Science.gov

Sample records for neutron flux measurement

  1. Apparatus for measuring a flux of neutrons

    DOEpatents

    Stringer, James L.

    1977-01-01

    A flux of neutrons is measured by disposing a detector in the flux and applying electronic correlation techniques to discriminate between the electrical signals generated by the neutron detector and the unwanted interfering electrical signals generated by the incidence of a neutron flux upon the cables connecting the detector to the electronic measuring equipment at a remote location.

  2. Dual neutron flux/temperature measurement sensor

    DOEpatents

    Mihalczo, John T.; Simpson, Marc L.; McElhaney, Stephanie A.

    1994-01-01

    Simultaneous measurement of neutron flux and temperature is provided by a single sensor which includes a phosphor mixture having two principal constituents. The first constituent is a neutron sensitive 6LiF and the second is a rare-earth activated Y203 thermophosphor. The mixture is coated on the end of a fiber optic, while the opposite end of the fiber optic is coupled to a light detector. The detected light scintillations are quantified for neutron flux determination, and the decay is measured for temperature determination.

  3. An Alpha-Gamma Counter for Absolute Neutron Flux Measurement

    NASA Astrophysics Data System (ADS)

    Yue, A.; Greene, G.; Dewey, M.; Gilliam, D.; Nico, J.; Laptev, A.

    2012-03-01

    An alpha-gamma counter was used to measure the absolute neutron flux of a monochromatic cold neutron beam to sub-0.1,% precision. Simultaneously, the counter was used to calibrate a thin neutron flux monitor based on neutron absorption on ^6Li to the same precision. This monitor was used in the most precise beam-based measurement of the neutron lifetime, where the limiting systematic effect was the uncertainty in the neutron counting efficiency (0.3,%). The counter uses a thick target of ^10B-enriched boron carbide to completely absorb the beam. The rate of absorbed neutrons is determined by counting 478 keV gamma rays from neutron capture on ^10B with calibrated high-purity germanium detectors. The calibration results and the implications for the neutron lifetime will be discussed.

  4. High-Energy Neutron Spectra and Flux Measurements Below Ground

    NASA Astrophysics Data System (ADS)

    Roecker, Caleb; Bernstein, Adam; Marleau, Peter; Vetter, Kai

    2016-03-01

    High-energy neutrons are a ubiquitous and often poorly measured background. Below ground, these neutrons could potentially interfere with antineutrino based reactor monitoring experiments as well as other rare-event neutral particle detectors. We have designed and constructed a transportable fast neutron detection system for measuring neutron energy spectra and flux ranging from tens to hundreds of MeV. The spectrometer uses a multiplicity technique in order to have a higher effective area than traditional transportable high-energy neutron spectrometers. Transportability ensures a common detector-related systematic bias for future measurements. The spectrometer is composed of two Gd containing plastic scintillator detectors arranged around a lead spallation target. A high-energy neutron may interact in the lead producing many secondary neutrons. The detector records the correlated secondary neutron multiplicity. Over many events, the response can be used to infer the incident neutron energy spectrum and flux. As a validation of the detector response, surface measurements have been performed; results confirm agreement with previous experiments. Below ground measurements have been performed at 3 depths (380, 600, and 1450 m.w.e.); results from these measurements will be presented.

  5. "Influence Method" applied to measure a moderated neutron flux

    NASA Astrophysics Data System (ADS)

    Rios, I. J.; Mayer, R. E.

    2016-01-01

    The "Influence Method" is conceived for the absolute determination of a nuclear particle flux in the absence of known detector efficiency. This method exploits the influence of the presence of one detector, in the count rate of another detector when they are placed one behind the other and define statistical estimators for the absolute number of incident particles and for the efficiency. The method and its detailed mathematical description were recently published (Rios and Mayer, 2015 [1]). In this article we apply it to the measurement of the moderated neutron flux produced by an 241AmBe neutron source surrounded by a light water sphere, employing a pair of 3He detectors. For this purpose, the method is extended for its application where particles arriving at the detector obey a Poisson distribution and also, for the case when efficiency is not constant over the energy spectrum of interest. Experimental distributions and derived parameters are compared with theoretical predictions of the method and implications concerning the potential application to the absolute calibration of neutron sources are considered.

  6. CR-39 detector based thermal neutron flux measurements, in the photo neutron project

    NASA Astrophysics Data System (ADS)

    Mameli, A.; Greco, F.; Fidanzio, A.; Fusco, V.; Cilla, S.; D'Onofrio, G.; Grimaldi, L.; Augelli, B. G.; Giannini, G.; Bevilacqua, R.; Totaro, P.; Tommasino, L.; Azario, L.; Piermattei, A.

    2008-08-01

    PhoNeS (photo neutron source) is a project aimed at the production and moderation of neutrons by exploiting high energy linear accelerators, currently used in radiotherapy. A feasibility study has been carried out with the scope in mind to use the high energy photon beams from these accelerators for the production of neutrons suitable for boron neutron capture therapy (BNCT). Within these investigations, it was necessary to carry out preliminary measurements of the thermal neutron component of neutron spectra, produced by the photo-conversion of X-ray radiotherapy beams supplied by three LinAcs: 15 MV, 18 MV and 23 MV. To this end, a simple passive thermal neutron detector has been used which consists of a CR-39 track detector facing a new type of boron-loaded radiator. Once calibrated, this passive detector has been used for the measurement of both the thermal neutron component and the cadmium ratio of different neutron spectra. In addition, bubble detectors with a response highly sensitive to thermal neutrons have also been used. Both thermal neutron detectors are simple to use, very compact and totally insensitive to low-ionizing radiation such as electrons and X-rays. The resultant thermal neutron flux was above 10 6 n/cm 2s and the cadmium ratio was no greater than 15 for the first attempt of photo-conversion of X-ray radiotherapy beams.

  7. Wide Range Neutron Flux Measuring Channel for Aerospace Application

    SciTech Connect

    Cibils, R. M.; Busto, A.; Gonella, J. L.; Martinez, R.; Chielens, A. J.; Otero, J. M.; Nunez, M.; Tropea, S. E.

    2008-01-21

    The use of classical techniques for neutron flux measurements in nuclear reactors involves the switching between several detection chains as the power grows up to 10 decades. In space applications where mass and size constraints are of key significance, such volume of hardware represents a clear disadvantage. Instead of requiring different instruments for each reactor operating range (start-up, ramping-up, and nominal power), a single instrument chain should be desirable. A Wide Range Neutron Detector (WRND) system, combining a classic pulse Counting Channel with a Campbell's theorem based Fluctuation Channel can be implemented for the monitoring and control of a space nuclear reactor. Such an instrument will allow for a reduction in the complexity of space-based nuclear instrumentation and control systems. In this presentation we will discuss the criteria and tradeoffs involved in the development of such a system. We will focus particularly on the characteristics of the System On Chip (SOC) and the DSP board used to implement this instrument.

  8. Determination of TFTR far-field neutron detector efficiencies by local neutron flux spectrum measurement

    NASA Astrophysics Data System (ADS)

    Jassby, D. L.; Ascione, G.; Kugel, H. W.; Roquemore, A. L.; Barcelo, T. W.; Kumar, A.

    1997-01-01

    Neutron detectors have often been located on the tokamak fusion test reactor (TFTR) test cell floor 3 m or more from the vacuum vessel for ease of detector access, to reduce radiation damage, minimize count saturation problems, and to avoid high magnetic fields. These detectors include Si surface-barrier diodes, fission chambers, natural diamond detectors, and T2 production in a moderated 3He cell. To evaluate the performance of these detectors during deuterium-tritium (D-T) operation, we determined the neutron flux spectrum incident on the principal detector enclosure using nuclide sample sets containing Al, Ti, Fe, Co, Cu, Zn, Ni, Zr, Nb, In, and Au activation foils. Foils were installed and then removed after ample exposure to TFTR D-T neutrons. High efficiency, high purity Ge detectors were used for gamma spectroscopy of the irradiated foils. The incident neutron fluence and spectral distribution were unfolded from the measured results, and used to derive absolute detector efficiencies.

  9. Bayesian calibration of reactor neutron flux spectrum using activation detectors measurements: Application to CALIBAN reactor

    SciTech Connect

    Cartier, J.; Casoli, P.; Chappert, F.

    2013-07-01

    In this paper, we present calibration methods in order to estimate reactor neutron flux spectrum and its uncertainties by using integral activation measurements. These techniques are performed using Bayesian and MCMC framework. These methods are applied to integral activation experiments in the cavity of the CALIBAN reactor. We estimate the neutron flux and its related uncertainties. The originality of this work is that these uncertainties take into account measurements uncertainties, cross-sections uncertainties and model error. In particular, our results give a very good approximation of the total flux and indicate that neutron flux from MCNP simulation for energies above about 5 MeV seems to overestimate the 'real flux'. (authors)

  10. Energetic ion diagnostics using neutron flux measurements during pellet injection

    SciTech Connect

    Heidbrink, W.W.

    1986-01-01

    Neutron measurements during injection of deuterium pellets into deuterium plasmas on the Tokamak Fusion Test Reactor (TFTR) indicate that the fractional increase in neutron emission about 0.5 msec after pellet injection is proportional to the fraction of beam-plasma reactions to total fusion reactions in the unperturbed plasma. These observations suggest three diagnostic applications of neutron measurements during pellet injection: (1) measurement of the beam-plasma reaction rate in deuterium plasmas for use in determining the fusion Q in an equivalent deuterium-tritium plasma, (2) measurement of the radial profile of energetic beam ions by varying the pellet size and velocity, and (3) measurement of the ''temperature'' of ions accelerated during wave heating. 18 refs., 3 figs.

  11. A scintillating fission detector for neutron flux measurements

    SciTech Connect

    Stange, Sy; Esch, Ernst I; Burgett, Eric A; May, Iain; Muenchausen, Ross E; Taw, Felicia; Tovesson, Fredrik K

    2010-01-01

    Neutron flux monitors are commonly used for a variety of nuclear physics applications. A scintillating neutron detector, consisting of a liquid scintillator loaded with fissionable material, has been developed, characterized, and tested in the beam line at the Los Alamos Neutron Science Center, and shows a significant improvement in neutron sensitivity compared with a conventional fission chamber. Recent research on nanocomposite-based scintillators for gamma-ray detection indicates that this approach can be extended to load nanoparticles of fissionable material into a scintillating matrix, with up to three orders of magnitude higher loading than typical fission chambers. This will result in a rugged, cost-efficient detector with high efficiency, a short signal rise time, and the ability to be used in low neutron-flux environments. Initial efforts to utilize the luminescence of uranyl oxide to eliminate the need for wavelength-shifting dyes were unsuccessful. Excitation of uranyl compounds has been reported at wavelengths ranging from 266 nm to 532 nm. However, neither the 300 nm emission of toluene, nor the 350 nm emission of PPO, nor the 410 nm emission of POPOP resulted in significant excitation of and emission by uranyl oxide. As indicated by UV/visible spectroscopy, light emitted at these wavelengths was absorbed by the colored solution. {sup 235}U remains the most attractive candidate for a fissionable scintillator, due to its high fission cross-section and lack of a threshold fission energy, but all solutions containing molecular uranium compounds will be colored, most more highly than the U{sup 6+} compounds used here. Research is therefore continuing toward the fabrication of uranium nanoparticles, in which, due to Rayleigh scattering, the coloration should be less pronounced. The characterization of the thorium-loaded liquid scintillator and the fabrication of the 100 mL detectors for use at LANSCE demonstrated the feasibility of loading fissionable

  12. Validation of the MCNP computational model for neutron flux distribution with the neutron activation analysis measurement

    NASA Astrophysics Data System (ADS)

    Tiyapun, K.; Chimtin, M.; Munsorn, S.; Somchit, S.

    2015-05-01

    The objective of this work is to demonstrate the method for validating the predication of the calculation methods for neutron flux distribution in the irradiation tubes of TRIGA research reactor (TRR-1/M1) using the MCNP computer code model. The reaction rate using in the experiment includes 27Al(n, α)24Na and 197Au(n, γ)198Au reactions. Aluminium (99.9 wt%) and gold (0.1 wt%) foils and the gold foils covered with cadmium were irradiated in 9 locations in the core referred to as CT, C8, C12, F3, F12, F22, F29, G5, and G33. The experimental results were compared to the calculations performed using MCNP which consisted of the detailed geometrical model of the reactor core. The results from the experimental and calculated normalized reaction rates in the reactor core are in good agreement for both reactions showing that the material and geometrical properties of the reactor core are modelled very well. The results indicated that the difference between the experimental measurements and the calculation of the reactor core using the MCNP geometrical model was below 10%. In conclusion the MCNP computational model which was used to calculate the neutron flux and reaction rate distribution in the reactor core can be used for others reactor core parameters including neutron spectra calculation, dose rate calculation, power peaking factors calculation and optimization of research reactor utilization in the future with the confidence in the accuracy and reliability of the calculation.

  13. NEUTRON FLUX INTENSITY DETECTION

    DOEpatents

    Russell, J.T.

    1964-04-21

    A method of measuring the instantaneous intensity of neutron flux in the core of a nuclear reactor is described. A target gas capable of being transmuted by neutron bombardment to a product having a resonance absorption line nt a particular microwave frequency is passed through the core of the reactor. Frequency-modulated microwave energy is passed through the target gas and the attenuation of the energy due to the formation of the transmuted product is measured. (AEC)

  14. Combined analysis of neutron and photon flux measurements for the Jules Horowitz reactor core mapping

    SciTech Connect

    Fourmentel, D.; Villard, J. F.; Lyoussi, A.; Reynard-Carette, C.; Bignan, G.; Chauvin, J. P.; Gonnier, C.; Guimbal, P.; Malo, J. Y.; Carette, M.; Janulyte, A.; Merroun, O.; Brun, J.; Zerega, Y.; Andre, J.

    2011-07-01

    We study the combined analysis of nuclear measurements to improve the knowledge of the irradiation conditions in the experimental locations of the future Jules Horowitz Reactor (JHR). The goal of the present work is to measure more accurately neutron flux, photon flux and nuclear heating in the reactor. In a Material Testing Reactor (MTR), nuclear heating is a crucial parameter to design the experimental devices to be irradiated in harsh nuclear conditions. This parameter drives the temperature of the devices and of the samples. The numerical codes can predict this parameter but in-situ measurements are necessary to reach the expected accuracy. For this reason, one objective of the IN-CORE program [1] is to study the combined measurements of neutron and photon flux and their cross advanced interpretation. It should be reminded that both neutron and photon sensors are not totally selective as their signals are due to neutron and photon interactions. We intend to measure the neutron flux by three different kinds of sensors (Uranium Fission chamber, Plutonium Fission chamber and Self Powered Neutron Detector), the photon flux by two different sensors (Ionization chamber and Self Powered Gamma Detector) and the nuclear heating by two different ones (Differential calorimeter and Gamma Thermometer). For the same parameter, we expect that the use of different kinds of sensors will allow a better estimation of the aimed parameter by mixing different spectrum responses and different neutron and gamma contributions. An experimental test called CARMEN-1 is scheduled in OSIRIS reactor (CEA Saclay - France) at the end of 2011, with the goal to map irradiation locations in the reactor reflector to get a first validation of the analysis model. This article focuses on the sensor selection for CARMEN-1 experiment and to the way to link neutron and photon flux measurements in view to reduce their uncertainties but also to better assess the neutron and photon contributions to nuclear

  15. Experimental neutron flux measurements with a diamond detector at the QUINTA setup

    NASA Astrophysics Data System (ADS)

    Berlev, A. I.; Rodionov, N. B.; Tyutyunnikov, S. I.; Amosov, V. N.; Meshchaninov, S. A.; Yudin, I. P.

    2016-05-01

    The operational capability of a diamond detector used to measure the neutron spectrum by the response function on the QUINTA setup [1] installed at the proton beam of the phasotron [2] (Laboratory of Nuclear Problems, Joint Institute for Nuclear Research) was demonstrated in the energy interval of 2.1-20 MeV. The neutron-flux count rate was measured. The energy of neutrons was estimated at 7.4-25.7 MeV based on the diamond-detector response spectrum. The dependence of the diamond-detector response spectra on the angle between the proton beam and the line going through the detector and the center of the QUINTA setup was investigated. The angular anisotropy of the neutron flux was demonstrated. Measurements at different distances from the detector to the QUINTA setup were performed.

  16. COMPTEL measurements of the omnidirectional high-energy neutron flux in near-earth orbit.

    PubMed

    Morris, D J; Aarts, H; Bennett, K; Lockwood, J A; McConnell, M L; Ryan, J M; Schonfelder, V; Steinle, H; Weidenspointner, G

    1998-01-01

    On four occasions, twice in 1991 (near solar maximum) and twice in 1994 (near solar minimum), one COMPTEL D1 detector module was used as an omnidirectional detector to measure the high-energy (> 12.8 MeV) neutron flux near an altitude of 450 km. The D1 modules are cylindrical, with radius 13.8 cm and depth 8 cm, and are filled with liquid scintillator (NE213A). The combined flux measurements can be fit reasonably well by a product of the Mt. Washington neutron monitor rate, a linear function in the spacecraft geocenter zenith angle, and an exponential function of the vertical geomagnetic cutoff rigidity in which the coefficient of the rigidity is a linear function of the neutron monitor rate. When pointed at the nadir, the flux is consistent with that expected from the atmospheric neutron albedo alone. When pointed at the zenith the flux is reduced by a factor of about 0.54. Thus the production of secondary neutrons in the massive (16000 kg) Compton Gamma-Ray Observatory spacecraft is negligible. Rather, the mass of the spacecraft provides shielding from the earth albedo. PMID:11542901

  17. MONDO: A neutron tracker for particle therapy secondary emission fluxes measurements

    NASA Astrophysics Data System (ADS)

    Marafini, M.; Patera, V.; Pinci, D.; Sarti, A.; Sciubba, A.; Spiriti, E.

    2016-07-01

    Cancer treatment is performed, in Particle Therapy, using accelerated charged particles whose high irradiation precision and conformity allows the tumor destruction while sparing the surrounding healthy tissues. Dose release monitoring devices using photons and charged particles produced by the beam interaction with the patient body have already been proposed, but no attempt based on the detection of the abundant secondary radiation neutron component has been made yet. The reduced attenuation length of neutrons yields a secondary particle sample that is larger in number when compared to photons and charged particles. Furthermore, neutrons allow for a backtracking of the emission point that is not affected by multiple scattering. Since neutrons can release a significant dose far away from the tumor region, a precise measurement of their flux, production energy and angle distributions is eagerly needed in order to improve the Treatment Planning Systems (TPS) software, so to predict not only the normal tissue toxicity in the target region but also the risk of late complications in the whole body. All the aforementioned issues underline the importance for an experimental effort devoted to the precise characterization of the neutron production gaining experimental access both to the emission point and production energy. The technical challenges posed by a neutron detector aiming for a high detection efficiency and good backtracking precision will be addressed within the MONDO (MOnitor for Neutron Dose in hadrOntherapy) project. The MONDO's main goal is to develop a tracking detector targeting fast and ultrafast secondary neutrons. The tracker is composed by a scintillating fiber matrix (4 × 4 × 8cm3). The full reconstruction of protons, produced in elastic interactions, will be used to measure energy and direction of the impinging neutron. The neutron tracker will measure the neutron production yields, as a function of production angle and energy, using different

  18. Measurement of Neutron and Muon Fluxes 100~m Underground with the SciBath Detector

    SciTech Connect

    Garrison, Lance

    2014-01-01

    The SciBath detector is an 80 liter liquid scintillator detector read out by a three dimensional grid of 768 wavelength-shifting fibers. Initially conceived as a fine-grained charged particle detector for neutrino studies that could image charged particle tracks in all directions, it is also sensitive to fast neutrons (15-200 MeV). In fall of 2011 the apparatus performed a three month run to measure cosmic-induced muons and neutrons 100~meters underground in the FNAL MINOS near-detector area. Data from this run has been analyzed and resulted in measurements of the cosmic muon flux as \

  19. Relationship between neutron yield rate of tokamak plasmas and spectrometer measured flux for different sight lines

    SciTech Connect

    Gorini, G.; Kaellne, J.; Ognissanto, F.; Tardocchi, M.

    2011-03-15

    A parametric relationship between total neutron yield rate and collimated fluxes related to the brightness (B) of plasma chords ({lambda}) is developed for different emissivity distributions of tokamak plasmas. Specifically, the brightness was expressed as a function of chord coordinates of radial position using a simple model for the emissivity profiles of width parameter w. The functional brightness dependence B({lambda},w) was calculated to examine the relationship between measured flux and deduced yield rate, and its plasma profile dependence. The results were used to determine the chord range of minimum profile sensitivity in order to identify the preferred collimator sight for the determination of yield rate from neutron emission spectroscopy (YNES) measurements. The YNES method is discussed in comparison to conventional methods to determine the total neutron yield rates and related plasma fusion power relying on uncollimated flux measurements and a different calibration base for the flux-yield relationship. The results have a special bearing for tokamaks operating with both deuterium and deuterium-tritium plasmas and future high power machines such as for ITER, DEMO, and IGNITOR.

  20. Integral measurements of neutron and gamma-ray leakage fluxes from the Little Boy replica

    SciTech Connect

    Muckenthaler, F.J.

    1984-03-01

    This report presents integral measurements of neutron and gamma-ray leakage fluxes from a critical mockup of the Hiroshima bomb Little Boy at Los Alamos National Laobratory with detector systems developed by Oak Ridge National Laboratory. Bonner ball detectors were used to map the neutron fluxes in the horizontal midplane at various distances from the mockup and for selected polar angles, keeping the source-detector separation constant. Gamma-ray energy deposition measurements were made with thermoluminescent detectors at several locations on the iron shell of the source mockup. The measurements were performed as part of a larger progam to provide benchmark data for testing the methods used to calculate the radiation released from the Little Boy bomb over Hiroshima. 3 references, 10 figures.

  1. High flux compact neutron generators

    SciTech Connect

    Reijonen, J.; Lou, T.-P.; Tolmachoff, B.; Leung, K.-N.; Verbeke, J.; Vujic, J.

    2001-06-15

    Compact high flux neutron generators are developed at the Lawrence Berkeley National Laboratory. The neutron production is based on D-D or D-T reaction. The deuterium or tritium ions are produced from plasma using either a 2 MHz or 13.56 MHz radio frequency (RF) discharge. RF-discharge yields high fraction of atomic species in the beam which enables higher neutron output. In the first tube design, the ion beam is formed using a multiple hole accelerator column. The beam is accelerated to energy of 80 keV by means of a three-electrode extraction system. The ion beam then impinges on a titanium target where either the 2.4 MeV D-D or 14 MeV D-T neutrons are generated. The MCNP computation code has predicted a neutron flux of {approximately}10{sup 11} n/s for the D-D reaction at beam intensity of 1.5 A at 150 kV. The neutron flux measurements of this tube design will be presented. Recently new compact high flux tubes are being developed which can be used for various applications. These tubes also utilize RF-discharge for plasma generation. The design of these tubes and the first measurements will be discussed in this presentation.

  2. New measurement system for on line in core high-energy neutron flux monitoring in materials testing reactor conditions

    SciTech Connect

    Geslot, B.; Filliatre, P.; Barbot, L.; Jammes, C.; Breaud, S.; Oriol, L.; Villard, J.-F.; Lopez, A. Legrand

    2011-03-15

    Flux monitoring is of great interest for experimental studies in material testing reactors. Nowadays, only the thermal neutron flux can be monitored on line, e.g., using fission chambers or self-powered neutron detectors. In the framework of the Joint Instrumentation Laboratory between SCK-CEN and CEA, we have developed a fast neutron detector system (FNDS) capable of measuring on line the local high-energy neutron flux in fission reactor core and reflector locations. FNDS is based on fission chambers measurements in Campbelling mode. The system consists of two detectors, one detector being mainly sensitive to fast neutrons and the other one to thermal neutrons. On line data processing uses the CEA depletion code DARWIN in order to disentangle fast and thermal neutrons components, taking into account the isotopic evolution of the fissile deposit. The first results of FNDS experimental test in the BR2 reactor are presented in this paper. Several fission chambers have been irradiated up to a fluence of about 7 x 10{sup 20} n/cm{sup 2}. A good agreement (less than 10% discrepancy) was observed between FNDS fast flux estimation and reference flux measurement.

  3. Measuring neutron fluences and gamma/x-ray fluxes with CCD cameras

    SciTech Connect

    Yates, G.J.; Smith, G.W.; Zagarino, P.; Thomas, M.C.

    1991-12-01

    The capability to measure bursts of neutron fluences and gamma/x-ray fluxes directly with charge coupled device (CCD) cameras while being able to distinguish between the video signals produced by these two types of radiation, even when they occur simultaneously, has been demonstrated. Volume and area measurements of transient radiation-induced pixel charge in English Electric Valve (EEV) Frame Transfer (FT) charge coupled devices (CCDs) from irradiation with pulsed neutrons (14 MeV) and Bremsstrahlung photons (4--12 MeV endpoint) are utilized to calibrate the devices as radiometric imaging sensors capable of distinguishing between the two types of ionizing radiation. Measurements indicate {approx}.05 V/rad responsivity with {ge}1 rad required for saturation from photon irradiation. Neutron-generated localized charge centers or ``peaks`` binned by area and amplitude as functions of fluence in the 10{sup 5} to 10{sup 7} n/cm{sup 2} range indicate smearing over {approx}1 to 10% of CCD array with charge per pixel ranging between noise and saturation levels.

  4. Precision neutron flux measurements and applications using the Alpha Gamma device

    NASA Astrophysics Data System (ADS)

    Anderson, Eamon

    2016-03-01

    The Alpha Gamma device is a totally-absorbing 10 B neutron detector designed to measure the absolute detection efficiency of a thin-film lithium neutron monitor on a monoenergetic neutron beam. The detector has been shown to measure neutron fluence with an absolute accuracy of 0.06%. This capability has been used to perform the first direct, absolute measurement of the 6Li(n,t) 4He cross section at sub-thermal energy, improve the neutron fluence determination in a past beam neutron lifetime measurement by a factor of five, and is being used to calibrate the neutron monitors for use in the upcoming beam neutron lifetime measurement BL2 (NIST Beam Lifetime 2). The principle of the measurement method will presented and the applications will be discussed. We would like to acknowledge support of this research through the NSF-PHY-1068712 Grant as well as the NIST Precision Measurement Grant program.

  5. Method for measuring dose-equivalent in a neutron flux with an unknown energy spectra and means for carrying out that method

    DOEpatents

    Distenfeld, Carl H.

    1978-01-01

    A method for measuring the dose-equivalent for exposure to an unknown and/or time varing neutron flux which comprises simultaneously exposing a plurality of neutron detecting elements of different types to a neutron flux and combining the measured responses of the various detecting elements by means of a function, whose value is an approximate measure of the dose-equivalent, which is substantially independent of the energy spectra of the flux. Also, a personnel neutron dosimeter, which is useful in carrying out the above method, comprising a plurality of various neutron detecting elements in a single housing suitable for personnel to wear while working in a radiation area.

  6. Neutron flux measurements in the side-core region of Hunterston B advanced gas-cooled reactor

    SciTech Connect

    Allen, D.A.; Shaw, S.E.; Huggon, A.P.; Steadman, R.J.; Thornton, D.A.; Whiley, G.S.

    2011-07-01

    The core restraints of advanced gas-cooled reactors are important structural components that are required to maintain the geometric integrity of the cores. A review of neutron dosimetry for the sister stations Hunterston B and Hinkley Point B identified that earlier conservative assessments predicted high thermal neutron dose rates to key components of the restraint structure (the restraint rod welds), with the implication that some of them may be predicted to fail during a seismic event. A revised assessment was therefore undertaken [Thornton, D. A., Allen, D. A., Tyrrell, R. J., Meese, T. C., Huggon, A.P., Whiley, G. S., and Mossop, J. R., 'A Dosimetry Assessment for the Core Restraint of an Advanced Gas Cooled Reactor,' Proceedings of the 13. International Symposium on Reactor Dosimetry (ISRD-13, May 2008), World Scientific, River Edge, NJ, 2009, W. Voorbraak, L. Debarberis, and P. D'hondt, Eds., pp. 679-687] using a detailed 3D model and a Monte Carlo radiation transport program, MCBEND. This reassessment resulted in more realistic fast and thermal neutron dose recommendations, the latter in particular being much lower than had been thought previously. It is now desirable to improve confidence in these predictions by providing direct validation of the MCBEND model through the use of neutron flux measurements. This paper describes the programme of work being undertaken to deploy two neutron flux measurement 'stringers' within the side-core region of one of the Hunterston B reactors for the purpose of validating the MCBEND model. The design of the stringers and the determination of the preferred deployment locations have been informed by the use of detailed MCBEND flux calculations. These computational studies represent a rare opportunity to design a flux measurement beforehand, with the clear intention of minimising the anticipated uncertainties and obtaining measurements that are known to be representative of the neutron fields to which the vulnerable steel

  7. Operation Sun Beam shots Little Feller I and II, Johnie boy, and Small Boy. Project Officer's report. Project 2. 3. Neutron flux measurements

    SciTech Connect

    Rigotti, D.L.; McNeilly, J.H.; Brady, R.E.; Tarbox, J.L.

    1985-09-01

    The objectives of this project were (1) to measure free-field neutron flux and spectrum as required in support of other projects; (2) to document the neutron flux versus ground range; and (3) to determine the effect of various blast containers and shields on detector activation.

  8. Neutron flux measurements at the TRIGA reactor in Vienna for the prediction of the activation of the biological shield.

    PubMed

    Merz, Stefan; Djuricic, Mile; Villa, Mario; Böck, Helmuth; Steinhauser, Georg

    2011-11-01

    The activation of the biological shield is an important process for waste management considerations of nuclear facilities. The final activity can be estimated by modeling using the neutron flux density rather than the radiometric approach of activity measurements. Measurement series at the TRIGA reactor Vienna reveal that the flux density next to the biological shield is in the order of 10(9)cm(-2)s(-1) at maximum power; but it is strongly influenced by reactor installations. The data allow the estimation of the final waste categorization of the concrete according to the Austrian legislation. PMID:21646026

  9. Monte Carlo simulations for high-rate fast neutron flux measurements made at the RAON neutron science facility by using MICROMEGAS

    NASA Astrophysics Data System (ADS)

    Hwang, Dae Hee; Hong, Ser Gi; Kim, Jae Cheon; Kim, Gi Dong; Kim, Yong Kyun

    2015-10-01

    RAON is a Korean heavy-ion accelerator complex that is planned to be built by 2021. Deuterons (53 MeV) and protons (88 MeV) accelerated by using a low-energy driver linac (SCL1) are delivered to the neutron production target in the Neutron Science Facility (NSF) to produce high-energy neutrons in the interval from 1 to 88 MeV with high fluxes of the order of 1012 n/cm2-sec. The repetition rate of the neutron beam ranges from 1 kHz to 1 MHz, and the maximum beam current is ~12 μA at 1 MHz. The beam width is 1 ~ 2 ns. The high-energy and high-rate fast neutrons are used to estimate accurate neutron-induced cross sections for various nuclides at the NSF. A MICROMEGAS (MICRO Mesh Gaseous Structure), which is a gaseous detector initially developed for tracking in high-rate, high-energy physics experiments, is tentatively being considered as a neutron beam monitor. It can be used to measure both the energy distribution and the flux of the neutron beam. In this study, a MICROMEGAS detector for installation at the NSF was designed and investigated. 6Li, 10B, 235U and 238U targets are being considered as neutron/charged particle converters. For the low-energy region, 6Li(n,α)t and 10B(n,α)7Li are used in the energy range from thermal to 1 MeV. 235U(n,f) and 238U(n,f) reactions are used for high-energy region up to 90 MeV. All calculations are performed by using the GEANT4 toolkit.

  10. STRATIFIED COMPOSITION EFFECTS ON PLANETARY NEUTRON FLUX

    SciTech Connect

    O. GASNAULT; ET AL

    2001-01-01

    All the bodies of the solar system that are directly irradiated by the galactic cosmic rays, emit enough neutrons to allow a measurement from space. These leakage neutron fluxes are indexes of the surface composition, depending on the energy of the neutrons [1]. Recent work propose geochemical interpretations of these fluxes: the thermal energy range is sensitive to iron, titanium, rare earth elements and thorium [2, 3], the epithermal energy range is sensitive to hydrogen, samarium and gadolinium [2] and the fast energy range is representative of the average soil atomic mass [4]. Nevertheless these studies make the hypothesis of a composition uniform within the footprint of the spectrometer and independent of depth. We show in this abstract that a stratified composition could change significantly the flux intensity and complicate the interpretation of the measurements. The neutron leakage flux is a competition between production effects (sensitive at high energy) and diffusion-capture effects (mostly sensitive at low energy). On one hand, it happens to be that the elements which produce the higher number of neutrons in typical lunar compositions are iron and titanium, which have also large cross section of absorption with the neutrons. On the other hand, the maximum of neutron intensity does not occur at the surface but at about 180 g cm{sup {minus}2} in depth. Therefore, if we have an iron- and/or titanium-rich soil (important production of neutrons) with a top layer having less iron and/or titanium (i.e. more transparent to the neutrons), we can expect an enhancement of the flux compared to a uniform composition.

  11. Direct Measurement of Neutron-Neutron Scattering

    SciTech Connect

    Sharapov, E.I.; Furman, W.I.; Lychagin, W.I.; Muzichka, G.V.; Nekhaev, G.V.; Safronov, Yu.V.; Shvetsov, V.N.; Strelkov, A.V.; Bowman, C.D.; Crawford, B.E.; Stephenson, S.L.; Howell, C.R.; Tornow, W.; Levakov, B.G.; Litvin, V.I.; Lyzhin, A.E.; Magda, E.P.; Mitchell, G.E.

    2003-08-26

    In order to resolve long-standing discrepancies in indirect measurements of the neutron-neutron scattering length ann and contribute to solving the problem of the charge symmetry of the nuclear force, the collaboration DIANNA (Direct Investigation of ann Association) plans to measure the neutron-neutron scattering cross section {sigma}nn. The key issue of our approach is the use of the through-channel in the Russia reactor YAGUAR with a peak neutron flux of 10{sup 18} /cm2/s. The proposed experimental setup is described. Results of calculations are presented to connect {sigma}nn with the nn-collision detector count rate and the neutron flux density in the reactor channel. Measurements of the thermal neutron fields inside polyethylene converters show excellent prospects for the realization of the direct nn-experiment.

  12. Neutron Unfolding Code System for Calculating Neutron Flux Spectra from Activation Data of Dosimeter Foils.

    Energy Science and Technology Software Center (ESTSC)

    1982-04-30

    Version 00 As a part of the measurement and analysis plan for the Dosimetry Experiment at the "JOYO" experimental fast reactor, neutron flux spectral analysis is performed using the NEUPAC (Neutron Unfolding Code Package) code system. NEUPAC calculates the neutron flux spectra and other integral quantities from the activation data of the dosimeter foils.

  13. Neutron flux monitoring system for ITER-FEAT (abstract)

    NASA Astrophysics Data System (ADS)

    Kaschuck, Yu.; Krasilnikov, A.; Alekseyev, A.; Amosov, V.; Frunze, V.

    2001-01-01

    The concept of the neutron flux measurements for International Thermonuclear Experimental Reactor ITER-FEAT is discussed. In spite of the fact that ITER-FEAT has reduced fusion power with respect to ITER-FDR, the requirements for neutron flux monitors are similar—wide dynamic range (seven orders), good temporal resolution (1 ms), and high accuracy (10%). It is clear that fission chambers are the most suitable detectors for this application. However high neutron intensity of the fusion plasma and hard requirements lead to a more sophisticated detection system than the ordinary fission chamber. Another problem is an absolute calibration of the detectors. We propose a neutron flux monitoring system, which consist of microfission chambers placed inside the ITER vacuum chamber, three wide range fission chambers placed outside the vacuum chamber, natural diamond detector based compact neutron monitors placed inside the channels of the neutron cameras, and a compact neutron generator for calibration. Microfission chambers could be installed in the standard plugs with other detectors (vacuum x-ray diode, magnetic probe). 235U could be used as well as threshold fission materials (238U, 237Np, 232Th). In the last case the fission chamber will be covered by a boron shield to reduce the changes in the sensitivity. Wide range fission chambers will operate in both pulse count mode and Campbell mode. High linearity is provided by count mode. Temporal resolution of 1 ms is provided by the count mode at low neutron flux and by the Campbell mode at high flux. The nonlinearity of the fission chamber during the switch from count mode to Campbell mode will be corrected by another fission chamber with low sensitivity operating in count mode. Compact neutron flux monitors placed inside neutron cameras will consist of up to ten natural diamond neutron counters with sensitivity to DT neutrons doubled by properly installed poliethilen radiators. Such monitors provide DT neutron flux

  14. Measurement of the Neutron Spectrum of the HB-4 Cold Source at the High Flux Isotope Reactor at Oak Ridge National Laboratory

    NASA Astrophysics Data System (ADS)

    Robertson, J. L.; Iverson, E. B.

    2009-08-01

    Measurements of the cold neutron spectrum from the super critical hydrogen cold source at the High Flux Isotope Reactor at Oak Ridge National Laboratory were made using time-of-flight spectroscopy. Data were collected at reactor power levels of 8.5MW, 42.5MW and 85MW. The moderator temperature was also varied. Data were collected at 17K and 25K while the reactor power was at 8.5MW, 17K and 25K while at 42.5MW and 18K and 22K while at 85MW. The purpose of these measurements was to characterize the brightness of the cold source and to better understand the relationship between reactor power, moderator temperature, and cold neutron production. The authors will discuss the details of the measurement, the changes observed in the neutron spectrum, and the process for determining the source brightness from the measured neutron intensity.

  15. Strong flux of low-energy neutrons produced by thunderstorms.

    PubMed

    Gurevich, A V; Antonova, V P; Chubenko, A P; Karashtin, A N; Mitko, G G; Ptitsyn, M O; Ryabov, V A; Shepetov, A L; Shlyugaev, Yu V; Vildanova, L I; Zybin, K P

    2012-03-23

    We report here for the first time about the registration of an extraordinary high flux of low-energy neutrons generated during thunderstorms. The measured neutron count rate enhancements are directly connected with thunderstorm discharges. The low-energy neutron flux value obtained in our work is a challenge for the photonuclear channel of neutron generation in thunderstorm: the estimated value of the needed high-energy γ-ray flux is about 3 orders of magnitude higher than that one observed. PMID:22540588

  16. Concept for Inclusion of Analytical and Computational Capability in Optical Plume Anomaly Detection (OPAD) for Measurement of Neutron Flux

    NASA Technical Reports Server (NTRS)

    Patrick, Marshall Clint; Cooper, Anita E.; Powers, W. T.

    2004-01-01

    Researchers are working on many fronts to make possible high-speed, automated classification and quantification of constituent materials in numerous environments. NASA's Marshall Space Flight Center has implemented a system for rocket engine flowfields/plumes. The Optical Plume Anomaly Detector (OPAD) system was designed to utilize emission and absorption spectroscopy for monitoring molecular and atomic particulates in gas plasma. An accompanying suite of tools and analytical package designed to utilize information collected by OPAD is known as the Engine Diagnostic Filtering System (EDiFiS). The current combination of these systems identifies atomic and molecular species and quantifies mass loss rates in H2/O2 rocket plumes. Capabilities for real-time processing are being advanced on several fronts, including an effort to hardware encode components of the EDiFiS for health monitoring and management. This paper addresses the OPAD with its tool suites, and discusses what is considered a natural progression: a concept for taking OPAD to the next logical level of high energy physics, incorporating fermion and boson particle analyses in measurement of neutron flux.

  17. Spacecraft-produced neutron fluxes on Skylab

    NASA Technical Reports Server (NTRS)

    Quist, T. C.; Furst, M.; Burnett, D. S.; Baum, J. H.; Peacock, C. L., Jr.; Perry, D. G.

    1977-01-01

    Estimates of neutron fluxes in different energy ranges are reported for the Skylab spacecraft. Detectors composed of uranium, thorium, and bismuth foils with mica as a fission track recorder, as well as boron foils with cellulose acetate as an alpha-particle recorder, were deployed at different positions in the Orbital Workshop. It was found that the Skylab neutron flux was dominated by high energy (greater than 1 MeV) contributions and that there was no significant time variation in the fluxes. Firm upper limits of 7-15 neutrons/sq cm-sec, depending on the detector location in the spacecraft, were established for fluxes above 1 MeV. Below 1 MeV, the neutron fluxes were about an order of magnitude lower. The neutrons are interpreted as originating from the interactions of leakage protons from the radiation belt with the spacecraft.

  18. ORR core re-configuration measurements to increase the fast neutron flux in the Magnetic Fusion Energy (MFE) experiments

    NASA Astrophysics Data System (ADS)

    Hobbs, R. W.; Stinnett, R. M.; Sims, T. M.

    1985-06-01

    The relative increases obtainable in the fast neutron flux in the Magnetic Fusion Energy (MFE) experiment positions were studied by reconfiguring the current ORR core. The percentage increase possible in the current displacement per atom (dpa) rate was examined. The principle methods to increase the fast flux, consisted of reducing the current core size (number of fuel elements), to increase the core average power density and arrangement of the fuel elements in the reduced-size core to tilt the core power distribution towards the MFE positions were investigated. It is concluded that fast fluxes in the E-3 core position can be increased by approximately 15 to 20% over current values and in E-5 by approximately 45 to 55%.

  19. Development of a Detector to Measure the Angular Dependence of the Cosmic Ray Induced Neutron Background Flux at Ground Level

    SciTech Connect

    Morgan, J F; Gosnell, T B; Luke, S J; Archer, D E; Lochner, R T; Frank, I M; Prussin, S G; Quiter, B J; Chivers, D H

    2002-01-28

    The detection of low intensity sources of radiation in containers is of particular interest for arms control, non-proliferation and nuclear smuggling activities. Attempts to procure and smuggle nuclear materials that could be used in terrorist activities have been well documented in recent years. These incidents have included fissile materials such, as plutonium and uranium, as well as medical and industrial isotopes that could be used in a Radiation Dispersal Device. The vast majority of these incidents have been discovered through human intelligence work due to the difficulty of using radiation monitoring. The detection of radiation sources in well-shielded containers presents a difficult technological challenge. Few neutrons and gamma rays may escape from the container and these may be obscured by the naturally occurring background. The world in general is a radioactive environment. Many elements in the earth's crust, as well as in common plants and building materials, emit a constant stream of radiation. In fact the ultimate limit on the detection of hidden sources is often the background level at the location of interest. It has long been understood that knowledge of the directionality of this background can be used to improve the signal/noise ratio in detectors used for these measurements. Imaging detectors are one method of reducing the effect of the background, but this reduction comes at the expensive of a huge increase in detector complexity. Hence these systems, while important in some specific applications, are probably not suited for the deployment of many detectors over a large area. There may be another way of reducing the effect of backgrounds on monitoring measurements. This method consists of using knowledge of the directional dependence of the background flux to help reduce its effect on the detectors in question. An accurate knowledge of this angular distribution allows one to develop better shielding designs for the detectors.

  20. Neutron beam measurement dosimetry

    SciTech Connect

    Amaro, C.R.

    1995-11-01

    This report describes animal dosimetry studies and phantom measurements. During 1994, 12 dogs were irradiated at BMRR as part of a 4 fraction dose tolerance study. The animals were first infused with BSH and irradiated daily for 4 consecutive days. BNL irradiated 2 beagles as part of their dose tolerance study using BPA fructose. In addition, a dog at WSU was irradiated at BMRR after an infusion of BPA fructose. During 1994, the INEL BNCT dosimetry team measured neutron flux and gamma dose profiles in two phantoms exposed to the epithermal neutron beam at the BMRR. These measurements were performed as a preparatory step to the commencement of human clinical trials in progress at the BMRR.

  1. Heat flux measurements

    NASA Technical Reports Server (NTRS)

    Liebert, Curt H.; Weikle, Donald H.

    1989-01-01

    A new automated, computer controlled heat flux measurement facility is described. Continuous transient and steady-state surface heat flux values varying from about 0.3 to 6 MW/sq m over a temperature range of 100 to 1200 K can be obtained in the facility. An application of this facility is the development of heat flux gauges for continuous fast transient surface heat flux measurement on turbine blades operating in space shuttle main engine turbopumps. The facility is useful for durability testing at fast temperature transients.

  2. Neutron flux profile monitor for use in a fission reactor

    DOEpatents

    Kopp, Manfred K.; Valentine, Kenneth H.

    1983-01-01

    A neutron flux monitor is provided which consists of a plurality of fission counters arranged as spaced-apart point detectors along a delay line. As a fission event occurs in any one of the counters, two delayed current pulses are generated at the output of the delay line. The time separation of the pulses identifies the counter in which the particular fission event occured. Neutron flux profiles of reactor cores can be more accurately measured as a result.

  3. Local Neutron Flux Distribution Measurements by Wire-Dosimetry in the AMMON Experimental Program in the EOLE Reactor

    NASA Astrophysics Data System (ADS)

    Gruel, A.; Di Salvo, J.; Roche, A.; Girard, J.-M.; Philibert, H.; Bonora, J.; Ledoux, J.-F.; Morel, C.; Lecluze, A.; Foucras, A.; Vaglio-Gaudard, C.; Colombier, A.-C.

    2016-02-01

    Dosimetry measurements were carried out during the AMMON experimental program, in the EOLE facility. Al-0.1 wt% Au wires were positioned along curved fuel plates of JHR-type assemblies to investigate the azimuthal and axial gold capture rate profiles, directly linked to the thermal and epithermal flux. After irradiation, wires were cut into small segments (a few mm), and the gold capture rate of each part was measured by gamma spectrometry on the MADERE platform. This paper presents results in the "hafnium" configuration, and more specifically the azimuthal flux profile characterization. The final uncertainty on each measured wire lies below 1% (at 2 standard deviations). Experimental profiles are in a good agreement against Monte Carlo calculations, and the 4% capture rate increase at the plate edge is well observed. The flux dissymmetry due to assembly position in the core is also measured, and shows a 10% discrepancy between the two edges of the plate.

  4. Global Maps of Lunar Neutron Fluxes from the LEND Instrument

    NASA Technical Reports Server (NTRS)

    Litvak, M. L.; Mitrofanov, I. G.; Sanin, A.; Malakhov, A.; Boynton, W. V.; Chin, G.; Droege, G.; Evans, L. G.; Garvin, J.; Golovin, D. V.; Harshman, K.; McClanahan, T. P.; Mokrousov, M. I.; Mazarico, E.; Milikh, G.; Neumann, G.; Sagdeev, R.; Smith, D. E.; Starr, R.; Zuber, M. T.

    2012-01-01

    The latest neutron spectrometer measurements with the Lunar Exploration Neutron Detector (LEND) onboard the Lunar Reconnaissance Orbiter (LRO) are presented. It covers more than 1 year of mapping phase starting on 15 September 2009. In our analyses we have created global maps showing regional variations in the flux of thermal (energy range < 0.015 eV) and fast neutrons (>0.5 MeV), and compared these fluxes to variances in soil elemental composition, and with previous results obtained by the Lunar Prospector Neutron Spectrometer (LPNS). We also processed data from LEND collimated detectors and derived a value for the collimated signal of epithermal neutrons based on the comparative analysis with the LEND omnidirectional detectors. Finally, we have compared our final (after the data reduction) global epithermal neutron map with LPNS data.

  5. Development of high flux thermal neutron generator for neutron activation analysis

    NASA Astrophysics Data System (ADS)

    Vainionpaa, Jaakko H.; Chen, Allan X.; Piestrup, Melvin A.; Gary, Charles K.; Jones, Glenn; Pantell, Richard H.

    2015-05-01

    The new model DD110MB neutron generator from Adelphi Technology produces thermal (<0.5 eV) neutron flux that is normally achieved in a nuclear reactor or larger accelerator based systems. Thermal neutron fluxes of 3-5 · 107 n/cm2/s are measured. This flux is achieved using four ion beams arranged concentrically around a target chamber containing a compact moderator with a central sample cylinder. Fast neutron yield of ∼2 · 1010 n/s is created at the titanium surface of the target chamber. The thickness and material of the moderator is selected to maximize the thermal neutron flux at the center. The 2.5 MeV neutrons are quickly thermalized to energies below 0.5 eV and concentrated at the sample cylinder. The maximum flux of thermal neutrons at the target is achieved when approximately half of the neutrons at the sample area are thermalized. In this paper we present simulation results used to characterize performance of the neutron generator. The neutron flux can be used for neutron activation analysis (NAA) prompt gamma neutron activation analysis (PGNAA) for determining the concentrations of elements in many materials. Another envisioned use of the generator is production of radioactive isotopes. DD110MB is small enough for modest-sized laboratories and universities. Compared to nuclear reactors the DD110MB produces comparable thermal flux but provides reduced administrative and safety requirements and it can be run in pulsed mode, which is beneficial in many neutron activation techniques.

  6. Distribution of thermal neutron flux around a PET cyclotron.

    PubMed

    Ogata, Yoshimune; Ishigure, Nobuhito; Mochizuki, Shingo; Ito, Kengo; Hatano, Kentaro; Abe, Junichiro; Miyahara, Hiroshi; Masumoto, Kazuyoshi; Nakamura, Hajime

    2011-05-01

    The number of positron emission tomography (PET) examinations has greatly increased world-wide. Since positron emission nuclides for the PET examinations have short half-lives, they are mainly produced using on-site cyclotrons. During the production of the nuclides, significant quantities of neutrons are generated from the cyclotrons. Neutrons have potential to activate the materials around the cyclotrons and cause exposure to the staff. To investigate quantities and distribution of the thermal neutrons, thermal neutron fluxes were measured around a PET cyclotron in a laboratory associating with a hospital. The cyclotron accelerates protons up to 18 MeV, and the mean particle current is 20 μA. The neutron fluxes were measured during both 18F production and C production. Gold foils and thermoluminescent dosimeter (TLD) badges were used to measure the neutron fluxes. The neutron fluxes in the target box averaged 9.3 × 10(6) cm(-2) s(-1) and 1.7 × 10(6) cm(-2) s(-1) during 18F and 11C production, respectively. Those in the cyclotron room averaged 4.1 × 10(5) cm(-2) s(-1) and 1.2 × 10(5) cm(-2) s(-1), respectively. Those outside the concrete wall shielding were estimated as being equal to or less than ∼3 cm s, which corresponded to 0.1 μSv h(-1) in effective dose. The neutron fluxes outside the concrete shielding were confirmed to be quite low compared to the legal limit. PMID:21451309

  7. Modulating the Neutron Flux from a Mirror Neutron Source

    SciTech Connect

    Ryutov, D D

    2011-09-01

    A 14-MeV neutron source based on a Gas-Dynamic Trap will provide a high flux of 14 MeV neutrons for fusion materials and sub-component testing. In addition to its main goal, the source has potential applications in condensed matter physics and biophysics. In this report, the author considers adding one more capability to the GDT-based neutron source, the modulation of the neutron flux with a desired frequency. The modulation may be an enabling tool for the assessment of the role of non-steady-state effects in fusion devices as well as for high-precision, low-signal basic science experiments favoring the use of the synchronous detection technique. A conclusion is drawn that modulation frequency of up to 1 kHz and modulation amplitude of a few percent is achievable. Limitations on the amplitude of modulations at higher frequencies are discussed.

  8. Neutron measurements of the OGO-VI Spacecraft

    NASA Technical Reports Server (NTRS)

    Lockwood, J. A.

    1973-01-01

    The neutron measurements with the OGO-6 spacecraft are reported. Topics discussed include: the design and calibration of a neutron monitor for measuring the cosmic ray neutron leakages from the earth's atmosphere, determination of latitude dependence of cosmic ray leakage flux, determination of the angular distribution of neutron leakage flux as deduced by measurements of the altitude dependence, and verification of the solar modulation of the cosmic ray source for the neutron leakage.

  9. Performance improvement of neutron flux monitor at KSTAR

    NASA Astrophysics Data System (ADS)

    Kim, Y.-K.; Lee, S.-K.; Kang, B.-H.; Son, J.-B.; Kim, G.-D.

    2012-06-01

    The evaluation of plasma performance in fusion reactors is carried out by various particle or ion detection systems. Neutron diagnostic systems are used to evaluate different aspects of plasma performance and are very important tools because they can directly detect the neutrons of D-D or D-T fusion reactions. Among them, the stilbene scintillator has good Pulse Shape Discrimination (PSD), a fast response of 10 ns and it can also evaluate neutron energy using an unfolding method. Because of these properties, it was proposed as a neutron flux monitor in the Korea Superconducting Tokamak Advanced Research magnetic fusion reactor (KSTAR). Under high radiation fields, specially designed electronics are necessary to measure only fast neutron spectra and to reject background gamma rays. In order to increase the data transfer rate for real-time evaluation of plasma performance, we have developed a Flash Analog to Digital Convertor (FADC) with a Field-Programmable Gate Array (FPGA) that implements a Digital Charge Comparison (DCC) algorithm. Performance evaluation of stilbene was conducted in a 2011 KSTAR campaign and it showed good results for measuring real-time neutron flux with temporal resolution of 1 ms, and it operated well under high magnetic field conditions.

  10. Experimental study on the performance of an epithermal neutron flux monitor for BNCT.

    PubMed

    Guan, Xingcai; Manabe, Masanobu; Tamaki, Shingo; Liu, Shuangtong; Sato, Fuminobu; Murata, Isao; Wang, Tieshan

    2016-07-01

    The performance of an epithermal neutron (0.5eVflux monitor designed for boron neutron capture therapy (BNCT) was experimentally studied by using a prototype monitor in an appropriate neutron field at the intense deuterium-tritium neutron source facility OKTAVIAN of Osaka University, Japan. It was convinced from the experimental results that the developed monitor worked well and the epithermal neutron fluxes in BNCT neutron sources can be measured within 5% by the monitor. PMID:27110926

  11. Validation of absolute axial neutron flux distribution calculations with MCNP with 197Au(n,γ)198Au reaction rate distribution measurements at the JSI TRIGA Mark II reactor.

    PubMed

    Radulović, Vladimir; Štancar, Žiga; Snoj, Luka; Trkov, Andrej

    2014-02-01

    The calculation of axial neutron flux distributions with the MCNP code at the JSI TRIGA Mark II reactor has been validated with experimental measurements of the (197)Au(n,γ)(198)Au reaction rate. The calculated absolute reaction rate values, scaled according to the reactor power and corrected for the flux redistribution effect, are in good agreement with the experimental results. The effect of different cross-section libraries on the calculations has been investigated and shown to be minor. PMID:24316530

  12. Neutron and proton activation measurements from Skylab

    NASA Technical Reports Server (NTRS)

    Fishman, G. J.

    1974-01-01

    Radioactivity induced by high-energy protons and secondary neutrons (from nuclear interactions) in various samples returned from different locations in Skylab was measured directly by gamma-ray spectroscopy measurements of decay gamma rays from the samples. Incident fluxes were derived from the activation measurements, using known nuclear cross-section. Neutron and proton flux values were found to range from 0.2 to 5 particles/sq cm-sec, depending on the energy range and location in Skylab. The thermal neutron flux was less than 0.07 neutrons/sq cm-sec. The results are useful for data analysis and planning of future high-energy astronomy experiments.

  13. Dissipative mode filtration in a “levitating” neutron flux

    SciTech Connect

    Petelin, M. I. Tai, M. L.

    2015-06-15

    In experiments [1–4], where a flux of neutrons is injected into a horizontal channel, the output flux structure proves to be a nonmonotonic function of the vertical coordinate. This flux evolution is explained by the absorption of neutrons in the floor material.

  14. Thermal neutron flux mapping in a head phantom

    NASA Astrophysics Data System (ADS)

    Lee, C. L.; Zhou, X.-L.; Harmon, J. F.; Bartholomay, R. W.; Harker, Y. D.; Kudchadker, R. J.

    1999-02-01

    Boron neutron capture therapy (BNCT) is a binary cancer treatment modality in which a boron-containing compound is preferentially loaded into a tumor, followed by irradiation by thermal neutrons. In accelerator-based BNCT, neutrons are produced by charged particle-induced reactions such as 7Li(p, n) 7Be. For deeply seated brain tumors, epithermal (1 eV to 10 kev) neutrons are needed to penetrate the skull cap and subsequently thermalize at the tumor location. Cell damage in BNCT is caused by the high linear energy transfer (LET) products from the 10B(n, α) 7Li reaction. Because the cross section for this reaction is of 1/ v character, the dose due to 10B has essentially the same spatial distribution as the thermal neutron flux. A cylindrical acrylic head phantom (15.24 cm diameter by 21.59 cm length) has been constructed to simulate the patient's head and neck, and acrylic spacers of varying width allow placement of small (active sizes: 0.635 cm diameter by 1.27 cm length and 1.5875 cm diameter by 2.54 cm length) BF 3 proportional counters at nearly all radial and axial locations. Measurements of the thermal flux have also been benchmarked with gold and indium foils (bare and cadmium covered), as well as MCNP simulations. Measurement of the thermal neutron flux using these small BF 3 counters is shown to be adequate for experimentally determining the spatial variation of the 10B dose in head phantoms for accelerator-based BNCT.

  15. Radial Flux Distribution of Low-Energy Neutrons.

    ERIC Educational Resources Information Center

    Higinbotham, J.

    1979-01-01

    Describes an experiment designed to illustrate the basic principle involved in the process of moderation of fast neutrons by water, and the monitoring of the low-energy neutron flux using indium as a probe. (GA)

  16. A Concept for the Inclusion of Analytical and Computational Capability in Existing Systems for Measurement of Neutron Flux

    NASA Technical Reports Server (NTRS)

    Patrick, Clinton; Cooper, Anita E.; Powers, W. T.

    2005-01-01

    For approximately two decades, efforts have been sponsored by NASA's Marshall Space Flight Center to make possible high-speed, automated classification and quantification of constituent materials in various harsh environments. MSFC, along with the Air Force/Arnold Engineering Development Center, has led the work, developing and implementing systems that employ principles of emission and absorption spectroscopy to monitor molecular and atomic particulates in gas plasma of rocket engine flow fields. One such system identifies species and quantifies mass loss rates in H2/O2 rocket plumes. Other gases have been examined and the physics of their detection under numerous conditions were made a part of the knowledge base for the MSFC/USAF team. Additionally, efforts are being advanced to hardware encode components of the data analysis tools in order to address real-time operational requirements for health monitoring and management. NASA has a significant investment in these systems, warranting a spiral approach that meshes current tools and experience with technological advancements. This paper addresses current systems - the Optical Plume Anomaly Detector (OPAD) and the Engine Diagnostic Filtering System (EDIFIS) - and discusses what is considered a natural progression: a concept for migrating them towards detection of high energy particles, including neutrons and gamma rays. The proposal outlines system development to date, basic concepts for future advancements, and recommendations for accomplishing them.

  17. Concept for Inclusion of Analytical and Computational Capability in Optical Plume Anomaly Detection (OPAD) for Measurement of Neutron Flux

    NASA Technical Reports Server (NTRS)

    Patrick, M. Clinton; Cooper, Anita E.; Powers, W. T.

    2004-01-01

    Researchers are working on many konts to make possible high speed, automated classification and quantification of constituent materials in numerous environments. NASA's Marshall Space Flight Center has implemented a system for rocket engine flow fields/plumes; the Optical Plume Anomaly Detection (OPAD) system was designed to utilize emission and absorption spectroscopy for monitoring molecular and atomic particulates in gas plasma. An accompanying suite of tools and analytical package designed to utilize information collected by OPAD is known as the Engine Diagnostic Filtering System (EDIFIS). The current combination of these systems identifies atomic and molecular species and quantifies mass loss rates in H2/O2 rocket plumes. Additionally, efforts are being advanced to hardware encode components of the EDIFIS in order to address real-time operational requirements for health monitoring and management. This paper addresses the OPAD with its tool suite, and discusses what is considered a natural progression: a concept for migrating OPAD towards detection of high energy particles, including neutrons and gamma rays. The integration of these tools and capabilities will provide NASA with a systematic approach to monitor space vehicle internal and external environment.

  18. Characterization of neutron yield and x-ray spectra of a High Flux Neutron Generator (HFNG)

    NASA Astrophysics Data System (ADS)

    Nnamani, Nnaemeka; HFNG Collaboration

    2015-04-01

    The High Flux Neutron Generator (HFNG) is a DD plasma-based source, with a self-loading target intended for fundamental science and engineering applications, including 40 Ar/39 Ar geochronology, neutron cross section measurements, and radiation hardness testing of electronics. Our first estimate of the neutron yield, based on the population of the 4.486 hour 115 In isomer gave a neutron yield of the order 108 n/sec; optimization is ongoing to achieve the design target of 1011 n/sec. Preliminary x-ray spectra showed prominent energy peaks which are likely due to atomic line-emission from back-streaming electrons accelerated up to 100 keV impinging on various components of the HFNG chamber. Our x-ray and neutron diagnostics will aid us as we continue to evolve the design to suppress back-streaming electrons, necessary to achieve higher plasma beam currents, and thus higher neutron flux. This talk will focus on the characterization of the neutron yield and x-ray spectra during our tests. A collimation system is being installed near one of the chamber ports for improved observation of the x-ray spectra. This work is supported by NSF Grant No. EAR-0960138, U.S. DOE LBNL Contract No. DE-AC02-05CH11231, U.S. DOE LLNL Contract No. DE-AC52-07NA27344, and the UC Office of the President Award 12-LR-238745.

  19. Neutron beam characterization measurements at the Manuel Lujan Jr. neutron scattering center

    SciTech Connect

    Mocko, Michal; Muhrer, Guenter; Daemen, Luke L; Kelsey, Charles T; Duran, Michael A; Tovesson, Fredrik K

    2010-01-01

    We have measured the neutron beam characteristics of neutron moderators at the Manuel Lujan Jr. Neutron Scattering Center at LANSCE. The absolute thermal neutron flux, energy spectra and time emission spectra were measured for the high resolution and high intensity decoupled water, partially coupled liquid hydrogen and partially coupled water moderators. The results of our experimental study will provide an insight into aging of different target-moderator-reflector-shield components as well as new experimental data for benchmarking of neutron transport codes.

  20. Rhodium self-powered neutron detector as a suitable on-line thermal neutron flux monitor in BNCT treatments

    SciTech Connect

    Miller, Marcelo E.; Sztejnberg, Manuel L.; Gonzalez, Sara J.; Thorp, Silvia I.; Longhino, Juan M.; Estryk, Guillermo

    2011-12-15

    Purpose: A rhodium self-powered neutron detector (Rh SPND) has been specifically developed by the Comision Nacional de Energia Atomica (CNEA) of Argentina to measure locally and in real time thermal neutron fluxes in patients treated with boron neutron capture therapy (BNCT). In this work, the thermal and epithermal neutron response of the Rh SPND was evaluated by studying the detector response to two different reactor spectra. In addition, during clinical trials of the BNCT Project of the CNEA, on-line neutron flux measurements using the specially designed detector were assessed. Methods: The first calibration of the detector was done with the well-thermalized neutron spectrum of the CNEA RA-3 reactor thermal column. For this purpose, the reactor spectrum was approximated by a Maxwell-Boltzmann distribution in the thermal energy range. The second calibration was done at different positions along the central axis of a water-filled cylindrical phantom, placed in the mixed thermal-epithermal neutron beam of CNEA RA-6 reactor. In this latter case, the RA-6 neutron spectrum had been well characterized by both calculation and measurement, and it presented some marked differences with the ideal spectrum considered for SPND calibrations at RA-3. In addition, the RA-6 neutron spectrum varied with depth in the water phantom and thus the percentage of the epithermal contribution to the total neutron flux changed at each measurement location. Local (one point-position) and global (several points-positions) and thermal and mixed-field thermal neutron sensitivities were determined from these measurements. Thermal neutron flux was also measured during BNCT clinical trials within the irradiation fields incident on the patients. In order to achieve this, the detector was placed on patient's skin at dosimetric reference points for each one of the fields. System stability was adequate for this kind of measurement. Results: Local mixed-field thermal neutron sensitivities and global

  1. A study on the optimum fast neutron flux for boron neutron capture therapy of deep-seated tumors.

    PubMed

    Rasouli, Fatemeh S; Masoudi, S Farhad

    2015-02-01

    High-energy neutrons, named fast neutrons which have a number of undesirable biological effects on tissue, are a challenging problem in beam designing for Boron Neutron Capture Therapy, BNCT. In spite of this fact, there is not a widely accepted criterion to guide the beam designer to determine the appropriate contribution of fast neutrons in the spectrum. Although a number of researchers have proposed a target value for the ratio of fast neutron flux to epithermal neutron flux, it can be shown that this criterion may not provide the optimum treatment condition. This simulation study deals with the determination of the optimum contribution of fast neutron flux in the beam for BNCT of deep-seated tumors. Since the dose due to these high-energy neutrons damages shallow tissues, delivered dose to skin is considered as a measure for determining the acceptability of the designed beam. To serve this purpose, various beam shaping assemblies that result in different contribution of fast neutron flux are designed. The performances of the neutron beams corresponding to such configurations are assessed in a simulated head phantom. It is shown that the previously used criterion, which suggests a limit value for the contribution of fast neutrons in beam, does not necessarily provide the optimum condition. Accordingly, it is important to specify other complementary limits considering the energy of fast neutrons. By analyzing various neutron spectra, two limits on fast neutron flux are proposed and their validity is investigated. The results show that considering these limits together with the widely accepted IAEA criteria makes it possible to have a more realistic assessment of sufficiency of the designed beam. Satisfying these criteria not only leads to reduction of delivered dose to skin, but also increases the advantage depth in tissue and delivered dose to tumor during the treatment time. The Monte Carlo Code, MCNP-X, is used to perform these simulations. PMID:25479433

  2. Relationships between cosmic ray neutron flux and rain flows in dependence on different latitudes and altitudes

    NASA Astrophysics Data System (ADS)

    Velinov, Peter; Velinov, Peter; Belov, Anatolii; Yanke, Viktor; Eroshenko, Evgenia; Mishev, Alexander; Tassev, Yordan

    A convenient tool for investigation of primary cosmic ray variations is the registration of secondary cosmic ray neutrons. A network of neutron monitors, aiming the studies of cosmic ray variations exists. At the same time cosmic ray variations may be related to some atmospheric processes. In this connection, using the data from Moskow neutron monitor (latitude 55 degree) and lead free neutron monitor at BEO Moussala (latitude 42 degree and latitude 2971 m above see level), we studied the correlations between rain flows and neutron flux. In this study we used daily averages on the basis of 10 min data for the neutron flux, corrected for barometric pressure and data for local meteo-stations. The measured data permitted to study such effect at different observation levels and latitudes. The preliminary studies permits to observe correlation between rain flows and neutron flux in several cases.

  3. Neutron Flux Characterization of Irradiation Holes for Irradiation Test at HANARO

    NASA Astrophysics Data System (ADS)

    Yang, Seong Woo; Cho, Man Soon; Choo, Kee Nam; Park, Sang Jun

    2016-02-01

    The High flux Advanced Neutron Application ReactOr (HANARO) is a unique research reactor in the Republic of Korea, and has been used for irradiation testing since 1998. To conduct irradiation tests for nuclear materials, the irradiation holes of CT and OR5 have been used due to a high fast-neutron flux. Because the neutron flux must be accurately calculated to evaluate the neutron fluence of irradiated material, it was conducted using MCNP. The neutron flux was measured using fluence monitor wires to verify the calculated result. Some evaluations have been conducted, however, more than 20% errors have frequently occurred at the OR irradiation hole, while a good agreement between the calculated and measured data was shown at the CT irradiation hole.

  4. Measuring surface fluxes in CAPE

    NASA Technical Reports Server (NTRS)

    Kanemasu, E. T.; D-Shah, T.; Nie, Dalin

    1992-01-01

    Two stations (site 1612 and site 2008) were operated by the University of Georgia group from 6 July 1991 to 18 August 1991. The following data were collected continuously: surface energy fluxes (i.e., net radiation, soil heat fluxes, sensible heat flux and latent heat flux), air temperature, vapor pressure, soil temperature (at 1 cm depth), and precipitation. Canopy reflectance and light interception data were taken three times at each site between 6 July and 18 August. Soil moisture content was measured twice at each site.

  5. Heat-Flux-Measuring Facility

    NASA Technical Reports Server (NTRS)

    Liebert, Curt H.; Weikle, Donald H.

    1990-01-01

    Apparatus simulates conditions in turbine engines. Automated facility generates and measures transient and steady-state heat fluxes at flux densities from 0.3 to 6 MW/m(Sup2) and temperatures from 100 to 1,200 K. Positioning arm holds heat-flux gauge at focal point of arc lamp. Arm previously chilled gauge in liquid nitrogen in Dewar flask. Cooling water flows through lamp to heat exchanger. Used to develop heat-flux gauges for turbine blades and to test materials for durability under rapidly changing temperatures.

  6. Neutron diffraction facilities at the high flux reactor, Petten

    NASA Astrophysics Data System (ADS)

    Ohms, C.; Youtsos, A. G.; Bontenbal, A.; Mulder, F. M.

    2000-03-01

    The High Flux Reactor in Petten is equipped with twelve beam tubes for the extraction of thermal neutrons for applications in materials and medical science. Beam tubes HB4 and HB5 are equipped with diffractometers for residual stress and powder investigations. Recently at HB4 the Large Component Neutron Diffraction Facility has been installed. It is a unique facility with respect to its capability of handling heavy components up to 1000 kg in residual stress testing. Its basic features are described and the first applications on thick piping welds are shown. The diffractometer at HB5 can be set up for powder and stress measurements. Recent applications include temperature dependent measurements on phase transitions in intermetallic compounds and on Li ion energy storage materials.

  7. TORT/MCNP coupling method for the calculation of neutron flux around a core of BWR.

    PubMed

    Kurosawa, Masahiko

    2005-01-01

    For the analysis of BWR neutronics performance, accurate data are required for neutron flux distribution over the In-Reactor Pressure Vessel equipments taking into account the detailed geometrical arrangement. The TORT code can calculate neutron flux around a core of BWR in a three-dimensional geometry model, but has difficulties in fine geometrical modelling and lacks huge computer resource. On the other hand, the MCNP code enables the calculation of the neutron flux with a detailed geometry model, but requires very long sampling time to give enough number of particles. Therefore, a TORT/MCNP coupling method has been developed to eliminate the two problems mentioned above in each code. In this method, the TORT code calculates angular flux distribution on the core surface and the MCNP code calculates neutron spectrum at the points of interest using the flux distribution. The coupling method will be used as the DOT-DOMINO-MORSE code system. This TORT/MCNP coupling method was applied to calculate the neutron flux at points where induced radioactivity data were measured for 54Mn and 60Co and the radioactivity calculations based on the neutron flux obtained from the above method were compared with the measured data. PMID:16604689

  8. Upper limit to the 1-20 MeV solar neutron flux.

    NASA Technical Reports Server (NTRS)

    Lockwood, J. A.; Ifedili, S. O.; Jenkins, R. W.

    1973-01-01

    The upper limit on the quiet time solar neutron flux from 1 to 20 MeV has been measured to be less than .002 neutrons at the 95% confidence level. This result is deduced from the OGO-6 neutron detector measurements of the 'day-night' effect near the equator at low altitudes for the period from June 7 to Dec. 23, 1969. The OGO-6 detector had very low (less than 4%) counting rate contributions from locally produced neutrons in the detecting system and the spacecraft and from charged-particle interactions in the neutron sensor.

  9. Ultracold neutron detector for the spectrometer of a neutron lifetime measuring

    NASA Astrophysics Data System (ADS)

    Andreev, V. A.; Vasiljev, A. V.; Ivanov, E. A.; Ilyin, D. S.; Krivshich, A. G.; Serebrov, A. P.

    2016-04-01

    The gas-discharge detector is designed for the neutron lifetime spectrometer. The detector is intended for ultracold neutron flux monitoring in measurement cycles at the specrtometer (ILL, Grenoble, France). The detector has been successively tested with a Pu-Be neutron source under laboratory conditions and as a part of the spectrometer.

  10. Origin of neutron flux increases observed in correlation with lightning

    NASA Astrophysics Data System (ADS)

    Babich, Leonid P.; Roussel-Dupré, Robert A.

    2007-07-01

    The past decade of research into the phenomenon of lightning has seen an accumulation of evidence for the existence of penetrating radiation (X- and γ-rays) in direct association with many forms of discharges. As a result, our basic understanding of the mechanisms that produce lightning has shifted from the present paradigm based on conventional breakdown to a picture that incorporates the acceleration and avalanche of energetic particles. Experiments conducted at high mountainous facilities in Gulmarg, India, have further confirmed the need for a paradigm shift. These measurements have shown an enhancement in neutron flux in the atmosphere in correlation with lightning electromagnetic pulses. We demonstrate here that the prevailing neutron generation theory based on synthesis of deuterium nuclei in the lightning channel is not feasible. Instead, this phenomenon is most likely connected with photonuclear reactions produced as part of the recently elaborated theory of relativistic runaway breakdown.

  11. Neutron Imaging Calibration to Measure Void Fraction

    SciTech Connect

    Geoghegan, Patrick J; Bilheux, Hassina Z; Sharma, Vishaldeep; Fricke, Brian A

    2015-01-01

    Void fraction is an intuitive parameter that describes the fraction of vapor in a two-phase flow. It appears as a key variable in most heat transfer and pressure drop correlations used to design evaporating and condensing heat exchangers, as well as determining charge inventory in refrigeration systems. Void fraction measurement is not straightforward, however, and assumptions on the invasiveness of the measuring technique must be made. Neutron radiography or neutron imaging has the potential to be a truly non-invasive void fraction measuring technique but has until recently only offered qualitative descriptions of two-phase flow, in terms of flow maldistributions, for example. This paper describes the calibration approach necessary to employ neutron imaging to measure steady-state void fraction. Experiments were conducted at the High Flux Isotope Reactor (HFIR) Cold Guide 1D neutron imaging facility at Oak Ridge National Laboratory (ORNL), Oak Ridge, TN, USA.

  12. Validation of neutron flux redistribution factors in JSI TRIGA reactor due to control rod movements.

    PubMed

    Kaiba, Tanja; Žerovnik, Gašper; Jazbec, Anže; Štancar, Žiga; Barbot, Loïc; Fourmentel, Damien; Snoj, Luka

    2015-10-01

    For efficient utilization of research reactors, such as TRIGA Mark II reactor in Ljubljana, it is important to know neutron flux distribution in the reactor as accurately as possible. The focus of this study is on the neutron flux redistributions due to control rod movements. For analyzing neutron flux redistributions, Monte Carlo calculations of fission rate distributions with the JSI TRIGA reactor model at different control rod configurations have been performed. Sensitivity of the detector response due to control rod movement have been studied. Optimal radial and axial positions of the detector have been determined. Measurements of the axial neutron flux distribution using the CEA manufactured fission chambers have been performed. The experiments at different control rod positions were conducted and compared with the MCNP calculations for a fixed detector axial position. In the future, simultaneous on-line measurements with multiple fission chambers will be performed inside the reactor core for a more accurate on-line power monitoring system. PMID:26141293

  13. Neutron-flux profile monitor for use in a fission reactor

    DOEpatents

    Kopp, M.K.; Valentine, K.H.

    1981-09-15

    A neutron flux monitor is provided which consists of a plurality of fission counters arranged as spaced-apart point detectors along a delay line. As a fission event occurs in any one of the counters, two delayed current pulses are generated at the output of the delay line. The time separation of the pulses identifies the counter in which the particular fission event occurred. Neutron flux profiles of reactor cores can be more accurately measured as a result.

  14. Operation Hardtack. Project 2. 6. Neutron flux from very-high-altitude bursts

    SciTech Connect

    Hanscome, T.D.; Alers, P.B.; Caldwell, P.A.; Drachman, R.J.; Gorbics, S.G.

    1985-09-01

    The primary objective of this project was to measure neutron flux and gamma-ray flux versus range and time from missile-borne, megaton nuclear detonations at high altitudes by means of instrumented pods that were to be ejected, during the missile thrust period, at times that were selected to position the pods at predetermined distances from the burst. Specific objectives were: (1) neutron flux versus time was to be measured at each of three pod positions during each shot and (2) a measurement of gamma-ray dose rate versus time was sought from each pod during each shot.

  15. Fast neutron background measurements at shallow depths

    SciTech Connect

    Chen, M.; Hertenberger, R.; Novikov, V.; Dougherty, B.

    1993-10-01

    We report on measurements of the neutron backgrounds for neutrino experiments at shallow depth (such as the proposed San Onofre neutrino oscillation experiment). A detector capable of pulse-shape discrimination measured the flux of fast neutrons at 20 mwe depth in the Stanford Underground Facility to be (1.07 {+-} 0.30) X 10{sup -6} cm{sup -2} s{sup -1}. An experiment, situated in the Tendon Gallery of the San Onofre Unit 2 reactor. studied spallation neutrons from muons traversing Pb and Cu. An underground experiment in the SUF, employing a detector filled with Gd-loaded liquid scintillator, is measuring the neutron production rate and multiplicity for muon spallation in low-A material (hydrocarbon-based liquid scintillator).

  16. Neutron measurements in ITER using the Radial Neutron Camera

    NASA Astrophysics Data System (ADS)

    Marocco, D.; Esposito, B.; Moro, F.

    2012-03-01

    The Radial Neutron Camera (RNC) is one of the key diagnostic systems of the ITER international fusion experiment. It is designed to measure the uncollided 14 MeV and 2.5 MeV neutrons from deuterium-tritium (DT) and deuterium-deuterium (DD) fusion reactions taking place in the ITER plasma through an array of 45 detectors positioned along collimated lines of sight. Scintillators and diamonds coupled to fast digital acquisition electronics are among the detectors presently considered for the RNC. The RNC will provide spatially resolved measurements of several plasma parameters needed for fusion power estimation, plasma control and plasma physics studies. The line-integrated RNC neutron fluxes are used to evaluate the local profile of the neutron emission (neutron emissivity, s-1m-3) and therefore the total neutron yield and the birth profile of the alpha particles. The temperature profile of the bulk ions can be derived from the Doppler broadened widths of the RNC line-integrated spectra, that also provide insight on the supra-thermal ions produced by the injection in the plasma of electromagnetic waves and neutral particles. The RNC emissivity and temperature measurements can be employed to estimate the composition of the ITER fuel, namely the ratio between the tritium and deuterium densities. Data processing techniques involving spatial inversion and spectra unfolding are necessary to deduce the profile quantities from the line-integrated RNC measurements. The expected performances of the RNC as a diagnostic for the neutron emissivity/ion temperature/fuel ratio profile (measurement range, time resolution, accuracy, precision) have been estimated by means of synthetic data simulating actual RNC measurements. The results of the simulations, together with an overall description of the diagnostic and of the measurement techniques, are presented.

  17. Differential neutron energy spectra measured on spacecraft low Earth orbit

    NASA Technical Reports Server (NTRS)

    Benton, E. V.; Frank, A. L.; Dudkin, E. V.; Potapov, Yu. V.; Akopova, A. B.; Melkumyan, L. V.

    1995-01-01

    Two methods for measuring neutrons in the range from thermal energies to dozens of MeV were used. In the first method, alpha-particles emitted from the (sup 6) Li(n.x)T reaction are detected with the help of plastic nuclear track detectors, yielding results on thermal and resonance neutrons. Also, fission foils are used to detect fast neutrons. In the second method, fast neutrons are recorded by nuclear photographic emulsions (NPE). The results of measurements on board various satellites are presented. The neutron flux density does not appear to correlate clearly with orbital parameters. Up to 50% of neutrons are due to albedo neutrons from the atmosphere while the fluxes inside the satellites are 15-20% higher than those on the outside. Estimates show that the neutron contribution to the total equivalent radiation dose reaches 20-30%.

  18. Neutron and Gamma-ray Measurements

    NASA Astrophysics Data System (ADS)

    Krasilnikov, Anatoly V.; Sasao, Mamiko; Kaschuck, Yuri A.; Kiptily, Vasily G.; Nishitani, Takeo; Popovichev, Sergey V.; Bertalot, Luciano

    2008-03-01

    Due to high neutron and gamma-ray yields and large size plasmas many future fusion reactor plasma parameters such as fusion power, fusion power density, ion temperature, fuel mixture, fast ion energy and spatial distributions can be well measured by various fusion product diagnostics. Neutron diagnostics provide information on fusion reaction rate, which indicates how close is the plasma to the ultimate goal of nuclear fusion and fusion power distribution in the plasma core, which is crucial for optimization of plasma breakeven and burn. Depending on the plasma conditions neutron and gamma-ray diagnostics can provide important information, namely about dynamics of fast ion energy and spatial distributions during neutral beam injection, ion cyclotron heating and generated by fast ions MHD instabilities. The influence of the fast particle population on the 2-D neutron source profile was clearly demonstrated in JET experiments. 2-D neutron and gamma-ray source measurements could be important for driven plasma heating profile optimization in fusion reactors. To meat the measurement requirements in ITER the planned set of neutron and gamma ray diagnostics includes radial and vertical neutron and gamma cameras, neutron flux monitors, neutron activation systems and neutron spectrometers. The necessity of using massive radiation shielding strongly influences the diagnostic designs in fusion reactor, determines angular fields of view of neutron and gamma-ray cameras and spectrometers and gives rise to unavoidable difficulties in the absolute calibration. The development, testing in existing tokomaks and a possible engineering integration of neuron and gamma-ray diagnostic systems into ITER are presented.

  19. Deployment of a three-dimensional array of Micro-Pocket Fission Detector triads (MPFD3) for real-time, in-core neutron flux measurements in the Kansas State University TRIGA Mark-II Nuclear Reactor

    NASA Astrophysics Data System (ADS)

    Ohmes, Martin Francis

    A Micro-Pocket Fission Detector (MPFD) is a miniaturized type of fission chamber developed for use inside a nuclear reactor. Their unique design allows them to be located between or even inside fuel pins while being built from materials which give them an operational lifetime comparable to or exceeding the life of the fuel. While other types of neutron detectors have been made for use inside a nuclear reactor, the MPFD is the first neutron detector which can survive sustained use inside a nuclear reactor while providing a real-time measurement of the neutron flux. This dissertation covers the deployment of MPFDs as a large three-dimensional array inside the Kansas State University TRIGA Mark-II Nuclear Reactor for real-time neutron flux measurements. This entails advancements in the design, construction, and packaging of the Micro-Pocket Fission Detector Triads with incorporated Thermocouple, or MPFD3-T. Specialized electronics and software also had to be designed and built in order to make a functional system capable of collecting real-time data from up to 60 MPFD3-Ts, or 180 individual MPFDs and 60 thermocouples. Design of the electronics required the development of detailed simulations and analysis for determining the theoretical response of the detectors and determination of their size. The results of this research shows that MPFDs can operate for extended times inside a nuclear reactor and can be utilized toward the use as distributed neutron detector arrays for advanced reactor control systems and power mapping. These functions are critical for continued gains in efficiency of nuclear power reactors while also improving safety through relatively inexpensive redundancy.

  20. Flux and dose transmission through concrete of neutrons from proton induced reactions on various target elements

    NASA Astrophysics Data System (ADS)

    Maiti, Moumita; Nandy, Maitreyee; Roy, S. N.; Sarkar, P. K.

    2004-12-01

    Simple empirical expressions for transmission of flux and dose through concrete are presented for neutrons from proton induced reactions. For this purpose the neutron emission from different targets in proton induced reactions in the energy range 25-200 MeV have been considered. The calculated effective dose outside a concrete shield shows overall good agreement with the effective dose estimated from measured neutron flux in the framework of the Moyer model. The calculated effective attenuation length shows a rising trend with incident proton energy and shield thickness.

  1. Determination of spallation neutron flux through spectral adjustment techniques

    NASA Astrophysics Data System (ADS)

    Mosby, M. A.; Engle, J. W.; Jackman, K. R.; Nortier, F. M.; Birnbaum, E. R.

    2016-08-01

    The Los Alamos Isotope Production Facility (IPF) creates medical isotopes using a proton beam impinged on a target stack. Spallation neutrons are created in the interaction of the beam with target. The use of these spallation neutrons to produce additional radionuclides has been proposed. However, the energy distribution and magnitude of the flux is not well understood. A modified SAND-II spectral adjustment routine has been used with radioactivation foils to determine the differential neutron fluence for these spallation neutrons during a standard IPF production run.

  2. Measurements of the atmospheric neutron leakage rate

    NASA Technical Reports Server (NTRS)

    Lockwood, J. A.; Ifedili, S. O.; Jenkins, R. W.

    1973-01-01

    The atmospheric neutron leakage rate in the energy range from 0.01 to 10,000,000 eV has been measured as a function of latitude, altitude, and time with a neutron detector on board the Ogo 6 satellite. The latitude dependence of the neutron leakage is in reasonable agreement with that predicted by Lingenfelter (1963) and Light et al. (1973) if the neutron energy spectrum has the shape calculated by Newkirk (1963). The change in the neutron latitude dependence with the cosmic ray modulation agrees with the predictions of Lingenfelter and Light et al. For several solar proton events enhancements were observed in the neutron counting rates at lambda greater than or equal to 70 deg. Such events, however, provide an insignificant injection of protons at E less than or equal to 20 MeV into the radiation belts. An isotropic angular distribution of the neutron leakage in the energy range from 0.1 keV to 10 MeV best fits the observed altitude dependence of the neutron leakage flux.

  3. Neutron flux assessment of a neutron irradiation facility based on inertial electrostatic confinement fusion.

    PubMed

    Sztejnberg Gonçalves-Carralves, M L; Miller, M E

    2015-12-01

    Neutron generators based on inertial electrostatic confinement fusion were considered for the design of a neutron irradiation facility for explanted organ Boron Neutron Capture Therapy (BNCT) that could be installed in a health care center as well as in research areas. The chosen facility configuration is "irradiation chamber", a ~20×20×40 cm(3) cavity near or in the center of the facility geometry where samples to be irradiated can be placed. Neutron flux calculations were performed to study different manners for improving scattering processes and, consequently, optimize neutron flux in the irradiation position. Flux distributions were assessed through numerical simulations of several models implemented in MCNP5 particle transport code. Simulation results provided a wide spectrum of combinations of net fluxes and energy spectrum distributions. Among them one can find a group that can provide thermal neutron fluxes per unit of production rate in a range from 4.1·10(-4) cm(-2) to 1.6·10(-3) cm(-2) with epithermal-to-thermal ratios between 0.3% and 13% and fast-to-thermal ratios between 0.01% to 8%. Neutron generators could be built to provide more than 10(10) n s(-1) and, consequently, with an arrangement of several generators appropriate enough neutron fluxes could be obtained that would be useful for several BNCT-related irradiations and, eventually, for clinical practice. PMID:26122974

  4. Neutron removal cross section as a measure of neutron skin

    SciTech Connect

    Fang, D. Q.; Ma, Y. G.; Cai, X. Z.; Tian, W. D.; Wang, H. W.

    2010-04-15

    We study the relation between neutron removal cross section (sigma{sub -N}) and neutron skin thickness for finite neutron-rich nuclei using the statistical abrasion ablation model. Different sizes of neutron skin are obtained by adjusting the diffuseness parameter of neutrons in the Fermi distribution. It is demonstrated that there is a good linear correlation between sigma{sub -N} and the neutron skin thickness for neutron-rich nuclei. Further analysis suggests that the relative increase of neutron removal cross section could be used as a quantitative measure for neutron skin thickness in neutron-rich nuclei.

  5. Neutron generator yield measurements using a phoswich detector with the digital pulse shape analysis

    NASA Astrophysics Data System (ADS)

    Barzilov, Alexander; Novikov, Ivan; Womble, Phillip; Heinze, Julian

    2012-03-01

    The phoswich detector designed as a combination of two scintillators with dissimilar pulse shape characteristics that are optically coupled to each other and to a common photomultiplier is used for the simultaneous detection of fast and thermal neutrons. The digital signal processing of detector signals is used. The pulse shape analysis distinguishes the scintillation signals produced by photons, fast neutrons, and thermal neutrons. The phoswich was tested using the photon and neutron sources. We discuss neutron yield measurements for a pulse DT neutron generator. The spatial distribution of fast neutron flux and thermal neutron flux was evaluated for the generator in presence of neutron moderating materials.

  6. Neutron dosimetric measurements in shuttle and MIR.

    PubMed

    Reitz, G

    2001-06-01

    Detector packages consisting of thermoluminescence detectors (TLD), nuclear emulsions and plastic track detectors were exposed at identical positions inside MIR space station and on shuttle flights inside Spacelab and Spacehab during different phases of the solar cycle. The objectives of the investigations are to provide data on charge and energy spectra of heavy ions, and the contribution of events with low-energy deposit (protons, electrons, gamma, etc.) to the dose, as well as the contribution of secondaries, such as nuclear disintegration stars and neutrons. For neutron dosimetry 6LiF (TLD600) and 7LiF (TLD700) chips were used both of which have almost the same response to gamma rays but different response to neutrons. Neutrons in space are produced mainly in evaporation and knock-on processes with energies mainly of 1-10 MeV and up to several 100 MeV, respectively. The energy spectrum undergoes continuous changes toward greater depth in the attenuating material until an equilibrium is reached. In equilibrium, the spectrum is a wide continuum extending down to thermal energies to which the 6LiF is sensitive. Based on the difference of absorbed doses in the 6LiF and 7LiF chips, thermal neutron fluxes from 1 to 2.3 cm-2 s-1 are calculated using the assumption that the maximum induced dose in TLD600 for 1 neutron cm-2 is 1.6 x 10(-10) Gy (Horowitz and Freeman, Nucl. Instr. and Meth. 157 (1978) 393). It is assumed that the flux of high-energy neutrons is at least of that quantity. Tissue doses were calculated taking as a mean ambient absorbed dose per neutron 6 x10(-12) Gy cm2 (for a10 MeV neutron). The neutron equivalent doses for the above-mentioned fluxes are 52 micro Gy d-1 and 120 micro Gy d-1. In recent experiments, a personal neutron dosimeter was integrated into the dosimeter packages. First results of this dosimeter which is based on nuclear track detectors with converter foils are reported. For future measurements, a scintillator counter with

  7. Measurement of the Surface and Underground Neutron Spectra with the UMD/NIST Fast Neutron Spectrometers

    NASA Astrophysics Data System (ADS)

    Langford, Thomas J.

    The typical fast neutron detector falls into one of two categories, Bonner sphere spectrometers and liquid scintillator proton recoil detectors. These two detector types have traditionally been used to measure fast neutrons at the surface and in low background environments. The cosmogenic neutron spectrum and flux is an important parameter for a number of experimental efforts, including procurement of low background materials and the prediction of electronic device faults. Fast neutrons can also cause problems for underground low-background experiments, through material activation or signals that mimic rare events. Current detector technology is not sufficient to properly characterize these backgrounds. To this end, the University of Maryland and the National Institute of Standards and Technology designed, developed, and deployed two Fast Neutron Spectrometers (FaNS) comprised of plastic scintillator and 3He proportional counters. The detectors are based upon capture-gated spectroscopy, a technique that demands a delayed coincidence between a neutron scatter and the resulting neutron capture after thermalization. This technique provides both particle identification and knowledge that the detected neutron fully thermalized. This improves background rejection capabilities and energy resolution. Presented are the design, development, and deployment of FaNS-1 and FaNS-2. Both detectors were characterized using standard fields at NIST, including calibrated 252Cf neutron sources and two monoenergetic neutron generators. Measurements of the surface fast neutron spectrum and flux have been made with both detectors, which are compared with previous measurements by traditional detectors. Additionally, FaNS-1 was deployed at the Kimballton Underground Research Facility (KURF) in Ripplemead, VA. A measurement of the fast neutron spectrum and flux at KURF is presented as well. FaNS-2 is currently installed in a shallow underground laboratory where it is measuring the muon

  8. Fast neutron flux analyzer with real-time digital pulse shape discrimination

    NASA Astrophysics Data System (ADS)

    Ivanova, A. A.; Zubarev, P. V.; Ivanenko, S. V.; Khilchenko, A. D.; Kotelnikov, A. I.; Polosatkin, S. V.; Puryga, E. A.; Shvyrev, V. G.; Sulyaev, Yu. S.

    2016-08-01

    Investigation of subthermonuclear plasma confinement and heating in magnetic fusion devices such as GOL-3 and GDT at the Budker Institute (Novosibirsk, Russia) requires sophisticated equipment for neutron-, gamma- diagnostics and upgrading data acquisition systems with online data processing. Measurement of fast neutron flux with stilbene scintillation detectors raised the problem of discrimination of the neutrons (n) from background cosmic particles (muons) and neutron-induced gamma rays (γ). This paper describes a fast neutron flux analyzer with real-time digital pulse-shape discrimination (DPSD) algorithm FPGA-implemented for the GOL-3 and GDT devices. This analyzer was tested and calibrated with the help of 137Cs and 252Cf radiation sources. The Figures of Merit (FOM) calculated for different energy cuts are presented.

  9. Neutron measurements in near-Earth orbit with COMPTEL

    NASA Technical Reports Server (NTRS)

    Morris, D. J.; Aarts, H.; Bennett, K.; Lockwood, J. A.; Mcconnell, M. L.; Ryan, J. M.; Schoenfelder, V.; Steinle, H.; Peng, X.

    1995-01-01

    The fast neutron flux in near-Earth orbit has been measured with the COMPTEL instrument on the Compton Gamma Ray Observatory (CGRO). For this measurement one of COMPTEL's seven liquid scintillator modules was used as an uncollimated neutron detector with threshold of 12.8 MeV. The measurements cover a range of 4.8 to 15.5 GV in vertical cutoff rigidity and 3 deg to 177 deg in spacecraft geocenter zenith angle. One of the measurements occurred near the minimum of the deepest Forbush decrease ever observed by ground-level neutron monitors. After correction for solar modulation, the total flux is well fitted by separable functions in rigidity and zenith angle. With the spacecraft pointed near the nadir the flux is consistent with balloon measurements of the atmospheric neutron albedo. The flux varies by about a factor of 4 between the extremes of rigidity and a factor of 2 between the extremes of zenith angle. The effect of the spacecraft mass in shielding the detector from the atmospheric neutron albedo is much more important than its role as a source of additional secondary neutrons. The neutron spectral hardness varies little with rigidity or zenith angle and lies in the range spanned by earlier atmospheric neutron albedo measurements.

  10. NEUTRON MEASURING METHOD AND APPARATUS

    DOEpatents

    Seaborg, G.T.; Friedlander, G.; Gofman, J.W.

    1958-07-29

    A fast neutron fission detecting apparatus is described consisting of a source of fast neutrons, an ion chamber containing air, two electrodes within the ion chamber in confronting spaced relationship, a high voltage potential placed across the electrodes, a shield placed about the source, and a suitable pulse annplifier and recording system in the electrode circuit to record the impulse due to fissions in a sannple material. The sample material is coated onto the active surface of the disc electrode and shielding means of a material having high neutron capture capabilities for thermal neutrons are provided in the vicinity of the electrodes and about the ion chamber so as to absorb slow neutrons of thermal energy to effectively prevent their diffusing back to the sample and causing an error in the measurement of fast neutron fissions.

  11. Neutronics Modeling of the High Flux Isotope Reactor using COMSOL

    SciTech Connect

    Chandler, David; Primm, Trent; Freels, James D; Maldonado, G Ivan

    2011-01-01

    The High Flux Isotope Reactor located at the Oak Ridge National Laboratory is a versatile 85 MWth research reactor with cold and thermal neutron scattering, materials irradiation, isotope production, and neutron activation analysis capabilities. HFIR staff members are currently in the process of updating the thermal hydraulic and reactor transient modeling methodologies. COMSOL Multiphysics has been adopted for the thermal hydraulic analyses and has proven to be a powerful finite-element-based simulation tool for solving multiple physics-based systems of partial and ordinary differential equations. Modeling reactor transients is a challenging task because of the coupling of neutronics, heat transfer, and hydrodynamics. This paper presents a preliminary COMSOL-based neutronics study performed by creating a two-dimensional, two-group, diffusion neutronics model of HFIR to study the spatially-dependent, beginning-of-cycle fast and thermal neutron fluxes. The 238-group ENDF/B-VII neutron cross section library and NEWT, a two-dimensional, discrete-ordinates neutron transport code within the SCALE 6 code package, were used to calculate the two-group neutron cross sections required to solve the diffusion equations. The two-group diffusion equations were implemented in the COMSOL coefficient form PDE application mode and were solved via eigenvalue analysis using a direct (PARDISO) linear system solver. A COMSOL-provided adaptive mesh refinement algorithm was used to increase the number of elements in areas of largest numerical error to increase the accuracy of the solution. The flux distributions calculated by means of COMSOL/SCALE compare well with those calculated with benchmarked three-dimensional MCNP and KENO models, a necessary first step along the path to implementing two- and three-dimensional models of HFIR in COMSOL for the purpose of studying the spatial dependence of transient-induced behavior in the reactor core.

  12. Accurate Relations Between the Neutron Current Densities and the Neutron Fluxes

    SciTech Connect

    Ronen, Yigal

    2004-02-15

    Accurate relations between neutron current densities and neutron flux are obtained using the integral transport equation. Using these relations and Fick's Law, diffusion constants can be calculated. These diffusion constants are better than those usually used for the cases in which {sigma}{sub a}/{sigma}{sub s} is not small.

  13. Monitoring method for neutron flux for a spallation target in an accelerator driven sub-critical system

    NASA Astrophysics Data System (ADS)

    Zhao, Qiang, He, Zhi-Yong; Yang, Lei; Zhang, Xue-Ying; Cui, Wen-Juan; Chen, Zhi-Qiang; Xu, Hu-Shan

    2016-07-01

    In this paper, we study a monitoring method for neutron flux for the spallation target used in an accelerator driven sub-critical (ADS) system, where a spallation target located vertically at the centre of a sub-critical core is bombarded vertically by high-energy protons from an accelerator. First, by considering the characteristics in the spatial variation of neutron flux from the spallation target, we propose a multi-point measurement technique, i.e. the spallation neutron flux should be measured at multiple vertical locations. To explain why the flux should be measured at multiple locations, we have studied neutron production from a tungsten target bombarded by a 250 MeV-proton beam with Geant4-based Monte Carlo simulations. The simulation results indicate that the neutron flux at the central location is up to three orders of magnitude higher than the flux at lower locations. Secondly, we have developed an effective technique in order to measure the spallation neutron flux with a fission chamber (FC), by establishing the relation between the fission rate measured by FC and the spallation neutron flux. Since this relation is linear for a FC, a constant calibration factor is used to derive the neutron flux from the measured fission rate. This calibration factor can be extracted from the energy spectra of spallation neutrons. Finally, we have evaluated the proposed calibration method for a FC in the environment of an ADS system. The results indicate that the proposed method functions very well. Supported by Strategic Priority Research Program of Chinese Academy of Sciences (XDA03010000 and XDA03030000) and the National Natural Science Foundation of China(91426301).

  14. Altitude and latitude variations in avionics SEU and atmospheric neutron flux

    SciTech Connect

    Normand, E.; Baker, T.J. )

    1993-12-01

    The direct cause of single event upsets in SRAMs at aircraft altitudes by the atmospheric neutrons has previously been documented. The variation of the in-flight SEU rate with latitude is demonstrated by new data over a wide range of geographical locations. New measurements and models of the atmospheric neutron flux are also evaluated to characterize its variation with altitude, latitude and solar activity.

  15. Evapotranspiration: Mass balance measurements compared with flux estimation methods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Evapotranspiration (ET) may be measured by mass balance methods and estimated by flux sensing methods. The mass balance methods are typically restricted in terms of the area that can be represented (e.g., surface area of weighing lysimeter (LYS) or equivalent representative area of neutron probe (NP...

  16. Verification and validation of the maximum entropy method of moment reconstruction of energy dependent neutron flux

    NASA Astrophysics Data System (ADS)

    Crawford, Douglas Spencer

    Verification and Validation of reconstructed neutron flux based on the maximum entropy method, is presented in this paper. The verification is carried out by comparing the neutron flux spectrum from the maximum entropy method with Monte Carlo N Particle 5 version 1.40 (MCNP5) and Attila-7.1.0-beta (Attila). A spherical 100% 235U critical assembly is modeled as the test case to compare the three methods. The verification error range for the maximum entropy method is 15% to 23% where MCNP5 is taken to be the comparison standard. Attila relative error for the critical assembly is 20% to 35%. Validation is accomplished by comparing a neutron flux spectrum that is back calculated from foil activation measurements performed in the GODIVA experiment (GODIVA). The error range of the reconstructed flux compared to GODIVA is 0%-10%. The error range of the neutron flux spectrum from MCNP5 compared to GODIVA is 0%-20% and the Attila error range compared to the GODIVA is 0%-35%. The maximum entropy method for reconstructing flux is shown to be a fast reliable method, compared to either Monte Carlo methods (MCNP5) or 30 multienergy group methods (Attila) and with respect to the GODIVA experiment.

  17. Digital Real-Time Multiple Channel Multiple Mode Neutron Flux Estimation on FPGA-based Device

    NASA Astrophysics Data System (ADS)

    Thevenin, Mathieu; Barbot, Loïc; Corre, Gwénolé; Woo, Romuald; Destouches, Christophe; Normand, Stéphane

    2016-02-01

    This paper presents a complete custom full-digital instrumentation device that was designed for real-time neutron flux estimation, especially for nuclear reactor in-core measurement using subminiature Fission Chambers (FCs). Entire fully functional small-footprint design (about 1714 LUTs) is implemented on FPGA. It enables real-time acquisition and analysis of multiple channels neutron's flux both in counting mode and Campbelling mode. Experimental results obtained from this brand new device are consistent with simulation results and show good agreement within good uncertainty. This device paves the way for new applications perspectives in real-time nuclear reactor monitoring.

  18. Strategy for the absolute neutron emission measurement on ITER

    SciTech Connect

    Sasao, M.; Bertalot, L.; Ishikawa, M.; Popovichev, S.

    2010-10-15

    Accuracy of 10% is demanded to the absolute fusion measurement on ITER. To achieve this accuracy, a functional combination of several types of neutron measurement subsystem, cross calibration among them, and in situ calibration are needed. Neutron transport calculation shows the suitable calibration source is a DT/DD neutron generator of source strength higher than 10{sup 10} n/s (neutron/second) for DT and 10{sup 8} n/s for DD. It will take eight weeks at the minimum with this source to calibrate flux monitors, profile monitors, and the activation system.

  19. Measurements of fast neutrons by bubble detectors

    SciTech Connect

    Castillo, F.; Martinez, H.; Leal, B.; Rangel, J.; Reyes, P. G.

    2013-07-03

    Neutron bubble detectors have been studied using Am-Be and D-D neuron sources, which give limited energy information. The Bubble Detector Spectrometer (BDS) have six different energy thresholds ranging from 10 KeV to 10 Mev. The number of bubbles obtained in each measurement is related to the dose (standardized response R) equivalent neutrons through sensitivity (b / {mu}Sv) and also with the neutron flux (neutrons per unit area) through a relationship that provided by the manufacturer. Bubble detectors were used with six different answers (0.11 b/ {mu}Sv, 0093 b/{mu}Sv, 0.14 b/{mu}Sv, 0.17 b/{mu}Sv, 0051 b/{mu}Sv). To test the response of the detectors (BDS) radiate a set of six of them with different energy threshold, with a source of Am-Be, placing them at a distance of one meter from it for a few minutes. Also, exposed to dense plasma focus Fuego Nuevo II (FN-II FPD) of ICN-UNAM, apparatus which produces fusion plasma, generating neutrons by nuclear reactions of neutrons whose energy emitting is 2.45 MeV. In this case the detectors were placed at a distance of 50 cm from the pinch at 90 Degree-Sign this was done for a certain number of shots. In both cases, the standard response is reported (Dose in {mu}Sv) for each of the six detectors representing an energy range, this response is given by the expression R{sub i}= B{sub i} / S{sub i} where B{sub i} is the number of bubbles formed in each and the detector sensitivity (S{sub i}) is given for each detector in (b / {mu}Sv). Also, reported for both cases, the detected neutron flux (n cm{sup -2}), by a given ratio and the response involves both standardized R, as the average cross section sigma. The results obtained have been compared with the spectrum of Am-Be source. From these measurements it can be concluded that with a combination of bubble detectors, with different responses is possible to measure the equivalent dose in a range of 10 to 100 {mu}Sv fields mixed neutron and gamma, and pulsed generated fusion

  20. Measurements of fast neutrons by bubble detectors

    NASA Astrophysics Data System (ADS)

    Castillo, F.; Leal, B.; Martınez, H.; Rangel, J.; Reyes, P. G.

    2013-07-01

    Neutron bubble detectors have been studied using Am-Be and D-D neuron sources, which give limited energy information. The Bubble Detector Spectrometer (BDS) have six different energy thresholds ranging from 10 KeV to 10 Mev. The number of bubbles obtained in each measurement is related to the dose (standardized response R) equivalent neutrons through sensitivity (b / μSv) and also with the neutron flux (neutrons per unit area) through a relationship that provided by the manufacturer. Bubble detectors were used with six different answers (0.11 b/ μSv, 0093 b/μSv, 0.14 b/μSv, 0.17 b/μSv, 0051 b/μSv). To test the response of the detectors (BDS) radiate a set of six of them with different energy threshold, with a source of Am-Be, placing them at a distance of one meter from it for a few minutes. Also, exposed to dense plasma focus Fuego Nuevo II (FN-II FPD) of ICN-UNAM, apparatus which produces fusion plasma, generating neutrons by nuclear reactions of neutrons whose energy emitting is 2.45 MeV. In this case the detectors were placed at a distance of 50 cm from the pinch at 90° this was done for a certain number of shots. In both cases, the standard response is reported (Dose in μSv) for each of the six detectors representing an energy range, this response is given by the expression Ri = Bi / Si where Bi is the number of bubbles formed in each and the detector sensitivity (Si) is given for each detector in (b / μSv). Also, reported for both cases, the detected neutron flux (n cm-2), by a given ratio and the response involves both standardized R, as the average cross section sigma. The results obtained have been compared with the spectrum of Am-Be source. From these measurements it can be concluded that with a combination of bubble detectors, with different responses is possible to measure the equivalent dose in a range of 10 to 100 μSv fields mixed neutron and gamma, and pulsed generated fusion devices.

  1. Carbon Dioxide Flux Measurement Systems (CO2Flux) Handbook

    SciTech Connect

    Fischer, M

    2005-01-01

    The Southern Great Plains (SGP) carbon dioxide flux (CO2 flux) measurement systems provide half-hour average fluxes of CO2, H2O (latent heat), and sensible heat. The fluxes are obtained by the eddy covariance technique, which computes the flux as the mean product of the vertical wind component with CO2 and H2O densities, or estimated virtual temperature. A three-dimensional sonic anemometer is used to obtain the orthogonal wind components and the virtual (sonic) temperature. An infrared gas analyzer is used to obtain the CO2 and H2O densities. A separate sub-system also collects half-hour average measures of meteorological and soil variables from separate 4-m towers.

  2. Latent Heat in Soil Heat Flux Measurements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The surface energy balance includes a term for soil heat flux. Soil heat flux is difficult to measure because it includes conduction and convection heat transfer processes. Accurate representation of soil heat flux is an important consideration in many modeling and measurement applications. Yet, the...

  3. Bayesian Statistical Analysis Applied to NAA Data for Neutron Flux Spectrum Determination

    NASA Astrophysics Data System (ADS)

    Chiesa, D.; Previtali, E.; Sisti, M.

    2014-04-01

    In this paper, we present a statistical method, based on Bayesian statistics, to evaluate the neutron flux spectrum from the activation data of different isotopes. The experimental data were acquired during a neutron activation analysis (NAA) experiment [A. Borio di Tigliole et al., Absolute flux measurement by NAA at the Pavia University TRIGA Mark II reactor facilities, ENC 2012 - Transactions Research Reactors, ISBN 978-92-95064-14-0, 22 (2012)] performed at the TRIGA Mark II reactor of Pavia University (Italy). In order to evaluate the neutron flux spectrum, subdivided in energy groups, we must solve a system of linear equations containing the grouped cross sections and the activation rate data. We solve this problem with Bayesian statistical analysis, including the uncertainties of the coefficients and the a priori information about the neutron flux. A program for the analysis of Bayesian hierarchical models, based on Markov Chain Monte Carlo (MCMC) simulations, is used to define the problem statistical model and solve it. The energy group fluxes and their uncertainties are then determined with great accuracy and the correlations between the groups are analyzed. Finally, the dependence of the results on the prior distribution choice and on the group cross section data is investigated to confirm the reliability of the analysis.

  4. Improved monitoring system of neutron flux during boron-neutron capture therapy

    SciTech Connect

    Harasawa, S.; Nakamoto, A.; Hayakawa, Y.; Egawa, J.

    1981-10-01

    Continuous and simultaneous monitoring of neutron flux in the course of a boron-neutron capture operation on a brain tumor has been achieved using a new monitoring system. A silicon surface barrier diode mounted with /sup 6/LiF instead of the previously reported borax is used to sense neutrons. The pulse heights of /sup 3/H and ..cap alpha.. particles from /sup 6/Li(n, ..cap alpha..)/sup 2/H reaction are sufficiently high and well separated from noises due to ..gamma.. rays. The effect of pulse-height reduction due to the radiation damage of the diode thus becomes smaller, permitting continuous monitoring. The relative error of the monitoring is within 2% over 5 hr for a neutron-flux density of 2 x 10/sup 9/ n/cm/sup 2/ sec.

  5. Designing CNR, a very high thermal neutron flux facility

    SciTech Connect

    Difilippo, F.C.

    1986-01-01

    According to a recent study (Eastman-Seitz Committee, National Academy of Science) there is a need for a new generation of steady neutron sources with a thermal neutron flux peak between 5 to 10 times 10/sup 15//cm/sup 2/ sec. Ideally the neutron source would have to operate continuously for several days (two weeks at least) with minimum time (2 to 3 days) for refueling and/or maintenance and it would also be used to irradiate materials and produce isotopes. This paper describes the preliminary design of the nuclear reactor for the proposed Center for Neutron Research (CNR). A duplication of existing designs (HFIR, (ORNL), ILL (Grenoble, France)) would imply high total power and small core life; the necessity of higher efficiencies (in terms of peak-flux-per-unit source or power) then becomes apparent. We have found analytical expressions for the efficiency in terms of a few parameters such as the volume of the source and the Fermi age and diffusion length of thermal neutrons in both the source and reflector regions. A single analytical expression can then be used for scoping the design and to intercompare radically different designs. Higher efficiencies can be achieved by reducing the volume and the moderation of a core immersed in a very low absorbing reflector; on the contrary a very long core life has a negative effect on the efficiency at beginning of life. Consequently, and after detailed calculations, we have found a candidate design with the following characteristics: core, U/sub 3/Si/sub 2/, 93% enriched, 18.1-kg /sup 235/U, metal fraction 50%, Al cladding, and 35-L volume; reflector and moderator, D/sub 2/O; efficiency at end of life (EOL) with respect to the ILL reactor, 1.29; flux at EOL, 10 x 10/sup 15//cm/sup 2/ sec (power in core 270. MW); core life, 14 days; burnup 28.4%.

  6. Neutrino flux predictions for cross section measurements

    SciTech Connect

    Hartz, Mark

    2015-05-15

    Experiments that measure neutrino interaction cross sections using accelerator neutrino sources require a prediction of the neutrino flux to extract the interaction cross section from the measured neutrino interaction rate. This article summarizes methods of estimating the neutrino flux using in-situ and ex-situ measurements. The application of these methods by current and recent experiments is discussed.

  7. High Flux Isotope Reactor cold neutron source reference design concept

    SciTech Connect

    Selby, D.L.; Lucas, A.T.; Hyman, C.R.

    1998-05-01

    In February 1995, Oak Ridge National Laboratory`s (ORNL`s) deputy director formed a group to examine the need for upgrades to the High Flux Isotope Reactor (HFIR) system in light of the cancellation of the Advanced neutron Source Project. One of the major findings of this study was that there was an immediate need for the installation of a cold neutron source facility in the HFIR complex. In May 1995, a team was formed to examine the feasibility of retrofitting a liquid hydrogen (LH{sub 2}) cold source facility into an existing HFIR beam tube. The results of this feasibility study indicated that the most practical location for such a cold source was the HB-4 beam tube. This location provides a potential flux environment higher than the Institut Laue-Langevin (ILL) vertical cold source and maximizes the space available for a future cold neutron guide hall expansion. It was determined that this cold neutron beam would be comparable, in cold neutron brightness, to the best facilities in the world, and a decision was made to complete a preconceptual design study with the intention of proceeding with an activity to install a working LH{sub 2} cold source in the HFIR HB-4 beam tube. During the development of the reference design the liquid hydrogen concept was changed to a supercritical hydrogen system for a number of reasons. This report documents the reference supercritical hydrogen design and its performance. The cold source project has been divided into four phases: (1) preconceptual, (2) conceptual design and testing, (3) detailed design and procurement, and (4) installation and operation. This report marks the conclusion of the conceptual design phase and establishes the baseline reference concept.

  8. Directional measurements for sources of fission neutrons

    SciTech Connect

    Byrd, R.C.; Auchampaugh, G.F.; Feldman, W.C.

    1993-11-01

    Although penetrating neutron and gamma-ray emissions arguably provide the most effective signals for locating sources of nuclear radiation, their relatively low fluxes make searching for radioactive materials a tedious process. Even assuming lightly shielded sources and detectors with large areas and high efficiencies, estimated counting times can exceed several minutes for source separations greater than ten meters. Because determining the source position requires measurements at several locations, each with its own background, the search procedure can be lengthy and difficult to automate. Although directional measurements can be helpful, conventional collimation reduces count rates and increases the detector size and weight prohibitively, especially for neutron instruments. We describe an alternative approach for locating radiation sources that is based on the concept of a polarized radiation field. In this model, the presence of a source adds a directional component to the randomly oriented background radiation. The net direction of the local field indicates the source angle, and the magnitude provides an estimate of the distance to the source. The search detector is therefore seen as a device that responds to this polarized radiation field. Our proposed instrument simply substitutes segmented detectors for conventional single-element ones, so it requires little or no collimating material or additional weight. Attenuation across the detector creates differences in the count rates for opposite segments, whose ratios can be used to calculate the orthogonal components of the polarization vector. Although this approach is applicable to different types of radiation and detectors, in this report we demonstrate its use for sources of fission neutrons by using a prototype fast-neutron detector, which also provides background-corrected energy spectra for the incident neutrons.

  9. Applicability of the Ge(n,γ) Reaction for Estimating Thermal Neutron Flux

    NASA Astrophysics Data System (ADS)

    Nikolov, J.; Medić, Ž.; Jovančević, N.; Hansman, J.; Todorović, N.; Krmar, M.

    A simple experimental setup was used to measure gamma lines appearing in spectra after interactions of neutrons with Ge in the active volume of a high-purity germanium detector placed in a low-background shield. As source of neutrons a 252Cf spontaneous fission source and different thicknesses of PVC plates were used to slow down neutrons. A cadmiumenvelope was placed over the detector dipstick to identify the effect from slow and fast neutrons. Intensities of several characteristic γ-lines were measured, including intensity of the 139.9 keV γ-line from the reaction 74Ge(n,γ)75mGe, usually used for estimation of thermal neutron flux. Obtained results signify that only a part of the detected 139.9 keV γ-rays originate from thermal neutron capture. Some preliminary results indicate that in our detection setup thermal neutron capture contributes with 30% to 50% to the total intensity of the 139.9 keV γ-line, depending on the thickness of the PVC plates.

  10. Neutronic calculations for a new high flux reactor

    SciTech Connect

    Difilippo, F.C.; Worley, B.A.; Vondy, D.R.

    1985-01-01

    The Oak Ridge National Laboratory has begun the design of a new high flux reactor to be used for basic research, isotope production, and material irradiation. One of the principal goals of the design is the production of a thermal flux peak in the reflector larger than 5 x 10/sup 15//cm/sup 2/sec. A theoretical analysis of the slowing-down and diffusion of neutrons produced by a spherical fission source immersed in a moderator shows that the flux per unit power is maximized by combining a very undermoderated core with a very low absorbing reflector. The theoretical model interrelates total power, power density and transport properties with the thermal flux allowing very inexpensive scoping calculations. Full scale and detailed calculations were made with a numerical model which uses the Bold Venture code system. Calculations show that a highly enriched /sup 235/U reactor with D/sub 2/O as moderator and reflector would produce the desired peak flux, and the reactor would have a reasonable core life.

  11. Monitoring of MNSR operation by measuring subcritical photoneutron flux.

    PubMed

    Haddad, Kh; Alsomel, N

    2011-03-01

    Passive nondestructive assay methods are used to monitor the reactor's operation. It is required for nuclear regulatory, calculation validation and safeguards purposes. So, it plays a vital role in the safety and security of the nuclear plants. The possibility of MNSR operation monitoring by measuring the subcritical state photoneutron flux were investigated in this work. The photoneutron flux is induced by the fuels hard gamma radiation in the beryllium reflector. Theoretical formulation and experimental tests were performed. The results show that within a specified cooling time range, the photoneutron flux is induced by a single dominant hard gamma emitter such as (117)Cd (activation product) and (140)Ba ((140)La fission product). This phenomenon was utilized to monitor the cooling time and the operation neutron flux during the last campaign. Thus a passive nondestructive assay method is proposed with regard to the reactor operation's monitoring. PMID:21168337

  12. Pixelated Single-crystal Diamond Detector for fast neutron measurements

    NASA Astrophysics Data System (ADS)

    Rebai, M.; Cazzaniga, C.; Croci, G.; Tardocchi, M.; Perelli Cippo, E.; Calvani, P.; Girolami, M.; Trucchi, D. M.; Grosso, G.; Gorini, G.

    2015-03-01

    Single-crystal Diamond Detectors (SDDs), due to their high radiation hardness, fast response time and small size, are good candidates as fast neutron detectors in those environments where the high neutron flux is an issue, such as spallation neutron sources and the next generation thermonuclear fusion plasmas, i.e. the ITER experiment. Neutron detection in SDDs is based on the collection of electron-hole pairs produced by charged particles generated by neutron interactions with 12C. Recent measurements have demonstrated the SDD capability of measuring the neutron flux with a good energy resolution and at high rates. In this work a novel detector based on a 12-pixels SDD matrix will be presented. Each pixel is equipped with an independent electronic chain: the fast shaping preamplifier coupled to a digitizer is able to combine the high rate capability and the good energy resolution. Two CAEN digitizers are compared and the possibility of performing good energy resolution measurements (<2%) and at high rates (>1 MHz per channel) is described. Each pixel was characterized and calibrated using an 241Am source: the energy resolution was evaluated and gives a mean value of 1.73% at 5.5 MeV. The good energy resolution achieved and its uniformity between pixels are the demonstration of the capability of this novel detector as a spectrometer. This system will be installed during the next Deuterium-Tritium campaign on a collimated vertical line of sight at JET for 14 MeV neutron measurements.

  13. Pyrolytic graphite gauge for measuring heat flux

    NASA Technical Reports Server (NTRS)

    Bunker, Robert C. (Inventor); Ewing, Mark E. (Inventor); Shipley, John L. (Inventor)

    2002-01-01

    A gauge for measuring heat flux, especially heat flux encountered in a high temperature environment, is provided. The gauge includes at least one thermocouple and an anisotropic pyrolytic graphite body that covers at least part of, and optionally encases the thermocouple. Heat flux is incident on the anisotropic pyrolytic graphite body by arranging the gauge so that the gauge surface on which convective and radiative fluxes are incident is perpendicular to the basal planes of the pyrolytic graphite. The conductivity of the pyrolytic graphite permits energy, transferred into the pyrolytic graphite body in the form of heat flux on the incident (or facing) surface, to be quickly distributed through the entire pyrolytic graphite body, resulting in small substantially instantaneous temperature gradients. Temperature changes to the body can thereby be measured by the thermocouple, and reduced to quantify the heat flux incident to the body.

  14. Diamagnetic flux measurement in Aditya tokamak

    SciTech Connect

    Kumar, Sameer; Jha, Ratneshwar; Lal, Praveen; Hansaliya, Chandresh; Gopalkrishna, M. V.; Kulkarni, Sanjay; Mishra, Kishore

    2010-12-15

    Measurements of diamagnetic flux in Aditya tokamak for different discharge conditions are reported for the first time. The measured diamagnetic flux in a typical discharge is less than 0.6 mWb and therefore it has required careful compensation for various kinds of pick-ups. The hardware and software compensations employed in this measurement are described. We introduce compensation of a pick-up due to plasma current of less than 20 kA in short duration discharges, in which plasma pressure gradient is supposed to be negligible. The flux measurement during radio frequency heating is also presented in order to validate compensation.

  15. Microdosimetric spectra measurements of JANUS neutrons

    SciTech Connect

    Marshall, I.R.; Williamson, F.S.

    1985-01-01

    Neutron radiation from the JANUS reactor at Argonne National Laboratory is being used with increasing frequency for major biological experiments. The fast neutron spectrum has a Kerma-weighted mean energy of 0.8 MeV and low gamma-ray contamination. In 1984 the JANUS fission converter plate of highly enriched uranium was replaced by one made of low-enriched uranium. We recorded microdosimetric spectra at several different positions in the high-flux irradiation room of JANUS before the change of the converter plate. Each set of measurements consisted of spectra taken at three different site diameters (0.5, 1.0, and 5.0 ..mu..m) and in both ''attenuator up'' and ''attenuator down'' configurations. At two conventional dosimetry reference positions, two sets of measurements were recorded. At three biological reference positions, measurements simulating several biological irradiation conditions, were taken. The dose rate at each position was estimated and compared with dose rates obtained previously by conventional dosimetry. Comparison of the different measurements showed no major change in spectra as a function of position or irradiation condition. First results from similar sets of measurements recorded after the installment of the new converter plate indicate no major change in the spectra. 11 refs., 4 figs., 5 tabs.

  16. Solid scintillator based neutron fluctuation measurement on EAST tokamak

    NASA Astrophysics Data System (ADS)

    Pu, N.; Zhu, Y. B.; Zhong, G. Q.; Hu, L. Q.; Lin, S. Y.; Xu, L. Q.

    2015-12-01

    Microsecond level fast temporal resolved neutron flux and its fluctuation measurement system based on three types of solid scintillator detectors has been successfully established on the Experimental Advanced Superconducting Tokamak (EAST) for energetic particle (EP) and magnetohydrodynamics (MHD) instabilities relevant studies. The detector #1, where 50mm thick polyethylene is used for neutron thermalization, is mostly sensitive to thermal neutron. The detector #2 and #3 measure fast D-D neutrons directly with different gamma immunity. Design details together with detector test results with three types of radioisotope sources are presented. The system has been successfully implemented in EAST experiments for neutron and gamma identification. Typical fast MHD fluctuation related EAST experimental results from this system is also presented.

  17. Neutron flux characterisation of the Pavia TRIGA Mark II research reactor for radiobiological and microdosimetric applications.

    PubMed

    Alloni, D; Prata, M; Salvini, A; Ottolenghi, A

    2015-09-01

    Nowadays the Pavia TRIGA reactor is available for national and international collaboration in various research fields. The TRIGA Mark II nuclear research reactor of the Pavia University offers different in- and out-core neutron irradiation channels, each characterised by different neutron spectra. In the last two years a campaign of measurements and simulations has been performed in order to guarantee a better characterisation of these different fluxes and to meet the demands of irradiations that require precise information on these spectra in particular for radiobiological and microdosimetric studies. Experimental data on neutron fluxes have been collected analysing and measuring the gamma activity induced in thin target foils of different materials irradiated in different TRIGA experimental channels. The data on the induced gamma activities have been processed with the SAND II deconvolution code and finally compared with the spectra obtained with Monte Carlo simulations. The comparison between simulated and measured spectra showed a good agreement allowing a more precise characterisation of the neutron spectra and a validation of the adopted method. PMID:25958412

  18. [Fast neutron cross section measurements

    SciTech Connect

    Knoll, G.F.

    1992-10-26

    From its inception, the Nuclear Data Project at the University of Michigan has concentrated on two major objectives: (1) to carry out carefully controlled nuclear measurements of the highest possible reliability in support of the national nuclear data program, and (2) to provide an educational opportunity for students with interests in experimental nuclear science. The project has undergone a successful transition from a primary dependence on our photoneutron laboratory to one in which our current research is entirely based on a unique pulsed 14 MeV fast neutron facility. The new experimental facility is unique in its ability to provide nanosecond bursts of 14 MeV neutrons under conditions that are clean'' and as scatter-free as possible, and is the only one of its type currently in operation in the United States. It has been designed and put into operation primarily by graduate students, and has met or exceeded all of its important initial performance goals. We have reached the point of its routine operation, and most of the data are now in hand that will serve as the basis for the first two doctoral dissertations to be written by participating graduate students. Our initial results on double differential neutron cross sections will be presented at the May 1993 Fusion Reactor Technology Workshop. We are pleased to report that, after investing several years in equipment assembly and optimization, the project has now entered its data production'' phase.

  19. Eddy Correlation Flux Measurement System (ECOR) Handbook

    SciTech Connect

    Cook, DR

    2011-01-31

    The eddy correlation (ECOR) flux measurement system provides in situ, half-hour measurements of the surface turbulent fluxes of momentum, sensible heat, latent heat, and carbon dioxide (CO2) (and methane at one Southern Great Plains extended facility (SGP EF) and the North Slope of Alaska Central Facility (NSA CF). The fluxes are obtained with the eddy covariance technique, which involves correlation of the vertical wind component with the horizontal wind component, the air temperature, the water vapor density, and the CO2 concentration.

  20. LaBr3 scintillator response to admixed neutron and γ-ray fluxes

    NASA Astrophysics Data System (ADS)

    Cazzaniga, C.; Croci, G.; Giacomelli, L.; Grosso, G.; Nocente, M.; Tardocchi, M.; Gorini, G.; Weller, A.

    2013-12-01

    The γ-ray spectroscopy is a promising method for diagnosing fast ions and confined α particles in a fusion plasma device. This application requires γ-ray detectors with high energy resolution (say a few percent for γ-ray energies in the range 1-5 MeV), high efficiency and high count rate capability, ideally up to a few MHz. Furthermore, the detector will have to withstand the high 14 MeV and 2.45 MeV neutron fluxes produced by the main fusion reactions between deuterium and tritium. Experimental results demonstrate that the requirements on energy resolution, efficiency and count rate can be met with a LaBr3(Ce) scintillator detector equipped with fast digital data acquisition. The measured response of the detector to 2.45 MeV neutrons is presented in this paper and discussed in terms of the interaction mechanism between neutrons and detector.

  1. Measuring neutron spectra in radiotherapy using the nested neutron spectrometer

    SciTech Connect

    Maglieri, Robert Evans, Michael; Seuntjens, Jan; Kildea, John; Licea, Angel

    2015-11-15

    Purpose: Out-of-field neutron doses resulting from photonuclear interactions in the head of a linear accelerator pose an iatrogenic risk to patients and an occupational risk to personnel during radiotherapy. To quantify neutron production, in-room measurements have traditionally been carried out using Bonner sphere systems (BSS) with activation foils and TLDs. In this work, a recently developed active detector, the nested neutron spectrometer (NNS), was tested in radiotherapy bunkers. Methods: The NNS is designed for easy handling and is more practical than the traditional BSS. Operated in current-mode, the problem of pulse pileup due to high dose-rates is overcome by measuring current, similar to an ionization chamber. In a bunker housing a Varian Clinac 21EX, the performance of the NNS was evaluated in terms of reproducibility, linearity, and dose-rate effects. Using a custom maximum-likelihood expectation–maximization algorithm, measured neutron spectra at various locations inside the bunker were then compared to Monte Carlo simulations of an identical setup. In terms of dose, neutron ambient dose equivalents were calculated from the measured spectra and compared to bubble detector neutron dose equivalent measurements. Results: The NNS-measured spectra for neutrons at various locations in a treatment room were found to be consistent with expectations for both relative shape and absolute magnitude. Neutron fluence-rate decreased with distance from the source and the shape of the spectrum changed from a dominant fast neutron peak near the Linac head to a dominant thermal neutron peak in the moderating conditions of the maze. Monte Carlo data and NNS-measured spectra agreed within 30% at all locations except in the maze where the deviation was a maximum of 40%. Neutron ambient dose equivalents calculated from the authors’ measured spectra were consistent (one standard deviation) with bubble detector measurements in the treatment room. Conclusions: The NNS may

  2. Neutron flux and power in RTP core-15

    NASA Astrophysics Data System (ADS)

    Rabir, Mohamad Hairie; Zin, Muhammad Rawi Md; Usang, Mark Dennis; Bayar, Abi Muttaqin Jalal; Hamzah, Na'im Syauqi Bin

    2016-01-01

    PUSPATI TRIGA Reactor achieved initial criticality on June 28, 1982. The reactor is designed to effectively implement the various fields of basic nuclear research, manpower training, and production of radioisotopes. This paper describes the reactor parameters calculation for the PUSPATI TRIGA REACTOR (RTP); focusing on the application of the developed reactor 3D model for criticality calculation, analysis of power and neutron flux distribution of TRIGA core. The 3D continuous energy Monte Carlo code MCNP was used to develop a versatile and accurate full model of the TRIGA reactor. The model represents in detailed all important components of the core with literally no physical approximation. The consistency and accuracy of the developed RTP MCNP model was established by comparing calculations to the available experimental results and TRIGLAV code calculation.

  3. Neutron capture measurements on unstable nuclei at LANSCE

    SciTech Connect

    Ullmann, J. L.; Haight, R. C.; Fowler, M. M.; Miller, G. G.; Rundberg, R. S.; Wilhelmy, J. B.

    1999-06-10

    Although neutron capture by stable isotopes has been extensively measured, there are very few measurements on unstable isotopes. The intense neutron flux at the Manual Lujan Jr. Neutron Scattering Center at LANSCE enables us to measure capture on targets with masses of about 1 mg over the energy range from 1 eV to 100 keV. These measurements are important not only for understanding the basic physics, but also for calculations of stellar nucleosynthesis and Science-Based Stockpile Stewardship. Preliminary measurements on {sup 169}Tm and {sup 171}Tm have been made with deuterated benzene detectors. A new detector array at the Lujan center and a new radioactive isotope separator will combine to give Los Alamos a unique capability for making these measurements.

  4. Design of a high-flux epithermal neutron beam using 235U fission plates at the Brookhaven Medical Research Reactor.

    PubMed

    Liu, H B; Brugger, R M; Rorer, D C; Tichler, P R; Hu, J P

    1994-10-01

    Beams of epithermal neutrons are being used in the development of boron neutron capture therapy for cancer. This report describes a design study in which 235U fission plates and moderators are used to produce an epithermal neutron beam with higher intensity and better quality than the beam currently in use at the Brookhaven Medical Research Reactor (BMRR). Monte Carlo calculations are used to predict the neutron and gamma fluxes and absorbed doses produced by the proposed design. Neutron flux measurements at the present epithermal treatment facility (ETF) were made to verify and compare with the computed results where feasible. The calculations indicate that an epithermal neutron beam produced by a fission-plate converter could have an epithermal neutron intensity of 1.2 x 10(10) n/cm2.s and a fast neutron dose per epithermal neutron of 2.8 x 10(-11) cGy.cm2/nepi plus being forward directed. This beam would be built into the beam shutter of the ETF at the BMRR. The feasibility of remodeling the facility is discussed. PMID:7869995

  5. Differential neutron energy spectra measured on spacecraft in low Earth orbit

    NASA Technical Reports Server (NTRS)

    Dudkin, V. E.; Akopova, A. B.; Melkumyan, L. V.; Benton, E. V.; Frank, A. L.

    1990-01-01

    Two methods for measuring neutrons in the range from thermal energies to dozens of MeV were used. In the first method, alpha-particles emitted from the 6Li(n,alpha)T reaction are detected with the help of plastic nuclear track detectors, yielding results on thermal and resonance neutrons. Also, fission foils are used to detect fast neutrons. In the second method, fast neutrons are recorded by nuclear photographic emulsions (NPE). The results of measurements on board various satellites are presented. The neutron flux density does not appear to correlate clearly with orbital parameters. Up to 50% of neutrons are due to albedo neutrons from the atmosphere while the fluxes inside the satellites are 15-20% higher than those on the outside. Estimates show that the neutron contribution to the total equivalent radiation dose reaches 20-30%.

  6. (Fast neutron cross section measurements)

    SciTech Connect

    Not Available

    1991-01-01

    In the 14 MeV Neutron Laboratory, we have continued the development of a facility that is now the only one of its kind in operation in the United States. We have refined the klystron bunching system described in last year's report to the point that 1.2 nanosecond pulses have been directly measured. We have tested the pulse shape discrimination capability of our primary NE 213 neutron detector. We have converted the RF sweeper section of the beamline to a frequency of 1 MHz to replace the function of the high voltage pulser described in last year's report which proved to be difficult to maintain and unreliable in its operation. We have also overcome several other significant experimental difficulties, including a major problem with a vacuum leak in the main accelerator column. We have completed additional testing to prove the remainder of the generation and measurement systems, but overcoming some of these experimental difficulties has delayed the start of actual data taking. We are now in a position to begin our first series of ring geometry elastic scattering measurements, and these will be underway before the end of the current contract year. As part of our longer term planning, we are continuing the conceptual analysis of several schemes to improve the intensity of our current pulsed beam. These include the provision of a duoplasmatron ion source and/or the provision of preacceleration bunching. Additional details are given later in this report. A series of measurements were carried out at the Tandem Dynamatron Facility involving the irradiation of a series of yttrium foils and the determination of activation cross sections using absolute counting techniques. The experimental work has been completed, and final analysis of the cross section data will be completed within several months.

  7. Spectrum and density of neutron flux in the irradiation beam line no. 3 of the IBR-2 reactor

    NASA Astrophysics Data System (ADS)

    Shabalin, E. P.; Verkhoglyadov, A. E.; Bulavin, M. V.; Rogov, A. D.; Kulagin, E. N.; Kulikov, S. A.

    2015-03-01

    Methodology and results of measuring the differential density of the neutron flux in irradiation beam line no. 3 of the IBR-2 reactor using neutron activation analysis (NAA) are presented in the paper. The results are compared to the calculation performed on the basis of the 3D MCNP model. The data that are obtained are required to determine the integrated radiation dose of the studied samples at various distances from the reactor.

  8. Atmospheric Neutron Measurements using a Small Scintillator Based Detector

    NASA Astrophysics Data System (ADS)

    Kole, Merlin; Pearce, Mark; Fukazawa, Yasushi; Fukuda, Kentaro; Ishizu, Sumito; Jackson, Miranda; Kamae, Tune; Kawaguchi, Noriaki; Kawano, Takafumi; Kiss, Mozsi; Moretti, Elena; Yanagida, Takayuki; Chauvin, Maxime; Mikhalev, Victor; Rydstrom, Stefan; Takahashi, Hiromitsu

    PoGOLino is a standalone scintillator-based neutron detector designed for balloon-borne missions. Its main purpose is to provide data of the neutron flux in 2 different energy ranges in the high altitude / high latitude region where the highest neutron flux in the atmosphere is found. Furthermore the influence of the Solar activity upon the neutron environment in this region is relatively strong. As a result both short and long term time fluctuations are strongest in this region. At high altitudes neutrons can form a source of background for balloon-borne scientific measurements. They can furthermore form a major source for single event upsets in electronics. A good understanding of the high altitude / high latitude neutron environment is therefore important. Measurements of the neutron environment in this region are however lacking. PoGOLino contains two 5 mm thick Lithium Calcium Aluminium Fluoride (LiCAF) scintillators used for neutron detection. The LiCAF crystals are sandwiched between 2 Bismuth Germanium Oxide (BGO) scintillating crystals, which serve to veto signals produced by gamma-rays and charged particles. The veto system makes measurements of the neutron flux possible even in high radiation environments. One LiCAF detector is shielded with polyethylene while the second remains unshielded, making the detectors sensitive in different energy ranges. The choice of a scintillator crystals as the detection material ensures a high detection efficiency while keeping the instrument small, robust and light weight. The full standalone cylindrical instrument has a radius of 120 mm, a height of 670 mm and a total mass of 13 kg, making it suitable as a piggy back mission. PoGOLino was successfully launched on March 20th 2013 from the Esrange Space Center in Northern Sweden to an altitude of 30.9 km. A detailed description of the detector design is presented, along with results of of the flight. The neutron flux measured during flight is compared to predictions based

  9. The effect of craters on the lunar neutron flux

    NASA Astrophysics Data System (ADS)

    Eke, V. R.; Bower, K. E.; Diserens, S.; Ryder, M.; Yeomans, P. E. L.; Teodoro, L. F. A.; Elphic, R. C.; Feldman, W. C.; Hermalyn, B.; Lavelle, C. M.; Lawrence, D. J.

    2015-08-01

    The variation of remotely sensed neutron count rates is measured as a function of cratercentric distance using data from the Lunar Prospector Neutron Spectrometer. The count rate, stacked over many craters, peaks over the crater center, has a minimum near the crater rim, and at larger distances, it increases to a mean value that is up to 1% lower than the mean count rate observed over the crater. A simple model is presented, based upon an analytical topographical profile for the stacked craters fitted to data from the Lunar Orbiter Laser Altimeter. The effect of topography coupled with neutron beaming from the surface largely reproduces the observed count rate profiles. However, a model that better fits the observations can be found by including the additional freedom to increase the neutron emissivity of the crater area by ˜0.35% relative to the unperturbed surface. It is unclear what might give rise to this effect, but it may relate to additional surface roughness in the vicinities of craters. The amplitude of the crater-related signal in the neutron count rate is small, but not too small to demand consideration when inferring water-equivalent hydrogen (WEH) weight percentages in polar permanently shaded regions (PSRs). If the small crater-wide count rate excess is concentrated into a much smaller PSR, then it can lead to a large bias in the inferred WEH weight percentage. For instance, it may increase the inferred WEH for Cabeus crater at the Moon's south pole from ˜1% to ˜4%.

  10. Measuring and monitoring KIPT Neutron Source Facility Reactivity

    SciTech Connect

    Cao, Yan; Gohar, Yousry; Zhong, Zhaopeng

    2015-08-01

    Argonne National Laboratory (ANL) of USA and Kharkov Institute of Physics and Technology (KIPT) of Ukraine have been collaborating on developing and constructing a neutron source facility at Kharkov, Ukraine. The facility consists of an accelerator-driven subcritical system. The accelerator has a 100 kW electron beam using 100 MeV electrons. The subcritical assembly has keff less than 0.98. To ensure the safe operation of this neutron source facility, the reactivity of the subcritical core has to be accurately determined and continuously monitored. A technique which combines the area-ratio method and the flux-to-current ratio method is purposed to determine the reactivity of the KIPT subcritical assembly at various conditions. In particular, the area-ratio method can determine the absolute reactivity of the subcritical assembly in units of dollars by performing pulsed-neutron experiments. It provides reference reactivities for the flux-to-current ratio method to track and monitor the reactivity deviations from the reference state while the facility is at other operation modes. Monte Carlo simulations are performed to simulate both methods using the numerical model of the KIPT subcritical assembly. It is found that the reactivities obtained from both the area-ratio method and the flux-to-current ratio method are spatially dependent on the neutron detector locations and types. Numerical simulations also suggest optimal neutron detector locations to minimize the spatial effects in the flux-to-current ratio method. The spatial correction factors are calculated using Monte Carlo methods for both measuring methods at the selected neutron detector locations. Monte Carlo simulations are also performed to verify the accuracy of the flux-to-current ratio method in monitoring the reactivity swing during a fuel burnup cycle.

  11. High-Flux Neutron Generator Facility for Geochronology and Nuclear Physics Research

    NASA Astrophysics Data System (ADS)

    Waltz, Cory; HFNG Collaboration

    2015-04-01

    A facility based on a next-generation, high-flux D-D neutron generator (HFNG) is being commissioned at UC Berkeley. The generator is designed to produce monoenergetic 2.45 MeV neutrons at outputs exceeding 1011 n/s. The HFNG is designed around two RF-driven multi-cusp ion sources that straddle a titanium-coated copper target. D + ions, accelerated up to 150 keV from the ion sources, self-load the target and drive neutron generation through the d(d,n)3 He fusion reaction. A well-integrated cooling system is capable of handling beam power reaching 120 kW impinging on the target. The unique design of the HFNG target permits experimental samples to be placed inside the target volume, allowing the samples to receive the highest neutron flux (1011 cm-2 s-1) possible from the generator. In addition, external beams of neutrons will be available simultaneously, ranging from thermal to 2.45 MeV. Achieving the highest neutron yields required carefully designed schemes to mitigate back-streaming of high energy electrons liberated from the cathode target by deuteron bombardment. The proposed science program is focused on pioneering advances in the 40 Ar/39 Ar dating technique for geochronology, new nuclear data measurements, basic nuclear science, and education. An end goal is to become a user facility for researchers. This work is supported by NSF Grant No. EAR-0960138, U.S. DOE LBNL Contract No. DE-AC02-05CH11231, U.S. DOE LLNL Contract No. DE-AC52-07NA27344, and UC Office of the President Award 12-LR-238745.

  12. Neutron flux spectra and radiation damage parameters for the Russian Bor-60 and SM-2 reactors

    SciTech Connect

    Karasiov, A.V.; Greenwood, L.R.

    1995-04-01

    The objective is to compare neutron irradiation conditions in Russian reactors and similar US facilities. Neutron fluence and spectral information and calculated radiation damage parameters are presented for the BOR-60 (Fast Experimental Reactor - 60 MW) and SM-2 reactors in Russia. Their neutron exposure characteristics are comparable with those of the Experimental Breeder Reactor (ERB-II), the Fast Flux Test Facility (FFTF), and the High Flux Isotope Reactor (HFIR) in the United States.

  13. A benchmark analysis of radiation flux distribution for Boron Neutron Capture Therapy of canine brain tumors

    SciTech Connect

    Moran, J.M.

    1992-02-01

    Calculations of radiation flux and dose distributions for Boron Neutron Capture Therapy (BNCT) of brain tumors are typically performed using sophisticated three-dimensional analytical models based on either a homogeneous approximation or a simplified few-region approximation to the actual highly-heterogeneous geometry of the irradiation volume. Such models should be validated by comparison with calculations using detailed models in which all significant macroscopic tissue heterogeneities and geometric structures are explicitly represented as faithfully as possible. This work describes a validation exercise for BNCT of canine brain tumors. Geometric measurements of the canine anatomical structures of interest for this work were performed by dissecting and examining two essentially identical Labrador Retriever heads. Chemical analyses of various tissue samples taken during the dissections were conducted to obtain measurements of elemental compositions for tissues of interest. The resulting geometry and tissue composition data were then used to construct a detailed heterogeneous calculational model of the Labrador Retriever head. Calculations of three-dimensional radiation flux distributions pertinent to BNCT were performed for the model using the TORT discrete-ordinates radiation transport code. The calculations were repeated for a corresponding volume-weighted homogeneous tissue model. Comparison of the results showed that the peak neutron and photon flux magnitudes were quite similar for the two models (within 5%), but that the spatial flux profiles were shifted in the heterogeneous model such that the fluxes in some locations away from the peak differed from the corresponding fluxes in the homogeneous model by as much as 10-20%. Differences of this magnitude can be therapeutically significant, emphasizing the need for proper validation of simplified treatment planning models.

  14. Experimental flux measurements on a network scale

    SciTech Connect

    Schwender, J.

    2011-10-11

    Metabolic flux is a fundamental property of living organisms. In recent years, methods for measuring metabolic flux in plants on a network scale have evolved further. One major challenge in studying flux in plants is the complexity of the plant's metabolism. In particular, in the presence of parallel pathways in multiple cellular compartments, the core of plant central metabolism constitutes a complex network. Hence, a common problem with the reliability of the contemporary results of {sup 13}C-Metabolic Flux Analysis in plants is the substantial reduction in complexity that must be included in the simulated networks; this omission partly is due to limitations in computational simulations. Here, I discuss recent emerging strategies that will better address these shortcomings.

  15. Fundamentals of heat measurement. [heat flux transducers

    NASA Technical Reports Server (NTRS)

    Gerashchenko, O. A.

    1979-01-01

    Various methods and devices for obtaining experimental data on heat flux density over wide ranges of temperature and pressure are examined. Laboratory tests and device fabrication details are supplemented by theoretical analyses of heat-conduction and thermoelectric effects, providing design guidelines and information relevant to further research and development. A theory defining the measure of correspondence between transducer signal and the measured heat flux is established for individual (isolated) heat flux transducers subject to space and time-dependent loading. An analysis of the properties of stacked (series-connected) transducers of various types (sandwich-type, plane, and spiral) is used to derive a similarity theory providing general governing relationships. The transducers examined are used in 36 types of derivative devices involving direct heat loss measurements, heat conduction studies, radiation pyrometry, calorimetry in medicine and industry and nuclear reactor dosimetry.

  16. Characterisation of CVD diamond detectors used for fast neutron flux monitoring

    NASA Astrophysics Data System (ADS)

    Foulon, F.; Bergonzo, P.; Amosov, V. N.; Kaschuck, Yu.; Frunze, V.; Tromson, D.; Brambilla, A.

    2002-01-01

    Natural diamond detectors (NDD) have been successfully used for fast neutron spectrometry on various fusion installations in plasma diagnostics. These detectors can work at high temperature, are radiation hard and exhibit a high energy resolution. However, the use of NDD is limited by the availability of IIa type diamonds exhibiting high electronic properties. With the recent advance in the growth of high quality chemically vapour deposited (CVD) diamond at LETI, CVD diamond appears to be a very promising material for plasma diagnostics. We present here for the first time results of the use of CVD diamond detectors for fast neutron flux monitoring on a neutron generator. The characteristics of CVD diamond detectors are compared with that of high quality NDD made by TRINITI. Pulse height spectra have been measured with CVD detectors and NDD under both 5.5 MeV alpha particles and 14.1 MeV neutrons. The quality of CVD diamond enables the recording of structured spectra allowing the distinction between the different neutron reactions on carbon. The efficiency of CVD diamond monitors and their actual limitations are analysed and discussed.

  17. Development of micro-pocket fission detectors (MPFD) for near-core and in-core neutron flux monitoring

    NASA Astrophysics Data System (ADS)

    Ohmes, Martin F.; McGregor, Douglas S.; Shultis, J. Kenneth; Whaley, P. Michael; Ahmed, A. S. M. Sabbir; Bolinger, Clayton C.; Pinsent, Tracy C.

    2004-01-01

    Miniaturized Micro-Pocket Fission Detectors (MPFD) are under investigation as real-time neutron flux monitors. The devices are capable of performing near-core and in-core reactor power measurements. The basic design utilizes neutron reactive material confined within a miniaturized gas pocket, similar to that of a fission chamber. Device size ranges from 500 microns to a few millimeters thick, thereby allowing them to be inserted directly between fuel elements of a reactor core. Fabricated from inexpensive ceramic materials, the detectors can be fashioned into a linear array to facilitate 3-D mapping of a reactor core neutron flux profile in "real-time". Initial tests have shown these devices to be extremely radiation hard and potentially capable of operating in a neutron fluence exceeding 1016 n cm-2 without noticeable degradation.

  18. Spatial corrections for pulsed-neutron reactivity measurements.

    SciTech Connect

    Cao, Y.; Lee, J.; Nuclear Engineering Division; Univ. of Michigan

    2010-07-01

    For pulsed-neutron experiments performed in a subcritical reactor, the reactivity obtained from the area-ratio method is sensitive to detector positions. The spatial effects are induced by the presence of both the prompt neutron harmonics and the delayed neutron harmonics in the reactor. The traditional kinetics distortion factor is only limited to correcting the spatial effects caused by the fundamental prompt-{alpha} mode. In this paper, we derive spatial correction factors fp and fd to account for spatial effects induced by the prompt neutron harmonics and the delayed neutron harmonics, respectively. Our numerical simulations with the FX2-TH time-dependent multigroup diffusion code indicate that the high-order prompt neutron harmonics lead to significant spatial effects and cannot be neglected in calculating the spatial correction factors. The prompt spatial correction factor fp can be simply determined by the ratio of the normalized detector responses corresponding to the fundamental k-mode and the prompt neutron flux integrated over the pulse period. Thus, it is convenient to calculate and provides physically intuitive explanations on the spatial dependence of reactivity measured in the MUSE-4 experiments: overestimation of the subcriticality in regions close to the external neutron source and underestimation of the subcriticality away from the source but within the fuel region.

  19. Eddy Correlation Flux Measurement System Handbook

    SciTech Connect

    Cook, D. R.

    2016-01-01

    The eddy correlation (ECOR) flux measurement system provides in situ, half-hour measurements of the surface turbulent fluxes of momentum, sensible heat, latent heat, and carbon dioxide (CO2) (and methane at one Southern Great Plains extended facility (SGP EF) and the North Slope of Alaska Central Facility (NSA CF). The fluxes are obtained with the eddy covariance technique, which involves correlation of the vertical wind component with the horizontal wind component, the air temperature, the water vapor density, and the CO2 concentration. The instruments used are: • a fast-response, three-dimensional (3D) wind sensor (sonic anemometer) to obtain the orthogonal wind components and the speed of sound (SOS) (used to derive the air temperature) • an open-path infrared gas analyzer (IRGA) to obtain the water vapor density and the CO2 concentration, and • an open-path infrared gas analyzer (IRGA) to obtain methane density and methane flux at one SGP EF and at the NSA CF. The ECOR systems are deployed at the locations where other methods for surface flux measurements (e.g., energy balance Bowen ratio [EBBR] systems) are difficult to employ, primarily at the north edge of a field of crops. A Surface Energy Balance System (SEBS) has been installed collocated with each deployed ECOR system in SGP, NSA, Tropical Western Pacific (TWP), ARM Mobile Facility 1 (AMF1), and ARM Mobile Facility 2 (AMF2). The surface energy balance system consists of upwelling and downwelling solar and infrared radiometers within one net radiometer, a wetness sensor, and soil measurements. The SEBS measurements allow the comparison of ECOR sensible and latent heat fluxes with the energy balance determined from the SEBS and provide information on wetting of the sensors for data quality purposes. The SEBS at one SGP and one NSA site also support upwelling and downwelling PAR measurements to qualify those two locations as Ameriflux sites.

  20. Radiative flux measurements in the troposphere

    NASA Technical Reports Server (NTRS)

    Valero, F. P. J.; Gore, W. J. Y.; Giver, L. P. M.

    1982-01-01

    A new airborne radiometric system with a time resolution as high as 60 msec has been designed for measuring radiative fluxes in the atmosphere. To verify the instrument performance, the solar constant at the top of the atmosphere has been calculated using the radiative flux densities measured in the troposphere, and the result obtained has been found to agree with the standard value to within 4%. Total heating rates of 0.175 and 0.377 K/h have been determined for hazy and foggy atmospheres, respectively, and aerosol heating rates of 0.065 and 0.235 K/h have been deduced from the total heating rates.

  1. Neutron Multiplicity Measurements With 3He Alternative: Straw Neutron Detectors

    DOE PAGESBeta

    Mukhopadhyay, Sanjoy; Wolff, Ronald S.; Meade, John A.; Detweiler, Ryan; Maurer, Richard J.; Mitchell, Stephen E.; Guss, Paul P.; Lacy, Jeffrey L.; Sun, Liang; Athanasiades, Athanasios

    2015-01-27

    Counting neutrons emitted by special nuclear material (SNM) and differentiating them from the background neutrons of various origins is the most effective passive means of detecting SNM. Unfortunately, neutron detection, counting, and partitioning in a maritime environment are complex due to the presence of high-multiplicity spallation neutrons (commonly known as “ship effect”) and to the complicated nature of the neutron scattering in that environment. In this study, a prototype neutron detector was built using 10B as the converter in a special form factor called “straws” that would address the above problems by looking into the details of multiplicity distributions ofmore » neutrons originating from a fissioning source. This paper describes the straw neutron multiplicity counter (NMC) and assesses the performance with those of a commercially available fission meter. The prototype straw neutron detector provides a large-area, efficient, lightweight, more granular (than fission meter) neutron-responsive detection surface (to facilitate imaging) to enhance the ease of application of fission meters. Presented here are the results of preliminary investigations, modeling, and engineering considerations leading to the construction of this prototype. This design is capable of multiplicity and Feynman variance measurements. This prototype may lead to a near-term solution to the crisis that has arisen from the global scarcity of 3He by offering a viable alternative to fission meters. This paper describes the work performed during a 2-year site-directed research and development (SDRD) project that incorporated straw detectors for neutron multiplicity counting. The NMC is a two-panel detector system. We used 10B (in the form of enriched boron carbide: 10B4C) for neutron detection instead of 3He. In the first year, the project worked with a panel of straw neutron detectors, investigated its characteristics, and developed a data acquisition (DAQ) system to collect

  2. Neutron multiplication error in TRU waste measurements

    SciTech Connect

    Veilleux, John; Stanfield, Sean B; Wachter, Joe; Ceo, Bob

    2009-01-01

    Total Measurement Uncertainty (TMU) in neutron assays of transuranic waste (TRU) are comprised of several components including counting statistics, matrix and source distribution, calibration inaccuracy, background effects, and neutron multiplication error. While a minor component for low plutonium masses, neutron multiplication error is often the major contributor to the TMU for items containing more than 140 g of weapons grade plutonium. Neutron multiplication arises when neutrons from spontaneous fission and other nuclear events induce fissions in other fissile isotopes in the waste, thereby multiplying the overall coincidence neutron response in passive neutron measurements. Since passive neutron counters cannot differentiate between spontaneous and induced fission neutrons, multiplication can lead to positive bias in the measurements. Although neutron multiplication can only result in a positive bias, it has, for the purpose of mathematical simplicity, generally been treated as an error that can lead to either a positive or negative result in the TMU. While the factors that contribute to neutron multiplication include the total mass of fissile nuclides, the presence of moderating material in the matrix, the concentration and geometry of the fissile sources, and other factors; measurement uncertainty is generally determined as a function of the fissile mass in most TMU software calculations because this is the only quantity determined by the passive neutron measurement. Neutron multiplication error has a particularly pernicious consequence for TRU waste analysis because the measured Fissile Gram Equivalent (FGE) plus twice the TMU error must be less than 200 for TRU waste packaged in 55-gal drums and less than 325 for boxed waste. For this reason, large errors due to neutron multiplication can lead to increased rejections of TRU waste containers. This report will attempt to better define the error term due to neutron multiplication and arrive at values that are

  3. Neutron spin echo scattering angle measurement (SESAME)

    SciTech Connect

    Pynn, R.; Fitzsimmons, M.R.; Fritzsche, H.; Gierlings, M.; Major, J.; Jason, A.

    2005-05-15

    We describe experiments in which the neutron spin echo technique is used to measure neutron scattering angles. We have implemented the technique, dubbed spin echo scattering angle measurement (SESAME), using thin films of Permalloy electrodeposited on silicon wafers as sources of the magnetic fields within which neutron spins precess. With 30-{mu}m-thick films we resolve neutron scattering angles to about 0.02 deg. with neutrons of 4.66 A wavelength. This allows us to probe correlation lengths up to 200 nm in an application to small angle neutron scattering. We also demonstrate that SESAME can be used to separate specular and diffuse neutron reflection from surfaces at grazing incidence. In both of these cases, SESAME can make measurements at higher neutron intensity than is available with conventional methods because the angular resolution achieved is independent of the divergence of the neutron beam. Finally, we discuss the conditions under which SESAME might be used to probe in-plane structure in thin films and show that the method has advantages for incident neutron angles close to the critical angle because multiple scattering is automatically accounted for.

  4. An investigation of the neutron flux in bone-fluorine phantoms comparing accelerator based in vivo neutron activation analysis and FLUKA simulation data

    NASA Astrophysics Data System (ADS)

    Mostafaei, F.; McNeill, F. E.; Chettle, D. R.; Matysiak, W.; Bhatia, C.; Prestwich, W. V.

    2015-01-01

    We have tested the Monte Carlo code FLUKA for its ability to assist in the development of a better system for the in vivo measurement of fluorine. We used it to create a neutron flux map of the inside of the in vivo neutron activation analysis irradiation cavity at the McMaster Accelerator Laboratory. The cavity is used in a system that has been developed for assessment of fluorine levels in the human hand. This study was undertaken to (i) assess the FLUKA code, (ii) find the optimal hand position inside the cavity and assess the effects on precision of a hand being in a non-optimal position and (iii) to determine the best location for our γ-ray detection system within the accelerator beam hall. Simulation estimates were performed using FLUKA. Experimental measurements of the neutron flux were performed using Mn wires. The activation of the wires was measured inside (1) an empty bottle, (2) a bottle containing water, (3) a bottle covered with cadmium and (4) a dry powder-based fluorine phantom. FLUKA was used to simulate the irradiation cavity, and used to estimate the neutron flux in different positions both inside, and external to, the cavity. The experimental results were found to be consistent with the Monte Carlo simulated neutron flux. Both experiment and simulation showed that there is an optimal position in the cavity, but that the effect on the thermal flux of a hand being in a non-optimal position is less than 20%, which will result in a less than 10% effect on the measurement precision. FLUKA appears to be a code that can be useful for modeling of this type of experimental system.

  5. Dose measurements around spallation neutron sources.

    PubMed

    Fragopoulou, M; Stoulos, S; Manolopoulou, M; Krivopustov, M; Zamani, M

    2008-01-01

    Neutron dose measurements and calculations around spallation sources appear to be of great importance in shielding research. Two spallation sources were irradiated by high-energy proton beams delivered by the Nuclotron accelerator (JINR), Dubna. Neutrons produced by the spallation sources were measured by using solid-state nuclear track detectors. In addition, neutron dose was calculated after polyethylene and concrete, using a phenomenological model based on empirical relations applied in high-energy physics. The study provides an analytical and experimental neutron benchmark analysis using the transmission factor and a comparison between the experimental results and calculations. PMID:18957519

  6. Instruments for measuring radiant thermal fluxes

    NASA Technical Reports Server (NTRS)

    Gerashenko, O. A.; Sazhina, S. A.

    1974-01-01

    An absolute two-sided radiometer, designed on the principle of replacing absorbed radiant energy with electrical energy, is described. The sensitive element of the detector is a thermoelectric transducer of thermal flux. The fabrication technology, methods of measurement, technical characteristics, and general operation of the instrument are presented.

  7. Analysis of neutron flux distribution for the validation of computational methods for the optimization of research reactor utilization.

    PubMed

    Snoj, L; Trkov, A; Jaćimović, R; Rogan, P; Zerovnik, G; Ravnik, M

    2011-01-01

    In order to verify and validate the computational methods for neutron flux calculation in TRIGA research reactor calculations, a series of experiments has been performed. The neutron activation method was used to verify the calculated neutron flux distribution in the TRIGA reactor. Aluminium (99.9 wt%)-Gold (0.1 wt%) foils (disks of 5mm diameter and 0.2mm thick) were irradiated in 33 locations; 6 in the core and 27 in the carrousel facility in the reflector. The experimental results were compared to the calculations performed with Monte Carlo code MCNP using detailed geometrical model of the reactor. The calculated and experimental normalized reaction rates in the core are in very good agreement for both isotopes indicating that the material and geometrical properties of the reactor core are modelled well. In conclusion one can state that our computational model describes very well the neutron flux and reaction rate distribution in the reactor core. In the reflector however, the accuracy of the epithermal and thermal neutron flux distribution and attenuation is lower, mainly due to lack of information about the material properties of the graphite reflector surrounding the core, but the differences between measurements and calculations are within 10%. Since our computational model properly describes the reactor core it can be used for calculations of reactor core parameters and for optimization of research reactor utilization. PMID:20855215

  8. Upper limits to the quiet-time solar neutron flux from 10 to 100 MeV

    NASA Technical Reports Server (NTRS)

    Moon, S.; Simnett, G. M.; White, R. S.

    1975-01-01

    The UCR large area solid-angle double scatter neutron telescope was flown to search for solar neutrons on 3 balloon flights on September 26, 1971, May 14, 1972 and September 19, 1972. The first two flights were launched from Palestine, Texas and the third from Cape Girardeau, Missouri. The float altitude on each flight was at about 5 g/sq cm residual atmosphere. Neutrons from 10 to 100 MeV were measured. No solar flares occurred during the flights. Upper limits to the quiet time solar neutron fluxes at the 95% confidence level are .00028, .00046, .00096 and .00090 neutrons/sq cm-sec in the energy intervals of 10-30, 30-50, 50-100 and 10-100 MeV, respectively.

  9. Interplanetary magnetic flux - Measurement and balance

    NASA Technical Reports Server (NTRS)

    Mccomas, D. J.; Gosling, J. T.; Phillips, J. L.

    1992-01-01

    A new method for determining the approximate amount of magnetic flux in various solar wind structures in the ecliptic (and solar rotation) plane is developed using single-spacecraft measurements in interplanetary space and making certain simplifying assumptions. The method removes the effect of solar wind velocity variations and can be applied to specific, limited-extent solar wind structures as well as to long-term variations. Over the 18-month interval studied, the ecliptic plane flux of coronal mass ejections was determined to be about 4 times greater than that of HFDs.

  10. Plasma momentum meter for momentum flux measurements

    DOEpatents

    Zonca, Fulvio; Cohen, Samuel A.; Bennett, Timothy; Timberlake, John R.

    1993-01-01

    Invention comprises an instrument in which momentum flux onto a biasable target plate is transferred via a suspended quartz tube onto a sensitive force transducer--a capacitance-type pressure gauge. The transducer is protected from thermal damage, arcing and sputtering, and materials used in the target and pendulum are electrically insulating, rigid even at elevated temperatures, and have low thermal conductivity. The instrument enables measurement of small forces (10.sup.-5 to 10.sup.3 N) accompanied by high heat fluxes which are transmitted by energetic particles with 10's of eV of kinetic energy in a intense magnetic field and pulsed plasma environment.

  11. Measurement of Neutron Yields from UF4

    SciTech Connect

    Bell, Zane W; Ziock, Klaus-Peter; Ohmes, Martin F; Xu, Yunlin; Downar, Thomas J; Pozzi, Sara A

    2010-01-01

    We have performed measurements of neutron production from UF{sub 4} samples using liquid scintillator as the detector material. Neutrons and gamma rays were separated by a multichannel digital pulse shape discriminator, and the neutron pulse-height spectra were unfolded using sequential least-squares optimization with an active set strategy. The unfolded spectra were compared to estimates calculated with the SOURCES 4C code.

  12. Detailed flux calculations for the conceptual design of the Advanced Neutron Source Reactor

    SciTech Connect

    Wemple, C.A.

    1995-05-01

    A detailed MCNP model of the Advanced Neutron Source Reactor has been developed. All reactor components inside the reflector tank were included, and all components were highly segmented. Neutron and photon multigroup flux spectra have been calculated for each segment in the model, and thermal-to-fast neutron flux ratios were determined for each component segment. Axial profiles of the spectra are provided for all components of the reactor. Individual segment statistical uncertainties were limited wherever possible, and the group fluxes for all important reflector components have a standard deviation below 10%.

  13. Calculations of neutron flux spectra induced in the earth's atmosphere by galactic cosmic rays

    NASA Technical Reports Server (NTRS)

    Armstrong, T. W.; Chandler, K. C.; Barish, J.

    1972-01-01

    Calculations have been carried out to determine the neutron flux induced in the earth's atmosphere by galactic protons and alpha particles at solar minimum for a geomagnetic latitude of 42 N. Neutron flux spectra were calculated using Monte Carlo and discrete ordinates methods, and various comparisons with experimental data are presented. The magnitude and shape of the calculated neutron-leakage spectrum at the particular latitude considered support the theory that the cosmic-ray-albedo-neutron-decay mechanism is the source of the protons and electrons trapped in the Van Allen belts.

  14. Gamma-ray-spectroscopy following high-flux 14-MeV neutron activation

    SciTech Connect

    Williams, R.E.

    1981-10-12

    The Rotating Target Neutron Source (RTNS-I), a high-intensity source of 14-MeV neutrons at the Lawrence Livermore National Laboratory (LLNL), has been used for applications in activation analysis, inertial-confinement-fusion diagnostic development, and fission decay-heat studies. The fast-neutron flux from the RTNS-I is at least 50 times the maximum fluxes available from typical neutron generators, making these applications possible. Facilities and procedures necessary for gamma-ray spectroscopy of samples irradiated at the RTNS-I were developed.

  15. Reducing measurement scale mismatch to improve surface energy flux estimation

    NASA Astrophysics Data System (ADS)

    Iwema, Joost; Rosolem, Rafael; Rahman, Mostaquimur; Blyth, Eleanor; Wagener, Thorsten

    2016-04-01

    Soil moisture importantly controls land surface processes such as energy and water partitioning. A good understanding of these controls is needed especially when recognizing the challenges in providing accurate hyper-resolution hydrometeorological simulations at sub-kilometre scales. Soil moisture controlling factors can, however, differ at distinct scales. In addition, some parameters in land surface models are still often prescribed based on observations obtained at another scale not necessarily employed by such models (e.g., soil properties obtained from lab samples used in regional simulations). To minimize such effects, parameters can be constrained with local data from Eddy-Covariance (EC) towers (i.e., latent and sensible heat fluxes) and Point Scale (PS) soil moisture observations (e.g., TDR). However, measurement scales represented by EC and PS still differ substantially. Here we use the fact that Cosmic-Ray Neutron Sensors (CRNS) estimate soil moisture at horizontal footprint similar to that of EC fluxes to help answer the following question: Does reduced observation scale mismatch yield better soil moisture - surface fluxes representation in land surface models? To answer this question we analysed soil moisture and surface fluxes measurements from twelve COSMOS-Ameriflux sites in the USA characterized by distinct climate, soils and vegetation types. We calibrated model parameters of the Joint UK Land Environment Simulator (JULES) against PS and CRNS soil moisture data, respectively. We analysed the improvement in soil moisture estimation compared to uncalibrated model simulations and then evaluated the degree of improvement in surface fluxes before and after calibration experiments. Preliminary results suggest that a more accurate representation of soil moisture dynamics is achieved when calibrating against observed soil moisture and further improvement obtained with CRNS relative to PS. However, our results also suggest that a more accurate

  16. Analysis of a measured neutron background below 6 MeV for fast-neutron imaging systems

    NASA Astrophysics Data System (ADS)

    Ide, K.; Becchetti, M. F.; Flaska, M.; Poitrasson-Riviere, A.; Hamel, M. C.; Polack, J. K.; Lawrence, C. C.; Clarke, S. D.; Pozzi, S. A.

    2012-12-01

    Detailed and accurate information on the neutron background is relevant for many applications that involve radiation detection, both for non-coincidence and coincidence countings. In particular, for the purpose of developing advanced neutron-detection techniques for nuclear non-proliferation and nuclear safeguards, the energy-dependent, ground-level, neutron-background information is needed. There are only a few previous studies available about the neutron background below 10 MeV, which is a typical neutron energy range of interest for nuclear non-proliferation and nuclear-safeguards applications. Thus, there is a potential for further investigation in this energy range. In this paper, neutron-background measurement results using organic-liquid scintillation detectors are described and discussed, with a direct application in optimization simulations of a fast-neutron imager based on liquid scintillators. The measurement was performed in summer 2011 in Ann Arbor, Michigan, USA, and the measurement setup consisted of several EJ-309 liquid scintillators and a fast waveform digitizer. The average neutron flux below 6 MeV was measured to be approximately 4e-4 counts/cm2/s. In addition, the relationship between the neutron-background count rate and various environmental quantities, such as humidity, at Earth's ground level was investigated and the results did not reveal any straightforward dependences. The measured pulse height distribution (PHD) was unfolded to determine the energy spectrum of the background neutrons. The unfolded neutron-background spectrum was implemented to a previously-created MCNPX-PoliMi model of the neutron-scatter camera and simple-backprojection images of the background neutrons were acquired. Furthermore, a simulated PHD was obtained with the MCNPX-PoliMi code using the "Cosmic-Ray Shower Library" (CRY) source sub-routine which returns various types of radiation, including neutrons and photons at a surface, and accounts for solar cycle

  17. Theoretical analysis of integral neutron transport equation using collision probability method with quadratic flux approach

    SciTech Connect

    Shafii, Mohammad Ali Meidianti, Rahma Wildian, Fitriyani, Dian; Tongkukut, Seni H. J.; Arkundato, Artoto

    2014-09-30

    Theoretical analysis of integral neutron transport equation using collision probability (CP) method with quadratic flux approach has been carried out. In general, the solution of the neutron transport using the CP method is performed with the flat flux approach. In this research, the CP method is implemented in the cylindrical nuclear fuel cell with the spatial of mesh being conducted into non flat flux approach. It means that the neutron flux at any point in the nuclear fuel cell are considered different each other followed the distribution pattern of quadratic flux. The result is presented here in the form of quadratic flux that is better understanding of the real condition in the cell calculation and as a starting point to be applied in computational calculation.

  18. Measurements of fusion neutron yields by neutron activation technique: Uncertainty due to the uncertainty on activation cross-sections

    NASA Astrophysics Data System (ADS)

    Stankunas, Gediminas; Batistoni, Paola; Sjöstrand, Henrik; Conroy, Sean

    2015-07-01

    The neutron activation technique is routinely used in fusion experiments to measure the neutron yields. This paper investigates the uncertainty on these measurements as due to the uncertainties on dosimetry and activation reactions. For this purpose, activation cross-sections were taken from the International Reactor Dosimetry and Fusion File (IRDFF-v1.05) in 640 groups ENDF-6 format for several reactions of interest for both 2.5 and 14 MeV neutrons. Activation coefficients (reaction rates) have been calculated using the neutron flux spectra at JET vacuum vessel, both for DD and DT plasmas, calculated by MCNP in the required 640-energy group format. The related uncertainties for the JET neutron spectra are evaluated as well using the covariance data available in the library. These uncertainties are in general small, but not negligible when high accuracy is required in the determination of the fusion neutron yields.

  19. Undergraduate Measurements of Neutron Cross Sections

    NASA Astrophysics Data System (ADS)

    Hicks, S. F.; Vanhoy, J. R.; French, A. J.; Santonil, Z. C.; Crider, B. P.; Peters, E. E.; McEllistrem, M. T.; Prados-Estévez, F. M.; Ross, T. J.; Yates, S. W.

    Undergraduate students at the University of Dallas have investigated basic properties of nuclei through γ-ray and neutron spectroscopy following neutron scattering. The former has been used primarily for nuclear structure investigations, while the latter has been used to measure neutron scattering cross sections important for fission reactor applications. A series of (n,n') and (n,n'γ) measurements have been made on 54Fe and 56Fe to determine neutron cross sections for scattering to excited levels in these nuclei. The former provides the cross sections directly and the latter are used to deduce inelastic neutron scattering cross sections by measuring the γ-ray production cross sections to states not easily resolved in neutron spectroscopy. All measurements have been completed at the University of Kentucky Accelerator Laboratory using a 7-MV Model CN Van de Graaff accelerator, along with the neutron production and neutron and γ-ray detection systems located there. Students participate in accelerator operation, experimental setup, data acquisition, and data analyses. An overview of the research program and student contributions is presented.

  20. Fluxes of fast and epithermal neutrons from Lunar Prospector: evidence for water ice at the lunar poles.

    PubMed

    Feldman, W C; Maurice, S; Binder, A B; Barraclough, B L; Elphic, R C; Lawrence, D J

    1998-09-01

    Maps of epithermal- and fast-neutron fluxes measured by Lunar Prospector were used to search for deposits enriched in hydrogen at both lunar poles. Depressions in epithermal fluxes were observed close to permanently shaded areas at both poles. The peak depression at the North Pole is 4.6 percent below the average epithermal flux intensity at lower latitudes, and that at the South Pole is 3.0 percent below the low-latitude average. No measurable depression in fast neutrons is seen at either pole. These data are consistent with deposits of hydrogen in the form of water ice that are covered by as much as 40 centimeters of desiccated regolith within permanently shaded craters near both poles. PMID:9727973

  1. Measuring the Neutron Lifetime using Magnetically Trapped Ultracold Neutrons

    NASA Astrophysics Data System (ADS)

    Mumm, H. P.; Coakley, K. J.; Dewey, M. S.; Huber, M. G.; Hughes, P. P.; Thompson, A. K.; Golub, R.; Huffer, C. R.; Huffman, P. R.; O'Shaughnessy, C. M.; Schelhammer, K. W.

    2010-11-01

    The neutron beta-decay lifetime is important in both theoretical predictions of the primordial abundance of ^4He and providing a strong unitarity test of the CKM mixing matrix. We have previously demonstrated trapping of Ultracold Neutrons (UCN) in a magnetic trap, and, though statistically limited, measured a lifetime consistent with the world average. A major upgrade of the apparatus has now been completed at NIST. In our unique approach, a 0.89 nm neutron beam is incident on a superfluid ^4He target within the minimum field region of an Ioffe-type magnetic trap. Neutrons are downscattered by single phonon scattering in liquid helium to near rest and trapped; at sufficiently low temperatures, the low phonon density in the helium suppresses upscatter. The electron accompanying neutron decay produces scintillation in the superfluid helium and can be detected in real time. Previous statistical limitations as well as systematics related to neutron material bottling will be reduced by significant increases in field strength and trap volume. Details of analyses of the systematics as well as the initial performance benchmarks of the new apparatus will be presented.

  2. Numerical studies of the flux-to-current ratio method in the KIPT neutron source facility

    SciTech Connect

    Cao, Y.; Gohar, Y.; Zhong, Z.

    2013-07-01

    The reactivity of a subcritical assembly has to be monitored continuously in order to assure its safe operation. In this paper, the flux-to-current ratio method has been studied as an approach to provide the on-line reactivity measurement of the subcritical system. Monte Carlo numerical simulations have been performed using the KIPT neutron source facility model. It is found that the reactivity obtained from the flux-to-current ratio method is sensitive to the detector position in the subcritical assembly. However, if multiple detectors are located about 12 cm above the graphite reflector and 54 cm radially, the technique is shown to be very accurate in determining the k{sub eff} this facility in the range of 0.75 to 0.975. (authors)

  3. Measurement of Neutron Transmission Through Iron Spheres

    SciTech Connect

    Massey, T.N.; Grimes, S.M.; Wenner, M.T.; Haghighat, Alireza; Adams, James M.; Carlson, Allan D.

    2005-05-24

    We have measured the transmission of neutrons through iron spheres with several different neutron sources. The D(d,n) reaction and the 15N(n,p) reaction were found to be the best candidates for nearly monoenergetic sources at energies below 11 MeV. We have used a quasi monoenergetic source with 3.0-, 5.0-, and 7.0-MeV deuterons incident on a deuteron gas cell and 5.1-MeV protons incident on a 15N gas cell. The Ohio University Beam Swinger Facility was used in these measurements. This allowed a single fixed detector in a well-shielded time-of-flight (TOF) tunnel to be used for measurements at all angles. This allows a great reduction in the background from room scattered neutrons. The detector, either NE-213 or lithium glass, was calibrated relative to the neutron spectrum from the B(d,n) or the Al(d,n) source reaction. These spectra have been measured relative to the primary neutron standard, 235U(n, f). The transmitted neutrons have been measured for all source reactions at several angles. The data will be reported as the number of neutrons versus time-of-flight since multiple scattering does not allow the energy to be determined accurately by time-of-flight. We have also measured the source reaction at several angles to enhance the modeling of the source spectrum.

  4. DANCE : a 4[pi] barium fluoride detector for measuring neutron capture on unstable nuclei /.

    SciTech Connect

    Ullmann, J. L.; Haight, Robert C.; Hunt, L. F.; Reifarth, R.; Rundberg, R. S.; Bredeweg, T. A.; Fowler, Malcolm M.; Miller, G. G.; Heil, M.; Käppeler, F.; Chamberlin, E. P.

    2002-01-01

    Measurements of neutron capture on unstable nuclei are important for studies of s-process nucleosynthesis, nuclear waste transmutation, and stewardship science. A 160-element, 4{pi} barium fluoride detector array, and associated neutron flight path, is being constructed to make capture measurements at the moderated neutron spallation source at LANSCE. Measurements can be made on as little as 1 mg of sample material over energies from near thermal to near 100 keV. The design of the DANCE array is described and neutron flux measurements from flight path commissioning are shown. The array is expected to be complete by the end of 2002.

  5. The Experimental Determination of Thermal Neutron Flux in the Radiochemistry Curriculum

    ERIC Educational Resources Information Center

    Grant, Patrick M.

    1977-01-01

    Describes an experiment for determining the thermal neutron flux of the light-water nuclear reactor at the University of California, Irvine. The difficulty of the activity can be varied to match the student's level of proficiency. (SL)

  6. Abnormal changes in the density of thermal neutron flux in biocenoses near the earth surface.

    PubMed

    Plotnikova, N V; Smirnov, A N; Kolesnikov, M V; Semenov, D S; Frolov, V A; Lapshin, V B; Syroeshkin, A V

    2007-04-01

    We revealed an increase in the density of thermal neutron flux in forest biocenoses, which was not associated with astrogeophysical events. The maximum spike of this parameter in the biocenosis reached 10,000 n/(sec x m2). Diurnal pattern of the density of thermal neutron flux depended only on the type of biocenosis. The effects of biomodulation of corpuscular radiation for balneology are discussed. PMID:18214289

  7. Micrometeorological flux measurements at a coastal site

    NASA Astrophysics Data System (ADS)

    Song, Guozheng; Meixner, Franz X.; Bruse, Michael; Mamtimin, Buhalqem

    2014-05-01

    The eddy covariance (EC) technique is the only direct measurement of the momentum, heat, and trace gas (e.g. water vapor, CO2 and ozone) fluxes. The measurements are expected to be most accurate over flat terrain where there is an extended homogenous surface upwind from the tower, and when the environmental conditions are steady. Additionally, the one dimensional approach assumes that vertical turbulent exchange is the dominant flux, whereas advective influences should be negligible. The application of EC method under non-ideal conditions, for example in complex terrain, has yet to be fully explored. To explore the possibilities and limitations of EC technique under non-ideal conditions, an EC system was set up at Selles beach, Crete, Greece (35.33°N, 25.71°E) in the beginning of July 2012. The dominant wind direction was west, parallel to the coast. The EC system consisted of a sonic anemometer (CSAT3 Campbell Scientific), an infrared open-path CO2/H2O gas analyzer (LI-7500, Li-COR Biosciences) and a fast chemiluminescence ozone analyzer (enviscope GmbH). All the signals of these fast response instruments were sampled at 10 Hz and the measurement height was 3 m. Besides, another gradient system was setup. Air temperature, relative humidity (HYGROMER MP 103 A), and wind speed (WMT700 Vaisala) were measured every 10 seconds at 3 heights (0.7, 1.45, 3 m). Air intakes were set up at 0.7m and 3m. A pump drew the air through a flow system and a telflon valve alternately switched between the two heights every 30 seconds. H2O, CO2 (LI-840A, Li-COR Biosciences) and ozone mixing ratio s (model 205, 2BTechnologies) were measured every 10 seconds. Momentum, heat, CO2 and ozone fluxes were evaluated by both EC and gradient technique. For the calculation of turbulent fluxes, TK3 algorithm (Department of Micrometeorology, University Bayreuth, Germany) was applied. We will present the measured fluxes of the two systems and assess the data quality under such non-ideal condition.

  8. Monte-Carlo simulation of soil carbon measurements by inelastic neutron scattering

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Measuring soil carbon is critical for assessing the potential impact of different land management practices on carbon sequestration. The inelastic neutron scattering (INS) of fast neutrons (with energy around 14 MeV) on carbon-12 nuclei produces gamma rays with energy of 4.43 MeV; this gamma flux ca...

  9. Determining the Magnitude of Neutron and Galactic Cosmic Ray (GCR) Fluxes at the Moon using the Lunar Exploration Neutron Detector during the Historic Space-Age Era of High GCR Flux

    NASA Astrophysics Data System (ADS)

    Chin, G.; Sagdeev, R.; Boynton, W. V.; Mitrofanov, I. G.; Milikh, G. M.; Su, J. J.; Livengood, T. A.; McClanahan, T. P.; Evans, L.; Starr, R. D.; litvak, M. L.; Sanin, A.

    2013-12-01

    The Lunar Reconnaissance Orbiter (LRO) was launched June 18, 2009 during an historic space-age era of minimum solar activity [1]. The lack of solar sunspot activity signaled a complex set of heliospheric phenomena [2,3,4] that also gave rise to a period of unprecedentedly high Galactic Cosmic Ray (GCR) flux [5]. These events coincided with the primary mission of the Lunar Exploration Neutron Detector (LEND, [6]), onboard LRO in a nominal 50-km circular orbit of the Moon [7]. Methods to calculate the emergent neutron albedo population using Monte Carlo techniques [8] rely on an estimate of the GCR flux and spectra calibrated at differing periods of solar activity [9,10,11]. Estimating the actual GCR flux at the Moon during the LEND's initial period of operation requires a correction using a model-dependent heliospheric transport modulation parameter [12] to adjust the GCR flux appropriate to this unique solar cycle. These corrections have inherent uncertainties depending on model details [13]. Precisely determining the absolute neutron and GCR fluxes is especially important in understanding the emergent lunar neutrons measured by LEND and subsequently in estimating the hydrogen/water content in the lunar regolith [6]. LEND is constructed with a set of neutron detectors to meet differing purposes [6]. Specifically there are two sets of detector systems that measure the flux of epithermal neutrons: a) the uncollimated Sensor for Epi-Thermal Neutrons (SETN) and b) the Collimated Sensor for Epi-Thermal Neutrons (CSETN). LEND SETN and CSETN observations form a complementary set of simultaneous measurements that determine the absolute scale of emergent lunar neutron flux in an unambiguous fashion and without the need for correcting to differing solar-cycle conditions. LEND measurements are combined with a detailed understanding of the sources of instrumental back-ground, and the performance of CSETN and SETN. This comparison allows us to calculate a constant scale factor

  10. Observational biases in flux magnification measurements

    NASA Astrophysics Data System (ADS)

    Hildebrandt, H.

    2016-02-01

    Flux magnification is an interesting complement to shear-based lensing measurements, especially at high redshift where sources are harder to resolve. One measures either changes in the source density (magnification bias) or in the shape of the flux distribution (e.g. magnitude shift). The interpretation of these measurements relies on theoretical estimates of how the observables change under magnification. Here, we present simulations to create multiband photometric mock catalogues of Lyman-break galaxies in a CFHTLenS (Canada France Hawaii Telescope Lensing Survey)-like survey that include several observational effects that can change these relations, making simple theoretical estimates unusable. In particular, we show how the magnification bias can be affected by photometric noise, colour selection, and dust extinction. We find that a simple measurement of the slope of the number-counts is not sufficient for the precise interpretation of virtually all observations of magnification bias. We also explore how sensitive the shift in the mean magnitude of a source sample in different photometric bands is to magnification including the same observational effects. Again we find significant deviations from simple analytical estimates. We also discover a wavelength-dependence of the magnitude-shift effect when applied to a colour-selected noisy source sample. Such an effect can mimic the reddening by dust in the lens. It has to be disentangled from the dust extinction before the magnitude shift/colour-excess can be used to measure the distribution of either dark matter or extragalactic dust. Using simulations like the ones presented here these observational effects can be studied and eventually removed from observations making precise measurements of flux magnification possible.

  11. Estimation of low energy neutron flux (En <= 15 MeV) in India-based Neutrino Observatory cavern using Monte Carlo techniques

    NASA Astrophysics Data System (ADS)

    Dokania, N.; Singh, V.; Mathimalar, S.; Garai, A.; Nanal, V.; Pillay, R. G.; Bhushan, K. G.

    2015-12-01

    The neutron flux at low energy (En <= 15 MeV) resulting from the radioactivity of the rock in the underground cavern of the India-based Neutrino Observatory is estimated using Geant4-based Monte Carlo simulations. The neutron production rate due to the spontaneous fission of 235, 238U, 232Th and (α, n) interactions in the rock is determined employing the actual rock composition. It is shown that the total flux is equivalent to a finite size cylindrical rock (D=L=140 cm) element. The energy integrated neutron flux thus obtained at the center of the underground tunnel is 2.76 (0.47) × 10-6 n cm-2 s-1. The estimated neutron flux is of the same order (~10-6 n cm-2 s-1) as measured in other underground laboratories.

  12. Neutron Capture Measurements at the n lowbar TOF Facility

    SciTech Connect

    Milazzo, P. M.; Abbondanno, U.; Fujii, K.; Aerts, G.; Andriamonje, S.; Berthoumieux, E.; Dridi, W.; Ferrant, L.; Gunsing, F.; Pancin, J.; Perrot, L.; Plukis, A.; Stephan, C.; Tassan-Got, L.; Alvarez-Velarde, F.; Cano-Ott, D.; Embid-Segura, M.

    2009-03-31

    Nuclear astrophysics, advanced nuclear technology and nuclear structure physics present many cases that require neutron capture reaction data with high precision. In particular, refined data are needed for stellar nucleosynthesis, for nuclear waste transmutation studies, and for the design of generation IV reactors. The measurements take profit of the pulsed neutron beam of the n lowbar TOF facility at CERN, which is generated by proton-induced spallation reactions on a massive lead target. The low repetition rate of the proton beam, the high instantaneous neutron flux, and the favourable background conditions in the experimental area make this facility unique for high resolution time-of-flight measurements of neutron induced reaction cross sections. The n lowbar TOF collaboration is presently operating two different experimental set-ups. The first consists of two low-neutron sensitivity C{sub 6}D{sub 6} detectors with the analysis relying on the Pulse Height Weighting technique. In addition, a Total Absorption Calorimeter, consisting of 40 BaF{sub 2} crystals covering the whole solid angle, was used. A review of several capture measurements with these detectors on selected stable and unstable samples will be presented.

  13. First measurement of the neutron beta asymmetry with ultracold neutrons.

    PubMed

    Pattie, R W; Anaya, J; Back, H O; Boissevain, J G; Bowles, T J; Broussard, L J; Carr, R; Clark, D J; Currie, S; Du, S; Filippone, B W; Geltenbort, P; García, A; Hawari, A; Hickerson, K P; Hill, R; Hino, M; Hoedl, S A; Hogan, G E; Holley, A T; Ito, T M; Kawai, T; Kirch, K; Kitagaki, S; Lamoreaux, S K; Liu, C-Y; Liu, J; Makela, M; Mammei, R R; Martin, J W; Melconian, D; Meier, N; Mendenhall, M P; Morris, C L; Mortensen, R; Pichlmaier, A; Pitt, M L; Plaster, B; Ramsey, J C; Rios, R; Sabourov, K; Sallaska, A L; Saunders, A; Schmid, R; Seestrom, S; Servicky, C; Sjue, S K L; Smith, D; Sondheim, W E; Tatar, E; Teasdale, W; Terai, C; Tipton, B; Utsuro, M; Vogelaar, R B; Wehring, B W; Xu, Y P; Young, A R; Yuan, J

    2009-01-01

    We report the first measurement of an angular correlation parameter in neutron beta decay using polarized ultracold neutrons (UCN). We utilize UCN with energies below about 200 neV, which we guide and store for approximately 30 s in a Cu decay volume. The interaction of the neutron magnetic dipole moment with a static 7 T field external to the decay volume provides a 420 neV potential energy barrier to the spin state parallel to the field, polarizing the UCN before they pass through an adiabatic fast passage spin flipper and enter a decay volume, situated within a 1 T field in a 2x2pi solenoidal spectrometer. We determine a value for the beta-asymmetry parameter A_{0}=-0.1138+/-0.0046+/-0.0021. PMID:19257182

  14. Three-dimensional calculations of neutron streaming in the beam tubes of the ORNL HFIR (High Flux Isotope Reactor) Reactor

    SciTech Connect

    Childs, R.L.; Rhoades, W.A.; Williams, L.R.

    1988-01-01

    The streaming of neutrons through the beam tubes in High Flux Isotope Reactor at Oak Ridge National Laboratory has resulted in a reduction of the fracture toughness of the reactor vessel. As a result, an evaluation of vessel integrity was undertaken in order to determine if the reactor can be operated again. As a part of this evaluation, three-dimensional neutron transport calculations were performed to obtain fluxes at points of interest in the wall of the vessel. By comparing the calculated and measured activation of dosimetry specimens from the vessel surveillance program, it was determined that the calculated flux shape was satisfactory to transpose the surveillance data to the locations in the vessel. A bias factor was applied to correct for the average C/E ratio of 0.69. 8 refs., 7 figs., 3 tabs.

  15. Flux measurements in a nuclear research reactor by using an aluminum nitride detector

    NASA Astrophysics Data System (ADS)

    Moon, B. S.; Yoo, D. S.; Hwang, I. K.; Chung, C. E.; Holcomb, D. E.

    2007-08-01

    A small polycrystalline aluminium nitride detector with a thickness of 381 μm was used to measure a 200,000 Ci Co 60 source and to measure the flux in a research reactor where the neutron flux is about 10 14/cm 2 s, which is nearly the same order as in the commercial power plant. If the applied voltage is greater than or equal to 2000 V and if the measurements are done in a short period of time so that the heat energy does not build up in the aluminium nitride, then the measured electric current is linearly proportional to the input flux. It is assumed of course that the energy spectrum of the input flux remains constant. This linearity relation is illustrated by the results of a measurement in which the reactor power has been controlled so that the flux becomes a step function.

  16. Results on the neutron energy distribution measurements at the RECH-1 Chilean nuclear reactor

    NASA Astrophysics Data System (ADS)

    Aguilera, P.; Molina, F.; Romero-Barrientos, J.

    2016-07-01

    Neutron activations experiments has been perform at the RECH-1 Chilean Nuclear Reactor to measure its neutron flux energy distribution. Samples of pure elements was activated to obtain the saturation activities for each reaction. Using - ray spectroscopy we identify and measure the activity of the reaction product nuclei, obtaining the saturation activities of 20 reactions. GEANT4 and MCNP was used to compute the self shielding factor to correct the cross section for each element. With the Expectation-Maximization algorithm (EM) we were able to unfold the neutron flux energy distribution at dry tube position, near the RECH-1 core. In this work, we present the unfolding results using the EM algorithm.

  17. Full Scale Coated Fiber Neutron Detector Measurements

    SciTech Connect

    Kouzes, Richard T.; Ely, James H.; Erikson, Luke E.; Kernan, Warnick J.; Stromswold, David C.; Woodring, Mitchell L.

    2010-03-17

    Radiation portal monitors used for interdiction of illicit materials at borders include highly sensitive neutron detection systems. The main reason for having neutron detection capability is to detect fission neutrons from plutonium. The currently deployed radiation portal monitors (RPMs) from Ludlum and Science Applications International Corporation (SAIC) use neutron detectors based upon 3He-filled gas proportional counters, which are the most common large neutron detector. There is a declining supply of 3He in the world, and thus, methods to reduce the use of this gas in RPMs with minimal changes to the current system designs and sensitivity to cargo-borne neutrons are being investigated. Four technologies have been identified as being currently commercially available, potential alternative neutron detectors to replace the use of 3He in RPMs. These technologies are: 1) Boron trifluoride (BF3)-filled proportional counters, 2) Boron-lined proportional counters, 3) Lithium-loaded glass fibers, and 4) Coated non-scintillating plastic fibers. Reported here are the results of tests of the full-scale 6Li/ZnS(Ag)-coated non-scintillating plastic fibers option. This testing measured the required performance for neutron detection efficiency and gamma ray rejection capabilities of a system manufactured by Innovative American Technology (IAT) and Saint Gobain, and is a follow-up report to an earlier one on a smaller prototype system.

  18. Simulation of the Performance of a Fundamental Neutron Physics Beamline at the High Flux Isotope Reactor

    SciTech Connect

    Mahurin, R.; Greene, Geoffrey L; Koehler, Paul Edward; Cianciolo, Vince

    2005-05-01

    We study the expected performance of the proposed fundamental neutron physics beamline at the upgraded High Flux Isotope Reactor at Oak Ridge National Laboratory. A curved neutron guide transmits the neutrons from the new cold source into a guide hall. A novel feature of the proposed guide is the use of vertical focusing to increase the flux for experiments that require relatively small cross-section beams. We use the simulation code IB to model straight, multi-channel curved, and tapered guides of various m values. Guide performance for the current NPDGamma and proposed abBA experiments is evaluated.

  19. Simulation of the Performance of a Fundamental Neutron Physics Beamline at the High Flux Isotope Reactor

    PubMed Central

    Mahurin, Rob; Greene, Geoffrey; Kohler, Paul; Cianciolo, Vince

    2005-01-01

    We study the expected performance of the proposed fundamental neutron physics beamline at the upgraded High Flux Isotope Reactor at Oak Ridge National Laboratory. A curved neutron guide transmits the neutrons from the new cold source into a guide hall. A novel feature of the proposed guide is the use of vertical focussing to increase the flux for experiments that require relatively small cross-section beams. We use the simulation code IB to model straight, multi-channel curved, and tapered guides of various m values. Guide performance for the current NPDGamma and proposed abBA experiments is evaluated. PMID:27308114

  20. Investigation of flux line lattices by SANS with unpolarized and polarized neutrons

    NASA Astrophysics Data System (ADS)

    Forgan, Ted; Lycett, Richard J.; Bowell, Charlotte; Charalambous, Demetris; Farago, Bela; Laver, Mark; Cubitt, Bob; Dewhurst, Charles

    2007-07-01

    We have investigated flux lines in low- and high- Tc superconductors using unpolarized and polarized neutron techniques. In high- Tc materials, we observe transitions from triangular to square flux line lattices (FLLs) which probably represent the effects of d-wave pairing. In niobium, a supposedly ‘conventional’ superconductor, even more FLL phase transitions can be observed, into structures which spontaneously break the crystal symmetry. Observations of polarized neutron scattering intensities from niobium with a high density of pinning centers show the effects of pinning on the spin-dependence of the signal. Other possible applications of polarized neutrons scattering from the FLL are mentioned.

  1. Simulation of the Performance of a Fundamental Neutron Physics Beamline at the High Flux Isotope Reactor.

    PubMed

    Mahurin, Rob; Greene, Geoffrey; Kohler, Paul; Cianciolo, Vince

    2005-01-01

    We study the expected performance of the proposed fundamental neutron physics beamline at the upgraded High Flux Isotope Reactor at Oak Ridge National Laboratory. A curved neutron guide transmits the neutrons from the new cold source into a guide hall. A novel feature of the proposed guide is the use of vertical focussing to increase the flux for experiments that require relatively small cross-section beams. We use the simulation code IB to model straight, multi-channel curved, and tapered guides of various m values. Guide performance for the current NPDGamma and proposed abBA experiments is evaluated. PMID:27308114

  2. ACCURACY OF SOIL HEAT FLUX MEASUREMENTS MADE WITH FLUX PLATES OF CONTRASTING PROPERTIES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Flux plate measurements of soil heat flux (G) may include significant errors unless the plates are carefully installed and known errors accounted for. The objective of this research was to quantify potential errors in G when using soil heat flux plates of contrasting designs. Five flux plates with...

  3. Progress on the realization of a new GEM based neutron diagnostic concept for high flux neutron beams

    SciTech Connect

    Croci, G.; Tardocchi, M.; Rebai, M.; Cippo, E. Perelli; Gorini, G.; Cazzaniga, C.; Palma, M. Dalla; Pasqualotto, R.; Tollin, M.; Grosso, G.; Muraro, A.; Murtas, F.; Claps, G.; Cavenago, M.

    2014-08-21

    Fusion reactors will need high flux neutron detectors to diagnose the deuterium-deuterium and deuterium-tritium. A candidate detection technique is the Gas Electron Multiplier (GEM). New GEM based detectors are being developed for application to a neutral deuterium beam test facility. The proposed detection system is called Close-contact Neutron Emission Surface Mapping (CNESM). The diagnostic aims at providing the map of the neutron emission due to interaction of the deuterium beam with the deuterons implanted in the beam dump surface. This is done by placing a detector in close contact, right behind the dump. CNESM uses nGEM detectors, i.e. GEM detectors equipped with a cathode that also serves as neutron-proton converter foil. After the realization and test of several small area prototypes, a full size prototype has been realized and tested with laboratory sources. Test on neutron beams are foreseen for the next months.

  4. Progress on the realization of a new GEM based neutron diagnostic concept for high flux neutron beams

    NASA Astrophysics Data System (ADS)

    Croci, G.; Rebai, M.; Cazzaniga, C.; Palma, M. Dalla; Grosso, G.; Muraro, A.; Murtas, F.; Claps, G.; Pasqualotto, R.; Cippo, E. Perelli; Tardocchi, M.; Tollin, M.; Cavenago, M.; Gorini, G.

    2014-08-01

    Fusion reactors will need high flux neutron detectors to diagnose the deuterium-deuterium and deuterium-tritium. A candidate detection technique is the Gas Electron Multiplier (GEM). New GEM based detectors are being developed for application to a neutral deuterium beam test facility. The proposed detection system is called Close-contact Neutron Emission Surface Mapping (CNESM). The diagnostic aims at providing the map of the neutron emission due to interaction of the deuterium beam with the deuterons implanted in the beam dump surface. This is done by placing a detector in close contact, right behind the dump. CNESM uses nGEM detectors, i.e. GEM detectors equipped with a cathode that also serves as neutron-proton converter foil. After the realization and test of several small area prototypes, a full size prototype has been realized and tested with laboratory sources. Test on neutron beams are foreseen for the next months.

  5. Triga Mark III Reactor Operating Power and Neutron Flux Study by Nuclear Track Methodology

    NASA Astrophysics Data System (ADS)

    Espinosa, G.; Golzarri, J. I.; Raya-Arredondo, R.; Cruz-Galindo, S.; Sajo-Bohus, L.

    The operating power of a TRIGA Mark III reactor was studied using Nuclear Track Methodology (NTM). The facility has a Highly Enriched Uranium core that provides a neutron flux of around 2 x 1012 n cm-2 s-1 in the TO-2 irradiation channel. The detectors consisted of a Landauer® CR-39 (allyl diglycol polycarbonate) chip covered with a 3 mm Plexiglas® converter. After irradiation, the detectors were chemically etched in a 6.25M-KOH solution at 60±1 °C for 6 h. Track density was determined by a custom-made Digital Image Analysis System. The results show a direct proportionality between reactor power and average nuclear track density for powers in the range 0.1-7 kW. Data reproducibility and relatively low uncertainty (±3%) were achieved. NTM is a simple, fast and reliable technique that can serve as a complementary procedure to measure reactor operating power. It offers the possibility of calibrating the neutron flux density in any low power reactor.

  6. Conformity Between LR0 Mock-Ups and Vvers Npp Rpv Neutron Flux Attenuation

    NASA Astrophysics Data System (ADS)

    Belousov, Sergey; Ilieva, Krassimira; Kirilova, Desislava

    2009-08-01

    The conformity of the mock-up results and those for reactor pressure vessel (RPV) of nuclear power plants (NPP) has been evaluated in order to qualify if the mock-ups data could be used for benchmark's purpose only, or/and for simulating of the NPP irradiation conditions. Neutron transport through the vessel has been calculated by the three-dimensional discrete ordinate code TORT with problem oriented multigroup energy neutron cross-section library BGL. Neutron flux/fluence and spectrum shape represented by normalized group neutron fluxes in the multigroup energy structure, for neutrons with energy above 0.5 MeV, have been used for conformity analysis. It has been demonstrated that the relative difference of the attenuation factor as well as the group neutron fluxes did not exceed 10% at all considered positions for VVER-440. For VVER-1000, it has been obtained the same consistency, except for the location behind the RPV. The neutron flux attenuation behind the RPV is 18% higher than the mock-up attenuation. It has been shown that this difference arises from the dissimilarity of the biological shielding. The obtained results have demonstrated that the VVERs' mock-ups are appropriate for simulating the NPP irradiation conditions. The mock-up results for VVER-1000 have to be applied more carefully i.e. taking into account the existing peculiarity of the biological shielding and RPV attenuation azimuthal dependence.

  7. Neutron transfer measurements on neutron-rich N=82 nuclei

    SciTech Connect

    Pain, Steven D; Jones, K. L.; Bardayan, Daniel W; Blackmon, Jeff C; Chae, K. Y.; Chipps, K.; Cizewski, J. A.; Hatarik, Robert; Kapler, R.; Kozub, R. L.; Liang, J Felix; Moazen, Brian; Nesaraja, Caroline D; Shapira, Dan; ShrinerJr., J. F.; Smith, Michael Scott

    2009-01-01

    Calculations of r-process nucleosynthesis rely significantly on nuclear structure models as input, which are not well tested in the neutron-rich regime, due to the paucity of experimental data on the majority of these nuclei. High quality radioactive beams have recently made possible the measurement of (d,p) reactions on unstable nuclei in inverse kinematics, which can yield information on the development of single-neutron structure away from stability in close proximity to suggested r-process paths. The Oak Ridge Rutgers University Barrel Array (ORRUBA) has been developed for the measurement of such reactions. An early partial implementation of ORRUBA has been utilized to measure the {sup 132}Sn(d,p){sup 133}Sn and {sup 134}Te(d,p){sup 135}Te reactions for the first time.

  8. Measurement of photon flux with a miniature gas ionization chamber in a Material Testing Reactor

    NASA Astrophysics Data System (ADS)

    Fourmentel, D.; Filliatre, P.; Villard, J. F.; Lyoussi, A.; Reynard-Carette, C.; Carcreff, H.

    2013-10-01

    Nuclear heating measurements in Material Testing Reactors (MTR) are crucial for the design of the experimental devices and the prediction of the temperature of the hosted samples. Nuclear heating in MTR materials (except fuel) is mainly due to the energy deposition by the photon flux. Therefore, the photon flux is a key input parameter for the computer codes which simulate nuclear heating and temperature reached by samples/devices under irradiation. In the Jules Horowitz MTR under construction at the CEA Cadarache, the maximal expected nuclear heating levels will be about 15 to 18 W g-1 and it will be necessary to assess this parameter with the best accuracy. An experiment was performed at the OSIRIS reactor to combine neutron flux, photon flux and nuclear heating measurements to improve the knowledge of the nuclear heating in MTR. There are few appropriate sensors for selective measurement of the photon flux in MTR even if studies and developments are ongoing. An experiment, called CARMEN-1, was conducted at the OSIRIS MTR and we used in particular a gas ionization chamber based on miniature fission chamber design to measure the photon flux. In this paper, we detail Monte-Carlo simulations to analyze the photon fluxes with ionization chamber measurements and we compare the photon flux calculations to the nuclear heating measurements. These results show a good accordance between photon flux measurements and nuclear heating measurement and allow improving the knowledge of these parameters.

  9. Precise neutron inelastic cross section measurements

    SciTech Connect

    Negret, Alexandru

    2012-11-20

    The design of a new generation of nuclear reactors requires the development of a very precise neutron cross section database. Ongoing experiments performed at dedicated facilities aim to the measurement of such cross sections with an unprecedented uncertainty of the order of 5% or even smaller. We give an overview of such a facility: the Gamma Array for Inelastic Neutron Scattering (GAINS) installed at the GELINA neutron source of IRMM, Belgium. Some of the most challenging difficulties of the experimental approach are emphasized and recent results are shown.

  10. Neutron radiation measurements on several international flights.

    PubMed

    Poje, Marina; Vuković, Branko; Radolić, Vanja; Miklavčić, Igor; Planinić, Josip

    2015-03-01

    The earth is continually exposed to cosmic radiation of both solar and galactic origin. High-energy particles interact with the constituents in the atmosphere producing secondary particles that create radiation fields at aircraft altitudes. These secondary particles consist mainly of photons, protons, neutrons, charged and uncharged pions, and muons. The neutron component dominates the hadron cascade at lower altitudes as a result of its longer mean free path. Since air transportation has become more available to a greater number of people, this has led to an increase in the number of persons exposed to ionizing radiation of cosmic origin. This concerns pilots and cabin crews as well as frequent flyers. A neutron component of cosmic radiation was measured using an LR 115/CR-39 track detector associated with a 10B converter foil. The measurement of the neutron dose is a good approximation of the total dose since neutrons carry about 50% of the total ambient dose equivalent at aircraft altitudes. Also, the results of the measurements were compared with the data obtained by EPCARD software simulation. The measured neutron dose rate had a span from 0.36 to 8.83 μSv h(-1) (dose enhancement due to high solar activity in the flight period). PMID:25627946

  11. Untangling Autophagy Measurements: All Fluxed Up

    PubMed Central

    Gottlieb, Roberta A.; Andres, Allen M.; Sin, Jon; Taylor, David

    2015-01-01

    Autophagy is an important physiological process in the heart, and alterations in autophagic activity can exacerbate or mitigate injury during various pathological processes. Methods to assess autophagy have changed rapidly as the field of research has expanded. As with any new field, methods and standards for data analysis and interpretation evolve as investigators acquire experience and insight. The purpose of this review is to summarize current methods to measure autophagy, selective mitochondrial autophagy (mitophagy), and autophagic flux. We will examine several published studies where confusion arose in in data interpretation, in order to illustrate the challenges. Finally we will discuss methods to assess autophagy in vivo and in patients. PMID:25634973

  12. Neutron energy measurements in emergency response applications

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Sanjoy; Guss, Paul; Hornish, Michael; Wilde, Scott; Stampahar, Tom; Reed, Michael

    2009-08-01

    We present significant results in recent advances in the measurement of neutron energy. Neutron energy measurements are a small but significant part of radiological emergency response applications. Mission critical information can be obtained by analyzing the neutron energy given off from radioactive materials. In the case of searching for special nuclear materials, neutron energy information from an unknown source can be of importance. At the Remote Sensing Laboratory (RSL) of National Security Technologies, LLC, a series of materials, viz., liquid organic scintillator (LOS), Lithium Gadolinium Borate (LGB) or Li6Gd(BO3)3 in a plastic matrix, a recently developed crystal of Cesium Lithium Yttrium Chloride, Cs2LiYCl6: Ce (called CLYC)[1], and normal plastic scintillator (BC-408) with 3He tubes have been used to study their effectiveness as a portable neutron energy spectrometer. Comparisons illustrating the strengths of the various materials will be provided. Of these materials, LGB offers the ability to tailor its response to the neutron spectrum by varying the isotopic composition of the key constituents (Lithium, Gadolinium [Yttrium], and Boron). All three of the constituent elements possess large neutron capture cross section isotopes for highly exothermic reactions. These compounds of composition Li6Gd(Y)(BO3)3 can be activated by Cerium ions Ce3+. CLYC, on the other hand, has a remarkable gamma response in addition to superb neutron discrimination, comparable to that of Europium-doped Lithium Iodide (6LiI: Eu). Comparing these two materials, CLYC has higher light output (4500 phe/MeV) than that from 6LiI: Eu and shows better energy resolution for both gamma and neutron pulse heights. Using CLYC, gamma energy pulses can be discriminated from the neutron signals by simple pulse height separation. For the cases of both LGB and LOS, careful pulse shape discrimination is needed to separate the gamma energy signals from neutron pulses. Both analog and digital

  13. Boron neutron capture enhancement (BNCE) of fast neutron irradiation for glioblastoma: increase of thermal neutron flux with heavy material collimation, a theoretical evaluation.

    PubMed

    Paquis, P; Pignol, J P; Lonjon, M; Brassart, N; Courdi, A; Chauvel, P; Grellier, P; Chatel, M

    1999-01-01

    Despite the fact that fast neutron irradiation of glioblastoma has shown on autopsies an ability to sterilize tumors, no therapeutic windows have been found for these particles due to their toxicity toward normal brain. Therefore, the Boron Neutron Capture Enhancement (BNCE) of fast neutron beam has been suggested. This paper addresses the problem of fast neutron beam collimation, which induces a dramatic decrease of the thermal neutron flux in the depth of the tissues when smaller irradiation fields are used. Thermoluminescent dosimeter TLD-600 and TLD-700 were used to determine the thermal neutron flux within a Plexiglas phantom irradiated under the Nice Biomedical Cyclotron p(60)+Be(32) fast neutron beam. A BNCE of 4.6% in physical dose was determined for a 10 x 10 cm2 field, and of 10.4% for a 20 x 20 cm2 one. A Dose Modification Factor of 1.19 was calculated for CAL 58 glioblastoma cells irradiated thanks to the larger field. In order to increase the thermal flux in depth while shaping the beam, heavy material collimation was studied with Monte Carlo simulations using coupled FLUKA and MCNP-4A codes. The use of 20 cm width lead blocks allowed a 2 fold thermal neutron flux increase in the depth of the phantom, while shielding the fast neutron beam with a fast neutron dose transmission of 23%. Using the DMF of 1.19, a BNCE of 40% was calculated in the beam axis. This enhancement might be sufficient to open, at least theoretically, a therapeutic window. PMID:10222419

  14. Measurement and evaluation of neutron spectra above 0.1 MeV in the JMTR

    NASA Astrophysics Data System (ADS)

    Sakurai, Kiyoshi

    1983-08-01

    The evaluation of fast neutron spectra from the Japan Materials Testing Reactor (JMTR) have been performed by using the critical facility of the JMTR and by a combination of the multi-foil activation method and the adjustment codes (SAND II and NEUPAC). In order to measure and evaluate the neutron spectra above 0.1 MeV, resonance detectors such as manganese, gold and copper have been used to determine the neutron flux level in the {1}/{E} region and threshold detectors such as silver, rhodium, indium, uranium, aluminum, magnesium and titanium have been used to determine the neutron flux level above 0.1 MeV. The foils for the measurement of the neutron reaction rate were separately irradiated. The 115In(n,n') 115mIn reaction is used for the monitoring of the average fast neutron flux in the irradiation period, and the slight difference of each irradiation condition was corrected. The guess spectra for the neutron spectrum adjustment were calculated by using the one-dimensional discrete-ordinates code ANISN with the slab model for the JMTR core. Some important points were concluded through the adjustment procedure of the neutron spectrum: the adjusted spectrum from 0.1 to 1 MeV depends on the accuracy of the neutron cross section data for the threshold detectors such as silver and rhodium, and also on the accuracy of these reaction rates. The ratios of neutron flux above 0.183 MeV to neutron flux above 1 MeV were calculated from the guess spectra and the adjusted spectra, and the ratios were in good agreement with each other.

  15. Neutron measurement support for radiation material science in research reactors

    SciTech Connect

    Bregadze, Yu.I.; Grigor'ev, E.I.; Ivanov, V.B.; Klinov, A.V.; Kuprienko, V.A.; Starostov, B.I.; Yaryna, V.P.

    1987-07-01

    The authors discuss the need for development of a support system for unity in neutron measurement. Basic problems are outlined with regard to the support of neutron measurement unity for specialized service, such as research of working neutron fields, monitoring neutron fields during irradiation, and classification, analysis and storage of information about the controlled neutron field. Methods of realizing the metrological functions of the Metrological Center of Neutron Measurements are discussed as is the technical equipment used by the Center.

  16. Measuring fast calcium fluxes in cardiomyocytes.

    PubMed

    Golebiewska, Urszula; Scarlata, Suzanne

    2011-01-01

    Cardiomyocytes have multiple Ca(2+) fluxes of varying duration that work together to optimize function (1,2). Changes in Ca(2+) activity in response to extracellular agents is predominantly regulated by the phospholipase Cβ- Gα(q;) pathway localized on the plasma membrane which is stimulated by agents such as acetylcholine (3,4). We have recently found that plasma membrane protein domains called caveolae(5,6) can entrap activated Gα(q;)(7). This entrapment has the effect of stabilizing the activated state of Gα(q;) and resulting in prolonged Ca(2+) signals in cardiomyocytes and other cell types(8). We uncovered this surprising result by measuring dynamic calcium responses on a fast scale in living cardiomyocytes. Briefly, cells are loaded with a fluorescent Ca(2+) indicator. In our studies, we used Ca(2+) Green (Invitrogen, Inc.) which exhibits an increase in fluorescence emission intensity upon binding of calcium ions. The fluorescence intensity is then recorded for using a line-scan mode of a laser scanning confocal microscope. This method allows rapid acquisition of the time course of fluorescence intensity in pixels along a selected line, producing several hundreds of time traces on the microsecond time scale. These very fast traces are transferred into excel and then into Sigmaplot for analysis, and are compared to traces obtained for electronic noise, free dye, and other controls. To dissect Ca(2+) responses of different flux rates, we performed a histogram analysis that binned pixel intensities with time. Binning allows us to group over 500 traces of scans and visualize the compiled results spatially and temporally on a single plot. Thus, the slow Ca(2+) waves that are difficult to discern when the scans are overlaid due to different peak placement and noise, can be readily seen in the binned histograms. Very fast fluxes in the time scale of the measurement show a narrow distribution of intensities in the very short time bins whereas longer Ca(2+) waves

  17. Dose measurements and calculations in the epithermal neutron beam at the Brookhaven Medical Research Reactor (BMRR)

    SciTech Connect

    Fairchild, R.G.; Greenberg, D.; Kamen, Y.; Fiarman, S. . Medical Dept.); Benary, V. . Medical Dept. Tel Aviv Univ. ); Kalef-Ezra, J. . Medical Dept. Ioannina Univ. ); Wielopolski, L. . Medical Dept. State Univ. of New

    1990-01-01

    The characteristics of the epithermal neutron beam at BMRR were measured, calculated, and reported. This beam has already been used for animal irradiations. We anticipate that it will be used for clinical trials. Thermal and epithermal neutron flux densities distributions, and dose rate distributions, as a function of depth were measured in a lucite dog-head phantom. Monte Carlo calculations were performed and compared with the measured values. 2 refs., 4 figs., 1 tab.

  18. Neutron measurements onboard the space shuttle

    NASA Technical Reports Server (NTRS)

    Badhwar, G. D.; Keith, J. E.; Cleghorn, T. F.

    2001-01-01

    The radiation environment inside a shielded volume is highly complex, consisting of both charged and neutral particles. Since the inception of human space flights, the charged particle component has received virtually all of the attention. There is however, a significant production of secondary neutrons, particularly from the aluminum structure in low earth orbiting spacecrafts. The interactions of galactic cosmic rays (GCR), and solar energetic particles with the earth's atmosphere produce a non-isotropic distribution of albedo neutrons. Inside any reasonable habitable module, the average radiation quality factor of neutrons is about 4-5 times larger than the corresponding average quality factor of charged particles. The measurement of neutrons and their energy spectra is a difficult problem due the intense sources of charged particles. This paper reviews the results of Shuttle flight experiments (made during both solar maximum and solar minimum) to measure the contribution of neutrons to the dose equivalent, as well as theoretical calculations to estimate the appropriate range of neutron energies that contribute most to the dose equivalent. Published by Elsevier Science Ltd.

  19. Neutron measurements onboard the space shuttle.

    PubMed

    Badhwar, G D; Keith, J E; Cleghorn, T F

    2001-06-01

    The radiation environment inside a shielded volume is highly complex, consisting of both charged and neutral particles. Since the inception of human space flights, the charged particle component has received virtually all of the attention. There is however, a significant production of secondary neutrons, particularly from the aluminum structure in low earth orbiting spacecrafts. The interactions of galactic cosmic rays (GCR), and solar energetic particles with the earth's atmosphere produce a non-isotropic distribution of albedo neutrons. Inside any reasonable habitable module, the average radiation quality factor of neutrons is about 4-5 times larger than the corresponding average quality factor of charged particles. The measurement of neutrons and their energy spectra is a difficult problem due the intense sources of charged particles. This paper reviews the results of Shuttle flight experiments (made during both solar maximum and solar minimum) to measure the contribution of neutrons to the dose equivalent, as well as theoretical calculations to estimate the appropriate range of neutron energies that contribute most to the dose equivalent. PMID:11852943

  20. Neutron apparatus for measuring strain in composites

    DOEpatents

    Kupperman, David S.; Majumdar, Saurindranath; Faber, Jr., John F.; Singh, J. P.

    1990-01-01

    A method and apparatus for orienting a pulsed neutron source and a multi-angle diffractometer toward a sample of a ceramic-matrix or metal-matrix composite so that the measurement of internal strain (from which stress is calculated) is reduced to uncomplicated time-of-flight measurements.

  1. Validating Neutron Star Radius Measurements

    NASA Astrophysics Data System (ADS)

    Chakrabarty, Deepto

    2010-09-01

    Spectral analysis of transient neutron star X-ray emission during bursts and quiescence were both used to estimate the NS radii for different sources. The validities of these methods need to be verified by performing them on the same source respectively. Transient type-I (thermonuclear) X-ray bursters are excellent candidates for testing the consistency between these methods, since they were detected in both bursts and quiescence. Out of 3 candidates: Cen X-4, Aql X-1 and 4U 1608-52, 4U 1608-52 turns out to be the best one due to the lack of archival RXTE burst data for Cen X-4 and the previous reported significant luminosity and temperature variability for Aql X-1 in quiescence. Therefore, we propose a 25 ks Chandra/ACIS-S observation of 4U 1608-52.

  2. Flux measurements using the BATSE spectroscopic detectors

    NASA Technical Reports Server (NTRS)

    Mcnamara, Bernard

    1993-01-01

    Among the Compton Gama-Ray Observatory instruments, the BATSE Spectroscopic Detectors (SD) have the distinction of being able to detect photons of energies less than about 20 keV. This is an interesting energy range for the examination of low mass X-ray binaries (LMXB's). In fact, Sco X-1, the prototype LMXB, is easily seen even in the raw BATSE spectroscopic data. The all-sky coverage afforded by these detectors offers a unique opportunity to monitor this source over time periods never before possible. The aim of this investigation was to test a number of ways in which both continous and discrete flux measurements can be obtained using the BATSE spectroscopic datasets. A instrumental description of a SD can be found in the Compton Workshop of Apr. 1989, this report will deal only with methods which can be used to analyze its datasets. Many of the items discussed below, particularly in regard to the earth occultation technique, have been developed, refined, and applied by the BATSE team to the reduction of BATSE LAD data. Code written as part of this project utilizes portions of that work. The following discussions will first address issues related to the reduction of SD datasets using the earth occultation technique. It will then discuss methods for the recovery of the flux history of strong sources while they are above the earth's limb. The report will conclude with recommended reduction procedures.

  3. Characterization of neutron flux spectra in the irradiation sites of a 37 GBq 241Am-Be isotopic source

    NASA Astrophysics Data System (ADS)

    Yücel, Haluk; Budak, Mustafa Guray; Karadag, Mustafa; Yüksel, Alptuğ Özer

    2014-11-01

    For the applicability of instrumental neutron activation analysis (NAA) technique, an irradiation unit with a 37 GBq 241Am-Be neutron source was installed at Institute of Nuclear Sciences of Ankara University. Design and configuration properties of the irradiation unit are described. It has two different sample irradiation positions, one is called site #1 having a pneumatic sample transfer system and the other is site #2 having a location for manual use. In order to characterize neutron flux spectra in the irradiation sites, the measurement results were obtained for thermal (Фth) and epithermal neutron fluxes (Фepi), thermal to epithermal flux ratio (f) and epithermal spectrum shaping factors (α) by employing cadmium ratios of gold (Au) and molybdenum (Mo) monitors. The activities produced in these foils were measured by using a p-type, 44.8% relative efficiency HPGe well detector. For the measured γ-rays, self-absorption and true coincidence summing effects were taken into account. Additionally, thermal neutron self-shielding and resonance neutron self-shielding effects were taken into account in the measured results. For characterization of site #1, the required parameters were found to be Фth = (2.11 ± 0.05) × 103 n cm-2 s-1, Фepi = (3.32 ± 0.17) × 101 n cm-2 s-1, f = 63.6 ± 1.5, α = 0.045 ± 0.009, respectively. Similarly, those parameters were measured in site #2 as Фth = (1.49 ± 0.04) × 103 n cm-2 s-1, Фepi = (2.93 ± 0.15) × 101 n cm-2 s-1, f = 50.9 ± 1.3 and α = 0.038 ± 0.008. The results for f-values indicate that good thermalization of fast neutrons on the order of 98% was achieved in both sample irradiation sites. This is because an optimum combination of water and paraffin moderator is used in the present configuration. In addition, the shielding requirements are met by using natural boron oxide powder (5.5 cm) and boron loaded paraffin layers against neutrons, and a 15 cm thick lead bricks against gamma-rays from source and its

  4. Neutron capture measurements for nuclear astrophysics

    NASA Astrophysics Data System (ADS)

    Reifarth, Rene

    2005-04-01

    Almost all of the heavy elements are produced via neutron capture reactions in a multitude of stellar production sites. The predictive power of the underlying stellar models is currently limited because they contain poorly constrained physics components such as convection, rotation or magnetic fields. Neutron captures measurements on heavy radioactive isotopes provide a unique opportunity to largely improve these physics components, and thereby address important questions of nuclear astrophysics. Such species are branch-points in the otherwise uniquely defined path of subsequent n-captures along the s-process path in the valley of stability. These branch points reveal themselves through unmistakable signatures recovered from pre-solar meteoritic grains that originate in individual element producing stars. Measurements on radioactive isotopes for neutron energies in the keV region represent a stringent challenge for further improvements of experimental techniques. This holds true for the neutron sources, the detection systems and the technology to handle radioactive material. Though the activation method or accelerator mass spectroscopy of the reaction products could be applied in a limited number of cases, Experimental facilities like DANCE at LANL, USA and n-TOF at CERN, Switzerland are addressing the need for such measurements on the basis of the more universal method of detecting the prompt capture gamma-rays, which is required for the application of neutron time-of-flight (TOF) techniques. With a strongly optimized neutron facility at the Rare Isotope Accelerator (RIA) isotopes with half-lives down to tens of days could be investigated, while present facilities require half-lives of a few hundred days. Recent neutron capture experiments on radioactive isotopes with relevance for nuclear astrophysics and possibilities for future experimental setups will be discussed during the talk.

  5. Russian measurements of neutron energy spectra on the Mir orbital station.

    PubMed

    Lyagushin, V I; Dudkin, V E; Potapov, Y V; Sevastianov, V D

    2001-06-01

    Results of the experiments on neutron energy spectra measurements within broad energy range from 5 x 10(-7) to 2 x 10(2) MeV aboard the Mir orbital station and equivalent neutron dose estimation are presented. Four measurement techniques were used during the experiments. The shape of spectra and their absolute values are in good agreement. According to those experiments, an equivalent neutron dose depends upon effective shielding thickness and spacecraft mass. The neutron dose mentioned is comparable with that of ionizing radiation. Neutron flux levels measured aboard the Mir station have shown that a neutron spectrometer involving broad energy range will be used within the radiation monitoring systems in manned space flights. PMID:11855413

  6. Plasma momentum meter for momentum flux measurements

    DOEpatents

    Zonca, F.; Cohen, S.A.; Bennett, T.; Timberlake, J.R.

    1993-08-24

    An apparatus is described for measuring momentum flux from an intense plasma stream, comprising: refractory target means oriented normal to the flow of said plasma stream for bombardment by said plasma stream where said bombardment by said plasma stream applies a pressure to said target means, pendulum means for communicating a translational displacement of said target to a force transducer where said translational displacement of said target is transferred to said force transducer by an elongated member coupled to said target, where said member is suspended by a pendulum configuration means and where said force transducer is responsive to said translational displacement of said member, and force transducer means for outputting a signal representing pressure data corresponding to said displacement.

  7. Large Area Lunar Dust Flux Measurement Instrument

    NASA Technical Reports Server (NTRS)

    Corsaro, R.; Giovane, F.; Liou, Jer-Chyi; Burchell, M.; Stansbery, Eugene; Lagakos, N.

    2009-01-01

    The instrument under development is designed to characterize the flux and size distribution of the lunar micrometeoroid and secondary ejecta environment. When deployed on the lunar surface, the data collected will benefit fundamental lunar science as well as enabling more reliable impact risk assessments for human lunar exploration activities. To perform this task, the instrument requirements are demanding. It must have as large a surface area as possible to sample the very sparse population of the larger potentially damage-inducing micrometeorites. It must also have very high sensitivity to enable it to measure the flux of small (<10 micron) micrometeorite and secondary ejecta dust particles. To be delivered to the lunar surface, it must also be very low mass, rugged and stow compactly. The instrument designed to meet these requirements is called FOMIS. It is a large-area thin film under tension (i.e. a drum) with multiple fiber optic displacement (FOD) sensors to monitor displacements of the film. This sensor was chosen since it can measure displacements over a wide dynamic range: 1 cm to sub-Angstrom. A prototype system was successfully demonstrated using the hypervelocity impact test facility at the University of Kent (Canterbury, UK). Based on these results, the prototype system can detect hypervelocity (approx.5 km/s) impacts by particles as small as 2 microns diameter. Additional tests using slow speeds find that it can detect secondary ejecta particles (which do not penetrate the film) with momentums as small as 15 pico-gram 100m/s, or nominally 5 microns diameter at 100 m/s.

  8. Upgrade of the wide-angle neutron diffractometer at the high flux isotope reactor

    SciTech Connect

    Katano, S.; Morii, Y.; Child, H.R.

    1997-07-15

    The Wide-Angle Neutron Diffractometer (WAND) is a flat-cone geometry diffractometer located at the High Flux Reactor (HFIR). This instrument is currently being upgraded. The central part of this upgrade is the development of a new curved one-dimensional position sensitive detector which covers a 125 degree angular range with an effective radius of 71 cm. This detector will be a multi-anode (624 anodes on a 0.2 degree pitch) {sup 3}He gas-filled proportional counter. This totally new system will give high resolution, good uniformity and high counting range - a maximum capability of 10{sup 5} cps/pixel and a 10{sup 7} cps overall. A prototype of this detector has shown that these design targets can be met. The new WAND will greatly broaden its capabilities for single-crystal diffraction experiments and for time-resolved measurements.

  9. Progress on performance assessment of ITER enhanced heat flux first wall technology after neutron irradiation

    NASA Astrophysics Data System (ADS)

    Hirai, T.; Bao, L.; Barabash, V.; Chappuis, Ph; Eaton, R.; Escourbiac, F.; Giqcuel, S.; Merola, M.; Mitteau, R.; Raffray, R.; Linke, J.; Loewenhoff, Th; Pintsuk, G.; Wirtz, M.; Boomstra, D.; Magielsen, A.; Chen, J.; Wang, P.; Gervash, A.; Safronov, V.

    2016-02-01

    ITER first wall (FW) panels are irradiated by energetic neutrons during the nuclear phase. Thus, an irradiation and high heat flux testing programme is undertaken by the ITER organization in order to evaluate the effects of neutron irradiation on the performance of enhanced heat flux (EHF) FW components. The test campaign includes neutron irradiation (up to 0.6-0.8 dpa at 200 °C-250 °C) of mock-ups that are representative of the final EHF FW panel design, followed by thermal fatigue tests (up to 4.7 MW m-2). Mock-ups were manufactured by the same manufacturing process as proposed for the series production. After a pre-irradiation thermal screening, eight mock-ups will be selected for the irradiation campaigns. This paper reports the preparatory work of HHF tests and neutron irradiation, assessment results as well as a brief description of mock-up manufacturing and inspection routes.

  10. Delayed neutron emission measurements from fast fission of U-235 and Np-237

    SciTech Connect

    Charlton, W.S.; Parish, T.A.; Raman, S.; Shinohara, Nubuo; Andoh, Masaki

    1996-09-01

    Experiments have been designed and conducted to measure the periods and yields of delayed neutrons from fast fission of {sup 235}U and {sup 237}Np. These measurements were performed in a pool type reactor using a fast flux in-core irradiation device. The energy dependent neutron flux spectrum within the irradiation device was characterized using a foil activation technique and the SAND-II unfolding code. Five delayed neutron groups were measured. The total yield (sum of the five group yields) for {sup 235}U was found to be 0.0141 {+-} 0. 0009. The total yield for {sup 237}Np was found to be 0.0102 {+-} 0. 0008. The total delayed neutron yield data were found to be in good agreement with previous measurements. The individual group yields reported here are preliminary and are being further refined.

  11. Diurnally modulating neutron flux in the Moon's high-latitudes: Evidence for transported hydrogen volatiles and/ or complex regolith compositions in topographic slopes

    NASA Astrophysics Data System (ADS)

    McClanahan, Timothy; Mirofanov, Igor; Boynton, William; Chin, Gordon; Livengood, Timothy; Su, Jiao Jang; Sagdeev, Raold; Parsons, Ann; Evans, Larry; Starr, Richard; Hamara, Dave; Bodnarik, Julia; Williams, Jeane-Pierre; Mazarico, Erwan; Litvak, Maxim; Sanin, Anton; Murray, Joseph

    2016-04-01

    We report evidence that the Moon's diurnally modulating neutron flux is being forced by a latitude dependent mix of 1) transient hydrogen-bearing volatiles near the surface in the upper latitudes and 2) regolith temperature variation in lower latitudes. In this study we investigate diurnally varying neutron flux measurements from the Lunar Reconnaissance Orbiter's (LRO) Lunar Exploration Neutron Detector's Collimated Sensor for Epithermal Neutrons (LEND CSETN) and surface temperature observations from the Diviner radiometer poleward of >±45°. Our presentation shows that the modulating neutron flux is not consistent with a regolith temperature control for latitudes >70°. The anticorrelation may be evidence for transported lunar hydrogen volatiles or highly non-uniform regolith compositional dynamics. Observational evidence is consistent with regolith temperature being the source of the neutron flux modulation in the northern mare (45° to 60°) and may be related to its mafic composition and fast neutron contributions. Predictions for hypothesized regolith temperature effects are evaluated using insolation inferred from the Lunar Observing Laser Altimeter (LOLA) topography.

  12. Neutron dosimetry

    DOEpatents

    Quinby, Thomas C.

    1976-07-27

    A method of measuring neutron radiation within a nuclear reactor is provided. A sintered oxide wire is disposed within the reactor and exposed to neutron radiation. The induced radioactivity is measured to provide an indication of the neutron energy and flux within the reactor.

  13. Average Soil Water Retention Curves Measured by Neutron Radiography

    SciTech Connect

    Cheng, Chu-Lin; Perfect, Edmund; Kang, Misun; Voisin, Sophie; Bilheux, Hassina Z; Horita, Juske; Hussey, Dan

    2011-01-01

    Water retention curves are essential for understanding the hydrologic behavior of partially-saturated porous media and modeling flow transport processes within the vadose zone. In this paper we report direct measurements of the main drying and wetting branches of the average water retention function obtained using 2-dimensional neutron radiography. Flint sand columns were saturated with water and then drained under quasi-equilibrium conditions using a hanging water column setup. Digital images (2048 x 2048 pixels) of the transmitted flux of neutrons were acquired at each imposed matric potential (~10-15 matric potential values per experiment) at the NCNR BT-2 neutron imaging beam line. Volumetric water contents were calculated on a pixel by pixel basis using Beer-Lambert s law after taking into account beam hardening and geometric corrections. To remove scattering effects at high water contents the volumetric water contents were normalized (to give relative saturations) by dividing the drying and wetting sequences of images by the images obtained at saturation and satiation, respectively. The resulting pixel values were then averaged and combined with information on the imposed basal matric potentials to give average water retention curves. The average relative saturations obtained by neutron radiography showed an approximate one-to-one relationship with the average values measured volumetrically using the hanging water column setup. There were no significant differences (at p < 0.05) between the parameters of the van Genuchten equation fitted to the average neutron radiography data and those estimated from replicated hanging water column data. Our results indicate that neutron imaging is a very effective tool for quantifying the average water retention curve.

  14. The prototype of a detector for monitoring the cosmic radiation neutron flux on ground

    SciTech Connect

    Lelis Goncalez, Odair; Federico, Claudio Antonio; Mendes Prado, Adriane Cristina; Galhardo Vaz, Rafael; Tizziani Pazzianotto, Mauricio

    2013-05-06

    This work presents a comparison between the results of experimental tests and Monte Carlo simulations of the efficiency of a detector prototype for on-ground monitoring the cosmic radiation neutron flux. The experimental tests were made using one conventional {sup 241}Am-Be neutron source in several incidence angles and the results were compared to that ones obtained with a Monte Carlo simulation made with MCNPX Code.

  15. Latent heat sink in soil heat flux measurements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The surface energy balance includes a term for soil heat flux. Soil heat flux is difficult to measure because it includes conduction and convection heat transfer processes. Accurate representation of soil heat flux is an important consideration in many modeling and measurement applications. Yet, the...

  16. Measurements for the JASPER Program Flux Monitor Experiment

    SciTech Connect

    Muckenthaler, F.J.; Spencer, R.R.; Hunter, H.T.; Hull, J.L.; Shono, A.

    1993-02-01

    The Flux Monitor Experiment was conducted at the Oak Ridge National Laboratory (ORNL) Tower Shielding Facility (TSF) during the months of May and June 1992, as part of the continuing series of eight experiments planned for the Japanese-American Shielding Program for Experimental Research (JASPER) program that was started in 1986. This series of experiments was designed to examine shielding concerns and radiation transport effects pertaining to in-vessel flux monitoring systems (FMS) in current reactor shield designs proposed for both the Advanced Liquid Metal Reactor (ALMR) design and the Japanese loop-type design. The program is a cooperative effort between the United States Department of Energy (US DOE) and the Japanese Power Reactor and Nuclear Fuel Development Corporation (PNC). The Tower Shielding Reactor H (TSR-II) neutron source was altered by the spectrum modifier (SM) used previously in the Axial Shield Experiment, and part of the Japanese Removable Radial Shield (RRS) before reaching the axial shield. In the axial shield were placed six homogeneous boron carbide (B{sub 4}C) hexagons around a center hexagon of aluminum used to represent sodium. Shield designs to be studied were placed beyond the axial shield, each design forming a void directly behind the axial shield. Measurements were made in the void and behind each slab as successive slabs were added.

  17. Comparison of three-dimensional neutron flux calculations for Maine Yankee

    SciTech Connect

    Urban, W.T.; Crotzer, L.A.; Waters, L.S.; Parsons, D.K.; Alcouffe, R.E.; Spinney, K.B.; Cacciapouti, R.J.

    1996-10-01

    Calculations have been performed on the Maine Yankee Power Plant to obtain three-dimensional neutron fluxes using the spatial synthesis with the two-dimensional discrete ordinates code DORT, the three-dimensional discrete ordinates code THREEDANT and the three-dimensional Monte Carlo code MCNP. Neutron fluxes are compared for energies above 0.1 MeV and 1.0 MeV as well as dpa. Results were obtained at the Yankee dosimetry locations and special test regions within the pressure vessel, in the reactor cavity, and in a shield tank detector well.

  18. Measurement of local high-level, transient surface heat flux

    NASA Technical Reports Server (NTRS)

    Liebert, Curt H.

    1988-01-01

    This study is part of a continuing investigation to develop methods for measuring local transient surface heat flux. A method is presented for simultaneous measurements of dual heat fluxes at a surface location by considering the heat flux as a separate function of heat stored and heat conducted within a heat flux gage. Surface heat flux information is obtained from transient temperature measurements taken at points within the gage. Heat flux was determined over a range of 4 to 22 MW/sq m. It was concluded that the method is feasible. Possible applications are for heat flux measurements on the turbine blade surfaces of space shuttle main engine turbopumps and on the component surfaces of rocket and advanced gas turbine engines and for testing sensors in heat flux gage calibrators.

  19. Energy spectrum and flux of 3- to 20-Mev neutrons and 1- to 10-Mev gamma rays in the atmosphere

    NASA Technical Reports Server (NTRS)

    Klumpar, D. M.; Lockwood, J. A.; Saint Onge, R. N.; Friling, L. A.

    1973-01-01

    An experiment is described which was designed to measure the neutron and gamma ray energy spectrums and fluxes in the energy intervals 3 to 20 MeV and 1 to 10 MeV, respectively. In addition, from the 3 to 20-MeV proton recoil spectrums it is possible to infer the shape of the neutron energy spectrum from 20 to 50 MeV. The detecting system utilized a separate charged particle rejection scheme and a two-parameter display system for the output from the pulse shape discrimination which separated gamma rays from neutrons (n). Two long-duration flights were made with this detector in 1970 at Palestine, Tex. (P sub c = 4.6 Gv) and at Ft. Churchill, Canada (P sub c = 0.3 Gv).

  20. Neutron Interference Experiments and Quantum Measurement Theory

    NASA Astrophysics Data System (ADS)

    Namiko, M.; Otake, Y.; Soshi, H.

    1987-03-01

    Physical and epistemological implications of recent experiments on the neutron interference are discussed from the viewpoint of the Machida-Namiki theory of measurement in quantum mechanics, without resort to discussion on the number-phase uncertainty relation. The same idea is also applied to the neutrino oscillation problem.

  1. AmeriFlux Measurement Component (AMC) Handbook

    SciTech Connect

    Reichl, K.; Biraud, S. C.

    2016-01-01

    An AMC system was installed at the Atmospheric Radiation Measurement (ARM) Climate Research Facility’s North Slope Alaska (NSA) Barrow site, also known as NSA C1 at the ARM Data Archive, in August 2012. A second AMC system was installed at the third ARM Mobile Facility deployment at Oliktok Point, also known as NSA M1. This in situ system consists of 12 combination soil temperature and volumetric water content (VWC) reflectometers and one set of upwelling and downwelling PAR sensors, all deployed within the fetch of the Eddy Correlation Flux Measurement System. Soil temperature and VWC sensors placed at two depths (10 and 30 cm below the vegetation layer) at six locations (or microsites) allow soil property inhomogeneity to be monitored across a landscape. The soil VWC and temperature sensors used at NSA C1 are the Campbell Scientific CS650L and the sensors at NSA M1 use the Campbell Scientific CS655. The two sensors are nearly identical in function, and vendor specifications are based on the CS650 unless otherwise stated.

  2. Neutron Flux Spectra Determination by Multiple Foil Activation - Iterative Method.

    Energy Science and Technology Software Center (ESTSC)

    1994-07-08

    Version 00 Neutron energy spectra are determined by an analysis of experimental activation detector data. As with the original CCC-112/SAND-II program, which was developed at Air Force Weapons Laboratory, this code system consists of four modules, CSTAPE, SLACTS, SLATPE, and SANDII. The first three modules pre-process the dosimetry cross sections and the trial function spectrum library. The last module, SANDII, actually performs the iterative spectrum characterization.

  3. The energy dependence of the cosmic-ray neutron leakage flux in the range 0.01-10 MeV.

    NASA Technical Reports Server (NTRS)

    Jenkins, R. W.; Ifedili, S. O.; Lockwood, J. A.; Razdan, H.

    1971-01-01

    Measurement of the cosmic-ray neutron leakage flux and energy spectrum in the range 1 to 10 MeV by a neutron detector on the Ogo 6 satellite from June 7 to Sept. 30, 1969. The same detector simultaneously measured the total leakage flux, having 75% of its response to the leakage flux in the interval from 1 keV to 1 MeV. For a neutron energy spectrum of the form AE to the minus gamma in the range from 1 to 10 MeV, the upper limit to gamma for polar regions was found to be 1.0 and for the equatorial regions was 1.2. For the polar regions, the lower limit to gamma was found to be 0.8. This energy spectrum at 1 to 10 MeV is slightly flatter than Newkirk (1963) predicted.

  4. Neutron spectrum measurements in DT discharges using activation techniques

    NASA Astrophysics Data System (ADS)

    Esposito, B.; Bertalot, L.; Loughlin, M.; Roquemore, A. L.

    1999-01-01

    The JET activation system has eight irradiation ends where samples may be irradiated in the neutron flux from the plasma. There is one end, re-entrant into the top of the vessel, for which there is little intervening material between it and the plasma; the other ends, including two beneath the divertor coils, have increasingly larger amounts of intervening structure. The local neutron spectrum at each irradiation end was measured by simultaneously activating several elemental foils (Al, Au, Co, Fe, In, Mg, Nb, Ni, Ti, Zr). There were 15 activation reactions in the energy range of 0.5-16 MeV which were used as input to the SNL-SAND-II code to determine the neutron energy spectrum. The results are compared with neutron transport calculations both from the MCNP and FURNACE codes: the average standard deviation between measured to SNL-SAND-II calculated activity ratios was as low as 5%. The results demonstrate the reliability of the neutronics calculations and have implications for the design of diagnostics and blankets for the next generation of large tokamaks such as ITER. The 377.9 keV line of the 54Fe(n,2n)53Fe reaction (threshold ˜13.9 MeV, not a dosimetric standard) has also been measured in different plasma conditions. The ratio of the saturated activity from this reaction to that from the 56Fe(n,p)56Mn reaction (threshold ˜4.5 MeV) provides information on the broadening of the 14 MeV fusion peak.

  5. Measurements with the high flux lead slowing-down spectrometer at LANL

    NASA Astrophysics Data System (ADS)

    Danon, Y.; Romano, C.; Thompson, J.; Watson, T.; Haight, R. C.; Wender, S. A.; Vieira, D. J.; Bond, E.; Wilhelmy, J. B.; O'Donnell, J. M.; Michaudon, A.; Bredeweg, T. A.; Schurman, T.; Rochman, D.; Granier, T.; Ethvignot, T.; Taieb, J.; Becker, J. A.

    2007-08-01

    A Lead Slowing-Down Spectrometer (LSDS) was recently installed at LANL [D. Rochman, R.C. Haight, J.M. O'Donnell, A. Michaudon, S.A. Wender, D.J. Vieira, E.M. Bond, T.A. Bredeweg, A. Kronenberg, J.B. Wilhelmy, T. Ethvignot, T. Granier, M. Petit, Y. Danon, Characteristics of a lead slowing-down spectrometer coupled to the LANSCE accelerator, Nucl. Instr. and Meth. A 550 (2005) 397]. The LSDS is comprised of a cube of pure lead 1.2 m on the side, with a spallation pulsed neutron source in its center. The LSDS is driven by 800 MeV protons with a time-averaged current of up to 1 μA, pulse widths of 0.05-0.25 μs and a repetition rate of 20-40 Hz. Spallation neutrons are created by directing the proton beam into an air-cooled tungsten target in the center of the lead cube. The neutrons slow down by scattering interactions with the lead and thus enable measurements of neutron-induced reaction rates as a function of the slowing-down time, which correlates to neutron energy. The advantage of an LSDS as a neutron spectrometer is that the neutron flux is 3-4 orders of magnitude higher than a standard time-of-flight experiment at the equivalent flight path, 5.6 m. The effective energy range is 0.1 eV to 100 keV with a typical energy resolution of 30% from 1 eV to 10 keV. The average neutron flux between 1 and 10 keV is about 1.7 × 109 n/cm2/s/μA. This high flux makes the LSDS an important tool for neutron-induced cross section measurements of ultra-small samples (nanograms) or of samples with very low cross sections. The LSDS at LANL was initially built in order to measure the fission cross section of the short-lived metastable isotope of U-235, however it can also be used to measure (n, α) and (n, p) reactions. Fission cross section measurements were made with samples of 235U, 236U, 238U and 239Pu. The smallest sample measured was 10 ng of 239Pu. Measurement of (n, α) cross section with 760 ng of Li-6 was also demonstrated. Possible future cross section measurements

  6. Potential for improvement of a neutron producing target for time-of-flight measurements

    NASA Astrophysics Data System (ADS)

    Flaska, M.; Lathouwers, D.; Plompen, A. J. M.; Mondelaers, W.; van der Hagen, T. H. J. J.; van Dam, H.

    2005-12-01

    The Geel electron linear accelerator (GELINA) white neutron source is designed for time-of-flight (TOF) measurements with a high neutron energy resolution. A project has been launched in order to improve the accuracy of the high-resolution neutron cross-section measurements. The experimental accuracy is highly dependent on the neutron intensity and the time spread of the neutrons leaving the target. The main project objective is not only to design a new neutron producing target that reduces the time spread of the neutrons of a given energy, but also to maintain or possibly enhance the neutron production. The present GELINA target has been simulated recently with coupled electron-photon-neutron MCNP4C3 calculations and, subsequently, compared with experimental results. Based on the very good benchmarking results, this code is now used to design and optimise the new target and to assess all relevant parameters influencing the neutron flux and resolution functions. In this paper, the reader will find an explanation of the methodology on which the research of a new target is based. We compared the neutron fluxes of the compact geometries of various materials for different angles with the fluxes of the existing target. Further, we also made a comparison of the resolution functions for the present design versus a compact design. Finally, a dedicated figure of merit was used to make a qualitative comparison of various designs. The results presented in this paper reveal that there is a possibility to design a new target with superior characteristics so that all project objectives will be fulfilled.

  7. Measurement of Integrated Low Frequency Flux Noise in Superconducting Flux/Phase Qubits

    SciTech Connect

    Mao Bo; Qiu Wei; Han Siyuan

    2008-11-07

    We measured the integrated low frequency flux noise ({approx}1 m{phi}{sub 0}) of an rf SQUID as a flux qubit by fitting the resonant peaks from photon assistant tunneling (PAT). The energy relaxation time Tl between the ground and first excited states in the same potential well, measured directly in time domain, is 3 ns. From these results we identified low frequency flux noise as the dominant source of decoherence. In addition, we found that the measured values of integrated flux noise in three qubits of various sizes differ more than an order of magnitude.

  8. A unique method of neutron flux determination from experimental data

    SciTech Connect

    Paxton, Frank A.

    1998-12-01

    A method is provided for determining the fission heat flux of a prime specimen inserted into a specimen of a test reactor. A pair of thermocouple test specimens are positioned at the same level in the holder and a determination is made of various experimental data including the temperature of the thermocouple test specimens, the temperature of bulk water channels located in the test holder, the gamma scan count ratios for the thermocouple test specimens and the prime specimen, and the thicknesses of the outer clads, the fuel fillers, and the backclad of the thermocouple test specimen. Using this experimental data, the absolute value of the fission heat flux for the thermocouple test specimens and prime specimen can be calculated.

  9. Neutron optics of the ILL high-flux polarized neutron three-axis spectrometer IN20B

    NASA Astrophysics Data System (ADS)

    Kulda, Jiri; Courtois, Pierre; Saroun, Jan; Thomas, Michel; Enderle, M.; Flores, P.

    2001-11-01

    The three-axis spectrometer IN20 has been upgraded to enhance significantly the data collection rate in experiments using polarized neutrons to study magnetic excitations in the (higher) thermal energy range. To increase the monochromatic polarized neutron flux, a new geometry of the primary spectrometer, optimized by detailed ray-tracing simulations, has been adopted. The main ingredients are a neutron source of a diameter increased from 100 mm to 170 mm and a large double focusing monochromator, illuminated through a heavy input slit (virtual source) of adjustable width. This geometry permits to keep the background at a possibly low level while maximizing the solid angle available for monochromatic focusing. The real challenge of the project has been the new Heusler monochromator. With its active surface of 230 x 150 mm2, consisting of 75 crystal plates mounted in 15 columns, it is the largest polarizing crystal assembly ever built. In combination with the horizontally focusing analyzer of a similar design, implemented in spring 2000, the data collection rate in the polarization analysis mode has increased by a factor 30 - 50 in April 2001 as compared to the original IN20, which up to now has provided world's highest polarized neutron flux in the thermal energy range.

  10. Transmission Probability Code System for Calculating Neutron Flux Distributions in Hexagonal Geometry.

    Energy Science and Technology Software Center (ESTSC)

    1991-01-25

    Version 00 TPHEX calculates the multigroup neutron flux distribution in an assembly of hexagonal cells using a transmission probability (interface current) method. It is primarily intended for calculations on hexagonal LWR fuel assemblies but can be used for other purposes subject to the qualifications mentioned in Restrictions/Limitations.

  11. Computer program calculates gamma ray source strengths of materials exposed to neutron fluxes

    NASA Technical Reports Server (NTRS)

    Heiser, P. C.; Ricks, L. O.

    1968-01-01

    Computer program contains an input library of nuclear data for 44 elements and their isotopes to determine the induced radioactivity for gamma emitters. Minimum input requires the irradiation history of the element, a four-energy-group neutron flux, specification of an alloy composition by elements, and selection of the output.

  12. Minimum activation martensitic alloys for surface disposal after exposure to neutron flux

    DOEpatents

    Lechtenberg, Thomas

    1985-01-01

    Steel alloys for long-term exposure to neutron flux have a martensitic microstructure and contain chromium, carbon, tungsten, vanadium and preferably titanium. Activation of the steel is held to within acceptable limits for eventual surface disposal by stringently controlling the impurity levels of Ni, Mo, Cu, N, Co, Nb, Al and Mn.

  13. A comparison of new measurements of total monoterpene flux with improved measurements of speciated monoterpene flux

    NASA Astrophysics Data System (ADS)

    Lee, A.; Schade, G. W.; Holzinger, R.; Goldstein, A. H.

    2005-02-01

    Many monoterpenes have been identified in forest emissions using gas chromatography (GC). Until now, it has been impossible to determine whether all monoterpenes are appropriately measured using GC techniques. We used a proton transfer reaction mass spectrometer (PTR-MS) coupled with the eddy covariance (EC) technique to measure mixing ratios and fluxes of total monoterpenes above a ponderosa pine plantation. We compared PTR-MS-EC results with simultaneous measurements of eight speciated monoterpenes, β-pinene, α-pinene, 3-carene, d-limonene, β-phellandrene, α-terpinene, camphene, and terpinolene, made with an automated, in situ gas chromatograph with flame ionization detectors (GC-FID), coupled to a relaxed eddy accumulation system (REA). Monoterpene mixing ratios and fluxes measured by PTR-MS averaged 30±2.3% and 31±9.2% larger than by GC-FID, with larger mixing ratio discrepancies between the two techniques at night than during the day. Two unidentified peaks that correlated with β-pinene were resolved in the chromatograms and completely accounted for the daytime difference and reduced the nighttime mixing ratio difference to 20±2.9%. Measurements of total monoterpenes by PTR-MS-EC indicated that GC-FID-REA measured the common, longer-lived monoterpenes well, but that additional terpenes were emitted from the ecosystem that represented an important contribution to the total mixing ratio above the forest at night.

  14. A comparison of new measurements of total monoterpene flux with improved measurements of speciated monoterpene flux

    NASA Astrophysics Data System (ADS)

    Lee, A.; Schade, G. W.; Holzinger, R.; Goldstein, A. H.

    2004-12-01

    Many monoterpenes have been identified in forest emissions using gas chromatography (GC). Until now, it has been impossible to determine whether all monoterpenes are appropriately measured using GC techniques. We used a proton transfer reaction mass spectrometer (PTR-MS) coupled with the eddy covariance (EC) technique to measure mixing ratios and fluxes of total monoterpenes above a ponderosa pine plantation. We compared PTR-MS-EC results with simultaneous measurements of eight speciated monoterpenes, β-pinene, α-pinene, 3-carene, d-limonene, β-phellandrene, α-terpinene, camphene, and terpinolene, made with an automated, in situ gas chromatograph with flame ionization detectors (GC-FID), coupled to a relaxed eddy accumulation system (REA). Monoterpene mixing ratios and fluxes measured by PTR-MS averaged 30±2.3% and 31±9.2% larger than by GC-FID, with larger differences at night than during the day. Four unidentified peaks that correlated with β-pinene were resolved in the chromatograms and completely accounted for the daytime difference and reduced the nighttime difference to 19±3.4%. Measurements of total monoterpenes by PTR-MS-EC indicated that GC-FID-REA measured the common, longer-lived monoterpenes well, but that additional monoterpenes were emitted from the ecosystem that represented an important contribution to the total mixing ratio above the forest at night, and that must have been oxidized during the day before they escaped the forest canopy.

  15. Heat flux microsensor measurements and calibrations

    NASA Technical Reports Server (NTRS)

    Terrell, James P.; Hager, Jon M.; Onishi, Shinzo; Diller, Thomas E.

    1992-01-01

    A new thin-film heat flux gage has been fabricated specifically for severe high temperature operation using platinum and platinum-10 percent rhodium for the thermocouple elements. Radiation calibrations of this gage were performed at the AEDC facility over the available heat flux range (approx. 1.0 - 1,000 W/cu cm). The gage output was linear with heat flux with a slight increase in sensitivity with increasing surface temperature. Survivability of gages was demonstrated in quench tests from 500 C into liquid nitrogen. Successful operation of gages to surface temperatures of 750 C has been achieved. No additional cooling of the gages is required because the gages are always at the same temperature as the substrate material. A video of oxyacetylene flame tests with real-time heat flux and temperature output is available.

  16. Measurement of the Radius of Neutron Stars

    NASA Astrophysics Data System (ADS)

    Guillot, Sebastien

    2012-07-01

    A physical understanding of the behavior of cold ultra-dense matter -- at and above nuclear density -- can only be achieved by the study of neutron stars. The recent 1.97+/-0.04 Msun measurement for PSR 1614-2230 suggests that strange quark matter and hyperons/kaons condensate equations of state (EoSs) are disfavored, in favor of hadronic EoSs. Over much of the neutron star mass-radius parameter space, the latter EoSs produce lines of nearly constant radii (within about 10%). We present a simultaneous spectral analysis of several globular cluster quiescent low-mass x-ray binaries where we require the radius to be the same among all neutron stars analyzed. Our (preliminary) results suggest a neutron star radius much smaller than previously reported, in the range 7.5-10 km (90% confidence). The Markov-Chain Monte-Carlo method and the Bayesian approach developed in this analysis permits including uncertainties in the distance, in the hydrogen column density, and possible contributions to the spectra due to unmodelled spectrally hard components.

  17. Measurement of the Radius of Neutron Stars

    NASA Astrophysics Data System (ADS)

    Guillot, Sebastien; Rutledge, R. E.; Servillat, M.; Webb, N.

    2013-01-01

    A physical understanding of the behavior of cold ultra dense matter - at and above nuclear density - can only be achieved by the study of neutron stars. The recent 1.97 ± 0.04 M⊙ measurement for PSR 1614-2230 suggests that strange quark matter and hyperons/kaons condensate equations of state (EoSs) are disfavored, in favor of hadronic EoSs. Over much of the neutron star mass-radius parameter space, the latter EoSs produce lines of nearly constant radii (within about 10%). We present a simultaneous spectral analysis of several globular cluster quiescent low-mass X-ray binaries where we require the radius to be the same among all neutron stars analyzed. Our (preliminary) results suggest a neutron star radius much smaller than previously reported, in the range 7.5-10 km (90% confidence). The Markov-Chain Monte-Carlo method and the Bayesian approach developed in this analysis permits including uncertainties in the distance, in the hydrogen column density, and possible contributions to the spectra due to unmodeled spectrally hard components.

  18. Experimental study of the interaction of pulsations of the neutron flux and the coolant flow in a boiling-water reactor

    SciTech Connect

    Leppik, P.A.

    1984-12-01

    This paper presents results of a study designed to confirm that the interaction of the neutron flux and the coolant flow plays an important role in the mechanism of high-frequency (HF) resonant instability of the VK-50 boiling water reactor. To do this and to check the working model, signals from probes measuring the flow rate of the coolant and the neutron flux were recorded simultaneously (with the help of a magnetograph) in experiments performed in 1981 on driving the VK-50 reactor into the HF reonant instability regimes. Estimates were then obtained for the statistical characteristics of the pulsations of the flow rate and of the neutron flux, including the cross-correlation functions and coherence functions. The basic results of these studies are reported here.

  19. Diurnally Varying Hydrogen Volatiles or Regolith Temperature? Mare and Highlands Studies of the Moon's Diurnally Modulating Epithermal Neutron Flux Using LRO's LEND, Diviner, and LOLA Instruments

    NASA Astrophysics Data System (ADS)

    McClanahan, T. P.; LEND Team; Parsons, A. M.; Williams, J. P.; Mazarico, E.

    2015-10-01

    In this study we seek to discriminate the source of variation that is diurnally modulating the Moon's neutron emission flux. We characterize the neutron emission flux from the topography in the northern mare and highlands regions.

  20. Absolute Neutron Fluence Measurements at the NIST Center for Neutron Research

    NASA Astrophysics Data System (ADS)

    Yue, A.; Dewey, M.; Gilliam, D.; Nico, J.; Anderson, E.; Snow, M.; Greene, G.; Laptev, A.

    2015-10-01

    Precise, absolute fluence measurements of cold and thermal neutron beams are of primary importance to beam-type determinations of the neutron lifetime, measurements of standard neutron cross sections, and the development of standards for neutron dosimetry. At the National Institute of Standards and Technology (NIST), a totally absorbing neutron detector based on absolute counting of the 10B(n,α1)7Li reaction 478 keV gamma ray has been used to perform fluence measurements with a precision of 0.06%. This detector has been used to improve the neutron fluence determination in the 2000 NIST beam neutron lifetime by a factor of five, significantly reducing the uncertainty in the lifetime result. Ongoing and possible future uses of the Alpha-Gamma device include 1) Calibration of the neutron fluence monitors that will be used in the upcoming NIST beam neutron lifetime measurement BL2; 2) The first direct, absolute measurement of the 6Li(n,t)4He neutron cross section at sub-thermal neutron energy; 3) Measurements of the 10B(n, γ)11B and 235U(n,f) neutron cross sections; 4) A re-calibration of the national neutron standard NBS-1. The apparatus, measurement technique, and applications will be discussed.

  1. Soil Flux Chamber Measurements with Five Species CRDS and New Realtime Chamber Flux Processor

    NASA Astrophysics Data System (ADS)

    Saad, N.; Alstad, K. P.; Arata, C.; Franz, P.

    2014-12-01

    Continuous soil flux chamber measurements remains a key tool for determining production and sequestration of direct and indirect greenhouse gases. The Picarro G2508 Cavity Ring-down Spectrometer has radically simplified soil flux studies by providing simultaneous measurements of five gases: CO2, CH4, N2O, NH3, and H2O, and by lending itself to field deployment. Successful use of the Picarro G2508 for continuous soil flux measurements in a variety of ecosystem types has already been demonstrated. Most recently, Picarro is developing a real-time processing software to simplify chamber measurements of soil flux with the G2508 CRDS. The new Realtime Chamber Flux Processor is designed to work with all chamber types and sizes, and provides real-time flux values of N2O, CO2 & CH4. The software features include chamber sequence table, flexible data tagging feature, ceiling concentration measurement shut-off parameter, user-defined run-time interval, temperature/pressure input for field monitoring and volumetric conversion, and manual flux measurement start/stop override. Realtime Chamber Flux Processor GUI interface is presented, and results from a variety of sampling designs are demonstrated to emphasize program flexibility and field capability.

  2. Neutron flux from a 14-MeV neutron generator with tungsten filter for research in NDA methods for nuclear safeguards and security

    SciTech Connect

    Rennhofer, H.; Pedersen, B.; Crochemore, J.-M.

    2009-12-02

    The Joint Research Centre has taken into operation a new experimental device designed for research in the fields of nuclear safeguards and security applications. The research projects currently undertaken include detection of shielded contraband materials, detection of fissile materials, and mass determination of small fissile materials in shielded containers. The device, called the Pulsed Neutron Interrogation Test Assembly (PUNITA), incorporates a pulsed 14-MeV (D-T) neutron generator and a large graphite mantle surrounding the sample cavity. By pulsing the neutron generator with a frequency in the range of 10 to 150 Hz, a sample may be interrogated first by fast neutrons and a few hundred micro-seconds later by a pure thermal neutron flux. The permanent detection systems incorporated in PUNITA include {sup 3}He neutrons detectors, HPGe gamma detectors, and lanthanum bromide scintillation detectors.We have studied the effects of placing a tungsten liner around the neutron generator target. The 14-MeV neutrons induce (n, 2n) and (n, 3n) reactions. In addition the mean neutron energy emitted from generator/tungsten assembly is reduced to about 1 MeV. Both of these effects increase the thermal neutron flux in the sample cavity. The paper describes the observed advantages of the tungsten liner with respect to increase in thermal flux, and better shielding capabilities of the nearby gamma and neutron detectors.

  3. AmeriFlux Measurement Network: Science Team Research

    SciTech Connect

    Law, B E

    2012-12-12

    Research involves analysis and field direction of AmeriFlux operations, and the PI provides scientific leadership of the AmeriFlux network. Activities include the coordination and quality assurance of measurements across AmeriFlux network sites, synthesis of results across the network, organizing and supporting the annual Science Team Meeting, and communicating AmeriFlux results to the scientific community and other users. Objectives of measurement research include (i) coordination of flux and biometric measurement protocols (ii) timely data delivery to the Carbon Dioxide Information and Analysis Center (CDIAC); and (iii) assurance of data quality of flux and ecosystem measurements contributed by AmeriFlux sites. Objectives of integration and synthesis activities include (i) integration of site data into network-wide synthesis products; and (ii) participation in the analysis, modeling and interpretation of network data products. Communications objectives include (i) organizing an annual meeting of AmeriFlux investigators for reporting annual flux measurements and exchanging scientific information on ecosystem carbon budgets; (ii) developing focused topics for analysis and publication; and (iii) developing data reporting protocols in support of AmeriFlux network goals.

  4. Heat flux measurements on ceramics with thin film thermocouples

    NASA Technical Reports Server (NTRS)

    Holanda, Raymond; Anderson, Robert C.; Liebert, Curt H.

    1993-01-01

    Two methods were devised to measure heat flux through a thick ceramic using thin film thermocouples. The thermocouples were deposited on the front and back face of a flat ceramic substrate. The heat flux was applied to the front surface of the ceramic using an arc lamp Heat Flux Calibration Facility. Silicon nitride and mullite ceramics were used; two thicknesses of each material was tested, with ceramic temperatures to 1500 C. Heat flux ranged from 0.05-2.5 MW/m2(sup 2). One method for heat flux determination used an approximation technique to calculate instantaneous values of heat flux vs time; the other method used an extrapolation technique to determine the steady state heat flux from a record of transient data. Neither method measures heat flux in real time but the techniques may easily be adapted for quasi-real time measurement. In cases where a significant portion of the transient heat flux data is available, the calculated transient heat flux is seen to approach the extrapolated steady state heat flux value as expected.

  5. Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux

    DOEpatents

    Bowman, C.D.

    1992-11-03

    Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux. High thermal neutron fluxes generated from the action of a high power proton accelerator on a spallation target allows the efficient burn-up of higher actinide nuclear waste by a two-step process. Additionally, rapid burn-up of fission product waste for nuclides having small thermal neutron cross sections, and the practicality of small material inventories while achieving significant throughput derive from employment of such high fluxes. Several nuclear technology problems are addressed including 1. nuclear energy production without a waste stream requiring storage on a geological timescale, 2. the burn-up of defense and commercial nuclear waste, and 3. the production of defense nuclear material. The apparatus includes an accelerator, a target for neutron production surrounded by a blanket region for transmutation, a turbine for electric power production, and a chemical processing facility. In all applications, the accelerator power may be generated internally from fission and the waste produced thereby is transmuted internally so that waste management might not be required beyond the human lifespan.

  6. Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux

    DOEpatents

    Bowman, Charles D.

    1992-01-01

    Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux. High thermal neutron fluxes generated from the action of a high power proton accelerator on a spallation target allows the efficient burn-up of higher actinide nuclear waste by a two-step process. Additionally, rapid burn-up of fission product waste for nuclides having small thermal neutron cross sections, and the practicality of small material inventories while achieving significant throughput derive from employment of such high fluxes. Several nuclear technology problems are addressed including 1. nuclear energy production without a waste stream requiring storage on a geological timescale, 2. the burn-up of defense and commercial nuclear waste, and 3. the production of defense nuclear material. The apparatus includes an accelerator, a target for neutron production surrounded by a blanket region for transmutation, a turbine for electric power production, and a chemical processing facility. In all applications, the accelerator power may be generated internally from fission and the waste produced thereby is transmuted internally so that waste management might not be required beyond the human lifespan.

  7. Preliminary measurements of neutrons from the D-D reaction in the COMPASS tokamak

    SciTech Connect

    Dankowski, J. Kurowski, A.; Twarog, D.; Janky, F.; Stockel, J.

    2014-08-21

    Recent results of measured fast neutrons created in the D-D reaction on the COMPASS tokamak during ohmic discharges are presented in this paper. Two different type detectors were used during experiment. He-3 detectors and bubble detectors as a support. The measurements are an introduction for neutron diagnostic on tokamak COMPASS and monitoring neutrons during discharges with Neutral Beam Injection (NBI). The He-3 counters and bubble detectors were located in two positions near tokamak vacuum chamber at a distance less than 40 cm to the centre of plasma. The neutrons flux was observed in ohmic discharges. However, analysis of our results does not indicate any clear source of neutrons production during ohmic discharges.

  8. Preliminary measurements of neutrons from the D-D reaction in the COMPASS tokamak

    NASA Astrophysics Data System (ADS)

    Dankowski, J.; Janky, F.; Kurowski, A.; Stockel, J.; Twarog, D.

    2014-08-01

    Recent results of measured fast neutrons created in the D-D reaction on the COMPASS tokamak during ohmic discharges are presented in this paper. Two different type detectors were used during experiment. He-3 detectors and bubble detectors as a support. The measurements are an introduction for neutron diagnostic on tokamak COMPASS and monitoring neutrons during discharges with Neutral Beam Injection (NBI). The He-3 counters and bubble detectors were located in two positions near tokamak vacuum chamber at a distance less than 40 cm to the centre of plasma. The neutrons flux was observed in ohmic discharges. However, analysis of our results does not indicate any clear source of neutrons production during ohmic discharges.

  9. Neutron spectra measurement and comparison of the HFR and THOR BNCT beams.

    PubMed

    Liu, Yuan-Hao; Nievaart, Sander; Tsai, Pi-En; Liu, Hong-Ming; Moss, Ray; Jiang, Shiang-Huei

    2009-07-01

    This paper aims to measure the spectra of HB11 (high flux reactor, HFR) and the Tsing Hua open-pool reactor (THOR) boron neutron capture therapy (BNCT) beams by multiple activation foils. The self-shielding corrections were made with the aid of MCNP calculations. The initial spectra were adjusted by a sophisticated process named coarse-scaling adjustment using SAND-EX, which can adjust a given coarse-group spectrum into a fine-group structure, i.e. 640 groups, with excellent continuity. The epithermal neutron flux of the THOR beam is about three times of HB11. The thermal neutron flux, boron and gold reaction rates along the central axis of a PMMA phantom are calculated for both adjusted spectra for comparison. PMID:19409798

  10. On the 252Cf primary and secondary gamma rays and epithermal neutron flux for BNCT

    NASA Astrophysics Data System (ADS)

    Ghassoun, J.; Merzouki, A.; El Morabiti, A.; Jehouani, A.

    2007-10-01

    Monte Carlo simulation has been used to calculate the different components of neutrons and secondary gamma rays originated by 252Cf fission and also the primary gamma rays emitted directly by the 252Cf source at the exit face of a compact system designed for the BNCT. The system consists of a 252Cf source and a moderator/reflector/filter assembly. To study the material properties and configuration possibilities, the MCNP code has been used. The moderator/reflector/filter arrangement is optimised to moderate neutrons to epithermal energy and, as far as possible, to get rid of fast and thermal neutrons and photons from the therapeutic beam. To reduce the total gamma contamination and to have a sufficiently high epithermal neutron flux we have used different photon filters of different thickness. Our analysis showed that the use of an appropriate filter leads to a gamma ray flux reduction without affecting the epithermal neutron beam quality at the exit face of the system.