Science.gov

Sample records for neutron interactions progress

  1. A Search for Exotic Spin-Dependent Interactions of the Neutron using Neutron Spin Rotation

    NASA Astrophysics Data System (ADS)

    Haddock, Chris; Nsr Collaboration

    2016-03-01

    Many theories beyond the Standard Model lead at low energy to spin-dependent, weakly-coupled interactions of mesoscopic range. Laboratory constraints on such interactions are quite poor. We describe an experiment in progress at the LANSCE spallation neutron source at Los Alamos to search for exotic axial couplings of neutrons to matter from light vector boson exchange. The experiment makes use of a slow neutron polarimeter and a target with an oscillating mass density. Neutron Spin Rotation.

  2. Direct Fast-Neutron Detection: A Progress Report

    SciTech Connect

    AJ Peurrung; DC Stromswold; PL Reeder; RR Hansen

    1998-10-18

    It is widely acknowledged that Mure neutron-detection technologies will need to offer increased performance at lower cost. One clear route toward these goals is rapid and direct detection of fast neutrons prior to moderation. This report describes progress to date in an effort to achieve such neutron detection via proton recoil within plastic scintillator. Since recording proton-recoil events is of little practical use without a means to discriminate effectively against gamma-ray interactions, the present effort is concentrated on demonstrating a method that distinguishes between pulse types. The proposed method exploits the substantial difference in the speed of fission neutrons and gamma-ray photons. Should this effort ultimately prove successful, the resulting. technology would make a valuable contribution toward meeting the neutron-detection needs of the next century. This report describes the detailed investigations that have been part of Pacific Northwest National Laborato@s efforts to demonstrate direct fast-neutron detection in the laboratory. Our initial approach used a single, solid piece of scintillator along with the electronics needed for pulse-type differentiation. Work to date has led to the conclusion that faster scintillator and/or faster electronics will be necessary before satisfactory gamma-ray discrimination is achieved with this approach. Acquisition and testing of both faster scintillator and faster electronics are currently in progress. The "advanced" approach to direct fast-neutron detection uses a scintillating assembly with an overall density that is lower than that of ordinary plastic scintillator. The lower average density leads to longer interaction times for both neutrons and gamma rays, allowing easier discrimination. The modeling, optimization, and design of detection systems using this approach are described in detail.

  3. Quasiparticle Interactions in Neutron Matter for Applications in Neutron Stars

    NASA Technical Reports Server (NTRS)

    Wambach, J.; Anisworth, T. L.; Pines, D.

    1993-01-01

    A microscopic model for the quaisiparticle interaction in neutron matter is presented. Both particle-particle (pp) and particle-hole (ph) correlation are are included. The pp correlations are treated in semi-empirical way, while ph correlations are incorporated by solving coupled two-body equations for the particle hole interaction and the scattering amplitude on the Fermi sphere. The resulting integral equations self-consistently sum the ph reducible diagrams. Antisymmetry is kept at all stages and hence the forward-scattering sum rules are obeyed. Results for Landau parameters and transport coefficients in a density regime representing the crust of a neutron star are presented. We also estimate the S-1 gap parameter for neutron superfluidity and comment briefly on neutron-star implications.

  4. Quasiparticle Interactions in Neutron Matter for Applications in Neutron Stars

    NASA Technical Reports Server (NTRS)

    Wambach, J; Ainsworth, T. L.; Pines, D.

    1993-01-01

    A microscopic model for the quasiparticle interaction in neutron matter is presented. Both-particle (pp) and particle-hole (ph) correlations are included. The pp correlations are treated in semi-empirical way, while ph correlations are incorporated by solving coupled two-body equations for particle-hole interaction and the scattering amplitude of the Fermi sphere. The resulting integral equations self-consistently sum the ph reducible diagrams. Antisymmetry is kept at all stages and hence the forward-scattering sum rules for the scattering amplitude are obeyed. Results for Landau parameters and transport coefficients in a density regime representing the crust of a neutron star are presented. We also estimate the (1)S(sub 0) gap parameter for neutron superfluidity and comment briefly on neutron-star implications.

  5. Neutron Measurements and the Weak Nucleon-Nucleon Interaction

    PubMed Central

    Snow, W. M.

    2005-01-01

    The weak interaction between nucleons remains one of the most poorly-understood sectors of the Standard Model. A quantitative description of this interaction is needed to understand weak interaction phenomena in atomic, nuclear, and hadronic systems. This paper summarizes briefly what is known about the weak nucleon-nucleon interaction, tries to place this phenomenon in the context of other studies of the weak and strong interactions, and outlines a set of measurements involving low energy neutrons which can lead to significant experimental progress. PMID:27308120

  6. Neutron Decay with PERC: a Progress Report

    NASA Astrophysics Data System (ADS)

    Konrad, G.; Abele, H.; Beck, M.; Drescher, C.; Dubbers, D.; Erhart, J.; Fillunger, H.; Gösselsberger, C.; Heil, W.; Horvath, M.; Jericha, E.; Klauser, C.; Klenke, J.; Märkisch, B.; Maix, R. K.; Mest, H.; Nowak, S.; Rebrova, N.; Roick, C.; Sauerzopf, C.; Schmidt, U.; Soldner, T.; Wang, X.; Zimmer, O.; Perc Collaboration

    2012-02-01

    The PERC collaboration will perform high-precision measurements of angular correlations in neutron beta decay at the beam facility MEPHISTO of the Forschungs-Neutronenquelle Heinz Maier-Leibnitz in Munich, Germany. The new beam station PERC, a clean, bright, and versatile source of neutron decay products, is designed to improve the sensitivity of neutron decay studies by one order of magnitude. The charged decay products are collected by a strong longitudinal magnetic field directly from inside a neutron guide. This combination provides the highest phase space density of decay products. A magnetic mirror serves to perform precise cuts in phase space, reducing related systematic errors. The new instrument PERC is under development by an international collaboration. The physics motivation, sensitivity, and applications of PERC as well as the status of the design and preliminary results on uncertainties in proton spectroscopy are presented in this paper.

  7. Advanced Neutron Source (ANS) Project progress report

    SciTech Connect

    McBee, M.R.; Chance, C.M. ); Selby, D.L.; Harrington, R.M.; Peretz, F.J. )

    1990-04-01

    This report discusses the following topics on the advanced neutron source: quality assurance (QA) program; reactor core development; fuel element specification; corrosion loop tests and analyses; thermal-hydraulic loop tests; reactor control concepts; critical and subcritical experiments; material data, structural tests, and analysis; cold source development; beam tube, guide, and instrument development; hot source development; neutron transport and shielding; I C research and development; facility concepts; design; and safety.

  8. Induced Pairing Interaction in Neutron Star Matter

    NASA Astrophysics Data System (ADS)

    Lombardo, U.; Schulze, H.-J.; Zuo, W.

    2013-01-01

    The three superfluid phases supposed to occur in neutron stars are reviewed in the framework of the generalized BCS theory with the induced interaction. The structure of neutron stars characterized by beta-stable asymmetric nuclear matter in equilibrium with the gravitational force discloses new aspects of the pairing mechanism. Some of them are discussed in this report, in particular the formation in dense matter of Cooper pairs in the presence of three-body forces and the interplay between repulsive and attractive polarization effects on isospin T = 1 Cooper pairs embedded into the neutron and proton environment. Quantitative estimates of the energy gaps are reported and their sensitivity to the medium effects, i.e., interaction and polarization, is explored.

  9. Progress in thermal neutron radiography at LENS

    NASA Astrophysics Data System (ADS)

    Jenkins, Jack; Low Energy Neutron Source (LENS) at Indiana University Collaboration

    2014-09-01

    An end station for thermal neutron radiography and tomography is in operation at the Indiana University LENS facility. Neutrons from proton-induced nuclear reactions in Beryllium are moderated and collimated into a beam which is attenuated by a scanned object on a remotely-controlled rotating table. Neutron signal is then converted to a light signal with a ZnS scintillating screen and recorded in a cooled CCD. The author has performed diagnostics on the radiography hardware and software and has tested the system's capabilities by imaging a stack of high density polyethylene cubes with diverse inlet holes and grooves on an 80/20 aluminum base. The resolution of the radiographs are seen to be less than 1mm and 3D rending software is capable of reconstructing the internal structure of the aluminum. An end station for thermal neutron radiography and tomography is in operation at the Indiana University LENS facility. Neutrons from proton-induced nuclear reactions in Beryllium are moderated and collimated into a beam which is attenuated by a scanned object on a remotely-controlled rotating table. Neutron signal is then converted to a light signal with a ZnS scintillating screen and recorded in a cooled CCD. The author has performed diagnostics on the radiography hardware and software and has tested the system's capabilities by imaging a stack of high density polyethylene cubes with diverse inlet holes and grooves on an 80/20 aluminum base. The resolution of the radiographs are seen to be less than 1mm and 3D rending software is capable of reconstructing the internal structure of the aluminum. NSF.

  10. 2010 Neutron Review: ORNL Neutron Sciences Progress Report

    SciTech Connect

    Bardoel, Agatha A; Counce, Deborah M; Ekkebus, Allen E; Horak, Charlie M; Nagler, Stephen E; Kszos, Lynn A

    2011-06-01

    During 2010, the Neutron Sciences Directorate focused on producing world-class science, while supporting the needs of the scientific community. As the instrument, sample environment, and data analysis tools at High Flux Isotope Reactor (HFIR ) and Spallation Neutron Source (SNS) have grown over the last year, so has promising neutron scattering research. This was an exciting year in science, technology, and operations. Some topics discussed are: (1) HFIR and SNS Experiments Take Gordon Battelle Awards for Scientific Discovery - Battelle Memorial Institute presented the inaugural Gordon Battelle Prizes for scientific discovery and technology impact in 2010. Battelle awards the prizes to recognize the most significant advancements at national laboratories that it manages or co-manages. (2) Discovery of Element 117 - As part of an international team of scientists from Russia and the United States, HFIR staff played a pivotal role in the discovery by generating the berkelium used to produce the new element. A total of six atoms of ''ununseptium'' were detected in a two-year campaign employing HFIR and the Radiochemical Engineering Development Center at Oak Ridge National Laboratory (ORNL) and the heavy-ion accelerator capabilities at the Joint Institute for Nuclear Research in Dubna, Russia. The discovery of the new element expands the understanding of the properties of nuclei at extreme numbers of protons and neutrons. The production of a new element and observation of 11 new heaviest isotopes demonstrate the increased stability of super-heavy elements with increasing neutron numbers and provide the strongest evidence to date for the existence of an island of enhanced stability for super-heavy elements. (3) Studies of Iron-Based High-Temperature Superconductors - ORNL applied its distinctive capabilities in neutron scattering, chemistry, physics, and computation to detailed studies of the magnetic excitations of iron-based superconductors (iron pnictides and

  11. Neutrino interactions in neutron matter

    NASA Astrophysics Data System (ADS)

    Cipollone, Andrea

    2012-12-01

    Neutrino flow is the dominant mechanism of energy transfer in the latest stages of supernovae explosions and in compact stars. The Standard Model of particle physics and accelerator data, provide a satisfactory description of neutrino physics in vacuum up to TeV scale. Nevertheless modeling the dynamics of neutrino interaction in the nuclear environment involves severe difficulties. This thesis in mainly aimed at obtaining the weak response of infinite matter, using both the Correlated Basis Function theory and Landau Theory of Fermi liquid to take into account properly nucleon-nucleon hard core potential and long range correlation (quasi-particle, collective modes, ecc.)

  12. [Fast neutron cross section measurements]. Progress report

    SciTech Connect

    Knoll, G.F.

    1992-10-26

    From its inception, the Nuclear Data Project at the University of Michigan has concentrated on two major objectives: (1) to carry out carefully controlled nuclear measurements of the highest possible reliability in support of the national nuclear data program, and (2) to provide an educational opportunity for students with interests in experimental nuclear science. The project has undergone a successful transition from a primary dependence on our photoneutron laboratory to one in which our current research is entirely based on a unique pulsed 14 MeV fast neutron facility. The new experimental facility is unique in its ability to provide nanosecond bursts of 14 MeV neutrons under conditions that are ``clean`` and as scatter-free as possible, and is the only one of its type currently in operation in the United States. It has been designed and put into operation primarily by graduate students, and has met or exceeded all of its important initial performance goals. We have reached the point of its routine operation, and most of the data are now in hand that will serve as the basis for the first two doctoral dissertations to be written by participating graduate students. Our initial results on double differential neutron cross sections will be presented at the May 1993 Fusion Reactor Technology Workshop. We are pleased to report that, after investing several years in equipment assembly and optimization, the project has now entered its ``data production`` phase.

  13. Progress on the Europium Neutron-Capture Study using DANCE

    SciTech Connect

    Agvaanluvsan, U; Becker, J A; Macri, R A; Parker, W; Wilk, P; Wu, C Y; Bredeweg, T A; Esch, E; Haight, R C; O'Donnell, J M; Reifarth, R; Rundberg, R S; Schwantes, J M; Ullmann, J L; Vieira, D J; Wilhelmy, J B; Wouters, J M; Mitchell, G E; Sheets, S A; Becvar, F; Krticka, M

    2006-09-05

    The accurate measurement of neutron-capture cross sections of the Eu isotopes is important for many reasons including nuclear astrophysics and nuclear diagnostics. Neutron capture excitation functions of {sup 151,153}Eu targets were measured recently using a 4{pi} {gamma}-ray calorimeter array DANCE located at the Los Alamos Neutron Science Center for E{sub n} = 0.1-100 keV. The progress on the data analysis efforts is given in the present paper. The {gamma}-ray multiplicity distributions for the Eu targets and Be backing are significantly different. The {gamma}-ray multiplicity distribution is found to be the same for different neutron energies for both {sup 151}Eu and {sup 153}Eu. The statistical simulation to model the {gamma}-ray decay cascade is summarized.

  14. Progress in neutron capture therapy for cancer

    SciTech Connect

    Allen, B.J.; Harrington, B.V.; Moore, D.E.

    1992-09-01

    Prognosis for some cancers is good, but for others, few patients will survive 12 months. This latter group of cancers is characterised by a proclivity to disseminate malignant cells in the host organ. In some cases systemic metastases occur, but in other cases, failure to achieve local control results in death. First among these cancers are the high grade brain tumours, astrocytoma 3,4 and glioblastoma multiforme. Local control of these tumors should lead to cure. Other cancers melanoma metastatic to the brain, for which a useful palliative therapy is not yet available, and pancreatic cancer for which localised control at an early stage could bring about improved prognosis. Patients with these cancers have little grounds for hope. Our primary objective is to reverse this situation with Neutron Capture Therapy (NCT). The purpose of this fourth symposium is to hasten the day whereby patients with these cancers can reasonably hope for substantial remissions.

  15. Progress in neutron capture therapy for cancer

    SciTech Connect

    Allen, B.J.; Harrington, B.V. ); Moore, D.E. )

    1992-01-01

    Prognosis for some cancers is good, but for others, few patients will survive 12 months. This latter group of cancers is characterised by a proclivity to disseminate malignant cells in the host organ. In some cases systemic metastases occur, but in other cases, failure to achieve local control results in death. First among these cancers are the high grade brain tumours, astrocytoma 3,4 and glioblastoma multiforme. Local control of these tumors should lead to cure. Other cancers melanoma metastatic to the brain, for which a useful palliative therapy is not yet available, and pancreatic cancer for which localised control at an early stage could bring about improved prognosis. Patients with these cancers have little grounds for hope. Our primary objective is to reverse this situation with Neutron Capture Therapy (NCT). The purpose of this fourth symposium is to hasten the day whereby patients with these cancers can reasonably hope for substantial remissions.

  16. Recent Progress Towards a Measurement of the Neutron Lifetime Using Magnetically Trapped Ultracold Neutrons

    NASA Astrophysics Data System (ADS)

    Schelhammer, K. W.; Huffer, C. R.; Huffman, P. R.; Marley, D. E.; Coakley, K. J.; Huber, Michael; Hughes, P. P.; Mumm, H. P.; Thompson, A. K.; Yue, A. T.; Abrams, N. C.

    2012-03-01

    Free neutron beta decay is a fundamental process in the Standard Model that can be used to test the weak interaction as well as provide information about primordial ^4He abundance. Recent precision measurements of the neutron lifetime have led to reduced confidence in the absolute value of this parameter; due presumably to unknown systematic effects. This work seeks to measure the neutron lifetime using a different technique that employs a superconducting magnetic trap to confine ultracold neutrons. Neutrons are loaded into the trap through the superthermal technique where 1 mEv neutrons down scatter from phonons in liquid helium losing the majority of their energy. Neutrons in the appropriate spin state are then confined by the static magnetic field. During the past year, over 400 run cycles of data were collected using the upgraded apparatus. Analysis of previous data sets was limited due to large numbers of background events relative to the neutron decay signal. An increased number of trapped neutrons as well as a analysis using pulse shape discrimination allows one to significantly increase the overall precision of the measurement. Details of this ongoing analysis will be presented with preliminary results.

  17. Neutron Matter Properties Using Skyrme Interaction

    NASA Astrophysics Data System (ADS)

    Mansour, H. M. M.; Guirguis, Jannette W.; Abdelmageed, A. I.; Hager, S. A.

    The purpose of the present work is to extend earlier nuclear matter calculations to study the properties of neutron matter. The binding energy per particle, symmetry energy, single particle potential, effective mass, and magnetic susceptibility are calculated using a modified Skyrme interaction. These are calculated as a function of the Fermi momentum kf in the range 0 < kf < 2 fm-1. Two sets of the interaction parameters are obtained by fitting the interaction parameters using the available information on neutron matter. Relativistic corrections to the order 1/c2 are also calculated. The relativistic corrections are very small and they increase as kf is increased.Translated AbstractDie Eigenschaften von Neutronenmaterie bei Annahme von Skyrme-WechselwirkungDie Arbeit zielt auf die Erweiterung früherer Berechnungen zur Kernmaterie auf die Eigenschaftsbestimmung von Neutronenmaterie. Unter Benutzung einer modifizierten Skyrme-Wechselwirkung werden die Bindungsenergie pro Partikel, die Symmetrieenergie, das Einteilchenpotential, die effektive Masse und die magnetische Suszeptibilität als Funktionen des Fermi-Impulses kf im Intervall 0 < kf < 2 fm-1 berechnet. Zwei angepaßte Parameter werden betrachtet. Die relativistischen Korrekturen werden bis zur Größenordnung 1/c2 berechnet. Sie sind sehr klein, wachsen mit wachsendem kf.

  18. Fission-Fusion Neutron Source Progress Report July 31, 2009

    SciTech Connect

    Chapline, G; Daffin, F; Clarke, R

    2010-02-19

    In this report the authors describe progress in evaluating the feasibility of a novel concept for producing intense pulses of 14 MeV neutrons using the DT fusion reaction. In this new scheme the heating of the DT is accomplished using fission fragments rather than ion beams as in conventional magnet fusion schemes or lasers in ICF schemes. This has the great advantage that there is no need for any large auxiliary power source. The scheme does require large magnetic fields, but generating these fields, e.g. with superconducting magnets, requires only a modest power source. As a source of fission fragments they propose using a dusty reactor concept introduced some time ago by one of us (RC). The version of the dusty reactor that they propose using for our neutron source would operate as a thermal neutron reactor and use highly enriched uranium in the form of micron sized pellets of UC. Our scheme for using the fission fragments to produce intense pulses of 14 MeV neutrons is based on the fission fragment rocket idea. In the fission fragment rocket scheme it was contemplated that the fission fragments produced in a low density reactor core would then be guided out of the reactor by large magnetic fields. A simple version of this idea would be to use the fission fragments escaping from one side of a tandem magnet mirror to heat DT gas confined in the adjacent magnetic trap.

  19. Effective Interactions in Neutron-Rich Matter

    SciTech Connect

    Sammarruca, F.; Krastev, P.; Barredo, W.

    2005-10-14

    We are generally concerned with probing the behavior of the isospin-asymmetric equation of state. In particular, we will discuss the one-body potentials for protons and neutrons obtained from our Dirac-Brueckner-Hartree-Fock calculations of neutron-rich matter properties. We will also present predictions of proton-proton and neutron-neutron cross sections in the isospin-asymmetric nuclear medium.

  20. [A clinical trial of neutron capture therapy for brain tumors]. Technical progress report 1988

    SciTech Connect

    Zamenhof, R.G.

    1988-12-31

    This report describes progress made in refining of neutron-induced alpha tract autoradiography, in designing epithermal neutron bean at MITR-II and in planning treatment dosimetry using Monte Carlo techniques.

  1. Advanced Neutron Source (ANS) Project. Progress report FY 1993

    SciTech Connect

    Campbell, J.H.; Selby, D.L.; Harrington, R.M.; Thompson, P.B.

    1994-01-01

    This report covers the progress made in 1993 in the following sections: (1) project management; (2) research and development; (3) design and (4) safety. The section on research and development covers the following: (1) reactor core development; (2) fuel development; (3) corrosion loop tests and analysis; (4) thermal-hydraulic loop tests; (5) reactor control and shutdown concepts; (6) critical and subcritical experiments; (7) material data, structure tests, and analysis; (8) cold source development; (9) beam tube, guide, and instrument development; (10) neutron transport and shielding; (11) I and C research and development; and (12) facility concepts.

  2. Van der Waals and Casimir-Polder interactions between neutrons

    NASA Astrophysics Data System (ADS)

    Babb, James F.; Hussein, Mahir S.

    2016-03-01

    We investigate the van der Waals interaction between neutrons using the theory of Casimir and Polder, wherein the potential for asymptotically large separations falls off as the inverse seventh power, and compare it to the similar interaction between a neutron and a proton, for which the asymptotic interaction falls off as the inverse fourth power. Modifications of the formalism to extend the validity to smaller separations using dynamic electric and magnetic dipole polarizability data are discussed.

  3. Fission-Fusion Neutron Source Progress Report Sept 30, 2009

    SciTech Connect

    Chapline, G F; Daffin, F; Clark, R

    2010-02-19

    In this report the authors describe the progress made in FY09 in evaluating the feasibility of a new concept for using the DT fusion reaction to produce intense pulses of 14 MeV neutrons. In this new scheme the heating of the DT is accomplished using fission fragments rather than ion beams as in conventional magnet confinement fusion schemes or lasers in inertial confinement schemes. As a source of fission fragments they propose using a dust reactor concept introduced some time ago by one of us (RC). An attractive feature of this approach is that there is no need for a large auxiliary power source to heat the DT plasma to the point where self-sustaining fusion become possible. Their scheme does require pulsed magnetic fields, but generating these fields requires only a modest power source. The dust reactor that they propose using for their neutron source would use micron-sized UC pellets suspended in a vacuum as the reactor fuel. Surrounding the fuel with a moderator such as heavy water (D{sub 2}O) would allow the reactor to operate as a thermal reactor and require only modest amounts of HEU. The scheme for using fission fragments to generate intense pulses of 14 MeV neutrons is based on the fission fragment rocket idea. In the fission fragment rocket scheme it was contemplated that the fission fragments produced in a low density reactor core could be guided out of the reactor by large magnetic fields used to form a 'rocket exhaust'. Their adaptation of this idea for the purposes of making a neutron source involves using the fission fragments escaping from one side of a tandem magnet mirror to heat DT gas confined in the adjacent magnetic trap.

  4. Neutron interaction and their transport with bulk materials

    NASA Astrophysics Data System (ADS)

    Rani, Esther Kalpana; Radhika, K.

    2015-05-01

    In the current paper an attempt was made to study and provide fundamental information about neutron interactions that are important to nuclear material measurements. The application of this study is explained about macroscopic interactions with bulk compound materials through a program in DEV C++ language which is done by enabling interaction of neutrons in nature. The output of the entire process depends upon the random number (i.e., incident neutron number), thickness of the material and mean free path as input parameters. Further the current study emphasizes on the usage of materials in shielding.

  5. Neutron interaction and their transport with bulk materials

    SciTech Connect

    Rani, Esther Kalpana; Radhika, K.

    2015-05-15

    In the current paper an attempt was made to study and provide fundamental information about neutron interactions that are important to nuclear material measurements. The application of this study is explained about macroscopic interactions with bulk compound materials through a program in DEV C++ language which is done by enabling interaction of neutrons in nature. The output of the entire process depends upon the random number (i.e., incident neutron number), thickness of the material and mean free path as input parameters. Further the current study emphasizes on the usage of materials in shielding.

  6. MAGNETIC INTERACTIONS IN COALESCING NEUTRON STAR BINARIES

    SciTech Connect

    Piro, Anthony L.

    2012-08-10

    It is expected on both evolutionary and empirical grounds that many merging neutron star (NS) binaries are composed of a highly magnetized NS in orbit with a relatively low magnetic field NS. I study the magnetic interactions of these binaries using the framework of a unipolar inductor model. The electromotive force generated across the non-magnetic NS as it moves through the magnetosphere sets up a circuit connecting the two stars. The exact features of this circuit depend on the uncertain resistance in the space between the stars R{sub space}. Nevertheless, I show that there are interesting observational and/or dynamical effects irrespective of its exact value. When R{sub space} is large, electric dissipation as great as {approx}10{sup 46} erg s{sup -1} (for magnetar-strength fields) occurs in the magnetosphere, which would exhibit itself as a hard X-ray precursor in the seconds leading up to merger. With less certainty, there may also be an associated radio transient. When R{sub space} is small, electric dissipation largely occurs in the surface layers of the magnetic NS. This can reach {approx}10{sup 49} erg s{sup -1} during the final {approx}1 s before merger, similar to the energetics and timescales of short gamma-ray bursts. In addition, for dipole fields greater than Almost-Equal-To 10{sup 12} G and a small R{sub space}, magnetic torques spin up the magnetized NS. This drains angular momentum from the binary and accelerates the inspiral. A faster coalescence results in less orbits occurring before merger, which would impact matched-filtering gravitational-wave searches by ground-based laser interferometers and could create difficulties for studying alternative theories of gravity with compact inspirals.

  7. Chiral Three-Nucleon Interactions in Light Nuclei, Neutron-α Scattering, and Neutron Matter

    NASA Astrophysics Data System (ADS)

    Lynn, J. E.; Tews, I.; Carlson, J.; Gandolfi, S.; Gezerlis, A.; Schmidt, K. E.; Schwenk, A.

    2016-02-01

    We present quantum Monte Carlo calculations of light nuclei, neutron-α scattering, and neutron matter using local two- and three-nucleon (3 N ) interactions derived from chiral effective field theory up to next-to-next-to-leading order (N2LO ). The two undetermined 3 N low-energy couplings are fit to the 4He binding energy and, for the first time, to the spin-orbit splitting in the neutron-α P -wave phase shifts. Furthermore, we investigate different choices of local 3 N -operator structures and find that chiral interactions at N2LO are able to simultaneously reproduce the properties of A =3 ,4 ,5 systems and of neutron matter, in contrast to commonly used phenomenological 3 N interactions.

  8. Fast neutron dosimetry. Progress report, July 1, 1979-June 30, 1980

    SciTech Connect

    Attix, F.H.

    1980-01-01

    Progress is reported in: the development and testing of new gas mixtures more suitable for fast neutron dosimetry using the common A150-type Tissue-equivalent plastic ion chambers; comparison of photon doses determined with a graphite-walled proportional counter and with paired dosimeters irradiated by 14.8-MeV neutrons; a detector for the direct measurement of LET distributions from irradiation with fast neutrons; LET distributions from fast neutron irradiation of TE-plastic and graphite measured in a cylindrically symmetric geometry; progress in development of a tandem fast neutron and /sup 60/Co gamma ray source irradiation facility; an approach to the correlation of cellular response with lineal energy; calculated and measured HTO atmospheric dispersion rates within meters of a release site; application of cavity theory to fast neutrons; and fast neutron dosimetry by thermally stimulated currents in Al/sub 2/O/sub 3/. (GHT)

  9. Ultracold neutrons and the interaction of waves with moving matter

    NASA Astrophysics Data System (ADS)

    Frank, A. I.

    2016-07-01

    The present review is focused on the problem of interaction of neutron waves with moving matter. The validity of the 1/ v law for ultracold neutrons and the possibility to characterize the interaction of neutrons with matter using the effective potential were verified in the so-called null Fizeau experiments. A neutron wave in such experiments propagates through a flat sample that moves parallel to its edges. The observation of effects caused by this motion provides evidence that the concept of constant effective potential is not correct. The second part of the review deals with the prediction and the first observation of the accelerated matter effect (a change in the energy of neutrons in passing through a refractive sample that moves with an acceleration directed along or opposite the direction of neutron propagation). The characteristic features of this phenomenon in the case of birefringent material are considered. In conclusion, the problem of propagation of neutron waves in matter moving with giant acceleration is discussed.

  10. Low-energy parameters of neutron-neutron interaction in the effective-range approximation

    SciTech Connect

    Babenko, V. A.; Petrov, N. M.

    2013-06-15

    The effect of the mass difference between the charged and neutral pions on the low-energy parameters of nucleon-nucleon interaction in the {sup 1}S{sub 0} state is studied in the effective-range approximation. On the basis of experimental values of the singlet parameters of neutron-proton scattering and the experimental value of the virtual-state energy for the neutron-neutron systemin the {sup 1}S{sub 0} state, the following values were obtained for the neutron-neutron scattering length and effective range: a{sub nn} = -16.59(117) fm and r{sub nn} = 2.83(11) fm. The calculated values agree well with present-day experimental results.

  11. Charm production in neutron-nucleon interactions

    SciTech Connect

    Tzeng, L.; McBride, P.L.; Cooper, P.S.; Li, Y.; Majka, R.D.; Sandweiss, J.; Slaughter, A.J.; Taft, H.D.; Teig, L.J.; Johnson, M.E.

    1985-09-09

    Hadronic production of charmed particles in association with muons from their semileptonic decay has been observed in a high-resolution streamer-chamber experiment performed at Fermilab. A miss-distance analysis of the pictures gives a signal of 17.3 +- 4.7 events. Depending on the production model this corresponds to a range of neutron-nucleon cross sections from 8 to 50 ..mu..b, assuming an A/sup 2/3/ dependence.

  12. Intense Pulsed Neutron Source progress report for 1991

    SciTech Connect

    Not Available

    1991-12-31

    The IPNS Progress Report 10th Anniversary Edition is being published in recognition of the first ten years of successful IPNS operation. To emphasize the significance of this milestone, we wanted this report to stand apart from the previous IPNS Progress Reports, and the best way to do this, we thought, was to make the design and organization of the report significantly different. In their articles, authors were asked to emphasize not only advances made since IPNS began operating but also the groundwork that was laid at its predecessor facilities - Argonne`s ZING-P and ZING-P` prototype pulsed neutron sources and CP-5 reactor. Each article stands as a separate chapter in the report, since each represents a particular instrument or class of instruments, system, technique, or area of research. In some cases, contributions were similar to review articles in scientific journals, complete with extensive lists of references. Ten-year cumulative lists of members of IPNS committees and of scientists who have visited or done experiments at IPNS were assembled. A list of published and ``in press`` articles in journals, books, and conference proceedings, resulting from work done at IPNS during the past ten years, was compiled. And archival photographs of people and activities during the ten-year history of IPNS were located and were used liberally throughout the report. The titles of the chapters in this report are: accelerator; computer; radiation effects; powder; stress; single crystal; superconductivity; amorphous; small angle; reflection; quasielastic; inelastic; inelastic magnetic; deep inelastic; user program; the future; and publications.

  13. Intense Pulsed Neutron Source progress report for 1991

    SciTech Connect

    Schriesheim, Alan

    1991-01-01

    The IPNS Progress Report 10th Anniversary Edition is being published in recognition of the first ten years of successful IPNS operation. To emphasize the significance of this milestone, we wanted this report to stand apart from the previous IPNS Progress Reports, and the best way to do this, we thought, was to make the design and organization of the report significantly different. In their articles, authors were asked to emphasize not only advances made since IPNS began operating but also the groundwork that was laid at its predecessor facilities - Argonne's ZING-P and ZING-P' prototype pulsed neutron sources and CP-5 reactor. Each article stands as a separate chapter in the report, since each represents a particular instrument or class of instruments, system, technique, or area of research. In some cases, contributions were similar to review articles in scientific journals, complete with extensive lists of references. Ten-year cumulative lists of members of IPNS committees and of scientists who have visited or done experiments at IPNS were assembled. A list of published and in press'' articles in journals, books, and conference proceedings, resulting from work done at IPNS during the past ten years, was compiled. And archival photographs of people and activities during the ten-year history of IPNS were located and were used liberally throughout the report. The titles of the chapters in this report are: accelerator; computer; radiation effects; powder; stress; single crystal; superconductivity; amorphous; small angle; reflection; quasielastic; inelastic; inelastic magnetic; deep inelastic; user program; the future; and publications.

  14. Computational methods for the nuclear and neutron matter problems. Progress report

    SciTech Connect

    Kalos, M.H.

    1980-01-01

    Progress on the development of Monte Carlo methods for the treatment of extensive nuclear and neutron matter and of finite nuclei is reported. Appropriate modifications in the Monte Carlo formalism were made and carried through for the V/sub 4/ potential; the previous method was satisfactory for V/sub 3/, and the latter calculations have been completed. Significant progress was made in the development of the Green's function Monte Carlo method for fermion systems. It proved useful to study a model nuclear few-body problem, in particular, a kind of three-neutron problem. This work proved successful in that a stable Monte Carlo algorithm was developed. It gave correct results for energy and wave function for a soluble (separable) test problem and reasonable results (confirmed by variational computations) for a system interacting by pairwise phenomenological potentials. A stable GFMC algorithm for many-fermion systems has not been implemented, but ancillary studies on /sup 3/He have advanced considerably. In particular, new methods for finding upper bounds have been devised in which Green's function methods are used. These have particular application to nuclear problems. Lower values of the upper bounds were found for /sup 3/He. 20 tables. (RWR)

  15. Neutron response of the LAMBDA spectrometer and neutron interaction length in BaF2

    NASA Astrophysics Data System (ADS)

    Dey, Balaram; Mondal, Debasish; Pandit, Deepak; Mukhopadhyay, S.; Pal, Surajit; Banerjee, K.; Bhattacharya, Srijit; De, A.; Banerjee, S. R.

    2013-11-01

    We report on the neutron response of the LAMBDA spectrometer developed earlier for high-energy γ-ray measurement. The energy dependent neutron detection efficiency of the spectrometer has been measured using the time-of-flight (TOF) technique and compared with that of an organic liquid scintillator based neutron detector (BC501A). The extracted efficiencies have also been compared with those obtained from Monte Carlo GEANT4 simulation. We have also measured the average interaction length of neutrons in the BaF2 crystal in a separate experiment, in order to determine the TOF energy resolution. Finally, the LAMBDA spectrometer has been tested in an in-beam-experiment by measuring neutron energy spectra in the 4He+93Nb reaction to extract nuclear level density parameters. Nuclear level density parameters obtained by the LAMBDA spectrometer were found to be consistent with those obtained by the BC501A neutron detector, indicating that the spectrometer can be efficiently used as a neutron detector to measure the nuclear level density parameter.

  16. Effective spin-spin interaction in neutron matter

    SciTech Connect

    Zverev, M.V.; Khafizov, R.U.; Khodel, V.A.; Shaginyan, V.R.

    1995-09-01

    A set of equations for calculating the effective-interaction matrix R{sup ik}(q, {omega}) and the response function X{sup ik}(q, {omega}) is derived. These equations take into account the spin degrees of freedom of infinite neutron matter. For isotropic neutron matter with the Bethe interaction, the effective spin-spin interaction g(k) is calculated in the local approximation of the functional approach in the density range from {rho} = 0.17 to 25 fm{sup -3}. It is shown that this interaction weakly depends on the density within the range under consideration and that neither ferromagnetic nor antiferromagnetic phase transitions occur in the system. 7 refs., 2 figs.

  17. An application of interactive graphics to neutron spectrometry

    NASA Technical Reports Server (NTRS)

    Binney, S. E.

    1972-01-01

    The use of interactive graphics is presented as an attractive method for performing multi-parameter data analysis of proton recoil distributions to determine neutron spectra. Interactive graphics allows the user to view results on-line as the program is running and to maintain maximum control over the path along which the calculation will proceed. Other advantages include less time to obtain results and freedom from handling paper tapes and IBM cards.

  18. Progress on the realization of a new GEM based neutron diagnostic concept for high flux neutron beams

    SciTech Connect

    Croci, G.; Tardocchi, M.; Rebai, M.; Cippo, E. Perelli; Gorini, G.; Cazzaniga, C.; Palma, M. Dalla; Pasqualotto, R.; Tollin, M.; Grosso, G.; Muraro, A.; Murtas, F.; Claps, G.; Cavenago, M.

    2014-08-21

    Fusion reactors will need high flux neutron detectors to diagnose the deuterium-deuterium and deuterium-tritium. A candidate detection technique is the Gas Electron Multiplier (GEM). New GEM based detectors are being developed for application to a neutral deuterium beam test facility. The proposed detection system is called Close-contact Neutron Emission Surface Mapping (CNESM). The diagnostic aims at providing the map of the neutron emission due to interaction of the deuterium beam with the deuterons implanted in the beam dump surface. This is done by placing a detector in close contact, right behind the dump. CNESM uses nGEM detectors, i.e. GEM detectors equipped with a cathode that also serves as neutron-proton converter foil. After the realization and test of several small area prototypes, a full size prototype has been realized and tested with laboratory sources. Test on neutron beams are foreseen for the next months.

  19. Progress on the realization of a new GEM based neutron diagnostic concept for high flux neutron beams

    NASA Astrophysics Data System (ADS)

    Croci, G.; Rebai, M.; Cazzaniga, C.; Palma, M. Dalla; Grosso, G.; Muraro, A.; Murtas, F.; Claps, G.; Pasqualotto, R.; Cippo, E. Perelli; Tardocchi, M.; Tollin, M.; Cavenago, M.; Gorini, G.

    2014-08-01

    Fusion reactors will need high flux neutron detectors to diagnose the deuterium-deuterium and deuterium-tritium. A candidate detection technique is the Gas Electron Multiplier (GEM). New GEM based detectors are being developed for application to a neutral deuterium beam test facility. The proposed detection system is called Close-contact Neutron Emission Surface Mapping (CNESM). The diagnostic aims at providing the map of the neutron emission due to interaction of the deuterium beam with the deuterons implanted in the beam dump surface. This is done by placing a detector in close contact, right behind the dump. CNESM uses nGEM detectors, i.e. GEM detectors equipped with a cathode that also serves as neutron-proton converter foil. After the realization and test of several small area prototypes, a full size prototype has been realized and tested with laboratory sources. Test on neutron beams are foreseen for the next months.

  20. Advanced Neutron Source (ANS) Project Progress report, FY 1991

    SciTech Connect

    Campbell, J.H.; Selby, D.L.; Harrington, R.M.; Thompson, P.B.

    1992-01-01

    This report discusses the following about the Advanced Neutron Source: Project Management; Research and Development; Fuel Development; Corrosion Loop Tests and Analyses; Thermal-Hydraulic Loop Tests; Reactor Control and Shutdown Concepts; Critical and Subcritical Experiments; Material Data, Structural Tests, and Analysis; Cold-Source Development; Beam Tube, Guide, and Instrument Development; Hot-Source Development; Neutron Transport and Shielding; I & C Research and Development; Design; and Safety.

  1. Advanced Neutron Source (ANS) Project Progress report, FY 1991

    SciTech Connect

    Campbell, J.H. ); Selby, D.L.; Harrington, R.M. ); Thompson, P.B. . Engineering Division)

    1992-01-01

    This report discusses the following about the Advanced Neutron Source: Project Management; Research and Development; Fuel Development; Corrosion Loop Tests and Analyses; Thermal-Hydraulic Loop Tests; Reactor Control and Shutdown Concepts; Critical and Subcritical Experiments; Material Data, Structural Tests, and Analysis; Cold-Source Development; Beam Tube, Guide, and Instrument Development; Hot-Source Development; Neutron Transport and Shielding; I C Research and Development; Design; and Safety.

  2. Symmetries in heavy nuclei and the proton-neutron interaction

    SciTech Connect

    Casten, R.F.

    1986-01-01

    The Interacting Boson Approximation (IBA) nuclear structure model can be expressed in terms of the U(6) group, and thereby leads to three dynamical symmetries (or group chains) corresponding to different nuclear coupling schemes and geometrical shapes. The status of the empirical evidence for these three symmetries is reviewed, along with brief comments on the possible existence of supersymmetries in nuclei. The relationships between these symmetries, the nuclear phase transitional regions linking them, and the residual proton-neutron interaction are discussed in terms of a particularly simple scheme for parameterizing the effects of that interaction. 34 refs., 15 figs.

  3. Proton - Neutron Interactions and The New Atomic Masses

    NASA Astrophysics Data System (ADS)

    Cakirli, R. B.; Casten, R. F.; Brenner, D. S.; Millman, E. A.

    2005-04-01

    Proton - neutron interactions determine structural evolution with N and Z including the onset of collectivity, deformation, and phase transitions. We have extracted the interaction of the last proton and the last neutron, called δVpn, from a specific double difference of binding energies using the new mass tabulation [1]. Striking variations are seen near closed shells. In the Pb region, these are interpreted using overlaps of shell model orbits, which are large when both protons and neutrons are in similar orbits, and small when they are not. Further, we used the idea that shell filling follows a typical systematic pattern to look at the correlation of δVpn values to the fractions of the proton and neutron shells that are filled. These results provide useful signatures of structure in exotic nuclei.This work was supported by US DOE Grant Nos. DE-FG02-91ER40609 and DE-FG02-88ER-40417. [1] G. Audi, A.H. Wapstra and C. Thibault, Nucl. Phys.A729, 337 (2003).

  4. Proton-neutron interacting boson model under random two-body interactions

    SciTech Connect

    Yoshida, N.; Zhao, Y. M.; Arima, A.

    2009-12-15

    The low-lying states of sd-boson systems in the presence of random two-body interactions are studied in the proton-neutron interacting boson model (IBM-2). The predominance of spin-zero ground states is confirmed, and a very prominent maximum F-spin dominance in ground states is found. It turns out that the requirement of random interactions with F-spin conservation intensifies the above predominance. Collective motion in the low-lying states is discussed.

  5. Progress in measuring neutrino quasielastic interactions

    SciTech Connect

    Gran, Richard

    2007-12-21

    This is an exciting time for folks who are looking at neutrino cross sections, and the especially important quasielastic interaction. We are able to inspect several recent results from K2K and MiniBooNE and are looking forward to a couple more high statistics measurements of neutrino and anti-neutrino interactions. There is additional interest because of the need for this cross section information for current and upcoming neutrino oscillation experiments. This paper is a brief review of our current understanding and some puzzles when we compare the recent results with past measurements. I articulate some of the short term challenges facing experimentalists, neutrino event generators, and theoretical work on the quasielastic interaction.

  6. Empirical mass formula with proton-neutron interaction

    NASA Astrophysics Data System (ADS)

    Tachibana, Takahiro; Uno, Masahiro; Yamada, So; Yamada, Masami

    1987-12-01

    An atomic mass formula consisting of a gross part, and averge even-odd part and an empirical shell part is studied. The gross part is, apart from a small atomic term, taken to be the sum of nucleon rest masses. Coulomb energies and a polynomial in A1/3 and ‖N-Z‖/A. The shell part includes, in addition to proton and neutron support of nuclear magicities and the cooperative deformation effect. After the first construction of such a formula, refinements have been made in two respects. One is a separate treatment of Z=N odd-odd nuclei suggested by a quartet model, and the other is an improvement of the proton neutron interaction term. By these refinements the root-mean-square deviation of calculated masses from the 1986 Audi-Wapstra masses has been reduced from 538 keV to 460 keV.

  7. Empirical mass formula with proton-neutron interaction

    SciTech Connect

    Tachibana, T.; Uno, M.; Yamada, S.; Yamada, M.

    1987-12-10

    An atomic mass formula consisting of a gross part, and averge even-odd part and an empirical shell part is studied. The gross part is, apart from a small atomic term, taken to be the sum of nucleon rest masses. Coulomb energies and a polynomial in A/sup 1/3/ and chemically bondN-Zchemically bond/A. The shell part includes, in addition to proton and neutron support of nuclear magicities and the cooperative deformation effect. After the first construction of such a formula, refinements have been made in two respects. One is a separate treatment of Z = N odd-odd nuclei suggested by a quartet model, and the other is an improvement of the proton neutron interaction term. By these refinements the root-mean-square deviation of calculated masses from the 1986 Audi-Wapstra masses has been reduced from 538 keV to 460 keV.

  8. Neutron scattering studies in the actinide region. Progress report, August 1, 1991--July 31, 1994

    SciTech Connect

    Kegel, G.H.R.; Egan, J.J.

    1994-09-01

    During the period August 1, 1991 to July 31, 1994 the authors report progress on the following: (a) prompt fission neutron energy spectra for {sup 235}U and {sup 239}Pu; (b) two-parameter measurement of nuclear lifetimes; (c) `black` neutron detector; (d) data reduction techniques for neutron scattering experiments; (e) elastic and inelastic neutron scattering studies in {sup 197}Au; (f) elastic and inelastic neutron scattering studies in {sup 239}Pu; (g) neutron induced defects in silicon dioxide MOS structures; (h) response of a {sup 235}U fission chamber near reaction thresholds; (i) efficiency calibration of a liquid scintillation detector using the WNR facility at LAMPF; (j) prompt fission neutron energy spectrum measurements below the incident neutron energy; (k) multi-parameter data acquisition system; (l) accelerator improvements; (m) non-DOE supported research. Eight Ph.D. dissertations and two M.S. theses were completed during the report period. Publications consisted of 6 journal articles, 10 conference proceedings, and 19 abstracts of presentations at scientific meetings. One invited talk was given.

  9. Electron Donor Acceptor Interactions. Final Progress Report

    SciTech Connect

    2002-08-16

    The Gordon Research Conference (GRC) on Electron Donor Acceptor Interactions was held at Salve Regina University, Newport, Rhode Island, 8/11-16/02. Emphasis was placed on current unpublished research and discussion of the future target areas in this field.

  10. Progress in computational studies of host-pathogen interactions.

    PubMed

    Zhou, Hufeng; Jin, Jingjing; Wong, Limsoon

    2013-04-01

    Host-pathogen interactions are important for understanding infection mechanism and developing better treatment and prevention of infectious diseases. Many computational studies on host-pathogen interactions have been published. Here, we review recent progress and results in this field and provide a systematic summary, comparison and discussion of computational studies on host-pathogen interactions, including prediction and analysis of host-pathogen protein-protein interactions; basic principles revealed from host-pathogen interactions; and database and software tools for host-pathogen interaction data collection, integration and analysis. PMID:23600809

  11. Neutron interactions in the CUORE neutrinoless double beta decay experiment

    NASA Astrophysics Data System (ADS)

    Dolinski, Michelle Jean

    Neutrinoless double beta decay (0nuDBD) is a lepton-number violating process that can occur only for a massive Majorana neutrino. The search for 0nuDBD is currently the only practical experimental way to determine whether neutrinos are identical to their own antiparticles (Majorana neutrinos) or have distinct particle and anti-particle states (Dirac neutrinos). In addition, the observation of 0nuDBD can provide information about the absolute mass scale of the neutrino. The Cuoricino experiment was a sensitive search for 0nuDBD, as well as a proof of principle for the next generation experiment, CUORE. CUORE will search for 0nuDBD of 130Te with a ton-scale array of unenriched TeO2 bolometers. By increasing mass and decreasing the background for 0nuDBD, the half-life sensitivity of CUORE will be a factor of twenty better than that of Cuoricino. The site for both of these experiments is the Laboratori Nazionali del Gran Sasso, an underground laboratory with 3300 meters water equivalent rock overburden and a cosmic ray muon attenuation factor of 10-6. Because of the extreme low background requirements for CUORE, it is important that all potential sources of background in the 0nuDBD peak region at 2530 keV are well understood. One potential source of background for CUORE comes from neutrons, winch can be produced underground both by (alpha,n) reactions and by fast cosmic ray muon interactions. Preliminary simulations by the CUORE collaboration indicate that these backgrounds will be negligible for CUORE. However, in order to accurately simulate the expected neutron background, it is important to understand the cross sections for neutron interactions with detector materials. In order to help refine these simulations, I have measured the gamma-ray production cross sections for interactions of neutrons on the abundant stable isotopes of Te using the GEANIE detector array at the Los Alamos Neutron Science Center. In addition, I have used the GEANIE data to set an upper

  12. Neutron Interactions in the CUORE Neutrinoless Double Beta Decay Experiment

    SciTech Connect

    Dolinski, Michelle Jean

    2008-10-01

    Neutrinoless double beta decay (0vDBD) is a lepton-number violating process that can occur only for a massive Majorana neutrino. The search for 0vDBD is currently the only practical experimental way to determine whether neutrinos are identical to their own antiparticles (Majorana neutrinos) or have distinct particle and anti-particle states (Dirac neutrinos). In addition, the observation of 0vDBD can provide information about the absolute mass scale of the neutrino. The Cuoricino experiment was a sensitive search for 0vDBD, as well as a proof of principle for the next generation experiment, CUORE. CUORE will search for 0vDBD of 130Te with a ton-scale array of unenriched TeO2 bolometers. By increasing mass and decreasing the background for 0vDBD, the half-life sensitivity of CUORE will be a factor of twenty better than that of Cuoricino. The site for both of these experiments is the Laboratori Nazionali del Gran Sasso, an underground laboratory with 3300 meters water equivalent rock overburden and a cosmic ray muon attenuation factor of 10-6. Because of the extreme low background requirements for CUORE, it is important that all potential sources of background in the 0vDBD peak region at 2530 keV are well understood. One potential source of background for CUORE comes from neutrons, which can be produced underground both by (α,n) reactions and by fast cosmic ray muon interactions. Preliminary simulations by the CUORE collaboration indicate that these backgrounds will be negligible for CUORE. However, in order to accurately simulate the expected neutron background, it is important to understand the cross sections for neutron interactions with detector materials. In order to help refine these simulations, I have measured the gamma-ray production cross sections for interactions of neutrons on the abundant stable isotopes of Te using the GEANIE detector array at the Los Alamos Neutron Science Center. In addition, I have used the GEANIE

  13. Nanosecond pulsed fast neutron analysis - a progress report

    SciTech Connect

    Gozani, T.

    1994-12-31

    The status of the nanosecond Pulsed Fast Neutron Analysis (PFNA) at the time of the conference will be given. PFNA is a new technique researched and developed over the last several years to detect non-intrusively, a large variety of materials in containers as small as luggage or as large as trucks. The first full sized truck/container inspection system is being assembled at the Science Applications International Corporation (SAIC) Santa Clara facility for test and evaluation. Following this, the system will be operationally field tested at a designated government test bed in the Port of Tacoma, Washington.

  14. Advanced Neutron Source (ANS) Project progress report, FY 1994

    SciTech Connect

    Campbell, J.H.; King-Jones, K.H.; Selby, D.L.; Harrington, R.M.; Thompson, P.B.

    1995-01-01

    The President`s budget request for FY 1994 included a construction project for the Advanced Neutron Source (ANS). However, the budget that emerged from the Congress did not, and so activities during this reporting period were limited to continued research and development and to advanced conceptual design. A significant effort was devoted to a study, requested by the US Department of Energy (DOE) and led by Brookhaven National Laboratory, of the performance and cost impacts of reducing the uranium fuel enrichment below the baseline design value of 93%. The study also considered alternative core designs that might mitigate those impacts. The ANS Project proposed a modified core design, with three fuel elements instead of two, that would allow operation with only 50% enriched uranium and use existing fuel technology. The performance penalty would be 15--20% loss of thermal neutron flux; the flux would still just meet the minimum design requirement set by the user community. At the time of this writing, DOE has not established an enrichment level for ANS, but two advisory committees have recommended adopting the new core design, provided the minimum flux requirements are still met.

  15. Picosecond Neutron Yields from Ultra-Intense Laser-Target Interactions

    NASA Astrophysics Data System (ADS)

    Ellison, C. Leland; Fuchs, Julien

    2009-11-01

    High-flux neutron sources for neutron imaging and materials analysis applications have typically been provided by accelerator-based (Spallation Neutron Source) and reactor-based (High Flux Isotope Reactor) neutron sources. A novel approach is to use ultra-intense (> 10^18 W/cm^2) laser-target interactions to generate picosecond, collimated neutrons. Here we examine the feasibility of a source based on current (LULI) and upcoming laser facility capabilities. A Monte-Carlo code calculates angular and energy distributions of neutrons generated by D-D fusion events occurring within a deuterated target for a given incident beam of D+ ions. The parameters of the deuteron beam are well understood from laser-plasma and laser-target studies relevant to fast-ignition fusion. Expected neutron yields are presented in comparison to conventional neutron sources, previous experimental neutron yields, and within the context of neutron shielding safety requirements.

  16. Potential of the neutron lloyd's mirror interferometer for the search for new interactions

    SciTech Connect

    Pokotilovski, Yu. N.

    2013-04-15

    We discuss the potential of the neutron Lloyd's mirror interferometer in a search for new interactions at small scales. We consider three hypothetical interactions that may be tested using the interferometer. The chameleon scalar field proposed to solve the enigma of accelerating expansion of the Universe produces interaction between particles and matter. The axion-like spin-dependent coupling between a neutron and nuclei or/and electrons may result in a P- and T-noninvariant interaction with matter. Hypothetical non-Newtonian gravitational interactions mediates an additional short-range potential between neutrons and bulk matter. These interactions between the neutron and the mirror of a Lloyd-type neutron interferometer cause a phase shift of neutron waves. We estimate the sensitivity and systematic effects of possible experiments.

  17. Neutron scatter studies of chromatin structures related to functions. Technical progress report, November 1, 1991--May 15, 1992

    SciTech Connect

    Bradbury, E.M.

    1992-06-01

    We have made considerable progress in chromatin reconstitution with very lysine rich histone H1/H5 and in understanding the dynamics of nucleosomes. A ferromagnetic fluid was developed to align biological molecules for structural studies using small-angle-neutron-scattering. We have also identified and characterized in intrinsically bent DNA region flaking the RNA polymerase I binding site of the ribosomal RNA gene in Physarum Polycephalum. Finally projects in progress are in the areas of studying the interactions of histone H4 amino-terminus peptide 1-23 and acetylated 1-23 peptide with DNA using thermal denaturation; study of GGAAT repeats found in human centromeres using high resolution Nuclear Magnetic Resonance and nuclease sentivity assay; and the role of histones and other sperm specific proteins with sperm chromatin.

  18. Kolkhida instrument for experimental investigations of interactions of polarized neutrons with polarized nuclei

    NASA Astrophysics Data System (ADS)

    Abov, Yu. G.; Alfimenkov, V. P.; Lason, L.; Mareev, Yu. D.; Pikelner, L. B.; Tsulaya, V. M.; Tsulaya, M. I.; Salamatin, I. M.

    2009-04-01

    In JINR at the IBR-2 pulsed reactor [Ananiev, Blokhincev, Bulkin, et al., IET(ras.) 5 (1977) 17.] the "Kolkhida" setup intended for studies of neutron optics phenomena in interactions of polarized neutrons with polarized nuclei has been constructed. In particular, studies of nuclear precession of neutron spin in a wide energy range from thermal to neutron resonance energies are planned. The setup also makes it possible to investigate magnetic properties using polarized neutrons. In the given paper we present the description of the setup, its key parameters, as well as the result of computer simulation of the experiment on neutron paramagnetic resonance shift.

  19. Influence of the σ-ω meson interaction on neutron star matter

    NASA Astrophysics Data System (ADS)

    Shao, Guo-Yun; Liu, Yu-Xin

    2009-02-01

    Relativistic mean field theory with nonlinear scalar self-interaction and isoscalar scalar-vector cross-interaction is used to study the properties of neutron star matter in β equilibrium with and without hyperons. The influence of σ-ω meson cross-interaction on the properties of neutron star matter and the mass-radius relation of neutron stars is examined with attractive and repulsive Σ potential, respectively. The calculated result indicates that the cross-interaction softens the equation of state (EOS) of nuclear (hadronic) matter and reduces the maximum mass of neutron stars. It also decreases the densities for hyperonization to occur and lowers the center density of neutron stars. The increase of the cross-interaction strength enhances the softening effect of hyperons on the EOS. Meanwhile the repulsive Σ potential stiffens slightly the EOS and influences obviously the composition of neutron star matter.

  20. Fast neutron dosimetry. Progress report, 30 August 1992--1 September 1993

    SciTech Connect

    DeLuca, P.M. Jr.; Pearson, D.W.

    1993-12-01

    Research concentrated on three major areas during the last twelve months: (1) investigations of energy fluence and absorbed dose measurements using crystalline and hot pressed TLD materials exposes to ultrasoft beams of photons, (2) fast neutron kerma factor measurements for several important elements as well as NE-213 scintillation material response function determinations at the intense ``white`` source available at the WNR facility at LAMPF, and (3) kerma factor ratio determinations for carbon and oxygen to A-150 tissue equivalent plastic at the clinical fast neutron radiation facility at Harper Hospital, Detroit, MI. Progress summary reports of these efforts are given in this report.

  1. On the possibility of measuring the gravitational interaction of the neutron with a macroscopic body

    SciTech Connect

    Frank, A. I.

    2009-11-15

    The possibility of experimentally observing the gravitational interaction of the neutron with a macroscopic body is discussed. It is shown that the sensitivity of neutron-optics experiments may be one to two orders of magnitude higher than that which is necessary for observing the gravitational effect. Either the deflection of the neutron trajectory in the gravitational field of a heavy attractor or the gravitation-induced shift of the neutron-wave phase can be recorded experimentally.

  2. Low Temperature and Neutron Physics Studies: Final Progress Report, March 1, 1986--May 31, 1987

    DOE R&D Accomplishments Database

    Shull, C.G.

    1989-07-27

    A search for a novel coupling interaction between the Pendelloesung periodicity which is formed in a diffracting crystal and the Larmor precession of neutrons in a magnetic field has been carried out. This interaction is expected to exhibit a resonant behavior when the two spatial periodicities become matched upon scanning the magnetic field being applied to the crystal. Observations on a diffracting, perfect crystal of silicon with neutrons of wavelength 1 Angstrom show the expected resonant action but some discrepancy between the observed magnitude of the resonance effects remains for interpretation.

  3. Progress towards developing neutron tolerant magnetostrictive and piezoelectric transducers

    SciTech Connect

    Reinhardt, Brian; Tittmann, Bernhard; Rempe, Joy; Daw, Joshua; Kohse, Gordon; Carpenter, David; Ames, Micheal; Ostrovsky, Yakov; Ramuhalli, Pradeep; Montgomery, Robert; Chien, Hualte; Wernsman, Bernard

    2014-07-01

    Current generation light water reactors (LWRs), sodium cooled fast reactors (SFRs), small modular reactors (SMRs), and next generation nuclear plants (NGNPs) provide harsh environments in and near the core that can severely test material performance and limit their operational life. To address this issue, several Department of Energy Office of Nuclear Energy (DOE-NE) research programs are evaluating the long duration radiation performance of fuels and materials. In To reduce the amount of Material and Test Reactor (MTR) irradiations required, DOE is also funding development of enhanced instrumentation that will be able to obtain data, with unprecedented accuracy and resolution, that are required to validate new multi-scale multiphysics modeling tools . It is not feasible to obtain such data with the current state of instrumentation technology. To address this need, PSU and collaborators have started an experiment to test the potential for utilizing ultrasonic instruments in-pile. Ultrasonic sensors must be resistant to high neutron flux, high gamma radiation, and high temperature. PSU and collaborators have designed, fabricated, and started to irradiate piezoelectric and magnetostrictive transducers designed to perform in such harsh environments. Three piezoelectric transducers were fabricated with aluminum nitride, zinc oxide, and bismuth titanate as the active element. The transducers are coupled kovar and aluminum waveguides of which pulse-echo ultrasonic measurements are made in-situ. Two magnetostrictive transducers were fabricated with Remendur and Arnokrome as the active elements. These devices will be pulsed and monitored in-situ. (1) Selection of candidate sensor materials as well as optimization of test assembly parameters (2) High temperature benchmark testing and (3) initial data from the irradiation will be reported.

  4. Progress towards developing neutron tolerant magnetostrictive and piezoelectric transducers

    NASA Astrophysics Data System (ADS)

    Reinhardt, Brian; Tittmann, Bernhard; Rempe, Joy; Daw, Joshua; Kohse, Gordon; Carpenter, David; Ames, Michael; Ostrovsky, Yakov; Ramuhalli, Pradeep; Montgomery, Robert; Chien, Hualte; Wernsman, Bernard

    2015-03-01

    Current generation light water reactors (LWRs), sodium cooled fast reactors (SFRs), small modular reactors (SMRs), and next generation nuclear plants (NGNPs) produce harsh environments in and near the reactor core that can severely tax material performance and limit component operational life. To address this issue, several Department of Energy Office of Nuclear Energy (DOE-NE) research programs are evaluating the long duration irradiation performance of fuel and structural materials used in existing and new reactors. In order to maximize the amount of information obtained from Material Testing Reactor (MTR) irradiations, DOE is also funding development of enhanced instrumentation that will be able to obtain in-situ, real-time data on key material characteristics and properties, with unprecedented accuracy and resolution. Such data are required to validate new multi-scale, multi-physics modeling tools under development as part of a science-based, engineering driven approach to reactor development. It is not feasible to obtain high resolution/microscale data with the current state of instrumentation technology. However, ultrasound-based sensors offer the ability to obtain such data if it is demonstrated that these sensors and their associated transducers are resistant to high neutron flux, high gamma radiation, and high temperature. To address this need, the Advanced Test Reactor National Scientific User Facility (ATR-NSUF) is funding an irradiation, led by PSU, at the Massachusetts Institute of Technology Research Reactor to test the survivability of ultrasound transducers. As part of this effort, PSU and collaborators have designed, fabricated, and provided piezoelectric and magnetostrictive transducers that are optimized to perform in harsh, high flux, environments. Four piezoelectric transducers were fabricated with either aluminum nitride, zinc oxide, or bismuth titanate as the active element that were coupled to either Kovar or aluminum waveguides and two

  5. Progress towards developing neutron tolerant magnetostrictive and piezoelectric transducers

    SciTech Connect

    Reinhardt, Brian; Tittmann, Bernhard; Rempe, Joy; Daw, Joshua; Kohse, Gordon; Carpenter, David; Ames, Michael; Ostrovsky, Yakov; Ramuhalli, Pradeep; Montgomery, Robert; Chien, Hualte; Wernsman, Bernard

    2015-03-31

    Current generation light water reactors (LWRs), sodium cooled fast reactors (SFRs), small modular reactors (SMRs), and next generation nuclear plants (NGNPs) produce harsh environments in and near the reactor core that can severely tax material performance and limit component operational life. To address this issue, several Department of Energy Office of Nuclear Energy (DOE-NE) research programs are evaluating the long duration irradiation performance of fuel and structural materials used in existing and new reactors. In order to maximize the amount of information obtained from Material Testing Reactor (MTR) irradiations, DOE is also funding development of enhanced instrumentation that will be able to obtain in-situ, real-time data on key material characteristics and properties, with unprecedented accuracy and resolution. Such data are required to validate new multi-scale, multi-physics modeling tools under development as part of a science-based, engineering driven approach to reactor development. It is not feasible to obtain high resolution/microscale data with the current state of instrumentation technology. However, ultrasound-based sensors offer the ability to obtain such data if it is demonstrated that these sensors and their associated transducers are resistant to high neutron flux, high gamma radiation, and high temperature. To address this need, the Advanced Test Reactor National Scientific User Facility (ATR-NSUF) is funding an irradiation, led by PSU, at the Massachusetts Institute of Technology Research Reactor to test the survivability of ultrasound transducers. As part of this effort, PSU and collaborators have designed, fabricated, and provided piezoelectric and magnetostrictive transducers that are optimized to perform in harsh, high flux, environments. Four piezoelectric transducers were fabricated with either aluminum nitride, zinc oxide, or bismuth titanate as the active element that were coupled to either Kovar or aluminum waveguides and two

  6. Study of {beta}-Decay in the Proton-Neutron Interacting Boson-Fermion Model

    SciTech Connect

    Zuffi, L.; Brant, S.; Yoshida, N.

    2006-04-26

    We study {beta}-decay in odd-A nuclei together with the energy levels and other properties in the proton-neutron interacting-boson-fermion model. We also report on the preliminary results in the odd-odd nuclei in the proton-neutron interacting boson-fermion-fermion model.

  7. Using Neutrons to Study Fluid-Rock Interactions in Shales

    NASA Astrophysics Data System (ADS)

    DiStefano, V. H.; McFarlane, J.; Anovitz, L. M.; Gordon, A.; Hale, R. E.; Hunt, R. D.; Lewis, S. A., Sr.; Littrell, K. C.; Stack, A. G.; Chipera, S.; Perfect, E.; Bilheux, H.; Kolbus, L. M.; Bingham, P. R.

    2015-12-01

    Recovery of hydrocarbons by hydraulic fracturing depends on complex fluid-rock interactions that we are beginning to understand using neutron imaging and scattering techniques. Organic matter is often thought to comprise the majority of porosity in a shale. In this study, correlations between the type of organic matter embedded in a shale and porosity were investigated experimentally. Selected shale cores from the Eagle Ford and Marcellus formations were subjected to pyrolysis-gas chromatography, Differential Thermal Analysis/Thermogravimetric analysis, and organic solvent extraction with the resulting affluent analyzed by gas chromatography-mass spectrometry. The pore size distribution of the microporosity (~1 nm to 2 µm) in the Eagle Ford shales was measured before and after solvent extraction using small angle neutron scattering. Organics representing mass fractions of between 0.1 to 1 wt.% were removed from the shales and porosity generally increased across the examined microporosity range, particularly at larger pore sizes, approximately 50 nm to 2 μm. This range reflects extraction of accessible organic material, including remaining gas molecules, bitumen, and kerogen derivatives, indicating where the larger amount of organic matter in shale is stored. An increase in porosity at smaller pore sizes, ~1-3 nm, was also present and could be indicative of extraction of organic material stored in the inter-particle spaces of clays. Additionally, a decrease in porosity after extraction for a sample was attributed to swelling of pores with solvent uptake. This occurred in a shale with high clay content and low thermal maturity. The extracted hydrocarbons were primarily paraffinic, although some breakdown of larger aromatic compounds was observed in toluene extractions. The amount of hydrocarbon extracted and an overall increase in porosity appeared to be primarily correlated with the clay percentage in the shale. This study complements fluid transport neutron

  8. Examination of radioargon production by cosmic neutron interactions.

    PubMed

    Johnson, Christine; Armstrong, Hirotatsu; Wilson, William H; Biegalski, Steven R

    2015-02-01

    Radioargon isotopes, particularly (37)Ar, are currently being considered for use as an On-Site Inspection (OSI) relevant radionuclide within the context of the Comprehensive Nuclear-Test-Ban Treaty (CTBT). In order to understand any soil air measurements taken during an OSI, the radioargon background due to cosmic ray induced activation along with other sources must be understood. An MCNP6 model was developed using the cosmic ray source feature within the code to examine the neutron flux at ground level as a function of various conditions: date during the solar magnetic activity cycle, latitude of sampling location, geology of the sampling location, and sampling depth. Once the cosmic neutron flux was obtained, calculations were performed to determine the rate of radioargon production for the main interactions. Radioargon production was shown to be highly dependent on the soil composition, and a range of (37)Ar production values at 1 m depth was found with a maximum production rate of 4.012 atoms/sec/m(3) in carbonate geologies and a minimum production rate of 0.070 atoms/sec/m(3) in low calcium granite. The sampling location latitude was also shown to have a measurable effect on the radioargon production rate, where the production of (37)Ar in an average continental crust is shown to vary by a factor of two between the equator and the poles. The sampling date's position within the solar magnetic activity cycle was also shown to cause a smaller change, less than a factor of 1.2, in activation between solar maxima and solar minima. PMID:25461524

  9. Description and evaluation of nuclear masses based on residual proton-neutron interactions

    SciTech Connect

    Fu, G. J.; Lei, Y.; Jiang, H.; Zhao, Y. M.; Sun, B.; Arima, A.

    2011-09-15

    In this paper we study the residual proton-neutron interactions and make use of the systematics of these interactions to describe experimental data of nuclear masses and to predict some of the unknown masses. The odd-even effect staggering of the residual proton-neutron interaction between the last proton and the last neutron is found and argued in terms of pairing interactions. Two local mass relations, which work very accurately for masses of four neighboring nuclei, are discovered. The accuracy of our predicted masses for medium and heavy nuclei is competitive with that of the AME2003 extrapolations, with the virtue of simplicity.

  10. Nuclear proton and neutron distributions in the detection of weak interacting massive particles

    SciTech Connect

    Co', G.; Donno, V. De; Anguiano, M.; Lallena, A.M. E-mail: viviana.de.donno@le.infn.it E-mail: lallena@ugr.es

    2012-11-01

    In the evaluation of weak interacting massive particles (WIMPs) detection rates, the WIMP-nucleus cross section is commonly described by using form factors extracted from charge distributions. In this work, we use different proton and neutron distributions taken from Hartree-Fock calculations. We study the effects of this choice on the total detection rates for six nuclei having different neutron excess, and taken from different regions of the nuclear chart. The use of different distributions for protons and neutrons becomes more important if isospin-dependent WIMP-nucleon interactions are considered. The need for distinct descriptions of proton and neutron densities decreases with the lowering of detection energy thresholds.

  11. Intense Pulsed Neutron Source: Progress report 1991--1996. 15. Anniversary edition -- Volume 2

    SciTech Connect

    1996-05-01

    The 15th Anniversary Edition of the IPNS Progress Report is being published in recognition of the Intense Pulsed Neutron Source`s first 15 years of successful operation as a user facility. To emphasize the importance of this milestone, the author shave made the design and organization of the report significantly different from previous IPNS Progress Reports. This report consists of two volumes. For Volume 1, authors were asked to prepare articles that highlighted recent scientific accomplishments at IPNS, from 1991 to present; to focus on and illustrate the scientific advances achieved through the unique capabilities of neutron studies performed by IPNS users; to report on specific activities or results from an instrument; or to focus on a body of work encompassing different neutron-scattering techniques. Articles were also included on the accelerator system, instrumentation, computing, target, and moderators. A list of published and ``in press` articles in journals, books, and conference proceedings, resulting from work done at IPNS since 1991, was compiled. This list is arranged alphabetically according to first author. Publication references in the articles are listed by last name of first author and year of publication. The IPNS experimental reports received since 1991 are compiled in Volume 2. Experimental reports referenced in the articles are listed by last name of first author, instrument designation, and experiment number.

  12. Intense Pulsed Neutron Source: Progress report 1991--1996. 15. Anniversary edition -- Volume 1

    SciTech Connect

    Marzec, B.

    1996-05-01

    The 15th Anniversary Edition of the IPNS Progress Report is being published in recognition of the Intense Pulsed Neutron Source`s first 15 years of successful operation as a user facility. To emphasize the importance of this milestone, the authors have made the design and organization of the report significantly different from previous IPNS Progress Reports. This report consists of two volumes. For Volume 1, authors were asked to prepare articles that highlighted recent scientific accomplishments at IPNS, from 1991 to present; to focus on and illustrate the scientific advances achieved through the unique capabilities of neutron studies performed by IPNS users; to report on specific activities or results from an instrument; or to focus on a body of work encompassing different neutron-scattering techniques. Articles were also included on the accelerator system, instrumentation, computing, target, and moderators. A list of published and ``in press` articles in journals, books, and conference proceedings, resulting from work done at IPNS since 1991, was compiled. This list is arranged alphabetically according to first author. Publication references in the articles are listed by last name of first author and year of publication. The IPNS experimental reports received since 1991 are compiled in Volume 2. Experimental reports referenced in the articles are listed by last name of first author, instrument designation, and experiment number.

  13. Gamma ray bursts from comet neutron star magnetosphere interaction, field twisting and E sub parallel formation

    SciTech Connect

    Colgate, S.A.

    1990-01-01

    Consider the problem of a comet in a collision trajectory with a magnetized neutron star. The question addressed in this paper is whether the comet interacts strongly enough with a magnetic field such as to capture at a large radius or whether in general the comet will escape a magnetized neutron star. 6 refs., 4 figs.

  14. Interaction of High-Energy Proton Beam with a Thin Target and Multiplicities of Neutron

    SciTech Connect

    Demirkol, I.; Tatar, M.; Safak, M. S.; Arasoglu, A.; Tel, E.

    2007-04-23

    An important ingredient in the performance of accelerator driven systems for energy production, waste transmutation and other applications are the number of spallation neutrons produced per incident proton. The neutron multiplicities, angular and energy distributions are usually calculated using simulation codes. We have presented multiplicities of the neutrons emitted in the interaction of a high-energy proton (1500 MeV) with a thin target Pb, Bi. In this study we have used the code ISABEL to calculate multiplicities of the neutron emitted. The results obtained have been compared with the available data.

  15. Production of neutrons from interactions of GCR-like particles

    NASA Technical Reports Server (NTRS)

    Heilbronn, L.; Frankel, K.; Holabird, K.; Zeitlin, C.; McMahan, M. A.; Rathbun, W.; Cronqvist, M.; Gong, W.; Madey, R.; Htun, M.; Elaasar, M.; Anderson, B. D.; Baldwin, A. R.; Jiang, J.; Keane, D.; Scott, A.; Shao, Y.; Watson, J. W.; Zhang, W. M.; Galonsky, A.; Ronningen, R.; Zecher, P.; Kruse, J.; Wang, J.; Miller, J. (Principal Investigator)

    1998-01-01

    In order to help assess the risk to astronauts due to the long-term exposure to the natural radiation environment in space, an understanding of how the primary radiation field is changed when passing through shielding and tissue materials must be obtained. One important aspect of the change in the primary radiation field after passing through shielding materials is the production of secondary particles from the breakup of the primary. Neutrons are an important component of the secondary particle field due to their relatively high biological weighting factors, and due to their relative abundance, especially behind thick shielding scenarios. Because of the complexity of the problem, the estimation of the risk from exposure to the secondary neutron field must be handled using calculational techniques. However, those calculations will need an extensive set of neutron cross section and thicktarget neutron yield data in order to make an accurate assessment of the risk. In this paper we briefly survey the existing neutron-production data sets that are applicable to the space radiation transport problem, and we point out how neutron production from protons is different than neutron production from heavy ions. We also make comparisons of one the heavy-ion data sets with Boltzmann-Uehling-Uhlenbeck (BUU) calculations.

  16. Simple Interpretation of Proton-Neutron Interactions in Rare Earth Nuclei

    SciTech Connect

    Oktem, Y.; Cakirli, R. B.; Casten, R. F.; Casperson, R. J.; Brenner, D. S.

    2007-04-23

    Empirical values of the average interactions of the last two protons and last two neutrons, {delta}Vpn, which can be obtained from double differences of binding energies, provide significant information about nuclear structure. Studies of {delta}Vpn showed striking behavior across major shell gaps and the relation of proton-neutron (p-n) interaction strengths to the increasing collectivity and onset of deformation in nuclei. Here we focus on the strong regularity at the {delta}Vpn values in A{approx}150-180 mass region. Experimentally, for each nucleus, the valence p-n interaction strengths increase systematically against the neutron number and it decreases for the observed last neutron number. These experimental results give almost nearly perfect parallel trajectories. A microscopic interpretation with a zero range {delta}-interaction in a Nilsson basis gives reasonable agreement for Er-W but more significant discrepancies appear for Gd and Dy.

  17. Radiative neutron capture as a counting technique at pulsed spallation neutron sources: a review of current progress.

    PubMed

    Schooneveld, E M; Pietropaolo, A; Andreani, C; Perelli Cippo, E; Rhodes, N J; Senesi, R; Tardocchi, M; Gorini, G

    2016-09-01

    Neutron scattering techniques are attracting an increasing interest from scientists in various research fields, ranging from physics and chemistry to biology and archaeometry. The success of these neutron scattering applications is stimulated by the development of higher performance instrumentation. The development of new techniques and concepts, including radiative capture based neutron detection, is therefore a key issue to be addressed. Radiative capture based neutron detectors utilize the emission of prompt gamma rays after neutron absorption in a suitable isotope and the detection of those gammas by a photon counter. They can be used as simple counters in the thermal region and (simultaneously) as energy selector and counters for neutrons in the eV energy region. Several years of extensive development have made eV neutron spectrometers operating in the so-called resonance detector spectrometer (RDS) configuration outperform their conventional counterparts. In fact, the VESUVIO spectrometer, a flagship instrument at ISIS serving a continuous user programme for eV inelastic neutron spectroscopy measurements, is operating in the RDS configuration since 2007. In this review, we discuss the physical mechanism underlying the RDS configuration and the development of associated instrumentation. A few successful neutron scattering experiments that utilize the radiative capture counting techniques will be presented together with the potential of this technique for thermal neutron diffraction measurements. We also outline possible improvements and future perspectives for radiative capture based neutron detectors in neutron scattering application at pulsed neutron sources. PMID:27502571

  18. Radiative neutron capture as a counting technique at pulsed spallation neutron sources: a review of current progress

    NASA Astrophysics Data System (ADS)

    Schooneveld, E. M.; Pietropaolo, A.; Andreani, C.; Perelli Cippo, E.; Rhodes, N. J.; Senesi, R.; Tardocchi, M.; Gorini, G.

    2016-09-01

    Neutron scattering techniques are attracting an increasing interest from scientists in various research fields, ranging from physics and chemistry to biology and archaeometry. The success of these neutron scattering applications is stimulated by the development of higher performance instrumentation. The development of new techniques and concepts, including radiative capture based neutron detection, is therefore a key issue to be addressed. Radiative capture based neutron detectors utilize the emission of prompt gamma rays after neutron absorption in a suitable isotope and the detection of those gammas by a photon counter. They can be used as simple counters in the thermal region and (simultaneously) as energy selector and counters for neutrons in the eV energy region. Several years of extensive development have made eV neutron spectrometers operating in the so-called resonance detector spectrometer (RDS) configuration outperform their conventional counterparts. In fact, the VESUVIO spectrometer, a flagship instrument at ISIS serving a continuous user programme for eV inelastic neutron spectroscopy measurements, is operating in the RDS configuration since 2007. In this review, we discuss the physical mechanism underlying the RDS configuration and the development of associated instrumentation. A few successful neutron scattering experiments that utilize the radiative capture counting techniques will be presented together with the potential of this technique for thermal neutron diffraction measurements. We also outline possible improvements and future perspectives for radiative capture based neutron detectors in neutron scattering application at pulsed neutron sources.

  19. The Manuel Lujan Jr. Neutron Scattering Center (LANSCE) experiment reports 1993 run cycle. Progress report

    SciTech Connect

    Farrer, R.; Longshore, A.

    1995-06-01

    This year the Manuel Lujan Jr. Neutron Scattering Center (LANSCE) ran an informal user program because the US Department of Energy planned to close LANSCE in FY1994. As a result, an advisory committee recommended that LANSCE scientists and their collaborators complete work in progress. At LANSCE, neutrons are produced by spallation when a pulsed, 800-MeV proton beam impinges on a tungsten target. The proton pulses are provided by the Clinton P. Anderson Meson Physics Facility (LAMPF) accelerator and a associated Proton Storage Ring (PSR), which can Iter the intensity, time structure, and repetition rate of the pulses. The LAMPF protons of Line D are shared between the LANSCE target and the Weapons Neutron Research (WNR) facility, which results in LANSCE spectrometers being available to external users for unclassified research about 80% of each annual LAMPF run cycle. Measurements of interest to the Los Alamos National Laboratory (LANL) may also be performed and may occupy up to an additional 20% of the available beam time. These experiments are reviewed by an internal program advisory committee. This year, a total of 127 proposals were submitted. The proposed experiments involved 229 scientists, 57 of whom visited LANSCE to participate in measurements. In addition, 3 (nuclear physics) participating research teams, comprising 44 scientists, carried out experiments at LANSCE. Instrument beam time was again oversubscribed, with 552 total days requested an 473 available for allocation.

  20. Design progress of cryogenic hydrogen system for China Spallation Neutron Source

    SciTech Connect

    Wang, G. P.; Zhang, Y.; Xiao, J.; He, C. C.; Ding, M. Y.; Wang, Y. Q.; Li, N.; He, K.

    2014-01-29

    China Spallation Neutron Source (CSNS) is a large proton accelerator research facility with 100 kW beam power. Construction started in October 2011 and is expected to last 6.5 years. The cryogenic hydrogen circulation is cooled by a helium refrigerator with cooling capacity of 2200 W at 20 K and provides supercritical hydrogen to neutron moderating system. Important progresses of CSNS cryogenic system were concluded as follows. Firstly, process design of cryogenic system has been completed including helium refrigerator, hydrogen loop, gas distribution, and safety interlock. Secondly, an accumulator prototype was designed to mitigate pressure fluctuation caused by dynamic heat load from neutron moderation. Performance test of the accumulator has been carried out at room and liquid nitrogen temperature. Results show the accumulator with welding bellows regulates hydrogen pressure well. Parameters of key equipment have been identified. The contract for the helium refrigerator has been signed. Mechanical design of the hydrogen cold box has been completed, and the hydrogen pump, ortho-para hydrogen convertor, helium-hydrogen heat exchanger, hydrogen heater, and cryogenic valves are in procurement. Finally, Hydrogen safety interlock has been finished as well, including the logic of gas distribution, vacuum, hydrogen leakage and ventilation. Generally, design and construction of CSNS cryogenic system is conducted as expected.

  1. Design progress of cryogenic hydrogen system for China Spallation Neutron Source

    NASA Astrophysics Data System (ADS)

    Wang, G. P.; Zhang, Y.; Xiao, J.; He, C. C.; Ding, M. Y.; Wang, Y. Q.; Li, N.; He, K.

    2014-01-01

    China Spallation Neutron Source (CSNS) is a large proton accelerator research facility with 100 kW beam power. Construction started in October 2011 and is expected to last 6.5 years. The cryogenic hydrogen circulation is cooled by a helium refrigerator with cooling capacity of 2200 W at 20 K and provides supercritical hydrogen to neutron moderating system. Important progresses of CSNS cryogenic system were concluded as follows. Firstly, process design of cryogenic system has been completed including helium refrigerator, hydrogen loop, gas distribution, and safety interlock. Secondly, an accumulator prototype was designed to mitigate pressure fluctuation caused by dynamic heat load from neutron moderation. Performance test of the accumulator has been carried out at room and liquid nitrogen temperature. Results show the accumulator with welding bellows regulates hydrogen pressure well. Parameters of key equipment have been identified. The contract for the helium refrigerator has been signed. Mechanical design of the hydrogen cold box has been completed, and the hydrogen pump, ortho-para hydrogen convertor, helium-hydrogen heat exchanger, hydrogen heater, and cryogenic valves are in procurement. Finally, Hydrogen safety interlock has been finished as well, including the logic of gas distribution, vacuum, hydrogen leakage and ventilation. Generally, design and construction of CSNS cryogenic system is conducted as expected.

  2. Interaction between vortices and nuclei in the inner crust of neutron stars

    SciTech Connect

    Avogadro, P.; Barranco, F.; Vigezzi, E.

    2009-05-04

    The inner crust of a neutron star is expected to contain a Coulomb lattice of nuclei immersed in a superfluid sea of free neutrons. The rotation of the star induces the formation of vortices in the neutron sea, whose dynamics is influenced by the interaction with the nuclei. In particular, this interaction is important to determine whether it is energetically advantageous for vortices to pin on nuclei or not. We find that the pinning energy is sensitive to quantal size effects. In fact, the nuclear shell structure tends to hinder the formation of vortices inside the nuclear volume.

  3. New mechanism of phase enhancement in neutron interferometry and ``exotic'' interactions

    NASA Astrophysics Data System (ADS)

    Gudkov, Vladimir

    2009-10-01

    The possibility to search for anomalous ``gravitational'' interactions in neuron interferometric experiments has been recently considered for cold [1] and ultra cold [2] neutrons, where it was shown a very large contribution to the phase of neutron wave function from these anomalous interactions. To understand the origin of this phase enhancement, we consider one dimensional Schr"odinger equation which describes neutron propagation through materials. It is shown that in many cases this Schr"odinger equation can be transformed into Hill's equation, and/or, under some conditions, into Heun's and Mathieu's equations. The asymptotic solution of the considered equations shows that the contribution of weak exotic interactions to the phase of propagated neutrons is accumulated with a distance exponentially rather than linearly. This can lead to rather large enhancement factor for a contribution of these interactions into neutron phase. Using perturbation theory approach, one can see that this enhanced phase is also proportional to the value of neutron wavelength. This explains why one can see the phase enhancement only with very cold neutrons. [4pt] [1] G. L. Greene and V. Gudkov, Phys. Rev. C 75, 015501 (2007).[0pt] [2] V. Gudkov, H. M. Shimizu and G. L. Greene, NIM A (2009), in press.

  4. Small angle neutron scattering contrast variation reveals heterogeneities of interactions in protein gels.

    PubMed

    Banc, A; Charbonneau, C; Dahesh, M; Appavou, M-S; Fu, Z; Morel, M-H; Ramos, L

    2016-06-28

    We propose a quantitative approach to probe the spatial heterogeneities of interactions in macromolecular gels, based on a combination of small angle X-ray (SAXS) and neutrons (SANS) scattering. We investigate the structure of model gluten protein gels and show that the gels display radically different SAXS and SANS profiles when the solvent is (at least partially) deuterated. The detailed analysis of the SANS signal as a function of the solvent deuteration demonstrates heterogeneities of sample deuteration at different length scales. The progressive exchange between the protons (H) of the proteins and the deuteriums (D) of the solvent is inhomogeneous and 60 nm large zones that are enriched in H are evidenced. In addition, at low protein concentration, in the sol state, solvent deuteration induces a liquid/liquid phase separation. Complementary biochemical and structure analyses show that the denser protein phase is more protonated and specifically enriched in glutenin, the polymeric fraction of gluten proteins. These findings suggest that the presence of H-rich zones in gluten gels would arise from the preferential interaction of glutenin polymers through a tight network of non-exchangeable intermolecular hydrogen bonds. PMID:27198847

  5. Neutron scattering studies in the actinide region. Progress report, August 1, 1992--July 31, 1993

    SciTech Connect

    Kegel, G.H.R.; Egan, J.J.

    1993-09-01

    This report discusses the following topics: Prompt fission neutron energy spectra for {sup 235}U and {sup 239}Pu; Two-parameter measurement of nuclear lifetimes; ``Black`` neutron detector; Data reduction techniques for neutron scattering experiments; Inelastic neutron scattering studies in {sup 197}Au; Elastic and inelastic scattering studies in {sup 239}Pu; and neutron induced defects in silicon dioxide MOS structures.

  6. Discussing Progress in Understanding Ice Sheet-Ocean Interactions

    NASA Astrophysics Data System (ADS)

    Herraiz Borreguero, Laura; Mottram, Ruth; Cvijanovic, Ivana

    2010-11-01

    Advanced Climate Dynamics Course 2010: Ice Sheet-Ocean Interactions; Lyngen, Norway, 8-19 June 2010; Sea level rise is one of many expected consequences of climate change, with accompanying complex social and economic challenges. Major uncertainties in sea level rise projections relate to the response of ice sheets to sea level rise and the key role that interactions with the ocean may play. Recognizing that probably no comprehensive curriculum currently exists at any single university that covers this novel and interdisciplinary subject, the Advanced Climate Dynamics Courses (ACDC) team brought together a group of 40 international students, postdocs, and lecturers from diverse backgrounds to provide an overview and discussion of state-of-the-art research into ocean-ice sheet interactions and to propose research priorities for the next decade. Among the key issues addressed were small-scale processes near the Antarctic ice shelves and Greenland outlet glaciers. These are fast changing components in the climate system, often related to large-scale forcings (atmospheric teleconnections and oceanic circulation). Progress in understanding and modeling is hampered by the range of scales involved, the lack of observations, and the difficulties in constraining, initializing, and providing adequate boundary conditions for ice sheet and ocean models.

  7. Exclusive vector meson production with a leading neutron in photon-hadron interactions at hadronic colliders

    NASA Astrophysics Data System (ADS)

    Gonçalves, V. P.; Moreira, B. D.; Navarra, F. S.; Spiering, D.

    2016-07-01

    In this paper, we study leading neutron production in photon-hadron interactions that take place in p p and p A collisions at large impact parameters. Using a model that describes the recent leading neutron data at HERA, we consider exclusive vector meson production in association with a leading neutron in p p /p A collisions at RHIC and LHC energies. The total cross sections and rapidity distributions of ρ , ϕ , and J /Ψ produced together with a leading neutron are computed. Our results indicate that the study of these processes is feasible and that it can be used to improve the understanding of leading neutron processes and of exclusive vector meson production.

  8. Modeling Stromal-Epithelial Interactions in Disease Progression

    PubMed Central

    Strand, Douglas W.; Hayward, Simon W.

    2014-01-01

    The role of tumor stroma in progression to malignancy has become the subject of intense experimental and clinical interest. The stromal compartment of organs is composed of all the non-epithelial cell types and maintains the proper architecture and nutrient levels required for epithelial and, ultimately, organ function. The composition of the reactive stroma surrounding tumors is vastly different from normal stromal tissue. Stromal phenotype can be correlated with, and predictive of, disease recurrence. In addition, the stroma is now seen as a legitimate target for therapeutic intervention. Although much has been learned about the role of the stromal compartment in development and disease in recent years, a number of key questions remain. Here we review how some of these questions are beginning to be addressed using new models of stromal-epithelial interaction. PMID:20587339

  9. Energetic neutron beams generated from femtosecond laser plasma interactions

    SciTech Connect

    Zulick, C.; Dollar, F.; Chvykov, V.; Kalinchenko, G.; Maksimchuk, A.; Raymond, A.; Thomas, A. G. R.; Willingale, L.; Yanovsky, V.; Krushelnick, K.; Davis, J.; Petrov, G. M.

    2013-03-25

    Experiments at the HERCULES laser facility have produced directional neutron beams with energies up to 16.8({+-}0.3) MeV using {sub 1}{sup 2}d(d,n){sub 2}{sup 3}He,{sub 7}{sup 3}Li(p,n){sub 4}{sup 7}Be,and{sub 3}{sup 7}Li(d,n){sub 4}{sup 8}Be reactions. Efficient {sub 1}{sup 2}Li(d,n){sub 4}{sup 8}Be reactions required the selective acceleration of deuterons through the introduction of a deuterated plastic or cryogenically frozen D{sub 2}O layer on the surface of a thin film target. The measured neutron yield was {<=}1.0 ({+-}0.5) Multiplication-Sign 10{sup 7} neutrons/sr with a flux 6.2({+-}3.7) times higher in the forward direction than at 90{sup Degree-Sign }. This demonstrates that femtosecond lasers are capable of providing a time averaged neutron flux equivalent to commercial {sub 1}{sup 2}d(d,n){sub 2}{sup 3}He generators with the advantage of a directional beam with picosecond bunch duration.

  10. Interactions between biomaterials and the sclera: Implications on myopia progression

    NASA Astrophysics Data System (ADS)

    Su, James

    Myopia prevalence has steadily climbed worldwide in recent decades with the most dramatic impact in East Asian countries. Treatments such as eyeglasses, contact lenses, and laser surgery for the refractive error are widely available, but none cures the underlying cause. In progressive high myopia, invasive surgical procedures using a scleral buckle for mechanical support are performed since the patient is at risk of becoming blind. The treatment outcome is highly dependent on the surgeon's skills and the patient's myopia progression rate, with limited choices in buckling materials. This dissertation, in four main studies, represents efforts made to control high myopia progression through the exploration and development of biomaterials that influence scleral growth. First, mRNA expression levels of the chick scleral matrix metalloproteinases, tissue-inhibitor of matrix metalloproteinases, and transforming growth factor-beta 2 were assessed for temporal and defocus power effects. The first study elucidated the roles that these factors play in scleral growth regulation and suggested potential motifs that can be incorporated in future biomaterials design. Second, poly(vinyl-pyrrolidone) as injectable gels and poly(2-hydroxyethyl methacrylate) as solid strips were implanted in chicks to demonstrate the concept of posterior pole scleral reinforcements. This second study found that placing appropriate biomaterials at the posterior pole of the eye could directly influence scleral remodeling by interacting with the host cells. Both studies advanced the idea that scleral tissue remodeling could be potentially controlled by well-designed biomaterials. These findings led to the exploration of biomimetic hydrogels comprising enzymatically-degradable semi-interpenetrating polymer networks (edsIPNs) to determine their biocompatibility and effects on the chick posterior eye wall. This third study demonstrated the feasibility of stimulating scleral growth by applying biomimetic

  11. The Crucial Role of Neutron β-DECAY Experiments in Establishing the Fundamental Symmetries of the V-A Description of Weak Interactions

    NASA Astrophysics Data System (ADS)

    Byrne, J.

    2011-03-01

    Experimental data from unpolarized and polarized neutron beta -decay yield accurate values for the basic parameters of the P-violating T-conserving charged current weak interaction, thereby posing a potentially stringent unitarity test of the CKM quark mixing matrix. Experimental studies of the radiative (BR ~3.10-3) and two-body (BR ~ 4.10-6) decay branches are currently in progress.

  12. Empirical residual neutron-proton interaction in odd-odd nuclei

    NASA Astrophysics Data System (ADS)

    Wu, Zheying; Changizi, S. A.; Qi, Chong

    2016-03-01

    Two types of average neutron-proton interaction formulas are compared: In the first type, neutron-proton interactions for even-even and odd-A nuclei extracted from experimental binding energies show a smooth behavior as a function of mass number A and are dominated by the contribution from the symmetry energy. Whereas in the second type large systematic staggering is seen between even-A and odd-A nuclei. This deviation is understood in terms of the additional neutron-proton interaction in odd-odd nuclei relative to the neighboring even-even and odd-A systems. We explore three possible ways to extract this additional interaction from the binding energy difference of neighboring nuclei. The extracted interactions are positive in nearly all cases and show weak dependence on the mass number. The empirical interactions are also compared with theoretical values extracted from recent nuclear mass models where large unexpected fluctuations are seen in certain nuclei. The reproduction of the residual neutron-proton interaction and the correction of those irregular fluctuations can be a good criterion for the refinement of those mass models.

  13. Predicted weakening of the spin-orbit interaction with the addition of neutrons

    SciTech Connect

    Hemalatha, M.; Gambhir, Y. K.; Haider, W.; Kailas, S.

    2009-05-15

    The fully microscopic p-nucleus optical potential has been calculated in the framework of the first order Brueckner theory employing Urbana V14, soft-core internucleon interaction along with the relativistic mean field densities both for protons and neutrons. It is observed that the volume integral per nucleon, of the real part of the spin-orbit interaction calculated for Zr (A=76-110) and Sn (A=96-136) isotopes, decreases with the increase in neutron number. The present optical model calculation satisfactorily reproduces the experimental (where available) cross sections and analyzing power. Further the magnitude of the first maximum (minimum) in the calculated analyzing power decreases (increases) with the addition of neutrons both for Zr and Sn isotopes reflecting the weakening of the spin-orbit interaction.

  14. Constraining interactions mediated by axion-like particles with ultracold neutrons

    NASA Astrophysics Data System (ADS)

    Afach, S.; Ban, G.; Bison, G.; Bodek, K.; Burghoff, M.; Daum, M.; Fertl, M.; Franke, B.; Grujić, Z. D.; Hélaine, V.; Kasprzak, M.; Kermaïdic, Y.; Kirch, K.; Knowles, P.; Koch, H.-C.; Komposch, S.; Kozela, A.; Krempel, J.; Lauss, B.; Lefort, T.; Lemière, Y.; Mtchedlishvili, A.; Naviliat-Cuncic, O.; Piegsa, F. M.; Pignol, G.; Prashanth, P. N.; Quéméner, G.; Rebreyend, D.; Ries, D.; Roccia, S.; Schmidt-Wellenburg, P.; Schnabel, A.; Severijns, N.; Voigt, J.; Weis, A.; Wyszynski, G.; Zejma, J.; Zenner, J.; Zsigmond, G.

    2015-05-01

    We report a new limit on a possible short range spin-dependent interaction from the precise measurement of the ratio of Larmor precession frequencies of stored ultracold neutrons and 199Hg atoms confined in the same volume. The measurement was performed in a ∼ 1μT vertical magnetic holding field with the apparatus searching for a permanent electric dipole moment of the neutron at the Paul Scherrer Institute. A possible coupling between freely precessing polarized neutron spins and unpolarized nucleons of the wall material can be investigated by searching for a tiny change of the precession frequencies of neutron and mercury spins. Such a frequency change can be interpreted as a consequence of a short range spin-dependent interaction that could possibly be mediated by axions or axion-like particles. The interaction strength is proportional to the CP violating product of scalar and pseudoscalar coupling constants gSgP. Our result confirms limits from complementary experiments with spin-polarized nuclei in a model-independent way. Limits from other neutron experiments are improved by up to two orders of magnitude in the interaction range of 10-6 < λ <10-4m.

  15. Interactive Graphic User Interface to View Neutron and Gamma-Ray Interaction Cross Sections.

    Energy Science and Technology Software Center (ESTSC)

    2001-12-20

    Version 00 VIEW-CXS is an interactive, user-friendly interface to graphically view neutron and gamma-ray cross-sections of isotopes available in different data libraries. The names of isotopes for which the cross-sections are available is shown in a data base grid on the selection of a particular library. Routines have been developed in Visual Basic 6.0 to retrieve required information from each of the binary files or random access files. The present program can fetch data from:more » 1) ACE random access file used with MCNP code, 2) AMPX binary file used with KENO code, 3) ANISN group cross-sections used with discrete ordinate codes. It is possible to compare the data of cross-sections for any isotope from selected libraries. Besides it is possible to extract a particular nuclear reaction cross-section from ACE library files. Context sensitive help is an attractive feature of the program and aids the novice user to extract the required data.« less

  16. Self-Consistent Criteria for Evaluation of Neutron Interaction

    SciTech Connect

    Henry H.F,Newlon C.E.,Knight J.R.

    2007-08-02

    New safe interaction criteria for containers of fissionable materials handled at the Oak Ridge Gaseous Diffusion Plant have been developed on the basis of an interaction theory using the basic concepts of a safe solid angle subtended by interacting containers, and the multiplication factor as determined by two-group theory for an individually safe containers The calculated results agree satisfactorily with experimental data obtained with identical interacting units involving both cylinders and slabs containing highly enriched uranium, the core compositions of which were varied between H/U-235 atomic ratios of 44.3 and 337. The application of the derived interaction criteria to items containing material with low moderation or low U-235 assay, and to containers for which nuclear safety is dependent upon control of the U-235 mass or U-235 concentration is discussed.

  17. Neutron Vibrational Spectroscopy and modeling of polymer/dopant interactions

    NASA Astrophysics Data System (ADS)

    Moule, Adam; Harrelson, Thomas; Cheng, Yongqiang; Ramirez-Cuesta, Anibal; Faller, Roland; Huang, David

    Neutron vibrational spectroscopy (VISION and ORNL) is a powerful technique to determine the configurations of organic species in amorphous samples. We apply this technique to samples of the semiconducting polymer regio-regular P3HT to determine the molecular configurations outside of the crystalline domains, which have never been investigated. Application of density functional theory modeling using crystal field theory and for the single molecule approach yield a variety of configurations of the polymer backbone and side chains. These results demonstrate that only 1% of the volume corresponds to the assumed crystal structure solved using x-ray diffraction. In addition we investigate the configurations of P3HT doped with the molecular dopant F4TCNQ and determine that the charging of the polymer backbone leads to increased side chain stiffness. These results have significant implications for design of organic electronic devices based on thiophenes.

  18. Dense Plasma Focus Fusion Neutron Sources Progress at NSTec, September 2011

    SciTech Connect

    Hagen, E. C.

    2011-07-02

    A number of dense plasma focus (DPF) sources are introduced, including their operating characteristics and current activities. Neutron resonance spectroscopy is discussed and the feasibility of using DPF for neutron sources is considered.

  19. Neutron scattering studies in the actinide region. Progress report, August 1, 1988--July 31, 1991

    SciTech Connect

    Beghian, L.E.; Kegel, G.H.R.

    1991-08-01

    During the report period we have investigated the following areas: Neutron elastic and inelastic scattering measurements on {sup 14}N, {sup 181}Ta, {sup 232}Th, {sup 238}U and {sup 239}Pu; Prompt fission spectra for {sup 232}Th, {sup 235}U, {sup 238}U and {sup 239}Pu; Theoretical studies of neutron scattering; Neutron filters; New detector systems; and Upgrading of neutron target assembly, data acquisition system, and accelerator/beam-line apparatus.

  20. Neutron-Antineutron oscillation as a test of a New Interaction

    NASA Astrophysics Data System (ADS)

    Addazi, A.

    2015-01-01

    We propose to search Neutron-Antineutron transitions, in condition of strong magnetic field rather than suppressed one. It is commonly accepted that such an oscillation has to be searched in no magnetic field conditions (for instance, the experiment have to be shielded by the Earth's magnetic field). But, Neutron (and Antineutron) could be coupled to a 5th force spin-independent background Φ generated by the Earth, as eV Φ bar{{n}} γ^{{0}}_{} n . The background condensate simulates a difference in neutron and antineutron masses, in other words a CPT violation. Compatible with Equivalence Principle (EP) limits for a neutron inside nuclei, the 5th force background could be as high as Φ ˜ 10-11÷10-10 eV . As consequence, the transition probability is amplified rather than suppressed with a magnetic field of B ˜ 1-10 Gauss , if we consider neutrons immersed in a background saturating the EP limit. There are intriguing connections among: the existence of a Majorana neutron, Baryon violations Beyond the Standard Model, the Matter-Antimatter asymmetry in our Universe (Baryogenesis and Leptogenesis), the possibility of a new fifth force interaction, the possible apparent violation of the Equivalence Principle and the CPT. These strongly motivate an improvement of our current best limits in n- bar{{n}} physics.

  1. Direct Observation Of Nanoparticle-Surfactant Interactions Using Small Angle Neutron Scattering

    NASA Astrophysics Data System (ADS)

    Kumar, Sugam; Aswal, V. K.

    2010-12-01

    Interactions of anionic silica nanoparticles with anionic, cationic and nonionic surfactants have directly been studied by contrast variation small angle neutron scattering (SANS). The measurements are performed on 1 wt% of both silica nanoparticles and surfactants of anionic sodium dodecyle sulphate (SDS), cationic dodecyltrimethyl ammonium bromide (DTAB) and non-ionic polyoxyethylene 10 lauryl ether (C12E10) in aqueous solution. We show that there is no direct interaction in the case of SDS with silica particles, whereas strong interaction for DTAB leads to the aggregation of silica particles. The interaction of C12E10 is found through the micelles adsorbed on the silica particles.

  2. Few-Nucleon Research at TUNL: Probing Two- and Three-Nucleon Interactions with Neutrons

    NASA Astrophysics Data System (ADS)

    Howell, C. R.; Tornow, W.; Witała, H.

    2016-03-01

    The central goal of few-nucleon research at the Triangle Universities Nuclear Laboratory (TUNL) is to perform measurements that contribute to advancing ab-initio calculations of nuclear structure and reactions. The program aims include evaluating theoretical treatments of few-nucleon reaction dynamics through strategically comparing theory predictions to data, determining properties of the neutron-neutron interaction that are not accessible in two-nucleon reactions, and searching for evidence of longrange features of three-nucleon interactions, e.g., spin and isospin dependence. This paper will review studies of three- and four-nucleon systems at TUNL conducted using unpolarized and polarized neutron beams. Measurements of neutron-induced reactions performed by groups at TUNL over the last six years are described in comparison with theory predictions. The results are discussed in the context of the program goals stated above. Measurements of vector analyzing powers for elastic scattering in A=3 and A=4 systems, differential cross sections for neutron-deuteron elastic scattering and neutrondeuteron breakup in several final-state configurations are described. The findings from these studies and plans for the coming three years are presented in the context of worldwide activities in this front, in particular, research presented in this session.

  3. Secondary neutron-production cross sections from heavy-ion interactions in composite targets

    SciTech Connect

    Heilbronn, L.; Iwata, Y.; Murakami, T.; Iwase, H.; Sato, H.; Nakamura, T.; Ronningen, R.M.; Ieki, K.; Gudowska, I.; Sobolevsky, N.

    2006-02-15

    Secondary neutron-production cross sections have been measured from interactions of 290 MeV/nucleon C and 600 MeV/nucleon Ne in a target composed of simulated Martian regolith and polyethylene, and from 400 MeV/nucleon Ne interactions in wall material from the International Space Station. The data were measured between 5 deg. and 80 deg. in the laboratory. We report the double-differential cross sections, angular distributions, and total neutron-production cross sections from all three systems. The spectra from all three systems exhibit behavior previously reported in other heavy-ion neutron-production experiments, namely, a peak at forward angles near the energy corresponding to the beam velocity, with the remaining spectra generated by pre-equilibrium and equilibrium processes. The double-differential cross sections are fitted with a moving-source parametrization. Also reported are the data without corrections for neutron flux attenuation in the target and other intervening materials and for neutron production in nontarget materials near the target position. These uncorrected spectra are compared with SHIELD-HIT and PHITS transport model calculations. The transport model calculations reproduce the spectral shapes well but, on average, underestimate the magnitudes of the cross sections.

  4. Neutron interaction with doubly-magic {sup 40}Ca

    SciTech Connect

    Smith, A.B. |

    1993-11-01

    Differential neutron elastic and inelastic-scattering cross sections of elemental calcium (96.94% doubly-magic {sup 40}Ca) are measured from {approx} 1.5 to 10 MeV with sufficient detail to determine their energy-averaged behavior in the highly fluctuating environment. These results, combined with values previously reported in the literature, are assessed in the contexts of optical-statistical, dispersive optical, and coupled-channels models, applicable to the energy domain 0 {yields} 30+ MeV, with particular emphasis on the lower energies where the interpretations are sensitive to the dispersion relationship and the effective mass. The interpretations define the energy dependencies of the potential parameters (resolving prior ambiguities), suggest that previous estimates of the prominent low-energy (n,p) and (n,a) reactions are too large, reasonably describe observables to at least 30 MeV, and provide a vehicle for extrapolation into the bound-state regime that gives a good description of hole- and particle-state binding energies. The resulting real-potential parameters (in contrast to many {sup 40}Ca parameters reported in the literature) are shown consistent with global trends.

  5. Secondary Neutron Production from Space Radiation Interactions: Advances in Model and Experimental Data Base Development

    NASA Technical Reports Server (NTRS)

    Heilbronn, Lawrence H.; Townsend, Lawrence W.; Braley, G. Scott; Iwata, Yoshiyuki; Iwase, Hiroshi; Nakamura, Takashi; Ronningen, Reginald M.; Cucinotta, Francis A.

    2003-01-01

    For humans engaged in long-duration missions in deep space or near-Earth orbit, the risk from exposure to galactic and solar cosmic rays is an important factor in the design of spacecraft, spacesuits, and planetary bases. As cosmic rays are transported through shielding materials and human tissue components, a secondary radiation field is produced. Neutrons are an important component of that secondary field, especially in thickly-shielded environments. Calculations predict that 50% of the dose-equivalent in a lunar or Martian base comes from neutrons, and a recent workshop held at the Johnson Space Center concluded that as much as 30% of the dose in the International Space Station may come from secondary neutrons. Accelerator facilities provide a means for measuring the effectiveness of various materials in their ability to limit neutron production, using beams and energies that are present in cosmic radiation. The nearly limitless range of beams, energies, and target materials that are present in space, however, means that accelerator-based experiments will not provide a complete database of cross sections and thick-target yields that are necessary to plan and design long-duration missions. As such, accurate nuclear models of neutron production are needed, as well as data sets that can be used to compare with, and verify, the predictions from such models. Improvements in a model of secondary neutron production from heavy-ion interactions are presented here, along with the results from recent accelerator-based measurements of neutron-production cross sections. An analytical knockout-ablation model capable of predicting neutron production from high-energy hadron-hadron interactions (both nucleon-nucleus and nucleus-nucleus collisions) has been previously developed. In the knockout stage, the collision between two nuclei result in the emission of one or more nucleons from the projectile and/or target. The resulting projectile and target remnants, referred to as

  6. Neutron scatter studies of chromatin structures related to functions. Technical progress report, November 1, 1991--May 15, 1992

    SciTech Connect

    Bradbury, E.M.

    1992-11-01

    Despite of setbacks in the lack of neutrons for the proposed We have made considerable progress in chromatin reconstitution with the VLR histone H1/H5 and in understanding the dynamics of nucleosomes. A ferromagnetic fluid was developed to align biological molecules for structural studies using small-angle-neutron-scattering. We have also identified and characterized an intrinsically bent DNA region flanking the RNA polymerase I binding site of the ribosomal RNA gene in Physarum Polycephalum. Finally projects in progress are in the areas of studying the interatctions of histone H4 amino-terminus peptide 1-23 and acetylated 1-23 peptide with DNA using thermal denaturation; study of GGAAT repeats found in human centromeres using high resolution Nuclear magnetic Resonance and nuclease sentivity assay; and the role of histones and other sperm specific proteins with sperm chromatin.

  7. Uncertainty analysis of 208Pb neutron skin predictions with chiral interactions

    DOE PAGESBeta

    Sammarruca, Francesca

    2015-09-14

    Here, we report predictions for the neutron skin in 208Pb using chiral two- and three-body interactions at increasing orders of chiral effective field theory and varying resolution scales. Closely related quantities, such as the slope of the symmetry energy, are also discussed. As a result, the sensitivity of the skin to just pure neutron matter pressure when going from order 2 to order 4 of chiral effective theory is singled out in a set of calculations that employ an empirical equation of state for symmetric nuclear matter.

  8. Uncertainty analysis of 208Pb neutron skin predictions with chiral interactions

    SciTech Connect

    Sammarruca, Francesca

    2015-09-14

    Here, we report predictions for the neutron skin in 208Pb using chiral two- and three-body interactions at increasing orders of chiral effective field theory and varying resolution scales. Closely related quantities, such as the slope of the symmetry energy, are also discussed. As a result, the sensitivity of the skin to just pure neutron matter pressure when going from order 2 to order 4 of chiral effective theory is singled out in a set of calculations that employ an empirical equation of state for symmetric nuclear matter.

  9. Constraints on Neutron Star Radii Based on Chiral Effective Field Theory Interactions

    SciTech Connect

    Hebeler, K.; Lattimer, J. M.; Pethick, C. J.; Schwenk, A.

    2010-10-15

    We show that microscopic calculations based on chiral effective field theory interactions constrain the properties of neutron-rich matter below nuclear densities to a much higher degree than is reflected in commonly used equations of state. Combined with observed neutron star masses, our results lead to a radius R=9.7-13.9 km for a 1.4M{sub {center_dot}} star, where the theoretical range is due, in about equal amounts, to uncertainties in many-body forces and to the extrapolation to high densities.

  10. Ion heating and thermonuclear neutron production from high-intensity subpicosecond laser pulses interacting with underdense plasmas.

    PubMed

    Fritzler, S; Najmudin, Z; Malka, V; Krushelnick, K; Marle, C; Walton, B; Wei, M S; Clarke, R J; Dangor, A E

    2002-10-14

    Thermonuclear fusion neutrons produced by D(d,n)3He reactions have been measured from the interaction of a high-intensity laser with underdense deuterium plasmas. For an input laser energy of 62 J, more than (1.0+/-0.2)x10(6) neutrons with a mean kinetic energy of (2.5+/-0.2) MeV were detected. These neutrons were observed to have an isotropic angular emission profile. By comparing these measurements with those using a secondary solid CD2 target it was determined that neutrons are produced from direct ion heating during this interaction. PMID:12398731

  11. Interactions between endothelial cells and T cells modulate responses to mixed neutron/gamma radiation.

    PubMed

    Cary, Lynnette H; Noutai, Daniel; Salber, Rudolph E; Williams, Margaret S; Ngudiankama, Barbara F; Whitnall, Mark H

    2014-06-01

    Detonation of an improvised nuclear device near a population center would cause significant casualties from the acute radiation syndrome (ARS) due to exposure to mixed neutron/gamma fields (MF). The pathophysiology of ARS involves inflammation, microvascular damage and alterations in immune function. Interactions between endothelial cells (EC) and hematopoietic cells are important not only for regulating immune cell traffic and function, but also for providing the microenvironment that controls survival, differentiation and migration of hematopoietic stem and progenitor cells in blood-forming tissues. Endothelial cells/leukocyte interactions also influence tumor progression and the results of anticancer therapies. In this study, we hypothesized that irradiation of endothelial cells would modulate their effects on hematopoietic cells and vice versa. Human umbilical vein endothelial cells (HUVEC) and immortalized T lymphocytes (Jurkat cells) were cultured individually and in co-culture after exposure to mixed fields. Effects of nonirradiated cells were compared to effects of irradiated cells and alterations in signaling pathways were determined. Mitogen-activated protein kinases (MAPKs) p38 and p44/42 (ERK1/2) in HUVEC exhibited higher levels of phosphorylated protein after exposure to mixed field radiation. IL-6, IL-8, G-CSF, platelet derived growth factor (PDGF) and angiopoietin 2 (ANG2) protein expression were upregulated in HUVEC by exposure to mixed field radiation. PCR arrays using HUVEC mRNA revealed alterations in gene expression after exposure to mixed fields and/or co-culture with Jurkat cells. The presence of HUVEC also influenced the function of Jurkat cells. Nonirradiated Jurkat cells showed an increase in proliferation when co-cultured with nonirradiated HUVEC, and a decrease in proliferation when co-cultured with irradiated HUVEC. Additionally, nonirradiated Jurkat cells incubated in media from irradiated HUVEC exhibited upregulation of activated

  12. Neutrons scattering studies in the actinide region. Progress report, August 1, 1991--July 31, 1992

    SciTech Connect

    Kegel, G.H.R.; Egan, J.J.

    1992-09-01

    During the report period were investigated the following areas: prompt fission neutron energy spectra measurements; neutron elastic and inelastic scattering from {sup 239}Pu; neutron scattering in {sup 181}Ta and {sup 197}Au; response of a {sup 235}U fission chamber near reaction thresholds; two-parameter data acquisition system; ``black`` neutron detector; investigation of neutron-induced defects in silicon dioxide; and multiple scattering corrections. Four Ph.D. dissertations and one M.S. thesis were completed during the report period. Publications consisted of three journal articles, four conference papers in proceedings, and eleven abstracts of presentations at scientific meetings. There are currently four Ph.D. and one M.S. candidates working on dissertations directly associated with the project. In addition, three other Ph.D. candidates are working on dissertations involving other aspects of neutron physics in this laboratory.

  13. The application of inelastic neutron scattering to investigate the interaction of methyl propanoate with silica.

    PubMed

    McFarlane, Andrew R; Geller, Hannah; Silverwood, Ian P; Cooper, Richard I; Watkin, David J; Parker, Stewart F; Winfield, John M; Lennon, David

    2016-06-29

    A modern industrial route for the manufacture of methyl methacrylate involves the reaction of methyl propanoate and formaldehyde over a silica-supported Cs catalyst. Although the process has been successfully commercialised, little is known about the surface interactions responsible for the forward chemistry. This work concentrates upon the interaction of methyl propanoate over a representative silica. A combination of infrared spectroscopy, inelastic neutron scattering, DFT calculations, X-ray diffraction and temperature-programmed desorption is used to deduce how the ester interacts with the silica surface. PMID:27182815

  14. The evolution of collectivity in nuclei and the proton-neutron interaction

    NASA Astrophysics Data System (ADS)

    Casten, R. F.; Cakirli, R. B.

    2016-03-01

    We survey the evolution of nuclear structure with N and Z, focusing on collective behavior and its relation to the underlying single particle configurations, and their interactions. We exploit a number of complementary observables, from multiple perspectives, and interpret the observed behavior in terms of simple models. The paper includes a discussion of key observables, how to evaluate theories, and some of the dangers of statistical tests. We conclude with a discussion of schemes to predict the properties of unknown nuclei, founded on the importance of valence proton-neutron interactions, and correlate empirical values for these interactions with the onset of collectivity and deformation.

  15. Neutron production by fast protons from ultraintense laser-plasma interactions

    SciTech Connect

    Yang, J.M.; McKenna, P.; Ledingham, K.W.D.; McCanny, T.; Robson, L.; Shimizu, S.; Singhal, R.P.; Wei, M.S.; Krushelnick, K.; Clarke, R.J.; Neely, D.; Norreys, P.A.

    2004-12-01

    Tens of MeV proton beams have been generated by interactions of the VULCAN petawatt laser with foil targets and used to induce nuclear reactions in zinc and boron samples. The numbers of {sup 11}C, {sup 66}Ga, {sup 67}Ga, {sup 68}Ga, {sup 61}Cu, {sup 62}Zn, {sup 63}Zn, and {sup 69m}Zn nuclei have been measured and used to determine the proton energy spectrum. It is known that (p,n) reactions provide an important method for producing neutron sources and in the present experiment up to {approx}10{sup 9} neutrons sr{sup -1} have been generated via {sup 11}B(p,n){sup 11}C reactions. Using experimentally determined proton energy spectra, the production of neutrons via (p,n) reactions in various targets has been simulated, to quantify neutron pulse intensities and energy spectra. It has been shown that as high as 4x10{sup 9} neutrons sr{sup -1} per laser pulse can be generated via {sup 7}Li(p,n){sup 7}B reactions using the present VULCAN petawatt laser-pulse conditions.

  16. Measurement of Neutrons Produced by Beam-Target Interactions via a Coaxial Plasma Accelerator

    NASA Astrophysics Data System (ADS)

    Cauble, Scott; Poehlmann, Flavio; Rieker, Gregory; Cappelli, Mark

    2011-10-01

    This poster presents a method to measure neutron yield from a coaxial plasma accelerator. Stored electrical energies between 1 and 19 kJ are discharged within a few microseconds across the electrodes of the coaxial gun, accelerating deuterium gas samples to plasma beam energies well beyond the keV energy range. The focus of this study is to examine the interaction of the plasma beam with a deuterated target by designing and fabricating a detector to measure neutron yield. Given the strong electromagnetic pulse associated with our accelerator, indirect measurement of neutrons via threshold-dependent nuclear activation serves as both a reliable and definitive indicator of high-energy particles for our application. Upon bombardment with neutrons, discs or stacks of metal foils placed near the deuterated target undergo nuclear activation reactions, yielding gamma-emitting isotopes whose decay is measured by a scintillation detector system. By collecting gamma ray spectra over time and considering nuclear cross sections, the magnitude of the original neutron pulse is inferred.

  17. Progress in development of neutron energy spectrometer for deuterium plasma operation in KSTAR

    SciTech Connect

    Tomita, H. Yamashita, F.; Nakayama, Y.; Morishima, K.; Yamamoto, Y.; Sakai, Y.; Hayashi, S.; Kawarabayashi, J.; Iguchi, T.; Cheon, M. S.; Isobe, M.; Ogawa, K.

    2014-11-15

    Two types of DD neutron energy spectrometer (NES) are under development for deuterium plasma operation in KSTAR to understand behavior of beam ions in the plasma. One is based on the state-of-the-art nuclear emulsion technique. The other is based on a coincidence detection of a recoiled proton and a scattered neutron caused by an elastic scattering of an incident DD neutron, which is called an associated particle coincidence counting-NES. The prototype NES systems were installed at J-port in KSTAR in 2012. During the 2012 and 2013 experimental campaigns, multiple shots-integrated neutron spectra were preliminarily obtained by the nuclear emulsion-based NES system.

  18. Study on the impact of pair production interaction on D-T controllable neutron density logging.

    PubMed

    Yu, Huawei; Zhang, Li; Hou, Boran

    2016-05-01

    This paper considers the effect of pair production on the precision of D-T controllable neutron source density logging. Firstly, the principle of the traditional density logging and pulsed neutron density logging are analyzed and then gamma ray cross sections as a function of energy for various minerals are compared. In addition, the advantageous areas of Compton scattering and pair production interactions on high-energy gamma ray pulse height spectrum and the errors of a controllable source density measurement are studied using a Monte Carlo simulation method. The results indicate that density logging mainly utilizes the Compton scattering of gamma rays, while the attenuation of neutron induced gamma rays and the precision of neutron gamma density measurements are affected by pair production interactions, particularly in the gamma rays with energy higher than 2MeV. By selecting 0.2-2MeV energy range and performing proper lithology correction, the effect of pair production can be eliminated effectively and the density measurement error can be rendered close to the precision of chemical source density logging. PMID:26945102

  19. Surface physics with cold and thermal neutron reflectometry. Progress report, April 1, 1991--September 30, 1993

    SciTech Connect

    Steyerl, A.

    1993-09-01

    Within the past two and one half years of the project ``Surface Physics With Cold and Thermal Neutron Reflectometry`` a new thermal neutron reflectometer was constructed at the Rhode Island Nuclear Science Center (RINSC). It was used to study various liquid and solid surfaces. Furthermore, neutron reflection experiments were be un at different laboratories in collaboration with Dr. G.P. Fetcher (at Argonne National Laboratory), Dr. T. Russell (IBM Almaden) and Drs. S.K. Satija and A. Karim (at the National Institute for Standards and Technology). The available resources allowed partial construction of an imaging system for ultracold neutrons. It is expected to provide an extremely high resolution in momentum and energy transfer in surface studies using neutron reflectometry. Much of the work reported here was motivated by the possibility of later implementation at the planned Advanced Neutron Source at Oak Ridge. In a separate project the first concrete plans for an intense source of ultracold neutrons for the Advanced Neutron Source were developed.

  20. Influence of the isovector-scalar channel interaction on neutron star matter with hyperons and antikaon condensation

    NASA Astrophysics Data System (ADS)

    Shao, Guo-Yun; Liu, Yu-Xin

    2010-11-01

    The relativistic mean field approach including isovector-scalar channel (i.e., exchanging δ mesons) interaction is taken to study the properties of neutron star matter including hyperons and antikaon condensation. For hyperonic neutron stars, it shows that the δ-meson channel interaction stiffens the equation of state at lower densities but it softens the equation of state after hyperons appear. This leads to the neutron star having a lower central density and a larger radius than the one with the same mass but without the δ-meson channel interaction. For neutron star matter including both hyperons and antikaon condensation, the δ-meson channel interaction increases the onset density of the antikaon condensation. At the same time, the stability of the kaonic neutron star and its dependence on the kaon optical potential are discussed. For stable kaonic neutron stars with larger radii, those with the inclusion of the δ-meson channel interaction have larger masses than those without the δ-meson interaction, but the result is reversed for those with smaller radii. Calculated results are also compared with neutron star observations. Constraints on the model parameters are then provided.

  1. US progress on the development of CR-39 based neutron dosimeters

    SciTech Connect

    Hadlock, D.E.

    1987-06-01

    Historically at US nuclear facilities, two types of personnel neutron dosimeters have been in routine use: nuclear track emulsion-Type A (NTA) film and thermoluminescent dosimeter (TLD)-albedo. Both of these dosimeters have energy-dependent responses. Therefore, the neutron energy spectra must be known, to interpret the dosimeter results properly. A new state-of-the-art dosimetry system has been developed within the US Department of Energy (US DOE) Personnel Neutron Dosimeter Evaluation and Upgrade Program. This system is called the combination thermoluminescent dosimeter/track etch dosimeter (TLD/TED). This paper briefly describes US DOE research currently being conducted to further enhance the TED portion of the combination TLD/TED system. The research areas involved include dose sensitivity, neutron energy range, specialized radiators, self-developing dosimeters, and neutron spectrometry. 1 fig., 1 tab.

  2. A Search for Nonstandard Neutron Spin Interactions using Dual Species Xenon Nuclear Magnetic Resonance

    NASA Astrophysics Data System (ADS)

    Bulatowicz, Michael; Larsen, Michael; Mirijanian, James; Fu, Changbo; Yan, Haiyang; Smith, Erick; Snow, Mike; Walker, Thad

    2012-06-01

    NMR measurements using polarized noble gases can constrain possible exotic spin-dependent interactions involving nucleons. A differential measurement insensitive to magnetic field fluctuations can be performed using a mixture of two polarized species with different ratios of nucleon spin to magnetic moment. We used the NMR cell test station at Northrop Grumman Corporation (NGC) (developed to evaluate dual species xenon vapor cells for the Nuclear Magnetic Resonance Gyroscope) to search for NMR frequency shifts of xenon-129 and xenon-131 when a non-magnetic zirconia rod is modulated near the NMR cell. We simultaneously excited both Xe isotopes and detected free-induction-decay transients. In combination with theoretical calculations of the neutron spin contribution to the nuclear angular momentum, the measurements put a new upper bound on possible monopole-dipole interactions of the neutron for ranges around 1mm. This work is supported by the NGC Internal Research and Development (IRAD) funding, the Department of Energy, and the NSF.

  3. Nuclear gamma rays from compact objects. [nuclear interactions around neutron stars and black holes

    NASA Technical Reports Server (NTRS)

    Lingenfelter, R. E.; Higdon, J. C.; Ramaty, R.

    1978-01-01

    Accreting compact objects may be important gamma ray line sources and may explain recent observations of celestial gamma-ray line emission from a transient source in the direction of the galactic anti-center, from the galactic center, and possibly from the radio galaxy Centaurus A. The identification of the lines from the transient source requires a strong redshift. Such a redshift permits the identification of these lines with the most intense nuclear emission lines expected in nature, positron annihilation, and neutron capture on hydrogen and iron. Their production as a result of nuclear interactions in accreting gas around a neutron star is proposed. The gamma-ray line emission from the galactic center and possibly Centaurus A appears to have a surprisingly high luminosity, amounting to perhaps as much as 10% of the total luminosity of these sources. Such high gamma-ray line emission efficiencies could result from nuclear interactions in accreting gas around a massive black hole.

  4. Prospect for characterizing interacting soft colloidal structures using spin-echo small angle neutron scattering

    SciTech Connect

    Chen, Wei-Ren; Herwig, Kenneth W; Li, Xin; Liu, Emily; Liu, Yun; Pynn, Roger; Robertson, J. L.; Shew, Chwen-Yang; Smith, Gregory Scott

    2011-01-01

    Spin-echo small angle neutron scattering (SESANS) presents a new experimental tool for structural investigation. Regarding the material study using neutron scattering it is of particular novel: Due to the action of spin echo encoding, SESANS registers the spatial correlations function in real space, which is distinct from the measurables of conventional elastic neutron scattering techniques. To make viable the use of SESANS in structural characterization, particularly for the interacting colloidal suspensions, we have conducted a theoretical study focusing on understanding the essential features of the SESANS correlation functions obtained from different model systems consisting of particles with uniform density profile (J. Chem. Phys. 132, 174509 (2010)). Within the same framework, we continue to explore the prospect of using SESANS to investigate the structural characteristics of colloid systems consisting of particle with non-uniform intra-particle mass distribution. As an example, a Gaussian model of interacting soft colloids is put forward in our mean-field calculations to investigate the manifestation of structural softness in SESANS measurement. The exploration shows a characteristically different SESANS correlation function for interacting soft colloids, in comparison to that of the referential uniform hard sphere system, due to the Abel transform imbedded in the mathematical formalism bridging the SESANS spectra and the spatial autocorrelation.

  5. Progress in development of the neutron profile monitor for the large helical device.

    PubMed

    Ogawa, K; Isobe, M; Takada, E; Uchida, Y; Ochiai, K; Tomita, H; Uritani, A; Kobuchi, T; Takeiri, Y

    2014-11-01

    The neutron profile monitor stably operated at a high-count-rate for deuterium operations in the Large Helical Device has been developed to enhance the research on the fast-ion confinement. It is composed of a multichannel collimator, scintillation-detectors, and a field programmable gate array circuit. The entire neutron detector system was tested using an accelerator-based neutron generator. This system stably acquires the pulse data without any data loss at high-count-rate conditions up to 8 × 10(5) counts per second. PMID:25430289

  6. Progress in development of the neutron profile monitor for the large helical device

    SciTech Connect

    Ogawa, K. Kobuchi, T.; Isobe, M.; Takeiri, Y.; Takada, E.; Uchida, Y.; Ochiai, K.; Tomita, H.; Uritani, A.

    2014-11-15

    The neutron profile monitor stably operated at a high-count-rate for deuterium operations in the Large Helical Device has been developed to enhance the research on the fast-ion confinement. It is composed of a multichannel collimator, scintillation-detectors, and a field programmable gate array circuit. The entire neutron detector system was tested using an accelerator-based neutron generator. This system stably acquires the pulse data without any data loss at high-count-rate conditions up to 8 × 10{sup 5} counts per second.

  7. SABRINA - An interactive geometry modeler for MCNP (Monte Carlo Neutron Photon)

    SciTech Connect

    West, J.T.; Murphy, J.

    1988-01-01

    SABRINA is an interactive three-dimensional geometry modeler developed to produce complicated models for the Los Alamos Monte Carlo Neutron Photon program MCNP. SABRINA produces line drawings and color-shaded drawings for a wide variety of interactive graphics terminals. It is used as a geometry preprocessor in model development and as a Monte Carlo particle-track postprocessor in the visualization of complicated particle transport problem. SABRINA is written in Fortran 77 and is based on the Los Alamos Common Graphics System, CGS. 5 refs., 2 figs.

  8. Fast-neutron interactions with /sup 182/W, /sup 184/W and /sup 186/W

    SciTech Connect

    Guenther, P.T.; Smith, A.B.; Whalen, J.F.

    1981-06-01

    Neutron total cross sections of /sup 182/W, /sup 184/W and /sup 186/W are measured from approx. = 0.3 to 5.0 MeV at intervals of less than or equal to 50 keV to accuracies of 1 to 3%. Differential neutron elastic- and inelastic-scattering cross sections of the same three isotopes are measured at scattering angles in the range 20 to 160/sup 0/ and at incident-neutron energy intervals of approx. = 100 keV from 1.5 to 4.0 MeV. Approximately thirty scattered-neutron groups are observed for each of the isotopes. Prominent of these are excitations attributed to collective rotational and vibrational bands. The experimental results are interpreted in terms of optical-statistical and coupled-channels models with particular attention to the direct excitation of ground-state-rotational and ..beta..- and ..gamma..-vibrational bands. The strengths of the direct interactions and the magnitudes of the collective deformations are inferred from the interpretations and compared with similar values previously reported elsewhere. The experimental results are used to deduce experimentally-based evaluated data sets for /sup 182/W, /sup 184/W and /sup 186/W over the energy range 0.1 - approx. = 5.0 MeV.

  9. Neutron yields and effective doses produced by Galactic Cosmic Ray interactions in shielded environments in space.

    PubMed

    Heilbronn, Lawrence H; Borak, Thomas B; Townsend, Lawrence W; Tsai, Pi-En; Burnham, Chelsea A; McBeth, Rafe A

    2015-11-01

    In order to define the ranges of relevant neutron energies for the purposes of measurement and dosimetry in space, we have performed a series of Monte Carlo transport model calculations that predict the neutron field created by Galactic Cosmic Ray interactions inside a variety of simple shielding configurations. These predictions indicate that a significant fraction of the neutron fluence and neutron effective dose lies in the region above 20 MeV up to several hundred MeV. These results are consistent over thicknesses of shielding that range from very thin (2.7 g/cm(2)) to thick (54 g/cm(2)), and over both shielding materials considered (aluminum and water). In addition to these results, we have also investigated whether simplified Galactic Cosmic Ray source terms can yield predictions that are equivalent to simulations run with a full GCR source term. We found that a source using a GCR proton and helium spectrum together with a scaled oxygen spectrum yielded nearly identical results to a full GCR spectrum, and that the scaling factor used for the oxygen spectrum was independent of shielding material and thickness. Good results were also obtained using a GCR proton spectrum together with a scaled helium spectrum, with the helium scaling factor also independent of shielding material and thickness. Using a proton spectrum alone was unable to reproduce the full GCR results. PMID:26553642

  10. Progress on performance assessment of ITER enhanced heat flux first wall technology after neutron irradiation

    NASA Astrophysics Data System (ADS)

    Hirai, T.; Bao, L.; Barabash, V.; Chappuis, Ph; Eaton, R.; Escourbiac, F.; Giqcuel, S.; Merola, M.; Mitteau, R.; Raffray, R.; Linke, J.; Loewenhoff, Th; Pintsuk, G.; Wirtz, M.; Boomstra, D.; Magielsen, A.; Chen, J.; Wang, P.; Gervash, A.; Safronov, V.

    2016-02-01

    ITER first wall (FW) panels are irradiated by energetic neutrons during the nuclear phase. Thus, an irradiation and high heat flux testing programme is undertaken by the ITER organization in order to evaluate the effects of neutron irradiation on the performance of enhanced heat flux (EHF) FW components. The test campaign includes neutron irradiation (up to 0.6-0.8 dpa at 200 °C-250 °C) of mock-ups that are representative of the final EHF FW panel design, followed by thermal fatigue tests (up to 4.7 MW m-2). Mock-ups were manufactured by the same manufacturing process as proposed for the series production. After a pre-irradiation thermal screening, eight mock-ups will be selected for the irradiation campaigns. This paper reports the preparatory work of HHF tests and neutron irradiation, assessment results as well as a brief description of mock-up manufacturing and inspection routes.

  11. Studying protein-protein interactions: progress, pitfalls and solutions.

    PubMed

    Hayes, Sheri; Malacrida, Beatrice; Kiely, Maeve; Kiely, Patrick A

    2016-08-15

    Signalling proteins are intrinsic to all biological processes and interact with each other in tightly regulated and orchestrated signalling complexes and pathways. Characterization of protein binding can help to elucidate protein function within signalling pathways. This information is vital for researchers to gain a more comprehensive knowledge of cellular networks which can then be used to develop new therapeutic strategies for disease. However, studying protein-protein interactions (PPIs) can be challenging as the interactions can be extremely transient downstream of specific environmental cues. There are many powerful techniques currently available to identify and confirm PPIs. Choosing the most appropriate range of techniques merits serious consideration. The aim of this review is to provide a starting point for researchers embarking on a PPI study. We provide an overview and point of reference for some of the many methods available to identify interactions from in silico analysis and large scale screening tools through to the methods used to validate potential PPIs. We discuss the advantages and disadvantages of each method and we also provide a workflow chart to highlight the main experimental questions to consider when planning cell lysis to maximize experimental success. PMID:27528744

  12. Modeling the Dynamics of Tidally Interacting Binary Neutron Stars up to the Merger.

    PubMed

    Bernuzzi, Sebastiano; Nagar, Alessandro; Dietrich, Tim; Damour, Thibault

    2015-04-24

    The data analysis of the gravitational wave signals emitted by coalescing neutron star binaries requires the availability of an accurate analytical representation of the dynamics and waveforms of these systems. We propose an effective-one-body model that describes the general relativistic dynamics of neutron star binaries from the early inspiral up to the merger. Our effective-one-body model incorporates an enhanced attractive tidal potential motivated by recent analytical advances in the post-Newtonian and gravitational self-force description of relativistic tidal interactions. No fitting parameters are introduced for the description of tidal interaction in the late, strong-field dynamics. We compare the model energetics and the gravitational wave phasing with new high-resolution multiorbit numerical relativity simulations of equal-mass configurations with different equations of state. We find agreement within the uncertainty of the numerical data for all configurations. Our model is the first semianalytical model that captures the tidal amplification effects close to merger. It thereby provides the most accurate analytical representation of binary neutron star dynamics and waveforms currently available. PMID:25955043

  13. [Research in elementary particles and interactions]. Technical progress report

    SciTech Connect

    Adair, R.; Sandweiss, J.; Schmidt, M.

    1992-05-01

    Research of the Yale University groups in the areas of elementary particles and their interactions are outlined. Work on the following topics is reported: development of CDF trigger system; SSC detector development; study of heavy flavors at TPL; search for composite objects produced in relativistic heavy-ion collisions; high-energy polarized lepton-nucleon scattering; rare K{sup +} decays; unpolarized high-energy muon scattering; muon anomalous magnetic moment; theoretical high-energy physics including gauge theories, symmetry breaking, string theory, and gravitation theory; study of e{sup +}e{sup {minus}} interactions with the SLD detector at SLAC; and the production and decay of particles containing charm and beauty quarks.

  14. Intermediate energy neutrons at WNR. Spin-isospin and energy dependence of the NN interaction and the nuclear response

    SciTech Connect

    Taddeucci, T.N.

    1995-02-01

    This report summarizes results of nuclear physics studies using intermediate energy (50-800 MeV) neutron probes carried out over the past five years using the Neutron Time-of-Flight (NTOF) Facility and Optically-Pumped Ion Source (OPPIS) at LAMPF and the `white` neutron source at the Weapons Neutron Research (WNR) facility. LAMPF did significant work in polarization transfer, while WNR took advantage of the wide neutron energy spectrum available to study energy dependent effects. The major focus of experiments with intermediate energy neutron probes for the next five years will be to explore fundamental details of the spin-isospin and energy dependence of the NN interaction and the nuclear response. To achieve this goal, the WNR white neutron source will be used for nucleon-nucleon and nucleon-nucleus interaction studies over a broad continuous range of incident neutron energy. Measurement of polarization observables using polarized targets or polarized beam should be possible, and will add an important extra dimension to these studies.

  15. Progress in Long Scale Length Laser-Plasma Interactions

    SciTech Connect

    Glenzer, S H; Arnold, P; Bardsley, G; Berger, R L; Bonanno, G; Borger, T; Bower, D E; Bowers, M; Bryant, R; Buckman, S; Burkhart, S C; Campbell, K; Chrisp, M P; Cohen, B I; Constantin, G; Cooper, F; Cox, J; Dewald, E; Divol, L; Dixit, S; Duncan, J; Eder, D; Edwards, J; Erbert, G; Felker, B; Fornes, J; Frieders, G; Froula, D H; Gardner, S D; Gates, C; Gonzalez, M; Grace, S; Gregori, G; Greenwood, A; Griffith, R; Hall, T; Hammel, B A; Haynam, C; Heestand, G; Henesian, M; Hermes, G; Hinkel, D; Holder, J; Holdner, F; Holtmeier, G; Hsing, W; Huber, S; James, T; Johnson, S; Jones, O S; Kalantar, D; Kamperschroer, J H; Kauffman, R; Kelleher, T; Knight, J; Kirkwood, R K; Kruer, W L; Labiak, W; Landen, O L; Langdon, A B; Langer, S; Latray, D; Lee, A; Lee, F D; Lund, D; MacGowan, B; Marshall, S; McBride, J; McCarville, T; McGrew, L; Mackinnon, A J; Mahavandi, S; Manes, K; Marshall, C; Mertens, E; Meezan, N; Miller, G; Montelongo, S; Moody, J D; Moses, E; Munro, D; Murray, J; Neumann, J; Newton, M; Ng, E; Niemann, C; Nikitin, A; Opsahl, P; Padilla, E; Parham, T; Parrish, G; Petty, C; Polk, M; Powell, C; Reinbachs, I; Rekow, V; Rinnert, R; Riordan, B; Rhodes, M

    2003-11-11

    The first experiments on the National Ignition Facility (NIF) have employed the first four beams to measure propagation and laser backscattering losses in large ignition-size plasmas. Gas-filled targets between 2 mm and 7 mm length have been heated from one side by overlapping the focal spots of the four beams from one quad operated at 351 nm (3{omega}) with a total intensity of 2 x 10{sup 15} W cm{sup -2}. The targets were filled with 1 atm of CO{sub 2} producing of up to 7 mm long homogeneously heated plasmas with densities of n{sub e} = 6 x 10{sup 20} cm{sup -3} and temperatures of T{sub e} = 2 keV. The high energy in a NIF quad of beams of 16kJ, illuminating the target from one direction, creates unique conditions for the study of laser plasma interactions at scale lengths not previously accessible. The propagation through the large-scale plasma was measured with a gated x-ray imager that was filtered for 3.5 keV x rays. These data indicate that the beams interact with the full length of this ignition-scale plasma during the last {approx}1 ns of the experiment. During that time, the full aperture measurements of the stimulated Brillouin scattering and stimulated Raman scattering show scattering into the four focusing lenses of 6% for the smallest length ({approx}2 mm). increasing to 12% for {approx}7 mm. These results demonstrate the NIF experimental capabilities and further provide a benchmark for three-dimensional modeling of the laser-plasma interactions at ignition-size scale lengths.

  16. Progress in alternative neutron detection to address the helium-3 shortage

    NASA Astrophysics Data System (ADS)

    Kouzes, Richard T.; Lintereur, Azaree T.; Siciliano, Edward R.

    2015-06-01

    One of the main uses for 3He is in gas proportional counters for neutron detection. Such detectors are used at neutron scattering science facilities and in radiation portal monitors deployed for homeland security and non-proliferation applications. Other uses of 3He are for research detectors, commercial instruments, well logging detectors, dilution refrigerators, lung imaging, for targets in nuclear research, and for basic research in condensed matter physics. The supply of 3He comes entirely from the decay of tritium produced for nuclear weapons in the U.S. and Russia. Due to the large increase in use of 3He for science and homeland security (since 2002), the supply could no longer meet the demand. This has led to the development of a number of alternative neutron detection schemes.

  17. Progress in alternative neutron detection to address the helium-3 shortage

    SciTech Connect

    Kouzes, Richard T.; Lintereur, Azaree T.; Siciliano, Edward R.

    2015-06-01

    One of the main uses for 3He is in gas proportional counters for neutron detection. Such detectors are used at neutron scattering science facilities and in radiation portal monitors deployed for homeland security and non-proliferation applications. Other uses of 3He are for research detectors, commercial instruments, well logging detectors, dilution refrigerators, lung imaging, for targets in nuclear research, and for basic research in condensed matter physics. The supply of 3He comes entirely from the decay of tritium produced for nuclear weapons in the U.S. and Russia. Due to the large increase in use of 3He for science and homeland security (since 2002), the supply has dwindled, and can no longer meet the demand. This has led to the development of a number of alternative neutron detection schemes.

  18. Low temperature and neutron physics studies. Progress report, May 1979-May 1980

    SciTech Connect

    Not Available

    1980-05-01

    Experimental research work with the neutron diffraction spectrometers at the MIT Research Reactor has concentrated during the past year on (a) dynamical diffraction effects in perfect crystals, (b) exploitation of a neutron interferometer system in studying various fundamental physics problems and (c) studies of the Fresnel diffraction patterns produced by simple slit systems. It has been found that neutrons in the process of being diffracted in an extended crystal travel with an anomalous drift velocity smaller than the normal group velocity. Moreover the transmission of these drift neutrons through the crystal has been established as being anomalously high analogously to the anomalous Borrman transmission of x-rays. A two-crystal interferometer system has been used to search for the existence of a Shimony phase effect that would arise from the presence of additional nonlinear energy terms in the Schrodinger equation. No phase effects were found and an upper limit of 3 x 10-/sup 13/ eV has been set for the magnitude of such terms. The interferometer has also been used to search for a possible coupling of the neutron magnetic structure with a vector magnetic potential and again no phase effect was measurable. Preliminary experiments on the effect of interferometer rotation while the neutrons are in transit have shown that the normal effects caused by terrestrial rotation can be modified or suppressed. Additional research has been carried out at Institut Laue-Langevin (Grenoble) in which single (and multiple) slit Fresnel diffraction patterns are being studied in a search for nonlinear optical effects.

  19. Effect of weak interaction on kaon condensation and cooling of neutron stars.

    NASA Astrophysics Data System (ADS)

    Fujii, H.; Muto, T.; Tatsumi, T.; Tamagaki, R.

    1994-05-01

    Kaon condensation and its implication in the cooling mechanism in neutron stars are investigated within a framework of current algebra and PCAC. The weak interaction, nýp+K-, is shown to play a significant role in determining not only the critical density but also the equation of state of the K- condensed phase. The chemical equilibrium for the weak interaction leads to large proton-admixture. In connection with this result, the possibility of the direct URCA process, n→p+e-+ν¯e, p+e-→n+νe, is investigted. It is shown that, within a simple treatment without the nuclear interactions such as the symmetry energy, the kinematical condition for the direct URCA process is not satified despite the large proton-mixing, due to the resulting small electron Fermi momentum. The physical content of the K- condensation from a viewpoint of strangeness degrees of freedom is also discussed.

  20. Effects of weak interaction on kaon condensation and cooling of neutron stars

    NASA Astrophysics Data System (ADS)

    Hirotsugu, Fujii; Takumi, Muto; Toshitaka, Tatsumi; Ryozo, Tamagaki

    1994-05-01

    Kaon condensation and its implication in the cooling mechanism in neutron stars are investigated within a framework of current algebra and PCAC. The weak interaction, n ⇌ p + K -, is shown to play a significant role in determining not only the critical density but also the equation of state of the K - condensed phase. The chemical equilibrium for the weak interaction leads to large proton-admixture. In connection with this result, the possibility of the direct URCA process, n → p + e- + v¯e, p + e- → n + v e, is investigated. It is shown that, within a simple treatment without the nuclear interactions such as the symmetry energy, the kinematical condition for the direct URCA process is not satisfied despite the large proton-mixing, due to the resulting small electron Fermi momentum. The physical content of the K - condensation from a viewpoint of strangeness degrees of freedom is also discussed.

  1. Neutron range spectrometer

    DOEpatents

    Manglos, S.H.

    1988-03-10

    A neutron range spectrometer and method for determining the neutron energy spectrum of a neutron emitting source are disclosed. Neutrons from the source are colliminated along a collimation axis and a position sensitive neutron counter is disposed in the path of the collimated neutron beam. The counter determines positions along the collimation axis of interactions between the neutrons in the neutron beam and a neutron-absorbing material in the counter. From the interaction positions, a computer analyzes the data and determines the neutron energy spectrum of the neutron beam. The counter is preferably shielded and a suitable neutron-absorbing material is He-3. 1 fig.

  2. Electrostatic Interactions and Binding Orientation of HIV-1 Matrix Studied by Neutron Reflectivity

    PubMed Central

    Nanda, Hirsh; Datta, Siddhartha A.K.; Heinrich, Frank; Lösche, Mathias; Rein, Alan; Krueger, Susan; Curtis, Joseph E.

    2010-01-01

    The N-terminal matrix (MA) domain of the HIV-1 Gag protein is responsible for binding to the plasma membrane of host cells during viral assembly. The putative membrane-binding interface of MA was previously mapped by means of mutagenesis and analysis of its trimeric crystal structure. However, the orientation of MA on membranes has not been directly determined by experimental measurements. We present neutron reflectivity measurements that resolve the one-dimensional scattering length density profile of MA bound to a biomimetic of the native viral membrane. A molecular refinement procedure was developed using atomic structures of MA to determine the orientation of the protein on the membrane. The orientation defines a lipid-binding interface consistent with previous mutagenesis results. The MA protein maintains this orientation without the presence of a myristate group, driven only by electrostatic interactions. Furthermore, MA is found to penetrate the membrane headgroup region peripherally such that only the side chains of specific Lys and Arg residues interact with the surface. The results suggest that electrostatic interactions are sufficient to favorably orient MA on viral membrane mimics. The spatial determination of the membrane-bound protein demonstrates the ability of neutron reflectivity to discern orientation and penetration under physiologically relevant conditions. PMID:20959092

  3. [A clinical trial of neutron capture therapy for brain tumors]. Technical progress report 1989

    SciTech Connect

    Zamenhof, R.G.

    1989-12-31

    This report describes accomplishments by this laboratory concerning development of high-resolution alpha-autoradiography design of an optimized epithermal neutron beam dosimetry and treatment planning Using Monte Carlo techniques development of a prompt-gamma {sup 10}B analysis facility.

  4. Neutron Research as a Strategic Tool for Industrial and Technological Progress

    SciTech Connect

    Belushkin, A. V.

    2009-03-31

    Present review gives several recent examples of novel application of neutron methods to address the problems of practical importance. Some results in functional materials development, engineering applications, ecology, medicine, national heritage, improvement of fuel properties, fuel cells, transport are briefly outlined.

  5. [A clinical trial of neutron capture therapy for brain tumors]. Technical progress report, 1990

    SciTech Connect

    Zamenhof, R.G.

    1990-12-31

    This document briefly describes recent advances in the author`s laboratory. Topics described include neutron beam design, high- resolution autoradiography, boronated phenylalanine (BPA) distribution and survival studies in glioma bearing mice, computer- aided treatment planning, prompt gamma boron 10 analysis facility at MITI-II, non-rodent BPA toxicity studies, and preparations for clinical studies.

  6. Progress towards the development and testing of source reconstruction methods for neutron imaging of ICF implosions

    SciTech Connect

    Loomis, Eric; Grim, Gary; Wilde, Carl; Wilke, Mark; Wilson, Doug; Morgan, George; Tregillis, Ian; Clark, David; Finch, Joshua; Fittinghoff, D; Bower, D

    2010-01-01

    Development of analysis techniques for neutron imaging at the National Ignition Facility (NIF) is an important and difficult task for the detailed understanding or high neutron yield inertial confinement fusion (ICF) implosions. These methods, once developed, must provide accurate images of the hot and cold fuel so that information about the implosion, such as symmetry and areal density, can be extracted. We are currently considering multiple analysis pathways for obtaining this source distribution of neutrons given a measured pinhole image with a scintillator and camera system. One method under development involves the numerical inversion of the pinhole image using knowledge of neutron transport through the pinhole aperture from Monte Carlo simulations [E. Loomis et al. IFSA 2009]. We are currently striving to apply the technique to real data by applying a series of realistic effects that will be present for experimental images. These include various sources of noise, misalignment uncertainties at both the source and image planes, as well as scintillator and camera blurring. Some tests on the quality of image reconstructions have also been performed based on point resolution and Legendre mode improvement of recorded images. So far, the method has proven sufficient to overcome most of these experimental effects with continued devlopment.

  7. Fusion neutronics experiments and analysis. Progress report, November 1, 1991--October 31, 1992

    SciTech Connect

    Not Available

    1992-12-01

    UCLA has led the neutronics R&D effort in the US for the past several years through the well-established USDOE/JAERI Collaborative Program on Fusion Neutronics. Significant contributions have been made in providing solid bases for advancing the neutronics testing capabilities in fusion reactors. This resulted from the hands-on experience gained from conducting several fusion integral experiments to quantify the prediction uncertainties of key blanket design parameters such as tritium production rate, activation, and nuclear heating, and when possible, to narrow the gap between calculational results and measurements through improving nuclear data base and codes capabilities. The current focus is to conduct the experiments in an annular configuration where the test assembly totally surrounds a simulated line source. The simulated line source is the first-of-a-kind in the scope of fusion integral experiments and presents a significant contribution to the world of fusion neutronics. The experiments proceeded through Phase IIIA to Phase IIIC in these line source simulation experiments started in 1989.

  8. Ferromagnetic instabilities in neutron matter at finite temperature with the Gogny interaction

    SciTech Connect

    Lopez-Val, D.; Rios, A.; Polls, A.; Vidana, I.

    2006-12-15

    The properties of spin-polarized neutron matter are studied both at zero and finite temperature using the D1 and the D1P parametrizations of the Gogny interaction. The results show two different behaviors: whereas the D1P force exhibits a ferromagnetic transition at a density of {rho}{sub c}{approx}1.31 fm{sup -3} whose onset increases with temperature, no sign of such a transition is found for D1 at any density and temperature, in agreement with recent microscopic calculations.

  9. Characterization of core debris/concrete interactions for the Advanced Neutron Source

    SciTech Connect

    Hyman, C.R.; Taleyarkhan, R.P.

    1992-02-01

    This report provides the results of a recent study conducted to explore the molten core/concrete interaction (MCCI) issue for the Advanced Neutron Source (ANS). The need for such a study arises from the potential threats to reactor system integrity posed by MCCI. These threats include direct attack of the concrete basemat of the containment; generation and release of large quantities of gas that can pressurize the containment; the combustion threat of these gases; and the potential generation, release, and transport of radioactive aerosols to the environment.

  10. Neutron Interactions With 7Be and the Primordial 7Li Problem

    NASA Astrophysics Data System (ADS)

    Kading, Emily E.; Gai, Moshe; Kahn, Merav; Lee, Morit; Tessler, Moshe; Paul, Michael; Weiss, Aryeh; Berkovitz, Dan; Halfon, Shlomi; Kijel, Danny; Kreisel, Arik; Shor, Asher; Silverman, Ido; Weissman, Leonid; Hass, Michael; Mukul, Ish; Maugeri, Emilio A.; Dressler, Rugard; Schumann, Dorothea; Heinitz, Stephan; Stora, Thierry; Ticehurst, David; Howell, Calvin R.

    2015-10-01

    We study the interaction of neutrons with 7Be to estimate the direct destruction of 7Be during BBN; i.e. the predicted primordial 7Li. We plan to use a 7Be target (15 GBq) prepared by electro-deposition at PSI. The intense neutron flux of up to 5×1010 n/sec/cm2 are produced with proton beams and a high power liquid-lithium target (LiLiT) from the SARAF (phase I) facility in Israel. The outgoing particles will be measured using CR-39 plates that were tested to be insensitive to the large neutron flux and were calibrated with protons and alpha-particles from the TUNL. In a separate stage implanted 7Be target will be prepared at the ISOLDE facility of CERN. The results of the calibration of the CR-39 plates and the test experiment at SARAF with 10B target as well as a very low activity 7Be test target prepared at PSI, will be presented. Supported in part by the US-Israel Binational Science Foundation Proposal No. 2012098, the USDOE Grants No. DE-FG02-94ER40870, DE-FG02-97ER41033, and the Pazi Foundation, Israel.

  11. Laser ion acceleration and neutron source in short-pulse solid- nanoparticle interaction

    NASA Astrophysics Data System (ADS)

    Nishihara, K.; Watari, T.; Matsukado, K.; Sekine, T.; Takeuchi, Y.; Takagi, M.; Satoh, N.; Kawashima, T.; Kan, H.

    2016-03-01

    We propose both an efficient neutron source and an extremely high energy proton source using solid CD and CH nano-particles, respectively, irradiated by an intense laser light. With a use of 3-d PIC simulations, we obtain an optimum CD radius for a neutron source, 250 nm and required laser field of a=eE/mωc ≈ 2, which results in D-D reaction rate of <σv> = 2x10-16 cm3/s, corresponding to an effective deuteron temperature of 500 keV to 1MeV. Reduction of neutron yield by pre-expansion is discussed. In a range of a ≈100, laser radiation pressure surrounding the particles accelerates electrons in the forward direction. Protons following the electrons become directional high energy, for example, proton energy of 450 MeV is obtained within 130 fs in CH particle interaction with 700 nm in radius. More than 10% of total protons in CH-particles are accelerated forward. Proton energy continuously increases with time and with the increase of particle size and the direction is also collimated with time.

  12. Elementary particle interactions. Progress report, October 1, 1994--September 30, 1995

    SciTech Connect

    Bugg, W.M.; Condo, G.T.; Handler, T.; Hart, E.L.; Read, K.; Siopsis, G.; Ward, B.F.L.

    1995-10-01

    This year has been a busy and demanding one with completion of a long SLD run, much progress on light quark states from E-687 resulting in strong evidence for two new states, observation in E-144 of non-linear Compton scattering (multiphoton absorption by electrons) up to N-4 and initial evidence for e{sup +}e{sup {minus}} pair production in Compton process. The authors have also made considerable progress toward preparation for a n-{bar n} oscillation experiment and have carried out experimental studies of quartz fiber calorimetry for SLD polarimeter and forward calorimeter for CMS and LHC including a thorough set of gamma ray and neutron radiation damage studies on quartz fiber. Two graduate students received their Ph.D.s this year, Kathy Danyo Blackett on data from Fermilab E-687 and Sharon White on SLD radiative Bhabha scattering.

  13. High-pressure/low-temperature neutron scattering of gas inclusion compounds: progress and prospects.

    PubMed

    Zhao, Yusheng; Xu, Hongwu; Daemen, Luke L; Lokshin, Konstantin; Tait, Kimberly T; Mao, Wendy L; Luo, Junhua; Currier, Robert P; Hickmott, Donald D

    2007-04-01

    Alternative energy resources such as hydrogen and methane gases are becoming increasingly important for the future economy. A major challenge for using hydrogen is to develop suitable materials to store it under a variety of conditions, which requires systematic studies of the structures, stability, and kinetics of various hydrogen-storing compounds. Neutron scattering is particularly useful for these studies. We have developed high-pressure/low-temperature gas/fluid cells in conjunction with neutron diffraction and inelastic neutron scattering instruments allowing in situ and real-time examination of gas uptake/release processes. We studied the formation of methane and hydrogen clathrates, a group of inclusion compounds consisting of frameworks of hydrogen-bonded H(2)O molecules with gas molecules trapped inside the cages. Our results reveal that clathrate can store up to four hydrogen molecules in each of its large cages with an intermolecular H(2)-H(2) distance of only 2.93 A. This distance is much shorter than that in the solid/metallic hydrogen (3.78 A), suggesting a strong densification effect of the clathrate framework on the enclosed hydrogen molecules. The framework-pressurizing effect is striking and may exist in other inclusion compounds such as metal-organic frameworks (MOFs). Owing to the enormous variety and flexibility of their frameworks, inclusion compounds may offer superior properties for storage of hydrogen and/or hydrogen-rich molecules, relative to other types of compounds. We have investigated the hydrogen storage properties of two MOFs, Cu(3)[Co(CN)(6)](2) and Cu(3)(BTC)(2) (BTC = benzenetricarboxylate), and our preliminary results demonstrate that the developed neutron-scattering techniques are equally well suited for studying MOFs and other inclusion compounds. PMID:17389387

  14. Current progress and future prospects of the VITA based neutron source.

    PubMed

    Aleynik, V; Bashkirtsev, A; Kanygin, V; Kasatov, D; Kuznetsov, A; Makarov, A; Schudlo, I; Sorokin, I; Taskaev, S; Tiunov, M

    2014-06-01

    At the BINP, a pilot accelerator based epithermal neutron source is now in use. Most recent investigations on the facility are related with studying the dark current, X-ray radiation measuring, optimization of H(-)-beam injection and new gas stripping target calibrating. The results of these studies, ways of providing stability to the accelerator are presented and discussed, as well as the ways of creating the therapeutic beam and strategies of applying the facility for clinical use. PMID:24369890

  15. Low dose neutron late effects: Cataractogenesis. Progress report, April 1, 1991--December 15, 1991

    SciTech Connect

    Worgul, B.V.

    1991-12-01

    The work is formulated to resolve the uncertainty regarding the relative biological effectiveness (RBE) of low dose neutron radiation. The study exploits the fact that cataractogenesis is sensitive to the inverse dose-rate effect as has been observed with heavy ions and was an endpoint considered in the follow-up of the A-bomb survivors. The neutron radiations were initiated at the Radiological Research Accelerator facility (RARAF) of the Nevis Laboratory of Columbia University. Four week old ({plus_minus} 1 day) rats were divided into eight dose groups each receiving single or fractionated total doses of 0.2, 1.0, 5.0 and 25.0 cGy of monoenergetic 435 KeV neutrons. Special restraining jigs insured that the eye, at the midpoint of the lens, received the appropriate energy and dose with a relative error of {plus_minus}5%. The fractionation regimen consisted of four exposures, each administered at three hour ({plus_minus}) intervals. The neutron irradiated groups are being compared to rats irradiated with 250kVp X-rays in doses ranging from 0.5 to 7 Gy. The animals are being examined on a biweekly basis utilizing conventional slit-lamp biomicroscopy and the Scheimpflug Slit Lamp Imaging System (Zeiss). The follows-ups, entering their second year, will continue throughout the life-span of the animals. This is essential inasmuch as given the extremely low doses which are being utilized clinically detectable opacities were not anticipated until a significant fraction of the life span has lapsed. Current data support this contention. At this juncture cataracts in the irradiated groups are beginning to exceed control levels.

  16. Low dose neutron late effects: Cataractogenesis. Final progress report, April 1, 1992--March 31, 1993

    SciTech Connect

    Worgul, B.V.

    1994-04-01

    The work is formulated to resolve the uncertainty regarding the relative biological effectiveness (RBE) of low dose neutron radiation. The study exploits the fact that cataractogenesis is sensitive to the inverse dose-rate effect as has been observed with heavy ions and was an endpoint considered in the follow-up of the A-bomb survivors. The neutron radiations were initiated at the Radiological Research Accelerator facility (RARAF) of the Nevis Laboratory of Columbia University. Four week old ({+-} 1 day) rats were divided into eight dose groups each receiving single or fractionated total doses of 0.2, 1.0, 5.0 and 25.0 cGy of monoenergetic 435 keV neutrons. Special restraining jigs insured that the eye, at the midpoint of the lens, received the appropriate energy and dose with a relative error of {+-} 5%. The fractionation regimen consisted of four exposures, each administered at three hour ({+-} 1 minute) intervals. The neutron irradiated groups were compared to rats irradiated with 250 kVp X-rays in doses ranging from 0.5 to 7 Gy. The animals were examined on a biweekly basis utilizing conventional slit-lamp biomicroscopy and the Scheimpflug Slit Lamp Imaging System (Zeiss). The follow-ups, which proceeded for over 2 years, are now complete. This proved essential inasmuch as given the extremely low doses which were utilized, clinically detectable opacities were not anticipated until a significant fraction of the life span has lapsed. The results have exceeded all expectations.

  17. High-pressure/low-temperature neutron scattering of gas inclusion compounds: Progress and prospects

    PubMed Central

    Zhao, Yusheng; Xu, Hongwu; Daemen, Luke L.; Lokshin, Konstantin; Tait, Kimberly T.; Mao, Wendy L.; Luo, Junhua; Currier, Robert P.; Hickmott, Donald D.

    2007-01-01

    Alternative energy resources such as hydrogen and methane gases are becoming increasingly important for the future economy. A major challenge for using hydrogen is to develop suitable materials to store it under a variety of conditions, which requires systematic studies of the structures, stability, and kinetics of various hydrogen-storing compounds. Neutron scattering is particularly useful for these studies. We have developed high-pressure/low-temperature gas/fluid cells in conjunction with neutron diffraction and inelastic neutron scattering instruments allowing in situ and real-time examination of gas uptake/release processes. We studied the formation of methane and hydrogen clathrates, a group of inclusion compounds consisting of frameworks of hydrogen-bonded H2O molecules with gas molecules trapped inside the cages. Our results reveal that clathrate can store up to four hydrogen molecules in each of its large cages with an intermolecular H2–H2 distance of only 2.93 Å. This distance is much shorter than that in the solid/metallic hydrogen (3.78 Å), suggesting a strong densification effect of the clathrate framework on the enclosed hydrogen molecules. The framework-pressurizing effect is striking and may exist in other inclusion compounds such as metal-organic frameworks (MOFs). Owing to the enormous variety and flexibility of their frameworks, inclusion compounds may offer superior properties for storage of hydrogen and/or hydrogen-rich molecules, relative to other types of compounds. We have investigated the hydrogen storage properties of two MOFs, Cu3[Co(CN)6]2 and Cu3(BTC)2 (BTC = benzenetricarboxylate), and our preliminary results demonstrate that the developed neutron-scattering techniques are equally well suited for studying MOFs and other inclusion compounds. PMID:17389387

  18. Membrane Adhesion via Homophilic Saccharide-Saccharide Interactions Investigated by Neutron Scattering

    PubMed Central

    Schneck, Emanuel; Demé, Bruno; Gege, Christian; Tanaka, Motomu

    2011-01-01

    Solid-supported membrane multilayers doped with membrane-anchored oligosaccharides bearing the LewisX motif (LeX lipid) were utilized as a model system of membrane adhesion mediated via homophilic carbohydrate-carbohydrate interactions. Specular and off-specular neutron scattering in bulk aqueous electrolytes allowed us to study multilayer structure and membrane mechanics at full hydration at various Ca2+ concentrations, indicating that membrane-anchored LeX cross-links the adjacent membranes. To estimate forces and energies required for cross-linking, we theoretically modeled the interactions between phospholipid membranes and compared this model with our experimental results on membranes doped with LeX lipids. We demonstrated that the bending rigidity, extracted from the off-specular scattering signals, is not significantly influenced by the molar fraction of LeX lipids, while the vertical compression modulus (and thus the intermembrane confinement) increases with the molar fraction of LeX lipids. PMID:21539782

  19. Data for the neutron interactions with /sup 6/Li and /sup 10/B

    SciTech Connect

    Poenitz, W.P.

    1984-01-01

    The /sup 10/B(n,..cap alpha..), /sup 10/B(n,..cap alpha../sub 1/) and, increasingly in more recent measurement, the /sup 6/Li(n,..cap alpha..) cross sections are the major references used in low energy experiments. Many data from modern measurements are available for the neutron interaction with /sup 6/Li, including total, scattering, and absolute and relative (n,..cap alpha..) cross sections. A consensus has been reached with these new /sup 6/Li + n data. In contrast, the data base for the /sup 10/B neutron interaction cross sections is unfortunately poor. This is even the case for the total cross section which is supposed to be the easiest quantity to be measured. The most serious deficiency is the absence of data from absolute measurements of the /sup 10/B(n,..cap alpha..) and /sup 10/B(n,..cap alpha../sub 1/) cross sections in the last 10 to 15 years. The available cross section data which were used for the ENDF/B-VI evaluation will be discussed. 43 references.

  20. D-T neutron generator development for cancer therapy. 1980 annual progress report

    SciTech Connect

    Bacon, F.M.; Walko, R.J.; Bickes, R.W. Jr.; Cowgill, D.F.; Riedel, A.A.; O'Hagan, J.B.

    1980-05-01

    This report summarizes the work completed during the first year of a two-year grant by NCI/HEW to investigate the feasibility of developing a D-T neutron generator for use in cancer therapy. Experiments have continued on the Target Test Facility (TTF) developed during a previous grant to investigate high-temperature metal hydrides for use as target materials. The high voltage reliability of the TTF has been improved so that 200 kV, 200 mA operation is now routine. In recent target tests, the D-D neutron production rate was measured to be > 1 x 10/sup 11//s, a rate that corresponds to a D-T neutron production rate of > 1 x 10/sup 13//s - the desired rate for use in cancer therapy. Deuterium concentration depth profiles in the target, measured during intense ion beam bombardment, show that deuterium is depleted near the surface of the target due to impurities implanted by the ion beam. Recent modifications of the duopigatron ion source to reduce secondary electron damage to the electrodes also improved the ion source efficiency by about 40%. An ultra high vacuum version of the TTF is now being constructed to determine if improved vacuum conditions will reduce ion source impurities to a sufficiently low level that the deuterium near the surface of the target is not depleted. Testing will begin in June 1980.

  1. Amyloidβ Peptides in interaction with raft-mime model membranes: a neutron reflectivity insight

    PubMed Central

    Rondelli, Valeria; Brocca, Paola; Motta, Simona; Messa, Massimo; Colombo, Laura; Salmona, Mario; Fragneto, Giovanna; Cantù, Laura; Del Favero, Elena

    2016-01-01

    The role of first-stage β–amyloid aggregation in the development of the Alzheimer disease, is widely accepted but still unclear. Intimate interaction with the cell membrane is invoked. We designed Neutron Reflectometry experiments to reveal the existence and extent of the interaction between β–amyloid (Aβ) peptides and a lone customized biomimetic membrane, and their dependence on the aggregation state of the peptide. The membrane, asymmetrically containing phospholipids, GM1 and cholesterol in biosimilar proportion, is a model for a raft, a putative site for amyloid-cell membrane interaction. We found that the structured-oligomer of Aβ(1-42), its most acknowledged membrane-active state, is embedded as such into the external leaflet of the membrane. Conversely, the Aβ(1-42) unstructured early-oligomers deeply penetrate the membrane, likely mimicking the interaction at neuronal cell surfaces, when the Aβ(1-42) is cleaved from APP protein and the membrane constitutes a template for its further structural evolution. Moreover, the smaller Aβ(1-6) fragment, the N-terminal portion of Aβ, was also used. Aβ N-terminal is usually considered as involved in oligomer stabilization but not in the peptide-membrane interaction. Instead, it was seen to remove lipids from the bilayer, thus suggesting its role, once in the whole peptide, in membrane leakage, favouring peptide recruitment. PMID:26880066

  2. Amyloid-β peptides in interaction with raft-mime model membranes: a neutron reflectivity insight.

    PubMed

    Rondelli, Valeria; Brocca, Paola; Motta, Simona; Messa, Massimo; Colombo, Laura; Salmona, Mario; Fragneto, Giovanna; Cantù, Laura; Del Favero, Elena

    2016-01-01

    The role of first-stage β-amyloid aggregation in the development of the Alzheimer disease, is widely accepted but still unclear. Intimate interaction with the cell membrane is invoked. We designed Neutron Reflectometry experiments to reveal the existence and extent of the interaction between β-amyloid (Aβ) peptides and a lone customized biomimetic membrane, and their dependence on the aggregation state of the peptide. The membrane, asymmetrically containing phospholipids, GM1 and cholesterol in biosimilar proportion, is a model for a raft, a putative site for amyloid-cell membrane interaction. We found that the structured-oligomer of Aβ(1-42), its most acknowledged membrane-active state, is embedded as such into the external leaflet of the membrane. Conversely, the Aβ(1-42) unstructured early-oligomers deeply penetrate the membrane, likely mimicking the interaction at neuronal cell surfaces, when the Aβ(1-42) is cleaved from APP protein and the membrane constitutes a template for its further structural evolution. Moreover, the smaller Aβ(1-6) fragment, the N-terminal portion of Aβ, was also used. Aβ N-terminal is usually considered as involved in oligomer stabilization but not in the peptide-membrane interaction. Instead, it was seen to remove lipids from the bilayer, thus suggesting its role, once in the whole peptide, in membrane leakage, favouring peptide recruitment. PMID:26880066

  3. Monte-Carlo gamma response simulation of fast/thermal neutron interactions with soil elements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil elemental analysis using characteristic gamma rays induced by neutrons is an effective method of in situ soil content determination. The nuclei of soil elements irradiated by neutrons issue characteristic gamma rays due to both inelastic neutron scattering (e.g., Si, C) and thermal neutron capt...

  4. The Manuel Lujan, Jr. Neutron Scattering Center (LANSCE) experiment reports 1992 run cycle. Progress report

    SciTech Connect

    DiStravolo, M.A.

    1993-09-01

    This year was the fifth in which LANSCE ran a formal user program. A call for proposals was issued before the scheduled run cycles, and experiment proposals were submitted by scientists from universities, industry, and other research facilities around the world. An external program advisory committee, which LANSCE shares with the Intense Pulsed Neutron Source (IPNS), Argonne National Laboratory, examined the proposals and made recommendations. At LANSCE, neutrons are produced by spallation when a pulsed, 800-MeV proton beam impinges on a tungsten target. The proton pulses are provided by the Clinton P. Anderson Meson Physics Facility (LAMPF) accelerator and an associated Proton Storage Ring (PSR), which can alter the intensity, time structure, and repetition rate of the pulses. The LAMPF protons of Line D are shared between the LANSCE target and the Weapons Neutron Research (WNR) facility, which results in LANSCE spectrometers being available to external users for unclassified research about 80% of each annual LAMPF run cycle. Measurements of interest to the Los Alamos National Laboratory may also be performed and may occupy up to an additional 20% of the available beam time. These experiments are reviewed by an internal program advisory committee. One hundred sixty-seven proposals were submitted for unclassified research and twelve proposals for research of a programmatic interest to the Laboratory; six experiments in support of the LANSCE research program were accomplished during the discretionary periods. Oversubscription for instrument beam time by a factor of three was evident with 839 total days requested and only 371 available for allocation.

  5. ENVIRONMENTAL EFFECTS OF OZONE DEPLETION AND ITS INTERACTIONS WITH CLIMATE CHANGE: PROGRESS REPORT 2003

    EPA Science Inventory

    The measures needed for the protection of the Earth's ozone layer are decided regularly by the Parties to the Montreal Protocol. A section of this progress report focuses on the interactive effects of climate change and ozone depletion on biogeochemical cycles.

  6. Neutron reflectivity studies of the interaction of cubic-phase nanoparticles with phospholipid bilayers of different coverage.

    PubMed

    Vandoolaeghe, Pauline; Rennie, Adrian R; Campbell, Richard A; Nylander, Tommy

    2009-04-01

    Liquid-crystalline cubic-phase nanoparticles (CPNPs) (known as Cubosome particles), based on the lipid glycerol monooleate and stabilized by the nonionic block copolymer Pluronic F-127, interact with supported model membranes consisting of dioleoylphosphatidylcholine (DOPC) in a complex and dynamic fashion. Neutron reflectivity measurements on the interaction of CPNPs with bilayers of different coverage have increased our understanding of an interfacial exchange mechanism that is relevant to delivery applications. To access the composition of the adsorption layer, the method of isotopic contrast between the components was exploited by using DOPC with perdeuterated acyl chains, which are distinguishable (high scattering contrast) from the hydrogenous components of the CPNPs. The exchange of material between CPNPs and the bilayer takes place regardless of the initial bilayer coverage. However, this parameter has a strong influence on the physical nature of the layer formed upon interaction. For a bilayer of "high coverage" (80%), extensive exchange takes place between the CPNP components and the bilayer, and at steady state the surface layer comprises 72% glycerol monooleate and 8% DOPC, with no change in the solvent content. An analogous experiment involving pure glycerol monooleate liquid crystals shows that lipid exchange occurs even in the absence of the stabilizing polymer. For bilayers of "low coverage" (55%), the exchange mechanism involves an initial adsorption of material from the CPNPs to fill in the bilayer defects. However, most of the bilayer breaks up and only 15% coverage remains after 30 h. The evolution of a Bragg diffraction peak was monitored in this case to show that the bound nanoparticles occupy >7% surface coverage and have a periodicity in the density of the internal lipid structure that decreases with time. This progression is attributed to the incorporation of d-DOPC molecules within the internal cubic structure of the nanoparticles. The

  7. Neutron interaction tool, PyNIC, for advanced applications in nuclear power, nuclear medicine, and nuclear security

    NASA Astrophysics Data System (ADS)

    Moffitt, Gregory Bruce

    A neutron interaction simulation tool, PyNIC, was developed for the calculation of neutron activation products and prompt gamma ray emission from neutron capture, neutron inelastic scattering, and fission interactions. This tool was developed in Python with a graphical user interface to facilitate its easy applications. The tool was validated for neutron activation analysis of a number of samples irradiated in the University of Utah TRIGA Reactor. These samples included nickel wire and the NIST standard for coal fly ash. The experimentally determined isotopes for coal fly ash were 56Mn, 40K, and 139Ba. The samples were irradiated at reactor power levels from 1 kW to 90 kW, and the average percent difference between PyNIC estimated and laboratory measured values was 4%, 24%, 38%, and 22% for 64Ni, 56Mn, 40K, and 139Ba, respectively. These differences are mainly attributed to calibration of the high-purity germanium detector and too short of count times. The PyNIC tool is applicable to neutron activation analysis but also can find its applications in nuclear power, nuclear medicine, and in homeland security such as predicting the contents of explosives and special nuclear materials in samples of complex and unknown origins.

  8. Progress and status of the IAEA coordinated research project: production of Mo-99 using LEU fission or neutron activation

    SciTech Connect

    Goldman, Ira N.; Adelfang, Pablo E-mail: P.Adelfang@iaea.org; Ramamoorthy, Natesan

    2008-07-15

    Since late 2004, the IAEA has developed and implemented a Coordinated Research Project (CRP) to assist countries interested in initiating indigenous, small-scale production of Mo-99 to meet local nuclear medicine requirements. The objective of the CRP is to provide interested countries with access to non-proprietary technologies and methods to produce Mo-99 using LEU foil or LEU mini-plate targets, or for the utilization of n,gamma neutron activation, e.g. through the use of gel generators. The project has made further progress since the RERTR 2006 meeting, with a Technical Workshop on Operational Aspects of Mo99 Production held 28-30 November 2006 in Vienna and the Second Research Coordination Meeting held in Bucharest, Romania 16-20 April 2007. The paper describes activities carried out as noted above, and as well as the provision of LEU foils to a number of participants, and the progress by a number of groups in preparing for LEU target assembly and disassembly, irradiation, chemical processing, and waste management. The participants' progress in particular on thermal hydraulics computations required for using LEU targets is notable, as also the progress in gel generator plant operations in India and Kazakhstan. Poland has joined as a new research agreement holder and an application by Egypt to be a contract holder is undergoing internal review in the IAEA and is expected to be approved. The IAEA has also participated in several open meetings of the U.S. National Academy of Sciences Study on Producing Medical Radioisotopes without HEU, which will also be discussed in the paper. (author)

  9. Recent Progress in Studies of Arterivirus- and Coronavirus-Host Interactions

    PubMed Central

    Zhong, Yanxin; Tan, Yong Wah; Liu, Ding Xiang

    2012-01-01

    Animal coronaviruses, such as infectious bronchitis virus (IBV), and arteriviruses, such as porcine reproductive and respiratory syndrome virus (PRRSV), are able to manifest highly contagious infections in their specific native hosts, thereby arising in critical economic damage to animal industries. This review discusses recent progress in studies of virus-host interactions during animal and human coronavirus and arterivirus infections, with emphasis on IBV-host cell interactions. These interactions may be directly involved in viral replication or lead to the alteration of certain signaling pathways, such as cell stress response and innate immunity, to facilitate viral replication and pathogenesis. PMID:22816036

  10. Residue Coulomb Interaction Among Isobars and Its Influence in Symmetry Energy of Neutron-Rich Fragment

    NASA Astrophysics Data System (ADS)

    Ma, Chun-Wang; Wang, Shan-Shan; Zhang, Yan-Li; Zhao, Yi-Long; Wei, Hui-Ling

    2015-09-01

    The residue Coulomb interaction (RCI), which affects the result of symmetry-energy coefficient of neutron-rich nucleus in isobaric yield ratio (IYR) method, is difficult to be determined. Four RCI approximations are investigated: (i) The M1-RCI adopting the ac/T (the ratio of Coulomb energy coefficient to temperature) determined from the IYR of mirror-nucleus fragments; (ii) The M2-RCI by fitting the difference between IYRs; (iii) The M3-RCI adopting the standard Coulomb energy at a temperature T = 2 MeV; and (iv) Neglecting the RCI among isobars. The M1-, M2- and M3-RCI are no larger than 0.4. In particular, the M2-RCI is very close to zero. The effects of RCI in asym/T of fragment are also studied. The M1- and M4-asym/T are found to be the lower and upper limitations of asym/T, respectively. The M2-asym/T overlaps the M4-asym/T, which indicates that the M2-RCI is negligible in the IYR method, and the RCI among the three isobars can be neglected. The relative consistent low values of M3-asym/T (7.5 ± 2.5) are found in very neutron-rich isobars. Supported by the Program for Science & Technology Innovation Talents in Universities of Henan Province (13HASTIT046), and Young Teacher Project in Henan Normal University (HNU), China

  11. Parity and time-reversal symmetry nonconservation in neutron-nucleus interactions

    SciTech Connect

    Bowman, J.D.; Bowman, C.D.; Knudson, J.; Penttilae, S.; Seestrom, S.J.; Szymanski, J.J.; Yuan, V.W. ); Bush, J.E.; Frankle, C.M.; Gould, C.R.; Haase, D.G.; Mitchell, G.E Triangle Universities Nuclear Lab., Durham, NC ); Delheij, P.P.J. ); Postma, H. (Technische Hogeschool Delft (Netherlands

    1990-01-01

    Parity non-conversation was studied for seventeen states in the compound nucleus {sup 239}U by measuring the helicity dependence of the p-wave resonance cross section for epithermal neutrons scattered from {sup 238}U. The root-mean-squared parity-violating matrix element for the mixing of p-wave and s-wave states was determined to be M = 0.58{sub -0.25}{sup +0.50} meV. This corresponds to a parity-violating spreading width of {Gamma}{sup PV} = 1.0 {times} 10{sup {minus}7} eV. This gives a value of 4 {times} 10{sup {minus}7} for {alpha}{sub p}, the ratio of strengths of the P-odd and P-even effective nucleon-nucleon interactions in {sup 239}U. The implications of these results for studies of Time Reversal Symmetry in the compound nucleus is discussed.

  12. Progress with On-The-Fly Neutron Doppler Broadening in MCNP

    SciTech Connect

    Brown, Forrest B.; Martin, William R.; Yesilyurt, Gokhan; Wilderman, Scott

    2012-06-18

    The University of Michigan, ANL, and LANL have been collaborating on a US-DOE-NE University Programs project 'Implementation of On-the-Fly Doppler Broadening in MCNP5 for Multiphysics Simulation of Nuclear Reactors.' This talk describes the project and provides results from the initial implementation of On-The-Fly Doppler broadening (OTF) in MCNP and testing. The OTF methodology involves high precision fitting of Doppler broadened cross-sections over a wide temperature range (the target for reactor calculations is 250-3200K). The temperature dependent fits are then used within MCNP during the neutron transport, for OTF broadening based on cell temperatures. It is straightforward to extend this capability to cover any temperature range of interest, allowing the Monte Carlo simulation to account for a continuous distribution of temperature ranges throughout the problem geometry.

  13. Secondary Neutron-Production Cross Sections from Heavy-IonInteractions between 230 and 600 MeV/nucleon

    SciTech Connect

    Heilbronn, L.H.; Zeitlin, C.J.; Iwata, Y.; Murakami, T.; Iwase,H.; Nakamura, T.; Nunomiya, T.; Sato, H.; Yashima, H.; Ronningen, R.M.; Ieki, K.

    2006-10-04

    Secondary neutron-production cross-sections have beenmeasured from interactions of 230 MeV/nucleon He, 400 MeV/nucleon N, 400MeV/nucleon Kr, 400 MeV/nucleon Xe, 500 MeV/nucleon Fe, and 600MeV/nucleon Ne interacting in a variety of elemental and compositetargets. We report the double-differential production cross sections,angular distributions, energy spectra, and total cross sections from allsystems. Neutron energies were measured using the time-of-flighttechnique, and were measured at laboratory angles between 5 deg and 80deg. The spectra exhibit behavior previously reported in otherheavy-ion-induced neutron production experiments; namely, a peak atforward angles near the energy corresponding to the beam velocity, withthe remaining spectra generated by preequilibrium and equilibriumprocesses. The double-differential spectra are fitted with amoving-source parameterization. Observations on the dependence of thetotal cross sections on target and projectile mass arediscussed.

  14. Accreting Neutron Stars as Astrophysical Laboratories

    NASA Technical Reports Server (NTRS)

    Chakrabarty, Deepto

    2004-01-01

    In the last year, we have made an extremely important breakthrough in establishing the relationship between thermonuclear burst oscillations in accreting neutron stars and the stellar spin. More broadly, we have continued t o make significant scientific progress in all four of the key focus areas identified in our original proposal: (1) the disk-magnetosphere interaction in neutron stars, (2) rapid variability in accreting neutron stars, (3) physics of accretion flows, and (4) fundamental properties of neutron stars. A list of all publications that have arising from this work since the start of our program is given.

  15. Progress in Neutron Scattering Studies of Spin Excitations in High-T(c) Cuprates

    SciTech Connect

    Fujita M.; Tranquada J.; Hiraka, H.; Matsuda, M.; Matsuura, M.; Wakimoto, S.; Xu, G.; Yamada, K.

    2012-01-01

    Neutron scattering experiments continue to improve our knowledge of spin fluctuations in layered cuprates, excitations that are symptomatic of the electronic correlations underlying high-temperature superconductivity. Time-of-flight spectrometers, together with new and varied single crystal samples, have provided a more complete characterization of the magnetic energy spectrum and its variation with carrier concentration. While the spin excitations appear anomalous in comparison with simple model systems, there is clear consistency among a variety of cuprate families. Focusing initially on hole-doped systems, we review the nature of the magnetic spectrum, and variations in magnetic spectral weight with doping. We consider connections with the phenomena of charge and spin stripe order, and the potential generality of such correlations as suggested by studies of magnetic-field and impurity induced order. We contrast the behavior of the hole-doped systems with the trends found in the electron-doped superconductors. Returning to hole-doped cuprates, studies of translation-symmetry-preserving magnetic order are discussed, along with efforts to explore new systems. We conclude with a discussion of future challenges.

  16. Environmental effects of ozone depletion and its interactions with climate change: progress report, 2015.

    PubMed

    2016-02-01

    The Environmental Effects Assessment Panel (EEAP) is one of three Panels that regularly informs the Parties (countries) to the Montreal Protocol on the effects of ozone depletion and the consequences of climate change interactions with respect to human health, animals, plants, biogeochemistry, air quality, and materials. The Panels provide a detailed assessment report every four years. The most recent 2014 Quadrennial Assessment by the EEAP was published as a special issue of seven papers in 2015 (Photochem. Photobiol. Sci., 2015, 14, 1-184). The next Quadrennial Assessment will be published in 2018/2019. In the interim, the EEAP generally produces an annual update or progress report of the relevant scientific findings. The present progress report for 2015 assesses some of the highlights and new insights with regard to the interactive nature of the effects of UV radiation, atmospheric processes, and climate change. PMID:26822392

  17. Interaction of the Oncofetal Thomsen–Friedenreich Antigen with Galectins in Cancer Progression and Metastasis

    PubMed Central

    Sindrewicz, Paulina; Lian, Lu-Yun; Yu, Lu-Gang

    2016-01-01

    Aberrant glycosylation of cell membrane proteins is a universal feature of cancer cells. One of the most common glycosylation changes in epithelial cancer is the increased occurrence of the oncofetal Thomsen–Friedenreich disaccharide Galβ1–3GalNAc (T or TF antigen), which appears in about 90% of cancers but is rarely seen in normal epithelium. Over the past few years, increasing evidence has revealed that the increased appearance of TF antigen on cancer cell surface plays an active role in promoting cancer progression and metastasis by interaction with the β-galactoside-binding proteins, galectins, which themselves are also frequently overexpressed in cancer and pre-cancerous conditions. This review summarizes the current understanding of the molecular mechanism of the increased TF occurrence in cancer, the structural nature, and biological impact of TF interaction with galectins, in particular galectin-1 and -3, on cancer progression and metastasis. PMID:27066458

  18. Progress regarding magnetic confinement experiments, plasma-materials interactions and plasma performance

    NASA Astrophysics Data System (ADS)

    Hidalgo, Carlos

    2015-10-01

    This paper provides an overview of the results presented at the 25th IAEA Energy Conference in the sessions on confinement, plasma-material interactions and plasma performance. An important highlight of the conference is the on-going progress in combining the empirical approach to achieve fusion relevant conditions with physics understanding to predict burning plasma behaviour, where fast particle dynamics would have an important impact.

  19. Interaction of hydrogen with extraframework cations in zeolite hosts probed by inelastic neutron scattering spectroscopy.

    PubMed

    Eckert, Juergen; Trouw, Frans R; Mojet, Barbara; Forster, Paul; Lobo, Raul

    2010-01-01

    The hindered rotations of molecular hydrogen adsorbed at low loadings into a number of partially ion-exchanged zeolites A, Y and X have been studied at low temperatures with the use of inelastic neutron scattering (INS) techniques. The factors that determine the sorption sites and strength of the interaction with the host material are found to be a complex combination of the type, charge and size of the cations, their coordination to the host framework, and accessibility to the hydrogen molecule as well as the relative acidity of the framework, and lead to important criteria for the development of more effective hybrid materials for hydrogen storage. The highest barriers to rotation were found for the undercoordinated, exposed Li+ cations in LiA and in LiX. Interaction with the extra framework Cu2+ and Zn2+ cations in zeolite A is found to be noticeably stronger than with the neutral Zn- or Cu- containing clusters in metal-organic framework compounds. Our observation that binding of hydrogen in these charged frameworks is strongly enhanced relative to those that are neutral suggests an important approach to improvement of porous materials as ambient temperature hydrogen storage media. PMID:20352810

  20. Studies of particle interactions in bubble chamber, spark chambers and counter experiments. Annual progress report

    SciTech Connect

    Holloway, L.E.; O'Halloran, T.A. Jr.; Simmons, R.O.

    1983-07-01

    During the past six years we have carried out and planned experiments which predominantly studied the production and decay of particles containing charmed quarks. A series of photoproduction and neutron production experiments started with the very early observation of the production of J/psi by neutrons and by photons at Fermilab. From subsequent experiments using these neutral beams and the basic detecting system, we have reported results on the photoproduction of the ..lambda../sub c/ charmed baryon and the D and D* charmed mesons. More recent runs are studying the high energy photoproduction of vector mesons including the psi'. The present experiment in this sequence is using neutrons to produce a large number of D mesons. Another series of experiments at Fermilab set out to study the hadronic production of charmed mesons. The Chicago Cyclotron facility was modified with a detector sensitive to various possible production mechanisms. The experiments were a success; clean signals of D mesons were observed to be produced by pions, and also the production of chi/sub c/ with the subsequent decay via a ..gamma..-ray to psi was observed. The charmonium experiments run this year have better photon resolution for measuring the decays of chi/sub c/ to psi. We are part of a collaboration which is working on the Collider Detector Facility for Fermilab. The CDF at Fermilab is a possible source of (weak) intermediate vector bosons from the collisions of protons and anti-protons. Our responsibilities in the CDF include both the construction of the muon detector and the designing, planning, and testing of the FASTBUS electronics. The second part of our weak interaction program is the Neutrino Oscillation experiment which is now under construction at Brookhaven.

  1. Surface roughness effect on ultracold neutron interaction with a wall and implications for computer simulations

    SciTech Connect

    Steyerl, A.; Malik, S. S.; Desai, A. M.; Kaufman, C.

    2010-05-15

    We review the diffuse scattering and the loss coefficient in ultracold neutron reflection from slightly rough surfaces, report a surprising reduction in loss coefficient due to roughness, and discuss the possibility of transition from quantum treatment to ray optics. The results are used in a computer simulation of neutron storage in a recent neutron lifetime experiment that reported a large discrepancy of neutron lifetime with the current particle data value. Our partial reanalysis suggests the possibility of systematic effects that were not included in this publication.

  2. HERC2 Interacts with Claspin and regulates DNA origin firing and replication fork progression.

    PubMed

    Izawa, Naoki; Wu, Wenwen; Sato, Ko; Nishikawa, Hiroyuki; Kato, Akihiro; Boku, Narikazu; Itoh, Fumio; Ohta, Tomohiko

    2011-09-01

    DNA replication, recombination, and repair are highly interconnected processes the disruption of which must be coordinated in cancer. HERC2, a large HECT protein required for homologous recombination repair, is an E3 ubiquitin ligase that targets breast cancer suppressor BRCA1 for degradation. Here, we show that HERC2 is a component of the DNA replication fork complex that plays a critical role in DNA elongation and origin firing. In the presence of BRCA1, endogenous HERC2 interacts with Claspin, a protein essential for G(2)-M checkpoint activation and replication fork stability. Claspin depletion slowed S-phase progression and additional HERC2 depletion reduced the effect of Claspin depletion. In addition, HERC2 interacts with replication fork complex proteins. Depletion of HERC2 alleviated the slow replication fork progression in Claspin-deficient cells, suppressed enhanced origin firing, and led to a decrease in MCM2 phosphorylation. In a HERC2-dependent manner, treatment of cells with replication inhibitor aphidicolin enhanced MCM2 phosphorylation. Taken together, our results suggest that HERC2 regulates DNA replication progression and origin firing by facilitating MCM2 phosphorylation. These findings establish HERC2 as a critical function in DNA repair, checkpoint activation, and DNA replication. PMID:21775519

  3. Magnetic field instability in a neutron star driven by the electroweak electron-nucleon interaction versus the chiral magnetic effect

    NASA Astrophysics Data System (ADS)

    Dvornikov, Maxim; Semikoz, Victor B.

    2015-03-01

    We show that the Standard Model electroweak interaction of ultrarelativistic electrons with nucleons (the e N interaction) in a neutron star (NS) permeated by a seed large-scale helical magnetic field provides its growth up to ≳1 015 G during a time comparable with the ages of young magnetars ˜1 04 yr . The magnetic field instability originates from the parity violation in the e N interaction entering the generalized Dirac equation for right and left massless electrons in an external uniform magnetic field. We calculate the average electric current given by the solution of the modified Dirac equation containing an extra current for right and left electrons (positrons), which turns out to be directed along the magnetic field. Such a current includes both a changing chiral imbalance of electrons and the e N potential given by a constant neutron density in a NS. Then we derive the system of the kinetic equations for the chiral imbalance and the magnetic helicity which accounts for the e N interaction. By solving this system, we show that a sizable chiral imbalance arising in a neutron protostar due to the Urca process eL-+p →N +νeL diminishes very rapidly because of a huge chirality-flip rate. Thus the e N term prevails over the chiral effect, providing a huge growth of the magnetic helicity and the helical magnetic field.

  4. Measurement of spin-flip probabilities for ultracold neutrons interacting with nickel phosphorus coated surfaces

    NASA Astrophysics Data System (ADS)

    Tang, Z.; Adamek, E. R.; Brandt, A.; Callahan, N. B.; Clayton, S. M.; Currie, S. A.; Ito, T. M.; Makela, M.; Masuda, Y.; Morris, C. L.; Pattie, R. W.; Ramsey, J. C.; Salvat, D. J.; Saunders, A.; Young, A. R.

    2016-08-01

    We report a measurement of the spin-flip probabilities for ultracold neutrons interacting with surfaces coated with nickel phosphorus. For 50 μm thick nickel phosphorus coated on stainless steel, the spin-flip probability per bounce was found to be βNiPonSS = (3 .3-5.6+1.8) ×10-6 . For 50 μm thick nickel phosphorus coated on aluminum, the spin-flip probability per bounce was found to be βNiPonAl = (3 .6-5.9+2.1) ×10-6 . For the copper guide used as reference, the spin flip probability per bounce was found to be βCu = (6 .7-2.5+5.0) ×10-6 . The results on the nickel phosphorus-coated surfaces may be interpreted as upper limits, yielding βNiPonSS < 6.2 ×10-6 (90% C.L.) and βNiPonAl < 7.0 ×10-6 (90% C.L.) for 50 μm thick nickel phosphorus coated on stainless steel and 50 μm thick nickel phosphorus coated on aluminum, respectively. Nickel phosphorus coated stainless steel or aluminum provides a solution when low-cost, mechanically robust, and non-depolarizing UCN guides with a high Fermi potential are needed.

  5. Combining Neutron and Magnetic Resonance Imaging to Study the Interaction of Plant Rootsand Soil

    NASA Astrophysics Data System (ADS)

    Oswald, Sascha E.; Tötzke, Christian; Haber-Pohlmeier, Sabina; Pohlmeier, Andreas; Kaestner, Anders P.; Lehmann, Eberhard

    The soil in direct vicinity of the roots, the root-soil interface or so called rhizosphere, is heavily modified by the activity of roots, compared to bulk soil, e.g. in respect to microbiology and soil chemistry. It has turned out that the root-soil interface, though small in size, also plays a decisive role in the hydraulics controlling the water flow from bulk soil into the roots. A promising approach for the non-invasive investigation of water dynamics, water flow and solute transport is the combination of the two imaging techniques magnetic resonance imaging (MRI) and neutron imaging (NI). Both methods are complementary, because NI maps the total proton density, possibly amplified by NI tracers, which usually corresponds to total water content, and is able to detect changes and spatial patterns with high resolution. On the other side, nuclear magnetic resonance relaxation times reflect the interaction between fluid and matrix, while also a mapping of proton spin density and thus water content is possible. Therefore MRI is able to classify different water pools via their relaxation times additionally to the water distribution inside soil as a porous medium. We have started such combined measurements with the approach to use the same samples and perform tomography with each imaging method at different location and short-term sample transfer.

  6. Recent progress in the fundamental understanding of hydrophilic interaction chromatography (HILIC).

    PubMed

    Guo, Yong

    2015-10-01

    With the exponential growth in the application of the HILIC technique, there has been a significant progress in understanding the fundamental aspects of hydrophilic interaction chromatography. The experimental studies tend to be more extensive in terms of the number of stationary phases investigated and the number of probe compounds employed in comparison with the earlier studies; and more theoretical studies in quantitative structure retention relationship (QSRR) and molecular dynamics simulations have also been published and provide molecular-level insights into the retention mechanism. This review focuses on the recent progress in understanding the retention mechanism, retention models, selectivity, and the kinetic performance of HILIC. A better understanding of these fundamental aspects will undoubtedly facilitate more applications of this chromatographic technique in a wider range of fields. PMID:26221630

  7. Interaction of workplace demands and cardiovascular reactivity in progression of carotid atherosclerosis: population based study.

    PubMed Central

    Everson, S. A.; Lynch, J. W.; Chesney, M. A.; Kaplan, G. A.; Goldberg, D. E.; Shade, S. B.; Cohen, R. D.; Salonen, R.; Salonen, J. T.

    1997-01-01

    OBJECTIVE: To examine the combined influence of workplace demands and changes in blood pressure induced by stress on the progression of carotid atherosclerosis. DESIGN: Population based follow up study of unestablished as well as traditional risk factors for carotid atherosclerosis, ischaemic heart disease, and other outcomes. SETTING: Eastern Finland. SUBJECTS: 591 men aged 42-60 who were fully employed at baseline and had complete data on the measures of carotid atherosclerosis, job demands, blood pressure reactivity, and covariates. MAIN OUTCOME MEASURES: Change in ultrasonographically assessed intima-media thickness of the right and left common carotid arteries from baseline to 4 year follow up. RESULTS: Significant interactions between workplace demands and stress induced reactivity were observed for all measures of progression (P < 0.04). Men with large changes in systolic blood pressure (20 mm Hg or greater) in anticipation of a maximal exercise test and with high job demands had 10-40% greater progression of mean (0.138 v 0.123 mm) and maximum (0.320 v 0.261 mm) intima-media thickness and plaque height (0.347 v 0.264) than men who were less reactive and had fewer job demands. Similar results were obtained after excluding men with prevalent ischaemic heart disease at baseline. Findings were strongest among men with at least 20% stenosis or non-stenotic plaque at baseline. In this subgroup reactive men with high job demands had more than 46% greater atherosclerotic progression than the others. Adjustment for atherosclerotic risk factors did not alter the results. CONCLUSIONS: Men who showed stress induced blood pressure reactivity and who reported high job demands experienced the greatest atherosclerotic progression, showing the association between dispositional risk characteristics and contextual determinants of disease and suggesting that behaviourally evoked cardiovascular reactivity may have a role in atherogenesis. PMID:9055713

  8. Left–right asymmetry in integral spectra of γ-quanta in the interaction of nuclei with polarized thermal neutrons

    SciTech Connect

    Vesna, V. A.; Gledenov, Yu. M.; Nesvizhevsky, V. V.; Sedyshev, P. V.; Shul’gina, E. V.

    2015-10-15

    The paper presents results of preliminarymeasurements of the left–right asymmetry in integral spectra of γ-quanta emitted in the interaction of polarized thermal neutrons with nuclei. These results indicate that for all cases of measured statistically significant P-odd asymmetry, the left–right asymmetry coefficient is much smaller than the P-odd asymmetry coefficient. This observation is not consistent with the predictions of theoretical calculations.

  9. Mechanisms of interaction of radiation with matter. Progress report, July 1, 1991--August 31, 1992

    SciTech Connect

    Geacintov, N.E.; Pope, M.

    1992-08-31

    This project is concerned with studies of biological activity-structure relationships in which the mechanisms of interaction of ionizing radiation and benzopyrene (PB) compounds with DNA are being investigated and compared. Emphasis is focused on effects of DNA conformation on its mechanisms of interaction with ionizing radiation, on the influence of structure and stereochemistry of BP metabolites on mechanisms of DNA damage, and on influence of DNA conformation on interactions between BP metabolites and DNA molecules, and the structures of the complexes and adducts which are formed. One basic theme of this project is the use of photoexcited states of BP and nucleic acids as probes of these interactions. In part I of this report, recent progress on elucidating the structures of selected BP-oligonucleotide model adducts by high resolution NMR and gel electrophoresis techniques is summarized. It is shown that the stereochemical properties of benzo[a]pyrene diol epoxide-DNA adducts play a crucial role in determining their interactions with certain exonucleases. These results provide useful models for deriving a better understanding of differences biological activities of BP compounds and the relationships between mutagenicities and the structure properties of BP-DNA adducts. In Part II of this report, a new time-resolved method based on picosecond laser pulse techniques for elucidating the electronic levels involved in electron photoemission and electron transfer in BP and nucleic acid solids is described.

  10. X-ray emission from interacting wind massive binaries: A review of 15 years of progress

    NASA Astrophysics Data System (ADS)

    Rauw, Gregor; Nazé, Yaël

    2016-09-01

    Previous generations of X-ray observatories revealed a group of massive binaries that were relatively bright X-ray emitters. This was attributed to emission of shock-heated plasma in the wind-wind interaction zone located between the stars. With the advent of the current generation of X-ray observatories, the phenomenon could be studied in much more detail. In this review, we highlight the progress that has been achieved in our understanding of the phenomenon over the last 15 years, both on theoretical and observational grounds. All these studies have paved the way for future investigations using the next generation of X-ray satellites that will provide crucial information on the X-ray emission formed in the innermost part of the wind-wind interaction.

  11. Spectroscopy of Neutrons Generated Through Nuclear Reactions with Light Ions in Short-Pulse Laser-Interaction Experiments

    NASA Astrophysics Data System (ADS)

    Stoeckl, C.; Forrest, C. J.; Glebov, V. Yu.; Sangster, T. C.; Schroder, W. U.

    2015-11-01

    Neutron and charged-particle production has been studied in OMEGA EP laser-driven light-ion reactions including D-D fusion, D-9Be fusion, and 9Be(D,n)10B processes at deuteron energies from 1 to a few MeV. The energetic deuterons are produced in a primary target, which is irradiated with one short-pulse (10-ps) beam with energies of up to 1.25 kJ focused at the target front surface. Charged particles from the backside of the target create neutrons and ions through nuclear reactions in a secondary target placed closely behind the primary interaction target. Angle-dependent yields and spectra of the neutrons generated in the secondary target are measured using scintillator-photomultiplier-based neutron time-of-flight detectors and nuclear activation samples. A Thomson parabola is used to measure the spectra of the primary and secondary charged particles. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944 and DE-FC02-04ER54789.

  12. HSPB7 interacts with dimerized FLNC and its absence results in progressive myopathy in skeletal muscles

    PubMed Central

    Juo, Liang-Yi; Liao, Wern-Chir; Shih, Yen-Ling; Yang, Bih-Ying; Liu, An-Bang

    2016-01-01

    ABSTRACT HSPB7 belongs to the small heat-shock protein (sHSP) family, and its expression is restricted to cardiac and skeletal muscles from embryonic stages to adulthood. Here, we found that skeletal-muscle-specific ablation of the HspB7 does not affect myogenesis during embryonic stages to postnatal day 1 (P1), but causes subsequent postnatal death owing to a respiration defect, with progressive myopathy phenotypes in the diaphragm. Deficiency of HSPB7 in the diaphragm muscle resulted in muscle fibrosis, sarcomere disarray and sarcolemma integrity loss. We identified dimerized filamin C (FLNC) as an interacting partner of HSPB7. Immunofluorescence studies demonstrated that the aggregation and mislocalization of FLNC occurred in the muscle of HspB7 mutant adult mice. Furthermore, the components of dystrophin glycoprotein complex, γ- and δ-sarcoglycan, but not dystrophin, were abnormally upregulated and mislocalized in HSPB7 mutant muscle. Collectively, our findings suggest that HSPB7 is essential for maintaining muscle integrity, which is achieved through its interaction with FLNC, in order to prevent the occurrence and progression of myopathy. PMID:26929074

  13. Development of Neutron Polarization Measurement System for Studying NN interaction in Nuclear Medium

    NASA Astrophysics Data System (ADS)

    Yasuda, J.; Wakasa, T.; Dozono, M.; Fukunaga, T.; Gotanda, S.; Hatanaka, K.; Kanaya, Y.; Maeda, Y.; Maeda, Y.; Miki, K.; Nishio, Y.; Noro, T.; Ohnaka, K.; Sakaguchi, S.; Sakemi, Y.; Sekiguchi, K.; Tamii, A.; Taguchi, T.; Wada, Y.

    2016-02-01

    We have developed the neutron polarization measurement system to perform the first polarization-transfer measurement for the exclusive (p,np) reaction. For the neutron polarization measurement, we have reconstructed the neutron polarimeter NPOL3. The NPOL3 system has been calibrated by using the polarized neutron from the 2H(p→,n→) reaction, and the resulting effective analyzing power is Ay:eff = 0.127. For the exclusive measurement, the Large Acceptance Spectrometer (LAS) has been used for the recoil proton detection. The energy resolution of 6 MeV is achieved for separation energy, which is sufficient to separate the 1s and 1p orbits for light nuclei.

  14. Interaction of neutrons with a birefringent medium moving with an acceleration

    NASA Astrophysics Data System (ADS)

    Frank, A. I.

    2016-04-01

    Recent experiments demonstrated that the energy of a neutron traversing an accelerated sample of a refractive medium changes. Later, it was realized that such an accelerated-medium effect (AME) is quite a general phenomenon. This paper discusses some special features of the effect for a birefringent medium. In this case, AME shows quite new features. In neutron optics, where birefringence is due to the spin dependence of the refractive index, AME results in a nonstationary state with a precessing spin.

  15. Schottky Mass Measurement of the {sup 208}Hg Isotope: Implication for the Proton-Neutron Interaction Strength around Doubly Magic {sup 208}Pb

    SciTech Connect

    Chen, L.; Plass, W. R.; Geissel, H.; Scheidenberger, C.; Litvinov, Yu. A.; Beckert, K.; Beller, P.; Bosch, F.; Caceres, L.; Franzke, B.; Gerl, J.; Gorska, M.; Knoebel, R.; Kozhuharov, C.; Litvinov, S. A.; Mandal, S.; Muenzenberg, G.; Nolden, F.; Saito, N.; Saito, T.

    2009-03-27

    Time-resolved Schottky mass spectrometry has been applied to uranium projectile fragments which yielded the mass value for the {sup 208}Hg (Z=80, N=128) isotope. The mass excess value of ME=-13 265(31) keV has been obtained, which has been used to determine the proton-neutron interaction strength in {sup 210}Pb, as a double difference of atomic masses. The results show a dramatic variation of the strength for lead isotopes when crossing the N=126 neutron shell closure, thus confirming the empirical predictions that this interaction strength is sensitive to the overlap of the wave functions of the last valence neutrons and protons.

  16. Schottky mass measurement of the 208Hg isotope: implication for the proton-neutron interaction strength around doubly magic 208Pb.

    PubMed

    Chen, L; Litvinov, Yu A; Plass, W R; Beckert, K; Beller, P; Bosch, F; Boutin, D; Caceres, L; Cakirli, R B; Carroll, J J; Casten, R F; Chakrawarthy, R S; Cullen, D M; Cullen, I J; Franzke, B; Geissel, H; Gerl, J; Górska, M; Jones, G A; Kishada, A; Knöbel, R; Kozhuharov, C; Litvinov, S A; Liu, Z; Mandal, S; Montes, F; Münzenberg, G; Nolden, F; Ohtsubo, T; Patyk, Z; Podolyák, Zs; Propri, R; Rigby, S; Saito, N; Saito, T; Scheidenberger, C; Shindo, M; Steck, M; Ugorowski, P; Walker, P M; Williams, S; Weick, H; Winkler, M; Wollersheim, H-J; Yamaguchi, T

    2009-03-27

    Time-resolved Schottky mass spectrometry has been applied to uranium projectile fragments which yielded the mass value for the 208Hg (Z=80, N=128) isotope. The mass excess value of ME=-13 265(31) keV has been obtained, which has been used to determine the proton-neutron interaction strength in 210Pb, as a double difference of atomic masses. The results show a dramatic variation of the strength for lead isotopes when crossing the N=126 neutron shell closure, thus confirming the empirical predictions that this interaction strength is sensitive to the overlap of the wave functions of the last valence neutrons and protons. PMID:19392270

  17. Neutron chopper development at LANSCE

    SciTech Connect

    Nutter, M.; Lewis, L.; Tepper, S.; Silver, R.N.; Heffner, R.H.

    1985-01-01

    Progress is reported on neutron chopper systems for the Los Alamos Neutron Scattering Center pulsed spallation neutron source. This includes the development of 600+ Hz active magnetic bearing neutron chopper and a high speed control system designed to operate with the Proton Storage Ring to phase the chopper to the neutron source. 5 refs., 3 figs.

  18. Laser-driven γ-ray, positron, and neutron source from ultra-intense laser-matter interactions

    SciTech Connect

    Nakamura, Tatsufumi; Hayakawa, Takehito

    2015-08-15

    In ultra-intense laser-matter interactions, γ-rays are effectively generated via the radiation reaction effect. Since a significant fraction of the laser energy is converted into γ-rays, understanding of the energy transport inside of the target is important. We have developed a Particle-in-Cell code which includes generation of the γ-rays, their energy transport, and photo-nuclear reactions. Using the code, we have investigated the characteristics of the quantum beams generated by the transport of the laser-driven γ-rays. It is shown that collimated, mono-energetic positron beams with hundreds of MeV are generated by using thick targets. Neutron beams are also effectively generated by using beryllium targets via photo-nuclear reactions. These lead to the proposal of quantum beam sources of γ-rays, positrons, and neutrons with distinctive characters, which are selectively generated by choosing target conditions.

  19. Theoretical studies on the structure of interacting colloidal suspensions by spin-echo small angle neutron scattering.

    PubMed

    Li, Xin; Shew, Chwen-Yang; Liu, Yun; Pynn, Roger; Liu, Emily; Herwig, Kenneth W; Smith, Gregory S; Robertson, J Lee; Chen, Wei-Ren

    2010-05-01

    The application of the spin-echo small angle neutron scattering (SESANS) technique for structural characterization of interacting colloidal suspensions is considered in this work. The framework to calculate the theoretical SESANS correlation function is briefly laid out. A general discussion regarding the features of the SESANS correlation functions obtained from different model systems is presented. In comparison with conventional elastic scattering tools operating at the same length scale, our mean-field calculations, based on a monodisperse spherical colloidal system, show that the real-space measurement provided by SESANS presents a powerful probe for studying the intercolloid potential. The reason of this sensitivity is discussed from the standpoint of way, in which how the spatial correlations are manifested in different neutron scattering implementations. This study leads to a better understanding regarding the distinction between SANS and SESANS. PMID:20459176

  20. Progress in sub-grid scale modeling of shock-turbulence interaction

    NASA Astrophysics Data System (ADS)

    Buckingham, A. C.; Grun, J.

    1994-12-01

    The authors report on progress in the development of sub-grid scale (SGS) closure relationships for the unresolved motion scales in compressible large eddy simulations (LES). At present they are refining the SGS model and overall LES procedure to include: a linearized viscoelastic model for finite thickness shock distortions and shocked turbulence field response; multiple scale asymptotic considerations to improve predictions of average near-wall surface behavior; and a spectral statistical model simulating the effects of high wave number stochastic feed-back from the unresolved SGS nonlinear motion influences on the explicitly resolved grid scale motions. Predicted amplification levels, modal energy partition, shock translational to turbulence kinetic energy transfer, and viscoelastic spatio-temporal response of turbulence to shock interaction are examined in comparison with available experimental evidence. Supplemental hypersonic compressible turbulence experimental information is developed from sub nanosecond interval pulsed shadowgraph evidence of laser impulse generated hypervelocity shocks interacting with intense, previously developed and carefully characterized initial turbulence. Accurate description of the influence of shock-turbulence interactions is vital for predicting their influence on: Supersonic/hypersonic flow field analysis, aerodynamic design, and aerostructural materials selection. Practical applications also include interior supersonic combustion analysis and combustion chamber design. It is also the essential foundation for accurately predicting the development and evolution of flow-field generated thermal and electromagnetic radiation important to hypersonic flight vehicle survivability, detection and communication.

  1. Progress in sub-grid scale modeling of shock-turbulence interaction

    SciTech Connect

    Buckingham, A.C.; Grun, J.

    1994-12-01

    The authors report on progress in the development of sub grid scale (SGS) closure relationships for the unresolved motion scales in compressible large eddy simulations (LES). At present they are refining the SGS model and overall LES procedure to include: a linearized viscoelastic model for finite thickness shock distortions and shocked turbulence field response; multiple scale asymptotic considerations to improve predictions of average near-wall surface behavior; and a spectral statistical model simulating the effects of high wave number stochastic feed-back from the unresolved SGS nonlinear motion influences on the explicitly resolved grid scale motions. Predicted amplification levels, modal energy partition, shock translational to turbulence kinetic energy transfer, and viscoelastic spatio-temporal response of turbulence to shock interaction are examined in comparison with available experimental evidence. Supplemental hypersonic compressible turbulence experimental information is developed from sub nanosecond interval pulsed shadowgraph evidence of laser impulse generated hypervelocity shocks interacting with intense, previously developed and carefully characterized initial turbulence. Accurate description of the influence of shock-turbulence interactions is vital for predicting their influence on: Supersonic/hypersonic flow field analysis, aerodynamic design, and aerostructural materials selection. Practical applications also include interior supersonic combustion analysis and combustion chamber design. It is also the essential foundation for accurately predicting the development and evolution of flow-field generated thermal and electromagnetic radiation important to hypersonic flight vehicle survivability, detection and communication.

  2. Layered semiconductor neutron detectors

    DOEpatents

    Mao, Samuel S; Perry, Dale L

    2013-12-10

    Room temperature operating solid state hand held neutron detectors integrate one or more relatively thin layers of a high neutron interaction cross-section element or materials with semiconductor detectors. The high neutron interaction cross-section element (e.g., Gd, B or Li) or materials comprising at least one high neutron interaction cross-section element can be in the form of unstructured layers or micro- or nano-structured arrays. Such architecture provides high efficiency neutron detector devices by capturing substantially more carriers produced from high energy .alpha.-particles or .gamma.-photons generated by neutron interaction.

  3. Neutron diffraction analysis of transition metal hydrides: Terminal, bridging, and agostic interactions

    SciTech Connect

    Stevens, R.C.

    1988-01-01

    The High Flux Beam Reactor at Brookhaven National Laboratory located in Upton, New York, was used in all experiments described in this thesis. Two main types of problems were tackled with this technique: (i) the structures of transition metal hydrido complexes and (ii) the determination of the absolute configuration of chiral CHD groups generated via biochemical processes. Transition metal hydrido complexes have been studies extensively due to several reasons: (i) their potential for catalysis in organic synthetic reactions such as hydrogenation, hydroformulation, and olefin isomerization; (ii) their unconventional bonding mode in metal clusters; and (iii) their potential as hydrogen storage materials. Six transition metal hydride complexes have been studied in this work which fall into this category. The compounds studies include: (i) a transition metal dimer containing bridging hydrides, ((C{sub 5}(CH{sub 3}){sub 5}Ir){sub 2} ({mu}-H){sub 3}){sup +}(ClO{sub 4}){sup {minus}}2C{sub 6}H{sub 6}; (ii) compounds suspected to have agostic hydride interactions, (cis-IrH(OH)(PMe{sub 3}){sub 4}){sup +}(PF{sub 6}){sup {minus}}, Cp{sub 3}U = CHPMe{sup 3}, and (C{sub 5}Me{sub 5}){sub 2}Th({mu}-CH{sub 2})({mu}-1-3,4-Me{sub 2}C{sub 5}H{sub 2}) ZrMe(C{sub 5}H{sub 5}); (iii) a metal cluster containing face-bridging hydrogen atoms H{sub 6}Cu{sub 6}(P(p-toyl){sub 3}){sub 6}; and (iv) the complex HRh(P(C{sub 6}H{sub 5}){sub 3}){sub 4}, in which the shortest hydrogen-metal bond distance (1.31(8){angstrom}) was discovered. The appendix section is concerned with the powerful, yet presently under-utilized application of neutron diffraction in the determination of absolute configurations of molecules bearing chiral methylene groups. Here, the systems malate/succinate and acetaldehyde/alcohol have been studied and confirmed to be consistent with previous (non-crystallographic) studies.

  4. Analyzing Systolic-Diastolic Interval Interaction Characteristics in Diabetic Cardiac Autonomic Neuropathy Progression

    PubMed Central

    Imam, Mohammad Hasan; Jelinek, Herbert F.; Palaniswami, Marimuthu; Khandoker, Ahsan H.

    2015-01-01

    Cardiac autonomic neuropathy (CAN), one of the major complications in diabetes, if detected at the subclinical stage allows for effective treatment and avoiding further complication including cardiovascular pathology. Surface ECG (Electrocardiogram)-based diagnosis of CAN is useful to overcome the limitation of existing cardiovascular autonomic reflex tests traditionally used for CAN identification in clinical settings. The aim of this paper is to analyze the changes in the mechanical function of the ventricles in terms of systolic-diastolic interval interaction (SDI) from a surface ECG to assess the severity of CAN progression [no CAN, early CAN (ECAN) or subclinical CAN, and definite CAN (DCAN) or clinical CAN]. ECG signals recorded in supine resting condition from 72 diabetic subjects without CAN (CAN-) and 70 diabetic subjects with CAN were analyzed in this paper. The severity of CAN was determined by Ewing’s Cardiovascular autonomic reflex tests. Fifty-five subjects of the CAN group had ECAN and 15 subjects had DCAN. In this paper, we propose an improved version of the SDI parameter (i.e., TQ/RR interval ratio) measured from the electrical diastolic interval (i.e., TQ interval) and the heart rate interval (i.e., RR interval). The performance of the proposed SDI measure was compared with the performance of the existing SDI measure (i.e., QT/TQ interval ratio). The proposed SDI parameter showed significant differences among three groups (no CAN, ECAN, and DCAN). In addition, the proposed SDI parameter was found to be more sensitive in detecting CAN progression than other ECG interval-based features traditionally used for CAN diagnosis. The modified SDI parameter might be used as an alternative measure for the Ewing autonomic reflex tests to identify CAN progression for those subjects who are unable to perform the traditional tests. These findings could also complement the echocardiographic findings of the left ventricular diastolic dysfunction by providing

  5. Methods and progress in studying inelastic interactions between positrons and atoms

    NASA Astrophysics Data System (ADS)

    DuBois, R. D.

    2016-06-01

    Progress and methods used in positron based studies of inelastic atomic interactions are traced from the original discovery of the positron to the present. Following a historic overview and introduction, this review will show how new experimental techniques were critical in advancing experimental studies from total or integral cross section measurements to highly differential investigations that are now being performed. The primary emphasis is on ionization of atoms and simple molecules by low-energy (tens to hundreds of eV) positrons and in showing similarities and differences between positron, electron and proton impact data. Selected examples of Ps based studies are also included. Experimental techniques associated with the generation, moderation, and transport of low-energy positron beams plus an extensive reference list and tables summarizing existing experimental studies are provided. Comments with respect to future studies and directions, plus how they might be achieved, are presented.

  6. Small-molecule inhibitors of protein-protein interactions: progressing towards the reality

    PubMed Central

    Arkin, Michelle R.; Tang, Yinyan; Wells, James A.

    2014-01-01

    Summary The past twenty years have seen many advances in our understanding of protein-protein interactions (PPI) and how to target them with small-molecule therapeutics. In 2004, we reviewed some early successes; since then, potent inhibitors have been developed for diverse protein complexes, and compounds are now in clinical trials for six targets. Surprisingly, many of these PPI clinical candidates have efficiency metrics typical of ‘lead-like’ or ‘drug-like’ molecules and are orally available. Successful discovery efforts have integrated multiple disciplines and make use of all the modern tools of target-based discovery - structure, computation, screening, and biomarkers. PPI become progressively more challenging as the interfaces become more complex, i.e., as binding epitopes are displayed on primary, secondary, or tertiary structures. Here, we review the last ten years of progress, focusing on the properties of PPI inhibitors that have advanced to clinical trials and prospects for the future of PPI drug discovery. PMID:25237857

  7. Modeling fluid-rock interaction at Yucca Mountain, Nevada; A progress report, April 15, 1992

    SciTech Connect

    Viani, B.E.; Bruton, C.J.

    1992-08-01

    Volcanic rocks at Yucca Mountain, Nevada aie being assessed for their suitability as a potential repository for high-level nuclear waste. Recent progress in modeling fluid-rock interactions, in particular the mineralogical and chemical changes that may accompany waste disposal at Yucca Mountain, will be reviewed in this publication. In Part 1 of this publication, ``Geochemical Modeling of Clinoptilolite-Water Interactions,`` solid-solution and cation-exchange models for the zeolite clinoptilolite are developed and compared to experimental and field observations. At Yucca Mountain, clinoptilolite which is found lining fractures and as a major component of zeolitized tuffs, is expected to play an important role in sequestering radionuclides that may escape from a potential nuclear waste repository. The solid-solution and ion-exchange models were evaluated by comparing predicted stabilities and exchangeable cation distributions of clinoptilolites with: (1) published binary exchange data; (2) compositions of coexisting clinoptilolites and formation waters at Yucca Mountain; (3) experimental sorption isotherms of Cs and Sr on zeolitized tuff, and (4) high temperature experimental data. Good agreement was found between predictions and expertmental data, especially for binary exchange and Cs and Sr sorption on clinoptilolite. Part 2 of this publication, ``Geochemical Simulation of Fluid-Rock Interactions at Yucca Mountain,`` describes preliminary numerical simulations of fluid-rock interactions at Yucca Mountain. The solid-solution model developed in the first part of the paper is used to evaluate the stability and composition of clinciptilolite and other minerals in the host rock under ambient conditions and after waste emplacement.

  8. FLUKA simulations for low-energy neutron interactions and experimental validation

    NASA Astrophysics Data System (ADS)

    Borio di Tigliole, A.; Cesana, A.; Dolfini, R.; Ferrari, A.; Raselli, G. L.; Sala, P.; Terrani, M.

    2001-08-01

    The response functions of a commercial neutron detector filled with BICRON BC501A liquid scintillator are computed using the FLUKA Monte Carlo program. The simulation results are necessary to perform a direct spectroscopy by unfolding the measured proton recoil spectrum by means of the response functions of the detector using the SAND II code. The measurement of the flux intensity and of the energy distribution of a calibrated AmBe neutron source validates the method showing a good agreement with the known quantities.

  9. Neutron Diffraction on NaNi2 BiO6 : Complex Interactions on a Honeycomb Lattice

    NASA Astrophysics Data System (ADS)

    Scheie, Allen; Ross, Kate; Seibel, Elizabeth; Rodriguez-Rivera, Jose; Broholm, Collin; Cava, Robert; Institute for Quantum Matter Collaboration

    Magnetic crystals with a honeycomb lattice can have a very high degree of frustration when next-nearest neighbor interactions are strong. Such complex interactions can lead to Kitaev model physics, including a proposed spin liquid phase. Using neutron scattering, we studied the magnetic properties of a new spin-1/2 honeycomb compound, NaNi2BiO6, which was known to have heat capacity peaks indicative of a phase transition at 5 K. The magnetic order indicates beyond nearest-neighbor exchange as well as significant inter-plane interaction, which allows for a study of rich and complex structure. In this talk I report the magnetic structure of the compound as found with neutron powder diffraction, and discuss the exchanges necessary to lead to such a complex order. The work at IQM was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Material Sciences and Engineering, under Grant No. DEFG02-08ER46544.

  10. Characterization of core debris/concrete interactions for the Advanced Neutron Source. ANS Severe Accident Analysis Program

    SciTech Connect

    Hyman, C.R.; Taleyarkhan, R.P.

    1992-02-01

    This report provides the results of a recent study conducted to explore the molten core/concrete interaction (MCCI) issue for the Advanced Neutron Source (ANS). The need for such a study arises from the potential threats to reactor system integrity posed by MCCI. These threats include direct attack of the concrete basemat of the containment; generation and release of large quantities of gas that can pressurize the containment; the combustion threat of these gases; and the potential generation, release, and transport of radioactive aerosols to the environment.

  11. [Research Progress on the Interaction Effects and Its Neural Mechanisms between Physical Fatigue and Mental Fatigue].

    PubMed

    Zhang, Lixin; Zhang, Chuncui; He, Feng; Zhao, Xin; Qi, Hongzhi; Wan, Baikun; Ming, Dong

    2015-10-01

    Fatigue is an exhaustion state caused by prolonged physical work and mental work, which can reduce working efficiency and even cause industrial accidents. Fatigue is a complex concept involving both physiological and psychological factors. Fatigue can cause a decline of concentration and work performance and induce chronic diseases. Prolonged fatigue may endanger life safety. In most of the scenarios, physical and mental workloads co-lead operator into fatigue state. Thus, it is very important to study the interaction influence and its neural mechanisms between physical and mental fatigues. This paper introduces recent progresses on the interaction effects and discusses some research challenges and future development directions. It is believed that mutual influence between physical fatigue and mental fatigue may occur in the central nervous system. Revealing the basal ganglia function and dopamine release may be important to explore the neural mechanisms between physical fatigue and mental fatigue. Future effort is to optimize fatigue models, to evaluate parameters and to explore the neural mechanisms so as to provide scientific basis and theoretical guidance for complex task designs and fatigue monitoring. PMID:26964325

  12. Cross sections for fast-neutron interaction with Lu, Tb, and Ta isotopes

    SciTech Connect

    Dzysiuk, N.; Kadenko, I.; Yermolenko, R.; Koning, A. J.

    2010-01-15

    The cross sections for (n,x) reactions with Lu, Tb, and Ta isotopes were measured at (d,t) neutron energies around 14 MeV with the activation technique using metal foils of natural composition. Additionally, tantalum samples were irradiated with (d,d) neutrons and filtered neutron beams. To ensure an acceptable precision of the results all major sources of uncertainties were taken into account. Calculations of efficiency and correction factors were performed with the Monte Carlo technique. The cross section results obtained for the {sup 175}Lu(n,{alpha}){sup 172}Tm reaction at (d,t) neutron energies are reported for the first time. {sup 181}Ta(n,{gamma}){sup 182}Ta{sup m2} reaction cross sections were also measured for the first time at 1.9, 58.7, and 144.3 keV and at 2.85 MeV. The earlier evaluated cross section upper estimate for the nuclear reaction {sup 159}Tb(n,n{sup '}{alpha}){sup 155}Eu is reported in this article to be one order lower. Some other cross sections were obtained with higher precision. Theoretical calculations of excitation functions were performed with the TALYS-1.0 code and compared with the experimental cross section values.

  13. Physics of Neutron Interactions with 238U: New Developments and Challenges

    NASA Astrophysics Data System (ADS)

    Capote, R.; Trkov, A.; Sin, M.; Herman, M.; Daskalakis, A.; Danon, Y.

    2014-04-01

    The latest release of the EMPIRE-3.1 system (codename Rivoli) is being used in the advanced modeling of neutron induced reactions on the 238U nucleus with the aim of improving our knowledge of neutron scattering. The reaction model includes: (i) a new rotational-vibrational dispersive optical model potential coupling the low-lying collective bands of vibrational character observed in even-even actinides, (ii) the Engelbrecht-Weidenmüller transformation allowing for inclusion of compound-direct interference effects enhanced by a dispersive treatment of the optical model potential, (iii) a multi-humped fission barrier with absorption in the secondary well as described within the optical model for fission, and (iv) a modified Lorentzian model (MLO) of the radiative strength function. Impact of the advanced modeling on elastic and inelastic scattering cross section is being assessed by both comparison with selected microscopic experimental data and integral criticality benchmarks (e.g. FLATTOP, JEMIMA and BIGTEN assemblies). Benchmark calculations provide feedback to improve the reaction modeling and reduce both model and model-parameters uncertainties. Additionally, neutron scattering yields on 238U measured accurately at RPI by the time-of-flight technique at 29, 60, 112 and 153 degrees have been used as a further constraint on the incident energy dependence of elastic and inelastically scattered neutrons. Improvement of scattering cross sections in existing libraries is discussed.

  14. Broad-range neutron spectra identification in ultraintense laser interactions with carbon-deuterated plasma

    SciTech Connect

    Youssef, A.; Kodama, R.; Habara, H.; Tanaka, K.A.; Sentoku, Y.; Tampo, M.; Toyama, Y.

    2005-11-15

    Detailed neutron energy spectra produced from a CD2 target irradiated by a 450 fs, 20 J, 1053 nm laser at an intensity of 3x10{sup 18} W/cm{sup 2} have been studied. Wide-ranging neutron spectra were observed from two different observation angles 20 deg. and 70 deg. relative to the rear-side target normal. The experiment and numerically calculated spectra, by a three-dimensional Monte Carlo code, indicate that the range of the measured spectra is larger than that produced by the D(d,n){sup 3}He reaction. An interpretation for the measured spectra is introduced by considering the {sup 12}C(d,n){sup 13}N and D({sup 12}c,n){sup 13}N reactions. In addition, the study revealed that the neutron spectra produced by the D-C and C-D reactions can overlap that produced by the D-D reaction, and due to their high cross sections, comparing to the D-D reaction, both of them effectively participate in the neutron yield.

  15. PBF/BNCT (Power Burst Facility/Boron Neutron Capture Therapy) Program for Cancer Treatment

    SciTech Connect

    Dorn, R.V. III.

    1990-03-01

    Highlights of the PBF/BNCT (Power Burst Facility/Boron Neutron Capture Therapy) during March 1990 include progress within the areas of: gross boron analysis in tissue, blood, and urine, analytical methodologies development for BSH (Borocaptate Sodium) purity determination, dosimetry, analytical radiation transport and interaction modeling for BNCT, large animal model studies, neutron source and facility preparation, administration and common support, PBF operations.

  16. High intensity laser interactions with underdense plasma: a source of energetic electrons, ions, neutrons and gamma-rays

    NASA Astrophysics Data System (ADS)

    Najmudin, Zulfikar

    2002-11-01

    With the rapid advances in laser technology, laser beams are now available that can be routinely focused to intensities approaching 10^20 Wcm-2. At these intensities all matter becomes ionised on a time scale close to the period of the laser. The subsequent interaction is therefore characterised by the interaction of an intense laser beam with a highly dissociated medium (plasma). The interaction is particularly interesting since at these intensities, the normalised momentum of the electrons in the laser field is given by a_0=0.89× I(10^18 Wcm-2× λ^2(μ m)). Hence the quiver velocity of the plasma electrons in the electric field of the laser beam becomes relativistic. The interaction of the laser beam with a plasma at such elevated intensities is highly non-linear, and can lead to a whole host of interesting phenomena. These include relativistic self-focusing, harmonic generation, and Raman type parametric instabilities. These processes are of interest, not only from a scientific perspective, but also a technological one, with the prospect that such an interaction can provide useful sources of energetic particles. In this context, plasma wave generation by laser beam self-modulation, proton acceleration by Coulomb explosions and thermonuclear fusion neutron generation by extreme heating of intense laser beams will be discussed. Recent highlights of this research include the detection of protons of energies in excess of 1 MeV, the heating of an underdense deuterium plasma to temperatures in excess of 1 keV, resulting in the detection in excess of 10^6 fusion neutrons; and the detection of electrons accelerated to greater than 200 MeV due to the generation of relativistically steepened plasma waves. The latter measurement is particularly noteworthy since it is obtained with a 1 J, 10 Hz laser system, (Salle Jaune, LOA).

  17. A study of gamma-ray and neutron radiation in the interaction of a 2 MeV proton beam with various materials.

    PubMed

    Kasatov, D; Makarov, A; Shchudlo, I; Taskaev, S

    2015-12-01

    Epithermal neutron source based on a tandem accelerator with vacuum insulation and lithium target has been proposed, developed and operated in Budker Institute of Nuclear Physics. The source is regarded as a prototype of a future compact device suitable for carrying out BNCT in oncology centers. In this work the measurements of gamma-ray and neutron radiation are presented for the interaction of a 2 MeV proton beam with various materials (Li, C, F, Al, V, Ti, Cu, Mo, stainless steel, and Ta). The obtained results enabled the optimization of the neutron-generating target and the high energy beam transportation path. PMID:26298434

  18. Cross-Section Measurements for Proton- and Neutron-Induced Reactions Needed to Understand Cosmic-Ray Interactions on Earth and in Space

    NASA Astrophysics Data System (ADS)

    Sisterson, Janet M.

    2005-05-01

    Primary cosmic rays interact directly with extraterrestrial bodies and cosmic-ray shower particles interact with the earth's surface to produce small quantities of radionuclides and stable isotopes, which are measured routinely using appropriate techniques. Theoretical models are used to analyze these measurements to learn the history of the object or the cosmic rays that fell upon it. Cross sections for reactions producing these cosmogenic nuclides are essential input to these models. Most primary cosmic rays are protons, and good measurements of the cross sections for proton-induced reactions are essential. Most relevant cross sections are now well measured, but discrepancies still exist between the measurements and calculations. One explanation is that neutrons produced in primary cosmic-ray interactions also initiate spallation reactions contributing significantly to the cosmogenic nuclide inventory, but few of the relevant cross sections have been measured at energies >30 MeV. We have measured many of these needed cross sections for neutron-induced reactions using two different techniques. Cross sections at selected unique neutron energies >70 MeV are measured at iThemba LABS, South Africa (iTL) using quasi-monoenergetic neutron beams. Energy integrated (average) cross sections are measured at the Los Alamos Neutron Science Center (LANSCE), using `white' neutron beams with an energy range of 0.1-750 MeV.

  19. Inelastic Neutron Scattering and Molecular Dynamics Determination of the Interaction Potential in Liquid CD{sub 4}

    SciTech Connect

    Guarini, E.; Barocchi, F.

    2007-10-19

    Anisotropic interactions of liquid CD{sub 4} are studied in detail by comparison of inelastic neutron Brillouin scattering data with molecular dynamics simulations using up to four different models of the methane site-site potential. We demonstrate that the experimental dynamic structure factor S(Q,{omega}) acts as a highly discriminating quantity for possible interaction schemes. In particular, the Q evolution of the spectra enables a selective probing of the short- and medium-range features of the anisotropic potentials. We show that the preferential configuration of methane dimers at liquid densities can thus be discerned by analyzing the orientation-dependent model potential curves, in light of the experimental and simulation results.

  20. β+/EC decay rates of deformed neutron-deficient nuclei in the deformed QRPA with realistic interactions

    NASA Astrophysics Data System (ADS)

    Ni, Dongdong; Ren, Zhongzhou

    2015-05-01

    The weak-decay (β+ and EC) rates of neutron-deficient Kr, Sr, Zr, and Mo isotopes are investigated within the deformed quasiparticle random-phase approximation with realistic nucleon-nucleon interactions. The particle-particle and particle-hole channels of residual interactions are handled in large single-particle model spaces, based on the Brückner G-matrix with charge-dependent Bonn nucleon-nucleon forces. Contributions from allowed Gamow-Teller and Fermi transitions as well as first-forbidden transitions are calculated. The calculated half-lives show good agreement with the experimental data over a wide range of magnitude, from 10-2 to 107 s. Moreover, predictions of β-decay half-lives are made for some extremely proton-rich isotopes, which could be useful for future experiments.

  1. Light-ion production in the interaction of 96 MeV neutrons with oxygen

    SciTech Connect

    Tippawan, U.; Pomp, S.; Atac, A.; Blomgren, J.; Dangtip, S.; Hildebrand, A.; Johansson, C.; Klug, J.; Mermod, P.; Oesterlund, M.; Bergenwall, B.; Nilsson, L.; Olsson, N.; Prokofiev, A.V.; Nadel-Turonski, P.; Corcalciuc, V.; Koning, A.J.

    2006-03-15

    Double-differential cross sections are reported for light-ion (p, d, t, {sup 3}He, and {alpha}) production in oxygen induced by 96 MeV neutrons. Energy spectra are measured at eight laboratory angles from 20 degree sign to 160 degree sign in steps of 20 degree sign . Procedures for data taking and data reduction are presented. Deduced energy-differential and production cross sections are reported. Experimental cross sections are compared to theoretical reaction model calculations and experimental data at lower neutron energies in the literature. The measured proton data agree reasonably well with the results of the model calculations, whereas the agreement for the other particles is less convincing. The measured production cross sections for protons, deuterons, tritons, and {alpha} particles support the trends suggested by data at lower energies.

  2. Progressive enrichment of island arc mantle by melt-peridotite interaction inferred from Kamchatka xenoliths

    NASA Astrophysics Data System (ADS)

    Kepezhinskas, Pavel; Defant, Marc J.; Drummond, Mark S.

    1996-04-01

    The Pliocene (7 Ma) Nb-enriched arc basalts of the Valovayam Volcanic Field (VVF) in the northern segment of Kamchatka arc (Russia) host abundant xenoliths of spinel peridotites and pyroxenites. Textural and microstructural evidence for the high-temperature, multistage creep-related deformations in spinel peridotites supports a sub-arc mantle derivation. Pyroxenites show re-equilibrated mosaic textures, indicating recrystallization during cooling under the ambient thermal conditions. Three textural groups of clinopyroxenes exhibit progressive enrichment in Na, Al, Sr, La, and Ce accompanied by increase in Sr/Y, La/Yb, and Zr/Sm. Trace elements in various mineral phases and from felsic veins obtained through ion microprobe analysis suggest that the xenoliths have interacted with a siliceous (dacitic) melt completely unlike the host basalt. The suite of xenoliths grade from examples that display little evidence of metasomatic reaction to those containing an assemblage of minerals that have been reproduced experimentally from the reaction of a felsic melt with ultramafic rock, e.g., pargasitic amphibole, albite-rich plagioclase, Al-rich augite, and garnet. The dacitic veins within spinel lherzolite display a strong enrichment in Sr and depletion in Y and the heavy rare earth elements (e.g., Yb). The dacites are comparable to adakites (melts derived from subducted metabasalt), and not typical arc melts. We believe that these potential slab melts were introduced into the mantle beneath this portion of Kamchatka subsequent to partial melting of a relatively young (and hot) subducted crust. Island arc metasomatism by peridotite-slab melt interaction is an important mantle hybridization process responsible for arc-related alkaline magma generation from a veined sub-arc mantle.

  3. Revisiting a Progressive Pedagogy. The Developmental-Interaction Approach. SUNY Series, Early Childhood Education: Inquiries and Insights.

    ERIC Educational Resources Information Center

    Nager, Nancy, Ed.; Shapiro, Edna K., Ed.

    This book reviews the history of the developmental-interactive approach, a formulation rooted in developmental psychology and educational practice, progressively informing educational thinking since the early 20th century. The book describes and analyzes key assumptions and assesses the compatibility of new theoretical approaches, focuses on…

  4. Progressive and Regressive Developmental Changes in Neural Substrates for Face Processing: Testing Specific Predictions of the Interactive Specialization Account

    ERIC Educational Resources Information Center

    Joseph, Jane E.; Gathers, Ann D.; Bhatt, Ramesh S.

    2011-01-01

    Face processing undergoes a fairly protracted developmental time course but the neural underpinnings are not well understood. Prior fMRI studies have only examined progressive changes (i.e. increases in specialization in certain regions with age), which would be predicted by both the Interactive Specialization (IS) and maturational theories of…

  5. Pulsed-neutron monochromator

    DOEpatents

    Mook, H.A. Jr.

    1984-01-01

    In one aspect, the invention is an improved pulsed-neutron monochromator of the vibrated-crystal type. The monochromator is designed to provide neutron pulses which are characterized both by short duration and high density. A row of neutron-reflecting crystals is disposed in a neutron beam to reflect neutrons onto a common target. The crystals in the row define progressively larger neutron-scattering angles and are vibrated sequentially in descending order with respect to the size of their scattering angles, thus generating neutron pulses which arrive simultaneously at the target. Transducers are coupled to one end of the crystals to vibrate them in an essentially non-resonant mode. The transducers propagate transverse waves in the crystal which progress longitudinally therein. The waves are absorbed at the undriven ends of the crystals by damping material mounted thereon. In another aspect, the invention is a method for generating neutron pulses characterized by high intensity and short duration.

  6. Pulsed-neutron monochromator

    DOEpatents

    Mook, Jr., Herbert A.

    1985-01-01

    In one aspect, the invention is an improved pulsed-neutron monochromator of the vibrated-crystal type. The monochromator is designed to provide neutron pulses which are characterized both by short duration and high density. A row of neutron-reflecting crystals is disposed in a neutron beam to reflect neutrons onto a common target. The crystals in the row define progressively larger neutron-scattering angles and are vibrated sequentially in descending order with respect to the size of their scattering angles, thus generating neutron pulses which arrive simultaneously at the target. Transducers are coupled to one end of the crystals to vibrate them in an essentially non-resonant mode. The transducers propagate transverse waves in the crystal which progress longitudinally therein. The wave are absorbed at the undriven ends of the crystals by damping material mounted thereon. In another aspect, the invention is a method for generating neutron pulses characterized by high intensity and short duration.

  7. Power Burst Facility/Boron Neutron Capture Therapy program for cancer treatment, Volume 4, No. 7

    SciTech Connect

    Ackermann, A.L.

    1990-07-01

    This report discusses the monthly progress of the Power Burst Facility/Boron Neutron Capture Therapy (PBF/BNLT) program for cancer treatment. Highlights of the PBF/BNCT Program during July 1990 include progress within the areas of: Gross boron analysis in tissue, blood, and urine; noninvasive boron quantitative determination; analytical radiation transport and interaction modeling for BNCT; large animal model studies; neutron source and facility preparation; administration and common support and PBF operations.

  8. Power Burst Facility/Boron Neutron Capture Therapy Program for cancer treatment

    SciTech Connect

    Ackermann, A.L.; Dorn, R.V. III.

    1990-08-01

    This report discusses monthly progress in the Power Boron Facility/Boron Neutron Capture Therapy (PBF/BNCT) Program for Cancer Treatment. Highlights of the PBF/BNCT Program during August 1990 include progress within the areas of: Gross Boron Analysis in Tissue, Blood, and Urine, boron microscopic (subcellular) analytical development, noninvasive boron quantitative determination, analytical radiation transport and interaction modeling for BNCT, large animal model studies, neutron source and facility preparation, administration and common support and PBF operations.

  9. Neutron crystallographic studies reveal hydrogen bond and water-mediated interactions between a carbohydrate-binding module and its bound carbohydrate ligand.

    PubMed

    Fisher, S Zoë; von Schantz, Laura; Håkansson, Maria; Logan, Derek T; Ohlin, Mats

    2015-10-27

    Carbohydrate-binding modules (CBMs) are key components of many carbohydrate-modifying enzymes. CBMs affect the activity of these enzymes by modulating bonding and catalysis. To further characterize and study CBM-ligand binding interactions, neutron crystallographic studies of an engineered family 4-type CBM in complex with a branched xyloglucan ligand were conducted. The first neutron crystal structure of a CBM-ligand complex reported here shows numerous atomic details of hydrogen bonding and water-mediated interactions and reveals the charged state of key binding cleft amino acid side chains. PMID:26451738

  10. Protein-detergent interactions in single crystals of membrane proteins studied by neutron crystallography

    SciTech Connect

    Timmins, P.A.; Pebay-Peyroula, E.

    1994-12-31

    The detergent micelles surrounding membrane protein molecules in single crystals can be investigated using neutron crystallography combined with H{sub 2}O/D{sub 2}O contrast variation. If the protein structure is known then the contrast variation method allows phases to be determined at a contrast where the detergent dominates the scattering. The application of various constraints allows the resulting scattering length density map to be realistically modeled. The method has been applied to two different forms of the membrane protein porin. In one case both hydrogenated and partially deuterated protein were used, allowing the head group and tail to be distinguished.

  11. Neutron range spectrometer

    DOEpatents

    Manglos, Stephen H.

    1989-06-06

    A neutron range spectrometer and method for determining the neutron energy spectrum of a neutron emitting source are disclosed. Neutrons from the source are collimnated along a collimation axis and a position sensitive neutron counter is disposed in the path of the collimated neutron beam. The counter determines positions along the collimation axis of interactions between the neutrons in the neutron beam and a neutron-absorbing material in the counter. From the interaction positions, a computer analyzes the data and determines the neutron energy spectrum of the neutron beam. The counter is preferably shielded and a suitable neutron-absorbing material is He-3. The computer solves the following equation in the analysis: ##EQU1## where: N(x).DELTA.x=the number of neutron interactions measured between a position x and x+.DELTA.x, A.sub.i (E.sub.i).DELTA.E.sub.i =the number of incident neutrons with energy between E.sub.i and E.sub.i +.DELTA.E.sub.i, and C=C(E.sub.i)=N .sigma.(E.sub.i) where N=the number density of absorbing atoms in the position sensitive counter means and .sigma. (E.sub.i)=the average cross section of the absorbing interaction between E.sub.i and E.sub.i +.DELTA.E.sub.i.

  12. Neutron interactions with germanium isotopes and amorphous and crystalline GeO2

    NASA Astrophysics Data System (ADS)

    Koester, L.; Knopf, K.; Waschkowski, W.

    1987-06-01

    Coherent neutron scattering lengths and total cross sections have been measured on elemental and oxide samples of ordinary Ge and of isotopically enriched substances. From the experimental results the following values were obtained: the coherent scattering lengths (in fm) of the bound atoms Ge(8.185±0.020);70Ge(10.0±0.1);72Ge(8.51±0.10);73Ge(5.02±0.04);74Ge(7.58±0.10) and76Ge(8.2 ±1.5); the absorption cross sections at 0.0253 eV (in barn) for Ge(2.20±0.04);70Ge(2.9±0.2);72Ge(0.8±0.2);73Ge(14.4±0.4) and74Ge(0.4±0.2); the free cross sections for epithermal neutrons and the zero energy scattering cross sections. On the basis of this data, the isotopic- and spin-incoherent cross sections and the s-wave resonance contributions to the coherent scattering lengths have been determined and discussed. Transmission measurements at 0.57 meV on amorphous and crystalline GeO2 yielded for the amorphous sample an inelastic cross section eight times larger than for the crystalline samples. This effect corresponds to a clearly higher density of low energy states in the amorphous than in the crystalline substances.

  13. Structural evolution of the Z=52-62 neutron-deficient nuclei in the interacting boson approximation framework

    SciTech Connect

    Pascu, S.; Cata-Danil, Gh.; Zamfir, N. V.; Marginean, N.

    2010-05-15

    The interacting boson approximation (IBA) is employed in the present article to follow the structural evolution of the neutron-deficient nuclei from the Z=52-62 region. The IBA model parameters are determined to reproduce the properties of the low-lying positive parity excitations for a wide range of even-even collective nuclei. The parameters aim to describe simultaneously the existing electromagnetic data (energy levels, transition matrix elements, etc.) and hadronic ones (two-nucleon transfer intensities). It is shown that a simple Hamiltonian with only two terms is not adequate to describe the properties across this region. It is found that the octupole term plays an important role in reproducing the properties of the 2{sub g}amma{sup +} and 0{sub 2}{sup +} states, as well as in the description of the two-neutron transfer intensities patterns. A mapping of these parameters in the IBA symmetry triangle allows the comparison of representative trajectories for different isotopic chains.

  14. Scaling and asymptotic properties of evaporated neutron inclusive cross sections in high energy hadron-nucleus and nucleus-nucleus interactions

    NASA Astrophysics Data System (ADS)

    Galoyan, A. S.; Ribon, A.; Uzhinsky, V. V.

    2015-09-01

    New properties of the evaporated neutron ( E < 30 MeV) energy spectra in hadron-nucleus interactions have been found. Particularly, the spectra approach the asymptotic regime, namely, they weakly depend on the collision energy at momenta of projectile protons larger than 5-6 GeV/ c; the spectra for various nuclei are similar, and can be approximately described by the function A n f( E). Experimental data on neutron spectra in the case of projectile π-mesons show analogous behavior, but the statistics of the data do not allow one to draw clear conclusions. In our analysis we used ITEP experimental data on inclusive cross sections of neutrons produced in interactions of π-mesons and protons with various nuclei in the energy range from 747 MeV up to 8.1 GeV. The observed properties allow one to predict neutron yields in the nucleus-nucleus interactions at high and super high energies. Predictions for the NICA/MPD experiment at JINR are presented. It is shown that the FTF (Fritiof)-model of the Geant4 toolkit qualitatively reproduces the observed regularities. For the first time estimates of the neutron energy flows are obtained at both RHIC and LHC energies.

  15. Odd-even {sup 147-153}Pm isotopes within the neutron-proton interacting boson-fermion model

    SciTech Connect

    Barea, J.; Alonso, C. E.; Arias, J. M.

    2011-02-15

    Low-lying energy states of the {sup 147-153}Pm isotopic chain are studied within the framework of the neutron-proton interacting boson-fermion model (IBFM-2). The spectra of these isotopes show a transition from a particle coupled to a vibrational core to a particle coupled to a deformed one. The calculation reproduces this behavior. In addition, reduced transition probabilities B(E2) and B(M1) and quadrupole and magnetic moments, as well as spectroscopic factors corresponding to stripping and pickup transfer reactions, are calculated. Obtained results compare well with the available experimental data, which reinforces the reliability of the wave functions obtained within the IBFM-2 model.

  16. A small-angle neutron scattering study of intermicellar interactions in microemulsions of AOT, water, and near-critical propane

    SciTech Connect

    Kaler, E.W. ); Billman, J.F. ); Fulton, J.L.; Smith, R.D. )

    1991-01-10

    Small-angle neutron scattering (SANS) measurements of high-pressure solutions of propane/sodium bis(2-ethylhexyl) sulfosuccinate (AOT)/D{sub 2}O have demonstrated that a water-in-oil microemulsion phase can be formed in propane. The dispersed droplets are, within experimental error, the same size as those formed in conventional microemulsions at the same water-to-surfactant ratio, and the size does not depend on propane density. The interdroplet interaction potential was modeled as a hard-core repulsion augmented by a strong and extremely short range attraction. This model describes droplets whose hydrocarbon tails are strongly attractive to the hydrocarbon tails of adjacent droplets. The SANS fit shows that the magnitude of the tail-tail attractive interactions may be much stronger than the longer range van der Waals type attractive interactions between the water cores of the droplets. These findings confirm results of IR and UV-vis spectroscopic studies of near-critical and supercritical fluid microemulsions.

  17. Quasi-elastic neutron scattering studies of protein dynamics. Progress report, November 1, 1992--May 25, 1993

    SciTech Connect

    Rorschach, H.E.

    1993-05-25

    Results that shed new light on the study of protein dynamics were obtained by quasi-elastic neutron scattering. The triple axis instrument H-9 supplied by the cold source was used to perform a detailed study of the quasi-elastic spectrum and the Debye-Waller factor for trypsin in powder form, in solution, and in crystals. A preliminary study of myoglobin crystals was also done. A new way to view the results of quasi-elastic scattering experiments is sketched, and the data on trypsin are presented and analyze according to this new picture.

  18. L-Boronophenylalanine-Mediated Boron Neutron Capture Therapy for Malignant Glioma Progressing After External Beam Radiation Therapy: A Phase I Study

    SciTech Connect

    Kankaanranta, Leena; Seppaelae, Tiina; Koivunoro, Hanna; Vaelimaeki, Petteri; Beule, Annette; Collan, Juhani; Kortesniemi, Mika; Uusi-Simola, Jouni; Kotiluoto, Petri; Auterinen, Iiro; Seren, Tom; Paetau, Anders; Saarilahti, Kauko; Savolainen, Sauli; Joensuu, Heikki

    2011-06-01

    Purpose: To investigate the safety of boronophenylalanine-mediated boron neutron capture therapy (BNCT) in the treatment of malignant gliomas that progress after surgery and conventional external beam radiation therapy. Methods and Materials: Adult patients who had histologically confirmed malignant glioma that had progressed after surgery and external beam radiotherapy were eligible for this Phase I study, provided that >6 months had elapsed from the last date of radiation therapy. The first 10 patients received a fixed dose, 290 mg/kg, of L-boronophenylalanine-fructose (L-BPA-F) as a 2-hour infusion before neutron irradiation, and the remaining patients were treated with escalating doses of L-BPA-F, either 350 mg/kg, 400 mg/kg, or 450 mg/kg, using 3 patients on each dose level. Adverse effects were assessed using National Cancer Institute Common Toxicity Criteria version 2.0. Results: Twenty-two patients entered the study. Twenty subjects had glioblastoma, and 2 patients had anaplastic astrocytoma, and the median cumulative dose of prior external beam radiotherapy was 59.4 Gy. The maximally tolerated L-BPA-F dose was reached at the 450 mg/kg level, where 4 of 6 patients treated had a grade 3 adverse event. Patients who were given >290 mg/kg of L-BPA-F received a higher estimated average planning target volume dose than those who received 290 mg/kg (median, 36 vs. 31 Gy [W, i.e., a weighted dose]; p = 0.018). The median survival time following BNCT was 7 months. Conclusions: BNCT administered with an L-BPA-F dose of up to 400 mg/kg as a 2-hour infusion is feasible in the treatment of malignant gliomas that recur after conventional radiation therapy.

  19. ENVIRONMENTAL EFFECTS OF OZONE DEPLETION AND ITS INTERACTIONS WITH CLIMATE CHANGE: PROGRESS REPORT 2004

    EPA Science Inventory

    The measures needed for the protection of the Earth's ozone layer are decided regularly by the Parties to the Montreal Protocol. This progress report is the 2004 update by the Environmental Effects Assessment Panel.

  20. Neutron diffraction studies of the interaction between amphotericin B and lipid-sterol model membranes

    NASA Astrophysics Data System (ADS)

    Foglia, Fabrizia; Lawrence, M. Jayne; Demeė, Bruno; Fragneto, Giovanna; Barlow, David

    2012-10-01

    Over the last 50 years or so, amphotericin has been widely employed in treating life-threatening systemic fungal infections. Its usefulness in the clinic, however, has always been circumscribed by its dose-limiting side-effects, and it is also now compromised by an increasing incidence of pathogen resistance. Combating these problems through development of new anti-fungal agents requires detailed knowledge of the drug's molecular mechanism, but unfortunately this is far from clear. Neutron diffraction studies of the drug's incorporation within lipid-sterol membranes have here been performed to shed light on this problem. The drug is shown to disturb the structures of both fungal and mammalian membranes, and co-localises with the membrane sterols in a manner consistent with trans-membrane pore formation. The differences seen in the membrane lipid ordering and in the distributions of the drug-ergosterol and drug-cholesterol complexes within the membranes are consistent with the drug's selectivity for fungal vs. human cells.

  1. Investigation of the interaction of dimethyl sulfoxide with lipid membranes by small-angle neutron scattering

    SciTech Connect

    Gorshkova, J. E. Gordeliy, V. I.

    2007-05-15

    The influence of dimethyl sulfoxide (CH{sub 3}){sub 2}SO (DMSO) on the structure of membranes of 1,2-dimiristoyl-sn-glycero-3-phosphatidylcholine (DMPC) in an excess of a water-DMSO solvent is investigated over a wide range of DMSO molar concentrations 0.0 {<=} X{sub DMSO} {<=} 1.0 at temperatures T = 12.5 and 55 deg. C. The dependences of the repeat distance d of multilamellar membranes and the thickness d{sub b} of single vesicles on the molar concentration X{sub DMSO} in the L{sub {beta}}{sub '} gel and L{sub {alpha}} liquid-crystalline phases are determined by small-angle neutron scattering. The intermembrane distance d{sub s} is determined from the repeat distance d and the membrane thickness d{sub b}. It is shown that an increase in the molar concentration X{sub DMSO} leads to a considerable decrease in the intermembrane distance and that, at X{sub DMSO} = 0.4, the neighboring membranes are virtually in steric contact with each other. The use of the deuterated phospholipid (DMSO-D6) and the contrast variation method makes it possible, for the first time, to determine the number of DMSO molecules strongly bound to the membrane.

  2. Neutron diffraction study of the interaction of iron with amorphous fullerite

    NASA Astrophysics Data System (ADS)

    Borisova, P. A.; Agafonov, S. S.; Blanter, M. S.; Somenkov, V. A.

    2014-01-01

    The amorphous fullerite C60 has been prepared by mechanical activation (grinding in a ball mill), and its interaction with iron during sintering of powders with 0-95 at % Fe has been studied. After sintering in the range 800-1200°C under a pressure of 70 MPa, the samples have nonequilibrium structures different from the structures of both annealed and quenched steels. In this case, the carbon phase, i.e., amorphous fullerite, undergoes a polyamorphous transition to amorphous graphite. It has also been shown that the interaction of amorphous fullerite with iron is weaker compared to crystalline fullerite or crystalline graphite.

  3. Theoretical studies on the structure of interacting colloidal suspensions by spin-echo small angle neutron scattering

    SciTech Connect

    Chen, Wei-Ren; Herwig, Kenneth W; Liu, Yun; Smith, Gregory Scott; Shew, Chwen-Yang; Pynn, Roger; Robertson, J. L.; Liu, Emily; Li, Xin

    2010-01-01

    Theoretical calculations based on integral equation theory have been carried out to elucidate the real-space correlation function obtained from the novel Spin-Echo Small Angle Neutron Scattering (SESANS) technique. Several potential models are investigated to mimic various interacting colloidal particles. A general discussion regarding the profiles of the real-space SESANS correlation functions corresponding to different model systems is presented. In the conventional elastic scattering tools, the spectral signature to differentiate attractive and repulsive molecular forces is found at small angels, which may impose technical difficulties to exact such information. Whereas, in SESANS, the characteristic feature occurs at the lengthscale near particle size, and is quite sensitive to interaction potentials and their strength. Besides the model monodisperse spherical colloidal systems, our calculation is extended to study the binary hard sphere mixture in which the attractive depletion forces between larger particles, induced by smaller particles, is reflected in the characteristic feature of the SESANS correlation function. Our model studies show that the real-space measurement SESANS presents a powerful probe in discerning intercolloid potential.

  4. Application of magnetomechanical hysteresis modeling to magnetic techniques for monitoring neutron embrittlement and biaxial stress. Progress report, June 1991--December 1991

    SciTech Connect

    Sablik, M.J.; Kwun, H.; Rollwitz, W.L.; Cadena, D.

    1992-01-01

    The objective is to investigate experimentally and theoretically the effects of neutron embrittlement and biaxial stress on magnetic properties in steels, using various magnetic measurement techniques. Interaction between experiment and modeling should suggest efficient magnetic measurement procedures for determining neutron embrittlement biaxial stress. This should ultimately assist in safety monitoring of nuclear power plants and of gas and oil pipelines. In the first six months of this first year study, magnetic measurements were made on steel surveillance specimens from the Indian Point 2 and D.C. Cook 2 reactors. The specimens previously had been characterized by Charpy tests after specified neutron fluences. Measurements now included: (1) hysteresis loop measurement of coercive force, permeability and remanence, (2) Barkhausen noise amplitude; and (3) higher order nonlinear harmonic analysis of a 1 Hz magnetic excitation. Very good correlation of magnetic parameters with fluence and embrittlement was found for specimens from the Indian Point 2 reactor. The D.C. Cook 2 specimens, however showed poor correlation. Possible contributing factors to this are: (1) metallurgical differences between D.C. Cook 2 and Indian Point 2 specimens; (2) statistical variations in embrittlement parameters for individual samples away from the stated men values; and (3) conversion of the D.C. Cook 2 reactor to a low leakage core configuration in the middle of the period of surveillance. Modeling using a magnetomechanical hysteresis model has begun. The modeling will first focus on why Barkhausen noise and nonlinear harmonic amplitudes appear to be better indicators of embrittlement than the hysteresis loop parameters.

  5. Impact of weak interactions of free nucleons on the r-process in dynamical ejecta from neutron star mergers

    NASA Astrophysics Data System (ADS)

    Goriely, S.; Bauswein, A.; Just, O.; Pllumbi, E.; Janka, H.-Th.

    2015-10-01

    We investigate β-interactions of free nucleons and their impact on the electron fraction (Ye) and r-process nucleosynthesis in ejecta characteristic of binary neutron star mergers (BNSMs). For that we employ trajectories from a relativistic BNSM model to represent the density-temperature evolutions in our parametric study. In the high-density environment, positron captures decrease the neutron richness at the high temperatures predicted by the hydrodynamic simulation. Circumventing the complexities of modelling three-dimensional neutrino transport, (anti)neutrino captures are parametrized in terms of prescribed neutrino luminosities and mean energies, guided by published results and assumed as constant in time. Depending sensitively on the adopted νe-bar{ν }_e luminosity ratio, neutrino processes increase Ye to values between 0.25 and 0.40, still allowing for a successful r-process compatible with the observed solar abundance distribution and a significant fraction of the ejecta consisting of r-process nuclei. If the νe luminosities and mean energies are relatively large compared to the bar{ν }_e properties, the mean Ye might reach values >0.40 so that neutrino captures seriously compromise the success of the r-process. In this case, the r-abundances remain compatible with the solar distribution, but the total amount of ejected r-material is reduced to a few per cent, because the production of iron-peak elements is favoured. Proper neutrino physics, in particular also neutrino absorption, have to be included in BNSM simulations before final conclusions can be drawn concerning r-processing in this environment and concerning observational consequences like kilonovae, whose peak brightness and colour temperature are sensitive to the composition-dependent opacity of the ejecta.

  6. Loss and spinflip probabilities for ultracold neutrons interacting with diamondlike carbon and beryllium surfaces

    NASA Astrophysics Data System (ADS)

    Atchison, F.; Bryś, T.; Daum, M.; Fierlinger, P.; Geltenbort, P.; Henneck, R.; Heule, S.; Kasprzak, M.; Kirch, K.; Pichlmaier, A.; Plonka, C.; Straumann, U.; Wermelinger, C.; Zsigmond, G.

    2007-10-01

    The storage of ultracold neutrons (UCN) in a combined magnetic, gravitational, and material trap is described. Wall materials investigated were diamondlike carbon (DLC) coatings on solid and flexible foil substrates as well as beryllium coatings on solid substrates. The loss coefficient per wall collision, η, and the depolarization probability β were measured simultaneously as a function of temperature (from 70 to 400 K) and energy (from 30 to 80 neV). The results at 70 K are η=(0.7±0.1)×10-4,β=(15.4±1.0)×10-6 for DLC on polyethyleneterephtalate (PET) foil and η=(1.7±0.1)×10-4,β=(0.7±0.3)×10-6 for DLC on aluminum foil. At room temperature the loss coefficients are larger by a factor of about 2 whereas the depolarization probabilities are found to be independent of temperature. The corresponding values for Be at room temperature are η~5×10-4,β~10×10-6. The DLC results for β and for the temperature-dependent part of the loss coefficient, ηT, are interpreted in terms of incoherent scattering by hydrogen. The hydrogen admixture was measured independently by elastic recoil detection analysis to be about 1×1016 atoms/cm2. The data do not support the hypothesis of hydrogen being chemically bound within the top layers of the DLC. Using two different models with a thin waterlike film on top of the substrate we obtain consistency between the temperature-dependent loss contribution and the measured hydrogen contamination.

  7. Dynamic changes in protein interaction between AKAP95 and Cx43 during cell cycle progression of A549 cells

    PubMed Central

    Chen, Xiaoxuan; Kong, Xiangyu; Zhuang, Wenxin; Teng, Bogang; Yu, Xiuyi; Hua, Suhang; Wang, Su; Liang, Fengchao; Ma, Dan; Zhang, Suhui; Zou, Xuan; Dai, Yue; Yang, Wei; Zhang, Yongxing

    2016-01-01

    Here we show that A-kinase anchoring protein 95 (AKAP95) and connexin 43 (Cx43) dynamically interact during cell cycle progression of lung cancer A549 cells. Interaction between AKAP95 and Cx43 at different cell cycle phases was examined by tandem mass spectrometry(MS/MS), confocal immunofluorescence microscopy, Western blot, and co-immunoprecipitation(Co-IP). Over the course of a complete cell cycle, interaction between AKAP95 and Cx43 occurred in two stages: binding stage from late G1 to metaphase, and separating stage from anaphase to late G1. The binding stage was further subdivided into complex binding to DNA in interphase and complex separating from DNA in metaphase. In late G1, Cx43 translocated to the nucleus via AKAP95; in anaphase, Cx43 separated from AKAP95 and aggregated between two daughter nuclei. In telophase, Cx43 aggregated at the membrane of the cleavage furrow. After mitosis, Cx43 was absent from the furrow membrane and was located in the cytoplasm. Binding between AKAP95 and Cx43 was reduced by N-(2-[P-Bromocinnamylamino]-ethyl)-5-isoquinolinesulfonmide (H89) treatment and enhanced by Forskolin. dynamic interaction between AKAP95 and Cx43 varies with cell cycle progression to regulate multiple biological processes. PMID:26880274

  8. Interactions and phase transitions in micellar and microemulsion systems studied by small angle neutron scattering

    NASA Astrophysics Data System (ADS)

    Chen, Sow-Hsin

    1986-03-01

    Owing to their amphiphilic nature, surfactant molecules spontaneously self-assemble into various forms of aggregates in aqueous and hydrocarbon solvents. These aggregates are often so well defined and sufficiently uniform in size that the suspension can be treated effectively as one- or two-component supramolecular liquids. Ionic surfactants such as sodium dodecyl sulfate (SDS) form normal micelles in water. These micelles together with their counterions can be regarded as a strongly coupled two-component coulomb fluid. On the other hand sodium di-2-ethylhexylsulfosuccinate (AOT) forms reverse micelles in hydrocarbons (oils). These reverse micelles can solubilize large amounts of water and become microemulsions. These microemulsion droplets bear no net charge and interact with each other via Van der Waals forces analogous to atoms in simple liquids. Thus, AOT microemulsion system shows a gas-liquid type phase transition. By exploiting the existing liquid theories the SANS spectra can be satisfactorily analysed in terms of wel-defined interparticle interactions. For ionic micelles one can obtain the surface charge and aggregation number at arbitrary concentrations and for microemulsions one obtains the range and depth of the attractive interaction near the critical point.

  9. Experimental study of the interaction of pulsations of the neutron flux and the coolant flow in a boiling-water reactor

    SciTech Connect

    Leppik, P.A.

    1984-12-01

    This paper presents results of a study designed to confirm that the interaction of the neutron flux and the coolant flow plays an important role in the mechanism of high-frequency (HF) resonant instability of the VK-50 boiling water reactor. To do this and to check the working model, signals from probes measuring the flow rate of the coolant and the neutron flux were recorded simultaneously (with the help of a magnetograph) in experiments performed in 1981 on driving the VK-50 reactor into the HF reonant instability regimes. Estimates were then obtained for the statistical characteristics of the pulsations of the flow rate and of the neutron flux, including the cross-correlation functions and coherence functions. The basic results of these studies are reported here.

  10. Progression of soot cake layer properties during the systematic regeneration of diesel particulate filters measured with neutron tomography

    SciTech Connect

    Toops, Todd J.; Pihl, Josh A.; Finney, Charles E. A.; Gregor, Jens; Bilheux, Hassina

    2015-01-16

    Although particulate filters (PFs) have been a key component of the emission control system for modern diesel engines, there remain significant questions about the basic regeneration behavior of the filters and how it changes with accumulation of increasing soot layers. This effort describes a systematic deposition and regeneration of particulate matter in 25-mm diameter × 76-mm long wall-flow PFs composed of silicon carbide (SiC) material. The initial soot distributions were analyzed for soot cake thickness using a nondestructive neutron imaging technique. With the PFs intact, it was then possible to sequentially regenerate the samples and reanalyze them, which was performed after nominal 20, 50, and 70 % regenerations. The loaded samples show a relatively uniform distribution of particulate with an increasing soot cake thickness and nearly identical initial density of 70 mg/cm3. Throughout regeneration, the soot cake thickness initially decreases significantly while the density increases to 80–90 mg/cm3. After ~50 % regeneration, the soot cake thickness stays relatively constant, but instead, the density decreases as pores open up in the layer (~35 mg/cm3 at 70 % regeneration). Here, complete regeneration initially occurs at the rear of the PF channels. With this information, a conceptual model of the regeneration is proposed.

  11. Progression of soot cake layer properties during the systematic regeneration of diesel particulate filters measured with neutron tomography

    DOE PAGESBeta

    Toops, Todd J.; Pihl, Josh A.; Finney, Charles E. A.; Gregor, Jens; Bilheux, Hassina

    2015-01-16

    Although particulate filters (PFs) have been a key component of the emission control system for modern diesel engines, there remain significant questions about the basic regeneration behavior of the filters and how it changes with accumulation of increasing soot layers. This effort describes a systematic deposition and regeneration of particulate matter in 25-mm diameter × 76-mm long wall-flow PFs composed of silicon carbide (SiC) material. The initial soot distributions were analyzed for soot cake thickness using a nondestructive neutron imaging technique. With the PFs intact, it was then possible to sequentially regenerate the samples and reanalyze them, which was performedmore » after nominal 20, 50, and 70 % regenerations. The loaded samples show a relatively uniform distribution of particulate with an increasing soot cake thickness and nearly identical initial density of 70 mg/cm3. Throughout regeneration, the soot cake thickness initially decreases significantly while the density increases to 80–90 mg/cm3. After ~50 % regeneration, the soot cake thickness stays relatively constant, but instead, the density decreases as pores open up in the layer (~35 mg/cm3 at 70 % regeneration). Here, complete regeneration initially occurs at the rear of the PF channels. With this information, a conceptual model of the regeneration is proposed.« less

  12. Neutron-proton final-state interaction in. pi. d breakup: Vector analyzing power

    SciTech Connect

    List, W.; Boschitz, E.T.; Garcilazo, H.; Gyles, W.; Ottermann, C.R.; Tacik, R.; Mango, S.; Konter, J.A.; van den Brandt, B.; Smith, G.R.; and others

    1988-04-01

    The vector analyzing power iT/sub 11/ has been measured for the ..pi..d breakup reaction in a kinematically complete experiment. The dependence of iT/sub 11/ on the momentum of the proton has been obtained for 36 pion-proton angle pairs at T/sub ..pi../ = 134 and 228 MeV. The data are compared with predictions from the new relativistic Faddeev theory of Garcilazo. The sensitivity of the observable iT/sub 11/, in particular in the np final-state interaction region, to details of the theory is investigated.

  13. Reinforcing Efficacy of Interactions with Preferred and Nonpreferred Staff under Progressive-Ratio Schedules

    ERIC Educational Resources Information Center

    Jerome, Jared; Sturmey, Peter

    2008-01-01

    Research has not systematically assessed and validated preferences for staff in adults with developmental disabilities. Three adults with developmental disabilities (aged 32 to 43 years) identified preferred and nonpreferred staff using verbal and pictorial preference assessments. During break-point analyses with progressive-ratio schedules, all 3…

  14. JASMIN: Japanese-American study of muon interactions and neutron detection

    SciTech Connect

    Nakashima, Hiroshi; Mokhov, N.V.; Kasugai, Yoshimi; Matsuda, Norihiro; Iwamoto, Yosuke; Sakamoto, Yukio; Leveling, Anthony F.; Boehnlein, David J.; Vaziri, Kamran; Matsumura, Hiroshi; Hagiwara, Masayuki; /KEK, Tsukuba /Tohoku U. /Shimizu, Tokyo /Kyushu U. /Kyoto U. /Tsukuba U. /Pohang Accelerator Lab. /Tokai, ROIST

    2010-08-01

    Experimental studies of shielding and radiation effects at Fermi National Accelerator Laboratory (FNAL) have been carried out under collaboration between FNAL and Japan, aiming at benchmarking of simulation codes and study of irradiation effects for upgrade and design of new high-energy accelerator facilities. The purposes of this collaboration are (1) acquisition of shielding data in a proton beam energy domain above 100GeV; (2) further evaluation of predictive accuracy of the PHITS and MARS codes; (3) modification of physics models and data in these codes if needed; (4) establishment of irradiation field for radiation effect tests; and (5) development of a code module for improved description of radiation effects. A series of experiments has been performed at the Pbar target station and NuMI facility, using irradiation of targets with 120 GeV protons for antiproton and neutrino production, as well as the M-test beam line (M-test) for measuring nuclear data and detector responses. Various nuclear and shielding data have been measured by activation methods with chemical separation techniques as well as by other detectors such as a Bonner ball counter. Analyses with the experimental data are in progress for benchmarking the PHITS and MARS15 codes. In this presentation recent activities and results are reviewed.

  15. On the Rutherford-Santilli neutron model

    SciTech Connect

    Burande, Chandrakant S.

    2015-03-10

    In 1920 H. Rutherford conjectured that the first particle synthesized in stars is neutron from a proton and an electron after which all known matter is progressively synthesized. However, Pauli objected Rutherford’s version of neutron synthesis because inability to represent spin 1/2 of the neutron. Using this objection E. Fermi proposed emission of massless particle, called “neutrino”. However, Santilli has dismissed the neutrino hypothesis following certain ambiguities such as positive binding energy required in synthesis of neutron. He found that celebrated Schrödinger’s equation of quantum physics is not suitable for obtaining positive binding energy for bound state at the dimension of 10{sup −13}cm. In order to remove these shortcomings, Santilli has developed isomathematics and then hadronic mechanics, which allowed the time invariant representation of Hamiltonian and non-Hamiltonian interactions as needed for the neutron synthesis (see for example: References cited at [1]).Thus the anomalies pertaining to the binding energy, the spin and the magnetic moment got resolved. He successfully calculated missing positive binding energy via isonormalization of the mass for electron when totally immersed within the hyper-dense medium inside the proton. Considering Rutherford’s compression of the isoelectron within the proton in the singlet coupling, he also identified the spin 1/2 for neutron and calculated the magnetic moment of the neutron. In order to verify his logical concept, he repeated the Don Carlo Borghi experiment of synthesis of the neutron from proton and electrons and verified that the said setup indeed produces neutron-type particles called “neutroids” which latter is absorbed by the activated detector substances that produces known nuclear reactions. He dismissed the neutrino hypothesis and replaced it with a longitudinal impulse originating from the ether as a universal substratum, named, “etherino”. He pointed out that all the

  16. Heparan Sulfate Proteoglycans May Promote or Inhibit Cancer Progression by Interacting with Integrins and Affecting Cell Migration

    PubMed Central

    Soares, Mariana A.; Teixeira, Felipe C. O. B.; Fontes, Miguel; Arêas, Ana Lúcia; Leal, Marcelo G.; Pavão, Mauro S. G.; Stelling, Mariana P.

    2015-01-01

    The metastatic disease is one of the main consequences of tumor progression, being responsible for most cancer-related deaths worldwide. This review intends to present and discuss data on the relationship between integrins and heparan sulfate proteoglycans in health and cancer progression. Integrins are a family of cell surface transmembrane receptors, responsible for cell-matrix and cell-cell adhesion. Integrins' main functions include cell adhesion, migration, and survival. Heparan sulfate proteoglycans (HSPGs) are cell surface molecules that play important roles as cell receptors, cofactors, and overall direct or indirect contributors to cell organization. Both molecules can act in conjunction to modulate cell behavior and affect malignancy. In this review, we will discuss the different contexts in which various integrins, such as α5, αV, β1, and β3, interact with HSPGs species, such as syndecans and perlecans, affecting tissue homeostasis. PMID:26558271

  17. Interactions of Endoglucanases with Amorphous Cellulose Films Resolved by Neutron Reflectometry and Quartz Crystal Microbalance with Dissipation Monitoring

    SciTech Connect

    Cheng, Gang; Liu, Zelin; Kent, Michael S; Majewski, Jaroslaw; Michael, Jablin; Jaclyn, Murton K; Halbert, Candice E; Datta, Supratim; Chao, Wang; Brown, Page

    2012-01-01

    A study of the interaction of four endoglucanases with amorphous cellulose films by neutron reflectometry (NR) and quartz crystal microbalance with dissipation monitoring (QCM-D) is reported. The endoglucanases include a mesophilic fungal endoglucanase (Cel45A from H. insolens), a processive endoglucanase from a marine bacterium (Cel5H from S. degradans), and two from thermophilic bacteria (Cel9A from A. acidocaldarius and Cel5A from T. maritima). The use of amorphous cellulose is motivated by the promise of ionic liquid pretreatment as a second generation technology that disrupts the native crystalline structure of cellulose. The endoglucanases displayed highly diverse behavior. Cel45A and Cel5H, which possess carbohydrate-binding modules (CBMs), penetrated and digested within the bulk of the films to a far greater extent than Cel9A and Cel5A, which lack CBMs. While both Cel45A and Cel5H were active within the bulk of the films, striking differences were observed. With Cel45A, substantial film expansion and interfacial broadening were observed, whereas for Cel5H the film thickness decreased with little interfacial broadening. These results are consistent with Cel45A digesting within the interior of cellulose chains as a classic endoglucanase, and Cel5H digesting predominantly at chain ends consistent with its designation as a processive endoglucanase.

  18. Neutron reflectometry and QCM-D study of the interaction of cellulases with films of amorphous cellulose.

    PubMed

    Cheng, Gang; Liu, Zelin; Murton, Jaclyn K; Jablin, Michael; Dubey, Manish; Majewski, Jaroslaw; Halbert, Candice; Browning, James; Ankner, John; Akgun, Bulent; Wang, Chao; Esker, Alan R; Sale, Kenneth L; Simmons, Blake A; Kent, Michael S

    2011-06-13

    Improving the efficiency of enzymatic hydrolysis of cellulose is one of the key technological hurdles to reduce the cost of producing ethanol and other transportation fuels from lignocellulosic material. A better understanding of how soluble enzymes interact with insoluble cellulose will aid in the design of more efficient enzyme systems. We report a study involving neutron reflectometry (NR) and quartz crystal microbalance with dissipation monitoring (QCM-D) of the interaction of a fungal enzyme extract ( T. viride ) and an endoglucanse from A. niger with amorphous cellulose films. The use of amorphous cellulose is motivated by that the fact that several biomass pretreatments currently under investigation disrupt the native crystalline structure of cellulose and increase the amorphous content. NR reveals the profile of water through the film at nanometer resolution and is highly sensitive to interfacial roughness, whereas QCM-D provides changes in mass and film stiffness. NR can be performed using either H(2)O- or D(2)O-based aqueous reservoirs. NR measurement of swelling of a cellulose film in D(2)O and in H(2)O revealed that D/H exchange on the cellulose chains must be taken into account when a D(2)O-based reservoir is used. The results also show that cellulose films swell slightly more in D(2)O than in H(2)O. Regarding enzymatic digestion, at 20 °C in H(2)O buffer the T. viride cocktail rapidly digested the entire film, initially roughening the surface, followed by penetration and activity throughout the bulk of the film. In contrast, over the same time period, the endoglucanase was active mainly at the surface of the film and did not increase the surface roughness. PMID:21553874

  19. Neutron Reflectometry and QCM-D Study of the Interaction of Cellulases with Films of Amorphous Cellulose

    SciTech Connect

    Cheng, Gang; Liu, Zelin; Murton, Jaclyn K.; Jablin, Michael S.; Dubey, Manish; Majewski, Jaroslaw; Halbert, Candice E.; Browning, James F.; Ankner, John; Akgun, Bulent; Wang, Chao; Esker, Alan R.; Sale, Kenneth L.; Simmons, Blake A.; Kent, Michael S.

    2011-06-13

    Improving the efficiency of enzymatic hydrolysis of cellulose is one of the key technological hurdles to reduce the cost of producing ethanol and other transportation fuels from lignocellulosic material. A better understanding of how soluble enzymes interact with insoluble cellulose will aid in the design of more efficient enzyme systems. We report a study involving neutron reflectometry (NR) and quartz crystal microbalance with dissipation monitoring (QCM-D) of the interaction of a fungal enzyme extract (T. viride) and an endoglucanse from A. niger with amorphous cellulose films. The use of amorphous cellulose is motivated by that the fact that several biomass pretreatments currently under investigation disrupt the native crystalline structure of cellulose and increase the amorphous content. NR reveals the profile of water through the film at nanometer resolution and is highly sensitive to interfacial roughness, whereas QCM-D provides changes in mass and film stiffness. NR can be performed using either H₂O- or D₂O-based aqueous reservoirs. NR measurement of swelling of a cellulose film in D₂O and in H₂O revealed that D/H exchange on the cellulose chains must be taken into account when a D₂O-based reservoir is used. The results also show that cellulose films swell slightly more in D₂O than in H₂O. Regarding enzymatic digestion, at 20 °C in H₂O buffer the T. viride cocktail rapidly digested the entire film, initially roughening the surface, followed by penetration and activity throughout the bulk of the film. In contrast, over the same time period, the endoglucanase was active mainly at the surface of the film and did not increase the surface roughness.

  20. Mechanical interactions of rough surfaces. Quarterly progress report, July 1-September 30, 1986

    SciTech Connect

    McCool, J.I.

    1986-09-01

    Objectives are to study lubricated contacts of rough surfaces under combined rolling, sliding, and spinning, and to develop techniques for analyzing digitized rough surface profiles. A summary is presented of annual progress and of the papers presented at conferences and those published. An example is given of the use of the computer tool MICROCOND. Rq (surface roughness), q, and microfracture data are discussed for silicon nitride coupons. (DLC)

  1. MMP3-Mediated tumor progression is controlled transcriptionally by a novel IRF8-MMP3 interaction

    PubMed Central

    Banik, Debarati; Netherby, Colleen S.; Bogner, Paul N.; Abrams, Scott I.

    2015-01-01

    Interferon regulatory factor-8 (IRF8), originally identified as a leukemic tumor suppressor, can also exert anti-neoplastic activities in solid tumors. We previously showed that IRF8-loss enhanced tumor growth, which was accompanied by reduced tumor-cell susceptibility to apoptosis. However, the impact of IRF8 expression on tumor growth could not be explained solely by its effects on regulating apoptotic response. Exploratory gene expression profiling further revealed an inverse relationship between IRF8 and MMP3 expression, implying additional intrinsic mechanisms by which IRF8 modulated neoplastic behavior. Although MMP3 expression was originally linked to tumor initiation, the role of MMP3 beyond this stage has remained unclear. Therefore, we hypothesized that MMP3 governed later stages of disease, including progression to metastasis, and did so through a novel IRF8-MMP3 axis. Altogether, we showed an inverse mechanistic relationship between IRF8 and MMP3 expression in tumor progression. Importantly, the growth advantage due to IRF8-loss was significantly compromised after silencing MMP3 expression. Moreover, MMP3-loss reduced spontaneous lung metastasis in an orthotopic mouse model of mammary carcinoma. MMP3 acted, in part, in a cell-intrinsic manner and served as a direct transcriptional target of IRF8. Thus, we identified a novel role of an IRF8-MMP3 axis in tumor progression, which unveils new therapeutic opportunities. PMID:26008967

  2. Elementary particle interactions. Progress report, October 1, 1991--September 30, 1992

    SciTech Connect

    Bugg, W.M.; Condo, G.T.; Handler, T.; Hart, E.L.; Read, K.; Ward, B.F.L.

    1992-10-01

    Work continues on strange particle production in weak interactions using data from a high-energy neutrino exposure in a freon bubble chamber. Meson photoproduction has also consumed considerable effort. Detector research and development activities have been carried out.

  3. Experimental studies of pion-nucleus interactions at intermediate energies. Annual progress report

    SciTech Connect

    Not Available

    1991-12-31

    This report summarizes the work on experimental research in intermediate energy nuclear physics carried out at New Mexico State University in 1991 under a great from the US Department of Energy. Most of these studies have involved investigations of various pion-nucleus interactions. The work has been carried out both with the LAMPF accelerator at the Los Alamos National Laboratory and with the cyclotron at the Paul Scherrer Institute (PSI) near Zurich, Switzerland. Part of the experimental work involves measurements of new data on double-charge-exchange scattering, using facilities at LAMPF which we helped modify, and on pion absorption, using a new detector system at PSI that covers nearly the full solid-angle region which we helped construct. Other work involved preparation for future experiments using polarized nuclear targets and a new high-resolution spectrometer system for detecting {pi}{sup 0} mesons. We also presented several proposals for works to be done in future years, involving studies related to pi-mesonic atoms, fundamental pion-nucleon interactions, studies of the difference between charged and neutral pion interactions with the nucleon, studies of the isospin structure of pion-nucleus interactions, and pion scattering from polarized {sup 3}He targets. This work is aimed at improving our understanding of the pion-nucleon interaction, of the pion-nucleus interaction mechanism, and of nuclear structure.

  4. Measurement of cumulative-neutron and cumulative-proton spectra in 1-GeV proton-nucleus interactions

    SciTech Connect

    Baturin, V.N.; Vikhrov, V.V.; Makarov, M.M.; Nelyubin, V.V.; Naberezhnov, A.A.; Sulimov, V.V.; Uvarov, L.N.

    1982-11-20

    A comparative study has been made of the spectra of cumulative neutrons and protons produced at an angle of 114/sup 0/ in collisions of 1-GeV protons with /sup 9/Be and /sup 12/C nuclei. The slope parameters of the inclusive neutron spectra are similar to those of the proton spectra.

  5. Capability of NIPAM polymer gel in recording dose from the interaction of (10)B and thermal neutron in BNCT.

    PubMed

    Khajeali, Azim; Reza Farajollahi, Ali; Kasesaz, Yaser; Khodadadi, Roghayeh; Khalili, Assef; Naseri, Alireza

    2015-11-01

    The capability of N-isopropylacrylamide (NIPAM) polymer gel to record the dose resulting from boron neutron capture reaction in BNCT was determined. In this regard, three compositions of the gel with different concentrations of (10)B were prepared and exposed to gamma radiation and thermal neutrons. Unlike irradiation with gamma rays, the boron-loaded gels irradiated by neutron exhibited sensitivity enhancement compared with the gels without (10)B. It was also found that the neutron sensitivity of the gel increased by the increase of concentration of (10)B. It can be concluded that NIPAM gel might be suitable for the measurement of the absorbed dose enhancement due to (10)B and thermal neutron reaction in BNCT. PMID:26356043

  6. Pharmacologic inhibition of the menin-MLL interaction blocks progression of MLL leukemia in vivo

    PubMed Central

    Borkin, Dmitry; He, Shihan; Miao, Hongzhi; Kempinska, Katarzyna; Pollock, Jonathan; Chase, Jennifer; Purohit, Trupta; Malik, Bhavna; Zhao, Ting; Wang, Jingya; Wen, Bo; Zong, Hongliang; Jones, Morgan; Danet-Desnoyers, Gwenn; Guzman, Monica L.; Talpaz, Moshe; Bixby, Dale L.; Sun, Duxin; Hess, Jay L.; Muntean, Andrew G.; Maillard, Ivan; Cierpicki, Tomasz; Grembecka, Jolanta

    2015-01-01

    Summary Chromosomal translocations affecting Mixed Lineage Leukemia gene (MLL) result in acute leukemias resistant to therapy. The leukemogenic activity of MLL fusion proteins is dependent on their interaction with menin, providing basis for therapeutic intervention. Here we report development of highly potent and orally bioavailable small molecule inhibitors of the menin-MLL interaction, MI-463 and MI-503, show their profound effects in MLL leukemia cells and substantial survival benefit in mouse models of MLL leukemia. Finally, we demonstrate efficacy of these compounds in primary samples derived from MLL leukemia patients. Overall, we demonstrate that pharmacologic inhibition of the menin-MLL interaction represents an effective treatment for MLL leukemias in vivo and provide advanced molecular scaffold for clinical lead identification. PMID:25817203

  7. Further Progress on a Design for a Super-B Interaction Region

    SciTech Connect

    Sullivan, M; Bertsche, K.; Seeman, J.; Wienands, U.; Biagini, M.E.; Raimondi, P.; Paoloni, E.; Bettoni, S.; /CERN

    2009-05-20

    We present an improved design for a SuperB interaction region. The new design minimizes local bending of the two colliding beams by separating all beam magnetic elements near the Interaction Point (IP). The total crossing angle at the IP is increased from 48 mrad to 60 mrad. The first magnetic element is a six slice Permanent Magnet (PM) quadrupole with an elliptical aperture allowing us to increase the vertical space for the beam. This magnet starts 36 cm from the Interaction Point (IP). This magnet is only seen by the Low-Energy Beam (LEB), the High-Energy Beam (HEB) has a drift space at this location. This allows the preliminary focusing of the LEB which has a smaller beta y* at the IP than the HEB. The rest of the final focusing for both beams is achieved by two super-conducting side-by-side quadrupoles (QD0 and QF1). These sets of magnets are enclosed in a warm bore cryostat located behind the PM quadrupole for the LEB. We describe this design for the interaction region.

  8. Environmental effects of ozone depletion and its interactions with climate change: progress report, 2015

    EPA Science Inventory

    The Environmental Effects Assessment Panel (EEAP) is one of three Panels that regularly informs the Parties (countries) to the Montreal Protocol on the effects of ozone depletion and the consequences of climate change interactions with respect to human health, animals, plants, bi...

  9. Current progress on genetic interactions of rice with rice blast and sheath blight fungi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Analysis of genetic interactions between rice and its pathogenic fungi Magnaporthe oryzae and Rhizoctonia solani should lead to a better understanding of molecular mechanisms of host resistance, and the improvement of strategies to manage rice blast and sheath blight diseases. Presently dozens of ri...

  10. Hans A. Bethe Prize Talk: Neutron stars and stellar collapse: the physics of strongly interacting Fermi systems

    NASA Astrophysics Data System (ADS)

    Pethick, C. J.

    2011-04-01

    The talk will touch on a number of themes in the application of many-body theory to neutron stars and stellar collapse. One of these will be the composition and equation of state of nuclear matter. Specific topics will include nuclei in neutron stars, superfluidity and superconductivity of nuclear matter, and inhomogeneous phases of nuclear matter. A second major theme will be neutrino processes in dense matter: neutrino emission is the most powerful cooling mechanism for young neutron stars, and rates of neutrino processes are a key ingredient in simulations of stellar collapse.

  11. [The mechanism of progression without androgen receptor interaction in prostate cancer].

    PubMed

    Matsuyama, Hideyasu; Matsumoto, Hiroaki

    2016-01-01

    Recently, new generation androgen receptor (AK) targeted agents enzautamide or abiraterone etc.) has been clinically utilized in patients with castration-resistant prostate cancer (CRPC). However, metastatic CRPC has also AR-independent survival pathway which leads to lethal phenotype by either adaptation or clonal selection resistant mechanism after AR targeted therapy. There are many studies regarding the progression mechanisms without AR signal transduction, such as growth factor, anti-apoptotic factor, and PTEN/mTOR pathway and so on. Also, cancer microenvironment and cancer stem cell is a hot research area for CRPC. It is very important to repress both AR-dependent and -independent signaling pathway to improve the clinical outcome in CRPC patients. Application of the new technology, such as next generation sequencing, would be developing for the prostate cancer research, providing pre-clinical proof-of-principle as a promising approach in CRPC. PMID:26793881

  12. Structure of the free neutron

    NASA Astrophysics Data System (ADS)

    Kuhn, Sebastian

    2011-10-01

    Information on the structure of the neutron is indispensible for a full understanding of the static properties, resonance excitations and quark distributions of the nucleon. From elastic form factors over resonance transition amplitudes to deep inelastic structure functions (both unpolarized and polarized), studying both partners of the proton-neutron isospin doublet is necessary to address such fundamental questions as the valence quark structure of the nucleon (in particular the ratio of d/u quark probabilities at large x) , higher twist effects and the phenomenon of quark-hadron duality. Measurements on the neutron are hampered by the fact that neutron targets of sufficient densities exist only bound inside nuclei, with the deuteron, the triton and (polarized) 3He being the most often used ``ersatz targets.'' The need to account for binding effects complicates the extraction of free neutron data from these experiments. Progress requires either a way to avoid model uncertainties (e.g., by focusing on kinematics where the PWIA spectator model works reasonably well for the struck nucleus) or a better understanding of these nuclear effects. In either case, one has to also deal with complications like final state interactions and other contributions. On the other hand, detailed studies of the reaction mechanism can yield important new information on the structure of few-body nuclei and the interplay of nuclear and quark degrees of freedom. In my talk, I will present some recent experimental results on neutron structure functions and some new approaches towards a better understanding of nuclear binding effects. I will concentrate on the large and varied program pursued at Jefferson Lab in this area, both from the present 6 GeV program and for the era after the 12 GeV upgrade. Research supported by a grant from the U.S. Dept. of Energy.

  13. PROGRESS ON THE INTERACTION REGION DESIGN AND DETECTOR INTEGRATION AT JLAB'S MEIC

    SciTech Connect

    Morozov, Vasiliy; Brindza, Paul; Camsonne, Alexandre; Derbenev, Yaroslav; Ent, Rolf; Gaskell, David; Lin, Fanglei; Nadel-Turonski, Pawel; Ungaro, Maurizio; Zhang, Yuhong; Hyde, Charles; Park, Kijun; Sullivan, Michael; Zhao, Zhiwen

    2014-07-01

    One of the unique features of JLab's Medium-energy Electron-Ion Collider (MEIC) is a full-acceptance detector with a dedicated, small-angle, high-resolution detection system, capable of covering a wide range of momenta (and charge-to-mass ratios) with respect to the original ion beam to enable access to new physics. We present an interaction region design developed with close integration of the detection and beam dynamical aspects. The dynamical aspect of the design rests on a symmetry-based concept for compensation of non-linear effects. The optics and geometry have been optimized to accommodate the detection requirements and to ensure the interaction region's modularity for ease of integration into the collider ring lattices. As a result, the design offers an excellent detector performance combined with the necessary provisions for non-linear dynamical optimization.

  14. Progress in the development and application of small molecule inhibitors of bromodomain-acetyl-lysine interactions.

    PubMed

    Hewings, David S; Rooney, Timothy P C; Jennings, Laura E; Hay, Duncan A; Schofield, Christopher J; Brennan, Paul E; Knapp, Stefan; Conway, Stuart J

    2012-11-26

    Bromodomains, protein modules that recognize and bind to acetylated lysine, are emerging as important components of cellular machinery. These acetyl-lysine (KAc) "reader" domains are part of the write-read-erase concept that has been linked with the transfer of epigenetic information. By reading KAc marks on histones, bromodomains mediate protein-protein interactions between a diverse array of partners. There has been intense activity in developing potent and selective small molecule probes that disrupt the interaction between a given bromodomain and KAc. Rapid success has been achieved with the BET family of bromodomains, and a number of potent and selective probes have been reported. These compounds have enabled linking of the BET bromodomains with diseases, including cancer and inflammation, suggesting that bromodomains are druggable targets. Herein, we review the biology of the bromodomains and discuss the SAR for the existing small molecule probes. The biology that has been enabled by these compounds is summarized. PMID:22924434

  15. Progressive acclimation alters interaction between salinity and temperature in experimental Daphnia populations.

    PubMed

    Loureiro, Cláudia; Cuco, Ana P; Claro, Maria Teresa; Santos, Joana I; Pedrosa, M Arminda; Gonçalves, Fernando; Castro, Bruno B

    2015-11-01

    Environmental stressors rarely act in isolation, giving rise to interacting environmental change scenarios. However, the impacts of such interactions on natural populations must consider the ability of organisms to adapt to environmental changes. The phenotypic adaptability of a Daphnia galeata clone to temperature rise and salinisation was investigated in this study, by evaluating its halotolerance at two different temperatures, along a short multigenerational acclimation scenario. Daphniids were acclimated to different temperatures (20°C and 25°C) and salinities (0gL(-1) and 1gL(-1), using NaCl as a proxy) in a fully crossed design. The objective was to understand whether acclimation to environmental stress (combinations of temperature and salinity) influenced the response to the latter exposure to these stressors. We hypothesize that acclimation to different temperature×salinity regimes should elicit an acclimation response of daphniids to saline stress or its interaction with temperature. Acute (survival time) and chronic (juvenile growth) halotolerance measures were obtained at discrete timings along the acclimation period (generations F1, F3 and F9). Overall, exposure temperature was the main determinant of the acute and chronic toxicity of NaCl: daphniid sensitivity (measured as the decrease of survival time or juvenile growth) was consistently higher at the highest temperature, irrespective of background conditions. However, this temperature-dependent effect was nullified after nine generations, but only when animals had been acclimated to both stressors (high salinity and high temperature). Such complex interaction scenarios should be taken in consideration in risk assessment practices. PMID:26079923

  16. [The interaction of ferredoxin:NADP{sup +} oxidoreductase and ferredoxin:thioredoxin reductase with substrates]. Progress report

    SciTech Connect

    Not Available

    1992-09-01

    We seek to map the ferredoxin-binding sites on three soluble enzymes located in spinach chloroplasts which utilize ferredoxin as an electron donor:Ferredoxin:NADP{sup +}oxidoreductase (FNR); ferredoxin:thioredoxin reductase (FTR) and glutamate synthase. As the availability of amino acid sequences for the enzymes are important in such studies, that the amino acid sequence of glutamate synthase needs be determined, the amino acid sequences of FNR, FTR and ferredoxin are already known. Related to an aim elucidate the binding sites for ferredoxin to determine whether there is a common binding site on all of these ferredoxin-dependent chloroplast enzymes and, if so, to map it. Additionally thioredoxin binding by FTR needs be determine to resolve whether the same site on FTR is involved in binding both ferredoxin and thioredoxin. Considerable progress is reported on the prosthetic groups of glutamate synthase, in establishing the role of arginine and lysine residues in ferredoxin binding by, ferredoxin:nitrite oxidoreductase nitrite reductase, labelling carboxyl groups on ferredoxin with taurine and labelling lysine residues biotinylation, and low potential heme proteins have been isolated and characterized from a non-photosynthetic plant tissue. Although the monoclonal antibodies raised against FNR turned out not to be useful for mapping the FNR/ferredoxin or FNR/NADPinteraction domains, good progress has been made on mapping the FNR/ferredoxin interaction domains by an alternative technique. The techniques developed for differential chemical modification of these two proteins - taurine modification of aspartate and glutamate residues and biotin modification of lysine residues - should be useful for mapping the interaction domains of many proteins that associate through electrostatic interactions.

  17. Numerical and laboratory experiments on the dynamics of plume-ridge interaction. Progress report

    SciTech Connect

    Kincaid, C.; Gable, C.W.

    1995-09-01

    Mantle plumes and passive upwelling beneath ridges are the two dominant modes of mantle transport and thermal/chemical fluxing between the Earth`s deep interior and surface. While plumes and ridges independently contribute to crustal accretion, they also interact and the dispersion of plumes within the upper mantle is strongly modulated by mid-ocean ridges. The simplest mode of interaction, with the plume centered on the ridge, has been well documented and modeled. The remaining question is how plumes and ridges interact when the plume is located off-axis; it has been suggested that a pipeline-like flow from the off-axis plume to the ridge axis at the base of the rigid lithosphere may develop. Mid-ocean ridges migrating away from hot mantle plumes can be affected by plume discharges over long times and ridge migration distances. Salient feature of this model is that off-axis plumes communicate with the ridge through a channel resulting from the refraction and dispersion of an axi-symmetric plume conduit along the base of the sloping lithosphere. To test the dynamics of this model, a series of numerical and laboratory dynamic experiments on the problem of a fixed ridge and an off-axis buoyant upwelling were conducted. Results are discussed.

  18. Neutron Reflectometry and QCM-D Study of the Interaction of Cellulase Enzymes with Films of Amorphous Cellulose

    SciTech Connect

    Halbert, Candice E; Ankner, John Francis; Kent, Michael S; Jaclyn, Murton K; Browning, Jim; Cheng, Gang; Liu, Zelin; Majewski, Jaroslaw; Supratim, Datta; Michael, Jablin; Bulent, Akgun; Alan, Esker; Simmons, Blake

    2011-01-01

    Improving the efficiency of enzymatic hydrolysis of cellulose is one of the key technological hurdles to reduce the cost of producing ethanol and other transportation fuels from lignocellulosic material. A better understanding of how soluble enzymes interact with insoluble cellulose will aid in the design of more efficient enzyme systems. We report a study involving neutron reflectometry (NR) and quartz crystal microbalance with dissipation (QCM-D) of the interaction of a commercial fungal enzyme extract (T. viride), two purified endoglucanses from thermophilic bacteria (Cel9A from A. acidocaldarius and Cel5A from T. maritima), and a mesophilic fungal endoglucanase (Cel45A from H. insolens) with amorphous cellulose films. The use of amorphous cellulose is motivated by the promise of ionic liquid pretreatment as a second generation technology that disrupts the native crystalline structure of cellulose. NR reveals the profile of water through the film at nm resolution, while QCM-D provides changes in mass and film stiffness. At 20 oC and 0.3 mg/ml, the T. viride cocktail rapidly digested the entire film, beginning from the surface followed by activity throughout the bulk of the film. For similar conditions, Cel9A and Cel5A were active for only a short period of time and only at the surface of the film, with Cel9A releasing 40 from the ~ 700 film and Cel5A resulting in only a slight roughening/swelling effect at the surface. Subsequent elevation of the temperature to the Topt in each case resulted in a very limited increase in activity, corresponding to the loss of an additional 60 from the film for Cel9A and 20 from the film for Cel5A, and very weak penetration into and digestion within the bulk of the film, before the activity again ceased. The results for Cel9A and Cel5A contrast sharply with results for Cel45A where very rapid and extensive penetration and digestion within the bulk of the film was observed at 20 C. We speculate that the large differences are due

  19. Parity-Violating Neutron Spin Rotation in a Liquid Parahydrogen Target

    PubMed Central

    Markoff, Diane M.

    2005-01-01

    Our understanding of hadronic parity violation is far from clear despite nearly 50 years of theoretical and experimental progress. Measurements of low-energy parity-violating observables in nuclear systems are the only accessible means to study the flavor-conserving weak hadronic interaction. To reduce the uncertainties from nuclear effects, experiments in the few and two-body system are essential. The parity-violating rotation of the transverse neutron polarization vector about the momentum axis as the neutrons traverse a target material has been measured in heavy nuclei and few nucleon systems using reactor cold neutron sources. We describe here an experiment to measure the neutron spin-rotation in a parahydrogen target (n-p system) using pulsed cold-neutrons from the fundamental symmetries beam line at the Spallation Neutron Source under construction at the Oak Ridge National Laboratory. PMID:27308123

  20. Production of neutrons up to 18 MeV in high-intensity, short-pulse laser matter interactions

    SciTech Connect

    Higginson, D. P.; McNaney, J. M.; Swift, D. C.; Mackinnon, A. J.; Patel, P. K.; Petrov, G. M.; Davis, J.; Frenje, J. A.; Jarrott, L. C.; Tynan, G.; Beg, F. N.; Kodama, R.; Nakamura, H.; Lancaster, K. L.

    2011-10-15

    The generation of high-energy neutrons using laser-accelerated ions is demonstrated experimentally using the Titan laser with 360 J of laser energy in a 9 ps pulse. In this technique, a short-pulse, high-energy laser accelerates deuterons from a CD{sub 2} foil. These are incident on a LiF foil and subsequently create high energy neutrons through the {sup 7}Li(d,xn) nuclear reaction (Q = 15 MeV). Radiochromic film and a Thomson parabola ion-spectrometer were used to diagnose the laser accelerated deuterons and protons. Conversion efficiency into protons was 0.5%, an order of magnitude greater than into deuterons. Maximum neutron energy was shown to be angularly dependent with up to 18 MeV neutrons observed in the forward direction using neutron time-of-flight spectrometry. Absolutely calibrated CR-39 detected spectrally integrated neutron fluence of up to 8 x 10{sup 8} n sr{sup -1} in the forward direction.

  1. Power Burst Facility/Boron Neutron Capture Therapy Program for Cancer Treatment: Volume 4, No. 5

    SciTech Connect

    Ackermann, A.L.; Dorn, R.V. III.

    1990-05-01

    Highlights of the Power Burst Facility Boron Neutron Capture Therapy (PBF/BNCT) Program during April 1990 include progress within areas of: gross boron analysis in tissue, blood, and urine; analytical methodologies development for BSH (Borocaptate Sodium) purity determination; noninvasive boron quantitative determination; analytical radiation transport and interaction modeling for BNCT; large animal model studies; neutron source and facility preparation; administration and common support; and PBF operations -- routine operations continue. 6 figs., 1 tab.

  2. Recent Progress on Nonlinear Schrödinger Systems with Quadratic Interactions

    PubMed Central

    Li, Chunhua; Hayashi, Nakao

    2014-01-01

    The study of nonlinear Schrödinger systems with quadratic interactions has attracted much attention in the recent years. In this paper, we summarize time decay estimates of small solutions to the systems under the mass resonance condition in 2-dimensional space. We show the existence of wave operators and modified wave operators of the systems under some mass conditions in n-dimensional space, where n ≥ 2. The existence of scattering operators and finite time blow-up of the solutions for the systems in higher space dimensions is also shown. PMID:25143965

  3. Determination of the Neutron Lifetime Using Magnetically Trapped Neutrons

    PubMed Central

    Dzhosyuk, S. N.; Copete, A.; Doyle, J. M.; Yang, L.; Coakley, K. J.; Golub, R.; Korobkina, E.; Kreft, T.; Lamoreaux, S. K.; Thompson, A. K.; Yang, G. L.; Huffman, P. R.

    2005-01-01

    We report progress on an experiment to measure the neutron lifetime using magnetically trapped neutrons. Neutrons are loaded into a 1.1 T deep superconducting Ioffe-type trap by scattering 0.89 nm neutrons in isotopically pure superfluid 4He. Neutron decays are detected in real time using the scintillation light produced in the helium by the beta-decay electrons. The measured trap lifetime at a helium temperature of 300 mK and with no ameliorative magnetic ramping is substantially shorter than the free neutron lifetime. This is attributed to the presence of neutrons with energies higher than the magnetic potential of the trap. Magnetic field ramping is implemented to eliminate these neutrons, resulting in an 833−63+74s trap lifetime, consistent with the currently accepted value of the free neutron lifetime. PMID:27308147

  4. The DIII-D Boundary/Plasma Materials Interaction Center (BPMIC): Progress and Prospects

    NASA Astrophysics Data System (ADS)

    Thomas, D.

    2015-11-01

    The boundary of a putative fusion reactor remains a key unresolved issue in the development of useful fusion energy. The BPMIC was established to develop validated boundary/PMI solutions for burning plasma devices by leveraging the existing DIII-D resources in well controlled, variable geometry edge plasmas and extensive boundary diagnostic set. During the first part of the 2015 campaign we have made significant progress in experiments designed to isolate specific known boundary and PMI physics issues and provide data for challenging existing analytical modeling tools such as the SOLPS suite and UEDGE. Topics include characterizing the relation between upstream and divertor parameters, the separate effects of closure and local magnetic geometry on detachment performance, leading edge tungsten erosion studies, and scaling relationships for the divertor heat flux width. This poster summarizes results from these experiments and will describe our high-level goals for the remainder of the 2015 campaign as well as for the 2016 campaign where we plan a campaign to study high-Z material migration and integration. Work supported by the US Department of Energy under DE-FC02-04ER54698.

  5. Recent Developments in Neutron Detection and Multiplicity Counting with Liquid Scintillator

    SciTech Connect

    Nakae, L F; Kerr, P L; Newby, R J; Prasad, M K; Rowland, M S; Snyderman, N J; Verbeke, J M; Wurtz, R E

    2010-01-07

    For many years at LLNL we have been developing time-correlated neutron detection techniques and algorithms for many applications including Arms Control, Threat Detection and Nuclear Material Assaying. Many of our techniques have been developed specifically for relatively low efficiency (a few %) inherent in the man-portable systems. Historically we used thermal neutron detectors (mainly {sup 3}He) taking advantage of the high thermal neutron interaction cross-sections but more recently we have been investigating fast neutron detection with liquid scintillators and inorganic crystals. We have discovered considerable detection advantages with fast neutron detection as the inherent nano-second production time-scales of fission and neutron induced fission are preserved instead of being lost in neutron thermalization required for thermal neutron detectors. We are now applying fast neutron technology (new fast and portable digital electronics as well as new faster and less hazardous scintillator formulations) to the safeguards regime and faster detector response times and neutron momentum sensitivity show promise in measuring, differentiating and assaying samples that have very high count rates as well as mixed fission sources (e.g. Cm and Pu). We report on measured results with our existing liquid scintillator array and progress on design of nuclear material assaying system that incorporates fast neutron detection.

  6. Pharmacogenomic interaction between the Haptoglobin genotype and vitamin E on atherosclerotic plaque progression and stability

    PubMed Central

    Veiner, Hilla-Lee; Gorbatov, Rostic; Vardi, Moshe; Doros, Gheorghe; Miller-Lotan, Rachel; Zohar, Yaniv; Sabo, Edmond; Asleh, Rabea; Levy, Nina S.; Goldfarb, Levi J.; Berk, Thomas A.; Haas, Tali; Shalom, Hadar; Suss-Toby, Edith; Kam, Adi; Kaplan, Marielle; Tamir, Ronit; Ziskind, Anna; Levy, Andrew P.

    2015-01-01

    Structured Abstract Objective Homozygosity for a 1.7kb intragenic duplication of the Haptoglobin (Hp) gene (Hp 2-2 genotype), present in 36% of the population, has been associated with a 2–3 fold increased incidence of atherothrombosis in individuals with Diabetes (DM) in 10 longitudinal studies compared to DM individuals not homozygous for this duplication (Hp 1-1/2-1). The increased CVD risk associated with the Hp 2-2 genotype has been shown to be prevented with vitamin E supplementation in man. We sought to determine if there was an interaction between the Hp genotype and vitamin E on atherosclerotic plaque growth and stability in a transgenic model of the Hp polymorphism. Methods and Results Brachiocephalic artery atherosclerotic plaque volume was serially assessed by high resolution ultrasound in 28 Hp 1-1 and 26 Hp 2-2 mice in a C57Bl/6 ApoE−/− background. Hp 2-2 mice had more rapid plaque growth and an increased incidence of plaque hemorrhage and rupture. Vitamin E significantly reduced plaque growth in Hp 2-2 but not in Hp 1-1 mice with a significant pharmacogenomic interaction between the Hp genotype and vitamin E on plaque growth. Conclusions These results may help explain why vitamin E supplementation in man can prevent CVD in Hp 2-2 DM but not in non Hp 2-2 DM individuals. PMID:25618031

  7. Quarterly Technical Progress Report - Investigation of Syngas Interaction in Alcohol Synthesis Catalysts

    SciTech Connect

    Murty A. Akundi

    1998-11-10

    This report presents the work done on " Investigation of Syngas Interaction in Alcohol Synthesis Catalysts" during the last quarter. The major activity during this period is on FTIR absorption studies of Co/Cr catalysts using CO as a probe molecule. Transition metals cobalt and copper play significant roles in the conversion of syngas (CO + H2 ) to liquid fuels. With a view to examine the nature of interaction between CO and metal, the FTIR spectra of CO adsorbed on Co-Cr2 O3 composites were investigated. The results indicate that as cobalt loading increases, the intensity of the CO adsorption bands increase and several vibrational modes seem to be promoted. Heat treatment of the sample revealed two distinct processes of adsorption. Bands due to physisorption disappeared while bands due to chemisorption not only increased in intensity but persisted even after desorption. It seems that the physisorption process is more active when the catalyst is fresh and is hindered when carbidic/carbonyl formations occur on the metal surfaces.

  8. Polycyclic aromatic hydrocarbon: protein interactions. Progress report, March 1, 1980-February 28, 1981

    SciTech Connect

    Fujimori, E.

    1980-11-01

    Interacting with bovine serum albumin (BSA), both the very weak carcinogenic hydrocarbon benzo(e)pyrene (Bep) and the powerful carcinogen benzo(a)pyrene (BaP) form pyrene-type compounds, indicating chemical modification at the bay region of the molecules. In constrast to the BaP-BSA reaction apparently similar to the metabolic activation to the bay region oxidation product, the BeP-BSA reaction differs from the known metabolic change of BeP which occurs at the K-region. While the BaP-BSA reaction also produces a BaP radical as well as other uv-fluorescent species, no BeP radical is formed in interaction with BSA and two sharp uv fluorescences at about 330 and 350 nm probably come from the higher excited states of BeP. Furthermore, from fluorescence and excitation spectral studies particularly at low temperature, it is suggested that the uv fluorescences at 320 to 380 nm of the BaP-BSA complex originate from a few distinct species. A new uv fluorescence at 330 nm (preferentially excited at 295 nm), as well as a new excitation peak at 325 nm for the longer wavelength uv fluorescences at 357 and 378 nm, has been found. The extract from the aqueous BaP-BSA solution also emits phosphorescence at 400-440 nm (excited at 310 nm) in EPA solution.

  9. Progress in Spacecraft Environment Interactions: International Space Station (ISS) Development and Operations

    NASA Technical Reports Server (NTRS)

    Koontz, Steve; Suggs, Robb; Schneider, Todd; Minow, Joe; Alred, John; Cooke, Bill; Mikatarian, Ron; Kramer, Leonard; Boeder, paul; Soares, Carlos

    2007-01-01

    The set of spacecraft interactions with the space flight environment that have produced the largest impacts on the design, verification, and operation of the International Space Station (ISS) Program during the May 2000 to May 2007 time frame are the focus of this paper. In-flight data, flight crew observations, and the results of ground-based test and analysis directly supporting programmatic and operational decision-making are reported as are the analysis and simulation efforts that have led to new knowledge and capabilities supporting current and future space explorations programs. The specific spacecraft-environment interactions that have had the greatest impact on ISS Program activities during the first several years of flight are: 1) spacecraft charging, 2) micrometeoroids and orbital debris effects, 3) ionizing radiation (both total dose to materials and single event effects [SEE] on avionics), 4) hypergolic rocket engine plume impingement effects, 5) venting/dumping of liquids, 6) spacecraft contamination effects, 7) neutral atmosphere and atomic oxygen effects, 8) satellite drag effects, and 9) solar ultraviolet effects. Orbital inclination (51.6deg) and altitude (nominally between 350 km and 460 km) determine the set of natural environment factors affecting the performance and reliability of materials and systems on ISS. ISS operates in the F2 region of Earth s ionosphere in well-defined fluxes of atomic oxygen, other ionospheric plasma species, solar UV, VUV, and x-ray radiation as well as galactic cosmic rays, trapped radiation, and solar cosmic rays. The micrometeoroid and orbital debris environment is an important determinant of spacecraft design and operations in any orbital inclination. The induced environment results from ISS interactions with the natural environment as well as environmental factors produced by ISS itself and visiting vehicles. Examples include ram-wake effects, hypergolic thruster plume impingement, materials out-gassing, venting

  10. Neutron-proton effective mass splitting in neutron-rich matter and its impacts on nuclear reactions

    NASA Astrophysics Data System (ADS)

    Li, Bao-An; Chen, Lie-Wen

    2015-04-01

    The neutron-proton effective mass splitting in neutron-rich nucleonic matter reflects the spacetime nonlocality of the isovector nuclear interaction. It affects the neutron/proton ratio during the earlier evolution of the Universe, cooling of proto-neutron stars, structure of rare isotopes and dynamics of heavy-ion collisions. While there is still no consensus on whether the neutron-proton effective mass splitting is negative, zero or positive and how it depends on the density as well as the isospin-asymmetry of the medium, significant progress has been made in recent years in addressing these issues. There are different kinds of nucleon effective masses. In this mini-review, we focus on the total effective masses often used in the non-relativistic description of nuclear dynamics. We first recall the connections among the neutron-proton effective mass splitting, the momentum dependence of the isovector potential and the density dependence of the symmetry energy. We then make a few observations about the progress in calculating the neutron-proton effective mass splitting using various nuclear many-body theories and its effects on the isospin-dependence of in-medium nucleon-nucleon cross-sections. Perhaps, our most reliable knowledge so far about the neutron-proton effective mass splitting at saturation density of nuclear matter comes from optical model analyses of huge sets of nucleon-nucleus scattering data accumulated over the last five decades. The momentum dependence of the symmetry potential from these analyses provide a useful boundary condition at saturation density for calibrating nuclear many-body calculations. Several observables in heavy-ion collisions have been identified as sensitive probes of the neutron-proton effective mass splitting in dense neutron-rich matter based on transport model simulations. We review these observables and comment on the latest experimental findings.

  11. Interaction Between Plasma and Magnetic Fields in the Earth’s Inner Magnetosphere: Progress and Challenges (Invited)

    NASA Astrophysics Data System (ADS)

    Zaharia, S. G.; Jordanova, V.; Welling, D. T.; Reeves, G. D.

    2009-12-01

    Significant progress has been made in recent years in understanding and modeling the coupling between the inner magnetospheric plasma and the magnetic field. This coupling is especially important during geomagnetic storms, when the large ring current pressure significantly distorts the field; in turn, the distorted field strongly alters the transport and evolution of the particle populations (both low-energy plasma and radiation belts). To describe this complex plasma/field interaction we have developed a self-consistent inner magnetosphere numerical model, RAM-SCB. The RAM-SCB code couples a kinetic ring current model (RAM) with a 3-D plasma equilibrium code. A unique strength of RAM-SCB is that the magnetic field is computed in force balance with fully anisotropic pressures. The anisotropy-dependent plasma wave excitation is an important factor in storm-time inner magnetosphere dynamics. RAM-SCB takes boundary conditions from either empirical models or large-scale space weather models such as the Space Weather Modeling Framework (SWMF). Through describing results from simulations of actual geomagnetic storms we outline the major findings from our work with RAM-SCB. These include the effect of the coupling on the ring current and Dst, the role of anisotropy, and the importance of the induced electric fields. We also describe recent progress advancing the predictive capabilities of RAM-SCB and its role as an inner magnetosphere module in a global space weather model: this progress includes the expansion of the outer boundary from geosynchronous orbit to 10 RE from Earth and the addition of the geodipole tilt. Finally, we outline several outstanding challenges in inner magnetosphere modeling research, as well as their possible resolutions.

  12. Proteomic approaches to uncovering virus–host protein interactions during the progression of viral infection

    PubMed Central

    Lum, Krystal K; Cristea, Ileana M

    2016-01-01

    The integration of proteomic methods to virology has facilitated a significant breadth of biological insight into mechanisms of virus replication, antiviral host responses and viral subversion of host defenses. Throughout the course of infection, these cellular mechanisms rely heavily on the formation of temporally and spatially regulated virus–host protein–protein interactions. Reviewed here are proteomic-based approaches that have been used to characterize this dynamic virus–host interplay. Specifically discussed are the contribution of integrative mass spectrometry, antibody-based affinity purification of protein complexes, cross-linking and protein array techniques for elucidating complex networks of virus–host protein associations during infection with a diverse range of RNA and DNA viruses. The benefits and limitations of applying proteomic methods to virology are explored, and the contribution of these approaches to important biological discoveries and to inspiring new tractable avenues for the design of antiviral therapeutics is highlighted. PMID:26817613

  13. Gravity Wave Interactions and Effects in the Middle and Upper Atmosphere: Recent Progress and Outstanding Issues

    NASA Astrophysics Data System (ADS)

    Fritts, D. C.

    2005-12-01

    Gravity waves are now recognized to have significant influences on the large-scale structure and variability throughout the atmosphere. In the mesosphere and lower thermosphere (MLT), these effects can be dramatic and include 1) vigorous wave breaking, turbulence generation, and local boding forcing, 2) strong forcing of the mean circulation and thermal structure, and 3) significant filtering by and interactions with tidal and planetary waves. Gravity wave influences also extend to significantly higher altitudes, though these are less quantified at this time. Potential influences at these higher altitudes include seeding of plasma instabilities, local body forces and heating, and mapping of MLT influences to higher altitudes, all of which are also anticipated to exhibit significant solar cycle variations.

  14. Experimental studies of pion-nucleus interactions at intermediate energies. Annual progress report

    SciTech Connect

    Not Available

    1992-12-31

    This report summarizes investigations of various pion-nucleus interactions and nucleon-nucleus charge-exchange reactions. The work was carried out with the LAMPF accelerator at the Los Alamos National Laboratory and the cyclotrons at the Paul Scherrer Institute (PSI) near Zurich, Switzerland, and at Indiana University (IUCF), as a collaborative effort among several laboratories and universities. The experimental activity at LAMPF involved measurements of new data on pion double-charge-exchange scattering, some initial work on a new Neutral Meson Spectrometer system, a search for deeply-bound pionic atoms, measurements of elastic scattering, and studies of the (n,p) reaction on various nuclei. At PSI measurements of pion quasielastic scattering were carried out, with detection of the recoil proton. Work on the analysis of data from a previous experiment at PSI on pion absorption in nuclei was continued. This experiment involved using a detector system that covered nearly the full solid angle.

  15. Progress in the epidemiological understanding of gene-environment interactions in major diseases: cancer

    PubMed Central

    Clavel, Jacqueline

    2007-01-01

    Cancer epidemiology has undergone marked development since the nineteen-fifties. One of the most spectacular and specific contributions was the demonstration of the massive effect of smoking on the occurrence of lung, larynx and bladder cancer. Major chemical, physical and biological carcinogenic agents have been identified in the working environment and in the overall environment. The chain of events from environmental exposures to cancer requires hundreds of polymorphic genes coding for proteins involved in the transport and metabolism of xenobiotics, or in repair, or in an immune or inflammatory response. The multifactorial and multistage characteristics of cancer create the theoretical conditions for statistical interactions which have been exceptionnally detected. Over the last two decades, a considerable mass of data has been generated, mostly addressing the interactions between smoking and xenobiotic-metabolizing enzymes in smoking-related cancers. They are sometimes considered disappointing but they actually brought a lot of information and raised many methodological issues. In parallel, the number of polymorphisms which can be considered candidate per function increased so much that multiple testing has become a major issue, and genome wide screening approaches have more and more gained in interest. Facing the resulting complexity, some instruments are being set up: our studies are now equipped with carefully sampled biological collections, high-throughput genotyping systems are becoming available, work on statistical methodologies is ongoing, bioinformatics databases are growing larger and access to them is becoming simpler; international consortiums are being organized. The roles of environmental and genetic factors are being jointly elucidated. The basic rules of epidemiology, which are demanding with respect to sampling, with respect to the histological and molecular criteria for cancer classification, with respect to the evaluation of environmental

  16. Negative regulation of beta4 integrin transcription by homeodomain-interacting protein kinase 2 and p53 impairs tumor progression.

    PubMed

    Bon, Giulia; Di Carlo, Selene E; Folgiero, Valentina; Avetrani, Paolo; Lazzari, Chiara; D'Orazi, Gabriella; Brizzi, Maria Felice; Sacchi, Ada; Soddu, Silvia; Blandino, Giovanni; Mottolese, Marcella; Falcioni, Rita

    2009-07-15

    Increased expression of alpha(6)beta(4) integrin in several epithelial cancers promotes tumor progression; however, the mechanism underlying its transcriptional regulation remains unclear. Here, we show that depletion of homeodomain-interacting protein kinase 2 (HIPK2) activates beta(4) transcription that results in a strong increase of beta(4)-dependent mitogen-activated protein kinase and Akt phosphorylation, anchorage-independent growth, and invasion. In contrast, stabilization of HIPK2 represses beta(4) expression in wild-type p53 (wtp53)-expressing cells but not in p53-null cells or cells expressing mutant p53, indicating that HIPK2 requires a wtp53 to inhibit beta(4) transcription. Consistent with our in vitro findings, a strong correlation between beta(4) overexpression and HIPK2 inactivation by cytoplasmic relocalization was observed in wtp53-expressing human breast carcinomas. Under loss of function of HIPK2 or p53, the p53 family members TAp63 and TAp73 strongly activate beta(4) transcription. These data, by revealing that beta(4) expression is transcriptionally repressed in tumors by HIPK2 and p53 to impair beta(4)-dependent tumor progression, suggest that loss of p53 function favors the formation of coactivator complex with the TA members of the p53 family to allow beta(4) transcription. PMID:19567674

  17. Fundamental neutron physics at LANSCE

    SciTech Connect

    Greene, G.

    1995-10-01

    Modern neutron sources and science share a common origin in mid-20th-century scientific investigations concerned with the study of the fundamental interactions between elementary particles. Since the time of that common origin, neutron science and the study of elementary particles have evolved into quite disparate disciplines. The neutron became recognized as a powerful tool for studying condensed matter with modern neutron sources being primarily used (and justified) as tools for neutron scattering and materials science research. The study of elementary particles has, of course, led to the development of rather different tools and is now dominated by activities performed at extremely high energies. Notwithstanding this trend, the study of fundamental interactions using neutrons has continued and remains a vigorous activity at many contemporary neutron sources. This research, like neutron scattering research, has benefited enormously by the development of modern high-flux neutron facilities. Future sources, particularly high-power spallation sources, offer exciting possibilities for continuing this research.

  18. Modified interactions among globular proteins below isoelectric point in the presence of mono-, di- and tri-valent ions: A small angle neutron scattering study

    NASA Astrophysics Data System (ADS)

    Das, Kaushik; Kundu, Sarathi; Mehan, Sumit; Aswal, V. K.

    2016-02-01

    Both short range attraction and long range electrostatic repulsion exist among globular protein Bovine Serum Albumin in solution below its isoelectric point (pI ≈ 4.8). At pD ≈ 4.0, below pI, protein has a net positive surface charge although local charge inhomogeneity presents. Small angle neutron scattering study reveals that in the presence of both mono-(Na+) and di-(Ni2+) valent ions attractive interaction increases and repulsive interaction decreases with the increase of salt concentration. However, for tri-valent (Fe3+) ions, both attractive and repulsive interaction increases with increasing salt concentration but the relative strength of repulsion is more than the attraction.

  19. Sleeping Beauty transposase modulates cell-cycle progression through interaction with Miz-1

    PubMed Central

    Walisko, Oliver; Izsvák, Zsuzsanna; Szabó, Kornélia; Kaufman, Christopher D.; Herold, Steffi; Ivics, Zoltán

    2006-01-01

    We used the Sleeping Beauty (SB) transposable element as a tool to probe transposon–host cell interactions in vertebrates. The Miz-1 transcription factor was identified as an interactor of the SB transposase in a yeast two-hybrid screen. Through its association with Miz-1, the SB transposase down-regulates cyclin D1 expression in human cells, as evidenced by differential gene expression analysis using microarray hybridization. Down-regulation of cyclin D1 results in a prolonged G1 phase of the cell cycle and retarded growth of transposase-expressing cells. G1 slowdown is associated with a decrease of cyclin D1/cdk4-specific phosphorylation of the retinoblastoma protein. Both cyclin D1 down-regulation and the G1 slowdown induced by the transposase require Miz-1. A temporary G1 arrest enhances transposition, suggesting that SB transposition is favored in the G1 phase of the cell cycle, where the nonhomologous end-joining pathway of DNA repair is preferentially active. Because nonhomologous end-joining is required for efficient SB transposition, the transposase-induced G1 slowdown is probably a selfish act on the transposon’s part to maximize the chance for a successful transposition event. PMID:16537485

  20. Recent Progress in Treating Protein–Ligand Interactions with Quantum-Mechanical Methods

    PubMed Central

    Yilmazer, Nusret Duygu; Korth, Martin

    2016-01-01

    We review the first successes and failures of a “new wave” of quantum chemistry-based approaches to the treatment of protein/ligand interactions. These approaches share the use of “enhanced”, dispersion (D), and/or hydrogen-bond (H) corrected density functional theory (DFT) or semi-empirical quantum mechanical (SQM) methods, in combination with ensemble weighting techniques of some form to capture entropic effects. Benchmark and model system calculations in comparison to high-level theoretical as well as experimental references have shown that both DFT-D (dispersion-corrected density functional theory) and SQM-DH (dispersion and hydrogen bond-corrected semi-empirical quantum mechanical) perform much more accurately than older DFT and SQM approaches and also standard docking methods. In addition, DFT-D might soon become and SQM-DH already is fast enough to compute a large number of binding modes of comparably large protein/ligand complexes, thus allowing for a more accurate assessment of entropic effects. PMID:27196893

  1. Natural gas storage and end user interaction: A progress report, September 30, 1994--March 31, 1995

    SciTech Connect

    Crook, L.R. Jr.; Reich, S.; Godec, M.L.

    1995-07-01

    In late 1994, ICF Resources began a contract with the Morgantown Energy Technology Center (METC) to conduct a study of natural gas storage and end user interaction. This study is being conducted in three phases: the first phase is an assessment of the market requirements for natural gas storage and in particular to identify those end user requirements for storage that could benefit from METC-sponsored research and development (R&D) in storage technology; the second phase will address the particular technical and economic feasibility for expanding conventional storage; and the third phase will address alternative, unconventional technologies. ICF is approaching the conclusion of the first phase of the study and the second phase has begun. This paper summarizes the scope of the study and reports some of the preliminary findings of the first phase. We begin by providing an overview of the goals of the effort and of natural gas storage. We will address the evolving market requirements for storage and the regulatory and institutional changes that are having a major impact on the use of natural gas storage. We address the demand for storage and the alternatives for meeting this demand, with specific reference to regional and end use issues.

  2. Interaction of carbon and sulfur on metal catalysts: Technical progress report

    SciTech Connect

    McCarty, J.G.; Vajo, J.

    1989-02-17

    At high coverage, sulfur generally deactivates metal catalysts, but at low coverage, chemisorbed sulfur can have a more subtle effect on catalyst activity and selectivity. The general goal of the current project is to examine fundamental aspects of selective poisoning by fractional monolayers of chemisorbed sulfur on a variety of metal catalysts used for commercially important reactions such as hydrocarbon re-forming, light alkane steam re-forming, and hydrocarbon synthesis. Specific objectives of the research program are to experimentally measure as a function of coverage the influence of chemisorbed sulfur on the thermodynamics, reactivity, and structure of surface and bulk carbon occupying both dispersed and well-characterized metal catalyst surfaces. Special methods, such as reversible sulfur chemisorption on supported metals and temperature-programmed reaction (TPR) characterization of catalyst carbon, have been developed that are well suited to examining the interaction of sulfur and carbon on metal surfaces. New analytical instruments with greatly improved sensitivity have been recently developed and applied: a helium discharge ionization detector (DID) is being used with a gas recirculation thermodynamic system, and the surface analysis by laser ionization (SALI) technique is used with surface carbon segregation systems.

  3. Recent Progress in Treating Protein-Ligand Interactions with Quantum-Mechanical Methods.

    PubMed

    Yilmazer, Nusret Duygu; Korth, Martin

    2016-01-01

    We review the first successes and failures of a "new wave" of quantum chemistry-based approaches to the treatment of protein/ligand interactions. These approaches share the use of "enhanced", dispersion (D), and/or hydrogen-bond (H) corrected density functional theory (DFT) or semi-empirical quantum mechanical (SQM) methods, in combination with ensemble weighting techniques of some form to capture entropic effects. Benchmark and model system calculations in comparison to high-level theoretical as well as experimental references have shown that both DFT-D (dispersion-corrected density functional theory) and SQM-DH (dispersion and hydrogen bond-corrected semi-empirical quantum mechanical) perform much more accurately than older DFT and SQM approaches and also standard docking methods. In addition, DFT-D might soon become and SQM-DH already is fast enough to compute a large number of binding modes of comparably large protein/ligand complexes, thus allowing for a more accurate assessment of entropic effects. PMID:27196893

  4. Environmental effects of ozone depletion and its interactions with climate change: progress report, 2007.

    PubMed

    2008-01-01

    This year the Montreal Protocol celebrates its 20th Anniversary. In September 1987, 24 countries signed the Montreal Protocol on Substances that Deplete the Ozone Layer. Today 191 countries have signed and have met strict commitments on phasing out of ozone depleting substances with the result that a 95% reduction of these substances has been achieved. The Montreal Protocol has also contributed to slowing the rate of global climate change, since most of the ozone depleting substances are also effective greenhouse gases. Even though much has been achieved, the future of the stratospheric ozone layer relies on full compliance of the Montreal Protocol by all countries for the remaining substances, including methyl bromide, as well as strict monitoring of potential risks from the production of substitute chemicals. Also the ozone depleting substances existing in banks and equipment need special attention to prevent their release to the stratosphere. Since many of the ozone depleting substances already in the atmosphere are long-lived, recovery cannot be immediate and present projections estimate a return to pre-1980 levels by 2050 to 2075. It has also been predicted that the interactions of the effects of the ozone layer and that of other climate change factors will become increasingly important. PMID:18274006

  5. Inhibiting DX2-p14/ARF Interaction Exerts Antitumor Effects in Lung Cancer and Delays Tumor Progression.

    PubMed

    Oh, Ah-Young; Jung, Youn Sang; Kim, Jiseon; Lee, Jee-Hyun; Cho, Jung-Hyun; Chun, Ho-Young; Park, Soyoung; Park, Hyunchul; Lim, Sikeun; Ha, Nam-Chul; Park, Jong Sook; Park, Choon-Sik; Song, Gyu-Yong; Park, Bum-Joon

    2016-08-15

    The aminoacyl tRNA synthetase complex-interacting multifunctional protein 2 (AIMP2) splice variant designated DX2 is induced by cigarette smoke carcinogens and is often detected in human lung cancer specimens. However, the function of DX2 in lung carcinogenesis is obscure. In this study, we found that DX2 expression was induced by oncogenes in human lung cancer tissues and cells. DX2 prevented oncogene-induced apoptosis and senescence and promoted drug resistance by directly binding to and inhibiting p14/ARF. Through chemical screening, we identified SLCB050, a novel compound that blocks the interaction between DX2 and p14/ARF in vitro and in vivo SLCB050 reduced the viability of human lung cancer cells, especially small cell lung cancer cells, in a p14/ARF-dependent manner. Moreover, in a mouse model of K-Ras-driven lung tumorigenesis, ectopic expression of DX2 induced small cell and non-small cell lung cancers, both of which could be suppressed by SLCB050 treatment. Taken together, our findings show how DX2 promotes lung cancer progression and how its activity may be thwarted as a strategy to treat patients with lung cancers exhibiting elevated DX2 levels. Cancer Res; 76(16); 4791-804. ©2016 AACR. PMID:27302160

  6. Extension to Higher Mass Numbers of an Improved Knockout-Ablation-Coalescence Model for Secondary Neutron and Light Ion Production in Cosmic Ray Interactions

    NASA Astrophysics Data System (ADS)

    Indi Sriprisan, Sirikul; Townsend, Lawrence; Cucinotta, Francis A.; Miller, Thomas M.

    Purpose: An analytical knockout-ablation-coalescence model capable of making quantitative predictions of the neutron spectra from high-energy nucleon-nucleus and nucleus-nucleus collisions is being developed for use in space radiation protection studies. The FORTRAN computer code that implements this model is called UBERNSPEC. The knockout or abrasion stage of the model is based on Glauber multiple scattering theory. The ablation part of the model uses the classical evaporation model of Weisskopf-Ewing. In earlier work, the knockout-ablation model has been extended to incorporate important coalescence effects into the formalism. Recently, alpha coalescence has been incorporated, and the ability to predict light ion spectra with the coalescence model added. The earlier versions were limited to nuclei with mass numbers less than 69. In this work, the UBERNSPEC code has been extended to make predictions of secondary neutrons and light ion production from the interactions of heavy charged particles with higher mass numbers (as large as 238). The predictions are compared with published measurements of neutron spectra and light ion energy for a variety of collision pairs. Furthermore, the predicted spectra from this work are compared with the predictions from the recently-developed heavy ion event generator incorporated in the Monte Carlo radiation transport code HETC-HEDS.

  7. Power Burst Facility/Boron Neutron Capture Therapy Program for Cancer Treatment

    SciTech Connect

    Ackermann, A.L.; Dorn, R.V. III.

    1990-02-01

    Highlights of the PBF/BNCT Program during February 1990 include progress within the areas of: Gross Boron Analysis in Tissue, Blood, and Urine, Analytical Methodologies Development for BSH (Borocaptate Sodium) Purity Determination, Noninvasive Boron Quantitative Determination, Dosimetry, Analytical Radiation Transport and Interaction Modeling, Large Animal Model Studies in that Ten dogs were irradiated to grossly bracket neutron beam only tissue tolerance limits, Neutron Source and Facility Preparation in that the PBF neutron filter and bismuth shielding design revisions, recommended during the preliminary design review, have been incorporated and Administration and Common Support. 1 tab.

  8. Power Burst Facility/Boron Neutron Capture Therapy Program for cancer treatment

    SciTech Connect

    Dorn, R.V. III.

    1990-01-01

    Highlights of the PBF/BNCT Program during January 1990 include progress within the areas of: gross boron analysis in tissue, blood, and urine; analytical methodologies development for BSH purity determination; noninvasive boron quantitative determination; dosimetry; analytical radiation transport and interaction modeling for BNCT; large animal model studies; neutron source and facility preparation; administration and common support; and PBF operations.

  9. AKAP95 promotes cell cycle progression via interactions with cyclin E and low molecular weight cyclin E

    PubMed Central

    Kong, Xiang-Yu; Zhang, Deng-Cheng; Zhuang, Wen-Xin; Hua, Su-Hang; Dai, Yue; Yuan, Yang-Yang; Feng, Li-Li; Huang, Qian; Teng, Bo-Gang; Yu, Xiu-Yi; Liu, Wen-Zhi; Zhang, Yong-Xing

    2016-01-01

    AKAP95 in lung cancer tissues showed higher expression than in paracancerous tissues. AKAP95 can bind with cyclin D and cyclin E during G1/S cell cycle transition, but its molecular mechanisms remain unclear. To identify the mechanism of AKAP95 in cell cycle progression, we performed AKAP95 transfection and silencing in A549 cells, examined AKAP95, cyclin E1 and cyclin E2 expression, and the interactions of AKAP95 with cyclins E1 and E2. Results showed that over-expression of AKAP95 promoted cell growth and AKAP95 bound cyclin E1 and E2, low molecular weight cyclin E1 (LWM-E1) and LWM-E2. Additionally AKAP95 bound cyclin E1 and LMW-E2 in the nucleus during G1/S transition, bound LMW-E1 during G1, S and G2/M, and bound cyclin E2 mainly on the nuclear membrane during interphase. Cyclin E2 and LMW-E2 were also detected. AKAP95 over-expression increased cyclin E1 and LMW-E2 expression but decreased cyclin E2 levels. Unlike cyclin E1 and LMW-E2 that were nuclear located during the G1, S and G1/S phases, cyclin E2 and LMW-E1 were expressed in all cell cycle phases, with cyclin E2 present in the cytoplasm and nuclear membrane, with traces in the nucleus. LMW-E1 was present in both the cytoplasm and nucleus. The 20 kDa form of LMW-E1 showed only cytoplasmic expression, while the 40 kDa form was nuclear expressed. The expression of AKAP95, cyclin E1, LMW-E1 and -E2, might be regulated by cAMP. We conclude that AKAP95 might promote cell cycle progression by interacting with cyclin E1 and LMW-E2. LMW-E2, but not cyclin E2, might be involved in G1/S transition. The binding of AKAP95 and LMW-E1 was found throughout cell cycle. PMID:27158371

  10. Remote Sensing of Aerosols from Satellites: Why Has It Been Do Difficult to Quantify Aerosol-Cloud Interactions for Climate Assessment, and How Can We Make Progress?

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph A.

    2015-01-01

    The organizers of the National Academy of Sciences Arthur M. Sackler Colloquia Series on Improving Our Fundamental Understanding of the Role of Aerosol-Cloud Interactions in the Climate System would like to post Ralph Kahn's presentation entitled Remote Sensing of Aerosols from Satellites: Why has it been so difficult to quantify aerosol-cloud interactions for climate assessment, and how can we make progress? to their public website.

  11. Neutronics Benchmarks for the Utilization of Mixed-Oxide Fuel: Joint U.S./Russian Progress Report for Fiscal Year 1997 Volume 2-Calculations Performed in the United States

    SciTech Connect

    Primm III, RT

    2002-05-29

    This volume of the progress report provides documentation of reactor physics and criticality safety studies conducted in the US during fiscal year 1997 and sponsored by the Fissile Materials Disposition Program of the US Department of Energy. Descriptions of computational and experimental benchmarks for the verification and validation of computer programs for neutron physics analyses are included. All benchmarks include either plutonium, uranium, or mixed uranium and plutonium fuels. Calculated physics parameters are reported for all of the computational benchmarks and for those experimental benchmarks that the US and Russia mutually agreed in November 1996 were applicable to mixed-oxide fuel cycles for light-water reactors.

  12. Inclusive scattering of polarized electrons on polarized {sup 3}He: Effects of final state interaction and the magnetic form factor of the neutron

    SciTech Connect

    Ishikawa, S.; Golak, J.; Witala, H.; Kamada, H.; Gloeckle, W.; Hueber, D.

    1998-01-01

    Effects of final state interaction on asymmetries in inclusive scattering of polarized electrons on polarized {sup 3}He are investigated using a consistent {sup 3}He bound state wave function and 3N continuum scattering states. Significant effects are found, which influence the extraction of the magnetic neutron form factor from A{sub T{sup {prime}}}. The enhancement found experimentally for A{sub TL{sup {prime}}} near the 3N breakup threshold, which could not be explained in calculations carried through in plane wave impulse approximation up to now, occurs now also in theory if the full final state interaction is included. {copyright} {ital 1998} {ital The American Physical Society}

  13. Phenomenological analysis of breakup of 9Be nuclei into two α-particles and neutron in peripheral interactions with emulsion nuclei

    NASA Astrophysics Data System (ADS)

    Olimov, Khusniddin K.; Olimov, Kosim; Lugovoi, V. V.; Zarubin, P. I.; Lutpullaev, S. L.; Olimov, Alisher K.; Navotny, V. Sh.; Abdurakhmanov, U. U.; Artemenkov, D. A.; Zarubina, I. G.; Rusakova, V. V.; Arif, Atif; Khan, Imran

    2016-03-01

    Phenomenological Monte Carlo model of peripheral interactions of 9Be nuclei with emulsion nuclei at 1.2AGeV with formation of an excited 9Be* nucleus and its subsequent breakup, either directly or through formation of an intermediate 8Be nucleus, into two α-particles and a neutron was constructed. A comparative analysis of the experimental data on angular correlations and momentum spectra of α-particles, coming from a breakup event, with the Monte Carlo model calculations was made. The constructed Monte Carlo model described quite satisfactory the total momentum and transverse momentum distributions of α-particles and the distribution of angles between the total momentum (as well as transverse momentum) vectors of two α-particles in 9Be* nucleus breakup events in experiment. For the first time, the total momentum and transverse momentum distributions of neutrons, accompanying two α-particles from 9Be* decay, in peripheral interactions of 9Be nuclei with emulsion nuclei were reconstructed using the Monte Carlo model.

  14. Study of proton acceleration at the target front surface in laser-solid interactions by neutron spectroscopy

    SciTech Connect

    Youssef, A.; Kodama, R.; Tampo, M.

    2006-03-15

    Proton acceleration inside solid LiF and CH-LiF targets irradiated by a 450-fs, 20-J, 1053-nm laser at an intensity of 3x10{sup 18} W/cm{sup 2} has been studied via neutron spectroscopy. Neutron spectra produced through the {sup 7}Li(p,n){sup 7}Be reaction that occurs between accelerated protons, at the front surface, and background {sup 7}Li ions inside the target. From measured and calculated spectra, by three-dimensional Monte Carlo code, the maximum energy, total number, and slope temperature of the accelerated protons are investigated. The study indicates that protons originate at the front surface and are accelerated to a maximum energy that is reasonably consistent with the calculated one due to the ponderomotive force.

  15. Precision Neutron Polarimetry

    NASA Astrophysics Data System (ADS)

    Sharma, Monisha; Barron-Palos, L.; Bowman, J. D.; Chupp, T. E.; Crawford, C.; Danagoulian, A.; Klein, A.; Penttila, S. I.; Salas-Bacci, A. F.; Wilburn, W. S.

    2008-04-01

    Proposed PANDA and abBA experiments aim to measure the correlation coefficients in the polarized neutron beta decay at the SNS. The goal of these experiments is 0.1% measurement which will require neutron polarimetry at 0.1% level. The FnPB neutron beam will be polarized either using a ^3He spin filter or a supermirror polarizer and the neutron polarization will be measured using a ^3He spin filter. Experiment to establish the accuracy to which neutron polarization can be determined using ^3He spin fliters was performed at Los Alamos National Laboratory in Summer 2007 and the analysis is in progress. The details of the experiment and the results will be presented.

  16. Chronic lymphocytic leukemia disease progression is accelerated by APRIL-TACI interaction in the TCL1 transgenic mouse model

    PubMed Central

    Lascano, Valeria; Guadagnoli, Marco; Schot, Jan G.; Luijks, Dieuwertje M.; Guikema, Jeroen E. J.; Cameron, Katherine; Hahne, Michael; Pals, Steven; Slinger, Erik; Kipps, Thomas J.; van Oers, Marinus H. J.; Eldering, Eric; Medema, Jan Paul

    2013-01-01

    Although in vitro studies pointed to the tumor necrosis factor family member APRIL (a proliferation-inducing ligand) in mediating survival of chronic lymphocytic leukemia (CLL) cells, clear evidence for a role in leukemogenesis and progression in CLL is lacking. APRIL significantly prolonged in vitro survival of CD5+B220dull leukemic cells derived from the murine Eμ-TCL1-Tg (TCL1-Tg [transgenic]) model for CLL. APRIL-TCL1 double-Tg mice showed a significantly earlier onset of leukemia and disruption of splenic architecture, and survival was significantly reduced. Interestingly, clonal evolution of CD5+B220dull cells (judged by BCR clonality) did not seem to be accelerated by APRIL; both mouse strains were oligoclonal at 4 months. Although APRIL binds different receptors, APRIL-mediated leukemic cell survival depended on tumor necrosis factor receptor superfamily member 13B (TACI) ligation. These findings indicate that APRIL has an important role in CLL and that the APRIL-TACI interaction might be a selective novel therapeutic target for human CLL. PMID:24100449

  17. On the theory of phase transitions in dense neutron matter with generalized Skyrme interactions and anisotropic spin-triplet p-wave pairing in strong magnetic field

    NASA Astrophysics Data System (ADS)

    Tarasov, A. N.

    2014-03-01

    In the framework of the generalized non-relativistic Fermi-liquid approach we study phase transitions in spatially uniform dense pure neutron matter from normal to superfluid states with a spin-triplet p-wave pairing (similar to anisotropic superfluid phases 3He-A1 and 3He-A2) in a steady and homogeneous strong magnetic field H (but |\\mu_{\\text{n}}| H\\ll E_{\\text{c}}<\\varepsilon_{\\text{F}}(n) , where \\mu_{\\text{n}} is the magnetic dipole moment of a neutron, E_{\\text{c}} is the cutoff energy and \\varepsilon_{\\text{F}}(n) is the Fermi energy in neutron matter with density of particles n). The previously derived general formulas (valid for the arbitrary parametrization of the effective Skyrme interaction in neutron matter) for phase transition (PT) temperatures T_{\\text{c}1,2}(n,H) (which are nonlinear functions of the density n and linear functions of the magnetic field H) are specified here for new generalized BSk20 and BSk21 parameterizations of the Skyrme forces (with additional terms dependent on the density n) in the interval 0.1\\cdot n_{0} < n<3.0\\cdot n_{0} , where n_{0}=0.17\\ \\text{fm}^{-3} is the nuclear density. Our main results are mathematical expressions and figures for PT temperatures in the absence of magnetic field, T_{\\text{c0,BSk20}}(n)< 0.17\\ \\text{MeV} and T_{\\text{c0,BSk21}}(n)< 0.064\\ \\text{MeV} (at E_{\\text{c}}=10\\ \\text{MeV} ), and T_{\\text{c1,2}}(n,H) in strong magnetic fields (which may approach to 10^{17}\\ \\text{G} or even more as in the liquid outer core of magnetars —strongly magnetized neutron stars). These are realistic non-monotone functions with a bell-shaped density profile.

  18. Neutronic reactor

    DOEpatents

    Wende, Charles W. J.; Babcock, Dale F.; Menegus, Robert L.

    1983-01-01

    A nuclear reactor includes an active portion with fissionable fuel and neutron moderating material surrounded by neutron reflecting material. A control element in the active portion includes a group of movable rods constructed of neutron-absorbing material. Each rod is movable with respect to the other rods to vary the absorption of neutrons and effect control over neutron flux.

  19. Boron nitride solid state neutron detector

    DOEpatents

    Doty, F. Patrick

    2004-04-27

    The present invention describes an apparatus useful for detecting neutrons, and particularly for detecting thermal neutrons, while remaining insensitive to gamma radiation. Neutrons are detected by direct measurement of current pulses produced by an interaction of the neutrons with hexagonal pyrolytic boron nitride.

  20. Neutron reflection study of the interaction of the eukaryotic pore-forming actinoporin equinatoxin II with lipid membranes reveals intermediate states in pore formation.

    PubMed

    Wacklin, Hanna P; Bremec, Biserka Bakrač; Moulin, Martina; Rojko, Nejc; Haertlein, Michael; Forsyth, Trevor; Anderluh, Gregor; Norton, Raymond S

    2016-04-01

    Equinatoxin II (EqtII), a eukaryotic pore-forming toxin, lyses cell membranes through a mechanism involving the insertion of its N-terminal α-helix into the membrane. EqtII pore formation is dependent on sphingomyelin (SM), although cholesterol (Chol) and membrane microdomains have also been suggested to enhance its activity. We have investigated the mechanism of EqtII binding and insertion by using neutron reflection to determine the structures of EqtII-membrane assemblies in situ. EqtII has several different modes of binding to membranes depending on the lipid composition. In pure dimyristoyl-phosphatidylcholine (DMPC) membranes, EqtII interacts weakly and reversibly with the lipid head groups in an orientation approximately parallel to the membrane surface. The presence of sphingomyelin (SM) gives rise to a more upright orientation of EqtII, but Chol is required for insertion into the core of the membrane. Cooling the EqtII-lipid assembly below the lipid phase transition temperature leads to deep water penetration and a significant reduction in the extension of the protein outside the membrane, indicating that phase-separation plays a role in EqtII pore-formation. An inactive double-cysteine mutant of EqtII in which the α-helix is covalently tethered to the rest of the protein, interacts only reversibly with all the membranes. Releasing the α-helix in situ by reduction of the disulphide bridge, however, causes the mutant protein to penetrate in DMPC-SM-Chol membranes in a manner identical to that of the wild-type protein. Our results help clarify the early steps in pore formation by EqtII and highlight the valuable information on protein-membrane interactions available from neutron reflection measurements. PMID:26706098

  1. Antimicrobial peptide dendrimer interacts with phosphocholine membranes in a fluidity dependent manner: A neutron reflection study combined with molecular dynamics simulations.

    PubMed

    Lind, T K; Darré, L; Domene, C; Urbanczyk-Lipkowska, Z; Cárdenas, M; Wacklin, H P

    2015-10-01

    The interaction mechanism of a novel amphiphilic antimicrobial peptide dendrimer, BALY, with model lipid bilayers was explored through a combination of neutron reflection and molecular dynamics simulations. 1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1,2-dipalmitoyl-sn-glycero-3-phos-phocholine (DPPC) lipid bilayers were examined at room temperature to extract information on the interaction of BALY with fluid and gel phases, respectively. Furthermore, a 1:4 mixture of POPC and DPPC was used as a model of a phase-separated membrane. Upon interaction with fluid membranes, BALY inserted in the distal leaflet and caused thinning and disordering of the headgroups. Membrane thinning and expansion of the lipid cross-sectional area were observed for gel phase membranes, also with limited insertion to the distal leaflet. However, dendrimer insertion through the entire lipid tail region was observed upon crossing the lipid phase transition temperature of DPPC and in phase separated membranes. The results show clear differences in the interaction mechanism of the dendrimer depending on the lipid membrane fluidity, and suggest a role for lipid phase separation in promoting its antimicrobial activity. PMID:26025586

  2. Fusion Energy Division annual progress report period ending December 31, 1986

    SciTech Connect

    Morgan, O.B. Jr.; Berry, L.A.; Sheffield, J.

    1987-10-01

    This annual report on fusion energy discusses the progress on work in the following main topics: toroidal confinement experiments; atomic physics and plasma diagnostics development; plasma theory and computing; plasma-materials interactions; plasma technology; superconducting magnet development; fusion engineering design center; materials research and development; and neutron transport. (LSP)

  3. The Fundamental Neutron Physics Beamline at the Spallation Neutron Source

    PubMed Central

    Greene, Geoffrey; Cianciolo, Vince; Koehler, Paul; Allen, Richard; Snow, William Michael; Huffman, Paul; Gould, Chris; Bowman, David; Cooper, Martin; Doyle, John

    2005-01-01

    The Spallation Neutron Source (SNS), currently under construction at Oak Ridge National Laboratory with an anticipated start-up in early 2006, will provide the most intense pulsed beams of cold neutrons in the world. At a projected power of 1.4 MW, the time averaged fluxes and fluences of the SNS will approach those of high flux reactors. One of the flight paths on the cold, coupled moderator will be devoted to fundamental neutron physics. The fundamental neutron physics beamline is anticipated to include two beam-lines; a broad band cold beam, and a monochromatic beam of 0.89 nm neutrons for ultracold neutron (UCN) experiments. The fundamental neutron physics beamline will be operated as a user facility with experiment selection based on a peer reviewed proposal process. An initial program of five experiments in neutron decay, hadronic weak interaction and time reversal symmetry violation have been proposed. PMID:27308112

  4. Pfh1 Is an Accessory Replicative Helicase that Interacts with the Replisome to Facilitate Fork Progression and Preserve Genome Integrity.

    PubMed

    McDonald, Karin R; Guise, Amanda J; Pourbozorgi-Langroudi, Parham; Cristea, Ileana M; Zakian, Virginia A; Capra, John A; Sabouri, Nasim

    2016-09-01

    Replicative DNA helicases expose the two strands of the double helix to the replication apparatus, but accessory helicases are often needed to help forks move past naturally occurring hard-to-replicate sites, such as tightly bound proteins, RNA/DNA hybrids, and DNA secondary structures. Although the Schizosaccharomyces pombe 5'-to-3' DNA helicase Pfh1 is known to promote fork progression, its genomic targets, dynamics, and mechanisms of action are largely unknown. Here we address these questions by integrating genome-wide identification of Pfh1 binding sites, comprehensive analysis of the effects of Pfh1 depletion on replication and DNA damage, and proteomic analysis of Pfh1 interaction partners by immunoaffinity purification mass spectrometry. Of the 621 high confidence Pfh1-binding sites in wild type cells, about 40% were sites of fork slowing (as marked by high DNA polymerase occupancy) and/or DNA damage (as marked by high levels of phosphorylated H2A). The replication and integrity of tRNA and 5S rRNA genes, highly transcribed RNA polymerase II genes, and nucleosome depleted regions were particularly Pfh1-dependent. The association of Pfh1 with genomic integrity at highly transcribed genes was S phase dependent, and thus unlikely to be an artifact of high transcription rates. Although Pfh1 affected replication and suppressed DNA damage at discrete sites throughout the genome, Pfh1 and the replicative DNA polymerase bound to similar extents to both Pfh1-dependent and independent sites, suggesting that Pfh1 is proximal to the replication machinery during S phase. Consistent with this interpretation, Pfh1 co-purified with many key replisome components, including the hexameric MCM helicase, replicative DNA polymerases, RPA, and the processivity clamp PCNA in an S phase dependent manner. Thus, we conclude that Pfh1 is an accessory DNA helicase that interacts with the replisome and promotes replication and suppresses DNA damage at hard-to-replicate sites. These data

  5. On the mechanism of the interactions of neutrons and gamma radiation with nuclear graphite—Implications to HTGRs

    NASA Astrophysics Data System (ADS)

    Goodwin, C.; Barkatt, A.; Al-Sheikhly, M.

    2014-04-01

    Nuclear-grade varieties of graphite being considered for use in high-temperature gas reactors were exposed to gamma radiation (up to 87 MGy) and to fast neutrons (up to 5.4×1017 n/cm2 in air, 8.8×1011 n/cm2 in water-saturated helium). Results of XPS measurements indicated that gamma or mixed-field irradiation initially enhances the oxygen content in the surface region of the graphite, but this content decreases at higher doses, probably due to decomposition of surface CO complexes. Results of EPR measurements showed that gamma irradiation at low doses causes a decrease in the concentration of unpaired spins, but higher doses cause this concentration to rise. SQUID measurements of magnetic susceptibility support the EPR findings. At the dose range explored in this study, no structural changes were observed using XRD and Raman spectroscopy. In general, no significant differences were observed among the five varieties of graphite with respect to the effects of irradiation. Impurity analysis by means of GDMS and ICP-AES showed that impurity concentrations that concentrations of impurities, particularly those of neutron-absorbing impurities, were within the range specified for high-purity nuclear graphite. Activation relevant impurity concentrations, too, were very low.

  6. Liquid Lithium Divertor and Scrape-Off-Layer Interactions on the National Spherical Torus Experiment: 2010 ? 2013 Progress Report

    SciTech Connect

    2013-08-27

    The implementation of the liquid Lithium Divertor (LLD) in NSTX presented a unique opportunity in plasma-material interactions studies. A high density Langmuir Probe (HDLP) array utilizing a dense pack of triple Langmuir probes was built at PPPL and the electronics designed and built by UIUC. It was shown that the HDLP array could be used to characterize the modification of the EEDF during lithium experiments on NSTX as well as characterize the transient particle loads during lithium experiments as a means to study ELMs. With NSTX being upgraded and a new divertor being installed, the HDLP array will not be used in NSTX-U. However UIUC is currently helping to develop two new systems for depositing lithium into NSTX-U, a Liquid Lithium Pellet Dripper (LLPD) for use with the granular injector for ELM mitigation and control studies as well as an Upward-Facing Lithium Evaporator (U-LITER) based on a flash evaporation system using an electron beam. Currently UIUC has Daniel Andruczyk Stationed at PPPL and is developing these systems as well as being involved in preparing the Materials Analysis Particle Probe (MAPP) for use in LTX and NSTX-U. To date the MAPP preparations have been completed. New sample holders were designed by UIUC?s Research Engineer at PPPL and manufactured at PPPL and installed. MAPP is currently being used on LTX to do calibration and initial studies. The LLPD has demonstrated that it can produce pellets. There is still some adjustments needed to control the frequency and particle size. Equipment for the U-LITER has arrived and initial test are being made of the electron beam and design of the U-LITER in progress. It is expected to have these ready for the first run campaign of NSTX-U.

  7. Neutron scattering studies of short-range order, atomic displacements, and effective pair interactions in a null-matrix Ni0.5262Pt0.48 crystal

    NASA Astrophysics Data System (ADS)

    Rodriguez, J. A.; Moss, S. C.; Robertson, J. L.; Copley, J. R. D.; Neumann, D. A.; Major, J.

    2006-09-01

    The best known exception to the Heine-Sampson and Bieber-Gauthier arguments for ordering effects in transition metal alloys (similar to the Hume-Rothery rules) is a NiPt alloy, whose phase diagram is similar to that of the CuAu system. Using neutron scattering we have investigated the local atomic order in a null-matrix Ni0.5262Pt0.48 single crystal. In a null-matrix alloy, the isotopic composition is adjusted so that the average neutron scattering length vanishes ( Ni62 has a negative scattering length nearly equal in magnitude to that of Pt). Consequently, all contributions to the total scattering depending on the average lattice are suppressed. The only remaining components of the elastic scattering are the short-range order (SRO) and size effect terms. These data permit the extraction of the SRO parameters (concentration-concentration correlations) as well as the displacement parameters (concentration-displacement correlations). Using the Krivoglaz-Clapp-Moss theory, we obtain the effective pair interactions (EPIs) between near neighbors in the alloy. The results can be used by theorists to model the alloy in the context of the electronic theory of alloy phase stability, including a preliminary evaluation of the local species-dependent displacements. Our maps of V(q) , the Fourier transform of the EPIs, show very similar shapes in the experimental and reconstructed data. This is of importance when comparing to electronic structure calculations.

  8. Spin-wave and electromagnon dispersions in multiferroic MnWO4 as observed by neutron spectroscopy: Isotropic Heisenberg exchange versus anisotropic Dzyaloshinskii-Moriya interaction

    NASA Astrophysics Data System (ADS)

    Xiao, Y.; Kumar, C. M. N.; Nandi, S.; Su, Y.; Jin, W. T.; Fu, Z.; Faulhaber, E.; Schneidewind, A.; Brückel, Th.

    2016-06-01

    High-resolution inelastic neutron scattering reveals that the elementary magnetic excitations in multiferroic MnWO4 consist of low-energy dispersive electromagnons in addition to the well-known spin-wave excitations. The latter can well be modeled by a Heisenberg Hamiltonian with magnetic exchange coupling extending to the 12th nearest neighbor. They exhibit a spin-wave gap of 0.61(1) meV. Two electromagnon branches appear at lower energies of 0.07(1) and 0.45(1) meV at the zone center. They reflect the dynamic magnetoelectric coupling and persist in both the collinear magnetic and paraelectric AF1 phase and the spin spiral ferroelectric AF2 phase. These excitations are associated with the Dzyaloshinskii-Moriya exchange interaction, which is significant due to the rather large spin-orbit coupling.

  9. Neutron-induced peaks in Ge detectors from evaporation neutrons

    NASA Astrophysics Data System (ADS)

    Gete, E.; Measday, D. F.; Moftah, B. A.; Saliba, M. A.; Stocki, T. J.

    1997-02-01

    We have studied the peak shapes at 596 and 691 keV resulting from fast neutron interactions inside germanium detectors. We have used neutrons from a 252Cf source, as well as from the 28Si(μ -, nv), and 209Bi(π -, xn) reactions to compare the peaks and to check for a dependence of peak shape on the incoming neutron energy. In our investigation, no difference between these three measurements has been observed. In a comparison of these peak shapes with other studies, we found similar results to ours except for those measurements using monoenergetic neutrons in which a significant variation with neutron energy has been observed.

  10. Scaling of charge-changing interaction cross sections and point-proton radii of neutron-rich carbon isotopes.

    PubMed

    Yamaguchi, T; Hachiuma, I; Kitagawa, A; Namihira, K; Sato, S; Suzuki, T; Tanihata, I; Fukuda, M

    2011-07-15

    Charge-changing cross sections σ(cc) of stable and unstable nuclei ((9-11)Be, (14-16)C, and (16-18)O) on a carbon target were investigated at 300  MeV/nucleon. A phenomenological analysis based on the Glauber theory indicates an approximate, but universal, scaling of σ(cc) over a wide range of A/Z. This allows the determination of the density distributions of protons tightly bound in the nuclei. An application to (16)C, which is considered to be an anomalously deformed nucleus, indicates a systematic evolution of proton root-mean-square radii and has revealed for the first time a neutron skin effect in carbon isotopes. Being complementary to isotope-shift and electron-scattering experiments, the present method can open up a new approach to explore the structure of exotic nuclei. PMID:21838353

  11. Cross sections and isomeric cross-section ratios in the interactions of fast neutrons with isotopes of mercury

    SciTech Connect

    Al-Abyad, M.; Sudar, S.; Qaim, S. M.; Comsan, M.N.H.

    2006-06-15

    Excitation functions were measured for the reactions {sup 196}Hg(n, 2n){sup 195}Hg{sup m,g},{sup 198}Hg(n, 2n){sup 197}Hg{sup m,g},{sup 204}Hg(n, 2n){sup 203}Hg,{sup 198}Hg(n,p){sup 198}Au{sup g}, and {sup 199}Hg(n,p){sup 199}Au over the neutron energy range of 7.6-12.5 MeV. Quasimonoenergetic neutrons were produced via the {sup 2}H(d,n){sup 3}He reaction using a deuterium gas target at the Juelich variable energy compact cyclotron CV 28. Use was made of the activation technique in combination with high-resolution, high-purity Ge detector {gamma}-ray spectroscopy. All the data were measured for the first time over the investigated energy range. The transition from the present low-energy data to the literature data around 14 MeV is generally good. Nuclear model calculations using the codes STAPRE and EMPIRE-2.19, which employ the statistical and precompound model formalisms, were undertaken to describe the formation of both the isomeric and ground states of the products. The total reaction cross section of a particular channel is reproduced fairly well by the model calculations, with STAPRE giving slightly better results. Regarding the isomeric cross sections, the agreement between the experiment and theory is only in approximate terms. A description of the isomeric cross-section ratio by the model was possible only with a very low value of {eta}, i.e., the {theta}{sub eff}/{theta}{sub rig} ratio.

  12. Neutron stars - General review

    NASA Technical Reports Server (NTRS)

    Cameron, A. G. W.; Canuto, V.

    1974-01-01

    A review is presented of those properties of neutron stars upon which there is general agreement and of those areas which currently remain in doubt. Developments in theoretical physics of neutron star interiors are summarized with particular attention devoted to hyperon interactions and the structure of interior layers. Determination of energy states and the composition of matter is described for successive layers, beginning with the surface and proceeding through the central region into the core. Problems encountered in determining the behavior of matter in the ultra-high density regime are discussed, and the effects of the magnetic field of a neutron star are evaluated along with the behavior of atomic structures in the field. The evolution of a neutron star is outlined with discussion centering on carbon detonation, cooling, vibrational damping, rotation, and pulsar glitches. The role of neutron stars in cosmic-ray propagation is considered.

  13. A National Spallation Neutron Source for neutron scattering

    SciTech Connect

    Appleton, B.R.

    1996-10-01

    The National Spallation Neutron Source is a collaborative project or perform the conceptual design for a next generation neutron source for the Department of Energy. This paper reviews the need and justification for a new neutron source, the origins and structure of the collaboration formed to address this need, and the community input leading up to the current design approach. A reference design is presented for an accelerator based spallation neutron source that would begin operation at about 1 megawatt of power but designed so that it could be upgraded to significantly higher powers in the future. The technology approach, status, and progress on the conceptual design to date are presented.

  14. Synthesis and evaluation of boron compounds for neutron capture therapy of malignant brain tumors. Technical progress report No. 1, May 1, 1990--January 31, 1991

    SciTech Connect

    Soloway, A.H.; Barth, R.F.

    1990-12-31

    Boron neutron capture therapy offers the potentiality for treating brain tumors currently resistant to treatment. The success of this form of therapy is directly dependent upon the delivery of sufficient numbers of thermal-neutrons to tumor cells which possess high concentrations of B-10. The objective of this project is to develop chemical methodology to synthesize boron-containing compounds with the potential for becoming incorporated into rapidly-dividing malignant brain tumor cells and excluded from normal components of the brain and surrounding tissues, to develope biological methods for assessing the potential of the compound by use of cell culture or intratumoral injection, to develop analytical methodology for measuring boron in cells and tissue using direct current plasma atomic emission spectroscopy (DCP-AES) and alpha track autoradiography, to develop biochemical and HPLC procedures for evaluating compound uptake and tissue half-life, and to develop procedures required to assess both in vitro and vivo efficacy of BNCT with selected compounds.

  15. A Scoping Analysis Of The Impact Of SiC Cladding On Late-Phase Accident Progression Involving Core–Concrete Interaction

    SciTech Connect

    Farmer, M. T.

    2015-11-01

    The overall objective of the current work is to carry out a scoping analysis to determine the impact of ATF on late phase accident progression; in particular, the molten core-concrete interaction portion of the sequence that occurs after the core debris fails the reactor vessel and relocates into containment. This additional study augments previous work by including kinetic effects that govern chemical reaction rates during core-concrete interaction. The specific ATF considered as part of this study is SiC-clad UO2.

  16. Neutron Laue macromolecular crystallography

    SciTech Connect

    Meilleur, Flora; Myles, Dean A A; Blakeley, M. P.

    2006-01-01

    Recent progress in neutron protein crystallography such as the use of the Laue technique and improved neutron optics and detector technologies have dramatically improved the speed and precision with which neutron protein structures can now be determined. These studies are providing unique and complementary insights on hydrogen and hydration in protein crystal structures that are not available from X-ray structures alone. Parallel improvements in modern molecular biology now allow fully (per)deuterated protein samples to be produced for neutron scattering that essentially eradicate the large--and ultimately limiting--hydrogen incoherent scattering background that has hampered such studies in the past. High quality neutron data can now be collected to near atomic resolution ({approx}2.0 Angstroms) for proteins of up to {approx}50 kDa molecular weight using crystals of volume {approx}0.1 mm3 on the Laue diffractometer at ILL. The ability to flash-cool and collect high resolution neutron data from protein crystals at cryogenic temperature (15 K) has opened the way for kinetic crystallography on freeze trapped systems. Current instrument developments now promise to reduce crystal volume requirements by a further order of magnitude, making neutron protein crystallography a more accessible and routine technique.

  17. Coupled moderator neutronics

    SciTech Connect

    Russell, G.J.; Pitcher, E.J.; Ferguson, P.D.

    1995-12-01

    Optimizing the neutronic performance of a coupled-moderator system for a Long-Pulse Spallation Source is a new and challenging area for the spallation target-system designer. For optimal performance of a neutron source, it is essential to have good communication with instrument scientists to obtain proper design criteria and continued interaction with mechanical, thermal-hydraulic, and materials engineers to attain a practical design. A good comprehension of the basics of coupled-moderator neutronics will aid in the proper design of a target system for a Long-Pulse Spallation Source.

  18. In-situ neutron diffraction study of cathode/electrolyte interactions under electrical load and elevated temperature

    NASA Astrophysics Data System (ADS)

    Tonus, F.; Skinner, S. J.

    2016-05-01

    Fuel cells are proposed as a future energy conversion technology that will reduce greenhouse gas emissions at the point of operation due to their ability to produce electrical energy from non-hydrocarbon fuel sources. The Solid Oxide Fuel Cell (SOFC) is amongst the most efficient fuel cell types, however, due to the high cell operating temperature cation diffusion occurs between the different components of the cell, resulting in rapid degradation of the power output. In this paper we investigate cation migration between the promising intermediate temperature-SOFC cathode La1-xSrxCo1-yFeyO3-δ (LSCF) and a fluorite type electrolyte Ce1-xPrxO2-δ (CPO). The crystallographic structure evolution and degradation of the materials were studied by neutron diffraction in-situ under pseudo-operating conditions, i.e. at 600 °C under air and under electrical polarisation. The lattice parameter and cation occupancy evolution were analysed by Rietveld refinement as a function of time and applied potential. The materials were found to be stable, as no impurity formation, lattice parameter or site occupancy evolution was observed during the experiment. However La migration prior to the experiment from LSCF to CPO was observed as well as B-site vacancies in LSCF.

  19. A Metastability-Exchange Optical Pumping and Compression System using Polarized 3 He for a Proposed Laboratory Search for Neutron Monopole-Dipole Interactions

    NASA Astrophysics Data System (ADS)

    Smith, Erick; Ariadne Collaboration

    2015-04-01

    3 He nuclei polarized using the metastability-exchange optical pumping (MEOP) method have been used for scientific applications such as magnetometry in space, neutron polarization and analysis, and medical imaging. In this talk we explain how this technique is also well-suited for a proposed experiment to search for possible monopole-dipole interactions of polarized 3 He nuclei with matter. The P-odd and T-odd monopole-dipole potential proposed by Moody and Wilczek is proportional to s-> . r-> where s-> is the 3 He spin and r-> is the separation between the particles. It can be induced by axions, and ARIADNE proposes to perform NMR on a polarized 3 He ensemble at 4K with a radially-slotted tungsten disk spinning at a multiple of the 3 He Larmour frequency to induce a resonant monopole-dipole perturbation. The radial slot length variations are chosen to maximize sensitivity to a monopole-dipole interaction range corresponding to the axion window. We describe the advantages that MEOP presents for this experiment and describe the MEOP-based polarized 3 He gas compression system at Indiana University.

  20. Close shell interactions in 3-ethoxycarbonyl-4-hydroxy-6-methoxymethyleneoxy-1-methyl-2-quinolone: 100 K single crystal neutron diffraction study and ab initio calculations

    NASA Astrophysics Data System (ADS)

    Pozzi, C. G.; Fantoni, A. C.; Goeta, A. E.; Wilson, C. C.; Autino, J. C.; Punte, G.

    2005-10-01

    The molecular and crystal structures of the title compound have been determined from a single crystal neutron diffraction experiment at 100 K. A comparison between the main geometrical features and related properties of the in-crystal and the ab initio optimized free molecule structures has shown that crystal packing induces a significant distortion in the molecular geometry. Packing instead would only have a moderate effect on the observed intramolecular resonance assisted hydrogen bond. Supermolecular ab initio molecular orbital calculations have been performed on the six different dimers one molecule forms with its nine nearest neighbours. The obtained results clearly show that dispersion contributions dominate in the most strongly interacting dimers, in good qualitative accord with the predictions made by using different empirical potentials. A qualitative description of the most prominent inductive effects determined from the electron density deformation upon dimer formation is presented. Topological analyses of the dimers charge densities have been performed in the framework of the Bader's AIM theory and all the intermolecular bond critical points have been identified. An attempt to determine some of the interaction energies only from topological quantities made evident the practical limitations of such an approach.

  1. β -decay rates of odd-mass neutron-rich isotopes in the deformed quasiparticle random-phase approximation with realistic interactions

    NASA Astrophysics Data System (ADS)

    Ni, Dongdong; Ren, Zhongzhou

    2015-09-01

    The deformed quasiparticle random-phase approximation with realistic nucleon-nucleon interactions is extended for the β- decay of odd-mass neutron-rich Kr, Sr, Zr, and Mo isotopes, from their longest-lived isotopes to the experimentally unknown nuclei. The particle-particle and particle-hole channels of residual interactions are handled in large single-particle model spaces, based on the Brückner G matrix with charge-dependent Bonn nucleon-nucleon forces. Both allowed Gamow-Teller and first-forbidden transitions are considered and different treatments for odd-mass systems are emphasized. The sensitivity of the calculated results to the single-particle level scheme and the particle-particle strength is discussed. The calculated Gamow-Teller strengths are analyzed, together with the contributions from first-forbidden transitions. The calculated half-lives are found to agree well with the experimental data over the orders of magnitude from 10-2 to 103 s.

  2. Nuclear data for neutron and proton interactions with 12C in the energy range 0-10 GeV.

    PubMed

    Pearlstein, S

    1993-08-01

    Nuclear model codes and nuclear systematics are used to give a first approximation to data for nucleons interacting with a 12C target over the range 0-10 GeV. Where there are experiments, the trial values are replaced by an eye guide through the measurements. The evaluated data have been placed in computerized form and are available for distribution. PMID:8392503

  3. Fundamental Structure of Matter and Strong Interaction

    SciTech Connect

    Jian-Ping Chen

    2011-11-01

    More than 99% of the visible matter in the universe are the protons and neutrons. Their internal structure is mostly governed by the strong interaction. Understanding their internal structure in terms of fundamental degrees-of-freedom is one of the most important subjects in modern physics. Worldwide efforts in the last few decades have lead to numerous surprises and discoveries, but major challenges still remain. An overview of the progress will be presented with a focus on the recent studies of the proton and neutron's electromagnetic and spin structure. Future perspectives will be discussed.

  4. An investigation of catalytic active phase-support interactions by IR, NMR and x-ray absorption spectroscopies. Progress report, January 15, 1992--September 15, 1992

    SciTech Connect

    Haller, G.L.

    1992-09-01

    Active catalytic phases (metal, mixed metals, oxide or mixed oxides) interacting with oxide support on which the active phase is dispersed can affect the percentage exposed, the morphology of supported particles, the degree of reducibility of cations, etc., in a variety of ways. Our objective is to characterize the physical chemistry of the active phase-oxide support interaction by spectroscopic methods and to correlate this structure with catalytic function. Two catalytic systems and their associated techniques (x-ray absorption and NMR) are discussed in this progress report. Firstly, the interaction of Pt-Ni supported on silica and L-zeolite are characterized and compared by x-ray absorption spectroscopy (EXAFS). Secondly, we present both experimental and calculational developments of NMR for the investigation of amorphous silica-alumina catalysts and/or supports.

  5. Investigations of the dynamics and electromagnetic interactions of few-body systems. Progress report, June 30, 1994--September 30, 1995

    SciTech Connect

    Lehman, D.R.

    1995-10-01

    This progress report summarizes the work of The George Washington University (GW) nuclear theory group during the period 1 July 1994 - 30 September 1995 under DOE Grant No. DE-FG02-95-ER40907 mainly dealing with photonuclear reactions and few-body problems of nuclei. This report contains: papers published or in press, submitted for publication, and in preparation; invited talks at conferences and meetings; invited talks at universities and laboratories; contributed papers or abstracts at conferences; visitors to the group; and research progress by topic.

  6. (A clinical trial of neutron capture therapy for brain tumors)

    SciTech Connect

    Zamenhof, R.G.

    1988-01-01

    This report describes progress made in refining of neutron-induced alpha tract autoradiography, in designing epithermal neutron bean at MITR-II and in planning treatment dosimetry using Monte Carlo techniques.

  7. Direct Fast-Neutron Detection

    SciTech Connect

    DC Stromswold; AJ Peurrung; RR Hansen; PL Reeder

    2000-01-18

    Direct fast-neutron detection is the detection of fast neutrons before they are moderated to thermal energy. We have investigated two approaches for using proton-recoil in plastic scintillators to detect fast neutrons and distinguish them from gamma-ray interactions. Both approaches use the difference in travel speed between neutrons and gamma rays as the basis for separating the types of events. In the first method, we examined the pulses generated during scattering in a plastic scintillator to see if they provide a means for distinguishing fast-neutron events from gamma-ray events. The slower speed of neutrons compared to gamma rays results in the production of broader pulses when neutrons scatter several times within a plastic scintillator. In contrast, gamma-ray interactions should produce narrow pulses, even if multiple scattering takes place, because the time between successive scattering is small. Experiments using a fast scintillator confirmed the presence of broader pulses from neutrons than from gamma rays. However, the difference in pulse widths between neutrons and gamma rays using the best commercially available scintillators was not sufficiently large to provide a practical means for distinguishing fast neutrons and gamma rays on a pulse-by-pulse basis. A faster scintillator is needed, and that scintillator might become available in the literature. Results of the pulse-width studies were presented in a previous report (peurrung et al. 1998), and they are only summarized here.

  8. Fast neutron dosimetry

    SciTech Connect

    DeLuca, P.M. Jr.; Pearson, D.W.

    1992-01-01

    This progress report concentrates on two major areas of dosimetry research: measurement of fast neutron kerma factors for several elements for monochromatic and white spectrum neutron fields and determination of the response of thermoluminescent phosphors to various ultra-soft X-ray energies and beta-rays. Dr. Zhixin Zhou from the Shanghai Institute of Radiation Medicine, People's Republic of China brought with him special expertise in the fabrication and use of ultra-thin TLD materials. Such materials are not available in the USA. The rather unique properties of these materials were investigated during this grant period.

  9. Atmospheric neutrons

    NASA Technical Reports Server (NTRS)

    Korff, S. A.; Mendell, R. B.; Merker, M.; Light, E. S.; Verschell, H. J.; Sandie, W. S.

    1979-01-01

    Contributions to fast neutron measurements in the atmosphere are outlined. The results of a calculation to determine the production, distribution and final disappearance of atmospheric neutrons over the entire spectrum are presented. An attempt is made to answer questions that relate to processes such as neutron escape from the atmosphere and C-14 production. In addition, since variations of secondary neutrons can be related to variations in the primary radiation, comment on the modulation of both radiation components is made.

  10. Recent Developments In Fast Neutron Detection And Multiplicity Counting With Verification With Liquid Scintillator

    SciTech Connect

    Nakae, L; Chapline, G; Glenn, A; Kerr, P; Kim, K; Ouedraogo, S; Prasad, M; Sheets, S; Snyderman, N; Verbeke, J; Wurtz, R

    2011-09-30

    For many years at LLNL, we have been developing time-correlated neutron detection techniques and algorithms for applications such as Arms Control, Threat Detection and Nuclear Material Assay. Many of our techniques have been developed specifically for the relatively low efficiency (a few percent) attainable by detector systems limited to man-portability. Historically, we used thermal neutron detectors (mainly {sup 3}He), taking advantage of the high thermal neutron interaction cross-sections. More recently, we have been investigating the use of fast neutron detection with liquid scintillators, inorganic crystals, and in the near future, pulse-shape discriminating plastics which respond over 1000 times faster (nanoseconds versus tens of microseconds) than thermal neutron detectors. Fast neutron detection offers considerable advantages, since the inherent nanosecond production time-scales of spontaneous fission and neutron-induced fission are preserved and measured instead of being lost by thermalization required for thermal neutron detectors. We are now applying fast neutron technology to the safeguards regime in the form of fast portable digital electronics as well as faster and less hazardous scintillator formulations. Faster detector response times and sensitivity to neutron momentum show promise for measuring, differentiating, and assaying samples that have modest to very high count rates, as well as mixed fission sources like Cm and Pu. We report on measured results with our existing liquid scintillator array, and progress on the design of a nuclear material assay system that incorporates fast neutron detection, including the surprising result that fast liquid scintillator detectors become competitive and even surpass the precision of {sup 3}He-based counters measuring correlated pairs in modest (kg) samples of plutonium.

  11. Recent Developments in Fast Neutron Detection and Multiplicity Counting with Liquid Scintillator

    NASA Astrophysics Data System (ADS)

    Nakae, L. F.; Chapline, G. F.; Glenn, A. M.; Kerr, P. L.; Kim, K. S.; Ouedraogo, S. A.; Prasad, M. K.; Sheets, S. A.; Snyderman, N. J.; Verbeke, J. M.; Wurtz, R. E.

    2011-12-01

    For many years, LLNL researchers have been developing time-correlated neutron detection techniques and algorithms for applications such as Arms Control, Threat Detection and Nuclear Material Assay. Many of the techniques have been developed specifically for the relatively low efficiency (a few percent) attainable by detector systems limited to man-portability. Historically, thermal neutron detectors (mainly 3He) were used, taking advantage of the high thermal neutron interaction cross sections. More recently, we have been investigating the use of fast neutron detection with liquid scintillators, inorganic crystals, and in the near future, pulse-shape discriminating plastics that respond over 1000 times faster (ns versus tens of μs) than thermal neutron detectors. Fast neutron detection offers considerable advantages since the inherent ns production timescales of spontaneous fission and neutron-induced fission are preserved and measured instead of being lost by thermalization required for thermal neutron detectors. We are now applying fast neutron technology to the safeguards regime in the form of fast portable digital electronics as well as faster and less hazardous scintillator formulations. Faster detector response times and sensitivity to neutron momentum show promise for measuring, differentiating, and assaying samples that have modest to very high count rates, as well as mixed fission sources like Cm and Pu. We report on measured results with our existing liquid scintillator array and progress on the design of a nuclear material assay system that incorporates fast neutron detection, including the surprising result that fast liquid scintillator detectors become competitive and even surpass the precision of 3He-based counters measuring correlated pairs in modest (kg) samples of plutonium.

  12. Neutron guide

    DOEpatents

    Greene, Geoffrey L.

    1999-01-01

    A neutron guide in which lengths of cylindrical glass tubing have rectangular glass plates properly dimensioned to allow insertion into the cylindrical glass tubing so that a sealed geometrically precise polygonal cross-section is formed in the cylindrical glass tubing. The neutron guide provides easier alignment between adjacent sections than do the neutron guides of the prior art.

  13. Neutron dosimetry

    DOEpatents

    Quinby, Thomas C.

    1976-07-27

    A method of measuring neutron radiation within a nuclear reactor is provided. A sintered oxide wire is disposed within the reactor and exposed to neutron radiation. The induced radioactivity is measured to provide an indication of the neutron energy and flux within the reactor.

  14. New experimental possibility to search for the ratio of a possible T-violating amplitude to the weak-interaction amplitude in polarized neutron transmission through a polarized nuclear target

    SciTech Connect

    Lukashevich, V. V.; Aldushchenkov, A. V.; Dallman, D.

    2011-03-15

    This paper considers a spin-dependent neutron interaction with optical potentials (fields) from the strong interaction, the weak interaction, and an assumed T-violating interaction. The vector sum of these fields and their interferences determines an effective field of the target with an angular position in space due to polar and azimuthal angles. The phase of the azimuthal component is found to be the sum of two angles. The tangent of the first angle is equal to the ratio of the T-violating forward-scattering amplitude D to the weak-interaction amplitude C. The quantity is of interest. The tangent of the second angle depends on the spin rotation in the residual pseudomagnetic field of the target, and it can be treated as a background effect. This paper shows that the second angle has different signs in measurements with polarized and unpolarized neutrons; thus, two measurements allow it to be compensated for. In addition, the use of the Ramsey method of separated oscillatory fields for measurement of the neutron spin rotation angle, depending on the phase of the rf field in the Ramsey cell, allows a cosine-like spectrum to be measured. This spectrum is called a phase spectrum. The phase spectra measured with polarized and unpolarized targets have a phase shift. The measurements of this phase shift with polarized and nonpolarized neutrons at a p-wave resonance enable the ratio D/C to be isolated. We also describe the algorithm for separating the ratio D/C, taking into account the influence of the fringing fields of the Ramsey coil magnet and the target magnet.

  15. Neutron multiplicity distributions for 30 MeVu {sup 14}N reactions with the indicated targets. Progress in research, April 1, 1991--March 31, 1992

    SciTech Connect

    Not Available

    1992-06-01

    This report contains short papers on the following topics: Heavy ion reactions; nuclear structure and fundamental interactions; nuclear theory; atomic molecular and materials science; and superconducting cyclotron and instrumentation. (LSP)

  16. Interactive radiopharmaceutical facility between Yale Medical Center and Brookhaven National Laboratory. Progress report, June 1981-July 1982

    SciTech Connect

    Gottschalk, A

    1982-01-01

    Progress is reported in the following research areas: (1) evaluation of /sup 14/C-labelled carboxyethyl ester 2-cardoxy methyl ester of arachidonic acid; (2) the effects of drug intervention on cardiac inflammatory response following experimental myocardial infarction using indium-111 labeled autologous leukoyctes; (3) the evaluation of /sup 97/Ru-oxine to label human platelets in autologous plasma; and (4) the specific in vitro radiolabeling of human neutrophils. (ACR)

  17. Magnetic Interactions in the Double Perovskites R2NiMnO6 (R = Tb, Ho, Er, Tm) Investigated by Neutron Diffraction.

    PubMed

    Retuerto, María; Muñoz, Ángel; Martínez-Lope, María Jesús; Alonso, José Antonio; Mompeán, Federico J; Fernández-Díaz, María Teresa; Sánchez-Benítez, Javier

    2015-11-16

    R2NiMnO6 (R = Tb, Ho, Er, Tm) perovskites have been prepared by soft-chemistry techniques followed by high oxygen-pressure treatments; they have been investigated by X-ray diffraction, neutron powder diffraction (NPD), and magnetic measurements. In all cases the crystal structure is defined in the monoclinic P21/n space group, with an almost complete order between Ni(2+) and Mn(4+) cations in the octahedral perovskite sublattice. The low temperature NPD data and the macroscopic magnetic measurements indicate that all the compounds are ferrimagnetic, with a net magnetic moment different from zero and a distinct alignment of Ni and Mn spins depending on the nature of the rare-earth cation. The magnetic structures are different from the one previously reported for La2NiMnO6, with a ferromagnetic structure involving Mn(4+) and Ni(2+) moments. This spin alignment can be rationalized taking into account the Goodenough-Kanamori rules. The magnetic ordering temperature (TCM) decreases abruptly as the size of the rare earth decreases, since TCM is mainly influenced by the superexchange interaction between Ni(2+) and Mn(4+) (Ni(2+)-O-Mn(4+) angle) and this angle decreases with the rare-earth size. The rare-earth magnetic moments participate in the magnetic structures immediately below TCM. PMID:26513539

  18. Experimental study of interactions of highly charged ions with atoms at keV energies. Progress report, February 16, 1993--April 15, 1994

    SciTech Connect

    Kostroun, V.O.

    1994-04-27

    Experimental study of low energy, highly charged ions with other atomic species requires an advanced ion source such as an electron beam ion source, EBIS or an electron cyclotron ion source, ECRIS. Five years ago we finished the design and construction of the Cornell superconducting solenoid, cryogenic EBIS (CEBIS). Since then, this source has been in continuous operation in a program whose main purpose is the experimental study of interactions of highly charged ions with atoms at keV energies. This progress report for the period February 16, 1993 to April 15, 1994 describes the work accomplished during this time in the form of short abstracts.

  19. A Review of Significant Advances in Neutron Imaging from Conception to the Present

    NASA Astrophysics Data System (ADS)

    Brenizer, J. S.

    This review summarizes the history of neutron imaging with a focus on the significant events and technical advancements in neutron imaging methods, from the first radiograph to more recent imaging methods. A timeline is presented to illustrate the key accomplishments that advanced the neutron imaging technique. Only three years after the discovery of the neutron by English physicist James Chadwick in 1932, neutron imaging began with the work of Hartmut Kallmann and Ernst Kuhn in Berlin, Germany, from 1935-1944. Kallmann and Kuhn were awarded a joint US Patent issued in January 1940. Little progress was made until the mid-1950's when Thewlis utilized a neutron beam from the BEPO reactor at Harwell, marking the beginning of the application of neutron imaging to practical applications. As the film method was improved, imaging moved from a qualitative to a quantitative technique, with applications in industry and in nuclear fuels. Standards were developed to aid in the quantification of the neutron images and the facility's capabilities. The introduction of dynamic neutron imaging (initially called real-time neutron radiography and neutron television) in the late 1970's opened the door to new opportunities and new challenges. As the electronic imaging matured, the introduction of the CCD imaging devices and solid-state light intensifiers helped address some of these challenges. Development of improved imaging devices for the medical community has had a major impact on neutron imaging. Additionally, amorphous silicon sensors provided improvements in temporal resolution, while providing a reasonably large imaging area. The development of new neutron imaging sensors and the development of new neutron imaging techniques in the past decade has advanced the technique's ability to provide insight and understanding of problems that other non-destructive techniques could not provide. This rapid increase in capability and application would not have been possible without the

  20. Pore Characterization of Shale Rock and Shale Interaction with Fluids at Reservoir Pressure-Temperature Conditions Using Small-Angle Neutron Scattering

    NASA Astrophysics Data System (ADS)

    Ding, M.; Hjelm, R.; Watkins, E.; Xu, H.; Pawar, R.

    2015-12-01

    Oil/gas produced from unconventional reservoirs has become strategically important for the US domestic energy independence. In unconventional realm, hydrocarbons are generated and stored in nanopores media ranging from a few to hundreds of nanometers. Fundamental knowledge of coupled thermo-hydro-mechanical-chemical (THMC) processes that control fluid flow and propagation within nano-pore confinement is critical for maximizing unconventional oil/gas production. The size and confinement of the nanometer pores creates many complex rock-fluid interface interactions. It is imperative to promote innovative experimental studies to decipher physical and chemical processes at the nanopore scale that govern hydrocarbon generation and mass transport of hydrocarbon mixtures in tight shale and other low permeability formations at reservoir pressure-temperature conditions. We have carried out laboratory investigations exploring quantitative relationship between pore characteristics of the Wolfcamp shale from Western Texas and the shale interaction with fluids at reservoir P-T conditions using small-angle neutron scattering (SANS). We have performed SANS measurements of the shale rock in single fluid (e.g., H2O and D2O) and multifluid (CH4/(30% H2O+70% D2O)) systems at various pressures up to 20000 psi and temperature up to 150 oF. Figure 1 shows our SANS data at different pressures with H2O as the pressure medium. Our data analysis using IRENA software suggests that the principal changes of pore volume in the shale occurred on smaller than 50 nm pores and pressure at 5000 psi (Figure 2). Our results also suggest that with increasing P, more water flows into pores; with decreasing P, water is retained in the pores.

  1. The identification of Pcl1-interacting proteins that genetically interact with Cla4 may indicate a link between G1 progression and mitotic exit.

    PubMed Central

    Keniry, Megan E; Kemp, Hilary A; Rivers, David M; Sprague, George F

    2004-01-01

    In budding yeast, Cla4 and Ste20, two p21-activated kinases, contribute to numerous morphogenetic processes. Loss of Ste20 or Cla4 individually confers distinct phenotypes, implying that they regulate different processes. However, loss of both proteins is lethal, suggesting some functional overlap. To explore the role(s) of Cla4, we and others have sought mutations that are lethal in a cla4 Delta strain. These mutations define >60 genes. Recently, both Ste20 and Cla4 have been implicated in mitotic exit. Here, we identify a genetic interaction between PHO85, which encodes a cyclin-dependent kinase, and CLA4. We further show that the Pho85-coupled G(1) cyclins Pcl1 and Pcl2 contribute to this Pho85 role. We performed a two-hybrid screen with Pcl1. Three Pcl1-interacting proteins were identified: Ncp1, Hms1, and a novel ATPase dubbed Epa1. Each of these proteins interacts with Pcl1 in GST pull-down experiments and is specifically phosphorylated by Pcl1.Pho85 complexes. NCP1, HMS1, and EPA1 also genetically interact with CLA4. Like Cla4, the proteins Hms1, Ncp1, and Pho85 appear to affect mitotic exit, a conclusion that follows from the mislocalization of Cdc14, a key mitotic regulator, in strains lacking these proteins. We propose a model in which the G(1) Pcl1.Pho85 complex regulates mitotic exit machinery. PMID:15082539

  2. Neutronic moderator design for the Spallation Neutron Source (SNS)

    SciTech Connect

    Charlton, L.A.; Barnes, J.M.; Johnson, J.O.; Gabriel, T.A.

    1998-11-01

    Neutronics analyses are now in progress to support the initial selection of moderator design parameters for the Spallation Neutron Source (SNS). The results of the initial optimization studies involving moderator poison plate location, moderator position, and premoderator performance for the target system are presented in this paper. Also presented is an initial study of the use of a composite moderator to produce a liquid methane like spectrum.

  3. Sorption kinetics of superabsorbent polymers (SAPs) in fresh Portland cement-based pastes visualized and quantified by neutron radiography and correlated to the progress of cement hydration

    SciTech Connect

    Schroefl, Christof; Mechtcherine, Viktor; Vontobel, Peter; Hovind, Jan; Lehmann, Eberhard

    2015-09-15

    Water sorption of two superabsorbent polymers in cement-based pastes has been characterized by neutron radiography. Cement pastes with W/C of 0.25 and 0.50 and one additionally containing silica fume (W/C = 0.42) were investigated. The SAPs differed in their inherent sorption kinetics in extracted cement pore solution (SAP 1: self-releasing; SAP 2: retentive). Desorption from SAP 1 started very early after paste preparation. Hence, its individual non-retentiveness governs its behavior only. SAP 2 released water into all matrices, but its kinetics were different. In the paste with the highest W/C, some moderate water release was recorded from the beginning. In the other two pastes, SAP 2 retained its stored liquid during the dormant period, i.e., up to the percolation threshold. Intense desorption then set in and continued throughout the acceleration period. These findings explain the pronouncedly higher efficiency of SAP 2 as internal curing admixture as compared to SAP 1.

  4. Study of structure of nuclei with neutrons and nuclear data measurements for MFE. Progress report, September 1, 1979-August 31, 1980

    SciTech Connect

    Lane, R. O.

    1980-01-01

    Measurements of neutron differential elastic and inelastic scattering cross sections have been made for /sup 6/Li, /sup 7/Li, /sup 11/B and /sup 13/C. For /sup 7/Li + n, a multichannel R-matrix analysis has been completed, providing much new structure information for the compound /sup 8/Li system. These results are in very good agreement with recent theoretical model calculations, so that together the two provide considerable advancement in the state of our knowledge of /sup 8/Li. R-matrix analyses of /sup 11/B + n and /sup 13/C + n elastic scattering data have also been completed. For /sup 13/C + n theoretical model calculations have also been carried out and comparisons of these theoretical results with the R-matrix analysis are made. The triplet quadrupole spectrometer (TQS) is now fully operational. Development of new detectors, techniques, data analysis codes and theoretical model codes for use with the TQS system is complete. Measurements of (n,z) cross sections for fusion reactor structural materials e.g. /sup 58/Ni are currently underway. Construction of the long-flight-path tunnel for the swinger magnet facility has begun and development for this facility will continue in the coming year.

  5. Theoretical aspects of electroweak and other interactions in medium energy physics. Interim progress report, November 20, 1992

    SciTech Connect

    Mukhopadhyay, N.C.

    1992-12-01

    Progress in the study of electroweak structure of baryon resonances and in the analysis of data for pion and eta photoproduction. Four graduate students are currently associated with the program. One has obtained his Ph.D. degree in the year under review. Six research articles have been completed in this year, and five conference contributions have been made. Collaborations with scientists from Illinois, Los Alamos, Westinghouse, William and Mary, Yale, Mainz (Germany), Saskatchewan (Canada) and TRIUMF (Canada) continue, along with participation in collaborations at CEBAF.

  6. Radiation/turbulence interactions in pulverized-coal flames. Second year technical progress report, September 30, 1994--September 30, 1995

    SciTech Connect

    Menguec, M.P.; McDonough, J.M.; Manickavsagam, S.; Mukerji, S.; Wang, D.; Ghosal, S.; Swabb, S.

    1995-12-31

    Our goal in this project is to investigate the interaction of radiation and turbulence in coalfired laboratory scale flames and attempt to determine the boundaries of the ``uncertainty domain`` in Figure 3 more rigorously. We have three distinct objectives: (1) To determine from experiments the effect of turbulent fluctuations on the devolatilization/pyrolysis of coal particles and soot yield, and to measure the change in the ``effective`` radiative properties of particulates due to turbulence interactions; (2) To perform local small-scale simulations to investigate the radiation-turbulence interactions in coal-fired flames starting from first principles; and (3) To develop a thorough and rigorous, but computationally practical, turbulence model for coal flames, starting from the experimental observations and small scale simulations.

  7. Interaction of intense lasers and relativistic electron beams with solids, gases and plasmas. Progress report, January-30 June 1993

    SciTech Connect

    Ott, E.; Liu, C.S.; Grantstein, V.L.

    1993-06-01

    The focus of the Maryland Program is to establish strong experimental and theoretical support for ongoing programs at NRL. Areas of research which are of mutual interest are pursued by members of the University of Maryland faculty in collaboration with their counterparts at NRL. The proposal encompasses basically three broad areas of research activities. The first area deals with excimer laser technology and the interaction of high power lasers with matter (gases, solids and plasma). The second area of mutual interest involves diagnostics of intense relativistic electron beams and study of their propagation and interaction with a background gas. The nonlinear temporal dynamics in neural networks is the third area for collaboration.

  8. Portable Neutron Sensors for Emergency Response Operations

    SciTech Connect

    ,

    2012-06-24

    This article presents the experimental work performed in the area of neutron detector development at the Remote Sensing Laboratory–Andrews Operations (RSL-AO) sponsored by the U.S. Department of Energy, National Nuclear Security Administration (NNSA) in the last four years. During the 1950s neutron detectors were developed mostly to characterize nuclear reactors where the neutron flux is high. Due to the indirect nature of neutron detection via interaction with other particles, neutron counting and neutron energy measurements have never been as precise as gamma-ray counting measurements and gamma-ray spectroscopy. This indirect nature is intrinsic to all neutron measurement endeavors (except perhaps for neutron spin-related experiments, viz. neutron spin-echo measurements where one obtains μeV energy resolution). In emergency response situations generally the count rates are low, and neutrons may be scattered around in inhomogeneous intervening materials. It is also true that neutron sensors are most efficient for the lowest energy neutrons, so it is not as easy to detect and count energetic neutrons. Most of the emergency response neutron detectors are offshoots of nuclear device diagnostics tools and special nuclear materials characterization equipment, because that is what is available commercially. These instruments mostly are laboratory equipment, and not field-deployable gear suited for mobile teams. Our goal is to design and prototype field-deployable, ruggedized, lightweight, efficient neutron detectors.

  9. Static Response of Neutron Matter.

    PubMed

    Buraczynski, Mateusz; Gezerlis, Alexandros

    2016-04-15

    We generalize the problem of strongly interacting neutron matter by adding a periodic external modulation. This allows us to study from first principles a neutron system that is extended and inhomogeneous, with connections to the physics of both neutron-star crusts and neutron-rich nuclei. We carry out fully nonperturbative microscopic quantum Monte Carlo calculations of the energy of neutron matter at different densities, as well as different strengths and periodicities of the external potential. In order to remove systematic errors, we examine finite-size effects and the impact of the wave function ansatz. We also make contact with energy-density functional theories of nuclei and disentangle isovector gradient contributions from bulk properties. Finally, we calculate the static density-density linear response function of neutron matter and compare it with the response of other physical systems. PMID:27127963

  10. Static Response of Neutron Matter

    NASA Astrophysics Data System (ADS)

    Buraczynski, Mateusz; Gezerlis, Alexandros

    2016-04-01

    We generalize the problem of strongly interacting neutron matter by adding a periodic external modulation. This allows us to study from first principles a neutron system that is extended and inhomogeneous, with connections to the physics of both neutron-star crusts and neutron-rich nuclei. We carry out fully nonperturbative microscopic quantum Monte Carlo calculations of the energy of neutron matter at different densities, as well as different strengths and periodicities of the external potential. In order to remove systematic errors, we examine finite-size effects and the impact of the wave function ansatz. We also make contact with energy-density functional theories of nuclei and disentangle isovector gradient contributions from bulk properties. Finally, we calculate the static density-density linear response function of neutron matter and compare it with the response of other physical systems.

  11. LAT and Solar Neutrons: Preliminary estimates

    SciTech Connect

    Longo, Francesco |

    2007-07-12

    GLAST LAT will detect several solar flares in gamma rays. Motivated by the CGRO results on neutrons emitted during a solar flare, we try to estimate the possibility of the LAT to detect solar neutrons. Besides gamma rays, neutrons could indeed interact in the LAT instrument and mimic a gamma-ray signal. An estimate of the contamination of gamma-ray detection in solar flares by the neutron component is given.

  12. Progress and perspectives in the low-energy kaon-nucleon/nuclei interaction studies at the DAΦNE collider

    NASA Astrophysics Data System (ADS)

    Iliescu, M.; Bazzi, M.; Beer, G.; Berucci, C.; Bosnar, D.; Bragadireanu, A. M.; Cargnelli, M.; Curceanu, C.; d'Uffizi, A.; Fabietti, L.; Fiorini, C.; Ghio, F.; Guaraldo, C.; Hayano, R. S.; Ishiwatari, T.; Iwasaki, M.; Marton, J.; Okada, S.; Pietreanu, D.; Piscicchia, K.; Poli Lener, M.; Ponta, T.; Quaglia, R.; Romero Vidal, A.; Levi Sandri, P.; Sbardella, E.; Schembari, F.; Scordo, A.; Shi, H.; Sirghi, D. L.; Sirghi, F.; Tatsuno, H.; Tucakovic, I.; Vazquez Doce, O.; Widmann, E.; Wünschek, B.; Zmeskal, J.; Siddharta; Siddharta-2; Amadeus Collaborations

    2014-11-01

    Low-energy QCD is still lacking experimental results, fundamental for reaching a good understanding of the strangeness sector. The information provided by the low energy kaon- nucleon/nuclei interaction is accessible through the study of kaonic atoms and kaonic nuclear processes. The lightest atomic systems, namely the kaonic hydrogen and the kaonic deuterium, provide the isospin dependent kaon-nucleon scattering lengths by measuring the X-rays emitted during their de-excitation to the 1s level. The most precise kaonic hydrogen measurement to date, together with an exploratory measurement of kaonic deuterium and of upper-level transitions in kaonic helium 3 and kaonic helium 4 were carried out at the DAΦNE collider by the SIDDHARTA collaboration. Presently, a significantly upgraded setup developped by the SIDDHARTA-2 collaboration is ready to perform a precise measurement of kaonic deuterium and, afterwards, of heavier exotic atoms. In parallel, the kaon-nuclei interaction at momenta below 130 MeV/c is studied by the AMADEUS collaboration, using the KLOE detector and a dedicated setup inserted in the central region, near the interaction point. Preliminary results of the study of charged antikaons interacting with nuclei are shown, including an analysis of the controversial Λ(1405).

  13. Classroom Interactions in Four Follow Through Sites. Volume III, Progress Report, Cognitively Oriented Curriculum, Project Follow Through.

    ERIC Educational Resources Information Center

    Morris, Mary E.; Love, John M.

    Volume III presents the results of High/Scope Foundation's Analysis of Classroom Interaction, a classroom observation instrument field tested at four projects. The purpose of this study was to assess the consistency of implementation of the Cognitively Oriented Curriculum in the four widely separated communities in which the High/Scope Foundation…

  14. Chemical interactions between protein molecules and polymer membrane materials. Annual progress report, August 1, 1992--July 30, 1993

    SciTech Connect

    Belfort, G.; Koehler, J.; Wood, J.

    1993-07-15

    The Surface Force Apparatus is now operable; data collection is automatic. Hen egg lysozyme was chosen as model protein. Protein-protein, protein-mica, protein-polymer, and protein-surfactant interactions were studied. Circular dichroism was used to study changes in protein structure during adsorption.

  15. Investigation of syngas interaction in alcohol synthesis catalysts. Quarterly technical progress report, April 1, 1996--June 30, 1996

    SciTech Connect

    Akundi, M.A.

    1997-12-31

    This report presents the work done on {open_quotes}Investigation of Syngas Interaction in Alcohol Synthesis Catalysts{close_quotes} during the last three months. In this report the results of the work on the metal precursors of copper, cobalt and chromium using Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) are presented.

  16. Investigations of the structure and electromagnetic interactions of few-body systems. Progress report, 1 August 1991--31 July 1992

    SciTech Connect

    Lehman, D.R.; Haberzettl, H.; Maximon, L.C.; Parke, W.C.

    1992-07-01

    In order to make it easy for the reader to see the specific research carried out and the progress made, the following report of progress is done by topic. Each item has a format layout of Topic, Investigators, Objective, Significance, and Description of Progress, followed at the end by the relevant references. As is clear from the topics listed, the emphasis of the George Washington University (GWU) theory group has been on the structure and electromagnetic interactions of few-body nuclei. Both low- and intermediate-energy electromagnetic disintegration of these nuclei is considered. When the excitation energy of the target nucleus is low, the aim has been to handle the continuum part of the theoretical work numerically with no approximations, that is, by means of full three- or four-body dynamics. When structure questions axe the issue, numerically accurate calculations axe always carried through, limited only by the underlying two-body or three-body interactions used as input. Implicit in our work is the question of how far one can go within the traditional nuclear physics framework, i.e., nucleons and mesons in a nonrelativistic setting. Our central goal is to carry through state-of-the-art fewbody calculations that wig serve as a means of determining at what point standard nuclear physics requires quark degrees of freedom in order to understand the phenomena in question. So far, in the problems considered, there has been no evidence of the necessity to go beyond the traditional approach, though we always keep in mind that possibility. As our work is involved with questions in the intermediate-energy realm, moving from a nonrelativistic framework to a relativistic one is always a consideration. Currently, for the problems that have been pursued in this domain of energy, the issues concern far more the mechanisms of the reactions and structural questions than the need to move to relativistic dynamics.

  17. Investigations of the structure and electromagnetic interactions of few-body systems. Progress report, 1 July 1991--30 June 1994

    SciTech Connect

    Lehman, D.R.; Haberzettl, H.; Maximon, L.C.; Parke, W.C.; Bennhold, C.; Ito, Hiroshi; Pratt, R.K.; Najmeddine, M.; Rakei, A.

    1994-07-01

    In order to make it easy for the reader to see the specific research carried out and the progress made, the following report of progress is done by topic. Each item has a format layout of Topic, Investigators, Objective, Significance, and Description of Progress, followed at the end by the relevant references. As is clear from the topics listed, the emphasis of the GW nuclear theory group has been on the structure and electromagnetic interactions of few-body nuclei. Both low- and intermediate-energy electromagnetic disintegration of these nuclei is considered, including coherent photoproduction of {pi} mesons. When the excitation energy of the target nucleus is low, the aim has been to handle the continuum part of the theoretical work numerically with no approximations, that is, by means of full three- or four-body dynamics. When structure questions are the issue, numerically accurate calculations are always carried through, limited only by the underlying two-body or three-body interactions used as input. Implicit in our work is the question of how far one can go within the traditional nuclear physics framework i.e., nucleons and mesons in a nonrelativistic setting. Our central goal is to carry through state-of-the-art few-body calculations that will serve as a means of determining at what point standard nuclear physics requires introduction of relativity and/or quark degrees of freedom in order to understand the phenomena in question. So far, the problems considered were mostly concerned with low- to medium-energy regimes where little evidence was found that requires going beyond the traditional approach.

  18. Patient-Specific Carotid Plaque Progression Simulation Using 3D Meshless Generalized Finite Difference Models with Fluid-Structure Interactions Based on Serial In Vivo MRI Data.

    PubMed

    Yang, Chun; Tang, Dalin; Atluri, Satya

    2011-01-01

    Previously, we introduced a computational procedure based on three-dimensional meshless generalized finite difference (MGFD) method and serial magnetic resonance imaging (MRI) data to quantify patient-specific carotid atherosclerotic plaque growth functions and simulate plaque progression. Structure-only models were used in our previous report. In this paper, fluid-stricture interaction (FSI) was added to improve on prediction accuracy. One participating patient was scanned three times (T1, T2, and T3, at intervals of about 18 months) to obtain plaque progression data. Blood flow was assumed to laminar, Newtonian, viscous and incompressible. The Navier-Stokes equations with arbitrary Lagrangian-Eulerian (ALE) formulation were used as the governing equations. Plaque material was assumed to be uniform, homogeneous, isotropic, linear, and nearly incompressible. The linear elastic model was used. The 3D FSI plaque model was discretized and solved using a meshless generalized finite difference (GFD) method. Growth functions with a) morphology alone; b) morphology and plaque wall stress (PWS); morphology and flow shear stress (FSS), and d) morphology, PWS and FSS were introduced to predict future plaque growth based on previous time point data. Starting from the T2 plaque geometry, plaque progression was simulated by solving the FSI model and adjusting plaque geometry using plaque growth functions iteratively until T3 is reached. Numerically simulated plaque progression agreed very well with the target T3 plaque geometry with errors ranging from 8.62%, 7.22%, 5.77% and 4.39%, with the growth function including morphology, plaque wall stress and flow shear stress terms giving the best predictions. Adding flow shear stress term to the growth function improved the prediction error from 7.22% to 4.39%, a 40% improvement. We believe this is the first time 3D plaque progression FSI simulation based on multi-year patient-tracking data was reported. Serial MRI-based progression

  19. Washing Up with Hot and Cold Running Neutrons: Tests of Fundamental Physical Laws

    SciTech Connect

    Lamoreaux, Steve K.

    2005-05-24

    The properties of the Neutron and its interactions with matter have been long applied to tests of fundamental physical principles. An example of such an application is a test of the stability of the fundamental constants of physics based on possible changes in low energy absorption resonances and the isotopic composition of a prehistoric natural reactor that operated two billion years ago in equatorial Africa. A recent re-analysis of this event indicates that some fundamental constants have changed. The focus of the presentation will be on the uses of cold and ultracold neutrons (UCNs), and in particular, the experimental search for the neutron electric dipole moment (EDM) which would be evidence for time reversal asymmetry in the microscopic interactions within the neutron. Ultracold neutrons are neutrons with kinetic energy sufficiently low that they can be reflected from material surfaces for all angles of incidence, allowing UCNs to be stored in material bottles for times approaching the beta decay lifetime of the neutron. Vagaries associated with the production, transport, and storage of UCNs will be described, and an overview progress on development of a new neutron EDM experiment to be operated at LANSCE will be presented. This new experiment has potential to improve the measurement sensitivity by a factor of 100. Although an EDM has not be observed for any elementary particle, experimental limits have been crucial for testing extensions to the so-called Standard Model of Electroweak Interactions. Our anticipated sensitivity will be sufficient to address questions regarding the observed matter-antimatter asymmetry in the Universe.

  20. Neutron scattering in Australia

    SciTech Connect

    Knott, R.B.

    1994-12-31

    Neutron scattering techniques have been part of the Australian scientific research community for the past three decades. The High Flux Australian Reactor (HIFAR) is a multi-use facility of modest performance that provides the only neutron source in the country suitable for neutron scattering. The limitations of HIFAR have been recognized and recently a Government initiated inquiry sought to evaluate the future needs of a neutron source. In essence, the inquiry suggested that a delay of several years would enable a number of key issues to be resolved, and therefore a more appropriate decision made. In the meantime, use of the present source is being optimized, and where necessary research is being undertaken at major overseas neutron facilities either on a formal or informal basis. Australia has, at present, a formal agreement with the Rutherford Appleton Laboratory (UK) for access to the spallation source ISIS. Various aspects of neutron scattering have been implemented on HIFAR, including investigations of the structure of biological relevant molecules. One aspect of these investigations will be presented. Preliminary results from a study of the interaction of the immunosuppressant drug, cyclosporin-A, with reconstituted membranes suggest that the hydrophobic drug interdigitated with lipid chains.

  1. Neutron Nucleic Acid Crystallography.

    PubMed

    Chatake, Toshiyuki

    2016-01-01

    The hydration shells surrounding nucleic acids and hydrogen-bonding networks involving water molecules and nucleic acids are essential interactions for the structural stability and function of nucleic acids. Water molecules in the hydration shells influence various conformations of DNA and RNA by specific hydrogen-bonding networks, which often contribute to the chemical reactivity and molecular recognition of nucleic acids. However, X-ray crystallography could not provide a complete description of structural information with respect to hydrogen bonds. Indeed, X-ray crystallography is a powerful tool for determining the locations of water molecules, i.e., the location of the oxygen atom of H2O; however, it is very difficult to determine the orientation of the water molecules, i.e., the orientation of the two hydrogen atoms of H2O, because X-ray scattering from the hydrogen atom is very small.Neutron crystallography is a specialized tool for determining the positions of hydrogen atoms. Neutrons are not diffracted by electrons, but are diffracted by atomic nuclei; accordingly, neutron scattering lengths of hydrogen and its isotopes are comparable to those of non-hydrogen atoms. Therefore, neutron crystallography can determine both of the locations and orientations of water molecules. This chapter describes the current status of neutron nucleic acid crystallographic research as well as the basic principles of neutron diffraction experiments performed on nucleic acid crystals: materials, crystallization, diffraction experiments, and structure determination. PMID:26227050

  2. Investigation of the essential role of platelet-tumor cell interactions in metastasis progression using an agent-based model

    PubMed Central

    2014-01-01

    Background Metastatic tumors are a major source of morbidity and mortality for most cancers. Interaction of circulating tumor cells with endothelium, platelets and neutrophils play an important role in the early stages of metastasis formation. These complex dynamics have proven difficult to study in experimental models. Prior computational models of metastases have focused on tumor cell growth in a host environment, or prediction of metastasis formation from clinical data. We used agent-based modeling (ABM) to dynamically represent hypotheses of essential steps involved in circulating tumor cell adhesion and interaction with other circulating cells, examine their functional constraints, and predict effects of inhibiting specific mechanisms. Methods We developed an ABM of Early Metastasis (ABMEM), a descriptive semi-mechanistic model that replicates experimentally observed behaviors of populations of circulating tumor cells, neutrophils, platelets and endothelial cells while incorporating representations of known surface receptor, autocrine and paracrine interactions. Essential downstream cellular processes were incorporated to simulate activation in response to stimuli, and calibrated with experimental data. The ABMEM was used to identify potential points of interdiction through examination of dynamic outcomes such as rate of tumor cell binding after inhibition of specific platelet or tumor receptors. Results The ABMEM reproduced experimental data concerning neutrophil rolling over endothelial cells, inflammation-induced binding between neutrophils and platelets, and tumor cell interactions with these cells. Simulated platelet inhibition with anti-platelet drugs produced unstable aggregates with frequent detachment and re-binding. The ABMEM replicates findings from experimental models of circulating tumor cell adhesion, and suggests platelets play a critical role in this pre-requisite for metastasis formation. Similar effects were observed with inhibition of tumor

  3. Neutron detector

    DOEpatents

    Stephan, Andrew C.; Jardret; Vincent D.

    2011-04-05

    A neutron detector has a volume of neutron moderating material and a plurality of individual neutron sensing elements dispersed at selected locations throughout the moderator, and particularly arranged so that some of the detecting elements are closer to the surface of the moderator assembly and others are more deeply embedded. The arrangement captures some thermalized neutrons that might otherwise be scattered away from a single, centrally located detector element. Different geometrical arrangements may be used while preserving its fundamental characteristics. Different types of neutron sensing elements may be used, which may operate on any of a number of physical principles to perform the function of sensing a neutron, either by a capture or a scattering reaction, and converting that reaction to a detectable signal. High detection efficiency, an ability to acquire spectral information, and directional sensitivity may be obtained.

  4. Neutrons, gamma rays, and beta particles interactions with IIaO films flown on Astro I and Astro II and comparison with IIaO flown on the get-away-special STS-7

    SciTech Connect

    Hammond, E.C. Jr.; Peters, K.; Boone, K.

    1995-09-01

    The current requirements for the Laboratory for Astronomy and Solar Physics, sends rocket satellites and in the near future will involve flights in the shuttle to the upper reaches of the Earth`s atmosphere where they will be subjected to the atomic particles and electromagnetic radiation produced by the Sun and other cosmic radiation. It is therefore appropriate to examine the effect of neutrons, gamma rays, beta particles, and X-rays on the film currently being used by the Laboratory for current and future research requirements. It is also hoped by examining these particles in their effect that the authors will have simulated the space environment of the rockets, satellites, and shuttles. Several samples of the IIaO film were exposed to a neutron howitzer with a source energy of approximately 106 neutrons/steradians. They exposed several samples of the film to a 10 second blast of neutrons in both metal and plastic containers which exhibited higher density readings which indicated the possibility of some secondary nuclear interactions between neutrons and the aluminum container. The plastic container showed some variations at the higher densities. Exposure of the samples of IIaO film to a neutron beam of approximately 10 neutrons per steradians for eight minutes produces approximately a 13% difference in the density readings of the dark density grids. It is not noticeable that at the lighter density grid the neutrons have minimal effects, but on a whole the trend of the eight minute exposed IIaO film density grids at the darker end had a 7.1% difference than the control. Further analysis is anticipated by increasing the exposure time. Two sets of film were exposed to a beta source in a plastic container. The beta source was placed at the bottom so that the cone of rays striking the film would be conical for a period of seven days. It was observed in the films, designated 4a and 4b, a dramatic increase in the grid densities had occurred.

  5. Modifications of protein-DNA interactions in the proximal promoter of a cell-growth-regulated histone gene during onset and progression of osteoblast differentiation.

    PubMed Central

    Owen, T A; Holthuis, J; Markose, E; van Wijnen, A J; Wolfe, S A; Grimes, S R; Lian, J B; Stein, G S

    1990-01-01

    A temporal sequence of interrelated cellular, biochemical, and molecular events which occurs during the progressive expression of the differentiated osteoblast phenotype in primary cultures of fetal rat calvarial cells results in the development of a bone-tissue-like organization. This ordered developmental sequence encompasses three periods: proliferation, matrix maturation, and mineralization. Initially, the cells actively proliferate and synthesize type I collagen. This is followed by a period of matrix organization and maturation and then by a period of extracellular matrix mineralization. At the completion of proliferation, when expression of osteoblast phenotype markers such as alkaline phosphatase is observed, the cell-cycle-related histone genes are down-regulated transcriptionally, suggesting that a key signaling mechanism at this transition point involves modifications of protein-DNA interactions in the regulatory elements of these growth-regulated genes. Our results demonstrate that there is a selective loss of interaction of the promoter binding factor HiNF-D with the site II region of an H4 histone gene proximal promoter that regulates the specificity and level of transcription only when the down-regulation of proliferation is accompanied by modifications in the extracellular matrix that contribute to progression of osteoblast differentiation. Thus, this specific loss of protein-DNA interaction serves as a marker for a key transition point in the osteoblast developmental sequence, where the down-regulation of proliferation is functionally coupled to the appearance of osteoblast phenotypic properties associated with the organization and maturation of an extracellular matrix that becomes competent to mineralize. Images PMID:2367528

  6. Scoping assessments of ATF impact on late-stage accident progression including molten core-concrete interaction

    NASA Astrophysics Data System (ADS)

    Farmer, M. T.; Leibowitz, L.; Terrani, K. A.; Robb, K. R.

    2014-05-01

    Simple scoping models that can be used to evaluate ATF performance under severe accident conditions have been developed. The methodology provides a fundamental technical basis (a.k.a. metric) based on the thermodynamic boundary for evaluating performance relative to that of traditional Zr-based claddings. The initial focus in this study was on UO2 fuel with the advanced claddings 310 SS, D9, FeCrAl, and SiC. The evaluation considered only energy release with concurrent combustible gas production from fuel-cladding-coolant interactions and, separately, molten core-concrete interactions at high temperatures. Other important phenomenological effects that can influence the rate and extent of cladding decomposition (e.g., eutectic interactions, degradation of other core constituents) were not addressed. For the cladding types addressed, potential combustible gas production under both in-vessel and ex-vessel conditions was similar to that for Zr. However, exothermic energy release from cladding oxidation was substantially less for iron-based alloys (by at least a factor of 4), and modestly less (by ∼20%) for SiC. Data on SiC-clad UO2 fuel performance under severe accident conditions are sparse in the literature; thus, assumptions on the nature of the cladding decomposition process were made in order to perform this initial screening evaluation. Experimental data for this system under severe accident conditions is needed for a proper evaluation and comparison to iron-based claddings.

  7. Base sequence effects on interactions of aromatic mutagens with DNA: Progress report for period March 1, 1988--November 30, 1988

    SciTech Connect

    Geacintov, N.E.

    1988-12-01

    The influence of base sequence on the structure of DNA, and the relationships between these effects and gene expression and regulation, are currently receiving wide attention. This project is focused on the effects of base composition and sequence, as well as on the thermodynamics of the interactions and binding of polynuclear aromatic hydrocarbon (PAH) mutagens with DNA. Such interactions between PHA molecules and cellular DNA are believed to be of critical importance in the expression of the mutagenic and tumorigenic potentials of these compounds. We have studied the interactions, especially noncovalent complex formation between the tetraols derived by the hydrolysis of the bay region diol epoxides of benzo(a)pyrene (BP), benz(a)anthracene (BA), 7,12-dimethylbenz(a)anthracene (DMBA), and 3-methylcholanthrene (3-MC) with single nucleotides, dinucleotides, oligonucleotides, synthetic polynucleotides, and native DNA. The formation of physical complexes depends on the base composition and the base sequence. The differences in the physical binding of these three different tetraol derivatives to native DNA are due to entropic rather than to enthalpic effects. In contrast to the BP and BA tetraols, the 3-MC tetraols do not form intercalation complexes with DNA; this effect is attributed to the steric bulk of the methyl and methylene bridge group which prevents the sandwiching of the 3-MC tetraol between the DNA base pairs. 6 refs., 3 figs., 2 tabs.

  8. Recent progress in particle acceleration from the interaction between thin-foil targets and J-KAREN laser pulses

    SciTech Connect

    Nishiuchi, Mamiko; Pirozhkov, Alexander S.; Sakaki, Hironao; Ogura, Koichi; Esirkepov, Timur Zh; Tanimoto, Tsuyoshi; Yogo, Akifumi; Hori, Toshihiko; Sagisaka, Akito; Fukuda, Yuji; Kanasaki, Masato; Kiriyama, Hiromitsu; Shimomura, Takuya; Tanoue, Manabu; Nakai, Yoshiki; Sasao, Hajime; Sasao, Fumitaka; Kanazawa, Shuhei; Kondo, Shuji; Matsumoto, Yoshihiro; and others

    2012-07-11

    From the interaction between the high-contrast ({approx}more than 10{sup 10}) 130 TW Ti:sapphire laser pulse and Stainless Steel-2.5 um-thick tape target, proton beam with energies up to 23 MeV with the conversion efficiency of {approx}1% is obtained. After plasma mirror installation for contrast improvement, from the interaction between the 30 TW laser pulse and thin-foil target installed on the target holder with the hole whose shape is associated with the design of the well-known Wehnelt electrode of electron-gun, a 7 MeV intense proton beam is controlled dynamically and energy selected by the self-induced quasi-static electric field on the target holder. From the highly divergent beam having continuous spectrum, which are the typical features of the laser-driven proton beams from the interactions between the short-pulse laser and solid target, the spatial distribution of 7 MeV proton bunch is well manipulated to be focused to an small spots with an angular distribution of {approx}10 mrad. The number of protons included in the bunch is >10{sup 6}.

  9. Extracting the photoproduction cross sections off the neutron, via the γn→π-p reaction, from deuteron data with final-state interaction effects

    NASA Astrophysics Data System (ADS)

    Tarasov, V. E.; Briscoe, W. J.; Gao, H.; Kudryavtsev, A. E.; Strakovsky, I. I.

    2011-09-01

    The incoherent pion photoproduction reaction γd→π-pp is considered theoretically in a wide energy region Eth≤Eγ≤2700 MeV. The model applied contains the impulse approximation as well as the NN and πN final-state-interaction (FSI) amplitudes. The aim of the paper is to study a reliable way for getting the information on elementary γn→π-p reaction cross sections beyond the impulse approximation for γd→π-pp. For the elementary γN→πN, NN→NN, and πN→πN amplitudes, the results of The George Washington University (GW) Data Analysis Center (DAC) are used. There are no additional theoretical constraints. The calculated cross sections dσ/dΩ(γd→π-pp) are compared with existing data. The procedure used to extract information on the differential cross section dσ/dΩ(γn→π-p) on the neutron from the deuteron data using the FSI correction factor R is discussed. The calculations for R versus π-p center-of-mass (CM) angle θ1 of the outgoing pion are performed at different photon-beam energies with kinematic cuts for a “quasifree” process γn→π-p. The results show a sizable FSI effect R≠1 from the S-wave part of pp-FSI at small angles close to θ1˜0: this region narrows as the photon energy increases. At larger angles, the effect is small (|R-1|≪1) and agrees with estimations of FSI in the Glauber approach.

  10. Characterization of superconducting and magnetic materials with muon spin rotation and neutron scattering. Progress report, March 1996--August 1997 and final report, June 1988--August 1997

    SciTech Connect

    Stronach, C.E.; Noakes, D.R.

    1997-09-01

    This report represents the culmination of over nine years of research activity in the study of superconducting and magnetically ordered materials using the muon spin rotation ({mu}SR) and neutron scattering techniques. Because all the activities that took place up until March 1996 have been covered in previous annual reports, this final report includes only a brief overview of activities prior to that date, and concentrates on the period from March 1996 through August 1997. The primary activity undertaken in this project has been studies of high-temperature superconductors and their close chemical relatives with the {mu}SR technique. These experiments extend from early work done with a relatively primitive muon beam at the AGS of Brookhaven National Laboratory and large polycrystalline samples of the earliest known high-{Tc} materials to studies of very small high-purity single crystals of the best high-{Tc} materials currently available using the highest quality surface muon beams and specially-designed low-background spectrometers at the Tri-University Meson Facility (TRIUMF) in the past three years. During the period since the last annual report five {mu}SR experiments were done at TRIUMF with DOE support. A study of single-crystal high-temperature superconductors was done in July 1996. A study of the quasicrystal materials Gd{sub 8}Mg{sub 42}Zn{sub 50} and Tb{sub 8}Mg{sub 42}Zn{sub 50} was done by D.R. Noakes in collaboration with G.M. Kalvius of the Technical University of Munich and R. Waeppling of Uppsala University during the first week of December 1996. During the second week of December 1996 a study of the cryocrystals CH{sub 4} and CF{sub 4} was done by D.R. Noakes in collaboration with S. Storchak of Moscow State University and J.H. Brewer of the University of British Columbia. A study of high-{Tc} superconductors was done at TRIUMF during the third week of December 1996 by C.E. Stronach and D.R. Noakes.

  11. Probing neutron rich matter with parity violation

    NASA Astrophysics Data System (ADS)

    Horowitz, Charles

    2016-03-01

    Many compact and energetic astrophysical systems are made of neutron rich matter. In contrast, most terrestrial nuclei involve approximately symmetric nuclear matter with more equal numbers of neutrons and protons. However, heavy nuclei have a surface region that contains many extra neutrons. Precision measurements of this neutron rich skin can determine properties of neutron rich matter. Parity violating electron scattering provides a uniquely clean probe of neutrons, because the weak charge of a neutron is much larger than that of a proton. We describe first results and future plans for the Jefferson Laboratory experiment PREX that measures the thickness of the neutron skin in 208Pb. Another JLAB experiment CREX will measure the neutron radius of 48Ca and test recent microscopic calculations of this neutron rich 48 nucleon system. Finally, we show how measuring parity violation at multiple momentum transfers can determine not just the neutron radius but the full radial structure of the neutron density in 48Ca. A neutron star is eighteen orders of magnitude larger than a nucleus (km vs fm) but both the star and the neutron rich nuclear skin are made of the same neutrons, with the same strong interactions, and the same equation of state. A large pressure pushes neutrons out against surface tension and gives a thick neutron skin. Therefore, PREX will constrain the equation of state of neutron rich matter and improve predictions for the structure of neutron stars. Supported in part by DOE Grants DE-FG02-87ER40365 (Indiana University) and DE-SC0008808 (NUCLEI SciDAC Collaboration).

  12. US/Japan collaborative program on fusion reactor materials: Summary of the tenth DOE/JAERI Annex I technical progress meeting on neutron irradiation effects in first wall and blanket structural materials

    SciTech Connect

    Rowcliffe, A.F.

    1989-03-17

    This meeting was held at Oak Ridge National Laboratory on March 17, 1989, to review the technical progress on the collaborative DOE/JAERI program on fusion reactor materials. The purpose of the program is to determine the effects of neutron irradiation on the mechanical behavior and dimensional stability of US and Japanese austenitic stainless steels. Phase I of the program focused on the effects of high concentrations of helium on the tensile, fatigue, and swelling properties of both US and Japanese alloys. In Phase II of the program, spectral and isotropic tailoring techniques are fully utilized to reproduce the helium:dpa ratio typical of the fusion environment. The Phase II program hinges on a restart of the High Flux Isotope Reactor by mid-1989. Eight target position capsules and two RB* position capsules have been assembled. The target capsule experiments will address issues relating to the performance of austenitic steels at high damage levels including an assessment of the performance of a variety of weld materials. The RB* capsules will provide a unique and important set of data on the behavior of austenitic steels irradiated under conditions which reproduce the damage rate, dose, temperature, and helium generation rate expected in the first wall and blanket structure of the International Thermonuclear Experimental Reactor.

  13. Are the SSB-Interacting Proteins RecO, RecG, PriA and the DnaB-Interacting Protein Rep Bound to Progressing Replication Forks in Escherichia coli?

    PubMed

    Bentchikou, Esma; Chagneau, Carine; Long, Emilie; Matelot, Mélody; Allemand, Jean-François; Michel, Bénédicte

    2015-01-01

    In all organisms several enzymes that are needed upon replication impediment are targeted to replication forks by interaction with a replication protein. In most cases these proteins interact with the polymerase clamp or with single-stranded DNA binding proteins (SSB). In Escherichia coli an accessory replicative helicase was also shown to interact with the DnaB replicative helicase. Here we have used cytological observation of Venus fluorescent fusion proteins expressed from their endogenous loci in live E. coli cells to determine whether DNA repair and replication restart proteins that interact with a replication protein travel with replication forks. A custom-made microscope that detects active replisome molecules provided that they are present in at least three copies was used. Neither the recombination proteins RecO and RecG, nor the replication accessory helicase Rep are detected specifically in replicating cells in our assay, indicating that either they are not present at progressing replication forks or they are present in less than three copies. The Venus-PriA fusion protein formed foci even in the absence of replication forks, which prevented us from reaching a conclusion. PMID:26244508

  14. Accelerator measurement of the energy spectra of neutrons emitted in the interaction of 3-GeV protons with several elements

    NASA Technical Reports Server (NTRS)

    Nalesnik, W. J.; Devlin, T. J.; Merker, M.; Shen, B. S. P.

    1972-01-01

    The application of time of flight techniques for determining the shapes of the energy spectra of neutrons between 20 and 400 MeV is discussed. The neutrons are emitted at 20, 34, and 90 degrees in the bombardment of targets by 3 GeV protons. The targets used are carbon, aluminum, cobalt, and platinum with cylindrical cross section. Targets being bombarded are located in the internal circulating beam of a particle accelerator.

  15. [Experiment studies of electron-positron interactions at the Stanford Linear Accelerator Center]. Progress report, calendar year 1993

    SciTech Connect

    Hertzbach, S.S.; Kofler, R.R.

    1993-12-31

    The High Energy Physics group at the University of Massachusetts has continued its` program of experimental studies of electron-positron interactions at the Stanford Linear Accelerator Center (SLAC). The group activities have included: analysis of data taken between 1982 and 1990 with the TPC detector at the PEP facility, continuing data collection and data analysis using the SLC/SLD facility, planning for the newly approved B-factory at SLAC, and participation in design studies for future high energy linear colliders. This report will briefly summarize these activities.

  16. Secondary neutral mass spectrometry (SNMS)-recent methodical progress and applications to fundamental studies in particle/surface interaction

    NASA Astrophysics Data System (ADS)

    Oechsner, Hans

    1995-05-01

    Recent instrumental developments of the conventional secondary neutral mass spectrometry (SNMS) technique based on electron gas post-ionization are described with regard to its application to non-conducting samples and its implementation in a novel secondary neutral microprobe. The use of molecular SNMS signals for quantitative surface analysis, and a standard free technique for absolute depth calibration from the mass spectrometric signals are discussed and elucidated by appropriate examples. Finally, some applications of electron gas SNMS to fundamental studies on low energy particle/surface interaction are presented.

  17. Selectivity, activity, and metal-support interactions of Rh bimetallic catalysts. Progress report, 15 November 1981-15 August 1982

    SciTech Connect

    Haller, G L

    1982-08-01

    We report on a detailed investigation of the effect of TiO/sub 2/ support on Rh-Ag interaction as exhibited in catalytic activity. The temporal evolution of activity over Rh-Ag/TiO/sub 2/ for ethane hydrogenolysis and hydrogen chemisorption as a function of temperature, Ag to Rh ratio, the Rh particle size, Rh loading, and ambient gas were studied. Preliminary extended x-ray absorption fine structure (EXAFS) analysis of Rh/TiO/sub 2/ catalysts indicate that 100% exposed (dispersed) catalyst prepared by ion exchange may be atomically dispersed after low temperature reduction. 7 figures, 1 table.

  18. The phospholipid code: a key component of dying cell recognition, tumor progression and host-microbe interactions.

    PubMed

    Baxter, A A; Hulett, M D; Poon, I K H

    2015-12-01

    A significant effort is made by the cell to maintain certain phospholipids at specific sites. It is well described that proteins involved in intracellular signaling can be targeted to the plasma membrane and organelles through phospholipid-binding domains. Thus, the accumulation of a specific combination of phospholipids, denoted here as the 'phospholipid code', is key in initiating cellular processes. Interestingly, a variety of extracellular proteins and pathogen-derived proteins can also recognize or modify phospholipids to facilitate the recognition of dying cells, tumorigenesis and host-microbe interactions. In this article, we discuss the importance of the phospholipid code in a range of physiological and pathological processes. PMID:26450453

  19. Neutron Imaging Camera

    NASA Technical Reports Server (NTRS)

    Hunter, Stanley; deNolfo, G. A.; Barbier, L. M.; Link, J. T.; Son, S.; Floyd, S. R.; Guardala, N.; Skopec, M.; Stark, B.

    2008-01-01

    The Neutron Imaging Camera (NIC) is based on the Three-dimensional Track Imager (3DTI) technology developed at GSFC for gamma-ray astrophysics applications. The 3-DTI, a large volume time-projection chamber, provides accurate, approximately 0.4 mm resolution, 3-D tracking of charged particles. The incident direction of fast neutrons, En > 0.5 MeV, are reconstructed from the momenta and energies of the proton and triton fragments resulting from (sup 3)He(n,p) (sup 3)H interactions in the 3-DTI volume. The performance of the NIC from laboratory and accelerator tests is presented.

  20. Fundamental interactions involving neutrons and neutrinos: reactor-based studies led by Petersburg Nuclear Physics Institute (National Research Centre 'Kurchatov Institute') [PNPI (NRC KI)

    NASA Astrophysics Data System (ADS)

    Serebrov, A. P.

    2015-11-01

    Neutrons of very low energy ( ˜ 10-7 eV), commonly known as ultracold, are unique in that they can be stored in material and magnetic traps, thus enhancing methodical opportunities to conduct precision experiments and to probe the fundamentals of physics. One of the central problems of physics, of direct relevance to the formation of the Universe, is the violation of time invariance. Experiments searching for the nonzero neutron electric dipole moment serve as a time invariance test, and the use of ultracold neutrons provides very high measurement precision. Precision neutron lifetime measurements using ultracold neutrons are extremely important for checking ideas on the early formation of the Universe. This paper discusses problems that arise in studies using ultracold neutrons. Also discussed are the currently highly topical problem of sterile neutrinos and the search for reactor antineutrino oscillations at distances of 6-12 meters from the reactor core. The field reviewed is being investigated at multiple facilities globally. The present paper mainly concentrates on the results of PNPI-led studies at WWR-M PNPI (Gatchina), ILL (Grenoble), and SM-3 (Dimitrovgrad) reactors, and also covers the results obtained during preparation for research at the PIK reactor which is under construction.

  1. Study of the interactions between friction, wear and system rigidity. Progress report, July 1, 1979-June 30, 1980

    SciTech Connect

    Aronov, V.; D'Souza, A.F.; Kalpakjian, S.; Shareef, I.

    1980-03-01

    Progress in friction and wear studies is reported. After an extensive study of various possible systems for friction, wear and vibration measurements, a pin and disk sliding system has been designed to be used on a rigid lathe bed. This versatile design has the capability of controlling the applied load, rigidity and damping of the total frictional system. The design and construction of the pin holding assembly has been completed with certain features to render it suitable for acquisition of appropriate data such as forces and displacements. Special instrumentation has been obtained the major components of which are a tri-axial quartz piezoelectric force transducer, a tri-axial ceramic piezoelectric accelerometer for measurements of vibrations of the slider, charge preamplifiers with dc power supply, and monitoring equipment such as a spectral analyzer and an oscillograph. Preliminary experiments indicate that the system, as designed and constructed, is appropriate for the type of study undertaken in this project. Some preliminary experimental results are included here. The method of describing functions and harmonic balance is being employed for the study of friction induced self-excited vibrations. Some new developments of this method have been obtained to take into account the coupling between the degrees of freedom in the normal and frictional directions.

  2. EGFRvIII/integrin β3 interaction in hypoxic and vitronectinenriching microenvironment promote GBM progression and metastasis

    PubMed Central

    Li, Yongsheng; Zhao, Manli; Xie, Hui; Ju, Huanyu; Wang, He; Zhao, Yu; Zheng, Qifan; Wang, Qixue; Su, Jun; Fang, Chuan; Fu, Songbin; Jiang, Tao; Liu, Jiaren; Li, Xia; Kang, Chunsheng; Ren, Huan

    2016-01-01

    Glioblastoma (GBM) is one of the most lethal brain tumors with a short survival time. EGFR amplification and mutation is the most significant genetic signature in GBM. About half of the GBMs with EGFR amplification express a constitutively autophosphorylated variant of EGFR, known as EGFRvIII. Our in vitro data demonstrated further enhanced EGFRvIII activity and tumor cell invasion in the tumor microenvironment of hypoxia plus extracellular matrix (ECM) vitronectin, in which EGFRvIII and integrin β3 tended to form complexes. The treatment with ITGB3 siRNA or the integrin antagonist cilengetide preferentially interrupted the EGFRvIII/integrin β3 complex, effectively reduced tumor cell invasion and activation of downstream signaling effectors. Cilengitide is recently failed in Phase III CENTRIC trial in unselected patients with GBM. However, we found that cilengitide demonstrated efficacious tumor regression via inhibition of tumor growth and angiogenesis in EGFRvIII orthotopic xenografts. Bioinformatics analysis emphasized key roles of integrin β3, hypoxia and vitronectin and their strong correlations with EGFRvIII expression in malignant glioma patient samples in vivo. In conclusion, we demonstrate that EGFRvIII/integrin β3 complexes promote GBM progression and metastasis in the environment of hypoxia and vitronectin-enrichment, and cilengitide may serve as a promising therapeutics for EGFRvIII-positive GBMs. PMID:26717039

  3. The Hippo/YAP pathway interacts with EGFR signaling and HPV oncoproteins to regulate cervical cancer progression

    PubMed Central

    He, Chunbo; Mao, Dagan; Hua, Guohua; Lv, Xiangmin; Chen, Xingcheng; Angeletti, Peter C; Dong, Jixin; Remmenga, Steven W; Rodabaugh, Kerry J; Zhou, Jin; Lambert, Paul F; Yang, Peixin; Davis, John S; Wang, Cheng

    2015-01-01

    The Hippo signaling pathway controls organ size and tumorigenesis through a kinase cascade that inactivates Yes-associated protein (YAP). Here, we show that YAP plays a central role in controlling the progression of cervical cancer. Our results suggest that YAP expression is associated with a poor prognosis for cervical cancer. TGF-α and amphiregulin (AREG), via EGFR, inhibit the Hippo signaling pathway and activate YAP to induce cervical cancer cell proliferation and migration. Activated YAP allows for up-regulation of TGF-α, AREG, and EGFR, forming a positive signaling loop to drive cervical cancer cell proliferation. HPV E6 protein, a major etiological molecule of cervical cancer, maintains high YAP protein levels in cervical cancer cells by preventing proteasome-dependent YAP degradation to drive cervical cancer cell proliferation. Results from human cervical cancer genomic databases and an accepted transgenic mouse model strongly support the clinical relevance of the discovered feed-forward signaling loop. Our study indicates that combined targeting of the Hippo and the ERBB signaling pathways represents a novel therapeutic strategy for prevention and treatment of cervical cancer. PMID:26417066

  4. Recent Progresses in Studying Helix-Helix Interactions in Proteins by Incorporating the Wenxiang Diagram into the NMR Spectroscopy.

    PubMed

    Zhou, Guo-Ping; Chen, Dong; Liao, Siming; Huang, Ri-Bo

    2016-01-01

    All residues in an alpha helix can be characterized and dispositioned on a 2D the wenxiang diagram, which possesses the following features: (1) the relative locations of the amino acids in the α-helix can be clearly displayed regardless how long it is; (2) direction of an alphahelix can be indicated; and (3) more information regarding each of the constituent amino acid residues in an alpha helix. Owing to its intuitionism and easy visibility, wenxiang diagrams have had an immense influence on our understanding of protein structure, protein-protein interactions, and the effect of helical structural stability on protein conformational transitions. In this review, we summarize two recent applications of wenxiang diagrams incorporating NMR spectroscopy in the researches of the coiled-coil protein interactions related to the regulation of contraction or relaxation states of vascular smooth muscle cells, and the effects of α-helical stability on the protein misfolding in prion disease, in hopes that the gained valuable information through these studies can stimulate more and more widely applications of wenxiang diagrams in structural biology. PMID:26286215

  5. Membrane-membrane interactions in a lipid-containing bacteriophage system. Progress report, October 1, 1980-September 30, 1981

    SciTech Connect

    Snipes, W

    1981-05-01

    Virus-cell interactions and the mechanism of viral entry have been the major focal points of this research. A method of analysis was perfected to investigate the entry process for herpes simplex virus. This technique makes use of a photosensitizing dye, FITC, that covalently binds to viral envelope proteins. Treated virions remain photosensitive until the envelope is shed during the process of infection. Our data strongly support an entry mechanism in which the viral envelope fuses with the cell plasma membrane. Other related projects have involved studies of the virucidal properties of retinoids, plaque development characteristics for viruses surviving treatment with membrane perturbers, and a large plaque effect that occurs when virus are plated on cells pretreated with uv light. In addition, we have characterized a new bacteriophage, investigated the interactions of divalent cations and proteins with phospholipid vesicles, extended our studies of the effects of hydrophobic photosensitizers on cell membranes, and used the spin-trapping technique to elucidate the reaction mechanism for an enzyme-like activity in soil extracts.

  6. Micromegas neutron beam monitor neutronics.

    PubMed

    Stephan, Andrew C; Miller, Laurence F

    2005-01-01

    The Micromegas is a type of ionising radiation detector that consists of a gas chamber sandwiched between two parallel plate electrodes, with the gas chamber divided by a Frisch grid into drift and amplification gaps. Investigators have applied it to a number of different applications, such as charged particle, X-ray and neutron detection. A Micromegas device has been tested as a neutron beam monitor at CERN and is expected to be used for that purpose at the Spallation Neutron Source (SNS) under construction in Oak Ridge, TN. For the Micromegas to function effectively as neutron beam monitor, it should cause minimal disruption to the neutron beam in question. Specifically, it should scatter as few neutrons as possible and avoid neutron absorption when it does not contribute to generating useful information concerning the neutron beam. Here, we present the results of Monte Carlo calculations of the effect of different types of wall materials and detector gases on neutron beams and suggest methods for minimising disruption to the beam. PMID:16381746

  7. Neutronic reactor

    DOEpatents

    Wende, Charles W. J.

    1976-08-17

    A safety rod for a nuclear reactor has an inner end portion having a gamma absorption coefficient and neutron capture cross section approximately equal to those of the adjacent shield, a central portion containing materials of high neutron capture cross section and an outer end portion having a gamma absorption coefficient at least equal to that of the adjacent shield.

  8. NEUTRONIC REACTOR

    DOEpatents

    Fermi, E.; Zinn, W.H.; Anderson, H.L.

    1958-09-16

    Means are presenied for increasing the reproduction ratio of a gaphite- moderated neutronic reactor by diminishing the neutron loss due to absorption or capture by gaseous impurities within the reactor. This means comprised of a fluid-tight casing or envelope completely enclosing the reactor and provided with a valve through which the casing, and thereby the reactor, may be evacuated of atmospheric air.

  9. Proteometabolomic Study of Compatible Interaction in Tomato Fruit Challenged with Sclerotinia rolfsii Illustrates Novel Protein Network during Disease Progression.

    PubMed

    Ghosh, Sudip; Narula, Kanika; Sinha, Arunima; Ghosh, Rajgourab; Jawa, Priyanka; Chakraborty, Niranjan; Chakraborty, Subhra

    2016-01-01

    Fruit is an assimilator of metabolites, nutrients, and signaling molecules, thus considered as potential target for pathogen attack. In response to patho-stress, such as fungal invasion, plants reorganize their proteome, and reconfigure their physiology in the infected organ. This remodeling is coordinated by a poorly understood signal transduction network, hormonal cascades, and metabolite reallocation. The aim of the study was to explore organ-based proteomic alterations in the susceptibility of heterotrophic fruit to necrotrophic fungal attack. We conducted time-series protein profiling of Sclerotinia rolfsii invaded tomato (Solanum lycopersicum) fruit. The differential display of proteome revealed 216 patho-stress responsive proteins (PSRPs) that change their abundance by more than 2.5-fold. Mass spectrometric analyses led to the identification of 56 PSRPs presumably involved in disease progression; regulating diverse functions viz. metabolism, signaling, redox homeostasis, transport, stress-response, protein folding, modification and degradation, development. Metabolome study indicated differential regulation of organic acid, amino acids, and carbohydrates paralleling with the proteomics analysis. Further, we interrogated the proteome data using network analysis that identified two significant functional protein hubs centered around malate dehydrogenase, T-complex protein 1 subunit gamma, and ATP synthase beta. This study reports, for the first-time, kinetically controlled patho-stress responsive protein network during post-harvest storage in a sink tissue, particularly fruit and constitute the basis toward understanding the onset and context of disease signaling and metabolic pathway alterations. The network representation may facilitate the prioritization of candidate proteins for quality improvement in storage organ. PMID:27507973

  10. Proteometabolomic Study of Compatible Interaction in Tomato Fruit Challenged with Sclerotinia rolfsii Illustrates Novel Protein Network during Disease Progression

    PubMed Central

    Ghosh, Sudip; Narula, Kanika; Sinha, Arunima; Ghosh, Rajgourab; Jawa, Priyanka; Chakraborty, Niranjan; Chakraborty, Subhra

    2016-01-01

    Fruit is an assimilator of metabolites, nutrients, and signaling molecules, thus considered as potential target for pathogen attack. In response to patho-stress, such as fungal invasion, plants reorganize their proteome, and reconfigure their physiology in the infected organ. This remodeling is coordinated by a poorly understood signal transduction network, hormonal cascades, and metabolite reallocation. The aim of the study was to explore organ-based proteomic alterations in the susceptibility of heterotrophic fruit to necrotrophic fungal attack. We conducted time-series protein profiling of Sclerotinia rolfsii invaded tomato (Solanum lycopersicum) fruit. The differential display of proteome revealed 216 patho-stress responsive proteins (PSRPs) that change their abundance by more than 2.5-fold. Mass spectrometric analyses led to the identification of 56 PSRPs presumably involved in disease progression; regulating diverse functions viz. metabolism, signaling, redox homeostasis, transport, stress-response, protein folding, modification and degradation, development. Metabolome study indicated differential regulation of organic acid, amino acids, and carbohydrates paralleling with the proteomics analysis. Further, we interrogated the proteome data using network analysis that identified two significant functional protein hubs centered around malate dehydrogenase, T-complex protein 1 subunit gamma, and ATP synthase beta. This study reports, for the first-time, kinetically controlled patho-stress responsive protein network during post-harvest storage in a sink tissue, particularly fruit and constitute the basis toward understanding the onset and context of disease signaling and metabolic pathway alterations. The network representation may facilitate the prioritization of candidate proteins for quality improvement in storage organ. PMID:27507973

  11. Towards a laser neutron driver.

    PubMed

    Keskilidou, E; Moustaizis, S D; Mikheev, L; Auvray, P; Rouiller, C

    2005-01-01

    During the last few years, important experimental investigations have been made concerning the possibility of induced nuclear fission of high-Z elements by electromagnetic interaction (photofission, electron fission, neutron fission). Fast ions, neutrons and fission fragments from such interactions can be used to pump a laser medium, to produce energy from the (232)Th-(233)U nuclear fission cycle. The main aim of the present work is to study a three-step process, in a relatively new experimental scheme, in order to improve the number of both neutrons and fast ions. In the proposed scheme, high-energy particles and photons are produced by high-intensity laser beam interaction with a solid or gas target, which are utilized later on to trigger the nuclear reactions for the production of (photo) neutrons. These neutrons can give rise to fission of (232)Th that leads through a cascade of decays to (233)U --a highly fissionable material. Such a process will enhance, by an important factor, the final neutron flux and the energetic fission fragments. The use of a high intensity pulsed laser beam will control the turn-on and turn-off of the nuclear reactions and allow one to ensure the security of the whole operation. Finally, the produced neutrons are used to accomplish a major population inversion in an appropriate gas medium for the last stage of amplification of a high-contrast ultra-short laser seed pulse. PMID:15990323

  12. Neutron source

    DOEpatents

    Cason, J.L. Jr.; Shaw, C.B.

    1975-10-21

    A neutron source which is particularly useful for neutron radiography consists of a vessel containing a moderating media of relatively low moderating ratio, a flux trap including a moderating media of relatively high moderating ratio at the center of the vessel, a shell of depleted uranium dioxide surrounding the moderating media of relatively high moderating ratio, a plurality of guide tubes each containing a movable source of neutrons surrounding the flux trap, a neutron shield surrounding one part of each guide tube, and at least one collimator extending from the flux trap to the exterior of the neutron source. The shell of depleted uranium dioxide has a window provided with depleted uranium dioxide shutters for each collimator. Reflectors are provided above and below the flux trap and on the guide tubes away from the flux trap.

  13. Neutron tubes

    DOEpatents

    Leung, Ka-Ngo; Lou, Tak Pui; Reijonen, Jani

    2008-03-11

    A neutron tube or generator is based on a RF driven plasma ion source having a quartz or other chamber surrounded by an external RF antenna. A deuterium or mixed deuterium/tritium (or even just a tritium) plasma is generated in the chamber and D or D/T (or T) ions are extracted from the plasma. A neutron generating target is positioned so that the ion beam is incident thereon and loads the target. Incident ions cause D-D or D-T (or T-T) reactions which generate neutrons. Various embodiments differ primarily in size of the chamber and position and shape of the neutron generating target. Some neutron generators are small enough for implantation in the body. The target may be at the end of a catheter-like drift tube. The target may have a tapered or conical surface to increase target surface area.

  14. Interaction between EphrinB1 and CNK1 Found to Play Role in Tumor Progression | Poster

    Cancer.gov

    By Nancy Parrish, Staff Writer The family of proteins known as ephrins plays a critical role in a variety of biological processes. In a recent article in the Journal of Biological Chemistry, Hee Jun Cho, Ph.D., and colleagues report on the interaction between proteins CNK1 and ephrinB1 that promotes cell movement. Their findings may have an important implication in developing new therapeutics for reducing metastases in certain cancers. “Eph and ephrin signaling has become an area of intense interest due to the influence these molecules exert on the control of cell adhesion and cell movement,” Cho said. “This signaling affects the formation of tissues during development and has been shown to play an instructive role in angiogenesis, as well as tumor cell invasion.”

  15. The Fundamental Neutron Physics Facilities at NIST

    PubMed Central

    Nico, J. S.; Arif, M.; Dewey, M. S.; Gentile, T. R.; Gilliam, D. M.; Huffman, P. R.; Jacobson, D. L.; Thompson, A. K.

    2005-01-01

    The program in fundamental neutron physics at the National Institute of Standards and Technology (NIST) began nearly two decades ago. The Neutron Interactions and Dosimetry Group currently maintains four neutron beam lines dedicated to studies of fundamental neutron interactions. The neutrons are provided by the NIST Center for Neutron Research, a national user facility for studies that include condensed matter physics, materials science, nuclear chemistry, and biological science. The beam lines for fundamental physics experiments include a high-intensity polychromatic beam, a 0.496 nm monochromatic beam, a 0.89 nm monochromatic beam, and a neutron interferometer and optics facility. This paper discusses some of the parameters of the beam lines along with brief presentations of some of the experiments performed at the facilities. PMID:27308110

  16. CURRENT PROBLEMS AND EXPECTED IMPROVEMENTS IN PERSONAL NEUTRON DOSIMETRY

    SciTech Connect

    McDonald, Joseph C.

    2004-12-15

    Recent progress has been made in the development of devices and techniques for the measurement and calibration of neutron personal dosimeters. The quantities and units used to express neutron dose equivalents are being improved and clarified. Therefore, it is expected that a number of remaining difficulties with neutron dosimetry will be mitigated.

  17. Imaging with cold neutrons

    NASA Astrophysics Data System (ADS)

    Lehmann, E. H.; Kaestner, A.; Josic, L.; Hartmann, S.; Mannes, D.

    2011-09-01

    Neutrons for imaging purposes are provided mainly from thermal beam lines at suitable facilities around the world. The access to cold neutrons is presently limited to very few places only. However, many challenging options for imaging with cold neutrons have been found out, given by the interaction behavior of the observed materials with neutrons in the cold energy range (3-10 Å). For absorbing materials, the interaction probability increases proportionally with the wavelength with the consequence of more contrast but less transmission with cold neutrons. Many materials are predominantly scattering neutrons, in particular most of crystalline structural materials. In these cases, cold neutrons play an important role by covering the energy range of the most important Bragg edges given by the lattice planes of the crystallites. This particular behavior can be used for at least two important aspects—choosing the right energy of the initial beam enables to have a material more or less transparent, and a direct macroscopic visualization of the crystalline structure and its change in a manufacturing process. Since 2006, PSI operates its second beam line for neutron imaging, where cold neutrons are provided from a liquid deuterium cold source (operated at 25 K). It has been designed to cover the most current aspects in neutron imaging research with the help of high flexibility. This has been done with changeable inlet apertures, a turbine based velocity selector, two beam positions and variable detector systems, satisfying the demands of the individual investigation. The most important detection system was found to be a micro-tomography system that enables studies in the presently best spatial resolution. In this case, the high contrast from the sample interaction process and the high detection probability for the cold neutrons combines in an ideal combination for the best possible performance. Recently, it was found out that the energy selective studies might become a

  18. γ-decay of {}_{8}^{16}{{\\rm{O}}}_{8}\\,{and}\\,{}_{7}^{16}{{\\rm{N}}}_{9} in proton–neutron Tamm–Dancoff and random phase approximations with optimized surface δ interaction

    NASA Astrophysics Data System (ADS)

    Pahlavani, M. R.; Firoozi, B.

    2016-09-01

    γ-ray transitions from excited states of {}16{{N}} and {}16{{O}} isomers that appear in the γ spectrum of the {}616{{{C}}}10\\to {}716{{{N}}}9\\to {}816{{{O}}}8 beta decay chain are investigated. The theoretical approach used in this research starts with a mean-field potential consisting of a phenomenological Woods–Saxon potential including spin-orbit and Coulomb terms (for protons) in order to obtain single-particle energies and wave functions for nucleons in a nucleus. A schematic residual surface delta interaction is then employed on the top of the mean field and is treated within the proton–neutron Tamm–Dancoff approximation (pnTDA) and the proton–neutron random phase approximation. The goal is to use an optimized surface delta interaction interaction, as a residual interaction, to improve the results. We have used artificial intelligence algorithms to establish a good agreement between theoretical and experimental energy spectra. The final results of the ‘optimized’ calculations are reasonable via this approach.

  19. Pegmatite/wallrock interactions, Black Hills, South Dakota: Progressive boron metasomatism adjacent to the Tip Top pegmatite

    USGS Publications Warehouse

    Shearer, C.K.; Papike, J.J.; Simon, S.B.; Laul, J.C.; Christian, R.P.

    1984-01-01

    Interaction between country rock and fluids derived from the Tip Top pegmatite has resulted in a series of boron enriched assemblages. Between unaltered quartz-mica schist to the pegmatite contact is a succession of four mineral assemblages: 1. (1) Quartz-Biotite-Potassium Feldspar assemblage (Q-B-K), which consists essentially of the original metamorphic silicate assemblage plus anomalously high amounts of modal tourmaline 2. (2) Quartz-Biotite-Tourmaline assemblage (Q-B-T) 3. (3) Tourmaline-Quartz-Muscovite assemblage (T-Q-M) 4. (4) Tourmaline-Quartz assemblage (T-Q). Alkali elements (Cs, Rb, K, Li), SiO2, and Ba show a decrease from the Q-B-K assemblage to the T-Q assemblage. A12O3, Ga, B, total Fe and Zn increase moderately from the Q-B-K assemblage to the T-Q assemblage. The mineral chemistries also change considerably. The Mg/(Mg + Fe2+) ratios in biotites range from 0.54 to 0.50 in samples from the Q-B-K assemblage to 0.39 in the (Q-B-T) assemblage. The range in tourmaline end-member components from the Q-B-K assemblage to the T-Q assemblage is as follows: Q-B-K: Dravite.63 Schorl.23 Elbaite.05 Buergerite.09 T-Q: Dravite.23 Schorl.37 Elbaite.17 Buergerite.23. Observed variations in mineral assemblage and whole rock chemistry within the alteration zone appear to a first approximation to be a function of ??B2O3 (boron metasomatism) and ??K2O (alkali leaching). The breakdown of feldspar and biotite may be approximated by reactions: 2HCl + 2(K, Na)AlSi3O8 /ai 2(K, Na)Cl + Al2SiO5 + 5SiO2 + H2O and 2 Annite + SiO2 + 5Al2SiO5 + 2NaCl + 6H3BO3 /ai 2 Tourmaline + 2KCl + 7H2O. The alteration zone may represent either a single episode (B-, Cs-, Li-, Rb-enriched fluid) or multiple episodes (B, Zn, Mn fluid and Cs, Li, Rb fluid) of pegmatite fluid-schist interactions. In both situations, B in the aqueous fluid from the pegmatite reacts with the schist breaking down sheet silicate "traps" for Cs, Rb, Li, and K and forming tourmaline-rich assemblages. ?? 1984.

  20. MAGNETIC NEUTRON SCATTERING

    SciTech Connect

    ZALIZNYAK,I.A.; LEE,S.H.

    2004-07-30

    Much of our understanding of the atomic-scale magnetic structure and the dynamical properties of solids and liquids was gained from neutron-scattering studies. Elastic and inelastic neutron spectroscopy provided physicists with an unprecedented, detailed access to spin structures, magnetic-excitation spectra, soft-modes and critical dynamics at magnetic-phase transitions, which is unrivaled by other experimental techniques. Because the neutron has no electric charge, it is an ideal weakly interacting and highly penetrating probe of matter's inner structure and dynamics. Unlike techniques using photon electric fields or charged particles (e.g., electrons, muons) that significantly modify the local electronic environment, neutron spectroscopy allows determination of a material's intrinsic, unperturbed physical properties. The method is not sensitive to extraneous charges, electric fields, and the imperfection of surface layers. Because the neutron is a highly penetrating and non-destructive probe, neutron spectroscopy can probe the microscopic properties of bulk materials (not just their surface layers) and study samples embedded in complex environments, such as cryostats, magnets, and pressure cells, which are essential for understanding the physical origins of magnetic phenomena. Neutron scattering is arguably the most powerful and versatile experimental tool for studying the microscopic properties of the magnetic materials. The magnitude of the cross-section of the neutron magnetic scattering is similar to the cross-section of nuclear scattering by short-range nuclear forces, and is large enough to provide measurable scattering by the ordered magnetic structures and electron spin fluctuations. In the half-a-century or so that has passed since neutron beams with sufficient intensity for scattering applications became available with the advent of the nuclear reactors, they have became indispensable tools for studying a variety of important areas of modern science

  1. Selective Hyaluronan-CD44 Signaling Promotes miRNA-21 Expression and Interacts with Vitamin D Function during Cutaneous Squamous Cell Carcinomas Progression Following UV Irradiation.

    PubMed

    Bourguignon, Lilly Y W; Bikle, Daniel

    2015-01-01

    Hyaluronan (HA), the major extracellular matrix component, is often anchored to CD44, a family of structurally/functionally important cell surface receptors. Recent results indicate that UV irradiation (UVR)-induced cutaneous squamous cell carcinomas (SCC) overexpress a variety of CD44 variant isoforms (CD44v), with different CD44v isoforms appear to confer malignant SCC properties. UVR also stimulates HA degradation in epidermal keratinocytes. Both large HA polymers and their UVR-induced catabolic products (small HA) selectively activate CD44-mediated cellular signaling in normal keratinocytes and SCC cells, with all of the downstream processes being mediated by RhoGTPases (e.g., Rac1 and Rho). Importantly, we found that the hormonally active form of vitamin D 1,25(OH)2D3 not only prevents the UVR-induced small HA activation of abnormal keratinocyte behavior and SCC progression, but also enhances large HA stimulation of normal keratinocyte activities and epidermal function(s). The aim of this hypothesis and theory article is to question whether matrix HA and its UVR-induced catabolic products (e.g., large and small HA) can selectively activate CD44-mediated cellular signaling such as GTPase (Rac and RhA) activation. We suggested that large HA-CD44 interaction promotes Rac-signaling and normal keratinocyte differentiation (lipid synthesis), DNA repair, and keratinocyte survival function. Conversely, small HA-CD44 interaction stimulates RhoA activation, NFκB/Stat-3 signaling, and miR-21 production, resulting in inflammation and proliferation as well as SCC progression. We also question whether vitamin D treatment displays any effect on small HA-CD44v-mediated RhoA signaling, inflammation, and SCC progression, as well as large HA-CD44-mediated differentiation, DNA repair, keratinocyte survival, and normal keratinocyte function. In addition, we discussed that the topical application of signaling perturbation agents (e.g., Y27623, a ROK inhibitor) may be used to treat

  2. Neutronic Design Studies for the National Spallation Neutron Source (NSNS)

    SciTech Connect

    Charlton, LA

    2001-08-01

    Neutronics analyses are now in progress to support initial selection of target system design features, materials, geometry, and component sizes for the proposed Spallation Neutron Source (SNS). Calculations have been performed to determine the neutron, proton, heavy ion, and gamma-ray flux spectra as a function of time, energy, and space for the major components of the target station (target, moderators, reflectors, etc.). These analyses were also performed to establish an initial set of performance characteristics for the neutron source. The methodology, reference performance characteristics, and results of initial optimization studies involving moderator poison plate location, target material performance, reflector performance, moderator position and premoderator performance for the target system are presented in this paper.

  3. Interaction between V-ATPase B2 and (Pro) renin Receptors in Promoting the progression of Renal Tubulointerstitial Fibrosis

    PubMed Central

    Liu, Yun; Zuo, Sujun; Li, Xiaoyan; Fan, Jinjin; Cao, Xueqin; Yu, Xueqing; Yang, Qiongqiong

    2016-01-01

    To investigate the levels of (Pro) renin receptor [(P) RR], α-smooth muscle actin (α-SMA), fibronectin (FN), and vacuolar H+-ATPase (V-ATPase) subunits (B2, E, and c) in rat unilateral ureteral obstruction (UUO) models and rat proximal tubular epithelial cells (NRK-52E) treated with prorenin to elucidate the role of V-ATPase in these processes by activating the (P) RR. UUO significantly upregulated (P) RR, V-ATPase subunits, α-SMA and FN expression in tubulointerstitium or tubular epithelial cells. A marked colocalization of (P) RR and the B2 subunit was also observed. Prorenin treatment upregulated α-SMA, FN, (P) RR, and V-ATPase subunits and activity in NRK52E cell in a dose- and time-dependent manner. The V-ATPase inhibitor bafilomycin A1 partially blocked prorenin-induced (P) RR, FN, and α-SMA expression. Co-immunoprecipitate and immunofluorescence results demonstrated that the V-ATPase B2 subunit bound to the (P) RR, which was upregulated after prorenin stimulation. Either siRNA-mediated (P) RR or B2 subunit knockdown partially reduced V-ATPase activity and attenuated prorenin-induced FN and α-SMA expression. From the data we can assume that activation of (P) RR and V-ATPase may play an important role in tubulointerstitial fibrosis with possible involvement of interaction of V-ATPase B2 subunit and (P)RR. PMID:27121029

  4. The ambiguous neutron

    NASA Astrophysics Data System (ADS)

    Hawes, Joan L.

    1980-09-01

    The ways in which a neutron may be described suggest that it is a particle; is a wave; has no electric charge; has a spin magnetic moment similar to that of an electron and a proton; is a stable fundamental unit of matter; and has a halflife of approximately 12 min. These are only some of the seemingly ambiguous properties of a very remarkable entity. Mostly-the machinations of wave mechanics notwithstanding-there seems little doubt that the neutron is imagined to be a particle. It is probably regarded as a very small, round, invisible object which has no electric charge and resides in the atomic nucleus. Indeed, the fact that without it stable nuclei cannot exist seems paradoxically allied to the statement that neither can radioactive ones. Again, a certain ambiguity is evident in the notion that any electrically neutral entity can show magnetic properties. And, if it is the force effects of the neutron that underline its role as a fundamental building brick of matter, how does it exert these forces and remain uncharged? Many of the solutions to these and other questions and propositions about the neutron are of relatively recent history; some still remain hidden-the precise nature of the neutron's forces of interaction for example. But the search to understanding lies in the same realm of patient experimental and theoretical enquiry that embodied its initial discovery by James Chadwick in 1932.

  5. Towards high efficiency solid-state thermal and fast neutron detectors

    NASA Astrophysics Data System (ADS)

    Danon, Y.; Clinton, J.; Huang, K. C.; LiCausi, N.; Dahal, R.; Lu, J. J. Q.; Bhat, I.

    2012-03-01

    Variety of applications of fast neutron detection utilize thermal neutron detectors and moderators. Examples include homeland security applications such as portal monitors and nuclear safeguards which employ passive systems for detection of fissile materials. These applications mostly rely on gas filled detectors such as 3He, BF3 or plastic scintillators and require high voltage for operation. Recently there was considerable progress in the development of solid-state neutron detectors. These operate by detection of charged particles emitted from neutron interactions with a converter material. In order to increase neutron detection efficiency to a usable level, the thickness of the converter material must exceed the range of the charged particles in the converter, which limits the efficiency of planar detectors to several percent. To overcome this limitation three dimensional structured solid-state devices are considered where the converter can be thicker but still allow the charged particles to escape into the semiconductor. In the research described here this was accomplished by a semiconductor device that resembles a honeycomb with hexagonal holes and thin silicon walls filled with the converter material. Such design can theoretically achieve about 45% thermal neutron detection efficiency, experimentally about 21% was observed with a partially filled detector. Such detectors can be fabricated in variety of sizes enabling designs of directional fast neutron detectors. Other converter materials that allow direct detection of fast neutrons were also considered by both simulation and experiments. Because the semiconductor thickness is less than a few hundred microns, the efficiency of these detectors to γ-ray(s) is very low. With further developments these new solid-state neutron detectors can replace gas ionization based detectors in most applications.

  6. Jumonji AT-rich interactive domain 1B overexpression is associated with the development and progression of glioma

    PubMed Central

    FANG, LIPING; ZHAO, JIUHAN; WANG, DAN; ZHU, LIYU; WANG, JIAN; JIANG, KUI

    2016-01-01

    Previous studies have suggested that jumonji AT-rich interactive domain 1B (JARID1B) plays an important role in the genesis of some types of cancer, and it is therefore considered to be an important drug target protein. Although the expression of JARID1B has been researched in some types of cancer, little is known about JARID1B expression in glioma and its function in the tumorigenesis of gliomas. In the present study, we examined the expression of JARID1B in glioma. In addition, RT-PCR, western blot analysis and immunohistochemical analysis were performed using glioma tissue samples and the results revealed that JARID1B expression increased according to the histological grade of glioma. However, in the normal brain tissue samples JARID1B expression was barely detected. Kaplan-Meier analysis revealed that higher JARID1B expression in patients with glioma was associated with a poorer prognosis. The overexpression of JARID1B stimulated the proliferation and migration of glioma cells as well as sphere formation, whereas suppressing the expression of JARID1B produced opposite effects. The overexpression of JARID1B increased the tumorigenicity of glioma cells in vivo in a nude mouse xenograft model of glioma. Moreover, the activation of phosphorylated (p-)Smad2 contributes to JARID1B-induced oncogenic activities. These findings suggest that JARID1B is involved in the pathogenesis of glioma, and that the downregulation of JARID1B in glioma cells may be a therapeutic target for the treatment of patients with glioma. PMID:27246838

  7. Molecular-level processes governing the interaction of contaminants with iron and manganese oxides. 1997 annual progress report

    SciTech Connect

    Chambers, S.A.; Brown, G.

    1997-06-01

    'The central tenet of this proposal is that a fundamental understanding of specific mineral surface-site reactivities will substantially improve reactive transport models of contaminants in geologic systems, and will allow more effective remediation schemes to be devised. Most large-scale, macroscopic models employ global chemical reaction kinetics and thermochemistry. However, such models do not incorporate molecular-level input critical to the detailed prediction of how contaminants interact with minerals in the subsurface. A first step leading to the incorporation of molecular-level processes in large-scale macroscopic models is the ability to understand which molecular-level processes will dominate the chemistry at the microscopic grain level of minerals. To this end, the research focuses on the fundamental mechanisms of redox chemistry at mineral surfaces. As much of this chemistry in sediments involves the Fe(III)/Fe(II) and Mn(IV)/Mn(II) couples, the authors focus on mineral phases containing these species. Of particular interest is the effect of the local coordination environment of Fe and Mn atoms on their reactivity toward contaminant species. Studies of the impact of local atomic structure on reactivity in combination with knowledge about the types and amounts of various surfaces on natural grain- size minerals provide the data for statistical models. These models in turn form the basis of the larger-scale macroscopic descriptions of reactivity that are needed for reactive transport models. A molecular-level understanding of these mechanisms will enhance the ability to design much greater performance efficiency, cost effectiveness, and remediation strategies that have minimal negative impact on the local environment. For instance, a comprehensive understanding of how minerals that contain Fe(II) reduce oxyanions and chlorinated organics should enable the design of other Fe(II)-containing remediation materials in a way that is synergistic with existing

  8. Jumonji AT-rich interactive domain 1B overexpression is associated with the development and progression of glioma.

    PubMed

    Fang, Liping; Zhao, Jiuhan; Wang, Dan; Zhu, Liyu; Wang, Jian; Jiang, Kui

    2016-07-01

    Previous studies have suggested that jumonji AT-rich interactive domain 1B (JARID1B) plays an important role in the genesis of some types of cancer, and it is therefore considered to be an important drug target protein. Although the expression of JARID1B has been researched in some types of cancer, little is known about JARID1B expression in glioma and its function in the tumorigenesis of gliomas. In the present study, we examined the expression of JARID1B in glioma. In addition, RT-PCR, western blot analysis and immunohistochemical analysis were performed using glioma tissue samples and the results revealed that JARID1B expression increased according to the histological grade of glioma. However, in the normal brain tissue samples JARID1B expression was barely detected. Kaplan‑Meier analysis revealed that higher JARID1B expression in patients with glioma was associated with a poorer prognosis. The overexpression of JARID1B stimulated the proliferation and migration of glioma cells as well as sphere formation, whereas suppressing the expression of JARID1B produced opposite effects. The overexpression of JARID1B increased the tumorigenicity of glioma cells in vivo in a nude mouse xenograft model of glioma. Moreover, the activation of phosphorylated (p-)Smad2 contributes to JARID1B-induced oncogenic activities. These findings suggest that JARID1B is involved in the pathogenesis of glioma, and that the downregulation of JARID1B in glioma cells may be a therapeutic target for the treatment of patients with glioma. PMID:27246838

  9. Adjusting to progress: interactions between the National Library of Medicine and health sciences librarians, 1961–2001*

    PubMed Central

    Humphreys, Betsy L.

    2002-01-01

    Most health sciences librarians would agree that the National Library of Medicine's (NLM's) leadership and its services have been highly beneficial to the field, but this does not prevent specific NLM actions—or lack of action—from being perceived as annoying or infuriating. Over the past forty years, NLM's interactions with health sciences librarians have been affected by significant additions to NLM's mission and services, the expansion of NLM's direct user groups, and the growing range of possible relationships between health sciences librarians and NLM. The greatest friction between NLM and health services librarians occurs when there is a fundamental change in the way NLM carries out its mission—a change that adds to the web of relationships that link librarians and NLM and prompts corresponding changes in the way other libraries do business. Between 1961 and 2001, there were two such fundamental changes: the implementation of the National Network of Libraries of Medicine and the development and promotion of services targeted toward individual health professionals. On a lesser scale, each new service that connects NLM and health sciences librarians is another potential source of irritation, ready to flare up when the service is interrupted, changed, or eliminated. Other factors—including strong personalities, mistakes, and poor communication—add to, but do not cause, the intermittent problems between NLM and its most longstanding and engaged user group. These problems are in essence the price we pay for the leadership and vision of NLM's directors and for NLM's success in developing excellent services and in enhancing them based on advice from librarians and other users. PMID:11838459

  10. NEUTRON SOURCE

    DOEpatents

    Bernander, N.K. et al.

    1960-10-18

    An apparatus is described for producing neutrons through target bombardment with deuterons. Deuterium gas is ionized by electron bombardment and the deuteron ions are accelerated through a magnetic field to collimate them into a continuous high intensity beam. The ion beam is directed against a deuteron pervious metal target of substantially the same nnaterial throughout to embed the deuterous therein and react them to produce neutrons. A large quantity of neutrons is produced in this manner due to the increased energy and quantity of ions bombarding the target.

  11. Characterization of HPGe gamma spectrometric detectors systems for Instrumental Neutron Activation Analysis (INAA) at the Colombian Geological Survey

    NASA Astrophysics Data System (ADS)

    Sierra, O.; Parrado, G.; Cañón, Y.; Porras, A.; Alonso, D.; Herrera, D. C.; Peña, M.; Orozco, J.

    2016-07-01

    This paper presents the progress made by the Neutron Activation Analysis (NAA) laboratory at the Colombian Geological Survey (SGC in its Spanish acronym), towards the characterization of its gamma spectrometric systems for Instrumental Neutron Activation Analysis (INAA), with the aim of introducing corrections to the measurements by variations in sample geometry. Characterization includes the empirical determination of the interaction point of gamma radiation inside the Germanium crystal, through the application of a linear model and the use of a fast Monte Carlo N-Particle (MCNP) software to estimate correction factors for differences in counting efficiency that arise from variations in sample density between samples and standards.

  12. LIFE: Recent Developments and Progress

    SciTech Connect

    Anklam, T M

    2011-04-08

    Test results from the NIF show excellent progress toward achieving ignition. Experiments designed to verify coupling of the laser energy to the fusion target have shown that the efficiency meets that needed for ignition. Several tests with the cryogenic targets needed for ignition have been performed, and world-record neutron output produced. The National Ignition Campaign is on schedule to meet its 2012 ignition milestone, with the next phase in the campaign due to start later this month. It has been a busy and very productive year. The NIF is in full 24/7 operations and has progressed markedly in the path toward ignition. The long-standing goal of the National Ignition Campaign to demonstrate ignition by the end of FY 2012 is on track. The LIFE plant design has matured considerably, and a delivery plan established based on close interactions with vendors. National-level reviews of fusion are underway, and are due to present initial findings later this year. A value proposition has been drafted for review. The LIFE project is ready to move into the delivery phase.

  13. Power Burst Facility/Boron Neutron Capture Therapy Program for Cancer Treatment: Volume 4, No. 4

    SciTech Connect

    Ackermann, A.L.; Dorn, R.V. III.

    1990-04-01

    Highlights of the Power Burst Facility Boron Neutron Capture Therapy (PBF/BNCT) Program during April 1990 include progress within the areas of: gross boron analysis in tissue, blood, and urine; analytical methodologies development for BSH (Borocaptate Sodium) purity determination; noninvasive boron quantitative determination; operator training was conducted and pharmacokinetic data obtained using a laboratory dog; dosimetry development continues on real-time neutron and gamma monitoring to provide treatment control capability; analytical radiation transport and interaction modeling for BNCT; large animal model studies; neutron source and facility preparation -- PBF upgrades, required for environmental, safety, and OSHA compliance, continue; administration and common support; and PBF operations -- training, safety, and preventive maintenance activities continue. 3 figs.

  14. Thermal neutron detection system

    DOEpatents

    Peurrung, Anthony J.; Stromswold, David C.

    2000-01-01

    According to the present invention, a system for measuring a thermal neutron emission from a neutron source, has a reflector/moderator proximate the neutron source that reflects and moderates neutrons from the neutron source. The reflector/moderator further directs thermal neutrons toward an unmoderated thermal neutron detector.

  15. Changes in subcellular localisation of MI-ER1α, a novel oestrogen receptor-α interacting protein, is associated with breast cancer progression

    PubMed Central

    McCarthy, P L; Mercer, F C; Savicky, M W J; Carter, B A; Paterno, G D; Gillespie, L L

    2008-01-01

    The oestrogen receptor-α (ERα) plays a key role in breast development and tumorigenesis and inhibiting its activity remains a prime strategy in the treatment of ERα-positive breast cancers. Thus, elucidation of the molecular mechanisms responsible for regulating ERα activity may facilitate the design of new, more effective breast cancer therapies. The MI-ER1α is a novel transcriptional repressor that contains an LXXLL motif for interaction with nuclear hormone receptors. We investigated the ability of MI-ER1α to bind to ERα in HEK293 and MCF-7 breast carcinoma cells, using co-immunoprecipitation assays. In both cell lines, MI-ER1α interacted with ERα in the presence and absence of oestrogen, but the interaction was stronger in the absence of ligand. Functional analysis revealed that overexpression of MI-ER1α in T47D breast carcinoma cells results in inhibition of oestrogen-stimulated anchorage-independent growth, suggesting that MI-ER1α may play a role in regulating breast carcinoma cell proliferation in vivo. To explore this further, we performed an immunohistochemical analysis of normal breast tissue and breast carcinoma; a total of 110 cases were examined in whole tissue sections and 771 cases were analysed in tissue microarrays. No consistent difference in the MI-ER1α expression level between normal breast tissue and breast carcinoma was discernible. However, there was a dramatic shift in the subcellular localisation: nuclear MI-ER1α was detectable in 75% of normal breast samples and in 77% of hyperplasia, but in breast carcinoma, only 51% of DCIS, 25% of ILC and 4% of IDC contained nuclear staining. This shift from nuclear to cytoplasmic localisation of MI-ER1α during breast cancer progression suggests that loss of nuclear MI-ER1α might contribute to the development of invasive breast carcinoma. PMID:18665173

  16. Research on fusion neutron sources

    NASA Astrophysics Data System (ADS)

    Gryaznevich, M. P.

    2012-06-01

    The use of fusion devices as powerful neutron sources has been discussed for decades. Whereas the successful route to a commercial fusion power reactor demands steady state stable operation combined with the high efficiency required to make electricity production economic, the alternative approach to advancing the use of fusion is free of many of complications connected with the requirements for economic power generation and uses the already achieved knowledge of Fusion physics and developed Fusion technologies. "Fusion for Neutrons" (F4N), has now been re-visited, inspired by recent progress achieved on comparably compact fusion devices, based on the Spherical Tokamak (ST) concept. Freed from the requirement to produce much more electricity than used to drive it, a fusion neutron source could be efficiently used for many commercial applications, and also to support the goal of producing energy by nuclear power. The possibility to use a small or medium size ST as a powerful or intense steady-state fusion neutron source (FNS) is discussed in this paper in comparison with the use of traditional high aspect ratio tokamaks. An overview of various conceptual designs of compact fusion neutron sources based on the ST concept is given and they are compared with a recently proposed Super Compact Fusion Neutron Source (SCFNS), with major radius as low as 0.5 metres but still able to produce several MW of neutrons in a steady-state regime.

  17. NEUTRONIC REACTOR

    DOEpatents

    Wade, E.J.

    1958-09-16

    This patent relates to a reflector means for a neutronic reactor. A reflector comprised of a plurality of vertically movable beryllium control members is provided surrounding the sides of the reactor core. An absorber of fast neutrons comprised of natural uramum surrounds the reflector. An absorber of slow neutrons surrounds the absorber of fast neutrons and is formed of a plurality of beryllium blocks having natural uranium members distributcd therethrough. in addition, a movable body is positioned directly below the core and is comprised of a beryllium reflector and an absorbing member attached to the botiom thereof, the absorbing member containing a substance selected from the goup consisting of natural urantum and Th/sup 232/.

  18. Neutron beam measurement dosimetry

    SciTech Connect

    Amaro, C.R.

    1995-11-01

    This report describes animal dosimetry studies and phantom measurements. During 1994, 12 dogs were irradiated at BMRR as part of a 4 fraction dose tolerance study. The animals were first infused with BSH and irradiated daily for 4 consecutive days. BNL irradiated 2 beagles as part of their dose tolerance study using BPA fructose. In addition, a dog at WSU was irradiated at BMRR after an infusion of BPA fructose. During 1994, the INEL BNCT dosimetry team measured neutron flux and gamma dose profiles in two phantoms exposed to the epithermal neutron beam at the BMRR. These measurements were performed as a preparatory step to the commencement of human clinical trials in progress at the BMRR.

  19. Determination of the cross section of the proton, pion and neutron inelastic interaction with lead and carbon nuclei at 0.5 - 5.0 TeV energies (PION experiment)

    NASA Technical Reports Server (NTRS)

    Keropian, M. I.; Martirosov, R. M.; Avakian, V. V.; Karagjozian, G. V.; Mamidjanian, E. A.; Ovsepian, G. G.; Sokhoyan, S. O.

    1985-01-01

    Experimental results on the cross section of the single pion, proton and neutron inelastic interaction with carbon and lead nuclei in the 0.5 to 5.0 TeV energy interval obtained on the PION installation (Mount Aragats, Armenia, 3250 m) are presented. For this purpose the (N pi)/(N p) and inelastic (p Fe)/(pi Fe) ratios measured directly on the installation as well as the calculated inelastic (p A)/(pi A) dependence on the target nucleus atomic numbers were used.

  20. NEUTRONIC REACTOR

    DOEpatents

    Fraas, A.P.; Mills, C.B.

    1961-11-21

    A neutronic reactor in which neutron moderation is achieved primarily in its reflector is described. The reactor structure consists of a cylindrical central "island" of moderator and a spherical moderating reflector spaced therefrom, thereby providing an annular space. An essentially unmoderated liquid fuel is continuously passed through the annular space and undergoes fission while contained therein. The reactor, because of its small size, is particularly adapted for propulsion uses, including the propulsion of aircraft. (AEC)

  1. NEUTRON SOURCES

    DOEpatents

    Richmond, J.L.; Wells, C.E.

    1963-01-15

    A neutron source is obtained without employing any separate beryllia receptacle, as was formerly required. The new method is safer and faster, and affords a source with both improved yield and symmetry of neutron emission. A Be container is used to hold and react with Pu. This container has a thin isolating layer that does not obstruct the desired Pu--Be reaction and obviates procedures previously employed to disassemble and remove a beryllia receptacle. (AEC)

  2. NEUTRONIC REACTOR

    DOEpatents

    Wigner, E.P.

    1958-04-22

    A nuclear reactor for isotope production is described. This reactor is designed to provide a maximum thermal neutron flux in a region adjacent to the periphery of the reactor rather than in the center of the reactor. The core of the reactor is generally centrally located with respect tn a surrounding first reflector, constructed of beryllium. The beryllium reflector is surrounded by a second reflector, constructed of graphite, which, in tune, is surrounded by a conventional thermal shield. Water is circulated through the core and the reflector and functions both as a moderator and a coolant. In order to produce a greatsr maximum thermal neutron flux adjacent to the periphery of the reactor rather than in the core, the reactor is designed so tbat the ratio of neutron scattering cross section to neutron absorption cross section averaged over all of the materials in the reflector is approximately twice the ratio of neutron scattering cross section to neutron absorption cross section averaged over all of the material of the core of the reactor.

  3. Superdense neutron matter

    NASA Technical Reports Server (NTRS)

    Canuto, V.; Datta, B.; Kalman, G.

    1978-01-01

    A relativistic theory of high-density matter is presented which takes into account the short-range interaction due to the exchange of spin-2 mesons. An equation of state is derived and used to compute neutron-star properties. The prediction of the theory for the values of maximum mass and moment of inertia for a stable neutron star are 1.75 solar masses and 1.68 by 10 to the 45th power g-sq cm, in very good agreement with the presently known observational bounds. The corresponding radius is found to be 10.7 km. It is found that the inclusion of the spin-2 interaction reduces the disagreement between the relativistic and nonrelativistic theories in their predictions of masses and moments of inertia.

  4. FOREWORD: Neutron metrology Neutron metrology

    NASA Astrophysics Data System (ADS)

    Thomas, David J.; Nolte, Ralf; Gressier, Vincent

    2011-12-01

    The International Committee for Weights and Measures (CIPM) has consultative committees covering various areas of metrology. The Consultative Committee for Ionizing Radiation (CCRI) differs from the others in having three sections: Section (I) deals with radiation dosimetry, Section (II) with radionuclide metrology and Section (III) with neutron metrology. In 2003 a proposal was made to publish special issues of Metrologia covering the work of the three Sections. Section (II) was the first to complete their task, and their special issue was published in 2007, volume 44(4). This was followed in 2009 by the special issue on radiation dosimetry, volume 46(2). The present issue, volume 48(6), completes the trilogy and attempts to explain neutron metrology, the youngest of the three disciplines, the neutron only having been discovered in 1932, to a wider audience and to highlight the relevance and importance of this field. When originally approached with the idea of this special issue, Section (III) immediately saw the value of a publication specifically on neutron metrology. It is a topic area where papers tend to be scattered throughout the literature in journals covering, for example, nuclear instrumentation, radiation protection or radiation measurements in general. Review articles tend to be few. People new to the field often ask for an introduction to the various topics. There are some excellent older textbooks, but these are now becoming obsolete. More experienced workers in specific areas of neutron metrology can find it difficult to know the latest position in related areas. The papers in this issue attempt, without presenting a purely historical outline, to describe the field in a sufficiently logical way to provide the novice with a clear introduction, while being sufficiently up-to-date to provide the more experienced reader with the latest scientific developments in the different topic areas. Neutron radiation fields obviously occur throughout the nuclear

  5. FOREWORD: Neutron metrology Neutron metrology

    NASA Astrophysics Data System (ADS)

    Thomas, David J.; Nolte, Ralf; Gressier, Vincent

    2011-12-01

    The International Committee for Weights and Measures (CIPM) has consultative committees covering various areas of metrology. The Consultative Committee for Ionizing Radiation (CCRI) differs from the others in having three sections: Section (I) deals with radiation dosimetry, Section (II) with radionuclide metrology and Section (III) with neutron metrology. In 2003 a proposal was made to publish special issues of Metrologia covering the work of the three Sections. Section (II) was the first to complete their task, and their special issue was published in 2007, volume 44(4). This was followed in 2009 by the special issue on radiation dosimetry, volume 46(2). The present issue, volume 48(6), completes the trilogy and attempts to explain neutron metrology, the youngest of the three disciplines, the neutron only having been discovered in 1932, to a wider audience and to highlight the relevance and importance of this field. When originally approached with the idea of this special issue, Section (III) immediately saw the value of a publication specifically on neutron metrology. It is a topic area where papers tend to be scattered throughout the literature in journals covering, for example, nuclear instrumentation, radiation protection or radiation measurements in general. Review articles tend to be few. People new to the field often ask for an introduction to the various topics. There are some excellent older textbooks, but these are now becoming obsolete. More experienced workers in specific areas of neutron metrology can find it difficult to know the latest position in related areas. The papers in this issue attempt, without presenting a purely historical outline, to describe the field in a sufficiently logical way to provide the novice with a clear introduction, while being sufficiently up-to-date to provide the more experienced reader with the latest scientific developments in the different topic areas. Neutron radiation fields obviously occur throughout the nuclear

  6. Pair correlations in neutron-rich nuclei

    SciTech Connect

    Esbensen, H.

    1995-08-01

    We started a program to study the ground-state properties of heavy, neutron-rich nuclei using the Hartree-Fock-Bogolyubov (HFB) approximation. This appears at present to be the most realistic approach for heavy nuclei that contain many loosely bound valence neutrons. The two-neutron density obtained in this approach can be decomposed into two components, one associated with the mean field and one associated with the pairing field. The latter has a structure that is quite similar to the pair-density obtained by diagonalizing the Hamiltonian for a two-neutron halo, which was studied earlier. This allows comparison of the HFB solutions against numerically exact solutions for two-neutron halos. This work is in progress. We intend to apply the HFB method to predict the ground-state properties of heavier, more neutron-rich nuclei that may be produced at future radioactive beam facilities.

  7. Cold Neutrons Trapped in External Fields

    SciTech Connect

    Gandolfi, S.; Carlson, J.; Pieper, Steven C.

    2011-01-07

    The properties of inhomogeneous neutron matter are crucial to the physics of neutron-rich nuclei and the crust of neutron stars. Advances in computational techniques now allow us to accurately determine the binding energies and densities of many neutrons interacting via realistic microscopic interactions and confined in external fields. We perform calculations for different external fields and across several shells to place important constraints on inhomogeneous neutron matter, and hence the large isospin limit of the nuclear energy density functionals that are used to predict properties of heavy nuclei and neutron star crusts. We find important differences between microscopic calculations and current density functionals; in particular, the isovector gradient terms are significantly more repulsive than in traditional models, and the spin-orbit and pairing forces are comparatively weaker.

  8. Cold neutrons trapped in external fields.

    SciTech Connect

    Gandolfi, S.; Carlson, J.; Pieper, S. C.

    2011-01-05

    The properties of inhomogeneous neutron matter are crucial to the physics of neutron-rich nuclei and the crust of neutron stars. Advances in computational techniques now allow us to accurately determine the binding energies and densities of many neutrons interacting via realistic microscopic interactions and confined in external fields. We perform calculations for different external fields and across several shells to place important constraints on inhomogeneous neutron matter, and hence the large isospin limit of the nuclear energy density functionals that are used to predict properties of heavy nuclei and neutron star crusts. We find important differences between microscopic calculations and current density functionals; in particular, the isovector gradient terms are significantly more repulsive than in traditional models, and the spin-orbit and pairing forces are comparatively weaker.

  9. Long Range Interaction Between Protein Complexes in DNA Controls Replication and Cell Cycle Progression:. the Double Helix and Microtubules Behave like Elastically Braced Strings

    NASA Astrophysics Data System (ADS)

    Matsson, L.

    2001-09-01

    A nonstationary interaction model, that controls the gross behaviour of DNA replication and cell cycle progression, is derived in terms of manydody physics in a chemically open T cell. The model predicts a long range force F(φ) = - (κ/2) φ(1 - φ /N)(2 - φ /N) between the origin recognition complexes (ORCs) bound by DNA, φ being the number of ORCs, N the threshold for initiation, and κ the compressibility modulus in the lattice of ORCs which behaves like an elastically braced string. Initiation of DNA replication is induced by a switch of sign of F, from attraction (-) and assembly in the G1 phase (0 < φ < N), to repulsion (+) and partial disassembly in the S phase (N < φ < 2N), with release of licensing factors from pre-replication complexes (pre-RCs) and prevention of re-replication. Termination of replication is due to a vanishing of F at φ = 2N, when all primed replicons have been duplicated once, and F(0) = 0 corresponds to a resting cell in absence of a driving force at φ = 0. The switch of sign of F at φ = N also explains the dynamic instability in growing microtubules (MTs), as well as the switch in the interleukin-2 (IL2) interaction with its receptor in late G1, at the R-point, after which a T cell proceeds to replication without further exposure to IL2. Shape, slope and scale of the response curves derived agree well with data from dividing T cells and polymerizing MTs, the variable length of which is due to a nonlinear dependence on initial concentrations of guanosine-triphosphate (GTP) and tubulin dimers.

  10. Mdt1, a Novel Rad53 FHA1 Domain-Interacting Protein, Modulates DNA Damage Tolerance and G2/M Cell Cycle Progression in Saccharomyces cerevisiae

    PubMed Central

    Pike, Brietta L.; Yongkiettrakul, Suganya; Tsai, Ming-Daw; Heierhorst, Jörg

    2004-01-01

    The Rad53 kinase plays a central role in yeast DNA damage checkpoints. Rad53 contains two FHA phosphothreonine-binding domains that are required for Rad53 activation and possibly downstream signaling. Here we show that the N-terminal Rad53 FHA1 domain interacts with the RNA recognition motif, coiled-coil, and SQ/TQ cluster domain-containing protein Mdt1 (YBl051C). The interaction of Rad53 and Mdt1 depends on the structural integrity of the FHA1 phosphothreonine-binding site as well as threonine-305 of Mdt1. Mdt1 is constitutively threonine phosphorylated and hyperphosphorylated in response to DNA damage in vivo. DNA damage-dependent Mdt1 hyperphosphorylation depends on the Mec1 and Tel1 checkpoint kinases, and Mec1 can directly phosphorylate a recombinant Mdt1 SQ/TQ domain fragment. MDT1 overexpression is synthetically lethal with a rad53 deletion, whereas mdt1 deletion partially suppresses the DNA damage hypersensitivity of checkpoint-compromised strains and generally improves DNA damage tolerance. In the absence of DNA damage, mdt1 deletion leads to delayed anaphase completion, with an elongated cell morphology reminiscent of that of G2/M cell cycle mutants. mdt1-dependent and DNA damage-dependent cell cycle delays are not additive, suggesting that they act in the same pathway. The data indicate that Mdt1 is involved in normal G2/M cell cycle progression and is a novel target of checkpoint-dependent cell cycle arrest pathways. PMID:15024067

  11. Neutron dosimetry in boron neutron capture therapy

    SciTech Connect

    Fairchild, R.G.; Miola, U.J.; Ettinger, K.V.

    1981-01-01

    The recent development of various borated compounds and the utilization of one of these (Na/sub 2/B/sub 12/H/sub 11/SH) to treat brain tumors in clinical studies in Japan has renewed interest in neutron capture therapy. In these procedures thermal neutrons interact with /sup 10/B in boron containing cells through the /sup 10/B(n,..cap alpha..)/sup 7/Li reaction producing charged particles with a maximum range of approx. 10..mu..m in tissue. Borated analogs of chlorpromazine, porphyrin, thiouracil and deoxyuridine promise improved tumor uptake and blood clearance. The therapy beam from the Medical Research Reactor in Brookhaven contains neutrons from a modified and filtered fission spectrum and dosimetric consequences of the use of the above mentioned compounds in conjunction with thermal and epithermal fluxes are discussed in the paper. One of the important problems of radiation dosimetry in capture therapy is determination of the flux profile and, hence, the dose profile in the brain. This has been achieved by constructing a brain phantom made of TE plastic. The lyoluminescence technique provides a convenient way of monitoring the neutron flux distributions; the detectors for this purpose utilize /sup 6/Li and /sup 10/B compounds. Such compounds have been synthesized specially for the purpose of dosimetry of thermal and epithermal beams. In addition, standard lyoluminescent phosphors, like glutamine, could be used to determine the collisional component of the dose as well as the contribution of the /sup 14/N(n,p)/sup 14/C reaction. Measurements of thermal flux were compared with calculations and with measurements done with activation foils.

  12. Neutron scatter studies of chromatin structures related to functions

    SciTech Connect

    Bradbury, E.M.

    1992-01-01

    We have made considerable progress in chromatin reconstitution with very lysine rich histone H1/H5 and in understanding the dynamics of nucleosomes. A ferromagnetic fluid was developed to align biological molecules for structural studies using small-angle-neutron-scattering. We have also identified and characterized in intrinsically bent DNA region flaking the RNA polymerase I binding site of the ribosomal RNA gene in Physarum Polycephalum. Finally projects in progress are in the areas of studying the interactions of histone H4 amino-terminus peptide 1-23 and acetylated 1-23 peptide with DNA using thermal denaturation; study of GGAAT repeats found in human centromeres using high resolution Nuclear Magnetic Resonance and nuclease sentivity assay; and the role of histones and other sperm specific proteins with sperm chromatin.

  13. Development of small-bore, high-current-density railgun as testbed for study of plasma-materials interaction. Progress report for October 16,2000 - May 13, 2003

    SciTech Connect

    Kim, Kyekyoon

    2003-05-14

    The present document is a final technical report summarizing the progress made during 10/16/2000 - 05/13/2003 toward the development of a small-bore railgun with transaugmentation as a testbed for investigating plasma-materials interaction.

  14. New thermal neutron capture therapy for malignant melanoma: melanogenesis-seeking 10B molecule-melanoma cell interaction from in vitro to first clinical trial

    SciTech Connect

    Mishima, Y.; Ichihashi, M.; Hatta, S.; Honda, C.; Yamamura, K.; Nakagawa, T. )

    1989-07-01

    Human melanoma regression by single thermal neutron capture therapy (NCT) using melanoma-seeking 10B compounds has been achieved. Since 1972, the aim of my team has been to synthesize tumor-seeking 10B-compounds possessing selective affinity for specific metabolic activity of the target cancer cells. Once the melanoma takes up these 10B compounds, thermal neutrons, which cause insignificant cell damage, are easily absorbed by nonradioactive 10B, inducing the 10B(n, alpha)7Li reaction and releasing the high LET particles to 14 mu melanoma cell diameter, destroying the tumor without damaging surrounding tissue. Radiobiological and preclinical studies culminated in the first successful human NCT treatment, with no recurrence of the treated melanoma since July, 1987.23 references.

  15. Aerial Neutron Detection: Neutron Signatures for Nonproliferation and Emergency Response Applications

    SciTech Connect

    Maurer, Richard J.; Stampahar, Thomas G.; Smith, Ethan X.; Mukhopadhyay, Sanjoy; Wolff, Ronald S.; Rourke, Timothy J.; LeDonne, Jeffrey P.; Avaro, Emanuele; Butler, D. Andre; Borders, Kevin L.; Stampahar, Jezabel; Schuck, William H.; Selfridge, Thomas L.; McKissack, Thomas M.; Duncan, William W.; Hendricks, Thane J.

    2012-10-17

    From 2007 to the present, the Remote Sensing Laboratory has been conducting a series of studies designed to expand our fundamental understanding of aerial neutron detection with the goal of designing an enhanced sensitivity detection system for long range neutron detection. Over 35 hours of aerial measurements in a helicopter were conducted for a variety of neutron emitters such as neutron point sources, a commercial nuclear power reactor, nuclear reactor spent fuel in dry cask storage, depleted uranium hexafluoride and depleted uranium metal. The goals of the project were to increase the detection sensitivity of our instruments such that a 5.4 × 104 neutron/second source could be detected at 100 feet above ground level at a speed of 70 knots and to enhance the long-range detection sensitivity for larger neutron sources, i.e., detection ranges above 1000 feet. In order to increase the sensitivity of aerial neutron detection instruments, it is important to understand the dynamics of the neutron background as a function of altitude. For aerial neutron detection, studies have shown that the neutron background primarily originates from above the aircraft, being produced in the upper atmosphere by galactic cosmic-ray interactions with air molecules. These interactions produce energetic neutrons and charged particles that cascade to the earth’s surface, producing additional neutrons in secondary collisions. Hence, the neutron background increases as a function of altitude which is an impediment to long-range neutron detection. In order to increase the sensitivity for long range detection, it is necessary to maintain a low neutron background as a function of altitude. Initial investigations show the variation in the neutron background can be decreased with the application of a cosmic-ray shield. The results of the studies along with a representative data set are presented.

  16. Optimization of neutron source

    SciTech Connect

    Hooper, E.B.

    1993-11-09

    I consider here the optimization of the two component neutron source, allowing beam species and energy to vary. A simple model is developed, based on the earlier publications, that permits the optimum to be obtained simply. The two component plasma, with one species of hot ion (D{sup +} or T{sup +}) and the complementary species of cold ion, is easy to analyze in the case of a spatially uniform cold plasma, as to good approximation the total number of hot ions is important but not their spatial distribution. Consequently, the optimization can ignore spatial effects. The problem of a plasma with both types of hot ions and cold ions is rather more difficult, as the neutron production by hot-hot interactions is sensitive to their spatial distributions. Consequently, consideration of this problem will be delayed to a future memorandum. The basic model is that used in the published articles on the two-component, beam-plasma mirror source. I integrate the Fokker-Planck equation analytically, obtaining good agreement with previous numerical results. This simplifies the optimization, by providing a functional form for the neutron production. The primary result is expressed in terms of the power efficiency: watts of neutrons/watts of primary power. The latter includes the positive ion neutralization efficiency. At 150 keV, the present model obtains an efficiency of 0.66%, compared with 0.53% of the earlier calculation.

  17. Small Angle Neutron Scattering

    SciTech Connect

    Urban, Volker S

    2012-01-01

    Small Angle Neutron Scattering (SANS) probes structural details at the nanometer scale in a non-destructive way. This article gives an introduction to scientists who have no prior small-angle scattering knowledge, but who seek a technique that allows elucidating structural information in challenging situations that thwart approaches by other methods. SANS is applicable to a wide variety of materials including metals and alloys, ceramics, concrete, glasses, polymers, composites and biological materials. Isotope and magnetic interactions provide unique methods for labeling and contrast variation to highlight specific structural features of interest. In situ studies of a material s responses to temperature, pressure, shear, magnetic and electric fields, etc., are feasible as a result of the high penetrating power of neutrons. SANS provides statistical information on significant structural features averaged over the probed sample volume, and one can use SANS to quantify with high precision the structural details that are observed, for example, in electron microscopy. Neutron scattering is non-destructive; there is no need to cut specimens into thin sections, and neutrons penetrate deeply, providing information on the bulk material, free from surface effects. The basic principles of a SANS experiment are fairly simple, but the measurement, analysis and interpretation of small angle scattering data involves theoretical concepts that are unique to the technique and that are not widely known. This article includes a concise description of the basics, as well as practical know-how that is essential for a successful SANS experiment.

  18. Neutron detection and characterization for non-proliferation applications using 3D computer optical memories [Use of 3D optical computer memory for radiation detectors/dosimeters. Final progress report

    SciTech Connect

    Gary W. Phillips

    2000-12-20

    We have investigated 3-dimensional optical random access memory (3D-ORAM) materials for detection and characterization of charged particles of neutrons by detecting tracks left by the recoil charged particles produced by the neutrons. We have characterized the response of these materials to protons, alpha particles and carbon-12 nuclei as a functions of dose and energy. We have observed individual tracks using scanning electron microscopy and atomic force microscopy. We are investigating the use of neural net analysis to characterize energetic neutron fields from their track structure in these materials.

  19. NEUTRONIC REACTOR

    DOEpatents

    Hurwitz, H. Jr.; Brooks, H.; Mannal, C.; Payne, J.H.; Luebke, E.A.

    1959-03-24

    A reactor of the heterogeneous, liquid cooled type is described. This reactor is comprised of a central region of a plurality of vertically disposed elongated tubes surrounded by a region of moderator material. The central region is comprised of a central core surrounded by a reflector region which is surrounded by a fast neutron absorber region, which in turn is surrounded by a slow neutron absorber region. Liquid sodium is used as the primary coolant and circulates through the core which contains the fuel elements. Control of the reactor is accomplished by varying the ability of the reflector region to reflect neutrons back into the core of the reactor. For this purpose the reflector is comprised of moderator and control elements having varying effects on reactivity, the control elements being arranged and actuated by groups to give regulation, shim, and safety control.

  20. High-pressure neutron diffraction

    SciTech Connect

    Xu, Hongwu

    2011-01-10

    This lecture will cover progress and prospect of applications of high-pressure neutron diffraction techniques to Earth and materials sciences. I will first introduce general high-pressure research topics and available in-situ high-pressure techniques. Then I'll talk about high-pressure neutron diffraction techniques using two types of pressure cells: fluid-driven and anvil-type cells. Lastly, I will give several case studies using these techniques, particularly, those on hydrogen-bearing materials and magnetic transitions.

  1. Neutron therapy of cancer

    NASA Technical Reports Server (NTRS)

    Frigerio, N. A.; Nellans, H. N.; Shaw, M. J.

    1969-01-01

    Reports relate applications of neutrons to the problem of cancer therapy. The biochemical and biophysical aspects of fast-neutron therapy, neutron-capture and neutron-conversion therapy with intermediate-range neutrons are presented. Also included is a computer program for neutron-gamma radiobiology.

  2. A slow neutron polarimeter for the measurement of parity-odd neutron rotary power

    NASA Astrophysics Data System (ADS)

    Snow, W. M.; Anderson, E.; Barrón-Palos, L.; Bass, C. D.; Bass, T. D.; Crawford, B. E.; Crawford, C.; Dawkins, J. M.; Esposito, D.; Fry, J.; Gardiner, H.; Gan, K.; Haddock, C.; Heckel, B. R.; Holley, A. T.; Horton, J. C.; Huffer, C.; Lieffers, J.; Luo, D.; Maldonado-Velázquez, M.; Markoff, D. M.; Micherdzinska, A. M.; Mumm, H. P.; Nico, J. S.; Sarsour, M.; Santra, S.; Sharapov, E. I.; Swanson, H. E.; Walbridge, S. B.; Zhumabekova, V.

    2015-05-01

    We present the design, description, calibration procedure, and an analysis of systematic effects for an apparatus designed to measure the rotation of the plane of polarization of a transversely polarized slow neutron beam as it passes through unpolarized matter. This device is the neutron optical equivalent of a crossed polarizer/analyzer pair familiar from light optics. This apparatus has been used to search for parity violation in the interaction of polarized slow neutrons in matter. Given the brightness of existing slow neutron sources, this apparatus is capable of measuring a neutron rotary power of dϕ/dz = 1 × 10-7 rad/m.

  3. A slow neutron polarimeter for the measurement of parity-odd neutron rotary power

    SciTech Connect

    Snow, W. M.; Anderson, E.; Bass, T. D.; Dawkins, J. M.; Fry, J.; Haddock, C.; Horton, J. C.; Luo, D.; Micherdzinska, A. M.; Walbridge, S. B.; Barrón-Palos, L.; Maldonado-Velázquez, M.; Bass, C. D.; Crawford, B. E.; Crawford, C.; Esposito, D.; Gardiner, H.; Gan, K.; Heckel, B. R.; Swanson, H. E. [University of Washington and others

    2015-05-15

    We present the design, description, calibration procedure, and an analysis of systematic effects for an apparatus designed to measure the rotation of the plane of polarization of a transversely polarized slow neutron beam as it passes through unpolarized matter. This device is the neutron optical equivalent of a crossed polarizer/analyzer pair familiar from light optics. This apparatus has been used to search for parity violation in the interaction of polarized slow neutrons in matter. Given the brightness of existing slow neutron sources, this apparatus is capable of measuring a neutron rotary power of dϕ/dz = 1 × 10{sup −7} rad/m.

  4. A slow neutron polarimeter for the measurement of parity-odd neutron rotary power.

    PubMed

    Snow, W M; Anderson, E; Barrón-Palos, L; Bass, C D; Bass, T D; Crawford, B E; Crawford, C; Dawkins, J M; Esposito, D; Fry, J; Gardiner, H; Gan, K; Haddock, C; Heckel, B R; Holley, A T; Horton, J C; Huffer, C; Lieffers, J; Luo, D; Maldonado-Velázquez, M; Markoff, D M; Micherdzinska, A M; Mumm, H P; Nico, J S; Sarsour, M; Santra, S; Sharapov, E I; Swanson, H E; Walbridge, S B; Zhumabekova, V

    2015-05-01

    We present the design, description, calibration procedure, and an analysis of systematic effects for an apparatus designed to measure the rotation of the plane of polarization of a transversely polarized slow neutron beam as it passes through unpolarized matter. This device is the neutron optical equivalent of a crossed polarizer/analyzer pair familiar from light optics. This apparatus has been used to search for parity violation in the interaction of polarized slow neutrons in matter. Given the brightness of existing slow neutron sources, this apparatus is capable of measuring a neutron rotary power of dϕ/dz = 1 × 10(-7) rad/m. PMID:26026552

  5. Dependence on neutron energy of neutron-induced peaks in Ge detectors

    NASA Astrophysics Data System (ADS)

    Gete, E.; Measday, David F.; Moftah, B. A.; Saliba, M. A.; Stocki, Trevor J.

    1997-02-01

    We have studied the peak shapes at 596 and 691 KeV resulting from fast neutron interactions inside germanium detectors. We have used neutrons from a 252Cf source, as well as from the 28Si((mu) -, nv), and 209Bi((pi) -, xn) reactions to compare the peaks and to check for any dependence of peak shape on the incoming neutron energy. In our investigation, no dependence of these peak shapes on the neutron energy spectra has been observed. In a comparison of these peak shapes with other studies we found similar results to ours except for monoenergetic neutron irradiations from 1 to 8 MeV.

  6. NEUTRON SOURCE

    DOEpatents

    Foster, J.S. Jr.

    1960-04-19

    A compact electronic device capable of providing short time high density outputs of neutrons is described. The device of the invention includes an evacuated vacuum housing adapted to be supplied with a deuterium, tritium, or other atmosphere and means for establishing an electrical discharge along a path through the gas. An energized solenoid is arranged to constrain the ionized gas (plasma) along the path. An anode bearing adsorbed or adherent target material is arranged to enclose the constrained plasma. To produce neutrons a high voltage is applied from appropriate supply means between the plasma and anode to accelerate ions from the plasma to impinge upcn the target material, e.g., comprising deuterium.

  7. NEUTRONIC REACTOR

    DOEpatents

    Wigner, E.P.; Weinberg, A.W.; Young, G.J.

    1958-04-15

    A nuclear reactor which uses uranium in the form of elongated tubes as fuel elements and liquid as a coolant is described. Elongated tubular uranium bodies are vertically disposed in an efficient neutron slowing agent, such as graphite, for example, to form a lattice structure which is disposed between upper and lower coolant tanks. Fluid coolant tubes extend through the uranium bodies and communicate with the upper and lower tanks and serve to convey the coolant through the uranium body. The reactor is also provided with means for circulating the cooling fluid through the coolant tanks and coolant tubes, suitable neutron and gnmma ray shields, and control means.

  8. Measuring neutron spectra in radiotherapy using the nested neutron spectrometer

    SciTech Connect

    Maglieri, Robert Evans, Michael; Seuntjens, Jan; Kildea, John; Licea, Angel

    2015-11-15

    Purpose: Out-of-field neutron doses resulting from photonuclear interactions in the head of a linear accelerator pose an iatrogenic risk to patients and an occupational risk to personnel during radiotherapy. To quantify neutron production, in-room measurements have traditionally been carried out using Bonner sphere systems (BSS) with activation foils and TLDs. In this work, a recently developed active detector, the nested neutron spectrometer (NNS), was tested in radiotherapy bunkers. Methods: The NNS is designed for easy handling and is more practical than the traditional BSS. Operated in current-mode, the problem of pulse pileup due to high dose-rates is overcome by measuring current, similar to an ionization chamber. In a bunker housing a Varian Clinac 21EX, the performance of the NNS was evaluated in terms of reproducibility, linearity, and dose-rate effects. Using a custom maximum-likelihood expectation–maximization algorithm, measured neutron spectra at various locations inside the bunker were then compared to Monte Carlo simulations of an identical setup. In terms of dose, neutron ambient dose equivalents were calculated from the measured spectra and compared to bubble detector neutron dose equivalent measurements. Results: The NNS-measured spectra for neutrons at various locations in a treatment room were found to be consistent with expectations for both relative shape and absolute magnitude. Neutron fluence-rate decreased with distance from the source and the shape of the spectrum changed from a dominant fast neutron peak near the Linac head to a dominant thermal neutron peak in the moderating conditions of the maze. Monte Carlo data and NNS-measured spectra agreed within 30% at all locations except in the maze where the deviation was a maximum of 40%. Neutron ambient dose equivalents calculated from the authors’ measured spectra were consistent (one standard deviation) with bubble detector measurements in the treatment room. Conclusions: The NNS may

  9. Solid State Division progress report, September 30, 1981

    SciTech Connect

    Not Available

    1982-04-01

    Progress made during the 19 months from March 1, 1980, through September 30, 1981, is reported in the following areas: theoretical solid state physics (surfaces, electronic and magnetic properties, particle-solid interactions, and laser annealing); surface and near-surface properties of solids (plasma materials interactions, ion-solid interactions, pulsed laser annealing, and semiconductor physics and photovoltaic conversion); defects in solids (radiation effects, fracture, and defects and impurities in insulating crystals); transport properties of solids (fast-ion conductors, superconductivity, and physical properties of insulating materials); neutron scattering (small-angle scattering, lattice dynamics, and magnetic properties); crystal growth and characterization (nuclear waste forms, ferroelectric mateirals, high-temperature materials, and special materials); and isotope research materials. Publications and papers are listed. (WHK)

  10. NEUTRONIC REACTOR

    DOEpatents

    Wigner, E.P.

    1960-09-27

    A unit assembly is described for a neutronic reactor comprising a tube and plurality of spaced parallel sandwiches in the tube extending lengthwise thereof, each sandwich including a middle plate having a central opening for plutonium and other openings for fertile material at opposite ends of the plate.

  11. Neutronic reactor

    DOEpatents

    Carleton, John T.

    1977-01-25

    A graphite-moderated nuclear reactor includes channels between blocks of graphite and also includes spacer blocks between adjacent channeled blocks with an axis of extension normal to that of the axis of elongation of the channeled blocks to minimize changes in the physical properties of the graphite as a result of prolonged neutron bombardment.

  12. Neutron Scattering Stiudies

    SciTech Connect

    Kegel, Gunter H.R.; Egan, James J

    2007-04-18

    This project covers four principal areas of research: Elastic and inelastic neutron scattering studies in odd-A terbium, thulium and other highly deformed nuclei near A=160 with special regard to interband transitions and to the investigation of the direct-interaction versus the compound-nucleus excitation process in these nuclei. Examination of new, fast photomultiplier tubes suitable for use in a miniaturized neutron-time-of-flight spectrometer. Measurement of certain inelastic cross sections of 238U. Determination of the multiplicity of prompt fission gamma rays in even-A fissile actinides. Energies and mean lives of fission isomers produced by fast fission of even-Z, even-A actinides. Study of the mean life of 7Be in different host matrices and its possible astro-physical significance.

  13. Neutron Imaging Camera

    NASA Technical Reports Server (NTRS)

    Hunter, Stanley D.; DeNolfo, Georgia; Floyd, Sam; Krizmanic, John; Link, Jason; Son, Seunghee; Guardala, Noel; Skopec, Marlene; Stark, Robert

    2008-01-01

    We describe the Neutron Imaging Camera (NIC) being developed for DTRA applications by NASA/GSFC and NSWC/Carderock. The NIC is based on the Three-dimensional Track Imager (3-DTI) technology developed at GSFC for gamma-ray astrophysics applications. The 3-DTI, a large volume time-projection chamber, provides accurate, approximately 0.4 mm resolution. 3-D tracking of charged particles. The incident direction of fast neutrons, E(sub N) > 0.5 MeV. arc reconstructed from the momenta and energies of the proton and triton fragments resulting from 3He(n,p)3H interactions in the 3-DTI volume. We present angular and energy resolution performance of the NIC derived from accelerator tests.

  14. Solid-State Division progress report for period ending March 31, 1983

    SciTech Connect

    Green, P.H.; Watson, D.M.

    1983-09-01

    Progress and activities are reported on: theoretical solid-state physics (surfaces; electronic, vibrational, and magnetic properties; particle-solid interactions; laser annealing), surface and near-surface properties of solids (surface, plasma-material interactions, ion implantation and ion-beam mixing, pulsed-laser and thermal processing), defects in solids (radiation effects, fracture, impurities and defects, semiconductor physics and photovoltaic conversion), transport properties of solids (fast-ion conductors, superconductivity, mass and charge transport in materials), neutron scattering (small-angle scattering, lattice dynamics, magnetic properties, structure and instrumentation), and preparation and characterization of research materials (growth and preparative methods, nuclear waste forms, special materials). (DLC)

  15. Small-Angle Neutron Scattering Studies on the Multilamellae Formed by Mixing Lamella-Forming Cationic Diblock Copolymers with Lipids and Their Interaction with DNA.

    PubMed

    Yang, Po-Wei; Lin, Tsang-Lang; Liu, I-Ting; Hu, Yuan; Jeng, U-Ser; Gilbert, Elliot Paul

    2016-02-23

    We demonstrate that the lamella-forming polystyrene-block-poly(N-methyl-4-vinylpyridinium iodine) (PS-b-P4VPQ), with similar sizes of the PS and P4VPQ blocks, can be dispersed in the aqueous solutions by forming lipid/PS-b-P4VPQ multilamellae. Using small-angle neutron scattering (SANS) and 1,2-dipalmitoyl-d62-sn-glycero-3-phosphocholine (d62-DPPC) in D2O, a broad correlation peak is found in the scattering profile that signifies the formation of the loosely ordered d62-DPPC/PS-b-P4VPQ multilamellae. The thicknesses of the hydrophobic and hydrophilic layers of the d62-DPPC/PS-b-P4VPQ multilamellae are close to the PS layer and the condensed brush layer thicknesses as determined from previous neutron reflectometry studies on the PS-b-P4VPQ monolayer at the air-water interface. Such well-dispersed d62-DPPC/PS-b-P4VPQ multilamellae are capable of forming multilamellae with DNA in aqueous solution. It is found that the encapsulation of DNA in the hydrophilic layer of the d62-DPPC/PS-b-P4VPQ multilamellae slightly increases the thickness of the hydrophilic layer. Adding CaCl2 can enhance the DNA adsorption in the hydrophilic brush layer, and it is similar to that observed in the neutron reflectometry study of the DNA adsorption by the PS-b-P4VPQ monolayer. PMID:26818185

  16. Methods for absorbing neutrons

    DOEpatents

    Guillen, Donna P.; Longhurst, Glen R.; Porter, Douglas L.; Parry, James R.

    2012-07-24

    A conduction cooled neutron absorber may include a metal matrix composite that comprises a metal having a thermal neutron cross-section of at least about 50 barns and a metal having a thermal conductivity of at least about 1 W/cmK. Apparatus for providing a neutron flux having a high fast-to-thermal neutron ratio may include a source of neutrons that produces fast neutrons and thermal neutrons. A neutron absorber positioned adjacent the neutron source absorbs at least some of the thermal neutrons so that a region adjacent the neutron absorber has a fast-to-thermal neutron ratio of at least about 15. A coolant in thermal contact with the neutron absorber removes heat from the neutron absorber.

  17. Interaction of TWEAK with Fn14 leads to the progression of fibrotic liver disease by directly modulating hepatic stellate cell proliferation.

    PubMed

    Wilhelm, Annika; Shepherd, Emma L; Amatucci, Aldo; Munir, Mamoona; Reynolds, Gary; Humphreys, Elizabeth; Resheq, Yazid; Adams, David H; Hübscher, Stefan; Burkly, Linda C; Weston, Christopher J; Afford, Simon C

    2016-05-01

    Tumour necrosis factor-like weak inducer of apoptosis (TWEAK) and its receptor fibroblast growth factor-inducible 14 (Fn14) have been associated with liver regeneration in vivo. To further investigate the role of this pathway we examined their expression in human fibrotic liver disease and the effect of pathway deficiency in a murine model of liver fibrosis. The expression of Fn14 and TWEAK in normal and diseased human and mouse liver tissue and primary human hepatic stellate cells (HSCs) were investigated by qPCR, western blotting and immunohistochemistry. In addition, the levels of Fn14 in HSCs following pro-fibrogenic and pro-inflammatory stimuli were assessed and the effects of exogenous TWEAK on HSCs proliferation and activation were studied in vitro. Carbon tetrachloride (CCl4 ) was used to induce acute and chronic liver injury in TWEAK KO mice. Elevated expression of both Fn14 and TWEAK were detected in acute and chronic human liver injury, and co-localized with markers of activated HSCs. Fn14 levels were low in quiescent HSCs but were significantly induced in activated HSCs, which could be further enhanced with the profibrogenic cytokine TGFβ in vitro. Stimulation with recombinant TWEAK induced proliferation but not further HSCs activation. Fn14 gene expression was also significantly up-regulated in CCl4 models of hepatic injury whereas TWEAK KO mice showed reduced levels of liver fibrosis following chronic CCl4 injury. In conclusion, TWEAK/Fn14 interaction leads to the progression of fibrotic liver disease via direct modulation of HSCs proliferation, making it a potential therapeutic target for liver fibrosis. © 2016 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland. PMID:26924336

  18. Interactions between Adipocytes and Breast Cancer Cells Stimulate Cytokine Production and Drive Src/Sox2/miR-302b-Mediated Malignant Progression.

    PubMed

    Picon-Ruiz, Manuel; Pan, Chendong; Drews-Elger, Katherine; Jang, Kibeom; Besser, Alexandra H; Zhao, Dekuang; Morata-Tarifa, Cynthia; Kim, Minsoon; Ince, Tan A; Azzam, Diana J; Wander, Seth A; Wang, Bin; Ergonul, Burcu; Datar, Ram H; Cote, Richard J; Howard, Guy A; El-Ashry, Dorraya; Torné-Poyatos, Pablo; Marchal, Juan A; Slingerland, Joyce M

    2016-01-15

    Consequences of the obesity epidemic on cancer morbidity and mortality are not fully appreciated. Obesity is a risk factor for many cancers, but the mechanisms by which it contributes to cancer development and patient outcome have yet to be fully elucidated. Here, we examined the effects of coculturing human-derived adipocytes with established and primary breast cancer cells on tumorigenic potential. We found that the interaction between adipocytes and cancer cells increased the secretion of proinflammatory cytokines. Prolonged culture of cancer cells with adipocytes or cytokines increased the proportion of mammosphere-forming cells and of cells expressing stem-like markers in vitro. Furthermore, contact with immature adipocytes increased the abundance of cancer cells with tumor-forming and metastatic potential in vivo. Mechanistic investigations demonstrated that cancer cells cultured with immature adipocytes or cytokines activated Src, thus promoting Sox2, c-Myc, and Nanog upregulation. Moreover, Sox2-dependent induction of miR-302b further stimulated cMYC and SOX2 expression and potentiated the cytokine-induced cancer stem cell-like properties. Finally, we found that Src inhibitors decreased cytokine production after coculture, indicating that Src is not only activated by adipocyte or cytokine exposures, but is also required to sustain cytokine induction. These data support a model in which cancer cell invasion into local fat would establish feed-forward loops to activate Src, maintain proinflammatory cytokine production, and increase tumor-initiating cell abundance and metastatic progression. Collectively, our findings reveal new insights underlying increased breast cancer mortality in obese individuals and provide a novel preclinical rationale to test the efficacy of Src inhibitors for breast cancer treatment. PMID:26744520

  19. Progressive Salinization and Chemical Evolution of the Rio Grande (New Mexico) Driven by Interaction of Deep Brine Leakage with Agricultural Processes

    NASA Astrophysics Data System (ADS)

    Phillips, F. M.; Bastien, E.; Hogan, J. F.; Frisbee, M.

    2008-12-01

    The total dissolved solids content of the Rio Grande increases from 40 mg/L at its headwaters in the San Juan Mountains of Colorado to over 1,000 mg/L at El Paso, Texas, located 1,000 km downstream. Along this path the composition evolves from a Ca-HCO3 dominated water to a Na-(Ca-Mg) SO4-(Cl- HCO3) water. These changes are highly detrimental to use of the water for urban and agricultural purposes, but the causes have not previously been adequately understood. We show that this evolution is driven by the interaction of deep sedimentary brine leakage with geochemical reactions associated with irrigated agriculture processes. All these are modulated by the progression of lithology encountered by the river along its path. The initial water composition in the San Juan Mountains is fixed by classical aluminosilicate incongruent weathering reactions. As the river flows southward it encounters sedimentary basins where Na-Cl-(SO4) brines discharge along faults. Diversion of the water for irrigation and subsequent evapotranspiration concentrate these solutes. Upon entering the vadose zone beneath agricultural fields the waters encounter gypsum, dolomite, and very high pCO2. In this environment, increases in the Ca and HCO3 concentrations are suppressed by dedolomitization, while SO4 increases. After subsequent discharge to agricultural drains, remaining HCO3 is lost by CO2 degassing and additional carbonate minerals are precipitated. The Rio Grande effectively "spirals" through a succession of surface and subsurface pathways that extend over hundreds of kilometers and it is this "geochemical ratchet effect" associated with surface/subsurface exchange that drives the dramatic increase in the salinity of the river.

  20. Interaction of TWEAK with Fn14 leads to the progression of fibrotic liver disease by directly modulating hepatic stellate cell proliferation‡

    PubMed Central

    Wilhelm, Annika; Shepherd, Emma L; Amatucci, Aldo; Munir, Mamoona; Reynolds, Gary; Humphreys, Elizabeth; Resheq, Yazid; Adams, David H; Hübscher, Stefan; Burkly, Linda C; Weston, Christopher J

    2016-01-01

    Abstract Tumour necrosis factor‐like weak inducer of apoptosis (TWEAK) and its receptor fibroblast growth factor‐inducible 14 (Fn14) have been associated with liver regeneration in vivo. To further investigate the role of this pathway we examined their expression in human fibrotic liver disease and the effect of pathway deficiency in a murine model of liver fibrosis. The expression of Fn14 and TWEAK in normal and diseased human and mouse liver tissue and primary human hepatic stellate cells (HSCs) were investigated by qPCR, western blotting and immunohistochemistry. In addition, the levels of Fn14 in HSCs following pro‐fibrogenic and pro‐inflammatory stimuli were assessed and the effects of exogenous TWEAK on HSCs proliferation and activation were studied in vitro. Carbon tetrachloride (CCl4) was used to induce acute and chronic liver injury in TWEAK KO mice. Elevated expression of both Fn14 and TWEAK were detected in acute and chronic human liver injury, and co‐localized with markers of activated HSCs. Fn14 levels were low in quiescent HSCs but were significantly induced in activated HSCs, which could be further enhanced with the profibrogenic cytokine TGFβ in vitro. Stimulation with recombinant TWEAK induced proliferation but not further HSCs activation. Fn14 gene expression was also significantly up‐regulated in CCl4 models of hepatic injury whereas TWEAK KO mice showed reduced levels of liver fibrosis following chronic CCl4 injury. In conclusion, TWEAK/Fn14 interaction leads to the progression of fibrotic liver disease via direct modulation of HSCs proliferation, making it a potential therapeutic target for liver fibrosis. © 2016 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland. PMID:26924336

  1. The Physics of Ultracold Neutrons and Fierz Interference in Beta Decay

    NASA Astrophysics Data System (ADS)

    Hickerson, Kevin Peter

    In the first component of this thesis, we investigate the physics of ultacold neutrons (UCN). UCN are neutrons so cold they can be stored inside of material, magnetic and gravitational bottles. Using this property we use UCN nonimaging optics to design a type of reflector that directs UCN upward in to vertical paths. Next we examine UCN passing through thin, multilayered foils. In the remaining sections we investigate the so-called Fierz interference term of free neutron beta decay, denoted bn. It is theorized that contributions to scalar and tensor interactions from physics beyond the Standard Model could be detectable in the spectrum of neutron beta decay, manifest as a nonzero value for bn. We investigate three techniques for measuring bn. The first is to use the primordial helium abundance fraction and compare that to predictive Big Bang nucleosynthesis calculations. Second we extract bn from the spectral shape generated by the 2010 data set of the UCNA experiment. Third, we discuss progress toward constructing the UCNb experimental prototype. We present the design of this new experiment that uses the UCN source at LANSCE for measuring bn, in which UCN are guided into a shielded 4π calorimeter where they are stored and decay. From Big Bang nucleosynthesis we can place the limit 0.021 < bn < 0.277 (90% C.L.) on the neutron Fierz term and from the UCNA 2010 data we set -0.044 < bn < 0.218 (90% C.L.).

  2. Neutron reflecting supermirror structure

    DOEpatents

    Wood, James L.

    1992-01-01

    An improved neutron reflecting supermirror structure comprising a plurality of stacked sets of bilayers of neutron reflecting materials. The improved neutron reflecting supermirror structure is adapted to provide extremely good performance at high incidence angles, i.e. up to four time the critical angle of standard neutron mirror structures. The reflection of neutrons striking the supermirror structure at a high critical angle provides enhanced neutron throughput, and hence more efficient and economical use of neutron sources.

  3. Neutron reflecting supermirror structure

    DOEpatents

    Wood, J.L.

    1992-12-01

    An improved neutron reflecting supermirror structure comprising a plurality of stacked sets of bilayers of neutron reflecting materials. The improved neutron reflecting supermirror structure is adapted to provide extremely good performance at high incidence angles, i.e. up to four time the critical angle of standard neutron mirror structures. The reflection of neutrons striking the supermirror structure at a high critical angle provides enhanced neutron throughput, and hence more efficient and economical use of neutron sources. 2 figs.

  4. Recent Advances in Neutron Physics

    ERIC Educational Resources Information Center

    Feshbach, Herman; Sheldon, Eric

    1977-01-01

    Discusses new studies in neutron physics within the last decade, such as ultracold neutrons, neutron bottles, resonance behavior, subthreshold fission, doubly radiative capture, and neutron stars. (MLH)

  5. Interaction of the Full-length Bax Protein with Biomimetic Mitochondrial Liposomes: A Small-Angle Neutron Scattering and Fluorescence Study

    SciTech Connect

    Satsoura, D; Kucerka, Norbert; Shivakumar, S; Pencer, J; Griffiths, C; Leber, B; Andrews, D.W; Katsaras, John; Fradin, C

    2012-01-01

    In response to apoptotic stimuli, the pro-apoptotic protein Bax inserts in the outer mitochondrial membrane, resulting in the formation of pores and the release of several mitochondrial components, and sealing the cell's fate. To study the binding of Bax to membranes, we used an in vitro system consisting of 50 nm diameter liposomes prepared with a lipid composition mimicking that of mitochondrial membranes in which recombinant purified full-length Bax was inserted via activation with purified tBid. We detected the association of the protein with the membrane using fluorescence fluctuation methods, and found that it could well be described by an equilibrium between soluble and membrane-bound Bax and that at a high protein-toliposome ratio the binding seemed to saturate at about 15 Bax proteins per 50 nm diameter liposome. We then obtained structural data for samples in this saturated binding regime using small-angle neutron scattering under different contrast matching conditions. Utilizing a simple model to fit the neutron data, we observed that a significant amount of the protein mass protrudes above the membrane, in contrast to the conjecture that all of the membrane-associated Bax states are umbrella-like. Upon protein binding, we also observed a thinning of the lipid bilayer accompanied by an increase in liposome radius, an effect reminiscent of the action of antimicrobial peptides on membranes.

  6. Neutron activation system for spectral measurements of pulsed ion diode neutron production

    SciTech Connect

    Hanson, D.L.; Kruse, L.W.

    1980-02-01

    A neutron energy spectrometer has been developed to study intense ion beam-target interactions in the harsh radiation environment of a relativistic electron beam source. The main component is a neutron threshold activation system employing two multiplexed high efficiency Ge(Li) detectors, an annihilation gamma coincidence system, and a pneumatic sample transport. Additional constraints on the neutron spectrum are provided by total neutron yield and time-of-flight measurements. A practical lower limit on the total neutron yield into 4..pi.. required for a spectral measurement with this system is approx. 10/sup 10/ n where the neutron yield is predominantly below 4 MeV and approx. 10/sup 8/ n when a significant fraction of the yield is above 4 MeV. Applications of this system to pulsed ion diode neutron production experiments on Hermes II are described.

  7. The Art of Neutron Spin Flipping

    NASA Astrophysics Data System (ADS)

    Lieffers, Justin; Holley, Adam; Snow, W. M.

    2014-09-01

    Low energy precision measurements complement high energy collider results in the search for physics beyond the Standard Model. Neutron spin rotation is a sensitive technique to search for possible exotic velocity and spin-dependent interactions involving the neutron from the exchange of light (~ meV) spin 1 bosons. We plan to conduct such searches using beams of cold neutrons at the Los Alamos Neutron Science Center (LANSCE) and the National Institute of Standards and Technology (NIST). To change the spin state of the neutrons in the apparatus we have developed an Adiabatic Fast Passage (AFP) neutron spin flipper. I will present the mechanical design, static and RF magnetic field modeling and measurements, and spin flip efficiency optimization of the constructed device. I would like to acknowledge the NSF REU program (NSF-REU grant PHY-1156540) and the Indiana University nuclear physics group (NSF grant PHY-1306942) for this opportunity.

  8. Magnetic field decay in isolated neutron stars

    NASA Technical Reports Server (NTRS)

    Goldreich, Peter; Reisenegger, Andreas

    1992-01-01

    Three mechanisms that promote the loss of magnetic flux from an isolated neutron star - Ohmic decay, ambipolar diffusion, and Hall drift - are investigated. Equations of motions are solved for charged particles in the presence of a magnetic field and a fixed background of neutrons, while allowing for the creation and destruction of particles by weak interactions. Although these equations apply to normal neutrons and protons, the present interpretations of their solutions are extended to cover cases of neutron superfluidity and proton superconductivity. The equations are manipulated to prove that, in the presence of a magnetic force, the charged particles cannot be simultaneously in magnetostatic equilibrium and chemical equilibrium with the neutrons. The application of the results to real neutron stars is discussed.

  9. Physiopathology of blood platelets: a model system for studies of cell-to-cell interaction. Progress report, November 1, 1979-October 31, 1980

    SciTech Connect

    1980-01-01

    This report covers the studies on basic mechanisms of cellular interactions, utilizing platelets as a model system and, when possible, concentrating on the influence that environmental factors (nutritional, metabolic, cellular, immunologic and others) have on them. The four major sections include: platelet interaction with tumor cells; a model for the study of cell-to-cell interaction; interaction of platelets with vessel walls; and platelet interactions with immune proteins.

  10. Neutron stars: A cosmic hadron physics laboratory

    NASA Technical Reports Server (NTRS)

    Pines, David

    1989-01-01

    A progress report is given on neutron stars as a cosmic hadron physics laboratory. Particular attention is paid to the crustal neutron superfluid, and to the information concerning its properties which may be deduced from observations of pulsar glitches and postglitch behavior. Current observational evidence concerning the softness or stiffness of the high density neutron matter equation of state is reviewed briefly, and the (revolutionary) implications of a confirmation of the existence of a 0.5 ms pulsar at the core of (Supernova) SN1987A are discussed.

  11. Neutron stars - A cosmic hadron physics laboratory

    NASA Technical Reports Server (NTRS)

    Pines, David

    1989-01-01

    A progress report is given on neutron stars as a cosmic hadron physics laboratory. Particular attention is paid to the crustal neutron superfluid, and to the information concerning its properties which may be deduced from observations of pulsar glitches and postglitch behavior. Current observational evidence concerning the softness or stiffness of the high density neutron matter equation of state is reviewed briefly, and the (revolutionary) implications of a confirmation of the existence of a 0.5 ms pulsar at the core of (Supernova) SN1987A are discussed.

  12. a Portable Pulsed Neutron Generator

    NASA Astrophysics Data System (ADS)

    Skoulakis, A.; Androulakis, G. C.; Clark, E. L.; Hassan, S. M.; Lee, P.; Chatzakis, J.; Bakarezos, M.; Dimitriou, V.; Petridis, C.; Papadogiannis, N. A.; Tatarakis, M.

    2014-02-01

    The design and construction of a pulsed plasma focus device to be used as a portable neutron source for material analysis such as explosive detection using gamma spectroscopy is presented. The device is capable of operating at a repetitive rate of a few Hz. When deuterium gas is used, up to 105 neutrons per shot are expected to be produced with a temporal pulse width of a few tens of nanoseconds. The pulsed operation of the device and its portable size are its main advantage in comparison with the existing continuous neutron sources. Parts of the device include the electrical charging unit, the capacitor bank, the spark switch (spark gap), the trigger unit and the vacuum-fuel chamber / anode-cathode. Numerical simulations are used for the simulation of the electrical characteristics of the device including the scaling of the capacitor bank energies with total current, the pinch current, and the scaling of neutron yields with energies and currents. The MCNPX code is used to simulate the moderation of the produced neutrons in a simplified geometry and subsequently, the interaction of thermal neutrons with a test target and the corresponding prompt γ-ray generation.

  13. HEND Maps of Epithermal Neutrons

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Observations by NASA's 2001 Mars Odyssey spacecraft show a global view of Mars in intermediate-energy, or epithermal, neutrons. These maps are based on data acquired by the high-energy neutron detector, one of the instruments in the gamma ray spectrometer suite. Soil enriched by hydrogen is indicated by the purple and deep blue colors on the maps, which show a low intensity of epithermal neutrons. Progressively smaller amounts of hydrogen are shown in the colors light blue, green, yellow and red. Hydrogen in the far north is hidden at this time beneath a layer of carbon dioxide frost (dry ice). These observations were acquired during the first two months of mapping operations. Contours of topography are superimposed on these maps for geographic reference.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. Investigators at Arizona State University in Tempe, the University of Arizona in Tucson, and NASA's Johnson Space Center, Houston, operate the science instruments. The gamma-ray spectrometer was provided by the University of Arizona in collaboration with the Russian Aviation and Space Agency, which provided the high-energy neutron detector, and the Los Alamos National Laboratories, New Mexico, which provided the neutron spectrometer. Lockheed Martin Astronautics, Denver, is the prime contractor for the project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  14. Advanced Neutron Spectrometer

    NASA Technical Reports Server (NTRS)

    Christl, Mark; Dobson, Chris; Norwood, Joseph; Kayatin, Matthew; Apple, Jeff; Gibson, Brian; Dietz, Kurt; Benson, Carl; Smith, Dennis; Howard, David; Rodriquez, Miguel; Watts, John; Sabra, Mohammed; Kuznetsov, Evgeny

    2013-01-01

    Energetic neutron measurements remain a challenge for space science investigations and radiation monitoring for human exploration beyond LEO. We are investigating a new composite scintillator design that uses Li6 glass scintillator embedded in a PVT block. A comparison between Li6 and Boron 10 loaded scintillators are being studied to assess the advantages and shortcomings of these two techniques. We present the details of the new Li6 design and results from the comparison of the B10 and Li6 techniques during exposures in a mixed radiation field produced by high energy protons interacting in a target material.

  15. A bioinformatics approach reveals novel interactions of the OVOL transcription factors in the regulation of epithelial – mesenchymal cell reprogramming and cancer progression

    PubMed Central

    2014-01-01

    Background Mesenchymal to Epithelial Transition (MET) plasticity is critical to cancer progression, and we recently showed that the OVOL transcription factors (TFs) are critical regulators of MET. Results of that work also posed the hypothesis that the OVOLs impact MET in a range of cancers. We now test this hypothesis by developing a model, OVOL Induced MET (OI-MET), and sub-model (OI-MET-TF), to characterize differential gene expression in MET common to prostate cancer (PC) and breast cancer (BC). Results In the OI-MET model, we identified 739 genes differentially expressed in both the PC and BC models. For this gene set, we found significant enrichment of annotation for BC, PC, cancer, and MET, as well as regulation of gene expression by AP1, STAT1, STAT3, and NFKB1. Focusing on the target genes for these four TFs plus the OVOLs, we produced the OI-MET-TF sub-model, which shows even greater enrichment for these annotations, plus significant evidence of cooperation among these five TFs. Based on known gene/drug interactions, we prioritized targets in the OI-MET-TF network for follow-on analysis, emphasizing the clinical relevance of this work. Reflecting these results back to the OI-MET model, we found that binding motifs for the TF pair AP1/MYC are more frequent than expected and that the AP1/MYC pair is significantly enriched in binding in cancer models, relative to non-cancer models, in these promoters. This effect is seen in both MET models (solid tumors) and in non-MET models (leukemia). These results are consistent with our hypothesis that the OVOLs impact cancer susceptibility by regulating MET, and extend the hypothesis to include mechanisms not specific to MET. Conclusions We find significant evidence of the OVOL, AP1, STAT1, STAT3, and NFKB1 TFs having important roles in MET, and more broadly in cancer. We prioritize known gene/drug targets for follow-up in the clinic, and we show that the AP1/MYC TF pair is a strong candidate for intervention. PMID

  16. Therapeutic potential of atmospheric neutrons

    PubMed Central

    Voyant, Cyril; Roustit, Rudy; Tatje, Jennifer; Biffi, Katia; Leschi, Delphine; Briançon, Jérome; Marcovici, Céline Lantieri

    2010-01-01

    Background Glioblastoma multiform (GBM) is the most common and most aggressive type of primary brain tumour in humans. It has a very poor prognosis despite multi-modality treatments consisting of open craniotomy with surgical resection, followed by chemotherapy and/or radiotherapy. Recently, a new treatment has been proposed – Boron Neutron Capture Therapy (BNCT) – which exploits the interaction between Boron-10 atoms (introduced by vector molecules) and low energy neutrons produced by giant accelerators or nuclear reactors. Methods The objective of the present study is to compute the deposited dose using a natural source of neutrons (atmospheric neutrons). For this purpose, Monte Carlo computer simulations were carried out to estimate the dosimetric effects of a natural source of neutrons in the matter, to establish if atmospheric neutrons interact with vector molecules containing Boron-10. Results The doses produced (an average of 1 μGy in a 1 g tumour) are not sufficient for therapeutic treatment of in situ tumours. However, the non-localised yet specific dosimetric properties of 10B vector molecules could prove interesting for the treatment of micro-metastases or as (neo)adjuvant treatment. On a cellular scale, the deposited dose is approximately 0.5 Gy/neutron impact. Conclusion It has been shown that BNCT may be used with a natural source of neutrons, and may potentially be useful for the treatment of micro-metastases. The atmospheric neutron flux is much lower than that utilized during standard NBCT. However the purpose of the proposed study is not to replace the ordinary NBCT but to test if naturally occurring atmospheric neutrons, considered to be an ionizing pollution at the Earth's surface, can be used in the treatment of a disease such as cancer. To finalize this study, it is necessary to quantify the biological effects of the physically deposited dose, taking into account the characteristics of the incident particles (alpha particle and Lithium

  17. Neutron Inelastic Scattering Mechanism and Measurement of Neutron Asymmetry Using Time of Flight Technique

    NASA Astrophysics Data System (ADS)

    Al Azzawe, A. J. M.

    2007-02-01

    Inelastic scattering is an essential reaction for other nuclear reactions to detect the optical model and compound nucleus formation within the range of (0.4- 5.0) MeV neutron incident energy by using time of flight technique. The time of flight system (TOFS) installed on the horizontal channel reactor RRA has been used to measure the asymmetry of scattered fast neutrons, when data acquisition and system control were recorded event by event by HP — computer via CAMAC system. Eight NE 213 neutron counters were used in order to detect neutron inelastic scattering in the forward direction (4 neutron counters at 0° angle) and in the backward direction (4 neutron counters at 180° angle) to measure the asymmetry of fast neutron. Each neutron counter was 50cm in length and 8cm in diameter, viewed by two (58 — DVP) photomultiplier tubes. The contribution of direct interaction to the compound nucleus formation was deduced from the asymmetry in the neutron detection at the same direction of these eight neutron counters. A time resolution of 8.2 ns between the eight neutron counters and one of the two Ge(Li) detectors has been obtained.

  18. Neutron Radii from Low Energy Pion Scattering.

    NASA Astrophysics Data System (ADS)

    Gyles, William

    Recent electron scattering measurements and muonic atom studies have allowed precise determinations of the charge distributions of nuclei. Measurements of the neutron distributions, however, have not progressed to this degree of sophistication, largely because of the uncertainties in the hadron-nucleus interaction. Charge distribution measurements provide good tests of nuclear structure calculations, but measurements of neutron distributions will provide independent constraints on these calculations and the potentials used. In this experiment, (pi)('-) differential cross section ratios were measured on pairs of isotopes (('36)S,('32)S), (('34)S,('32)S) with 50 MeV pions and (('26)Mg,('24)Mg) with 45 MeV pions. Absolute differential cross sections were also measured for ('32)S and ('24)Mg. Magnetic spectro -meters were used to collect the data. The cross section ratios were compared to optical model calcula-tions in which the parameters of a Fermi function representing the neutron distribution of the larger isotope of each pair were varied. The rms radius difference between the two isotopes producing the best fit was found to be independent of the details of the optical potential used, as long as the potential produced a fit to the absolute cross sections. The neutron distribution of the larger isotope was also rep-resented as a Fermi function modified by a sum of spherical Bessel functions, the coefficients of which were allowed to vary. The results for the rms radius differences were consistent with the Fermi function fits, except for ('34)S-('32)S, where the results differed by a full standard deviation. The rms radius differences found for the sulfur isotopes agreed with the results of shell-model calculations by Hodgson (Str82,Hod83). The extracted rms radius difference of the magnesium isotopes was one standard deviation less than the shell-model prediction. The results for the Fermi function fits, Fourier Bessell fits and the single particle potential (SPP

  19. High energy neutron radiography

    SciTech Connect

    Gavron, A.; Morley, K.; Morris, C.; Seestrom, S.; Ullmann, J.; Yates, G.; Zumbro, J.

    1996-06-01

    High-energy spallation neutron sources are now being considered in the US and elsewhere as a replacement for neutron beams produced by reactors. High-energy and high intensity neutron beams, produced by unmoderated spallation sources, open potential new vistas of neutron radiography. The authors discuss the basic advantages and disadvantages of high-energy neutron radiography, and consider some experimental results obtained at the Weapons Neutron Research (WNR) facility at Los Alamos.

  20. Properties of Energetic Ions in the Solar Atmosphere from γ-Ray and Neutron Observations

    NASA Astrophysics Data System (ADS)

    Vilmer, N.; MacKinnon, A. L.; Hurford, G. J.

    2011-09-01

    Gamma-rays and neutrons are the only sources of information on energetic ions present during solar flares and on properties of these ions when they interact in the solar atmosphere. The production of γ-rays and neutrons results from convolution of the nuclear cross-sections with the ion distribution functions in the atmosphere. The observed γ-ray and neutron fluxes thus provide useful diagnostics for the properties of energetic ions, yielding strong constraints on acceleration mechanisms as well as properties of the interaction sites. The problem of ion transport between the accelerating and interaction sites must also be addressed to infer as much information as possible on the properties of the primary ion accelerator. In the last couple of decades, both theoretical and observational developments have led to substantial progress in understanding the origin of solar γ-rays and neutrons. This chapter reviews recent developments in the study of solar γ-rays and of solar neutrons at the time of the RHESSI era. The unprecedented quality of the RHESSI data reveals γ-ray line shapes for the first time and provides γ-ray images. Our previous understanding of the properties of energetic ions based on measurements from the former solar cycles is also summarized. The new results—obtained owing both to the gain in spectral resolution (both with RHESSI and with the non solar-dedicated INTEGRAL/SPI instrument) and to the pioneering imaging technique in the γ-ray domain—are presented in the context of this previous knowledge. Still open questions are emphasized in the last section of the chapter and future perspectives on this field are briefly discussed.