Carlo N-particle code (MCNP), for the purpose of neutron radiation effect evaluation. The calculation used 37 monodirectional monoenergetic neutron beams in the energy range 10−9 MeV to 20 MeV, under five different source irradiation configurations: left lateral, right lateral, dorsal–ventral, ventral–dorsal, and isotropic. Neutron fluence-to-dose conversion coefficients for selected organs of the body were presented in the paper, and the effect of irradiation geometry conditions, neutron energy and the organ location on the organ dose was discussed. The results indicated that neutron dose conversion coefficients clearly show sensitivity to irradiation geometry at neutron energy below 1 MeV. PMID:26661852

  20. Calculation of the absorbed dose and dose equivalent induced by medium energy neutrons and protons and comparison with experiment

    NASA Technical Reports Server (NTRS)

    Armstrong, T. W.; Bishop, B. L.

    1972-01-01

    Monte Carlo calculations have been carried out to determine the absorbed dose and dose equivalent for 592-MeV protons incident on a cylindrical phantom and for neutrons from 580-MeV proton-Be collisions incident on a semi-infinite phantom. For both configurations, the calculated depth dependence of the absorbed dose is in good agreement with experimental data.

  1. Preliminary On-Orbit Neutron Dose Equivalent and Energy Spectrum Results from the ISS-RAD Fast Neutron Detector (FND)

    NASA Technical Reports Server (NTRS)

    Semones, Edward; Leitgab, Martin

    2016-01-01

    The ISS-RAD instrument was activated on ISS on February 1st, 2016. Integrated in ISS-RAD, the Fast Neutron Detector (FND) performs, for the first time on ISS, routine and precise direct neutron measurements between 0.5 and 8 MeV. Preliminary results for neutron dose equivalent and neutron flux energy distributions from online/on-board algorithms and offline ground analyses will be shown, along with comparisons to simulated data and previously measured neutron spectral data. On-orbit data quality and pre-launch analysis validation results will be discussed as well.

  2. The use of passive personal neutron dosemeters to determine the neutron dose equivalent component of radiation fields in spacecraft.

    PubMed

    Bartlett, D T; Hager, L G; Tanner, R J

    2004-01-01

    For the altitude range and inclination of the International Space Station (ISS), secondary neutrons can be a major contributor to dose equivalent inside a spacecraft. The exact proportion is very dependent on the amount of shielding of the primary galactic cosmic radiation and trapped particles, but is likely to lie in the range of 10-50%. Personal neutron dosemeters of simple design, processed using simple techniques developed for personal dosimetry, may be used to estimate this neutron component. PMID:15353682

  3. High-dose neutron irradiation performance of dielectric mirrors

    SciTech Connect

    Nimishakavi Anantha Phani Kiran Kumar; Leonard, Keith J.; Jellison, Jr., Gerald Earle; Snead, Lance Lewis

    2015-05-01

    The study presents the high-dose behavior of dielectric mirrors specifically engineered for radiation-tolerance: alternating layers of Al2O3/SiO2 and HfO2/SiO2 were grown on sapphire substrates and exposed to neutron doses of 1 and 4 dpa at 458 10K in the High Flux Isotope Reactor (HFIR). In comparison to previously reported results, these higher doses of 1 and 4 dpa results in a drastic drop in optical reflectance, caused by a failure of the multilayer coating. HfO2/SiO2 mirrors failed completely when exposed to 1 dpa, whereas the reflectance of Al2O3/SiO2 mirrors reduced to 44%, eventually failing at 4 dpa. Transmission electron microscopy (TEM) observation of the Al2O3/SiO2 specimens showed SiO2 layer defects which increases size with irradiation dose. The typical size of each defect was 8 nm in 1 dpa and 42 nm in 4 dpa specimens. Buckling type delamination of the interface between the substrate and first layer was typically observed in both 1 and 4 dpa HfO2/SiO2 specimens. Composition changes across the layers were measured in high resolution scanning-TEM mode using energy dispersive spectroscopy. A significant interdiffusion between the film layers was observed in Al2O3/SiO2 mirror, though less evident in HfO2/SiO2 system. Lastly, the ultimate goal of this work is the provide insight into the radiation-induced failure mechanisms of these mirrors.

  4. High-dose neutron irradiation performance of dielectric mirrors

    DOE PAGESBeta

    Nimishakavi Anantha Phani Kiran Kumar; Leonard, Keith J.; Jellison, Jr., Gerald Earle; Snead, Lance Lewis

    2015-05-01

    The study presents the high-dose behavior of dielectric mirrors specifically engineered for radiation-tolerance: alternating layers of Al2O3/SiO2 and HfO2/SiO2 were grown on sapphire substrates and exposed to neutron doses of 1 and 4 dpa at 458 10K in the High Flux Isotope Reactor (HFIR). In comparison to previously reported results, these higher doses of 1 and 4 dpa results in a drastic drop in optical reflectance, caused by a failure of the multilayer coating. HfO2/SiO2 mirrors failed completely when exposed to 1 dpa, whereas the reflectance of Al2O3/SiO2 mirrors reduced to 44%, eventually failing at 4 dpa. Transmission electron microscopymore » (TEM) observation of the Al2O3/SiO2 specimens showed SiO2 layer defects which increases size with irradiation dose. The typical size of each defect was 8 nm in 1 dpa and 42 nm in 4 dpa specimens. Buckling type delamination of the interface between the substrate and first layer was typically observed in both 1 and 4 dpa HfO2/SiO2 specimens. Composition changes across the layers were measured in high resolution scanning-TEM mode using energy dispersive spectroscopy. A significant interdiffusion between the film layers was observed in Al2O3/SiO2 mirror, though less evident in HfO2/SiO2 system. Lastly, the ultimate goal of this work is the provide insight into the radiation-induced failure mechanisms of these mirrors.« less

  5. Evaluation of the neutron spectrum and dose assessment around the venus reactor.

    PubMed

    Coeck, Michèle; Vermeersch, Fernand; Vanhavere, Filip

    2005-01-01

    An assessment of the neutron field near the VENUS reactor is made in order to evaluate the neutron dose to the operators, particularly in an area near the reactor shielding and in the control room. Therefore, a full MCNPX model of the shielding geometry was developed. The source term used in the simulation is derived from a criticality calculation done beforehand. Calculations are compared to routine neutron dose rate measurements and show good agreement. The MCNPX model developed easily allows core adaptations in order to evaluate the effect of future core configuration on the neutron dose to the operators. PMID:16381686

  6. Monte Carlo Calculations of Selected Dose Components in a Head Model for Boron Neutron Capture Therapy

    NASA Astrophysics Data System (ADS)

    Tymińska, Katarzyna

    2007-01-01

    Boron Neutron Capture Therapy is a very promising form of cancer therapy, consisting in irradiating a stable isotope of boron (10B) concentrated in tumor cells with a low energy neutron beam. This technique makes it possible to destroy tumor cells, leaving healthy tissues practically unaffected. In order to carry out the therapy in the proper way, the proper range of the neutron beam energy has to be chosen. In this paper we present the results of the calculations, using the MCNP code, aiming at studying the energetic dependence of the absorbed dose from the neutron capture reaction on boron (the therapeutic dose), and hydrogen and nitrogen (the injuring dose).

  7. Neutron and gamma dose and spectra measurements on the Little Boy replica

    SciTech Connect

    Hoots, S.; Wadsworth, D.

    1984-06-01

    The radiation-measurement team of the Weapons Engineering Division at Lawrence Livermore National Laboratory (LLNL) measured neutron and gamma dose and spectra on the Little Boy replica at Los Alamos National Laboratory (LANL) in April 1983. This assembly is a replica of the gun-type atomic bomb exploded over Hiroshima in 1945. These measurements support the National Academy of Sciences Program to reassess the radiation doses due to atomic bomb explosions in Japan. Specifically, the following types of information were important: neutron spectra as a function of geometry, gamma to neutron dose ratios out to 1.5 km, and neutron attenuation in the atmosphere. We measured neutron and gamma dose/fission from close-in to a kilometer out, and neutron and gamma spectra at 90 and 30/sup 0/ close-in. This paper describes these measurements and the results. 12 references, 13 figures, 5 tables.

  8. Genetic effects induced by neutrons in Drosophila melanogaster I. Determination of absorbed dose.

    PubMed

    Delfin, A; Paredes, L C; Zambrano, F; Guzmán-Rincón, J; Ureña-Nuñez, F

    2001-12-01

    A method to obtain the absorbed dose in Drosophila melanogaster irradiated in the thermal column facility of the Triga Mark III Reactor has been developed. The method is based on the measurements of neutron activation of gold foils produced by neutron capture to obtain the neutron fluxes. These fluxes, combined with the calculations of kinetic energy released per unit mass, enables one to obtain the absorbed doses in Drosophila melanogaster. PMID:11761104

  9. Morphological transformation of Syrian hamster embryo cells by low doses of fission neutrons delivered at different dose rates

    SciTech Connect

    Jones, C.A.; Sedita, B.A. ); Hill, C.K. . Cancer Research Lab.); Elkind, M.M. . Dept. of Radiology and Radiation Biology)

    1991-01-01

    Both induction of cell transformation and killing were examined with Syrian hamster embryo (SHE) fibroblasts exposed to low doses of JANUS fission-spectrum neutrons delivered at high (10.3 cGy/min) and low (0.43 and 0.086 cGy/min) dose rates. Second-passage cells were irradiated in mass cultures, then cloned over feeder cells. Morphologically transformed colonies were identified 8-10 days later. Cell killing was independent of dose rate, but the yield of transformation was greater after low-dose-rate irradiations. Decreasing the neutron dose-rate from 10.3 to 0.086 cGy/min resulted in a two- to threefold increase in the yield of transformation for neutron exposures below 50 cGy, and enhancement which was consistently observed in repetitive experiments in different radiosensitive SHE cell preparations. 43 refs., 5 figs., 1 tab.

  10. Implementation of an Analytical Model for Leakage Neutron Equivalent Dose in a Proton Radiotherapy Planning System

    PubMed Central

    Eley, John; Newhauser, Wayne; Homann, Kenneth; Howell, Rebecca; Schneider, Christopher; Durante, Marco; Bert, Christoph

    2015-01-01

    Equivalent dose from neutrons produced during proton radiotherapy increases the predicted risk of radiogenic late effects. However, out-of-field neutron dose is not taken into account by commercial proton radiotherapy treatment planning systems. The purpose of this study was to demonstrate the feasibility of implementing an analytical model to calculate leakage neutron equivalent dose in a treatment planning system. Passive scattering proton treatment plans were created for a water phantom and for a patient. For both the phantom and patient, the neutron equivalent doses were small but non-negligible and extended far beyond the therapeutic field. The time required for neutron equivalent dose calculation was 1.6 times longer than that required for proton dose calculation, with a total calculation time of less than 1 h on one processor for both treatment plans. Our results demonstrate that it is feasible to predict neutron equivalent dose distributions using an analytical dose algorithm for individual patients with irregular surfaces and internal tissue heterogeneities. Eventually, personalized estimates of neutron equivalent dose to organs far from the treatment field may guide clinicians to create treatment plans that reduce the risk of late effects. PMID:25768061

  11. Implementation of an analytical model for leakage neutron equivalent dose in a proton radiotherapy planning system.

    PubMed

    Eley, John; Newhauser, Wayne; Homann, Kenneth; Howell, Rebecca; Schneider, Christopher; Durante, Marco; Bert, Christoph

    2015-01-01

    Equivalent dose from neutrons produced during proton radiotherapy increases the predicted risk of radiogenic late effects. However, out-of-field neutron dose is not taken into account by commercial proton radiotherapy treatment planning systems. The purpose of this study was to demonstrate the feasibility of implementing an analytical model to calculate leakage neutron equivalent dose in a treatment planning system. Passive scattering proton treatment plans were created for a water phantom and for a patient. For both the phantom and patient, the neutron equivalent doses were small but non-negligible and extended far beyond the therapeutic field. The time required for neutron equivalent dose calculation was 1.6 times longer than that required for proton dose calculation, with a total calculation time of less than 1 h on one processor for both treatment plans. Our results demonstrate that it is feasible to predict neutron equivalent dose distributions using an analytical dose algorithm for individual patients with irregular surfaces and internal tissue heterogeneities. Eventually, personalized estimates of neutron equivalent dose to organs far from the treatment field may guide clinicians to create treatment plans that reduce the risk of late effects. PMID:25768061

  12. SU-E-T-566: Neutron Dose Cloud Map for Compact ProteusONE Proton Therapy

    SciTech Connect

    Syh, J; Patel, B; Syh, J; Rosen, L; Wu, H

    2015-06-15

    Purpose: To establish the base line of neutron cloud during patient treatment in our new compact Proteus One proton pencil beam scanning (PBS) system with various beam delivery gantry angles, with or without range shifter (RS) at different body sites. Pencil beam scanning is an emerging treatment technique, for the concerns of neutron exposure, this study is to evaluate the neutron dose equivalent per given delivered dose under various treatment conditions at our proton therapy center. Methods: A wide energy neutron dose equivalent detector (SWENDI-II, Thermo Scientific, MA) was used for neutron dose measurements. It was conducted in the proton therapy vault during beam was on. The measurement location was specifically marked in order to obtain the equivalent dose of neutron activities (H). The distances of 100, 150 and 200 cm at various locations are from the patient isocenter. The neutron dose was measured of proton energy layers, # of spots, maximal energy range, modulation width, field radius, gantry angle, snout position and delivered dose in CGE. The neutron dose cloud is reproducible and is useful for the future reference. Results: When distance increased the neutron equivalent dose (H) reading did not decrease rapidly with changes of proton energy range, modulation width or spot layers. For cranial cases, the average mSv/CGE was about 0.02 versus 0.032 for pelvis cases. RS will induce higher H to be 0.10 mSv/CGE in average. Conclusion: From this study, neutron per dose ratio (mSv/CGE) slightly depends upon various treatment parameters for pencil beams. For similar treatment conditions, our measurement demonstrates this value for pencil beam scanning beam has lowest than uniform scanning or passive scattering beam with a factor of 5. This factor will be monitored continuously for other upcoming treatment parameters in our facility.

  13. Development of a dual phantom technique for measuring the fast neutron component of dose in boron neutron capture therapy

    SciTech Connect

    Sakurai, Yoshinori Tanaka, Hiroki; Kondo, Natsuko; Kinashi, Yuko; Suzuki, Minoru; Masunaga, Shinichiro; Ono, Koji; Maruhashi, Akira

    2015-11-15

    Purpose: Research and development of various accelerator-based irradiation systems for boron neutron capture therapy (BNCT) is underway throughout the world. Many of these systems are nearing or have started clinical trials. Before the start of treatment with BNCT, the relative biological effectiveness (RBE) for the fast neutrons (over 10 keV) incident to the irradiation field must be estimated. Measurements of RBE are typically performed by biological experiments with a phantom. Although the dose deposition due to secondary gamma rays is dominant, the relative contributions of thermal neutrons (below 0.5 eV) and fast neutrons are virtually equivalent under typical irradiation conditions in a water and/or acrylic phantom. Uniform contributions to the dose deposited from thermal and fast neutrons are based in part on relatively inaccurate dose information for fast neutrons. This study sought to improve the accuracy in the dose estimation for fast neutrons by using two phantoms made of different materials in which the dose components can be separated according to differences in the interaction cross sections. The development of a “dual phantom technique” for measuring the fast neutron component of dose is reported. Methods: One phantom was filled with pure water. The other phantom was filled with a water solution of lithium hydroxide (LiOH) capitalizing on the absorbing characteristics of lithium-6 (Li-6) for thermal neutrons. Monte Carlo simulations were used to determine the ideal mixing ratio of Li-6 in LiOH solution. Changes in the depth dose distributions for each respective dose component along the central beam axis were used to assess the LiOH concentration at the 0, 0.001, 0.01, 0.1, 1, and 10 wt. % levels. Simulations were also performed with the phantom filled with 10 wt. % {sup 6}LiOH solution for 95%-enriched Li-6. A phantom was constructed containing 10 wt. % {sup 6}LiOH solution based on the simulation results. Experimental characterization of the

  14. Dose evaluation of boron neutron capture synovectomy using the THOR epithermal neutron beam: a feasibility study.

    PubMed

    Wu, Jay; Chang, Shu-Jun; Chuang, Keh-Shih; Hsueh, Yen-Wan; Yeh, Kuan-Chuan; Wang, Jeng-Ning; Tsai, Wen-Pin

    2007-03-21

    Rheumatoid arthritis is one of the most common epidemic diseases in the world. For some patients, the treatment with steroids or nonsteroidal anti-inflammatory drugs is not effective, thus necessitating physical removal of the inflamed synovium. Alternative approaches other than surgery will provide appropriate disease control and improve the patient's quality of life. In this research, we evaluated the feasibility of conducting boron neutron capture synovectomy (BNCS) with the Tsing Hua open-pool reactor (THOR) as a neutron source. Monte Carlo simulations were performed with arthritic joint models and uncertainties were within 5%. The collimator, reflector and boron concentration were optimized to reduce the treatment time and normal tissue doses. For the knee joint, polyethylene with 40%-enriched Li(2)CO(3) was used as the collimator material, and a rear reflector of 15 cm thick graphite and side reflector of 10 cm thick graphite were chosen. The optimized treatment time was 5.4 min for the parallel-opposed irradiation. For the finger joint, polymethyl methacrylate was used as the reflector material. The treatment time can be reduced to 3.1 min, while skin and bone doses can be effectively reduced by approximately 9% compared with treatment using the graphite reflector. We conclude that using THOR as a treatment modality for BNCS could be a feasible alternative in clinical practice. PMID:17327660

  15. Dose evaluation of boron neutron capture synovectomy using the THOR epithermal neutron beam: a feasibility study

    NASA Astrophysics Data System (ADS)

    Wu, Jay; Chang, Shu-Jun; Chuang, Keh-Shih; Hsueh, Yen-Wan; Yeh, Kuan-Chuan; Wang, Jeng-Ning; Tsai, Wen-Pin

    2007-03-01

    Rheumatoid arthritis is one of the most common epidemic diseases in the world. For some patients, the treatment with steroids or nonsteroidal anti-inflammatory drugs is not effective, thus necessitating physical removal of the inflamed synovium. Alternative approaches other than surgery will provide appropriate disease control and improve the patient's quality of life. In this research, we evaluated the feasibility of conducting boron neutron capture synovectomy (BNCS) with the Tsing Hua open-pool reactor (THOR) as a neutron source. Monte Carlo simulations were performed with arthritic joint models and uncertainties were within 5%. The collimator, reflector and boron concentration were optimized to reduce the treatment time and normal tissue doses. For the knee joint, polyethylene with 40%-enriched Li2CO3 was used as the collimator material, and a rear reflector of 15 cm thick graphite and side reflector of 10 cm thick graphite were chosen. The optimized treatment time was 5.4 min for the parallel-opposed irradiation. For the finger joint, polymethyl methacrylate was used as the reflector material. The treatment time can be reduced to 3.1 min, while skin and bone doses can be effectively reduced by approximately 9% compared with treatment using the graphite reflector. We conclude that using THOR as a treatment modality for BNCS could be a feasible alternative in clinical practice.

  16. Monte Carlo calculations of epithermal and fast neutron dose in a human head model for Boron Neutron Capture Therapy

    NASA Astrophysics Data System (ADS)

    Tyminska, Katarzyna

    2008-01-01

    Boron Neutron Capture Therapy is a very promising form of cancer therapy, consisting in irradiating a stable isotope of boron (10B) concentrated in tumor cells with a low energy neutron beam. This technique makes it possible to destroy tumor cells, leaving healthy tissues practically unaffected. In order to carry out the therapy in the proper way, the proper range of the neutron beam energy has to be chosen. In this paper we continue the earlier started calculations of the optimum energy range for BNCT, taking into account the absorbed dose from fast neutrons.

  17. Monte Carlo simulation of the operational quantities at the realistic mixed neutron-photon radiation fields CANEL and SIGMA.

    PubMed

    Lacoste, V; Gressier, V

    2007-01-01

    The Institute for Radiological Protection and Nuclear Safety owns two facilities producing realistic mixed neutron-photon radiation fields, CANEL, an accelerator driven moderator modular device, and SIGMA, a graphite moderated americium-beryllium assembly. These fields are representative of some of those encountered at nuclear workplaces, and the corresponding facilities are designed and used for calibration of various instruments, such as survey meters, personal dosimeters or spectrometric devices. In the framework of the European project EVIDOS, irradiations of personal dosimeters were performed at CANEL and SIGMA. Monte Carlo calculations were performed to estimate the reference values of the personal dose equivalent at both facilities. The Hp(10) values were calculated for three different angular positions, 0 degrees, 45 degrees and 75 degrees, of an ICRU phantom located at the position of irradiation. PMID:17578872

  18. Dose calculation from a D-D-reaction-based BSA for boron neutron capture synovectomy.

    PubMed

    Abdalla, Khalid; Naqvi, A A; Maalej, N; Elshahat, B

    2010-01-01

    Monte Carlo simulations were carried out to calculate dose in a knee phantom from a D-D-reaction-based Beam Shaping Assembly (BSA) for Boron Neutron Capture Synovectomy (BNCS). The BSA consists of a D(d,n)-reaction-based neutron source enclosed inside a polyethylene moderator and graphite reflector. The polyethylene moderator and graphite reflector sizes were optimized to deliver the highest ratio of thermal to fast neutron yield at the knee phantom. Then neutron dose was calculated at various depths in a knee phantom loaded with boron and therapeutic ratios of synovium dose/skin dose and synovium dose/bone dose were determined. Normalized to same boron loading in synovium, the values of the therapeutic ratios obtained in the present study are 12-30 times higher than the published values. PMID:19828325

  19. Neutron fluence-to-dose conversion coefficients for embryo and fetus.

    PubMed

    Chen, Jing; Meyerhof, Dorothy; Vlahovich, Slavica

    2004-01-01

    A problem of concern in radiation protection is the exposure of pregnant women to ionising radiation, because of the high radiosensitivity of the embryo and fetus. External neutron exposure is of concern when pregnant women travel by aeroplane. Dose assessments for neutrons frequently rely on fluence-to-dose conversion coefficients. While neutron fluence-to-dose conversion coefficients for adults are recommended in International Commission on Radiological Protection publications and International Commission on Radiological Units and Measurements reports, conversion coefficients for embryos and fetuses are not given in the publications. This study undertakes Monte Carlo calculations to determine the mean absorbed doses to the embryo and fetus when the mother is exposed to neutron fields. A new set of mathematical models for the embryo and fetus has been developed at Health Canada and is used together with mathematical phantoms of a pregnant female developed at Oak Ridge National Laboratory. Monoenergetic neutrons from 1 eV to 10 MeV are considered in this study. The irradiation geometries include antero-posterior (AP), postero-anterior (PA), lateral (LAT), rotational (ROT) and isotropic (ISO) geometries. At each of these standard irradiation geometries, absorbed doses to the fetal brain and body are calculated; for the embryo at 8 weeks and the fetus at 3, 6 or 9 months. Neutron fluence-to-absorbed dose conversion coefficients are derived for the four age groups. Neutron fluence-to-equivalent dose conversion coefficients are given for the AP irradiations which yield the highest radiation dose to the fetal body in the neutron energy range considered here. The results indicate that for neutrons <10 MeV more protection should be given to pregnant women in the first trimester due to the higher absorbed dose per unit neutron fluence to the fetus. PMID:15353732

  20. Peripheral photon and neutron doses from prostate cancer external beam irradiation.

    PubMed

    Bezak, Eva; Takam, Rundgham; Marcu, Loredana G

    2015-12-01

    Peripheral photon and neutron doses from external beam radiotherapy (EBRT) are associated with increased risk of carcinogenesis in the out-of-field organs; thus, dose estimations of secondary radiation are imperative. Peripheral photon and neutron doses from EBRT of prostate carcinoma were measured in Rando phantom. (6)LiF:Mg,Cu,P and (7)LiF:Mg,Cu,P glass-rod thermoluminescence dosemeters (TLDs) were inserted in slices of a Rando phantom followed by exposure to 80 Gy with 18-MV photon four-field 3D-CRT technique. The TLDs were calibrated using 6- and 18-MV X-ray beam. Neutron dose equivalents measured with CR-39 etch-track detectors were used to derive readout-to-neutron dose conversion factor for (6)LiF:Mg,Cu,P TLDs. Average neutron dose equivalents per 1 Gy of isocentre dose were 3.8±0.9 mSv Gy(-1) for thyroid and 7.0±5.4 mSv Gy(-1) for colon. For photons, the average dose equivalents per 1 Gy of isocentre dose were 0.2±0.1 mSv Gy(-1) for thyroid and 8.1±9.7 mSv Gy(-1) for colon. Paired (6)LiF:Mg,Cu,P and (7)LiF:Mg,Cu,P TLDs can be used to measure photon and neutron doses simultaneously. Organs in close proximity to target received larger doses from photons than those from neutrons whereas distally located organs received higher neutron versus photon dose. PMID:25564673

  1. Prediction of in-phantom dose distribution using in-air neutron beam characteristics for BNCS

    SciTech Connect

    Verbeke, Jerome M.

    1999-12-14

    A monoenergetic neutron beam simulation study is carried out to determine the optimal neutron energy range for treatment of rheumatoid arthritis using radiation synovectomy. The goal of the treatment is the ablation of diseased synovial membranes in joints, such as knees and fingers. This study focuses on human knee joints. Two figures-of-merit are used to measure the neutron beam quality, the ratio of the synovium absorbed dose to the skin absorbed dose, and the ratio of the synovium absorbed dose to the bone absorbed dose. It was found that (a) thermal neutron beams are optimal for treatment, (b) similar absorbed dose rates and therapeutic ratios are obtained with monodirectional and isotropic neutron beams. Computation of the dose distribution in a human knee requires the simulation of particle transport from the neutron source to the knee phantom through the moderator. A method was developed to predict the dose distribution in a knee phantom from any neutron and photon beam spectra incident on the knee. This method was revealed to be reasonably accurate and enabled one to reduce by a factor of 10 the particle transport simulation time by modeling the moderator only.

  2. Secondary Neutron Doses to Pediatric Patients During Intracranial Proton Therapy: Monte Carlo Simulation of the Neutron Energy Spectrum and its Organ Doses.

    PubMed

    Matsumoto, Shinnosuke; Koba, Yusuke; Kohno, Ryosuke; Lee, Choonsik; Bolch, Wesley E; Kai, Michiaki

    2016-04-01

    Proton therapy has the physical advantage of a Bragg peak that can provide a better dose distribution than conventional x-ray therapy. However, radiation exposure of normal tissues cannot be ignored because it is likely to increase the risk of secondary cancer. Evaluating secondary neutrons generated by the interaction of the proton beam with the treatment beam-line structure is necessary; thus, performing the optimization of radiation protection in proton therapy is required. In this research, the organ dose and energy spectrum were calculated from secondary neutrons using Monte Carlo simulations. The Monte Carlo code known as the Particle and Heavy Ion Transport code System (PHITS) was used to simulate the transport proton and its interaction with the treatment beam-line structure that modeled the double scattering body of the treatment nozzle at the National Cancer Center Hospital East. The doses of the organs in a hybrid computational phantom simulating a 5-y-old boy were calculated. In general, secondary neutron doses were found to decrease with increasing distance to the treatment field. Secondary neutron energy spectra were characterized by incident neutrons with three energy peaks: 1×10, 1, and 100 MeV. A block collimator and a patient collimator contributed significantly to organ doses. In particular, the secondary neutrons from the patient collimator were 30 times higher than those from the first scatter. These results suggested that proactive protection will be required in the design of the treatment beam-line structures and that organ doses from secondary neutrons may be able to be reduced. PMID:26910030

  3. Flux and dose transmission through concrete of neutrons from proton induced reactions on various target elements

    NASA Astrophysics Data System (ADS)

    Maiti, Moumita; Nandy, Maitreyee; Roy, S. N.; Sarkar, P. K.

    2004-12-01

    Simple empirical expressions for transmission of flux and dose through concrete are presented for neutrons from proton induced reactions. For this purpose the neutron emission from different targets in proton induced reactions in the energy range 25-200 MeV have been considered. The calculated effective dose outside a concrete shield shows overall good agreement with the effective dose estimated from measured neutron flux in the framework of the Moyer model. The calculated effective attenuation length shows a rising trend with incident proton energy and shield thickness.

  4. Mutations induced in Tradescantia by small doses of X-rays and neutrons - Analysis of dose-response curves.

    NASA Technical Reports Server (NTRS)

    Sparrow, A. H.; Underbrink, A. G.; Rossi, H. H.

    1972-01-01

    Dose-response curves for pink somatic mutations in Tradescantia stamen hairs were analyzed after neutron and X-ray irradiation with doses ranging from a fraction of a rad to the region of saturation. The dose-effect relation for neutrons indicates a linear dependence from 0.01 to 8 rads; between 0.25 and 5 rads, a linear dependence is indicated for X-rays also. As a consequence the relative biological effectiveness reaches a constant value (about 50) at low doses. The observations are in good agreement with the predictions of the theory of dual radiation action and support its interpretation of the effects of radiation on higher organisms. The doubling dose of X-rays was found to be nearly 1 rad.

  5. Experimental imaging and profiling of absorbed dose in phantoms exposed to epithermal neutron beams for neutron capture therapy

    SciTech Connect

    Gambarini, G.; Colombi, C.

    2003-08-26

    Absorbed-dose images and depth-dose profiles have been measured in a tissue-equivalent phantom exposed to an epithermal neutron beam designed for neutron capture therapy. The spatial distribution of absorbed dose has been measured by means of gel dosimeters, imaged with optical analysis. From differential measurements with gels having different isotopic composition, the contributions of all the components of the neutron field have been separated. This separation is important, owing to the different biological effectiveness of the various kinds of emitted radiation. The doses coming from the reactions 1H(n,{gamma})2H and 14N(n,p)14C and the fast-neutron dose have been imaged. Moreover, a volume simulating a tumour with accumulation of 10B and/or 157Gd has been incorporated in the phantom and the doses due to the reactions with such isotopes have been imaged and profiled too. The results have been compared with those obtained with other experimental techniques and the agreement is very satisfactory.

  6. Monitor units are not predictive of neutron dose for high-energy IMRT

    PubMed Central

    2012-01-01

    Background Due to the substantial increase in beam-on time of high energy intensity-modulated radiotherapy (>10 MV) techniques to deliver the same target dose compared to conventional treatment techniques, an increased dose of scatter radiation, including neutrons, is delivered to the patient. As a consequence, an increase in second malignancies may be expected in the future with the application of intensity-modulated radiotherapy. It is commonly assumed that the neutron dose equivalent scales with the number of monitor units. Methods Measurements of neutron dose equivalent were performed for an open and an intensity-modulated field at four positions: inside and outside of the treatment field at 0.2 cm and 15 cm depth, respectively. Results It was shown that the neutron dose equivalent, which a patient receives during an intensity-modulated radiotherapy treatment, does not scale with the ratio of applied monitor units relative to an open field irradiation. Outside the treatment volume at larger depth 35% less neutron dose equivalent is delivered than expected. Conclusions The predicted increase of second cancer induction rates from intensity-modulated treatment techniques can be overestimated when the neutron dose is simply scaled with monitor units. PMID:22883384

  7. Monte Carlo calculation of skyshine'' neutron dose from ALS (Advanced Light Source)

    SciTech Connect

    Moin-Vasiri, M.

    1990-06-01

    This report discusses the following topics on skyshine'' neutron dose from ALS: Sources of radiation; ALS modeling for skyshine calculations; MORSE Monte-Carlo; Implementation of MORSE; Results of skyshine calculations from storage ring; and Comparison of MORSE shielding calculations.

  8. Nominal effective radiation doses delivered during clinical trials of boron neutron capture therapy

    SciTech Connect

    Capala, J.; Diaz, A.Z.; Chanana, A.D.

    1997-12-31

    Boron neutron capture therapy (BNCT) is a binary system that, in theory, should selectively deliver lethal, high linear energy transfer (LET) radiation to tumor cells dispersed within normal tissues. It is based on the nuclear reaction 10-B(n, {alpha})7-Li, which occurs when the stable nucleus of boron-10 captures a thermal neutron. Due to the relatively high cross-section of the 10-B nucleus for thermal neutron capture and short ranges of the products of this reaction, tumor cells in the volume exposed to thermal neutrons and containing sufficiently high concentration of 10-B would receive a much higher radiation dose than the normal cells contained within the exposed volume. Nevertheless, radiation dose deposited in normal tissue by gamma and fast neutron contamination of the neutron beam, as well as neutron capture in nitrogen, 14-N(n,p)14-C, hydrogen, 1-H(n,{gamma})2-H, and in boron present in blood and normal cells, limits the dose that can be delivered to tumor cells. It is, therefore, imperative for the success of the BNCT the dosed delivered to normal tissues be accurately determined in order to optimize the irradiation geometry and to limit the volume of normal tissue exposed to thermal neutrons. These are the major objectives of BNCT treatment planning.

  9. Absorbed Dose Rates in Tissue from Prompt Gamma Emissions from Near-thermal Neutron Absorption.

    PubMed

    Schwahn, Scott O

    2015-10-01

    Prompt gamma emission data from the International Atomic Energy Agency's Prompt Gamma-ray Neutron Activation Analysis database are analyzed to determine the absorbed dose rates in tissue to be expected when natural elements are exposed in a near-thermal neutron environment. PMID:26313590

  10. Absorbed dose rates in tissue from prompt gamma emissions from near-thermal neutron absorption

    DOE PAGESBeta

    Schwahn, Scott O.

    2015-10-01

    Prompt gamma emission data from the International Atomic Energy Agency s Prompt Gamma-ray Neutron Activation Analysis database are analyzed to determine the absorbed dose rates in tissue to be expected when natural elements are exposed in a near-thermal neutron environment.

  11. Calculation of dose components in head phantom for boron neutron capture therapy.

    PubMed

    da Silva, Ademir X; Crispim, Verginia R

    2002-11-01

    Application of neutrons to cancer treatment has been a subject of considerable clinical and research interest since the discovery of the neutron by Chadwick in 1932 (3). Boron neutron capture therapy (BNCT) is a technique of radiation oncology which is used in treating brain cancer (glioblastoma multiform) or melanoma and that consists of preferentially loading a compound containing 10B into the tumor location, followed by the irradiation of the patient with a beam of neutron. Dose distribution for BNCT is mainly based on Monte Carlo simulations. In this work, the absorbed dose spatial distribution resultant from an idealized neutron beam incident upon ahead phantom is investigated using the Monte Carlo N-particles code, MCNP 4B. The phantom model used is based on the geometry of a circular cylinder on which sits an elliptical cylinder capped by half an ellipsoid representing the neck and head, both filled with tissue-equivalent material. The neutron flux and the contribution of individual absorbed dose components, as a function of depths and of radial distance from the beam axis (dose profiles) in phantom model, is presented and discussed. For the studied beam the maximum thermal neutron flux is at a depth of 2 cm and the maximum gamma dose at a depth of 4 cm. PMID:12622057

  12. Neutron dose equivalent measured at the maze door with various openings for the jaws and MLC

    SciTech Connect

    Krmar, M.; Baucal, M.; Bozic, N.; Jovancevic, N.; Ciraj-Bjelac, O.

    2012-03-15

    Purpose: This study was undertaken to explore the effects of the jaws and the MLC openings on the neutron dose equivalent (DE) at the maze door and neutron flux at the patient plane. Methods: The neutron dose equivalent was measured at the maze entrance door of a 15 MV therapy linear accelerator room. All measurements were performed using various field sizes up to 40 cm x 40 cm. Activation detectors constructed from natural Indium (In) were exposed at Cd envelope to neutrons in order to estimate relative changes of epithermal neutron fluences in the patient plane. Results: Our study showed that the dose equivalent at the maze door is at the highest when the jaw are closed and that maximal jaws opening reduces the DE by more than 20%. The neutron dose equivalent at the maze door measured for radiation fields defined by jaws do not differ significantly from the DE measured when MLC determines the same size radiation field. The epithermal capture reaction rate measured using different jaw openings differs by approximately 10%. When an MLC leaf is inserted into a fixed geometry for one opening of the jaws, an increase of the epithermal neutron capture reaction rate in Indium activation detectors was observed. Conclusions: There is no significant difference in the neutron DE when MLC defines radiation field instead of jaws. This leads to the conclusion that the overall number of neutrons remains similar and it does not depend on how primary photon beam was stopped--by the jaws or the MLC. An increase of the fast neutron capture reaction rate when MLC leaves are inserted probably originates from the neutron scattering.

  13. Estimation of absorbed dose in the covering skin of human melanoma treated by neutron capture therapy

    SciTech Connect

    Fukuda, H.; Kobayashi, T.; Hiratsuka, J.; Karashima, H.; Honda, C.; Yamamura, K.; Ichihashi, M.; Kanda, K.; Mishima, Y. )

    1989-07-01

    A patient with malignant melanoma was treated by thermal neutron capture therapy using 10B-paraboronophenylalanine. The compound was injected subcutaneously into ten locations in the tumor-surrounding skin, and the patient was then irradiated with thermal neutrons from the Musashi Reactor at reactor power of 100 KW and neutron flux of 1.2 X 10(9) n/cm{sup 2}/s. Total absorbed dose to the skin was 11.7-12.5 Gy in the radiation field. The dose equivalents of these doses were estimated as 21.5 and 24.4 Sv, respectively. Early skin reaction after irradiation was checked from day 1 to day 60. The maximum and mean skin scores were 2.0 and 1.5, respectively, and the therapy was safely completed as far as skin reaction was concerned. Some factors influencing the absorbed dose and dose equivalent to the skin are discussed.

  14. Validation of dose planning calculations for boron neutron capture therapy using cylindrical and anthropomorphic phantoms

    NASA Astrophysics Data System (ADS)

    Koivunoro, Hanna; Seppälä, Tiina; Uusi-Simola, Jouni; Merimaa, Katja; Kotiluoto, Petri; Serén, Tom; Kortesniemi, Mika; Auterinen, Iiro; Savolainen, Sauli

    2010-06-01

    In this paper, the accuracy of dose planning calculations for boron neutron capture therapy (BNCT) of brain and head and neck cancer was studied at the FiR 1 epithermal neutron beam. A cylindrical water phantom and an anthropomorphic head phantom were applied with two beam aperture-to-surface distances (ASD). The calculations using the simulation environment for radiation application (SERA) treatment planning system were compared to neutron activation measurements with Au and Mn foils, photon dose measurements with an ionization chamber and the reference simulations with the MCNP5 code. Photon dose calculations using SERA differ from the ionization chamber measurements by 2-13% (disagreement increased along the depth in the phantom), but are in agreement with the MCNP5 calculations within 2%. The 55Mn(n,γ) and 197Au(n,γ) reaction rates calculated using SERA agree within 10% and 8%, respectively, with the measurements and within 5% with the MCNP5 calculations at depths >0.5 cm from the phantom surface. The 55Mn(n,γ) reaction rate represents the nitrogen and boron depth dose within 1%. Discrepancy in the SERA fast neutron dose calculation (of up to 37%) is corrected if the biased fast neutron dose calculation option is not applied. Reduced voxel cell size (<=0.5 cm) improves the SERA calculation accuracy on the phantom surface. Despite the slight overestimation of the epithermal neutrons and underestimation of the thermal neutrons in the beam model, neutron calculation accuracy with the SERA system is sufficient for reliable BNCT treatment planning with the two studied treatment distances. The discrepancy between measured and calculated photon dose remains unsatisfactorily high for depths >6 cm from the phantom surface. Increasing discrepancy along the phantom depth is expected to be caused by the inaccurately determined effective point of the ionization chamber.

  15. Thick activation detectors for neutron spectrometry using different unfolding methods: sensitivity analysis and dose calculation.

    PubMed

    Medkour Ishak-Boushaki, Ghania; Boukeffoussa, Khelifa; Idiri, Zahir; Allab, Malika

    2012-03-01

    This paper discusses the use of threshold detectors of extended sizes for low intensity neutron fields' characterization. The detectors were tested by the measurement of the neutron spectrum of an (241)Am-Be source. Integral quantities characterizing the neutron field, required for radiological protection, have been derived by unfolding the measured data. A good agreement is achieved between the obtained results and those deduced using Bonner spheres. In addition, a sensitivity analysis of the results to the deconvolution procedure is given. PMID:22119561

  16. Calculation of Ambient (H*(10)) and Personal (Hp(10)) Dose Equivalent from a 252Cf Neutron Source

    SciTech Connect

    Traub, Richard J.

    2010-03-26

    The purpose of this calculation is to calculate the neutron dose factors for the Sr-Cf-3000 neutron source that is located in the 318 low scatter room (LSR). The dose factors were based on the dose conversion factors published in ICRP-21 Appendix 6, and the Ambient dose equivalent (H*(10)) and Personal dose equivalent (Hp(10)) dose factors published in ICRP Publication 74.

  17. Tensile property changes of metals irradiated to low doses with fission, fusion and spallation neutrons

    SciTech Connect

    Heinisch, H.L.; Hamilton, M.L.; Sommer, W.F.; Ferguson, P.D.

    1991-11-01

    Radiation effects due to low doses of spallation neutrons are compared directly to those produced by fission and fusion neutrons. Yield stress changes of pure Cu, alumina-dispersion-strengthened Cu and AISI 316 stainless steel irradiated at 36--55{degrees}C in the Los Alamos Spallation Radiation Effects Facility (LASREF) are compared with earlier results of irradiations at 90{degrees}C using 14 MeV D-T fusion neutrons at the Rotating Target Neutron Source and fission reactor neutrons in the Omega West Reactor. At doses up to 0.04 displacements per atom (dpa), the yield stress changes due to the three quite different neutron spectra correlate well on the basis of dpa in the stainless steel and the Cu alloy. However, in pure Cu, the measured yield stress changes due to spallation neutrons were anomalously small and should be verified by additional irradiations. With the exception of pure Cu, the low dose, low temperature experiments reveal no fundamental differences in radiation hardening by fission, fusion or spallation neutrons when compared on the basis of dpa.

  18. DOSE PROFILE MODELING OF IDAHO NATIONAL LABORATORY’S ACTIVE NEUTRON INTERROGATION TEST FACILITY

    SciTech Connect

    D. L. Chichester; E. H. Seabury; J. M. Zabriskie; J. Wharton; A. J. Caffrey

    2009-06-01

    A new research and development laboratory has been commissioned at Idaho National Laboratory for performing active neutron interrogation research and development. The facility is designed to provide radiation shielding for DT fusion (14.1 MeV) neutron generators (2 x 108 neutrons per second), DD fusion (2.5 MeV) neutron generators (up to 2 x 106 neutrons per second), and 252Cf spontaneous fission neutron sources (6.7 x 107 neutrons per second, 30 micrograms). Shielding at the laboratory is comprised of modular concrete shield blocks 0.76 m thick with tongue-in-groove features to prevent radiation streaming, arranged into one small and one large test vault. The larger vault is designed to allow operation of the DT generator and has walls 3.8 m tall, an entrance maze, and a fully integrated electrical interlock system; the smaller test vault is designed for 252Cf and DD neutron sources and has walls 1.9 m tall and a simple entrance maze. Both analytical calculations and numerical simulations were used in the design process for the building to assess the performance of the shielding walls and to ensure external dose rates are within required facility limits. Dose rate contour plots have been generated for the facility to visualize the effectiveness of the shield wall and entrance maze and to illustrate the spatial profile of the radiation dose field above the facility and the effects of skyshine around the vaults.

  19. The alanine detector in BNCT dosimetry: Dose response in thermal and epithermal neutron fields

    SciTech Connect

    Schmitz, T.; Bassler, N.; Blaickner, M.; Ziegner, M.; Hsiao, M. C.; Liu, Y. H.; Koivunoro, H.; Auterinen, I.; Serén, T.; Kotiluoto, P.; Palmans, H.; Sharpe, P.; Langguth, P.; Hampel, G.

    2015-01-15

    Purpose: The response of alanine solid state dosimeters to ionizing radiation strongly depends on particle type and energy. Due to nuclear interactions, neutron fields usually also consist of secondary particles such as photons and protons of diverse energies. Various experiments have been carried out in three different neutron beams to explore the alanine dose response behavior and to validate model predictions. Additionally, application in medical neutron fields for boron neutron capture therapy is discussed. Methods: Alanine detectors have been irradiated in the thermal neutron field of the research reactor TRIGA Mainz, Germany, in five experimental conditions, generating different secondary particle spectra. Further irradiations have been made in the epithermal neutron beams at the research reactors FiR 1 in Helsinki, Finland, and Tsing Hua open pool reactor in HsinChu, Taiwan ROC. Readout has been performed with electron spin resonance spectrometry with reference to an absorbed dose standard in a {sup 60}Co gamma ray beam. Absorbed doses and dose components have been calculated using the Monte Carlo codes FLUKA and MCNP. The relative effectiveness (RE), linking absorbed dose and detector response, has been calculated using the Hansen and Olsen alanine response model. Results: The measured dose response of the alanine detector in the different experiments has been evaluated and compared to model predictions. Therefore, a relative effectiveness has been calculated for each dose component, accounting for its dependence on particle type and energy. Agreement within 5% between model and measurement has been achieved for most irradiated detectors. Significant differences have been observed in response behavior between thermal and epithermal neutron fields, especially regarding dose composition and depth dose curves. The calculated dose components could be verified with the experimental results in the different primary and secondary particle fields. Conclusions: The

  20. Measurements of the neutron dose equivalent for various radiation qualities, treatment machines and delivery techniques in radiation therapy

    NASA Astrophysics Data System (ADS)

    Hälg, R. A.; Besserer, J.; Boschung, M.; Mayer, S.; Lomax, A. J.; Schneider, U.

    2014-05-01

    In radiation therapy, high energy photon and proton beams cause the production of secondary neutrons. This leads to an unwanted dose contribution, which can be considerable for tissues outside of the target volume regarding the long term health of cancer patients. Due to the high biological effectiveness of neutrons in regards to cancer induction, small neutron doses can be important. This study quantified the neutron doses for different radiation therapy modalities. Most of the reports in the literature used neutron dose measurements free in air or on the surface of phantoms to estimate the amount of neutron dose to the patient. In this study, dose measurements were performed in terms of neutron dose equivalent inside an anthropomorphic phantom. The neutron dose equivalent was determined using track etch detectors as a function of the distance to the isocenter, as well as for radiation sensitive organs. The dose distributions were compared with respect to treatment techniques (3D-conformal, volumetric modulated arc therapy and intensity-modulated radiation therapy for photons; spot scanning and passive scattering for protons), therapy machines (Varian, Elekta and Siemens linear accelerators) and radiation quality (photons and protons). The neutron dose equivalent varied between 0.002 and 3 mSv per treatment gray over all measurements. Only small differences were found when comparing treatment techniques, but substantial differences were observed between the linear accelerator models. The neutron dose equivalent for proton therapy was higher than for photons in general and in particular for double-scattered protons. The overall neutron dose equivalent measured in this study was an order of magnitude lower than the stray dose of a treatment using 6 MV photons, suggesting that the contribution of the secondary neutron dose equivalent to the integral dose of a radiotherapy patient is small.

  1. Measurements of the neutron dose equivalent for various radiation qualities, treatment machines and delivery techniques in radiation therapy.

    PubMed

    Hälg, R A; Besserer, J; Boschung, M; Mayer, S; Lomax, A J; Schneider, U

    2014-05-21

    In radiation therapy, high energy photon and proton beams cause the production of secondary neutrons. This leads to an unwanted dose contribution, which can be considerable for tissues outside of the target volume regarding the long term health of cancer patients. Due to the high biological effectiveness of neutrons in regards to cancer induction, small neutron doses can be important. This study quantified the neutron doses for different radiation therapy modalities. Most of the reports in the literature used neutron dose measurements free in air or on the surface of phantoms to estimate the amount of neutron dose to the patient. In this study, dose measurements were performed in terms of neutron dose equivalent inside an anthropomorphic phantom. The neutron dose equivalent was determined using track etch detectors as a function of the distance to the isocenter, as well as for radiation sensitive organs. The dose distributions were compared with respect to treatment techniques (3D-conformal, volumetric modulated arc therapy and intensity-modulated radiation therapy for photons; spot scanning and passive scattering for protons), therapy machines (Varian, Elekta and Siemens linear accelerators) and radiation quality (photons and protons). The neutron dose equivalent varied between 0.002 and 3 mSv per treatment gray over all measurements. Only small differences were found when comparing treatment techniques, but substantial differences were observed between the linear accelerator models. The neutron dose equivalent for proton therapy was higher than for photons in general and in particular for double-scattered protons. The overall neutron dose equivalent measured in this study was an order of magnitude lower than the stray dose of a treatment using 6 MV photons, suggesting that the contribution of the secondary neutron dose equivalent to the integral dose of a radiotherapy patient is small. PMID:24778349

  2. Calculated and measured depth dose profiles in a phantom exposed to neutron radiation fields

    SciTech Connect

    Scherpelz, R.I.; Tanner, J.E.; Sigalla, L.A.; Hadlock, D.E.

    1989-05-01

    An accurate evaluation of doses caused by external sources of neutron radiation depends on knowledge of the transport of radiation inside the human body. Health physicists use two primary methods for studying this radiation transport: computer calculations and measurements. Both computer calculations and measurements were performed under well controlled, nearly identical conditions to determine the extent of their agreement. A comparison of the dose profiles predicted by both measurements and calculations was thus possible. The measurements were performed in a cylindrical phantom made of tissue equivalent plastic. The phantom size, 61 cm high and 30 cm in diameter, was chosen to approximate the human torso and to match the dimensions of cylindrical phantoms used by previous calculations. Holes were drilled down through the phantom to accommodate small tissue equivalent proportional counters (TEPCs) at various depths in the phantom. These counters were used to measure the neutron dose inside the phantom when it was exposed to various sources of neutrons. The holes in the phantom could also accommodate miniature Geiger-Mueller detectors to measure the gamma component of the dose. Neutron and gamma dose profiles were measured for two different sources of neutrons: an unmoderated /sup 252/Cf source and a 733-keV neutron beam generated by a Van de Graaff accelerator. 14 refs., 13 figs., 11 tabs.

  3. Neutron fluences and dose equivalents measured with passive detectors on LDEF

    NASA Technical Reports Server (NTRS)

    Frank, A. L.; Benton, E. V.; Armstrong, T. W.; Colborn, B. L.

    1996-01-01

    Neutron fluences were measured on LDEF in the low energy (< 1 MeV) and high energy (> 1 MeV) ranges. The low energy detectors used the 6Li(n,alpha)T reaction with Gd foil absorbers to separate thermal (< 0.2 eV) and resonance (0.2 eV-1 MeV) neutron response. High energy detectors contained sets of fission foils (181Ta, 209Bi, 232Th, 238U) with different neutron energy thresholds. The measured neutron fluences together with predicted spectral shapes were used to estimate neutron dose equivalents. The detectors were located in the A0015 and P0006 experiments at the west and Earth sides of LDEF under shielding varying from 1 to 19 g/cm2. Dose equivalent rates varied from 0.8 to 3.3 microSv/d for the low energy neutrons and from 160 to 390 microSv/d for the high energy neutrons. This compares with TLD measured absorbed dose rates in the range of 1000-3000 microGy/d near these locations and demonstrates that high energy neutrons contribute a significant fraction of the total dose equivalent in LEO. Comparisons between measurements and calculations were made for high energy neutrons based on fission fragment tracks generated by fission foils at different shielding depths. A simple 1-D slab geometry was used in the calculations. Agreement between measurements and calculations depended on both shielding depth and threshold energy of the fission foils. Differences increased as both shielding and threshold energy increased. The modeled proton/neutron spectra appeared deficient at high energies. A 3-D model of the experiments is needed to help resolve the differences.

  4. Neutron capture therapy: a comparison between dose enhancement of various agents, nanoparticles and chemotherapy drugs.

    PubMed

    Khosroabadi, Mohsen; Ghorbani, Mahdi; Rahmani, Faezeh; Knaup, Courtney

    2014-09-01

    The aim of this study is to compare dose enhancement of various agents, nanoparticles and chemotherapy drugs for neutron capture therapy. A (252)Cf source was simulated to obtain its dosimetric parameters, including air kerma strength, dose rate constant, radial dose function and total dose rates. These results were compared with previously published data. Using (252)Cf as a neutron source, the in-tumour dose enhancements in the presence of atomic (10)B, (157)Gd and (33)S agents; (10)B, (157)Gd, (33)S nanoparticles; and Bortezomib and Amifostine chemotherapy drugs were calculated and compared in neutron capture therapy. Monte Carlo code MCNPX was used for simulation of the (252)Cf source, a soft tissue phantom, and a tumour containing each capture agent. Dose enhancement for 100, 200 and 500 ppm of the mentioned media was calculated. Calculated dosimetric parameters of the (252)Cf source were in agreement with previously published values. In comparison to other agents, maximum dose enhancement factor was obtained for 500 ppm of atomic (10)B agent and (10)B nanoparticles, equal to 1.06 and 1.08, respectively. Additionally, Bortezomib showed a considerable dose enhancement level. From a dose enhancement point of view, media containing (10)B are the best agents in neutron capture therapy. Bortezomib is a chemotherapy drug containing boron and can be proposed as an agent in boron neutron capture therapy. However, it should be noted that other physical, chemical and medical criteria should be considered in comparing the mentioned agents before their clinical use in neutron capture therapy. PMID:24961208

  5. Measurement of neutron ambient dose equivalent in passive carbon-ion and proton radiotherapies

    SciTech Connect

    Yonai, Shunsuke; Matsufuji, Naruhiro; Kanai, Tatsuaki; Matsui, Yuki; Matsushita, Kaoru; Yamashita, Haruo; Numano, Masumi; Sakae, Takeji; Terunuma, Toshiyuki; Nishio, Teiji; Kohno, Ryosuke; Akagi, Takashi

    2008-11-15

    Secondary neutron ambient dose equivalents per the treatment absorbed dose in passive carbon-ion and proton radiotherapies were measured using a rem meter, WENDI-II at two carbon-ion radiotherapy facilities and four proton radiotherapy facilities in Japan. Our measured results showed that (1) neutron ambient dose equivalent in carbon-ion radiotherapy is lower than that in proton radiotherapy, and (2) the difference to the measured neutron ambient dose equivalents among the facilities is within a factor of 3 depending on the operational beam setting used at the facility and the arrangement of the beam line, regardless of the method for making a laterally uniform irradiation field: the double scattering method or the single-ring wobbling method. The reoptimization of the beam line in passive particle radiotherapy is an effective way to reduce the risk of secondary cancer because installing an adjustable precollimator and designing the beam line devices with consideration of their material, thickness and location, etc., can significantly reduce the neutron exposure. It was also found that the neutron ambient dose equivalent in passive particle radiotherapy is equal to or less than that in the photon radiotherapy. This result means that not only scanning particle radiotherapy but also passive particle radiotherapy can provide reduced exposure to normal tissues around the target volume without an accompanied increase in total body dose.

  6. Measurements of gamma dose and thermal neutron fluence in phantoms exposed to a BNCT epithermal beam with TLD-700.

    PubMed

    Gambarini, G; Magni, D; Regazzoni, V; Borroni, M; Carrara, M; Pignoli, E; Burian, J; Marek, M; Klupak, V; Viererbl, L

    2014-10-01

    Gamma dose and thermal neutron fluence in a phantom exposed to an epithermal neutron beam for boron neutron capture therapy (BNCT) can be measured by means of a single thermoluminescence dosemeter (TLD-700). The method exploits the shape of the glow curve (GC) and requires the gamma-calibration GC (to obtain gamma dose) and the thermal-neutron-calibration GC (to obtain neutron fluence). The method is applicable for BNCT dosimetry in case of epithermal neutron beams from a reactor because, in most irradiation configurations, thermal neutrons give a not negligible contribution to the TLD-700 GC. The thermal neutron calibration is not simple, because of the impossibility of having thermal neutron fields without gamma contamination, but a calibration method is here proposed, strictly bound to the method itself of dose separation. PMID:24435913

  7. Evaluation of neutron dose in the maze of medical electron accelerators.

    PubMed

    Carinou, E; Kamenopoulou, V; Stamatelatos, I E

    1999-12-01

    MCNP code was used to simulate neutron and prompt gamma ray transport for a range of maze geometrical parameters, wall composition, and wall surface lining. Verification measurements were performed at two medical electron accelerator facilities. A very good agreement was observed between the results of the measurements and the MCNP simulation. MCNP code results were compared with the results of analytical equations used for the calculation of maze effectiveness, derived by Kersey and McCall. A good agreement exists between the simulation results and the results of the analytical methods for maze lengths longer than 8.5 m. However, the results of the present study showed that for shorter maze lengths, Kersey's method tended to overestimate neutron dose at the door entrance, whereas McCall's method with the neutron room scattered correction applied, showed an underestimation of neutron dose. Furthermore, according to MCNP simulation results, the use of barytes concrete instead of standard concrete as room shielding material, reduced neutron dose at the door entrance by about 20%. Finally, it was shown that lining with layers of wood and borated polyethylene significantly reduced the neutron dose at the door entrance by 45% and 65%, respectively. PMID:10619233

  8. A new online detector for estimation of peripheral neutron equivalent dose in organ

    SciTech Connect

    Irazola, L. Sanchez-Doblado, F.; Lorenzoli, M.; Pola, A.; Bedogni, R.; Terrón, J. A.; Sanchez-Nieto, B.; Expósito, M. R.; Lagares, J. I.; Sansaloni, F.

    2014-11-01

    Purpose: Peripheral dose in radiotherapy treatments represents a potential source of secondary neoplasic processes. As in the last few years, there has been a fast-growing concern on neutron collateral effects, this work focuses on this component. A previous established methodology to estimate peripheral neutron equivalent doses relied on passive (TLD, CR39) neutron detectors exposed in-phantom, in parallel to an active [static random access memory (SRAMnd)] thermal neutron detector exposed ex-phantom. A newly miniaturized, quick, and reliable active thermal neutron detector (TNRD, Thermal Neutron Rate Detector) was validated for both procedures. This first miniaturized active system eliminates the long postprocessing, required for passive detectors, giving thermal neutron fluences in real time. Methods: To validate TNRD for the established methodology, intrinsic characteristics, characterization of 4 facilities [to correlate monitor value (MU) with risk], and a cohort of 200 real patients (for second cancer risk estimates) were evaluated and compared with the well-established SRAMnd device. Finally, TNRD was compared to TLD pairs for 3 generic radiotherapy treatments through 16 strategic points inside an anthropomorphic phantom. Results: The performed tests indicate similar linear dependence with dose for both detectors, TNRD and SRAMnd, while a slightly better reproducibility has been obtained for TNRD (1.7% vs 2.2%). Risk estimates when delivering 1000 MU are in good agreement between both detectors (mean deviation of TNRD measurements with respect to the ones of SRAMnd is 0.07 cases per 1000, with differences always smaller than 0.08 cases per 1000). As far as the in-phantom measurements are concerned, a mean deviation smaller than 1.7% was obtained. Conclusions: The results obtained indicate that direct evaluation of equivalent dose estimation in organs, both in phantom and patients, is perfectly feasible with this new detector. This will open the door to an

  9. Neutron scattered dose equivalent to a fetus from proton radiotherapy of the mother.

    PubMed

    Mesoloras, Geraldine; Sandison, George A; Stewart, Robert D; Farr, Jonathan B; Hsi, Wen C

    2006-07-01

    Scattered neutron dose equivalent to a representative point for a fetus is evaluated in an anthropomorphic phantom of the mother undergoing proton radiotherapy. The effect on scattered neutron dose equivalent to the fetus of changing the incident proton beam energy, aperture size, beam location, and air gap between the beam delivery snout and skin was studied for both a small field snout and a large field snout. Measurements of the fetus scattered neutron dose equivalent were made by placing a neutron bubble detector 10 cm below the umbilicus of an anthropomorphic Rando phantom enhanced by a wax bolus to simulate a second trimester pregnancy. The neutron dose equivalent in milliSieverts (mSv) per proton treatment Gray increased with incident proton energy and decreased with aperture size, distance of the fetus representative point from the field edge, and increasing air gap. Neutron dose equivalent to the fetus varied from 0.025 to 0.450 mSv per proton Gray for the small field snout and from 0.097 to 0.871 mSv per proton Gray for the large field snout. There is likely to be no excess risk to the fetus of severe mental retardation for a typical proton treatment of 80 Gray to the mother since the scattered neutron dose to the fetus of 69.7 mSv is well below the lower confidence limit for the threshold of 300 mGy observed for the occurrence of severe mental retardation in prenatally exposed Japanese atomic bomb survivors. However, based on the linear no threshold hypothesis, and this same typical treatment for the mother, the excess risk to the fetus of radiation induced cancer death in the first 10 years of life is 17.4 per 10,000 children. PMID:16898451

  10. Neutron scattered dose equivalent to a fetus from proton radiotherapy of the mother

    SciTech Connect

    Mesoloras, Geraldine; Sandison, George A.; Stewart, Robert D.; Farr, Jonathan B.; Hsi, Wen C.

    2006-07-15

    Scattered neutron dose equivalent to a representative point for a fetus is evaluated in an anthropomorphic phantom of the mother undergoing proton radiotherapy. The effect on scattered neutron dose equivalent to the fetus of changing the incident proton beam energy, aperture size, beam location, and air gap between the beam delivery snout and skin was studied for both a small field snout and a large field snout. Measurements of the fetus scattered neutron dose equivalent were made by placing a neutron bubble detector 10 cm below the umbilicus of an anthropomorphic Rando[reg] phantom enhanced by a wax bolus to simulate a second trimester pregnancy. The neutron dose equivalent in milliSieverts (mSv) per proton treatment Gray increased with incident proton energy and decreased with aperture size, distance of the fetus representative point from the field edge, and increasing air gap. Neutron dose equivalent to the fetus varied from 0.025 to 0.450 mSv per proton Gray for the small field snout and from 0.097 to 0.871 mSv per proton Gray for the large field snout. There is likely to be no excess risk to the fetus of severe mental retardation for a typical proton treatment of 80 Gray to the mother since the scattered neutron dose to the fetus of 69.7 mSv is well below the lower confidence limit for the threshold of 300 mGy observed for the occurrence of severe mental retardation in prenatally exposed Japanese atomic bomb survivors. However, based on the linear no threshold hypothesis, and this same typical treatment for the mother, the excess risk to the fetus of radiation induced cancer death in the first 10 years of life is 17.4 per 10 000 children.

  11. Absorbed dose to water determination with ionization chamber dosimetry and calorimetry in restricted neutron, photon, proton and heavy-ion radiation fields.

    PubMed

    Brede, H J; Greif, K-D; Hecker, O; Heeg, P; Heese, J; Jones, D T L; Kluge, H; Schardt, D

    2006-08-01

    Absolute dose measurements with a transportable water calorimeter and ionization chambers were performed at a water depth of 20 mm in four different types of radiation fields, for a collimated (60)Co photon beam, for a collimated neutron beam with a fluence-averaged mean energy of 5.25 MeV, for collimated proton beams with mean energies of 36 MeV and 182 MeV at the measuring position, and for a (12)C ion beam in a scanned mode with an energy per atomic mass of 430 MeV u(-1). The ionization chambers actually used were calibrated in units of air kerma in the photon reference field of the PTB and in units of absorbed dose to water for a Farmer-type chamber at GSI. The absorbed dose to water inferred from calorimetry was compared with the dose derived from ionometry by applying the radiation-field-dependent parameters. For neutrons, the quantities of the ICRU Report 45, for protons the quantities of the ICRU Report 59 and for the (12)C ion beam, the recommended values of the International Atomic Energy Agency (IAEA) protocol (TRS 398) were applied. The mean values of the absolute absorbed dose to water obtained with these two independent methods agreed within the standard uncertainty (k = 1) of 1.8% for calorimetry and of 3.0% for ionometry for all types and energies of the radiation beams used in this comparison. PMID:16861773

  12. Neutron dose calculation at the maze entrance of medical linear accelerator rooms.

    PubMed

    Falcão, R C; Facure, A; Silva, A X

    2007-01-01

    Currently, teletherapy machines of cobalt and caesium are being replaced by linear accelerators. The maximum photon energy in these machines can vary from 4 to 25 MeV, and one of the great advantages of these equipments is that they do not have a radioactive source incorporated. High-energy (E > 10 MV) medical linear accelerators offer several physical advantages over lower energy ones: the skin dose is lower, the beam is more penetrating, and the scattered dose to tissues outside the target volume is smaller. Nevertheless, the contamination of undesirable neutrons in the therapeutic beam, generated by the high-energy photons, has become an additional problem as long as patient protection and occupational doses are concerned. The treatment room walls are shielded to attenuate the primary and secondary X-ray fluence, and this shielding is generally adequate to attenuate the neutrons. However, these neutrons are scattered through the treatment room maze and may result in a radiological problem at the door entrance, a high occupancy area in a radiotherapy facility. In this article, we used MCNP Monte Carlo simulation to calculate neutron doses in the maze of radiotherapy rooms and we suggest an alternative method to the Kersey semi-empirical model of neutron dose calculation at the entrance of mazes. It was found that this new method fits better measured values found in literature, as well as our Monte Carlo simulated ones. PMID:17005540

  13. Name Those Quantities

    SciTech Connect

    Strom, Daniel J.

    2004-03-22

    The International Commission on Radiological Protection (ICRP) has created a number of radiation protection quantities since its Publication 26 appeared in 1977. The ensuing years have brought chaos in the form of multiple definitions and symbols for the same and similar quantities, conflicting definitions, mathematical absurdities, and a proliferation of terms. Despite this, the most commonly used radiation protection quantities in the USA and in the International Atomic Energy Agency's Basic Safety Standards have not been named or clearly defined by the ICRP. This paper proposes the names "total effective dose" for the prospective quantity, and "total personal effective dose" for the quantity pertaining to an exposed individual.

  14. Neutron field characteristics of Ciemat's Neutron Standards Laboratory.

    PubMed

    Guzman-Garcia, Karen A; Mendez-Villafañe, Roberto; Vega-Carrillo, Hector Rene

    2015-06-01

    Monte Carlo calculations were carried out to characterize the neutron field produced by the calibration neutron sources of the Neutron Standards Laboratory at the Research Center for Energy, Environment, and Technology (CIEMAT) in Spain. For (241)AmBe and (252)Cf neutron sources, the neutron spectra, the ambient dose equivalent rates and the total neutron fluence rates were estimated. In the calibration hall, there are several items that modify the neutron field. To evaluate their effects different cases were used, from point-like source in vacuum up to the full model. Additionally, using the full model, the neutron spectra were estimated to different distances along the bench; with these spectra, the total neutron fluence and the ambient dose equivalent rates were calculated. The hall walls induce the largest changes in the neutron spectra and the respective integral quantities. The free-field neutron spectrum is modified due the room return effect. PMID:25468287

  15. Comparison of different MC techniques to evaluate BNCT dose profiles in phantom exposed tovarious neutron fields.

    PubMed

    Durisi, E; Koivunoro, H; Visca, L; Borla, O; Zanini, A

    2010-03-01

    The absorbed dose in BNCT (boron neutron capture therapy) consists of several radiation components with different physical properties and biological effectiveness. In order to assess the clinical efficacy of the beams, determining the dose profiles in tissues, Monte Carlo (MC) simulations are used. This paper presents a comparison between dose profiles calculated in different phantoms using two techniques: MC radiation transport code, MCNP-4C2 and BNCT MC treatment planning program, SERA (simulation environment for radiotherapy application). In this study MCNP is used as a reference tool. A preliminary test of SERA is performed using six monodirectional and monoenergetic beams directed onto a simple water phantom. In order to deeply investigate the effect of the different cross-section libraries and of the dose calculation methodology, monoenergetic and monodirectional beams directed toward a standard Snyder phantom are simulated. Neutron attenuation curves and dose profiles are calculated with both codes and the results are compared. PMID:19939825

  16. Estimation of low-level neutron dose-equivalent rate by using extrapolation method for a curie level Am-Be neutron source.

    PubMed

    Li, Gang; Xu, Jiayun; Zhang, Jie

    2014-10-22

    Neutron radiation protection is an important research area because of the strong radiation biological effect of neutron field. The radiation dose of neutron is closely related to the neutron energy, and the connected relationship is a complex function of energy. For the low-level neutron radiation field (e.g. the Am-Be source), the commonly used commercial neutron dosimeter cannot always reflect the low-level dose rate, which is restricted by its own sensitivity limit and measuring range. In this paper, the intensity distribution of neutron field caused by a curie level Am-Be neutron source was investigated by measuring the count rates obtained through a (3)He proportional counter at different locations around the source. The results indicate that the count rates outside of the source room are negligible compared with the count rates measured in the source room. In the source room, (3)He proportional counter and neutron dosimeter were used to measure the count rates and dose rates respectively at different distances to the source. The results indicate that both the count rates and dose rates decrease exponentially with the increasing distance, and the dose rates measured by a commercial dosimeter are in good agreement with the results calculated by the Geant4 simulation within the inherent errors recommended by ICRP and IEC. Further studies presented in this paper indicate that the low-level neutron dose equivalent rates in the source room increase exponentially with the increasing low-energy neutron count rates when the source is lifted from the shield with different radiation intensities. Based on this relationship as well as the count rates measured at larger distance to the source, the dose rates can be calculated approximately by the extrapolation method. This principle can be used to estimate the low level neutron dose values in the source room which cannot be measured directly by a commercial dosimeter. PMID:25464188

  17. Dose measurements and calculations in the epithermal neutron beam at the Brookhaven Medical Research Reactor (BMRR)

    SciTech Connect

    Fairchild, R.G.; Greenberg, D.; Kamen, Y.; Fiarman, S. . Medical Dept.); Benary, V. . Medical Dept. Tel Aviv Univ. ); Kalef-Ezra, J. . Medical Dept. Ioannina Univ. ); Wielopolski, L. . Medical Dept. State Univ. of New

    1990-01-01

    The characteristics of the epithermal neutron beam at BMRR were measured, calculated, and reported. This beam has already been used for animal irradiations. We anticipate that it will be used for clinical trials. Thermal and epithermal neutron flux densities distributions, and dose rate distributions, as a function of depth were measured in a lucite dog-head phantom. Monte Carlo calculations were performed and compared with the measured values. 2 refs., 4 figs., 1 tab.

  18. Photon and neutron dose discrimination using low pressure proportional counters with graphite and A150 walls.

    PubMed

    Kyllönen, J; Lindborg, L

    2007-01-01

    A graphite-walled proportional counter with low neutron sensitivity was used in combination with a tissue-equivalent proportional counter (TEPC) to separate the photon and neutron components in mixed radiation fields. Monte Carlo (MCNP4C) simulations of the photon and neutron responses of the two detectors were done to obtain correction factors for the sensitivity differences. In an alternative method the radiation components were determined using constant-yD-values for typical photon and neutron energy distributions. The results show no significant difference between the two methods and the measured neutron dose-equivalent agrees within +/-50% with Bonner sphere determined values. The experimental data were obtained in measurement campaigns organised within the EVIDOS-project. PMID:17309871

  19. Monte Carlo calculations of lung dose in ORNL phantom for boron neutron capture therapy.

    PubMed

    Krstic, D; Markovic, V M; Jovanovic, Z; Milenkovic, B; Nikezic, D; Atanackovic, J

    2014-10-01

    Monte Carlo simulations were performed to evaluate dose for possible treatment of cancers by boron neutron capture therapy (BNCT). The computational model of male Oak Ridge National Laboratory (ORNL) phantom was used to simulate tumours in the lung. Calculations have been performed by means of the MCNP5/X code. In this simulation, two opposite neutron beams were considered, in order to obtain uniform neutron flux distribution inside the lung. The obtained results indicate that the lung cancer could be treated by BNCT under the assumptions of calculations. PMID:24435912

  20. Elastic stability of high dose neutron irradiated spinel

    SciTech Connect

    Li, Z.; Chan, S.K.; Garner, F.A.

    1995-04-01

    The objective of this effort is to identify ceramic materials that are suitable for fusion reactor applications. Elastic constants (C{sub 11}, C{sub 12}, and C{sub 44}) of spinel (MgAl{sub 2}O{sub 4}) single crystals irradiated to very high neutron fluences have geen measured by an ultrasonic technique. Although results of a neutron diffraction study show that cation occupation sites are significantly changed in the irradiated samples, no measurable differences occurred in their elastic properties. In order to understand such behavior, the elastic properties of a variety of materials with either normal or inverse spinel structures were studied. The cation valence and cation distribution appear to have little influence on the elastic properties of spinel materials.

  1. Quantitative assessment of the cataractogenic potential of very low doses of neutrons

    NASA Technical Reports Server (NTRS)

    Worgul, B. V.; Medvedovsky, C.; Huang, Y.; Marino, S. A.; Randers-Pehrson, G.; Brenner, D. J.

    1996-01-01

    We report on the prevalence and relative biological effectiveness (RBE) for various stages of lens opacification in rats induced by very low doses (2 to 250 mGy) of medium-energy (440 keV) neutrons, compared to those for X rays. Neutron doses were delivered either in a single fraction or in four separate fractions and the irradiated animals were followed for over 100 weeks. At the highest observed dose (250 mGy) and at early observation times, there was evidence of an inverse dose-rate effect; i.e., a fractionated exposure was more potent than a single exposure. Neutron RBEs relative to X rays were estimated using a non-parametric technique. The results were only weakly dependent on time postirradiation. At 30 weeks, for example, 80% confidence intervals for the RBE of acutely delivered neutrons relative to X rays were 8-16 at 250 mGy, 10-20 at 50 mGy, 50-100 at 10 mGy and 250-500 at 2 mGy. The results are consistent with the estimated neutron RBEs in Japanese A-bomb survivors, though broad confidence bounds are present in the Japanese results. Our findings are also consistent with data reported earlier for cataractogenesis induced by heavy ions in rats, mice, and rabbits. We conclude from these results that, at very low doses (<10 mGy), the RBE for neutron-induced cataractogenesis is considerably larger than the RBE of 20 commonly used, and use of a significantly larger value for calculating equivalent dose would be prudent.

  2. Microdosimetric measurements for neutron-absorbed dose determination during proton therapy

    PubMed Central

    Pérez-Andújar, Angélica; DeLuca, Paul M.; Thornton, Allan F.; Fitzek, Markus; Hecksel, Draik; Farr, Jonathan

    2012-01-01

    This work presents microdosimetric measurements performed at the Midwest Proton Radiotherapy Institute in Bloomington, Indiana, USA. The measurements were done simulating clinical setups with a water phantom and for a variety of stopping targets. The water phantom was irradiated by a proton spread out Bragg peak (SOBP) and by a proton pencil beam. Stopping target measurements were performed only for the pencil beam. The targets used were made of polyethylene, brass and lead. The objective of this work was to determine the neutron-absorbed dose for a passive and active proton therapy delivery, and for the interactions of the proton beam with materials typically in the beam line of a proton therapy treatment nozzle. Neutron doses were found to be higher at 45° and 90° from the beam direction for the SOBP configuration by a factor of 1.1 and 1.3, respectively, compared with the pencil beam. Meanwhile, the pencil beam configuration produced neutron-absorbed doses 2.2 times higher at 0° than the SOBP. For stopping targets, lead was found to dominate the neutron-absorbed dose for most angles due to a large production of low-energy neutrons emitted isotropically. PMID:22334761

  3. Measurement of neutron ambient dose equivalent in carbon-ion radiotherapy with an active scanned delivery system.

    PubMed

    Yonai, S; Furukawa, T; Inaniwa, T

    2014-10-01

    In ion beam radiotherapy, secondary neutrons contribute to an undesired dose outside the target volume, and consequently the increase of secondary cancer risk is a growing concern. In this study, neutron ambient dose equivalents in carbon-ion radiotherapy (CIRT) with an active beam delivery system were measured with a rem meter, WENDI-II, at National Institute of Radiological Sciences. When the same irradiation target was assumed, the measured neutron dose with an active beam was at most ∼15 % of that with a passive beam. This percentage became smaller as larger distances from the iso-centre. Also, when using an active beam delivery system, the neutron dose per treatment dose in CIRT was comparable with that in proton radiotherapy. Finally, it was experimentally demonstrated that the use of an active scanned beam in CIRT can greatly reduce the secondary neutron dose. PMID:24126486

  4. Boron Neutron Capture Therapy (BNCT) Dose Calculation using Geometrical Factors Spherical Interface for Glioblastoma Multiforme

    NASA Astrophysics Data System (ADS)

    Zasneda, Sabriani; Widita, Rena

    2010-06-01

    Boron Neutron Capture Therapy (BNCT) is a cancer therapy by utilizing thermal neutron to produce alpha particles and lithium nuclei. The superiority of BNCT is that the radiation effects could be limited only for the tumor cells. BNCT radiation dose depends on the distribution of boron in the tumor. Absorbed dose to the cells from the reaction 10B (n, α) 7Li was calculated near interface medium containing boron and boron-free region. The method considers the contribution of the alpha particle and recoiled lithium particle to the absorbed dose and the variation of Linear Energy Transfer (LET) charged particles energy. Geometrical factor data of boron distribution for the spherical surface is used to calculate the energy absorbed in the tumor cells, brain and scalp for case Glioblastoma Multiforme. The result shows that the optimal dose in tumor is obtained for boron concentrations of 22.1 mg 10B/g blood.

  5. Boron Neutron Capture Therapy (BNCT) Dose Calculation using Geometrical Factors Spherical Interface for Glioblastoma Multiforme

    SciTech Connect

    Zasneda, Sabriani; Widita, Rena

    2010-06-22

    Boron Neutron Capture Therapy (BNCT) is a cancer therapy by utilizing thermal neutron to produce alpha particles and lithium nuclei. The superiority of BNCT is that the radiation effects could be limited only for the tumor cells. BNCT radiation dose depends on the distribution of boron in the tumor. Absorbed dose to the cells from the reaction 10B (n, {alpha}) 7Li was calculated near interface medium containing boron and boron-free region. The method considers the contribution of the alpha particle and recoiled lithium particle to the absorbed dose and the variation of Linear Energy Transfer (LET) charged particles energy. Geometrical factor data of boron distribution for the spherical surface is used to calculate the energy absorbed in the tumor cells, brain and scalp for case Glioblastoma Multiforme. The result shows that the optimal dose in tumor is obtained for boron concentrations of 22.1 mg {sup 10}B/g blood.

  6. Controllability of depth dose distribution for neutron capture therapy at the Heavy Water Neutron Irradiation Facility of Kyoto University Research Reactor.

    PubMed

    Sakurai, Yoshinori; Kobayashi, Tooru

    2002-10-01

    The updating construction of the Heavy Water Neutron Irradiation Facility of the Kyoto University Research Reactor has been performed from November 1995 to March 1996 mainly for the improvement in neutron capture therapy. On the performance, the neutron irradiation modes with the variable energy spectra from almost pure thermal to epi-thermal neutrons became available by the control of the heavy-water thickness in the spectrum shifter and by the open-and-close of the cadmium and boral thermal neutron filters. The depth distributions of thermal, epi-thermal and fast neutron fluxes were measured by activation method using gold and indium, and the depth distributions of gamma-ray absorbed dose rate were measured using thermo-luminescent dosimeter of beryllium oxide for the several irradiation modes. From these measured data, the controllability of the depth dose distribution using the spectrum shifter and the thermal neutron filters was confirmed. PMID:12408308

  7. ACDOS2: an improved neutron-induced dose rate code

    SciTech Connect

    Lagache, J.C.

    1981-06-01

    To calculate the expected dose rate from fusion reactors as a function of geometry, composition, and time after shutdown a computer code, ACDOS2, was written, which utilizes up-to-date libraries of cross-sections and radioisotope decay data. ACDOS2 is in ANSI FORTRAN IV, in order to make it readily adaptable elsewhere.

  8. Microdosimetry of fast neutrons in selected biological materials

    SciTech Connect

    Wallace, R.E.

    1987-01-01

    Microdosimetric quantities for selected neutron beams have been determined in muscle, brain, bone, and fat tissue equivalent materials. The quantities of interest were the dose distribution in lineal energy, frequency average lineal energy, dose average lineal energy, and dose average quality factor. A dose response factor was defined to combine the lineal energy dose spectrum with a response function per unit KERMA for an acute biological endpoint in prototype cells in vitro. The dependence of each quantity on material composition and neutron energy was investigated by theoretical calculation and separated into primary and scatter neutron fluence components. Neutron fluences in phantoms were calculated using a standard Monte Carlo code (MCNP). The charged particle fluences and lineal energy dose spectra were obtained using the continuous slowing-down approximation. Calculated microdosimetric spectra agreed with those measured in muscle-equivalent materials. The microdosimetry of primary and scattered neutrons in a large tissue phantom was calculated for three representative uncollimated neutron sources.

  9. Radiation dose measurements and Monte Carlo calculations for neutron and photon reactions in a human head phantom for accelerator-based boron neutron capture therapy

    NASA Astrophysics Data System (ADS)

    Kim, Don-Soo

    Dose measurements and radiation transport calculations were investigated for the interactions within the human brain of fast neutrons, slow neutrons, thermal neutrons, and photons associated with accelerator-based boron neutron capture therapy (ABNCT). To estimate the overall dose to the human brain, it is necessary to distinguish the doses from the different radiation sources. Using organic scintillators, human head phantom and detector assemblies were designed, constructed, and tested to determine the most appropriate dose estimation system to discriminate dose due to the different radiation sources that will ultimately be incorporated into a human head phantom to be used for dose measurements in ABNCT. Monoenergetic and continuous energy neutrons were generated via the 7Li(p,n)7Be reaction in a metallic lithium target near the reaction threshold using the 5.5 MV Van de Graaff accelerator at the University of Massachusetts Lowell. A human head phantom was built to measure and to distinguish the doses which result from proton recoils induced by fast neutrons, alpha particles and recoil lithium nuclei from the 10B(n,alpha)7Li reaction, and photons generated in the 7Li accelerator target as well as those generated inside the head phantom through various nuclear reactions at the same time during neutron irradiation procedures. The phantom consists of two main parts to estimate dose to tumor and dose to healthy tissue as well: a 3.22 cm3 boron loaded plastic scintillator which simulates a boron containing tumor inside the brain and a 2664 cm3 cylindrical liquid scintillator which represents the surrounding healthy tissue in the head. The Monte Carlo code MCNPX(TM) was used for the simulation of radiation transport due to neutrons and photons and extended to investigate the effects of neutrons and other radiation on the brain at various depths.

  10. Neutron and gamma-ray dose-rates from the Little Boy replica

    SciTech Connect

    Plassmann, E.A.; Pederson, R.A.

    1984-01-01

    We report dose-rate information obtained at many locations in the near vicinity of, and at distances out to 0.64 km from, the Little Boy replica while it was operated as a critical assembly. The measurements were made with modified conventional dosimetry instruments that used an Anderson-Braun detector for neutrons and a Geiger-Mueller tube for gamma rays with suitable electronic modules to count particle-induced pulses. Thermoluminescent dosimetry methods provide corroborative data. Our analysis gives estimates of both neutron and gamma-ray relaxation lengths in air for comparison with earlier calculations. We also show the neutron-to-gamma-ray dose ratio as a function of distance from the replica. Current experiments and further data analysis will refine these results. 7 references, 8 figures.

  11. Measurement of neutron dose with an organic liquid scintillator coupled with a spectrum weight function.

    PubMed

    Kim, E; Endo, A; Yamaguchi, Y; Yoshizawa, M; Nakamura, T

    2002-01-01

    A dose evaluation method for neutrons in the energy range of a few MeV to 100 MeV has been developed using a spectrum weight function (G-function), which is applied to an organic liquid scintillator of 12.7 cm in diameter and 12.7 cm in length. The G-function that converts the pulse height spectrum of the scintillator into the ambient dose equivalent, H*(10), was calculated by an unfolding method using successive approximation of the response function of the scintillator and the ambient dose equivalent per unit neutron fluence (H*(10) conversion coefficients) of ICRP 74. To verify the response function of the scintillator and the value of H*(10) evaluated by the G-function. pulse height spectra of the scintillator were measured in some different neutron fields, which have continuous energy, monoenergetic and quasi-monoenergetic spectra. Values of H*(10) estimated using the G-function and pulse height spectra of the scintillator were compared with those calculated using neutron energy spectra. These doses agreed with each other. From the results, it was concluded that H*(10) can be evaluated directly from the pulse height spectrum of the scintillator by applying the G-function proposed in this study. PMID:12212900

  12. Neutron dose per fluence and weighting factors for use at high energy accelerators

    SciTech Connect

    Cossairt, J.Donald; Vaziri, Kamran; /Fermilab

    2008-07-01

    In June 2007, the United States Department of Energy incorporated revised values of neutron weighting factors into its occupational radiation protection Regulation 10 CFR Part 835 as part of updating its radiation dosimetry system. This has led to a reassessment of neutron radiation fields at high energy proton accelerators such as those at the Fermi National Accelerator Laboratory (Fermilab). Values of dose per fluence factors appropriate for accelerator radiation fields calculated elsewhere are collated and radiation weighting factors compared. The results of this revision to the dosimetric system are applied to americium-beryllium neutron energy spectra commonly used for instrument calibrations. A set of typical accelerator neutron energy spectra previously measured at Fermilab are reassessed in light of the new dosimetry system. The implications of this revision are found to be of moderate significance.

  13. Neutron equivalent doses and associated lifetime cancer incidence risks for head & neck and spinal proton therapy

    NASA Astrophysics Data System (ADS)

    Athar, Basit S.; Paganetti, Harald

    2009-08-01

    In this work we have simulated the absorbed equivalent doses to various organs distant to the field edge assuming proton therapy treatments of brain or spine lesions. We have used computational whole-body (gender-specific and age-dependent) voxel phantoms and considered six treatment fields with varying treatment volumes and depths. The maximum neutron equivalent dose to organs near the field edge was found to be approximately 8 mSv Gy-1. We were able to clearly demonstrate that organ-specific neutron equivalent doses are age (stature) dependent. For example, assuming an 8-year-old patient, the dose to brain from the spinal fields ranged from 0.04 to 0.10 mSv Gy-1, whereas the dose to the brain assuming a 9-month-old patient ranged from 0.5 to 1.0 mSv Gy-1. Further, as the field aperture opening increases, the secondary neutron equivalent dose caused by the treatment head decreases, while the secondary neutron equivalent dose caused by the patient itself increases. To interpret the dosimetric data, we analyzed second cancer incidence risks for various organs as a function of patient age and field size based on two risk models. The results show that, for example, in an 8-year-old female patient treated with a spinal proton therapy field, breasts, lungs and rectum have the highest radiation-induced lifetime cancer incidence risks. These are estimated to be 0.71%, 1.05% and 0.60%, respectively. For an 11-year-old male patient treated with a spinal field, bronchi and rectum show the highest risks of 0.32% and 0.43%, respectively. Risks for male and female patients increase as their age at treatment time decreases.

  14. Low dose neutron late effects: Cataractogenesis. Progress report, April 1, 1991--December 15, 1991

    SciTech Connect

    Worgul, B.V.

    1991-12-01

    The work is formulated to resolve the uncertainty regarding the relative biological effectiveness (RBE) of low dose neutron radiation. The study exploits the fact that cataractogenesis is sensitive to the inverse dose-rate effect as has been observed with heavy ions and was an endpoint considered in the follow-up of the A-bomb survivors. The neutron radiations were initiated at the Radiological Research Accelerator facility (RARAF) of the Nevis Laboratory of Columbia University. Four week old ({plus_minus} 1 day) rats were divided into eight dose groups each receiving single or fractionated total doses of 0.2, 1.0, 5.0 and 25.0 cGy of monoenergetic 435 KeV neutrons. Special restraining jigs insured that the eye, at the midpoint of the lens, received the appropriate energy and dose with a relative error of {plus_minus}5%. The fractionation regimen consisted of four exposures, each administered at three hour ({plus_minus}) intervals. The neutron irradiated groups are being compared to rats irradiated with 250kVp X-rays in doses ranging from 0.5 to 7 Gy. The animals are being examined on a biweekly basis utilizing conventional slit-lamp biomicroscopy and the Scheimpflug Slit Lamp Imaging System (Zeiss). The follows-ups, entering their second year, will continue throughout the life-span of the animals. This is essential inasmuch as given the extremely low doses which are being utilized clinically detectable opacities were not anticipated until a significant fraction of the life span has lapsed. Current data support this contention. At this juncture cataracts in the irradiated groups are beginning to exceed control levels.

  15. Low dose neutron late effects: Cataractogenesis. Final progress report, April 1, 1992--March 31, 1993

    SciTech Connect

    Worgul, B.V.

    1994-04-01

    The work is formulated to resolve the uncertainty regarding the relative biological effectiveness (RBE) of low dose neutron radiation. The study exploits the fact that cataractogenesis is sensitive to the inverse dose-rate effect as has been observed with heavy ions and was an endpoint considered in the follow-up of the A-bomb survivors. The neutron radiations were initiated at the Radiological Research Accelerator facility (RARAF) of the Nevis Laboratory of Columbia University. Four week old ({+-} 1 day) rats were divided into eight dose groups each receiving single or fractionated total doses of 0.2, 1.0, 5.0 and 25.0 cGy of monoenergetic 435 keV neutrons. Special restraining jigs insured that the eye, at the midpoint of the lens, received the appropriate energy and dose with a relative error of {+-} 5%. The fractionation regimen consisted of four exposures, each administered at three hour ({+-} 1 minute) intervals. The neutron irradiated groups were compared to rats irradiated with 250 kVp X-rays in doses ranging from 0.5 to 7 Gy. The animals were examined on a biweekly basis utilizing conventional slit-lamp biomicroscopy and the Scheimpflug Slit Lamp Imaging System (Zeiss). The follow-ups, which proceeded for over 2 years, are now complete. This proved essential inasmuch as given the extremely low doses which were utilized, clinically detectable opacities were not anticipated until a significant fraction of the life span has lapsed. The results have exceeded all expectations.

  16. Effects of fractionated doses of fast neutrons or photons on the canine cervical spinal cord

    SciTech Connect

    Zook, B.C.; Bradley, E.W.; Casarett, G.W.

    1981-10-01

    The cervical spinal cords of 36 young adult male beagles were irradiated with fast neutrons with a mean energy of 15 MeV in four fractions/week/5 weeks to total doses of 1167, 1750, 2625, or 3938 rad. Nineteen beagles received 3500, 5250, or 7875 rad of photons in like manner. Sensory evoked responses recorded before and periodically after irradiations remained stable on 22 test and 6 control dogs. The cerebrospinal fluid contained excess protein and erythrocytes often before and always after the onset of neurological symptons. All dogs in the 3938-rad neutron, 6/9 dogs in the 2625-rad neutron, and 4/6 dogs in the 7875-rad photon groups developed cervical muscular spasms, incoordination, and progressive paralysis and were euthanatized. The relative biological effectiveness of fast neutrons as measured by the onset of neurological signs is approximately 3 (7875 photons/ 2625 neutrons) and is less than 4.5 (7875 photons/1750 neutrons). Gross pathological findings included hemorrhages, softening, and poliomyelomalacia, especially of the dorsal horns. Two dogs developed neoplasms in the irradiated field 1065 and 1470 days following neutron irradiation.

  17. Thermal neutron equivalent dose assessment around the KFUPM neutron source storage area using NTDs. King Fahd University of Petroleum and Minerals.

    PubMed

    Abu-Jarad, F; Fazal-ur-Rehman; Al-Haddad, M N; Al-jarallah, M I

    2002-01-01

    Area passive neutron dosemeters based on nuclear track detectors (NTDs) have been used for 13 days to assess accumulated low doses of thermal neutrons around neutron source storage area of the King Fahd University of Petroleum and Minerals (KFUPM). Moreover, the aim of this study is to check the effectiveness of shielding of the storage area. NTDs were mounted with the boron converter on their surface as one compressed unit. The converter is a lithium tetraborate (Li2B4O7) layer for thermal neutron detection via 10B(n,alpha)7Li and 6Li(n,alpha)3H nuclear reactions. The area passive dosemeters were installed on 26 different locations around the source storage area and adjacent rooms. The calibration factor for NTD-based area passive neutron dosemeters was found to be 8.3 alpha tracks x cm(-2) x microSv(-1) using active snoopy neutron dosemeters in the KFUPM neutron irradiation facility. The results show the variation of accumulated dose with locations around the storage area. The range of dose rates varied from as low as 40 nSvx h(-1) up to 11 microSv x h(-1). The study indicates that the area passive neutron dosemeter was able to detect accumulated doses as low as 40 nSv x h(-1), which could not be detected with the available active neutron dosemeters. The results of the study also indicate that an additional shielding is required to bring the dose rates down to background level. The present investigation suggests extending this study to find the contribution of doses from fast neutrons around the neutron source storage area using NTDs through proton recoil. The significance of this passive technique is that it is highly sensitive and does not require any electronics or power supplies, as is the case in active systems. PMID:12474945

  18. Monte Carlo simulation of depth dose distribution in several organic models for boron neutron capture therapy

    NASA Astrophysics Data System (ADS)

    Matsumoto, T.

    2007-09-01

    Monte Carlo simulations are performed to evaluate depth-dose distributions for possible treatment of cancers by boron neutron capture therapy (BNCT). The ICRU computational model of ADAM & EVA was used as a phantom to simulate tumors at a depth of 5 cm in central regions of the lungs, liver and pancreas. Tumors of the prostate and osteosarcoma were also centered at the depth of 4.5 and 2.5 cm in the phantom models. The epithermal neutron beam from a research reactor was the primary neutron source for the MCNP calculation of the depth-dose distributions in those cancer models. For brain tumor irradiations, the whole-body dose was also evaluated. The MCNP simulations suggested that a lethal dose of 50 Gy to the tumors can be achieved without reaching the tolerance dose of 25 Gy to normal tissue. The whole-body phantom calculations also showed that the BNCT could be applied for brain tumors without significant damage to whole-body organs.

  19. Measurements of neutron dose equivalent for a proton therapy center using uniform scanning proton beams

    SciTech Connect

    Zheng Yuanshui; Liu Yaxi; Zeidan, Omar; Schreuder, Andries Niek; Keole, Sameer

    2012-06-15

    Purpose: Neutron exposure is of concern in proton therapy, and varies with beam delivery technique, nozzle design, and treatment conditions. Uniform scanning is an emerging treatment technique in proton therapy, but neutron exposure for this technique has not been fully studied. The purpose of this study is to investigate the neutron dose equivalent per therapeutic dose, H/D, under various treatment conditions for uniform scanning beams employed at our proton therapy center. Methods: Using a wide energy neutron dose equivalent detector (SWENDI-II, ThermoScientific, MA), the authors measured H/D at 50 cm lateral to the isocenter as a function of proton range, modulation width, beam scanning area, collimated field size, and snout position. They also studied the influence of other factors on neutron dose equivalent, such as aperture material, the presence of a compensator, and measurement locations. They measured H/D for various treatment sites using patient-specific treatment parameters. Finally, they compared H/D values for various beam delivery techniques at various facilities under similar conditions. Results: H/D increased rapidly with proton range and modulation width, varying from about 0.2 mSv/Gy for a 5 cm range and 2 cm modulation width beam to 2.7 mSv/Gy for a 30 cm range and 30 cm modulation width beam when 18 Multiplication-Sign 18 cm{sup 2} uniform scanning beams were used. H/D increased linearly with the beam scanning area, and decreased slowly with aperture size and snout retraction. The presence of a compensator reduced the H/D slightly compared with that without a compensator present. Aperture material and compensator material also have an influence on neutron dose equivalent, but the influence is relatively small. H/D varied from about 0.5 mSv/Gy for a brain tumor treatment to about 3.5 mSv/Gy for a pelvic case. Conclusions: This study presents H/D as a function of various treatment parameters for uniform scanning proton beams. For similar treatment

  20. A coupled deterministic/stochastic method for computing neutron capture therapy dose rates

    NASA Astrophysics Data System (ADS)

    Hubbard, Thomas Richard

    Neutron capture therapy (NCT) is an experimental method of treating brain tumors and other cancers by: (1) injecting or infusing the patient with a tumor-seeking, neutron target-labeled drug; and (2) irradiating the patient in an intense epithermal neutron fluence. The nuclear reaction between the neutrons and the target nuclei (e.g. sp{10}B(n,alpha)sp7Lirbrack releases energy in the form of high-LET (i.e. energy deposited within the range of a cell diameter) reaction particles which selectively kill the tumor cell. The efficacy of NCT is partly dependent on the delivery of maximum thermal neutron fluence to the tumor and the minimization of radiation dose to healthy tissue. Since the filtered neutron source (e.g. research reactor) usually provides a broad energy spectrum of highly-penetrating neutron and gamma-photon radiation, detailed transport calculations are necessary in order to plan treatments that use optimal treatment facility configurations and patient positioning. Current computational methods for NCT use either discrete ordinates calculation or, more often, Monte Carlo simulation to predict neutron fluences in the vicinity of the tumor. These methods do not, however, accurately calculate the transport of radiation throughout the entire facility or the deposition of dose in all the various parts of the body due to shortcomings of using either method alone. A computational method, specifically designed for NCT problems, has been adapted from the MASH methodology and couples a forward discrete ordinates (Ssb{n}) calculation with an adjoint Monte Carlo run to predict the dose at any point within the patient. The transport from the source through the filter/collimator is performed with a forward DORT run, and this is then coupled to adjoint MORSE results at a selected coupling parallelepiped which surrounds human phantom. Another routine was written to allow the user to generate the MORSE models at various angles and positions within the treatment room. The

  1. Neutron/gamma dose separation by the multiple-ion-chamber technique

    SciTech Connect

    Goetsch, S.J.

    1983-01-01

    Many mixed n/..gamma.. dosimetry systems rely on two dosimeters, one composed of a tissue-equivalent material and the other made from a non-hydrogenous material. The paired chamber technique works well in fields of neutron radiation nearly identical in spectral composition to that in which the dosimeters were calibrated. However, this technique is drastically compromised in phantom due to the degradation of the neutron spectrum. The three-dosimeter technique allows for the fall-off in neutron sensitivity of the two non-hydrogenous dosimeters. Precise and physically meaningful results were obtained with this technique with a D-T source in air and in phantom and with simultaneous D-T neutron and /sup 60/Co gamma ray irradiation in air. The MORSE-CG coupled n/..gamma.. three-dimensional Monte Carlo code was employed to calculate neutron and gamma doses in a water phantom. Gamma doses calculated in phantom with this code were generally lower than corresponding ion chamber measurements. This can be explained by the departure of irradiation conditions from ideal narrow-beam geometry. 97 references.

  2. Effective dose evaluation for BNCT treatment in the epithermal neutron beam at THOR.

    PubMed

    Wang, J N; Huang, C K; Tsai, W C; Liu, Y H; Jiang, S H

    2011-12-01

    This paper aims to evaluate the effective dose as well as equivalent doses of several organs of an adult hermaphrodite mathematical phantom according to the definition of ICRP Publication 60 for BNCT treatments of brain tumors in the epithermal neutron beam at THOR. The MCNP5 Monte Carlo code was used for the calculation of the average absorbed dose of each organ. The effective doses for a typical brain tumor treatment with a tumor treatment dose of 20 Gy-eq were evaluated to be 0.59 and 0.35 Sv for the LLAT and TOP irradiation geometries, respectively. In addition to the stochastic effect, it was found that it is also likely to produce deterministic effects, such as cataracts and depression of haematopoiesis. PMID:21530281

  3. Neutron and photon effective dose equivalent rate calculations for the repackaging of tru waste

    SciTech Connect

    Sattelberger, J. A.

    2002-01-01

    Neutron and photon effective dose equivalent rates were estimated for operations that will occur in the characterization and repackaging of transuranic (TRU) waste drums. These activities will be performed in structures called Mobile Units (MU). A MU is defined as a modular and transportable container, also called a transportainer. The transportainers have been designed to house a process required for certification of TRU wastes. The purpose of these calculations was to provide dose rates from Pu-238 TRU waste in various locations in the transportainer using MCNP-4C. In addition to dose rates for the various radiological operations in the repackaging area, the dose rate from the adjacent storage area was calculated to determine the contribution to the total dose rate.

  4. Comparative assessment of single-dose and fractionated boron neutron capture therapy

    SciTech Connect

    Coderre, J.A.; Micca, P.L.; Fisher, C.D.

    1995-12-01

    The effects of fractionating boron neutron capture therapy (BNCT) were evaluated in the intracerebral rat 9L gliosarcoma and rat spinal cord models using the Brookhaven Medical Research Reactor (BMRR) thermal neutron beam. The amino acid analog p-boronophenylalanine (BPA) was administered prior to each exposure to the thermal neutron beam. The total physical absorbed dose to the tumor during BNCT using BPA was 91% high-linear energy transfer (LET) radiation. Two tumor doses of 5.2 Gy spaced 48 h apart (n = 14) or three tumor doses of 5.2 Gy, each separated by 48 h (n = 10), produced 50 and 60% long-term (>1 year) survivors, respectively. The outcome of neither the two nor the three fractions of radiation was statistically different from that of the corresponding single-fraction group. In the rat spinal cord, the ED{sub 50} for radiation myelopathy (as indicated by limb paralysis within 7 months) after exposure to the thermal beam alone was 13.6 {+-} 0.4 Gy. Dividing the beam-only irradiation into two or four consecutive daily fractions increased the ED{sub 50} to 14.7 {+-} 0.2 Gy and 15.5 {+-} 0.4 Gy, respectively. Thermal neutron irradiation in the presence of BPA resulted in an ED{sub 50} for myelopathy of 13.8 {+-} 0.6 Gy after a single fraction and 14.9 {+-} 0.9 Gy after two fractions. An increase in the number of fractions to four resulted in an ED{sub 50} of 14.3 {+-} 0.6 Gy. The total physical absorbed dose to the blood in the vasculature of the spinal cord during BNCT using BPA was 80% high-LET radiation. It was observed that fractionation was of minor significance in the amelioration of damage to the normal central nervous system in the rat after boron neutron capture irradiation. 30 refs., 5 figs., 3 tabs.

  5. Biological shielding assessment and dose rate calculation for a neutron inspection portal

    NASA Astrophysics Data System (ADS)

    Donzella, A.; Bonomi, G.; Giroletti, E.; Zenoni, A.

    2012-04-01

    With reference to the prototype of neutron inspection portal built and successfully tested in the Rijeka seaport (Croatia) within the EURITRACK (EURopean Illicit Trafficking Countermeasures Kit) project, an assessment of the biological shielding in different set-up configurations of a future portal has been calculated with MCNP Monte Carlo code in the frame of the Eritr@C (European Riposte against Illicit TR@ffiCking) project. In the configurations analyzed the compliance with the dose limits for workers and the population stated by the European legislation is provided by appropriate shielding of the neutron sources and by the delimitation of a controlled area.

  6. Monte Carlo simulation of the neutron spectral fluence and dose equivalent for use in shielding a proton therapy vault

    PubMed Central

    Zheng, Yuanshui; Newhauser, Wayne; Klein, Eric; Low, Daniel

    2014-01-01

    Neutron production is of principal concern when designing proton therapy vault shielding. Conventionally, neutron calculations are based on analytical methods, which do not accurately consider beam shaping components and nozzle shielding. The goal of this study was to calculate, using Monte Carlo modeling, the neutron spectral fluence and neutron dose equivalent generated by a realistic proton therapy nozzle and evaluate how these data could be used in shielding calculations. We modeled a contemporary passive scattering proton therapy nozzle in detail with the MCNPX simulation code. The neutron spectral fluence and dose equivalent at various locations in the treatment room were calculated and compared to those obtained from a thick iron target bombarded by parallel proton beams, the simplified geometry on which analytical methods are based. The neutron spectral fluence distributions were similar for both methods, with deeply penetrating high-energy neutrons (E > 10 MeV) being most prevalent along the beam central axis, and low-energy neutrons predominating the neutron spectral fluence in the lateral region. However, unlike the inverse square falloff used in conventional analytical methods, this study shows that the neutron dose equivalent per therapeutic dose in the treatment room decreased with distance approximately following a power law, with an exponent of about −1.63 in the lateral region and −1.73 in the downstream region. Based on the simulated data according to the detailed nozzle modeling, we developed an empirical equation to estimate the neutron dose equivalent at any location and distance in the treatment vault, e.g. for cases in which detailed Monte Carlo modeling is not feasible. We applied the simulated neutron spectral fluence and dose equivalent to a shielding calculation as an example. PMID:19887713

  7. An international dosimetry exchange for boron neutron capture therapy, Part I: Absorbed dose measurements

    SciTech Connect

    Binns, P.J.; Riley, K.J.; Harling, O.K.

    2005-12-15

    An international collaboration was organized to undertake a dosimetry exchange to enable the future combination of clinical data from different centers conducting neutron capture therapy trials. As a first step (Part I) the dosimetry group from the Americas, represented by MIT, visited the clinical centers at Studsvik (Sweden), VTT Espoo (Finland), and the Nuclear Research Institute (NRI) at Rez (Czech Republic). A combined VTT/NRI group reciprocated with a visit to MIT. Each participant performed a series of dosimetry measurements under equivalent irradiation conditions using methods appropriate to their clinical protocols. This entailed in-air measurements and dose versus depth measurements in a large water phantom. Thermal neutron flux as well as fast neutron and photon absorbed dose rates were measured. Satisfactory agreement in determining absorbed dose within the experimental uncertainties was obtained between the different groups although the measurement uncertainties are large, ranging between 3% and 30% depending upon the dose component and the depth of measurement. To improve the precision in the specification of absorbed dose amongst the participants, the individually measured dose components were normalized to the results from a single method. Assuming a boron concentration of 15 {mu}g g{sup -1} that is typical of concentrations realized clinically with the boron delivery compound boronophenylalanine-fructose, systematic discrepancies in the specification of the total biologically weighted dose of up to 10% were apparent between the different groups. The results from these measurements will be used in future to normalize treatment plan calculations between the different clinical dosimetry protocols as Part II of this study.

  8. An international dosimetry exchange for boron neutron capture therapy. Part I: Absorbed dose measurements.

    PubMed

    Binns, P J; Riley, K J; Harling, O K; Kiger, W S; Munck af Rosenschöld, P M; Giusti, V; Capala, J; Sköld, K; Auterinen, I; Serén, T; Kotiluoto, P; Uusi-Simola, J; Marek, M; Viererbl, L; Spurny, F

    2005-12-01

    An international collaboration was organized to undertake a dosimetry exchange to enable the future combination of clinical data from different centers conducting neutron capture therapy trials. As a first step (Part I) the dosimetry group from the Americas, represented by MIT, visited the clinical centers at Studsvik (Sweden), VTT Espoo (Finland), and the Nuclear Research Institute (NRI) at Rez (Czech Republic). A combined VTT/NRI group reciprocated with a visit to MIT. Each participant performed a series of dosimetry measurements under equivalent irradiation conditions using methods appropriate to their clinical protocols. This entailed in-air measurements and dose versus depth measurements in a large water phantom. Thermal neutron flux as well as fast neutron and photon absorbed dose rates were measured. Satisfactory agreement in determining absorbed dose within the experimental uncertainties was obtained between the different groups although the measurement uncertainties are large, ranging between 3% and 30% depending upon the dose component and the depth of measurement. To improve the precision in the specification of absorbed dose amongst the participants, the individually measured dose components were normalized to the results from a single method. Assuming a boron concentration of 15 microg g(-1) that is typical of concentrations realized clinically with the boron delivery compound boronophenylalanine-fructose, systematic discrepancies in the specification of the total biologically weighted dose of up to 10% were apparent between the different groups. The results from these measurements will be used in future to normalize treatment plan calculations between the different clinical dosimetry protocols as Part II of this study. PMID:16475772

  9. Ambient neutron dose equivalent outside concrete vault rooms for 15 and 18 MV radiotherapy accelerators.

    PubMed

    Martínez-Ovalle, S A; Barquero, R; Gómez-Ros, J M; Lallena, A M

    2012-03-01

    In this work, the ambient dose equivalent, H*(10), due to neutrons outside three bunkers that house a 15- and a 18-MV Varian Clinac 2100C/D and a 15-MV Elekta Inor clinical linacs, has been calculated. The Monte Carlo code MCNPX (v. 2.5) has been used to simulate the neutron production and transport. The complete geometries including linacs and full installations have been built up according to the specifications of the manufacturers and the planes provided by the corresponding medical physical services of the hospitals where the three linacs operate. Two of these installations, those lodging the Varian linacs, have an entrance door to the bunker while the other one does not, although it has a maze with two bends. Various treatment orientations were simulated in order to establish plausible annual equivalent doses. Specifically anterior-posterior, posterior-anterior, left lateral, right lateral orientations and an additional one with the gantry rotated 30° have been studied. Significant dose rates have been found only behind the walls and the door of the bunker, near the entrance and the console, with a maximum of 12 µSv h(-1). Dose rates per year have been calculated assuming a conservative workload for the three facilities. The higher dose rates in the corresponding control areas were 799 µSv y(-1), in the case of the facility which operates the 15-MV Clinac, 159 µSv y(-1), for that with the 15-MV Elekta, and 21 µSv y(-1) for the facility housing the 18-MV Varian. A comparison with measurements performed in similar installations has been carried out and a reasonable agreement has been found. The results obtained indicate that the neutron contamination does not increase the doses above the legal limits and does not produce a significant enhancement of the dose equivalent calculated. When doses are below the detection limits provided by the measuring devices available today, MCNPX simulation provides an useful method to evaluate neutron dose equivalents based

  10. Analysis for Radiation and Shielding Dose in Plasma Focus Neutron Source Using FLUKA

    NASA Astrophysics Data System (ADS)

    Nemati, M. J.; Amrollahi, R.; Habibi, M.

    2012-06-01

    Monte Carlo simulations have been performed for the attenuation of neutron radiation produced at Plasma focus (PF) devices through various shielding design. At the test site it will be fired with deuterium and tritium (D-T) fusion resulting in a yield of about 1013 fusion neutrons of 14 MeV. This poses a radiological hazard to scientists and personnel operating the device. The goal of this paper was to evaluate various shielding options under consideration for the PF operating with D-T fusion. Shields of varying neutrons-shielding effectiveness were investigated using concrete, polyethylene, paraffin and borated materials. The most effective shield, a labyrinth structure, allowed almost 1,176 shots per year while keeping personnel under 20 mSV of dose. The most expensive shield that used, square shield with 100 cm concrete thickness on the walls and Borated paraffin along with borated polyethylene added outside the concrete allowed almost 15,000 shot per year.

  11. Steady-state, high-dose neutron generation and concentration apparatus and method for deuterium atoms

    SciTech Connect

    Uhm, H.S.; Lee, W.M.

    1991-01-01

    A steady-state source of neutrons is produced within an electrically grounded and temperature controlled chamber confining tritium or deuterium plasma at a predetermined density to effect implantation of ions in the surface of a palladium target rod coated with diffusion barrier material and immersed in such plasma. The rod is enriched with a high concentration of deuterium atoms after a prolonged plasma ion implantation. Collision of the deuterium atoms in the target by impinging ions of the plasma initiates fusion reactions causing emission of neutrons during negative voltage pulses applied to the rod through a high power modulator. The neutrons are so generated at a relatively high dose rate under optimized process conditions.

  12. State of beryllium after irradiation at low temperature up to extremely high neutron doses

    NASA Astrophysics Data System (ADS)

    Chakin, V. P.; Kupryanov, I. B.; Melder, R. R.

    2004-08-01

    A study was made for four beryllium grades manufactured in Russia by hot extrusion (HE) and hot isostatic pressing (HIP) methods. Irradiation of specimens in the SM-3 reactor at a temperature of 70 °C up to a neutron fluence of (0.6-11.1) × 10 22 cm -2 ( E>0.1 eV) was performed and followed by post irradiation examination. The obtained results do not provide evidence of the advantage of one beryllium grade over another in terms of resistance to radiation damage in the fission reactor. In particular, neutron irradiation leads to absolutely brittle failure of all investigated beryllium specimens, according to the results of mechanical tensile and compression tests. Swelling of all grades at the maximum neutron dose does not exceed 1-2%. Some difference among the irradiated beryllium grades becomes apparent only in the brittle strength level.

  13. Neutron diffraction as a precise and reliable method for obtaining structural properties of bulk quantities of graphene

    NASA Astrophysics Data System (ADS)

    Sofer, Zdeněk; Šimek, Petr; Jankovský, Ondřej; Sedmidubský, David; Beran, Přemysl; Pumera, Martin

    2014-10-01

    Graphene based carbon materials have attracted a great deal of attention in the last decade; nowadays tons of graphene are produced yearly. However, there is lack of precise and reliable techniques for the determination of structural properties of graphene on the bulk scale. The analytical methods being routinely applied for graphene characterization, including TEM and AFM, can be only used for the study of scant amounts of graphene samples and do not give general information on the average number of layers and the structure of the prepared graphenes. On the other hand, diffraction methods can be advantageously used to obtain information on the average thickness of the produced graphene as well as on the average sheets lateral dimensions, without the necessity of sample dispersion in solvents. We present a study of the structural properties of graphene prepared by chemical and thermal reduction of graphite oxide, comparing SEM, STEM, AFM, Raman spectroscopy, BET, X-ray and neutron diffraction methods. Our study brings new deep insights into the basic structural properties of graphene in a bulk form. Given the importance of a suitable characterization technique on the bulk materials, we wish to highlight the importance of these diffraction techniques for accurate determination of the graphene thickness and lateral parameters.

  14. Evaluation of equivalent dose from neutrons and activation products from a 15-MV X-ray LINAC

    PubMed Central

    Israngkul-Na-Ayuthaya, Isra; Suriyapee, Sivalee; Pengvanich, Phongpheath

    2015-01-01

    A high-energy photon beam that is more than 10 MV can produce neutron contamination. Neutrons are generated by the [γ,n] reactions with a high-Z target material. The equivalent neutron dose and gamma dose from activation products have been estimated in a LINAC equipped with a 15-MV photon beam. A Monte Carlo simulation code was employed for neutron and photon dosimetry due to mixed beam. The neutron dose was also experimentally measured using the Optically Stimulated Luminescence (OSL) under various conditions to compare with the simulation. The activation products were measured by gamma spectrometer system. The average neutron energy was calculated to be 0.25 MeV. The equivalent neutron dose at the isocenter obtained from OSL measurement and MC calculation was 5.39 and 3.44 mSv/Gy, respectively. A gamma dose rate of 4.14 µSv/h was observed as a result of activations by neutron inside the treatment machine. The gamma spectrum analysis showed 28Al, 24Na, 54Mn and 60Co. The results confirm that neutrons and gamma rays are generated, and gamma rays remain inside the treatment room after the termination of X-ray irradiation. The source of neutrons is the product of the [γ,n] reactions in the machine head, whereas gamma rays are produced from the [n,γ] reactions (i.e. neutron activation) with materials inside the treatment room. The most activated nuclide is 28Al, which has a half life of 2.245 min. In practice, it is recommended that staff should wait for a few minutes (several 28Al half-lives) before entering the treatment room after the treatment finishes to minimize the dose received. PMID:26265661

  15. Evaluation of equivalent dose from neutrons and activation products from a 15-MV X-ray LINAC.

    PubMed

    Israngkul-Na-Ayuthaya, Isra; Suriyapee, Sivalee; Pengvanich, Phongpheath

    2015-11-01

    A high-energy photon beam that is more than 10 MV can produce neutron contamination. Neutrons are generated by the [γ,n] reactions with a high-Z target material. The equivalent neutron dose and gamma dose from activation products have been estimated in a LINAC equipped with a 15-MV photon beam. A Monte Carlo simulation code was employed for neutron and photon dosimetry due to mixed beam. The neutron dose was also experimentally measured using the Optically Stimulated Luminescence (OSL) under various conditions to compare with the simulation. The activation products were measured by gamma spectrometer system. The average neutron energy was calculated to be 0.25 MeV. The equivalent neutron dose at the isocenter obtained from OSL measurement and MC calculation was 5.39 and 3.44 mSv/Gy, respectively. A gamma dose rate of 4.14 µSv/h was observed as a result of activations by neutron inside the treatment machine. The gamma spectrum analysis showed (28)Al, (24)Na, (54)Mn and (60)Co. The results confirm that neutrons and gamma rays are generated, and gamma rays remain inside the treatment room after the termination of X-ray irradiation. The source of neutrons is the product of the [γ,n] reactions in the machine head, whereas gamma rays are produced from the [n,γ] reactions (i.e. neutron activation) with materials inside the treatment room. The most activated nuclide is (28)Al, which has a half life of 2.245 min. In practice, it is recommended that staff should wait for a few minutes (several (28)Al half-lives) before entering the treatment room after the treatment finishes to minimize the dose received. PMID:26265661

  16. Dose profile modeling of Idaho National Laboratory's active neutron interrogation laboratory.

    PubMed

    Chichester, D L; Seabury, E H; Zabriskie, J M; Wharton, J; Caffrey, A J

    2009-06-01

    A new laboratory has been commissioned at Idaho National Laboratory for performing active neutron interrogation research and development. The facility is designed to provide radiation shielding for deuterium-tritium (DT) fusion (14.1 MeV) neutron generators (2 x 10(8) n/s), deuterium-deuterium (DD) fusion (2.5 MeV) neutron generators (1 x 10(7) n/s), and (252)Cf spontaneous fission neutron sources (6.96 x 10(7) n/s, 30 microg). Shielding at the laboratory is comprised of modular concrete shield blocks 0.76 m thick with tongue-in-groove features to prevent radiation streaming, arranged into one small and one large test vault. The larger vault is designed to allow operation of the DT generator and has walls 3.8m tall, an entrance maze, and a fully integrated electrical interlock system; the smaller test vault is designed for (252)Cf and DD neutron sources and has walls 1.9 m tall and a simple entrance maze. Both analytical calculations and numerical simulations were used in the design process for the building to assess the performance of the shielding walls and to ensure external dose rates are within required facility limits. Dose rate contour plots have been generated for the facility to visualize the effectiveness of the shield walls and entrance mazes and to illustrate the spatial profile of the radiation dose field above the facility and the effects of skyshine around the vaults. PMID:19217792

  17. Monte Carlo modeling of proton therapy installations: a global experimental method to validate secondary neutron dose calculations

    NASA Astrophysics Data System (ADS)

    Farah, J.; Martinetti, F.; Sayah, R.; Lacoste, V.; Donadille, L.; Trompier, F.; Nauraye, C.; De Marzi, L.; Vabre, I.; Delacroix, S.; Hérault, J.; Clairand, I.

    2014-06-01

    Monte Carlo calculations are increasingly used to assess stray radiation dose to healthy organs of proton therapy patients and estimate the risk of secondary cancer. Among the secondary particles, neutrons are of primary concern due to their high relative biological effectiveness. The validation of Monte Carlo simulations for out-of-field neutron doses remains however a major challenge to the community. Therefore this work focused on developing a global experimental approach to test the reliability of the MCNPX models of two proton therapy installations operating at 75 and 178 MeV for ocular and intracranial tumor treatments, respectively. The method consists of comparing Monte Carlo calculations against experimental measurements of: (a) neutron spectrometry inside the treatment room, (b) neutron ambient dose equivalent at several points within the treatment room, (c) secondary organ-specific neutron doses inside the Rando-Alderson anthropomorphic phantom. Results have proven that Monte Carlo models correctly reproduce secondary neutrons within the two proton therapy treatment rooms. Sensitive differences between experimental measurements and simulations were nonetheless observed especially with the highest beam energy. The study demonstrated the need for improved measurement tools, especially at the high neutron energy range, and more accurate physical models and cross sections within the Monte Carlo code to correctly assess secondary neutron doses in proton therapy applications.

  18. Monte Carlo modeling of proton therapy installations: a global experimental method to validate secondary neutron dose calculations.

    PubMed

    Farah, J; Martinetti, F; Sayah, R; Lacoste, V; Donadille, L; Trompier, F; Nauraye, C; De Marzi, L; Vabre, I; Delacroix, S; Hérault, J; Clairand, I

    2014-06-01

    Monte Carlo calculations are increasingly used to assess stray radiation dose to healthy organs of proton therapy patients and estimate the risk of secondary cancer. Among the secondary particles, neutrons are of primary concern due to their high relative biological effectiveness. The validation of Monte Carlo simulations for out-of-field neutron doses remains however a major challenge to the community. Therefore this work focused on developing a global experimental approach to test the reliability of the MCNPX models of two proton therapy installations operating at 75 and 178 MeV for ocular and intracranial tumor treatments, respectively. The method consists of comparing Monte Carlo calculations against experimental measurements of: (a) neutron spectrometry inside the treatment room, (b) neutron ambient dose equivalent at several points within the treatment room, (c) secondary organ-specific neutron doses inside the Rando-Alderson anthropomorphic phantom. Results have proven that Monte Carlo models correctly reproduce secondary neutrons within the two proton therapy treatment rooms. Sensitive differences between experimental measurements and simulations were nonetheless observed especially with the highest beam energy. The study demonstrated the need for improved measurement tools, especially at the high neutron energy range, and more accurate physical models and cross sections within the Monte Carlo code to correctly assess secondary neutron doses in proton therapy applications. PMID:24800943

  19. Dependence of TLD thermoluminescence yield on absorbed dose in a thermal neutron field.

    PubMed

    Gambarini, G; Roy, M S

    1997-01-01

    The emission from 6LiF and 7LiF thermoluminescence dosimeters (TLDs) exposed to the mixed field of thermal neutrons and gamma-rays of the thermal facility of a TRIGA MARK II nuclear reactor has been investigated for various thermal neutron fluences of the order of magnitude of those utilised in radiotherapy, with the purpose of investigating the reliability of TLD readouts in such radiation fields and of giving some information for better obtainment of the absorbed dose values. The emission after exposure in this mixed field is compared with the emission after gamma-rays only. The glow curves have been deconvoluted into gaussian peaks, and the differences in the characteristics of the peaks observed for the two radiation fields, having different linear energy transfers, and for different doses are shown. Irreversible radiation damage in dosimeters having high sensitivity to thermal neutrons is also reported, showing a memory effect of the previous thermal neutron irradiation history which is not restored by anneal treatment. PMID:9463872

  20. Fast Neutron Dose Evaluation Using CR39 by Coincidence Counting Process

    NASA Astrophysics Data System (ADS)

    Vilela, Eudice; Brandão, J. O. C.; Santos, J. A. L.; de Freitas, F. F.

    2008-08-01

    The solid state nuclear tracks detection (SSNTD) technique is widely used in the area of radiation dosimetry. Different materials can be used applying this technique as glass and the most used in the dosimetry field that are the polycarbonates, CR39 and Makrofol-DE. Both are very rich in hydrogenous, that enables the SSNTD to detect fast neutrons through recoils of protons in the own detector material, without need of converters. The low reproducibility of its backgroundhas often been the major drawback in the assessment of low fluences of fast neutrons with SSNTDs. This problem can be effectively solved by counting coincidence of tracks in two detectors foils irradiated in close contact. After processing and counting only tracks produced by the same recoil nuclei on the surfaces of both detectors are considered as a track. This procedure enables the reduction of the background counts in the response of the detectors. In this work a preliminary study on the application of the coincidence technique for neutron dosimetry is presented. The CR39 material was investigated aiming to achieve the personal dose equivalent for fast neutrons. Using this method of analysis a significant reduction on the lower detectable dose was observed resulting even one order of magnitude smaller value. Reading, however, needs to be automated due to the large areas necessary to achieve a satisfactory number of tracks for statistical significance of results.

  1. Peregrine monte carlo dose calculations for radiotherapy using clinically realistic neutron and proton beams

    SciTech Connect

    Cox, L. J., LLNL

    1997-06-16

    Lawrence Livermore National Laboratory (LLNL) has developed an all-particle Monte Carlo radiotherapy dose calculation code--PEREGRINE--for use in clinical radiation oncology. For PEREGRINE, we have assembled high-energy evaluated nuclear databases; created radiation source characterization and sampling algorithms; and simulated and characterized clinical beams for treatment with photons, neutrons and protons. Spectra are available for the Harper Hospital (Detroit, U.S.A.) Be(d,n) neutron therapy beam, the National Accelerator Centre (NAC, Faure, S.A.) Be(p,n) neutron therapy beam and many of the operating modes of the Loma Linda University Medical Center (LLUMC, Loma Linda, USA) proton treatment center. These beam descriptions are being used in PEREGRINE for Monte Carlo dose calculations on clinical configurations for comparisons to measurements. The methods of defining and sampling the beam phase space characterizations are discussed. We show calculations using these clinical beams compared to measurements in homogeneous water phantoms. The state of PEREGRINE's high energy neutron and proton transport database, PCSL, is reviewed and the remaining issues involving nuclear data needs for PEREGRINE are addressed.

  2. Cation disorder determined by MAS {sup 27}Al NMR in high dose neutron irradiated spinel

    SciTech Connect

    Cooper, E.A.; Sickafus, K.E.; Hughes, C.D.; Earl, W.L.; Hollenberg, G.W.; Garner, F.A.; Bradt, R.C.

    1995-12-31

    Spinel (MgAl{sub 2}O{sub 4}) single crystals which had been neutron irradiated to high doses (53-250 dpa) were examined using {sup 27}Al magic angle spinning (MAS) nuclear magnetic resonance (NMR). The sensitivity of this procedure to a specific cation (Al) residing in different crystallographic environments allowed one to determine the distribution of the Al between the two cation sites in the spinel structure. The samples were irradiated at two different temperatures (400 and 750{degrees}C) and various doses. These results indicate that the Al was nearly fully disordered over the two lattice sites after irradiation.

  3. Correlation of clinical outcome to the estimated radiation dose from Boron Neutron Capture Therapy (BNCT)

    SciTech Connect

    Chadha, M.; Coderre, J.A.; Chanana, A.D.

    1996-12-31

    A phase I/II trial delivering a single fraction of BNCT using p-Boronophenylalanine-Fructose and epithermal neutrons at the the Brookhaven Medical Research Reactor was initiated in September 1994. The primary endpiont of the study was to evaluate the feasibility and safety of a given BNCT dose. The clinical outcome of the disease was a secondary endpoint of the study. The objective of this paper is to evaluate the correlation of the clinical outcome of patients to the estimated radiation dose from BNCT.

  4. Evaluating secondary neutron doses of a refined shielded design for a medical cyclotron using the TLD approach

    NASA Astrophysics Data System (ADS)

    Lin, Jye-Bin; Tseng, Hsien-Chun; Liu, Wen-Shan; Lin, Ding-Bang; Hsieh, Teng-San; Chen, Chien-Yi

    2013-11-01

    An increasing number of cyclotrons at medical centers in Taiwan have been installed to generate radiopharmaceutical products. An operating cyclotron generates immense amounts of secondary neutrons from reactions such the 18O(p, n)18F, used in the production of FDG. This intense radiation can be hazardous to public health, particularly to medical personnel. To increase the yield of 18F-FDG from 4200 GBq in 2005 to 48,600 GBq in 2011, Chung Shan Medical University Hospital (CSMUH) has prolonged irradiation time without changing the target or target current to meet requirements regarding the production 18F. The CSMUH has redesigned the CTI Radioisotope Delivery System shield. The lack of data for a possible secondary neutron doses has increased due to newly designed cyclotron rooms. This work aims to evaluate secondary neutron doses at a CTI cyclotron center using a thermoluminescent dosimeter (TLD-600). Two-dimensional neutron doses were mapped and indicated that neutron doses were high as neutrons leaked through self-shielded blocks and through the L-shaped concrete shield in vault rooms. These neutron doses varied markedly among locations close to the H218O target. The Monte Carlo simulation and minimum detectable dose are also discussed and demonstrated the reliability of using the TLD-600 approach. Findings can be adopted by medical centers to identify radioactive hot spots and develop radiation protection.

  5. Neutron activation analysis for reference determination of the implantation dose of cobalt ions

    SciTech Connect

    Garten, R.P.H.; Bubert, H.; Palmetshofer, L.

    1992-05-15

    The authors prepared depth profilling reference materials by cobalt ion implantation at an ion energy of 300 keV into n-type silicon. The implanted Co dose was then determined by instrumental neutron activation analysis (INAA) giving an analytical dynamic range of almost 5 decades and uncertainty of 1.5%. This form of analysis allows sources of error (beam spreading, misalignment) to be corrected. 70 refs., 3 tabs.

  6. LETTER TO THE EDITOR: Enhancement of neutron radiation dose by the addition of sulphur-33 atoms

    NASA Astrophysics Data System (ADS)

    Porras, I.

    2008-04-01

    The use of neutrons in radiotherapy allows the possibility of producing nuclear reactions in a specific target inserted in the medium. 10B is being used to induce reactions (n, α), a technique called boron neutron capture therapy. I have studied the possibility of inducing a similar reaction using the nucleus of 33S, for which the reaction cross section presents resonances for keV neutrons, the highest peak occurring at 13.5 keV. Here shown, by means of Monte Carlo simulation of point-like sources of neutrons in this energy range, is an enhancement effect on the absorbed dose in water by the addition of 33S atoms. In addition to this, as the range of the alpha particle is of the order of a mammalian cell size, the energy deposition via this reaction results mainly inside the cells adjacent to the interaction site. The main conclusion of the present work is that the insertion of these sulphur atoms in tumoral cells would enhance the effect of neutron irradiation in the keV range.

  7. Comparison of out-of-field photon doses in 6 MV IMRT and neutron doses in proton therapy for adult and pediatric patients

    NASA Astrophysics Data System (ADS)

    Athar, Basit S.; Bednarz, Bryan; Seco, Joao; Hancox, Cindy; Paganetti, Harald

    2010-05-01

    The purpose of this study was to assess lateral out-of-field doses in 6 MV IMRT (intensity modulated radiation therapy) and compare them with secondary neutron equivalent dose contributions in proton therapy. We simulated out-of-field photon doses to various organs as a function of distance, patient's age, gender and treatment volumes based on 3, 6, 9 cm field diameters in the head and neck and spine region. The out-of-field photon doses to organs near the field edge were found to be in the range of 2, 5 and 10 mSv Gy-1 for 3 cm, 6 cm and 9 cm diameter IMRT fields, respectively, within 5 cm of the field edge. Statistical uncertainties calculated in organ doses vary from 0.2% to 40% depending on the organ location and the organ volume. Next, a comparison was made with previously calculated neutron equivalent doses from proton therapy using identical field arrangements. For example, out-of-field doses for IMRT to lung and uterus (organs close to the 3 cm diameter spinal field) were computed to be 0.63 and 0.62 mSv Gy-1, respectively. These numbers are found to be a factor of 2 smaller than the corresponding out-of-field doses for proton therapy, which were estimated to be 1.6 and 1.7 mSv Gy-1 (RBE), respectively. However, as the distance to the field edge increases beyond approximately 25 cm the neutron equivalent dose from proton therapy was found to be a factor of 2-3 smaller than the out-of-field photon dose from IMRT. We have also analyzed the neutron equivalent doses from an ideal scanned proton therapy (assuming not significant amount of absorbers in the treatment head). Out-of-field doses were found to be an order of magnitude smaller compared to out-of-field doses in IMRT or passive scattered proton therapy. In conclusion, there seem to be three geometrical areas when comparing the out-of-target dose from IMRT and (passive scattered) proton treatments. Close to the target (in-field, not analyzed here) protons offer a distinct advantage due to the lower

  8. Dose Measurements of Bremsstrahlung-Produced Neutrons at the Advanced Photon Source

    SciTech Connect

    Job, P.K.; Pisharody, M.; Semones, E.

    1998-08-01

    a few of such neutron flux measurements were conducted at high photon energies. Monte Carlo codes and analytical formulas are used to calculate the differential photon track length in targets. Together with the known photoneutron cross sections, the neutron yields are then determined as a function of incident electron energy. Neutron fluence calculated from these yields assumes isotropic emission of neutrons from a point source target. Because neutron transport is not handled in most of these studies, possible neutron interactions inside the target are not accounted for in calculating the energy and intensity outside the target. There is also the uncertainty of photoneutron production cross section at higher energies. A simultaneous measurement of bremsstrahlung and corresponding photoneutron production will provide photoneutron dose rates as a function of bremsstrahlung energy or power. Along with our already existing bremsstrahlung spectrum measurement expertise, we conducted simultaneous photoneutron dose measurements at the APS from thick targets of Fe, Cu, W, and Pb that are placed in the bremsstrahlung beam inside the FOE of the insertion device beamlines. An Andersson-Braun (AB) remmeter that houses a BF{sub 3} detector, as well as a very sensitive pressurized {sup 3}He detector, is used for neutron dose measurements. The dose equivalent rates, normalized to bremsstrahlung power, beam current, and storage ring vacuum, are measured for various targets. This report details the experimental setup, data acquisition system, calibration procedures, analysis of the data and the results of the measurements.

  9. Integrated doses calculation in evacuation scenarios of the neutron generator facility at Missouri S&T

    NASA Astrophysics Data System (ADS)

    Sharma, Manish K.; Alajo, Ayodeji B.

    2016-08-01

    Any source of ionizing radiations could lead to considerable dose acquisition to individuals in a nuclear facility. Evacuation may be required when elevated levels of radiation is detected within a facility. In this situation, individuals are more likely to take the closest exit. This may not be the most expedient decision as it may lead to higher dose acquisition. The strategy followed in preventing large dose acquisitions should be predicated on the path that offers least dose acquisition. In this work, the neutron generator facility at Missouri University of Science and Technology was analyzed. The Monte Carlo N-Particle (MCNP) radiation transport code was used to model the entire floor of the generator's building. The simulated dose rates in the hallways were used to estimate the integrated doses for different paths leading to exits. It was shown that shortest path did not always lead to minimum dose acquisition and the approach was successful in predicting the expedient path as opposed to the approach of taking the nearest exit.

  10. Monte Carlo study on secondary neutrons in passive carbon-ion radiotherapy: Identification of the main source and reduction in the secondary neutron dose

    SciTech Connect

    Yonai, Shunsuke; Matsufuji, Naruhiro; Kanai, Tatsuaki

    2009-10-15

    Purpose: Recent successful results in passive carbon-ion radiotherapy allow the patient to live for a longer time and allow younger patients to receive the radiotherapy. Undesired radiation exposure in normal tissues far from the target volume is considerably lower than that close to the treatment target, but it is considered to be non-negligible in the estimation of the secondary cancer risk. Therefore, it is very important to reduce the undesired secondary neutron exposure in passive carbon-ion radiotherapy without influencing the clinical beam. In this study, the source components in which the secondary neutrons are produced during passive carbon-ion radiotherapy were identified and the method to reduce the secondary neutron dose effectively based on the identification of the main sources without influencing the clinical beam was investigated. Methods: A Monte Carlo study with the PHITS code was performed by assuming the beamline at the Heavy-Ion Medical Accelerator in Chiba (HIMAC). At first, the authors investigated the main sources of secondary neutrons in passive carbon-ion radiotherapy. Next, they investigated the reduction in the neutron dose with various modifications of the beamline device that is the most dominant in the neutron production. Finally, they investigated the use of an additional shield for the patient. Results: It was shown that the main source is the secondary neutrons produced in the four-leaf collimator (FLC) used as a precollimator at HIAMC, of which contribution in the total neutron ambient dose equivalent is more than 70%. The investigations showed that the modification of the FLC can reduce the neutron dose at positions close to the beam axis by 70% and the FLC is very useful not only for the collimation of the primary beam but also the reduction in the secondary neutrons. Also, an additional shield for the patient is very effective to reduce the neutron dose at positions farther than 50 cm from the beam axis. Finally, they showed

  11. The effect of neutron irradiation dose on vacancy defect accumulation and annealing in pure nickel

    NASA Astrophysics Data System (ADS)

    Druzhkov, A. P.; Arbuzov, V. L.; Perminov, D. A.

    2012-02-01

    In order to investigate the dose dependence of vacancy defect evolution in nickel, specimens of high-purity Ni were neutron-irradiated at ˜330 K in the IVV-2M reactor (Russia) to fluencies in the range of 1 × 10 21-1 × 10 23 n/m 2 ( E > 0.1 MeV) corresponding to displacement dose levels in the range of about 0.0001-0.01 dpa and subsequently stepwise annealed to about 900 K. Ni was characterized both in as-irradiated state as well as after post-irradiation annealing by positron annihilation spectroscopy. The formation of three-dimensional vacancy clusters (3D-VCs) in cascades was observed under neutron irradiation, the concentration of 3D-VCs increases with increasing dose level. 3D-VCs collapse into secondary-type clusters (stacking fault tetrahedra (SFTs), and vacancy loops) during stepwise annealing at 350-450 K. It is shown that the thermal stability of SFTs grow with increasing dose level, probably, it is due to growth of the average SFT size during annealing. The results of annealing experiments on electron-irradiated Ni at 300 K are indicated in the paper, for comparison. We also have briefly discussed the positron response to the SFT-like structures.

  12. Measurement of neutron dose equivalent outside and inside of the treatment vault of GRID therapy

    SciTech Connect

    Wang, Xudong; Charlton, Michael A.; Esquivel, Carlos; Eng, Tony Y.; Li, Ying; Papanikolaou, Nikos

    2013-09-15

    Purpose: To evaluate the neutron and photon dose equivalent rates at the treatment vault entrance (H{sub n,D} and H{sub G}), and to study the secondary radiation to the patient in GRID therapy. The radiation activation on the grid was studied.Methods: A Varian Clinac 23EX accelerator was working at 18 MV mode with a grid manufactured by .decimal, Inc. The H{sub n,D} and H{sub G} were measured using an Andersson–Braun neutron REM meter, and a Geiger Müller counter. The radiation activation on the grid was measured after the irradiation with an ion chamber γ-ray survey meter. The secondary radiation dose equivalent to patient was evaluated by etched track detectors and OSL detectors on a RANDO{sup ®} phantom.Results: Within the measurement uncertainty, there is no significant difference between the H{sub n,D} and H{sub G} with and without a grid. However, the neutron dose equivalent to the patient with the grid is, on average, 35.3% lower than that without the grid when using the same field size and the same amount of monitor unit. The photon dose equivalent to the patient with the grid is, on average, 44.9% lower. The measured average half-life of the radiation activation in the grid is 12.0 (±0.9) min. The activation can be categorized into a fast decay component and a slow decay component with half-lives of 3.4 (±1.6) min and 15.3 (±4.0) min, respectively. There was no detectable radioactive contamination found on the surface of the grid through a wipe test.Conclusions: This work indicates that there is no significant change of the H{sub n,D} and H{sub G} in GRID therapy, compared with a conventional external beam therapy. However, the neutron and scattered photon dose equivalent to the patient decrease dramatically with the grid and can be clinical irrelevant. Meanwhile, the users of a grid should be aware of the possible high dose to the radiation worker from the radiation activation on the surface of the grid. A delay in handling the grid after the beam

  13. Boron neutron capture therapy using mixed epithermal and thermal neutron beams in patients with malignant glioma-correlation between radiation dose and radiation injury and clinical outcome

    SciTech Connect

    Kageji, Teruyoshi . E-mail: kageji@clin.med.tokushima-u.ac.jp; Nagahiro, Shinji; Matsuzaki, Kazuhito; Mizobuchi, Yoshifumi; Toi, Hiroyuki; Nakagawa, Yoshinobu; Kumada, Hiroaki

    2006-08-01

    Purpose: To clarify the correlation between the radiation dose and clinical outcome of sodium borocaptate-based intraoperative boron neutron capture therapy in patients with malignant glioma. Methods and Materials: The first protocol (P1998, n = 8) prescribed a maximal gross tumor volume (GTV) dose of 15 Gy. In 2001, a dose-escalated protocol was introduced (P2001, n 11), which prescribed a maximal vascular volume dose of 15 Gy or, alternatively, a clinical target volume (CTV) dose of 18 Gy. Results: The GTV and CTV doses in P2001 were 1.1-1.3 times greater than those in P1998. The maximal vascular volume dose of those with acute radiation injury was 15.8 Gy. The mean GTV and CTV dose in long-term survivors with glioblastoma was 26.4 and 16.5 Gy, respectively. A statistically significant correlation between the GTV dose and median survival time was found. In the 11 glioblastoma patients in P2001, the median survival time was 19.5 months and 1- and 2-year survival rate was 60.6% and 37.9%, respectively. Conclusion: Dose escalation contributed to the improvement in clinical outcome. To avoid radiation injury, the maximal vascular volume dose should be <12 Gy. For long-term survival in patients with glioblastoma after boron neutron capture therapy, the optimal mean dose of the GTV and CTV was 26 and 16 Gy, respectively.

  14. Effect of diameter of nanoparticles and capture cross-section library on macroscopic dose enhancement in boron neutron capture therapy

    PubMed Central

    Farhood, Bagher

    2014-01-01

    Purpose The aim of this study is evaluation of the effect of diameter of 10B nanoparticles and various neutron capture cross-section libraries on macroscopic dose enhancement in boron neutron capture therapy (BNCT). Material and methods MCNPX Monte Carlo code was used for simulation of a 252Cf source, a soft tissue phantom and a tumor containing 10B nanoparticles. Using 252Cf as a neutron source, macroscopic dose enhancement factor (MDEF) and total dose rate in tumor in the presence of 100, 200, and 500 ppm of 10B nanoparticles with 25 nm, 50 nm, and 100 nm diameters were calculated. Additionally, the effect of ENDF, JEFF, JENDL, and CENDL neutron capture cross-section libraries on MDEF was evaluated. Results There is not a linear relationship between the average MDEF value and nanoparticles’ diameter but the average MDEF grows with increased concentration of 10B nanoparticles. There is an increasing trend for average MDEF with the tumor distance. The average MDEF values were obtained the same for various neutron capture cross-section libraries. The maximum and minimum doses that effect on the total dose in tumor were neutron and secondary photon doses, respectively. Furthermore, the boron capture related dose component reduced in some extent with increase of diameter of 10B nanoparticles. Conclusions Based on the results of this study, it can be concluded that from physical point of view, various nanoparticle diameters have no dominant effect on average MDEF value in tumor. Furthermore, it is concluded that various neutron capture cross-section libraries are resulted to the same macroscopic dose enhancements. However, it is predicted that taking into account the biological effects for various nanoparticle diameters will result in different dose enhancements. PMID:25834582

  15. Determination of neutron dose from criticality accidents with bioassays for sodium-24 in blood and phosphorus-32 in hair

    SciTech Connect

    Feng, Y.; Miller, L.F.; Brown, K.S.; Casson, W.H.; Mei, G.T.; Thein, M.

    1993-06-01

    A comprehensive review of accident neutron dosimetry using blood and hair analysis was performed and is summarized in this report. Experiments and calculations were conducted at Oak Ridge National Laboratory (ORNL) and the University of Tennessee (UT) to develop measurement techniques for the activity of {sup 24}Na in blood and {sup 32}P in hair for nuclear accident dosimetry. An operating procedure was established for the measurement of {sup 24}Na in blood using an HPGe detector system. The sensitivity of the measurement for a 20-mL sample is 0.01-0.02 Gy of total neutron dose for hard spectra and below 0.005 Gy for soft spectra based on a 30- to 60-min counting time. The operating procedures for direct counting of hair samples are established using a liquid scintillation detector. Approximately 0.06-0.1 Gy of total neutron dose can be measured from a 1-g hair sample using this procedure. Detailed procedures for chemical dissolution and ashing of hair samples are also developed. A method is proposed to use blood and hair analysis for assessing neutron dose based on a collection of 98 neutron spectra. Ninety-eight blood activity-to-dose conversion factors were calculated. The calculated results for an uncollided fission spectrum compare favorably with previously published data for fission neutrons. This nuclear accident dosimetry system makes it possible to estimate an individual`s neutron dose within a few hours after an accident if the accident spectrum can be approximated from one of 98 tabulated neutron spectrum descriptions. If the information on accident and spectrum description is not available, the activity ratio of {sup 32}P in hair and {sup 24}Na in blood can provide information related to the neutron spectrum for dose assessment.

  16. Feasibility study of the neutron dose for real-time image-guided proton therapy: A Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Kim, Jin Sung; Shin, Jung Suk; Kim, Daehyun; Shin, Eunhyuk; Chung, Kwangzoo; Cho, Sungkoo; Ahn, Sung Hwan; Ju, Sanggyu; Chung, Yoonsun; Jung, Sang Hoon; Han, Youngyih

    2015-07-01

    Two full rotating gantries with different nozzles (multipurpose nozzle with MLC, scanning dedicated nozzle) for a conventional cyclotron system are installed and being commissioned for various proton treatment options at Samsung Medical Center in Korea. The purpose of this study is to use Monte Carlo simulation to investigate the neutron dose equivalent per therapeutic dose, H/D, for X-ray imaging equipment under various treatment conditions. At first, we investigated the H/D for various modifications of the beamline devices (scattering, scanning, multi-leaf collimator, aperture, compensator) at the isocenter and at 20, 40 and 60 cm distances from the isocenter, and we compared our results with those of other research groups. Next, we investigated the neutron dose at the X-ray equipment used for real-time imaging under various treatment conditions. Our investigation showed doses of 0.07 ~ 0.19 mSv/Gy at the X-ray imaging equipment, depending on the treatment option and interestingly, the 50% neutron dose reduction was observed due to multileaf collimator during proton scanning treatment with the multipurpose nozzle. In future studies, we plan to measure the neutron dose experimentally and to validate the simulation data for X-ray imaging equipment for use as an additional neutron dose reduction method.

  17. Spectral effects in low-dose fission and fusion neutron irradiated metals and alloys

    SciTech Connect

    Heinisch, H.L.; Atkin, S.D.; Martinez, C.

    1986-04-01

    Flat miniature tensile specimens were irradiated to neutron fluences up to 9 x 10/sup 22/ n/m/sup 2/ in the RTNS-II and in the Omega West Reactor. Specimen temperatures were the same in both environments, with runs being made at both 90/sup 0/C and 290/sup 0/C. The results of tensile tests on AISI 316 stainless steel, A302B pressure vessel steel and pure copper are reported here. The radiation-induced changes in yield strength as a function of neutron dose in each spectrum are compared. The data for 316 stainless steel correlate well on the basis of displacements per atom (dpa), while those for copper and A302B do not. In copper the ratio of fission dpa to 14 MeV neutron dpa for a given yield stress change is about three to one. In A302B pressure vessel steel this ratio is more than three at lower fluences, but the yield stress data for fission and 14 MeV neutron-irradiated A302B steel appears to coalesce or intersect at the higher fluences.

  18. Neutron yields and effective doses produced by Galactic Cosmic Ray interactions in shielded environments in space.

    PubMed

    Heilbronn, Lawrence H; Borak, Thomas B; Townsend, Lawrence W; Tsai, Pi-En; Burnham, Chelsea A; McBeth, Rafe A

    2015-11-01

    In order to define the ranges of relevant neutron energies for the purposes of measurement and dosimetry in space, we have performed a series of Monte Carlo transport model calculations that predict the neutron field created by Galactic Cosmic Ray interactions inside a variety of simple shielding configurations. These predictions indicate that a significant fraction of the neutron fluence and neutron effective dose lies in the region above 20 MeV up to several hundred MeV. These results are consistent over thicknesses of shielding that range from very thin (2.7 g/cm(2)) to thick (54 g/cm(2)), and over both shielding materials considered (aluminum and water). In addition to these results, we have also investigated whether simplified Galactic Cosmic Ray source terms can yield predictions that are equivalent to simulations run with a full GCR source term. We found that a source using a GCR proton and helium spectrum together with a scaled oxygen spectrum yielded nearly identical results to a full GCR spectrum, and that the scaling factor used for the oxygen spectrum was independent of shielding material and thickness. Good results were also obtained using a GCR proton spectrum together with a scaled helium spectrum, with the helium scaling factor also independent of shielding material and thickness. Using a proton spectrum alone was unable to reproduce the full GCR results. PMID:26553642

  19. Out-of-field photon and neutron dose equivalents from step-and-shoot intensity-modulated radiation therapy

    SciTech Connect

    Kry, Stephen F.; Salehpour, Mohammad . E-mail: msalehpour@mdanderson.org; Followill, David S.; Stovall, Marilyn; Kuban, Deborah A.; White, R. Allen; Rosen, Isaac I.

    2005-07-15

    Purpose: To measure the photon and neutron out-of-treatment-field dose equivalents to various organs from different treatment strategies (conventional vs. intensity-modulated radiation therapy [IMRT]) at different treatment energies and delivered by different accelerators. Methods and Materials: Independent measurements were made of the photon and neutron out-of-field dose equivalents resulting from one conventional and six IMRT treatments for prostate cancer. The conventional treatment used an 18-MV beam from a Clinac 2100; the IMRT treatments used 6-MV, 10-MV, 15-MV, and 18-MV beams from a Varian Clinac 2100 accelerator and 6-MV and 15-MV beams from a Siemens Primus accelerator. Photon doses were measured with thermoluminescent dosimeters in a Rando phantom, and neutron fluence was measured with gold foils. Dose equivalents to the colon, liver, stomach, lung, esophagus, thyroid, and active bone marrow were determined for each treatment approach. Results: For each treatment approach, the relationship between dose equivalent per MU, distance from the treatment field, and depth in the patient was examined. Photon dose equivalents decreased approximately exponentially with distance from the treatment field. Neutron dose equivalents were independent of distance from the treatment field and decreased with increasing tissue depth. Neutrons were a significant contributor to the out-of field dose equivalent for beam energies {>=}15 MV. Conclusions: Out-of-field photon and neutron dose equivalents can be estimated to any point in a patient undergoing a similar treatment approach from the distance of that point to the central axis and from the tissue depth. This information is useful in determining the dose to critical structures and in evaluating the risk of associated carcinogenesis.

  20. New empirical formula for neutron dose level at the maze entrance of 15 MV medical accelerator facilities

    SciTech Connect

    Kim, Hong-Suk; Jang, Ki-Won; Park, Youn-Hwan; Kwon, Jeong-Wan; Choi, Ho-Sin; Lee, Jai-Ki; Kim, Jong-Kyung

    2009-05-15

    An easily applicable empirical formula was derived for use in the assessment of the photoneutron dose at the maze entrance of a 15 MV medical accelerator treatment room. The neutron dose equivalent rates around the Varian medical accelerator head calculated with the Monte Carlo code MCNPX were used as the source term in producing the base data. The dose equivalents were validated by measurements with bubble detectors. Irradiation geometry conditions expected to yield higher neutron dose rates in the maze were selected: a 20x20 cm{sup 2} irradiation field, gantry rotation plane parallel to the maze walls, and the photon beams directed to the opposite wall to the maze entrance. The neutron dose equivalents at the maze entrance were computed for 697 arbitrary single-bend maze configurations by extending the Monte Carlo calculations down to the maze entrance. Then, the empirical formula was derived by a multiple regression fit to the neutron dose equivalents at the maze entrance for all the different maze configurations. The goodness of the empirical formula was evaluated by applying it to seven operating medical accelerators of different makes. When the source terms were fixed, the neutron doses estimated from the authors' formula agreed better with the corresponding MCNPX simulations than the results of the Kersey method. In addition, compared with the Wu-McGinley formula, the authors' formula provided better estimates for the mazes with length longer than 8.5 m. There are, however, discrepancies between the measured dose rates and the estimated values from the authors' formula, particularly for the machines other than a Varian model. Further efforts are needed to characterize the neutron field at the maze entrance to reduce the discrepancies. Furthermore, neutron source terms for the machines other than a Varian model should be simulated or measured and incorporated into the formula for accurate extended application to a variety of models.

  1. CURRENT PROBLEMS AND EXPECTED IMPROVEMENTS IN PERSONAL NEUTRON DOSIMETRY

    SciTech Connect

    McDonald, Joseph C.

    2004-12-15

    Recent progress has been made in the development of devices and techniques for the measurement and calibration of neutron personal dosimeters. The quantities and units used to express neutron dose equivalents are being improved and clarified. Therefore, it is expected that a number of remaining difficulties with neutron dosimetry will be mitigated.

  2. Capability of NIPAM polymer gel in recording dose from the interaction of (10)B and thermal neutron in BNCT.

    PubMed

    Khajeali, Azim; Reza Farajollahi, Ali; Kasesaz, Yaser; Khodadadi, Roghayeh; Khalili, Assef; Naseri, Alireza

    2015-11-01

    The capability of N-isopropylacrylamide (NIPAM) polymer gel to record the dose resulting from boron neutron capture reaction in BNCT was determined. In this regard, three compositions of the gel with different concentrations of (10)B were prepared and exposed to gamma radiation and thermal neutrons. Unlike irradiation with gamma rays, the boron-loaded gels irradiated by neutron exhibited sensitivity enhancement compared with the gels without (10)B. It was also found that the neutron sensitivity of the gel increased by the increase of concentration of (10)B. It can be concluded that NIPAM gel might be suitable for the measurement of the absorbed dose enhancement due to (10)B and thermal neutron reaction in BNCT. PMID:26356043

  3. Numerical characterization of a tomographic system for online dose measurements in Boron Neutron Capture Therapy

    SciTech Connect

    Minsky, D. M.; Valda, A. A.; Somacal, H.; Burlon, A. A.; Kreiner, A. J.

    2007-02-12

    A tomographic system for online dose measurements in Boron Neutron Capture Therapy (BNCT) based on the measurement of a specific 478 keV {gamma}-ray emitted after the neutron capture in boron is being developed. In the present work we study by means of Monte Carlo numerical simulations the effects of the finite spatial resolution and the limited number of counts, i. e. the statistical noise, on the reconstructed image contrast of numerical phantoms. These phantoms, of simple geometry, mimic the tumor (specific) and the normal tissue (non specific) boron concentrations. The simulated projection data were reconstructed using the expectation-maximization maximum-likelihood algorithm. These studies will help in the improvement of BNCT dosimetry.

  4. Neutron and gamma-ray dose measurements at various distances from the Little Boy replica

    SciTech Connect

    Huntzinger, C.J.; Hankins, D.E.

    1984-08-01

    We measured neutron and gamma-ray dose rates at various distances from the Little Boy-Comet Critical Assembly at Los Alamos National Laboratory (LANL) in April of 1983. The Little Boy-Comet Assembly is a replica of the atomic weapon detonated over Hiroshima, designed to be operated at various steady-state power levels. The selected distances for measurement ranged from 107 m to 567 m. Gamma-ray measurements were made with a Reuter-Stokes environmental ionization chamber which has a sensitivity of 1.0 ..mu..R/hour. Neutron measurements were made with a pulsed-source remmeter which has a sensitivity of 0.1 ..mu..rem/hour, designed and built at Lawrence Livermore National Laboratory (LLNL). 12 references, 7 figures, 6 tables.

  5. GEANT4 calculations of neutron dose in radiation protection using a homogeneous phantom and a Chinese hybrid male phantom.

    PubMed

    Geng, Changran; Tang, Xiaobin; Guan, Fada; Johns, Jesse; Vasudevan, Latha; Gong, Chunhui; Shu, Diyun; Chen, Da

    2016-03-01

    The purpose of this study is to verify the feasibility of applying GEANT4 (version 10.01) in neutron dose calculations in radiation protection by comparing the calculation results with MCNP5. The depth dose distributions are investigated in a homogeneous phantom, and the fluence-to-dose conversion coefficients are calculated for different organs in the Chinese hybrid male phantom for neutrons with energy ranging from 1 × 10(-9) to 10 MeV. By comparing the simulation results between GEANT4 and MCNP5, it is shown that using the high-precision (HP) neutron physics list, GEANT4 produces the closest simulation results to MCNP5. However, differences could be observed when the neutron energy is lower than 1 × 10(-6) MeV. Activating the thermal scattering with an S matrix correction in GEANT4 with HP and MCNP5 in thermal energy range can reduce the difference between these two codes. PMID:26156875

  6. Monte Carlo Simulations on Neutron Transport and Absorbed Dose in Tissue-Equivalent Phantoms Exposed to High-Flux Epithermal Neutron Beams

    NASA Astrophysics Data System (ADS)

    Bartesaghi, G.; Gambarini, G.; Negri, A.; Carrara, M.; Burian, J.; Viererbl, L.

    2010-04-01

    Presently there are no standard protocols for dosimetry in neutron beams for boron neutron capture therapy (BNCT) treatments. Because of the high radiation intensity and of the presence at the same time of radiation components having different linear energy transfer and therefore different biological weighting factors, treatment planning in epithermal neutron fields for BNCT is usually performed by means of Monte Carlo calculations; experimental measurements are required in order to characterize the neutron source and to validate the treatment planning. In this work Monte Carlo simulations in two kinds of tissue-equivalent phantoms are described. The neutron transport has been studied, together with the distribution of the boron dose; simulation results are compared with data taken with Fricke gel dosimeters in form of layers, showing a good agreement.

  7. Computation of Radiation Dose at Aircraft Altitudes from Analysis of Cosmic Ray Neutron Monitor Data

    NASA Astrophysics Data System (ADS)

    Smart, D. F.; Shea, M. A.

    Relativistic solar proton events GLEs those events with protons having sufficient kinetic energy to initiate a nuclear cascade in the atmosphere can make a contribution to radiation dose at aircraft altitudes We show that it is possible to obtain proper estimates of the expected radiation dose at aircraft altitudes from the analysis of ground-level neutron monitor data Assuming a nominal GLE spectrum the radiation dose at 40 000 feet during a 100 increase at polar latitudes will be in the range of 5 to 10 micro Sieverts per hour depending on the spectral slope An analysis of the large GLE s that have occurred during the past two solar cycles shows that there have been no events where the hourly averaged radiation dose at 40 000 feet would have exceeded 20 micro Sieverts per hour In the past improper GLE analysis was used to estimate the radiation dose at aircraft altitudes The old values derived for the early GLE s resulted in the prediction of high dose rates that persist today as urban legends and contribute to the public concept that the radiation dose at aircraft altitudes is dangerous We demonstrate that modern analytical techniques result in computed radiation doses during high-energy solar cosmic ray events that are orders of magnitude lower than those obtained by the old techniques We show that the use of the old technique of using straight line power law spectra to extrapolate the flux derived at 1 GeV results in order of magnitude errors when these flux values are extrapolated to lower energies and used to

  8. SU-E-T-567: Neutron Dose Equivalent Evaluation for Pencil Beam Scanning Proton Therapy with Apertures

    SciTech Connect

    Geng, C; Schuemann, J; Moteabbed, M; Paganetti, H

    2015-06-15

    Purpose: To determine the neutron contamination from the aperture in pencil beam scanning during proton therapy. Methods: A Monte Carlo based proton therapy research platform TOPAS and the UF-series hybrid pediatric phantoms were used to perform this study. First, pencil beam scanning (PBS) treatment pediatric plans with average spot size of 10 mm at iso-center were created and optimized for three patients with and without apertures. Then, the plans were imported into TOPAS. A scripting method was developed to automatically replace the patient CT with a whole body phantom positioned according to the original plan iso-center. The neutron dose equivalent was calculated using organ specific quality factors for two phantoms resembling a 4- and 14-years old patient. Results: The neutron dose equivalent generated by the apertures in PBS is 4–10% of the total neutron dose equivalent for organs near the target, while roughly 40% for organs far from the target. Compared to the neutron dose equivalent caused by PBS without aperture, the results show that the neutron dose equivalent with aperture is reduced in the organs near the target, and moderately increased for those organs located further from the target. This is due to the reduction of the proton dose around the edge of the CTV, which causes fewer neutrons generated in the patient. Conclusion: Clinically, for pediatric patients, one might consider adding an aperture to get a more conformal treatment plan if the spot size is too large. This work shows the somewhat surprising fact that adding an aperture for beam scanning for facilities with large spot sizes reduces instead of increases a potential neutron background in regions near target. Changran Geng is supported by the Chinese Scholarship Council (CSC) and the National Natural Science Foundation of China (Grant No. 11475087)

  9. Dose-Dependent Onset of Regenerative Program in Neutron Irradiated Mouse Skin

    PubMed Central

    Artibani, Mara; Kobos, Katarzyna; Colautti, Paolo; Negri, Rodolfo; Amendola, Roberto

    2011-01-01

    Background Tissue response to irradiation is not easily recapitulated by cell culture studies. The objective of this investigation was to characterize, the transcriptional response and the onset of regenerative processes in mouse skin irradiated with different doses of fast neutrons. Methodology/Principal Findings To monitor general response to irradiation and individual animal to animal variation, we performed gene and protein expression analysis with both pooled and individual mouse samples. A high-throughput gene expression analysis, by DNA oligonucleotide microarray was done with three months old C57Bl/6 mice irradiated with 0.2 and 1 Gy of mono-energetic 14 MeV neutron compared to sham irradiated controls. The results on 440 irradiation modulated genes, partially validated by quantitative real time RT-PCR, showed a dose-dependent up-regulation of a sub-class of keratin and keratin associated proteins, and members of the S100 family of Ca2+-binding proteins. Immunohistochemistry confirmed mRNA expression data enabled mapping of protein expression. Interestingly, proteins up-regulated in thickening epidermis: keratin 6 and S100A8 showed the most significant up-regulation and the least mouse-to-mouse variation following 0.2 Gy irradiation, in a concerted effort toward skin tissue regeneration. Conversely, mice irradiated at 1 Gy showed most evidence of apoptosis (Caspase-3 and TUNEL staining) and most 8-oxo-G accumulation at 24 h post-irradiation. Moreover, no cell proliferation accompanied 1 Gy exposure as shown by Ki67 immunohistochemistry. Conclusions/Significance The dose-dependent differential gene expression at the tissue level following in vivo exposure to neutron radiation is reminiscent of the onset of re-epithelialization and wound healing and depends on the proportion of cells carrying multiple chromosomal lesions in the entire tissue. Thus, this study presents in vivo evidence of a skin regenerative program exerted independently from DNA repair

  10. The effect of a paraffin screen on the neutron dose at the maze door of a 15 MV linear accelerator

    SciTech Connect

    Krmar, M.; Kuzmanović, A.; Nikolić, D.; Kuzmanović, Z.; Ganezer, K.

    2013-08-15

    Purpose: The purpose of this study was to explore the effects of a paraffin screen located at various positions in the maze on the neutron dose equivalent at the maze door.Methods: The neutron dose equivalent was measured at the maze door of a room containing a 15 MV linear accelerator for x-ray therapy. Measurements were performed for several positions of the paraffin screen covering only 27.5% of the cross-sectional area of the maze. The neutron dose equivalent was also measured at all screen positions. Two simple models of the neutron source were considered in which the first assumed that the source was the cross-sectional area at the inner entrance of the maze, radiating neutrons in an isotropic manner. In the second model the reduction in the neutron dose equivalent at the maze door due to the paraffin screen was considered to be a function of the mean values of the neutron fluence and energy at the screen.Results: The results of this study indicate that the equivalent dose at the maze door was reduced by a factor of 3 through the use of a paraffin screen that was placed inside the maze. It was also determined that the contributions to the dosage from areas that were not covered by the paraffin screen as viewed from the dosimeter, were 2.5 times higher than the contributions from the covered areas. This study also concluded that the contributions of the maze walls, ceiling, and floor to the total neutron dose equivalent were an order of magnitude lower than those from the surface at the far end of the maze.Conclusions: This study demonstrated that a paraffin screen could be used to reduce the neutron dose equivalent at the maze door by a factor of 3. This paper also found that the reduction of the neutron dose equivalent was a linear function of the area covered by the maze screen and that the decrease in the dose at the maze door could be modeled as an exponential function of the product φ·E at the screen.

  11. Response functions for computing absorbed dose to skeletal tissues from neutron irradiation.

    PubMed

    Bahadori, Amir A; Johnson, Perry; Jokisch, Derek W; Eckerman, Keith F; Bolch, Wesley E

    2011-11-01

    Spongiosa in the adult human skeleton consists of three tissues-active marrow (AM), inactive marrow (IM) and trabecularized mineral bone (TB). AM is considered to be the target tissue for assessment of both long-term leukemia risk and acute marrow toxicity following radiation exposure. The total shallow marrow (TM(50)), defined as all tissues lying within the first 50 µm of the bone surfaces, is considered to be the radiation target tissue of relevance for radiogenic bone cancer induction. For irradiation by sources external to the body, kerma to homogeneous spongiosa has been used as a surrogate for absorbed dose to both of these tissues, as direct dose calculations are not possible using computational phantoms with homogenized spongiosa. Recent micro-CT imaging of a 40 year old male cadaver has allowed for the accurate modeling of the fine microscopic structure of spongiosa in many regions of the adult skeleton (Hough et al 2011 Phys. Med. Biol. 56 2309-46). This microstructure, along with associated masses and tissue compositions, was used to compute specific absorbed fraction (SAF) values for protons originating in axial and appendicular bone sites (Jokisch et al 2011 Phys. Med. Biol. 56 6857-72). These proton SAFs, bone masses, tissue compositions and proton production cross sections, were subsequently used to construct neutron dose-response functions (DRFs) for both AM and TM(50) targets in each bone of the reference adult male. Kerma conditions were assumed for other resultant charged particles. For comparison, AM, TM(50) and spongiosa kerma coefficients were also calculated. At low incident neutron energies, AM kerma coefficients for neutrons correlate well with values of the AM DRF, while total marrow (TM) kerma coefficients correlate well with values of the TM(50) DRF. At high incident neutron energies, all kerma coefficients and DRFs tend to converge as charged-particle equilibrium is established across the bone site. In the range of 10 eV to 100 Me

  12. Response functions for computing absorbed dose to skeletal tissues from neutron irradiation

    NASA Astrophysics Data System (ADS)

    Bahadori, Amir A.; Johnson, Perry; Jokisch, Derek W.; Eckerman, Keith F.; Bolch, Wesley E.

    2011-11-01

    Spongiosa in the adult human skeleton consists of three tissues—active marrow (AM), inactive marrow (IM) and trabecularized mineral bone (TB). AM is considered to be the target tissue for assessment of both long-term leukemia risk and acute marrow toxicity following radiation exposure. The total shallow marrow (TM50), defined as all tissues lying within the first 50 µm of the bone surfaces, is considered to be the radiation target tissue of relevance for radiogenic bone cancer induction. For irradiation by sources external to the body, kerma to homogeneous spongiosa has been used as a surrogate for absorbed dose to both of these tissues, as direct dose calculations are not possible using computational phantoms with homogenized spongiosa. Recent micro-CT imaging of a 40 year old male cadaver has allowed for the accurate modeling of the fine microscopic structure of spongiosa in many regions of the adult skeleton (Hough et al 2011 Phys. Med. Biol. 56 2309-46). This microstructure, along with associated masses and tissue compositions, was used to compute specific absorbed fraction (SAF) values for protons originating in axial and appendicular bone sites (Jokisch et al 2011 Phys. Med. Biol. 56 6857-72). These proton SAFs, bone masses, tissue compositions and proton production cross sections, were subsequently used to construct neutron dose-response functions (DRFs) for both AM and TM50 targets in each bone of the reference adult male. Kerma conditions were assumed for other resultant charged particles. For comparison, AM, TM50 and spongiosa kerma coefficients were also calculated. At low incident neutron energies, AM kerma coefficients for neutrons correlate well with values of the AM DRF, while total marrow (TM) kerma coefficients correlate well with values of the TM50 DRF. At high incident neutron energies, all kerma coefficients and DRFs tend to converge as charged-particle equilibrium is established across the bone site. In the range of 10 eV to 100 Me

  13. BNCT dose distribution in liver with epithermal D-D and D-T fusion-based neutron beams.

    PubMed

    Koivunoro, H; Bleuel, D L; Nastasi, U; Lou, T P; Reijonen, J; Leung, K-N

    2004-11-01

    Recently, a new application of boron neutron capture therapy (BNCT) treatment has been introduced. Results have indicated that liver tumors can be treated by BNCT after removal of the liver from the body. At Lawrence Berkeley National Laboratory, compact neutron generators based on (2)H(d,n)(3)He (D-D) or (3)H(t,n)(4)He (D-T) fusion reactions are being developed. Preliminary simulations of the applicability of 2.45 MeV D-D fusion and 14.1 MeV D-T fusion neutrons for in vivo liver tumor BNCT, without removing the liver from the body, have been carried out. MCNP simulations were performed in order to find a moderator configuration for creating a neutron beam of optimal neutron energy and to create a source model for dose calculations with the simulation environment for radiotherapy applications (SERA) treatment planning program. SERA dose calculations were performed in a patient model based on CT scans of the body. The BNCT dose distribution in liver and surrounding healthy organs was calculated with rectangular beam aperture sizes of 20 cm x 20 cm and 25 cm x 25 cm. Collimator thicknesses of 10 and 15 cm were used. The beam strength to obtain a practical treatment time was studied. In this paper, the beam shaping assemblies for D-D and D-T neutron generators and dose calculation results are presented. PMID:15308157

  14. SU-E-T-568: Neutron Dose Survey of a Compact Single Room Proton Machine

    SciTech Connect

    Chen, Y; Prusator, M; Islam, M; Johnson, D; Ahmad, S

    2015-06-15

    Purpose: To ensure acceptable radiation limits are maintained for those working at and near the machine during its operation, a comprehensive radiation survey was performed prior to the clinical release of Mevion S250 compact proton machine at Stephenson Oklahoma Cancer Center. Methods: The Mevion S250 proton therapy system consists of the following: a superconducting cyclotron to accelerate the proton particles, a passive double scattering system for beam shaping, and paired orthogonal x-ray imaging systems for patient setup and verification via a 6D robotic couch. All equipment is housed within a single vault of compact design. Two beam delivery applicators are available for patient treatment, offering field sizes of as great as 14 cm and 25 cm in diameter, respectively. Typical clinical dose rates are between 1 and 2 Gy/min with a fixed beam energy of 250 MeV. The large applicator (25 cm in diameter) was used in conjunction with a custom cut brass aperture to create a 20 cm x 20 cm field size at beam isocenter. A 30 cm − 30 cm − 35 cm high density plastic phantom was placed in the beam path to mimic the conditions creating patient scatter. Measurements integrated-ambient-neutron-dose-equivalence were made with a SWENDII detector. Gantry angles of 0, 90 and 180 degrees, with a maximum dose rate of 150 MU/min (for large applicator) and beam configuration of option 1 (range 25 cm and 20 cm modulation), were selected as testing conditions. At each point of interest, the highest reading was recorded at 30 cm from the barrier surface. Results: The highest neutron dose was estimated to be 0.085 mSv/year at the console area. Conclusion: All controlled areas are under 5 mSv/year and the uncontrolled areas are under 1 mSv/year. The radiation protection provided by the proton vault is of sufficient quality.

  15. Assessment of neutron fluence to organ dose conversion coefficients in the ORNL analytical adult phantom.

    PubMed

    Miri Hakimabad, H; Rafat Motavalli, L; Karimi Shahri, K

    2009-03-01

    Neutron fluence to absorbed dose conversion coefficients have been evaluated for the analytical ORNL modified adult phantom in 21 body organs using MCNP4C Monte Carlo code. The calculation used 20 monodirectional monoenergetic neutron beams in the energy range 10(-9)-20 MeV, under four irradiation conditions: anterior-posterior (AP), posterior-anterior (PA), left-lateral (LLAT) and right-lateral (RLAT). Then the conversion coefficients are compared with the data reported in ICRP publication 74 for mathematical MIRD type phantoms and by Bozkurt et al for the VIPMAN voxel model. Although the ORNL results show fewer differences with the ICRP results than the Bozkurt et al data, one can deduce neither complete agreement nor disparity between this study and other data sets. This comparison shows that in some cases any differences in applied Monte Carlo codes or simulated body models could significantly change the organ dose conversion factors. This sensitivity should be considered for radiological protection programmes. For certain organs, the results of two models with major differences can be in a satisfactory agreement because of the similarity in those organ models. PMID:19225185

  16. Whole-body dose evaluation with an adaptive treatment planning system for boron neutron capture therapy.

    PubMed

    Takada, Kenta; Kumada, Hiroaki; Isobe, Tomonori; Terunuma, Toshiyuki; Kamizawa, Satoshi; Sakurai, Hideyuki; Sakae, Takeji; Matsumura, Akira

    2015-12-01

    Dose evaluation for out-of-field organs during radiotherapy has gained interest in recent years. A team led by University of Tsukuba is currently implementing a project for advancing boron neutron capture therapy (BNCT), along with a radiation treatment planning system (RTPS). In this study, the authors used the RTPS (the 'Tsukuba-Plan') to evaluate the dose to out-of-field organs during BNCT. Computed tomography images of a whole-body phantom were imported into the RTPS, and a voxel model was constructed for the Monte Carlo calculations, which used the Particle and Heavy Ion Transport Code System. The results indicate that the thoracoabdominal organ dose during BNCT for a brain tumour and maxillary sinus tumour was 50-360 and 120-1160 mGy-Eq, respectively. These calculations required ∼29.6 h of computational time. This system can evaluate the out-of-field organ dose for BNCT irradiation during treatment planning with patient-specific irradiation conditions. PMID:25520378

  17. Attenuation of fission neutrons by some hydrogeneous shield materials and the exponential dependence of the attenuated total neutron dose rate on the shield thickness.

    PubMed

    Ibrahim, M A

    2000-01-01

    This work deals with the attenuation of fission neutrons by some hydrogeneous shield materials. The attenuated fission neutrons are described by the energy groups (fast, epithermal and thermal). The exponential decrease in the fast flux is represented by the removal cross section concept. Each of the epithermal and thermal fluxes is expressed using the diffusion equation including a pair of arbitrary constants to be determined using the corresponding boundary conditions. The solution obtained for the required arbitrary constants is then approximated in a simplified form such that it may easily replace the corresponding exact solution. The attenuation values, by which the neutron dose rate distributions are exponentially decreased through certain thicknesses are also determined for the given materials. They are compared to the corresponding experimental and theoretical data. The results obtained for the total neutron dose rate distributions in terms of a suitable range of layer thicknesses are then used to determine--for each material--an average value for the total neutron dose rate representing the exponential decrease during passage through the considered range of layer thicknesses. PMID:10670922

  18. Evaluation of time-dose and fractionation for sup 252 Cf neutrons in preoperative bulky/barrel-cervix carcinoma radiotherapy

    SciTech Connect

    Maruyama, Y.; Wierzbicki, J. )

    1990-12-01

    Time-dose fractionation factors (TDF) were calculated for 252Cf (Cf) neutron therapy versus 137Cs for intracavitary use in the preoperative treatment of bulky/barrel-shaped Stage IB cervix cancers. The endpoint assessed was gross and microscopic tumor eradication from the hysterectomy specimen. We reviewed the data obtained in clinical trials between 1976-1987 at the University of Kentucky Medical Center. Preoperative photon therapy was approximately 45 Gy of whole pelvis irradiation in 5 weeks for both 137Cs and Cf treated patients. 137Cs implant was done after pelvic irradiation x1 to a mean dose of 2104 +/- 36 cGy at point A at a dose rate of 50.5 cGy/h. There were 37.5% positive specimens. Using Cf intracavitary implants, dose varied from 109 to 459 neutron cGy in 1-2 sessions. Specimens were more frequently cleared of tumor (up to 100% at appropriate dose) and showed a dose-response relationship, both by nominal dose and by TDF adjusted analysis of dose, dose-rate, number of sessions, and overall time. Limited understanding of relative biological effectiveness, schedule, effect of implants, and dose rate all made it difficult to use TDF to study neutron effects. Relative biological effectiveness (RBE) was estimated and showed that for Cf, RBE was a complex function of treatment variables. In the pilot clinical studies, a value of 6.0 had been assumed. The present findings of RBE for tumor destruction are larger than those assumed. Cf was effective for cervix tumor therapy and produced control without significant side effects due to the brachytherapy method used. The TDF model was of limited value in the present analysis and more information is still needed for RBE, dose-rate, and fractionation effects for Cf neutrons to develop a more sophisticated and relevant model.

  19. Photo neutron dose equivalent rate in 15 MV X-ray beam from a Siemens Primus Linac

    PubMed Central

    Ghasemi, A.; Pourfallah, T. Allahverdi; Akbari, M. R.; Babapour, H.; Shahidi, M.

    2015-01-01

    Fast and thermal neutron fluence rates from a 15 MV X-ray beams of a Siemens Primus Linac were measured using bare and moderated BF3 proportional counter inside the treatment room at different locations. Fluence rate values were converted to dose equivalent rate (DER) utilizing conversion factors of American Association of Physicist in Medicine's (AAPM) report number 19. For thermal neutrons, maximum and minimum DERs were 3.46 × 10-6 (3 m from isocenter in +Y direction, 0 × 0 field size) and 8.36 × 10-8 Sv/min (in maze, 40 × 40 field size), respectively. For fast neutrons, maximum DERs using 9” and 3” moderators were 1.6 × 10-5 and 1.74 × 10-5 Sv/min (2 m from isocenter in +Y direction, 0 × 0 field size), respectively. By changing the field size, the variation in thermal neutron DER was more than the fast neutron DER and the changes in fast neutron DER were not significant in the bunker except inside the radiation field. This study showed that at all points and distances, by decreasing field size of the beam, thermal and fast neutron DER increases and the number of thermal neutrons is more than fast neutrons. PMID:26170555

  20. Photo neutron dose equivalent rate in 15 MV X-ray beam from a Siemens Primus Linac.

    PubMed

    Ghasemi, A; Pourfallah, T Allahverdi; Akbari, M R; Babapour, H; Shahidi, M

    2015-01-01

    Fast and thermal neutron fluence rates from a 15 MV X-ray beams of a Siemens Primus Linac were measured using bare and moderated BF3 proportional counter inside the treatment room at different locations. Fluence rate values were converted to dose equivalent rate (DER) utilizing conversion factors of American Association of Physicist in Medicine's (AAPM) report number 19. For thermal neutrons, maximum and minimum DERs were 3.46 × 10(-6) (3 m from isocenter in +Y direction, 0 × 0 field size) and 8.36 × 10(-8) Sv/min (in maze, 40 × 40 field size), respectively. For fast neutrons, maximum DERs using 9" and 3" moderators were 1.6 × 10(-5) and 1.74 × 10(-5) Sv/min (2 m from isocenter in +Y direction, 0 × 0 field size), respectively. By changing the field size, the variation in thermal neutron DER was more than the fast neutron DER and the changes in fast neutron DER were not significant in the bunker except inside the radiation field. This study showed that at all points and distances, by decreasing field size of the beam, thermal and fast neutron DER increases and the number of thermal neutrons is more than fast neutrons. PMID:26170555

  1. Defect annealing and thermal desorption of deuterium in low dose HFIR neutron-irradiated tungsten

    SciTech Connect

    Masashi Shimada; M. Hara; T. Otsuka; Y. Oya; Y. Hatano

    2014-05-01

    Accurately estimating tritium retention in plasma facing components (PFCs) and minimizing its uncertainty are key safety issues for licensing future fusion power reactors. D-T fusion reactions produce 14.1 MeV neutrons that activate PFCs and create radiation defects throughout the bulk of the material of these components. Recent studies show that tritium migrates and is trapped in bulk (>> 10 µm) tungsten beyond the detection range of nuclear reaction analysis technique [1-2], and thermal desorption spectroscopy (TDS) technique becomes the only established diagnostic that can reveal hydrogen isotope behavior in in bulk (>> 10 µm) tungsten. Radiation damage and its recovery mechanisms in neutron-irradiated tungsten are still poorly understood, and neutron-irradiation data of tungsten is very limited. In this paper, systematic investigations with repeated plasma exposures and thermal desorption are performed to study defect annealing and thermal desorption of deuterium in low dose neutron-irradiated tungsten. Three tungsten samples (99.99 at. % purity from A.L.M.T. Co., Japan) irradiated at High Flux Isotope Reactor at Oak Ridge National Laboratory were exposed to high flux (ion flux of (0.5-1.0)x1022 m-2s-1 and ion fluence of 1x1026 m-2) deuterium plasma at three different temperatures (100, 200, and 500 °C) in Tritium Plasma Experiment at Idaho National Laboratory. Subsequently, thermal desorption spectroscopy (TDS) was performed with a ramp rate of 10 °C/min up to 900 °C, and the samples were annealed at 900 °C for 0.5 hour. These procedures were repeated three (for 100 and 200 °C samples) and four (for 500 °C sample) times to uncover damage recovery mechanisms and its effects on deuterium behavior. The results show that deuterium retention decreases approximately 90, 75, and 66 % for 100, 200, and 500 °C, respectively after each annealing. When subjected to the same TDS recipe, the desorption temperature shifts from 800 °C to 600 °C after 1st annealing

  2. Studies on depth-dose-distribution controls by deuteration and void formation in boron neutron capture therapy.

    PubMed

    Sakurai, Yoshinori

    2004-08-01

    Physical studies on (i) replacement of heavy water for body water (deuteration), and (ii) formation of a void in human body (void formation) were performed as control techniques for dose distribution in a human head under neutron capture therapy. Simulation calculations were performed for a human-head-size cylindrical phantom using a two-dimensional transport calculation code for mono-energetic incidences of higher-energy epi-thermal neutrons (1.2-10 keV), lower-energy epi-thermal neutrons (3.1-23 eV) and thermal neutrons (1 meV to 0.5 eV). The deuteration was confirmed to be effective both in thermal neutron incidence and in epi-thermal neutron incidence from the viewpoints of improvement of the thermal neutron flux distribution and elimination of the secondary gamma rays. For the void formation, a void was assumed to be 4 cm in diameter and 3 cm in depth at the surface part in this study. It was confirmed that the treatable depth was improved almost 2 cm for any incident neutron energy in the case of the 10 cm irradiation field diameter. It was made clear that the improvement effect was larger in isotropic incidence than in parallel incidence, in the case that an irradiation field size was delimited fitting into a void diameter. PMID:15379019

  3. Code System to Calculate Neutron and Gamma-Ray Skyshine Doses Using the Integral Line-Beam Method.

    Energy Science and Technology Software Center (ESTSC)

    2000-11-16

    Version 03 This package includes the SKYNEUT 1.1, SKYDOSE 2.3, MCSKY 2.3 and SKYCONES 1.1 codes plus the DLC-188/SKYDATA library to form a comprehensive system for calculating skyshine doses. See the author's web site for related information: http://athena.mne.ksu.edu/~jks/ SKYNEUT evaluates the neutron and neutron-induced secondary gamma-ray skyshine doses from an isotropic, point, neutron source collimated by three simple geometries: an open silo, a vertical black (perfectly absorbing) wall, and a rectangular building. The source maymore » emit monoenergetic neutrons or neutrons with an arbitrary multigroup spectrum of energies. SKYDOSE evaluates the gamma-ray skyshine dose from an isotropic, monoenergetic, point gamma-photon source collimated by three simple geometries: (1) a source in a silo, (2) a source behind an infinitely long, vertical, black wall, and (3) a source in a rectangular building. In all three geometries an optional overhead slab shield may be specified. MCSKY evaluates the gamma-ray skyshine dose from an isotropic, monoenergetic, point gamma-photon source collimated into either a vertical cone (i.e., silo geometry) or into a vertically oriented structure with an N-sided polygon cross section. An overhead laminate shield composed of two different materials is assumed, although shield thicknesses of zero may be specified to model an unshielded SKYSHINE source. SKYCONES evaluates the skyshine doses produced by a point neutron or gamma-photon source emitting, into the atmosphere, radiation that is collimated into an upward conical annulus between two arbitrary polar angles. The source is assumed to be axially (azimuthally) symmetric about a vertical axis through the source and can have an arbitrary polyenergetic spectrum. Nested contiguous annular cones can thus be used to represent the energy and polar-angle dependence of a skyshine source emitting radiation into the atmosphere.« less

  4. Defect evolution in single crystalline tungsten following low temperature and low dose neutron irradiation

    SciTech Connect

    Hu, Xunxiang; Koyanagi, Takaaki; Fukuda, Makoto; Katoh, Yutai; Wirth, Brian D; Snead, Lance Lewis

    2016-01-01

    The tungsten plasma-facing components of fusion reactors will experience an extreme environment including high temperature, intense particle fluxes of gas atoms, high-energy neutron irradiation, and significant cyclic stress loading. Irradiation-induced defect accumulation resulting in severe thermo-mechanical property degradation is expected. For this reason, and because of the lack of relevant fusion neutron sources, the fundamentals of tungsten radiation damage must be understood through coordinated mixed-spectrum fission reactor irradiation experiments and modeling. In this study, high-purity (110) single-crystal tungsten was examined by positron annihilation spectroscopy and transmission electron microscopy following low-temperature (~90 °C) and low-dose (0.006 and 0.03 dpa) mixed-spectrum neutron irradiation and subsequent isochronal annealing at 400, 500, 650, 800, 1000, 1150, and 1300 °C. The results provide insights into microstructural and defect evolution, thus identifying the mechanisms of different annealing behavior. Following 1 h annealing, ex situ characterization of vacancy defects using positron lifetime spectroscopy and coincidence Doppler broadening was performed. The vacancy cluster size distributions indicated intense vacancy clustering at 400 °C with significant damage recovery around 1000 °C. Coincidence Doppler broadening measurements confirm the trend of the vacancy defect evolution, and the S–W plots indicate that only a single type of vacancy cluster is present. Furthermore, transmission electron microscopy observations at selected annealing conditions provide supplemental information on dislocation loop populations and visible void formation. This microstructural information is consistent with the measured irradiation-induced hardening at each annealing stage. This provides insight into tungsten hardening and embrittlement due to irradiation-induced matrix defects.

  5. Defect evolution in single crystalline tungsten following low temperature and low dose neutron irradiation

    NASA Astrophysics Data System (ADS)

    Hu, Xunxiang; Koyanagi, Takaaki; Fukuda, Makoto; Katoh, Yutai; Snead, Lance L.; Wirth, Brian D.

    2016-03-01

    The tungsten plasma-facing components of fusion reactors will experience an extreme environment including high temperature, intense particle fluxes of gas atoms, high-energy neutron irradiation, and significant cyclic stress loading. Irradiation-induced defect accumulation resulting in severe thermo-mechanical property degradation is expected. For this reason, and because of the lack of relevant fusion neutron sources, the fundamentals of tungsten radiation damage must be understood through coordinated mixed-spectrum fission reactor irradiation experiments and modeling. In this study, high-purity (110) single-crystal tungsten was examined by positron annihilation spectroscopy and transmission electron microscopy following low-temperature (∼90 °C) and low-dose (0.006 and 0.03 dpa) mixed-spectrum neutron irradiation and subsequent isochronal annealing at 400, 500, 650, 800, 1000, 1150, and 1300 °C. The results provide insights into microstructural and defect evolution, thus identifying the mechanisms of different annealing behavior. Following 1 h annealing, ex situ characterization of vacancy defects using positron lifetime spectroscopy and coincidence Doppler broadening was performed. The vacancy cluster size distributions indicated intense vacancy clustering at 400 °C with significant damage recovery around 1000 °C. Coincidence Doppler broadening measurements confirm the trend of the vacancy defect evolution, and the S-W plots indicate that only a single type of vacancy cluster is present. Furthermore, transmission electron microscopy observations at selected annealing conditions provide supplemental information on dislocation loop populations and visible void formation. This microstructural information is consistent with the measured irradiation-induced hardening at each annealing stage, providing insight into tungsten hardening and embrittlement due to irradiation-induced matrix defects.

  6. Dose conversion coefficients for neutron exposure to the lens of the human eye

    SciTech Connect

    Manger, Ryan P; Bellamy, Michael B; Eckerman, Keith F

    2011-01-01

    Dose conversion coefficients for the lens of the human eye have been calculated for neutron exposure at energies from 1 x 10{sup -9} to 20 MeV and several standard orientations: anterior-to-posterior, rotational and right lateral. MCNPX version 2.6.0, a Monte Carlo-based particle transport package, was used to determine the energy deposited in the lens of the eye. The human eyeball model was updated by partitioning the lens into sensitive and insensitive volumes as the anterior portion (sensitive volume) of the lens being more radiosensitive and prone to cataract formation. The updated eye model was used with the adult UF-ORNL mathematical phantom in the MCNPX transport calculations.

  7. Extended use of alanine irradiated in experimental reactor for combined gamma- and neutron-dose assessment by ESR spectroscopy and thermal neutron fluence assessment by measurement of (14)C by LSC.

    PubMed

    Bartoníček, B; Kučera, J; Světlík, I; Viererbl, L; Lahodová, Z; Tomášková, L; Cabalka, M

    2014-11-01

    Gamma- and neutron doses in an experimental reactor were measured using alanine/electron spin resonance (ESR) spectrometry. The absorbed dose in alanine was decomposed into contributions caused by gamma and neutron radiation using neutron kerma factors. To overcome a low sensitivity of the alanine/ESR response to thermal neutrons, a novel method has been proposed for the assessment of a thermal neutron flux using the (14)N(n,p) (14)C reaction on nitrogen present in alanine and subsequent measurement of (14)C by liquid scintillation counting (LSC). PMID:24581599

  8. The neutron dose equivalent evaluation and shielding at the maze entrance of a Varian Clinac 23EX treatment room

    SciTech Connect

    Wang Xudong; Esquivel, Carlos; Nes, Elena; Shi Chengyu; Papanikolaou, Nikos; Charlton, Michael

    2011-03-15

    Purpose: To evaluate the neutron and photon dose equivalent rate (H{sub n,D} and H{sub G}) at the outer maze entrance and the adjacent treatment console area after the installation of a Varian Clinac 23EX accelerator with a higher beam energy than its predecessor. The evaluation was based on measurements and comparison with several empirical calculations. The effectiveness of borated polyethylene (BPE) boards, as a maze wall lining material, on neutron dose and photon dose reduction is also reported. Methods: A single energy Varian 6 MV photon linear accelerator (linac) was replaced with a Varian Clinac 23EX accelerator capable of producing 18 MV photons in a vault originally designed for the former accelerator. In order to evaluate and redesign the shielding of the vault, the neutron dose equivalent H{sub n,D} was measured using an Andersson-Braun neutron Rem meter and the photon dose equivalent H{sub G} was measured using a Geiger Mueller and an ion chamber {gamma}-ray survey meter at the outer maze entrance. The measurement data were compared to semiempirical calculations such as the Kersey method, the modified Kersey method, and a newly proposed method by Falcao et al. Additional measurements were taken after BPE boards were installed on the maze walls as a neutron absorption lining material. Results: With the gantry head tilted close to the inner maze entrance and with the jaws closed, both neutron dose equivalent and photon dose equivalent reached their maximum. Compared to the measurement results, the Kersey method overestimates the neutron dose equivalent H{sub n,D} by about two to four times (calculation/measurement ratio{approx_equal}2.4-3.8). Falcao's method largely overestimates the H{sub n,D} (calculation/measurement ratio{approx_equal}3.9-5.5). The modified Kersey method has a calculation to measurement ratio about 0.6-0.9. The photon dose equivalent calculation including McGinley's capture gamma dose equivalent equation estimates about 77%-98% of the

  9. Method for measuring dose-equivalent in a neutron flux with an unknown energy spectra and means for carrying out that method

    DOEpatents

    Distenfeld, Carl H.

    1978-01-01

    A method for measuring the dose-equivalent for exposure to an unknown and/or time varing neutron flux which comprises simultaneously exposing a plurality of neutron detecting elements of different types to a neutron flux and combining the measured responses of the various detecting elements by means of a function, whose value is an approximate measure of the dose-equivalent, which is substantially independent of the energy spectra of the flux. Also, a personnel neutron dosimeter, which is useful in carrying out the above method, comprising a plurality of various neutron detecting elements in a single housing suitable for personnel to wear while working in a radiation area.

  10. Effects of high neutron doses and duration of the chemical etching on the optical properties of CR-39.

    PubMed

    Sahoo, G S; Tripathy, S P; Paul, S; Sharma, S C; Joshi, D S; Gupta, A K; Bandyopadhyay, T

    2015-07-01

    Effects of the duration of chemical etching on the transmittance, absorbance and optical band gap width of the CR-39 (Polyallyl diglycol carbonate) detectors irradiated to high neutron doses (12.7, 22.1, 36.0 and 43.5 Sv) were studied. The neutrons were produced by bombardment of a thick Be target with 12 MeV protons of different fluences. The unirradiated and neutron-irradiated CR-39 detectors were subjected to a stepwise chemical etching at 1h intervals. After each step, the transmission spectra of the detectors were recorded in the range from 200 to 900 nm, and the absorbances and optical band gap widths were determined. The effect of the etching on the light transmittance of unirradiated detectors was insignificant, whereas it was very significant in the case of the irradiated detectors. The dependence of the optical absorbance on the neutron dose is linear at short etching periods, but exponential at longer ones. The optical band gap narrows with increasing etching time. It is more significant for the irradiated dosimeters than for the unirradiated ones. The rate of the narrowing of the optical band gap with increasing neutron dose increases with increasing duration of the etching. PMID:25889876

  11. Evaluation of the spectrometric and dose characteristics of neutron fields inside the Russian segment of the ISS by fission detectors

    NASA Astrophysics Data System (ADS)

    Shurshakov, V. A.; Vorob'ev, I. B.; Nikolaev, V. A.; Lyagushin, V. I.; Akatov, Yu. A.; Kushin, V. V.

    2016-03-01

    The results of measuring the dose and the energy spectrum of neutrons inside the Russian segment of the International Space Station (ISS) from March 21 until November 10, 2002 are presented. Statistically reliable results of measurement are obtained by using thorium- and uranium-based fission detectors with cadmium and boron filters. The kits of the detectors with filters have been arranged in three compartments within assembled passive detectors in the BRADOS space experiment. The ambient dose rate H* = 139 μSv day and an energy spectrum of neutrons in the range of 10-2-104 MeV is obtained as average for the ISS compartments and is compared with the measurements carried out inside the compartments of the MIR space station. Recommendations on how to improve the procedure for using the fission detectors to measure the characteristics of neutron fields inside the compartments of space stations are formulated.

  12. Characterization of Neutron and Gamma Dose in the Irradiation Cell of Texas A and M University Research Reactor

    SciTech Connect

    Vasudevan, Latha; Reece, Warren D.; Chirayath, Sunil S.; Aghara, Sukesh

    2011-07-01

    The Monte Carlo N-Particle (MCNP) code was used to develop a three dimensional computational model of the Texas A and M University Nuclear Science Center Reactor (NSCR) operating against the irradiation (dry cell) at steady state thermal power of 1 MW. The geometry of the NSCR core and the dry cell were modeled in detail. NSCR is used for a wide variety of experiments that utilizes the dry cell for neutron as well as gamma irradiation of samples. Information on the neutron and gamma radiation environment inside the dry cell is required to facilitate irradiation of samples. This paper presents the computed neutron flux, neutron and gamma dose rate, and foil reaction rates in the dry cell, obtained through MCNP5 simulations of the NSCR core. The neutron flux was measured using foil activation method and the reaction rates obtained from {sup 197}Au(n,{gamma}){sup 198}Au and {sup 54}Fe(n,p){sup 54}Mn were compared with the model and they showed agreement within {approx} 20%. The gamma dose rate at selected locations inside the dry cell was measured using radiochromic films and the results indicate slightly higher dose rates than predicted from the model. This is because the model calculated only prompt gamma dose rates during reactor operation while the radiochromic films measured gammas from activation products and fission product decayed gammas. The model was also used to calculate the neutron energy spectra for the energy range from 0.001 eV- 20 MeV. (authors)

  13. Neutron relative biological effectiveness for solid cancer incidence in the Japanese A-bomb survivors: an analysis considering the degree of independent effects from γ-ray and neutron absorbed doses with hierarchical partitioning.

    PubMed

    Walsh, Linda

    2013-03-01

    It has generally been assumed that the neutron and γ-ray absorbed doses in the data from the life span study (LSS) of the Japanese A-bomb survivors are too highly correlated for an independent separation of the all solid cancer risks due to neutrons and due to γ-rays. However, with the release of the most recent data for all solid cancer incidence and the increased statistical power over previous datasets, it is instructive to consider alternatives to the usual approaches. Simple excess relative risk (ERR) models for radiation-induced solid cancer incidence fitted to the LSS epidemiological data have been applied with neutron and γ-ray absorbed doses as separate explanatory covariables. A simple evaluation of the degree of independent effects from γ-ray and neutron absorbed doses on the all solid cancer risk with the hierarchical partitioning (HP) technique is presented here. The degree of multi-collinearity between the γ-ray and neutron absorbed doses has also been considered. The results show that, whereas the partial correlation between the neutron and γ-ray colon absorbed doses may be considered to be high at 0.74, this value is just below the level beyond which remedial action, such as adding the doses together, is usually recommended. The resulting variance inflation factor is 2.2. Applying HP indicates that just under half of the drop in deviance resulting from adding the γ-ray and neutron absorbed doses to the baseline risk model comes from the joint effects of the neutrons and γ-rays-leaving a substantial proportion of this deviance drop accounted for by individual effects of the neutrons and γ-rays. The average ERR/Gy γ-ray absorbed dose and the ERR/Gy neutron absorbed dose that have been obtained here directly for the first time, agree well with previous indirect estimates. The average relative biological effectiveness (RBE) of neutrons relative to γ-rays, calculated directly from fit parameters to the all solid cancer ERR model with both

  14. Boron neutron capture therapy (BNCT) for malignant melanoma with special reference to absorbed doses to the normal skin and tumor.

    PubMed

    Fukuda, H; Hiratsuka, J; Kobayashi, T; Sakurai, Y; Yoshino, K; Karashima, H; Turu, K; Araki, K; Mishima, Y; Ichihashi, M

    2003-09-01

    Twenty-two patients with malignant melanoma were treated with boron neutron capture therapy (BNCT) using 10B-p-boronophenylalanine (BPA). The estimation of absorbed dose and optimization of treatment dose based on the pharmacokinetics of BPA in melanoma patients is described. The doses of gamma-rays were measured using small TLDs of Mg2SiO4 (Tb) and thermal neutron fluence was measured using gold foil and wire. The total absorbed dose to the tissue from BNCT was obtained by summing the primary and capture gamma-ray doses and the high LET radiation doses from 10B(n, alpha)7Li and 14N(n,p)14C reactions. The key point of the dose optimization is that the skin surrounding the tumour is always irradiated to 18 Gy-Eq, which is the maximum tolerable dose to the skin, regardless of the 10B-concentration in the tumor. The neutron fluence was optimized as follows. (1) The 10B concentration in the blood was measured 15-40 min after the start of neutron irradiation. (2) The 10B-concentration in the skin was estimated by multiplying the blood 10B value by a factor of 1.3. (3) The neutron fluence was calculated. Absorbed doses to the skin ranged from 15.7 to 37.1 Gy-Eq. Among the patients, 16 out of 22 patients exhibited tolerable skin damage. Although six patients showed skin damage that exceeded the tolerance level, three of them could be cured within a few months after BNCT and the remaining three developed severe skin damage requiring skin grafts. The absorbed doses to the tumor ranged from 15.7 to 68.5 Gy-Eq and the percentage of complete response was 73% (16/22). When BNCT is used in the treatment of malignant melanoma, based on the pharmacokinetics of BPA and radiobiological considerations, promising clinical results have been obtained, although many problems and issues remain to be solved. PMID:14626847

  15. SU-E-T-108: Development of a Novel Clinical Neutron Dose Monitor for Proton Therapy Based On Twin TLD500 Chips in a Small PE Moderator

    SciTech Connect

    Hentschel, R; Mukherjee, B

    2014-06-01

    Purpose: In proton therapy, it could be desirable to measure out-of-field fast neutron doses at critical locations near and outside the patient body. Methods: The working principle of a novel clinical neutron dose monitor is verified by MCNPX simulation. The device is based on a small PE moderator of just 5.5cm side length for easy handling covered with a thermal neutron suppression layer. In the simulation, a polystyrene phantom is bombarded with a standard proton beam. The secondary thermal neutron flux produced inside the moderator by the impinging fast neutrons from the treatment volume is estimated by pairs of α-Al2O3:C (TLD500) chips which are evaluated offline after the treatment either by TL or OSL methods. The first chip is wrapped with 0.5mm natural Gadolinium foil converting the thermal neutrons to gammas via (n,γ) reaction. The second chip is wrapped with a dummy material. The chip centers have a distance of 2cm from each other. Results: The simulation shows that the difference of gamma doses in the TLD500 chips is correlated to the mean fast neutron dose delivered to the moderator material. Different outer shielding materials have been studied. 0.5mm Cadmium shielding is preferred for cost reasons and convenience. Replacement of PE moderator material by other materials like lead or iron at any place is unfavorable. The spatial orientation of the moderator cube is uncritical. Using variance reduction techniques like splitting/Russian roulette, the TLD500 gamma dose simulation give positive differences up to distances of 0.5m from the treatment volume. Conclusion: Applicability and basic layout of a novel clinical neutron dose monitor are demonstrated. The monitor measures PE neutron doses at locations outside the patient body up to distances of 0.5m from the treatment volume. Tissue neutron doses may be calculated using neutron kerma factors.

  16. PHITS simulations of absorbed dose out-of-field and neutron energy spectra for ELEKTA SL25 medical linear accelerator.

    PubMed

    Puchalska, Monika; Sihver, Lembit

    2015-06-21

    Monte Carlo (MC) based calculation methods for modeling photon and particle transport, have several potential applications in radiotherapy. An essential requirement for successful radiation therapy is that the discrepancies between dose distributions calculated at the treatment planning stage and those delivered to the patient are minimized. It is also essential to minimize the dose to radiosensitive and critical organs. With MC technique, the dose distributions from both the primary and scattered photons can be calculated. The out-of-field radiation doses are of particular concern when high energy photons are used, since then neutrons are produced both in the accelerator head and inside the patients. Using MC technique, the created photons and particles can be followed and the transport and energy deposition in all the tissues of the patient can be estimated. This is of great importance during pediatric treatments when minimizing the risk for normal healthy tissue, e.g. secondary cancer. The purpose of this work was to evaluate 3D general purpose PHITS MC code efficiency as an alternative approach for photon beam specification. In this study, we developed a model of an ELEKTA SL25 accelerator and used the transport code PHITS for calculating the total absorbed dose and the neutron energy spectra infield and outside the treatment field. This model was validated against measurements performed with bubble detector spectrometers and Boner sphere for 18 MV linacs, including both photons and neutrons. The average absolute difference between the calculated and measured absorbed dose for the out-of-field region was around 11%. Taking into account a simplification for simulated geometry, which does not include any potential scattering materials around, the obtained result is very satisfactorily. A good agreement between the simulated and measured neutron energy spectra was observed while comparing to data found in the literature. PMID:26057186

  17. PHITS simulations of absorbed dose out-of-field and neutron energy spectra for ELEKTA SL25 medical linear accelerator

    NASA Astrophysics Data System (ADS)

    Puchalska, Monika; Sihver, Lembit

    2015-06-01

    Monte Carlo (MC) based calculation methods for modeling photon and particle transport, have several potential applications in radiotherapy. An essential requirement for successful radiation therapy is that the discrepancies between dose distributions calculated at the treatment planning stage and those delivered to the patient are minimized. It is also essential to minimize the dose to radiosensitive and critical organs. With MC technique, the dose distributions from both the primary and scattered photons can be calculated. The out-of-field radiation doses are of particular concern when high energy photons are used, since then neutrons are produced both in the accelerator head and inside the patients. Using MC technique, the created photons and particles can be followed and the transport and energy deposition in all the tissues of the patient can be estimated. This is of great importance during pediatric treatments when minimizing the risk for normal healthy tissue, e.g. secondary cancer. The purpose of this work was to evaluate 3D general purpose PHITS MC code efficiency as an alternative approach for photon beam specification. In this study, we developed a model of an ELEKTA SL25 accelerator and used the transport code PHITS for calculating the total absorbed dose and the neutron energy spectra infield and outside the treatment field. This model was validated against measurements performed with bubble detector spectrometers and Boner sphere for 18 MV linacs, including both photons and neutrons. The average absolute difference between the calculated and measured absorbed dose for the out-of-field region was around 11%. Taking into account a simplification for simulated geometry, which does not include any potential scattering materials around, the obtained result is very satisfactorily. A good agreement between the simulated and measured neutron energy spectra was observed while comparing to data found in the literature.

  18. Characterization of the neutron irradiation system for use in the Low-Dose-Rate Irradiation Facility at Sandia National Laboratories.

    SciTech Connect

    Franco, Manuel,

    2014-08-01

    The objective of this work was to characterize the neutron irradiation system consisting of americium-241 beryllium (241AmBe) neutron sources placed in a polyethylene shielding for use at Sandia National Laboratories (SNL) Low Dose Rate Irradiation Facility (LDRIF). With a total activity of 0.3 TBq (9 Ci), the source consisted of three recycled 241AmBe sources of different activities that had been combined into a single source. The source in its polyethylene shielding will be used in neutron irradiation testing of components. The characterization of the source-shielding system was necessary to evaluate the radiation environment for future experiments. Characterization of the source was also necessary because the documentation for the three component sources and their relative alignment within the Special Form Capsule (SFC) was inadequate. The system consisting of the source and shielding was modeled using Monte Carlo N-Particle transport code (MCNP). The model was validated by benchmarking it against measurements using multiple techniques. To characterize the radiation fields over the full spatial geometry of the irradiation system, it was necessary to use a number of instruments of varying sensitivities. First, the computed photon radiography assisted in determining orientation of the component sources. With the capsule properly oriented inside the shielding, the neutron spectra were measured using a variety of techniques. A N-probe Microspec and a neutron Bubble Dosimeter Spectrometer (BDS) set were used to characterize the neutron spectra/field in several locations. In the third technique, neutron foil activation was used to ascertain the neutron spectra. A high purity germanium (HPGe) detector was used to characterize the photon spectrum. The experimentally measured spectra and the MCNP results compared well. Once the MCNP model was validated to an adequate level of confidence, parametric analyses was performed on the model to optimize for potential

  19. Defect evolution in single crystalline tungsten following low temperature and low dose neutron irradiation

    DOE PAGESBeta

    Hu, Xunxiang; Koyanagi, Takaaki; Fukuda, Makoto; Katoh, Yutai; Wirth, Brian D; Snead, Lance Lewis

    2016-01-01

    The tungsten plasma-facing components of fusion reactors will experience an extreme environment including high temperature, intense particle fluxes of gas atoms, high-energy neutron irradiation, and significant cyclic stress loading. Irradiation-induced defect accumulation resulting in severe thermo-mechanical property degradation is expected. For this reason, and because of the lack of relevant fusion neutron sources, the fundamentals of tungsten radiation damage must be understood through coordinated mixed-spectrum fission reactor irradiation experiments and modeling. In this study, high-purity (110) single-crystal tungsten was examined by positron annihilation spectroscopy and transmission electron microscopy following low-temperature (~90 °C) and low-dose (0.006 and 0.03 dpa) mixed-spectrum neutronmore » irradiation and subsequent isochronal annealing at 400, 500, 650, 800, 1000, 1150, and 1300 °C. The results provide insights into microstructural and defect evolution, thus identifying the mechanisms of different annealing behavior. Following 1 h annealing, ex situ characterization of vacancy defects using positron lifetime spectroscopy and coincidence Doppler broadening was performed. The vacancy cluster size distributions indicated intense vacancy clustering at 400 °C with significant damage recovery around 1000 °C. Coincidence Doppler broadening measurements confirm the trend of the vacancy defect evolution, and the S–W plots indicate that only a single type of vacancy cluster is present. Furthermore, transmission electron microscopy observations at selected annealing conditions provide supplemental information on dislocation loop populations and visible void formation. This microstructural information is consistent with the measured irradiation-induced hardening at each annealing stage. This provides insight into tungsten hardening and embrittlement due to irradiation-induced matrix defects.« less

  20. Macroscopic geometric heterogeneity effects in radiation dose distribution analysis for boron neutron capture therapy

    SciTech Connect

    Moran, J.M.; Nigg, D.W.; Wheeler, F.J.; Bauer, W.F. )

    1992-05-01

    Calculations of radiation flux and dose distributions for boron neutron capture therapy (BNCT) of brain tumors are typically performed using sophisticated three-dimensional analytical models based on either a homogeneous approximation or a simplified few-region approximation to the actual highly heterogeneous geometry of the irradiation volume. Such models should be validated by comparison with calculations using detailed models in which all significant macroscopic tissue heterogeneities and geometric structures are explicitly represented as faithfully as possible. This paper describes such a validation exercise for BNCT of canine brain tumors. Geometric measurements of the canine anatomical structures of interest for this work were performed by dissecting and examining two essentially identical Labrador retriever heads. Chemical analyses of various tissue samples taken during the dissections were conducted to obtain measurements of elemental compositions for the tissues of interest. The resulting geometry and tissue composition data were then used to construct a detailed heterogeneous calculational model of the Labrador head. Calculations of three-dimensional radiation flux distributions pertinent to BNCT were performed for this model using the TORT discrete-ordinates radiation transport code. The calculations were repeated for a corresponding volume-weighted homogeneous-tissue model. Comparison of the results showed that peak neutron and photon flux magnitudes were quite similar for the two models (within 5%), but that the spatial flux profiles were shifted in the heterogeneous model such that the fluxes in some locations away from the peak differed from the corresponding fluxes in the homogeneous model by as much as 10%--20%. Differences of this magnitude can be therapeutically significant, emphasizing the need for proper validation of simplified treatment planning models.

  1. An Analytical Model of Leakage Neutron Equivalent Dose for Passively-Scattered Proton Radiotherapy and Validation with Measurements

    PubMed Central

    Schneider, Christopher; Newhauser, Wayne; Farah, Jad

    2015-01-01

    Exposure to stray neutrons increases the risk of second cancer development after proton therapy. Previously reported analytical models of this exposure were difficult to configure and had not been investigated below 100 MeV proton energy. The purposes of this study were to test an analytical model of neutron equivalent dose per therapeutic absorbed dose (H/D) at 75 MeV and to improve the model by reducing the number of configuration parameters and making it continuous in proton energy from 100 to 250 MeV. To develop the analytical model, we used previously published H/D values in water from Monte Carlo simulations of a general-purpose beamline for proton energies from 100 to 250 MeV. We also configured and tested the model on in-air neutron equivalent doses measured for a 75 MeV ocular beamline. Predicted H/D values from the analytical model and Monte Carlo agreed well from 100 to 250 MeV (10% average difference). Predicted H/D values from the analytical model also agreed well with measurements at 75 MeV (15% average difference). The results indicate that analytical models can give fast, reliable calculations of neutron exposure after proton therapy. This ability is absent in treatment planning systems but vital to second cancer risk estimation. PMID:25993009

  2. Alterations in dose and lineal energy spectra under different shieldings in the Los Alamos high-energy neutron field

    NASA Technical Reports Server (NTRS)

    Badhwar, G. D.; Huff, H.; Wilkins, R.

    2000-01-01

    Nuclear interactions of space radiation with shielding materials result in alterations in dose and lineal energy spectra that depend on the specific elemental composition, density and thickness of the material. The shielding characteristics of materials have been studied using charged-particle beams and radiation transport models by examining the risk reduction using the conventional dose-equivalent approach. Secondary neutrons contribute a significant fraction of the total radiation exposure in space. An experiment to study the changes in dose and lineal energy spectra by shielding materials was carried out at the Los Alamos Nuclear Science Center neutron facility. In the energy range of about 2 to 200 MeV, this neutron spectrum is similar in shape within a factor of about 2 to the spectrum expected in the International Space Station habitable modules. It is shown that with a shielding thickness of about 5 g cm(-2), the conventional radiation risk increases, in some cases by as much as a factor of 2, but decreases with thicknesses of about of 20 g cm(-2). This suggests that care must be taken in evaluating the shielding effectiveness of a given material by including both the charged-particle and neutron components of space radiation.

  3. Shielding application of perturbation theory to determine changes in neutron and gamma doses due to changes in shield layers

    NASA Technical Reports Server (NTRS)

    Fieno, D.

    1972-01-01

    Perturbation theory formulas were derived and applied to determine changes in neutron and gamma-ray doses due to changes in various radiation shield layers for fixed sources. For a given source and detector position, the perturbation method enables dose derivatives with respect to density, or equivalently thickness, for every layer to be determined from one forward and one inhomogeneous adjoint calculation. A direct determination without the perturbation approach would require two forward calculations to evaluate the dose derivative due to a change in a single layer. Hence, the perturbation method for obtaining dose derivatives requires fewer computations for design studies of multilayer shields. For an illustrative problem, a comparison was made of the fractional change in the dose per unit change in the thickness of each shield layer in a two-layer spherical configuration as calculated by perturbation theory and by successive direct calculations; excellent agreement was obtained between the two methods.

  4. Evaluation of dose equivalent by the electronic personal dosemeter for neutron 'Saphydose-N' at different workplaces of nuclear facilities.

    PubMed

    Chau, Q; Lahaye, T

    2007-01-01

    This paper presents the results of measurements made with the electronic personal neutron Saphydose-N during the four campaigns of the European contract EVIDOS (EValuation of Individual DOSimetry in mixed neutron and photon radiation fields). These measurements were performed at Institute for Radiological Protection and Nuclear Safety (IRSN) in France (C0), at the Krümmel Nuclear Power Plant in Germany (C1), at the VENUS Research Reactor and the Belgonucléaire fuel processing plant in Belgium (C2) and at the Ringhals Nuclear Power Plant in Sweden (C3). The results for Saphydose-N are compared with reference values for dose equivalent. PMID:17110389

  5. Impact of a proposed change in the maximum permissible dose limit for neutrons to radiation-protection programs at DOE facilities

    SciTech Connect

    Murphy, B.L.

    1981-09-01

    The National Council on Radiation Protection and Measurements (NCRP) has issued a statement advising that it is considering lowering the maximum permissible dose for neutrons. This action would present substantive problems to radiation protection programs at DOE facilities where a potential for neutron exposure exists. In addition to altering administrative controls, a lowering of the maximum permissible dose for neutrons will require advances in personnel neutron dosimetry systems, and neutron detection and measurement instrumentation. Improvement in the characterization of neutron fields and spectra at work locations will also be needed. DOE has initiated research and development programs in these areas. However, problems related to the control of personnel neutron exposure have yet to be resolved and investigators are encouraged to continue collaboration with both United States and international authorities.

  6. Aspects of radiation beam quality and their effect on the dose response of polymer gels: Photons, electrons and fast neutrons

    NASA Astrophysics Data System (ADS)

    Berg, Andreas; Bayreder, Christian; Georg, Dietmar; Bankamp, Achim; Wolber, Gerd

    2009-05-01

    Polymer gels are generally assumed to exhibit no significant dependence of the dose response on the energy or type of irradiation for clinically used beam qualities. Based on reports on differences in dose response for low energy photons and particle beams with high linear energy transfer (LET) we here investigate the dose response and energy dependence for a normoxic methacrylic acid polymer gel (MAGAT) for X-rays (100 kV), high energy photon beams (E = 1.2 MeV (60Co), 6 MV and 15 MV) and for three different electron energies (4, 12 and 20 MeV). Due to the possible impact also the sensitivity of the dose response to the dose rate is reported. A reduction in polymer gel relaxation rate has been observed for proton and carbon beams due to the high Linear Energy Transfer (LET) of these types of radiations. We here report on the dose response of an acryl-amide polymer gel (PAG) in a fast neutron field along with collimation as proposed for Boron neutron capture therapy (BNCT).

  7. A new analytical formula for neutron capture gamma dose calculations in double-bend mazes in radiation therapy

    PubMed Central

    Ghiasi, Hosein; Mesbahi, Asghar

    2012-01-01

    Background Photoneutrons are produced in radiation therapy with high energy photons. Also, capture gamma rays are the byproduct of neutrons interactions with wall material of radiotherapy rooms. Aim In the current study an analytical formula was proposed for capture gamma dose calculations in double bend mazes in radiation therapy rooms. Materials and methods A total of 40 different layouts with double-bend mazes and a 18 MeV photon beam of Varian 2100 Clinac were simulated using MCNPX Monte Carlo (MC) code. Neutron capture gamma ray dose equivalent was calculated by the MC method along the maze and at the maze entrance door of all the simulated rooms. Then, all MC resulted data were fitted to an empirical formula for capture gamma dose calculations. Wu–McGinley analytical formula for capture gamma dose equivalent at the maze entrance door in single-bend mazes was also used for comparison purposes. Results For capture gamma dose equivalents at the maze entrance door, the difference of 2–11% was seen between MC and the derived equation, while the difference of 36–87% was found between MC and the Wu–McGinley methods. Conclusion Our results showed that the derived formula results were consistent with the MC results for all of 40 different geometries. However, as a new formula, further evaluations are required to validate its use in practical situations. Finally, its application is recommend for capture gamma dose calculations in double-bend mazes to improve shielding calculations. PMID:24377027

  8. Assessment of organ doses from exposure to neutrons using the Monte Carlo technique and an image-based anatomical model

    NASA Astrophysics Data System (ADS)

    Bozkurt, Ahmet

    The distribution of absorbed doses in the body can be computationally determined using mathematical or tomographic representations of human anatomy. A whole- body model was developed from the color images of the National Library of Medicine's Visible Human Project® for simulating the transport of radiation in the human body. The model, called Visible Photographic Man (VIP-Man), has sixty-one organs and tissues represented in the Monte Carlo code MCNPX at 4-mm voxel resolution. Organ dose calculations from external neutron sources were carried out using VIP-man and MCNPX to determine a new set of dose conversion coefficients to be used in radiation protection. Monoenergetic neutron beams between 10-9 MeV and 10 GeV were studied under six different irradiation geometries: anterior-posterior, posterior-anterior, right lateral, left lateral, rotational and isotropic. The results for absorbed doses in twenty-four organs and the effective doses based on twelve critical organs are presented in tabular form. A comprehensive comparison of the results with those from the mathematical models show discrepancies that can be attributed to the variations in body modeling (size, location and shape of the individual organs) and the use of different nuclear datasets or models to derive the reaction cross sections, as well as the use of different transport packages for simulation radiation effects. The organ dose results based on the realistic VIP-Man body model allow the existing radiation protection dosimetry on neutrons to be re-evaluated and improved.

  9. A shielding application of perturbation theory to determine changes in neutron and gamma doses due to changes in shield layers

    NASA Technical Reports Server (NTRS)

    Fieno, D.

    1972-01-01

    Perturbation theory for fixed sources was applied to radiation shielding problems to determine changes in neutron and gamma ray doses due to changes in various shield layers. For a given source and detector position, the perturbation method enables dose derivatives due to all layer changes to be determined from one forward and one inhomogeneous adjoint calculation. The direct approach requires two forward calculations for the derivative due to a single layer change. Hence, the perturbation method for a obtaining dose derivatives permits an appreciable savings in computation for a multilayered shield. A comparison was made of the fractional change in the dose per unit change in shield layer thickness as calculated by perturbation theory and by successive direct calculations; excellent agreement was obtained between the two methods.

  10. A shielding application of perturbation theory to determine changes in neutron and gamma doses due to changes in shield layers

    NASA Technical Reports Server (NTRS)

    Fieno, D.

    1972-01-01

    The perturbation theory for fixed sources was applied to radiation shielding problems to determine changes in neutron and gamma ray doses due to changes in various shield layers. For a given source and detector position the perturbation method enables dose derivatives due to all layer changes to be determined from one forward and one inhomogeneous adjoint calculation. The direct approach requires two forward calculations for the derivative due to a single layer change. Hence, the perturbation method for obtaining dose derivatives permits an appreciable savings in computation for a multilayered shield. For an illustrative problem, a comparison was made of the fractional change in the dose per unit change in the thickness of each shield layer as calculated by perturbation theory and by successive direct calculations; excellent agreement was obtained between the two methods.

  11. Measured and Calculated Neutron Spectra and Dose Equivalent Rates at High Altitudes; Relevance to SST Operations and Space Research

    NASA Technical Reports Server (NTRS)

    Foelsche, T.; Mendell, R. B.; Wilson, J. W.; Adams, R. R.

    1974-01-01

    Results of the NASA Langley-New York University high-altitude radiation study are presented. Measurements of the absorbed dose rate and of secondary fast neutrons (1 to 10 MeV energy) during the years 1965 to 1971 are used to determine the maximum radiation exposure from galactic and solar cosmic rays of supersonic transport (SST) and subsonic jet occupants. The maximum dose equivalent rates that the SST crews might receive turn out to be 13 to 20 percent of the maximum permissible dose rate (MPD) for radiation workers (5 rem/yr). The exposure of passengers encountering an intense giant-energy solar particle event could exceed the MPD for the general population (0.5 rem/yr), but would be within these permissible limits if in such rare cases the transport descends to subsonic altitude; it is in general less than 12 percent of the MPD. By Monte Carlo calculations of the transport and buildup of nucleons in air for incident proton energies E of 0.02 to 10 GeV, the measured neutron spectra were extrapolated to lower and higher energies and for galactic cosmic rays were found to continue with a relatively high intensity to energies greater than 400 MeV, in a wide altitude range. This condition, together with the measured intensity profiles of fast neutrons, revealed that the biologically important fast and energetic neutrons penetrate deep into the atmosphere and contribute approximately 50 percent of the dose equivalant rates at SST and present subsonic jet altitudes.

  12. Risk of Developing Second Cancer From Neutron Dose in Proton Therapy as Function of Field Characteristics, Organ, and Patient Age

    SciTech Connect

    Zacharatou Jarlskog, Christina; Paganetti, Harald

    2008-09-01

    Purpose: To estimate the risk of a second malignancy after treatment of a primary brain cancer using passive scattered proton beam therapy. The focus was on the cancer risk caused by neutrons outside the treatment volume and the dependency on the patient's age. Methods and Materials: Organ-specific neutron-equivalent doses previously calculated for eight different proton therapy brain fields were considered. Organ-specific models were applied to assess the risk of developing solid cancers and leukemia. Results: The main contributors (>80%) to the neutron-induced risk are neutrons generated in the treatment head. Treatment volume can influence the risk by up to a factor of {approx}2. Young patients are subject to significantly greater risks than are adult patients because of the geometric differences and age dependency of the risk models. Breast cancer should be the main concern for females. For males, the risks of lung cancer, leukemia, and thyroid cancer were significant for pediatric patients. In contrast, leukemia was the leading risk for an adult. Most lifetime risks were <1% (70-Gy treatment). The only exceptions were breast, thyroid, and lung cancer for females. For female thyroid cancer, the treatment risk can exceed the baseline risk. Conclusion: The risk of developing a second malignancy from neutrons from proton beam therapy of a brain lesion is small (i.e., presumably outweighed by the therapeutic benefit) but not negligible (i.e., potentially greater than the baseline risk). The patient's age at treatment plays a major role.

  13. Estimation of neutron-equivalent dose in organs of patients undergoing radiotherapy by the use of a novel online digital detector

    NASA Astrophysics Data System (ADS)

    Sánchez-Doblado, F.; Domingo, C.; Gómez, F.; Sánchez-Nieto, B.; Muñiz, J. L.; García-Fusté, M. J.; Expósito, M. R.; Barquero, R.; Hartmann, G.; Terrón, J. A.; Pena, J.; Méndez, R.; Gutiérrez, F.; Guerre, F. X.; Roselló, J.; Núñez, L.; Brualla-González, L.; Manchado, F.; Lorente, A.; Gallego, E.; Capote, R.; Planes, D.; Lagares, J. I.; González-Soto, X.; Sansaloni, F.; Colmenares, R.; Amgarou, K.; Morales, E.; Bedogni, R.; Cano, J. P.; Fernández, F.

    2012-10-01

    Neutron peripheral contamination in patients undergoing high-energy photon radiotherapy is considered as a risk factor for secondary cancer induction. Organ-specific neutron-equivalent dose estimation is therefore essential for a reasonable assessment of these associated risks. This work aimed to develop a method to estimate neutron-equivalent doses in multiple organs of radiotherapy patients. The method involved the convolution, at 16 reference points in an anthropomorphic phantom, of the normalized Monte Carlo neutron fluence energy spectra with the kerma and energy-dependent radiation weighting factor. This was then scaled with the total neutron fluence measured with passive detectors, at the same reference points, in order to obtain the equivalent doses in organs. The latter were correlated with the readings of a neutron digital detector located inside the treatment room during phantom irradiation. This digital detector, designed and developed by our group, integrates the thermal neutron fluence. The correlation model, applied to the digital detector readings during patient irradiation, enables the online estimation of neutron-equivalent doses in organs. The model takes into account the specific irradiation site, the field parameters (energy, field size, angle incidence, etc) and the installation (linac and bunker geometry). This method, which is suitable for routine clinical use, will help to systematically generate the dosimetric data essential for the improvement of current risk-estimation models.

  14. Operational quantities and new approach by ICRU.

    PubMed

    2016-06-01

    The protection quantities, equivalent dose in a tissue or organ and effective dose, were developed by the International Commission on Radiological Protection (ICRP) to allow quantification of the extent of exposure of the human body to ionising radiation. These quantities are used for the implementation of limitation and optimisation principles. Body-related protection quantities are not measurable in practice. Therefore, the International Commission on Radiation Units and Measurements (ICRU) developed a set of operational dose quantities for use in radiation measurements for external exposure that can assess the protection quantities. The current ICRU operational quantities were defined more than 30 years ago. ICRU Report Committee 26 examined the rationale for the operational quantities, taking account of changes in the definitions of the protection quantities in ICRP's 2007 Recommendations. The considerations included the range of types and energies of particles contributing to exposure of workers and members of the public. ICRU Report Committee 26 investigated a set of alternative definitions for the operational quantities. The major change to the currently favoured set of quantities is redefinition of the operational quantities, from being based on doses at specific points in the ICRU sphere and soft tissue, to being based on particle fluence and conversion coefficients for effective dose and absorbed dose to the lens of the eye and local skin. PMID:26980797

  15. Assessment of individual organ doses in a realistic human phantom from neutron and gamma stimulated spectroscopy of the breast and liver

    SciTech Connect

    Belley, Matthew D.; Segars, William Paul; Kapadia, Anuj J.

    2014-06-15

    Purpose: Understanding the radiation dose to a patient is essential when considering the use of an ionizing diagnostic imaging test for clinical diagnosis and screening. Using Monte Carlo simulations, the authors estimated the three-dimensional organ-dose distribution from neutron and gamma irradiation of the male liver, female liver, and female breasts for neutron- and gamma-stimulated spectroscopic imaging. Methods: Monte Carlo simulations were developed using the Geant4 GATE application and a voxelized XCAT human phantom. A male and a female whole body XCAT phantom was voxelized into 256 × 256 × 600 voxels (3.125 × 3.125 × 3.125 mm{sup 3}). A monoenergetic rectangular beam of 5.0 MeV neutrons or 7.0 MeV photons was made incident on a 2 cm thick slice of the phantom. The beam was rotated at eight different angles around the phantom ranging from 0° to 180°. Absorbed dose was calculated for each individual organ in the body and dose volume histograms were computed to analyze the absolute and relative doses in each organ. Results: The neutron irradiations of the liver showed the highest organ dose absorption in the liver, with appreciably lower doses in other proximal organs. The dose distribution within the irradiated slice exhibited substantial attenuation with increasing depth along the beam path, attenuating to ∼15% of the maximum value at the beam exit side. The gamma irradiation of the liver imparted the highest organ dose to the stomach wall. The dose distribution from the gammas showed a region of dose buildup at the beam entrance, followed by a relatively uniform dose distribution to all of the deep tissue structures, attenuating to ∼75% of the maximum value at the beam exit side. For the breast scans, both the neutron and gamma irradiation registered maximum organ doses in the breasts, with all other organs receiving less than 1% of the breast dose. Effective doses ranged from 0.22 to 0.37 mSv for the neutron scans and 41 to 66 mSv for the gamma

  16. Assessment of individual organ doses in a realistic human phantom from neutron and gamma stimulated spectroscopy of the breast and liver

    PubMed Central

    Belley, Matthew D.; Segars, William Paul; Kapadia, Anuj J.

    2014-01-01

    Purpose: Understanding the radiation dose to a patient is essential when considering the use of an ionizing diagnostic imaging test for clinical diagnosis and screening. Using Monte Carlo simulations, the authors estimated the three-dimensional organ-dose distribution from neutron and gamma irradiation of the male liver, female liver, and female breasts for neutron- and gamma-stimulated spectroscopic imaging. Methods: Monte Carlo simulations were developed using the Geant4 GATE application and a voxelized XCAT human phantom. A male and a female whole body XCAT phantom was voxelized into 256 × 256 × 600 voxels (3.125 × 3.125 × 3.125 mm3). A monoenergetic rectangular beam of 5.0 MeV neutrons or 7.0 MeV photons was made incident on a 2 cm thick slice of the phantom. The beam was rotated at eight different angles around the phantom ranging from 0° to 180°. Absorbed dose was calculated for each individual organ in the body and dose volume histograms were computed to analyze the absolute and relative doses in each organ. Results: The neutron irradiations of the liver showed the highest organ dose absorption in the liver, with appreciably lower doses in other proximal organs. The dose distribution within the irradiated slice exhibited substantial attenuation with increasing depth along the beam path, attenuating to ∼15% of the maximum value at the beam exit side. The gamma irradiation of the liver imparted the highest organ dose to the stomach wall. The dose distribution from the gammas showed a region of dose buildup at the beam entrance, followed by a relatively uniform dose distribution to all of the deep tissue structures, attenuating to ∼75% of the maximum value at the beam exit side. For the breast scans, both the neutron and gamma irradiation registered maximum organ doses in the breasts, with all other organs receiving less than 1% of the breast dose. Effective doses ranged from 0.22 to 0.37 mSv for the neutron scans and 41 to 66 mSv for the gamma scans

  17. SU-E-T-598: Parametric Equation for Quick and Reliable Estimate of Stray Neutron Doses in Proton Therapy and Application for Intracranial Tumor Treatments

    SciTech Connect

    Bonfrate, A; Farah, J; Sayah, R; Clairand, I; De Marzi, L; Delacroix, S; Herault, J; Lee, C; Bolch, W

    2015-06-15

    Purpose: Development of a parametric equation suitable for a daily use in routine clinic to provide estimates of stray neutron doses in proton therapy. Methods: Monte Carlo (MC) calculations using the UF-NCI 1-year-old phantom were exercised to determine the variation of stray neutron doses as a function of irradiation parameters while performing intracranial treatments. This was done by individually changing the proton beam energy, modulation width, collimator aperture and thickness, compensator thickness and the air gap size while their impact on neutron doses were put into a single equation. The variation of neutron doses with distance from the target volume was also included in it. Then, a first step consisted in establishing the fitting coefficients by using 221 learning data which were neutron absorbed doses obtained with MC simulations while a second step consisted in validating the final equation. Results: The variation of stray neutron doses with irradiation parameters were fitted with linear, polynomial, etc. model while a power-law model was used to fit the variation of stray neutron doses with the distance from the target volume. The parametric equation fitted well MC simulations while establishing fitting coefficients as the discrepancies on the estimate of neutron absorbed doses were within 10%. The discrepancy can reach ∼25% for the bladder, the farthest organ from the target volume. Finally, the validation showed results in compliance with MC calculations since the discrepancies were also within 10% for head-and-neck and thoracic organs while they can reach ∼25%, again for pelvic organs. Conclusion: The parametric equation presents promising results and will be validated for other target sites as well as other facilities to go towards a universal method.

  18. Radiolytic yield of ozone in air for low dose neutron and x-ray/gamma-ray radiation

    NASA Astrophysics Data System (ADS)

    Cole, J.; Su, S.; Blakeley, R. E.; Koonath, P.; Hecht, A. A.

    2015-01-01

    Radiation ionizes surrounding air and produces molecular species, and these localized effects may be used as a signature of, and for quantification of, radiation. Low-level ozone production measurements from radioactive sources have been performed in this work to understand radiation chemical yields at low doses. The University of New Mexico AGN-201 M reactor was used as a tunable radiation source. Ozone levels were compared between reactor-on and reactor-off conditions, and differences (0.61 to 0.73 ppb) well below background levels were measured. Simulations were performed to determine the dose rate distribution and average dose rate to the air sample within the reactor, giving 35 mGy of mixed photon and neutron dose. A radiation chemical yield for ozone of 6.5±0.8 molecules/100 eV was found by a variance weighted average of the data. The different contributions of photons and neutrons to radiolytic ozone production are discussed.

  19. Comparison of secondary neutron dose in proton therapy resulting from the use of a tungsten alloy MLC or a brass collimator system

    SciTech Connect

    Diffenderfer, Eric S.; Ainsley, Christopher G.; Kirk, Maura L.; McDonough, James E.; Maughan, Richard L.

    2011-11-15

    Purpose: To apply the dual ionization chamber method for mixed radiation fields to an accurate comparison of the secondary neutron dose arising from the use of a tungsten alloy multileaf collimator (MLC) as opposed to a brass collimator system for defining the shape of a therapeutic proton field. Methods: Hydrogenous and nonhydrogenous ionization chambers were constructed with large volumes to enable measurements of absorbed doses below 10{sup -4} Gy in mixed radiation fields using the dual ionization chamber method for mixed-field dosimetry. Neutron dose measurements were made with a nominal 230 MeV proton beam incident on a closed tungsten alloy MLC and a solid brass block. The chambers were cross-calibrated against a {sup 60}Co-calibrated Farmer chamber in water using a 6 MV x-ray beam and Monte Carlo simulations were performed to account for variations in ionization chamber response due to differences in secondary neutron energy spectra. Results: The neutron and combined proton plus {gamma}-ray absorbed doses are shown to be nearly equivalent downstream from either a closed tungsten alloy MLC or a solid brass block. At 10 cm downstream from the distal edge of the collimating material the neutron dose from the closed MLC was (5.3 {+-} 0.4) x 10{sup -5} Gy/Gy. The neutron dose with brass was (6.4 {+-} 0.7) x 10{sup -5} Gy/Gy. Further from the secondary neutron source, at 50 cm, the neutron doses remain close for both the MLC and brass block at (6.9 {+-} 0.6) x 10{sup -6} Gy/Gy and (6.3 {+-} 0.7) x 10{sup -6} Gy/Gy, respectively. Conclusions: The dual ionization chamber method is suitable for measuring secondary neutron doses resulting from proton irradiation. The results of measurements downstream from a closed tungsten alloy MLC and a brass block indicate that, even in an overly pessimistic worst-case scenario, secondary neutron production in a tungsten alloy MLC leads to absorbed doses that are nearly equivalent to those seen from brass collimators. Therefore

  20. Temperature effect on characteristics of void population formed in the austenitic steel under neutron irradiation up to high damage dose

    NASA Astrophysics Data System (ADS)

    Kozlov, A. V.; Portnykh, I. A.; Skryabin, L. A.; Kinev, E. A.

    2002-12-01

    Radiation-induced porosity in fuel pin cladding of the BN-600 reactor fabricated of cold-worked austenitic steel 16Cr-15Ni-2Mo-2Mn irradiated to different damage dose 20-90 dpa at 410-600 °C has been examined by transmission electron microscopy. Formation and growth of various types of voids were shown to occur according to their both duration and mechanism of nucleation. Dependencies of average diameters and concentration of all void types on neutron irradiation damage dose were plotted for various temperature ranges. The change of void population with increasing dose at various temperature ranges was analyzed based on point defect kinetic. The contribution of different types of voids to swelling was examined.

  1. Xenografts of five human leiomyosarcomas: radiation response after 60cobalt- and d(14)+Be neutron single doses.

    PubMed

    Budach, V; Stuschke, M; Budach, W; Streffer, C; Sack, H

    1990-01-01

    Five permanently established xenograft lines of human soft tissue sarcomas were irradiated with single doses of 5.8 MeV d(14)+Be neutrons and of 60Co rays, respectively, at several dose levels to generate dose response relationships. The tumors were clamped ten minutes prior to and during irradiation to induce uniform hypoxia. All tumours were previously characterized by means of histomorphology, tumour doubling times (DT's), DNA-index and enzyme pattern of the lactate dehydrogenase (LDH) and glucose-6-phosphate dehydrogenase (GPD). According to these criteria, three out of five leiomyosarcomas were identical referring to the biopsy of origin, whereas two had changed in successive passages. For the different tumour lines, specific growth delays ranged from 0 to 8.7 after 5.3 Gy neutrons and from 0 to 11.4 after 16 Gy60Co, respectively. In terms of radiosensitivity for different single doses and irradiation qualities, a highly significant overall correlation (rs = 0.82 +/- 0.06) was found for the ranking of the tumours with respect to the growth delay and specific growth delay endpoints. No correlation was found between tumour doubling times and the relative biological effectiveness (RBE). In general, calculated RBE-values decreased with increasing effect level. For the five tumour lines, RBE-values ranged from 1.6 to 12.7 and 2.0 to 4.4 at specific growth delays of 0.5 and 2.0, respectively, under acutely hypoxic conditions. These results indicate a potential advantage for neutrons in a subgroup of human soft tissue sarcomas compared with sparsely ionising irradiation. PMID:2105535

  2. Evaluation of the dose enhancement of combined ¹⁰B + ¹⁵⁷Gd neutron capture therapy (NCT).

    PubMed

    Protti, N; Geninatti-Crich, S; Alberti, D; Lanzardo, S; Deagostino, A; Toppino, A; Aime, S; Ballarini, F; Bortolussi, S; Bruschi, P; Postuma, I; Altieri, S; Nikjoo, H

    2015-09-01

    An innovative molecule, GdBLDL, for boron neutron capture therapy (BNCT) has been developed and its effectiveness as a BNCT carrier is currently under evaluation using in vivo experiments on small animal tumour models. The molecule contains both (10)B (the most commonly used NCT agent) and (157)Gd nuclei. (157)Gd is the second most studied element to perform NCT, mainly thanks to its high cross section for the capture of low-energy neutrons. The main drawback of (157)Gd neutron capture reaction is the very short range and low-energy secondary charged particles (Auger electrons), which requires (157)Gd to be very close to the cellular DNA to have an appreciable biological effect. Treatment doses were calculated by Monte Carlo simulations to ensure the optimised tumour irradiation and the sparing of the healthy organs of the irradiated animals. The enhancement of the absorbed dose due to the simultaneous presence of (10)B and (157)Gd in the experimental set-up was calculated and the advantage introduced by the presence of (157)Gd was discussed. PMID:26246584

  3. Optimal moderator materials at various proton energies considering photon dose rate after irradiation for an accelerator-driven ⁹Be(p, n) boron neutron capture therapy neutron source.

    PubMed

    Hashimoto, Y; Hiraga, F; Kiyanagi, Y

    2015-12-01

    We evaluated the accelerator beam power and the neutron-induced radioactivity of (9)Be(p, n) boron neutron capture therapy (BNCT) neutron sources having a MgF2, CaF2, or AlF3 moderator and driven by protons with energy from 8 MeV to 30 MeV. The optimal moderator materials were found to be MgF2 for proton energies less than 10 MeV because of lower required accelerator beam power and CaF2 for higher proton energies because of lower photon dose rate at the treatment position after neutron irradiation. PMID:26272165

  4. Feasibility of boron neutron capture therapy (BNCT) for malignant pleural mesothelioma from a viewpoint of dose distribution analysis

    SciTech Connect

    Suzuki, Minoru . E-mail: msuzuki@rri.kyoto-u.ac.jp; Sakurai, Yoshinori; Masunaga, Shinichiro; Kinashi, Yuko; Nagata, Kenji; Maruhashi, Akira; Ono, Koji

    2006-12-01

    Purpose: To investigate the feasibility of boron neutron capture therapy (BNCT) for malignant pleural mesothelioma (MPM) from a viewpoint of dose distribution analysis using Simulation Environment for Radiotherapy Applications (SERA), a currently available BNCT treatment planning system. Methods and Materials: The BNCT treatment plans were constructed for 3 patients with MPM using the SERA system, with 2 opposed anterior-posterior beams. The {sup 1}B concentrations in the tumor and normal lung in this study were assumed to be 84 and 24 ppm, respectively, and were derived from data observed in clinical trials. The maximum, mean, and minimum doses to the tumors and the normal lung were assessed for each plan. The doses delivered to 5% and 95% of the tumor volume, D{sub 05} and D{sub 95}, were adopted as the representative dose for the maximum and minimum dose, respectively. Results: When the D{sub 05} to the normal ipsilateral lung was 5 Gy-Eq, the D{sub 95} and mean doses delivered to the normal lung were 2.2-3.6 and 3.5-4.2 Gy-Eq, respectively. The mean doses delivered to the tumors were 22.4-27.2 Gy-Eq. The D{sub 05} and D{sub 95} doses to the tumors were 9.6-15.0 and 31.5-39.5 Gy-Eq, respectively. Conclusions: From a viewpoint of the dose-distribution analysis, BNCT has the possibility to be a promising treatment for MPM patients who are inoperable because of age and other medical illnesses.

  5. ACDOS1: a computer code to calculate dose rates from neutron activation of neutral beamlines and other fusion-reactor components

    SciTech Connect

    Keney, G.S.

    1981-08-01

    A computer code has been written to calculate neutron induced activation of neutral-beam injector components and the corresponding dose rates as a function of geometry, component composition, and time after shutdown. The code, ACDOS1, was written in FORTRAN IV to calculate both activity and dose rates for up to 30 target nuclides and 50 neutron groups. Sufficient versatility has also been incorporated into the code to make it applicable to a variety of general activation problems due to neutrons of energy less than 20 MeV.

  6. The evaluation of neutron and gamma ray dose equivalent distributions in patients and the effectiveness of shield materials for high energy photons radiotherapy facilities.

    PubMed

    Ghassoun, J; Senhou, N

    2012-04-01

    In this study, the MCNP5 code was used to model radiotherapy room of a medical linear accelerator operating at 18 MV and to evaluate the neutron and the secondary gamma ray fluences, the energy spectra and the dose equivalent distributions inside a liquid tissue-equivalent (TE) phantom. The obtained results were compared with measured data published in the literature. Moreover, the shielding effects of various neutron material shields on the radiotherapy room wall were also investigated. Our simulation results showed that paraffin wax containing boron carbide presents enough effectiveness to reduce both neutron and secondary gamma ray doses. PMID:22257567

  7. Low-Dose-Rate Californium-252 Neutron Intracavitary Afterloading Radiotherapy Combined With Conformal Radiotherapy for Treatment of Cervical Cancer

    SciTech Connect

    Zhang Min; Xu Hongde; Pan Songdan; Lin Shan; Yue Jianhua; Liu Jianren

    2012-07-01

    Purpose: To study the efficacy of low-dose-rate californium-252 ({sup 252}Cf) neutron intracavitary afterloading radiotherapy (RT) combined with external pelvic RT for treatment of cervical cancer. Methods and Materials: The records of 96 patients treated for cervical cancer from 2006 to 2010 were retrospectively reviewed. For patients with tumors {<=}4 cm in diameter, external beam radiation was performed (1.8 Gy/day, five times/week) until the dose reached 20 Gy, and then {sup 252}Cf neutron intracavitary afterloading RT (once/week) was begun, and the frequency of external beam radiation was changed to four times/week. For patients with tumors >4 cm, {sup 252}Cf RT was performed one to two times before whole-pelvis external beam radiation. The tumor-eliminating dose was determined by using the depth limit of 5 mm below the mucosa as the reference point. In all patients, the total dose of the external beam radiation ranged from 46.8 to 50 Gy. For {sup 252}Cf RT, the dose delivered to point A was 6 Gy/fraction, once per week, for a total of seven times, and the total dose was 42 Gy. Results: The mean {+-} SD patient age was 54.7 {+-} 13.7 years. Six patients had disease assessed at stage IB, 13 patients had stage IIA, 49 patients had stage IIB, 3 patients had stage IIIA, 24 patients had stage IIIB, and 1 patient had stage IVA. All patients obtained complete tumor regression (CR). The mean {+-} SD time to CR was 23.5 {+-} 3.4 days. Vaginal bleeding was fully controlled in 80 patients within 1 to 8 days. The mean {+-} SD follow-up period was 27.6 {+-} 12.7 months (range, 6-48 months). Five patients died due to recurrence or metastasis. The 3-year survival and disease-free recurrence rates were 89.6% and 87.5 %, respectively. Nine patients experienced mild radiation proctitis, and 4 patients developed radiocystitis. Conclusions: Low-dose-rate {sup 252}Cf neutron RT combined with external pelvic RT is effective for treating cervical cancer, with a low incidence of

  8. Development of an algorithm for evaluating personal doses due to photon fields in terms of operational quantities for TLD badge system in India.

    PubMed

    Pradhan, S M; Sneha, C; Chourasiya, G; Adtani, M M; Tripathi, S M; Singh, S K

    2009-09-01

    In order to evaluate and report the personal doses in terms of personal dose equivalent, the performance of the CaSO(4):Dy based thermoluminescence dosemeter (TLD) badge used for countrywide personnel monitoring in India is investigated using monoenergetic and narrow spectrum radiation qualities equivalent to those given in ISO standards. Algorithms suitable for evaluating H(p)(10) and H(p)(0.07) within +/- 30 % are developed from the responses of dosemeter elements/discs under different filters for normal as well as angular irradiation conditions using these beams. The algorithm is tested for TLD badges irradiated to mixtures of low- and high-energy ((137)Cs) beams in various proportions. The paper concludes with the results of test of algorithm by evaluation of badges used in the IAEA/RCA intercomparison studies and discussion on inherent limitations. PMID:19755432

  9. Development of microstructure and irradiation hardening of Zircaloy during low dose neutron irradiation at nominally 358 C

    SciTech Connect

    Cockeram, Brian V; Smith, Richard W; Leonard, Keith J; Byun, Thak Sang; Snead, Lance Lewis

    2011-01-01

    Wrought Zircaloy-2 and Zircaloy-4 were neutron irradiated at nominally 358 C in the high flux isotope reactor (HFIR) at relatively low neutron fluences between 5.8 1022 and 2.9 1025 n/m2 (E > 1 MeV). The irradiation hardening and change in microstructure were characterized following irradiation using tensile testing and examinations of microstructure using Analytical Electron Microscopy (AEM). Small increments of dose (0.0058, 0.11, 0.55, 1.08, and 2.93 1025 n/m2) were used in the range where the saturation of irradiation hardening is typically observed so that the role of microstructure evolution and hai loop formation on irradiation hardening could be correlated. An incubation dose between 5.8 1023 and 1.1 1024 n/m2 was needed for loop nucleation to occur that resulted in irradiation hardening. Increases in yield strength were consistent with previous results in this temperature regime, and as expected less irradiation hardening and lower hai loop number density values than those generally reported in literature for irradiations at 260 326 C were observed. Unlike previous lower temperature data, there is evidence in this study that the irradiation hardening can decrease with dose over certain ranges of fluence. Irradiation induced voids were observed in very low numbers in the Zircaloy-2 materials at the highest fluence.

  10. Evaluation of the neutron dose received by personnel at the LLNL

    SciTech Connect

    Hankins, D.E.

    1982-05-01

    This report was prepared to document the techniques being used to evaluate the neutron exposures received by personnel at the LLNL. Two types of evaluations are discussed covering the use of the routine personnel dosimeter and of the albedo neutron dosimeter. Included in the report are field survey results which were used to determine the calibration factors being applied to the dosimeter readings. Calibration procedures are discussed and recommendations are made on calibration and evaluation procedures.