Science.gov

Sample records for neutron induced radiography

  1. Neutron radiography and neutron-induced autoradiography for the classroom

    SciTech Connect

    Aderhold, H.C. )

    1992-01-01

    The Cornell 500-kW MARK II TRIGA reactor at the Ward Laboratory of Nuclear Engineering has been used to illustrate the application of neutron radiography (NR) and neutron-induced autoradiography (NIAR) for solving problems in engineering as well as problems in art history. The applications are described in the paper.

  2. High energy neutron radiography

    SciTech Connect

    Gavron, A.; Morley, K.; Morris, C.; Seestrom, S.; Ullmann, J.; Yates, G.; Zumbro, J.

    1996-06-01

    High-energy spallation neutron sources are now being considered in the US and elsewhere as a replacement for neutron beams produced by reactors. High-energy and high intensity neutron beams, produced by unmoderated spallation sources, open potential new vistas of neutron radiography. The authors discuss the basic advantages and disadvantages of high-energy neutron radiography, and consider some experimental results obtained at the Weapons Neutron Research (WNR) facility at Los Alamos.

  3. The Neutron Radiography Reactor (NRAD)

    SciTech Connect

    Imel, G.R.; McClellan, G.C.; Pruett, D.P.

    1990-01-01

    The Neutron Radiography Reactor (NRAD) operated by Argonne National Laboratory is described in this paper. NRAD was designed to allow radiography of highly absorbing reactor fuel assemblies in the vertical position on the routine basis. 7 figs.

  4. Regulatory aspects of neutron radiography

    NASA Astrophysics Data System (ADS)

    Hammer, J.

    1999-11-01

    While full legislation for industrial radiography with gamma and X-rays already exists in many countries, the situation is different for neutron radiography. Therefore, the licensing for equipment and procedures in this field has to be based on basic principles of national and international rules. This contribution will explain how the regulatory body in Switzerland deals with neutron radiography installations in order to maintain national standards of health and safety.

  5. Fast and thermal neutron radiography

    NASA Astrophysics Data System (ADS)

    Cremer, Jay T.; Piestrup, Melvin A.; Wu, Xizeng

    2005-09-01

    There is a need for high brightness neutron sources that are portable, relatively inexpensive, and capable of neutron radiography in short imaging times. Fast and thermal neutron radiography is as an excellent method to penetrate high-density, high-Z objects, thick objects and image its interior contents, especially hydrogen-based materials. In this paper we model the expected imaging performance characteristics and limitations of fast and thermal radiography systems employing a Rose Model based transfer analysis. For fast neutron detection plastic fiber array scintllators or liquid scintillator filled capillary arrays are employed for fast neutron detection, and 6Li doped ZnS(Cu) phosphors are employed for thermal neutron detection. These simulations can provide guidance in the design, construction, and testing of neutron imaging systems. In particular we determined for a range of slab thickness, the range of thicknesses of embedded cracks (air-filled or filled with material such as water) which can be detected and imaged.

  6. Mobile accelerator neutron radiography system

    NASA Astrophysics Data System (ADS)

    Dance, W. E.; Carollo, S. F.; Bumgardner, H. M.

    1984-10-01

    The use of neutron radiography for the inspection and maintenance of large structures such as aircraft has been delayed by the absence of a mobile system particularly suited to the requirements of field use. This report describes the production, extensive field testing, evaluation and disposition of the first mobile neutron radiography system to satisfy the majority of requirements for field use. The system is based upon the concept of a mobile on-off neutron radiography system based on a sealed-tube ion accelerator as neutron source demonstrated earlier by the Vought Corporation. Primary features of the system are its self-propelled mobility, versatile positioning capability scaled to Army helicopter dimensions, an on-off beam capability, exposure capability measured in minutes, and suitability for AMMRC laboratory and field use. Included in the report are a description of all components of the system, an evaluation of the operation of the system, an evaluation of its radiographic capabilities, a description of installation elements for the AMMRC site, and recommendations for next-generation systems.

  7. Progress in thermal neutron radiography at LENS

    NASA Astrophysics Data System (ADS)

    Jenkins, Jack; Low Energy Neutron Source (LENS) at Indiana University Collaboration

    2014-09-01

    An end station for thermal neutron radiography and tomography is in operation at the Indiana University LENS facility. Neutrons from proton-induced nuclear reactions in Beryllium are moderated and collimated into a beam which is attenuated by a scanned object on a remotely-controlled rotating table. Neutron signal is then converted to a light signal with a ZnS scintillating screen and recorded in a cooled CCD. The author has performed diagnostics on the radiography hardware and software and has tested the system's capabilities by imaging a stack of high density polyethylene cubes with diverse inlet holes and grooves on an 80/20 aluminum base. The resolution of the radiographs are seen to be less than 1mm and 3D rending software is capable of reconstructing the internal structure of the aluminum. An end station for thermal neutron radiography and tomography is in operation at the Indiana University LENS facility. Neutrons from proton-induced nuclear reactions in Beryllium are moderated and collimated into a beam which is attenuated by a scanned object on a remotely-controlled rotating table. Neutron signal is then converted to a light signal with a ZnS scintillating screen and recorded in a cooled CCD. The author has performed diagnostics on the radiography hardware and software and has tested the system's capabilities by imaging a stack of high density polyethylene cubes with diverse inlet holes and grooves on an 80/20 aluminum base. The resolution of the radiographs are seen to be less than 1mm and 3D rending software is capable of reconstructing the internal structure of the aluminum. NSF.

  8. ARG portable neutron radiography. Final report

    SciTech Connect

    Barton, J.P.

    1995-04-01

    In this report all available neutron radiographic data, including results of tests run at LANL, McClellan AFB, and University of Virginia, will be combined to outline specific transportable neutron radiography systems that could achieve the desired results as a complement to x-radiography capabilities for the Accident Response Group (ARG).

  9. Neutron beam characterization at the Neutron Radiography Reactor (NRAD)

    SciTech Connect

    Imel, G.R.; Urbatsch, T.; Pruett, D.P.; Ross, J.R.

    1990-01-01

    The Neutron Radiography Reactor (NRAD) is a 250-kW TRIGA Reactor operated by Argonne National Laboratory and is located near Idaho Falls, Idaho. The reactor and its facilities regarding radiography are detailed in another paper at this conference; this paper summarizes neutron flux measurements and calculations that have been performed to better understand and potentially improve the neutronics characteristics of the reactor.

  10. Time of flight fast neutron radiography

    NASA Astrophysics Data System (ADS)

    Loveman, R.; Bendahan, J.; Gozani, T.; Stevenson, J.

    1995-05-01

    Neutron radiography with fast or thermal neutrons is a standard technique for non-destructive testing (NDT). Here we report results for fast neutron radiography both as an adjunct to pulsed fast neutron analysis (PFNA) and as a stand-alone method for NDT. PFNA is a new technique for utilizing a collimated pulsed neutron beam to interrogate items and determine their elemental composition. By determining the time of flight for gamma-rays produced by (n,n' gamma X) reactions, a three dimensional image can be produced. Neutron radiography data taken with the same beam provides an important constraint for image reconstruction, and in particular is important in inferring the amount of hydrogen within the interrogated item. As a stand-alone device, the radiography measurement can be used to image items as large as cargo containers as long as their density is not too high. The use of a pulsed beam gives the further advantage of a time of flight measurement on the transmitted neutrons. By gating the radiography signal on the time of flight appropriate to the energy of the primary neutrons, most build-up from scattered neutrons can be eliminated. The pulsed beam also greatly improves the signal to background and extends the range of the neutron radiography. Simulation results will be presented which display the advantage of this constraint in particular for statistically limited data. Experimental results will be presented which show some of the limitations likely in a PFNA system utilizing neutron radiography data. Experimental and simulation results will demonstrate possible uses for this type of radiographic data in identifying contraband substances such as drugs.

  11. Neutron radiography at the NRAD facility

    SciTech Connect

    McClellan, G.C.; Richards, W.J.

    1984-01-01

    The NRAD facility uses a 150 kW TRIGA reactor as a source of neutrons and is integrated with a hot cell such that highly radioactive specimens can be radiographed without removing them from the hot cell environment. A second beam tube is located in a separate shielded addition to HFEF and permits neutron radiography of irradiated or unirradiated specimens without subjecting them to the alpha-contaminated hot cell environment. Both beams are optimized for neutron radiography of highly radioactive nuclear fuels. Techniques for using these facilities are described. Advantages include: the ability to perform thermal and epithermal neutron radiography on specimens either inside or outside the hot cell, lack of competition for the use of the reactor, versatility of facility design, and the addition of neutron tomography. (LEW)

  12. A system for fast neutron radiography

    SciTech Connect

    Klann, R.T.

    1996-05-01

    A system has been designed and a neutron generator installed to perform fast neutron radiography. With this sytem, objects as small as a coin or as large as a waste drum can be radiographed. The neutron source is an MF Physics A-711 neutron generator which produces 3x10{sup 10} neutrons/second with an average energy of 14.5 MeV. The radiography system uses x-ray scintillation screens and film in commercially available cassettes. The cassettes have been modified to include a thin sheet of plastic to convert neutrons to protons through elastic scattering from hydrogen and other low Z materials in the plastic. For film densities from 1.8 to 3.0, exposures range from 1.9x10{sup 7} to 3.8x10{sup 8} n/cm{sup 2} depending on the type of screen and film.

  13. Lithium batteries: Application of neutron radiography

    NASA Astrophysics Data System (ADS)

    Kamata, Masahiro; Esaka, Takao; Fujine, Shigenori; Yoneda, Kenji; Kanda, Keiji

    Several kinds of primary and secondary commercial lithium batteries, such as CR1/3 · 1H (Fujitsu), CR1220 and BR435 (Panasonic), ML1220 (Sanyo Excel) were investigated using neutron radiography; the variation of the lithium distribution inside these batteries upon discharging (and charging) were clarified by analyzing their visualized images. It was demonstrated that neutron radiography is a potential and useful method, especially in evaluating the reversibility of rechargeable batteries, which have been used under different discharging/charging conditions.

  14. Radiography

    NASA Technical Reports Server (NTRS)

    Gardner, C. G.

    1973-01-01

    Radiography is discussed as a method for nondestructive evaluation of internal flaws of solids. Gamma ray and X-ray equipment are described along with radiographic film, radiograph interpretation, and neutron radiography.

  15. High Brightness Neutron Source for Radiography

    SciTech Connect

    Cremer, J. T.; Piestrup, Melvin, A.; Gary, Charles, K.; Harris, Jack, L. Williams, David, J.; Jones, Glenn, E.; Vainionpaa, J. , H.; Fuller, Michael, J.; Rothbart, George, H.; Kwan, J., W.; Ludewigt, B., A.; Gough, R.., A..; Reijonen, Jani; Leung, Ka-Ngo

    2008-12-08

    This research and development program was designed to improve nondestructive evaluation of large mechanical objects by providing both fast and thermal neutron sources for radiography. Neutron radiography permits inspection inside objects that x-rays cannot penetrate and permits imaging of corrosion and cracks in low-density materials. Discovering of fatigue cracks and corrosion in piping without the necessity of insulation removal is possible. Neutron radiography sources can provide for the nondestructive testing interests of commercial and military aircraft, public utilities and petrochemical organizations. Three neutron prototype neutron generators were designed and fabricated based on original research done at the Lawrence Berkeley National Laboratory (LBNL). The research and development of these generators was successfully continued by LBNL and Adelphi Technology Inc. under this STTR. The original design goals of high neutron yield and generator robustness have been achieved, using new technology developed under this grant. In one prototype generator, the fast neutron yield and brightness was roughly 10 times larger than previously marketed neutron generators using the same deuterium-deuterium reaction. In another generator, we integrate a moderator with a fast neutron source, resulting in a high brightness thermal neutron generator. The moderator acts as both conventional moderator and mechanical and electrical support structure for the generator and effectively mimics a nuclear reactor. In addition to the new prototype generators, an entirely new plasma ion source for neutron production was developed. First developed by LBNL, this source uses a spiral antenna to more efficiently couple the RF radiation into the plasma, reducing the required gas pressure so that the generator head can be completely sealed, permitting the possible use of tritium gas. This also permits the generator to use the deuterium-tritium reaction to produce 14-MeV neutrons with increases

  16. NEUTRON IMAGING, RADIOGRAPHY AND TOMOGRAPHY.

    SciTech Connect

    SMITH,G.C.

    2002-03-01

    Neutrons are an invaluable probe in a wide range of scientific, medical and commercial endeavors. Many of these applications require the recording of an image of the neutron signal, either in one-dimension or in two-dimensions. We summarize the reactions of neutrons with the most important elements that are used for their detection. A description is then given of the major techniques used in neutron imaging, with emphasis on the detection media and position readout principle. Important characteristics such as position resolution, linearity, counting rate capability and sensitivity to gamma-background are discussed. Finally, the application of a subset of these instruments in radiology and tomography is described.

  17. Beam characterization at the Neutron Radiography Reactor

    SciTech Connect

    Sarah W. Morgan; Jeffrey C. King; Chad L. Pope

    2013-12-01

    The quality of a neutron-imaging beam directly impacts the quality of radiographic images produced using that beam. Fully characterizing a neutron beam, including determination of the beam's effective length-to-diameter ratio, neutron flux profile, energy spectrum, potential image quality, and beam divergence, is vital for producing quality radiographic images. This paper provides a characterization of the east neutron imaging beamline at the Idaho National Laboratory Neutron Radiography Reactor (NRAD). The experiments which measured the beam's effective length-to-diameter ratio and potential image quality are based on American Society for Testing and Materials (ASTM) standards. An analysis of the image produced by a calibrated phantom measured the beam divergence. The energy spectrum measurements consist of a series of foil irradiations using a selection of activation foils, compared to the results produced by a Monte Carlo n-Particle (MCNP) model of the beamline. The NRAD has an effective collimation ratio greater than 125, a beam divergence of 0.3 +_ 0.1 degrees, and a gold foil cadmium ratio of 2.7. The flux profile has been quantified and the facility is an ASTM Category 1 radiographic facility. Based on bare and cadmium covered foil activation results, the neutron energy spectrum used in the current MCNP model of the radiography beamline over-samples the thermal region of the neutron energy spectrum.

  18. A system for fast neutron radiography

    SciTech Connect

    Klann, R.T.

    1997-04-01

    A system has been designed and a neutron generator installed to perform fast neutron radiography. With this system, objects as small as a coin and as large as a 19 liter container have been radiographed. The neutron source is an MF Physics A-711 neutron generator which produces 3 x 10[sup 10] neutrons/second with an average energy of 14. 5 MeV. The radiography system uses x-ray scintillation screens and film in commercially available light-tight cassettes. The cassettes have been modified to include a thin sheet of plastic to produce protons from the neutron beam through elastic scattering from hydrogen and other low Z materials in the plastic. For film densities from 1.8 to 3.0, exposures range from 1.9 x 10[sup 7] n/cm[sup 2] to 3.8 x 10[sup 8] n/cm[sup 2] depending on the type of screen and film. The optimum source-to-film distance was found to be 150 cm. At this distance, the geometric unsharpness was determined to be approximately 2.2-2.3 mm and the smallest hole that could be resolved in a 1.25 cm thick sample had a diameter of 0.079 cm.

  19. Neutron fan beam source for neutron radiography purpose

    SciTech Connect

    Le Tourneur, P.; Bach, P.; Dance, W. E.

    1999-06-10

    The development of the DIANE neutron radiography system included a sealed-tube neutron generator for this purpose and the optimization of the system's neutron beam quality in terms of divergence and useful thermal neutron yield for each 14-MeV neutron produced. Following this development, the concept of a DIANE fan beam source is herewith introduced. The goal which drives this design is one of economy: by simply increasing the aperture dimension of a conventional DIANE beam in one plane of its collimator axis to a small-angle, fan-shaped output, the useful beam area for neutron radiography would be substantially increased. Thus with the same source, the throughput, or number of objects under examination at any given time, would be augmented significantly. Presented here are the design of this thermal neutron source and the initial Monte Carlo calculations. Taking into account the experience with the conventional DIANE neutron radiography system, these result are discussed and the potential of and interest in such a fan-beam source are explored.

  20. Radiography and tomography with polarized neutrons

    NASA Astrophysics Data System (ADS)

    Treimer, Wolfgang

    2014-01-01

    Neutron imaging became important when, besides providing impressive radiographic and tomographic images of various objects, physical, quantification of chemical, morphological or other parameters could be derived from 2D or 3D images. The spatial resolution of approximately 50 µm (and less) yields real space images of the bulk of specimens with more than some cm3 in volume. Thus the physics or chemistry of structures in a sample can be compared with scattering functions obtained e.g. from neutron scattering. The advantages of using neutrons become more pronounced when the neutron spin comes into play. The interaction of neutrons with magnetism is unique due to their low attenuation by matter and because their spin is sensitive to magnetic fields. Magnetic fields, domains and quantum effects such as the Meissner effect and flux trapping can only be visualized and quantified in the bulk of matter by imaging with polarized neutrons. This additional experimental tool is gaining more and more importance. There is a large number of new fields that can be investigated by neutron imaging, not only in physics, but also in geology, archeology, cultural heritage, soil culture, applied material research, magnetism, etc. One of the top applications of polarized neutron imaging is the large field of superconductivity where the Meissner effect and flux pinning can be visualized and quantified. Here we will give a short summary of the results achieved by radiography and tomography with polarized neutrons.

  1. NBS work on neutron resonance radiography

    SciTech Connect

    Schrack, R.A.

    1987-01-01

    NBS has been engaged in a wide-ranging program in Neutron Resonance Radiography utilizing both one- and two-dimensional position-sensitive neutron detectors. The ability to perform a position-sensitive assay of up to 16 isotopes in a complex matrix has been demonstrated for a wide variety of sample types, including those with high gamma activity. A major part of the program has been the development and application of the microchannel-plate-based position-sensitive neutron detector. This detector system has high resolution and sensitivity, together with adequate speed of response to be used with neutron time-of-flight techniques. This system has demonstrated the ability to simultaneously image three isotopes in a sample with no interference.

  2. Neutron radiography of irradiated nuclear fuel at Idaho National Laboratory

    DOE PAGESBeta

    Craft, Aaron E.; Wachs, Daniel M.; Okuniewski, Maria A.; Chichester, David L.; Williams, Walter J.; Papaioannou, Glen C.; Smolinski, Andrew T.

    2015-09-10

    Neutron radiography of irradiated nuclear fuel provides more comprehensive information about the internal condition of irradiated nuclear fuel than any other non-destructive technique to date. Idaho National Laboratory (INL) has multiple nuclear fuels research and development programs that routinely evaluate irradiated fuels using neutron radiography. The Neutron Radiography reactor (NRAD) sits beneath a shielded hot cell facility where neutron radiography and other evaluation techniques are performed on these highly radioactive objects. The NRAD currently uses the foil-film transfer technique for imaging fuel that is time consuming but provides high spatial resolution. This study describes the NRAD and hot cell facilities,more » the current neutron radiography capabilities available at INL, planned upgrades to the neutron imaging systems, and new facilities being brought online at INL related to neutron imaging.« less

  3. Neutron radiography of irradiated nuclear fuel at Idaho National Laboratory

    SciTech Connect

    Craft, Aaron E.; Wachs, Daniel M.; Okuniewski, Maria A.; Chichester, David L.; Williams, Walter J.; Papaioannou, Glen C.; Smolinski, Andrew T.

    2015-09-10

    Neutron radiography of irradiated nuclear fuel provides more comprehensive information about the internal condition of irradiated nuclear fuel than any other non-destructive technique to date. Idaho National Laboratory (INL) has multiple nuclear fuels research and development programs that routinely evaluate irradiated fuels using neutron radiography. The Neutron Radiography reactor (NRAD) sits beneath a shielded hot cell facility where neutron radiography and other evaluation techniques are performed on these highly radioactive objects. The NRAD currently uses the foil-film transfer technique for imaging fuel that is time consuming but provides high spatial resolution. This study describes the NRAD and hot cell facilities, the current neutron radiography capabilities available at INL, planned upgrades to the neutron imaging systems, and new facilities being brought online at INL related to neutron imaging.

  4. Neutron Radiography of Irradiated Nuclear Fuel at Idaho National Laboratory

    NASA Astrophysics Data System (ADS)

    Craft, Aaron E.; Wachs, Daniel M.; Okuniewski, Maria A.; Chichester, David L.; Williams, Walter J.; Papaioannou, Glen C.; Smolinski, Andrew T.

    Neutron radiography of irradiated nuclear fuel provides more comprehensive information about the internal condition of irradiated nuclear fuel than any other non-destructive technique to date. Idaho National Laboratory (INL) has multiple nuclear fuels research and development programs that routinely evaluate irradiated fuels using neutron radiography. The Neutron Radiography reactor (NRAD) sits beneath a shielded hot cell facility where neutron radiography and other evaluation techniques are performed on these highly radioactive objects. The NRAD currently uses the foil-film transfer technique for imaging fuel that is time consuming but provides high spatial resolution. This paper describes the NRAD and hot cell facilities, the current neutron radiography capabilities available at INL, planned upgrades to the neutron imaging systems, and new facilities being brought online at INL related to neutron imaging.

  5. Neutron radiography using neutron imaging plate.

    PubMed

    Chankow, Nares; Punnachaiya, Suvit; Wonglee, Sarinrat

    2010-01-01

    The aims of this research are to study properties of a neutron imaging plate (NIP) and to test it for use in nondestructive testing (NDT) of materials. The experiments were carried out by using a BAS-ND 2040 Fuji NIP and a neutron beam from the Thai Research Reactor TRR-1/M1. The neutron intensity and Cd ratio at the specimen position were approximately 9x10(5) ns/cm(2) s and 100 respectively. It was found that the photostimulated luminescence (PSL) readout of the imaging plate was directly proportional to the exposure time and approximately 40 times faster than the conventional NR using Gd converter screen/X-ray film technique. The sensitivities of the imaging plate to slow neutron and to Ir-192 gamma-rays were found to be approximately 4.2x10(-3) PSL/mm(2) per neutron and 6.7x10(-5) PSL/mm(2) per gamma-ray photon respectively. Finally, some specimens containing light elements were selected to be radiographed with neutrons using the NIP and the Gd converter screen/X-ray film technique. The image quality obtained from the two recording media was found to be comparable. PMID:19828321

  6. Hot Fuel Examination Facility's neutron radiography reactor

    SciTech Connect

    Pruett, D.P.; Richards, W.J.; Heidel, C.C.

    1983-01-01

    Argonne National Laboratory-West is located near Idaho Falls, Idaho, and is operated by the University of Chicago for the United States Department of Energy in support of the Liquid Metal Fast Breeder Reactor Program, LMFBR. The Hot Fuel Examination Facility, HFEF, is one of several facilities located at the Argonne Site. HFEF comprises a large hot cell where both nondestructive and destructive examination of highly-irradiated reactor fuels are conducted in support of the LMFBR program. One of the nondestructive examination techniques utilized at HFEF is neutron radiography, which is provided by the NRAD reactor facility (a TRIGA type reactor) below the HFEF hot cell.

  7. Beam Characterization at the Neutron Radiography Facility

    SciTech Connect

    Sarah Morgan; Jeffrey King

    2013-01-01

    The quality of a neutron imaging beam directly impacts the quality of radiographic images produced using that beam. Fully characterizing a neutron beam, including determination of the beam’s effective length-to-diameter ratio, neutron flux profile, energy spectrum, image quality, and beam divergence, is vital for producing quality radiographic images. This project characterized the east neutron imaging beamline at the Idaho National Laboratory Neutron Radiography Reactor (NRAD). The experiments which measured the beam’s effective length-to-diameter ratio and image quality are based on American Society for Testing and Materials (ASTM) standards. An analysis of the image produced by a calibrated phantom measured the beam divergence. The energy spectrum measurements consist of a series of foil irradiations using a selection of activation foils, compared to the results produced by a Monte Carlo n-Particle (MCNP) model of the beamline. Improvement of the existing NRAD MCNP beamline model includes validation of the model’s energy spectrum and the development of enhanced image simulation methods. The image simulation methods predict the radiographic image of an object based on the foil reaction rate data obtained by placing a model of the object in front of the image plane in an MCNP beamline model.

  8. Neutron radiography in Indian space programme

    NASA Astrophysics Data System (ADS)

    Viswanathan, K.

    1999-11-01

    Pyrotechnic devices are indispensable in any space programme to perform such critical operations as ignition, stage separation, solar panel deployment, etc. The nature of design and configuration of different types of pyrotechnic devices, and the type of materials that are put in their construction make the inspection of them with thermal neutrons more favourable than any other non destructive testing methods. Although many types of neutron sources are available for use, generally the radiographic quality/exposure duration and cost of source run in opposite directions even after four decades of research and development. But in the area of space activity, by suitably combining the X-ray and neutron radiographic requirements, the inspection of the components can be made economically viable. This is demonstrated in the Indian space programme by establishing a 15 MeV linear accelerator based neutron generator facility to inspect medium to giant solid propellant boosters by X-ray inspection and all types of critical pyro and some electronic components by neutron radiography. Since the beam contains unacceptable gamma, transfer imaging technique has been evolved and the various parameters have been optimised to get a good quality image.

  9. Beam characterization at the neutron radiography reactor

    NASA Astrophysics Data System (ADS)

    Morgan, Sarah

    The quality of a neutron imaging beam directly impacts the quality of radiographic images produced using that beam. Fully characterizing a neutron beam, including determination of the beam's effective length-to-diameter ratio, neutron flux profile, energy spectrum, image quality, and beam divergence, is vital for producing quality radiographic images. This thesis characterized the east neutron imaging beamline at the Idaho National Laboratory Neutron Radiography Reactor (NRAD). The experiments which measured the beam's effective length-to-diameter ratio and image quality are based on American Society for Testing and Materials (ASTM) standards. An analysis of the image produced by a calibrated phantom measured the beam divergence. The energy spectrum measurements consist of a series of foil irradiations using a selection of activation foils, compared to the results produced by a Monte Carlo n-Particle (MCNP) model of the beamline. Improvement of the existing NRAD MCNP beamline model includes validation of the model's energy spectrum and the development of enhanced image simulation methods. The image simulation methods predict the radiographic image of an object based on the foil reaction rate data obtained by placing a model of the object in front of the image plane in an MCNP beamline model.

  10. Monte Carlo simulation optimisation of zinc sulphide based fast-neutron detector for radiography using a 252Cf source

    NASA Astrophysics Data System (ADS)

    Meshkian, Mohsen

    2016-02-01

    Neutron radiography is rapidly extending as one of the methods for non-destructive screening of materials. There are various parameters to be studied for optimising imaging screens and image quality for different fast-neutron radiography systems. Herein, a Geant4 Monte Carlo simulation is employed to evaluate the response of a fast-neutron radiography system using a 252Cf neutron source. The neutron radiography system is comprised of a moderator as the neutron-to-proton converter with suspended silver-activated zinc sulphide (ZnS(Ag)) as the phosphor material. The neutron-induced protons deposit energy in the phosphor which consequently emits scintillation light. Further, radiographs are obtained by simulating the overall radiography system including source and sample. Two different standard samples are used to evaluate the quality of the radiographs.

  11. Wavelength tunable device for neutron radiography and tomography

    SciTech Connect

    Treimer, W.; Strobl, M.; Kardjilov, N.; Hilger, A.; Manke, I.

    2006-11-13

    A special double monochromator system was tested for a conventional operating tomography setup in order to use a broad wavelength band of monochromatic neutrons for radiography and tomography. Scanning through the wavelength region of Bragg edges, it is possible to make series of radiographs and tomographs at different wavelengths from 2.0 until 6.5 A. So no beam hardening influences the measurements and is not to be corrected. With this instrument for cold neutron radiography and tomography, energy selecting quantitative radiography, stress and strain mapping, and phase radiography were performed.

  12. Neutron radiography inspection of investment castings.

    PubMed

    Richards, W J; Barrett, J R; Springgate, M E; Shields, K C

    2004-10-01

    Investment casting, also known as the lost wax process, is a manufacturing method employed to produce near net shape metal articles. Traditionally, investment casting has been used to produce structural titanium castings for aero-engine applications with wall thickness less than 1 in (2.54 cm). Recently, airframe manufacturers have been exploring the use of titanium investment casting to replace components traditionally produced from forgings. Use of titanium investment castings for these applications reduces weight, cost, lead time, and part count. Recently, the investment casting process has been selected to produce fracture critical structural titanium airframe components. These airframe components have pushed the traditional inspection techniques to their physical limits due to cross sections on the order of 3 in (7.6 cm). To overcome these inspection limitations, a process incorporating neutron radiography (n-ray) has been developed. In this process, the facecoat of the investment casting mold material contains a cocalcined mixture of yttrium oxide and gadolinium oxide. The presence of the gadolinium oxide, allows for neutron radiographic imaging (and eventual removal and repair) of mold facecoat inclusions that remain within these thick cross sectional castings. Probability of detection (POD) studies have shown a 3 x improvement of detecting a 0.050 x 0.007 in2 (1.270 x 0.178 mm2) inclusion of this cocalcined material using n-ray techniques when compared to the POD using traditional X-ray techniques. Further, it has been shown that this n-ray compatible mold facecoat material produces titanium castings of equal metallurgical quality when compared to the traditional materials. Since investment castings can be very large and heavy, the neutron radiography facilities at the University of California, Davis McClellan Nuclear Radiation Center (UCD/MNRC) were used to develop the inspection techniques. The UCD/MNRC has very unique facilities that can handle large

  13. Recent advances in fast neutron radiography for cargo inspection

    NASA Astrophysics Data System (ADS)

    Sowerby, B. D.; Tickner, J. R.

    2007-09-01

    Fast neutron radiography techniques are attractive for screening cargo for contraband such as narcotics and explosives. Neutrons have the required penetration, they interact with matter in a manner complementary to X-rays and they can be used to determine elemental composition. Compared to neutron interrogation techniques that measure secondary radiation (neutron or gamma-rays), neutron radiography systems are much more efficient and rapid and they are much more amenable to imaging. However, for neutron techniques to be successfully applied to cargo screening, they must demonstrate significant advantages over well-established X-ray techniques. This paper reviews recent developments and applications of fast neutron radiography for cargo inspection. These developments include a fast neutron and gamma-ray radiography system that utilizes a 14 MeV neutron generator as well as fast neutron resonance radiography systems that use variable energy quasi-monoenergetic neutrons and pulsed broad energy neutron beams. These systems will be discussed and compared with particular emphasis on user requirements, sources, detector systems, imaging ability and performance.

  14. Neutron Radiography Reactor Reactivity -- Focused Lessons Learned

    SciTech Connect

    Eric Woolstenhulme; Randal Damiana; Kenneth Schreck; Ann Marie Phillips; Dana Hewit

    2010-11-01

    As part of the Global Threat Reduction Initiative, the Neutron Radiography Reactor (NRAD) at the Idaho National Laboratory (INL) was converted from using highly enriched uranium (HEU) to low enriched uranium (LEU) fuel. After the conversion, NRAD resumed operations and is meeting operational requirements. Radiography image quality and the number of images that can be produced in a given time frame match pre-conversion capabilities. However, following the conversion, NRAD’s excess reactivity with the LEU fuel was less than it had been with the HEU fuel. Although some differences between model predictions and actual performance are to be expected, the lack of flexibility in NRAD’s safety documentation prevented adjusting the reactivity by adding more fuel, until the safety documentation could be modified. To aid future reactor conversions, a reactivity-focused Lessons Learned meeting was held. This report summarizes the findings of the lessons learned meeting and addresses specific questions posed by DOE regarding NRAD’s conversion and reactivity.

  15. Diagnostics of coated fuel particles by neutron and synchrotron radiography

    SciTech Connect

    Momot, G. V.; Podurets, K. M.; Pogorelyi, D. K.; Somenkov, V. A.; Yakovenko, E. V.

    2011-12-15

    The nondestructive monitoring of coated fuel particles has been performed using contact neutron radiography and refraction radiography based on synchrotron radiation. It is shown that these methods supplement each other and have a high potential for determining the sizes, densities, and isotopic composition of the particle components.

  16. Deterministic simulation of thermal neutron radiography and tomography

    NASA Astrophysics Data System (ADS)

    Pal Chowdhury, Rajarshi; Liu, Xin

    2016-05-01

    In recent years, thermal neutron radiography and tomography have gained much attention as one of the nondestructive testing methods. However, the application of thermal neutron radiography and tomography is hindered by their technical complexity, radiation shielding, and time-consuming data collection processes. Monte Carlo simulations have been developed in the past to improve the neutron imaging facility's ability. In this paper, a new deterministic simulation approach has been proposed and demonstrated to simulate neutron radiographs numerically using a ray tracing algorithm. This approach has made the simulation of neutron radiographs much faster than by previously used stochastic methods (i.e., Monte Carlo methods). The major problem with neutron radiography and tomography simulation is finding a suitable scatter model. In this paper, an analytic scatter model has been proposed that is validated by a Monte Carlo simulation.

  17. Imaging and Radiography with Nuclear Resonance Fluorescence and Effective-Z (EZ-3D) Determination; SNM Detection Using Prompt Neutrons from Photon Induced Fission

    SciTech Connect

    Bertozzi, William; Hasty, Richard; Klimenko, Alexei; Korbly, Stephen E.; Ledoux, Robert J.; Park, William

    2009-03-10

    Four new technologies have been developed for use in non-intrusive inspection systems to detect nuclear materials, explosives and contraband. Nuclear Resonance Fluorescence (NRF) provides a three dimensional image of the isotopic content of a container. NRF determines the isotopic composition of a region and specifies the isotopic structure of the neighboring regions, thus providing the detailed isotopic composition of any threat. In transmission mode, NRF provides a two dimensional projection of the isotopic content of a container, much as standard X-ray radiography provides for density. The effective-Z method (EZ-3D) uses electromagnetic scattering processes to yield a three-dimensional map of the effective-Z and the density in a container. The EZ-3D method allows for a rapid discrimination based on effective Z and mass of materials such as those with high Z, as well as specifying regions of interest for other contraband. The energy spectrum of prompt neutrons from photon induced fission (PNPF) provides a unique identification of the presence of actinides and SNM. These four new technologies can be used independently or together to automatically determine the presence of hazardous materials or contraband. They can also be combined with other technologies to provide added specificity.

  18. Imaging and Radiography with Nuclear Resonance Fluorescence and Effective-Z (EZ-3D™) Determination; SNM Detection Using Prompt Neutrons from Photon Induced Fission

    NASA Astrophysics Data System (ADS)

    Bertozzi, William; Hasty, Richard; Klimenko, Alexei; Korbly, Stephen E.; Ledoux, Robert J.; Park, William

    2009-03-01

    Four new technologies have been developed for use in non-intrusive inspection systems to detect nuclear materials, explosives and contraband. Nuclear Resonance Fluorescence (NRF) provides a three dimensional image of the isotopic content of a container. NRF determines the isotopic composition of a region and specifies the isotopic structure of the neighboring regions, thus providing the detailed isotopic composition of any threat. In transmission mode, NRF provides a two dimensional projection of the isotopic content of a container, much as standard X-ray radiography provides for density. The effective-Z method (EZ-3D™) uses electromagnetic scattering processes to yield a three-dimensional map of the effective-Z and the density in a container. The EZ-3D™ method allows for a rapid discrimination based on effective Z and mass of materials such as those with high Z, as well as specifying regions of interest for other contraband. The energy spectrum of prompt neutrons from photon induced fission (PNPF) provides a unique identification of the presence of actinides and SNM. These four new technologies can be used independently or together to automatically determine the presence of hazardous materials or contraband. They can also be combined with other technologies to provide added specificity.

  19. Neutron Radiography Visualization of Solid Particles in Stirring Liquid Metal

    NASA Astrophysics Data System (ADS)

    Sarma, M.; Ščepanskis, M.; Jakovičs, A.; Thomsen, K.; Nikoluškins, R.; Vontobel, P.; Beinerts, T.; Bojarevičs, A.; Platacis, E.

    This paper presents the analysis of the first dynamic neutron radiography experiment that visualized motion of solid particles in liquid metal, which was stirred by a system of four counter-rotating magnets. The paper also contains the quantitative results derived from neutron images: the distribution of particle concentration, number of admixed particles and velocities as functions of the magnet rotation speed.

  20. Neutron radiography and tomography facility at IBR-2 reactor

    NASA Astrophysics Data System (ADS)

    Kozlenko, D. P.; Kichanov, S. E.; Lukin, E. V.; Rutkauskas, A. V.; Belushkin, A. V.; Bokuchava, G. D.; Savenko, B. N.

    2016-05-01

    An experimental station for investigations using neutron radiography and tomography was developed at the upgraded high-flux pulsed IBR-2 reactor. The 20 × 20 cm neutron beam is formed by the system of collimators with the characteristic parameter L/D varying from 200 to 2000. The detector system is based on a 6LiF/ZnS scintillation screen; images are recorded using a high-sensitivity video camera based on the high-resolution CCD matrix. The results of the first neutron radiography and tomography experiments at the developed facility are presented.

  1. Fast Neutron Radiography at an RFQ Accelerator System

    NASA Astrophysics Data System (ADS)

    Daniels, G. C.; Franklyn, C. B.; Dangendorf, V.; Buffler, A.; Bromberger, B.

    This work introduces the Necsa Radio Frequency Quadrupole (RFQ) accelerator facility and its work concerning fast neutron radiography (FNR). Necsa operates a 4-5 MeV, up to 50 mA deuteron RFQ. The previous deuterium gas target station has been modified to enable producing a white neutron beam employing a solid B4C target. Furthermore, the high energy beam transport (HEBT) section is under adjustment to achieve a longer flight-path and a better focus. This work presents an overview of the facility, the modifications made, and introduces past and ongoing neutron radiography investigations.

  2. Neutron Radiography and Fission Mapping Measurements of Nuclear Materials with Varying Composition and Shielding

    SciTech Connect

    Mullens, James Allen; McConchie, Seth M; Hausladen, Paul; Mihalczo, John T; Grogan, Brandon R; Sword, Eric D

    2011-01-01

    Neutron radiography and fission mapping measurements were performed on four measurement objects with varying composition and shielding arrangements at the Idaho National Laboratory's Zero Power Physics Reactor (ZPPR) facility. The measurement objects were assembled with ZPPR reactor plate materials comprising plutonium, natural uranium, or highly enriched uranium and were presented as unknowns for characterization. As a part of the characterization, neutron radiography was performed using a deuterium-tritium (D-T) neutron generator as a source of time and directionally tagged 14 MeV neutrons. The neutrons were detected by plastic scintillators placed on the opposite side of the object, using the time-correlation-based data acquisition of the Nuclear Materials Identification System developed at Oak Ridge National Laboratory. Each object was measured at several rotations with respect to the neutron source to obtain a tomographic reconstruction of the object and a limited identification of materials via measurement of the neutron attenuation. Large area liquid scintillators with pulse shape discrimination were used to detect the induced fission neutrons. A fission site map reconstruction was produced by time correlating the induced fission neutrons with each tagged neutron from the D-T neutron generator. This paper describes the experimental configuration, the ZPPR measurement objects used, and the neutron imaging and fission mapping results.

  3. Study of a loop heat pipe using neutron radiography.

    PubMed

    Cimbala, John M; Brenizer, Jack S; Chuang, Abel Po-Ya; Hanna, Shane; Thomas Conroy, C; El-Ganayni, A A; Riley, David R

    2004-10-01

    An explanation is given of what a loop heat pipe (LHP) is, and how it works. It is then shown that neutron imaging (both real time neutron radioscopy and single exposure neutron radiography) is an effective experimental tool for the study of LHPs. Specifically, neutron imaging has helped to identify and correct a cooling water distribution problem in the condenser, and has enabled visualization of two-phase flow (liquid and vapor) in various components of the LHP. In addition, partial wick dry-out, a phenomenon of great importance in the effective operation of LHPs, is potentially identifiable with neutron imaging. It is anticipated that neutron radioscopy and radiography will greatly contribute to our understanding of LHP operation, and will lead to improvement of LHP modeling and design. PMID:15246420

  4. Application of Neutron Radiography to Flow Visualization in Supercritical Water

    NASA Astrophysics Data System (ADS)

    Takenaka, N.; Sugimoto, K.; Takami, S.; Sugioka, K.; Tsukada, T.; Adschiri, T.; Saito, Y.

    Supercritical water is used in various chemical reaction processes including hydrothermal synthesis of metal oxide nano-particles, oxidation, chemical conversion of biomass and plastics. Density of the super critical water is much less than that of the sub-critical water. By using neutron radiography, Peterson et al. have studied salt precipitation processes in supercritical water and the flow pattern in a reverse-flow vessel for salt precipitation, and Balasko et al. have revealed the behaviour of supercritical water in a container. The nano-particles were made by mixing the super critical flow and the sub critical water solution. In the present study, neutron radiography was applied to the flow visualization of the super and sub critical water mixture in a T-junction made of stainless steel pipes for high pressure and temperature conditions to investigate their mixing process. Still images by a CCD camera were obtained by using the neutron radiography system at B4 port in KUR.

  5. Improved track-etch neutron radiography using CR-39

    NASA Astrophysics Data System (ADS)

    Pereira, M. A. Stanojev; Marques, J. G.; Pugliesi, R.; Santos, J. P.

    2014-11-01

    Currently most state-of-the-art setups for neutron radiography use scintillator screens and CCD cameras for imaging. However, in some situations it is not possible to use a CCD and alternatives must be considered. One such alternative is the well-established technique of track-etch neutron radiography, which has as main disadvantages requiring a long time for image recording and generating images with a relatively low contrast. In this work we address these negative issues and report significant improvements to recording and digitizing images using an improved setup consisting of an enriched 10B converter, a CR-39 solid state nuclear track detector and a flatbed scanner. The improved setup enables a significant reduction of the fluence required to obtain a neutron radiography image using this technique. Comparisons are made with imaging using two CCD models in the same beam line, so that the results can be extrapolated for other facilities.

  6. Scattering corrections in neutron radiography using point scattered functions

    NASA Astrophysics Data System (ADS)

    Kardjilov, N.; de Beer, F.; Hassanein, R.; Lehmann, E.; Vontobel, P.

    2005-04-01

    Scattered neutrons cause distortions and blurring in neutron radiography pictures taken at small distances between the investigated object and the detector. This defines one of the most significant problems in quantitative neutron radiography. The quantification of strong scattering materials such as hydrogenous materials—water, oil, plastic, etc.—with a high precision is very difficult due to the scattering effect in the radiography images. The scattering contribution in liquid test samples (H 2O, D 2O and a special type oil ISOPAR L) at different distances between the samples and the detector, the so-called Point Scattered Function (PScF), was calculated with the help of MCNP-4C Monte Carlo code. Corrections of real experimental data were performed using the calculated PScF. Some of the results as well as the correction algorithm will be presented.

  7. Study of pipe thickness loss using a neutron radiography method

    SciTech Connect

    Mohamed, Abdul Aziz; Wahab, Aliff Amiru Bin; Yazid, Hafizal B.; Ahmad, Megat Harun Al Rashid B. Megat; Jamro, Rafhayudi B.; Azman, Azraf B.; Zin, Muhamad Rawi Md; Idris, Faridah Mohamad

    2014-02-12

    The purpose of this preliminary work is to study for thickness changes in objects using neutron radiography. In doing the project, the technique for the radiography was studied. The experiment was done at NUR-2 facility at TRIGA research reactor in Malaysian Nuclear Agency, Malaysia. Test samples of varying materials were used in this project. The samples were radiographed using direct technique. Radiographic images were recorded using Nitrocellulose film. The films obtained were digitized to processed and analyzed. Digital processing is done on the images using software Isee!. The images were processed to produce better image for analysis. The thickness changes in the image were measured to be compared with real thickness of the objects. From the data collected, percentages difference between measured and real thickness are below than 2%. This is considerably very low variation from original values. Therefore, verifying the neutron radiography technique used in this project.

  8. NEUTRON RADIOGRAPHY (NRAD) REACTOR 64-ELEMENT CORE UPGRADE

    SciTech Connect

    John D. Bess

    2014-03-01

    The neutron radiography (NRAD) reactor is a 250 kW TRIGA (registered) (Training, Research, Isotopes, General Atomics) Mark II , tank-type research reactor currently located in the basement, below the main hot cell, of the Hot Fuel Examination Facility (HFEF) at the Idaho National Laboratory (INL). It is equipped with two beam tubes with separate radiography stations for the performance of neutron radiography irradiation on small test components. The interim critical configuration developed during the core upgrade, which contains only 62 fuel elements, has been evaluated as an acceptable benchmark experiment. The final 64-fuel-element operational core configuration of the NRAD LEU TRIGA reactor has also been evaluated as an acceptable benchmark experiment. Calculated eigenvalues differ significantly (approximately +/-1%) from the benchmark eigenvalue and have demonstrated sensitivity to the thermal scattering treatment of hydrogen in the U-Er-Zr-H fuel.

  9. Study of pipe thickness loss using a neutron radiography method

    NASA Astrophysics Data System (ADS)

    Mohamed, Abdul Aziz; Wahab, Aliff Amiru Bin; Yazid, Hafizal B.; Ahmad, Megat Harun Al Rashid B. Megat; Jamro, Rafhayudi B.; Azman, Azraf B.; Zin, Muhamad Rawi Md; Idris, Faridah Mohamad

    2014-02-01

    The purpose of this preliminary work is to study for thickness changes in objects using neutron radiography. In doing the project, the technique for the radiography was studied. The experiment was done at NUR-2 facility at TRIGA research reactor in Malaysian Nuclear Agency, Malaysia. Test samples of varying materials were used in this project. The samples were radiographed using direct technique. Radiographic images were recorded using Nitrocellulose film. The films obtained were digitized to processed and analyzed. Digital processing is done on the images using software Isee!. The images were processed to produce better image for analysis. The thickness changes in the image were measured to be compared with real thickness of the objects. From the data collected, percentages difference between measured and real thickness are below than 2%. This is considerably very low variation from original values. Therefore, verifying the neutron radiography technique used in this project.

  10. A New Neutron Radiography / Tomography / Imaging Station DINGO at OPAL

    NASA Astrophysics Data System (ADS)

    Garbe, U.; Randall, T.; Hughes, C.; Davidson, G.; Pangelis, S.; Kennedy, S. J.

    A new neutron radiography / tomography / imaging instrument DINGO was built to support the area of neutron imaging research (neutron radiography/tomography) at ANSTO. The instrument is designed for an international user community and for routine quality control for defense, industrial, cultural heritage and archaeology applications. In the industrial field it provides a useful tool for studying cracking and defects in steel or other metals. The instrument construction was completed at the end of June 2013 and it is currently in the hot commissioning stage. The usable neutron flux is mainly determined by the neutron source, but it depends on the instrument position and the resolution. The instrument position for DINGO is the thermal neutron beam port HB-2 in the reactor hall. The measured flux (using gold foil) for an L/D of approximately 500 at HB-2 is 5.3*107 [n/cm2s], which is in a similar range to other facilities. A special feature of DINGO is the in-pile collimator position in front of the main shutter at HB-2. The collimator offers two pinholes with a possible L/D of 500 and 1000. A secondary collimator separates the two beams by blocking one and positions another aperture for the other beam. The whole instrument operates in two different positions, one for high resolution and one for high speed. In the current configuration DINGO measured first radiography and tomography data sets on friendly user test samples.

  11. Simulation study of Fast Neutron Radiography using GEANT4

    NASA Astrophysics Data System (ADS)

    Bishnoi, S.; Thomas, R. G.; Sarkar, P. S.; Datar, V. M.; Sinha, A.

    2015-02-01

    Fast neutron radiography (FNR) is an important non-destructive technique for the imaging of thick bulk material. We are designing a FNR system using a laboratory based 14 MeV D-T neutron generator [1]. Simulation studies have been carried using Monte Carlo based GEANT4 code to understand the response of the FNR system for various objects. Different samples ranging from low Z, metallic and high Z materials were simulated for their radiographic images. The quality of constructed neutron radiography images in terms of relative contrast ratio and the contrast to noise ratio were investigated for their dependence on various parameters such as thickness, voids inside high/low Z material and also for low Z material hidden behind high Z material. We report here the potential and limitations of FNR for imaging different materials and a few configurations and also the possible areas where FNR can be implemented.

  12. Neutron transport study of a beam port based dynamic neutron radiography facility

    NASA Astrophysics Data System (ADS)

    Khaial, Anas M.

    Neutron radiography has the ability to differentiate between gas and liquid in two-phase flow due both to the density difference and the high neutron scattering probability of hydrogen. Previous studies have used dynamic neutron radiography -- in both real-time and high-speed -- for air-water, steam-water and gas-liquid metal two-phase flow measurements. Radiography with thermal neutrons is straightforward and efficient as thermal neutrons are easier to detect with relatively higher efficiency and can be easily extracted from nuclear reactor beam ports. The quality of images obtained using neutron radiography and the imaging speed depend on the neutron beam intensity at the imaging plane. A high quality neutron beam, with thermal neutron intensity greater than 3.0x 10 6 n/cm2-s and a collimation ratio greater than 100 at the imaging plane, is required for effective dynamic neutron radiography up to 2000 frames per second. The primary objectives of this work are: (1) to optimize a neutron radiography facility for dynamic neutron radiography applications and (2) to investigate a new technique for three-dimensional neutron radiography using information obtained from neutron scattering. In this work, neutron transport analysis and experimental validation of a dynamic neutron radiography facility is studied with consideration of real-time and high-speed neutron radiography requirements. A beam port based dynamic neutron radiography facility, for a target thermal neutron flux of 1.0x107 n/cm2-s, has been analyzed, constructed and experimentally verified at the McMaster Nuclear Reactor. The neutron source strength at the beam tube entrance is evaluated experimentally by measuring the thermal and fast neutron fluxes using copper activation flux-mapping technique. The development of different facility components, such as beam tube liner, gamma ray filter, beam shutter and biological shield, is achieved analytically using neutron attenuation and divergence theories. Monte

  13. Novel detectors for fast-neutron resonance radiography

    NASA Astrophysics Data System (ADS)

    Vartsky, D.; Mor, I.; Goldberg, M. B.; Bar, D.; Feldman, G.; Dangendorf, V.; Tittelmeier, K.; Weierganz, M.; Bromberger, B.; Breskin, A.

    2010-11-01

    We describe the concept and properties of a time-resolved integrative optical neutron (TRION) detector, a novel high spatial resolution neutron imaging system in the energy range of 1-10 MeV, for fast-neutron resonance radiography (FNRR), with multiple-energy TOF-spectrometry capability. Two generations of TRION detectors have already demonstrated their suitability for detecting small quantities of thin-sheet explosives. TRION holds promise for fully automatic detection and identification of standard and improvised explosives concealed in luggage and cargo, by determining the density distribution of light elements such as C, N and O.

  14. Improving quantitative neutron radiography through image restoration

    NASA Astrophysics Data System (ADS)

    Hussey, D. S.; Coakley, K. J.; Baltic, E.; Jacobson, D. L.

    2013-11-01

    Commonly in neutron image experiments, the interpretation of the point spread function (PSF) is limited to describing the achievable spatial resolution in an image. In this article it is shown that for various PSF models, the resulting blurring due to the PSF affects the quantification of the neutron transmission of an object and that the effect is separate from the scattered neutron field from the sample. The effect is observed in several neutron imaging detector configurations using different neutron scintillators and light sensors. In the context of estimation of optical densities with an algorithm that assumes a parallel beam, the effect of blurring fractionates the neutron signal spatially and introduces an effective background that scales with the area of the detector illuminated by neutrons. Examples are provided that demonstrate that the illuminated field of view can alter the observed neutron transmission for nearly purely absorbing objects. It is found that by accurately modeling the PSF, image restoration methods can yield more accurate estimates of the neutron attenuation by an object.

  15. Development of fast neutron radiography system based on portable neutron generator

    NASA Astrophysics Data System (ADS)

    Yi, Chia Jia; Nilsuwankosit, Sunchai

    2016-01-01

    Due to the high installation cost, the safety concern and the immobility of the research reactors, the neutron radiography system based on portable neutron generator is proposed. Since the neutrons generated from a portable neutron generator are mostly the fast neutrons, the system is emphasized on using the fast neutrons for the purpose of conducting the radiography. In order to suppress the influence of X-ray produced by the neutron generator, a combination of a shielding material sandwiched between two identical imaging plates is used. A binary XOR operation is then applied for combining the information from the imaging plates. The raw images obtained confirm that the X-ray really has a large effect and that XOR operation can help enhance the effect of the neutrons.

  16. Neutron collimator design of neutron radiography based on the BNCT facility

    NASA Astrophysics Data System (ADS)

    Yang, Xiao-Peng; Yu, Bo-Xiang; Li, Yi-Guo; Peng, Dan; Lu, Jin; Zhang, Gao-Long; Zhao, Hang; Zhang, Ai-Wu; Li, Chun-Yang; Liu, Wan-Jin; Hu, Tao; Lü, Jun-Guang

    2014-02-01

    For the research of CCD neutron radiography, a neutron collimator was designed based on the exit of thermal neutron of the Boron Neutron Capture Therapy (BNCT) reactor. Based on the Geant4 simulations, the preliminary choice of the size of the collimator was determined. The materials were selected according to the literature data. Then, a collimator was constructed and tested on site. The results of experiment and simulation show that the thermal neutron flux at the end of the neutron collimator is greater than 1.0×106 n/cm2/s, the maximum collimation ratio (L/D) is 58, the Cd-ratio(Mn) is 160 and the diameter of collimator end is 10 cm. This neutron collimator is considered to be applicable for neutron radiography.

  17. Gamma-ray and neutron radiography as part of a pulsed fast neutron analysis inspection system

    NASA Astrophysics Data System (ADS)

    Rynes, J.; Bendahan, J.; Gozani, T.; Loveman, R.; Stevenson, J.; Bell, C.

    1999-02-01

    A gamma-ray and neutron radiography system has been developed to provide useful supplemental information for a Pulsed Fast Neutron Analysis (PFNA) cargo inspection system. PFNA uses a collimated beam of pulsed neutrons to interrogate cargoes using (n, γx) reactions. The PFNA source produces both gamma rays as well as neutrons. The transmission of both species through the cargo is measured with an array of plastic scintillators. Since the neutron and gamma-ray signals are easily separated by arrival time a separate image can be made for both species. The radiography measurement is taken simultaneously with the PFNA measurement turning PFNA into an emission and transmission imaging system, thus enhancing the PFNA radiography system.

  18. Comparison of Digital Imaging Systems for Neutron Radiography

    NASA Astrophysics Data System (ADS)

    Pugliesi, R.; Pugliesi, Fábio; Stanojev Pereira, M. A.

    2011-09-01

    The characteristics of three digital imaging systems for neutron radiography purposes have been compared. Two of them make use of films, CR-39 and Kodak AA, and the third makes use of a LiF scintillator, for image registration. The irradiations were performed in the neutron radiography facility installed at the IEA-R1 nuclear research reactor of IPEN-CNEN/SP. According to the obtained results, the system based on CR-39 is the slowest to obtain an image, and the best in terms of resolution but the worse in terms of contrast. The system based on Kodak AA is faster than the prior, exhibits good resolution and contrast. The system based on the scintillator is the fastest to obtain an image, and best in terms of contrast but the worse in terms of resolution.

  19. Neutron Radiography of Fluid Flow for Geothermal Energy Research

    NASA Astrophysics Data System (ADS)

    Bingham, P.; Polsky, Y.; Anovitz, L.; Carmichael, J.; Bilheux, H.; Jacobsen, D.; Hussey, D.

    Enhanced geothermal systems seek to expand the potential for geothermal energy by engineering heat exchange systems within the earth. A neutron radiography imaging method has been developed for the study of fluid flow through rock under environmental conditions found in enhanced geothermal energy systems. For this method, a pressure vessel suitable for neutron radiography was designed and fabricated, modifications to imaging instrument setups were tested, multiple contrast agents were tested, and algorithms developed for tracking of flow. The method has shown success for tracking of single phase flow through a manufactured crack in a 3.81 cm (1.5 inch) diameter core within a pressure vessel capable of confinement up to 69 MPa (10,000 psi) using a particle tracking approach with bubbles of fluorocarbon-based fluid as the "particles" and imaging with 10 ms exposures.

  20. New Structured Scintillators for Neutron Radiography

    NASA Astrophysics Data System (ADS)

    Nagarkar, V. V.; Ovechkina, E. E.; Bhandari, H. B.; Soundara-Pandian, L.; More, M. J.; Riedel, R. A.; Miller, S. R.

    We report on the development of novel neutron scintillators fabricated in microcolumnar formats using the physical vapour deposition (PVD) method. Such structures mitigate the conventional trade-off between spatial resolution and detection efficiency by channelling the scintillation light towards the detector while minimizing lateral spread in the film. Consequently, high resolution and high contrast neutron images can be acquired in a time efficient manner. In this paper, we discuss methods and characterization for scintillator films made from three distinct compositions, Thallium (Tl) or Europium (Eu) doped Lithium CesiumIodide (Li3Cs2I5:Tl,Eu, referred to as LCI), Tl or Eudoped Lithium Sodium Iodide (LixNa1-xI:Tl,Eu, referred to as LNI), and Cerium (Ce)-doped Gadolinium Iodide (GdI3:Ce, referred to as GDI). LCI and LNI scintillators are derived from the well-known CsI and NaI scintillators by the incorporation of 6Li into their lattice. Based on our measurements reported here, LCI/LNI scintillators have shown to exhibit bright emissions, fast, sub-microsecond decay, and an ability to effectively discriminate between neutron and gamma interactions using pulse shape (PSD) and/or pulse height (PHD) discrimination. LCI has a density of 4.5 g/cm3, a measured peak emission wavelength of 460 nm (doped with Eu), and a light yield of ∼50,000 photons/thermal neutron. LNI has a density of 3.6 g/cm3, an emission peak measured at 420 nm, and a light yield of ∼100,000 photons/thermal neutron. The recently discovered GDI exhibits excellent scintillation properties including a bright emission of up to 5,000 photons/thermal neutron interaction, 550 nm green emission, a rise time of ∼0.5 ns and a primary decay time of ∼38 ns (Glodo et al., 2006). Its high thermal neutron cross-section of ∼255 kb makes it an attractive candidate for neutron detection and imaging. Although it has high density of 5.2 gm/cm3 and effective atomic number of 57, its gamma sensitivity can be

  1. Fast neutron radiography research at ANL-W

    SciTech Connect

    Klann, R.T.; Natale, M.D.

    1996-06-01

    Thirty-seven different elements were tested for their suitability as converter screens for direct and indirect fast neutron radiography. The use of commercial X-ray scintillator screens containing YTaO{sub 4}, LaOBr:Tm, YTaO{sub 4}:Nb, YTaO{sub 4}:Tm, CaWO{sub 4}, BaSO{sub 4}:Sr, and GdO{sub 2}S:Tb was also explored for direct fast neutron radiography. For the indirect radiographic process, only one element, holmium, was found to be better than copper. Iron was also found to work as well as copper. All other elements that were tested were inferior to copper for indirect fast neutron radiography. For direct fast neutron radiography, the results were markedly different. Copper was found to be a poor material to sue, as thirty-two of the elements performed better than the copper. Tantalum was found to be the best material to use. Several other materials that also performed remarkably well include, in order of decreasing utility, gold, lutetium, germanium, dysprosium, and thulium. Several interesting results were obtained for the commercial X-ray scintillator screens. Most notably, useful radiographs were produced with all of the various scintillation screens. However, the screens containing YTaO{sub 4}:Nb offered the greatest film densities for the shortest exposure times. Screens using GdSO{sub 4}:Tb provided the best resolution and clearest images at the sacrifice of exposure time. Also, as previous researchers found, scintillator screens offered significantly shorter exposure times than activation foils.

  2. Average Soil Water Retention Curves Measured by Neutron Radiography

    SciTech Connect

    Cheng, Chu-Lin; Perfect, Edmund; Kang, Misun; Voisin, Sophie; Bilheux, Hassina Z; Horita, Juske; Hussey, Dan

    2011-01-01

    Water retention curves are essential for understanding the hydrologic behavior of partially-saturated porous media and modeling flow transport processes within the vadose zone. In this paper we report direct measurements of the main drying and wetting branches of the average water retention function obtained using 2-dimensional neutron radiography. Flint sand columns were saturated with water and then drained under quasi-equilibrium conditions using a hanging water column setup. Digital images (2048 x 2048 pixels) of the transmitted flux of neutrons were acquired at each imposed matric potential (~10-15 matric potential values per experiment) at the NCNR BT-2 neutron imaging beam line. Volumetric water contents were calculated on a pixel by pixel basis using Beer-Lambert s law after taking into account beam hardening and geometric corrections. To remove scattering effects at high water contents the volumetric water contents were normalized (to give relative saturations) by dividing the drying and wetting sequences of images by the images obtained at saturation and satiation, respectively. The resulting pixel values were then averaged and combined with information on the imposed basal matric potentials to give average water retention curves. The average relative saturations obtained by neutron radiography showed an approximate one-to-one relationship with the average values measured volumetrically using the hanging water column setup. There were no significant differences (at p < 0.05) between the parameters of the van Genuchten equation fitted to the average neutron radiography data and those estimated from replicated hanging water column data. Our results indicate that neutron imaging is a very effective tool for quantifying the average water retention curve.

  3. Analyzing the effect of geometric factors on designing neutron radiography system.

    PubMed

    Amini, Moharam; Fadaei, Amir Hosein; Gharib, Morteza

    2015-11-01

    Neutron radiography is one of the main applications of research reactors. It is a powerful tool to conduct nondestructive testing of materials. The parameters that affect the quality of a radiographic image must be considered during the design of a neutron radiography system. Hence, this study aims to investigate the effect of geometric factors on the quality of the neutron radiography system. The results show that the performance of the mentioned system can be increased by regulating the geometric factors. PMID:26343340

  4. Spectroscopic neutron radiography for a cargo scanning system

    NASA Astrophysics Data System (ADS)

    Rahon, Jill; Danagoulian, Areg; MacDonald, Thomas D.; Hartwig, Zachary S.; Lanza, Richard C.

    2016-06-01

    Detection of cross-border smuggling of illicit materials and contraband is a challenge that requires rapid, low-dose, and efficient radiographic technology. The work we describe here is derived from a technique which uses monoenergetic gamma rays from low energy nuclear reactions, such as 11B(d,nγ)12C, to perform radiographic analysis of shipping containers. Transmission ratios of multiple monoenergetic gamma lines resulting from several gamma producing nuclear reactions can be employed to detect materials of high atomic number (Z), the details of which will be described in a separate paper. Inherent in this particular nuclear reaction is the production of fast neutrons which could enable neutron radiography and further characterization of the effective-Z of the cargo, especially within the range of lower Z. Previous research efforts focused on the use of total neutron counts in combination with X-ray radiography to characterize the hydrogenous content of the cargo. We present a technique of performing transmitted neutron spectral analysis to reconstruct the effective Z and potentially the density of the cargo. This is made possible by the large differences in the energy dependence of neutron scattering cross-sections between hydrogenous materials and those of higher Z. These dependencies result in harder transmission spectra for hydrogenous cargoes than those of non-hydrogenous cargoes. Such observed differences can then be used to classify the cargo based on its hydrogenous content. The studies presented in this paper demonstrate that such techniques are feasible and can provide a contribution to cargo security, especially when used in concert with gamma radiography.

  5. Thermal Neutron Radiography of Deuteriated Water in Soils

    NASA Astrophysics Data System (ADS)

    Tumlinson, L. G.; Hopmans, J. W.; Wilding, M. C.; Silk, W. K.; Huerta, N. J.; Tabor, M. M.

    2004-12-01

    As for x-rays, neutron radiography is a noninvasive imaging technique based on the attenuation of thermal neutrons by the object in question, described by BeerAƒAøAøâ_sA¬Aøâ_zAøs law. However, neutron imaging is complementary to x-rays, as it is especially well suited for materials containing hydrogen atoms and mostly other low atomic weight attenuating materials. Although neutron attenuation techniques are routinely used in engineering, relatively little is known about its application to soils. We will present results demonstrating the tremendous potential of using neutron attenuation techniques to measure spatial and temporal distribution of water in soils at the 50 micrometer spatial resolution. The neutron source is a Mark II Triga Reactor at McClellan Nuclear Radiation Center (MNRC) in Sacramento, CA. The reactor runs at 1.8 MW and emits a poly-energetic neutron beam, including the thermal range. Unfortunately beam hardening and backscattering are a major source of uncertainty. Recent laboratory experiments conducted at MNRC suggest that beam hardening is considerably reduced when using deuteriated water, because its cross-section for attenuation of thermal neutrons is much lower than for regular water.

  6. Characterization of pulsed (plasma focus) neutron source with image plate and application to neutron radiography

    SciTech Connect

    Andola, Sanjay; Niranjan, Ram; Rout, R. K.; Kaushik, T. C.; Gupta, S. C.; Shaikh, A. M.

    2013-02-05

    Plasma focus device of Mather type developed in house has been used first time for neutron radiography of different objects. The device gives (1.2{+-}0.3) Multiplication-Sign 10{sup 9} neutrons per pulse produced by D-D fusion reaction with a pulse width of 50{+-}5 ns. The method involves exposing sample to be radiographed to thermalized D-D neutrons and recording the image on Fuji-film BAS-ND image plates. The thermal neutron component of the moderated beam was estimated using two image plates: a conventional IP for X-rays and gamma rays, and an IP doped with Gd for detecting neutrons.

  7. Characterization of non-tuberculosis mycobacteria by neutron radiography.

    PubMed

    da Silva, Jaqueline M; Crispim, Verginia Reis; da Silva, Marlei Gomes; Furtado, Vanessa Rodrigues; Duarte, Rafael Da Silva

    2013-07-01

    The genus Mycobacterium shares many characteristics with Corynebacterium and Actinomyces genera, among which the genomic guanine plus cytosine content and the production of long branched-chain fatty acids, known as mycolic acids are enhanced. Growth rate and optimal temperature of mycobacteria are variable. The genus comprises more than 140 known species; however Mycobacterium fortuitum, a fast growing nontuberculous mycobacterium, is clinically significant, because it has been associated to several lesions following surgery procedures such as liposuction, silicone breast and pacemaker implants, exposure to prosthetic materials besides sporadic lesions in the skin, soft tissues and rarely lungs. The objective of the present study is to reduce the time necessary for M. fortuitum characterization based on its morphology and the use of the neutron radiography technique substituting the classical biochemical assays. We also aim to confirm the utility of dendrimers as boron carriers. The samples were sterilized through conventional protocols using 10% formaldehyde. In the incubation process, two solutions with different molar ratios (10:1 and 20:1) of sodium borate and PAMAM G4 dendrimer and also pure sodium borate were used. After doping and sterilization procedures, the samples were deposited on CR-39 sheets, irradiated with a 4.6×10(5) n/cm(2)s thermal neutron flux for 30 min, from the J-9 irradiation channel of the Argonauta IEN/CNEN reactor. The images registered in the CR-39 were visualized in a Nikon E400 optical transmission microscope and captured by a Nikon Coolpix 995 digital camera. Developing the nuclear tracks registered in the CR-39 allowed a 1000× enlargement of mycobacterium images, facilitating their characterization, the use of more sophisticated equipment not being necessary. The use of neutron radiography technique reduced the time necessary for characterization. Doping with PAMAM dendrimer improved the visualization of NTM in neutron radiography

  8. DIANE stationary neutron radiography system image quality and industrial applications

    NASA Astrophysics Data System (ADS)

    Cluzeau, S.; Huet, J.; Le Tourneur, P.

    1994-05-01

    The SODERN neutron radiography laboratory has operated since February 1993 using a sealed tube generator (GENIE 46). An experimental programme of characterization (dosimetry, spectroscopy) has confirmed the expected performances concerning: neutron flux intensity, neutron energy range, residual gamma flux. Results are given in a specific report [2]. This paper is devoted to the image performance reporting. ASTM and specific indicators have been used to test the image quality with various converters and films. The corresponding modulation transfer functions are to be determined from image processing. Some industrial applications have demonstrated the capabilities of the system: corrosion detection in aircraft parts, ammunitions filling testing, detection of polymer lacks in sandwich steel sheets, detection of moisture in a probe for geophysics, residual ceramic cores imaging in turbine blades. Various computerized electronic imaging systems will be tested to improve the industrial capabilities.

  9. The drying process of concrete: a neutron radiography study.

    PubMed

    de Beer, F C; Strydom, W J; Griesel, E J

    2004-10-01

    The natural drying process of concrete, which has a significant effect on its characteristics, for example durability, was studied at the neutron radiography facility at SAFARI-1 nuclear research reactor, operated by Necsa. Monitoring of the movement of the water in concrete samples, which were wet cured for one day and covered on all the sides but one, was done by means of a CCD camera system. In this paper the methodology in observing the drying process will be described together with results obtained from this investigation. The measured water content and porosity results were quantified and compared reasonably well with conventional gravimetrical measurements. PMID:15246408

  10. Development of a system for neutron radiography and tomography

    NASA Astrophysics Data System (ADS)

    Mühlbauer, Martin J.; Calzada, Elbio; Schillinger, Burkhard

    2005-04-01

    Neutron radiography and tomography are getting more and more popular. Since they use the white thermal neutron spectrum, they are especially feasible even at small neutron sources, where the flux is too low for efficient scattering experiments requiring monochromatization of the beam. High-end tomography systems require the investment of several ten thousand Euros, with the costs often hindering the initiative for a new tomography setup. Based on the experiences gathered at Technische Universitaet Muenchen, we developed a cheaper system based on standard components that cannot compete with the sensitivity of a high-grade system, but is perfectly capable of doing neutron radiography and tomography. The system is meant as a startup construction kit for initiating tomography programs even at small neutron sources. The system is built from scratch, enabling the user to gain an understanding for the influence of each component on the image results. With the experience thus gained, he should be able to design his next and more advanced system by himself. To keep the whole system simple and cheap (the price should reach only a few percent of a high-end system), standard parts are used whenever possible, and all components are designed in such a way that they can be built without special equipment. Public domain and freeware software is used for data processing. Such a system is being built at FRM2 in Garching within the scope of a master thesis. After completion, a website will be installed with descriptions, diagrams and software for building and operating the system. Both hardware and software are discussed.

  11. New detector for use in fast neutron radiography

    SciTech Connect

    Popov, V.; Degtiarenko, P.; Musatov, I.

    2011-01-01

    We have developed and tested a new type detector for use in the fast neutron (FN) imaging radiography applications. FN radiography is generally used for nondestructive material testing, medical and biology applications, border patrol, transportation and cargo screening tasks. It is complementary to other types of radiography, providing additional information on light element content of the material samples. Distinct from other FN imagers presently known, our device implements a neutron-sensitive scintillator attached to a position-sensitive photomultiplier tube (PSPMT), and operates in an event-by-event readout mode, acquiring energy, timing, and pulse shape information for all detected radiation events. The information is used to help separate events of FN interactions in the scintillator from the background events caused by the electronics noise and by the other types of background radiation. Selection of pure fast neutron events in the final image allows us to achieve ultimate image contrast and resolution, as compared with other types of FN imaging devices operating most commonly in an integration mode, in which the detector's dark noise and radiation background dilute the images. The detector performance for FN imaging application was tested using D-D neutron generator, designed and manufactured by Adelphi Technology, Inc. This essentially point-like neutron source operates in continuous mode producing up to 109 of 2.5 MeV neutrons per second. Samples made of metals plastic and other material were used to measure the detector resolution, efficiency and uniformity. Results of these tests are presented and discussed. Fig. 1 shows one of the test FN radiographic images obtained using the sample made of 11 styrene plastic strips. All strips are squares 4.8 x 4.8 mm2 with six different lengths 10 to 60 mm with 10 mm increment. [A] [B] [C] Fig. 1. [A]-layout of the test sample; [B]-raw FN shadow image of the sample; [C]-map of the plastic strips as they appear on

  12. Nondestructive testing: Neutron radiography and neutron activation. (Latest citations from the INSPEC database). Published Search

    SciTech Connect

    1996-04-01

    The bibliography contains citations concerning the technology of neutron radiography and neutron activation for nondestructive testing of materials. The development and evaluation of neutron activation analysis and neutron diffraction examination of liquids and solids are presented. Citations also discuss nondestructive assay, verification, evaluation, and multielement analysis of biomedical, environmental, industrial, and geological materials. Nondestructive identification of chemical agents, explosives, weapons, and drugs in sealed containers are explored. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  13. Optimized thermal neutron source for neutron radiography with a static DIANE device

    NASA Astrophysics Data System (ADS)

    Cluzeau, S.; Huet, J.; Huriet, J. R.; Le Tourneur, P.

    1993-06-01

    The mobile neutron radiography DIANE device presented during the previous Denton accelerator conference and operating at Loral Vought Systems Corporation (USA) and IABG (Germany) is now also developed as a static device with a high resolution channel for parts inspection. For this purpose an optimized moderator has been designed which allows improvement in the thermal neutron flow. The theoretical approach and first experimental results are presented.

  14. In situ studies of mass transport in liquid alloys by means of neutron radiography.

    PubMed

    Kargl, F; Engelhardt, M; Yang, F; Weis, H; Schmakat, P; Schillinger, B; Griesche, A; Meyer, A

    2011-06-29

    When in situ techniques became available in recent years this led to a breakthrough in accurately determining diffusion coefficients for liquid alloys. Here we discuss how neutron radiography can be used to measure chemical diffusion in a ternary AlCuAg alloy. Neutron radiography hereby gives complementary information to x-ray radiography used for measuring chemical diffusion and to quasielastic neutron scattering used mainly for determining self-diffusion. A novel Al(2)O(3) based furnace that enables one to study diffusion processes by means of neutron radiography is discussed. A chemical diffusion coefficient of Ag against Al around the eutectic composition Al(68.6)Cu(13.8)Ag(17.6) at.% was obtained. It is demonstrated that the in situ technique of neutron radiography is a powerful means to study mass transport properties in situ in binary and ternary alloys that show poor x-ray contrast. PMID:21654050

  15. Precision of Porosity Calculation from "Material Stopping Power" Using Neutron Radiography

    NASA Astrophysics Data System (ADS)

    Nshimirimana, Robert; Radebe, Mabuti; de Beer, Frikkie

    The ability of digital neutron radiography to determine several important physical properties (e.g. porosity) of porous media and to identify the location of constituencies inside the sample in a non-destructive manner, are of great important in the fields of nuclear waste encapsulation and -shielding, civil engineering and geological studies. Unfortunately material thickness and radiation scatter hamper the accuracy and precision ofmeasurements. Correction methods are used to minimize the effect of neutron scattering in quantitative analysis neutron radiography experiment. To further minimize the error due to neutron scattering, it is advisable to position the sample as far away as possible from the neutron detector when perform quantitative neutron radiography. That requires the trade between sharpness and neutron scattering. In this work the neutron radiographyquantitative experiments were performed when the samples are placed too close (≈ 0.1 cm) to the detector; and accurate results of porosity measurement were obtained without applying any neutron scattering correction tool or method.

  16. Visualization of embolism formation in the xylem of liana stems using neutron radiography

    PubMed Central

    Tötzke, Christian; Miranda, Tatiana; Konrad, Wilfried; Gout, Julien; Kardjilov, Nikolay; Dawson, Martin; Manke, Ingo; Roth-Nebelsick, Anita

    2013-01-01

    Background and Aims Cold neutron radiography was applied to directly observe embolism in conduits of liana stems with the aim to evaluate the suitability of this method for studying embolism formation and repair. Potential advantages of this method are a principally non-invasive imaging approach with low energy dose compared with synchrotron X-ray radiation, a good spatial and temporal resolution, and the possibility to observe the entire volume of stem portions with a length of several centimetres at one time. Methods Complete and cut stems of Adenia lobata, Aristolochia macrophylla and Parthenocissus tricuspidata were radiographed at the neutron imaging facility CONRAD at the Helmholtz-Zentrum Berlin für Materialien und Energie, with each measurement cycle lasting several hours. Low attenuation gas spaces were separated from the high attenuation (water-containing) plant tissue using image processing. Key results Severe cuts into the stem were necessary to induce embolism. The formation and temporal course of an embolism event could then be successfully observed in individual conduits. It was found that complete emptying of a vessel with a diameter of 100 µm required a time interval of 4 min. Furthermore, dehydration of the whole stem section could be monitored via decreasing attenuation of the neutrons. Conclusions The results suggest that cold neutron radiography represents a useful tool for studying water relations in plant stems that has the potential to complement other non-invasive methods. PMID:23393096

  17. Water diffusion profile measurements in epoxy using neutron radiography

    NASA Astrophysics Data System (ADS)

    Lindsay, John T.; Matsubayashi, Masahito; Nurul Islam, Md.

    1994-12-01

    The diffusion characteristics of water in polymer materials have been studied for a few decades. Several methods have been developed to provide water diffusion characteristics as a function of time, temperature, pressure, or thickness of polymer. Unfortunately, most of these methods give the amount of water absorbed as a function of weight versus time at given environmental conditions. Concentration profiles of the water diffusion through the polymer have been unobtainable by these established methods. Neutron radiography is a method of non-destructive testing that has grown rapidly over the past ten years and is capable of giving these concentration profiles. Epoxy is one of the most commonly used polymers for which water diffusion information is important. In the automotive industry, epoxy is used both as a sealant and a bonder to prevent water from getting inside structures and causing corrosion. To prevent this corrosion, it is important to know the diffusion behavior of water in the epoxy adhesive.p ]This paper will demonstrate the use of high resolution neutron radiography as a viable method for the determination of the diffusion profile of water in commercially available epoxies. Aluminum coupons were constructed and joined together using four different epoxies. These coupons were then submerged in water. Neutron radiographs were made of the coupons as a function of total time submerged and water temperature. The weights of the coupons were also obtained as a function of submerged time for comparison with other methods. Four different epoxies were tested. Profiles of the water concentration are easily observed and measured.

  18. Fast neutron (14.5 MeV) radiography: a comparative study

    SciTech Connect

    Klann, R.T.

    1996-07-01

    Fast neutron (14.5 MeV) radiography is a type of non-destructive analysis tool that offers its own benefits and drawbacks. Because cross-sections vary with energy, a different range of materials can be examined with fast neutrons than can be studied with thermal neutrons, epithermal neutrons, or x-rays. This paper details these differences through a comparative study of fast neutron radiography to the other types of radiography available. The most obvious difference among the different types of radiography is in the penetrability of the sources. Fast neutrons can probe much deeper and can therefore obtain details of the internals of thick objects. Good images have been obtained through as much as 15 cm of steel, 10 cm of water, and 15 cm of borated polyethylene. In addition, some objects were identifiable through as much as 25 cm of water or 30 cm of borated polyethylene. The most notable benefit of fast neutron radiography is in the types of materials that can be tested. Fast neutron radiography can view through materials that simply cannot be viewed by X rays, thermal neutrons, or epithermal neutrons due to the high cross-sections or linear attenuation coefficients involved. Cadmium was totally transparent to the fast neutron source. Fast neutron radiography is not without drawbacks. The most pronounced drawback has been in the quality of radiograph produced. The image resolution is only about 0.8 mm for a 1.25 cm thick object, whereas, other forms of radiography have much better resolution.

  19. Digital fast neutron radiography of steel reinforcing bar in concrete

    NASA Astrophysics Data System (ADS)

    Mitton, K.; Jones, A.; Joyce, M. J.

    2014-12-01

    Neutron imaging has previously been used in order to test for cracks, degradation and water content in concrete. However, these techniques often fall short of alternative non-destructive testing methods, such as γ-ray and X-ray imaging, particularly in terms of resolution. Further, thermal neutron techniques can be compromised by the significant expense associated with thermal neutron sources of sufficient intensity to yield satisfactory results that can often precipitate the need for a reactor. Such embodiments are clearly not portable in the context of the needs of field applications. This paper summarises the results of a study to investigate the potential for transmission radiography based on fast neutrons. The objective of this study was to determine whether the presence of heterogeneities in concrete, such as reinforcement structures, could be identified on the basis of variation in transmitted fast-neutron flux. Monte-Carlo simulations have been performed and the results from these are compared to those arising from practical tests using a 252Cf source. The experimental data have been acquired using a digital pulse-shape discrimination system that enables fast neutron transmission to be studied across an array of liquid scintillators placed in close proximity to samples under test, and read out in real time. Whilst this study does not yield sufficient spatial resolution, a comparison of overall flux ratios does provide a basis for the discrimination between samples with contrasting rebar content. This approach offers the potential for non-destructive testing that gives less dose, better transportability and better accessibility than competing approaches. It is also suitable for thick samples where γ-ray and X-ray methods can be limited.

  20. New detector for use in fast neutron radiography

    NASA Astrophysics Data System (ADS)

    Popov, V.; Degtiarenko, P.; Musatov, I.

    2011-01-01

    We have developed and tested a new detector for use in the fast neutron (FN) imaging radiography applications, which is distinct from other presently known FN imagers. Our device implements a neutron-sensitive scintillator attached to a position-sensitive photomultiplier tube, and operates in the event-by-event readout mode, acquiring energy, timing, and pulse shape information for all detected radiation events. This information is used to help separate events of FN interactions in the scintillator from the background events, caused by the electronics noise and by other types of background radiation. The detector performance for FN imaging application was tested using the D-D neutron generator, designed and manufactured by Adelphi Technology, Inc. This essentially point-like neutron source operates in continuous mode, producing up to 109 of 2.5 MeV neutrons per second. Samples made of metals, plastic, and other materials were used to measure the detector resolution, efficiency and uniformity. Results of these tests are presented and discussed. Both X and Y position resolutions of the FN imaging detector are estimated to be less than 0.5 mm (sigma). Because this detector shows the fraction-of-a-millimeter resolution desirable for most of FN applications, is capable of good neutron-background separation, and is built using radiation hard materials, we believe that it could be a good alternative to other FN imaging systems based on CCD or solid state detectors. In addition, because of its sub-nanosecond timing resolution, it is suitable for the time-of-flight energy-resolved FN imaging.

  1. Technical Specifications for the Neutron Radiography Facility (TRIGA Mark 1 Reactor). Revision 6

    SciTech Connect

    Tomlinson, R.L.; Perfect, J.F.

    1988-04-01

    These Technical Specifications state the limits under which the Neutron Radiography Facility, with its associated TRIGA Mark I Reactor, is operated by the Westinghouse Hanford Company for the US Department of Energy. These specifications cover operation of the Facility for the purpose of examination of specimens (including contained fissile material) by neutron radiography, for the irradiation of specimens in the pneumatic transfer system and approved in-core or in-pool irradiation facilities and operator training. The Final Safety Analysis Report (TC-344) and its supplements, and these Technical Specifications are the basic safety documents of the Neutron Radiography Facility.

  2. Inspection of an artificial heart by the neutron radiography technique

    NASA Astrophysics Data System (ADS)

    Pugliesi, R.; Geraldo, L. P.; Andrade, M. L. G.; Menezes, M. O.,; Pereira, M. A. S.; Maizato, M. J. S.

    1999-11-01

    The neutron radiography technique was employed to inspect an artificial heart prototype which is being developed to provide blood circulation for patients expecting heart transplant surgery. The radiographs have been obtained by the direct method with a gadolinium converter screen along with the double coated Kodak-AA emulsion film. The artificial heart consists of a flexible plastic membrane located inside a welded metallic cavity, which is employed for blood pumping purposes. The main objective of the present inspection was to identify possible damages in this plastic membrane, produced during the welding process of the metallic cavity. The obtained radiographs were digitized as well as analysed in a PC and the improved images clearly identify several damages in the plastic membrane, suggesting changes in the welding process.

  3. The new cold neutron radiography and tomography instrument CONRAD at HMI Berlin

    NASA Astrophysics Data System (ADS)

    Hilger, A.; Kardjilov, N.; Strobl, M.; Treimer, W.; Banhart, J.

    2006-11-01

    The new cold neutron radiography instrument CONRAD is a multifunctional facility for radiography and tomography with cold neutrons at Hahn-Meitner Institut, Berlin. It is located at the end of a curved neutron guide, which faces the cold-neutron source of the BER-II research reactor. The geometry provides a cold-neutron beam with wavelengths between 2 and 12 Å. Two measuring positions are available for radiography and tomography investigations. The first one is placed at the end of the guide and it is optimized for in situ experiments in which a high neutron flux is required. The available flux at this position is approximately 10 8 cm -2 s -1. The second measuring position uses a pin-hole geometry which allows better beam collimation ( L/ D up to 1000) and higher image resolution in the range of 200 μm in the CCD based detector system (10×10 cm 2). The use of cold neutrons for radiography purposes increases the image contrast and improves the sensibility e.g., the detection of small amounts of water and hydrogen-containing materials in metal matrixes. On the other hand the cold-neutron beam can be modified easily by using diffraction and neutron optical techniques. This enables to perform radiography and tomography experiments with more sophisticated measuring techniques. Recent examples of research and industrial applications will be presented.

  4. Design Verification Report Neutron Radiography Facility (NRF) TRIGA Fuel Storage Systems

    SciTech Connect

    CARRELL, R.D.

    2002-01-31

    This report outlines the methods, procedures, and outputs developed during the Neutron Radiography Facility (NRF) Training, Research and Isotope Production, General Atomics (TRIGA) fuel storage system design and fabrication.

  5. Reconstruction of Material Elemental Composition Using Fast Neutron Resonance Radiography

    NASA Astrophysics Data System (ADS)

    Mor, Ilan; Dangendorf, Volker; Reginatto, Marcel; Kaufmann, Frank; Vartsky, David; Brandis, Michal; Bar, Doron; Goldberg, Mark B.

    Fast neutron resonance radiography (FNRR) is an imaging method that exploits characteristic cross-section structures (peaks and troughs) of certainelements in the energy-range of 1-10 MeV to identify materials in a large volume object. In FNRR, the neutron energy spectrum transmitted through an object carries information about the elemental composition of thatobject. The principal elements present in most explosives are: carbon, oxygen, nitrogen andhydrogen. Explosives are characterized by high fractions of nitrogen and oxygen as well as low fractions of carbon and hydrogencompared to benign materials. Detection of explosives in cargo employing FNRRis based on determination of the local areal densities of these four elements and their ratios. In our measurements, the transmission spectrum is usually divided in 100 - 500 energy bins, representing 100 - 500 linear equations containing four unknown areal densities of HCNO. This is an overdetermined problem, which allows us to derive not only the fourexpectation values of their areal densitiesbut theirprobability distribution as well. For this purpose, a model was formulated and implemented within a software package which performs Bayesian analysis of complex statistical models using Markov chain Monte-Carlo (MCMC). This model was tested successfully both on simulated and experimental data. This work will describe the model and the outcome of elemental ratios reconstruction for several materials from experimental data.

  6. Dynamic and static error analyses of neutron radiography testing

    SciTech Connect

    Joo, H.; Glickstein, S.S.

    1999-03-01

    Neutron radiography systems are being used for real-time visualization of the dynamic behavior as well as time-averaged measurements of spatial vapor fraction distributions for two phase fluids. The data in the form of video images are typically recorded on videotape at 30 frames per second. Image analysis of he video pictures is used to extract time-dependent or time-averaged data. The determination of the average vapor fraction requires averaging of the logarithm of time-dependent intensity measurements of the neutron beam (gray scale distribution of the image) that passes through the fluid. This could be significantly different than averaging the intensity of the transmitted beam and then taking the logarithm of that term. This difference is termed the dynamic error (error in the time-averaged vapor fractions due to the inherent time-dependence of the measured data) and is separate from the static error (statistical sampling uncertainty). Detailed analyses of both sources of errors are discussed.

  7. Neutron and gamma radiography of UO{sub 2} and TRIGA fuel elements

    SciTech Connect

    Robinson, A.H.; Gao, Y.C.; Johnson, A.G.; Ringle, J.C.

    1982-07-01

    The Oregon State TRIGA Reactor neutron radiography facility has been used to produce both neutron and gamma radiographs of reactor fuel. In this paper a comparison of the applicability of neutron and gamma radiography to both UO{sub 2} fuel pins and TRIGA fuel elements is made. In the case of UO{sub 2} fuel, conventional thermal neutron radiography produces excellent quality radiographs. These radiographs may be used to detect various defects in the fuel such as enrichment differences, cracks, end-capping, inclusions, etc. For TRIGA fuel elements, conventional thermal neutron radiography will not show the internal structure. This is due to the high hydrogen content of the fuel. These elements are typically 8.5 w/o uranium in Zr-H{sub 1.7}; the density of hydrogen in the fuel being about 80 percent that of water. Further, while epithermal radiography significantly improves the radiographs, defects may go undetected. As an alternative to neutron radiography, high energy gamma radiographs of TRIGA fuel elements have been taken using the same facility. The gamma spectrum emitted by the reactor core is sufficiently high in energy that very good radiographs may be obtained with this technique. These radiographs show excellent detail for the internal structure of the TRIGA fuel. (author)

  8. The relationship between contrast, resolution and detectability in accelerator-based fast neutron radiography

    SciTech Connect

    Ambrosi, R. M.; Watterson, J. I. W.

    1999-06-10

    Fast neutron radiography as a method for non destructive testing is a fast growing field of research. At the Schonland Research Center for Nuclear Sciences we have been engaged in the formulation of a model for the physics of image formation in fast neutron radiography (FNR). This involves examining all the various factors that affect image formation in FNR by experimental and Monte Carlo methods. One of the major problems in the development of a model for fast neutron radiography is the determination of the factors that affect image contrast and resolution. Monte Carlo methods offer an ideal tool for the determination of the origin of many of these factors. In previous work the focus of these methods has been the determination of the scattered neutron field in both a scintillator and a fast neutron radiography facility. As an extension of this work MCNP has been used to evaluate the role neutron scattering in a specimen plays in image detectability. Image processing of fast neutron radiographs is a necessary method of enhancing the detectability of features in an image. MCNP has been used to determine the part it can play in indirectly improving image resolution and aiding in image processing. The role noise plays in fast neutron radiography and its impact on image reconstruction has been evaluated. All these factors aid in the development of a model describing the relationship between contrast, resolution and detectability.

  9. Conceptual design of a high-frame-rate fast neutron radiography detector

    NASA Astrophysics Data System (ADS)

    Zhang, Fa-qiang; Li, Zheng-hong; Yang, Jian-lun; Guo, Cun; Yang, Hong-qiong; Ye, Fan; Wang, Zhen; Ying, Chun-tong; Liu, Guang-jun

    2007-01-01

    Fast neutron radiography offers means to inspect thick hydrogenous materials because of high penetration depth of fast neutrons. Further more, quasi monoenergetic neutrons is relatively easy to obtain by neutron generators and it is helpful for density inversion of targets, which has many difficulties in flash radiography. In order to investigate dynamic processes, an intense repetitive pulsed neutron source will be used. Efficient detection of fast neutrons is one of the hardest problems for fast neutron imaging detectors. In the system, a scintillating fiber array is employed to obtain a detection efficiency of about 20% for DT neutrons. High-performance ICCDs and large aperture lens are taken into account to increase the conversion efficiency and the collective efficiency. The properties of the detector are charaterized in this paper.

  10. Characterization of the Annular Core Research Reactor (ACRR) Neutron Radiography System Imaging Plane

    NASA Astrophysics Data System (ADS)

    Kaiser, Krista; Chantel Nowlen, K.; DePriest, K. Russell

    2016-02-01

    The Annular Core Research Reactor (ACRR) at Sandia National Laboratories (SNL) is an epithermal pool-type research reactor licensed up to a thermal power of 2.4 MW. The ACRR facility has a neutron radiography facility that is used for imaging a wide range of items including reactor fuel and neutron generators. The ACRR neutron radiography system has four apertures (65:1, 125:1, 250:1, and 500:1) available to experimenters. The neutron flux and spectrum as well as the gamma dose rate were characterized at the imaging plane for the ACRR's neutron radiography system for the 65:1, 125:1 and 250:1 apertures.

  11. Modification of the neutron beam spectrum for neutron radiography at Tehran Research Reactor (TRR)

    NASA Astrophysics Data System (ADS)

    Moghadam, K. Kamali; Ziaie, F.

    1996-02-01

    Recently due to the replacement of the High Enriched Uranium (HEU) fuel with the Low Enriched Uranium (LEU) fuel and the changes in the reactor core configuration at TRR, the existing Neutron Radiography (NR) system was no longer efficient. Thus, it was decided to modify the system in order to increase the neutron flux and to improve the characteristics of the system. The neutron energy spectrum was measured by foil activation method using SAND-II code and calculated by ANISN/PC code. The general trend of the calculated and measured spectra show good similarity. By introducing different sizes of moderator and gamma absorber behind the collimator, the optimum thermal neutron flux impinge the collimator was calculated using ANISN/PC code. The inlet diameter of the collimator was changed from 1.8 to 5 cm in order to increase the neutron flux at the sample position, which should result in an increase of 8 fold in spite of a small increase in the geometrical unsharpness. The new beam characteristics at the sample position are predicted as an average thermal neutron flux of about 10 6 n cm 2 s 1 and a neutron to gamma ratio of about 10 6 n cm 2 mR -1.

  12. Quantifying moisture transport in cementitious materials using neutron radiography

    NASA Astrophysics Data System (ADS)

    Lucero, Catherine L.

    . It has been found through this study that small pores, namely voids created by chemical shrinkage, gel pores, and capillary pores, ranging from 0.5 nm to 50 microm, fill quickly through capillary action. However, large entrapped and entrained air voids ranging from 0.05 to 1.25 mm remain empty during the initial filling process. In mortar exposed to calcium chloride solution, a decrease in sorptivity was observed due to an increase in viscosity and surface tension of the solution as proposed by Spragg et al 2011. This work however also noted a decrease in the rate of absorption due to a reaction between the salt and matrix which results in the filling of the pores in the concrete. The results from neutron imaging can help in the interpretation of standard absorption tests. ASTM C1585 test results can be further analyzed in several ways that could give an accurate indication of the durability of the concrete. Results can be reported in depth of penetration versus the square root of time rather than mm3 of fluid per mm2 of exposed surface area. Since a known fraction of pores are initially filling before reaching the edge of the sample, the actual depth of penetration can be calculated. This work is compared with an 'intrinsic sorptivity' that can be used to interpret mass measurements. Furthermore, the influence of shrinkage reducing admixtures (SRAs) on drying was studied. Neutron radiographs showed that systems saturated in water remain "wetter" than systems saturated in 5% SRA solution. The SRA in the system reduces the moisture diffusion coefficient due an increase in viscosity and decrease in surface tension. Neutron radiography provided spatial information of the drying front that cannot be achieved using other methods.

  13. Industrial applications at the new cold neutron radiography and tomography facility of the HMI

    NASA Astrophysics Data System (ADS)

    Kardjilov, N.; Hilger, A.; Manke, I.; Strobl, M.; Treimer, W.; Banhart, J.

    2005-04-01

    The new cold neutron radiography and tomography facility at the Hahn-Meitner-Institut Berlin is suited for the investigation of components and materials from different industrial fields. The high-flux measuring position of the facility allows real-time imaging of fast dynamical processes. Cold neutrons interact stronger with the matter compared to thermal neutrons, which leads to a much better radiography contrast. Some examples of different industry applications like investigations on discharging of a Lithium battery or on oil sediments in a vent pipe are presented.

  14. Neutron radiography activity in the european program cost 524: Neutron imaging techniques

    NASA Astrophysics Data System (ADS)

    Chirco, P.; Bach, P.; Lehmann, E.; Balasko, M.

    2001-07-01

    COST is a framework for scientific and technical cooperation, allowing the coordination of national research on a European level, including 32 member countries. Participation of institutes from non-COST countries is possible. From an initial 7 Actions in 1971, COST has grown to 200 Actions at the beginning of 2000. COST Action 524 is under materials domain, the title of which being "Neutron Imaging Techniques for the Detection of Defects in Materials", under the Chairmanship of Dr. P. Chirco (I.N.F.N.). The following countries are represented in the Management Committee of Action 524: Italy, France, Austria, Germany, United Kingdom, Hungary, Switzerland, Spain, Czech Republic, Slovenia, and Russia. The six working groups of this Action are working respectively on standardization of neutron radiography techniques, on aerospace application, on civil engineering applications, on comparison and integration of neutron imaging techniques with other NDT, on neutron tomography, and on non radiographic techniques such as neutron scattering techniques. A specific effort is devoted to standardization issues, with respect to other non European standards. Results of work performed in the COST frame are published or will be published in the review INSIGHT, edited by the British Institute of Non Destructive Testing.

  15. Time resolved analysis of water drainage in porous asphalt concrete using neutron radiography.

    PubMed

    Poulikakos, L D; Sedighi Gilani, M; Derome, D; Jerjen, I; Vontobel, P

    2013-07-01

    Porous asphalt as a road surface layer controls aquaplaning as rain water can drain through its highly porous structure. The process of water drainage through this permeable layer is studied using neutron radiography. Time-resolved water configuration and distribution within the porous structure are reported. It is shown that radiography depicts the process of liquid water transport within the complex geometry of porous asphalt, capturing water films, filled dead end pores and water islands. PMID:23500651

  16. Neutron Radiography Facility at IBR-2 High Flux Pulsed Reactor: First Results

    NASA Astrophysics Data System (ADS)

    Kozlenko, D. P.; Kichanov, S. E.; Lukin, E. V.; Rutkauskas, A. V.; Bokuchava, G. D.; Savenko, B. N.; Pakhnevich, A. V.; Rozanov, A. Yu.

    A neutron radiography and tomography facilityhave been developed recently at the IBR-2 high flux pulsed reactor. The facility is operated with the CCD-camera based detector having maximal field of view of 20x20 cm, and the L/D ratio can be varied in the range 200 - 2000. The first results of the radiography and tomography experiments with industrial materials and products, paleontological and geophysical objects, meteorites, are presented.

  17. Plasma focus sources: Supplement to the neutron resonance radiography workshop proceedings

    SciTech Connect

    Nardi, V.; Brzosko, J.

    1989-01-01

    Since their discovery, plasma focus discharges have been recognized as very intense pulsed sources of deuterium-deuterium (D-D) or deuterium-tritium (D-T) fusion-reaction neutrons, with outstanding capabilities. Specifically, the total neutron emission/shot, YN, and the rate of neutron emission, Y/sub n/, of an optimized plasma focus (PF) are higher than the corresponding quantities observed in any other type of pinched discharge at the same level of powering energy W/sub 0/. Recent developments have led to the concept and experimental demonstration of an Advanced Plasma Focus System (APF) that consists of a Mather-geometry plasma focus in which field distortion elements (FDEs) are inserted in the inter-electrode gap for increasing the neutron yield/shot, Y/sub n/. The FDE-induced redistribution of the plasma current increases Y/sub n/ by a factor approx. =5-10 above the value obtained without FDEs under otherwise identical conditions of operation of the plasma focus. For example, an APF that is fed by a fast capacitor bank with an energy, W/sub 0/ = 6kJ, and voltage, V/sub 0/ = 16.5 kV provides Y/sub n/ /congruent/ 4 /times/ 10/sup 9/ D-D neutrons/shot (pure D/sub 2/ filling) and Y/sub n/ = 4 /times/ 10/sup 11/ D-T neutrons/shot (filling is 50% deuterium and 50% tritium). The FDE-induced increase of Y/sub n/ for fixed values of (W/sub 0/, V/sub 0/), the observed scaling law Y/sub n/ /proportional to/ W/sub 0//sup 2/ for optimized plasma focus systems, and our experience with neutron scattering in bulk objects lead us to the conclusion that we can use an APF as a source of high-intensity neutron pulses (10/sup 14/ n/pulse) in the field off neutron radiography (surface and bulk) with a nanosecond or millisecond time resolution.

  18. Neutron radiography with sub-15 μm resolution through event centroiding

    NASA Astrophysics Data System (ADS)

    Tremsin, Anton S.; McPhate, Jason B.; Vallerga, John V.; Siegmund, Oswald H. W.; Bruce Feller, W.; Lehmann, Eberhard; Kaestner, Anders; Boillat, Pierre; Panzner, Tobias; Filges, Uwe

    2012-10-01

    Conversion of thermal and cold neutrons into a strong ˜1 ns electron pulse with an absolute neutron detection efficiency as high as 50-70% makes detectors with 10B-doped Microchannel Plates (MCPs) very attractive for neutron radiography and microtomography applications. The subsequent signal amplification preserves the location of the event within the MCP pore (typically 6-10 μm in diameter), providing the possibility to perform neutron counting with high spatial resolution. Different event centroiding techniques of the charge landing on a patterned anode enable accurate reconstruction of the neutron position, provided the charge footprints do not overlap within the time required for event processing. The new fast 2×2 Timepix readout with >1.2 kHz frame rates provides the unique possibility to detect neutrons with sub-15 μm resolution at several MHz/cm2 counting rates. The results of high resolution neutron radiography experiments presented in this paper, demonstrate the sub-15 μm resolution capability of our detection system. The high degree of collimation and cold spectrum of ICON and BOA beamlines combined with the high spatial resolution and detection efficiency of MCP-Timepix detectors are crucial for high contrast neutron radiography and microtomography with high spatial resolution. The next generation of Timepix electronics with sparsified readout should enable counting rates in excess of 107 n/cm2/s taking full advantage of high beam intensity of present brightest neutron imaging facilities.

  19. Image enhancement using MCNP5 code and MATLAB in neutron radiography.

    PubMed

    Tharwat, Montaser; Mohamed, Nader; Mongy, T

    2014-07-01

    This work presents a method that can be used to enhance the neutron radiography (NR) image for objects with high scattering materials like hydrogen, carbon and other light materials. This method used Monte Carlo code, MCNP5, to simulate the NR process and get the flux distribution for each pixel of the image and determines the scattered neutron distribution that caused image blur, and then uses MATLAB to subtract this scattered neutron distribution from the initial image to improve its quality. This work was performed before the commissioning of digital NR system in Jan. 2013. The MATLAB enhancement method is quite a good technique in the case of static based film neutron radiography, while in neutron imaging (NI) technique, image enhancement and quantitative measurement were efficient by using ImageJ software. The enhanced image quality and quantitative measurements were presented in this work. PMID:24583508

  20. Application of neutron radiography to visualization of cryogenic fluid boiling two-phase flows

    NASA Astrophysics Data System (ADS)

    Takenaka, Nobuyuki; Asano, Hitoshi; Fujii, Terushige; Ushiro, Toshihiko; Iwatani, Junji; Murata, Yutaka; Mochiki, Koh-ichi; Taguchi, Akira; Matsubayashi, Masahito; Tsuruno, Akira

    1996-02-01

    Liquid nitrogen boiling two-phase flows in a metallic container and in a heat exchanger were visualized by real-time thermal neutron radiography at JRR-3M at the Japan Atomic Energy Research Institute and image processed by the Musashi dynamic image processing system. Boiling phenomena in a pool and boiling two-phase flow in an aluminum plate fin type heat exchanger were visualized. It was shown that neutron radiography was applicable to visualization of cryogenic boiling two-phase flow and the designs of cryogenic heat exchangers.

  1. Proposed power upgrade of the Hot Fuel Examination Facility's neutron radiography reactor. [NRAD reactor

    SciTech Connect

    Pruett, D.P.; Richards, W.J.; Heidel, C.C.

    1984-01-01

    The Hot Fuel Examination Facility, HFEF, is one of several facilities located at the Argonne Site. HFEF comprises a large hot cell where both non-destructive and destructive examination of highly-irradiated reactor fuels are conducted in support of the LMFBR program. One of the non-destructive examination techniques utilized at HFEF is neutron radiography. Neutron radiography is provided by the NRAD reactor facility, which is located beneath the HFEF hot cell. The NRAD reactor is a TRIGA reactor and is operated at a steady state power level of 250 kW solely for neutron radiography and the development of radiography techniques. When the NRAD facility was designed and constructed, an operating power level of 250 kW was considered to be adequate for obtaining radiographs of the type of specimens envisaged at that time. A typical radiograph required approximately a twenty-minute exposure time. Specimens were typically single fuel rods placed in an aluminum tray. Since that time, however, several things have occurred that have tended to increase radiography exposure times to as much as 90 minutes each. In order to decrease exposure times, the reactor power level is to be increased from 250 kw to 1 MW. This increase in power will necessitate several engineering and design changes. These changes are described.

  2. Quantitative measurement of segregation phenomena in a binary-mixture fluidized bed by neutron radiography

    NASA Astrophysics Data System (ADS)

    Umekawa, Hisashi; Furui, Shuji; Oshima, Yoshihiro; Okura, Masashi; Ozawa, Mamoru; Takenaka, Nobuyuki

    2005-04-01

    Owing to a wide variety in fluidization properties of particles, segregation phenomena are hardly avoided in industrial fluidized-bed facilities. For the stability and controllability in the operation of such fluidized-beds, understanding of the relevant mechanism of particulate segregation is indispensable. Many factors, such as the difference in particle size, density, shape, and also arrangement of distributors, can be pointed out as the dominant causes for the segregation. Thus, any marking of particles for quantitative measurement may severely influence the segregation characteristic to be measured. But neutron radiography can be used for the quantitative measurement without disturbing the segregation characteristic. For estimating the segregation phenomena, evaluations of the particle fraction and the void fraction are required. For this purpose, two types of radiographies, i.e., X-ray and neutron radiographies were used in this investigation. Experimental results demonstrated the high performance of this method in investigating of segregation phenomena.

  3. High Resolution Neutron Radiography and Tomography of Hydrided Zircaloy-4 Cladding Materials

    SciTech Connect

    Smith, Tyler S; Bilheux, Hassina Z; Ray, Holly B; Bilheux, Jean-Christophe; Yan, Yong

    2015-01-01

    Neutron radiography for hydrogen analysis was performed with several Zircaloy-4 cladding samples with controlled hydrogen concentrations up to 1100 ppm. Hydrogen charging was performed in a process tube that was heated to facilitate hydrogen absorption by the metal. A correlation between the hydrogen concentration in the hydrided tubes and the neutron intensity was established, by which hydrogen content can be determined precisely in a small area (55 m x 55 m). Radiography analysis was also performed to evaluate the heating rate and its correlation with the hydrogen distribution through hydrided materials. In addition to radiography analysis, tomography experiments were performed on Zircaloy-4 tube samples to study the local hydrogen distribution. Through tomography analysis a 3D reconstruction of the tube was evaluated in which an uneven hydrogen distribution in the circumferential direction can be observed.

  4. Neutron radiography as a non-destructive method for diagnosing neutron converters for advanced thermal neutron detectors

    NASA Astrophysics Data System (ADS)

    Muraro, A.; Albani, G.; Perelli Cippo, E.; Croci, G.; Angella, G.; Birch, J.; Cazzaniga, C.; Caniello, R.; Dell'Era, F.; Ghezzi, F.; Grosso, G.; Hall-Wilton, R.; Höglund, C.; Hultman, L.; Schimdt, S.; Robinson, L.; Rebai, M.; Salvato, G.; Tresoldi, D.; Vasi, C.; Tardocchi, M.

    2016-03-01

    Due to the well-known problem of 3He shortage, a series of different thermal neutron detectors alternative to helium tubes are being developed, with the goal to find valid candidates for detection systems for the future spallation neutron sources such as the European Spallation Source (ESS). A possible 3He-free detector candidate is a charged particle detector equipped with a three dimensional neutron converter cathode (3D-C). The 3D-C currently under development is composed by a series of alumina (Al2O3) lamellas coated by 1 μ m of 10B enriched boron carbide (B4C). In order to obtain a good characterization in terms of detector efficiency and uniformity it is crucial to know the thickness, the uniformity and the atomic composition of the B4C neutron converter coating. In this work a non-destructive technique for the characterization of the lamellas that will compose the 3D-C was performed using neutron radiography. The results of these measurements show that the lamellas that will be used have coating uniformity suitable for detector applications. This technique (compared with SEM, EDX, ERDA, XPS) has the advantage of being global (i.e. non point-like) and non-destructive, thus it is suitable as a check method for mass production of the 3D-C elements.

  5. Design, construction and characterization of a new neutron beam for neutron radiography at the Tehran Research Reactor

    NASA Astrophysics Data System (ADS)

    Choopan Dastjerdi, M. H.; Khalafi, H.; Kasesaz, Y.; Mirvakili, S. M.; Emami, J.; Ghods, H.; Ezzati, A.

    2016-05-01

    To obtain a thermal neutron beam for neutron radiography applications, a neutron collimator has been designed and implemented at the Tehran Research Reactor (TRR). TRR is a 5 MW open pool light water moderated reactor with seven beam tubes. The neutron collimator is implemented in the E beam tube of the TRR. The design of the neutron collimator was performed using MCNPX Monte Carlo code. In this work, polycrystalline bismuth and graphite have been used as a gamma filter and an illuminator, respectively. The L/D parameter of the facility was chosen in the range of 150-250. The thermal neutron flux at the image plane can be varied from 2.26×106 to 6.5×106 n cm-2 s-1. Characterization of the beam was performed by ASTM standard IQI and foil activation technique to determine the quality of neutron beam. The results show that the obtained neutron beam has a good quality for neutron radiography applications.

  6. Composite structure of helicopter rotor blades studied by neutron- and X-ray radiography

    NASA Astrophysics Data System (ADS)

    Balaskó, M.; Veres, I.; Molnár, Gy.; Balaskó, Zs.; Sváb, E.

    2004-07-01

    In order to inspect the possible defects in the composite structure of helicopter rotor blades combined neutron- and X-ray radiography investigations were performed at the Budapest Research Reactor. Imperfections in the honeycomb structure, resin rich or starved areas at the core-honeycomb surfaces, inhomogeneities at the adhesive filling and water percolation at the sealing interfaces of the honeycomb sections were discovered.

  7. Gamma-ray and neutron radiography for a pulsed fast- neutron analysis cargo inspection system

    NASA Astrophysics Data System (ADS)

    Rynes, Joel Christian

    1999-11-01

    This dissertation presents the design, optimization, and characterization of a gamma-ray and neutron radiographic subsystem that was developed for the Pulsed Fast Neutron Analysis (PFNA) cargo inspection system. The PFNA inspection system uses nanosecond pulsed neutrons to produce three-dimensional elemental density images of cargo. Contraband in the cargo can be detected by its elemental content. The PFNA neutron source produces gamma rays as well as neutrons. The radiographic subsystem measures these radiations in an array of plastic scintillators to produce gamma-ray and neutron transmission images of the cargo simultaneously with the PFNA measurement. Although the radiographic subsystem improves PFNA performance in many forms of contraband detection, it was specifically designed to detect Special Nuclear Material (SNM) in cargo containers and trucks. A feasibility study, including experiments and modeling, was performed to determine the usefulness of gamma-ray radiography in this application. The study assumed a baseline configuration of the PFNA source, a relatively small rectangular radiation beam, and a plastic detector with a 5.1 cm diameter and a 7.6 cm length. The study showed that the baseline configuration was useful in cargoes up to 144 g/cm2 thick. At this thickness, a signal-to-noise ratio of three was obtainable per pixel. The maximum cargo thickness was later increased to 180 g/cm2 by increasing the detector length to 17.0 cm and by changing the source beam stop from gold to copper. An experiment was then performed that determined a 3.5 cm radiographic resolution was adequate for SNM detection. The detector configuration and the source motion were optimized to obtain a resolution of approximately 3.5 cm using the minimal number of detectors and the maximum detector diameter. The source is moved up and down as the cargo is pulled through the system to irradiate the entire surface of the cargo with the radiation beam. The final design consisted of

  8. New Developments in Proton Radiography at the Los Alamos Neutron Science Center (LANSCE)

    SciTech Connect

    Morris, C. L.; Brown, E. N.; Agee, C.; Bernert, T.; Bourke, M. A. M.; Burkett, M. W.; Buttler, W. T.; Byler, D. D.; Chen, C. F.; Clarke, A. J.; Cooley, J. C.; Gibbs, P. J.; Imhoff, S. D.; Jones, R.; Kwiatkowski, K.; Mariam, F. G.; Merrill, F. E.; Murray, M. M.; Olinger, C. T.; Oro, D. M.; Nedrow, P.; Saunders, A.; Terrones, G.; Trouw, F.; Tupa, D.; Vogan, W.; Winkler, B.; Wang, Z.; Zellner, M. B.

    2015-12-30

    An application of nuclear physics, a facility for using protons for flash radiography, was developed at the Los Alamos Neutron Science Center (LANSCE). Protons have proven far superior to high energy x-rays for flash radiography because of their long mean free path, good position resolution, and low scatter background. Although this facility is primarily used for studying very fast phenomena such as high explosive driven experiments, it is finding increasing application to other fields, such as tomography of static objects, phase changes in materials and the dynamics of chemical reactions. The advantages of protons are discussed, data from some recent experiments will be reviewed and concepts for new techniques are introduced.

  9. Design and initial 1D radiography tests of the FANTOM mobile fast-neutron radiography and tomography system

    NASA Astrophysics Data System (ADS)

    Andersson, P.; Valldor-Blücher, J.; Andersson Sundén, E.; Sjöstrand, H.; Jacobsson-Svärd, S.

    2014-08-01

    The FANTOM system is a tabletop sized fast-neutron radiography and tomography system newly developed at the Applied Nuclear Physics Division of Uppsala University. The main purpose of the system is to provide time-averaged steam-and-water distribution measurement capability inside the metallic structures of two-phase test loops for light water reactor thermal-hydraulic studies using a portable fusion neutron generator. The FANTOM system provides a set of 1D neutron transmission data, which may be inserted into tomographic reconstruction algorithms to achieve a 2D mapping of the steam-and-water distribution. In this paper, the selected design of FANTOM is described and motivated. The detector concept is based on plastic scintillator elements, separated for spatial resolution. Analysis of pulse heights on an event-to-event basis is used for energy discrimination. Although the concept allows for close stacking of a large number of detector elements, this demonstrator is equipped with only three elements in the detector and one additional element for monitoring the yield from the neutron generator. The first measured projections on test objects of known configurations are presented. These were collected using a Sodern Genie 16 neutron generator with an isotropic yield of about 1E8 neutrons per second, and allowed for characterization of the instrument's capabilities. At an energy threshold of 10 MeV, the detector offered a count rate of about 500 cps per detector element. The performance in terms of spatial resolution was validated by fitting a Gaussian Line Spread Function to the experimental data, a procedure that revealed a spatial unsharpness in good agreement with the predicted FWHM of 0.5 mm.

  10. Measurement of changes in water thickness in plant materials using very low-energy neutron radiography

    NASA Astrophysics Data System (ADS)

    Matsushima, U.; Kawabata, Y.; Hino, M.; Geltenbort, P.; Nicolaï, B. M.

    2005-04-01

    Low-energy neutron radiographic images of Hedera leaves were obtained using the very cold neutron (VCN) beam at Institut Laue-Langevin, France. A change in hydrogen concentration measured in a short period by means of neutron radiography indicates a change in water concentration in the plant. A regression model was evaluated to estimate changes in water thickness of the leaves and, the resolution of this method was smaller than 5 μm. The method was effective to measure small changes in water thickness of thin plant leaves.

  11. Discriminated neutron and X-ray radiography using multi-color scintillation detector

    NASA Astrophysics Data System (ADS)

    Nittoh, Koichi; Takahara, Takeshi; Yoshida, Tadashi; Tamura, Toshiyuki

    1999-06-01

    A new conversion screen Gd 2O 2S:Eu is developed, which emits red light on irradiation by thermal neutrons. By applying this in combination with the currently used Gd 2O 2S:Tb, a green-light scintillator, in the radiography under a neutron + X-ray coexisting field, we can easily separate the neutron image and the X-ray image by simple color-image processing. This technique enables a non-destructive and detailed inspection of industrial products composed both of light elements (water, plastics, etc.) and heavy elements (metals), widening the horizon of new applications.

  12. Improvements in the Image Quality of Neutron Radiograms of NUR Neutron Radiography Facility by Using Several Exposure Techniques

    NASA Astrophysics Data System (ADS)

    Zergoug, T.; Nedjar, A.; Mokeddem, M. Y.; Mammou, L.

    2008-03-01

    Since the construction of NUR reactor neutron radiography facility in 1991, only transfer exposure method was used as a non destructive technique. The reason is the excess of gamma rays in the neutron beam. To improve radiation performances of the NR system, a stainless steal hollow conical cylinder is introduced at the bottom of the facility beam port, this filter reduce gamma infiltration through the edges of the NR structure without disturbing neutron beam arriving from the in pool divergent collimator. First results confirm our prediction; a gamma rays diminution and a relatively stable neutron flux at the point object are confirmed, consequently the n/γ ratio reaches a value of 2.104 n/cm2 mR. Radiograms obtained by using the direct exposure method reveal the feasibility of the technique in the new NR configuration facility, but a weak resolution and contrast of the image is observed. In this paper, we describe a procedure to improve the image quality obtained by direct exposure technique. The process consists of using digitized images obtained by several exposure techniques (NR, gamma radiography or X radiography) for a comparison study and then better image definition can be attained.

  13. Improvements in the Image Quality of Neutron Radiograms of NUR Neutron Radiography Facility by Using Several Exposure Techniques

    SciTech Connect

    Zergoug, T.; Nedjar, A.; Mokeddem, M. Y.; Mammou, L.

    2008-03-17

    Since the construction of NUR reactor neutron radiography facility in 1991, only transfer exposure method was used as a non destructive technique. The reason is the excess of gamma rays in the neutron beam. To improve radiation performances of the NR system, a stainless steal hollow conical cylinder is introduced at the bottom of the facility beam port, this filter reduce gamma infiltration through the edges of the NR structure without disturbing neutron beam arriving from the in pool divergent collimator. First results confirm our prediction; a gamma rays diminution and a relatively stable neutron flux at the point object are confirmed, consequently the n/{gamma} ratio reaches a value of 2.104 n/cm{sup 2} mR. Radiograms obtained by using the direct exposure method reveal the feasibility of the technique in the new NR configuration facility, but a weak resolution and contrast of the image is observed. In this paper, we describe a procedure to improve the image quality obtained by direct exposure technique. The process consists of using digitized images obtained by several exposure techniques (NR, gamma radiography or X radiography) for a comparison study and then better image definition can be attained.

  14. Mobile-accelerator neutron-radiography system. Final report, February 1978-December 1983

    SciTech Connect

    Dance, W.E.; Carollo, S.F.; Bumgardner, H.M.

    1984-10-01

    The use of neutron radiography for the inspection and maintenance of large structures such as aircraft has been delayed by the absence of a mobile system particularly suited to the requirements of field use. This report describes the production, extensive field testing, evaluation and disposition of the first mobile neutron radiography system to satisfy the majority of requirements for field use. The system is based upon the concept of a mobile on-off neutron radiography system based on a sealed-tube ion accelerator as neutron source demonstrated earlier by the Vought Corporation. Primary features of the system are its self-propelled mobility, versatile positioning capability scaled to Army helicopter dimensions, an on-off beam capability, exposure capability measured in minutes, and suitability for AMMRC laboratory and field use. Included in the report are a description of all components of the system, an evaluation of the operation of the system, an evaluation of its radiographic capabilities, a description of installation elements for the AMMRC site, and recommendations for next-generation systems.

  15. A history of basic neutron radiography research at Rikkyo University

    NASA Astrophysics Data System (ADS)

    Kobayashi, H.

    2011-09-01

    A study of neutron imaging was initiated by a research group in our institute using the 100 kW Rikkyo TRIGA reactor, in 1984. A series of studies at the Rikkyo University was reported in the proceedings of these conferences and others and were covered mainly in the field of neutron beam qualification methods, analysis of image qualification, new imaging methods, and analysis of neutron behavior in materials. In this paper, a history of these principal studies will be summarized and a few unresolved basic studies will also be mentioned.

  16. Water calibration measurements for neutron radiography: Application to water content quantification in porous media

    NASA Astrophysics Data System (ADS)

    Kang, M.; Bilheux, H. Z.; Voisin, S.; Cheng, C. L.; Perfect, E.; Horita, J.; Warren, J. M.

    2013-04-01

    Using neutron radiography, the measurement of water thickness was performed using aluminum (Al) water calibration cells at the High Flux Isotope Reactor (HFIR) Cold-Guide (CG) 1D neutron imaging facility at Oak Ridge National Laboratory, Oak Ridge, TN, USA. Calibration of water thickness is an important step to accurately measure water contents in samples of interest. Neutron attenuation by water does not vary linearly with thickness mainly due to beam hardening and scattering effects. Transmission measurements for known water thicknesses in water calibration cells allow proper correction of the underestimation of water content due to these effects. As anticipated, strong scattering effects were observed for water thicknesses greater than 0.2 cm when the water calibration cells were positioned close to the face of the detector/scintillator (0 and 2.4 cm away, respectively). The water calibration cells were also positioned 24 cm away from the detector face. These measurements resulted in less scattering and this position (designated as the sample position) was used for the subsequent experimental determination of the neutron attenuation coefficient for water. Neutron radiographic images of moist Flint sand in rectangular and cylindrical containers acquired at the sample position were used to demonstrate the applicability of the water calibration. Cumulative changes in the water volumes within the sand columns during monotonic drainage determined by neutron radiography were compared with those recorded by direct reading from a burette connected to a hanging water column. In general, the neutron radiography data showed very good agreement with those obtained volumetrically using the hanging water-column method. These results allow extension of the calibration equation to the quantification of unknown water contents within other samples of porous media.

  17. Water Calibration Measurements for Neutron Radiography: Application to Water Content Quantification in Porous Media

    SciTech Connect

    Kang, Misun; Bilheux, Hassina Z; Voisin, Sophie; Cheng, Chu-lin; Perfect, Edmund; Horita, Juske; Warren, Jeffrey

    2013-04-01

    Using neutron radiography, the measurement of water thickness was performed using aluminum (Al) water calibration cells at the High Flux Isotope Reactor (HFIR) Cold-Guide (CG) 1D neutron imaging facility at Oak Ridge National Laboratory, Oak Ridge, TN, USA. Calibration of water thickness is an important step to accurately measure water contents in samples of interest. Neutron attenuation by water does not vary linearly with thickness mainly due to beam hardening and scattering effects. Transmission measurements for known water thicknesses in water calibration cells allow proper correction of the underestimation of water content due to these effects. As anticipated, strong scattering effects were observed for water thicknesses greater than 2 mm when the water calibration cells were positioned close to the face of the detector / scintillator (0 and 2.4 cm away, respectively). The water calibration cells were also positioned 24 cm away from the detector face. These measurements resulted in less scattering and this position (designated as the sample position) was used for the subsequent experimental determination of the neutron attenuation coefficient for water. Neutron radiographic images of moist Flint sand in rectangular and cylindrical containers acquired at the sample position were used to demonstrate the applicability of the water calibration. Cumulative changes in the water volumes within the sand columns during monotonic drainage determined by neutron radiography were compared with those recorded by direct reading from a burette connected to a hanging water column. In general, the neutron radiography data showed very good agreement with those obtained volumetrically using the hanging water-column method. These results allow extension of the calibration equation to the quantification of unknown water contents within other samples of porous media.

  18. Measurement of Coolant in a Flat Heat Pipe Using Neutron Radiography

    NASA Astrophysics Data System (ADS)

    Mizuta, Kei; Saito, Yasushi; Goshima, Takashi; Tsutsui, Toshio

    A newly developed flat heat pipe FGHPTM (Morex Kiire Co.) was experimentally investigated by using neutron radiography. The test sample of the FGHP heat spreader was 65 × 65 × 2 mm3 composed of several etched copper plates and pure water was used as the coolant. Neutron radiography was performed at the E-2 port of the Kyoto University Research Reactor (KUR). The coolant distributions in the wick area of the FGHP and its heat transfer characteristics were measured at heating conditions. Experimental results show that the coolant distributions depend slightly on its installation posture and that the liquid thickness in the wick region remains constant with increasing heat input to the FGHP. In addition, it is found that the wick surface does not dry out even in the vertical posture at present experimental conditions.

  19. The measurement of capsule heat transfer gaps using neutron radiography.

    NASA Technical Reports Server (NTRS)

    Thaler, L. A.

    1971-01-01

    The use of neutron radiographs to determine dimensional changes of heat transfer gaps in cylindrical nuclear fueled capsules is described. A method was developed which involves scanning a very fine grained neutron radiograph negative with a recording microdensitometer. The output of the densitometer is recorded on graph paper and the heat transfer gap is plotted as a well-defined optical density change. Calibration of the recording microdensitometer ratio arms permits measurements to be made of the heat transfer optical density change from the microdensitometer trace. Total heat transfer gaps, measured by this method, agree with the physical measurements within plus or minus 0.005 cm over a range of gaps from 0.061 to 0.178 cm.

  20. Archaeometric studies by neutron, x-ray radiography and microCT

    NASA Astrophysics Data System (ADS)

    Latini, R. M.; Bellido, A. V. B.; Vinagre Filho, U. M.; Souza, M. I. S.; Lima, I.; Oliveira, D. F.; Lopes, R. T.

    2013-05-01

    The aim of this study is to investigate manufacturing techniques used in prehistoric Brazilian pottery from Acre state and Araruama, Rio de Janeiro state, Brazil, using Neutron and X-Ray Radiography. For the neutrongraphy different fragments of pottery were submitted to a neutron flux of the order of 105n.cm-2.s-1 for 3 minutes at the Argonauta research reactor of the Instituto de Engenharia Nuclear (IEN)/CNEN. Digital processing techniques using imaging plate were applied to process the image of the selected sample. For the radiography the sample were exposed to an X-Rays in the Feinfocus Model FX100 and the image was obtained by Flat Panel GE IT Model DXR 250V at the Laboratório de Instrumentação Nuclear (LIN) - COPPE/UFRJ. The Neutrongraphy and radiography shows two different manufacturing details: palette and rollers and the microtomography shows cavities in the clay body and different temper applied in the pottery production. The preliminary results shows promising techniques applied for the pottery manufacturing information and as complement for better understanding the ceramics classification and precedence.

  1. Design optimization, manufacture and response measurements for fast-neutron radiography converters made of scintillator and wavelength-shifting fibers

    NASA Astrophysics Data System (ADS)

    Li, Hang; Wu, Yang; Cao, Chao; Huo, Heyong; Tang, Bin

    2014-10-01

    In order to improve the image quality of fast neutron radiography, a converter made of scintillator and wavelength-shifting fibers has been developed. The appropriate parameters of the converter such as fibers arrangement, distance between fibers are optimized theoretically, and manufacture of the converter are also optimized. Fast neutron radiography experiments by 14 MeV neutrons are used to test this converter and kinds of traditional converters. The experiments' results matched the calculations. The novel converter's resolution is better than 1 mm and the light output is high.

  2. A novel approach to determine post mortem interval using neutron radiography

    SciTech Connect

    Bilheux, Hassina Z.; Cekanova, Maria; Vass, Arpad Alexander; Nichols, Trent L.; Bilheux, Jean -Christophe; Donnell, Robert; Finocchiaro, Vincenzo

    2015-03-06

    In this study, neutron radiography (NR) is used non-destructively to measure changes in hydrogen (H) content in decaying tissues as a mean to estimate post-mortem invertal (PMI). After death, tissue undergoes sequential changes consisting of organic and inorganic phase variations, as well as a gradual reduction of tissue water content. H is the primary contributor to NR contrast in biological specimens because (1) it is the most abundant element in biological tissues and (2) its nucleus scatter thermal and cold neutrons more strongly than any other atomic nucleus. These contrast differences can be advantageous in a forensic context to determine small changes in hydrogen concentrations. Dog cadavers were used as a model for human cadavers. Canine tissues and cadavers were exposed to controlled (laboratory settings) and uncontrolled (University of Tennessee Anthropology Research Facility) environmental conditions during putefraction, respectively. Neutron radiographs were supplemented with photographs and histology data to assess the decomposition stage of cadavers. Results demonstrated that the increase in neutron transmission likely corresponded to a decrease in hydrogen content in the tissue, which was correlated with the time of decay of the tissue. Tissues depleted in hydrogen are brighter in the neutron transmission radiographs of skeletal muscles, lung, and bone, under controlled conditions. Over a period of 10 days, changes in neutron transmission through lung and muscle were found to be higher than bone by 8.3%, 7.0 %, and 2.0 %, respectively. Estimation of the PMI was calculated from a natural logarithmic fitting of the NR data. Under controlled conditions, estimation of the PMI was 70% and 63.9 % accurate for bone and lung tissues, while being 1.4% accurate for muscle tissue. All results underestimated the true PMI. In conclusion, neutron radiography can be used for detection of hydrogen changes in decaying tissues to estimate PMI.

  3. A novel approach to determine post mortem interval using neutron radiography

    DOE PAGESBeta

    Bilheux, Hassina Z.; Cekanova, Maria; Vass, Arpad Alexander; Nichols, Trent L.; Bilheux, Jean -Christophe; Donnell, Robert; Finocchiaro, Vincenzo

    2015-03-06

    In this study, neutron radiography (NR) is used non-destructively to measure changes in hydrogen (H) content in decaying tissues as a mean to estimate post-mortem invertal (PMI). After death, tissue undergoes sequential changes consisting of organic and inorganic phase variations, as well as a gradual reduction of tissue water content. H is the primary contributor to NR contrast in biological specimens because (1) it is the most abundant element in biological tissues and (2) its nucleus scatter thermal and cold neutrons more strongly than any other atomic nucleus. These contrast differences can be advantageous in a forensic context to determinemore » small changes in hydrogen concentrations. Dog cadavers were used as a model for human cadavers. Canine tissues and cadavers were exposed to controlled (laboratory settings) and uncontrolled (University of Tennessee Anthropology Research Facility) environmental conditions during putefraction, respectively. Neutron radiographs were supplemented with photographs and histology data to assess the decomposition stage of cadavers. Results demonstrated that the increase in neutron transmission likely corresponded to a decrease in hydrogen content in the tissue, which was correlated with the time of decay of the tissue. Tissues depleted in hydrogen are brighter in the neutron transmission radiographs of skeletal muscles, lung, and bone, under controlled conditions. Over a period of 10 days, changes in neutron transmission through lung and muscle were found to be higher than bone by 8.3%, 7.0 %, and 2.0 %, respectively. Estimation of the PMI was calculated from a natural logarithmic fitting of the NR data. Under controlled conditions, estimation of the PMI was 70% and 63.9 % accurate for bone and lung tissues, while being 1.4% accurate for muscle tissue. All results underestimated the true PMI. In conclusion, neutron radiography can be used for detection of hydrogen changes in decaying tissues to estimate PMI.« less

  4. Measurement of capsule heat transfer gaps using neutron radiography

    NASA Technical Reports Server (NTRS)

    Thaler, L. A.

    1974-01-01

    A technique is described for measuring heat transfer gaps from neutron radiographs. The method involves scanning the radiograph negative with a recording microdensitometer to obtain a trace of the optical density variation across the diameter of the capsule. The optical density change representing the gap is measured from the microdensitometer trace and related to the physical measurement. Heat transfer gaps from 0.061 to 0.178 cm have been determined by this technique and agree with preassembly physical measurements to plus or minus 0.005 cm.

  5. A novel approach to determine post mortem interval using neutron radiography.

    PubMed

    Bilheux, Hassina Z; Cekanova, Maria; Vass, Arpad A; Nichols, Trent L; Bilheux, Jean C; Donnell, Robert L; Finochiarro, Vincenzo

    2015-06-01

    One of the most difficult challenges in forensic research is to objectively determine the post-mortem interval (PMI). The accuracy of PMI is critical for determining the timeline of events surrounding a death. Most PMI techniques rely on gross morphological changes of cadavers that are highly sensitive to taphonomic factors. Recent studies have demonstrated that even exhumed individuals exposed to the same environmental conditions with similar PMIs can present different stages of decomposition. After death, tissue undergoes sequential changes consisting of organic and inorganic phase variations, as well as a gradual reduction of tissue water content. Hydrogen (H) is the primary contributor to neutron radiography (NR) contrast in biological specimens because (1) it is the most abundant element in biological tissues and (2) its nucleus scatters thermal and cold neutrons more strongly than any other atomic nucleus. These contrast differences can be advantageous in a forensic context to determine small changes in hydrogen concentrations. Neutron radiography of decaying canine tissues was performed to evaluate the PMI by measuring the changes in H content. In this study, dog cadavers were used as a model for human cadavers. Canine tissues and cadavers were exposed to controlled (laboratory settings, at the University of Tennessee, College of Veterinary Medicine) and uncontrolled (University of Tennessee Anthropology Research Facility) environmental conditions, respectively. Neutron radiographs were supplemented with photographs and histology data to assess the decompositional stages of cadavers. Results demonstrated that the increase in neutron transmission likely corresponded to a decrease in hydrogen content in the tissue, which was correlated with the decay time of the tissue. Tissues depleted in hydrogen were brighter in the neutron transmission radiographs of skeletal muscles, lung, and bone, under controlled conditions. Over a period of 10 days, changes in neutron

  6. New Developments in Proton Radiography at the Los Alamos Neutron Science Center (LANSCE)

    DOE PAGESBeta

    Morris, C. L.; Brown, E. N.; Agee, C.; Bernert, T.; Bourke, M. A. M.; Burkett, M. W.; Buttler, W. T.; Byler, D. D.; Chen, C. F.; Clarke, A. J.; et al

    2015-12-30

    An application of nuclear physics, a facility for using protons for flash radiography, was developed at the Los Alamos Neutron Science Center (LANSCE). Protons have proven far superior to high energy x-rays for flash radiography because of their long mean free path, good position resolution, and low scatter background. Although this facility is primarily used for studying very fast phenomena such as high explosive driven experiments, it is finding increasing application to other fields, such as tomography of static objects, phase changes in materials and the dynamics of chemical reactions. The advantages of protons are discussed, data from some recentmore » experiments will be reviewed and concepts for new techniques are introduced.« less

  7. Scientific Design of the New Neutron Radiography Facility (SANRAD) at SAFARI-1 for South Africa

    NASA Astrophysics Data System (ADS)

    de Beer, F. C.; Gruenauer, F.; Radebe, J. M.; Modise, T.; Schillinger, B.

    The final scientific design for an upgraded neutron radiography/tomography facility at beam port no.2 of the SAFARI-1 nuclear research reactor has been performed through expert advice from Physics Consulting, FRMII in Germany and IPEN, Brazil. A need to upgrade the facility became apparent due to the identification of various deficiencies of the current SANRAD facility during an IAEA-sponsored expert mission of international scientists to Necsa, South Africa. A lack of adequate shielding that results in high neutron background on the beam port floor, a mismatch in the collimator aperture to the core that results in a high gradient in neutron flux on the imaging plane and due to a relative low L/D the quality of the radiographs are poor, are a number of deficiencies to name a few.The new design, based on results of Monte Carlo (MCNP-X) simulations of neutron- and gamma transport from the reactor core and through the new facility, is being outlined. The scientific design philosophy, neutron optics and imaging capabilities that include the utilization of fission neutrons, thermal neutrons, and gamma-rays emerging from the core of SAFARI-1 are discussed.

  8. Dual Spectrum Neutron Radiography: Identification of Phase Transitions between Frozen and Liquid Water

    NASA Astrophysics Data System (ADS)

    Biesdorf, J.; Oberholzer, P.; Bernauer, F.; Kaestner, A.; Vontobel, P.; Lehmann, E. H.; Schmidt, T. J.; Boillat, P.

    2014-06-01

    In this Letter, a new approach to distinguish liquid water and ice based on dual spectrum neutron radiography is presented. The distinction is based on arising differences between the cross section of water and ice in the cold energy range. As a significant portion of the energy spectrum of the ICON beam line at Paul Scherrer Institut is in the thermal energy range, no differences can be observed with the entire beam. Introducing a polycrystalline neutron filter (beryllium) inside the beam, neutrons above its cutoff energy are filtered out and the cold energy region is emphasized. Finally, a contrast of about 1.6% is obtained with our imaging setup between liquid water and ice. Based on this measurement concept, the temporal evolution of the aggregate state of water can be investigated without any prior knowledge of its thickness. Using this technique, we could unambiguously prove the production of supercooled water inside fuel cells with a direct measurement method.

  9. Dual spectrum neutron radiography: identification of phase transitions between frozen and liquid water.

    PubMed

    Biesdorf, J; Oberholzer, P; Bernauer, F; Kaestner, A; Vontobel, P; Lehmann, E H; Schmidt, T J; Boillat, P

    2014-06-20

    In this Letter, a new approach to distinguish liquid water and ice based on dual spectrum neutron radiography is presented. The distinction is based on arising differences between the cross section of water and ice in the cold energy range. As a significant portion of the energy spectrum of the ICON beam line at Paul Scherrer Institut is in the thermal energy range, no differences can be observed with the entire beam. Introducing a polycrystalline neutron filter (beryllium) inside the beam, neutrons above its cutoff energy are filtered out and the cold energy region is emphasized. Finally, a contrast of about 1.6% is obtained with our imaging setup between liquid water and ice. Based on this measurement concept, the temporal evolution of the aggregate state of water can be investigated without any prior knowledge of its thickness. Using this technique, we could unambiguously prove the production of supercooled water inside fuel cells with a direct measurement method. PMID:24996112

  10. CCD detectors for fast neutron radiography and tomography with a cone beam

    NASA Astrophysics Data System (ADS)

    Bogolubov, E.; Bugaenko, O.; Kuzin, S.; Mikerov, V.; Monitch, E.; Monitch, A.; Pertsov, A.

    2005-04-01

    Two new types of luminescent CCD-detectors intended for fast neutron radiography and tomography with a cone neutron beam are described in the paper. A 6 cm thick luminescent screen made of polystyrene is used in the first one to convert fast neutrons. A special optics has been developed to transfer the optical image from the screen to the CCD-matrix. The optics design helps not to loose spatial resolution due to the beam divergence and screen thickness. The second detector is based on the use of a fiber optical screen made of luminescent fibers in the form of a rectangular truncated pyramid. Principles of the detectors operation have been experimentally proved. The obtained results show that the detectors provide a spatial resolution of about 2 mm.

  11. Development of a converter made of scintillator and wavelength-shifting fibers for fast neutron radiography

    NASA Astrophysics Data System (ADS)

    Zou, Yubin; Guo, Li'an; Guo, Zhiyu; Tang, Guoyou; Zhang, Guohui

    2009-06-01

    Wavelength-shifting fiber (WSF) converter is a novel converter for fast neutron (FN) radiography, which has high light output, high detection efficiency and low gamma sensitivity. In order to improve the performance of WSF converter, we optimized the WSF converter design with a simple model and manufactured it with a new method, which can increase the scintillation material concentration. The light output and gamma sensitivity of WSF converters were measured on accelerator-based fast neutron sources, and gamma sensitivity was measured with an activated indium gamma source. FN radiographs were taken with WSF converter and some other traditional converters for comparison. We found that the light output of the new WSF converter is more than 5 times that of a 2 mm polypropylene (PP) converter for 5.8 MeV neutron beam, while its relative gamma sensitivity is still low.

  12. Multi-Frame Energy-Selective Imaging System for Fast-Neutron Radiography

    NASA Astrophysics Data System (ADS)

    Dangendorf, Volker; Bar, Doron; Bromberger, Benjamin; Feldman, Gennady; Goldberg, Mark Benjamin; Lauck, Ronald; Mor, Ilan; Tittelmeier, Kai; Vartsky, David; Weierganz, Mathias

    2009-06-01

    A new instrument for high resolution imaging of fast-neutrons is presented here. It is designed for energy selective radiography in nanosecond-pulsed broad-energy (1 - 10 MeV) neutron beams. The device presented here is based on hydrogenous scintillator screens and single- or multiple-gated intensified camera systems (ICCD). A key element is a newly developed optical amplifier which generates sufficient light for the high-speed intensified camera system, even from such faint light sources as fast plastic and liquid scintillators. Utilizing the Time-of-Flight (TOF) method, the detector incorporating the above components is capable of simultaneously taking up to 8 images, each at a different neutron energy.

  13. Design of neutron beams at the Argonne Continuous Wave Linac (ACWL) for boron neutron capture therapy and neutron radiography

    SciTech Connect

    Zhou, X.L.; McMichael, G.E.

    1994-10-01

    Neutron beams are designed for capture therapy based on p-Li and p-Sc reactions using the Argonne Continuous Wave Linac (ACWL). The p-Li beam will provide a 2.5 {times} 10{sup 9} n/cm{sup 2}s epithermal flux with 7 {times} 10{sup 5} {gamma}/cm{sup 2}s contamination. On a human brain phantom, this beam allows an advantage depth (AD) of 10 cm, an advantage depth dose rate (ADDR) of 78 cGy/min and an advantage ratio (AR) of 3.2. The p-Sc beam offers 5.9 {times} 10{sup 7} n/cm{sup 2}s and a dose performance of AD = 8 cm and AR = 3.5, suggesting the potential of near-threshold (p,n) reactions such as the p-Li reaction at E{sub p} = 1.92 MeV. A thermal radiography beam could also be obtained from ACWL.

  14. Neutron radiography of a root growing in soil with vanadium

    NASA Astrophysics Data System (ADS)

    Furukawa, J.; Nakanishi, T. M.; Matsubayashi, M.

    1999-11-01

    We show how the root activity of water uptake is inhibited by the presence of vanadium in soil. A soybean seedling was grown in an aluminum container where water absorbing polymer with V was imbedded with soil. The sample was irradiated with thermal neutrons to get the radiograph on an X-ray film. Through image analysis, the water uptake manner both around the main root and side root was studied. When the water uptake along the main root was measured, the effect of V was observed as early as two days whilst no observable change in morphological development of main root as well as side root was detected. Since the microscopic research of water movement around the root is not well studied, this result is expected to be applied further, especially in constructing water absorbing model of the root.

  15. Visualization of Bubble Behavior in a Packed Bed of Spheres Using Neutron Radiography

    NASA Astrophysics Data System (ADS)

    Ito, Daisuke; Saito, Yasushi

    The present paper describes gas-liquid two-phase flow measurements in a packed bed of spheres using neutron radiography. Porous debris formed during a severe accident of a nuclear reactor should be cooled by a coolant and the cooling characteristics are dominated by two-phase flow behavior in the debris bed at the initial stage of the accident. Therefore, experimental database of the two-phase flow in the porous media has been required for safety analysis of the reactor. However, it is difficult to observe the flow structure, for example, void fraction distribution in such complex flow channel. In this study, the local void fraction in a packed bed which simulates the debris bed was measured by high frame-rate neutron radiography. Experiments were performed in air-water two-phase flow in a vertical pipe. Alumina spheres with 5 mm in diameter were packed randomly in the pipe. The bubble behavior between the spheres was investigated by using the void fraction distributions estimated from the neutron radiographs. Although it was difficult to track the small bubbles in the packed bed, the move of the large bubble could be found roughly from the distribution. In addition, the fluctuation of the void fraction was compared with that of the pressure drop in the test section. From these results, the possibility of the gas velocity estimation was shown.

  16. Quantification of Water Content Across a Cement-clay Interface Using High Resolution Neutron Radiography

    NASA Astrophysics Data System (ADS)

    Shafizadeh, A.; Gimmi, T.; Van Loon, L.; Kaestner, A.; Lehmann, E.; Maeder, U. K.; Churakov, S. V.

    In many designs for radioactive waste repositories, cement and clay will come into direct contact. The geochemical contrast between cement and clay will lead to mass fluxes across the interface, which consequently results in alteration of structural and transport properties of both materials that may affect the performance of the multi-barrier system. We present an experimental approach to study cement-clay interactions with a cell to accommodate small samples of cement and clay. The cell design allows both in situ measurement of water content across the sample using neutron radiography and measurement of transport parameters using through-diffusion tracer experiments. The aim of the high-resolution neutron radiography experiments was to monitor changes in water content (porosity) and their spatial extent. Neutron radiographs of several evolving cement-clay interfaces delivered quantitative data which allow resolving local water contents within the sample domain. In the present work we explored the uncertainties of the derived water contents with regard to various input parameters and with regard to the applied image correction procedures. Temporal variation of measurement conditions created absolute uncertainty of the water content in the order of ±0.1 (m3/m3), which could not be fully accounted for by correction procedures. Smaller relative changes in water content between two images can be derived by specific calibrations to two sample regions with different, invariant water contents.

  17. Hybrid Monte-Carlo method for simulating neutron and photon radiography

    NASA Astrophysics Data System (ADS)

    Wang, Han; Tang, Vincent

    2013-11-01

    We present a Hybrid Monte-Carlo method (HMCM) for simulating neutron and photon radiographs. HMCM utilizes the combination of a Monte-Carlo particle simulation for calculating incident film radiation and a statistical post-processing routine to simulate film noise. Since the method relies on MCNP for transport calculations, it is easily generalized to most non-destructive evaluation (NDE) simulations. We verify the method's accuracy through ASTM International's E592-99 publication, Standard Guide to Obtainable Equivalent Penetrameter Sensitivity for Radiography of Steel Plates [1]. Potential uses for the method include characterizing alternative radiological sources and simulating NDE radiographs.

  18. Upgrading the Neutron Radiography Facility in South Africa (SANRAD): Concrete Shielding Design Characteristics

    NASA Astrophysics Data System (ADS)

    de Beer, F. C.; Radebe, M. J.; Schillinger, B.; Nshimirimana, R.; Ramushu, M. A.; Modise, T.

    A common denominator of all neutron radiography (NRAD) facilities worldwide is that the perimeter of the experimental chamber of the facility is a radiation shielding structure which,in some cases, also includes flight tube and filter chamber structures. These chambers are normally both located on the beam port floor outside the biological shielding of the neutron source. The main function of the NRAD-shielding structure isto maintain a radiological safe working environment in the entire beam hall according to standards set by individual national radiological safety regulations. In addition, the shielding's integrity and capability should not allow, during NRAD operations, an increase in radiation levels in the beam port hall and thus negatively affectadjacent scientific facilities (e.g. neutron diffraction facilities).As a bonus, the shielding for the NRAD facility should also prevent radiation scattering towards the detector plane and doing so, thus increase thecapability of obtaining better quantitative results. This paper addresses Monte Carlo neutron-particletransport simulations to theoretically optimize the shielding capabilities of the biological barrierfor the SANRAD facility at the SAFARI-1 nuclear research reactor in South Africa. The experimental process to develop the shielding, based on the principles of the ANTARES facility, is described. After casting, the homogeneity distribution of these concrete mix materials is found to be near perfect and first order experimental radiation shielding characteristicsthrough film badge (TLD) exposure show acceptable values and trends in neutron- and gamma-ray attenuation.

  19. Fast-neutron/gamma-ray radiography scanner for the detection of contraband in air cargo containers

    NASA Astrophysics Data System (ADS)

    Eberhardt, J.; Liu, Y.; Rainey, S.; Roach, G.; Sowerby, B.; Stevens, R.; Tickner, J.

    2006-05-01

    There is a worldwide need for efficient inspection of cargo containers at airports, seaports and road border crossings. The main objectives are the detection of contraband such as illicit drugs, explosives and weapons. Due to the large volume of cargo passing through Australia's airports every day, it is critical that any scanning system should be capable of working on unpacked or consolidated cargo, taking at most 1-2 minutes per container. CSIRO has developed a fast-neutron/gamma-ray radiography (FNGR) method for the rapid screening of air freight. By combining radiographs obtained using 14 MeV neutrons and 60Co gamma-rays, high resolution images showing both density and material composition are obtained. A near full-scale prototype scanner has been successfully tested in the laboratory. With the support of the Australian Customs Service, a full-scale scanner has recently been installed and commissioned at Brisbane International Airport.

  20. Neutron radiography of a static density gradient of 3He gas at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Wichmann, G.; Antognini, A.; Eggenberger, A.; Kirch, K.; Piegsa, F. M.; Soler, U.; Stahn, J.; Taqqu, D.

    2016-04-01

    We demonstrate a stationary helium gas density gradient which is needed for a proposed novel low-energy μ+ beam line. In a closed system with constant pressure the corresponding density gradient is only a function of the temperature. In a neutron radiography experiment two gas cells with different geometries were filled with 3He gas at constant pressures of about 10 mbar. Temperatures in the range from 6 K to 40 K were applied and density distributions with a maximum to minimum density ratio of larger than 3 were realized. The distribution was investigated employing the strongly neutron absorbing isotope 3He. A simple one-dimensional approach derived from Fourier's law describes the obtained gas density with a deviation < 2 %.

  1. Development of techniques for the neutron radiography of CF188 flight control surfaces

    NASA Astrophysics Data System (ADS)

    Bennett, L. G. I.; Bickerton, M. L.; Lewis, W. J.

    1999-11-01

    A neutron radiography facility previously installed on the SLOWPOKE-2 research reactor at the Royal Military College of Canada has been used to gain experience with the inspection of flight control surfaces from the CF188 fighter aircraft. Through operating the facility in a temporary manner in terms of handling and shielding for this application, over 500 radiographs were made for more than three aircraft. Moisture and corrosion were discovered in the honeycomb structure and hydration was found in the composite and adhesive layers. The experience also indicated a need to characterize the neutron beam, to decrease the exposure time by finding a faster film and conversion screen combination, and to develop a gauge to evaluate the moisture trapped in the honeycomb cells of flight control surfaces.

  2. Non-destructive investigation of a time capsule using neutron radiography and X-ray fluorescence

    NASA Astrophysics Data System (ADS)

    MacDonald, B. L.; Vanderstelt, J.; O'Meara, J.; McNeill, F. E.

    2016-01-01

    Non-destructive analytical techniques are becoming increasingly important for the study of objects of cultural heritage interest. This study applied two techniques: X-ray fluorescence and neutron radiography, for the investigation of a capped, tubular metal object recovered from an urban construction site in Gore Park, Hamilton, Canada. The site is an urban park containing a World War I commemorative monument that underwent renovation and relocation. Historical documentation suggested that the object buried underneath the monument was a time capsule containing a paper document listing the names of 1800 Canadians who died during WWI. The purpose of this study was to assess the condition of the object, and to verify if it was what the historical records purported. XRF analysis was used to characterize the elemental composition of the metal artifact, while neutron radiography revealed that its contents were congruent with historical records and remained intact after being interred for 91 years. Results of this study demonstrate the value of non-destructive techniques for the analysis and preservation of cultural heritage.

  3. Distribution of root exudates and mucilage in the rhizosphere: combining 14C imaging with neutron radiography

    NASA Astrophysics Data System (ADS)

    Holz, Maire; Carminati, Andrea; Kuzyakov, Yakov

    2015-04-01

    Water and nutrients will be the major factors limiting food production in future. Plant roots employ various mechanisms to increase the access to limited soil resources. Low molecular weight organic substances released by roots into the rhizosphere increase nutrient availability by interactions with microorganisms, while mucilage improves water availability under low moisture conditions. Though composition and quality of these substances have intensively been investigated, studies on the spatial distribution and quantification of exudates in soil are scarce. Our aim was to quantify and visualize root exudates and mucilage distribution around growing roots using neutron radiography and 14C imaging depending on drought stress. Plants were grown in rhizotrons well suited for neutron radiography and 14C imaging. Plants were exposed to various soil water contents experiencing different levels of drought stress. The water content in the rhizosphere was imaged during several drying/wetting cycles by neutron radiography. The radiographs taken a few hours after irrigation showed a wet region around the root tips showing the allocation and distribution of mucilage. The increased water content in the rhizosphere of the young root segments was related to mucilage concentrations by parameterization described in Kroener et al. (2014). In parallel 14C imaging of root after 14CO2 labeling of shoots (Pausch and Kuzyakov 2011) showed distribution of rhizodeposits including mucilage. Three days after setting the water content, plants were labeled in 14CO2 atmosphere. Two days later 14C distribution in soil was imaged by placing a phosphor-imaging plate on the rhizobox. To quantify rhizodeposition, 14C activity on the image was related to the absolute 14C activity in the soil and root after destructive sampling. By comparing the amounts of mucilage (neutron radiography) with the amount of total root derived C (14C imaging), we were able to differentiate between mucilage and root

  4. The Development of Neutron Radiography and Tomography on a SLOWPOKE-2 Reactor

    NASA Astrophysics Data System (ADS)

    Bennett, L. G. I.; Lewis, W. J.; Hungler, P. C.

    Development of neutron radiography at the Royal Military College of Canada (RMC) started by trying to interest the Royal Canadian Air Force (RCAF) in this new non-destructive testing (NDT) technique. A Californium-252 based device was ordered and then installed at RMC for development of applicable techniques for aircraft by the first author. A second and transportable device was then designed, modified and used in trials at RCAF Bases and other locations for one year. This activity was the only foreign loan of the U.S. Californium Loan Program. Around this time, SLOWPOKE-2 reactors were being installed at four Canadian universities, while a new science and engineering building was being built at RMC. A reactor pool was incorporated and efforts to procure a reactor succeeded a decade later with a SLOWPOKE-2 reactor being installed at RMC. The only modification by the vendor for RMC was a thermal column replacing an irradiation site inside the reactor container for a later installation of a neutron beam tube (NBT). Development of a working NBT took several years, starting with the second author. A demonstration of the actual worth of neutron radiography took place with a CF-18 Hornet aircraft being neutron and X-radiographed at McClellan Air Force Base, Sacramento, CA. This inspection was followed by one of the rudders that had indications of water ingress being radiographed successfully at RMC just after the NBT became functional. The next step was to develop a neutron radioscopy system (NRS), initially employing film and then digital imaging, and is in use today for all flight control surfaces (FCS). With the third author, a technique capable of removing water from affected FCS was developed at RMC. Heating equipment and a vacuum system were utilized to carefully remove the water. This technique was proven using a sequence of near real time neutron images obtained during the drying process. The results of the drying process were correlated with a relative humidity

  5. Multiple pixel-scale soil water retention curves quantified by neutron radiography

    NASA Astrophysics Data System (ADS)

    Kang, M.; Perfect, E.; Cheng, C. L.; Bilheux, H. Z.; Lee, J.; Horita, J.; Warren, J. M.

    2014-03-01

    The soil water retention function is needed for modeling multiphase flow in porous media. Traditional techniques for measuring the soil water retention function, such as the hanging water column or pressure cell methods, yield average water retention data which have to be modeled using inverse procedures to extract relevant point parameters. In this study, we have developed a technique for directly measuring multiple point (pixel-scale) water retention curves for a repacked sand material using 2-D neutron radiography. Neutron radiographic images were obtained under quasi-equilibrium conditions at nine imposed basal matric potentials during monotonic drying of Flint sand at the High Flux Isotope Reactor (HFIR) Cold Guide (CG) 1D beamline at Oak Ridge National Laboratory. All of the images were normalized with respect to an image of the oven dry sand column. Volumetric water contents were computed on a pixel by pixel basis using an empirical calibration equation after taking into account beam hardening and geometric corrections. Corresponding matric potentials were calculated from the imposed basal matric potential and pixel elevations. Volumetric water content and matric potential data pairs corresponding to 120 selected pixels were used to construct 120 point water retention curves. Each curve was fitted to the Brooks and Corey equation using segmented non-linear regression in SAS. A 98.5% convergence rate was achieved resulting in 115 estimates of the four Brooks and Corey parameters. A single Brooks and Corey point water retention function was constructed for Flint sand using the median values of these parameter estimates. This curve corresponded closely with the point Brooks and Corey function inversely extracted from the average water retention data using TrueCell. Forward numerical simulations performed using HYDRUS 1-D showed that the cumulative outflows predicted using the point Brooks and Corey functions from both the direct (neutron radiography) and

  6. Fresh-Core Reload of the Neutron Radiography (NRAD) Reactor with Uranium(20)-Erbium-Zirconium-Hydride Fuel

    SciTech Connect

    John D. Bess; Thomas L. Maddock; Margaret A. Marshall; Leland M. Montierth

    2014-03-01

    The neutron radiography (NRAD) reactor is a 250 kW TRIGA® (Training, Research, Isotopes, General Atomics) Mark II , tank-type research reactor currently located in the basement, below the main hot cell, of the Hot Fuel Examination Facility (HFEF) at the Idaho National Laboratory (INL). It is equipped with two beam tubes with separate radiography stations for the performance of neutron radiography irradiation on small test components. The 60-fuel-element operational core configuration of the NRAD LEU TRIGA reactor has been evaluated as an acceptable benchmark experiment. The initial critical configuration developed during the fuel loading process, which contains only 56 fuel elements, has not been evaluated as it is very similar to the evaluated core configuration. The benchmark eigenvalue is 1.0012 ± 0.0029. Calculated eigenvalues differ significantly (~±1%) from the benchmark eigenvalue and have demonstrated sensitivity to the thermal scattering treatment of hydrogen in the U-Er-Zr-H fuel.

  7. Fresh-Core Reload of the Neutron Radiography (NRAD) Reactor with Uranium(20)-Erbium-Zirconium-Hydride Fuel

    SciTech Connect

    John D. Bess; Thomas L. Maddock; Margaret A. Marshall; Leland M. Montierth

    2013-03-01

    The neutron radiography (NRAD) reactor is a 250 kW TRIGA® (Training, Research, Isotopes, General Atomics) Mark II , tank-type research reactor currently located in the basement, below the main hot cell, of the Hot Fuel Examination Facility (HFEF) at the Idaho National Laboratory (INL). It is equipped with two beam tubes with separate radiography stations for the performance of neutron radiography irradiation on small test components. The initial critical configuration developed during the fuel loading process, which contains only 56 fuel elements, has been evaluated as an acceptable benchmark experiment. The 60-fuel-element operational core configuration of the NRAD LEU TRIGA reactor has also been evaluated as an acceptable benchmark experiment. Calculated eigenvalues differ significantly (~±1%) from the benchmark eigenvalue and have demonstrated sensitivity to the thermal scattering treatment of hydrogen in the U-Er-Zr-H fuel.

  8. Fresh-Core Reload of the Neutron Radiography (NRAD) Reactor with Uranium(20)-Erbium-Zirconium-Hydride Fuel

    SciTech Connect

    John D. Bess; Thomas L. Maddock; Margaret A. Marshall; Leland M. Montierth

    2011-03-01

    The neutron radiography (NRAD) reactor is a 250 kW TRIGA® (Training, Research, Isotopes, General Atomics) Mark II , tank-type research reactor currently located in the basement, below the main hot cell, of the Hot Fuel Examination Facility (HFEF) at the Idaho National Laboratory (INL). It is equipped with two beam tubes with separate radiography stations for the performance of neutron radiography irradiation on small test components. The 60-fuel-element operational core configuration of the NRAD LEU TRIGA reactor has been evaluated as an acceptable benchmark experiment. The initial critical configuration developed during the fuel loading process, which contains only 56 fuel elements, has not been evaluated as it is very similar to the evaluated core configuration. The benchmark eigenvalue is 1.0012 ± 0.0029. Calculated eigenvalues differ significantly (~±1%) from the benchmark eigenvalue and have demonstrated sensitivity to the thermal scattering treatment of hydrogen in the U-Er-Zr-H fuel.

  9. Time-resolved Fast Neutron Radiography of Air-water Two-phase Flows

    NASA Astrophysics Data System (ADS)

    Zboray, Robert; Dangendorf, Volker; Mor, Ilan; Tittelmeier, Kai; Bromberger, Benjamin; Prasser, Horst-Michael

    Neutron imaging, in general, is a useful technique for visualizing low-Z materials (such as water or plastics) obscured by high-Z materials. However, when significant amounts of both materials are present and full-bodied samples have to be examined, cold and thermal neutrons rapidly reach their applicability limit as the samples become opaque. In such cases one can benefit from the high penetrating power of fast neutrons. In this work we demonstrate the feasibility of time-resolved, fast neutron radiography of generic air-water two-phase flows in a 1.5 cm thick flow channel with Aluminum walls and rectangular cross section. The experiments have been carried out at the high-intensity, white-beam facility of the Physikalisch-Technische Bundesanstalt, Germany. Exposure times down to 3.33 ms have been achieved at reasonable image quality and acceptable motion artifacts. Different two-phase flow regimes such as bubbly slug and churn flows have been examined. Two-phase flow parameters like the volumetric gas fraction, bubble size and bubble velocities have been measured.

  10. The New Cold Neutron Radiography Facility (CNRF) at the Mianyang Research Reactor of the China Academy of Engineering Physics

    NASA Astrophysics Data System (ADS)

    Bin, Tang; Heyong, Huo; Ke, Tang; Rogers, John; Haste, Martin; Christodoulou, Marios

    A new cold neutron radiography beamline has been designed and constructed for the Mianyang reactor at the Institute of Nuclear Physics and Chemistry of the China Academy of Engineering Physics. This paper describes the components of the system and demonstrates the achievable image resolution.

  11. Radiography apparatus using gamma rays emitted by water activated by fusion neutrons

    DOEpatents

    Smith, Donald L.; Ikeda, Yujiro; Uno, Yoshitomo

    1996-01-01

    Radiography apparatus includes an arrangement for circulating pure water continuously between a location adjacent a source of energetic neutrons, such as a tritium target irradiated by a deuteron beam, and a remote location where radiographic analysis is conducted. Oxygen in the pure water is activated via the .sup.16 O(n,p).sup.16 N reaction using .sup.14 -MeV neutrons produced at the neutron source via the .sup.3 H(d,n).sup.4 He reaction. Essentially monoenergetic gamma rays at 6.129 (predominantly) and 7.115 MeV are produced by the 7.13-second .sup.16 N decay for use in radiographic analysis. The gamma rays have substantial penetrating power and are useful in determining the thickness of materials and elemental compositions, particularly for metals and high-atomic number materials. The characteristic decay half life of 7.13 seconds of the activated oxygen is sufficient to permit gamma ray generation at a remote location where the activated water is transported, while not presenting a chemical or radioactivity hazard because the radioactivity falls to negligible levels after 1-2 minutes.

  12. Radiography apparatus using gamma rays emitted by water activated by fusion neutrons

    DOEpatents

    Smith, D.L.; Ikeda, Yujiro; Uno, Yoshitomo

    1996-11-05

    Radiography apparatus includes an arrangement for circulating pure water continuously between a location adjacent a source of energetic neutrons, such as a tritium target irradiated by a deuteron beam, and a remote location where radiographic analysis is conducted. Oxygen in the pure water is activated via the {sup 16}O(n,p){sup 16}N reaction using {sup 14}N-MeV neutrons produced at the neutron source via the {sup 3}H(d,n){sup 4}He reaction. Essentially monoenergetic gamma rays at 6.129 (predominantly) and 7.115 MeV are produced by the 7.13-second {sup 16}N decay for use in radiographic analysis. The gamma rays have substantial penetrating power and are useful in determining the thickness of materials and elemental compositions, particularly for metals and high-atomic number materials. The characteristic decay half life of 7.13 seconds of the activated oxygen is sufficient to permit gamma ray generation at a remote location where the activated water is transported, while not presenting a chemical or radioactivity hazard because the radioactivity falls to negligible levels after 1--2 minutes. 15 figs.

  13. Development and test of high efficiency WSF fluorescent converter for fast neutron radiography

    NASA Astrophysics Data System (ADS)

    Guo, Li'an; Zhang, Guohui; Zou, Yubin; Tang, Guoyou; Guo, Zhiyu; Xu, Jianguo; Guo, Jimei

    2009-01-01

    A fluorescent converter used for fast neutron radiography (FNR) was developed by using the Chinese made wavelength-shifting fibers (WSFs) and mixture of hydrogen rich epoxy resin with ZnS(Ag). The performance of the WSF converter compared with that of the epoxy resin converter (ER converter) was tested at the 4.5 MV Van de Graaff accelerator of Peking University as fast neutron source. Quasi-monoenergetic and continuous energy fast neutrons were derived through the D(d,n) 3He and 9Be(d,n) 10B reactions by using a deuterium gas target and a thick beryllium target, respectively. Experiments show that the luminosity of the WSF converter is 6-7.8 times as high as that of the ER converter we used before, and the statistics of the image is much better. The relationship between the luminosity and the thickness of the WSF converter was obtained from which the saturation thickness is about 25 mm. The smallest defect that can be detected by the WSF converter is about 2 mm.

  14. The new neutron radiography/tomography/imaging station DINGO at OPAL

    NASA Astrophysics Data System (ADS)

    Garbe, U.; Randall, T.; Hughes, C.

    2011-09-01

    A new neutron imaging instrument will be built to support the area of neutron imaging research (neutron radiography/tomography) at ANSTO. The instrument will be designed for an international user community and for routine quality control for defence, industrial, mining, space and aircraft applications. It will also be a useful tool for assessing oil and water flow in sedimentary rock reservoirs (like the North West Shelf), assessing water damage in aircraft components, and the study of hydrogen distribution and cracking in steel. The instrument is planned to be completed by the end of June 2013 and is currently in the design stage. The usable neutron flux is mainly determined by the neutron source, but it also depends on the instrument position and the resolution. The designated instrument position for DINGO is the beam port HB-2 in the reactor hall. The estimated flux for an L/ D of approximately 250 at HB-2 is calculated by Mcstas simulation in a range of 4.75×10 7 n/cm 2 s, which is in the same range of other facilities like ANSTARES (FRM II; Schillinger et al., 2004 [1]) or BT2 (NIST; Hussey et al., 2005 [2]). A special feature of DINGO is the in-pile collimator place in front of the main shutter at HB-2. The collimator offers two pinholes with a possible L/ D of 250 and 1000. A secondary collimator will separate the two beams and block one. The whole instrument will operate in two different positions, one for high resolution and the other for high speed.

  15. Internal flow measurements of the SSME fuel preburner injector element using real time neutron radiography

    NASA Technical Reports Server (NTRS)

    Lindsay, John T.; Elam, Sandy; Koblish, Ted; Lee, Phil; Mcauliffe, Dave

    1990-01-01

    Due to observations of unsteady flow in the Space Shuttle Main Engine fuel preburner injector element, several flow studies have been performed. Real time neutron radiography tests were recently completed. This technique provided real time images of MiL-c-7024 and Freon-22 flow through an aluminum liquid oxygen post model at three back pressures (0, 150, and 545 psig) and pressure drops up to 1000 psid. Separated flow appeared only while operating at back pressures of 0 and 150 psig. The behavior of separated flow was similar to that observed for water in a 3x acrylic model of the LOX post. On the average, separated flow appeared to reattach near the exit of the post when the ratio of pressure drop to supply pressure was about 0.75.

  16. Visualization of Water Accumulation Process in Polymer Electrolyte Fuel Cell Using Neutron Radiography

    NASA Astrophysics Data System (ADS)

    Murakawa, Hideki; Sugimoto, Katsumi; Kitamura, Nobuki; Sawada, Masataka; Asano, Hitoshi; Takenaka, Nobuyuki; Saito, Yasushi

    In order to clarify the water-accumulation phenomena in an operating polymer electrolyte fuel cell (PEFC), the water distribution in a small fuel cell was measured in the through-plane direction by using neutron radiography. The fuel cell had nine parallel channels for classifying the water-accumulation process in the gas diffusion layer (GDL) under the lands and channels. The experimental results were compared with numerical results. The water accumulation in the GDL under the lands was larger than that under the channels during the period of early PEFC operation. The difference of the water accumulation in the GDL under the land and channel was related to the water vapor. Because of the land, the vapor fraction in the GDL under the land was also higher than that under the channel. As a result, condensation was easy to occur in the GDL under the land.

  17. Visualization of Hydrazine Decomposition in a Catalyst Bed by Using Neutron Radiography

    NASA Astrophysics Data System (ADS)

    Ito, Daisuke; Saito, Yasushi; Kagawa, Hideshi; Nagata, Taiichi; Masuoka, Tadashi; Ikeda, Hirohide; Kawabata, Yuji

    Most mono-propellant thruster technologies were developed in the 1960s. Those basic principles and fundamental mechanisms, such as the catalyst and propellant, are still in use without major technical innovation. However, much remains to be clarified in terms of the mechanisms and quantitative limitations of the hydrazine decomposition phenomena inside the mono-propellant thruster. Therefore, in order to enhance the reliability of the propulsion systems, it should be promising to perform the direct observation of the physical and chemical phenomena occurring in the catalyst bed of the mono-propellant thruster. For that purpose, a visualization of the mono-propellant thruster was performed by using high frame-rate neutron radiography technique. The experiments were conducted at the Kyoto University Research Reactor and the hydrazine injection behavior to the catalyst bed was visualized clearly.

  18. Visualization of water penetration in cementitious materials with superabsorbent polymers by means of neutron radiography

    SciTech Connect

    Snoeck, D.; Steuperaert, S.; Van Tittelboom, K.; Dubruel, P.; De Belie, N.

    2012-08-15

    Concrete cracks due to its low tensile strength. As both harmful gases and fluids may enter the concrete by migrating into cracks, the durability is endangered. The service life decreases, repair costs rise and buildings could structurally decline. In the current research, crack sealing is enhanced by the use of superabsorbent polymers (SAP). When cracking occurs, SAP particles are exposed to the humid environment and swell, sealing the crack. By means of neutron radiography, the moisture distribution is studied during capillary absorption and water permeability tests. Capillary absorption in a crack and water permeability through a crack are reduced in specimens containing SAP particles. SAP particles are able to seal the crack, thus allowing a recovery of the water-tightness of the structure. The total uptake of potentially harmful substances hereby lowers, leading to an enhanced long-term durability and lower maintenance costs.

  19. In-situ investigation water distribution in polymer electrolyte fuel cell using neutron radiography

    SciTech Connect

    Mishler, Jeffrey H; Mukundan, Rangachary; Borup, Rodney L; Wang, Eunkyoung Y; Jacobson, David L

    2010-01-01

    This paper investigates the water content within operating polymer electrolyte membrane (PEM) fuel cells using neutron radiography. We consider fuel cells with various PTFE loadings in their gas diffusion layers (GDL) and microporous layers (MPL), and examine the impacts of MPL/GDL properties on the liquid water behavior and fuel cell performance. Fuel cells are tested at both dry and fully hydrated conditions with different serpentine flow fields. Water contents in the projected areas of channel and land regions are probed. The fuel cell may be subject to more flooding at low current-density operation. Both MPL and GDL wetting properties have substantial impacts on the water content in fuel cell. Cell performance also varies on different scenarios of the MPL/GDL wetting properties. A quad-serpentine channel flow field exhibits higher water content without remarkable change in performance at low current densities. Liquid water profile along the channel is presented and on-set clearly indicated.

  20. Monte Carlo simulation of a fast neutron counter for use in neutron radiography

    NASA Astrophysics Data System (ADS)

    Meshkian, Mohsen

    2015-07-01

    In this paper, a Geant4 Monte Carlo simulation is employed to evaluate the response of a neutron detection sheet composed of a layer of plexiglas as neutron-to-proton converter and a layer of silver-activated zinc sulphide (ZnS(Ag)) as phosphor. ZnS(Ag) scintillators have the largest light output among the scintillators for fast-neutron spectroscopy. The simulations are performed for 252Cf neutrons which after impinging the converter layer of the detector produce recoil protons. Recoil protons that interact with the scintillator deposit energy which is converted to scintillation light. In this report, different aspects of the ZnS(Ag)-detector, such as the effective converter and scintillator thickness, as well as the detector response are investigated.

  1. Neutron radiography to visualize and quantify water flow in soil and plants

    NASA Astrophysics Data System (ADS)

    Zarebanadkouki, M.; Moradi, A. B.; Vogel, H.; Kim, Y.; Carminati, A.

    2011-12-01

    Water uptake by plants is controlled by the complex interactions between soil and roots. Although water transport from soil towards roots is fundamental in both soil and plant sciences, there are only a few studies measuring dynamics and locations of water uptake along root systems. The lack of experimental data is largely due to the technical problem of measuring water fluxes in soil and roots in living plants growing in soils. This study aims at developing a non-destructive method to quantitatively monitor water flow in the rhizosphere and into roots of different age and location along the root system. We used neutron radiography to trace deuterium oxide (D2O) distribution in soil and into the roots. D2O has similar physical and chemical properties to normal water (H2O) but it has a much lower neutron attenuation coefficient compared to normal water, which makes it well visible in neutron radiography. We grew lupins in 30 x 15 x 1 cm containers, which were filled with a sandy soil. The soil in the containers was divided into compartments by layers of coarse sand acting as capillary barriers to hydraulically disconnect the compartments. 16 days after planting, we locally injected D2O in selected compartments. We used time-series neutron radiography to image the D2O redistribution after injection. The experiments were repeated at different locations of the root system, during day, when plant transpiration was at its maximum, and at night, when transpiration decreased to its minimum. The results showed significant decrease of neutron attenuation inside the roots after D2O injection . This was explained by D2O entering the roots. D2O concentration inside the roots increased exponentially over time. The half time of D2O increment (the half time of what?) was approximately 4 minutes during day, and 8 minutes at night. During day, we observed that D2O moved several centimeters along the roots crossing the capillary barriers. This quick flow along roots was negligible

  2. Morphology and scaling characteristics of propagating drying fronts in porous media delineated by neutron radiography

    NASA Astrophysics Data System (ADS)

    Shokri, N.; Sahimi, M.; Or, D.

    2011-12-01

    Improved understanding of fluid interface displacement in porous media is of considerable interest for various applications ranging from enhanced oil recovery to modeling of soil water flow and infiltration. The formation of fluid interfaces, their roughening and dynamics in porous media are influenced by the properties of the fluids and the transport properties of porous media, among other factors. We analyzed wettability effects on the dynamics and morphology of a primary drying front receding into a porous medium during stage 1 evaporation (i.e., liquid flow from drying front to evaporation plane at the surface). Neutron radiography images obtained at 300 sec intervals and at spatial resolution of 0.1 mm enabled quantifying drying front roughening and fractal and scaling characteristics in Hele-Shaw cells packed with hydrophilic and hydrophobic sand (particle size 0.3-0.9 mm). Results indicate that wettability had a minor impact on the fractal characteristics of a drying front; however the configuration, velocity and pinning-depinning of the receding front were significantly affected by wettability. The roughness exponent of the drying front was estimated by averaging over all neutron radiography images. We observed no difference in roughness exponent values obtained from fronts propagating in hydrophilic and hydrophobic sand, suggesting that wettability is negligible relative to other driving forces. The experimentally-determined roughness exponent was higher than predicted by theory which may indicate that drying front roughening is dominated by quenched disorder (generated by random packing of the sand grains). We have also calculated the height-height front correlation function. These results show fronts propagating in hydrophilic and hydrophobic sands may not be characterized by a single Hurst exponent, thus exhibiting multiaffine properties. These were further investigated by calculating different orders of the correlation function. Our results provide new

  3. Documented Safety Analysis Addendum for the Neutron Radiography Reactor Facility Core Conversion

    SciTech Connect

    Boyd D. Christensen

    2009-05-01

    The Neutron Radiography Reactor Facility (NRAD) is a Training, Research, Isotope Production, General Atomics (TRIGA) reactor which was installed in the Idaho National Laboratory (INL) Hot Fuels Examination Facility (HFEF) at the Materials and Fuels Complex (MFC) in the mid 1970s. The facility provides researchers the capability to examine both irradiated and non-irradiated materials in support of reactor fuel and components programs through non-destructive neutron radiography examination. The facility has been used in the past as one facet of a suite of reactor fuels and component examination facilities available to researchers at the INL and throughout the DOE complex. The facility has also served various commercial research activities in addition to the DOE research and development support. The reactor was initially constructed using Fuel Lifetime Improvement Program (FLIP)- type highly enriched uranium (HEU) fuel obtained from the dismantled Puerto Rico Nuclear Center (PRNC) reactor. In accordance with international non-proliferation agreements, the NRAD core will be converted to a low enriched uranium (LEU) fuel and will continue to utilize the PRNC control rods, control rod drives, startup source, and instrument console as was previously used with the HEU core. The existing NRAD Safety Analysis Report (SAR) was created and maintained in the preferred format of the day, combining sections of both DOE-STD-3009 and Nuclear Regulatory Commission Regulatory Guide 1.70. An addendum was developed to cover the refueling and reactor operation with the LEU core. This addendum follows the existing SAR format combining required formats from both the DOE and NRC. This paper discusses the project to successfully write a compliant and approved addendum to the existing safety basis documents.

  4. Hysteresis of Soil Point Water Retention Functions Determined by Neutron Radiography

    NASA Astrophysics Data System (ADS)

    Perfect, E.; Kang, M.; Bilheux, H.; Willis, K. J.; Horita, J.; Warren, J.; Cheng, C.

    2010-12-01

    Soil point water retention functions are needed for modeling flow and transport in partially-saturated porous media. Such functions are usually determined by inverse modeling of average water retention data measured experimentally on columns of finite length. However, the resulting functions are subject to the appropriateness of the chosen model, as well as the initial and boundary condition assumptions employed. Soil point water retention functions are rarely measured directly and when they are the focus is invariably on the main drying branch. Previous direct measurement methods include time domain reflectometry and gamma beam attenuation. Here we report direct measurements of the main wetting and drying branches of the point water retention function using neutron radiography. The measurements were performed on a coarse sand (Flint #13) packed into 2.6 cm diameter x 4 cm long aluminum cylinders at the NIST BT-2 (50 μm resolution) and ORNL-HFIR CG1D (70 μm resolution) imaging beamlines. The sand columns were saturated with water and then drained and rewetted under quasi-equilibrium conditions using a hanging water column setup. 2048 x 2048 pixel images of the transmitted flux of neutrons through the column were acquired at each imposed suction (~10-15 suction values per experiment). Volumetric water contents were calculated on a pixel by pixel basis using Beer-Lambert’s law in conjunction with beam hardening and geometric corrections. The pixel rows were averaged and combined with information on the known distribution of suctions within the column to give 2048 point drying and wetting functions for each experiment. The point functions exhibited pronounced hysteresis and varied with column height, possibly due to differences in porosity caused by the packing procedure employed. Predicted point functions, extracted from the hanging water column volumetric data using the TrueCell inverse modeling procedure, showed very good agreement with the range of point

  5. Manufacturing techniques studies of ceramics by neutron and γ-ray radiography

    SciTech Connect

    Latini, R. M.; Bellido, A. V. B.; Souza, M. I. S.; Almeida, G. L.

    2014-11-11

    In this study, the aim was to evaluate capabilities and constraints of radiographic imagery using thermal neutrons and gamma-rays as tools to identify the type of technique employed in ceramics manufacturing especially that used in prehistoric Brazilian pottery from Acre state. For this purpose, radiographic images of test objects made with clay of this region using both techniques - palette and rollers - have been acquired with a system comprised of a source of gamma-rays or thermal neutrons and a corresponding X-ray or neutron-sensitive Imaging Plate as detector. For the neutrongraphy samples were exposed to a thermal neutron flux of order of 10{sup 5}n.cm{sup −2}.s{sup −1} for 3 minutes at main port of Argonauta research reactor of the Instituto de Engenharia Nuclear - IEN/CNEN. The radiographic images using γ-rays from {sup 165}Dy (95 keV) and {sup 198}Au (412 keV) both produced at this reactor, have been acquired under an exposure time of a couple of hours. After acquisition, images have undergone a treatment to improve their quality through enhancement of their contrast, a procedure involving corrections of the beam divergence, sample shape and averaging of the attenuation map profile. Preliminary results show that difference between manufacturing techniques is better identified by radiography using low energy γ-rays from {sup 165}Dy rather than neutrongraphy or γ-rays from {sup 198}Au. Nevertheless, disregarding the kind of employed radiation, it should be stressed that feasibility to apply the technique is tightly tied to homogeneity of the clay itself and tempers due to their different attenuation.

  6. Manufacturing techniques studies of ceramics by neutron and γ-ray radiography

    NASA Astrophysics Data System (ADS)

    Latini, R. M.; Souza, M. I. S.; Almeida, G. L.; Bellido, A. V. B.

    2014-11-01

    In this study, the aim was to evaluate capabilities and constraints of radiographic imagery using thermal neutrons and gamma-rays as tools to identify the type of technique employed in ceramics manufacturing especially that used in prehistoric Brazilian pottery from Acre state. For this purpose, radiographic images of test objects made with clay of this region using both techniques - palette and rollers - have been acquired with a system comprised of a source of gamma-rays or thermal neutrons and a corresponding X-ray or neutron-sensitive Imaging Plate as detector. For the neutrongraphy samples were exposed to a thermal neutron flux of order of 105n.cm-2.s-1 for 3 minutes at main port of Argonauta research reactor of the Instituto de Engenharia Nuclear - IEN/CNEN. The radiographic images using γ-rays from 165Dy (95 keV) and 198Au (412 keV) both produced at this reactor, have been acquired under an exposure time of a couple of hours. After acquisition, images have undergone a treatment to improve their quality through enhancement of their contrast, a procedure involving corrections of the beam divergence, sample shape and averaging of the attenuation map profile. Preliminary results show that difference between manufacturing techniques is better identified by radiography using low energy γ-rays from 165Dy rather than neutrongraphy or γ-rays from 198Au . Nevertheless, disregarding the kind of employed radiation, it should be stressed that feasibility to apply the technique is tightly tied to homogeneity of the clay itself and tempers due to their different attenuation.

  7. Feasibility of using neutron radiography to inspect the Space Shuttle solid rocket booster aft skirt, forward skirt and frustum. Part 1: Summary report

    NASA Technical Reports Server (NTRS)

    Barton, J. P.; Bader, J. W.; Brenizer, J. S.; Hosticka, B.

    1992-01-01

    The space shuttle's solid rocket boosters (SRB) include components made primarily of aluminum that are parachuted back for retrieval from the ocean and refurbished for repeated usage. Nondestructive inspection methods used on these aging parts to reduce the risk of unforeseen problems include x-ray, ultrasonics, and eddy current. Neutron radiography tests on segments of an SRB component show that entrapped moisture and naturally occurring aluminum corrosion can be revealed by neutron radiography even if present in only small amounts. Voids in sealant can also be evaluated. Three alternatives are suggested to follow-up this study: (1) take an SRB component to an existing neutron radiography system; (2) take an existing mobile neutron radiography system to the NASA site; or (3) plan a dedicated system custom designed for NASA applications.

  8. Feasibility of using neutron radiography to inspect the Space Shuttle solid rocket booster aft skirt, forward skirt and frustum. Part 1: Summary report

    NASA Astrophysics Data System (ADS)

    Barton, J. P.; Bader, J. W.; Brenizer, J. S.; Hosticka, B.

    1992-05-01

    The space shuttle's solid rocket boosters (SRB) include components made primarily of aluminum that are parachuted back for retrieval from the ocean and refurbished for repeated usage. Nondestructive inspection methods used on these aging parts to reduce the risk of unforeseen problems include x-ray, ultrasonics, and eddy current. Neutron radiography tests on segments of an SRB component show that entrapped moisture and naturally occurring aluminum corrosion can be revealed by neutron radiography even if present in only small amounts. Voids in sealant can also be evaluated. Three alternatives are suggested to follow-up this study: (1) take an SRB component to an existing neutron radiography system; (2) take an existing mobile neutron radiography system to the NASA site; or (3) plan a dedicated system custom designed for NASA applications.

  9. Evaluation of Neutron Radiography Reactor LEU-Core Start-Up Measurements

    DOE PAGESBeta

    Bess, John D.; Maddock, Thomas L.; Smolinski, Andrew T.; Marshall, Margaret A.

    2014-11-04

    Benchmark models were developed to evaluate the cold-critical start-up measurements performed during the fresh core reload of the Neutron Radiography (NRAD) reactor with Low Enriched Uranium (LEU) fuel. Experiments include criticality, control-rod worth measurements, shutdown margin, and excess reactivity for four core loadings with 56, 60, 62, and 64 fuel elements. The worth of four graphite reflector block assemblies and an empty dry tube used for experiment irradiations were also measured and evaluated for the 60-fuel-element core configuration. Dominant uncertainties in the experimental keff come from uncertainties in the manganese content and impurities in the stainless steel fuel cladding asmore » well as the 236U and erbium poison content in the fuel matrix. Calculations with MCNP5 and ENDF/B-VII.0 neutron nuclear data are approximately 1.4% (9σ) greater than the benchmark model eigenvalues, which is commonly seen in Monte Carlo simulations of other TRIGA reactors. Simulations of the worth measurements are within the 2σ uncertainty for most of the benchmark experiment worth values. The complete benchmark evaluation details are available in the 2014 edition of the International Handbook of Evaluated Reactor Physics Benchmark Experiments.« less

  10. Neutron radiography for the study of water uptake in painting canvases and preparation layers

    NASA Astrophysics Data System (ADS)

    Boon, J. J.; Hendrickx, R.; Eijkel, G.; Cerjak, I.; Kaestner, A.; Ferreira, E. S. B.

    2015-11-01

    Easel paintings on canvas are subjected to alteration mechanisms triggered or accelerated by moisture. For the study of the spatial distribution and kinetics of such interactions, a moisture exposure chamber was designed and built to perform neutron radiography experiments. Multilayered sized and primed canvas samples were prepared for time-resolved experiments in the ICON cold neutron beamline. The first results show that the set-up gives a good contrast and sufficient resolution to visualise the water uptake in the layers of canvas, size and priming. The results allow, for the first time, real-time visualisation of the interaction of water vapour with such layered systems. This offers important new opportunities for relevant, spatially and time-resolved material behaviour studies and opens the way towards numerical modelling of the process. These first results show that cellulose fibres and glue sizing have a much stronger water uptake than the chalk-glue ground. Additionally, it shows that the uptake rate is not uniform throughout the thickness of the sized canvas. With prolonged moisture exposure, a higher amount of water is accumulating at the lower edge of the canvas weave suggesting a decrease in permeability in the sized canvas with increased water content.

  11. Evaluation of Neutron Radiography Reactor LEU-Core Start-Up Measurements

    SciTech Connect

    Bess, John D.; Maddock, Thomas L.; Smolinski, Andrew T.; Marshall, Margaret A.

    2014-11-04

    Benchmark models were developed to evaluate the cold-critical start-up measurements performed during the fresh core reload of the Neutron Radiography (NRAD) reactor with Low Enriched Uranium (LEU) fuel. Experiments include criticality, control-rod worth measurements, shutdown margin, and excess reactivity for four core loadings with 56, 60, 62, and 64 fuel elements. The worth of four graphite reflector block assemblies and an empty dry tube used for experiment irradiations were also measured and evaluated for the 60-fuel-element core configuration. Dominant uncertainties in the experimental keff come from uncertainties in the manganese content and impurities in the stainless steel fuel cladding as well as the 236U and erbium poison content in the fuel matrix. Calculations with MCNP5 and ENDF/B-VII.0 neutron nuclear data are approximately 1.4% (9σ) greater than the benchmark model eigenvalues, which is commonly seen in Monte Carlo simulations of other TRIGA reactors. Simulations of the worth measurements are within the 2σ uncertainty for most of the benchmark experiment worth values. The complete benchmark evaluation details are available in the 2014 edition of the International Handbook of Evaluated Reactor Physics Benchmark Experiments.

  12. Detailed analyses of dynamic and static errors in neutron radiography testing

    SciTech Connect

    Joo, H.; Glickstein, S.S.

    1999-01-01

    Neutron radiography systems are being used for real-time visualization of the dynamic behavior as well as time-averaged measurements of spatial vapor fraction distributions for two phase fluids. The extraction of quantitative data on vapor-liquid flow fields is a significant advance in the methodology of fundamental two-phase flow experimentation. The data in the form of video images are typically recorded on videotape at 30 frames per second. Image analysis of the video pictures is used to extract time-dependent or time-averaged data. The determination of the average vapor fraction requires averaging of the logarithm of time-dependent intensity measurements of the neutron beam (gray scale distribution of the image) that passes through the fluid. This could be significantly different than averaging the intensity of the transmitted beam and then taking the logarithm of that term. This is termed the dynamic error (error in the time-averaged vapor fractions due t the inherent time-dependence of the measured data) and is separate from the static error (statistical sampling uncertainty). The results provide insight into the characteristics of these errors and help to quantify achievable bounds on the limits of these errors. The static error was determined by the uncertainties of measured beam intensities. It was found that the maximum static error increases as liquid thickness increases and can be reduced by increasing the neutron source strength. The dynamic error increased with large fluctuations in the local vapor fractions and with increasing liquid thickness. Detailed analyses of both sources of errors are discussed.

  13. AMMRC (Army Materials and Mechanics Research Center) mobile-accelerator neutron-radiography system operations at US Army Yuma Proving Ground. Interim technical report

    SciTech Connect

    Dance, W.E.; Carollo, S.F.

    1984-04-15

    The mobile neutron radiography system designed and fabricated for the Army Materials and Mechanics Research Center was transported for exploratory evaluation by YPG radiography personnel. Objectives of the field operations were to demonstrate applicability of neutron radiography for inspection of specific Army ordnance items, to provide Army personnel with on-site experience and a data base for defining future neutron radiography and facility requirements, and to evaluate the reliability of this new type of mobile neutron radiography system in a non-laboratory or field environment. Neutron radiographs were compared with X-ray radiographs of the test items. Areas were noted where only the neutron images yielded useful NDI information, and others noted where X-ray is needed. The complementary nature of the results from the two radiographic techniques was well illustrated. Several neutron converter/film combinations were used during the operations to determine the optimum combination for producing good images in reasonable exposure times, using a relatively low-flux system. The system operated reliably during the six weeks period in the non-laboratory environment, and safety of operation of the mobile inspection unit was demonstrated.

  14. Combining fluorescence imaging and neutron radiography to simultaneously record dynamics of oxygen and water content in the root zone

    NASA Astrophysics Data System (ADS)

    Rudolph, N.; Oswald, S. E.; Nagl, S.; Kardjilov, N.

    2010-12-01

    There is a growing need in non-destructive techniques able to measure life-controlling parameters such as oxygen and water dynamics in ecosystems. We use neutron radiography coupled with fluorescence imaging to map the dynamics of these two essential biogeochemical parameters in the root-zone of plants. Measuring the real-time distribution of water and oxygen concentration can enable us to better understand where the active parts of the roots are located in respect to uptake and respiration. Roots performance itself is a function of age and local conditions such as water and oxygen availability in soil. It is technically challenging to monitor these dynamics in small distances from the roots without disturbing them. Non-destructive imaging methods such as fluorescence and neutron imaging provide a unique opportunity to unravel some of these complex processes. Boron-free glass containers (inner size 10cm x 10cm x 1cm) were filled with fine sand of different grain sizes. A sensor foil for O2 (Borisov et al. 2006) was installed on one inner-side of the containers. We grew lupine plants in the container for two weeks under controlled conditions. We took neutron radiographs and fluorescence images of the samples for a range of water contents, and therefore a range of root activities and oxygen changes. We observed the consumption of oxygen induced by roots of lupine plants during 36 hours. Neutron radiography gives us the information about root development and water content. Due to the high water content, aeration from atmosphere is limited. By focusing on the initial conditions we observe that the fluorescence intensity increases in the lower and upper part, where roots are located. The respiration activity creates oxygen deficits close to the roots, and we observed a higher activity by the lateral roots than the tap root. Moreover, the oxygen consumption increases with increasing root growth or root age. After 24 hours the images indicates better aeration in the upper

  15. Benchmark Evaluation of the Neutron Radiography (NRAD) Reactor Upgraded LEU-Fueled Core

    SciTech Connect

    John D. Bess

    2001-09-01

    Benchmark models were developed to evaluate the cold-critical start-up measurements performed during the fresh core reload of the Neutron Radiography (NRAD) reactor with Low Enriched Uranium (LEU) fuel. The final upgraded core configuration with 64 fuel elements has been completed. Evaluated benchmark measurement data include criticality, control-rod worth measurements, shutdown margin, and excess reactivity. Dominant uncertainties in keff include the manganese content and impurities contained within the stainless steel cladding of the fuel and the 236U and erbium poison content in the fuel matrix. Calculations with MCNP5 and ENDF/B-VII.0 nuclear data are approximately 1.4% greater than the benchmark model eigenvalue, supporting contemporary research regarding errors in the cross section data necessary to simulate TRIGA-type reactors. Uncertainties in reactivity effects measurements are estimated to be ~10% with calculations in agreement with benchmark experiment values within 2s. The completed benchmark evaluation de-tails are available in the 2014 edition of the International Handbook of Evaluated Reactor Physics Experiments (IRPhEP Handbook). Evaluation of the NRAD LEU cores containing 56, 60, and 62 fuel elements have also been completed, including analysis of their respective reactivity effects measurements; they are also available in the IRPhEP Handbook but will not be included in this summary paper.

  16. In-situ investigation of water distribution in polymer electrolyte fuel cell using neutron radiography

    SciTech Connect

    Mishler, Jeffrey H; Mukundan, Rangachary; Borup, Rodney L; Wang, Yun; Hussey, Daniel S; Jacobson, David L

    2010-01-01

    This paper investigates the water content within operating polymer electrolyte membrane (PEM) fuel cells using neutron radiography. We consider fuel cells with various PTFE loadings in their gas diffusion layers (GDL) and microporous layers (MPL), and examine the impacts of MPL/GDL properties on the liquid water behavior and fuel cell performance. Fuel cells are tested at both dry and fully hydrated conditions with different serpentine flow fields. Water contents in the projected areas of channel and land regions are probed. We find that the fuel cell may be subject to more flooding at low current-density operation. In addition, both MPL and GDL wetting properties have substantial impacts on the water content in fuel cell. The cell performance also varies on different scenarios of the MPL/GDL wetting properties. The quad-channel flow field exhibits higher water content without remarkable change in performance at low current densities. Liquid water profile along the channel is presented and liquid water on-set clearly indicated.

  17. Study of material changes of SINQ target rods after long-term exposure by neutron radiography methods.

    PubMed

    Lehmann, E E; Vontobel, P; Estermann, M

    2004-10-01

    This paper describes the results of non-destructive investigations by indirect neutron radiography methods obtained at the facility NEUTRA [Nondestruct. Testing Eval. 16 (2000b) 203], spallation neutron source SINQ [Operating experience and development projects at SINQ, PSI Report 98-04, ISSN 1019-0643]. Target rods from the second SINQ metal target were removed after 6 Ah of proton beam exposure and studied under well-shielded conditions. No real damage was found at one of the 11 observed rods and one tube. However, hydrogen accumulation could be identified inside the zircaloy rods and the steel rods as well. Whereas the hydrogen has a homogenous distribution in Zr (with the peak value near the centre of the applied beam), the steel samples show clusters of hydrogen near the edge of the Zr cladding. Lead (in steel cladding) was found modified by accumulations of spallation products, mainly mercury. In the radiography images, a depression of the neutron field was observed due to the absorption by mercury. The applied method with Dy and In as neutron converters and imaging plates [Nucl. Instrum. Methods 377 (1996) 119] as secondary detectors seems to be optimal for such kind of investigations, especially when quantitative considerations have to be made. PMID:15246406

  18. Neutron Radiography and Tomography Investigations of the Secondary Hydriding of Zircaloy-4 during Simulated Loss of Coolant Nuclear Accidents

    NASA Astrophysics Data System (ADS)

    Grosse, Mirco K.; Stuckert, Juri; Steinbrück, Martin; Kaestner, Anders P.; Hartmann, Stefan

    In the framework of the post-test examinations of the large-scale LOCA simulation tests at the fuel rod bundle scale, the hydrogen distributions in specimens prepared from the QUENCH-L0 and -L1 tests were studied by means of neutron radiography and tomography. In order to determine quantitative hydrogen concentrations, both, neutron radiography and tomography were calibrated using cladding tube segments with known hydrogen concentrations. The linear dependence of the total macroscopic neutron cross section with the H/Zr atomic ratio was determined for both methods. The hydrogen distributions in samples prepared from the two tests differ significantly as a first glance to the results obtained for the QUENCH-L1 shows. Whereas clearly visible hydrogen bands were found in samples of the QUENCH-L0 test with a time between burst and quenching of more than 70 s; in some specimens prepared from the QUENCH-L1 test only blurred bands could be detected. The reasons for these different behaviors can be the different times between reaching the temperature maxima and the quenching, as well as bending of the QUENCH-L1 bundle. In the QUENCH-L0 test the bundle was quenched immediately after reaching the maximal temperature. In QUENCH-L1 the hydrogen had about 130 s to diffuse and reach more homogeneous distributions without clear contrasts between the hydrogen bands and the neighboring regions in the neutron images.

  19. Dual Use Corrosion Inhibitor and Penetrant for Anomaly Detection in Neutron/X Radiography

    NASA Technical Reports Server (NTRS)

    Hall, Phillip B. (Inventor); Novak, Howard L. (Inventor)

    2004-01-01

    A dual purpose corrosion inhibitor and penetrant composition sensitive to radiography interrogation is provided. The corrosion inhibitor mitigates or eliminates corrosion on the surface of a substrate upon which the corrosion inhibitor is applied. In addition, the corrosion inhibitor provides for the attenuation of a signal used during radiography interrogation thereby providing for detection of anomalies on the surface of the substrate.

  20. Micromachining of commodity plastics by proton beam writing and fabrication of spatial resolution test-chart for neutron radiography

    NASA Astrophysics Data System (ADS)

    Sakai, T.; Yasuda, R.; Iikura, H.; Nojima, T.; Matsubayashi, M.; Kada, W.; Kohka, M.; Satoh, T.; Ohkubo, T.; Ishii, Y.; Takano, K.

    2013-07-01

    Proton beam writing is a direct-write technique and a promising method for the micromachining of commodity plastics such as acrylic resins. Herein, we describe the fabrication of microscopic devices made from a relatively thick (∼75 μm) acrylic sheet using proton beam writing. In addition, a software package that converts image pixels into coordinates data was developed, and the successful fabrication of a very fine jigsaw puzzle was achieved. The size of the jigsaw puzzle pieces was 50 × 50 μm. For practical use, a prototype of a line and space test-chart was also successfully fabricated for the determination of spatial resolution in neutron radiography.

  1. Prompt Fission Neutron Energy Spectra Induced by Fast Neutrons

    NASA Astrophysics Data System (ADS)

    Staples, Parrish Alan

    Prompt fission neutron energy spectra for ^{235}U and ^{239 }Pu have been measured for fission neutron energies greater than the energy of the incident neutrons inducing fission. The measurements were undertaken to investigate the shape dependence of the fission neutron spectra upon both the incident neutron energy and the mass of the nucleus undergoing fission. Measurements were made for both nuclides at the following incident neutron energies; 0.50 MeV, 1.50 MeV, 2.50 MeV and 3.50 MeV. The data are presented either as relative yields or as ratios of a measured spectrum to the ^{235}U spectrum at 0.50 MeV. Incident neutrons were produced by the ^7Li(p,n)^7Be reaction using a pulsed, bunched proton beam from the 5.5 MV Van de Graaff accelerator at the University of Massachusetts Lowell Pinanski Energy Center. The neutrons were detected by a thin liquid scintillator with good time resolution capabilities; time-of-flight techniques were used for neutron energy determination; in addition pulse-shape-discrimination was used to reduce gamma-ray background levels. The measurements are compared to calculations based on the Los Alamos Model of Madland and Nix to test its predictive capabilities. The data are fit by the Watt equation to determine the mean energy of the spectra, and to facilitate comparison of the results to previous measurements. The data are also compared directly to previous measurements.

  2. Neutron induced bystander effect among zebrafish embryos

    NASA Astrophysics Data System (ADS)

    Ng, C. Y. P.; Kong, E. Y.; Kobayashi, A.; Suya, N.; Uchihori, Y.; Cheng, S. H.; Konishi, T.; Yu, K. N.

    2015-12-01

    The present paper reported the first-ever observation of neutron induced bystander effect (NIBE) using zebrafish (Danio rerio) embryos as the in vivo model. The neutron exposure in the present work was provided by the Neutron exposure Accelerator System for Biological Effect Experiments (NASBEE) facility at the National Institute of Radiological Sciences (NIRS), Chiba, Japan. Two different strategies were employed to induce NIBE, namely, through directly partnering and through medium transfer. Both results agreed with a neutron-dose window (20-50 mGy) which could induce NIBE. The lower dose limit corresponded to the threshold amount of neutron-induced damages to trigger significant bystander signals, while the upper limit corresponded to the onset of gamma-ray hormesis which could mitigate the neutron-induced damages and thereby suppress the bystander signals. Failures to observe NIBE in previous studies were due to using neutron doses outside the dose-window. Strategies to enhance the chance of observing NIBE included (1) use of a mono-energetic high-energy (e.g., between 100 keV and 2 MeV) neutron source, and (2) use of a neutron source with a small gamma-ray contamination. It appeared that the NASBEE facility used in the present study fulfilled both conditions, and was thus ideal for triggering NIBE.

  3. Parameterising root system growth models using 2D neutron radiography images

    NASA Astrophysics Data System (ADS)

    Schnepf, Andrea; Felderer, Bernd; Vontobel, Peter; Leitner, Daniel

    2013-04-01

    Root architecture is a key factor for plant acquisition of water and nutrients from soil. In particular in view of a second green revolution where the below ground parts of agricultural crops are important, it is essential to characterise and quantify root architecture and its effect on plant resource acquisition. Mathematical models can help to understand the processes occurring in the soil-plant system, they can be used to quantify the effect of root and rhizosphere traits on resource acquisition and the response to environmental conditions. In order to do so, root architectural models are coupled with a model of water and solute transport in soil. However, dynamic root architectural models are difficult to parameterise. Novel imaging techniques such as x-ray computed tomography, neutron radiography and magnetic resonance imaging enable the in situ visualisation of plant root systems. Therefore, these images facilitate the parameterisation of dynamic root architecture models. These imaging techniques are capable of producing 3D or 2D images. Moreover, 2D images are also available in the form of hand drawings or from images of standard cameras. While full 3D imaging tools are still limited in resolutions, 2D techniques are a more accurate and less expensive option for observing roots in their environment. However, analysis of 2D images has additional difficulties compared to the 3D case, because of overlapping roots. We present a novel algorithm for the parameterisation of root system growth models based on 2D images of root system. The algorithm analyses dynamic image data. These are a series of 2D images of the root system at different points in time. Image data has already been adjusted for missing links and artefacts and segmentation was performed by applying a matched filter response. From this time series of binary 2D images, we parameterise the dynamic root architecture model in the following way: First, a morphological skeleton is derived from the binary

  4. Experience of the Indirect Neutron Radiography Method Based on the X-ray Imaging Plate at CARR

    NASA Astrophysics Data System (ADS)

    Wei, Guohai; Han, Songbai; Wang, Hongli; He, Linfeng; Wang, Yu; Wu, Meimei; Liu, Yuntao; Chen, Dongfeng

    Indirect neutron radiography (INR) experiments by X-ray imaging plate were carried out at the China Advanced Research Reactor (CARR). The key experiment parameters were optimized, especially the exposure time of the neutron converter andimaging plate. The optimized total exposure time is 37.25 min, it is two-fifths of the timebased on the film method under the same experimental conditions. The qualitative and quantitativeinspections were tested with dummy nuclear fuel rods and a water temperaturesensor ofa motor vehicle. The spring in the sensor and the defects of the dummy fuel rod's pellets can be qualitatively detected. The thickness of the tape at one position on the cladding of the dummy nuclear fuel rodwas quantitatively calculated to be 9.57 layers with the relative error of ±4.3%.

  5. Using Neutron Radiography to Quantify Water Transport and the Degree of Saturation in Entrained Air Cement Based Mortar

    NASA Astrophysics Data System (ADS)

    Lucero, Catherine L.; Bentz, Dale P.; Hussey, Daniel S.; Jacobson, David L.; Weiss, W. Jason

    Air entrainment is commonly added to concrete to help in reducing the potential for freeze thaw damage. It is hypothesized that the entrained air voids remain unsaturated or partially saturated long after the smaller pores fill with water. Small gel and capillary pores in the cement matrix fill quickly on exposure to water, but larger pores (entrapped and entrained air voids) require longer times or other methods to achieve saturation. As such, it is important to quantitatively determine the water content and degree of saturation in air entrained cementitious materials. In order to further investigate properties of cement-based mortar, a model based on Beer's Law has been developed to interpret neutron radiographs. This model is a powerful tool for analyzing images acquired from neutron radiography. A mortar with a known volume of aggregate, water to cement ratio and degree of hydration can be imaged and the degree of saturation can be estimated.

  6. Scattering influences in quantitative fission neutron radiography for the in situ analysis of hydrogen distribution in metal hydrides

    NASA Astrophysics Data System (ADS)

    Börries, S.; Metz, O.; Pranzas, P. K.; Bücherl, T.; Söllradl, S.; Dornheim, M.; Klassen, T.; Schreyer, A.

    2015-10-01

    In situ neutron radiography allows for the time-resolved study of hydrogen distribution in metal hydrides. However, for a precise quantitative investigation of a time-dependent hydrogen content within a host material, an exact knowledge of the corresponding attenuation coefficient is necessary. Additionally, the effect of scattering has to be considered as it is known to violate Beer's law, which is used to determine the amount of hydrogen from a measured intensity distribution. Within this study, we used a metal hydride inside two different hydrogen storage tanks as host systems, consisting of steel and aluminum. The neutron beam attenuation by hydrogen was investigated in these two different setups during the hydrogen absorption process. A linear correlation to the amount of absorbed hydrogen was found, allowing for a readily quantitative investigation. Further, an analysis of scattering contributions on the measured intensity distributions was performed and is described in detail.

  7. Neutron radiography and modelling of water flow and D2O transport in soil and plants

    NASA Astrophysics Data System (ADS)

    Zare, Mohsen; Carminati, Andrea; Kröner, Eva

    2014-05-01

    Our understanding of soil and plant water relations is currently limited by the lack of experimental methods to measure the water fluxes in soil and plants. Our study aimed to develop a new non-destructive method to measure the local fluxes of water into roots of plants growing in soil. We injected deuterated water (D2O) near the roots of lupines growing in sandy soils, and we used neutron radiography to image the transport of D2O through the root system. The experiments were performed during day, when plants were transpiring, and at night, when transpiration was reduced. The radiographs showed that: 1) the radial transport of D2O from soil and roots depended similarly from diffusion and convection; and 2) the axial transport of D2O along the root xylem was largely dominated by convection. To determine the convective fluxes from the radiographs, we simulated the D2O transport in soils and roots. A dual porosity model was used to describe the apoplastic and symplastic pathways of water across the root tissue. Other features as the endodermis and the xylem were also included in the model. The D2O transport was modelled solving a convection-diffusion numerical model in soil and plants. The diffusion coefficients of the root tissues were inversely estimated by simulating the experiments at night under the assumption that at night the convective fluxes were negligible. Inverse modelling of the experiment at day gave the profile of water fluxes into the roots, as well as the ration between the apoplastic and symplastic flow. For 24 day-old lupine grown in a sandy soil with uniform water content, our modelling results showed that root water uptake was higher at the proximal parts of the roots near soil surface and it decreased toward the distal parts. The results indicated the water crossed the root cortex mainly through the apoplastic pathway. The method allows the quantification of the root properties and the regions of root water uptake along root systems growing in

  8. Where do roots take up water? Neutron radiography of water flow into the roots of transpiring plants growing in soil.

    PubMed

    Zarebanadkouki, Mohsen; Kim, Yangmin X; Carminati, Andrea

    2013-09-01

    Where and how fast does water flow from soil into roots? The answer to this question requires direct and in situ measurement of local flow of water into roots of transpiring plants growing in soil. We used neutron radiography to trace the transport of deuterated water (D₂O) in lupin (Lupinus albus) roots. Lupins were grown in aluminum containers (30 × 25 × 1 cm) filled with sandy soil. D₂O was injected in different soil regions and its transport in soil and roots was monitored by neutron radiography. The transport of water into roots was then quantified using a convection-diffusion model of D₂O transport into roots. The results showed that water uptake was not uniform along roots. Water uptake was higher in the upper soil layers than in the lower ones. Along an individual root, the radial flux was higher in the proximal segments than in the distal segments. In lupins, most of the water uptake occurred in lateral roots. The function of the taproot was to collect water from laterals and transport it to the shoot. This function is ensured by a low radial conductivity and a high axial conductivity. Lupin root architecture seems well designed to take up water from deep soil layers. PMID:23692148

  9. Vapor fraction measurements in a steam-water tube at up to 15 bar using neutron radiography techniques

    NASA Astrophysics Data System (ADS)

    Glickstein, S. S.; Murphy, J. H.; Joo, H.

    1999-11-01

    Real-time neutron radiography has been used to study the dynamic behavior of two-phase flow and measure the time averaged vapor fraction in a heated metal tube containing boiling steam-water operating at up to 15 bar pressure. The neutron radiographic technique is non-intrusive and requires no special transparent window region. This is the first time this technique has been used in an electrically heated pressurized flow loop. This unique experimental method offers the opportunity to observe and record on videotape, flow patterns and transient behavior of two-phase flow inside opaque containers without disturbing the environment. In this study the test sections consisted of stainless steel tubes with a 1.27 cm outer diameter and wall thicknesses of 0.084 and 0.124 cm. The experiments were carried out at the Pennsylvania State University 1 MW TRIGA reactor facility utilizing a Precise Optics neutron radiography camera. The inlet water temperature to the test section was varied between 120°C and 170°C and the flow rate set to 2.3 l/min. Tsat is 200°C at these conditions. The tube was resistively heated by passing high currents (˜1000 A) through the stainless steel wall. Scattering due to water in the ˜1 cm tube is significant and Monte Carlo calculations simulating the experiment were made to correct for this effect on the vapor fraction measurement. Details of the experimental technique, methods for analyzing the data and the results of the experiments are discussed.

  10. Boron determination in liver tissue by combining quantitative neutron capture radiography (QNCR) and histological analysis for BNCT treatment planning at the TRIGA Mainz.

    PubMed

    Schütz, C; Brochhausen, C; Altieri, S; Bartholomew, K; Bortolussi, S; Enzmann, F; Gabel, D; Hampel, G; Kirkpatrick, C J; Kratz, J V; Minouchehr, S; Schmidberger, H; Otto, G

    2011-09-01

    The typical primary malignancies of the liver are hepatocellular carcinoma and cholangiocarcinoma, whereas colorectal liver metastases are the most frequently occurring secondary tumors. In many cases, only palliative treatment is possible. Boron neutron capture therapy (BNCT) represents a technique that potentially destroys tumor tissue selectively by use of externally induced, locally confined secondary particle irradiation. In 2001 and 2003, BNCT was applied to two patients with colorectal liver metastases in Pavia, Italy. To scrutinize the rationale of BNCT, a clinical pilot study on patients with colorectal liver metastases was carried out at the University of Mainz. The distribution of the (10)B carrier (p-borono-phenylalanine) in the liver and its uptake in cancerous and tumor-free tissue were determined, focusing on a potential correlation between the uptake of p-borono-phenylalanine and the biological characteristics of cancerous tissue. Samples were analyzed using quantitative neutron capture radiography of cryosections combined with histological analysis. Methodological aspects of the combination of these techniques and results from four patients enrolled in the study are presented that indicate that the uptake of p-borono-phenylalanine strongly depends on the metabolic activity of cells. PMID:21692653

  11. In situ neutron radiography of lithium-ion batteries: the gas evolution on graphite electrodes during the charging

    NASA Astrophysics Data System (ADS)

    Goers, D.; Holzapfel, M.; Scheifele, W.; Lehmann, E.; Vontobel, P.; Novák, P.

    In situ neutron radiography (NR) was used to study the gas evolution on graphite electrodes in lithium-ion cells containing different PVDF-based gel-type electrolytes. The amount of gas bubbles and channels was calculated by image analysis. Gas production was extremely high in the case of the electrolyte containing ethylene carbonate (EC) and propylene carbonate (PC) (2:3, w/w), 1 M LiClO 4. About 60% of the electrode surface consisted of the gas phase which resulted in an inhomogeneous local current distribution. In contrast, the electrolyte containing EC and γ-butyrolactone (GBL) (1:1, w/w), 1 M LiBF 4 only showed a small increase of the gas volume between the electrodes of about 3%. In situ NR also revealed the displacement of the electrolyte due to gas evolution and volume changes of the electrodes.

  12. Dyadic wavelet for image coding implementation on a Xilinx MicroBlaze processor: application to neutron radiography.

    PubMed

    Saadi, Slami; Touiza, Maamar; Kharfi, Fayçal; Guessoum, Abderrezak

    2013-12-01

    In this work, we present a mixed software/hardware implementation of 2-D signals encoder/decoder using dyadic discrete wavelet transform (DWT) based on quadrature mirror filters (QMF); using fast wavelet Mallat's algorithm. This work is designed and compiled on the embedded development kit EDK6.3i, and the synthesis software, ISE6.3i, which is available with Xilinx Virtex-IIV2MB1000 FPGA. Huffman coding scheme is used to encode the wavelet coefficients so that they can be transmitted progressively through an Ethernet TCP/IP based connection. The possible reconfiguration can be exploited to attain higher performance. The design will be integrated with the neutron radiography system that is used with the Es-Salem research reactor. PMID:24041807

  13. Enrico Fermi's Discovery of Neutron-Induced Artificial Radioactivity: Neutrons and Neutron Sources

    NASA Astrophysics Data System (ADS)

    Guerra, Francesco; Leone, Matteo; Robotti, Nadia

    2006-09-01

    We reconstruct and analyze the path leading from James Chadwick’s discovery of the neutron in February 1932 through Frédéric Joliot and Irène Curie’s discovery of artificial radioactivity in January 1934 to Enrico Fermi’s discovery of neutron-induced artificial radioactivity in March 1934. We show, in particular, that Fermi’s innovative construction and use of radon-beryllium neutron sources permitted him to make his discovery.

  14. Spin distribution in neutron induced preequilibrium reactions

    SciTech Connect

    Dashdorj, D; Kawano, T; Chadwick, M; Devlin, M; Fotiades, N; Nelson, R O; Mitchell, G E; Garrett, P E; Agvaanluvsan, U; Becker, J A; Bernstein, L A; Macri, R; Younes, W

    2005-10-04

    The preequilibrium reaction mechanism makes an important contribution to neutron-induced reactions above E{sub n} {approx} 10 MeV. The preequilibrium process has been studied exclusively via the characteristic high energy neutrons produced at bombarding energies greater than 10 MeV. They are expanding the study of the preequilibrium reaction mechanism through {gamma}-ray spectroscopy. Cross-section measurements were made of prompt {gamma}-ray production as a function of incident neutron energy (E{sub n} = 1 to 250 MeV) on a {sup 48}Ti sample. Energetic neutrons were delivered by the Los Alamos National Laboratory spallation neutron source located at the Los Alamos Neutron Science Center facility. The prompt-reaction {gamma} rays were detected with the large-scale Compton-suppressed Germanium Array for Neutron Induced Excitations (GEANIE). Neutron energies were determined by the time-of-flight technique. The {gamma}-ray excitation functions were converted to partial {gamma}-ray cross sections taking into account the dead-time correction, target thickness, detector efficiency and neutron flux (monitored with an in-line fission chamber). Residual state population was predicted using the GNASH reaction code, enhanced for preequilibrium. The preequilibrium reaction spin distribution was calculated using the quantum mechanical theory of Feshback, Kerman, and Koonin (FKK). The multistep direct part of the FKK theory was calculated for a one-step process. The FKK preequilibrium spin distribution was incorporated into the GNASH calculations and the {gamma}-ray production cross sections were calculated and compared with experimental data. The difference in the partial {gamma}-ray cross sections using spin distributions with and without preequilibrium effects is significant.

  15. Hybrid Two-phase Flow Measurements in a Narrow Channel Using Neutron Radiography and Liquid Film Sensor

    NASA Astrophysics Data System (ADS)

    Ito, Daisuke; Saito, Yasushi; Kawabata, Yuji

    Gas-liquid two-phase flow in a narrow gap has been studied to develop a solid target cooling system for an accelerator driven system. Flow measurements are important to understand two-phase flow dynamics also in such a narrow channel. Although contact methods can measure detailed structure of two-phase flow, the intrusive effect on the flow becomes relatively larger in such a small channel. Therefore, non-intrusive measurement would be desirable. Neutron radiography (NRG) is one of the powerful tools for gas-liquid two-phase flow measurement and void fraction distribution can be estimated from the acquired images. However, the temporal resolution of NRG is about 100∼1,000 Hz depending on the neutron flux and it should be increased to investigate flow dynamics. So the authors focused on a hybrid measurement of the NRG and a conductance liquid film sensor (LFS). The combination of these methods can complement the spatial and temporal information of the flow. In this study, the hybrid measurements were performed by NRG and LFS to visualize the detailed structure of narrow two-phase flow.

  16. Effect of cross-flow on PEFC liquid-water distribution: An in-situ high-resolution neutron radiography study

    NASA Astrophysics Data System (ADS)

    Santamaria, Anthony D.; Becton, Maxwell K.; Cooper, Nathanial J.; Weber, Adam Z.; Park, Jae Wan

    2015-10-01

    Liquid-water management in polymer-electrolyte fuel cells (PEFCs) remains an area of ongoing research. To enhance water removal, certain flow-fields induce cross-flow, or flow through the gas-diffusion layer (GDL) via channel-to-channel pressure differences. While beneficial to water removal, cross-flow comes at the cost of higher pumping pressures and may lead to membrane dehydration and other deleterious issues. This paper examines the impact of cross-flow on component saturation levels as determined through in-plane high-resolution neutron radiography. Various humidities and operating conditions are examined, and the results demonstrate that cell saturation levels correlate strongly with the level of cross-flow rate, and lower GDL saturation levels are found to correlate with an increase in permeability at higher flow rates. Effective water removal is found to occur at channel-to-channel pressure gradients greater than the measured breakthrough pressure of the GDL, evidence that similar liquid-water transport mechanisms exist for under-land area transport as in transverse GDL flow.

  17. Design studies for a high-resolution, transportable neutron radiography/radioscopy system

    SciTech Connect

    Gillespie, G.H.; Micklich, B.J.; McMichael, G.E.

    1996-09-30

    A preliminary design has been developed for a high-resolution, transportable neutron radiology system (TNRS) concept. The primary system requirement is taken to be a thermal neutron flux of 10[sup 6] n/(cm[sup 2]-sec) with a L/D ratio of 100. The approach is to use an accelerator-driven neutron source, with a radiofrequency quadrupole (RFQ) as the primary accelerator component. Initial concepts for all of the major components of the system have been developed,and selected key parts have been examined further. An overview of the system design is presented, together with brief summaries of the concepts for the ion source, low energy beam transport (LEBT), RFQ, high energy beam transport (HEBT), target, moderator, collimator, image collection, power, cooling, vacuum, structure, robotics, control system, data analysis, transport vehicle, and site support. The use of trade studies for optimizing the TNRS concept are also described.

  18. Induced Pairing Interaction in Neutron Star Matter

    NASA Astrophysics Data System (ADS)

    Lombardo, U.; Schulze, H.-J.; Zuo, W.

    2013-01-01

    The three superfluid phases supposed to occur in neutron stars are reviewed in the framework of the generalized BCS theory with the induced interaction. The structure of neutron stars characterized by beta-stable asymmetric nuclear matter in equilibrium with the gravitational force discloses new aspects of the pairing mechanism. Some of them are discussed in this report, in particular the formation in dense matter of Cooper pairs in the presence of three-body forces and the interplay between repulsive and attractive polarization effects on isospin T = 1 Cooper pairs embedded into the neutron and proton environment. Quantitative estimates of the energy gaps are reported and their sensitivity to the medium effects, i.e., interaction and polarization, is explored.

  19. Visualization of root water uptake: quantification of deuterated water transport in roots using neutron radiography and numerical modeling.

    PubMed

    Zarebanadkouki, Mohsen; Kroener, Eva; Kaestner, Anders; Carminati, Andrea

    2014-10-01

    Our understanding of soil and plant water relations is limited by the lack of experimental methods to measure water fluxes in soil and plants. Here, we describe a new method to noninvasively quantify water fluxes in roots. To this end, neutron radiography was used to trace the transport of deuterated water (D2O) into roots. The results showed that (1) the radial transport of D2O from soil to the roots depended similarly on diffusive and convective transport and (2) the axial transport of D2O along the root xylem was largely dominated by convection. To quantify the convective fluxes from the radiographs, we introduced a convection-diffusion model to simulate the D2O transport in roots. The model takes into account different pathways of water across the root tissue, the endodermis as a layer with distinct transport properties, and the axial transport of D2O in the xylem. The diffusion coefficients of the root tissues were inversely estimated by simulating the experiments at night under the assumption that the convective fluxes were negligible. Inverse modeling of the experiment at day gave the profile of water fluxes into the roots. For a 24-d-old lupine (Lupinus albus) grown in a soil with uniform water content, root water uptake was higher in the proximal parts of lateral roots and decreased toward the distal parts. The method allows the quantification of the root properties and the regions of root water uptake along the root systems. PMID:25189533

  20. Velocity field measurement in gas-liquid metal two-phase flow with use of PIV and neutron radiography techniques.

    PubMed

    Saito, Y; Mishima, K; Tobita, Y; Suzuki, T; Matsubayashi, M

    2004-10-01

    To establish reasonable safety concepts for the realization of commercial liquid-metal fast breeder reactors, it is indispensable to demonstrate that the release of excessive energy due to re-criticality of molten core could be prevented even if a severe core damage accident took place. Two-phase flow due to the boiling of fuel-steel mixture in the molten core pool has a larger liquid-to-gas density ratio and higher surface tension in comparison with those of ordinary two-phase flows such as air-water flow. In this study, to investigate the effect of the recirculation flow on the bubble behavior, visualization and measurement of nitrogen gas-molten lead bismuth in a rectangular tank was performed by using neutron radiography and particle image velocimetry techniques. Measured flow parameters include flow regime, two-dimensional void distribution, and liquid velocity field in the tank. The present technique is applicable to the measurement of velocity fields and void fraction, and the basic characteristics of gas-liquid metal two-phase mixture were clarified. PMID:15246418

  1. Neutron-induced defects in optical fibers

    NASA Astrophysics Data System (ADS)

    Rizzolo, S.; Morana, A.; Cannas, M.; Bauer, S.; Perisse, J.; Mace, J.-R.; Boscaino, R.; Boukenter, A.; Ouerdane, Y.; Nacir, B.; Girard, S.

    2014-10-01

    We present a study on 0.8 MeV neutron-induced defects up to fluences of 1017 n/cm2 in fluorine doped optical fibers by using electron paramagnetic resonance, optical absorption and confocal micro-luminescence techniques. Our results allow to address the microscopic mechanisms leading to the generation of Silica-related point-defects such as E', H(I), POR and NBOH Centers.

  2. Neutron-induced defects in optical fibers

    SciTech Connect

    Rizzolo, S.; Morana, A.; Boukenter, A.; Ouerdane, Y.; Girard, S.; Cannas, M.; Boscaino, R.; Bauer, S.; Perisse, J.; Mace, J-R.; Nacir, B.

    2014-10-21

    We present a study on 0.8 MeV neutron-induced defects up to fluences of 10{sup 17} n/cm{sup 2} in fluorine doped optical fibers by using electron paramagnetic resonance, optical absorption and confocal micro-luminescence techniques. Our results allow to address the microscopic mechanisms leading to the generation of Silica-related point-defects such as E', H(I), POR and NBOH Centers.

  3. Developments for neutron-induced fission at IGISOL-4

    NASA Astrophysics Data System (ADS)

    Gorelov, D.; Penttilä, H.; Al-Adili, A.; Eronen, T.; Hakala, J.; Jokinen, A.; Kankainen, A.; Kolhinen, V. S.; Koponen, J.; Lantz, M.; Mattera, A.; Moore, I. D.; Pohjalainen, I.; Pomp, S.; Rakopoulos, V.; Reinikainen, J.; Rinta-Antila, S.; Simutkin, V.; Solders, A.; Voss, A.; Äystö, J.

    2016-06-01

    At the IGISOL-4 facility, neutron-rich, medium mass nuclei have usually been produced via charged particle-induced fission of natural uranium and thorium. Neutron-induced fission is expected to have a higher production cross section of the most neutron-rich species. Development of a neutron source along with a new ion guide continues to be one of the major goals since the commissioning of IGISOL-4. Neutron intensities at different angles from a beryllium neutron source have been measured in an on-line experiment with a 30 MeV proton beam. Recently, the new ion guide coupled to the neutron source has been tested as well. Details of the neutron source and ion guide design together with preliminary results from the first neutron-induced fission experiment at IGISOL-4 are presented in this report.

  4. Monte-Carlo simulations of neutron-induced activation in a Fast-Neutron and Gamma-Based Cargo Inspection System

    NASA Astrophysics Data System (ADS)

    Bromberger, B.; Bar, D.; Brandis, M.; Dangendorf, V.; Goldberg, M. B.; Kaufmann, F.; Mor, I.; Nolte, R.; Schmiedel, M.; Tittelmeier, K.; Vartsky, D.; Wershofen, H.

    2012-03-01

    An air cargo inspection system combining two nuclear reaction based techniques, namely Fast-Neutron Resonance Radiography and Dual-Discrete-Energy Gamma Radiography is currently being developed. This system is expected to allow detection of standard and improvised explosives as well as special nuclear materials. An important aspect for the applicability of nuclear techniques in an airport inspection facility is the inventory and lifetimes of radioactive isotopes produced by the neutron radiation inside the cargo, as well as the dose delivered by these isotopes to people in contact with the cargo during and following the interrogation procedure. Using MCNPX and CINDER90 we have calculated the activation levels for several typical inspection scenarios. One example is the activation of various metal samples embedded in a cotton-filled container. To validate the simulation results, a benchmark experiment was performed, in which metal samples were activated by fast-neutrons in a water-filled glass jar. The induced activity was determined by analyzing the gamma spectra. Based on the calculated radioactive inventory in the container, the dose levels due to the induced gamma radiation were calculated at several distances from the container and in relevant time windows after the irradiation, in order to evaluate the radiation exposure of the cargo handling staff, air crew and passengers during flight. The possibility of remanent long-lived radioactive inventory after cargo is delivered to the client is also of concern and was evaluated.

  5. Ternary fission induced by polarized neutrons

    NASA Astrophysics Data System (ADS)

    Gönnenwein, Friedrich

    2013-12-01

    Ternary fission of (e,e) U- and Pu- isotopes induced by cold polarized neutrons discloses some new facets of the process. In the so-called ROT effect shifts in the angular distributions of ternary particles relative to the fission fragments show up. In the so-called TRI effect an asymmetry in the emission of ternary particles relative to a plane formed by the fragment momentum and the spin of the neutron appear. The two effects are shown to be linked to the components of angular momentum perpendicular and parallel to the fission axis at the saddle point of fission. Based on theoretical models the spectroscopic properties of the collective transitional states at the saddle point are inferred from experiment.

  6. Conceptual design of stacked-layer detectors to increase the sensitivity of Fast Neutron Gamma-ray Radiography (FNGR)

    NASA Astrophysics Data System (ADS)

    Cho, Jea Hyung; Kim, Kwang Hyun; Chung, Young Hyun

    2012-04-01

    This study is focused on the structure and other possible factors related to scintillators used in the Fast Neutron and Gamma-ray Radiography (FNGR) system to increase its sensitivity. The CsI(Tl) crystal scintillator (Co-60 gamma-ray detection) and the BC430 plastic scintillator (14 MeV fast neutron detection) were analyzed with the Monte Carlo simulation (MCNPX and DETEC97 codes). Each scintillator was investigated with regard to the optimum thickness (1 cm × 1 cm), reconfiguration of detector modules (a stacked-layer structure), the optimum surface treatment, and the spectral matching with customized PIN-type photodiodes. As a result, the optimum thickness of the CsI(Tl) was found to be 4.5 cm; the optimum value was 5.5 cm for the BC430. When the detector modules were stacked in a sandwich structure rather than the existing single detector structure, the light photon transmission to the surface of the photodiode was enhanced by 40% and 58% for CsI(Tl) and BC430, respectively. In the matter of scintillator surface treatment, both scintillators were simulated with unpolished and polished condition before coating. The polished condition of the scintillator surfaces showed a higher performance, more than doubling that of the unpolished condition surfaces. Then, the performance improvement of the scintillator with the paint coating was compared to the scintillator with the metal coating conditions. For CsI(Tl), the metal coating showed a 10 % higher performance than that of the paint coating, and the metal coating of BC430 showed a 6% higher performance than that of the paint coating. As a result of spectral matching between the scintillators and the customized PIN-photodiodes, PS100-6b of Silicon AG, SD445-14-21-305 of API, and FSD1010-CAL of THOLABS were compared. The spectral matching factor of PS100-6b was 0.39 with CsI(Tl) and was 0.42 with BC430; the spectral matching factors of the other samples were relatively lower (SD445-14-21-305 with CsI(Tl): 0.29; SD445

  7. Highly resolved imaging at the soil - plant root interface: A combination of fluorescence imaging and neutron radiography

    NASA Astrophysics Data System (ADS)

    Rudolph, N.; Oswald, S. E.; Lehmann, E.

    2012-12-01

    This study represents a novel experimental set up to non-invasivley map the gradients of biogeochemical parameters at the soil -root interface of plants in situ. The patterns of oxygen, pH and the soil water content distribution were mapped in high resolution with a combination of fluorescence imaging and neutron radiography. Measuring the real-time distribution of water, pH and oxygen concentration would enable us to locate the active parts of the roots in respect to water uptake, exudation and respiration. Roots performance itself is variable as a function of age and development stage and is interrelated with local soil conditions such as water and oxygen availability or nutrients and pH buffering capacity in soil. Non-destructive imaging methods such as fluorescence and neutron imaging have provided a unique opportunity to unravel some of these complex processes. Thin glass containers (inner size 10cm x 10cm x 1.5 cm) were filled with 2 different sandy soils. Sensor foil for O2 and pH were installed on the inner-sides of the containers. We grew lupine plants in the container under controlled conditions until the root system was developed. Growing plants at different stages prior to the imaging experiment, we took neutron radiographs and fluorescence images of 10-day old and 30-day old root systems of lupine plants over a range of soil water contents, and therefore a range of root activities and oxygen changes. We observed the oxygen consumption pattern, the pH changes, and the root water uptake of lupine plants over the course of several days. We observed a higher respiration activity around the lateral roots than for the tap root. The oxygen depletion zones around the roots extended to farther distances after each rewatering of the samples. Root systems of the plants were mapped from the neutron radiograps. Close association of the roots distribution and the the location of oxygen depletion patterns provided evidence that this effect was caused by roots. The

  8. Neutron-induced peaks in Ge detectors from evaporation neutrons

    NASA Astrophysics Data System (ADS)

    Gete, E.; Measday, D. F.; Moftah, B. A.; Saliba, M. A.; Stocki, T. J.

    1997-02-01

    We have studied the peak shapes at 596 and 691 keV resulting from fast neutron interactions inside germanium detectors. We have used neutrons from a 252Cf source, as well as from the 28Si(μ -, nv), and 209Bi(π -, xn) reactions to compare the peaks and to check for a dependence of peak shape on the incoming neutron energy. In our investigation, no difference between these three measurements has been observed. In a comparison of these peak shapes with other studies, we found similar results to ours except for those measurements using monoenergetic neutrons in which a significant variation with neutron energy has been observed.

  9. Measurement of delayed-neutron yield from 237Np fission induced by thermal neutrons

    NASA Astrophysics Data System (ADS)

    Gundorin, N. A.; Zhdanova, K. V.; Zhuchko, V. E.; Pikelner, L. B.; Rebrova, N. V.; Salamatin, I. M.; Smirnov, V. I.; Furman, V. I.

    2007-06-01

    The delayed-neutron yield from thermal-neutron-induced fission of the 237Np nucleus was measured using a sample periodically exposed to a pulsed neutron beam with subsequent detection of neutrons during the time intervals between pulses. The experiment was realized on an Isomer-M setup mounted in the IBR-2 pulsed reactor channel equipped with a mirror neutron guide. The setup and the experimental procedure are described, the background sources are thoroughly analyzed, and the experimental data are presented. The total delayed-neutron yield from 237Np fission induced by thermal neutrons is ν d = 0.0110 ± 0.0009. This study was performed at the Frank Laboratory of Neutron Physics (JINR, Dubna).

  10. Intercomparison of inductively coupled plasma mass spectrometry, quantitative neutron capture radiography, and prompt gamma activation analysis for the determination of boron in biological samples.

    PubMed

    Schütz, C L; Brochhausen, C; Hampel, G; Iffland, D; Kuczewski, B; Otto, G; Schmitz, T; Stieghorst, C; Kratz, J V

    2012-10-01

    Boron determination in blood and tissue samples is a crucial task especially for treatment planning, preclinical research, and clinical application of boron neutron capture therapy (BNCT). Comparison of clinical findings remains difficult due to a variety of analytical methods, protocols, and standard reference materials in use. This paper addresses the comparability of inductively coupled plasma mass spectrometry, quantitative neutron capture radiography, and prompt gamma activation analysis for the determination of boron in biological samples. It was possible to demonstrate that three different methods relying on three different principles of sample preparation and boron detection can be validated against each other and yield consistent results for both blood and tissue samples. The samples were obtained during a clinical study for the application of BNCT for liver malignancies and therefore represent a realistic situation for boron analysis. PMID:22918535

  11. Quantitative imaging of water transport in soil and roots using neutron radiography, D2O and a new numerical model

    NASA Astrophysics Data System (ADS)

    Zarebanadkouki, M.; Kroener, E.; Ahmed, M. A.; Carminati, A.

    2014-12-01

    Our understanding of soil and plant water relations is currently limited by the lack of experimental methods to measure the water fluxes in soil and plants. Our study aimed to develop a new non-destructive method to measure the local fluxes of water into roots of plants growing in soils. We injected deuterated water (D2O) near the roots of lupines growing in sandy soils, and we used neutron radiography to image the transport of D2O through the root system. The experiments were performed during day, when plants were transpiring, and at night, when transpiration was reduced. The radiographs showed that: 1) the radial transport of D2O from soil and roots depended similarly to diffusion and convection; and 2) the axial transport of D2O along the root xylem was largely dominated by convection. To determine the convective fluxes from the radiographs, we simulated the D2O transport in soils and roots. A dual porosity model was used to describe the apoplastic and symplastic pathways of water across the root tissue. Other features such as the endodermis and the xylem were also included in the model. The D2O transport was modelled solving a convection-diffusion numerical model in soil and plants. The diffusion coefficients of the root tissues were inversely estimated by simulating the experiments at night under the assumption that at night the convective fluxes were negligible. Inverse modelling of the experiment at day gave the profile of water fluxes into the roots. For 24 day-old lupine grown in a sandy soil with uniform water content, our modelling results showed that root water uptake was higher at the proximal parts of the roots near soil surface and it decreased toward the distal parts. The method allows the quantification of the root properties and the regions of root water uptake along root systems growing in soils. Future applications of this method include the characterization of varying root systems, the radial and axial hydraulic conductivity of different root

  12. Time-resolved fast-neutron radiography of air-water two-phase flows in a rectangular channel by an improved detection system

    SciTech Connect

    Zboray, Robert; Dangendorf, Volker; Bromberger, Benjamin; Tittelmeier, Kai; Mor, Ilan

    2015-07-15

    In a previous work, we have demonstrated the feasibility of high-frame-rate, fast-neutron radiography of generic air-water two-phase flows in a 1.5 cm thick, rectangular flow channel. The experiments have been carried out at the high-intensity, white-beam facility of the Physikalisch-Technische Bundesanstalt, Germany, using an multi-frame, time-resolved detector developed for fast neutron resonance radiography. The results were however not fully optimal and therefore we have decided to modify the detector and optimize it for the given application, which is described in the present work. Furthermore, we managed to improve the image post-processing methodology and the noise suppression. Using the tailored detector and the improved post-processing, significant increase in the image quality and an order of magnitude lower exposure times, down to 3.33 ms, have been achieved with minimized motion artifacts. Similar to the previous study, different two-phase flow regimes such as bubbly slug and churn flows have been examined. The enhanced imaging quality enables an improved prediction of two-phase flow parameters like the instantaneous volumetric gas fraction, bubble size, and bubble velocities. Instantaneous velocity fields around the gas enclosures can also be more robustly predicted using optical flow methods as previously.

  13. Neutron radiography and X-ray computed tomography for quantifying weathering and water uptake processes inside porous limestone used as building material

    SciTech Connect

    Dewanckele, J.; De Kock, T.; Fronteau, G.; Derluyn, H.; Vontobel, P.; Dierick, M.; Van Hoorebeke, L.; Jacobs, P.; Cnudde, V.

    2014-02-15

    Euville and Savonnières limestones were weathered by acid test and this resulted in the formation of a gypsum crust. In order to characterize the crystallization pattern and the evolution of the pore structure below the crust, a combination of high resolution X-ray computed tomography and SEM–EDS was used. A time lapse sequence of the changing pore structure in both stones was obtained and afterwards quantified by using image analysis. The difference in weathering of both stones by the same process could be explained by the underlying microstructure and texture. Because water and moisture play a crucial role in the weathering processes, water uptake in weathered and non-weathered samples was characterized based on neutron radiography. In this way the water uptake was both visualized and quantified in function of the height of the sample and in function of time. In general, the formation of a gypsum crust on limestone slows down the initial water uptake in the materials. - Highlights: • Time lapse sequence in 3D of changing pore structures inside limestone • A combination of X-ray CT, SEM and neutron radiography was used. • Quantification of water content in function of time, height and weathering • Characterization of weathering processes due to gypsum crystallization.

  14. Time-resolved fast-neutron radiography of air-water two-phase flows in a rectangular channel by an improved detection system

    NASA Astrophysics Data System (ADS)

    Zboray, Robert; Dangendorf, Volker; Mor, Ilan; Bromberger, Benjamin; Tittelmeier, Kai

    2015-07-01

    In a previous work, we have demonstrated the feasibility of high-frame-rate, fast-neutron radiography of generic air-water two-phase flows in a 1.5 cm thick, rectangular flow channel. The experiments have been carried out at the high-intensity, white-beam facility of the Physikalisch-Technische Bundesanstalt, Germany, using an multi-frame, time-resolved detector developed for fast neutron resonance radiography. The results were however not fully optimal and therefore we have decided to modify the detector and optimize it for the given application, which is described in the present work. Furthermore, we managed to improve the image post-processing methodology and the noise suppression. Using the tailored detector and the improved post-processing, significant increase in the image quality and an order of magnitude lower exposure times, down to 3.33 ms, have been achieved with minimized motion artifacts. Similar to the previous study, different two-phase flow regimes such as bubbly slug and churn flows have been examined. The enhanced imaging quality enables an improved prediction of two-phase flow parameters like the instantaneous volumetric gas fraction, bubble size, and bubble velocities. Instantaneous velocity fields around the gas enclosures can also be more robustly predicted using optical flow methods as previously.

  15. Time-resolved fast-neutron radiography of air-water two-phase flows in a rectangular channel by an improved detection system.

    PubMed

    Zboray, Robert; Dangendorf, Volker; Mor, Ilan; Bromberger, Benjamin; Tittelmeier, Kai

    2015-07-01

    In a previous work, we have demonstrated the feasibility of high-frame-rate, fast-neutron radiography of generic air-water two-phase flows in a 1.5 cm thick, rectangular flow channel. The experiments have been carried out at the high-intensity, white-beam facility of the Physikalisch-Technische Bundesanstalt, Germany, using an multi-frame, time-resolved detector developed for fast neutron resonance radiography. The results were however not fully optimal and therefore we have decided to modify the detector and optimize it for the given application, which is described in the present work. Furthermore, we managed to improve the image post-processing methodology and the noise suppression. Using the tailored detector and the improved post-processing, significant increase in the image quality and an order of magnitude lower exposure times, down to 3.33 ms, have been achieved with minimized motion artifacts. Similar to the previous study, different two-phase flow regimes such as bubbly slug and churn flows have been examined. The enhanced imaging quality enables an improved prediction of two-phase flow parameters like the instantaneous volumetric gas fraction, bubble size, and bubble velocities. Instantaneous velocity fields around the gas enclosures can also be more robustly predicted using optical flow methods as previously. PMID:26233413

  16. Neutron-induced single event burnout in high voltage electronics

    SciTech Connect

    Normand, E.; Wert, J.L.; Oberg, D.L.; Majewski, P.P.; Voss, P.; Wender, S.A.

    1997-12-01

    Energetic neutrons with an atmospheric neutron spectrum, which were demonstrated to induce single event burnout in power MOSFETs, have been shown to induce burnout in high voltage (>3,000V) electronics when operated at voltages as low as 50% of rated voltage. The laboratory failure rates correlate well with field failure rates measured in Europe.

  17. Detection of special nuclear material from delayed neutron emission induced by a dual-particle monoenergetic source

    NASA Astrophysics Data System (ADS)

    Mayer, M.; Nattress, J.; Jovanovic, I.

    2016-06-01

    Detection of unique signatures of special nuclear materials is critical for their interdiction in a variety of nuclear security and nonproliferation scenarios. We report on the observation of delayed neutrons from fission of uranium induced in dual-particle active interrogation based on the 11B(d,n γ)12C nuclear reaction. Majority of the fissions are attributed to fast fission induced by the incident quasi-monoenergetic neutrons. A Li-doped glass-polymer composite scintillation neutron detector, which displays excellent neutron/γ discrimination at low energies, was used in the measurements, along with a recoil-based liquid scintillation detector. Time-dependent buildup and decay of delayed neutron emission from 238U were measured between the interrogating beam pulses and after the interrogating beam was turned off, respectively. Characteristic buildup and decay time profiles were compared to the common parametrization into six delayed neutron groups, finding a good agreement between the measurement and nuclear data. This method is promising for detecting fissile and fissionable materials in cargo scanning applications and can be readily integrated with transmission radiography using low-energy nuclear reaction sources.

  18. Magnetic field induced differential neutron phase contrast imaging

    SciTech Connect

    Strobl, M.; Treimer, W.; Walter, P.; Keil, S.; Manke, I.

    2007-12-17

    Besides the attenuation of a neutron beam penetrating an object, induced phase changes have been utilized to provide contrast in neutron and x-ray imaging. In analogy to differential phase contrast imaging of bulk samples, the refraction of neutrons by magnetic fields yields image contrast. Here, it will be reported how double crystal setups can provide quantitative tomographic images of magnetic fields. The use of magnetic air prisms adequate to split the neutron spin states enables a distinction of field induced phase shifts and these introduced by interaction with matter.

  19. Yield of delayed neutrons in the thermal-neutron-induced reaction 245Cm( n, f)

    NASA Astrophysics Data System (ADS)

    Andrianov, V. R.; Vyachin, V. N.; Gundorin, N. A.; Druzhinin, A. A.; Zhdanova, K. V.; Lihachev, A. N.; Pikelner, L. B.; Rebrova, N. V.; Salamatin, I. M.; Furman, V. I.

    2008-10-01

    The yield of delayed neutrons, v d , from thermal-neutron-induced fission of 245Cm is measured. Experiments aimed at studying the properties of delayed neutrons from the fission of some reactor isotopes and initiated in 1997 were continued at the upgraded Isomer-M facility by a method according to which a periodic irradiation of a sample with a pulsed neutron beam from the IBR-2 reactor was accompanied by recording emitted neutrons in the intervals between the pulses. The accuracy of the resulting total delayed-neutron yield v d = (0.64 ± 0.02)% is two times higher than that in previous measurements. This work was performed at the Frank Laboratory of Neutron Physics at the Joint Institute for Nuclear Research (JINR, Dubna).

  20. Real-time measurements of temperature, pressure and moisture profiles in High-Performance Concrete exposed to high temperatures during neutron radiography imaging

    SciTech Connect

    Toropovs, N.; Lo Monte, F.; Wyrzykowski, M.; Weber, B.; Sahmenko, G.; Vontobel, P.; Felicetti, R.; Lura, P.

    2015-02-15

    High-Performance Concrete (HPC) is particularly prone to explosive spalling when exposed to high temperature. Although the exact causes that lead to spalling are still being debated, moisture transport during heating plays an important role in all proposed mechanisms. In this study, slabs made of high-performance, low water-to-binder ratio mortars with addition of superabsorbent polymers (SAP) and polypropylene fibers (PP) were heated from one side on a temperature-controlled plate up to 550 °C. A combination of measurements was performed simultaneously on the same sample: moisture profiles via neutron radiography, temperature profiles with embedded thermocouples and pore pressure evolution with embedded pressure sensors. Spalling occurred in the sample with SAP, where sharp profiles of moisture and temperature were observed. No spalling occurred when PP-fibers were introduced in addition to SAP. The experimental procedure described here is essential for developing and verifying numerical models and studying measures against fire spalling risk in HPC.

  1. Neutron kinetics in moderators and SNM detection through epithermal-neutron-induced fissions

    NASA Astrophysics Data System (ADS)

    Gozani, Tsahi; King, Michael J.

    2016-01-01

    Extension of the well-established Differential Die Away Analysis (DDAA) into a faster time domain, where more penetrating epithermal neutrons induce fissions, is proposed and demonstrated via simulations and experiments. In the proposed method the fissions stimulated by thermal, epithermal and even higher-energy neutrons are measured after injection of a narrow pulse of high-energy 14 MeV (d,T) or 2.5 MeV (d,D) source neutrons, appropriately moderated. The ability to measure these fissions stems from the inherent correlation of neutron energy and time ("E-T" correlation) during the process of slowing down of high-energy source neutrons in common moderating materials such as hydrogenous compounds (e.g., polyethylene), heavy water, beryllium and graphite. The kinetic behavior following injection of a delta-function-shaped pulse (in time) of 14 MeV neutrons into such moderators is studied employing MCNPX simulations and, when applicable, some simple "one-group" models. These calculations served as a guide for the design of a source moderator which was used in experiments. Qualitative relationships between slowing-down time after the pulse and the prevailing neutron energy are discussed. A laboratory system consisting of a 14 MeV neutron generator, a polyethylene-reflected Be moderator, a liquid scintillator with pulse-shape discrimination (PSD) and a two-parameter E-T data acquisition system was set up to measure prompt neutron and delayed gamma-ray fission signatures in a 19.5% enriched LEU sample. The measured time behavior of thermal and epithermal neutron fission signals agreed well with the detailed simulations. The laboratory system can readily be redesigned and deployed as a mobile inspection system for SNM in, e.g., cars and vans. A strong pulsed neutron generator with narrow pulse (<75 ns) at a reasonably high pulse frequency could make the high-energy neutron induced fission modality a realizable SNM detection technique.

  2. An approach of reducing the background induced by neutrons

    NASA Technical Reports Server (NTRS)

    Shen, C.; Gu, Y.; Sun, Y.; Ma, Y.; Dai, C.; Fan, Z.

    1985-01-01

    The background induced by interactions of neutrons with detector material (and shield material) is difficult to be rejected. It is one of the most important factors to affect the sensitivity of a balloon-borne gamma-ray astronomical telescope. The main component of neutron flux at the major detector of the telescope is incident neutrons, that consists of atmospheric neutrons and neutrons locally produced in the balloon platform. Therefore, shielding the detector from incident neutrons is a possible way to reduce the background. NaI (T1) crystal is very widely used in gamma-ray astronomical telescopes. Through balloon-borne experiment it is shown that up 6 LiF shield is effective to reduce the background in NaI crystal.

  3. Experimental Results on the First Short Pulse Laser Driven Neutron Source Powerful Enough For Applications In Radiography

    NASA Astrophysics Data System (ADS)

    Guler, Nevzat

    2012-10-01

    Short pulse laser driven neutron source can be a compact and relatively cheap way to produce neutrons with energies in excess of 10 MeV. It is based on short pulse laser driven ions interacting with a converter material to produce neutrons via separation or breakup mechanisms. Previous research on the short pulse laser driven ion acceleration has mainly concentrated on surface acceleration mechanisms, which typically yield isotropic emission of neutrons from the converter. Recent experiments performed with a high contrast laser at TRIDENT facility at LANL demonstrated laser driven ion acceleration mechanism based on the concept of relativistic transparency. This produced an intense beam of high energy (up to 80 MeV) deuterons directed into a Be converter to produce a forward peaked neutron flux with a record yield, on the order of 4.4x10^9 n/sr. The produced neutron beam had a pulse duration less than a nanosecond and an energy range between 2-80 MeV, peaking around 12 MeV. The neutrons in the energy range of 2.5 to 15 MeV were selected by the gated neutron imager to radiograph tungsten blocks of different thicknesses. We will present the results from the two acceleration mechanisms and the first short pulse laser generated neutron radiograph.

  4. Angular correlations in emission of prescission neutrons from {sup 235}U fission induced by slow polarized neutrons

    SciTech Connect

    Danilyan, G. V.; Wilpert, T.; Granz, P.; Krakhotin, V. A.; Mezei, F.; Novitsky, V. V.; Pavlov, V. S.; Russina, M. V.; Shatalov, P. B.

    2008-12-15

    A new approach to searching for and studying scission neutrons, which is based on the analysis of specific angular correlations in nuclear fission induced by polarized neutrons, is described and used to evaluate the fraction of scission neutrons in the total number of prompt neutrons of {sup 235}U fission emitted perpendicularly to the fission axis.

  5. a Study of Prompt Neutron Emission in Thermal Neutron-Induced Fission of URANIUM-235.

    NASA Astrophysics Data System (ADS)

    Franklyn, Christopher Barry

    An original experiment was performed to measure the angular correlation of fission neutrons from thermal -neutron-induced fission of ('235)U, with respect to the light fission fragment direction, as a function of fragment mass division and neutron energy. A Monte Carlo model, with a realistic description of the fission fragment de -excitation process, was developed to simulate the observed neutron-fragment angular correlation data. The model was capable of investigating various possible forms of neutron emission which were classified into emission before, during and after full fragment acceleration, and correspondingly named scission acceleration and prompt neutron emission. Simulated neutron-fragment angular correlations displaying similar distributions with respect to the light fragment direction for different forms of neutron emission are shown to exhibit differing distributions when examined as a function of fragment mass division or neutron energy, thus illustrating the sensitivity of the experiment to the forms of neutron emission occurring in fission. A primary conclusion of the investigation was that neutron emission solely from fully accelerated fragments, whether isotropically or anisotropically emitted in the fragment centre of mass system, was unable to adequately describe the observed neutron-fragment angular correlations. Simulation of the fission process with some neutron emission before or during fragment acceleration exhibited a closer correspondence with observed phenomena. Within the scope of this work the form of neutron emission that produced the closest overall correspondence with experimental data was a simulation in which 20% of the emitted neutrons were isotropically emitted scission neutrons with a Maxwellian energy distribution of temperature 1.0 MeV. The remaining neutrons were emitted from fully accelerated fragments, being isotropic in the fragment centre of mass frame, except for the n-th(n > 1) neutrons from the light fragment, which

  6. Low doses of neutrons induce changes in gene expression

    SciTech Connect

    Woloschak, G.E.; Chang-Liu, C.M. ); Panozzo, J.; Libertin, C.R. )

    1993-01-01

    Studies were designed to identify genes induced following low-dose neutron but not following [gamma]-ray exposure in fibroblasts. Our past work had shown differences in the expression of [beta]-protein kinase C and c-fos genes, both being induced following [gamma]-ray but not neutron exposure. We have identified two genes that are induced following neutron, but not [gamma]-ray, exposure: Rp-8 (a gene induced by apoptosis) and the long terminal repeat (LTR) of the human immunodeficiency (HIV). Rp-8 mRNA induction was demonstrated in Syrian hamster embryo fibroblasts and was found to be induced in cells exposed to neutrons administered at low (0.5 cGy/min) and at high dose rate (12 cGy/min). The induction of transcription from the LTR of HIV was demonstrated in HeLa cells bearing a transfected construct of the chloramphenicol acetyl transferase (CAT) gene driven by the HIV-LTR promoter. Measures of CAT activity and CAT transcripts following irradiation demonstrated an unresponsiveness to [gamma] rays over a broad range of doses. Twofold induction of the HIV-LTR was detected following neutron exposure (48 cGy) administered at low (0.5 cGy/min) but not high (12 cGy/min) dose rates. Ultraviolet-mediated HIV-LTR induction was inhibited by low-dose-rate neutron exposure.

  7. Low doses of neutrons induce changes in gene expression

    SciTech Connect

    Woloschak, G.E.; Chang-Liu, C.M.; Panozzo, J.; Libertin, C.R.

    1993-06-01

    Studies were designed to identify genes induced following low-dose neutron but not following {gamma}-ray exposure in fibroblasts. Our past work had shown differences in the expression of {beta}-protein kinase C and c-fos genes, both being induced following {gamma}-ray but not neutron exposure. We have identified two genes that are induced following neutron, but not {gamma}-ray, exposure: Rp-8 (a gene induced by apoptosis) and the long terminal repeat (LTR) of the human immunodeficiency (HIV). Rp-8 mRNA induction was demonstrated in Syrian hamster embryo fibroblasts and was found to be induced in cells exposed to neutrons administered at low (0.5 cGy/min) and at high dose rate (12 cGy/min). The induction of transcription from the LTR of HIV was demonstrated in HeLa cells bearing a transfected construct of the chloramphenicol acetyl transferase (CAT) gene driven by the HIV-LTR promoter. Measures of CAT activity and CAT transcripts following irradiation demonstrated an unresponsiveness to {gamma} rays over a broad range of doses. Twofold induction of the HIV-LTR was detected following neutron exposure (48 cGy) administered at low (0.5 cGy/min) but not high (12 cGy/min) dose rates. Ultraviolet-mediated HIV-LTR induction was inhibited by low-dose-rate neutron exposure.

  8. Neutron capture and neutron-induced fission experiments on americium isotopes with DANCE

    SciTech Connect

    Jandel, M.; Bredeweg, T. A.; Fowler, M. M.; Bond, E. M.; Couture, A.; Haight, R. C.; Keksis, A. L.; O'Donnell, J. M.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.; Wouters, J. M.; Stoyer, M. A.; Wu, C. Y.; Becker, J. A.; Haslett, R. J.; Henderson, R. A.

    2009-01-28

    Neutron capture cross section data on Am isotopes were measured using the Detector for Advanced Neutron Capture Experiments (DANCE) at Los Alamos National Laboratory. The neutron capture cross section was determined for {sup 241}Am for neutron energies between thermal and 320 keV. Preliminary results were also obtained for {sup 243}Am for neutron energies between 10 eV and 250 keV. The results on concurrent neutron-induced fission and neutron-capture measurements on {sup 242m}Am will be presented where the fission events were actively triggered during the experiments. In these experiments, a Parallel-Plate Avalanche Counter (PPAC) detector that surrounds the target located in the center of the DANCE array was used as a fission-tagging detector to separate (n,{gamma}) events from (n,f) events. The first direct observation of neutron capture on {sup 242m}Am in the resonance region in between 2 and 9 eV of the neutron energy was obtained.

  9. Neutron capture and neutron-induced fission experiments on americium isotopes with DANCE

    SciTech Connect

    Jandel, Marian

    2008-01-01

    Neutron capture cross section data on Am isotopes were measured using the Detector for Advanced Neutron Capture Experiments (DANCE) at Los Alamos National Laboratory. The neutron capture cross section was determined for {sup 241}Am for neutron energies between thermal and 320 keV. Preliminary results were also obtained for {sup 243}Am for neutron energies between 35 eV and 200 keV. The results on concurrent neutron-induced fission and neutron-capture measurements on {sup 242m}Am will be presented, where the fission events were actively triggered during the experiments. In these experiments, the Parallel-Plate Avalanche Counter (PPAC) detector that surrounds the target located in the center of the DANCE array was used as a fission-tagging detector to separate (n,{gamma}) from (n,f) events. The first evidence of neutron capture on {sup 242m}Am in the resonance region in between 2 and 9 eV of the neutron energy was obtained.

  10. Prompt Emission in Fission Induced with Fast Neutrons

    NASA Astrophysics Data System (ADS)

    Wilson, J. N.; Lebois, M.; Halipré, P.; Oberstedt, S.; Oberstedt, A.

    Prompt gamma-ray and neutron emission data in fission integrates a large amount of information on the fission process and can shed light on the partition of energy. Measured emission spectra, average energies and multiplicities also provide important information for energy applications. While current reactors mostly use thermal neutron spectra, the future reactors of Generation IV will use fast neutron spectra for which little experimental prompt emission data exist. Initial investigations on prompt emission in fast neutron induced fission have recently been carried out at the LICORNE facility at the IPN Orsay, which exploits inverse reactions to produce naturally collimated, intense beams of neutrons. We report on first results with LICORNE to measure prompt fission gamma-ray spectra, average energies and multiplicities for 235U and 238U. Current improvements and upgrades being carried out on the LICORNE facility will also be described, including the development of a H2 gas target to reduce parasitic backgrounds and increase intensities, and the deployment of 11B beams to extend the effective LICORNE neutron energy range up to 12 MeV. Prospects for future experimental studies of prompt gamma-ray and neutron emission in fast neutron induced fission will be presented.

  11. Prompt fission neutron spectra in fast-neutron-induced fission of 238U

    NASA Astrophysics Data System (ADS)

    Desai, V. V.; Nayak, B. K.; Saxena, A.; Suryanarayana, S. V.; Capote, R.

    2015-07-01

    Prompt fission neutron spectrum (PFNS) measurements for the neutron-induced fission of 238U are carried out at incident neutron energies of 2.0, 2.5, and 3.0 MeV, respectively. The time-of-flight technique is employed to determine the energy of fission neutrons. The prompt fission neutron energy spectra so obtained are analyzed using Watt parametrization to derive the neutron multiplicity and average prompt fission neutron energy. The present experimental PFNS data are compared with the evaluated spectra taken from the ENDF/B-VII.1 library and the predictive calculations carried out using the empire-3.2 (Malta) code with built-in Los Alamos (LA) and Kornilov PFNS models. The sensitivity of the empire-3.2 LA model-calculated PFNS to the nuclear level density parameter of the average fission fragment and to the total kinetic energy is investigated. empire-3.2 LA model PFNS calculations that use Madland 2006-recommended values [D. G. Madland, Nucl. Phys. A 772, 113 (2006), 10.1016/j.nuclphysa.2006.03.013] of the total kinetic energy and the level density parameter a =A /(10 ±0.5 ) compare very well to measured data at all incident neutron incident energies.

  12. Actinide neutron-induced fission cross section measurements at LANSCE

    SciTech Connect

    Tovesson, Fredrik K; Laptev, Alexander B; Hill, Tony S

    2010-01-01

    Fission cross sections of a range of actinides have been measured at the Los Alamos Neutron Science Center (LANSCE) in support of nuclear energy applications in a wide energy range from sub-thermal energies up to 200 MeV. A parallel-plate ionization chamber are used to measure fission cross sections ratios relative to the {sup 235}U standard while incident neutron energies are determined using the time-of-flight method. Recent measurements include the {sup 233,238}U, {sup 239-242}Pu and {sup 243}Am neutron-induced fission cross sections. Obtained data are presented in comparison with ex isting evaluations and previous data.

  13. Neutron irradiation induced amorphization of silicon carbide

    SciTech Connect

    Snead, L.L.; Hay, J.C.

    1998-09-01

    This paper provides the first known observation of silicon carbide fully amorphized under neutron irradiation. Both high purity single crystal hcp and high purity, highly faulted (cubic) chemically vapor deposited (CVD) SiC were irradiated at approximately 60 C to a total fast neutron fluence of 2.6 {times} 10{sup 25} n/m{sup 2}. Amorphization was seen in both materials, as evidenced by TEM, electron diffraction, and x-ray diffraction techniques. Physical properties for the amorphized single crystal material are reported including large changes in density ({minus}10.8%), elastic modulus as measured using a nanoindentation technique ({minus}45%), hardness as measured by nanoindentation ({minus}45%), and standard Vickers hardness ({minus}24%). Similar property changes are observed for the critical temperature for amorphization at this neutron dose and flux, above which amorphization is not possible, is estimated to be greater than 130 C.

  14. Neutron-induced reaction studies using stored ions

    NASA Astrophysics Data System (ADS)

    Glorius, Jan; Litvinov, Yuri A.; Reifarth, René

    2015-11-01

    Storage rings provide unique possibilities for investigations of nuclear reactions. Radioactive ions can be stored if the ring is connected to an appropriate facility and reaction studies are feasible at low beam intensities because of the recycling of beam particles. Using gas jet or droplet targets, charged particle-induced reactions on short-lived isotopes can be studied in inverse kinematics. In such a system a high-flux reactor could serve as a neutron target extending the experimental spectrum to neutron-induced reactions. Those could be studied over a wide energy range covering the research fields of nuclear astrophysics and reactor safety, transmutation of nuclear waste and fusion.

  15. Neutron-induced background in charge-coupled device detectors

    SciTech Connect

    Jaanimagi, P. A.; Boni, R.; Keck, R. L.

    2001-01-01

    The inertial confinement fusion (ICF) community must become more cognizant of the neutron-induced background levels in charge-coupled device (CCD) detectors that are replacing film as the recording medium in many ICF diagnostics. This background degrades the signal-to-noise ratio (SNR) of the recorded signals and for the highest-yield shots comprises a substantial fraction of the pixel's full well capacity. CCD detectors located anywhere in the OMEGA Target Bay are precluded from recording high precision signals (SNR>30) for deuterium--tritium neutron yields greater than 10{sup 13}. CCDs make excellent calibrated neutron detectors. The average CCD background level is proportional to the neutron yield, and we have measured a linear response over four decades. The spectrum of deposited energy per pixel is heavily weighted to low energies, <50 keV, with a few isolated saturated pixels. Most of the background recorded by the CCDs is due to secondary radiation produced by interactions of the primary neutrons with all the materials in the Target Bay as well as the shield walls and the floor. Since the noise source comes from all directions it is very difficult to shield. The fallback position of using film instead of CCD cameras for high-neutron-yield target shots is flawed, as we have observed substantially increased fog levels on our x-ray recording film as a function of the neutron yield.

  16. Neutron Induced Capture and Fission Processes on 238U

    NASA Astrophysics Data System (ADS)

    Oprea, Cristiana; Oprea, Alexandru

    2016-03-01

    Nuclear data on Uranium isotopes are of crucial interest for new generation of nuclear reactors. Processes of interest are the nuclear reactions induced by neutrons and in this work mainly the capture and the fission process on 238U will be analyzed in a wide energy interval. For slow and resonant neutrons the many levels Breit - Wigner formalism is necessary. In the case of fast and very fast neutrons up to 200 MeV the nuclear reaction mechanism implemented in Talys will be used. The present evaluations are necessary in order to obtain the field of neutrons in the design of nuclear reactors and they are compared with experimental data from literature obtained from capture and (n,xn) processes.

  17. Facility for neutron induced few body reactions at Bochum University

    NASA Astrophysics Data System (ADS)

    Bannach, B.; Bodek, K.; Börker, G.; Kamke, D.; Krug, J.; Lekkas, P.; Lübcke, W.; Stephan, M.

    1987-02-01

    A facility is described which is designed for the measurement of neutron induced three-body breakup. It has been used for the breakup of deuterium and of the nucleus 9Be. Neutrons are produced by a pulsed beam of deuterons from the Bochum 4MV Dynamitron-Tandem accelerator by bombarding a thick tritium-titanium target or a deuterium gas target. The outgoing beam is collimated by a 4π shielding to a solid angle of about 1 msr. In most cases, a liquid scintillator (NE232 or a mixture of NE232/NE213) serves as a target for the neutron beam. Scattered neutrons are detected by NE213-detectors of different sizes. For testing purposes the differential elastic n-d cross section and simultaneously the response of NE232 have been measured at 22.4 and 7.9 MeV.

  18. Basic Physics Data: Measurement of Neutron Multiplicity from Induced Fission

    SciTech Connect

    Pozzi, Sara; Haight, Robert

    2015-05-04

    From October 1 to October 17 a team of researchers from UM visited the LANSCE facility for an experiment during beam-time allotted from October 4 to October 17. A total of 24 detectors were used at LANSCE including liquid organic scintillation detectors (EJ-309), NaI scintillation detectors, and Li-6 enriched glass detectors. It is a double time-offlight (TOF) measurement using spallation neutrons generated by a target bombarded with pulsed high-energy protons. The neutrons travel to an LLNL-manufactured parallel plate avalanche chamber (PPAC) loaded with thin U-235 foils in which fission events are induced. The generated fission neutrons and photons are then detected in a detector array designed and built at UM and shipped to LANSCE. Preparations were made at UM, where setup and proposed detectors were tested. The UM equipment was then shipped to LANSCE for use at the 15L beam of the weapons neutron research (WNR) facility.

  19. Lanl Neutron-Induced Fission Cross Section Measurement Program

    NASA Astrophysics Data System (ADS)

    Laptev, A. B.; Tovesson, F.; Hill, T. S.

    2014-09-01

    A well established program of neutron-induced fission cross section measurement at Los Alamos Neutron Science Center (LANSCE) is supporting the Fuel Cycle Research program (FC R&D). Combining measurements at two LANSCE facilities, the Lujan Center and the Weapons Neutron Research facility (WNR), cover neutron energies over 10 orders of magnitude: from sub-thermal up to 200 MeV. A parallel-plate fission ionization chamber was used as a fission fragment detector. The 235U(n,f) standard was used as the reference. Fission cross sections have been measured for multiple actinides. The new data presented here completes the suite of long-lived Uranium isotopes that were investigated with this experimental approach. The cross section data are presented in comparison with existing evaluations and previous measurements.

  20. Sorption kinetics of superabsorbent polymers (SAPs) in fresh Portland cement-based pastes visualized and quantified by neutron radiography and correlated to the progress of cement hydration

    SciTech Connect

    Schroefl, Christof; Mechtcherine, Viktor; Vontobel, Peter; Hovind, Jan; Lehmann, Eberhard

    2015-09-15

    Water sorption of two superabsorbent polymers in cement-based pastes has been characterized by neutron radiography. Cement pastes with W/C of 0.25 and 0.50 and one additionally containing silica fume (W/C = 0.42) were investigated. The SAPs differed in their inherent sorption kinetics in extracted cement pore solution (SAP 1: self-releasing; SAP 2: retentive). Desorption from SAP 1 started very early after paste preparation. Hence, its individual non-retentiveness governs its behavior only. SAP 2 released water into all matrices, but its kinetics were different. In the paste with the highest W/C, some moderate water release was recorded from the beginning. In the other two pastes, SAP 2 retained its stored liquid during the dormant period, i.e., up to the percolation threshold. Intense desorption then set in and continued throughout the acceleration period. These findings explain the pronouncedly higher efficiency of SAP 2 as internal curing admixture as compared to SAP 1.

  1. Investigation of the role of the micro-porous layer in polymer electrolyte fuel cells with hydrogen deuterium contrast neutron radiography.

    PubMed

    Cho, Kyu Taek; Mench, Matthew M

    2012-03-28

    In this study, the high resolution hydrogen-deuterium contrast radiography method was applied to elucidate the impact of the micro-porous layer (MPL) on water distribution in the porous fuel cell media. At the steady state, deuterium replaced hydrogen in the anode stream, and the large difference in neutron attenuation of the D(2)O produced at the cathode was used to track the produced water. It was found that the water content peaked in the cathode-side diffusion media (DM) for the cell without MPL, but with an MPL on the anode and cathode DM, the peak water amount was pushed toward the anode, resulting in a relatively flattened water profile through components and demonstrating a liquid barrier effect. Additionally, the dynamic water behavior in diffusion media was analyzed to understand the effect of a MPL and operating conditions. The water content in the DM changed with applied current, although there is a significant amount of residual liquid content that does not appear to be part of capillary channels. The effect of the MPL on irreducible saturation in DM and cell performance was also investigated. PMID:22337210

  2. Observation and quantification of water penetration into Strain Hardening Cement-based Composites (SHCC) with multiple cracks by means of neutron radiography

    NASA Astrophysics Data System (ADS)

    Zhang, P.; Wittmann, F. H.; Zhao, T. J.; Lehmann, E. H.; Tian, L.; Vontobel, P.

    2010-08-01

    Durability of reinforced concrete structures has become a crucial issue with respect to economy, ecology and sustainability. One major reason for durability problems of concrete structures is the limited strain capacity of cement-based materials under imposed tensile stress. By adding PVA fibers, a new material named Strain Hardening Cement-based Composites (SHCC) with high strain capacity can be produced. Due to the formation of multiple micro-cracks, wide cracks can be avoided in SHCC under an imposed strain. The high strain capacity, however, is beneficial with respect to durability only if the multi-crack formation in SHCC does not lead to significantly increased water penetration. If water and aggressive chemical compounds such as chlorides and sulfates dissolved in water penetrate into the cement-based matrix and reach the steel reinforcement service-life of reinforced concrete structures will be reduced significantly. In this project, neutron radiography was applied to observe and quantify the process of water penetration into uncracked SHCC and after the multi-crack formation. In addition, water penetration into integral water repellent cracked and uncracked SHCC, which has been produced by adding a silane-based water repellent agent to the fresh SHCC mortar has been investigated. Results will be discussed with respect to durability.

  3. Neutron-induced gamma-ray production

    SciTech Connect

    Nelson, R.O.; Drake, D.M.; Haight, R.C.; Laymon, C.M.; Wender, S.A.; Young, P.G. ); Drosg, M.; Pavlik, A.; Vonach, H. . Inst. fuer Radiumforschung und Kernphysik); Larson, D.C. )

    1990-01-01

    High resolution Ge detectors coupled with the WNR high-intensity, high-energy, pulsed neutron source at LAMPF recently have been used to measure a variety of reactions including (n,xn) for 1 {le} x {le} 11, (n,n{alpha}), (n,np), etc. The reactions are identified by the known gamma-ray energies of prompt transitions between the low lying states in the final nuclei. With our spallation neutron source cross section data are obtained at all neutron energies from a few MeV to over 200 MeV. Applications of the data range from assisting the interpretation of the planned Mars Observer mission to map the elemental composition of the martian surface, to providing data for nuclear model verification and understanding reaction mechanisms. For example, a study of the Pb(n,xn) reactions for 2 {le} x {le} 11 populating the first excited states of the even Pb isotopes is underway. These data will be used to test preequilibrium and other reaction models. 9 refs., 5 figs.

  4. Neutron-induced defects in the lithium tetraborate single crystals

    NASA Astrophysics Data System (ADS)

    Burak, Y. V.; Padlyak, B. V.; Shevel, V. M.

    The X-band (nucongruent to9.4 GHz) electron spin resonance (ESR) spectra of the un-doped isotopically enriched lithium tetraborate (LTB) Li2B4O7 single crystals, irradiated by thermal neutrons (fluences Phi(n) =2.74x 10(15) divided by 1.79 x 10(18) cm(-2) ) were investigated at 300 and 77 K. The LTB crystals of high chemical purity and optical quality with different isotope compositions (Li-6(2) (B4O7)-B-10 , Li-6(2) (B4O7)-B-11 , Li-7(2) (B4O7)-B-10 and Li-7(2) (B4O7)-B-11) were grown by Czochralski technique. The thermal neutrons (the total quantity >90%) with fluence near 10(18) cm(-2) induce at least 4 different types of stable paramagnetic centers in the Li and B isotopically enriched LTB crystals. The ESR spectra, electron structure and efficiency of generation for centers, induced by thermal neutrons, essentially depend on neutron fluence and isotope composition of the LTB crystals. The local symmetry and the spin Hamiltonian parameters of the observed paramagnetic centers were determined and their electron structure were established. The possible models and formation mechanism of the radiation defects, induced by thermal neutrons in the LTB lattice, are proposed.

  5. Neutron-Induced Charged Particle Studies at LANSCE

    NASA Astrophysics Data System (ADS)

    Lee, Hye Young; Haight, Robert C.

    2014-09-01

    Direct measurements on neutron-induced charged particle reactions are of interest for nuclear astrophysics and applied nuclear energy. LANSCE (Los Alamos Neutron Science Center) produces neutrons in energy of thermal to several hundreds MeV. There has been an effort at LANSCE to upgrade neutron-induced charged particle detection technique, which follows on (n,z) measurements made previously here and will have improved capabilities including larger solid angles, higher efficiency, and better signal to background ratios. For studying cross sections of low-energy neutron induced alpha reactions, Frisch-gridded ionization chamber is designed with segmented anodes for improving signal-to-noise ratio near reaction thresholds. Since double-differential cross sections on (n,p) and (n,a) reactions up to tens of MeV provide important information on deducing nuclear level density, the ionization chamber will be coupled with silicon strip detectors (DSSD) in order to stop energetic charged particles. In this paper, we will present the status of this development including the progress on detector design, calibrations and Monte Carlo simulations. This work is funded by the US Department of Energy - Los Alamos National Security, LLC under Contract DE-AC52-06NA25396.

  6. Digital radiography.

    PubMed

    Mattoon, J S

    2006-01-01

    Digital radiography has been used in human medical imaging since the 1980s with recent and rapid acceptance into the veterinary profession. Using advanced image capture and computer technology, radiographic images are viewed on a computer monitor. This is advantageous because radiographic images can be adjusted using dedicated computer software to maximize diagnostic image quality. Digital images can be accessed at computer workstations throughout the hospital, instantly retrieved from computer archives, and transmitted via the internet for consultation or case referral. Digital radiographic data can also be incorporated into a hospital information system, making record keeping an entirely paperless process. Digital image acquisition is faster when compared to conventional screen-film radiography, improving workflow and patient throughput. Digital radiography greatly reduces the need for 'retake' radiographs because of wide latitude in exposure factors. Also eliminated are costs associated with radiographic film and x-ray film development. Computed radiography, charged coupled devices, and flat panel detectors are types of digital radiography systems currently available. PMID:16971994

  7. Flash Proton Radiography

    NASA Astrophysics Data System (ADS)

    Merrill, Frank E.

    Protons were first investigated as radiographic probes as high energy proton accelerators became accessible to the scientific community in the 1960s. Like the initial use of X-rays in the 1800s, protons were shown to be a useful tool for studying the contents of opaque materials, but the electromagnetic charge of the protons opened up a new set of interaction processes which complicated their use. These complications in combination with the high expense of generating protons with energies high enough to penetrate typical objects resulted in proton radiography becoming a novelty, demonstrated at accelerator facilities, but not utilized to their full potential until the 1990s at Los Alamos. During this time Los Alamos National Laboratory was investigating a wide range of options, including X-rays and neutrons, as the next generation of probes to be used for thick object flash radiography. During this process it was realized that the charge nature of the protons, which was the source of the initial difficulty with this idea, could be used to recover this technique. By introducing a magnetic imaging lens downstream of the object to be radiographed, the blur resulting from scattering within the object could be focused out of the measurements, dramatically improving the resolution of proton radiography of thick systems. Imaging systems were quickly developed and combined with the temporal structure of a proton beam generated by a linear accelerator, providing a unique flash radiography capability for measurements at Los Alamos National Laboratory. This technique has now been employed at LANSCE for two decades and has been adopted around the world as the premier flash radiography technique for the study of dynamic material properties.

  8. Neutron induced fission of 234U

    NASA Astrophysics Data System (ADS)

    Hambsch, F.-J.; Al-Adili, A.; Oberstedt, S.; Pomp, S.

    2012-02-01

    The fission fragment properties of 234U(n,f) were investigated as a function of incident neutron energy from 0.2 MeV up to 5 MeV. The fission fragment mass, angular distribution and kinetic energy were measured with a double Frisch-grid ionization chamber using both analogue and digital data acquisition techniques. The reaction 234U(n,f) is relevant, since it involves the same compound nucleus as formed after neutron evaporation from highly excited 236U*, the so-called second-chance fission of 235U. Experimental data on fission fragment properties like fission fragment mass and total kinetic energy (TKE) as a function of incident neutron energy are rather scarce for this reaction. For the theoretical modelling of the reaction cross sections for Uranium isotopes this information is a crucial input parameter. In addition, 234U is also an important isotope in the Thorium-based fuel cycle. The strong anisotropy of the angular distribution around the vibrational resonance at En = 0.77 MeV could be confirmed using the full angular range. Fluctuations in the fragment TKE have been observed in the threshold region around the strong vibrational resonance at En = 0.77 MeV. The present results are in contradiction with corresponding literature values. Changes in the mass yield around the vibrational resonance and at En = 5 MeV relative to En = 2 MeV show a different signature. The drop in mean TKE around 2.5 to 3 MeV points to pair breaking as also observed in 235,238U(n,f). The measured two-dimensional mass yield and TKE distribution have been described in terms of fission modes. The yield of the standard 1 (S1) mode shows fluctuations in the threshold of the fission cross section due to the influence of the resonance and levels off at about 20% yield for higher incident neutron energies. The S2 mode shows the respective opposite behaviour. The mean TKE of both modes decreases with En. The decrease in mean TKE overrules the increase in S1 yield, so the mean TKE is dropping

  9. Cross sections of neutron-induced reactions

    SciTech Connect

    Mukhopadhyay, Tapan; Lahiri, Joydev; Basu, D. N.

    2010-10-15

    We study the properties of the neutron-nucleus total and reaction cross sections for several nuclei. We have applied an analytical model, the nuclear Ramsauer model, justified it from the nuclear reaction theory approach, and extracted the values of 12 parameters used in the model. The given parametrization has an advantage as phenomenological optical model potentials are limited up to 150-200 MeV. The present model provides good estimates of the total cross sections for several nuclei particularly at high energies.

  10. High Energy Neutron Induced Gamma Production

    SciTech Connect

    Brown, D A; Johnson, M; Navratil, P

    2007-09-28

    N Division has an interest in improving the physics and accuracy of the gamma data it provides to its customers. It was asked to look into major gamma producing reactions for 14 MeV incident neutrons for several low-Z materials and determine whether LLNL's processed data files faithfully represent the current state of experimental and theoretical knowledge for these reactions. To address this, we surveyed the evaluations of the requested materials, made recommendations for the next ENDL release and noted isotopes that will require further experimental study. This process uncovered several major problems in our translation and processing of the ENDF formatted evaluations, most of which have been resolved.

  11. Noise-induced dephasing in neutron interferometry

    SciTech Connect

    Sulyok, G.; Hasegawa, Y.; Rauch, H.; Klepp, J.; Lemmel, H.

    2010-05-15

    Decoherence phenomenona in a neutron interferometer are analyzed by simulation of the effects of an environment with magnetic noise fields. Basic calculations and experiments show the validity and limitations of this model system. In particular, loss and recovery of the interference pattern with controllable noise sources in both interferometer arms are discussed in detail. In addition, the decoherence behavior at high interference order, where Schroedinger-cat-like states exist in the interferometer, is investigated. While at low interference order a smearing of the interference pattern is observed, at high interference order a smearing of the modulated momentum distribution occurs.

  12. Accurate measurement of the through-plane water content of proton-exchange membranes using neutron radiography

    NASA Astrophysics Data System (ADS)

    Hussey, D. S.; Spernjak, D.; Weber, A. Z.; Mukundan, R.; Fairweather, J.; Brosha, E. L.; Davey, J.; Spendelow, J. S.; Jacobson, D. L.; Borup, R. L.

    2012-11-01

    The water sorption of proton-exchange membranes (PEMs) was measured in situ using high-resolution neutron imaging in small-scale fuel cell test sections. A detailed characterization of the measurement uncertainties and corrections associated with the technique is presented. An image-processing procedure resolved a previously reported discrepancy between the measured and predicted membrane water content. With high-resolution neutron-imaging detectors, the water distributions across N1140 and N117 Nafion membranes are resolved in vapor-sorption experiments and during fuel cell and hydrogen-pump operation. The measured in situ water content of a restricted membrane at 80 °C is shown to agree with ex situ gravimetric measurements of free-swelling membranes over a water activity range of 0.5 to 1.0 including at liquid equilibration. Schroeder's paradox was verified by in situ water-content measurements which go from a high value at supersaturated or liquid conditions to a lower one with fully saturated vapor. At open circuit and during fuel cell operation, the measured water content indicates that the membrane is operating between the vapor- and liquid-equilibrated states.

  13. Skull Radiography

    MedlinePlus

    What you need to know about… Skull Radiography X-ray images of the skull are taken when it is necessary to see the cranium, facial bones or jaw bones. ... Among other things, x-ray exams of the skull can show fractures. Patient Preparation Before the examination, ...

  14. Endodontic radiography.

    PubMed

    Nixon, P P; Robinson, P B

    1997-05-01

    The ability to take radiographs of good diagnostic quality is an essential prerequisite for successful root canal therapy. However, the operator also has a responsibility to limit the radiation dose to the patient. This article reviews the radiography required for root canal treatment with these criteria in mind. PMID:9515363

  15. Analysis of induced effects in matter during pulsed Nd:YAG laser welding by flash radiography

    NASA Astrophysics Data System (ADS)

    Pascal, G.; Noré, D.; Girard, K.; Perret, O.; Naudy, P.

    2000-05-01

    Tantalum and TA6V (titanium alloy) are respectively used in corrosive chemical product containers and in aircraft and aerospace industries. The objective of this study was to analyze the dynamic behavior of the matter during deep laser spot welding of these materials. The obtained images should allow a better understanding of laser-matter interaction and should validate a model developed for porosities formation. Because of the afterglow of detectors, classical video x-ray systems are not suitable for the analysis of short dynamic effects during and after the laser pulse. An experimental device, based on a flash x-ray generator EUROPULSE 600 kV and a QUANTEL pulsed Nd:YAG laser, has been used. The flash x-ray generator is triggered, after a programmed delay, by the laser shot. The x-ray pulse duration is 30 ns. Welding parameters (pulse duration and energy) yield molten zones of 2 mm depth. Both materials, tantalum and TA6V, have been tested. Radiological films BIOMAX coupled with radioluminescent screens and direct exposure film (DEF) were respectively used for tantalum and TA6V samples. A fine collimation was studied to avoid the scattering effect in the material and in the radioluminescent screen. Radiological test samples, made of tantalum and TA6V, were performed to estimate the images qualities obtained by flash radiography. About 270 laser/x-rays shots were performed. The radiographic images have been digitalized and processed. The results show a deep and narrow capillary hole called "keyhole" which appears a few milliseconds after the beginning of the interaction. The "keyhole" hollows until the end of the laser pulse. After the end of the laser pulse, the molten bath collapses in less than 1 ms, trapping cavities.

  16. Numerical analysis of a neutron radiography-monitored infiltration experiment: Two-phase modeling using TOUGH2

    NASA Astrophysics Data System (ADS)

    Princ, Tomas; Sacha, Jan; Snehota, Michal

    2015-04-01

    It has been shown in ponded infiltration-outflow column experiments that true steady state flow is often not reached in certain soils exhibiting preferential flow. Experiments often show a temporal change of flow rate that can, in the case of experiments conducted on saturated samples at constant head gradients, be interpreted as variations of saturated hydraulic conductivity. It has also been shown that these variations can be caused by slow redistribution of entrapped air in the sample. The experiment presented in this study was conducted on a small fabricated sample with axially symmetrical inner geometry of material distribution. In preparing the sample, areas of fine sand were surrounded by continuous preferential pathways composed of coarse sand. Ponded infiltration was performed on the sample while monitoring using neutron imaging was conducted to obtain spatiotemporal information about the water content distribution in the sample. Results of the experiment revealed that during the quasi-steady state stage of the experiment the saturated hydraulic conductivity gradually decreased due to the transfer of air bubbles from fine sand to coarse sand. Flow through the coarse sand became partially blocked by air bubbles and the overall quasi-steady flow rate consequently decreased by 30% during six hours of infiltration. In an attempt to model this behavior, we simulated ponded infiltration in two dimensional (2D) domains using the EOS3 module of the numerical simulator TOUGH2 (Lawrence Berkeley National Laboratory). The main objective was to determine which types of preferential pathway patterns were prone to air entrapment and whether the air redistribution observed in the experiment could be numerically simulated. Modeling was conducted in three different 2D domains with increasing complexity of the preferential pathways' geometry. Analysis of the results confirmed that during ponded infiltration, water percolated fastest at the start of infiltration through the

  17. Imaging special nuclear material with muon-induced neutron emission.

    NASA Astrophysics Data System (ADS)

    Durham, J. Matthew

    2015-10-01

    Cosmic ray muons are a ubiquitous source of energetic charged particles that can be used to image high-Z material through significant amounts of shielding. Negative muons which come to rest inside fissile material can be captured into atomic orbitals and induce fission, which may lead to detectable neutron emission. Muon tracks that are correlated with neutron emission can therefore serve as a signal for the presence of fissile material, and laminography with the tagged muon tracks can be performed to produce an image of the neutron emission source. In this presentation, we will discuss results of imaging tests using this technique at Los Alamos National Laboratory, and possible applications in treaty verification.

  18. Particle Beam Radiography

    NASA Astrophysics Data System (ADS)

    Peach, Ken; Ekdahl, Carl

    2014-02-01

    Particle beam radiography, which uses a variety of particle probes (neutrons, protons, electrons, gammas and potentially other particles) to study the structure of materials and objects noninvasively, is reviewed, largely from an accelerator perspective, although the use of cosmic rays (mainly muons but potentially also high-energy neutrinos) is briefly reviewed. Tomography is a form of radiography which uses multiple views to reconstruct a three-dimensional density map of an object. There is a very wide range of applications of radiography and tomography, from medicine to engineering and security, and advances in instrumentation, specifically the development of electronic detectors, allow rapid analysis of the resultant radiographs. Flash radiography is a diagnostic technique for large high-explosive-driven hydrodynamic experiments that is used at many laboratories. The bremsstrahlung radiation pulse from an intense relativistic electron beam incident onto a high-Z target is the source of these radiographs. The challenge is to provide radiation sources intense enough to penetrate hundreds of g/cm2 of material, in pulses short enough to stop the motion of high-speed hydrodynamic shocks, and with source spots small enough to resolve fine details. The challenge has been met with a wide variety of accelerator technologies, including pulsed-power-driven diodes, air-core pulsed betatrons and high-current linear induction accelerators. Accelerator technology has also evolved to accommodate the experimenters' continuing quest for multiple images in time and space. Linear induction accelerators have had a major role in these advances, especially in providing multiple-time radiographs of the largest hydrodynamic experiments.

  19. Using 2H labeling with neutron radiography for the study of solid polymer electrolyte water transport properties.

    PubMed

    Boillat, P; Oberholzer, P; Seyfang, B C; Kästner, A; Perego, R; Scherer, G G; Lehmann, E H; Wokaun, A

    2011-06-15

    A method combining (2)H labeling of different sources of H atoms (hydrogen, water vapor) with neutron imaging for the analysis of transport parameters in the bulk and at the interfaces of Nafion polymer electrolyte membranes is proposed. The use of different isotope compositions in the steady state allows evaluation of the relation between bulk and interface transport parameters, but relies on literature data for evaluating absolute values. By using transients of isotope composition, absolute values of these parameters including the self-diffusion coefficient of H can be extracted, making this method an attractive alternative to self-diffusion measurements using nuclear magnetic resonance (NMR), allowing measurements in precisely controlled conditions in real fuel cell structures. First measurements were realized on samples with and without electrodes and we report values of the self-diffusion coefficient of the same order of magnitude as values measured using NMR, although with slightly higher numbers. In our particular case, lower interfacial exchange rates for water transport were observed for samples with an electrode. PMID:21613688

  20. Recovering root system traits using image analysis exemplified by two-dimensional neutron radiography images of lupine.

    PubMed

    Leitner, Daniel; Felderer, Bernd; Vontobel, Peter; Schnepf, Andrea

    2014-01-01

    Root system traits are important in view of current challenges such as sustainable crop production with reduced fertilizer input or in resource-limited environments. We present a novel approach for recovering root architectural parameters based on image-analysis techniques. It is based on a graph representation of the segmented and skeletonized image of the root system, where individual roots are tracked in a fully automated way. Using a dynamic root architecture model for deciding whether a specific path in the graph is likely to represent a root helps to distinguish root overlaps from branches and favors the analysis of root development over a sequence of images. After the root tracking step, global traits such as topological characteristics as well as root architectural parameters are computed. Analysis of neutron radiographic root system images of lupine (Lupinus albus) grown in mesocosms filled with sandy soil results in a set of root architectural parameters. They are used to simulate the dynamic development of the root system and to compute the corresponding root length densities in the mesocosm. The graph representation of the root system provides global information about connectivity inside the graph. The underlying root growth model helps to determine which path inside the graph is most likely for a given root. This facilitates the systematic investigation of root architectural traits, in particular with respect to the parameterization of dynamic root architecture models. PMID:24218493

  1. Neutron-neutron angular correlations in spontaneous and neutron-induced fission

    NASA Astrophysics Data System (ADS)

    Vogt, Ramona; Randrup, Jorgen

    2015-04-01

    For many years, the state of the art for treating fission in radiation transport codes has involved sampling from average distributions. However, such average fission models have limited interaction-by-interaction capabilities. Energy is not explicitly conserved and no correlations are available because all particles are emitted isotropically and independently. However, in a true fission event, the energies, momenta and multiplicities of emitted particles are correlated. Such correlations are interesting for many modern applications, including detecting small amounts of material and detector development. Event-by-event generation of complete fission events are particularly useful because it is possible to obtain the fission products as well as the prompt neutrons and photons emitted during the fission process, all with complete kinematic information. It is therefore possible to extract any desired correlation observables. Such codes, when included in broader Monte Carlo transport codes, like MCNP, can be made broadly available. We compare results from our fast event-by-event fission code FREYA (Fission Reaction Event Yield Algorithm) with available neutron-neutron angular correlation data and study the sensitivities of these observables to the model inputs. This work was done under the auspices of the US DOE by (RV) LLNL, Contract DE-AC52-07NA27344, and by (JR) LBNL, Contract DE-AC02-05CH11231. We acknowledge support of the Office of Defense Nuclear Nonproliferation Research and Development in DOE/NNSA.

  2. Fast neutron imaging device and method

    DOEpatents

    Popov, Vladimir; Degtiarenko, Pavel; Musatov, Igor V.

    2014-02-11

    A fast neutron imaging apparatus and method of constructing fast neutron radiography images, the apparatus including a neutron source and a detector that provides event-by-event acquisition of position and energy deposition, and optionally timing and pulse shape for each individual neutron event detected by the detector. The method for constructing fast neutron radiography images utilizes the apparatus of the invention.

  3. Dependence of Delayed-Neutron Energy Spectra on the Energy of Neutrons which Induce Fission of Uranium -235

    NASA Astrophysics Data System (ADS)

    Sharfuddin, Quazi

    Delayed neutron energy spectra following both fast and thermal neutron induced fission of U-235 are measured by the time-of-flight technique using beta-neutron correlations. Fast neutrons are produced via the (p,n) reaction in Li-7 using the University of Lowell 5.5 MV Van de Graaff Accelerator, whereas thermal neutrons are produced by surrounding the fission chamber and target assembly with paraffin. Fission fragments stopped in the helium atmosphere of the fission chamber are transferred by a helium jet system to a low background counting room where the composite delayed neutron energy spectra are measured as a function of time after fission. The delayed neutron energy spectra following fast fission of U-235 are compared to those resulting from thermal fission of U-235. Two mathematical methods are developed to deduce the equilibrium delayed neutron spectrum from the composite delayed neutron spectra measured as a function of delay time after fission. These methods are then applied to obtain the equilibrium delayed neutron spectrum from thermal fission of U-235. Finally, the six-group delayed neutron spectra resulting from thermal fission of U-235 are deduced from the measured composite delayed neutron spectra as a function of delay time after fission using a matrix inversion method.

  4. Genotoxicity of neutrons in Drosophila melanogaster. Somatic mutation and recombination induced by reactor neutrons.

    PubMed

    Guzmán-Rincón, J; Delfín-Loya, A; Ureña-Núñez, F; Paredes, L C; Zambrano-Achirica, F; Graf, U

    2005-08-01

    This paper describes the observation of a direct relationship between the absorbed doses of neutrons and the frequencies of somatic mutation and recombination using the wing somatic mutation and recombination test (SMART) of Drosophila melanogaster. This test was used for evaluating the biological effects induced by neutrons from the Triga Mark III reactor of Mexico. Two different reactor power levels were used, 300 and 1000 kW, and two absorbed doses were tested for each power level: 1.6 and 3.2 Gy for 300 kW and 0.84 and 1.7 Gy for 1000 kW. A linear relationship was observed between the absorbed dose and the somatic mutation and recombination frequencies. Furthermore, these frequencies were dependent on larval age: In 96-h-old larvae, the frequencies were increased considerably but the sizes of the spots were smaller than in 72-h-old larvae. The analysis of the balancer-heterozygous progeny showed a linear absorbed dose- response relationship, although the responses were clearly lower than found in the marker-trans-heterozygous flies. Approximately 65% of the genotoxicity observed is due to recombinational events. The results of the study indicate that thermal and fast neutrons are both mutagenic and recombinagenic in the D. melanogaster wing SMART, and that the frequencies are dependent on neutron dose, reactor power, and the age of the treated larvae. PMID:16038586

  5. Corrosion Inhibitors as Penetrant Dyes for Radiography

    NASA Technical Reports Server (NTRS)

    Novak, Howard L.; Hall, Phillip B.

    2003-01-01

    Liquid/vapor-phase corrosion inhibitors (LVCIs) have been found to be additionally useful as penetrant dyes for neutron radiography (and perhaps also x-radiography). Enhancement of radiographic contrasts by use of LVCIs can reveal cracks, corrosion, and other defects that may be undetectable by ultrasonic inspection, that are hidden from direct optical inspection, and/or that are difficult or impossible to detect in radiographs made without dyes.

  6. Digital Radiography

    NASA Technical Reports Server (NTRS)

    1986-01-01

    System One, a digital radiography system, incorporates a reusable image medium (RIM) which retains an image. No film is needed; the RIM is read with a laser scanner, and the information is used to produce a digital image on an image processor. The image is stored on an optical disc. System allows the radiologist to "dial away" unwanted images to compare views on three screens. It is compatible with existing equipment and cost efficient. It was commercialized by a Stanford researcher from energy selective technology developed under a NASA grant.

  7. Detecting special nuclear material using muon-induced neutron emission

    NASA Astrophysics Data System (ADS)

    Guardincerri, Elena; Bacon, Jeffrey; Borozdin, Konstantin; Matthew Durham, J.; Fabritius, Joseph, II; Hecht, Adam; Milner, Edward C.; Miyadera, Haruo; Morris, Christopher L.; Perry, John; Poulson, Daniel

    2015-07-01

    The penetrating ability of cosmic ray muons makes them an attractive probe for imaging dense materials. Here, we describe experimental results from a new technique that uses neutrons generated by cosmic-ray muons to identify the presence of special nuclear material (SNM). Neutrons emitted from SNM are used to tag muon-induced fission events in actinides and laminography is used to form images of the stopping material. This technique allows the imaging of SNM-bearing objects tagged using muon tracking detectors located above or to the side of the objects, and may have potential applications in warhead verification scenarios. During the experiment described here we did not attempt to distinguish the type or grade of the SNM.

  8. Muon-Induced Neutrons Do Not Explain the DAMA Data

    NASA Astrophysics Data System (ADS)

    Klinger, J.; Kudryavtsev, V. A.

    2015-04-01

    We present an accurate model of the muon-induced background in the DAMA/LIBRA experiment. Our work challenges proposed mechanisms which seek to explain the observed DAMA signal modulation with muon-induced backgrounds. Muon generation and transport are performed using the MUSIC /MUSUN code, and subsequent interactions in the vicinity of the DAMA detector cavern are simulated with Geant4. We estimate the total muon-induced neutron flux in the detector cavern to be Φnν=1.0 ×10-9 cm-2 s-1 . We predict 3.49 ×10-5 counts /day /kg /keV , which accounts for less than 0.3% of the DAMA signal modulation amplitude.

  9. Muon-Induced Neutrons Do Not Explain the DAMA Data.

    PubMed

    Klinger, J; Kudryavtsev, V A

    2015-04-17

    We present an accurate model of the muon-induced background in the DAMA/LIBRA experiment. Our work challenges proposed mechanisms which seek to explain the observed DAMA signal modulation with muon-induced backgrounds. Muon generation and transport are performed using the MUSIC/MUSUN code, and subsequent interactions in the vicinity of the DAMA detector cavern are simulated with Geant4. We estimate the total muon-induced neutron flux in the detector cavern to be Φ(n)(ν)=1.0 × 10(-9)  cm(-2) s(-1). We predict 3.49 × 10(-5)  counts/day/kg/keV, which accounts for less than 0.3% of the DAMA signal modulation amplitude. PMID:25933303

  10. Fission of Actinides Induced by Neutrons at nTOF

    SciTech Connect

    Tassan-Got, L.; Audouin, L.; Berthier, B.; Ferrant, L.; Isaev, S.; Le Naour, C.; Stephan, C.; Trubert, D.; Duran, I.; Paradela, C.; Moreau, C.

    2005-05-24

    The neutron-induced fission cross sections of 233U, 234U, 232Th, 237Np, 209Bi, natPb have been measured on the nTOF facility at CERN, which allows an accurate energy measurement owing to the long path. Parallel plate avalanche counters were used to detect the 2 fission fragments in coincidence. This method allows an efficient discrimination of fission reactions among other types of reactions especially at high energies, and it is well suited for the very large energy range available at nTOF. The case of 234U will be used as an example of the quality of the data obtained in these measurements.

  11. Neutron distribution and induced activity inside a Linac treatment room.

    PubMed

    Juste, B; Miró, R; Verdú, G; Díez, S; Campayo, J M

    2015-08-01

    Induced radioactivity and photoneutron contamination inside a radiation therapy bunker of a medical linear accelerator (Linac) is investigated in this work. The Linac studied is an Elekta Precise electron accelerator which maximum treatment photon energy is 15 MeV. This energy exceeds the photonuclear reaction threshold (around 7 MeV for high atomic number metals). The Monte Carlo code MCNP6 has been used for quantifying the neutron contamination inside the treatment room for different gantry rotation configuration. Walls activation processes have also been simulated. The approach described in this paper is useful to prevent the overexposure of patients and medical staff. PMID:26737878

  12. Neutron-induced reaction studies at FIGARO using a spallation source

    NASA Astrophysics Data System (ADS)

    Rochman, D.; Haight, R. C.; O'Donnell, J. M.; Devlin, M.; Ethvignot, T.; Granier, T.

    2004-05-01

    A description is given of the new flexible facility Fast Neutron-Induced Gamma-Ray Observer (FIGARO) at the Los Alamos Neutron Science Center. FIGARO is designed to study fast-neutron-induced reactions that result in the emission of γ rays and neutrons, using the white neutron beam of the Weapons Neutron Research Facility. The emitted neutrons and γ rays are detected by several liquid scintillators and one high-resolution germanium or one barium-fluoride detector, respectively. As an example, the inelastic neutron scattering on Si from 4 to 20 MeV is presented and the results are compared with predictions of the nuclear model calculations performed with the codes GNASH and EMPIRE II.

  13. Electron radiography

    SciTech Connect

    Merrill, Frank E.; Morris, Christopher

    2005-05-17

    A system capable of performing radiography using a beam of electrons. Diffuser means receive a beam of electrons and diffuse the electrons before they enter first matching quadrupoles where the diffused electrons are focused prior to the diffused electrons entering an object. First imaging quadrupoles receive the focused diffused electrons after the focused diffused electrons have been scattered by the object for focusing the scattered electrons. Collimator means receive the scattered electrons and remove scattered electrons that have scattered to large angles. Second imaging quadrupoles receive the collimated scattered electrons and refocus the collimated scattered electrons and map the focused collimated scattered electrons to transverse locations on an image plane representative of the electrons' positions in the object.

  14. Probing energy dissipation, γ-ray and neutron multiplicity in the thermal neutron-induced fission of 239Pu

    NASA Astrophysics Data System (ADS)

    Pahlavani, M. R.; Mirfathi, S. M.

    2016-04-01

    The incorporation of the four-dimensional Langevin equations led to an integrative description of fission cross-section, fragment mass distribution and the multiplicity and energy distribution of prompt neutrons and γ-rays in the thermal neutron-induced fission of 239Pu. The dynamical approach presented in this paper thoroughly reproduces several experimental observables of the fission process at low excitation energy.

  15. Cross-sectional void fraction distribution measurements in a vertical annulus two-phase flow by high speed X-ray computed tomography and real-time neutron radiography techniques

    SciTech Connect

    Harvel, G.D. |; Hori, K.; Kawanishi, K.

    1995-09-01

    A Real-Time Neutron Radiography (RTNR) system and a high speed X-ray Computed tomography (X-CT) system are compared for measurement of two-phase flow. Each system is used to determine the flow regime, and the void fraction distribution in a vertical annulus flow channel. A standard optical video system is also used to observe the flow regime. The annulus flow channel is operated as a bubble column and measurements obtained for gas flow rates from 0.0 to 30.01/min. The flow regimes observed by all three measurement systems through image analysis shows that the two-dimensional void fraction distribution can be obtained. The X-CT system is shown to have a superior temporal resolution capable of resolving the void fraction distribution in an (r,{theta}) plane in 33.0 ms. Void fraction distribution for bubbly flow and slug flow is determined.

  16. The Upgrade of the Neutron Induced Positron Source NEPOMUC

    NASA Astrophysics Data System (ADS)

    Hugenschmidt, C.; Ceeh, H.; Gigl, T.; Lippert, F.; Piochacz, C.; Pikart, P.; Reiner, M.; Weber, J.; Zimnik, S.

    2013-06-01

    In summer 2012, the new NEutron induced POsitron Source MUniCh (NEPOMUC) was installed and put into operation at the research reactor FRM II. At NEPOMUC upgrade 80% 113Cd enriched Cd is used as neutron-gamma converter in order to ensure an operation time of 25 years. A structure of Pt foils inside the beam tube generates positrons by pair production. Moderated positrons leaving the Pt front foil are electrically extracted and magnetically guided to the outside of the reactor pool. The whole design, including Pt-foils, the electric lenses and the magnetic fields, has been improved in order to enhance both the intensity and the brightness of the positron beam. After adjusting the potentials and the magnetic guide and compensation fields an intensity of about 3·109 moderated positrons per second is expected. During the first start-up, the measured temperatures of about 90°C ensure a reliable operation of the positron source. Within this contribution the features and the status of NEPOMUC upgrade are elucidated. In addition, an overview of recent positron beam experiments and current developments at the spectrometers is given.

  17. System for uncollimated digital radiography

    DOEpatents

    Wang, Han; Hall, James M.; McCarrick, James F.; Tang, Vincent

    2015-08-11

    The inversion algorithm based on the maximum entropy method (MEM) removes unwanted effects in high energy imaging resulting from an uncollimated source interacting with a finitely thick scintillator. The algorithm takes as input the image from the thick scintillator (TS) and the radiography setup geometry. The algorithm then outputs a restored image which appears as if taken with an infinitesimally thin scintillator (ITS). Inversion is accomplished by numerically generating a probabilistic model relating the ITS image to the TS image and then inverting this model on the TS image through MEM. This reconstruction technique can reduce the exposure time or the required source intensity without undesirable object blurring on the image by allowing the use of both thicker scintillators with higher efficiencies and closer source-to-detector distances to maximize incident radiation flux. The technique is applicable in radiographic applications including fast neutron, high-energy gamma and x-ray radiography using thick scintillators.

  18. α and 2 p 2 n emission in fast neutron-induced reactions on 60Ni

    NASA Astrophysics Data System (ADS)

    Fotiades, N.; Devlin, M.; Haight, R. C.; Nelson, R. O.; Kunieda, S.; Kawano, T.

    2015-06-01

    Background: The cross sections for populating the residual nucleus in the reaction ZAX(n,x) Z -2 A -4Y exhibit peaks as a function of incident neutron energy corresponding to the (n ,n'α ) reaction and, at higher energy, to the (n ,2 p 3 n ) reaction. The relative magnitudes of these peaks vary with the Z of the target nucleus. Purpose: Study fast neutron-induced reactions on 60Ni. Locate experimentally the nuclear charge region along the line of stability where the cross sections for α emission and for 2 p 2 n emission in fast neutron-induced reactions are comparable as a further test of reaction models. Methods: Data were taken by using the Germanium Array for Neutron-Induced Excitations. The broad-spectrum pulsed neutron beam of the Los Alamos Neutron Science Center's Weapons Neutron Research facility provided neutrons in the energy range from 1 to 250 MeV. The time-of-flight technique was used to determine the incident-neutron energies. Results: Absolute partial cross sections for production of seven discrete Fe γ rays populated in 60Ni (n ,α /2 p x n γ ) reactions with 2 ≤x ≤5 were measured for neutron energies 1 MeVneutron energies while discrepancies appear at higher neutron energies. The cross section for producing an isotope in fast neutron-induced reactions on stable targets via α emission at the peak of the (n ,α ) and (n ,n'α ) reactions is comparable to that for 2 p 2 n and 2 p 3 n emission at higher incident energies in the nuclear charge region around Fe.

  19. INDUSTRIAL RADIOGRAPHY INSTRUCTOR'S GUIDE.

    ERIC Educational Resources Information Center

    Bureau of Adult, Vocational, and Technical Education (DHEW/OE), Washington, DC. Div. of Vocational and Technical Education.

    THIS LABORATORY GUIDE WAS DEVELOPED FOR AN 80-HOUR COURSE IN INDUSTRIAL RADIOGRAPHY FOR HIGH SCHOOL GRADUATES TRAINING TO BECOME BEGINNING RADIOGRAPHERS. IT IS USED IN CONJUNCTION WITH TWO OTHER VOLUMES--(1) INDUSTRIAL RADIOGRAPHY INSTRUCTOR'S GUIDE, AND (2) INUDSTRIAL RADIOGRAPHY MANUAL. THE PROGRAM WAS DEVELOPED BY A COMMITTEE OF REPRESENTATIVES…

  20. Evaluating the 239Pu Prompt Fission Neutron Spectrum Induced by Thermal to 30 MeV Neutrons

    NASA Astrophysics Data System (ADS)

    Neudecker, D.; Talou, P.; Kawano, T.; Kahler, A. C.; Rising, M. E.; White, M. C.

    2016-03-01

    We present a new evaluation of the 239Pu prompt fission neutron spectrum (PFNS) induced by thermal to 30 MeV neutrons. Compared to the ENDF/B-VII.1 evaluation, this one includes recently published experimental data as well as an improved and extended model description to predict PFNS. For instance, the pre-equilibrium neutron emission component to the PFNS is considered and the incident energy dependence of model parameters is parametrized more realistically. Experimental and model parameter uncertainties and covariances are estimated in detail. Also, evaluated covariances are provided between all PFNS at different incident neutron energies. Selected evaluation results and first benchmark calculations using this evaluation are briefly discussed.

  1. Dependence on neutron energy of neutron-induced peaks in Ge detectors

    NASA Astrophysics Data System (ADS)

    Gete, E.; Measday, David F.; Moftah, B. A.; Saliba, M. A.; Stocki, Trevor J.

    1997-02-01

    We have studied the peak shapes at 596 and 691 KeV resulting from fast neutron interactions inside germanium detectors. We have used neutrons from a 252Cf source, as well as from the 28Si((mu) -, nv), and 209Bi((pi) -, xn) reactions to compare the peaks and to check for any dependence of peak shape on the incoming neutron energy. In our investigation, no dependence of these peak shapes on the neutron energy spectra has been observed. In a comparison of these peak shapes with other studies we found similar results to ours except for monoenergetic neutron irradiations from 1 to 8 MeV.

  2. Advanced Monte Carlo modeling of prompt fission neutrons for thermal and fast neutron-induced fission reactions on Pu239

    NASA Astrophysics Data System (ADS)

    Talou, P.; Becker, B.; Kawano, T.; Chadwick, M. B.; Danon, Y.

    2011-06-01

    Prompt fission neutrons following the thermal and 0.5 MeV neutron-induced fission reaction of Pu239 are calculated using a Monte Carlo approach to the evaporation of the excited fission fragments. Exclusive data such as the multiplicity distribution P(ν), the average multiplicity as a function of fragment mass ν¯(A), and many others are inferred in addition to the most used average prompt fission neutron spectrum χ(Ein,Eout), as well as average neutron multiplicity ν¯. Experimental information on these more exclusive data help constrain the Monte Carlo model parameters. The calculated average total neutron multiplicity is ν¯c=2.871 in very close agreement with the evaluated value ν¯e=2.8725 present in the ENDF/B-VII.0 library. The neutron multiplicity distribution P(ν) is in very good agreement with the evaluation by Holden and Zucker. The calculated average spectrum differs in shape from the ENDF/B-VII.0 spectrum, evaluated with the Madland-Nix model. In particular, we predict more neutrons in the low-energy tail of the spectrum (below about 300 keV) than the Madland-Nix calculations, casting some doubts on how much scission neutrons contribute to the shape of the low-energy tail of the spectrum. The spectrum high-energy tail is very sensitive to the total kinetic energy distribution of the fragments as well as to the total excitation energy sharing at scission. Present experimental uncertainties on measured spectra above 6 MeV are too large to distinguish between various theoretical hypotheses. Finally, comparisons of the Monte Carlo results with experimental data on ν¯(A) indicate that more neutrons are emitted from the light fragments than the heavy ones, in agreement with previous works.

  3. Experimental Evaluation of Neutron Induced Noise on Gated X-ray Framing Cameras

    SciTech Connect

    Izumi, N; Stone, G; Hagmann, C; Sorce, C; Bradley, D K; Moran, M; Landen, O L; Stoeffl, W; Springer, P; Tommasini, R; Hermann, H W; Kyrala, G A; Glebov, V Y; Sangster, T C; Koch, J A

    2009-10-08

    A micro-channel plate based temporally-gated x-ray camera (framing camera) is one of the most versatile diagnostic tools of inertial confinement fusion experiments; particularly for observation of the shape of x-ray self emission from compressed core of imploded capsules. However, components used in an x-ray framing camera have sensitivity to neutrons induced secondary radiations. On early low-yield capsule implosions at the National Ignition Facility (NIF), the expected neutron production is about 5 x 10{sup 14}. Therefore, the expected neutron fluence at a framing camera located {approx} 150 cm from the object is 2 x 10{sup 9} neutrons/cm{sup 2}. To obtain gated x-ray images in such harsh neutron environments, quantitative understanding of neutron-induced backgrounds is crucial.

  4. Explosive Material Identification via Neutron-Induced Gamma Rays

    NASA Astrophysics Data System (ADS)

    Freiberg, David; Litz, Marc

    2014-09-01

    With the increase in the usage of improvised explosive devices, both vehicle-borne and buried, it has become increasingly important to quickly identify potentially explosive materials before they can be detonated. In a field test performed in January of 2014, 14 MeV neutrons generated in a deuterium-tritium reaction induced gamma emissions in explosive material targets. The resulting gamma rays were counted in LaBr3 detectors in both a time-binned associated particle imaging (API) mode and a repetitively pulsed mode. The details of the resulting data sets were analyzed, and gamma lines for carbon, oxygen, and nitrogen were identified in the spectra produced by both modes. Post-test noise reduction techniques included empty hole background subtraction, Compton background subtraction, peak area integration, and time-of-flight gating. The induced C, O, and N gamma line intensities and ratios were compared to the elemental weight ratios expected for each type of material. The composition results are indicative of the known elemental weights in the target materials. The statistics are limited because of the short, 20 second data collection periods, and would improve greatly with longer exposure times in the future.

  5. Ion-Induced Afterpulsing in the Neutron Multiplicity Meter's Photomultiplier Tubes

    NASA Astrophysics Data System (ADS)

    Nedlik, Christopher; Schnee, Richard; Bunker, Raymond; Chen, Yu; Neutron Multiplicity Meter Collaboration

    2013-10-01

    The nature of the dark matter in the Universe remains a mystery in modern physics. A leading candidate, Weakly Interacting Massive Particles (WIMPs), may be detectable via scattering from nuclear targets in terrestrial detectors, located underground to prevent fake signals from cosmic-ray showers. The Neutron Multiplicity Meter (NMM) is a detector capable of measuring the muon-induced neutron flux deep underground, a problematic background for WIMP detection. The NMM is a 4.4-tonne Gd-loaded water-Cherenkov detector atop a 20-kilotonne lead target in the Soudan Mine. It measures high-energy neutrons (>50 MeV) by moderating and then detecting (via Gd capture gammas) the secondary neutrons emerging from the lead following a high-energy neutron interaction. The short time scale (~10 μs) for neutron capture in Gd-loaded water enables a custom multiplicity trigger to discriminate against the dominant gamma-ray background. Despite excellent rejection of the gamma-ray-induced background, NMM neutron-candidate events are not entirely background-free. One type of background is from ion-induced afterpulsing (AP) in the four 20'' Hamamatsu R7250 photomultiplier tubes (PMTs) used to monitor the NMM's two water tanks. We show that ion-induced AP in the PMTs can mimic the NMM's low-energy neutron response, potentially biasing a candidate event's measured multiplicity. We present detailed studies of the AP in order to allow identification of AP-induced background events.

  6. Cosmic-Ray-Induced Ship-Effect Neutron Measurements and Implications for Cargo Scanning at Borders

    SciTech Connect

    Kouzes, Richard T.; Ely, James H.; Seifert, Allen; Siciliano, Edward R.; Weier, Dennis R.; Windsor, Lindsay K.; Woodring, Mitchell L.; Borgardt, James D.; Buckley, Elise D.; Flumerfelt, Eric L.; Oliveri, Anna F.; Salvitti, Matthew

    2008-03-11

    Neutron measurements are used as part of the interdiction process for illicit nuclear materials at border crossings. Even though the natural neutron background is small, its variation can impact the sensitivity of detection systems. The natural background of neutrons that is observed in monitoring instruments arises almost entirely from cosmic ray induced cascades in the atmosphere and the surrounding environment. One significant source of variation in the observed neutron background is produced by the “ship effect” in large quantities of cargo that transit past detection instruments. This paper reports on results from measurements with typical monitoring equipment of ship effect neutrons in various materials. One new result is the “neutron shadow shielding” effect seen with some low neutron density materials.

  7. Studies of Neutron-Induced Fission of 235U, 238U, and 239Pu

    NASA Astrophysics Data System (ADS)

    Duke, Dana; TKE Team

    2014-09-01

    A Frisch-gridded ionization chamber and the double energy (2E) analysis method were used to study mass yield distributions and average total kinetic energy (TKE) release from neutron-induced fission of 235U, 238U, and 239Pu. Despite decades of fission research, little or no TKE data exist for high incident neutron energies. Additional average TKE information at incident neutron energies relevant to defense- and energy-related applications will provide a valuable observable for benchmarking simulations. The data can also be used as inputs in theoretical fission models. The Los Alamos Neutron Science Center-Weapons Neutron Research (LANSCE - WNR) provides a neutron beam from thermal to hundreds of MeV, well-suited for filling in the gaps in existing data and exploring fission behavior in the fast neutron region. The results of the studies on 238U, 235U, and 239Pu will be presented. LA-UR-14-24921.

  8. Measurement of residual 60Co activity induced by atomic-bomb neutrons in Nagasaki and background contribution by environmental neutrons.

    PubMed

    Shizuma, Kiyoshi; Endo, Satoru; Hoshi, Masaharu; Takada, Jun; Iwatani, Kazuo; Hasai, Hiromi; Oka, Takamitsu; Shimazaki, Tatsuya; Okumura, Yutaka; Fujita, Shoichiro; Watanabe, Tadaaki; Imanaka, Tetsuji

    2002-12-01

    Residual 60Co activity in five steel samples induced by neutrons from the Nagasaki atomic bomb has been measured within about 1000 m from the hypocenter. The chemical separation of cobalt and nickel from steel samples was performed, and cobalt-enriched samples were prepared for all samples. Gamma-ray measurements were carried out with a low-background well-type germanium detector. The gamma-ray spectra for five samples were compared with the spectrum of a control sample to ensure that the observed 60Co was actually induced by A-bomb neutrons. The activation of cobalt by environmental neutrons was also investigated. It has been shown that the present 60Co data are consistent with earlier Hashizume's data. PMID:12674203

  9. Measurement of fragment mass distributions in neutron-induced fission reactions at intermediate energies

    NASA Astrophysics Data System (ADS)

    Simutkin, V. D.; Ryzhov, I. V.; Tutin, G. A.; Vaishnene, L. A.; Blomgren, J.; Pomp, S.; Österlund, M.; Andersson, P.; Bevilacqua, R.; Meulders, J. P.; Prieels, R.

    2009-10-01

    Fragment mass distributions from neutron-induced fission of 232Th and 238U have been measured at quasi-monoenergetic neutron beam of the Louvain-la-Neuve cyclotron facility CYCLONE. The measurements have been carried out making use of a multi-section Frisch-gridded ionization chamber. The measurement technique as well as the data processing is described. Preliminary data on primary fragment mass yields are given for an incident neutron energy of 32.8 MeV.

  10. A time-gating scintillation detector for the measurement of laser-induced fast neutrons

    SciTech Connect

    Lee, Sungman; Park, Sangsoon; Yea, Kwon-hae; Cha, Hyungki

    2009-06-15

    A time-gating scintillation detector, in which a fast high voltage switch is used for gating a channel photomultiplier, was developed for a measurement of laser-induced fast neutrons. The x rays generated from the intense femtosecond laser and the solid target interactions were suppressed selectively and a time-of-flight signal of a laser-generated fast neutron was measured effectively. The detector was used successfully to measure the neutron yield of a femtosecond, deuterated, polystyrene plasma.

  11. A time-gating scintillation detector for the measurement of laser-induced fast neutrons.

    PubMed

    Lee, Sungman; Park, Sangsoon; Yea, Kwon-hae; Cha, Hyungki

    2009-06-01

    A time-gating scintillation detector, in which a fast high voltage switch is used for gating a channel photomultiplier, was developed for a measurement of laser-induced fast neutrons. The x rays generated from the intense femtosecond laser and the solid target interactions were suppressed selectively and a time-of-flight signal of a laser-generated fast neutron was measured effectively. The detector was used successfully to measure the neutron yield of a femtosecond, deuterated, polystyrene plasma. PMID:19566199

  12. Neutron-induced fission cross sections of short-lived actinides with the surrogate reaction method.

    SciTech Connect

    Kessedijian, G.; Jurado, B.; Aiche, M.; Barreau, G.; Bidaud, A.; Czajkowski, S.; Dassie, D.; Haas, B.; Mathieu, L.; Audouin, L.; Capellan, N.; Tassan-Got, L.; Wilson, J. N.; Berthoumieux, E.; Gunsing, F.; Theisen, Ch.; Serot, O.; Bauge, E.; Ahmad, I.; Greene, J. P.; Janssens, R. V. F.

    2010-09-13

    Neutron-induced fission cross sections for {sup 242,243}Cm and {sup 241}Am have been obtained with the surrogate reaction method. Recent results for the neutron-induced cross section of {sup 243}Cm are questioned by the present data. For the first time, the {sup 242}Cm cross section has been determined up to the onset of second-chance fission. The good agreement at the lowest excitation energies between the present results and the existing neutron-induced data indicates that the distributions in spin and parity of states populated with both techniques are similar.

  13. Effects of hole doping by neutron irradiation of magnetic field induced electronic phase transitions in graphite

    SciTech Connect

    Singleton, John; Yaguchi, Hiroshi

    2008-01-01

    We have investigated effects of hole doping by fast-neutron irradiation on the magnetic-field induced phase transitions in graphite using specimens irradiated with fast neutrons. Resistance measurements have been done in magnetic fields of up to above 50 T and at temperatures down to about 1.5 K. The neutron irradiation creates lattice defects acting as acceptors, affecting the imbalance of the electron and hole densities and the Fermi level. We have found that the reentrant field from the field induced state back to the normal state shifts towards a lower field with hole doping, suggestive of the participation of electron subbands in the magnetic-field induced state.

  14. Study of muon-induced neutron production using accelerator muon beam at CERN

    SciTech Connect

    Nakajima, Y.; Lin, C. J.; Ochoa-Ricoux, J. P.; Draeger, E.; White, C. G.; Luk, K. B.; Steiner, H.

    2015-08-17

    Cosmogenic muon-induced neutrons are one of the most problematic backgrounds for various underground experiments for rare event searches. In order to accurately understand such backgrounds, experimental data with high-statistics and well-controlled systematics is essential. We performed a test experiment to measure muon-induced neutron production yield and energy spectrum using a high-energy accelerator muon beam at CERN. We successfully observed neutrons from 160 GeV/c muon interaction on lead, and measured kinetic energy distributions for various production angles. Works towards evaluation of absolute neutron production yield is underway. This work also demonstrates that the setup is feasible for a future large-scale experiment for more comprehensive study of muon-induced neutron production.

  15. The Status of Cross Section Measurements for Neutron-induced Reactions Needed for Cosmic Ray Studies

    NASA Technical Reports Server (NTRS)

    Sisterson, J. M.

    2003-01-01

    Cosmic ray interactions with lunar rocks and meteorites produce small amounts of radionuclides and stable isotopes. Advances in Accelerator Mass Spectrometry (AMS) allow production rates to be measured routinely in well-documented lunar rocks and meteorites. These measurements are analyzed using theoretical models to learn about the object itself and the history of the cosmic rays that fell on it. Good cross section measurements are essential input to the theoretical calculations. Most primary cosmic ray particles are protons so reliable cross sections for proton-induced reactions are essential. A cross section is deemed accurate if measurements made by different experimenters using different techniques result in consistent values. Most cross sections for proton induced reactions are now well measured. However, good cross section measurements for neutron-induced reactions are still needed. These cross sections are required to fully account for all galactic cosmic ray interactions at depth in an extraterrestrial object. When primary galactic cosmic ray (GCR) particles interact with an object many secondary neutrons are produced, which also initiate spallation reactions. Thus, the total GCR contribution to the overall cosmogenic nuclide archive has to include the contribution from the secondary neutron interactions. Few relevant cross section measurements have been reported for neutron-induced reactions at neutron energies greater than approximately 20 MeV. The status of the cross section measurements using quasi-monoenergetic neutron energies at iThemba LABS, South Africa and white neutron beams at Los Alamos Neutron Science Center (LANSCE), Los Alamos are reported here.

  16. Radioactive targets for neutron-induced cross section measurements

    SciTech Connect

    Kronenberg, A.; Bond, E. M.; Glover, S. E.; Rundberg, R. S.; Vieira, D. J.; Esch, E. I.; Reifarth, R.; Ullmann, J. L.; Haight, Robert C.; Rochmann, D.

    2004-01-01

    Measurements using radioactive targets are important for the determination of key reaction path ways associated with the synthesis of the elements in nuclear astrophysics (sprocess), advanced fuel cycle initiative (transmutation of radioactive waste), and stockpile stewardship. High precision capture cross-section measurements are needed to interpret observations, predict elemental or isotopical ratios, and unobserved abundances. There are two new detector systems that are presently being commissioned at Los Alamos National Laboratory for very precise measurements of (n,{gamma}) and (n,f) cross-sections using small quantities of radioactive samples. DANCE (Detector for Advanced Neutron-Capture Experiments), a 4 {pi} gamma array made up of 160 BaF{sub 2} detectors, is designed to measure neutron capture cross-sections of unstable nuclei in the low-energy range (thermal to {approx}500 keV). The high granularity and high detection efficiency of DANCE, combined with the high TOF-neutron flux available at the Lujan Center provides a versatile tool for measuring many important cross section data using radioactive and isotopically enriched targets of about 1 milligram. Another powerful instrument is the Lead-slowing down spectrometer (LSDS), which will enable the measurement of neutron-induced fission cross-section of U-235m and other short-lived actinides in a energy range from 1-200 keV with sample sizes down to 10 nanograms. Due to the short half-life of the U-235m isomer (T{sub 1/2} = 26 minutes), the samples must be rapidly and repeatedly extracted from its {sup 239}Pu parent. Since {sup 239}Pu is itself highly fissile, the separation must not only be rapid, but must also be of very high purity (the Pu must be removed from the U with a decontamination factor >10{sup 12}). Once extracted and purified, the {sup 235m}U isomer would be electrodeposited on solar cells as a fission detector and placed within the LSDS for direct (n,f) cross section measurements. The

  17. New developments in proton radiography at LANSCE

    NASA Astrophysics Data System (ADS)

    Morris, Christopher; Proton Radiography Team

    2014-09-01

    In a new application of nuclear physics, a facility for using proton for flash radiography has been developed at the Los Alamos Neutron Science Center (LANSCE). Protons have proven far superior to high energy x-rays for flash radiography. Although this facility is primarily used for studying very fast phenomena such as high explosive driven experiments, it is finding increasing application to other fields, such as tomography of static objects, phase changes in materials, and the dynamics of chemical reactions. The advantages of protons will be discussed and data from some of the recent experiments will be presented.

  18. Neutron-induced soft error rate measurements in semiconductor memories

    NASA Astrophysics Data System (ADS)

    Ünlü, Kenan; Narayanan, Vijaykrishnan; Çetiner, Sacit M.; Degalahal, Vijay; Irwin, Mary J.

    2007-08-01

    Soft error rate (SER) testing of devices have been performed using the neutron beam at the Radiation Science and Engineering Center at Penn State University. The soft error susceptibility for different memory chips working at different technology nodes and operating voltages is determined. The effect of 10B on SER as an in situ excess charge source is observed. The effect of higher-energy neutrons on circuit operation will be published later. Penn State Breazeale Nuclear Reactor was used as the neutron source in the experiments. The high neutron flux allows for accelerated testing of the SER phenomenon. The experiments and analyses have been performed only on soft errors due to thermal neutrons. Various memory chips manufactured by different vendors were tested at various supply voltages and reactor power levels. The effect of 10B reaction caused by thermal neutron absorption on SER is discussed.

  19. Calculations of neutron flux spectra induced in the earth's atmosphere by galactic cosmic rays

    NASA Technical Reports Server (NTRS)

    Armstrong, T. W.; Chandler, K. C.; Barish, J.

    1972-01-01

    Calculations have been carried out to determine the neutron flux induced in the earth's atmosphere by galactic protons and alpha particles at solar minimum for a geomagnetic latitude of 42 N. Neutron flux spectra were calculated using Monte Carlo and discrete ordinates methods, and various comparisons with experimental data are presented. The magnitude and shape of the calculated neutron-leakage spectrum at the particular latitude considered support the theory that the cosmic-ray-albedo-neutron-decay mechanism is the source of the protons and electrons trapped in the Van Allen belts.

  20. Neutron-induced 2.2 MeV background in gamma ray telescopes

    NASA Technical Reports Server (NTRS)

    Zanrosso, E. M.; Long, J. L.; Zych, A. D.; White, R. S.

    1985-01-01

    Neutron-induced gamma ray production is an important source of background in Compton scatter gamma ray telescopes where organic scintillator material is used. Most important is deuteron formation when atmospheric albedo and locally produced neutrons are thermalized and subsequently absorbed in the hydrogenous material. The resulting 2.2 MeV gamma ray line radiation essentially represents a continuous isotropic source within the scintillator itself. Interestingly, using a scintillator material with a high hydrogen-to-carbon ratio to minimize the scintillator material with a high hydrogen-to-carbon ratio to minimize the neutron-induced 4.4 MeV carbon line favors the np reaction. The full problem of neutron-induced background in Compton scatter telescopes has been previously discussed. Results are presented of observations with the University of California balloon-borne Compton scatter telescope where the 2.2 MeV induced line emission is prominently seen.

  1. Radioactivity induced by neutrons: Enrico Fermi and a thermodynamic approach to radiative capture

    NASA Astrophysics Data System (ADS)

    De Gregorio, Alberto

    2006-07-01

    When Fermi learned that slow neutrons are much more effective than fast ones in inducing radioactivity, he explained this phenomenon by mentioning the well-known scattering cross section between neutrons and protons. At this early stage, he did not refer to the capture cross section by target nuclei. At the same time a thermodynamic approach to neutron-proton capture was being discussed by physicists: neutron capture was interpretated as the reverse of deuteron photodissociation and detailed balance among neutrons, protons, deuterons, and radiation was invoked. This thermodynamic approach might underlie Fermi's early explanation of the great efficiency of slow neutrons. Fermi repeatedly used a thermodynamic approach that had been used in describing some of the physical properties of conductors by Richardson and had been influential in Fermi's youth.

  2. Neutron Induced Capture Reaction Studies in the Resonance Region at GELINA

    SciTech Connect

    Schillebeeckx, Peter; Borella, A.; Kopecky, S.; Mihailescu, L. C.; Siegler, P.; Sirakov, I.; Massimi, C.; Moxon, M.; Ware, T.

    2009-01-28

    The neutron time-of-flight facility GELINA installed at the IRMM Geel (B) has been designed to study neutron-induced reactions in the resonance region. It is a multi-user facility, providing a pulsed white neutron source, with a neutron energy range between 10 meV and 20 MeV and a time resolution of 1 ns. The research program concentrates on cross section data needs for nuclear energy applications. In this paper efforts to improve the quality of cross section data for neutron induced capture reactions in the resolved and unresolved resonance region are presented together with examples of cross section data to support the development of advanced reactor concepts and to optimize the use of present nuclear power plants.

  3. Modeling of Time-correlated Detection of Fast Neutrons Emitted in Induced SNM Fission

    NASA Astrophysics Data System (ADS)

    Guckes, Amber; Barzilov, Alexander; Richardson, Norman

    Neutron multiplicity methods are widely used in the assay of fissile materials. Fission reactions release multiple neutrons simultaneously. Time-correlated detection of neutrons provides a coincidence signature that is unique to fission,which enables distinguishing it from other events. In general, fission neutrons are fast. Thermal neutron sensors require the moderation of neutrons prior to a detection event; therefore, the neutron's energy and the event's timing information may be distorted, resulting in the wide time windows in the correlation analysis. Fastneutron sensing using scintillators allows shortening the time correlation window. In this study, four EJ-299-33A plastic scintillator detectors with neutron/photon pulse shape discrimination properties were modeled usingthe MCNP6 code. This sensor array was studied for time-correlated detection of fast neutrons emitted inthe induced fission of 239Pu and (α,n) neutron sources. This paper presents the results of computational modeling of arrays of these plastic scintillator sensors as well as3He detectors equipped with a moderator.

  4. Angular signal radiography.

    PubMed

    Li, Panyun; Zhang, Kai; Bao, Yuan; Ren, Yuqi; Ju, Zaiqiang; Wang, Yan; He, Qili; Zhu, Zhongzhu; Huang, Wanxia; Yuan, Qingxi; Zhu, Peiping

    2016-03-21

    Microscopy techniques using visible photons, x-rays, neutrons, and electrons have made remarkable impact in many scientific disciplines. The microscopic data can often be expressed as the convolution of the spatial distribution of certain properties of the specimens and the inherent response function of the imaging system. The x-ray grating interferometer (XGI), which is sensitive to the deviation angle of the incoming x-rays, has attracted significant attention in the past years due to its capability in achieving x-ray phase contrast imaging with low brilliance source. However, the comprehensive and analytical theoretical framework is yet to be presented. Herein, we propose a theoretical framework termed angular signal radiography (ASR) to describe the imaging process of the XGI system in a classical, comprehensive and analytical manner. We demonstrated, by means of theoretical deduction and synchrotron based experiments, that the spatial distribution of specimens' physical properties, including absorption, refraction and scattering, can be extracted by ASR in XGI. Implementation of ASR in XGI offers advantages such as simplified phase retrieval algorithm, reduced overall radiation dose, and improved image acquisition speed. These advantages, as well as the limitations of the proposed method, are systematically investigated in this paper. PMID:27136780

  5. Neutron induced soft errors in CMOS memories under reduced bias

    SciTech Connect

    Hazucha, P.; Svensson, C.; Johansson, K.

    1998-12-01

    A custom designed 16 kbit CMOS memory was irradiated by 14 MeV neutrons and 100 MeV neutrons. SEU cross sections were evaluated under different supply voltages. The cross section values are compared to those predicted by the BGR model.

  6. Dynamical simulation of neutron-induced fission of uranium isotopes using four-dimensional Langevin equations

    NASA Astrophysics Data System (ADS)

    Pahlavani, M. R.; Mirfathi, S. M.

    2016-04-01

    Four-dimensional Langevin equations have been suggested for the dynamical simulation of neutron-induced fission at low and medium excitation energies. The mass distribution of the fission fragments, the neutron multiplicity, and the fission cross section for the thermal and fast neutron-induced fission of 233U, 235U, and 238U is studied by considering energy dissipation of the compound nucleus through the fission using four-dimensional Langevin equations combined with a Monte Carlo simulation approach. The calculated results using this approach indicate reasonable agreement with available experimental data.

  7. Flux and dose transmission through concrete of neutrons from proton induced reactions on various target elements

    NASA Astrophysics Data System (ADS)

    Maiti, Moumita; Nandy, Maitreyee; Roy, S. N.; Sarkar, P. K.

    2004-12-01

    Simple empirical expressions for transmission of flux and dose through concrete are presented for neutrons from proton induced reactions. For this purpose the neutron emission from different targets in proton induced reactions in the energy range 25-200 MeV have been considered. The calculated effective dose outside a concrete shield shows overall good agreement with the effective dose estimated from measured neutron flux in the framework of the Moyer model. The calculated effective attenuation length shows a rising trend with incident proton energy and shield thickness.

  8. Laser induced neutron production by explosion of the deuterium clusters

    NASA Astrophysics Data System (ADS)

    Holkundkar, Amol R.; Mishra, Gaurav; Gupta, N. K.

    2014-01-01

    The high energy deuterium ions serve as compact source of neutrons when fused with either deuterium or tritium atoms. In view of this, the explosion of the deuterium clusters under the influence of the laser pulse with intensity ranging from 1015 to 1019 W/cm2 is being studied along with the effect of the cluster radius and inter-cluster distance. The objective of this article is to study the efficiency of the deuterium cluster as a compact source of neutrons under various laser and cluster parameters. It is being observed that the cluster density (number of clusters per unit volume) is quite important to gain high neutron yield.

  9. Fusion probability for neutron-rich radioactive Sn induced reactions

    SciTech Connect

    Liang, J Felix; Gross, Carl J; Kohley, Zachary W; Shapira, Dan; Varner Jr, Robert L; Allmond, James M; Caraley, Anne L; Lagergren, Karin B; Mueller, Paul Edward

    2012-01-01

    Evaporation residue cross sections for $^{124,126,127,128}$Sn+$^{64}$Ni and $^{132}$Sn+$^{58}$Ni have been measured to study the effects of neutron excess in neutron-rich radioactive nuclei on fusion. For the reactions with $^{64}$Ni, the fusion probability does not decrease with increasing neutron excess in Sn, contrary to the result of the stable beam Sn+Zr measurement. A comparison of the reduced evaporation residue cross sections for $^{126}$Sn+$^{64}$Ni and $^{132}$Sn+$^{58}$Ni, which make the same compound nucleus, shows that the fusion probability is indistinguishable for reactions involving the same atomic elements but different isotope combinations.

  10. Neutron induced background in the COMPTEL detector on the Gamma Ray Observatory

    NASA Technical Reports Server (NTRS)

    Morris, D. J.; Aarts, H.; Bennett, K.; Busetta, M.; Byrd, R.; Collmar, W.; Connors, A.; Diehl, R.; Eymann, G.; Foster, C.

    1992-01-01

    Interactions of neutrons in a prototype of the Compton imaging telescope (COMPTEL) gamma ray detector for the Gamma Ray Observatory were studied to determine COMPTEL's sensitivity as a neutron telescope and to estimate the gamma ray background resulting from neutron interactions. The IUCF provided a pulsed neutron beam at five different energies between 18 and 120 MeV. These measurements showed that the gamma ray background from neutron interactions is greater than previously expected. It was thought that most such events would be due to interactions in the upper detector modules of COMPTEL and could be distinguished by pulse shape discrimination. Rather, the bulk of the gamma ray background appears to be due to interactions in passive material, primarily aluminum, surrounding the D1 modules. In a considerable fraction of these interactions, two or more gamma rays are produced simultaneously, with one interacting in the D1 module and the other interacting in the module of the lower (D2) detector. If the neutron interacts near the D1 module, the D1 D2 time of flight cannot distinguish such an event from a true gamma ray event. In order to assess the significance of this background, the flux of neutrons in orbit has been estimated based on observed events with neutron pulse shape signature in D1. The strength of this neutron induced background is estimated. This is compared with the rate expected from the isotropic cosmic gamma ray flux.

  11. A laser-induced repetitive fast neutron source applied for gold activation analysis

    NASA Astrophysics Data System (ADS)

    Lee, Sungman; Park, Sangsoon; Lee, Kitae; Cha, Hyungki

    2012-12-01

    A laser-induced repetitively operated fast neutron source was developed for applications in laser-driven nuclear physics research. The developed neutron source, which has a neutron yield of approximately 4 × 105 n/pulse and can be operated up to a pulse repetition rate of 10 Hz, was applied for a gold activation analysis. Relatively strong delayed gamma spectra of the activated gold were measured at 333 keV and 355 keV, and proved the possibility of the neutron source for activation analyses. In addition, the nuclear reactions responsible for the measured gamma spectra of gold were elucidated by the 14 MeV fast neutrons resulting from the D(t,n)He4 nuclear reaction, for which the required tritium originated from the primary fusion reaction, D(d,p)T3.

  12. A laser-induced repetitive fast neutron source applied for gold activation analysis

    SciTech Connect

    Lee, Sungman; Park, Sangsoon; Lee, Kitae; Cha, Hyungki

    2012-12-15

    A laser-induced repetitively operated fast neutron source was developed for applications in laser-driven nuclear physics research. The developed neutron source, which has a neutron yield of approximately 4 Multiplication-Sign 10{sup 5} n/pulse and can be operated up to a pulse repetition rate of 10 Hz, was applied for a gold activation analysis. Relatively strong delayed gamma spectra of the activated gold were measured at 333 keV and 355 keV, and proved the possibility of the neutron source for activation analyses. In addition, the nuclear reactions responsible for the measured gamma spectra of gold were elucidated by the 14 MeV fast neutrons resulting from the D(t,n)He{sup 4} nuclear reaction, for which the required tritium originated from the primary fusion reaction, D(d,p)T{sup 3}.

  13. A laser-induced repetitive fast neutron source applied for gold activation analysis.

    PubMed

    Lee, Sungman; Park, Sangsoon; Lee, Kitae; Cha, Hyungki

    2012-12-01

    A laser-induced repetitively operated fast neutron source was developed for applications in laser-driven nuclear physics research. The developed neutron source, which has a neutron yield of approximately 4 × 10(5) n/pulse and can be operated up to a pulse repetition rate of 10 Hz, was applied for a gold activation analysis. Relatively strong delayed gamma spectra of the activated gold were measured at 333 keV and 355 keV, and proved the possibility of the neutron source for activation analyses. In addition, the nuclear reactions responsible for the measured gamma spectra of gold were elucidated by the 14 MeV fast neutrons resulting from the D(t,n)He(4) nuclear reaction, for which the required tritium originated from the primary fusion reaction, D(d,p)T(3). PMID:23277984

  14. Neutron-Induced Fission Measurements at the Dance and Lsds Facilities at Lanl

    NASA Astrophysics Data System (ADS)

    Jandel, M.; Bredeweg, T. A.; Bond, E. M.; Chadwick, M. B.; Couture, A.; O'Donnell, J. M.; Fowler, M. M.; Haight, R. C.; Hayes-Sterbenz, A. C.; Rundberg, R. S.; Rusev, G. Y.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.; Wu, C. Y.; Becker, J. A.; Alexander, C. W.; Belier, G.

    2014-09-01

    New results from neutron-induced fission measurements performed at the Detector for Advanced Neutron Capture Experiments (DANCE) and Lead Slowing Down Spectrometer (LSDS) are presented. New correlated data on promptfission γ-ray (PFG) distributions were measured using the DANCE array for resonant neutron-induced fission of 233U, 235U and 239Pu. The deduced properties of PFG emission are presented using a simple parametrization. An accurate knowledge of fission γ-ray spectra enables us to analyze the isomeric states of 236U created after neutron capture on 235U. We briefly discuss these new results. Finally, we review details and preliminary results of the challenging 237U(n,f) cross section measurement at the LSDS facility.

  15. Neutron induced pion production on C, Al, Cu, and W at neutron energies of 200--600 MeV

    SciTech Connect

    Brooks, M.L.

    1991-10-01

    Inclusive double differential neutron induced {pi}{sup +} and {pi}{sup {minus}} production cross sections were measured for four separate targets: C, Al, Cu and W. The neutron energy range was 200--600 MeV and the pion angular range was 25{degrees}--125{degrees}. The charge, scattering angle and energy of the pions were measured using a magnetic spectrometer. The measurements are compared with intranuclear cascade (INC) calculations and a previous experiment that measured the sum of the {pi}{sup +} and {pi}{sup {minus}} cross sections. Our data agree with the measured data, but the INC calculations give only moderate agreement with the double differential cross sections as well as with angular distributions and total cross sections as a function of neutron energy. The ratio of {pi}{sup {minus}}:{pi}{sup +} was found to increase rapidly with decreasing neutron energy and the pion production was found to increase approximately as A{sup 2/3} for the different targets. 31 refs., 55 figs., 6 tabs.

  16. Measurement of Neutron Induced and Spontaneous Fission in Pu-242 at DANCE

    NASA Astrophysics Data System (ADS)

    Chyzh, Andrii; Wu, C. Y.; Henderson, R.; Couture, A.; Lee, H. Y.; Ullmann, J.; O'Donnell, J. M.; Jandel, M.; Haight, R. C.; Bredeweg, T. A.; Dance Collaboration

    2013-10-01

    Neutron capture and fission reactions are important in nuclear engineering and physics. DANCE (Detector for Advanced Neutron Capture Measurement, LANL) combined with PPAC (avalanche technique based fission tagging detector, LLNL) were used to study neutron induced and spontaneous fission in 242Pu. 2 measurements were performed in 2013. The first experiment was done without the incident neutron beam with the fission tagging ability to study γ-rays emitted in the spontaneous fission of 242Pu. The second one - with the neutron beam to measure both the neutron capture and fission reactions. This is the first direct measurement of prompt fission γ-rays in 242Pu. The γ-ray multiplicity, γ-ray energy, and total energy of γ-rays per fission in 242Pu will be presented. These distributions of the 242Pu spontaneous fission will be compared to those in the 241Pu neutron induced fission. This work was performed under the auspices of the US Department of Energy by Los Alamos National Laboratory under Contract DE-AC52-06NA25396 and Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  17. Activation analysis of indium, KCl, and melamine by using a laser-induced neutron source

    NASA Astrophysics Data System (ADS)

    Lee, Sungman; Lee, Kitae; Cha, Hyungki

    2014-04-01

    A laser-induced repetitively operated fast neutron source with a neutron yield of 4 × 105 n/pulse and a pulse repetition rate of 5 Hz, which was developed using a deuterated polystyrene film target and a 24-TW femtosecond laser, was applied for laser activation analyses of indium, KCl, and melamine samples. The nuclear reactions of the measured gamma spectra for the activated samples were identified as (n, γ), (n, n'), and (n, 2n) reactions. These indicate possible usage of the neutron source for practical activation analyses of various materials.

  18. Experimental study of neutron induced background noise on gated x-ray framing cameras

    SciTech Connect

    Izumi, N.; Hagmann, C.; Stone, G.; Hey, D.; Glenn, S.; Conder, A.; Teruya, A.; Sorce, C.; Tommasini, R.; Stoeffl, W.; Springer, P.; Landen, O. L.; Eckart, M.; Mackinnon, A. J.; Koch, J. A.; Bradley, D. K.; Bell, P.; Herrmann, H. W.; Kyrala, G. A.; Bahukutumbi, R.; and others

    2010-10-15

    A temporally gated x-ray framing camera based on a proximity focus microchannel plate is one of the most important diagnostic tools of inertial confinement fusion experiments. However, fusion neutrons produced in imploded capsules interact with structures surrounding the camera and produce background to x-ray signals. To understand the mechanisms of this neutron induced background, we tested several gated x-ray cameras in the presence of 14 MeV neutrons produced at the Omega laser facility. Differences between background levels observed with photographic film readout and charge-coupled-device readout have been studied.

  19. Loud and Bright: Gravitational and possible electromagnetic signals induced by binary neutron star mergers

    NASA Astrophysics Data System (ADS)

    Palenzuela, Carlos; Lehner, Luis; Ponce, Marcelo; Thompson, Chris; Liebling, Steve; Neilsen, Dave; Hirschmann, Eric; Anderson, Matt; Motl, Patrick

    2013-04-01

    Our main goal is to investigate how the strongly gravitating and highly dynamical behavior of magnetized binary neutron stars can affect the plasma in the magnetosphere in such a way that powerful electromagnetic emissions can be induced, as well as stressing its connection with gravitational waves produced by the system. Such phenomena is a natural candidate for bright (EM) and loud (GW) emissions, as pulsars are strong electromagnetic emitters on one hand, and merging binary neutron stars are powerful sources of gravitational radiation.

  20. Neutron-induced fission measurements at the time-of-flight facility nELBE

    DOE PAGESBeta

    Kögler, T.; Beyer, R.; Junghans, A. R.; Massarczyk, R.; Schwengner, R.; Wagner, A.

    2015-05-18

    Neutron-induced fission of ²⁴²Pu is studied at the photoneutron source nELBE. The relative fast neutron fission cross section was determined using actinide fission chambers in a time-of-flight experiment. A good agreement of present nuclear data with evalua- tions has been achieved in the range of 100 keV to 10 MeV.

  1. Studies of near-barrier fusion induced by neutron-rich nuclei at HRIBF

    SciTech Connect

    Liang, J Felix

    2011-01-01

    Fusion induced by neutron-rich radioactive beams is a topic of current interest. The findings will be useful for using radioactive beams to produce superheavy elements. Results from recent measurements performed with neutron-rich radioactive Sn and Te beams are presented. Coupled-channels calculations were carried out to study the observed sub-barrier fusion enhancement. The fusion probability in Sn on Ni were probed by comparing the evaporation residue cross sections at high excitation energies.

  2. Laser induced neutron production by explosion of the deuterium clusters

    SciTech Connect

    Holkundkar, Amol R.; Mishra, Gaurav Gupta, N. K.

    2014-01-15

    The high energy deuterium ions serve as compact source of neutrons when fused with either deuterium or tritium atoms. In view of this, the explosion of the deuterium clusters under the influence of the laser pulse with intensity ranging from 10{sup 15} to 10{sup 19} W/cm{sup 2} is being studied along with the effect of the cluster radius and inter-cluster distance. The objective of this article is to study the efficiency of the deuterium cluster as a compact source of neutrons under various laser and cluster parameters. It is being observed that the cluster density (number of clusters per unit volume) is quite important to gain high neutron yield.

  3. Reactions induced by beams of neutron and proton halo nuclei

    NASA Astrophysics Data System (ADS)

    Penionzhkevich, Yu. E.

    1997-02-01

    Within the collaboration Dubna-GANIL (Caen, France) - IPN (Orsay, France) - NPI (Rez, Czech Republic) - IAP (Bucharest, Romania) at GANIL and the Dubna U400M accelerator, experiments have been carried out to study elastic scattering, fusion and fission using secondary ion beams of 6He, 11Li and 8B. The fission cross-section for the 6He isotopes has been found to be significantly higher than for the 4He nuclei. This enhancement depends mainly on the entrance channel and it is connected with the neutron skin of the 6He nuclei. Also, investigation of the elastic scattering of 11Li (neutron halo), 7Be and 8B (proton halo) has been performed. The microscopic analysis supports the existence of a neutron halo in 11Li and the proton skin in 8B and 7Be. Perspectives for investigations in this field at the Laboratory of Nuclear Reactions JINR are also discussed.

  4. Neutron induced radio-isotopes and background for Ge double beta decay experiments

    NASA Astrophysics Data System (ADS)

    Chu, Pinghan; Majorana Collaboration

    2015-10-01

    Environmental neutrons, mostly produced by muons in the cosmic rays, might contribute backgrounds to the search for neutrinoless double beta decays. These neutrons can interact with materials and generate radio-isotopes, which can decay and produce radioactive backgrounds. Some of these neutron-induced isotopes have a signature of a time-delayed coincidence, allowing us to study these infrequent events. For example, such isotopes can decay by beta decay to metastable states and then decay by gamma decay to the ground state. Considering the time-delayed coincidence of these two processes, we can determine candidates for these neutron-induced isotopes in the data and estimate the flux of neutrons in the deep underground environment. In this report, we will list possible neutron-induced isotopes and the methodology to detect them, especially those that can affect the search for neutrinoless double beta decays in 76Ge. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, the Particle Astrophysics Program of the National Science Foundation, and the Sanford Underground Research Facility. We acknowledge the support of the U.S. Department of Energy through the LANL/LDRD Program.

  5. Neutron-induced reactions in tissue-resident elements

    SciTech Connect

    Herling, G.H.; Bassel, R.H.; Adams, J.H.; Fraser, W.A.

    1981-07-08

    Kerma-to-fluence ratios have been calculated for neutrons with energies between 20 and 60 MeV incident upon 1H, 12C, 14N, and 16O. The following charged particles have been taken into account: protons, deuterons, alpha particles, and heavy recoils. Results are presented for NE-213 plastic, muscle, and tissue-equivalent plastic.

  6. Prompt Gamma Emission in Resonance Neutron Induced Fission of 239Pu

    NASA Astrophysics Data System (ADS)

    Ruskov, I.; Kopatch, Yu. N.; Panteleev, Ts.; Skoy, V. R.; Shvetsov, V. N.; Dermendjiev, E.; Janeva, N.; Pikelner, L. B.; Grigoriev, Yu. V.; Mezentseva, Zh. V.; Ivanov, I.

    The scientific interest in the resonance neutron induced capture and fission reactions on 239Pu is continuously rising during the last decade. From a practical point of view, this is because more precise data on capture and fission cross sections, fission fragment mass and kinetic energy distributions, variation of prompt fission neutron and gamma yields in the resonance neutron region, are needed for the modelling of new generation nuclear power plants and for nuclear spent fuel and waste transmutation. From a heuristic and fundamental point of view, such a research improves our knowledge and understanding of the fission phenomena itself. To achieve these goals more powerful neutron sources and more precise fission product detectors have to be used. At the Joint Institute for Nuclear Research (JINR) Frank Laboratory of Neutron Physics (FLNP), where already half a century the thermal and resonance neutron induced nuclear reactions are studied, a new electron accelerator driven white spectrum pulsed neutron source IREN has been built and successfully tested. The improved characteristics of this facility, in comparison with those of the former pulse neutron fast reactor IBR-30, will allow measuring some of the neutron-nuclear reaction data with better precision and accuracy. A new experimental setup for detecting gamma rays (and neutrons) has been designed and is under construction. It will consist of 2 rings (arrays) of 12 NaI(Tl) detectors each (or 1 array of 24 detectors) with variable ring diameter and distance between both rings. Such a setup will make possible not only to measure the multiplicity, energy and angular anisotropy of prompt fission gammas, but also to separate the contribution of prompt fission neutrons by their longer time-of-flight from the fissile target to the detectors. The signals from all the 24 detectors will be recorded simultaneously in digitized form and will be stored on the hard disk of the personal computer for further off

  7. Trauma and Mobile Radiography

    SciTech Connect

    Drafke, M.W.

    1989-01-01

    Trauma and Mobile Radiography focuses on the radiography of trauma patients and of patients confined to bed. This book offers students a foundation in the skills they need to produce quality radiograms without causing additional injury or pain to the patient. Features of this new book include: coverage of the basics of radiography and patient care, including monitoring of heavily sedated, immobile, and accident patients. Information on the injuries associated with certain types of accidents, and methods for dealing with these problems. Detailed explanation of the positioning of each anatomical area. A Quick Reference Card with information on evaluating, monitoring and radiographing trauma patients.

  8. Neutron-induced reactions in the hohlraum to study reaction in flight neutrons

    NASA Astrophysics Data System (ADS)

    Boswell, M. S.; Elliott, S. R.; Guiseppe, V.; Kidd, M.; Rundberg, B.; Tybo, J.

    2013-04-01

    We are currently developing the physics necessary to measure the Reaction In Flight (RIF) neutron flux from a NIF capsule. A measurement of the RIF neutron flux from a NIF capsule could be used to deduce the stopping power in the cold fuel of the NIF capsule. A foil irradiated at the Omega laser at LLE was counted at the LANL low-background counting facility at WIPP. The estimated production rate of 195Au was just below our experimental sensitivity. We have made several improvements to our counting facility in recent months. These improvements are designed to increase our sensitivity, and include installing two new low-background detectors, and taking steps to reduce noise in the signals.

  9. Neutron-induced reactions in the hohlraum to study reaction in flight neutrons

    SciTech Connect

    Boswell, M. S.; Elliott, S. R.; Tybo, J.; Guiseppe, V.; Rundberg, B.; Kidd, M.

    2013-04-19

    We are currently developing the physics necessary to measure the Reaction In Flight (RIF) neutron flux from a NIF capsule. A measurement of the RIF neutron flux from a NIF capsule could be used to deduce the stopping power in the cold fuel of the NIF capsule. A foil irradiated at the Omega laser at LLE was counted at the LANL low-background counting facility at WIPP. The estimated production rate of {sup 195}Au was just below our experimental sensitivity. We have made several improvements to our counting facility in recent months. These improvements are designed to increase our sensitivity, and include installing two new low-background detectors, and taking steps to reduce noise in the signals.

  10. Low-background spectrometer for the study of fast neutron-induced (n,α) reactions

    NASA Astrophysics Data System (ADS)

    Khriachkov, V. A.; Ketlerov, V. V.; Mitrofanov, V. F.; Semenova, N. N.

    2000-04-01

    An α-particle spectrometer based on an ionization chamber with Frisch grid and a waveform digitizer has been developed for studies of fast neutron-induced (n,α) reactions. The information on the energy of the α-particle and its emission angle can be obtained from the amplitude and rise time of the digitized anode signal. For a situation where both the solid target on the cathode of the ionization chamber and the working gas are the α-particle sources, a new method for the suppression of the neutron-induced background is proposed. The background due to gaseous α-particles was reduced by a factor of 30.

  11. Isospin effects on fragmentation in the asymmetric reactions induced by neutron-rich targets

    NASA Astrophysics Data System (ADS)

    Sharma, Arun

    2016-05-01

    To understand the isospin effects in terms of fragment's yield in the asymmetric reactions induced by neutron-rich targets, we perform a theoretical study using isospin-dependent quantum molecular dynamics (IQMD) model. Simulations are carried out for reactions of 16O+Br80,84,92 and 16O+Ag108,113,122. We envision that fragments's yield in the asymmetric collisions induced by neutron-rich targets is better candidate to study isospin effects via symmetry energy and nucleon-nucleon (nn) cross-sections. Also, pronounced effects of symmetry energy and cross-sections can be found at lower and higher beam energies, respectively.

  12. Active-Interrogation Measurements of Fast Neutrons from Induced Fission in Low-Enriched Uranium

    SciTech Connect

    J. L. Dolan; M. J. Marcath; M. Flaska; S. A. Pozzi; D. L. Chichester; A. Tomanin; P. Peerani

    2014-02-01

    A detection system was designed with MCNPX-PoliMi to measure induced-fission neutrons from U-235 and U-238 using active interrogation. Measurements were then performed with this system at the Joint Research Centre (JRC) in Ispra, Italy on low-enriched uranium samples. Liquid scintillators measured induced fission neutron to characterize the samples in terms of their uranium mass and enrichment. Results are presented to investigate and support the use of organic liquid scintillators with active interrogation techniques to characterize uranium containing materials.

  13. Neutron transfer reactions induced by Li8 on Be9

    NASA Astrophysics Data System (ADS)

    Guimarães, V.; Lichtenthäler, R.; Camargo, O.; Barioni, A.; Assunção, M.; Kolata, J. J.; Amro, H.; Becchetti, F. D.; Jiang, Hao; Aguilera, E. F.; Lizcano, D.; Martines-Quiroz, E.; Garcia, H.

    2007-05-01

    Angular distributions for the elastic scattering of Li8 on Be9 and the neutron transfer reactions Be9(Li8,Li7)Be10 and Be9(Li8,Li9)Be8 were measured with a 27 MeV Li8 radioactive nuclear beam. Spectr- oscopic factors for Li8 ⊗n= Li9 and Li7 ⊗n= Li8 bound systems were obtained from the comparison between the experimental differential cross section and finite-range distorted-wave Born approximation calculations with the code FRESCO. The spectroscopic factors obtained were compared to shell model calculations and to other experimental values from (d,p) reactions. Using the present values for the spectroscopic factor, cross sections for the direct neutron-capture reactions Li7(n,γ)Li8 and Li8(n,γ)Li9 were calculated in the framework of a potential model.

  14. FIGARO: a New Facility for Studying Neutron-Induced Reactions that Produce Gamma Rays

    NASA Astrophysics Data System (ADS)

    Zanini, L.; Haight, R. C.; Devlin, M.; Aprahamian, A.

    2000-04-01

    FIGARO (Fast neutron-Induced GAmma-Ray Observer) was established in 1999 at LANSCE/WNR. This new capability is intended to extend our research into nuclear reactions and nuclear structure using gamma rays as the principal probe. The detector will consist of an array of germanium and NE-213 neutron detectors, operating in coincidence, placed at a distance of about 20 m from the neutron source. The scientific goals of FIGARO include: investigation of nuclear level densities using gamma-ray transitions as an indicator of angular momentum populated in the reaction; investigations of pre-equilibrium reactions; and study of cross sections and neutron emission spectra in (n,n') excitations. A first measurement, with the detection of only gamma-rays, has been performed with a ^59Co sample. By comparison with existing data(T. E. Slusarchyk, ORNL/TM-11404(1989)) we can assess the performance of the detector. Results will be discussed.

  15. Using Ultracold Neutrons to Characterize Fission Fragment Induced Sputtering

    NASA Astrophysics Data System (ADS)

    Broussard, Leah; Makela, Mark; Morris, Chris

    2015-10-01

    One of the modern challenges in nuclear science and technology is the understanding of the nature of fission fragment damage to material and the resulting ejection of matter as the fragments pass through the surface, with implications to stockpile stewardship and nuclear energy. We have demonstrated a new technique that can be used to characterize the sputtered material with knowledge of the location of the originating fission event. Due to their very high fission cross sections, ultracold neutrons (~100 neV energy) can be used to control the depth at which fission takes place using their energy or the material enrichment. This effort represents one of the first practical applications of ultracold neutrons, which to date have been primarily used to explore questions in fundamental particle physics. We will present results of demonstration measurements including first limits on the total and fission cross sections for 100 neV scale neutrons and the status of the development of this new capability. We gratefully acknowledge the support of the U.S. Department of Energy through the LANL/LDRD Program, the G. T. Seaborg Institute, and LANL Science Campaign C1 for this work.

  16. Chromosomal abnormalities in neutron-induced acute myeloid leukemias in CBA/H mice

    SciTech Connect

    Bouffler, S.D.; Meijne, E.I.M.; Huiskamp, R.

    1996-09-01

    Acute myeloid leukemias (AMLs) induced in CBA/H mice by 1 MeV fission neutrons have been examined for chromosomal abnormalities by G-band analysis. In common with X-ray- and {alpha}-particle-induced AMLs in CBA/H mice, more than 90% (16/17) of the myeloid leukemias had chromosome 2 abnormalities, in this case, all interstitial deletions. Chromosome 2 breakpoints were not wholly consistent, but clustering in three specific G-band regions was observed. Very distal (H-region) breakpoints were more common in the neutron AMLs than in X-ray- or {alpha}-particle-induced leukemias. These data indicate that neutron-induced AMLs in CBA/H mice are not characterized by a specific chromosome deletion but that a variety of chromosome 2 deletion types are associated with the disease. Trisomy of chromosome 1 (12.5% AMLs) and aneusomy of chromosomes 6 (31% AMLs) and Y (37.5% AMLs) were noted. While chromatid breakage was observed occasionally in neutron-induced AML, no clear indications of persistent chromosomal instability or high levels of stable chromosomal change were apparent. 19 refs., 1 fig., 1 tab.

  17. Neutron source

    DOEpatents

    Cason, J.L. Jr.; Shaw, C.B.

    1975-10-21

    A neutron source which is particularly useful for neutron radiography consists of a vessel containing a moderating media of relatively low moderating ratio, a flux trap including a moderating media of relatively high moderating ratio at the center of the vessel, a shell of depleted uranium dioxide surrounding the moderating media of relatively high moderating ratio, a plurality of guide tubes each containing a movable source of neutrons surrounding the flux trap, a neutron shield surrounding one part of each guide tube, and at least one collimator extending from the flux trap to the exterior of the neutron source. The shell of depleted uranium dioxide has a window provided with depleted uranium dioxide shutters for each collimator. Reflectors are provided above and below the flux trap and on the guide tubes away from the flux trap.

  18. Barites - Anomalous xenon from spallation and neutron-induced reactions

    NASA Technical Reports Server (NTRS)

    Srinivasan, B.

    1976-01-01

    Sedimentary barites from South Africa and Western Australia (about 3 billion years old) contain spallogenic Xe isotopes produced by reactions of Ba with nuclear-active particles in cosmic rays. 'Surface residence time' of these samples was calculated from the observed concentrations of spallogenic Xe-126. Comparison of spallogenic ratios of Xe-131/Xe-126 in the two samples provides evidence for the reaction Ba-130(n, gamma) yields Xe-131, which is characterized by a large number of resonances for neutron absorption in the epithermal region. This observation lends additional support to the conclusions already reached regarding the origin of anomalous Xe-131 in lunar samples.

  19. Neutron-induced changes in optical properties of MgAl 2O 4 spinel

    NASA Astrophysics Data System (ADS)

    Ibarra, A.; Garner, F. A.; Hollenberg, G. L.

    1995-03-01

    High purity MgAl 2O 4 spinel specimens irradiated in FFTF-MOTA to very high neutron exposures have been examined by three techniques to determine changes in their optical properties. Significant changes were observed in optical absorption, photoluminescence and radioluminescence, indicating that a variety of radiation-induced defects are present in these specimens.

  20. Continuous versus pulse neutron induced gamma spectroscopy for soil carbon analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Neutron induced gamma spectra analysis (NGA) provides a means of measuring carbon in large soil volumes without destructive sampling. Calibration of the NGA system must account for system background and the interference of other nuclei on the carbon peak at 4.43 MeV. Accounting for these factors pro...

  1. Austenitic stainless steel alloys having improved resistance to fast neutron-induced swelling

    DOEpatents

    Bloom, Everett E.; Stiegler, James O.; Rowcliffe, Arthur F.; Leitnaker, James M.

    1977-03-08

    The present invention is based on the discovery that radiation-induced voids which occur during fast neutron irradiation can be controlled by small but effective additions of titanium and silicon. The void-suppressing effect of these metals in combination is demonstrated and particularly apparent in austenitic stainless steels.

  2. Fast Neutron Induced Autophagy Leads To Necrosis In Glioblastoma Multiforme Cells

    NASA Astrophysics Data System (ADS)

    Yasui, Linda; Gladden, Samantha; Andorf, Christine; Kroc, Thomas

    2011-06-01

    Fast neutrons are highly effective at killing glioblastoma multiforme (GBM), U87 and U251 cells. The mode of cell death was investigated using transmission electron microscopy (TEM) to identify the fraction of irradiated U87 or U251 cells having morphological features of autophagy and/or necrosis. U87 or U251 cells were irradiated with 2 Gy fast neturons or 10 Gy γ rays. A majority of U87 and U251 cells exhibit features of cell death with autophagy after irradiation with either 10 Gy γ rays or 2 Gy fast neutrons. Very few γ irradiated cells had features of necrosis (U87 or U251 cell samples processed for TEM 1 day after 10 Gy γ irradiation). In contrast, a significant increase was observed in necrotic U87 and U251 cells irradiated with fast neutrons. These results show a greater percentage of cells exhibit morphological evidence of necrosis induced by a lower dose of fast neutron irradiation compared to γ irradiation. Also, the evidence of necrosis in fast neutron irradiated U87 and U251 cells occurs in a background of autophagy. Since autophagy is observed before necrosis, autophagy may play a role in signaling programmed necrosis in fast neutron irradiated U87 and U251 cells.

  3. Fast Neutron Induced Autophagy Leads To Necrosis In Glioblastoma Multiforme Cells

    SciTech Connect

    Yasui, Linda; Gladden, Samantha; Andorf, Christine; Kroc, Thomas

    2011-06-01

    Fast neutrons are highly effective at killing glioblastoma multiforme (GBM), U87 and U251 cells. The mode of cell death was investigated using transmission electron microscopy (TEM) to identify the fraction of irradiated U87 or U251 cells having morphological features of autophagy and/or necrosis. U87 or U251 cells were irradiated with 2 Gy fast neturons or 10 Gy {gamma} rays. A majority of U87 and U251 cells exhibit features of cell death with autophagy after irradiation with either 10 Gy {gamma} rays or 2 Gy fast neutrons. Very few {gamma} irradiated cells had features of necrosis (U87 or U251 cell samples processed for TEM 1 day after 10 Gy {gamma} irradiation). In contrast, a significant increase was observed in necrotic U87 and U251 cells irradiated with fast neutrons. These results show a greater percentage of cells exhibit morphological evidence of necrosis induced by a lower dose of fast neutron irradiation compared to {gamma} irradiation. Also, the evidence of necrosis in fast neutron irradiated U87 and U251 cells occurs in a background of autophagy. Since autophagy is observed before necrosis, autophagy may play a role in signaling programmed necrosis in fast neutron irradiated U87 and U251 cells.

  4. Detection of uranium-based nuclear weapons using neutron-induced fission

    SciTech Connect

    Moss, C.E.; Byrd, R.C.; Feldman, W.C.; Auchampaugh, G.F.; Estes, G.P.; Ewing, R.I.; Marlow, K.W.

    1991-12-01

    Although plutonium-based nuclear weapons can usually be detected by their spontaneous emission of neutrons and gammas, the radiation emitted by weapons based entirely on highly-enriched uranium can often be easily shielded. Verification of a treaty that limits the number of such weapons may require an active technique, such as interrogating the suspect assembly with an external neutron source and measuring the number of fission neutrons produced. Difficulties include distinguishing between source and fission neutrons, the variations in yield for different materials and geometries, and the possibility of non-nuclear weapons that may contain significant amounts of fissionable depleted uranium. We describe simple measurements that test the induced-fission technique using an isotopic Am-Li source, an novel energy-sensitive neutron detector, and several small assemblies containing {sup 235}U, {sup 238}U, lead, and polyethylene. In all cases studied, the neutron yields above the source energy are larger for the {sup 235}U assemblies than for assemblies containing only lead or depleted uranium. For more complex geometries, corrections for source transmission may be necessary. The results are promising enough to recommend further experiments and calculations using examples of realistic nuclear and non-nuclear weapons. 5 refs., 11 figs.

  5. Displacement damage effects on CMOS APS image sensors induced by neutron irradiation from a nuclear reactor

    SciTech Connect

    Wang, Zujun Huang, Shaoyan; Liu, Minbo; Xiao, Zhigang; He, Baoping; Yao, Zhibin; Sheng, Jiangkun

    2014-07-15

    The experiments of displacement damage effects on CMOS APS image sensors induced by neutron irradiation from a nuclear reactor are presented. The CMOS APS image sensors are manufactured in the standard 0.35 μm CMOS technology. The flux of neutron beams was about 1.33 × 10{sup 8} n/cm{sup 2}s. The three samples were exposed by 1 MeV neutron equivalent-fluence of 1 × 10{sup 11}, 5 × 10{sup 11}, and 1 × 10{sup 12} n/cm{sup 2}, respectively. The mean dark signal (K{sub D}), dark signal spike, dark signal non-uniformity (DSNU), noise (V{sub N}), saturation output signal voltage (V{sub S}), and dynamic range (DR) versus neutron fluence are investigated. The degradation mechanisms of CMOS APS image sensors are analyzed. The mean dark signal increase due to neutron displacement damage appears to be proportional to displacement damage dose. The dark images from CMOS APS image sensors irradiated by neutrons are presented to investigate the generation of dark signal spike.

  6. 8. VIEW OF RADIOGRAPHY EQUIPMENT, TEST METHODS INCLUDED RADIOGRAPHY AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. VIEW OF RADIOGRAPHY EQUIPMENT, TEST METHODS INCLUDED RADIOGRAPHY AND BETA BACKSCATTERING. (7/13/56) - Rocky Flats Plant, Non-Nuclear Production Facility, South of Cottonwood Avenue, west of Seventh Avenue & east of Building 460, Golden, Jefferson County, CO

  7. Neutron Induced D Breakup in Inertial Confinement Fusion at the Omega Laser Facility

    NASA Astrophysics Data System (ADS)

    Forrest, C. J.; Glebov, V. Yu.; Knauer, J. P.; Radha, P. B.; Regan, S. P.; Sangster, T. C.; Stoeckl, C.; Schroder, W. U.; Frenje, J. A.; Gatu Johnson, M.

    2015-11-01

    High-resolution neutron spectroscopy is used to study the deuteron breakup reaction D(n,n ') np in the thermonuclear environment created in inertial confinement fusion experiments at the Omega Laser Facility. Neutrons with an energy of 14.1 MeV generated in the primary D-T fusion reactions scatter elastically and inelastically off the dense (cryogenic) D-T fuel assembly surrounding the central hot spot at peak fuel compression. These neutrons also induce a breakup of the fuel deuterons. The corresponding breakup cross section is measured relative to elastic n -D and n -T scattering, i.e., simultaneously in the same environment. Apart from astrophysical and technological interest, the neutron-induced deuteron breakup reaction is of interest to the physics of nucleon -nucleon forces. For example, theoretical calculations predict a noticeable influence of nucleonic three-body forces on the magnitude of the breakup cross section. Preliminary results from measurements of the neutron contribution in the 2- to 6-MeV range show reasonable agreement with the published ENDL 2008.2 semi-empirical cross-section. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  8. Use of PuBe source to simulate neutron-induced single event upsets in static RAMS

    SciTech Connect

    Normand, E.; Wert, J.L.; Doherty, W.R.; Oberg, D.L.; Measel, P.R.; Criswell, T.L.

    1988-12-01

    Neutron induced single event upsets were measured in static memory devices using a 10 curie PuBe source. The PuBe source conservatively overestimates the spectrum of fast neutrons emitted by a radioisotope thermoelectric generator (RTG). For the 93L422, the neutron-induced upset rate compared favorably with calculated values derived using the burst generation concept. By accounting for the production of the ionizing particles by the PuBe and RTG neutron spectra, convenient upper bound SEU upset rates for memory devices near an RTG can be derived.

  9. Characterization of the CRESST detectors by neutron induced nuclear recoils

    NASA Astrophysics Data System (ADS)

    Coppi, C.; Ciemniak, C.; von Feilitzsch, F.; Gütlein, A.; Hagn, H.; Isaila, C.; Jochum, J.; Kimmerle, M.; Lanfranchi, J.-C.; Pfister, S.; Potzel, W.; Rau, W.; Roth, S.; Rottler, K.; Sailer, C.; Scholl, S.; Usherov, I.; Westphal, W.

    CRESST is an experiment for the direct detection of dark matter particles via nuclear recoils. The CRESST detectors, based on CaWO4 scintillating crystals, are able to discriminate γ and β background by simultaneously measuring the light and phonon signals produced by particle interactions. The discrimination of the background is possible because of the different light output (Quenching Factor, QF) for nuclear and electron recoils. In this article a measurement is shown, aimed at the determination of the QFs of the different nuclei (O, Ca, W) of the detector crystal at 40-60 mK using an 11 MeV neutron beam produced at the Maier-Leibnitz-Laboratorium in Garching (MLL).

  10. Neutron-induced latch-up immunity in metal gate CMOS integrated circuits

    SciTech Connect

    Barnes, C.E.; Rollins, J.G.; Hachey, D.

    1987-12-01

    Neutron-induced latch-up immunity has been studied in metal gate CMOS integrated circuits as a function of neutron fluence by measuring both the current gain products (beta product) of parasitic NPN and PNP transistors, and the flash x-ray latch-up thresholds prior to and following irradiation and subsequent stabilization anneal. Correlations between the actual latch-up thresholds and the measured beta products are established for the three part types investigated. These correlations indicate that the measurement of beta products on judiciously chosen parasitic transistors is a viable technique for estimating latch-up susceptibility when the observed margin is substantial.

  11. Thorium-uranium fission radiography

    NASA Technical Reports Server (NTRS)

    Haines, E. L.; Weiss, J. R.; Burnett, D. S.; Woolum, D. S.

    1976-01-01

    Results are described for studies designed to develop routine methods for in-situ measurement of the abundance of Th and U on a microscale in heterogeneous samples, especially rocks, using the secondary high-energy neutron flux developed when the 650 MeV proton beam of an accelerator is stopped in a 42 x 42 cm diam Cu cylinder. Irradiations were performed at three different locations in a rabbit tube in the beam stop area, and thick metal foils of Bi, Th, and natural U as well as polished silicate glasses of known U and Th contents were used as targets and were placed in contact with mica which served as a fission track detector. In many cases both bare and Cd-covered detectors were exposed. The exposed mica samples were etched in 48% HF and the fission tracks counted by conventional transmitted light microscopy. Relative fission cross sections are examined, along with absolute Th track production rates, interaction tracks, and a comparison of measured and calculated fission rates. The practicality of fast neutron radiography revealed by experiments to data is discussed primarily for Th/U measurements, and mixtures of other fissionable nuclei are briefly considered.

  12. Fast neutrons-induced apoptosis is Fas-independent in lymphoblastoid cells

    SciTech Connect

    Fischer, Barbara; Benzina, Sami; Jeannequin, Pierre; Dufour, Patrick; Bergerat, Jean-Pierre; Denis, Jean-Marc; Gueulette, John; Bischoff, Pierre L. . E-mail: Pierre.Bischoff@ircad.u-strasbg.fr

    2005-08-26

    We have previously shown that ionizing radiation-induced apoptosis in human lymphoblastoid cells differs according to their p53 status, and that caspase 8-mediated cleavage of BID is involved in the p53-dependent pathway. In the present study, we investigated the role of Fas signaling in caspase 8 activation induced by fast neutrons irradiation in these cells. Fas and FasL expression was assessed by flow cytometry and by immunoblot. We also measured Fas aggregation after irradiation by fluorescence microscopy. We found a decrease of Fas expression after irradiation, but no change in Fas ligand expression. We also showed that, in contrast to the stimulation of Fas by an agonistic antibody, Fas aggregation did not occur after irradiation. Altogether, our data strongly suggest that fast neutrons induced-apoptosis is Fas-independent, even in p53-dependent apoptosis.

  13. Signatures of field induced spin polarization of neutron star matter in seismic vibrations of paramagnetic neutron star

    NASA Astrophysics Data System (ADS)

    Bastrukov, S. I.; Yang, J.; Podgainy, D. V.; Weber, F.

    2003-04-01

    A macroscopic model of the dissipative magneto-elastic dynamics of viscous spin polarized nuclear matter is discussed in the context of seismic activity of a paramagnetic neutron star. The source of the magnetic field of such a star is attributed to Pauli paramagnetism of baryon matter promoted by a seed magnetic field frozen into the star in the process of gravitational collapse of a massive progenitor. Particular attention is given to the effect of shear viscosity of incompressible stellar material on the timing of non-radial torsional magneto-elastic pulsations of the star triggered by starquakes. By accentuating the fact that this kind of vibration is unique to the seismology of a paramagnetic neutron star we show that the high-frequency modes decay faster than the low-frequency modes. The obtained analytic expressions for the period and relaxation time of this mode, in which the magnetic susceptibility and viscosity enter as input parameters, are then quantified by numerical estimates for these parameters taken from early and current works on transport coefficients of dense matter. It is found that the effect of viscosity is crucial for the lifetime of magneto-torsion vibrations but it does not appreciably affect the periods of this seismic mode which fall in the realm of periods of pulsed emission of soft gamma-ray repeaters and anomalous x-ray pulsars - young super-magnetized neutron stars, radiating, according to the magnetar model, at the expense of the magnetic energy release. Finally, we present arguments that the long periodic pulsed emission of these stars in a quiescent regime of radiation can be interpreted as a manifestation of weakly damped seismic magneto-torsion vibrations exhibiting the field induced spin polarization of baryon matter.

  14. A measurement of the muon-induced neutron yield in lead at a depth of 2850 m water equivalent

    SciTech Connect

    Reichhart, L.; Ghag, C.; Lindote, A.; Chepel, V.; DeViveiros, L.; Lopes, M. I.; Neves, F.; Pinto da Cunha, J.; Silva, C.; Solovov, V. N.; Akimov, D. Yu.; Belov, V. A.; Burenkov, A. A.; Kobyakin, A. S.; Kovalenko, A. G.; Stekhanov, V. N.; Araújo, H. M.; Bewick, A.; Currie, A.; Horn, M.; and others

    2013-08-08

    We present results from the measurement of the neutron production rate in lead by high energy cosmic-ray muons at a depth of 2850 m water equivalent (mean muon energy of 260 GeV). A tonne-scale highly segmented plastic scintillator detector was utilised to detect both the energy depositions from the traversing muons as well as the delayed radiative capture signals of the induced neutrons. Complementary Monte Carlo simulations reproduce well the distributions of muons and detected muon-induced neutrons. Absolute agreement between simulation and data is of the order of 25%. By comparing the measured and simulated neutron capture rates a neutron yield in pure lead of (5.78{sub −0.28}{sup +0.21})×10{sup −3} neutrons/muon/(g/cm{sup 2}) has been obtained.

  15. Real-time radiography

    SciTech Connect

    Bossi, R.H.; Oien, C.T.

    1981-02-26

    Real-time radiography is used for imaging both dynamic events and static objects. Fluorescent screens play an important role in converting radiation to light, which is then observed directly or intensified and detected. The radiographic parameters for real-time radiography are similar to conventional film radiography with special emphasis on statistics and magnification. Direct-viewing fluoroscopy uses the human eye as a detector of fluorescent screen light or the light from an intensifier. Remote-viewing systems replace the human observer with a television camera. The remote-viewing systems have many advantages over the direct-viewing conditions such as safety, image enhancement, and the capability to produce permanent records. This report reviews real-time imaging system parameters and components.

  16. Evaluated Mean Values and Covariances for the Prompt Fission Neutron Spectrum of 239Pu induced by neutrons of 500 keV

    SciTech Connect

    Neudecker, Denise

    2014-07-10

    This document provides the numerical values of the evaluated prompt fission neutron spectrum for 239Pu induced by neutrons of 500 keV as well as relative uncertainties and correlations. This document also contains a short description how these data were obtained and shows plots comparing the evaluated results to experimental information as well as the corresponding ENDF/B-VII.1 evaluation.

  17. Neutron emission effects on fragment mass and kinetic energy distribution from fission of 239{sup Pu} induced by thermal neutrons

    SciTech Connect

    Montoya, M.; Rojas, J.; Lobato, I.

    2010-08-04

    The average of fragment kinetic energy (E-bar sign*) and the multiplicity of prompt neutrons ({nu}(bar sign)) as a function of fragment mass (m*), as well as the fragment mass yield (Y(m*)) from thermal neutron-induced fission of {sup 239}Pu have been measured by Tsuchiya et al.. In that work the mass and kinetic energy are calculated from the measured kinetic energy of one fragment and the difference of time of flight of the two complementary fragments. However they do not present their results about the standard deviation {sigma}{sub E}*(m*). In this work we have made a numerical simulation of that experiment which reproduces its results, assuming an initial distribution of the primary fragment kinetic energy (E(A)) with a constant value of the standard deviation as function of fragment mass ({sigma}{sub E}(A)). As a result of the simulation we obtain the dependence {sigma}{sub E}*(m*) which presents an enhancement between m* = 92 and m* = 110, and a peak at m* = 121.

  18. Neutron-induced reactions on AlF3 studied using the optical model

    NASA Astrophysics Data System (ADS)

    Ma, Chun-Wang; Lv, Cui-Juan; Zhang, Guo-Qiang; Wang, Hong-Wei; Zuo, Jia-Xu

    2015-08-01

    Neutron-induced reactions on 27Al and 19F nuclei are investigated using the optical model implemented in the TALYS 1.4 toolkit. Incident neutron energies in a wide range from 0.1 keV to 30 MeV are calculated. The cross sections for the main channels (n, np), (n, p), (n, α), (n, 2n), and (n, γ) and the total reaction cross section (n, tot) of the reactions are obtained. When the default parameters in TALYS 1.4 are adopted, the calculated results agree with the measured results. Based on the calculated results for the n + 27Al and n + 19F reactions, the results of the n + 27Al19F reactions are predicted. These results are useful both for the design of thorium-based molten salt reactors and for neutron activation analysis techniques.

  19. In-situ measurement of the rate of U-235 fission induced by lunar neutrons

    NASA Technical Reports Server (NTRS)

    Woolum, D. S.; Burnett, D. S.

    1974-01-01

    The depth profile of the neutron-induced fission rate of U-235 was directly measured to a depth of 350 g/sq cm by the Apollo 17 Lunar Neutron Probe Experiment. The fission rate rises sharply from the surface to a broad maximum from 110 to 160 g/sq cm and drops off at greater depths. The shape of the theoretical depth profile of Lingenfelter et al (1972) fits the measured capture rates well at all depths. The absolute magnitude of the experimental fission rates are (11 plus or minus 17)% lower than those calculated theoretically. The excellent agreement between theory and experiment implies that conclusions drawn previously by interpreting lunar sample data with the theoretical capture rates will not require revision. In particular, lunar surface processes, rather than uncertainties in the capture rates, are required to explain the relatively low neutron fluences observed for surface soil samples compared to the fluences expected for a uniformly mixed regolith.

  20. Determination of the 243,246,248Cm thermal neutron induced fission cross sections

    NASA Astrophysics Data System (ADS)

    Serot, O.; Wagemans, C.; Vermote, S.; Heyse, J.; Soldner, T.; Geltenbort, P.

    2005-11-01

    The minor actinide waste produced in nuclear power plants contains various Cm-isotopes, and transmutation scenarios require improved fission cross section data. The available thermal neutron induced fission cross section data for 243Cm, 246Cm and 248Cm are not very accurate, so new cross section measurements have been performed at the high flux reactor of the ILL in Grenoble (France) under better experimental conditions (highly enriched samples, very intense and clean neutron beam). The measurements were performed at a neutron energy of 5.38 meV, yielding fission cross section values of (1240±28)b for 243Cm, (25±47)mb for 246Cm and (685±84)mb for 248Cm. From these results, thermal fission cross section values of (572±14)b; (12±25)mb and (316±43)mb have been deduced for 243Cm, 246Cm and 248Cm, respectively.

  1. Analysis of the Nuclear Structure of 186 Re Using Neutron-Induced Reactions

    NASA Astrophysics Data System (ADS)

    Matters, David; McClory, John; Carroll, James; Chiara, Chris; Fotiades, Nikolaos; Devlin, Matt; Nelson, Ron O.

    2015-04-01

    Evaluated nuclear structure data for 186 Re identifies the majority of spin-parity assignments as tentative, with approximate values associated with the energies of several levels and transitions. In particular, the absence of known transitions that feed the Jπ =8+ isomer motivates their discovery, which would have astrophysical implications and a potential application in the development of an isomer power source. Using the GErmanium Array for Neutron Induced Excitations (GEANIE) spectrometer at the Los Alamos Neutron Science Center (LANSCE) Weapons Neutron Research (WNR) facility, the (n,2n γ) and (n,n' γ) reactions in a 99.52% enriched 187 Re target were used to measure γ-ray excitation functions in 186 Re and 187 Re, respectively. A preliminary analysis of the data obtained from the experiment reveals several new transitions in 186 Re and 187 Re.

  2. A New Facility for High-Energy Neutron-Induced Fission Studies

    SciTech Connect

    Prokofiev, A.; Carlsson, M.; Einarsson, L.; Haag, N.; Pomp, S.; Bergenwall, B.; Blomgren, J.; Hildebrand, A.; Johansson, C.; Mermod, P.; Oesterlund, M.; Tippawan, U.; Dangtip, S.

    2005-05-24

    A new facility is constructed for measurements of neutron-induced fission cross sections in the 20-180 MeV energy region versus the np scattering cross section, which is adopted as the primary neutron standard. The advantage of the experiment compared to earlier studies is that the fission-fragment detection and the neutron-flux measurement via np scattering are performed simultaneously and at the same position in the beam, and, therefore, many sources of systematic errors cancel out. Further reduction of systematic errors is achieved due to 'embedded' determination of effective solid angle of particle detectors using {alpha}-particles from the radioactive decay of the target nuclei. The performance of the facility is illustrated by first data obtained for angular distributions of fission fragments in the 238U(n,f) reaction.

  3. Evaluation of photon production data from neutron-induced reactions

    SciTech Connect

    Fu, C.Y.

    1980-01-01

    The evaluation methods and procedures used for generating the photon production data in the current Evaluated Nuclear Data File (ENDF/B, Version V) are reviewed. There are 42 materials in the General Purpose File of ENDF/B-V that contain data for prompt photon production. Almost all evaluations had substantial experimental data bases, but fewer than half of them employed any of the following evaluation methods. Only a few used theoretical techniques that are sophisticated enough to ensure internal consistency with other particle production data. Comments are made on four evaluation methods: the empirical formalism of Howerton et al., the Troubetzkoy model, the multiparticle Hauser-Feshbach/precompound model, and the Yost method. Critiques are also made on three procedures used for conserving photon energies in neutron capture reactions. The presence of photon production data in the file is useful for studying energy balance, since photon production generally accounts for a large portion of the reaction energy output. Problems found in energy balance checks are discussed. 9 figures, 1 table.

  4. Neutron-induced gamma-ray spectroscopy: simulations for chemical mapping of planetary surfaces

    SciTech Connect

    Brueckner, J.; Waenke, H.; Reedy, R.C.

    1986-01-01

    Cosmic rays interact with the surface of a planetary body and produce a cascade of secondary particles, such as neutrons. Neutron-induced scattering and capture reactions play an important role in the production of discrete gamma-ray lines that can be measured by a gamma-ray spectrometer on board of an orbiting spacecraft. These data can be used to determine the concentration of many elements in the surface of a planetary body, which provides clues to its bulk composition and in turn to its origin and evolution. To investigate the gamma rays made by neutron interactions, thin targets were irradiated with neutrons having energies from 14 MeV to 0.025 eV. By means of foil activation technique the ratio of epithermal to thermal neutrons was determined to be similar to that in the Moon. Gamma rays emitted by the targets and the surrounding material were detected by a high-resolution germanium detector in the energy range of 0.1 to 8 MeV. Most of the gamma-ray lines that are expected to be used for planetary gamma-ray spectroscopy were found in the recorded spectra and the principal lines in these spectra are presented. 58 refs., 7 figs., 9 tabs.

  5. Measurements and simulations of the cosmic-ray-induced neutron background

    NASA Astrophysics Data System (ADS)

    Becchetti, M. F.; Flaska, M.; Clarke, S. D.; Pozzi, S. A.

    2015-03-01

    The cosmic-ray-induced neutron background at ground level has been measured and simulated in conjunction with EJ-309 organic liquid scintillators with an approximate deposited energy range of 0.5-6 MeV. Specifically, the pulse height distributions, net neutron count rates, and angular dependences were obtained. The simulations were carried out using the Monte Carlo transport code MCNPX-PoliMi combined with the (Cosmic-Ray Shower Generator) CRY source subroutine that returns secondary particles produced by cosmic rays. A scaling formula from literature was also implemented in the simulation. The angular dependence of the neutron count rate was measured by collimating the liquid scintillator with polyethylene to attain 18° angular resolution from 0° downwards to 72° horizontally. The neutron count rate was measured to be 23.10±1.69 h-1 sr-1 at 0°, and 7.20±0.78 h-1 sr-1 at 72°. The simulations and measurements compare well and show similar cosine anisotropy for the angular distribution. The study thus shows that the neutron background response in detector systems can be efficiently and accurately simulated using the procedures described.

  6. Fast-neutron spectroscopy studies using induced-proton tracks in PADC track detectors

    NASA Astrophysics Data System (ADS)

    El-Sersy, A. R.; Eman, S. A.

    2010-06-01

    In this work, a simple and adequate method for fast-neutron spectroscopy is proposed. This method was performed by free-in-air fast-neutron irradiation of CR-39 Nuclear Track Detectors (NTD) using an Am-Be source. Detectors were then chemically etched to remove few layers up to a thickness of 6.25 μm. By using an automatic image analyzer system for studying the registration of the induced-proton tracks in the NTD, the obtained data were analyzed via two tracks shapes. In the first one, the elliptical tracks were eliminated from the calculation and only the circular ones were considered in developing the response function. In the second method all registered tracks were considered and the corresponding response function was obtained. The rate of energy loss of the protons as a function of V[(d E/d X) - V] was calculated using the Monte Carlo simulation. The induced-proton energy was extracted from the corresponding d E/d X in NTD using a computer program based on the Bethe-Bloch function. The energy of the incident particles was up to few hundred MeV/nucleon. The energy of the interacting neutrons was then estimated by means of the extracted induced-proton energies and the scattering angle. It was found that the present resulting energy distribution of the fast-neutron spectrum from the Am-Be source was similar to that given in the literature where an average neutron energy of 4.6MeV was obtained.

  7. DNA damage induced by boron neutron capture therapy is partially repaired by DNA ligase IV.

    PubMed

    Kondo, Natsuko; Sakurai, Yoshinori; Hirota, Yuki; Tanaka, Hiroki; Watanabe, Tsubasa; Nakagawa, Yosuke; Narabayashi, Masaru; Kinashi, Yuko; Miyatake, Shin-ichi; Hasegawa, Masatoshi; Suzuki, Minoru; Masunaga, Shin-ichiro; Ohnishi, Takeo; Ono, Koji

    2016-03-01

    Boron neutron capture therapy (BNCT) is a particle radiation therapy that involves the use of a thermal or epithermal neutron beam in combination with a boron ((10)B)-containing compound that specifically accumulates in tumor. (10)B captures neutrons and the resultant fission reaction produces an alpha ((4)He) particle and a recoiled lithium nucleus ((7)Li). These particles have the characteristics of high linear energy transfer (LET) radiation and therefore have marked biological effects. High-LET radiation is a potent inducer of DNA damage, specifically of DNA double-strand breaks (DSBs). The aim of the present study was to clarify the role of DNA ligase IV, a key player in the non-homologous end-joining repair pathway, in the repair of BNCT-induced DSBs. We analyzed the cellular sensitivity of the mouse embryonic fibroblast cell lines Lig4-/- p53-/- and Lig4+/+ p53-/- to irradiation using a thermal neutron beam in the presence or absence of (10)B-para-boronophenylalanine (BPA). The Lig4-/- p53-/- cell line had a higher sensitivity than the Lig4+/+ p53-/-cell line to irradiation with the beam alone or the beam in combination with BPA. In BNCT (with BPA), both cell lines exhibited a reduction of the 50 % survival dose (D 50) by a factor of 1.4 compared with gamma-ray and neutron mixed beam (without BPA). Although it was found that (10)B uptake was higher in the Lig4+/+ p53-/- than in the Lig4-/- p53-/- cell line, the latter showed higher sensitivity than the former, even when compared at an equivalent (10)B concentration. These results indicate that BNCT-induced DNA damage is partially repaired using DNA ligase IV. PMID:26573366

  8. Reducing Uncertainties in Neutron-Induced Fission Cross Sections Using a Time Projection Chamber

    NASA Astrophysics Data System (ADS)

    Manning, Brett; Niffte Collaboration

    2015-10-01

    Neutron-induced fission cross sections for actinides have long been of great interest for nuclear energy and stockpile stewardship. Traditionally, measurements were performed using fission chambers which provided limited information about the detected fission events. For the case of 239Pu(n,f), sensitivity studies have shown a need for more precise measurements. Recently the Neutron Induced Fission Fragment Tracking Experiment (NIFFTE) has developed the fission Time Projection Chamber (fissionTPC) to measure fission cross sections to better than 1% uncertainty by providing 3D tracking of fission fragments. The fissionTPC collected data to calculate the 239Pu(n,f) cross section at the Weapons Neutron Research facility at the Los Alamos Neutron Science Center during the 2014 run cycle. Preliminary analysis has been focused on studying particle identification and target and beam non-uniformities to reduce the uncertainty on the cross section. Additionally, the collaboration is investigating other systematic errors that could not be well studied with a traditional fission chamber. LA-UR-15-24906.

  9. Observation of Gravitationally Induced Vertical Striation of Polarized Ultracold Neutrons by Spin-Echo Spectroscopy

    NASA Astrophysics Data System (ADS)

    Afach, S.; Ayres, N. J.; Ban, G.; Bison, G.; Bodek, K.; Chowdhuri, Z.; Daum, M.; Fertl, M.; Franke, B.; Griffith, W. C.; Grujić, Z. D.; Harris, P. G.; Heil, W.; Hélaine, V.; Kasprzak, M.; Kermaidic, Y.; Kirch, K.; Knowles, P.; Koch, H.-C.; Komposch, S.; Kozela, A.; Krempel, J.; Lauss, B.; Lefort, T.; Lemière, Y.; Mtchedlishvili, A.; Musgrave, M.; Naviliat-Cuncic, O.; Pendlebury, J. M.; Piegsa, F. M.; Pignol, G.; Plonka-Spehr, C.; Prashanth, P. N.; Quéméner, G.; Rawlik, M.; Rebreyend, D.; Ries, D.; Roccia, S.; Rozpedzik, D.; Schmidt-Wellenburg, P.; Severijns, N.; Thorne, J. A.; Weis, A.; Wursten, E.; Wyszynski, G.; Zejma, J.; Zenner, J.; Zsigmond, G.

    2015-10-01

    We describe a spin-echo method for ultracold neutrons (UCNs) confined in a precession chamber and exposed to a |B0|=1 μ T magnetic field. We have demonstrated that the analysis of UCN spin-echo resonance signals in combination with knowledge of the ambient magnetic field provides an excellent method by which to reconstruct the energy spectrum of a confined ensemble of neutrons. The method takes advantage of the relative dephasing of spins arising from a gravitationally induced striation of stored UCNs of different energies, and also permits an improved determination of the vertical magnetic-field gradient with an exceptional accuracy of 1.1 pT /cm . This novel combination of a well-known nuclear resonance method and gravitationally induced vertical striation is unique in the realm of nuclear and particle physics and should prove to be invaluable for the assessment of systematic effects in precision experiments such as searches for an electric dipole moment of the neutron or the measurement of the neutron lifetime.

  10. Observation of Gravitationally Induced Vertical Striation of Polarized Ultracold Neutrons by Spin-Echo Spectroscopy.

    PubMed

    Afach, S; Ayres, N J; Ban, G; Bison, G; Bodek, K; Chowdhuri, Z; Daum, M; Fertl, M; Franke, B; Griffith, W C; Grujić, Z D; Harris, P G; Heil, W; Hélaine, V; Kasprzak, M; Kermaidic, Y; Kirch, K; Knowles, P; Koch, H-C; Komposch, S; Kozela, A; Krempel, J; Lauss, B; Lefort, T; Lemière, Y; Mtchedlishvili, A; Musgrave, M; Naviliat-Cuncic, O; Pendlebury, J M; Piegsa, F M; Pignol, G; Plonka-Spehr, C; Prashanth, P N; Quéméner, G; Rawlik, M; Rebreyend, D; Ries, D; Roccia, S; Rozpedzik, D; Schmidt-Wellenburg, P; Severijns, N; Thorne, J A; Weis, A; Wursten, E; Wyszynski, G; Zejma, J; Zenner, J; Zsigmond, G

    2015-10-16

    We describe a spin-echo method for ultracold neutrons (UCNs) confined in a precession chamber and exposed to a |B0|=1  μT magnetic field. We have demonstrated that the analysis of UCN spin-echo resonance signals in combination with knowledge of the ambient magnetic field provides an excellent method by which to reconstruct the energy spectrum of a confined ensemble of neutrons. The method takes advantage of the relative dephasing of spins arising from a gravitationally induced striation of stored UCNs of different energies, and also permits an improved determination of the vertical magnetic-field gradient with an exceptional accuracy of 1.1  pT/cm. This novel combination of a well-known nuclear resonance method and gravitationally induced vertical striation is unique in the realm of nuclear and particle physics and should prove to be invaluable for the assessment of systematic effects in precision experiments such as searches for an electric dipole moment of the neutron or the measurement of the neutron lifetime. PMID:26550870

  11. Nuclear Astrophysics and Neutron Induced Reactions: Quasi-Free Reactions and RIBs

    SciTech Connect

    Cherubini, S.; Spitaleri, C.; Crucilla, V.; Gulino, M.; La Cognata, M.; Lamia, L.; Pizzone, R. G.; Puglia, S.; Rapisarda, G. G.; Romano, S.; Sergi, M. L.; Coc, A.; Kubono, S.; Binh, D. N.; Hayakawa, S.; Wakabayashi, Y.; Yamaguchi, H.; Burjan, V.; Kroha, V.; De Sereville, N.

    2010-08-12

    The use of quasi-free reactions in studying nuclear reactions between charged particles of astrophysical interest has received much attention over the last two decades. The Trojan Horse Method is based on this approach and it has been used to study a number of reactions relevant for Nuclear Astrophysics. Recently we applied this method to the study of nuclear reactions that involve radioactive species, namely to the study of the {sup 18}F+p{yields}{sup 15}O+{alpha} process at temperatures corresponding to the energies available in the classical novae scenario. Quasi-free reactions can also be exploited to study processes induced by neutrons. This technique is particularly interesting when applied to reaction induced by neutrons on unstable short-lived nuclei. Such processes are very important in the nucleosynthesis of elements in the sand r-processes scenarios and this technique can give hints for solving key questions in nuclear astrophysics where direct measurements are practically impossible.

  12. 231Pa and 233Pa Neutron-Induced Fission Data Analysis

    SciTech Connect

    Maslov, V.M.; Tetereva, N.A.; Baba, M.; Hasegawa, A.; Kornilov, N.V.; Kagalenko, A.B.

    2005-05-24

    The 231Pa and 233Pa neutron-induced fission cross-section database is analyzed within the Hauser-Feshbach approach. The consistency of neutron-induced fission cross-section data and data extracted from transfer reactions is investigated. The fission probabilities of Pa, fissioning in 231,233Pa(n,nf) reactions, are defined by fitting (3He,d) or (3He,t) transfer-reaction data. The present estimate of the 233Pa(n,f) fission cross section above the emissive fission threshold is supported by smooth level-density parameter systematics, validated in the case of the 231Pa(n,f) data description up to En =20 MeV.

  13. Modeled Neutron Induced Nuclear Reaction Cross Sections for Radiochemistry in the region of Iriduim and Gold

    SciTech Connect

    Hoffman, R D; Dietrich, F S; Kelley, K; Escher, J; Bauer, R; Mustafa, M

    2008-02-26

    We have developed a set of modeled nuclear reaction cross sections for use in radiochemical diagnostics. Systematics for the input parameters required by the Hauser-Feshbach statistical model were developed and used to calculate neutron induced nuclear reaction cross sections for targets ranging from osmium (Z = 76) to gold (Z = 79). Of particular interest are the cross sections on Ir and Au including reactions on isomeric targets.

  14. Welding-induced microstructure in austenitic stainless steels before and after neutron irradiation

    NASA Astrophysics Data System (ADS)

    Stoenescu, R.; Schäublin, R.; Gavillet, D.; Baluc, N.

    2007-02-01

    The effects of neutron irradiation on the microstructure of welded joints made of austenitic stainless steels have been investigated. The materials were welded AISI 304 and AISI 347, so-called test weld materials, and irradiated with neutrons at 300 °C to 0.3 and 1.0 dpa. In addition, an AISI 304 type from a decommissioned pressurised water reactor, so-called in-service material, which had accumulated a maximum dose of 0.35 dpa at about 300 °C, was investigated. The microstructure of heat-affected zones and base materials was analysed before and after irradiation, using transmission electron microscopy. Neutron diffraction was performed for internal stress measurements. It was found that the heat-affected zone contains, relative to the base material, a higher dislocation density, which relates well to a higher residual stress level and, after irradiation, a higher irradiation-induced defect density. In both materials, the irradiation-induced defects are of the same type, consisting in black dots and Frank dislocation loops. Careful analysis of the irradiation-induced defect contrast was performed and it is explained why no stacking fault tetrahedra could be identified.

  15. Simulation of synergistic effects on lateral PNP bipolar transistors induced by neutron and gamma irradiation

    NASA Astrophysics Data System (ADS)

    Wang, Chenhui; Bai, Xiaoyan; Chen, Wei; Yang, Shanchao; Liu, Yan; Jin, Xiaoming; Ding, Lili

    2015-10-01

    With semiconductor device simulation software TCAD, numerical simulations of ionizing/displacement synergistic effects on 6 kinds of lateral PNP bipolar transistors induced by the mixed irradiation of neutron and gamma are carried out by means of changing the minority carrier lifetimes, adding charged traps to the oxide layer and increasing the surface recombination velocity in Si/SiO2 interface. The results indicate that ionizing/displacement synergistic effects on the lateral PNP bipolar transistors are not a simple sum of total ionizing dose effects and displacement effects, and total ionizing dose effects can enhance neutron displacement damages, leading to greater gain degradation. The physical mechanisms of ionizing/displacement synergistic effects are analyzed based on the results. The positive charge in the oxide layer and Si/SiO2 interface traps induced by gamma irradiation can enhance the recombination processes of carriers in the bulk defects induced by neutron irradiation, and this is the main cause of ionizing/displacement synergistic effects on the lateral PNP bipolar transistors.

  16. Small punch test evaluation of neutron-irradiation-induced embrittlement of a Cr-Mo low-alloy steel

    SciTech Connect

    Song, S.-H. . E-mail: shsonguk@yahoo.co.uk; Faulkner, R.G.; Flewitt, P.E.J.; Marmy, P.; Weng, L.-Q.

    2004-09-15

    Neutron-irradiation-induced embrittlement of a 2.25Cr1Mo steel is investigated by means of small punch testing along with scanning electron microscopy. There is an apparent irradiation-induced embrittlement effect after the steel is irradiated at about 400 deg. C for 86 days with a neutron dose rate of 1.75x10{sup -8} dpa/s. The embrittlement is mainly nonhardening embrittlement caused by impurity grain boundary segregation.

  17. Measurement of cosmic-ray muons and muon-induced neutrons in the Aberdeen Tunnel Underground Laboratory

    NASA Astrophysics Data System (ADS)

    Blyth, S. C.; Chan, Y. L.; Chen, X. C.; Chu, M. C.; Cui, K. X.; Hahn, R. L.; Ho, T. H.; Hsiung, Y. B.; Hu, B. Z.; Kwan, K. K.; Kwok, M. W.; Kwok, T.; Lau, Y. P.; Leung, J. K. C.; Leung, K. Y.; Lin, G. L.; Lin, Y. C.; Luk, K. B.; Luk, W. H.; Ngai, H. Y.; Ngan, S. Y.; Pun, C. S. J.; Shih, K.; Tam, Y. H.; Tsang, R. H. M.; Wang, C. H.; Wong, C. M.; Wong, H. L. H.; Wong, K. K.; Yeh, M.; Zhang, B. J.; Aberdeen Tunnel Experiment Collaboration

    2016-04-01

    We have measured the muon flux and production rate of muon-induced neutrons at a depth of 611 m water equivalent. Our apparatus comprises three layers of crossed plastic scintillator hodoscopes for tracking the incident cosmic-ray muons and 760 L of a gadolinium-doped liquid scintillator for producing and detecting neutrons. The vertical muon intensity was measured to be Iμ=(5.7 ±0.6 )×10-6 cm-2 s-1 sr-1 . The yield of muon-induced neutrons in the liquid scintillator was determined to be Yn=(1.19 ±0.08 (stat)±0.21 (syst))×10-4 neutrons /(μ .g .cm-2 ) . A fit to the recently measured neutron yields at different depths gave a mean muon energy dependence of ⟨Eμ⟩ 0.76 ±0.03 for liquid-scintillator targets.

  18. Measurement of cosmic-ray muons and muon-induced neutrons in the Aberdeen Tunnel Underground Laboratory

    DOE PAGESBeta

    Yeh, M.; Chan, Y. L.; Chen, X. C.; Chu, M. C.; Cui, K. X.; Hahn, R. L.; Ho, T. H.; Hsiung, Y. B.; Hu, B. Z.; Kwan, K. K.; et al

    2016-04-07

    In this study, we have measured the muon flux and production rate of muon-induced neutrons at a depth of 611 m water equivalent. Our apparatus comprises three layers of crossed plastic scintillator hodoscopes for tracking the incident cosmic-ray muons and 760 L of a gadolinium-doped liquid scintillator for producing and detecting neutrons. The vertical muon intensity was measured to be Iμ = (5.7±0.6)×10–6 cm–2 s–1 sr–1. The yield of muon-induced neutrons in the liquid scintillator was determined to be Yn = (1.19 ± 0.08(stat) ± 0.21(syst)) × 10–4 neutrons/(μ•g•cm–2). A fit to the recently measured neutron yields at different depthsmore » gave a mean muon energy dependence of < Eμ >0.76±0.03 for liquid-scintillator targets.« less

  19. QED vacuum fluctuations and induced electric dipole moment of the neutron

    SciTech Connect

    Dominguez, C. A.; Falomir, H.; Ipinza, M.; Loewe, M.; Kohler, S.; Rojas, J. C.

    2009-08-01

    Quantum fluctuations in the QED vacuum generate nonlinear effects, such as peculiar induced electromagnetic fields. In particular, we show here that an electrically neutral particle, possessing a magnetic dipole moment, develops an induced electric dipole-type moment with unusual angular dependence, when immersed in a quasistatic, constant external electric field. The calculation of this effect is done in the framework of the Euler-Heisenberg effective QED Lagrangian, corresponding to the weak field asymptotic expansion of the effective action to one-loop order. It is argued that the neutron might be a good candidate to probe this signal of nonlinearity in QED.

  20. Proton Radiography: Cross Section Measurements and Detector Development

    SciTech Connect

    Michael J. Longo; H. R. Gustafson: Durga Rajaram; Turgun Nigmanov

    2010-04-16

    Proton radiography has become an important tool for predicting the performance of stockpiled nuclear weapons. Current proton radiography experiments at LANSCE are confined to relatively small targets on the order of centimeters in size because of the low beam energy. LANL scientists have made radiographs with 12 and 24 GeV protons produced by the accelerator at Brookhaven National Laboratory. These energies are in the range required for hydrotest radiography. The design of a facility for hydrotest radiography requires knowledge of the cross sections for producing high-energy particles in the forward direction, which are incorporated into the Monte Carlo simulation used in designing the beam and detectors. There are few existing measurements of neutron production cross sections for proton-nuclei interactions in the 50 GeV range, and almost no data exist for forward neutron production, especially for heavy target nuclei. Thus the data from the MIPP EMCAL and HCAL, for which our group was responsible, are critical to proton radiography. Since neutrons and photons cannot be focused by magnets, they cause a background “fog” on the images. This problem can be minimized by careful design of the focusing system and detectors. The purpose of our research was to measure forward production of neutrons produced by high-energy proton beams striking a variety of targets. The forward-going particles carry most of the energy from a high-energy proton interaction, so these are the most important to proton radiography. This work was carried out in conjunction with the Fermilab E-907 (MIPP) collaboration. Our group was responsible for designing and building the E907 forward neutron and photon calorimeters. With the support of our Stewardship Science Academic Alliances grants, we were able to design, build, and commission the calorimeters on budget and ahead of schedule. The MIPP experiment accumulated a large amount of data in the first run that ended in early 2006. Our group has

  1. Measurement and modeling of muon-induced neutrons in LSM in application for direct dark matter searches

    SciTech Connect

    Kozlov, Valentin; Collaboration: EDELWEISS Collaboration

    2013-08-08

    Due to a very low event rate expected in direct dark matter search experiments, a good understanding of every background component is crucial. Muon-induced neutrons constitute a prominent background, since neutrons lead to nuclear recoils and thus can mimic a potential dark matter signal. EDELWEISS is a Ge-bolometer experiment searching for WIMP dark matter. It is located in the Laboratoire Souterrain de Modane (LSM, France). We have measured muon-induced neutrons by means of a neutron counter based on Gd-loaded liquid scintillator. Studies of muon-induced neutrons are presented and include development of the appropriate MC model based on Geant4 and analysis of a 1000-days measurement campaign in LSM. We find a good agreement between measured rates of muon-induced neutrons and those predicted by the developed model with full event topology. The impact of the neutron background on current EDELWEISS data-taking as well as for next generation experiments such as EURECA is briefly discussed.

  2. Simulation of neutron-induced damage in tungsten by irradiation with energetic self-ions

    NASA Astrophysics Data System (ADS)

    Ogorodnikova, O. V.; Gann, V.

    2015-05-01

    A direct comparison of the deuterium (D) decoration of radiation-induced damage in polycrystalline tungsten irradiated with self-ions [present work] and neutrons in the high-flux isotope reactor (HFIR) (Hatano et al., 2013) shows a reasonably good agreement at least up to 0.3 displacement per atom indicating that MeV heavy ions can be a good proxy to simulate neutron-produced damage at room temperature and low dpa. The coefficient of similarity between two kinds of irradiation was obtained experimentally to be Kexp ∼ 0.65 ± 0.1 in the case of the deuterium decoration of both kinds of radiation-induced defects with low and high de-trapping energies for deuterium. We introduced the theoretical estimation for coefficient of similarity between neutron- and self-ion-irradiations, which is a fraction of common area under the curves of two overlapping damage energy spectra of primary knock-on atom (PKA) produced in tungsten by these two types of irradiation. In other words, Ksim is a part of displaced atoms produced in the similar conditions under two different types of irradiation. The theoretical values of Ksim = 0.34 and Ksim = 0.29 were obtained for tungsten target irradiated with 20 MeV self-ions in comparison to irradiation with neutrons in HFIR reactor (>0.1 MeV) and 14 MeV neutrons, respectively. The theoretical value of Ksim = 0.34 is about two times less than the experimental value of Kexp = 0.65. It means that high energy PKAs can play more important role in the production of similar damage structure by irradiation with self-ions and neutrons which is responsible for deuterium retention. The model assuming that all cascades with an energy higher than Tc = 150 keV split into identical sub-cascades gives the value of Ksim = 0.64 ± 0.01 for the coefficient of similarity between HFIR-neutron and 20 MeV self-ion irradiations that is in an agreement with experimental value of Kexp = 0.65 ± 0.1. Consequently, splitting of high-energy part of cascades might take

  3. Magnified Neutron Radiography with Coded Sources

    NASA Astrophysics Data System (ADS)

    Bingham, P.; Santos-Villalobos, H.; Lavrik, N.; Gregor, J.; Bilheux, H.

    A coded source imaging (CSI) system has been developed and tested at the High Flux Isotope Reactor (HFIR) CG-1D beamline at Oak Ridge National Laboratory (ORNL). The goal of this system is to use magnification to improve resolution of the imaging system beyond the detector resolution. For this system, coded masks have been manufactured at 10 μm resolution with 9 μm thick Gd patterned on Si wafers, a system model base iterative reconstruction code developed, and experiments have been performed at resolutions of 200 μm, 100 μm, 50 μm, 20 μm, and 10 μm with the object place greater than 5.5m from the detector giving magnifications up to 25 times.

  4. TEM observation of neutron-induced collision cascades in Bi-2212 single crystals

    NASA Astrophysics Data System (ADS)

    Aleksa, M.; Pongratz, P.; Eibl, O.; Sauerzopf, F. M.; Weber, H. W.; Li, T. W.; Kes, P. H.

    1998-03-01

    Several high-quality single crystals of the superconductor Bi 2Sr 2CaCu 2O 8 (Bi-2212) were exposed to three different neutron fluences in the central irradiation facility of the Triga Mark II reactor in Vienna in the form of pre-prepared and pre-characterized transmission electron microscopy (TEM) samples as well as in full crystalline form. We find that the radiation damage produced in Bi-2212 is very similar to that found previously in YBa 2Cu 3O 7- δ (Y-123) single crystals. The diameter of the amorphous cascade volume is 3.5 nm, the inwardly directed strain field is of approximately the same size, the density of cascades is 3.7×10 22 m -3 per 10 22 neutrons m -2 ( E>0.1 MeV) and their concentration scales linearly with neutron fluence. Based on these results and in view of the similar displacement cross-sections of the constituents of other high temperature superconductors, we conclude that the neutron-induced defects in high- Tc materials will generally have a diameter (including the strain field) of 5-7 nm.

  5. Dynamics of neutron-induced fission of 235U using four-dimensional Langevin equations

    NASA Astrophysics Data System (ADS)

    Pahlavani, M. R.; Mirfathi, S. M.

    2015-08-01

    Background: Langevin equations have been suggested as a key approach to the dynamical analysis of energy dissipation in excited nuclei, formed during heavy-ion fusion-fission reactions. Recently, a few researchers theoretically reported investigations of fission for light nuclei in a low excitation energy using the Langevin approach, without considering the contribution of pre- and post-scission particles and γ -ray emission. Purpose: We study the dynamical evolution of mass distribution of fission fragments, and neutron and γ -ray multiplicity for 236U as compound nuclei that are constructed after fusion of a neutron and 235U. Method: Energy dissipation of the compound nucleus through fission is calculated using the Langevin dynamical approach combined with a Monte Carlo method. Also the shape of the fissioning nucleus is restricted to "funny hills" parametrization. Results: Fission fragment mass distribution, neutron and γ -ray multiplicity, and the average kinetic energy of emitted neutrons and γ rays at a low excitation energy are calculated using a dynamical model, based on the four-dimensional Langevin equations. Conclusions: The theoretical results show reasonable agreement with experimental data and the proposed dynamical model can well explain the energy dissipation in low energy induced fission.

  6. Material Classification by Analysis of Prompt Photon Spectra Induced by 14-Mev Neutrons

    NASA Astrophysics Data System (ADS)

    Barzilov, Alexander; Novikov, Ivan

    Neutron based technologies are widely used in the field of bulk material analysis. These methods employ characteristic prompt gamma rays induced by a neutron probe for classification of the interrogated object using the elemental parameters extracted from the spectral data. Automatic data analysis and material classification algorithms are required for applications where access to nuclear spectroscopy expertise is limited and/or the autonomous robotic operation is necessary. Data obtained with neutron based systems differ from elemental composition evaluations based on chemical formulae due to statistical nature of nuclear reactions, presence of shielding and cladding, and other environmental conditions. Experimental data that are produced by the spectral decomposition can be expressed graphically as sets of overlapping classes in a multidimensional space of measured elemental intensities. To discriminate between classes of various materials, decision-tree and pattern recognition algorithms were studied. Results of application of these methods to data sets obtained for a pulsed 14-MeV neutron generator based active interrogation system are discussed.

  7. Nondestructive Inspection Using Neutron for Regenerative Cooling Combustion Chamber

    NASA Astrophysics Data System (ADS)

    Masuoka, Tadashi; Sato, Masaki; Moriya, Shin-Ichi; Tsuchiya, Yoshinori; Suzuki, Hiroshi; Iikura, Hiroshi; Matsubayashi, Masatoshi

    The regenerative cooling combustion chamber of a liquid rocket engine is exposed to large temperature difference between the combustion gas and the coolant such as liquid hydrogen. It induces thermal stress, and strain is accumulated over cyclic firing tests in the chamber wall. To evaluate the strain and the deformation of chamber walls is important since the chamber life usually relates to such strain and deformation. The primary objective of the present study is to establish a method to obtain experimental data on strains and deformations for correlation with the numerical data. In this study, residual strains and radiographs of a combustion chamber were obtained by applying a neutron diffraction method and a neutron radiography. Furthermore, two-dimensional nonlinear finite element method (FEM) analyses were conducted to calculate the residual strain in the chamber wall. From data of strain measurements, the feasibility of a neutron diffraction method for a combustion chamber was shown because the data from a X-ray diffraction method and FEM analyses qualitatively corresponded with those from a neutron diffraction method. Concerning neutron radiography, a higher resolution was necessary to observe chamber wall deformation.

  8. Apparatus for proton radiography

    DOEpatents

    Martin, Ronald L.

    1976-01-01

    An apparatus for effecting diagnostic proton radiography of patients in hospitals comprises a source of negative hydrogen ions, a synchrotron for accelerating the negative hydrogen ions to a predetermined energy, a plurality of stations for stripping extraction of a radiography beam of protons, means for sweeping the extracted beam to cover a target, and means for measuring the residual range, residual energy, or percentage transmission of protons that pass through the target. The combination of information identifying the position of the beam with information about particles traversing the subject and the back absorber is performed with the aid of a computer to provide a proton radiograph of the subject. In an alternate embodiment of the invention, a back absorber comprises a plurality of scintillators which are coupled to detectors.

  9. Quantitative film radiography

    SciTech Connect

    Devine, G.; Dobie, D.; Fugina, J.; Hernandez, J.; Logan, C.; Mohr, P.; Moss, R.; Schumacher, B.; Updike, E.; Weirup, D.

    1991-02-26

    We have developed a system of quantitative radiography in order to produce quantitative images displaying homogeneity of parts. The materials that we characterize are synthetic composites and may contain important subtle density variations not discernible by examining a raw film x-radiograph. In order to quantitatively interpret film radiographs, it is necessary to digitize, interpret, and display the images. Our integrated system of quantitative radiography displays accurate, high-resolution pseudo-color images in units of density. We characterize approximately 10,000 parts per year in hundreds of different configurations and compositions with this system. This report discusses: the method; film processor monitoring and control; verifying film and processor performance; and correction of scatter effects.

  10. Cosmic Ray Scattering Radiography

    NASA Astrophysics Data System (ADS)

    Morris, C. L.

    2015-12-01

    Cosmic ray muons are ubiquitous, are highly penetrating, and can be used to measure material densities by either measuring the stopping rate or by measuring the scattering of transmitted muons. The Los Alamos team has studied scattering radiography for a number of applications. Some results will be shown of scattering imaging for a range of practical applications, and estimates will be made of the utility of scattering radiography for nondestructive assessments of large structures and for geological surveying. Results of imaging the core of the Toshiba Nuclear Critical Assembly (NCA) Reactor in Kawasaki, Japan and simulations of imaging the damaged cores of the Fukushima nuclear reactors will be presented. Below is an image made using muons of a core configuration for the NCA reactor.

  11. Measurement and analysis of activation induced in titanium with fusion peak neutrons

    NASA Astrophysics Data System (ADS)

    Klix, A.; Domula, A.; Forrest, R.; Zuber, K.

    2011-10-01

    The intense neutron flux densities in fusion reactor blankets produce activation in the blanket materials relevant to operational safety, decommissioning, etc. The aim of the present work is to check the European Activation System EASY-2007 for its capability to predict important gamma activities induced in titanium in a fusion neutron field. Many advanced low-activation materials for fusion applications contain titanium, most notably in the breeder material Li 2TiO 3. In the present work, a small sample of Ti was irradiated with the intense DT neutron generator of Technical University of Dresden. The gamma-radioactivity following irradiation was measured and nuclide activities were derived. For each of the measured gamma activities, the corresponding value was calculated with EASY, and calculation-to-experiment ratios ( C/ E) were determined. EASY predicted the induced gamma activities, isotopes of scandium, well with some overestimation for 47Sc. The results of this measurement together with available EXFOR and validated state-of-the-art activation libraries are discussed.

  12. Digital radiography in space.

    PubMed

    Hart, Rob; Campbell, Mark R

    2002-06-01

    With the permanent habitation of the International Space Station, the planning of longer duration exploration missions, and the possibility of space tourism, it is likely that digital radiography will be needed in the future to support medical care in space. Ultrasound is currently the medical imaging modality of choice for spaceflight. Digital radiography in space is limited because of prohibitive launch costs (in the region of $20,000/kg) that severely restrict the volume, weight, and power requirements of medical care hardware. Technological increases in radiography, a predicted ten-fold decrease in future launch costs, and an increasing clinical need for definitive medical care in space will drive efforts to expand the ability to provide medical care in space including diagnostic imaging. Normal physiological responses to microgravity, in conjunction with the high-risk environment of spaceflight, increase the risk of injury and could imply an extended recovery period for common injuries. The advantages of gravity on Earth, such as the stabilization of patients undergoing radiography and the drainage of fluids, which provide radiographic contrast, are unavailable in space. This creates significant difficulties in patient immobilization and radiographic positioning. Gravity-dependent radiological signs, such as lipohemarthrosis in knee and shoulder trauma, air or fluid levels in pneumoperitoneum, pleural effusion, or bowel obstruction, and the apical pleural edge in pneumothorax become unavailable. Impaired healing processes such as delayed callus formation following fracture will have implications on imaging, and recovery time lines are unknown. The confined nature of spacecraft and the economic impossibility of launching lead-based personal protective equipment present significant challenges to crew radiation safety. A modified, free-floating radiographic C-arm device equipped with a digital detector and utilizing teleradiology support is proposed as a

  13. Patient care in radiography

    SciTech Connect

    Ehrlich, R.A.; McCloskey, E.D.

    1989-01-01

    This book focuses on patient care procedures for radiographers. The authors focus on the role of the radiographer as a member of the health care team. The authors report on such topics as communication in patient care: safety, medico-legal considerations, transfer and positioning; physical needs; infection control; medication; CPR standards, acute situations; examination of the GI tract; contrast media; special imaging techniques and bedside radiography.

  14. Investigation of neutron-induced background in Magnetic-Recoil-Spectrometer CR-39 data using a DT neutron source and MCNP simulations

    NASA Astrophysics Data System (ADS)

    Milanese, Lucio M.; Frenje, Johan; Gatu Johnson, Maria; Lahmann, Brandon; Sio, Hong; Petrasso, Richard

    2015-11-01

    The Magnetic Recoil neutron Spectrometers (MRS) installed on the OMEGA laser facility and the National Ignition Facility (NIF) are routinely used to measure neutron yield, areal density and ion temperatures from DT implosions. The observed background in the lower-energy part of MRS spectra is significantly higher than expected from analysis of neutron-induced background data obtained in stand-alone CR-39 experiments at OMEGA. A possible explanation relates to the scattering of neutrons in the MRS housing vessel, which is not accounted for in current modeling. To test experimentally the impact of individual vessel components on the observed background, parts of the MRS housing have been mocked up and CR-39 data have been collected employing a DT neutron source. The experimental results are contrasted to MCNP simulations to improve our understanding of the mechanism behind the enhanced neutron background. The results will be used to correct measured spectra from OMEGA and the NIF to allow detailed analysis of lower energy data. This work was supported in part by NLUF, US DOE, and LLE.

  15. An ionization chamber with Frisch grids for studies of high-energy neutron-induced fission

    NASA Astrophysics Data System (ADS)

    Tutin, G. A.; Ryzhov, I. V.; Eismont, V. P.; Kireev, A. V.; Condé, H.; Elmgren, K.; Olsson, N.; Renberg, P.-U.

    2001-01-01

    A gridded ionization chamber for fission fragment detection is described. The chamber has been specially designed for use at the quasi-monoenergetic 7Li(p, n) neutron source at the The Svedberg Laboratory, Uppsala, Sweden. The detector permits measurements of fission fragment energy and emission angle for two targets with diameter of up to 10 cm. The time response of the chamber (⩽5 ns FWHM) is adequate to apply time-of-flight discrimination against background events induced by non-peak neutrons. Results of angular anisotropy measurements for the 232Th (n, f) and 238U(n, f) reactions in the 20-160 MeV energy range are given.

  16. Neutron-induced Fission Cross Section of 240242Pu up to En = 3 MeV

    NASA Astrophysics Data System (ADS)

    Salvador-Castiñeira, P.; Bryś, T.; Hambsch, F.-J.; Oberstedt, S.; Pretel, C.; Vidali, M.

    2014-05-01

    The neutron-induced fission cross sections of 240,242Pu have been measured at JRC-IRMM with incident neutron energy from 0.2 MeV up to 3 MeV. A Twin-Frisch Grid Ionization Chamber (TFGIC) has been used in a back-to-back geometry. The measurements have been performed using the secondary standards 237Np and 238U as a reference. The purity of the plutonium samples was 99.89% for 240Pu and 99.97% for 242Pu. The results obtained follow the ENDF/B-VII.1 evaluation for 240Pu, but some discrepancies are visible around E/n = 1 MeV for 242Pu. In addition, the spontaneous fission half-life has been measured for both isotopes.

  17. Nuclear Reaction Models Responsible for Simulation of Neutron-induced Soft Errors in Microelectronics

    SciTech Connect

    Watanabe, Y. Abe, S.

    2014-06-15

    Terrestrial neutron-induced soft errors in MOSFETs from a 65 nm down to a 25 nm design rule are analyzed by means of multi-scale Monte Carlo simulation using the PHITS-HyENEXSS code system. Nuclear reaction models implemented in PHITS code are validated by comparisons with experimental data. From the analysis of calculated soft error rates, it is clarified that secondary He and H ions provide a major impact on soft errors with decreasing critical charge. It is also found that the high energy component from 10 MeV up to several hundreds of MeV in secondary cosmic-ray neutrons has the most significant source of soft errors regardless of design rule.

  18. Neutron-Induced Fission Cross Sections Measurements at n_TOF

    SciTech Connect

    Audouin, L.; Tassan-Got, L.; Isaev, S.; Koehler, Paul Edward; Collaboration, n_TOF

    2008-01-01

    The neutron-induced fission cross sections of {sup 233}U, {sup 234}U, {sup 235}U, {sup 238}U, {sup 232}Th, {sup 237}Np, {sup 209}Bi, {sup nat}Pb have been measured at the n{_}TOF facility at CERN over 9 orders of magnitude in neutron energy using {sup 235}U as a reference. Parallel Plate Avalanche Counters were used to detect both fission fragments in coincidence, thus efficiently discriminating fissions from other reactions. Data benefit from the remarkable energy resolution of the n{_}TOF facility. They are found in overall good agreement with databases and previous measurements, but some clear discrepancies can be put in evidence. These data are the first full coverage of the high-energy region (up to 1 GeV).

  19. Angular distribution of products of ternary nuclear fission induced by cold polarized neutrons

    NASA Astrophysics Data System (ADS)

    Bunakov, V. E.; Kadmensky, S. G.; Kadmensky, S. S.

    2008-11-01

    Within quantum fission theory, angular distributions of products originating from the ternary fission of nuclei that is induced by polarized cold and thermal neutrons are investigated on the basis of a nonevaporative mechanism of third-particle emission and a consistent description of fission-channel coupling. It is shown that the inclusion of Coriolis interaction both in the region of the discrete and in the region of the continuous spectrum of states of the system undergoing fission leads to T-odd correlations in the aforementioned angular distributions. The properties of the TRI and ROT effects discovered recently, which are due to the interference between the fission amplitudes of neutron resonances, are explored. The results obtained here are compared with their counterparts from classic calculations based on the trajectory method.

  20. The rotation of scissioning nucleus considered trajectory calculations for ternary fission induced by cold polarized neutrons

    NASA Astrophysics Data System (ADS)

    Guseva, I.; Gusev, Yu.

    2009-10-01

    On the base of modified trajectory calculations the shift of angular distribution of α-particles accompanied the reaction 235U(n,f) induced by cold polarized neutrons is evaluated. It was supposed that angular distribution shift is caused by the rotation of nuclear system before scission. The orientation of a rotation motion is determined by the neutron spin polarization along and opposite to the beam direction. For the first time the estimation was done in the frame of trajectory calculations assuming the rotation motion of scissioning nucleus [1]. The result of the calculation is in a good agreement with experimental data of paper [2], where this new phenomenon was named as ROT-effect.

  1. Boron analysis for neutron capture therapy using particle-induced gamma-ray emission.

    PubMed

    Nakai, Kei; Yamamoto, Yohei; Okamoto, Emiko; Yamamoto, Tetsuya; Yoshida, Fumiyo; Matsumura, Akira; Yamada, Naoto; Kitamura, Akane; Koka, Masashi; Satoh, Takahiro

    2015-12-01

    The neutron source of BNCT is currently changing from reactor to accelerator, but peripheral facilities such as a dose-planning system and blood boron analysis have still not been established. To evaluate the potential application of particle-induced gamma-ray emission (PIGE) for boron measurement in clinical boron neutron capture therapy, boronophenylalanine dissolved within a cell culture medium was measured using PIGE. PIGE detected 18 μgB/mL f-BPA in the culture medium, and all measurements of any given sample were taken within 20 min. Two hours of f-BPA exposure was required to create a boron distribution image. However, even though boron remained in the cells, the boron on the cell membrane could not be distinguished from the boron in the cytoplasm. PMID:26242558

  2. Semiclassical description of TRI asymmetry in ternary fission induced by cold polarized neutrons

    SciTech Connect

    Bunakov, V. E.; Kadmensky, S. G.

    2011-11-15

    The possibility of semiclassically describing T-even TRI-type asymmetry in ternary fission induced by polarized neutrons is considered on the basis of employing Coriolis interaction that takes into account the coupling of a light charged particle to the collective rotation of a polarized fissile nucleus. It is shown that allowance for this interaction makes it possible to explain qualitatively the magnitudes of two asymmetry effects observed in light-charge-particle emission both within the semiclassical and within the quantum-mechanical approach. The difference in the relative magnitudes and signs of the effects between different target nuclei is associated with the interference contributions to the cross section from neighboring neutron resonances and therefore cannot be explained within the semiclassical approach.

  3. Angular distribution of products of ternary nuclear fission induced by cold polarized neutrons

    SciTech Connect

    Bunakov, V. E. Kadmensky, S. G. Kadmensky, S. S.

    2008-11-15

    Within quantum fission theory, angular distributions of products originating from the ternary fission of nuclei that is induced by polarized cold and thermal neutrons are investigated on the basis of a non-evaporative mechanism of third-particle emission and a consistent description of fission-channel coupling. It is shown that the inclusion of Coriolis interaction both in the region of the discrete and in the region of the continuous spectrum of states of the system undergoing fission leads to T-odd correlations in the aforementioned angular distributions. The properties of the TRI and ROT effects discovered recently, which are due to the interference between the fission amplitudes of neutron resonances, are explored. The results obtained here are compared with their counterparts from classic calculations based on the trajectory method.

  4. Chromosome aberrations induced in human lymphocytes by D-T neutrons

    SciTech Connect

    Lloyd, D.C.; Edwards, A.A.; Prosser, J.S.; Bolton, D.; Sherwin, A.G.

    1984-06-01

    Unstable chromosome aberrations induced by in vitro irradiation with D-T neutrons have been analyzed in human blood lymphocytes. With respect to 250 kVp X rays a maximum limiting RBE at low doses of 4.1 was obtained for dicentric aberrations. Using aberrations as markers in mixed cultures of irradiated and unirradiated cells permits an assessment of interphase death plus mitotic delay. The low-dose RBE for this effect is 2.5. Assuming all unstable aberrations observed at metaphase would lead to cell death by nondisjunction allows an assessment of mitotic death. The low-dose RBE for this effect is 4.5. The data are compared with similar work obtained earlier with /sup 242/Cm ..cap alpha.. particles. The application of the present work to cytogenetic assessment of dose after accidental exposure to D-T neutrons is discussed.

  5. Neutron dosimetry

    DOEpatents

    Quinby, Thomas C.

    1976-07-27

    A method of measuring neutron radiation within a nuclear reactor is provided. A sintered oxide wire is disposed within the reactor and exposed to neutron radiation. The induced radioactivity is measured to provide an indication of the neutron energy and flux within the reactor.

  6. Neutron Bragg-edge-imaging for strain mapping under in situ tensile loading

    SciTech Connect

    Woracek, R.; Penumadu, D.; Kardjilov, N.; Hilger, A.; Strobl, M.; Wimpory, R. C.; Manke, I.; Banhart, J.

    2011-05-01

    Wavelength selective neutron radiography at a cold neutron reactor source was used to measure strain and determine (residual) stresses in a steel sample under plane stress conditions. We present a new technique that uses an energy-resolved neutron imaging system based on a double crystal monochromator and is equipped with a specially developed (in situ) biaxial load frame to perform Bragg edge based transmission imaging. The neutron imaging technique provides a viewing area of 7 cm by 7 cm with a spatial resolution on the order of {approx} 100 {mu}m. The stress-induced shifts of the Bragg edge corresponding to the (110) lattice plane were resolved spatially for a ferritic steel alloy A36 (ASTM international) sample. Furthermore it is demonstrated that results agree with comparative data obtained using neutron diffraction and resistance based strain-gauge rosettes.

  7. Radioactive ion beams produced by neutron-induced fission at ISOLDE

    NASA Astrophysics Data System (ADS)

    Isolde Collaboration; Catherall, R.; Lettry, J.; Gilardoni, S.; Köster, U.

    2003-05-01

    The production rates of neutron-rich fission products for the next-generation radioactive beam facility EURISOL [EU-RTD Project EURISOL (HPRI-CT-1999-50001)] are mainly limited by the maximum amount of power deposited by protons in the target. An alternative approach is to use neutron beams to induce fission in actinide targets. This has the advantage of reducing: the energy deposited by the proton beam in the target; contamination from neutron-deficient isobars that would be produced by spallation; and mechanical stress on the target. At ISOLDE CERN [E. Kugler, Hyperfine Interact. 129 (2000) 23], tests have been made on standard ISOLDE actinide targets using fast-neutron bunches produced by bombarding thick, high-/Z metal converters with 1 and 1.4 GeV proton pulses. This paper reviews the first applications of converters used at ISOLDE. It highlights the different geometries and the techniques used to compare fission yields produced by the proton beam directly on the target with neutron-induced fission. Results from the six targets already tested, namely UC2/graphite and ThO2 targets with tungsten and tantalum converters, are presented. To gain further knowledge for the design of a dedicated target as required by the TARGISOL project [EU-RTD Project TARGISOL (HPRI-CT-2001-50033)], the results are compared to simulations, using the MARS [N.V. Mokhov, S.I. Striganov, A. Van Ginneken, S.G. Mashnik, A.J. Sierk, J. Ranft, MARS code developments, in: 4th Workshop on Simulating Accelerator Radiation Environments, SARE-4, Knoxville, USA, 14-15.9.1998, FERMILAB-PUB-98-379, nucl-th/9812038; N.V. Mokhov, The Mars Code System User's Guide, Fermilab-FN-628, 1995; N.V. Mokhov, MARS Code Developments, Benchmarking and Applications, Fermilab-Conf-00-066, 2000; O.E. Krivosheev, N.V. Mokhov, A New MARS and its Applications, Fermilab-Conf-98/43, 1998] code interfaced with MCNP [J.S. Hendrics, MCNP4C LANL Memo X-5; JSH-2000-3; J.F. Briemesteir (Ed.), MCNP - A General Montecarlo N

  8. RECENT APPLICATIONS OF THE GREENSPAN AND TSCHIEGG DATA ON NEUTRON INDUCED CAVITATION THRESHOLDS

    SciTech Connect

    West, Colin D

    2007-03-01

    In 1967 Greenspan and Tschiegg published a paper on radiation induced acoustic cavitation. They researched the thresholds for cavitation induced in various liquids by fast neutrons, {alpha}-decay recoils and fission fragments. It turns out that these data can be used to verify predictions of a more recent theory of radiation induced cavitation nucleation. In 1979, in a report to their sponsor (The Office of Naval Research) they published new details of their results on neutron induced cavitation thresholds, including tables of the thresholds at different temperatures for various liquids. They were also some fission fragment results, but none of the {alpha}-decay recoil data. By that time Greenspan had evidently retired while I had left the field of cavitation research and did not know of the existence of their report [which also contains the only published record of some cavitation threshold measurements made by West and Howlett at Harwell, England]. Later still, in 1982, Greenspan and Tschiegg published the graphical data--but not the tables--in a more easily accessible form. In the late 1990s I revisited the problem of calculating radiation induced cavitation thresholds. There was interest in this because the Spallation Neutron Source (SNS) project, then just beginning, planned to use a liquid mercury target to produce intense bursts of neutrons when irradiated by a pulsed, high energy proton beam. It was known that the pressure waves produced by local heating when the proton pulse struck the target could, upon reflection at the walls of the mercury container, give rise to very high, although brief, negative pressure waves in the mercury. There was concern that cavitation might result and, if it did, might lead to undesirable effects. With the encouragement of the SNS target team this author managed further to develop an earlier method of calculating the threshold for such cavitation, and the SNS project kindly provided funding to publish the work in two ORNL

  9. Time-resolved and time-integrated radiography of fast reactor fuel elements

    SciTech Connect

    De Volpi, A.

    1981-01-01

    The fast-reactor safety program has some unusual requirements in radiography. Applications may be divided into two areas: time-resolved or time-integrated radiography. The fast-neutron hodoscope has supplied all recent time-resolved cineradiographic in-pile fuel-motion data, and various x-ray and photographic techniques have been used for out-of-pile experiments. Thick containers and the large number of radioactive fuel pins involved in safety research have been responsible for some nonconventional applications of time-integrated radiography of stationary objects. Hodoscopes record fuel-motion during transient experiments at the TREAT reactor in the United States and CABRI in France. Other special techniques have been under development for out-of-pile nondestructive radiography of fuel element subassemblies, including fast-neutron and gamma-ray tomographic methods.

  10. Lower Gastrointestinal (GI) Tract X-Ray (Radiography)

    MedlinePlus

    ... Resources Professions Site Index A-Z X-ray (Radiography) - Lower GI Tract Lower gastrointestinal tract radiography or ... Radiography? What is Lower GI Tract X-ray Radiography (Barium Enema)? Lower gastrointestinal (GI) tract radiography, also ...

  11. Body composition to climate change studies - the many facets of neutron induced prompt gamma-ray analysis

    SciTech Connect

    Mitra,S.

    2008-11-17

    In-vivo body composition analysis of humans and animals and in-situ analysis of soil using fast neutron inelastic scattering and thermal neutron capture induced prompt-gamma rays have been described. By measuring carbon (C), nitrogen (N) and oxygen (O), protein, fat and water are determined. C determination in soil has become important for understanding below ground carbon sequestration process in the light of climate change studies. Various neutron sources ranging from radio isotopic to compact 14 MeV neutron generators employing the associated particle neutron time-of-flight technique or micro-second pulsing were implemented. Gamma spectroscopy using recently developed digital multi-channel analyzers has also been described.

  12. Neutron-induced fission: properties of prompt neutron and γ rays as a function of incident energy

    NASA Astrophysics Data System (ADS)

    Stetcu, I.; Talou, P.; Kawano, T.

    2016-06-01

    We have applied the Hauser-Feshbach statistical theory, in a Monte-Carlo implementation, to the de-excitation of fission fragments, obtaining a reasonable description of the characteristics of neutrons and gamma rays emitted before beta decays toward stability. Originally implemented for the spontaneous fission of 252Cf and the neutroninduced fission of 235U and 239Pu at thermal neutron energy, in this contribution we discuss the extension of the formalism to incident neutron energies up to 20 MeV. For the emission of pre-fission neutrons, at incident energies beyond second-chance fission, we take into account both the pre-equilibrium and statistical pre-fission components. Phenomenological parameterizations of mass, charge and TKE yields are used to obtain the initial conditions for the fission fragments that subsequently decay via neutron and emissions. We illustrate this approach for 239Pu(n,f).

  13. Measurement of residual 152Eu activity induced by atomic bomb neutrons in Nagasaki and the contribution of environmental neutrons to this activity.

    PubMed

    Shizuma, Kiyoshi; Endo, Satoru; Hoshi, Masaharu; Takada, Jun; Ishikawa, Masayori; Iwatani, Kazuo; Hasai, Hiromi; Oka, Takamitsu; Fujita, Shoichiro; Watanabe, Tadaaki; Yamashita, Tomoaki; Imanaka, Tetsuji

    2003-06-01

    Residual 152Eu activities induced by neutrons from the Nagasaki atomic bomb were measured for nine mineral samples located up to 1,061 m in the slant range and one control sample at 2,850 m from the hypocenter. A chemical separation to prepare europium-enriched samples was performed for all samples, and gamma ray measurements were carried out with a low background well-type germanium detector. In this paper, the measured specific activities of 152Eu are compared with activation calculations based on the DS86 neutron fluence and the 93Rev one. The calculated-to-measured ratios are also compared with those of 60Co and 36Cl. The present results indicate that the measurements agree to the calculation within a factor of three as observed in the nuclear tests at Nevada. The activation level of environmental neutrons and the detection limit for 152Eu are also discussed. PMID:13678342

  14. Effects of Neutron Emission on Fragment Mass and Kinetic Energy Distribution from Thermal Neutron-Induced Fission of {sup 235}U

    SciTech Connect

    Montoya, M.; Rojas, J.; Saetone, E.

    2007-10-26

    The mass and kinetic energy distribution of nuclear fragments from thermal neutron-induced fission of {sup 235}U(n{sub th},f) have been studied using a Monte-Carlo simulation. Besides reproducing the pronounced broadening in the standard deviation of the kinetic energy at the final fragment mass number around m = 109, our simulation also produces a second broadening around m = 125. These results are in good agreement with the experimental data obtained by Belhafaf et al. and other results on yield of mass. We conclude that the obtained results are a consequence of the characteristics of the neutron emission, the sharp variation in the primary fragment kinetic energy and mass yield curves. We show that because neutron emission is hazardous to make any conclusion on primary quantities distribution of fragments from experimental results on final quantities distributions.

  15. Production, distribution and applications of californium-252 neutron sources.

    PubMed

    Martin, R C; Knauer, J B; Balo, P A

    2000-01-01

    The radioisotope 252Cf is routinely encapsulated into compact, portable, intense neutron sources with a 2.6-yr half-life. A source the size of a person's little finger can emit up to 10(11) neutrons s(-1). Californium-252 is used commercially as a reliable, cost-effective neutron source for prompt gamma neutron activation analysis (PGNAA) of coal, cement and minerals, as well as for detection and identification of explosives, land mines and unexploded military ordinance. Other uses are neutron radiography, nuclear waste assays, reactor start-up sources, calibration standards and cancer therapy. The inherent safety of source encapsulations is demonstrated by 30 yr of experience and by US Bureau of Mines tests of source survivability during explosions. The production and distribution center for the US Department of Energy (DOE) Californium Program is the Radiochemical Engineering Development Center (REDC) at Oak Ridge National Laboratory (ORNL). DOE sells 252Cf to commercial reencapsulators domestically and internationally. Sealed 252Cf sources are also available for loan to agencies and subcontractors of the US government and to universities for educational, research and medical applications. The REDC has established the Californium User Facility (CUF) for Neutron Science to make its large inventory of 252Cf sources available to researchers for irradiations inside uncontaminated hot cells. Experiments at the CUF include a land mine detection system, neutron damage testing of solid-state detectors, irradiation of human cancer cells for boron neutron capture therapy experiments and irradiation of rice to induce genetic mutations. PMID:11003521

  16. Continuous versus pulse neutron induced gamma spectroscopy for soil carbon analysis.

    PubMed

    Kavetskiy, A; Yakubova, G; Torbert, H A; Prior, S A

    2015-02-01

    Neutron induced gamma spectra analysis (NGA) provides a means of measuring carbon in large soil volumes without destructive sampling. Calibration of the NGA system must account for system background and the interference of other nuclei on the carbon peak at 4.43 MeV. Accounting for these factors produced measurements in agreement with theoretical considerations. The continuous NGA mode was twice as fast and just as accurate as the pulse mode, thus this mode was preferable for routine soil carbon analysis. PMID:25497322

  17. Feeding of isomers of stable Rh, Ag, Ir and Au isotopes in fast-neutron-induced reactions

    NASA Astrophysics Data System (ADS)

    Fotiades, N.; Devlin, M.; Nelson, R. O.; Carroll, J. J.

    2016-03-01

    The GEANIE spectrometer, comprised of 20 high-purity Ge detectors coupled to the broad-spectrum pulsed neutron beam of the Los Alamos Neutron Science Center's (LANSCE) WNR facility, has been used to determine partial γ-ray cross sections in (n , xn) fast-neutron-induced reactions. In (n ,n') reactions on stable Ir and Au isotopes the γ-ray feeding, as established with GEANIE, for the isomers relative to the feeding of the corresponding ground states increases with increasing neutron energy up to the neutron energy where the (n , 2 n) reaction channel opens and then decreases. The behavior in mass A = 100 region of the γ-ray feeding of isomers and ground states was also studied with GEANIE in fast-neutron-induced reactions on stable Rh and Ag isotopes. The feeding of the isomers was found to be very similar in the corresponding reaction channels and it was compared to the feeding determined for the ground states. The opening of higher-neutron-emitting reaction channels remove angular momentum from the compound system and reduce the population of higher-spin isomers relative to the feeding of lower-spin ground states in all cases studied.

  18. Methods and procedures for evaluation of neutron-induced activation cross sections

    SciTech Connect

    Gardner, M.A.

    1981-09-01

    One cannot expect measurements alone to supply all of the neutron-induced activation cross-section data required by the fission reactor, fusion reactor, and nuclear weapons development communities, given the wide ranges of incident neutron energies, the great variety of possible reaction types leading to activation, and targets both stable and unstable. Therefore, the evaluator must look to nuclear model calculations and systematics to aid in fulfilling these cross-section data needs. This review presents some of the recent developments and improvements in the prediction of neutron activation cross sections, with specific emphasis on the use of empirical and semiempirical methods. Since such systematics require much less nuclear informaion as input and much less computational time than do the multistep Hauser-Feshbach codes, they can often provide certain cross-section data at a sufficient level of accuracy within a minimum amount of time. The cross-section information that these systematics can and cannot provide and those cases in which they can be used most reliably are discussed.

  19. Reliability Design for Neutron Induced Single-Event Burnout of IGBT

    NASA Astrophysics Data System (ADS)

    Shoji, Tomoyuki; Nishida, Shuichi; Ohnishi, Toyokazu; Fujikawa, Touma; Nose, Noboru; Hamada, Kimimori; Ishiko, Masayasu

    Single-event burnout (SEB) caused by cosmic ray neutrons leads to catastrophic failures in insulated gate bipolar transistors (IGBTs). It was found experimentally that the incident neutron induced SEB failure rate increases as a function of the applied collector voltage. Moreover, the failure rate increased sharply with an increase in the applied collector voltage when the voltage exceeded a certain threshold value (SEB cutoff voltage). In this paper, transient device simulation results indicate that impact ionization at the n-drift/n+ buffer boundary is a crucially important factor in the turning-on of the parasitic pnp transistor, and eventually latch-up of the parasitic thyristor causes SEB. In addition, the device parameter dependency of the SEB cutoff voltage was analytically derived from the latch-up condition of the parasitic thyristor. As a result, it was confirmed that reducing the current gain of the parasitic transistor, such as by increasing the n-drift region thickness d was effective in increasing the SEB cutoff voltage. Furthermore, `white' neutron-irradiation experiments demonstrated that suppressing the inherent parasitic thyristor action leads to an improvement of the SEB cutoff voltage. It was confirmed that current gain optimization of the parasitic transistor is a crucial factor for establishing highly reliable design against chance failures.

  20. Experimental study of some important characteristics of the thermal neutron induced fission of 237Np

    NASA Astrophysics Data System (ADS)

    Wagemans, C.; Allaert, E.; Caïtucoli, F.; D'hondt, P.; Barreau, G.; Perrin, P.

    1981-10-01

    Fission fragment mass and kinetic energy distributions and their correlations have been studied for the thermal neutron induced fission of 237Np. The global mass distribution is rather smooth, apart from a weak shoulder at μH = 140-141. When low excitation events are selected, fine structures associated with the charge of the fragments are observed. Furthermore, there is a sudden increase in Ek for μH > 155, which is probably due to a spherical shell N = 50 in the light fragment and the corresponding deformed (but stable) heavy fragments with masses in the rare earth region. For the average (pre-neutron emission) total fragment kinetic energy, a value of 176.4 ± 0.6 MeV has been obtained, in agreement with the systematics. Also the prompt neutron emission curve v(m ∗) has been calculated, which shows the well-known saw-tooth shape. Finally, the energy distribution and the emission probability of the ternary α-particles have been determined.

  1. Study of Neutron-Induced Fission Cross Sections of U, Am, and Cm at n{sub T}OF

    SciTech Connect

    Milazzo, P. M.; Abbondanno, U.; Belloni, F.; Fujii, K.; Aerts, G.; Andriamonje, S.; Berthoumieux, E.; Dridi, W.; Ferrant, L.; Gunsing, F.; Pancin, J.; Perrot, L.; Plukis, A.; Stephan, C.; Tassan-Got, L.; Alvarez-Velarde, F.; Cano-Ott, D.

    2010-08-04

    Neutron induced fission cross sections of several isotopes have been measured at the CERN n{sub T}OF spallation neutron facility. Between them some measurements involve isotopes ({sup 233}U, {sup 241}Am, {sup 243}Am, {sup 245}Cm) relevant for applications to nuclear technologies. The n{sub T}OF facility delivers neutrons with high instantaneous flux and in a wide energy range, from thermal up to 250 MeV. The experimental apparatus consists of an ionization chamber that discriminates fission fragments and {alpha} particles coming from natural radioactivity of the samples. All the measurements were performed referring to the standard cross section of {sup 235}U.

  2. Influence of secondary neutrons induced by proton radiotherapy for cancer patients with implantable cardioverter defibrillators

    PubMed Central

    2012-01-01

    Background Although proton radiotherapy is a promising new approach for cancer patients, functional interference is a concern for patients with implantable cardioverter defibrillators (ICDs). The purpose of this study was to clarify the influence of secondary neutrons induced by proton radiotherapy on ICDs. Methods The experimental set-up simulated proton radiotherapy for a patient with an ICD. Four new ICDs were placed 0.3 cm laterally and 3 cm distally outside the radiation field in order to evaluate the influence of secondary neutrons. The cumulative in-field radiation dose was 107 Gy over 10 sessions of irradiation with a dose rate of 2 Gy/min and a field size of 10 × 10 cm2. After each radiation fraction, interference with the ICD by the therapy was analyzed by an ICD programmer. The dose distributions of secondary neutrons were estimated by Monte-Carlo simulation. Results The frequency of the power-on reset, the most serious soft error where the programmed pacing mode changes temporarily to a safety back-up mode, was 1 per approximately 50 Gy. The total number of soft errors logged in all devices was 29, which was a rate of 1 soft error per approximately 15 Gy. No permanent device malfunctions were detected. The calculated dose of secondary neutrons per 1 Gy proton dose in the phantom was approximately 1.3-8.9 mSv/Gy. Conclusions With the present experimental settings, the probability was approximately 1 power-on reset per 50 Gy, which was below the dose level (60-80 Gy) generally used in proton radiotherapy. Further quantitative analysis in various settings is needed to establish guidelines regarding proton radiotherapy for cancer patients with ICDs. PMID:22284700

  3. Analysis of prompt fission neutrons in 235U(nth,f) and fission fragment distributions for the thermal neutron induced fission of 234U

    NASA Astrophysics Data System (ADS)

    Al-Adili, A.; Tarrío, D.; Hambsch, F.-J.; Göök, A.; Jansson, K.; Solders, A.; Rakopoulos, V.; Gustafsson, C.; Lantz, M.; Mattera, A.; Oberstedt, S.; Prokofiev, A. V.; Vidali, M.; Österlund, M.; Pomp, S.

    2016-06-01

    This paper presents the ongoing analysis of two fission experiments. Both projects are part of the collaboration between the nuclear reactions group at Uppsala and the JRC-IRMM. The first experiment deals with the prompt fission neutron multiplicity in the thermal neutron induced fission of 235U(n,f). The second, on the fission fragment properties in the thermal fission of 234U(n,f). The prompt fission neutron multiplicity has been measured at the JRC-IRMM using two liquid scintillators in coincidence with an ionization chamber. The first experimental campaign focused on 235U(nth,f) whereas a second experimental campaign is foreseen later for the same reaction at 5.5 MeV. The goal is to investigate how the so-called sawtooth shape changes as a function of fragment mass and excitation energy. Some harsh experimental conditions were experienced due to the large radiation background. The solution to this will be discussed along with preliminary results. In addition, the analysis of thermal neutron induced fission of 234U(n,f) will be discussed. Currently analysis of data is ongoing, originally taken at the ILL reactor. The experiment is of particular interest since no measurement exist of the mass and energy distributions for this system at thermal energies. One main problem encountered during analysis was the huge background of 235U(nth,f). Despite the negligible isotopic traces in the sample, the cross section difference is enormous. Solution to this parasitic background will be highlighted.

  4. Scatter in Cargo Radiography

    SciTech Connect

    Erin A. Miller; Joseph A. Caggiano; Robert C. Runkle; Timothy A. White; Aaron M. Bevill

    2011-03-01

    As a complement to passive detection systems, radiographic inspection of cargo is an increasingly important tool for homeland security because it has the potential to detect highly attenuating objects associated with special nuclear material or surrounding shielding, in addition to screening for items such as drugs or contraband. Radiographic detection of such threat objects relies on high image contrast between regions of different density and atomic number (Z). Threat detection is affected by scatter of the interrogating beamin the cargo, the radiographic system itself, and the surrounding environment, which degrades image contrast. Here, we estimate the extent to which scatter plays a role in radiographic imaging of cargo containers. Stochastic transport simulations were performed to determine the details of the radiography equipment and surrounding environment, which are important in reproducing measured data and to investigate scatter magnitudes for typical cargo. We find that scatter plays a stronger role in cargo radiography than in typicalmedical imaging scenarios, even for low-density cargo, with scatter-toprimary ratios ranging from 0.14 for very low density cargo, to between 0.20 and 0.40 for typical cargo, and higher yet for dense cargo.

  5. Optimisation in general radiography

    PubMed Central

    Martin, CJ

    2007-01-01

    Radiography using film has been an established method for imaging the internal organs of the body for over 100 years. Surveys carried out during the 1980s identified a wide range in patient doses showing that there was scope for dosage reduction in many hospitals. This paper discusses factors that need to be considered in optimising the performance of radiographic equipment. The most important factor is choice of the screen/film combination, and the preparation of automatic exposure control devices to suit its characteristics. Tube potential determines the photon energies in the X-ray beam, with the selection involving a compromise between image contrast and the dose to the patient. Allied to this is the choice of anti-scatter grid, as a high grid ratio effectively removes the larger component of scatter when using higher tube potentials. However, a high grid ratio attenuates the X-ray beam more heavily. Decisions about grids and use of low attenuation components are particularly important for paediatric radiography, which uses lower energy X-ray beams. Another factor which can reduce patient dose is the use of copper filtration to remove more low-energy X-rays. Regular surveys of patient dose and comparisons with diagnostic reference levels that provide a guide representing good practice enable units for which doses are higher to be identified. Causes can then be investigated and changes implemented to address any shortfalls. Application of these methods has led to a gradual reduction in doses in many countries. PMID:21614270

  6. Neutron irradiation induced microstructural changes in NBG-18 and IG-110 nuclear graphites

    SciTech Connect

    Karthik, Chinnathambi; Kane, Joshua; Butt, Darryl P.; Windes, William E.; Ubic, Rick

    2015-05-01

    This paper reports the neutron-irradiation-induced effects on the microstructure of NBG-18 and IG-110 nuclear graphites. The high-temperature neutron irradiation at two different irradiation conditions was carried out at the Advanced Test Reactor National User Facility at the Idaho National Laboratory. NBG-18 samples were irradiated to 1.54 dpa and 6.78 dpa at 430 °C and 678 °C respectively. IG-110 samples were irradiated to 1.91 dpa and 6.70 dpa at 451 °C and 674 °C respectively. Bright-field transmission electron microscopy imaging was used to study the changes in different microstructural components such as filler particles, microcracks, binder and quinoline-insoluble (QI) particles. Significant changes have been observed in samples irradiated to about 6.7 dpa. The closing of pre-existing microcracks was observed in both the filler and the binder phases. The binder phase exhibited substantial densification with near complete elimination of the microcracks. The QI particles embedded in the binder phase exhibited a complete microstructural transformation from rosettes to highly crystalline solid spheres. The lattice images indicate the formation of edge dislocations as well as extended line defects bridging the adjacent basal planes. The positive climb of these dislocations has been identified as the main contributor to the irradiation-induced swelling of the graphite lattice.

  7. Neutron-induced autoradiography used in the investigation of modern pigments in paintings of known composition

    SciTech Connect

    Aderhold, H.C.; Taft, W.S.

    1992-07-01

    Neutron-Induced Autoradiography is an effective analytical technique for mapping the location of a number of specified pigments in paintings. Most paintings which have been examined through neutron-induced autoradiography to date were painted prior to the introduction of the most common of modern pigments. By understanding die nuclear properties of these pigments, as revealed by this technique, a more informed analysis of modem paintings may result This investigation is part of an ongoing program to develop case studies for presentation to an undergraduate class at Cornell University, 'Art, Isotopes and Analysis'. We have found that this technique is a graphic and effective method of presenting nuclear reactions and radioactivity to non-specialists. Sample paintings are produced using pigments of known composition. A sequence of discreet layers, each a separate image, is documented in order to establish a reference for accurately interpreting the autoradiographs. The painting is then activated in the Cornell TRIGA reactor and a series of autoradiographs produced Gamma spectra taken before and after each film exposure gives us detailed information on which radioisotopes (and therefore, which pigments), are active. (author)

  8. Image Acquisition and Quality in Digital Radiography.

    PubMed

    Alexander, Shannon

    2016-09-01

    Medical imaging has undergone dramatic changes and technological breakthroughs since the introduction of digital radiography. This article presents information on the development of digital radiography and types of digital radiography systems. Aspects of image quality and radiation exposure control are highlighted as well. In addition, the article includes related workplace changes and medicolegal considerations in the digital radiography environment. PMID:27601691

  9. Proton Radiography: Cross Section Measurements and Detector Development

    SciTech Connect

    Michael J. Longo

    2003-12-17

    OAK-B135 The physics goal of this project is to measure forward production of neutrons and photons produced by high-energy proton beams striking a variety of targets. This will provide data essential to proton radiography. This work is being carried out in conjunction with the Fermilab Experiment 907 (MIPP) collaboration including physicists from Lawrence Livermore Laboratory. Our group is responsible for the E907 forward neutron/photon calorimeter. The project is on track to meet its technical milestones, though the overall schedule at Fermilab has slipped. The electromagnetic calorimeter and the hadron calorimeter were both assembled and ready for testing with beam in December 2003.

  10. Production, Distribution, and Applications of Californium-252 Neutron Sources

    SciTech Connect

    Balo, P.A.; Knauer, J.B.; Martin, R.C.

    1999-10-03

    The radioisotope {sup 252}Cf is routinely encapsulated into compact, portable, intense neutron sources with a 2.6-year half-life. A source the size of a person's little finger can emit up to 10{sup 11} neutrons/s. Californium-252 is used commercially as a reliable, cost-effective neutron source for prompt gamma neutron activation analysis (PGNAA) of coal, cement, and minerals, as well as for detection and identification of explosives, laud mines, and unexploded military ordnance. Other uses are neutron radiography, nuclear waste assays, reactor start-up sources, calibration standards, and cancer therapy. The inherent safety of source encapsulations is demonstrated by 30 years of experience and by U.S. Bureau of Mines tests of source survivability during explosions. The production and distribution center for the U. S Department of Energy (DOE) Californium Program is the Radiochemical Engineering Development Center (REDC) at Oak Ridge National Laboratory (ORNL). DOE sells The radioisotope {sup 252}Cf is routinely encapsulated into compact, portable, intense neutron sources with a 2.6- year half-life. A source the size of a person's little finger can emit up to 10 neutrons/s. Californium-252 is used commercially as a reliable, cost-effective neutron source for prompt gamma neutron activation analysis (PGNAA) of coal, cement, and minerals, as well as for detection and identification of explosives, laud mines, and unexploded military ordnance. Other uses are neutron radiography, nuclear waste assays, reactor start-up sources, calibration standards, and cancer therapy. The inherent safety of source encapsulations is demonstrated by 30 years of experience and by U.S. Bureau of Mines tests of source survivability during explosions. The production and distribution center for the U. S Department of Energy (DOE) Californium Program is the Radiochemical Engineering Development Center (REDC) at Oak Ridge National Laboratory(ORNL). DOE sells {sup 252}Cf to commercial

  11. Initial observations of cavitation-induced erosion of liquid metal spallation target vessels at the Spallation Neutron Source

    SciTech Connect

    McClintock, David A; Riemer, Bernie; Ferguson, Phillip D; Carroll, Adam J; Dayton, Michael J

    2012-01-01

    During operation of the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory the mechanical properties of the AISI 316L target module are altered by high-energy neutron and proton radiation. The interior surfaces of the target vessel are also damaged by cavitation-induced erosion, which results from repetitive rapid heating of the liquid mercury by high-energy proton beam pulses. Until recently no observations of cavitation-induced erosion were possible for conditions prototypical to the SNS. Post irradiation examination (PIE) of the first and second operational SNS targets was performed to gain insight into the radiation-induced changes in mechanical properties of the 316L target material and the extent of cavitation-induced erosion to the target vessel inner surfaces. Observations of cavitation-induced erosion of the first and second operational SNS target modules are presented here, including images of the target vessel interiors and specimens removed from the target beam-entrance regions.

  12. Extensions of the burst generation rate method for wider application to proton/neutron-induced single event effects

    SciTech Connect

    Normand, E.

    1998-12-01

    The Burst Generation Rate (BGR) method, originally developed to calculate single event upset (SEU) rates in microelectronics due to neutrons and protons, has been extended for wider application, allowing cross sections for both SEU and single event latchup (SEL) to be calculated, and comparisons to be made with measured data. The method uses the Weibull fit to accurately represent the behavior of the heavy ion SEU cross section. Proton SEU cross sections in RAMs, microprocessors and FPGAs are calculated, with agreement generally to within a factor of 2--3, and similar results are obtained for neutron cross sections for both cosmic ray and fission spectra. The BGR method is also modified to calculate cross sections for proton/neutron induced SEL. Agreement is generally good for SEL for most devices, but there are also limitations, since some very modern devices are shown to have unusually high susceptibility to SEL by protons/neutrons.

  13. Rotation of Nuclei as Observed in Ternary Fission of the Reaction 235U(nth,f) Induced by Polarized Neutron

    NASA Astrophysics Data System (ADS)

    Gönnenwein, F.; Gagarski, A.; Guseva, I.; Petrov, G.; Sokolov, V.; Zavarukhkina, T.; Mutterer, M.; Nesvizhevski, V.; Bunakov, V.; Kadmensky, S.

    2007-05-01

    Ternary fission of the standard reaction 235U(nth,f) induced by cold polarized neutrons has been investigated. Fission fragments and light charged particles were recorded in coincidence. Following cold neutron capture the compound nucleus 236U* has spin 3- or 4-. At the saddle point of the fissioning 236U* nucleus these states are collective. They are expected to retain a sizable collectivity down to the scission point. In fact, a collective rotation has been sensed by the shift in the angular distribution of the light charged particles which depends on the orientation of neutron polarization. Direct observation of the rotation of 236U* excited in a cold neutron reaction is reported here for the first time. It is proposed to call the new phenomenon the "ROT-effect".

  14. Radiometric Investigation of Water Vapour Movement in Wood-based Composites by Means of Cold and Thermal Neutrons

    NASA Astrophysics Data System (ADS)

    Solbrig, K.; Frühwald, K.; Ressel, J. B.; Mannes, D.; Schillinger, B.; Schulz, M.

    Wood-based composites are industrially produced panels made of resin-blended wood furnish material consolidated by hot pressing. Precise knowledge of the physical interrelations, such as heat and mass transfer induced densification and curing, are inevitable to control process performance and final product properties. Neutron radiography is able to distinguish between moisture and wood matter movement and thus to provide quantitative information considering the hot pressing process where only models exist. To this end, preliminary experiments were carried out utilising both cold and thermal neutrons to visualise and to quantify the water vapour movement within wood-based composites heated under sealing within a simplified mimicry of the hot pressing process conditions. Neutron radiography of this rather fast process was found to be feasible in general. The evaluation of the time-resolved image data maps the relative water content distribution within the sample during 9 min process time. A presumed wavefront-like vapour movement was confirmed. Hence, the results enhance the understanding of heat and mass transfer inside consolidated resin-blended wood furnish. These preliminary experiments prove neutron radiography as viable method for further comprehensive in-situ investigations of the hot pressing process of wood-based composites.

  15. First steps towards real-time radiography at the NECTAR facility

    NASA Astrophysics Data System (ADS)

    Bücherl, T.; Wagner, F. M.; v. Gostomski, Ch. Lierse

    2009-06-01

    The beam tube SR10 at Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM II) provides an intense beam of fission neutrons for medical application (MEDAPP) and for radiography and tomography of technical and other objects (NECTAR). The high neutron flux of up to 9.8E+07 cm -2 s -1 (depending on filters and collimation) with a mean energy of about 1.9 MeV at the sample position at the NECTAR facility prompted an experimental feasibility study to investigate the potential for real-time (RT) radiography.

  16. Digital radiography: an overview.

    PubMed

    Parks, Edwin T; Williamson, Gail F

    2002-11-15

    Since the discovery of X-rays in 1895, film has been the primary medium for capturing, displaying, and storing radiographic images. It is a technology that dental practitioners are the most familiar and comfortable with in terms of technique and interpretation. Digital radiography is the latest advancement in dental imaging and is slowly being adopted by the dental profession. Digital imaging incorporates computer technology in the capture, display, enhancement, and storage of direct radiographic images. Digital imaging offers some distinct advantages over film, but like any emerging technology, it presents new and different challenges for the practitioner to overcome. This article presents an overview of digital imaging including basic terminology and comparisons with film-based imaging. The principles of direct and indirect digital imaging modalities, intraoral and extraoral applications, image processing, and diagnostic efficacy will be discussed. In addition, the article will provide a list of questions dentists should consider prior to purchasing digital imaging systems for their practice. PMID:12444400

  17. Filters For Chest Radiography

    NASA Astrophysics Data System (ADS)

    Ramanathan, N.; Paron, J.

    1980-08-01

    The objective of low dose radiography is achieved by a judicious combination of proper kV selection, fast film-screen systems and beam filtration. A systematic study of filters was undertaken to evaluate the improvements that can be realized in terms of patient Entrance Skin Exposures (ESE) for chest radiographs. The Picker CD 135 Generator and the Automatic Chest Filmer with dynamic phototiming were used for the study. The kV dependence of ESE with various amounts of zinc and aluminum filtration is presented. The effect of filtration on image contrast is discussed. The variations of ESE with phantom thickness under different filtration conditions are also considered. It was found that the ESE can be reduced by as much as a factor of 1.8 ± .1 with no significant increase in tube loading.

  18. The Neutron's Discovery - 80 Years on

    NASA Astrophysics Data System (ADS)

    Rogers, John D.

    A brief review is given of selected highlights in scientific developments from the birth of modern nuclear physics at the end of the 19th century to the discovery of the neutron in 1932. This is followed by some important milestones in neutron and reactor physics that have led to our current understanding and implementation of nuclear technologies. The beginnings can be traced back to the discovery of X-rays by Roentgen, the identification of natural radioactivity by Becquerel and the discovery of the electron by Thomson, towards the end of the 19th Century. Rutherford was a key figure in experimental physics who determined the structure of the atom and who inspired his students at McGill, Manchester and Cambridge Universities (many of whom would become Nobel laureates) in the pursuit of their physics research. One of Rutherford's students, James Chadwick, had studied the work carried out by Bothe and Becker on alpha particle-induced disintegration of light elements which had led to their observation of high energy penetrating radiation that neither they nor the Joliot-Curies could identify. Chadwick knew that the only possible explanation was the emission of a neutron in the nuclear reaction. He carried out tests in the Cavendish Laboratory and submitted his now classical paper identifying the neutron to the periodical Nature in 1932. The discovery of the neutron and of nuclear fission in 1939 opened up new areas for scientific investigation, in, for example, astrophysics, geology, neutron and nuclear physics. The prospects for nuclear power in particular appeared to be unlimited and both civil and military applications have been actively pursued. Many new experimental facilities have been designed and built to provide intense sources of neutrons for research purposes. Work carried out in such centres is included in the programme of the 7th International Topical Meeting on Neutron Radiography, an important forum for discussion of the latest research work of this

  19. Multiple-image radiography

    NASA Astrophysics Data System (ADS)

    Wernick, Miles N.; Wirjadi, Oliver; Chapman, Dean; Zhong, Zhong; Galatsanos, Nikolas P.; Yang, Yongyi; Brankov, Jovan G.; Oltulu, Oral; Anastasio, Mark A.; Muehleman, Carol

    2003-12-01

    Conventional radiography produces a single image of an object by measuring the attenuation of an x-ray beam passing through it. When imaging weakly absorbing tissues, x-ray attenuation may be a suboptimal signature of disease-related information. In this paper we describe a new phase-sensitive imaging method, called multiple-image radiography (MIR), which is an improvement on a prior technique called diffraction-enhanced imaging (DEI). This paper elaborates on our initial presentation of the idea in Wernick et al (2002 Proc. Int. Symp. Biomed. Imaging pp 129-32). MIR simultaneously produces several images from a set of measurements made with a single x-ray beam. Specifically, MIR yields three images depicting separately the effects of refraction, ultra-small-angle scatter and attenuation by the object. All three images have good contrast, in part because they are virtually immune from degradation due to scatter at higher angles. MIR also yields a very comprehensive object description, consisting of the angular intensity spectrum of a transmitted x-ray beam at every image pixel, within a narrow angular range. Our experiments are based on data acquired using a synchrotron light source; however, in preparation for more practical implementations using conventional x-ray sources, we develop and evaluate algorithms designed for Poisson noise, which is characteristic of photon-limited imaging. The results suggest that MIR is capable of operating at low photon count levels, therefore the method shows promise for use with conventional x-ray sources. The results also show that, in addition to producing new types of object descriptions, MIR produces substantially more accurate images than its predecessor, DEI. MIR results are shown in the form of planar images of a phantom and a biological specimen. A preliminary demonstration of the use of MIR for computed tomography is also presented.

  20. Neutron induced fission of U isotopes up to 100 MeV

    SciTech Connect

    Lestone, J.P.; Gavron, A.

    1993-10-01

    We have developed a statistical model description of the neutron induced fission of U isotopes using densities of intrinsic states and spin cut off parameters obtained directly from appropriate Nilsson model single particle levels. The first chance fission cross sections are well reproduced when the rotational contributions to the nuclear level densities are taken into account. In order to fit the U(n,f) cross sections above the threshold of second chance fission, we need to: (1) assume that the triaxial level density enhancement is washed out at an excitation energy of {approximately}7 MeV above the triaxial barriers with a width of {approximately}1 MeV, implying a {gamma} deformation for the first barriers of 10{degree} < {gamma} < 20{degree}; and (2) include pre-equilibrium particle emission in the calculations. Above an incoming neutron kinetic energy of {approximately}17 MeV our statistical model U(n,f) cross sections increasingly overestimate the experimental data when so called ``good`` optical model potentials are used to calculate the compound nucleus formation cross sections. This is not surprising since at these high energies little data exists on the scattering of neutrons to help guide the choice of optical model parameters. A satisfactory reproduction of all the available U(n,f) cross sections above 17 MeV is obtained by a simple scaling of our calculated compound nucleus formation cross sections. This scaling factor falls from 1.0 at 17 MeV to 0.82 at 100 MeV.

  1. Event-by-Event Fission Modeling of Prompt Neutrons and Photons from Neutron-Induced and Spontaneous Fission with FREYA

    NASA Astrophysics Data System (ADS)

    Vogt, Ramona; Randrup, Jorgen

    2013-04-01

    The event-by-event fission Monte Carlo code FREYA (Fission Reaction Event Yield Algorithm) generates large samples of complete fission events. Using FREYA, it is possible to obtain the fission products as well as the prompt neutrons and photons emitted during the fission process, all with complete kinematic information. We can therefore extract any desired correlation observables. Concentrating on ^239Pu(n,f), ^240Pu(sf) and ^252Cf(sf), we compare our FREYA results with available data on prompt neutron and photon emission and present predictions for novel fission observables that could be measured with modern detectors.

  2. Fast neutron inspection of sea containers for the presence of “dirty bomb”

    NASA Astrophysics Data System (ADS)

    Valković, V.; Sudac, D.; Blagus, S.; Nađ, K.; Obhođaš, J.; Vekić, B.; Nebbia, G.; Pesente, S.

    2007-10-01

    The possibility of the detection of "dirty bomb" presence inside sea containers is evaluated. The method proposed for explosive and fissile material detection makes use of two sensors (X-rays and neutrons). A commercial imaging device based on the X-ray radiography performs a fast scan of the container, identifies a "suspect" region and provides its coordinates to the neutron based device for the final "confirmatory" inspection. In this two sensor system a 14 MeV neutron beam defined by the detection of associated alpha particles is used for interrogation of only volume elements marked by X-ray sensor. The object's nature is determined from passive and neutron induced, gamma energy spectra measurements. Experimental results (time-of-flight and gamma energy spectra) obtained for the irradiation 30 kg of TNT, depleted uranium and other materials hidden inside the container are presented.

  3. Neutron Imaging and Applications

    SciTech Connect

    Anderson, Ian S; McGreevy, Robert L; Bilheux, Hassina Z

    2009-04-01

    Neutron Imaging and Applications offers an introduction to the basics of neutron beam production and instrumentation in addition to the wide scope of techniques that provide unique imaging capabilities over a broad and diverse range of applications. An instructional overview of neutron sources, optics and detectors, allows readers to delve more deeply into the discussions of radiography, tomography, phase contrast imaging and prospective applications using advanced neutron holography techniques and polarized beams. A section devoted to overviews in a growing range of applications describes imaging of fuel cells and hydrogen storage devices for a robust hydrogen economy; new directions in material science and engineering; the investigation of precious artifacts of cultural heritage importance; determination of plant physiology and growth processes; imaging of biological tissues and macromolecules, and the practical elements of neutron imaging for homeland security and contraband detection. Written by key experts in the field, researchers and engineers involved with imaging technologies will find Neutron Imaging and Applications a valuable reference.

  4. Ultrashort pulsed neutron source.

    PubMed

    Pomerantz, I; McCary, E; Meadows, A R; Arefiev, A; Bernstein, A C; Chester, C; Cortez, J; Donovan, M E; Dyer, G; Gaul, E W; Hamilton, D; Kuk, D; Lestrade, A C; Wang, C; Ditmire, T; Hegelich, B M

    2014-10-31

    We report on a novel compact laser-driven neutron source with an unprecedented short pulse duration (<50  ps) and high peak flux (>10(18)  n/cm(2)/s), an order of magnitude higher than any existing source. In our experiments, high-energy electron jets are generated from thin (<3  μm) plastic targets irradiated by a petawatt laser. These intense electron beams are employed to generate neutrons from a metal converter. Our method opens venues for enhancing neutron radiography contrast and for creating astrophysical conditions of heavy element synthesis in the laboratory. PMID:25396373

  5. Ultrashort Pulsed Neutron Source

    NASA Astrophysics Data System (ADS)

    Pomerantz, I.; McCary, E.; Meadows, A. R.; Arefiev, A.; Bernstein, A. C.; Chester, C.; Cortez, J.; Donovan, M. E.; Dyer, G.; Gaul, E. W.; Hamilton, D.; Kuk, D.; Lestrade, A. C.; Wang, C.; Ditmire, T.; Hegelich, B. M.

    2014-10-01

    We report on a novel compact laser-driven neutron source with an unprecedented short pulse duration (<50 ps ) and high peak flux (>1018 n /cm2/s ), an order of magnitude higher than any existing source. In our experiments, high-energy electron jets are generated from thin (<3 μ m ) plastic targets irradiated by a petawatt laser. These intense electron beams are employed to generate neutrons from a metal converter. Our method opens venues for enhancing neutron radiography contrast and for creating astrophysical conditions of heavy element synthesis in the laboratory.

  6. Revised Production Rates for Na-22 and Mn-54 in Meteorites Using Cross Sections Measured for Neutron-induced Reactions

    NASA Technical Reports Server (NTRS)

    Sisterson, J. M.; Kim, K. J.; Reedy, R. C.

    2004-01-01

    The interactions of galactic cosmic rays (GCR) with extraterrestrial bodies produce small amounts of radionuclides and stable isotopes. The production rates of many relatively short-lived radionuclides, including 2.6-year Na-22 and 312-day Mn-54, have been measured in several meteorites collected very soon after they fell. Theoretical models used to calculate production rates for comparison with the measured values rely on input data containing good cross section measurements for all relevant reactions. Most GCR particles are protons, but secondary neutrons make most cosmogenic nuclides. Calculated production rates using only cross sections for proton-induced reactions do not agree well with measurements. One possible explanation is that the contribution to the production rate from reactions initiated by secondary neutrons produced in primary GCR interactions should be included explicitly. This, however, is difficult to do because so few of the relevant cross sections for neutron-induced reactions have been measured.

  7. Decay radioactivity induced in plasma-facing materials by deutrium-tritium neutrons

    SciTech Connect

    Kumar, A.; Abdou, M.A.; Youssef, M.Z.; Ikeda, Y.; Konno, C.; Kosako, K.; Oyama, Y.; Nakamura, T.; Maekawa, H.

    1995-08-01

    Deuterium-tritium (D-T) neutron-induced radioactivity constitutes one of the foremost issues in fusion reactor design. Designers have been using radioactivity codes and associated nuclear data libraries for nucleonic designs of fusion reactors. However, in the past, there was hardly any experimental validation of these codes/libraries. An elaborate, experimental program was initiated in 1988 under a U.S. Department of Energy/Japan Atomic Energy Research Institute collaborative program to validate the radioactivity codes/libraries. As many as 14 neutron energy spectra were covered for a number of materials. The analyses of the isotopic activities of the irradiated materials using the activation cross-section libraries of four leading radioactivity codes, i.e., ACT4/THIDA-1, REAC-3. DKR-ICF; and RACC, have shown large discrepancies among the calculations on one hand and between the calculations and the measurements, on the other. Vanadium, Co, Ni, Zn, Zr, Mo, In, Sn, and W each count the largest number of discrepant isotopic activities. In addition to providing detailed results of the status of predictability of individual isotopic activities using the ACT4, REAC-3, DKR-ICF, and RACC activation cross-section libraries, safety factors cum quality factors characterizing each library are presented and discussed. The related issues of confidence level and associated uncertainty are also highlighted. 37 refs., 112 figs., 24 tabs.

  8. Neutron stars and millisecond pulsars from accretion-induced collapse in globular clusters

    NASA Technical Reports Server (NTRS)

    Bailyn, Charles D.; Grindlay, Jonathan E.

    1990-01-01

    This paper examines the limits on the number of millisecond pulsars which could be formed in globular clusters by the generally accepted scenario (in which a neutron star is created by the supernova of an initially massive star and subsequently captures a companion to form a low-mass X-ray binary which eventually becomes a millisecond pulsar). It is found that, while the number of observed low-mass X-ray binaries can be adequately explained in this way, the reasonable assumption that the pulsar luminosity function in clusters extends below the current observational limits down to the luminosity of the faintest millisecond pulsars in the field suggests a cluster population of millisecond pulsars which is substantially larger than the standard model can produce. Alleviating this problem by postulating much shorter lifetimes for the X-ray binaries requires massive star populations sufficiently large that the mass loss resulting from their evolution would be likely to unbind the cluster. It is argued that neutron star formation in globular clusters by accretion-induced collapse of white dwarfs may resolve the discrepancy in birthrates.

  9. Neutron Induced Backgrounds In the MIXE X-Ray Detector at Balloon Altitudes

    NASA Technical Reports Server (NTRS)

    Armstrong, T. W.; Colborn, B. L.; Dietz, K. L.; Ramsey, B. D.

    1997-01-01

    The MIXE detector developed at NASA/MSFC is designed for x-ray astronomy and consists of a multiwire proportional counter sensitive to photons less than 150 keV. The detector has been flown on several balloon flights with higher than expected background levels observed. Previous predictions of the detector background due to atmospheric gamma-ray and cosmic diffuse sources were much less (factor of 3) than flight background measurements. The work reported here was undertaken to determine if the additional contribution from gamma-rays generated by albedo and cosmic-ray induced neutrons in the detector and payload assembly could account for the background levels observed. Monte Carlo nuclear interaction and radiation transport simulations were made for the ambient cosmic-ray environment corresponding to a previous MEE balloon flight at 3 g/cm(exp 2) residual atmosphere and 42 N geomagnetic latitude. The omnidirectional albedo neutron spectrum and the GCR proton spectrum which were used as input to the calculations are shown. For the albedo angular distribution, the predicted up/down flux ratio of 2.5 was used together with the angular dependence measured by Preszler, et al.

  10. Rotation induced octupole correlations in the neutron-deficient 109Te nucleus

    NASA Astrophysics Data System (ADS)

    de Angelis, G.; Fahlander, C.; Gadea, A.; Farnea, E.; Bazzacco, D.; Belcari, N.; Blasi, N.; Bizzeti, P. G.; Bizzeti-Sona, A.; de Acuña, D.; de Poli, M.; Grawe, H.; Johnson, A.; Lo Bianco, G.; Lunardi, S.; Napoli, D. R.; Nyberg, J.; Pavan, P.; Persson, J.; Rossi Alvarez, C.; Rudolph, D.; Schubart, R.; Spolaore, P.; Wyss, R.; Xu, F.

    1998-10-01

    High spin states in the neutron deficient nucleus 109Te have been populated with the 58Ni+54Fe reaction at 220 MeV and investigated through γ-spectroscopy methods at the GASP spectrometer making use of reaction channel selection with the ISIS Si-ball. The level scheme has been extended up to an excitation energy of ~12.1 MeV. The spins and parities of the observed levels are assigned tentatively supporting the identification of two bands of opposite parity connected by strong dipole transitions inferred to be of E1 character. Octupole correlations in 109Te induced by rotation are suggested as the cause of this effect.

  11. Measurement of the 240,242Pu Neutron-induced Fission Cross Sections

    NASA Astrophysics Data System (ADS)

    Salvador-Castiñeira, P.; Bevilacqua, R.; Bryś, T.; Hambsch, F.-J.; Oberstedt, S.; Pretel, C.; Vidali, M.

    The neutron-induced fission cross section of 240,242Pu has been measured at the Van de Graaff facility of the Institute for Reference Materials and Measurements (JRC-IRMM). A Twin-Frisch Grid Ionization Chamber (TFGIC) has been used in a back-to-back geometry with the secondary standards 237Np and 238U to normalize the cross section. The energy range measured is from 0.2 keV up to 3 MeV. Preliminary results show some discrepancies around 1 MeV for the 242Pu with the ENDF/B-VII.1 evaluation. The spontaneous fission half-life has been measured for both isotopes, too. Preliminary results show reasonable agreement with the recommended values.

  12. Neutron scattering study of the field-induced tricritical point in MnSi

    NASA Astrophysics Data System (ADS)

    Kindervater, J.; Bauer, A.; Garst, M.; Janoschek, M.; Martin, N.; Mühlbauer, S.; Häussler, W.; Böni, P.; Pfleiderer, C.

    The intermetallic compound MnSi attracts great scientific interest due to two unusual phase transitions, namely the transition from the conical phase to a skyrmion lattice in small fields and the transition from the helical to the paramagnetic phase without external magnetic field that was recently identified to be a fluctuation induced first-order transition, i.e. a so called Brazovskii-transition. Recent measurements of the specific heat provide striking evidence for a tricritical point (TCP), were the first order transition alters to second order. We report neutron spin echo measurements using the MIEZE technique. The recorded quasi elastic linewidth shows a change of the characteristic spin fluctuations at the TCP. The combination with additional SANS measurements and a generalized Brazovskii theory establishes a consistent picture of the statics and dynamics of the transition. Financial support by ERC-AdG (291079 TOPFIT) and through DFG TRR80 is greatfully acknowledged.

  13. Neutron- and proton-induced reactions for analysis of bioenvironmental samples

    SciTech Connect

    Spyrou, N.M.; Altaf, W.J.; Khrbish, Y.S. )

    1988-01-01

    The study of the elemental composition of bioenvironmental samples is of continuing interest in a wide variety of medical and environmental investigations, be it as environmental monitors or as indicators of the state of health and disease of an individual or a population. Nuclear activation methods play an important role in these studies as research tools and in certain cases are employed as rapid, routine analytical techniques. Although the authors have been using instrumental neutron activation analysis as the main technique for obtaining information about elemental composition and concentration, they have also developed techniques, for further or complementary analysis, in which proton-induced reactions have been exploited. Two recent studies, in which the composition of human lung tissue and the elemental concentration in plant samples were determined, have been selected as illustrations of the techniques employed.

  14. Neutron yield and induced radioactivity: a study of 235-MeV proton and 3-GeV electron accelerators.

    PubMed

    Hsu, Yung-Cheng; Lai, Bo-Lun; Sheu, Rong-Jiun

    2016-01-01

    This study evaluated the magnitude of potential neutron yield and induced radioactivity of two new accelerators in Taiwan: a 235-MeV proton cyclotron for radiation therapy and a 3-GeV electron synchrotron serving as the injector for the Taiwan Photon Source. From a nuclear interaction point of view, neutron production from targets bombarded with high-energy particles is intrinsically related to the resulting target activation. Two multi-particle interaction and transport codes, FLUKA and MCNPX, were used in this study. To ensure prediction quality, much effort was devoted to the associated benchmark calculations. Comparisons of the accelerators' results for three target materials (copper, stainless steel and tissue) are presented. Although the proton-induced neutron yields were higher than those induced by electrons, the maximal neutron production rates of both accelerators were comparable according to their respective beam outputs during typical operation. Activation products in the targets of the two accelerators were unexpectedly similar because the primary reaction channels for proton- and electron-induced activation are (p,pn) and (γ,n), respectively. The resulting residual activities and remnant dose rates as a function of time were examined and discussed. PMID:25628454

  15. Neutron and Charged-Particle Induced Cross Sections for Radiochemistry in the Region of Samarium, Europium, and Gadolinium

    SciTech Connect

    Hoffman, R D; Kelley, K; Dietrich, F S; Bauer, R; Mustafa, M

    2004-11-30

    We have developed a set of modeled nuclear reaction cross sections for use in radiochemical diagnostics. Systematics for the input parameters required by the Hauser-Feshbach statistical model were developed and used to calculate neutron and proton induced nuclear reaction cross sections in the mass region of samarium, europium and gadolinium (62 {le} Z {le} 64, 82 {le} N {le} 96).

  16. Enrico Fermi's Discovery of Neutron-Induced Artificial Radioactivity:The Recovery of His First Laboratory Notebook

    NASA Astrophysics Data System (ADS)

    Acocella, Giovanni; Guerra, Francesco; Robotti, Nadia

    . We give a short description of the discovery of the first experimental notebook of Enrico Fermi (1901-1954) on his researches during March and April of 1934 on neutron-induced artificial radioactivity, and we point out its relevance for a proper historical and conceptual understanding of those researches.

  17. Revised Calculations of the Production Rates for Co Isotopes in Meteorites Using New Cross Sections for Neutron-induced Reactions

    NASA Technical Reports Server (NTRS)

    Sisterson, J. M.; Brooks, F. D.; Buffler, A.; Allie, M. S.; Herbert, M. S.; Nchodu, M. R.; Makupula, S.; Ullmann, J.; Reedy, R. C.; Jones, D. T. L.

    2002-01-01

    New cross section measurements for reactions induced by neutrons with energies greater than 70 MeV are used to calculate the production rates for cobalt isotopes in meteorites and these new calculations are compared to previous estimates. Additional information is contained in the original extended abstract.

  18. Neutron and Charged-Particle Induced Cross Sections for Radiochemistry in the Region of Bromine and Krypton

    SciTech Connect

    Hoffman, R; Dietrich, F; Bauer, R; Kelley, K; Mustafa, M

    2004-07-23

    We have developed a set of modeled nuclear reaction cross sections for use in radiochemical diagnostics. Systematics for the input parameters required by the Hauser-Feshbach statistical model were developed and used to calculate neutron and proton induced nuclear reaction cross sections in the mass region of bromine and krypton (34 {le} Z {le} 37, 40 {le} N {le} 47).

  19. Early stages of oxidative stress-induced membrane permeabilization: a neutron reflectometry study.

    PubMed

    Smith, Hillary L; Howland, Michael C; Szmodis, Alan W; Li, Qijuan; Daemen, Luke L; Parikh, Atul N; Majewski, Jaroslaw

    2009-03-18

    Neutron reflectometry was used to probe in situ the structure of supported lipid bilayers at the solid-liquid interface during the early stages of UV-induced oxidative degradation. Single-component supported lipid bilayers composed of gel phase, dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), and fluid phase, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), phospholipids were exposed to low-dose oxidative stress generated by UV light and their structures were examined by neutron reflectometry. An interrupted illumination mode, involving exposures in 15 min increments with 2 h intervals between subsequent exposures, and a continuous mode involving a single 60 (or 90) min exposure period were employed. In both cases, pronounced differences in the structure of the lipid bilayer after exposure were observed. Interrupted exposure led to a substantial decrease in membrane coverage but preserved its total thickness at reduced scattering length densities. These results indicate that the initial phase during UV-induced membrane degradation involves the formation of hydrophilic channels within the membrane. This is consistent with the loss of some lipid molecules we observe and attendant reorganization of residual lipids forming hemimicellar edges of the hydrophilic channels. In contrast, continuous illumination produced a graded interface of continuously varied scattering length density (and hence hydrocarbon density) extending 100-150 A into the liquid phase. Exposure of a DPPC bilayer to UV light in the presence of a reservoir of unfused vesicles showed low net membrane disintegration during oxidative stress, presumably because of surface back-filling from the bulk reservoir. Chemical evidence for membrane degradation was obtained by mass spectrometry and Fourier transform infrared spectroscopy. Further evidence for the formation of hydrophilic channels was furnished by fluorescence microscopy and imaging ellipsometry data. PMID:19275260

  20. Early Stages of Oxidative Stress-Induced Membrane Permeabilization: A Neutron Reflectometry Study

    PubMed Central

    Smith, Hillary L.; Howland, Michael C.; Szmodis, Alan W.; Li, Qijuan; Daemen, Luke L.; Parikh, Atul N.; Majewski, Jaroslaw

    2009-01-01

    Neutron reflectometry was used to probe in situ the structure of supported lipid bilayers at the solid–liquid interface during the early stages of UV-induced oxidative degradation. Single-component supported lipid bilayers composed of gel phase, dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), and fluid phase, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), phospholipids were exposed to low-dose oxidative stress generated by UV light and their structures were examined by neutron reflectometry. An interrupted illumination mode, involving exposures in 15 min increments with 2 h intervals between subsequent exposures, and a continuous mode involving a single 60 (or 90) min exposure period were employed. In both cases, pronounced differences in the structure of the lipid bilayer after exposure were observed. Interrupted exposure led to a substantial decrease in membrane coverage but preserved its total thickness at reduced scattering length densities. These results indicate that the initial phase during UV-induced membrane degradation involves the formation of hydrophilic channels within the membrane. This is consistent with the loss of some lipid molecules we observe and attendant reorganization of residual lipids forming hemimicellar edges of the hydrophilic channels. In contrast, continuous illumination produced a graded interface of continuously varied scattering length density (and hence hydrocarbon density) extending 100–150 Å into the liquid phase. Exposure of a DPPC bilayer to UV light in the presence of a reservoir of unfused vesicles showed low net membrane disintegration during oxidative stress, presumably because of surface back-filling from the bulk reservoir. Chemical evidence for membrane degradation was obtained by mass spectrometry and Fourier transform infrared spectroscopy. Further evidence for the formation of hydrophilic channels was furnished by fluorescence microscopy and imaging ellipsometry data. PMID:19275260

  1. RhG-CSF improves radiation-induced myelosuppression and survival in the canine exposed to fission neutron irradiation.

    PubMed

    Yu, Zu-Yin; Li, Ming; Han, A-Ru-Na; Xing, Shuang; Ou, Hong-Ling; Xiong, Guo-Lin; Xie, Ling; Zhao, Yan-Fang; Xiao, He; Shan, Ya-Jun; Zhao, Zhen-Hu; Liu, Xiao-Lan; Cong, Yu-Wen; Luo, Qing-Liang

    2011-01-01

    Fission-neutron radiation damage is hard to treat due to its critical injuries to hematopoietic and gastrointestinal systems, and so far few data are available on the therapeutic measures for neutron-radiation syndrome. This study was designed to test the effects of recombinant human granulocyte colony-stimulating factor (rhG-CSF) in dogs which had received 2.3 Gy mixed fission-neutron-γ irradiation with a high ratio of neutrons (~90%). Following irradiation, rhG-CSF treatment induced 100% survival versus 60% in controls. Only two of five rhG-CSF-treated dogs experienced leukopenia (white blood cells [WBC] count < 1.0 × 10(9)/L) and neutropenia (neutrophil [ANC] count < 0.5 × 10(9)/L), whereas all irradiated controls displayed a profound period of leukopenia and neutropenia. Furthermore, administration of rhG-CSF significantly delayed the onset of leukopenia and reduced the duration of leucopenia as compared with controls. In addition, individual dogs in the rhG-CSF-treated group exhibited evident differences in rhG-CSF responsiveness after neutron-irradiation. Finally, histopathological evaluation of the surviving dogs revealed that the incidence and severity of bone marrow, thymus and spleen damage decreased in rhG-CSF-treated dogs as compared with surviving controls. Thus, these results demonstrated that rhG-CSF administration enhanced recovery of myelopoiesis and survival after neutron-irradiation. PMID:21785235

  2. TANGRA-Setup for the Investigation of Nuclear Fission Induced by 14.1 MeV Neutrons

    NASA Astrophysics Data System (ADS)

    Ruskov, I. N.; Kopatch, Yu. N.; Bystritsky, V. M.; Skoy, V. R.; Shvetsov, V. N.; Hambsch, F.-J.; Oberstedt, S.; Noy, R. Capote; Sedyshev, P. V.; Grozdanov, D. N.; Ivanov, I. Zh.; Aleksakhin, V. Yu.; Bogolubov, E. P.; Barmakov, Yu. N.; Khabarov, S. V.; Krasnoperov, A. V.; Krylov, A. R.; Obhođaš, J.; Pikelner, L. B.; Rapatskiy, V. L.; Rogachev, A. V.; Rogov, Yu. N.; Ryzhkov, V. I.; Sadovsky, A. B.; Salmin, R. A.; Sapozhnikov, M. G.; Slepnev, V. M.; Sudac, D.; Tarasov, O. G.; Valković, V.; Yurkov, D. I.; Zamyatin, N. I.; Zeynalov, Sh. S.; Zontikov, A. O.; Zubarev, E. V.

    The new experimental setup TANGRA (Tagged Neutrons & Gamma Rays), for the investigation of neutron induced nuclear reactions, e.g. (n,xn'), (n,xn'γ), (n,γ), (n,f), on a number of important isotopes for nuclear science and engineering (235,238U, 237Np, 239Pu, 244,245,248Cm) is under construction and being tested at the Frank Laboratory of Neutron Physics (FLNP) of the Joint Institute for Nuclear Research (JINR) in Dubna. The TANGRA setup consists of: a portable neutron generator ING-27, with a 64-pixel Si charge-particle detector incorporated into its vacuum chamber for registering of α-particles formed in the T(d, n)4He reaction, as a source of 14.1 MeV steady-state neutrons radiation with an intensity of ∼5x107n/s; a combined iron (Fe), borated polyethylene (BPE) and lead (Pb) compact shielding-collimator; a reconfigurable multi-detector (neutron plus gamma ray detecting system); a fast computer with 2 (x16 channels) PCI-E 100 MHz ADC cards for data acquisition and hard disk storage; Linux ROOT data acquisition, visualization and analysis software. The signals from the α-particle detector are used to 'tag' the neutrons with the coincident α-particles. Counting the coincidences between the α-particle and the reaction-product detectors in a 20ns time-interval improves the effect/background-ratio by a factor of ∼200 as well as the accuracy in the neutron flux determination, which decreases noticeably the overall experimental data uncertainty.

  3. A multitask neutron beam line for spallation neutron sources

    NASA Astrophysics Data System (ADS)

    Pietropaolo, A.; Festa, G.; Grazzi, F.; Barzagli, E.; Scherillo, A.; Schooneveld, E. M.; Civita, F.

    2011-08-01

    Here we present a new concept for a time-of-flight neutron scattering instrument allowing for simultaneous application of three different techniques: time-of-flight neutron diffraction, neutron resonance capture analysis and Bragg edge transmission analysis. The instrument can provide average resolution neutron radiography too. The potential of the proposed concept was explored by implementing the necessary equipment on INES (Italian Neutron Experimental Station) at the ISIS spallation neutron source (UK). The results obtained show the effectiveness of the proposed instrument to acquire relevant quantitative information in a non-invasive way on a historical metallurgical sample, namely a Japanese hand guard (tsuba). The aforementioned neutron techniques simultaneously exploited the extended neutron energy range available from 10 meV to 1 keV. This allowed a fully satisfactory characterization of the sample in terms of metal components and their combination in different phases, and forging and assembling methods.

  4. Upper Gastrointestinal (GI) Tract X-Ray (Radiography)

    MedlinePlus

    ... Resources Professions Site Index A-Z X-ray (Radiography) - Upper GI Tract Upper gastrointestinal tract radiography or ... X-ray? What is Upper Gastrointestinal (GI) Tract Radiography? Upper gastrointestinal tract radiography, also called an upper ...

  5. Neutron-induced fission cross section of 233Pa between 1.0 and 3.0 MeV.

    PubMed

    Tovesson, F; Hambsch, F J; Oberstedt, A; Fogelberg, B; Ramström, E; Oberstedt, S

    2002-02-11

    The energy dependent neutron-induced fission cross section of 233Pa has for the first time been measured directly with monoenergetic neutrons. This nuclide is an important intermediary in a thorium based fuel cycle, and its fission cross section is a key parameter in the modeling of future advanced fuel and reactor concepts. A first experiment resulted in four cross section values between 1.0 and 3.0 MeV, establishing a fission threshold in excess of 1 MeV. Significant discrepancies were found with a previous indirect experimental determination and with model estimates. PMID:11863801

  6. Energy dependence of mass, charge, isotopic, and energy distributions in neutron-induced fission of 235U and 239Pu

    NASA Astrophysics Data System (ADS)

    Pasca, H.; Andreev, A. V.; Adamian, G. G.; Antonenko, N. V.; Kim, Y.

    2016-05-01

    The mass, charge, isotopic, and kinetic-energy distributions of fission fragments are studied within an improved scission-point statistical model in the reactions 235U+n and 239Pu+n at different energies of the incident neutron. The charge and mass distributions of the electromagnetic- and neutron-induced fission of 214,218Ra, 230,232,238U are also shown. The available experimental data are well reproduced and the energy-dependencies of the observable characteristics of fission are predicted for future experiments.

  7. Prompt γ-rays from the Fast Neutron Induced Fission on 235,238U and 232Th

    NASA Astrophysics Data System (ADS)

    Lebois, M.; Wilson, J. N.; Halipré, P.; Leniau, B.; Matea, I.; Oberstedt, A.; Oberstedt, S.; Verney, D.

    Preliminary results from the first experiment using the LICORNE neutron source at the IPN Orsay are presented. Prompt fission gamma rays from fast-neutron induced fission of 238U, 232Th and 235U were detected. Thick samples of around 50 g of 238U and 232Th are used for the first part of the experiment. An ionisation chamber containing ∼ 10 mg samples of 238U and 235U to provide a fission trigger is used for the second part of the experiment. Gamma rays have been detected using 17 high efficiency BaF2 detectors and 6 LaBr3 scintillator detectors.

  8. Proteomic analysis of cellular response induced by boron neutron capture reaction in human squamous cell carcinoma SAS cells.

    PubMed

    Sato, Akira; Itoh, Tasuku; Imamichi, Shoji; Kikuhara, Sota; Fujimori, Hiroaki; Hirai, Takahisa; Saito, Soichiro; Sakurai, Yoshinori; Tanaka, Hiroki; Nakamura, Hiroyuki; Suzuki, Minoru; Murakami, Yasufumi; Baiseitov, Diaz; Berikkhanova, Kulzhan; Zhumadilov, Zhaxybay; Imahori, Yoshio; Itami, Jun; Ono, Koji; Masunaga, Shinichiro; Masutani, Mitsuko

    2015-12-01

    To understand the mechanism of cell death induced by boron neutron capture reaction (BNCR), we performed proteome analyses of human squamous tumor SAS cells after BNCR. Cells were irradiated with thermal neutron beam at KUR after incubation under boronophenylalanine (BPA)(+) and BPA(-) conditions. BNCR mainly induced typical apoptosis in SAS cells 24h post-irradiation. Proteomic analysis in SAS cells suggested that proteins functioning in endoplasmic reticulum, DNA repair, and RNA processing showed dynamic changes at early phase after BNCR and could be involved in the regulation of cellular response to BNCR. We found that the BNCR induces fragments of endoplasmic reticulum-localized lymphoid-restricted protein (LRMP). The fragmentation of LRMP was also observed in the rat tumor graft model 20 hours after BNCT treatment carried out at the National Nuclear Center of the Republic of Kazakhstan. These data suggest that dynamic changes of LRMP could be involved during cellular response to BNCR. PMID:26302661

  9. Measurements of Neutron-Induced Fission Cross Sections of 205Tl, 204, 206, 207, 208Pb, and 209Bi using Quasi-Monoenergetic Neutrons in the Energy Range 35 - 174 MeV

    NASA Astrophysics Data System (ADS)

    Tutin, Gennady A.; Ryzhov, Igor V.; Eismont, Vilen P.; Mitryukhin, Andrey G.; Oplavin, Valery S.; Soloviev, Sergey M.; Blomgren, Jan; Condè, Henri; Olsson, Nils; Renberg, Per-Ulf

    2005-05-01

    Cross sections for neutron-induced fission of 205Tl, 204, 206, 207, 208Pb, and 209Bi were measured in the energy range from 35 MeV to 174 MeV. The experiments were done at the neutron beam facility of The Svedberg Laboratory, using a multi-section Frisch-gridded ionization chamber for detection of the fission fragments. The neutron-induced fission cross section of 238U was employed as a reference. The results of the measurements are compared with existing experimental data.

  10. Neutron Probe of Building-Wall Composition

    NASA Technical Reports Server (NTRS)

    Trombka, J. I.; Evans, L. G.

    1984-01-01

    Walls of historic buildings charted by neutron radiography. Neutron source and Gamma-Ray Detector alined with each other yield map of composition of wall. Points spaced for minimal overlap based on mean free path of gamma rays emitted from wall materials. Map indicates nature and extent of changes in building materials so proper treatment is applied.

  11. Determination of neutron-induced alpha-particle cross sections on carbon using the response of a liquid scintillation detector

    SciTech Connect

    Brede, H.J.; Dietze, G.; Klein, H.; Schoelermann, H. )

    1991-01-01

    This paper presents the sums of the cross section {sup 12}C(n, {alpha}{sub 0}) {sup 9}Be and {sup 12}C(n, N{prime}3{alpha}) determined in the neutron energy range between 7.4 and 11 MeV. An NE-213 scintillation detector is simultaneously used as a carbon target, an alpha-particle detector, and a neutron fluence monitor. By comparing the measured and calculated response spectra, the neutron-induced alpha-particle events in the scintillation volume are separated and the cross sections {sigma}{sub n,{alpha}0} + {sigma}{sub n,n{prime}3{alpha}} are determined relative to the n-p scattering cross section. The pulse-height distribution due to alpha particles allows the angular distribution to be extracted on the basis of the reaction kinematics and an accurately determined light output function for alpha particles in the NE-213 detector.

  12. Coded source neutron imaging

    SciTech Connect

    Bingham, Philip R; Santos-Villalobos, Hector J

    2011-01-01

    Coded aperture techniques have been applied to neutron radiography to address limitations in neutron flux and resolution of neutron detectors in a system labeled coded source imaging (CSI). By coding the neutron source, a magnified imaging system is designed with small spot size aperture holes (10 and 100 m) for improved resolution beyond the detector limits and with many holes in the aperture (50% open) to account for flux losses due to the small pinhole size. An introduction to neutron radiography and coded aperture imaging is presented. A system design is developed for a CSI system with a development of equations for limitations on the system based on the coded image requirements and the neutron source characteristics of size and divergence. Simulation has been applied to the design using McStas to provide qualitative measures of performance with simulations of pinhole array objects followed by a quantitative measure through simulation of a tilted edge and calculation of the modulation transfer function (MTF) from the line spread function. MTF results for both 100um and 10um aperture hole diameters show resolutions matching the hole diameters.

  13. Characterization of neutron induced damage effect in several types of metallic multilayer nanocomposites based on Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Chen, Feida; Tang, Xiaobin; Yang, Yahui; Huang, Hai; Liu, Jian; Chen, Da

    2015-09-01

    Metallic multilayer nanocomposites are known to have excellent interface self-healing performance when it comes to repairing irradiation damages, thus showing promise as structural materials for advanced nuclear power systems. The present study investigated the neutron irradiation displacement damage rate, spectra of the primary knocked-on atoms (PKAs) produced in the cascade collision, and the H/He ratio in four kinds of metallic multilayer nanocomposites (Cu/Nb, Ag/V, Fe/W, and Ti/Ta) versus neutrons' energy. Results suggest that the three neutron induced damage effects in all multilayer systems increased with the increasing of incident neutrons' energy. For fission reactor environment (1 MeV), multilayer's displacement damage rate is 5-10 × 1022 dpa/(n/cm2) and the mean PKAs energy is about 16 keV, without any noteworthy H/He produced. Fe/W multilayer seems very suitable among these four systems. For fusion reactor environment (14 MeV), the dominant damage effect varies in different multilayer systems. Fe/W multilayer has the lowest displacement damage under the same neutron flux but its gaseous transmutation production is the highest. Considering the displacement damage and transmutation, the irradiation resistance of Ag/V and Ti/Ta systems seems much greater than those of the other two.

  14. Scattered Neutron Tomography Based on A Neutron Transport Inverse Problem

    SciTech Connect

    William Charlton

    2007-07-01

    Neutron radiography and computed tomography are commonly used techniques to non-destructively examine materials. Tomography refers to the cross-sectional imaging of an object from either transmission or reflection data collected by illuminating the object from many different directions.

  15. Boron neutron capture therapy induces cell cycle arrest and cell apoptosis of glioma stem/progenitor cells in vitro

    PubMed Central

    2013-01-01

    Background Glioma stem cells in the quiescent state are resistant to clinical radiation therapy. An almost inevitable glioma recurrence is due to the persistence of these cells. The high linear energy transfer associated with boron neutron capture therapy (BNCT) could kill quiescent and proliferative cells. Methods The present study aimed to evaluate the effects of BNCT on glioma stem/progenitor cells in vitro. The damage induced by BNCT was assessed using cell cycle progression, apoptotic cell ratio and apoptosis-associated proteins expression. Results The surviving fraction and cell viability of glioma stem/progenitor cells were decreased compared with differentiated glioma cells using the same boronophenylalanine pretreatment and the same dose of neutron flux. BNCT induced cell cycle arrest in the G2/M phase and cell apoptosis via the mitochondrial pathway, with changes in the expression of associated proteins. Conclusions Glioma stem/progenitor cells, which are resistant to current clinical radiotherapy, could be effectively killed by BNCT in vitro via cell cycle arrest and apoptosis using a prolonged neutron irradiation, although radiosensitivity of glioma stem/progenitor cells was decreased compared with differentiated glioma cells when using the same dose of thermal neutron exposure and boronophenylalanine pretreatment. Thus, BNCT could offer an appreciable therapeutic advantage to prevent tumor recurrence, and may become a promising treatment in recurrent glioma. PMID:23915425

  16. Measurements and analyses of decay radioactivity induced in simulated deuterium-tritium neutron environments for fusion reactor structural materials

    SciTech Connect

    Ikeda, Y.; Konno, C.; Kosako, K.; Oyama, Y.; Maekawa, F.; Maekawa, H.; Kumar, A.; Youssef, M.Z.; Abdou, M.A.

    1995-08-01

    To meet urgent requirements for data validation, an experimental analysis has been carried out for isotopic radioactivity induced by deuterium-tritium neutron irradiation in structural materials. The primary objective is to examine the adequacy of the activation cross sections implemented in the current activation calculation codes considered for use in fusion reactor nuclear design. Four activation cross-section libraries, namely, JENDL, LIB90, REAC{sup *}63, and REAC{sup *}175 were investigated in this current analysis. The isotopic induced radioactivity calculations using these four libraries are compared with experimental values obtained in the Japan Atomic Energy Research Institute/U.S. Department of Energy collaborative program on fusion blanket neutronics. The nine materials studied are aluminum, silicon, titanium, vanadium, chromium, MnCu alloy, iron, nickel, niobium, and Type 316 stainless steel. The adequacy of the cross sections is investigated through the calculation to experiment analysis. As a result, most of the discrepancies in the calculations from experiments can be explained by inadequate activation cross sections. In addition, uncertainties due to neutron energy groups and neutron transport calculation are considered. The JENDL library gives the best agreement with experiments, followed by REAC{sup *}175, LIB90, and REAC{sup *}63, in this order. 45 refs., 32 figs., 5 tabs.

  17. Comparative measurement of prompt fission γ -ray emission from fast-neutron-induced fission of 235U and 238U

    NASA Astrophysics Data System (ADS)

    Lebois, M.; Wilson, J. N.; Halipré, P.; Oberstedt, A.; Oberstedt, S.; Marini, P.; Schmitt, C.; Rose, S. J.; Siem, S.; Fallot, M.; Porta, A.; Zakari, A.-A.

    2015-09-01

    Prompt fission γ -ray (PFG) spectra have been measured in a recent experiment with the novel directional fast-neutron source LICORNE at the ALTO facility of the IPN Orsay. These first results from the facility involve the comparative measurement of prompt γ emission in fast-neutron-induced fission of 235U and 238U . Characteristics such as γ multiplicity and total and average radiation energy are determined in terms of ratios between the two systems. Additionally, the average photon energies were determined and compared with recent data on thermal-neutron-induced fission of 235U . PFG spectra are shown to be similar within the precision of the present measurement, suggesting that the extra incident energy does not significantly impact the energy released by prompt γ rays. The origins of some small differences, depending on either the incident energy or the target mass, are discussed. This study demonstrates the potential of the present approach, combining an innovative neutron source and new-generation detectors, for fundamental and applied research on fission in the near future.

  18. Quality assurance in orthodontic radiography.

    PubMed

    Brown, J E

    1995-02-01

    The implementation of a Quality Assurance (QA) programme in orthodontic radiography is designed to improve the quality of the resultant radiographs and to reduce the number of repeat exposures. This is particularly desirable in orthodontic practice where the majority of patients are young and therefore more at risk from the detrimental effects of X-rays. A programme is described and QA tests are given that may be applied in the surgery. Particular emphasis is placed on QA measures for extraoral radiography, since this is frequently undertaken in the treatment of the orthodontic patient. PMID:7786872

  19. Particular features of ternary fission induced by polarized neutrons in the major actinides U,235233 and Pu,241239

    NASA Astrophysics Data System (ADS)

    Gagarski, A.; Gönnenwein, F.; Guseva, I.; Jesinger, P.; Kopatch, Yu.; Kuzmina, T.; Lelièvre-Berna, E.; Mutterer, M.; Nesvizhevsky, V.; Petrov, G.; Soldner, T.; Tiourine, G.; Trzaska, W. H.; Zavarukhina, T.

    2016-05-01

    Ternary fission in (n ,f ) reactions was studied with polarized neutrons for the isotopes U,235233 and Pu,241239. A cold longitudinally polarized neutron beam was available at the High Flux Reactor of the Institut Laue-Langevin in Grenoble, France. The beam was hitting the fissile targets mounted at the center of a reaction chamber. Detectors for fission fragments and ternary particles were installed in a plane perpendicular to the beam. In earlier work it was discovered that the angular correlations between neutron spin and the momenta of fragments and ternary particles were very different for 233U or 235U. These correlations could now be shown to be simultaneously present in all of the above major actinides though with different weights. For one of the correlations it was observed that up to scission the compound nucleus is rotating with the axis of rotation parallel to the neutron beam polarization. Entrained by the fragments also the trajectories of ternary particles are turned away albeit by a smaller angle. The difference in turning angles becomes observable upon reversing the sense of rotation by flipping neutron spin. All turning angles are smaller than 1∘. The phenomenon was called the ROT effect. As a distinct second phenomenon it was found that for fission induced by polarized neutrons an asymmetry in the emission probability of ternary particles relative to a plane formed by fragment momentum and neutron spin appears. The asymmetry is attributed to the Coriolis force present in the nucleus while it is rotating up to scission. The size of the asymmetry is typically 10-3. This asymmetry was termed the TRI effect. The interpretation of both effects is based on the transition state model. Both effects are shown to be steered by the properties of the collective (J ,K ) transition states which are specific for any of the reactions studied. The study of asymmetries of ternary particle emission in fission induced by slow polarized neutrons provides a new

  20. Genetic effects induced by neutrons in Drosophila melanogaster I. Determination of absorbed dose.

    PubMed

    Delfin, A; Paredes, L C; Zambrano, F; Guzmán-Rincón, J; Ureña-Nuñez, F

    2001-12-01

    A method to obtain the absorbed dose in Drosophila melanogaster irradiated in the thermal column facility of the Triga Mark III Reactor has been developed. The method is based on the measurements of neutron activation of gold foils produced by neutron capture to obtain the neutron fluxes. These fluxes, combined with the calculations of kinetic energy released per unit mass, enables one to obtain the absorbed doses in Drosophila melanogaster. PMID:11761104

  1. Towards high accurate neutron-induced fission cross sections of 240,242Pu: Spontaneous fission half-lives

    NASA Astrophysics Data System (ADS)

    Salvador-Castiñeira, P.; Bryś, T.; Eykens, R.; Hambsch, F.-J.; Moens, A.; Oberstedt, S.; Pretel, C.; Sibbens, G.; Vanleeuw, D.; Vidali, M.

    2013-12-01

    Fast spectrum neutron-induced fission cross sections of transuranic isotopes are being of special demand in order to provide accurate data for the new GEN-IV nuclear power plants. To minimize the uncertainties on these measurements accurate data on spontaneous fission half-lives and detector efficiencies are a key point. High α-active actinides need special attention since the misinterpretation of detector signals can lead to low efficiency values or underestimation in fission fragment detection. In that context, 240,242Pu isotopes have been studied by means of a Twin Frisch-Grid Ionization Chamber (TFGIC) for measurements of their neutron-induced fission cross section. Gases with different drift velocities have been used, namely P10 and CH4. The detector efficiencies for both samples have been determined and improved spontaneous fission half-life values were obtained.

  2. Neutron-induced charged-particle emission studies below 100 MeV at WNR

    SciTech Connect

    Haight, R.C.; Lee, T.M.; Sterbenz, S.M.

    1994-07-01

    Charged-particles produced by neutron bombardment of selected targets with Z=5 through 53 have been studied for neutron energies from 1 MeV to about 100 MeV using the spallation neutron source at WNR/LAMPF. Particle detection with energy measurement and particle identification is accomplished by two-element {Delta}E-E counters, three-element {Delta}E{sub l}-{Delta}E{sub 2}-E counters or with pulse-shape discrimination using scintillators directly in the neutron beam. The experimental techniques for these measurements are described and comparisons made among the different approaches. This presentation introduces five papers contributed to this conference.

  3. Neutron-induced reactions relevant for Inertial-Cofinement Fusion Experiments

    NASA Astrophysics Data System (ADS)

    Boswell, Melissa; Devlin, Mathew; Fotiadis, Nikolaos; Merrill, Frank; Nelson, Ronald; Tonchev, Anton

    2014-09-01

    The typical ignition experiment at the National Ignition Facility ablatively implodes a plastic capsule filled with DT fuel, generating a high flux of 14-MeV neutrons from the d(t,n) α reaction. There is some spread in the energy of these primary 14-MeV neutrons, which is mainly attributable to Doppler shifting from the relative thermal motion of the burning DT fuel. Neutrons created during this reaction have 5--10% chance of scattering before escaping the fuel assembly, losing some fraction of their energy in the scattering process. Neutrons emerging with an energy greater than the reaction energy are generated by a two-step process where neutrons first transfer momentum to a deuteron or tritium ion, these enhanced energy ions then fuse in flight to produce higher energy neutrons; some of these neutrons have energies in excess of 30 MeV. Measuring the fluencies of both the low- and high-energy neutrons is a powerful mechanism for studying the properties of the fuel assembly, and the various parameters important to inertial confinement fusion. We have developed a number of tools to measure the spectral characteristics of the NIF neutron spectrum. Most of these methods rely on exploiting the energy dependence of (n, γ), (n,2n), (n,3n) and (n,p) reactions on a variety o.

  4. Relativistic mass ejecta from phase-transition-induced collapse of neutron stars

    SciTech Connect

    Cheng, K.S.; Harko, T.; Tian, X.L.; Huang, Y.F.; Lin, L.M.; Suen, W.M. E-mail: harko@hkucc.hku.hk E-mail: lmlin@phy.cuhk.edu.hk E-mail: tianxiaolei@gmail.com

    2009-09-01

    We study the dynamical evolution of a phase-transition-induced collapse neutron star to a hybrid star, which consists of a mixture of hadronic matter and strange quark matter. The collapse is triggered by a sudden change of equation of state, which result in a large amplitude stellar oscillation. The evolution of the system is simulated by using a 3D Newtonian hydrodynamic code with a high resolution shock capture scheme. We find that both the temperature and the density at the neutrinosphere are oscillating with acoustic frequency. However, they are nearly 180° out of phase. Consequently, extremely intense, pulsating neutrino/antineutrino fluxes will be emitted periodically. Since the energy and density of neutrinos at the peaks of the pulsating fluxes are much higher than the non-oscillating case, the electron/positron pair creation rate can be enhanced dramatically. Some mass layers on the stellar surface can be ejected by absorbing energy of neutrinos and pairs. These mass ejecta can be further accelerated to relativistic speeds by absorbing electron/positron pairs, created by the neutrino and antineutrino annihilation outside the stellar surface. The possible connection between this process and the cosmological Gamma-ray Bursts is discussed.

  5. Heat-induced structural transitions of alpha-crystallin studied by small-angle neutron scattering

    NASA Astrophysics Data System (ADS)

    Krivandin, A. V.; Kuklin, A. I.; Muranov, K. O.; Murugova, T. N.; Kozlov, S. S.; Genkina, N. K.

    2012-03-01

    Alpha-crystallin from the bovine eye lens was studied by small-angle neutron scattering (SANS) in 90% D2O buffer solution at 20, 50, 60, 65, 75, 85 and 95°C. The temperature points for this study were specified on the basis of differential scanning calorimetric analysis of alpha-crystallin solutions which has shown two endothermic transitions with midpoints at 64.5 and 86°C. The SANS study revealed no significant alpha-crystallin quaternary structure alterations at 50°C as compared with 20°C. At 60-65°C the SANS data confirmed substantial alpha-crystallin quaternary structure rearrangements which resulted in the formation of alpha-crystallin oligomers with a similar shape but approximately twofold increased molecular weight as compared to the native state at 20°C. At higher temperatures (75, 85 and 95°C) the SANS patterns were very similar and were consistent with the scattering by rod-like particles with a cross-section radius of gyration ~55 This transformation of alpha-crystallin to the rod-like particles was evidently irreversible as these particles remained in solution after cooling to 20°C. Ab initio shape models of the native and high-temperature alpha-crystallin were retrieved with DAMMIN and DAMAVER software. Schematic model of alpha-crystallin heat-induced quaternary structure transitions was considered.

  6. Bayesian Evaluation Including Covariance Matrices of Neutron-induced Reaction Cross Sections of {sup 181}Ta

    SciTech Connect

    Leeb, H. Schnabel, G.; Srdinko, Th.; Wildpaner, V.

    2015-01-15

    A new evaluation of neutron-induced reactions on {sup 181}Ta using a consistent procedure based on Bayesian statistics is presented. Starting point of the evaluation is the description of nuclear reactions via nuclear models implemented in TALYS 1.4. A retrieval of experimental data was performed and covariance matrices of the experiments were generated from an extensive study of the corresponding literature. All reaction channels required for a transport file up to 200 MeV have been considered and the covariance matrices of cross section uncertainties for the most important channels are determined. The evaluation has been performed in one step including all available experimental data. A comparison of the evaluated cross sections and spectra with experimental data and available evaluations is performed. In general the evaluated cross section reflect our best knowledge and give a fair description of the observables. However, there are few deviations from expectation which clearly indicate the impact of the prior and the need to account for model defects. Using the results of the evaluation a complete ENDF-file similarly to those of the TENDL library is generated.

  7. Analysis of Induced Gamma Activation by D-T Neutrons in Selected Fusion Reactor Relevant Materials with EAF-2010

    NASA Astrophysics Data System (ADS)

    Klix, Axel; Fischer, Ulrich; Gehre, Daniel

    2016-02-01

    Samples of lanthanum, erbium and titanium which are constituents of structural materials, insulating coatings and tritium breeder for blankets of fusion reactor designs have been irradiated in a fusion peak neutron field. The induced gamma activities were measured and the results were used to check calculations with the European activation system EASY-2010. Good agreement for the prediction of major contributors to the contact dose rate of the materials was found, but for minor contributors the calculation deviated up to 50%.

  8. Application of an in vivo mutagenesis system to assess aminothiol effects on neutron-induced genotoxic damage in mouse spleenocytes

    SciTech Connect

    Basic, I. . Dept. of Animal Physiology); Grdina, D.J.; Lyons, T. )

    1989-01-01

    A cloning technique has been developed to quantitate and study {ital in vivo} somatic mutations at the hypoxanthine-guanine phosphoribosyl transferase (HGPRT) locus in human lymphocytes. In this paper we describe a modification of this assay to quantify HGPRT mutations in mouse spleenocytes. In particular, we have investigated the effects of the aminothiol on mutagenesis induced by single doses of whole body exposures to fission-spectrum neutrons from the JANUS reactor at Argonne National Laboratory. 7 refs., 3 tabs.

  9. Cosmic-ray-induced neutron intensity in Taiwan and its variations during a typhoon

    NASA Astrophysics Data System (ADS)

    Chung, C.; Chen, C. Y.

    Cosmic neutrons, as a secondary cosmic radiation, strike the ground with intensity which varies at different latitude, altitude, and solar activity. In a 3-year extensive survey period, the cosmic neutron intensity was measured over Taiwan islandwide; the average neutron dose equivalent rate is 0.65nSvh-1 near sea level, up to 14.5nSvh-1 at the highest mountaintop (altitude of 3952 m). In a rare event, the cosmic neutron intensity at a monitoring station was recorded during the entire period that Typhoon Herb swept across the island in 1996. The anomalous reading of cosmic neutron intensity in the typhoon eye, 2.17+/-0.40nSvh-1 (or 4 times higher than the normal reading) is reported here for the first time. The onset of cosmic neutron intensity in the typhoon is closely associated with the steady, rapid air pressure drop as well as the 6×106km3 spiral cloud; the dips in the onset are correlated with sustained gale winds and heavy precipitation. It is believed that the air pressure drop provides thinner air within the typhoon, and the spiral cloud containing dense moisture further slows down high energy neutrons from the ground, where we observed the neutrons showering down from the stratosphere where the cosmic neutrons have the maximum density. These combined effects result in more medium-energy neutrons penetrating down to the ground through the typhoon; while the gale wind and heavy rain deflect, attenuate, and, to a lesser extent, absorb the cosmic neutrons from the atmosphere.

  10. Neutron-Induced Fission Cross Sections of Nuclei in the Vicinity of 208Pb at Incident Energies below 60 MeV

    NASA Astrophysics Data System (ADS)

    Ryzhov, Igor V.; Tutin, Gennady A.; Eismont, Vilen P.; Mitryukhin, Andrey G.; Oplavin, Valery S.; Soloviev, Sergey M.; Meulders, Jean-Pierre; El Masri, Youssef; Keutgen, Thomas; Prieels, René; Nolte, Ralf

    2005-05-01

    Neutron-induced fission cross sections of 205Tl, 204, 206, 207, 208Pb, and 209Bi have been measured at incident energies of 32.8, 45.3, and 59.9 MeV. The measurements were performed at the Louvain-la-Neuve neutron beam facility using the 7Li (p, n) reaction as neutron source. Fission fragments were detected with a multi-section Frisch-gridded ionization chamber (MFGIC). Neutron fluence measurements were based on the 238U(n, f) reaction. The neutron fluence monitoring procedure was asserted by crosscheck measurement, in which the 59.9-MeV neutron beam fluence was simultaneously determined with the MFGIC and with a fission chamber monitor calibrated relative to a proton-recoil telescope.

  11. Measurement of Fragment Mass Yields in Neutron-Induced Fission of 232TH and 238U at 33, 45 and 60 Mev

    NASA Astrophysics Data System (ADS)

    Simutkin, V. D.; Pomp, S.; Blomgren, J.; Österlund, M.; Andersson, P.; Bevilacqua, R.; Ryzhov, I. V.; Tutin, G. A.; Khlopin, V. G.; Onegin, M. S.; Vaishnene, L. A.; Meulders, J. P.; Prieels, R.

    2011-10-01

    Over the past years, a significant effort has been devoted to measurements of neutron-induced fission cross-sections at intermediate energies but there is a lack of experimental data on fission yields. Here we describe recent measurements of pre-neutron emission fragment mass distributions from intermediate energy neutron-induced fission of 232Th and 238U. The measurements have been done at the quasi-monoenergetic neutron beam of the Louvain-la-Neuve cyclotron facility CYCLONE and neutron peak energies at 32.8, 45.3 and 59.9 MeV. A multi-section Frisch-gridded ionization chamber was used as a fission fragment detector. The measurement results are compared with available experimental data. Some TALYS code modifications done to describe the experimental results are discussed.

  12. Stress-induced martensitic transformations in NiTi and NiTi-TiC composites investigated by neutron diffraction

    SciTech Connect

    Vaidyanathan, R.; Bourke, M.A.M.; Dunand, D.C.

    1998-12-31

    Superelastic NiTi (51.0 at% Ni) with 0, 10 and 20 vol% TiC particles were deformed under uniaxial compression as neutron diffraction spectra were simultaneously obtained. The experiments yielded in-situ measurements of the thermoelastic stress-induced transformation. A detailed Rietveld determination is made of the phase fractions and the evolving strains in the reinforcing TiC particles and the austenite as it transforms to martensite on loading (and its subsequent back transformation on unloading). These strains are used to shed light on the phenomenon of load transfer in composites where the matrix undergoes a stress-induced phase transformation.

  13. Neutron yield enhancement in laser-induced deuterium-deuterium fusion using a novel shaped target.

    PubMed

    Zhao, J R; Zhang, X P; Yuan, D W; Chen, L M; Li, Y T; Fu, C B; Rhee, Y J; Li, F; Zhu, B J; Li, Yan F; Liao, G Q; Zhang, K; Han, B; Liu, C; Huang, K; Ma, Y; Li, Yi F; Xiong, J; Huang, X G; Fu, S Z; Zhu, J Q; Zhao, G; Zhang, J

    2015-06-01

    Neutron yields have direct correlation with the energy of incident deuterons in experiments of laser deuterated target interaction [Roth et al., Phys. Rev. Lett. 110, 044802 (2013) and Higginson et al., Phys. Plasmas 18, 100703 (2011)], while deuterated plasma density is also an important parameter. Experiments at the Shenguang II laser facility have produced neutrons with energy of 2.45 MeV using d (d, n) He reaction. Deuterated foil target and K-shaped target were employed to study the influence of plasma density on neutron yields. Neutron yield generated by K-shaped target (nearly 10(6)) was two times higher than by foil target because the K-shaped target results in higher density plasma. Interferometry and multi hydro-dynamics simulation confirmed the importance of plasma density for enhancement of neutron yields. PMID:26133837

  14. Neutron yield enhancement in laser-induced deuterium-deuterium fusion using a novel shaped target

    SciTech Connect

    Zhao, J. R.; Chen, L. M. Li, Y. T.; Li, F.; Zhu, B. J.; Li, Yan. F.; Liao, G. Q.; Huang, K.; Ma, Y.; Li, Yi. F.; Zhang, X. P.; Fu, C. B.; Yuan, D. W.; Zhang, K.; Han, B.; Zhao, G.; Rhee, Y. J.; Liu, C.; Xiong, J.; Huang, X. G.; and others

    2015-06-15

    Neutron yields have direct correlation with the energy of incident deuterons in experiments of laser deuterated target interaction [Roth et al., Phys. Rev. Lett. 110, 044802 (2013) and Higginson et al., Phys. Plasmas 18, 100703 (2011)], while deuterated plasma density is also an important parameter. Experiments at the Shenguang II laser facility have produced neutrons with energy of 2.45 MeV using d (d, n) He reaction. Deuterated foil target and K-shaped target were employed to study the influence of plasma density on neutron yields. Neutron yield generated by K-shaped target (nearly 10{sup 6}) was two times higher than by foil target because the K-shaped target results in higher density plasma. Interferometry and multi hydro-dynamics simulation confirmed the importance of plasma density for enhancement of neutron yields.

  15. Wave Effect Neutron Radiographic Imaging Origins in WCNR and Prospects for Low Cost Systems

    NASA Astrophysics Data System (ADS)

    Barton, J. P.; Rogers, J. D.

    The origins of wave effect neutron test methods for advanced neutron radiography as published in World Conference on Neutron Radiography (WCNR) series has been reviewed. They include Neutron Holography demonstrated at the Dido reactor, Harwell, UK; Neutron Refraction and Small Angle Scattering demonstrated at the IR-8 reactor, Kurchatov Institute, Moscow, Russia; and Neutron Interferometry demonstrated at the ILL reactor, Grenoble, France. Each case presents encouraging evidence that the advanced techniques currently practiced at the most advanced shared-user facilities could be built upon at some lower cost, single-user facilities if the lessons of the original low cost experiments are studied.

  16. Initial observations of cavitation-induced erosion of liquid metal spallation target vessels at the Spallation Neutron Source

    NASA Astrophysics Data System (ADS)

    McClintock, D. A.; Riemer, B. W.; Ferguson, P. D.; Carroll, A. J.; Dayton, M. J.

    2012-12-01

    During operation of the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory the mechanical properties of the AISI 316L target module are altered by high-energy neutron and proton radiation. The interior surfaces of the target vessel are also damaged by cavitation-induced erosion, which results from repetitive rapid heating of the liquid mercury by high-energy proton beam pulses. Until recently no observations of cavitation-induced erosion were possible for conditions fully prototypic to the SNS. Post-Irradiation Examination (PIE) of the first and second operational SNS targets was performed to gain insight into the radiation-induced changes in mechanical properties of the 316L target material and the extent of cavitation-induced erosion to the mercury vessel inner surfaces. Observations of cavitation-induced erosion of the first and second operational SNS target modules are presented here, including images of the target vessel interiors and specimens removed from the target beam-entrance regions.

  17. Neutron induced fission of 238U at incident neutron energies from 1.2 to 5.8 MeV

    NASA Astrophysics Data System (ADS)

    Vivès, F.; Hambsch, F.-J.; Oberstedt, S.; Barreau, G.; Bax, H.

    1998-10-01

    The reaction 238U(n,f) has been studied at IRMM at different incident neutron energies ranging from En=1.2 to 5.8 MeV. The existence of vibrational resonances in the region of the threshold of the fission cross-section and the proton pairing effect should induce variations in the fission fragment properties. The fission fragment mass, mean total kinetic energy (TKE¯) and angular distributions have been investigated with a double Frisch-gridded ionization chamber. For each incident neutron energy, more than 105 events have been accumulated. The TKE¯ shows an increasing trend up to En=3.5 MeV with a sudden drop at roughly En=3.8 MeV which might be related to the onset of pair breaking. Above En=3.8 MeV TKE¯ is again continually increasing. The two-dimensional mass-TKE distributions have been compared by means of a fit with theoretical calculations performed recently in the frame of the multi-modal random neck-rupture model. Actually, two solutions are possible with assuming either two or three Gaussians for the asymmetric part of the mass distribution. However, both solutions lead to the same physical interpretation. The solution with three Gaussians is more in line with the theoretical predictions. In any case the super-long symmetric mode has to be included, in order to explain the dip in TKE¯ close to symmetry.

  18. Application of the Trojan Horse Method to study neutron induced reactions: the 17O(n, α)14C reaction

    NASA Astrophysics Data System (ADS)

    Gulino, M.; Spitaleri, C.; Tang, X. D.; Guardo, G. L.; Lamia, L.; Cherubini, S.; Bucher, B.; Burjan, V.; Couder, M.; Davies, P.; deBoer, R.; Fang, X.; Goldberg, V. Z.; Hons, Z.; Kroha, V.; Lamm, L.; La Cognata, M.; Li, C.; Ma, C.; Mrazek, J.; Mukhamedzhanov, A. M.; Notani, M.; O'Brien, S.; Pizzone, R. G.; Rapisarda, G. G.; Roberson, D.; Sergi, M. L.; Tan, W.; Thompson, I. J.; Wiescher, M.

    2014-03-01

    The reaction 17O(n, α)14C was studied using virtual neutrons coming from the quasi-free deuteron break-up in the three body reaction 17O+d → α+14C+p. This technique, called virtual neutron method, extends the Trojan Horse method to neutron-induced reactions allowing to study the reaction cross section avoiding the suppression effects coming from the penetrability of the centrifugal barrier. For incident neutron energies from thermal up to a few hundred keV, direct experiments have shown the population of two out of three expected excited states at energies 8213 keV and 8282 keV and the influence of the sub-threshold level at 8038 keV. In the present experiment the 18O excited state at E* = 8.125 MeV, missing in the direct measurement, is observed. The angular distributions of the populated resonances have been measured for the first time. The results unambiguously indicate the ability of the method to overcome the centrifugal barrier suppression effect and to pick out the contribution of the bare nuclear interaction.

  19. Neutron-induced electronic failures around a high-energy linear accelerator

    SciTech Connect

    Kry, Stephen F.; Johnson, Jennifer L.; White, R. Allen; Howell, Rebecca M.; Kudchadker, Rajat J.; Gillin, Michael T.

    2011-01-15

    Purpose: After a new in-vault CT-on-rails system repeatedly malfunctioned following use of a high-energy radiotherapy beam, we investigated the presence and impact of neutron radiation on this electronic system, as well as neutron shielding options. Methods: We first determined the CT scanner's failure rate as a function of the number of 18 MV monitor units (MUs) delivered. We then re-examined the failure rate with both 2.7-cm-thick and 7.6-cm-thick borated polyethylene (BPE) covering the linac head for neutron shielding. To further examine shielding options, as well as to explore which neutrons were relevant to the scanner failure, Monte Carlo simulations were used to calculate the neutron fluence and spectrum in the bore of the CT scanner. Simulations included BPE covering the CT scanner itself as well as covering the linac head. Results: We found that the CT scanner had a 57% chance of failure after the delivery of 200 MUs. While the addition of neutron shielding to the accelerator head reduced this risk of failure, the benefit was minimal and even 7.6 cm of BPE was still associated with a 29% chance of failure after the delivery of 200 MU. This shielding benefit was achieved regardless of whether the linac head or CT scanner was shielded. Additionally, it was determined that fast neutrons were primarily responsible for the electronic failures. Conclusions: As illustrated by the CT-on-rails system in the current study, physicists should be aware that electronic systems may be highly sensitive to neutron radiation. Medical physicists should therefore monitor electronic systems that have not been evaluated for potential neutron sensitivity. This is particularly relevant as electronics are increasingly common in the therapy vault and newer electronic systems may exhibit increased sensitivity.

  20. Proximal caries detection accuracy using intraoral bitewing radiography, extraoral bitewing radiography and panoramic radiography

    PubMed Central

    Kamburoğlu, K; Kolsuz, E; Murat, S; Yüksel, S; Özen, T

    2012-01-01

    Objective To compare proximal caries detection using intraoral bitewing, extraoral bitewing and panoramic radiography. Methods 80 extracted human premolar and molar teeth with and without proximal caries were used. Intraoral radiographs were taken with Kodak Insight film (Eastman Kodak Co., Rochester, NY) using the bitewing technique. Extraoral bitewing and panoramic images were obtained using a Planmeca Promax Digital Panoramic X-ray unit (Planmeca Inc., Helsinki, Finland). Images were evaluated by three observers twice. In total, 160 proximal surfaces were assessed. Intra- and interobserver kappa coefficients were calculated. Scores obtained from the three techniques were compared with the histological gold standard using receiver operating characteristic analysis. Az values for each image type, observer and reading were compared using z-tests, with a significance level of α = 0.05. Results Kappa coefficients ranged from 0.883 to 0.963 for the intraoral bitewing, from 0.715 to 0.893 for the extraoral bitewing, and from 0.659 to 0.884 for the panoramic radiography. Interobserver agreements for the first and second readings for the intraoral bitewing images were between 0.717 and 0.780, the extraoral bitewing readings were between 0.569 and 0.707, and the panoramic images were between 0.477 and 0.740. The Az values for both readings of all three observers were highest for the intraoral bitewing. Az values for the extraoral bitewing images were higher than those of the panoramic images without statistical significance (p > 0.05). Conclusion Intraoral bitewing radiography was superior to extraoral bitewing and panoramic radiography in diagnosing proximal caries of premolar and molar teeth ex vivo. Similar intra- and interobserver coefficients were calculated for extraoral bitewing and panoramic radiography. PMID:22868296