Science.gov

Sample records for neutron star surface

  1. Surface composition of magnetic neutron stars.

    NASA Technical Reports Server (NTRS)

    Rosen, L. C.; Cameron, A. G. W.

    1972-01-01

    The relative abundances of seven constituent nuclei, He4, C12, O16, Ne20, Mg24, Si28, and Fe56, are calculated as a function of time for neutron star atmospheres within which exist magnetic fields of the order of 10 to the 13th G. The opacity, equation of state of the electrons, and cooling rate of the magnetic star are discussed, and it is shown to be a reasonable approximation to assume an atmosphere to be isothermal. The effects of particle diffusion are included in the nuclear reaction network. Computations are performed both for a constant mass atmosphere and for an atmosphere in which mass is being ejected. It is found that the final abundances are model-independent, as long as the initial model contains predominantly He4. The relative abundances are compared to the cosmic ray spectrum. For both the constant-mass and mass-loss atmospheres, nucleosynthesis proceeds virtually completely to Fe56. However the outermost layers of the envelope, in which no mass is being ejected, are composed almost entirely of He4 with trace amounts of Fe56. After the loss of about 10 to the 21st g, only Fe56 is ejected from atmospheres expelling mass.

  2. Measuring surface temperature of isolated neutron stars and related problems

    NASA Astrophysics Data System (ADS)

    Teter, Marcus Alton

    New and exciting results for measuring neutron star surface temperatures began with the successful launch of the Chandra X-ray observatory. Among these results are new detections of neutron star surface temperatures which have made it possible to seriously test neutron star thermal evolution theories. The important new temperature determination of the Vela pulsar (Pavlov, et al., 2001a) requires a non-standard cooling scenario to explain it. Apart from this result, we have measured PSR B1055-52's surface temperature in this thesis, determining that it can be explained by standard cooling with heating. Our spectral fit of the combined data from ROSAT and Chandra have shown that a three component model, two thermal blackbodies and an non-thermal power-law, is required to explain the data. Furthermore, our phase resolved spectroscopy has begun to shed light on the geometry of the hot spot on PSR B1055-52's surface as well as the structure of the magnetospheric radiation. Also, there is strong evidence for a thermal distribution over its surface. Most importantly, the fact that PSR B1055-52 does not have a hydrogen atmosphere has been firmly established. To reconcile these two key observations, on the Vela pulsar and PSR B1055-52, we tested neutron star cooling with neutrino processes including the Cooper pair neutrino emission process. Overall, it has been found that a phase change associated with pions being present in the cores of more massive neutron stars explains all current of the data. A transition from neutron matter to pion condensates in the central stellar core explains the difference between standard and non-standard cooling scenarios, because the superfluid suppression of pion cooling will reduce the emissivity of the pion direct URCA process substantially. A neutron star with a mass of [Special characters omitted.] with a medium stiffness equation of state and a T72 type neutron superfluid models the standard cooling case well. A neutron star of [Special

  3. Polarization of neutron star surface emission: a systematic analysis

    NASA Astrophysics Data System (ADS)

    Taverna, Roberto

    2016-07-01

    New-generation X-ray polarimeters currently under development promise to open a new window in the study of high-energy astrophysical sources. Among them, neutron stars (NSs) appear particularly suited for polarization measurements. Radiation from the (cooling) surface of an NS is expected to exhibit a large intrinsic polarization degree due to the star strong magnetic field (≈ 10 ^{12}-10 ^{15} G). We present an efficient method for computing the observed polarization fraction and polarization angle in the case of radiation coming from the entire surface of an NS, accounting for both vacuum polarization and geometrical effects due to the extended emitting region. Our approach is fairly general and is illustrated in the case of blackbody emission from an NS with either a dipolar or a (globally) twisted magnetic field.

  4. Polarization of neutron star surface emission: a systematic analysis

    NASA Astrophysics Data System (ADS)

    Taverna, R.; Turolla, R.; Gonzalez Caniulef, D.; Zane, S.; Muleri, F.; Soffitta, P.

    2015-12-01

    New-generation X-ray polarimeters currently under development promise to open a new window in the study of high-energy astrophysical sources. Among them, neutron stars (NSs) appear particularly suited for polarization measurements. Radiation from the (cooling) surface of an NS is expected to exhibit a large intrinsic polarization degree due to the star strong magnetic field (≈1012-1015 G), which influences the plasma opacity in the outermost stellar layers. The polarization fraction and polarization angle as measured by an instrument, however, do not necessary coincide with the intrinsic ones derived from models of surface emission. This is due to the effects of quantum electrodynamics in the highly magnetized vacuum around the star (the vacuum polarization) coupled with the rotation of the Stokes parameters in the plane perpendicular to the line of sight induced by the non-uniform magnetic field. Here, we revisit the problem and present an efficient method for computing the observed polarization fraction and polarization angle in the case of radiation coming from the entire surface of an NS, accounting for both vacuum polarization and geometrical effects due to the extended emitting region. Our approach is fairly general and is illustrated in the case of blackbody emission from an NS with either a dipolar or a (globally) twisted magnetic field.

  5. Neutron stars - General review

    NASA Technical Reports Server (NTRS)

    Cameron, A. G. W.; Canuto, V.

    1974-01-01

    A review is presented of those properties of neutron stars upon which there is general agreement and of those areas which currently remain in doubt. Developments in theoretical physics of neutron star interiors are summarized with particular attention devoted to hyperon interactions and the structure of interior layers. Determination of energy states and the composition of matter is described for successive layers, beginning with the surface and proceeding through the central region into the core. Problems encountered in determining the behavior of matter in the ultra-high density regime are discussed, and the effects of the magnetic field of a neutron star are evaluated along with the behavior of atomic structures in the field. The evolution of a neutron star is outlined with discussion centering on carbon detonation, cooling, vibrational damping, rotation, and pulsar glitches. The role of neutron stars in cosmic-ray propagation is considered.

  6. Modeling Phase-resolved Observations of the Surfaces of Magnetic Neutron Stars

    SciTech Connect

    Ho, Wynn C. G.; Mori, Kaya

    2008-02-27

    Recent observations by XMM-Newton detected rotational pulsations in the total brightness and spectrum of several neutron stars. To properly interpret the data, accurate modeling of neutron star emission is necessary. Detailed analysis of the shape and strength of the rotational variations allows a measurement of the surface composition and magnetic field, as well as constrains the nuclear equation of state. We discuss our models of the spectra and light curves of two of the most observed neutron stars, RX J1856.5-3754 and 1E 1207.4-5209, and discuss some implications of our results and the direction of future work.

  7. Reactions on the surface and inside of neutron stars

    NASA Astrophysics Data System (ADS)

    Rehm, K. E.

    2016-02-01

    Measurements from orbiting X-ray satellites during the last decades have provided us with a wealth of information about nuclear reactions thought to occur in the extreme, highdensity environment of neutron stars. With radioactive ion beams from first-generation facilities we have begun to study some of these processes in the laboratory. In this contribution I report on experiments performed with radioactive beams from the ATLAS accelerator at Argonne. I will discuss the nuclear physics of X-ray bursts and super-bursts, the production of in-flight radioactive beams, as well as novel detectors which are used in these experiments.

  8. Cooling of neutron stars

    NASA Technical Reports Server (NTRS)

    Pethick, C. J.

    1992-01-01

    It is at present impossible to predict the interior constitution of neutron stars based on theory and results from laboratory studies. It has been proposed that it is possible to obtain information on neutron star interiors by studying thermal radiation from their surfaces, because neutrino emission rates, and hence the temperature of the central part of a neutron star, depend on the properties of dense matter. The theory predicts that neutron stars cool relatively slowly if their cores are made up of nucleons, and cool faster if the matter is in an exotic state, such as a pion condensate, a kaon condensate, or quark matter. This view has recently been questioned by the discovery of a number of other processes that could lead to copious neutrino emission and rapid cooling.

  9. Multidimensional Simulations of Convection on the Surface of Neutron Stars

    NASA Astrophysics Data System (ADS)

    Malone, Christopher M.; Zingale, M.; Nonaka, A.; Almgren, A. S.; Bell, J. B.

    2008-09-01

    We present preliminary results of plane-parallel multidimensional simulations of helium burning in the accreted layer of a neutron star, under conditions amenable to Type I X-Ray Bursts. Using a low Mach number hydrodynamics code, MAESTRO, we are able to follow the heating from nuclear reactions and watch it drive convection throughout the layer. We report on the dynamics and energetics leading up to thermonuclear runaway as well as the state of the system in which the burning front will propagate. This work is supported under DOE/Office of Nuclear Physics grant No. DE-FG02-06ER41448 to SUNY Stony Brook, and by the SciDAC Program of the DOE Office of Mathematics, Information, and Computational Sciences under the U.S. Department of Energy under contract No. DE-AC02-05CH11231.

  10. Moment of inertia, radii, surface emission from a new theoretical understanding of Neutron Stars

    NASA Astrophysics Data System (ADS)

    Belvedere, Riccardo; Ruffini, Remo; Xue, She-Sheng; Rueda Hernandez, Jorge Armando

    2012-07-01

    We formulate the equations of neutron stars taking into account the strong, weak, electromagnetic and gravitational interactions within a new fully general relativistic Thomas-Fermi approach. The nuclear interactions are described by the exchange of the sigma, omega, and rho virtual mesons. The constancy of the generalized chemical potential, for short Klein potentials, of the particle species is required as a condition of equilibrium throughout the star. The continuity of the Klein potentials in the transition from the core to the crust imposes the presence of a strong electric field larger than the critical one for vacuum polarization. Correspondingly, the electron density decreases in the core-crust transition region. Such a phenomenon leads to neutron stars with crusts with masses and thickness smaller with respect to the ones of traditional neutron star configurations that satisfy local charge neutrality from the center all the way up to the surface. We present new estimates of the mass-radius relation, moment of inertia, quadrupole moment, and period of rotation of neutron stars. The consequences on the emission process and timing properties of neutron stars, as well as the possible consequences on QPO emission, are considered.

  11. Mapping Neutron-Star Surfaces During Thermonuclear Flashes using Archival RXTE Observations of Burst Oscillations

    NASA Astrophysics Data System (ADS)

    Psaltis, Dimitrios

    Pointing observations of accreting neutron stars with the Rossi X-ray Timing Explorer have amassed a large database of X-ray bursts from 48 sources. In 317 of such bursts from 18 sources, nearly coherent oscillations have been detected at frequencies that are very similar to the spin frequencies of the neutron stars. The physical mechanism responsible for these oscillations remains unknown, despite many years of intense observations and theoretical modeling. The timing properties of burst oscillations, such as their overall amplitudes and frequency shifts, have been analyzed extensively but are not sufficient to break degeneracies between model predictions. On the other hand, the expected dependence of the energy spectra of these oscillations on the rotational phase of the neutron stars has not been explored. In the proposed research project, we will perform a systematic study of the evolution with rotational phase of the energy spectra during burst oscillations, for all neutron stars from which such oscillations have been detected. We will then compare the measurements with accurate calculations of ray tracing in the spacetimes of spinning neutron stars in order to map the brightness of surface emission on the stellar surface that causes the burst oscillations. Our results will allow us to distinguish between different models of the oscillations, infer the ignition latitudes of bursts and the propagation velocities of the burning fronts, as well as constrain the compactness (M/R) of each neutron star. In this way, they will help answer one of the key questions in the 2010 Science Plan for NASA's Science Mission Directorate: "How do matter, energy, space, and time behave under the extraordinarily diverse conditions of the cosmos?"

  12. Universality of the acceleration due to gravity on the surface of a rapidly rotating neutron star

    SciTech Connect

    AlGendy, Mohammad; Morsink, Sharon M.

    2014-08-20

    On the surface of a rapidly rotating neutron star, the effective centrifugal force decreases the effective acceleration due to gravity (as measured in the rotating frame) at the equator while increasing the acceleration at the poles due to the centrifugal flattening of the star into an oblate spheroid. We compute the effective gravitational acceleration for relativistic rapidly rotating neutron stars and show that for a star with mass M, equatorial radius R{sub e} , and angular velocity Ω, the deviations of the effective acceleration due to gravity from the nonrotating case take on a universal form that depends only on the compactness ratio M/R{sub e} , the dimensionless square of the angular velocity Ω{sup 2}R{sub e}{sup 3}/GM, and the latitude on the star's surface. This dependence is universal, in that it has very little dependence on the neutron star's equation of state. The effective gravity is expanded in the slow-rotation limit to show the dependence on the effective centrifugal force, oblate shape of the star, and the quadrupole moment of the gravitational field. In addition, an empirical fit and simple formula for the effective gravity is found. We find that the increase in the acceleration due to gravity at the poles is of the same order of magnitude as the decrease in the effective acceleration due to gravity at the equator for all realistic value of mass, radius, and spin. For neutron stars that spin with frequencies near 600 Hz, the difference between the effective gravity at the poles and the equator is about 20%.

  13. Dibaryons in neutron stars

    NASA Technical Reports Server (NTRS)

    Olinto, Angela V.; Haensel, Pawel; Frieman, Joshua A.

    1991-01-01

    The effects are studied of H-dibaryons on the structure of neutron stars. It was found that H particles could be present in neutron stars for a wide range of dibaryon masses. The appearance of dibaryons softens the equations of state, lowers the maximum neutron star mass, and affects the transport properties of dense matter. The parameter space is constrained for dibaryons by requiring that a 1.44 solar mass neutron star be gravitationally stable.

  14. Magnetized Neutron Stars

    NASA Astrophysics Data System (ADS)

    Liebling, Steven; Anderson, Matthew; Hirschmann, Eric; Lehner, Luis; Motl, Patrick; Neilsen, David; Palenzuela, Carlos; Tohline, Joel

    2008-04-01

    Magnetized neutron stars, whether considered individually or within compact binary systems, demonstrate a number of interesting dynamical effects. Using a distributed adaptive mesh refinement (AMR) code, we evolve such stars and study their dynamics.

  15. Surface temperature of a magnetized neutron star and interpretation of the ROSAT data. 1: Dipole fields

    NASA Technical Reports Server (NTRS)

    Page, Dany

    1995-01-01

    We model the temperature distribution at the surface of a magnetized neutron star and study the effects on the observed X-ray spectra and light curves. Generalrelativistic effects, i.e., redshift and lensing, are fully taken into account. Atmospheric effects on the emitted spectral flux are not included: we consider only blackbody emission at the local effective temperature. In this first paper we restrict ourselves to dipole fields. General features are studied and compared with the ROSAT data from the pulsars 0833 - 45 (Vela), 0656 + 14, 0630 + 178 (Geminga), and 1055 - 52, the four cases for which there is strong evidence that thermal radiation from the stellar surface is detected. The composite spectra we obtain are not very different from a blackbody spectrum at the star's effective temperature. We conclude that, as far as blackbody spectra are considered, temperature estimates using single-temperature models give results practically identical to our composite models. The change of the (composite blackbody) spectrum with the star's rotational phase is also not very large and may be unobservable inmost cases. Gravitational lensing strongly suppresses the light curve pulsations. If a dipole field is assumed, pulsed fractions comparable to the observed ones can be obtained only with stellar radii larger than those which are predicted by current models of neutron star struture, or with low stellar masses. Moreover, the shapes of the theoretical light curves with dipole fields do not correspond to the observations. The use of magnetic spectra may raise the pulsed fraction sufficiently but will certainly make the discrepancy with the light curve shapes worse: dipole fields are not sufficient to interpret the data. Many neutron star models with a meson condensate or hypersons predict very small radii, and hence very strong lensing, which will require highly nondipolar fields to be able to reproduce the observed pulsed fractions, if possible at all: this may be a new

  16. Introduction to neutron stars

    SciTech Connect

    Lattimer, James M.

    2015-02-24

    Neutron stars contain the densest form of matter in the present universe. General relativity and causality set important constraints to their compactness. In addition, analytic GR solutions are useful in understanding the relationships that exist among the maximum mass, radii, moments of inertia, and tidal Love numbers of neutron stars, all of which are accessible to observation. Some of these relations are independent of the underlying dense matter equation of state, while others are very sensitive to the equation of state. Recent observations of neutron stars from pulsar timing, quiescent X-ray emission from binaries, and Type I X-ray bursts can set important constraints on the structure of neutron stars and the underlying equation of state. In addition, measurements of thermal radiation from neutron stars has uncovered the possible existence of neutron and proton superfluidity/superconductivity in the core of a neutron star, as well as offering powerful evidence that typical neutron stars have significant crusts. These observations impose constraints on the existence of strange quark matter stars, and limit the possibility that abundant deconfined quark matter or hyperons exist in the cores of neutron stars.

  17. Neutron star models

    NASA Technical Reports Server (NTRS)

    Canuto, V.; Bowers, R. L.

    1981-01-01

    The current state of neutron star structure calculations is reviewed. Uncertainties in the equation of state for matter at and above nuclear density remain. The role of the delta resonance, pion condensates, and quark matter is reviewed. It is found that recent models yield stable neutron star masses which are consistent with observational estimates.

  18. Determining the neutron star surface magnetic field strength of two Z sources

    NASA Astrophysics Data System (ADS)

    Ding, Guoqiang; Huang, Chunping; Wang, Yanan

    2013-02-01

    From the extreme position of disk motion, we infer the neutron star (NS) surface magnetic field strength (B 0) of Z-source GX 17+2 and Cyg X-2. The inferred B 0 of GX 17+2 and Cyg X-2 are ~(1-5)×108 G and ~(1-3)×108 G, respectively, which are not inferior to that of millisecond X-ray pulsars or atoll sources. It is likely that the NS magnetic axis of Z sources is parallel to the axis of rotation, which could result in the lack of pulsations in these sources.

  19. Converting neutron stars into strange stars

    NASA Technical Reports Server (NTRS)

    Olinto, A. V.

    1991-01-01

    If strange matter is formed in the interior of a neutron star, it will convert the entire neutron star into a strange star. The proposed mechanisms are reviewed for strange matter seeding and the possible strange matter contamination of neutron star progenitors. The conversion process that follows seeding and the recent calculations of the conversion timescale are discussed.

  20. Neutron Star Compared to Manhattan

    NASA Video Gallery

    A pulsar is a neutron star, the crushed core of a star that has exploded. Neutron stars crush half a million times more mass than Earth into a sphere no larger than Manhattan, as animated in this s...

  1. Matter accreting neutron stars

    NASA Technical Reports Server (NTRS)

    Meszaros, P.

    1981-01-01

    Some of the fundamental neutron star parameters, such as the mass and the magnetic field strength, were experimentally determined in accreting neutron star systems. Some of the relevant data and the models used to derive useful information from them, are reviewed concentrating mainly on X-ray pulsars. The latest advances in our understanding of the radiation mechanisms and the transfer in the strongly magnetized polar cap regions are discussed.

  2. 3D MHD Simulations of accreting neutron stars: evidence of QPO emission from the surface

    SciTech Connect

    Bachetti, Matteo; Burderi, Luciano; Romanova, Marina M.; Kulkarni, Akshay; Salvo, Tiziana di

    2010-07-15

    3D Magnetohydrodynamic simulations show that when matter accretes onto neutron stars, in particular if the misalignment angle is small, it does not constantly fall at a fixed spot. Instead, the location at which matter reaches the star moves. These moving hot spots can be produced both during stable accretion, where matter falls near the magnetic poles of the star, and unstable accretion, characterized by the presence of several tongues of matter which fall on the star near the equator, due to Rayleigh-Taylor instabilities. Precise modeling with Monte Carlo simulations shows that those movements could be observed as high frequency Quasi Periodic Oscillations. We performed a number of new simulation runs with a much wider set of parameters, focusing on neutron stars with a small misalignment angle. In most cases we observe oscillations whose frequency is correlated with the mass accretion rate M. Moreover, in some cases double QPOs appear, each of them showing the same correlation with M.

  3. Dichotomy Between Black Hole and Neutron Star Accretion: Effect of Hard Surface

    NASA Astrophysics Data System (ADS)

    Dhang, Prasun; Mukhopadhyay, Banibrata; Sharma, Prateek

    2016-07-01

    Estimates of accretion rate on to compact objects have been explored based on the well-known, spherically symmetric, inviscid, steady-state solution given by Bondi. This solution assumes that there is a sink of mass at the center -- which in case of a black hole (BH) corresponds to the advection of matter across the event horizon. Other stars, such as a neutron star (NS), have surfaces and hence the infalling matter has to come to rest at the surface. We study the initial value problem in which the matter distribution is uniform and at rest at time t=0 with different inner radial boundary conditions for BHs and NSs: inflow boundary condition valid for BHs; and reflective or settling boundary condition for NSs. We obtain a similarity solution for the flow with inner inflow and reflective boundary conditions (assuming a cold ambient medium) and compare with numerical simulations of the Euler equations. One-dimensional simulations show the formation of an outward propagating and a standing shock in NS system for reflective and settling boundary conditions respectively. Two-dimensional simulations show that both these flows are unstable (locally to convection and globally to a standing shock instability). Numerical simulations show that in steady state, spherical accretion rate on to a NS for reflective boundary condition is suppressed by orders of magnitude compared to that on to a BH.

  4. Origin of Neutron Stars

    NASA Astrophysics Data System (ADS)

    Brecher, K.

    1999-12-01

    The origin of the concept of neutron stars can be traced to two brief, incredibly insightful publications. Work on the earlier paper by Lev Landau (Phys. Z. Sowjetunion, 1, 285, 1932) actually predated the discovery of neutrons. Nonetheless, Landau arrived at the notion of a collapsed star with the density of a nucleus (really a "nucleus star") and demonstrated (at about the same time as, and independent of, Chandrasekhar) that there is an upper mass limit for dense stellar objects of about 1.5 solar masses. Perhaps even more remarkable is the abstract of a talk presented at the December 1933 meeting of the American Physical Society published by Walter Baade and Fritz Zwicky in 1934 (Phys. Rev. 45, 138). It followed the discovery of the neutron by just over a year. Their report, which was about the same length as the present abstract: (1) invented the concept and word supernova; (2) suggested that cosmic rays are produced by supernovae; and (3) in the authors own words, proposed "with all reserve ... the view that supernovae represent the transitions from ordinary stars to neutron stars (italics), which in their final stages consist of extremely closely packed neutrons." The abstract by Baade and Zwicky probably contains the highest density of new, important (and correct) ideas in high energy astrophysics ever published in a single paper. In this talk, we will discuss some of the facts and myths surrounding these two publications.

  5. Burst Oscillations: Watching Neutron Stars Spin

    NASA Technical Reports Server (NTRS)

    Strohmayer, Tod

    2010-01-01

    It is now almost 15 years since the first detection of rotationally modulated emission from X-ray bursting neutron stars, "burst oscillations," This phenomenon enables us to see neutron stars spin, as the X-ray burst flux asymmetrically lights up the surface. It has enabled a new way to probe the neutron star spin frequency distribution, as well as to elucidate the multidimensional nature of nuclear burning on neutron stars. I will review our current observational understanding of the phenomenon, with an eye toward highlighting some of the interesting remaining puzzles, of which there is no shortage.

  6. Planets Around Neutron Stars

    NASA Technical Reports Server (NTRS)

    Wolszczan, Alexander; Kulkarni, Shrinivas R; Anderson, Stuart B.

    2003-01-01

    The objective of this proposal was to continue investigations of neutron star planetary systems in an effort to describe and understand their origin, orbital dynamics, basic physical properties and their relationship to planets around normal stars. This research represents an important element of the process of constraining the physics of planet formation around various types of stars. The research goals of this project included long-term timing measurements of the planets pulsar, PSR B1257+12, to search for more planets around it and to study the dynamics of the whole system, and sensitive searches for millisecond pulsars to detect further examples of old, rapidly spinning neutron stars with planetary systems. The instrumentation used in our project included the 305-m Arecibo antenna with the Penn State Pulsar Machine (PSPM), the 100-m Green Bank Telescope with the Berkeley- Caltech Pulsar Machine (BCPM), and the 100-m Effelsberg and 64-m Parkes telescopes equipped with the observatory supplied backend hardware.

  7. Neutrinos from neutron stars

    NASA Technical Reports Server (NTRS)

    Helfand, D. J.

    1979-01-01

    A calculation of the flux of ultra-high energy neutrinos from galactic neutron stars is presented. The calculation is used to determine the number of point sources detectable at the sensitivity threshold of a proposed deep underwater muon and neutrino detector array. The detector array would have a point source detection threshold of about 100 eV/sq cm-sec. Analysis of neutrino luminosities and the number of detectable sources suggests that the deep underwater detector may make a few discoveries. In particular, a suspected neutron star in the Cyg X-3 source seems a promising target for the deep underwater array.

  8. The neutron star zoo

    NASA Astrophysics Data System (ADS)

    Harding, Alice K.

    2013-12-01

    Neutron stars are a very diverse population, both in their observational and their physical properties. They prefer to radiate most of their energy at X-ray and gamma-ray wavelengths. But whether their emission is powered by rotation, accretion, heat, magnetic fields or nuclear reactions, they are all different species of the same animal whose magnetic field evolution and interior composition remain a mystery. This article will broadly review the properties of inhabitants of the neutron star zoo, with emphasis on their high-energy emission.

  9. Hyperons in Neutron Stars

    NASA Astrophysics Data System (ADS)

    Vidaña, Isaac

    2016-01-01

    In this work I briefly review some of the effects of hyperons on the properties of neutron and proto-neutron stars. In particular, I revise the problem of the strong softening of the EoS, and the consequent reduction of the maximum mass, induced by the presence of hyperons, a puzzle which has become more intringuing and difficult to solve because of the recent measurements of the unusually high masses of the millisecond pulsars PSR J1903+0327 (1.667 ± 0.021M⊙), PSR J1614-2230 (1.97 ± 0.04M⊙), and PSR J0348+0432 (2.01 ± 0.04M⊙). Some of the solutions proposed to tackle this problem are discussed. Finally, I re-examine also the role of hyperons on the cooling properties of newly born neutron stars and on the so-called r-mode instability.

  10. Hyperons and neutron stars

    SciTech Connect

    Vidaña, Isaac

    2015-02-24

    In this lecture I will briefly review some of the effects of hyperons on the properties of neutron and proto-neutron stars. In particular, I will revise the problem of the strong softening of the EoS, and the consequent reduction of the maximum mass, induced by the presence of hyperons, a puzzle which has become more intringuing and difficult to solve due the recent measurements of the unusually high masses of the millisecond pulsars PSR J1903+0327 (1.667±0.021M{sub ⊙}), PSR J1614–2230 (1.97±0.04M{sub ⊙}), and PSR J0348+0432 (2.01±0.04M{sub ⊙}). Finally, I will also examine the role of hyperons on the cooling properties of newly born neutron stars and on the so-called r-mode instability.

  11. Neutron Stars and NuSTAR

    NASA Astrophysics Data System (ADS)

    Bhalerao, Varun

    2012-05-01

    My thesis centers around the study of neutron stars, especially those in massive binary systems. To this end, it has two distinct components: the observational study of neutron stars in massive binaries with a goal of measuring neutron star masses and participation in NuSTAR, the first imaging hard X-ray mission, one that is extremely well suited to the study of massive binaries and compact objects in our Galaxy. The Nuclear Spectroscopic Telescope Array (NuSTAR) is a NASA Small Explorer mission that will carry the first focusing high energy X-ray telescope to orbit. NuSTAR has an order-of-magnitude better angular resolution and has two orders of magnitude higher sensitivity than any currently orbiting hard X-ray telescope. I worked to develop, calibrate, and test CdZnTe detectors for NuSTAR. I describe the CdZnTe detectors in comprehensive detail here - from readout procedures to data analysis. Detailed calibration of detectors is necessary for analyzing astrophysical source data obtained by the NuSTAR. I discuss the design and implementation of an automated setup for calibrating flight detectors, followed by calibration procedures and results. Neutron stars are an excellent probe of fundamental physics. The maximum mass of a neutron star can put stringent constraints on the equation of state of matter at extreme pressures and densities. From an astrophysical perspective, there are several open questions in our understanding of neutron stars. What are the birth masses of neutron stars? How do they change in binary evolution? Are there multiple mechanisms for the formation of neutron stars? Measuring masses of neutron stars helps answer these questions. Neutron stars in high-mass X-ray binaries have masses close to their birth mass, providing an opportunity to disentangle the role of "nature" and "nurture" in the observed mass distributions. In 2006, masses had been measured for only six such objects, but this small sample showed the greatest diversity in masses

  12. Position annihilation radiation from neutron stars

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Borner, G. A.; Cohen, J. M.

    1972-01-01

    Matter accreted on the surfaces of neutron stars consists of energetic particles of a few tens to a couple hundred MeV/nucleon, depending on the neutron star mass. In addition to heat, such particles produce nuclear reactions with the surface material. It is proposed that the recently observed 473 + or - 30 keV spectral feature from the galactic center is gravitationally red-shifted positron annihilation radiation produced at the surfaces of old neutron stars. The principal observational tests of the model would be the detection of nuclear gamma ray lines from the galactic center and red-shifted positron annihilation radiation from the galactic disk.

  13. Where a Neutron Star's Accretion Disk Ends

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-03-01

    In X-ray binaries that consist of a neutron star and a companion star, gas funnels from the companion into an accretion disk surrounding the neutron star, spiraling around until it is eventually accreted. How do the powerful magnetic fields threading through the neutron star affect this accretion disk? Recent observations provide evidence that they may push the accretion disk away from the neutron stars surface.Truncated DisksTheoretical models have indicated that neutron star accretion disks may not extend all the way in to the surface of a neutron star, but may instead be truncated at a distance. This prediction has been difficult to test observationally, however, due to the challenge of measuring the location of the inner disk edge in neutron-star X-ray binaries.In a new study, however, a team of scientists led by Ashley King (Einstein Fellow at Stanford University) has managed to measure the location of the inner edge of the disk in Aquila X-1, a neutron-star X-ray binary located 17,000 light-years away.Iron line feature detected by Swift (red) and NuSTAR (black). The symmetry of the line is one of the indicators that the disk is located far from the neutron star; if the inner regions of the disk were close to the neutron star, severe relativistic effects would skew the line to be asymmetric. [King et al. 2016]Measurements from ReflectionsKing and collaborators used observations made by NuSTAR and Swift/XRT both X-ray space observatories of Aquila X-1 during the peak of an X-ray outburst. By observing the reflection of Aquila X-1s emission off of the inner regions of the accretion disk, the authors were able to estimate the location of the inner edge of the disk.The authors find that this inner edge sits at ~15 gravitational radii. Since the neutron stars surface is at ~5 gravitational radii, this means that the accretion disk is truncated far from the stars surface. In spite of this truncation, material still manages to cross the gap and accrete onto the

  14. Gravitoastronomy with neutron stars

    NASA Astrophysics Data System (ADS)

    Woan, Graham

    2004-09-01

    Recent advances in gravitational wave detectors mean that we can start to make astrophysically important statements about the physics of neutron stars based on observed upper limits to their gravitational luminosity. Here we consider statements we can already make about a selection of known radio pulsars, based on data from the LIGO and GEO600 detectors, and look forward to what could be learned from the first detections.

  15. Jets from Merging Neutron Stars

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-06-01

    With the recent discovery of gravitational waves from the merger of two black holes, its especially important to understand the electromagnetic signals resulting from mergers of compact objects. New simulations successfully follow a merger of two neutron stars that produces a short burst of energy via a jet consistent with short gamma-ray burst (sGRB) detections.Still from the authors simulation showing the two neutron stars, and their magnetic fields, before merger. [Adapted from Ruiz et al. 2016]Challenging SystemWe have long suspected that sGRBs are produced by the mergers of compact objects, but this model has been difficult to prove. One major hitch is that modeling the process of merger and sGRB launch is very difficult, due to the fact that these extreme systems involve magnetic fields, fluids and full general relativity.Traditionally, simulations are only able to track such mergers over short periods of time. But in a recent study, Milton Ruiz (University of Illinois at Urbana-Champaign and Industrial University of Santander, Colombia) and coauthors Ryan Lang, Vasileios Paschalidis and Stuart Shapiro have modeled a binary neutron star system all the way through the process of inspiral, merger, and the launch of a jet.A Merger TimelineHow does this happen? Lets walk through one of the teams simulations, in which dipole magnetic field lines thread through the interior of each neutron star and extend beyond its surface(like magnetic fields found in pulsars). In this example, the two neutron stars each have a mass of 1.625 solar masses.Simulation start (0 ms)Loss of energy via gravitational waves cause the neutron stars to inspiral.Merger (3.5 ms)The neutron stars are stretched by tidal effects and make contact. Their merger produces a hypermassive neutron star that is supported against collapse by its differential (nonuniform) rotation.Delayed collapse into a black hole (21.5 ms)Once the differential rotation is redistributed by magnetic fields and partially

  16. Jets from Merging Neutron Stars

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-06-01

    With the recent discovery of gravitational waves from the merger of two black holes, its especially important to understand the electromagnetic signals resulting from mergers of compact objects. New simulations successfully follow a merger of two neutron stars that produces a short burst of energy via a jet consistent with short gamma-ray burst (sGRB) detections.Still from the authors simulation showing the two neutron stars, and their magnetic fields, before merger. [Adapted from Ruiz et al. 2016]Challenging SystemWe have long suspected that sGRBs are produced by the mergers of compact objects, but this model has been difficult to prove. One major hitch is that modeling the process of merger and sGRB launch is very difficult, due to the fact that these extreme systems involve magnetic fields, fluids and full general relativity.Traditionally, simulations are only able to track such mergers over short periods of time. But in a recent study, Milton Ruiz (University of Illinois at Urbana-Champaign and Industrial University of Santander, Colombia) and coauthors Ryan Lang, Vasileios Paschalidis and Stuart Shapiro have modeled a binary neutron star system all the way through the process of inspiral, merger, and the launch of a jet.A Merger TimelineHow does this happen? Lets walk through one of the teams simulations, in which dipole magnetic field lines thread through the interior of each neutron star and extend beyond its surface(like magnetic fields found in pulsars). In this example, the two neutron stars each have a mass of 1.625 solar masses.Simulation start (0 ms)Loss of energy via gravitational waves cause the neutron stars to inspiral.Merger (3.5 ms)The neutron stars are stretched by tidal effects and make contact. Their merger produces a hypermassive neutron star that is supported against collapse by its differential (nonuniform) rotation.Delayed collapse into a black hole (21.5 ms)Once the differential rotation is redistributed by magnetic fields and partially

  17. Mechanism of thermonuclear burning propagation in a helium layer on a neutron star surface: A simplified adiabatic model

    NASA Astrophysics Data System (ADS)

    Simonenko, V. A.; Gryaznykh, D. A.; Litvinenko, I. A.; Lykov, V. A.; Shushlebin, A. N.

    2012-04-01

    Some thermonuclear X-ray bursters exhibit a high-frequency (about 300 Hz or more) brightness modulation at the rising phase of some bursts. These oscillations are explained by inhomogeneous heating of the surface layer on a rapidly rotating neutron star due to the finite propagation speed of thermonuclear burning. We suggest and substantiate a mechanism of this propagation that is consistent with experimental data. Initially, thermonuclear ignition occurs in a small region of the neutron star surface layer. The burning products rapidly rise and spread in the upper atmospheric layers due to turbulent convection. The accumulation of additional matter leads to matter compression and ignition at the bottom of the layer. This determines the propagation of the burning front. To substantiate this mechanism, we use the simplifying assumptions about a helium composition of the neutron star atmosphere and its initial adiabatic structure with a density of 1.75 × 108 g cm-3 at the bottom. 2D numerical simulations have been performed using a modified particle method in the adiabatic approximation.

  18. The physics of neutron stars.

    PubMed

    Lattimer, J M; Prakash, M

    2004-04-23

    Neutron stars are some of the densest manifestations of massive objects in the universe. They are ideal astrophysical laboratories for testing theories of dense matter physics and provide connections among nuclear physics, particle physics, and astrophysics. Neutron stars may exhibit conditions and phenomena not observed elsewhere, such as hyperon-dominated matter, deconfined quark matter, superfluidity and superconductivity with critical temperatures near 10(10) kelvin, opaqueness to neutrinos, and magnetic fields in excess of 10(13) Gauss. Here, we describe the formation, structure, internal composition, and evolution of neutron stars. Observations that include studies of pulsars in binary systems, thermal emission from isolated neutron stars, glitches from pulsars, and quasi-periodic oscillations from accreting neutron stars provide information about neutron star masses, radii, temperatures, ages, and internal compositions. PMID:15105490

  19. QCD in Neutron Stars and Strange Stars

    SciTech Connect

    Weber, Fridolin; Negreiros, Rodrigo

    2011-05-24

    This paper provides an overview of the possible role of Quantum Chromo Dynamics (QCD) for neutron stars and strange stars. The fundamental degrees of freedom of QCD are quarks, which may exist as unconfined (color superconducting) particles in the cores of neutron stars. There is also the theoretical possibility that a significantly large number of up, down, and strange quarks may settle down in a new state of matter known as strange quark matter, which, by hypothesis, could be more stable than even the most stable atomic nucleus, {sup 56}Fe. In the latter case new classes of self-bound, color superconducting objects, ranging from strange quark nuggets to strange quark stars, should exist. The properties of such objects will be reviewed along with the possible existence of deconfined quarks in neutron stars. Implications for observational astrophysics are pointed out.

  20. Thermonuclear flashes on accreting neutron stars

    NASA Technical Reports Server (NTRS)

    Joss, P. C.

    1979-01-01

    Observations of X-ray bursts from binary pulsars and globular clusters are reviewed. The previously proposed hypothesis is considered that such X-ray bursts result from thermonuclear flashes on accreting neutron stars. A general scenario for this mechanism is outlined, and numerical computations of the evolution of the surface layers of an accreting neutron star are discussed. The relation of these calculations to X-ray bursts and other phenomena is examined. Possible improvements in the numerical calculations are suggested.

  1. Modeling Binary Neutron Stars

    NASA Astrophysics Data System (ADS)

    Park, Conner; Read, Jocelyn; Flynn, Eric; Lockett-Ruiz, Veronica

    2016-03-01

    Gravitational waves, predicted by Einstein's Theory of Relativity, are a new frontier in astronomical observation we can use to observe phenomena in the universe. Laser Interferometer Gravitational wave Observatory (LIGO) is currently searching for gravitational wave signals, and requires accurate predictions in order to best extract astronomical signals from all other sources of fluctuations. The focus of my research is in increasing the accuracy of Post-Newtonian models of binary neutron star coalescence to match the computationally expensive Numerical models. Numerical simulations can take months to compute a couple of milliseconds of signal whereas the Post-Newtonian can generate similar signals in seconds. However the Post-Newtonian model is an approximation, e.g. the Taylor T4 Post-Newtonian model assumes that the two bodies in the binary neutron star system are point charges. To increase the effectiveness of the approximation, I added in tidal effects, resonance frequencies, and a windowing function. Using these observed effects from simulations significantly increases the Post-Newtonian model's similarity to the Numerical signal.

  2. Thermonuclear processes on accreting neutron stars

    NASA Technical Reports Server (NTRS)

    Joss, P. C.

    1981-01-01

    Theoretical models for X-ray burst sources that invoke thermonuclear flashes on the surface layers of an accreting neutron star are discussed. The historical development of X-ray burst observation is summarized, and a physical picture of a neutron star undergoing accretion is drawn. Detailed numerical computations of the evolution of the surface layers of such a star are reviewed. The need for general relativistic corrections to the model is pointed out. Finally, comparisons are made with observations of X-ray bursts, the rapid burster, fast X-ray transients, X-ray pulsars, and gamma-ray burst sources.

  3. QPO Constraints on Neutron Stars

    NASA Technical Reports Server (NTRS)

    Miller, M. Coleman

    2005-01-01

    The kilohertz frequencies of QPOs from accreting neutron star systems imply that they are generated in regions of strong gravity, close to the star. This suggests that observations of the QPOs can be used to constrain the properties of neutron stars themselves, and in particular to inform us about the properties of cold matter beyond nuclear densities. Here we discuss some relatively model-insensitive constraints that emerge from the kilohertz QPOs, as well as recent developments that may hint at phenomena related to unstable circular orbits outside neutron stars.

  4. Grand unification of neutron stars

    PubMed Central

    Kaspi, Victoria M.

    2010-01-01

    The last decade has shown us that the observational properties of neutron stars are remarkably diverse. From magnetars to rotating radio transients, from radio pulsars to isolated neutron stars, from central compact objects to millisecond pulsars, observational manifestations of neutron stars are surprisingly varied, with most properties totally unpredicted. The challenge is to establish an overarching physical theory of neutron stars and their birth properties that can explain this great diversity. Here I survey the disparate neutron stars classes, describe their properties, and highlight results made possible by the Chandra X-Ray Observatory, in celebration of its 10th anniversary. Finally, I describe the current status of efforts at physical “grand unification” of this wealth of observational phenomena, and comment on possibilities for Chandra’s next decade in this field. PMID:20404205

  5. The Neutron Star Interior Composition Explorer

    NASA Technical Reports Server (NTRS)

    Gendreau, Keith C.

    2008-01-01

    The Neutron star Interior Composition Explorer (NICE) will be a Mission of Opportunity dedicated to the study of neutron stars, the only places in the universe where all four fundamental forces of nature are simultaneously in play. NICE will explore the exotic states of matter within neutron stars, revealing their interior and surface compositions through rotation resolved X-ray spectroscopy. Absolute time-referenced data will allow NICE to probe the extreme physical environments associated with neutron stars, leveraging observations across the electromagnetic spectrum to answer decades-old questions about one of the most powerful cosmic accelerators known. Finally, NICE will definitively measure stabilities of pulsars as clocks, with implications for navigation, a pulsar-based timescale, and gravitational-wave detection. NICE will fly on the International Space Station, while GLAST is on orbit and post-RXTE, and will allow for the discovery of new high-energy pulsars and provide continuity in X-ray timing astrophysics.

  6. Neutron stars in Einstein-aether theory

    SciTech Connect

    Eling, Christopher; Jacobson, Ted; Miller, M. Coleman

    2007-08-15

    As current and future experiments probe strong gravitational regimes around neutron stars and black holes, it is desirable to have theoretically sound alternatives to general relativity against which to test observations. Here we study the consequences of one such generalization, Einstein-aether theory, for the properties of nonrotating neutron stars. This theory has a parameter range that satisfies all current weak-field tests. We find that within this range it leads to lower maximum neutron star masses, as well as larger surface redshifts at a particular mass, for a given nuclear equation of state. For nonrotating black holes and neutron stars, the innermost stable circular orbit is only slightly modified in this theory.

  7. Neutron Star Mass Distribution in Binaries

    NASA Astrophysics Data System (ADS)

    Lee, Chang-Hwan; Kim, Young-Min

    2016-05-01

    Massive neutron stars with ∼ 2Mʘ have been observed in neutron star-white dwarf binaries. On the other hand, well-measured neutron star masses in double-neutron-star binaries are still consistent with the limit of 1.5Mʘ. These observations raised questions on the neutron star equations of state and the neutron star binary evolution processes. In this presentation, a hypothesis of super-Eddington accretion and its implications are discussed. We argue that a 2Mʘ neutron star is an outcome of the super-Eddington accretion during the evolution of neutron star-white dwarf binary progenitors. We also suggest the possibility of the existence of new type of neutron star binary which consists of a typical neutron star and a massive compact companion (high-mass neutron star or black hole) with M ≥ 2Mʘ.

  8. Plasma physics of accreting neutron stars

    NASA Technical Reports Server (NTRS)

    Ghosh, Pranab; Lamb, Frederick K.

    1991-01-01

    Plasma concepts and phenomena that are needed to understand X- and gamma-ray sources are discussed. The capture of material from the wind or from the atmosphere or envelope of a binary companion star is described and the resulting types of accretion flows discussed. The reasons for the formation of a magnetosphere around the neutron star are explained. The qualitative features of the magnetospheres of accreting neutron stars are then described and compared with the qualitative features of the geomagnetosphere. The conditions for stable flow and for angular and linear momentum conservation are explained in the context of accretion by magnetic neutron stars and applied to obtain rough estimates of the scale of the magnetosphere. Accretion from Keplerian disks is then considered in some detail. The radial structure of geometrically thin disk flows, the interaction of disk flows with the neutron star magnetosphere, and models of steady accretion from Keplerian disks are described. Accretion torques and the resulting changes in the spin frequencies of rotating neutron stars are considered. The predicted behavior is then compared with observations of accretion-powered pulsars. Magnetospheric processes that may accelerate particles to very high energies, producing GeV and, perhaps, TeV gamma-rays are discussed. Finally, the mechanisms that decelerate and eventually stop accreting plasma at the surfaces of strongly magnetic neutron stars are described.

  9. Theoretical Studies of Accreting Neutron Stars

    NASA Technical Reports Server (NTRS)

    Taam, Ronald E.

    2003-01-01

    Among the newly discovered classes of X-ray sources which have attracted wide attention are close binary systems in which mass is transferred via Roche lobe overflow from a low mass donor star to its neutron star companion. Many of these sources exhibit intense bursts of X-ray radiation as well as periodic and quasi-periodic phenomena. Intensive analysis of these sources as a class has provided insight into the accretion process in binary star systems and into the magnetic field, rotational, and nuclear evolution of the underlying neutron star. In this proposal we have focused on theoretical studies of the hydrodynamical and nuclear processes that take place on the surface of accreting neutron stars in these systems. The investigation of these processes is critical for providing an understanding of a number of outstanding problems related to their transient behavior and evolution.

  10. Gravitational Waves from Neutron Stars

    NASA Astrophysics Data System (ADS)

    Kokkotas, Konstantinos

    2016-03-01

    Neutron stars are the densest objects in the present Universe, attaining physical conditions of matter that cannot be replicated on Earth. These unique and irreproducible laboratories allow us to study physics in some of its most extreme regimes. More importantly, however, neutron stars allow us to formulate a number of fundamental questions that explore, in an intricate manner, the boundaries of our understanding of physics and of the Universe. The multifaceted nature of neutron stars involves a delicate interplay among astrophysics, gravitational physics, and nuclear physics. The research in the physics and astrophysics of neutron stars is expected to flourish and thrive in the next decade. The imminent direct detection of gravitational waves will turn gravitational physics into an observational science, and will provide us with a unique opportunity to make major breakthroughs in gravitational physics, in particle and high-energy astrophysics. These waves, which represent a basic prediction of Einstein's theory of general relativity but have yet to be detected directly, are produced in copious amounts, for instance, by tight binary neutron star and black hole systems, supernovae explosions, non-axisymmetric or unstable spinning neutron stars. The focus of the talk will be on the neutron star instabilities induced by rotation and the magnetic field. The conditions for the onset of these instabilities and their efficiency in gravitational waves will be presented. Finally, the dependence of the results and their impact on astrophysics and especially nuclear physics will be discussed.

  11. Neutron star structure from QCD

    NASA Astrophysics Data System (ADS)

    Fraga, Eduardo S.; Kurkela, Aleksi; Vuorinen, Aleksi

    2016-03-01

    In this review article, we argue that our current understanding of the thermodynamic properties of cold QCD matter, originating from first principles calculations at high and low densities, can be used to efficiently constrain the macroscopic properties of neutron stars. In particular, we demonstrate that combining state-of-the-art results from Chiral Effective Theory and perturbative QCD with the current bounds on neutron star masses, the Equation of State of neutron star matter can be obtained to an accuracy better than 30% at all densities.

  12. Carbon Atmosphere Discovered On Neutron Star

    NASA Astrophysics Data System (ADS)

    2009-11-01

    without pulsations would require a tiny size, consistent only with exotic stars made of strange quark matter. "Our carbon veil solves one of the big questions about the neutron star in Cas A," said Craig Heinke. "People have been willing to consider some weird explanations, so it's a relief to discover a less peculiar solution." Unlike most astronomical objects, neutron stars are small enough to understand on a human scale. For example, neutron stars typically have a diameter of about 14 miles, only slightly longer than a half-marathon. The atmosphere of a neutron star is on an even smaller scale. The researchers calculate that the carbon atmosphere is only about 4 inches thick, because it has been compressed by a surface gravity that is 100 billion times stronger than on Earth. "For people who are used to hearing about immense sizes of things in space, it might be a surprise that we can study something so small," said Ho. "It's also funny to think that such a thin veil over this star played a key role in frustrating researchers." In Earth's time frame, the estimated age of the neutron star in Cas A is only several hundred years, making it about ten times younger than other neutron stars with detected surface emission. Therefore, the Cas A neutron star gives a unique window into the early life of a cooling neutron star. The carbon itself comes from a combination of material that has fallen back after the supernova, and nuclear reactions on the hot surface of the neutron star which convert hydrogen and helium into carbon. The X-ray spectrum and lack of pulsar activity suggest that the magnetic field on the surface of this neutron star is relatively weak. Similarly low magnetic fields are implied for several other young neutron stars by study of their weak X-ray pulsations. It is not known whether these neutron stars will have low magnetic fields for their entire lives, and never become radio pulsars, or whether processes in their interior will lead to the development of

  13. PULSE PROFILES FROM THERMALLY EMITTING NEUTRON STARS

    SciTech Connect

    Turolla, R.; Nobili, L.

    2013-05-10

    The problem of computing the pulse profiles from thermally emitting spots on the surface of a neutron star in general relativity is reconsidered. We show that it is possible to extend Beloborodov's approach to include (multiple) spots of finite size in different positions on the star surface. The results for the pulse profiles are expressed by comparatively simple analytical formulae which involve only elementary functions.

  14. Chandra Captures Neutron Star Action

    NASA Video Gallery

    This movie from NASA's Chandra X-ray Observatory shows a fast moving jet of particles produced by a rapidly rotating neutron star, and may provide new insight into the nature of some of the densest...

  15. Children's Literature on Neutron Stars

    NASA Astrophysics Data System (ADS)

    Struck, James

    Children's literature is simple discussion of complicated issues. Neutron stars are discussed in several children's books. Using libraries in Chicago, I will review children's books on neutron stars and compare the literature to literature from scientific discussions of neutron stars on sites like the Chandra site, Hubble Space Telescope site and NASA site. The result will be a discussion of problems and issues involved in discussion of neutron stars. Do children's books leave material out? Do children's books discuss recent observations? Do children's books discuss anything discredited or wrong? How many children's books are in resources like World Cat, the Library of Congress catalog, and the Chicago Public Library catalog? Could children's books be useful to present some of your findings or observations or projects? Children's books are useful for both children and scientist as they present simplified discussion of topics, although sometimes issues are simplified too much.

  16. The Neutron Star Zoo

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.

    2014-01-01

    Neutron stars are a very diverse population, both in their observational and their physical properties. They prefer to radiate most of their energy at X-ray and gamma-ray wavelengths. But whether their emission is powered by rotation, accretion, heat, magnetic fields or nuclear reactions, they are all different species of the same animal whose magnetic field evolution and interior composition remain a mystery. This article will broadly review the properties of inhabitants of the neutron star zoo, with emphasis on their high-energy emission. XXX Neutron stars are found in a wide variety of sources, displaying an amazing array of behavior. They can be isolated or in binary systems, accreting, heating, cooling, spinning down, spinning up, pulsing, flaring and bursting. The one property that seems to determine their behavior most strongly is their magnetic field strength, structure and evolution. The hot polar caps, bursts and flares of magnetars are likely due to the rapid decay and twisting of their superstrong magnetic fields, whose very existence requires some kind of early dynamo activity. The intermediate-strength magnetic fields of RPPs determines their spin-down behavior and radiation properties. However, the overlap of the magnetar and RPP populations is not understood at present. Why don't high-field RPPs burst or flare? Why don't lower-field magnetars sometimes behave more like RPPs? INS may be old magnetars whose high fields have decayed, but they do not account for the existence of younger RPPs with magnetar-strength fields. Not only the strength of the magnetic field but also its configuration may be important in making a NS a magnetar or a RPP. Magnetic field decay is a critical link between other NS populations as well. "Decay" of the magnetic field is necessary for normal RPPs to evolve into MSPs through accretion and spin up in LMXBs. Some kind of accretion-driven field reduction is the most likely mechanism, but it is controversial since it is not

  17. Kicked Neutron Stars and Microlensing

    NASA Astrophysics Data System (ADS)

    Mollerach, Silvia; Roulet, Esteban

    1997-04-01

    Because of the large kick velocities with which neutron stars are born in supernova explosions, their spatial distribution is more extended than that of their progenitor stars. The large scale height of the neutron stars above the disk plane makes them potential candidates for microlensing of stars in the Large Magellanic Cloud. Adopting for the distribution of kicks the measured velocities of young pulsars, we obtain a microlensing optical depth of τ ~ 2N10 × 10-8 (where N10 is the total number of neutron stars born in the disk in units of 1010). The event duration distribution has the interesting property of being peaked at T ~ 60-80 days, but for the rates to be relevant for the present microlensing searches, it would require N10 >~ 1, a value larger than the usually adopted ones (N10 ~ 0.1-0.2).

  18. Neutron stars and strange matter

    SciTech Connect

    Cooperstein, J.

    1986-01-01

    The likelihood is investigated that quark matter with strangeness of order unity resides in neutron stars. In the strong coupling regime near rho/sub 0/ this is found to be unlikely. Considering higher densities where perturbative expansions are used, we find a lower bound to be at 7rho/sub 0/ for the transition density. This is higher than the inferred density of observed neutron stars, and thus the transition to quark matter is precluded. 15 refs., 3 figs.

  19. Axion cooling of neutron stars

    NASA Astrophysics Data System (ADS)

    Sedrakian, Armen

    2016-03-01

    Cooling simulations of neutron stars and their comparison with the data from thermally emitting x-ray sources put constraints on the properties of axions, and by extension, of any light pseudoscalar dark matter particles, whose existence has been postulated to solve the strong-C P problem of QCD. We incorporate the axion emission by pair-breaking and formation processes by S - and P -wave nucleonic condensates in a benchmark code for cooling simulations, as well as provide fit formulas for the rates of these processes. Axion cooling of neutron stars has been simulated for 24 models covering the mass range 1 to 1.8 solar masses, featuring nonaccreted iron and accreted light-element envelopes, and a range of nucleon-axion couplings. The models are based on an equation state predicting conservative physics of superdense nuclear matter that does not allow for the onset of fast cooling processes induced by phase transitions to non-nucleonic forms of matter or high proton concentration. The cooling tracks in the temperature vs age plane were confronted with the (time-averaged) measured surface temperature of the central compact object in the Cas A supernova remnant as well as surface temperatures of three nearby middle-aged thermally emitting pulsars. We find that the axion coupling is limited to fa/107 GeV ≥(5 - 10 ) , which translates into an upper bound on axion mass ma≤(0.06 - 0.12 ) eV for Peccei-Quinn charges of the neutron |Cn|˜0.04 and proton |Cp|˜0.4 characteristic for hadronic models of axions.

  20. Neutron star moments of inertia

    NASA Technical Reports Server (NTRS)

    Ravenhall, D. G.; Pethick, C. J.

    1994-01-01

    An approximation for the moment of inertia of a neutron star in terms of only its mass and radius is presented, and insight into it is obtained by examining the behavior of the relativistic structural equations. The approximation is accurate to approximately 10% for a variety of nuclear equations of state, for all except very low mass stars. It is combined with information about the neutron-star crust to obtain a simple expression (again in terms only of mass and radius) for the fractional moment of inertia of the crust.

  1. Rapidly rotating neutron star progenitors

    NASA Astrophysics Data System (ADS)

    Postnov, K. A.; Kuranov, A. G.; Kolesnikov, D. A.; Popov, S. B.; Porayko, N. K.

    2016-08-01

    Rotating proto-neutron stars can be important sources of gravitational waves to be searched for by present-day and future interferometric detectors. It was demonstrated by Imshennik that in extreme cases the rapid rotation of a collapsing stellar core may lead to fission and formation of a binary proto-neutron star which subsequently merges due to gravitational wave emission. In the present paper, we show that such dynamically unstable collapsing stellar cores may be the product of a former merger process of two stellar cores in a common envelope. We applied population synthesis calculations to assess the expected fraction of such rapidly rotating stellar cores which may lead to fission and formation of a pair of proto-neutron stars. We have used the BSE population synthesis code supplemented with a new treatment of stellar core rotation during the evolution via effective core-envelope coupling, characterized by the coupling time, τc. The validity of this approach is checked by direct MESA calculations of the evolution of a rotating 15 M⊙ star. From comparison of the calculated spin distribution of young neutron stars with the observed one, reported by Popov and Turolla, we infer the value τc ≃ 5 × 105 years. We show that merging of stellar cores in common envelopes can lead to collapses with dynamically unstable proto-neutron stars, with their formation rate being ˜0.1 - 1% of the total core collapses, depending on the common envelope efficiency.

  2. Quantum crystals in neutron stars

    NASA Technical Reports Server (NTRS)

    Canuto, V.; Chitre, S. M.

    1974-01-01

    Using the many-body techniques appropriate for quantum crystals it is shown that the deep interior of a neutron star is most likely an orderly arrangement of neutrons, protons and hyperons forming a solid. It is shown that a liquid or gas arrangement would produce higher energy. If so, a neutron star can be viewed as two solids (crust and core) permeated by a layer of ordinary or (perhaps) superfluid liquid. Astronomical evidence is in favor of such a structure: the sudden jumps in the periods of the Crab and Vela pulsars that differ by a factor of about 100 can be easily explained by the star-quake model. If the Crab is less massive than Vela (i.e., if it is not dense enough to have a solid core), the star-quakes take place in the crust whereas for Vela they occur in the core.

  3. The Impact of Surface Temperature Inhomogeneities on Quiescent Neutron Star Radius Measurements

    NASA Astrophysics Data System (ADS)

    Elshamouty, K. G.; Heinke, C. O.; Morsink, S. M.; Bogdanov, S.; Stevens, A. L.

    2016-08-01

    Fitting the thermal X-ray spectra of neutron stars (NSs) in quiescent X-ray binaries can constrain the masses and radii of NSs. The effect of undetected hot spots on the spectrum, and thus on the inferred NS mass and radius, has not yet been explored for appropriate atmospheres and spectra. A hot spot would harden the observed spectrum, so that spectral modeling tends to infer radii that are too small. However, a hot spot may also produce detectable pulsations. We simulated the effects of a hot spot on the pulsed fraction and spectrum of the quiescent NSs X5 and X7 in the globular cluster 47 Tucanae, using appropriate spectra and beaming for hydrogen atmosphere models, incorporating special and general relativistic effects, and sampling a range of system angles. We searched for pulsations in archival Chandra HRC-S observations of X5 and X7, placing 90% confidence upper limits on their pulsed fractions below 16%. We use these pulsation limits to constrain the temperature differential of any hot spots, and to then constrain the effects of possible hot spots on the X-ray spectrum and the inferred radius from spectral fitting. We find that hot spots below our pulsation limit could bias the spectroscopically inferred radius downward by up to 28%. For Cen X-4 (which has deeper published pulsation searches), an undetected hot spot could bias its inferred radius downward by up to 10%. Improving constraints on pulsations from quiescent LMXBs may be essential for progress in constraining their radii.

  4. The nuclear physics of neutron stars

    SciTech Connect

    Piekarewicz, J.

    2014-05-09

    We explore the unique and fascinating structure of neutron stars. Although neutron stars are of interest in many areas of Physics, our aim is to provide an intellectual bridge between Nuclear Physics and Astrophysics. We argue against the naive perception of a neutron star as a uniform assembly of neutrons packed to enormous densities. Rather, by focusing on the many exotic phases that are speculated to exist in a neutron star, we show how the reality is different and far more interesting.

  5. Thermal Emission from Neutron Stars

    NASA Astrophysics Data System (ADS)

    Rajagopal, Mohan

    results are compared with recent detailed computations of neutron star H model atmospheres in high fields and with low field Fe and H model atmospheres constructed from detailed opacities. Finally, we consider the fate of thermal radiation after it has left the stellar surface. We show that, including the effects of general relativity on the light paths, even simple dipole magnetospheres can produce interesting perturbations to the observed light curves. For magnetospheric charge densities comparable to the co-rotation value subtle effects are expected in the soft X-ray regime. Substantial pulse structure may, however, be imprinted on the visible/UV pulse for some pulsars. Larger electron densities may also exist in some cases, but sharp scattering features are difficult to produce unless there is plasma injection localized to a small set of magnetic field lines.

  6. Old and new neutron stars

    SciTech Connect

    Ruderman, M.

    1984-09-01

    The youngest known radiopulsar in the rapidly spinning magnetized neutron star which powers the Crab Nebula, the remnant of the historical supernova explosion of 1054 AD. Similar neutron stars are probably born at least every few hundred years, but are less frequent than Galactic supernova explosions. They are initially sources of extreme relativistic electron and/or positron winds (approx.10/sup 38/s/sup -1/ of 10/sup 12/ eV leptons) which greatly decrease as the neutron stars spin down to become mature pulsars. After several million years these neutron stars are no longer observed as radiopulsars, perhaps because of large magnetic field decay. However, a substantial fraction of the 10/sup 8/ old dead pulsars in the Galaxy are the most probable source for the isotropically distributed ..gamma..-ray burst detected several times per week at the earth. Some old neutron stars are spun-up by accretion from companions to be resurrected as rapidly spinning low magnetic field radiopulsars. 52 references, 6 figures, 3 tables.

  7. Ultrahigh energy neutrinos from galactic neutron stars

    NASA Technical Reports Server (NTRS)

    Helfand, D. J.

    1979-01-01

    An attempt is made to estimate the production rate of ultrahigh energy (UHE) neutrinos from galactic neutron stars. The statistics of various stellar populations are reviewed as well as an evolutionary scheme linking several neutron star environments. An observational test for predicting stellar evolution is made using two mass ratio intervals of less than 0.3 and greater than or approximately equal to 0.3, which is supported by kinematical evidence. Attention is given to the problem of the target material that is required by UHE protons accelerated from the pulsar's surface to their rotational kinetic energy, and to the detectability of neutron stars in the UHE neutrinos by employing the deep underwater muon and neutrino detector (DUMAND) array.

  8. Nuclear physics problems for accreting neutron stars

    SciTech Connect

    Wallace, R.K.; Woosley, S.E.

    1983-01-01

    The importance of p(e/sup -/nu)n and of (p,..gamma..) reactions on /sup 56/Ni during a thermonuclear runaway on a neutron star surface is pointed out. A fast 16-isotope approximate nuclear reaction network is developed that is suitable for use in hydrodynamic calculations of such events.

  9. Anomalous hydrodynamics kicks neutron stars

    NASA Astrophysics Data System (ADS)

    Kaminski, Matthias; Uhlemann, Christoph F.; Bleicher, Marcus; Schaffner-Bielich, Jürgen

    2016-09-01

    Observations show that, at the beginning of their existence, neutron stars are accelerated briskly to velocities of up to a thousand kilometers per second. We argue that this remarkable effect can be explained as a manifestation of quantum anomalies on astrophysical scales. To theoretically describe the early stage in the life of neutron stars we use hydrodynamics as a systematic effective-field-theory framework. Within this framework, anomalies of the Standard Model of particle physics as underlying microscopic theory imply the presence of a particular set of transport terms, whose form is completely fixed by theoretical consistency. The resulting chiral transport effects in proto-neutron stars enhance neutrino emission along the internal magnetic field, and the recoil can explain the order of magnitude of the observed kick velocities.

  10. Burst Oscillations: A New Spin on Neutron Stars

    NASA Technical Reports Server (NTRS)

    Strohmayer, Tod

    2007-01-01

    Observations with NASA's Rossi X-ray Timing Explorer (RXTE) have shown that the X-ray flux during thermonuclear X-ray bursts fr-om accreting neutron stars is often strongly pulsed at frequencies as high as 620 Hz. We now know that these oscillations are produced by spin modulation of the thermonuclear flux from the neutron star surface. In addition to revealing the spin frequency, they provide new ways to probe the properties and physics of accreting neutron stars. I will briefly review our current observational and theoretical understanding of these oscillations and discuss what they are telling us about neutron stars.

  11. Modelling magnetically deformed neutron stars

    NASA Astrophysics Data System (ADS)

    Haskell, B.; Samuelsson, L.; Glampedakis, K.; Andersson, N.

    2008-03-01

    Rotating deformed neutron stars are important potential sources for ground-based gravitational wave interferometers such as LIGO, GEO600 and VIRGO. One mechanism that may lead to significant non-asymmetries is the internal magnetic field. It is well known that a magnetic star will not be spherical and, if the magnetic axis is not aligned with the spin axis, the deformation will lead to the emission of gravitational waves. The aim of this paper is to develop a formalism that would allow us to model magnetically deformed stars, using both realistic equations of state and field configurations. As a first step, we consider a set of simplified model problems. Focusing on dipolar fields, we determine the internal magnetic field which is consistent with a given neutron star model and calculate the associated deformation. We discuss the relevance of our results for current gravitational wave detectors and future prospects.

  12. Nuclear Physics of neutron stars

    NASA Astrophysics Data System (ADS)

    Piekarewicz, Jorge

    2015-04-01

    One of the overarching questions posed by the recent community report entitled ``Nuclear Physics: Exploring the Heart of Matter'' asks How Does Subatomic Matter Organize Itself and What Phenomena Emerge? With their enormous dynamic range in both density and neutron-proton asymmetry, neutron stars provide ideal laboratories to answer this critical challenge. Indeed, a neutron star is a gold mine for the study of physical phenomena that cut across a variety of disciplines, from particle physics to general relativity. In this presentation--targeted at non-experts--I will focus on the essential role that nuclear physics plays in constraining the dynamics, structure, and composition of neutron stars. In particular, I will discuss some of the many exotic states of matter that are speculated to exist in a neutron star and the impact of nuclear-physics experiments on elucidating their fascinating nature. This material is based upon work supported by the U.S. Department of Energy Office of Science, Office of Nuclear Physics under Award Number DE-FD05-92ER40750.

  13. Theory of cooling neutron stars versus observations

    SciTech Connect

    Yakovlev, D. G.; Gnedin, O. Y.; Kaminker, A. D.; Potekhin, A. Y.

    2008-02-27

    We review current state of neutron star cooling theory and discuss the prospects to constrain the equation of state, neutrino emission and superfluid properties of neutron star cores by comparing the cooling theory with observations of thermal radiation from isolated neutron stars.

  14. Evolutions of Magnetized Neutron Stars

    NASA Astrophysics Data System (ADS)

    Liebling, Steven; Anderson, Matthew; Hirschmann, Eric; Lehner, Luis; Motl, Patrick; Neilsen, David; Palenzuela, Carlos; Tohline, Joel

    2009-05-01

    Magnetized neutron stars, whether considered individually or within compact binary systems, demonstrate a number of interesting dynamical effects and may represent an important source of observable gravitational waves. In addition, isolated, rotating, magnetized stars serve as a good testbed for a necessarily complex, distributed adaptive mesh refinement (AMR) code. As initial data, we use fully consistent, magnetized, rotating stellar configurations generated with the Lorene toolkit. Here results are presented which (i) demonstrate convergence and stability of the code, (ii) show the evolution of stable and unstable magnetized stars, and (iii) study the effects of a scheme to track the leakage of neutrinos.

  15. On neutron surface waves

    SciTech Connect

    Ignatovich, V. K.

    2009-01-15

    It is shown that neutron surface waves do not exist. The difference between the neutron wave mechanics and the wave physics of electromagnetic and acoustic processes, which allows the existence of surface waves, is analyzed.

  16. The Mystery of the Lonely Neutron Star

    NASA Astrophysics Data System (ADS)

    2000-09-01

    must have formed in our own galaxy, the Milky Way. However, most of these are now invisible, having since long cooled down and become completely inactive while fading out of sight. An unsual neutron star - RX J1856.5-3754 Some years ago, the X-ray source RX J1856.5-3754 was found by the German ROSAT X-ray satellite observatory. Later observations with the Hubble Space Telescope (cf. STScI-PR97-32 ) detected extremely faint optical emission from this source and conclusively proved that it is an isolated neutron star [3]. There is no sign of the associated supernova remnant and it must therefore be at least 100,000 years "old". Most interestingly, and unlike younger isolated neutron stars or neutron stars in binary stellar systems, RX J1856.5-3754 does not show any sign of activity whatsoever, such as variability or pulsations. As a unique member of its class, RX J1856.5-3754 quickly became the centre of great interest among astronomers. It apparently presented the first, very welcome opportunity to perform detailed studies of the structure of a neutron star, without the disturbing influence of ill-understood activity. One particular question arose immediately. The emission of X-rays indicates a very high temperature of RX J1856.5-3754 . However, from the moment of their violent birth, neutron stars are thought to lose energy and to cool down continuously. But then, how can an old neutron star like this one be so hot? One possible explanation is that some interstellar material, gas and/or dust grains, is being captured by its strong gravitational field. Such particles would fall freely towards the surface of the neutron star and arrive there with about half the speed of light. Since the kinetic energy of these particles is proportionate to the second power of the velocity, even small amounts of matter would deposit much energy upon impact, thereby heating the neutron star. The spectrum of RX J1856.5-3754 The new VLT study by van Kerkwijk and Kulkarni of RX J1856

  17. Accreting neutron stars by QFT

    NASA Astrophysics Data System (ADS)

    Chen, Shao-Guang

    the negative charge from ionosphere electrons again rotate, thereby come into being the solar basal magnetic field. The solar surface plasma with additional electrons get the dynamic balance between the upwards force of stable positive charge distribution in the solar upside gas and the downwards force of the vacuum net nuν _{0} flux pressure (solar gravity). When the Jupiter enter into the connecting line of the Sun and the center of the Galaxy, the pressure (solar gravity) observed from earth will weaken because of the Jupiter stop (shield) the net nuν _{0} flux which shoot to Sun from the center of Galaxy. The dynamic balance of forces on the solar surface plasma at once is broken and the plasma will upwards eject as the solar wind with redundant negative charge. At the same time, the solar surface remain a cavity as a sunspot whorl with the positive electric potential relative to around plasma. The whorl is caused by the reaction of plasma eject front and upwards with the different velocity at different latitude of solar rotation, it leads to the cavity around in the downwards and backwards helix movement. The solar rotation more slow, when the cavity is filled by around plasma in the reverse turn direction and return to carry-over negative charge, the Jupiter at front had been produced a new cavity carry-over positive charge, so we had observe the sunspot pair with different whorl directions and different magnetic polarity. Jupiter possess half mass of all planets in solar system, its action to stop net nuν _{0} flux is primary, so that Jupiter’s period of 11.8 sidereal years accord basically with the period of sunspot eruptions. In my paper ‘Nonlinear superposition of strong gravitational field of compact stars’(E15-0039-08), according to QFT it is deduced that: let q is a positive shielding coefficient, 1- q show the gravity weaken degree, the earth (104 km) as a obstructing layer q = 4.6*10 (-10) . A spherical shell of neutron star as obstructing

  18. Slowly braked, rotating neutron stars

    NASA Technical Reports Server (NTRS)

    Sato, H.

    1975-01-01

    A slowly braked, rotating neutron star is believed to be a star which rapidly rotates, has no nebula, is nonpulsing, and has a long initial braking time of ten thousand to a million years because of a low magnetic field. Such an object might be observable as an extended weak source of infrared or radio wave radiation due to the scattering of low-frequency strong-wave photons by accelerated electrons. If these objects exist abundantly in the Galaxy, they would act as sources of relatively low-energy cosmic rays. Pulsars (rapidly braked neutron stars) are shown to have difficulties in providing an adequate amount of cosmic-ray matter, making these new sources seem necessary. The possibility that the acceleration mechanism around a slowly braked star may be not a direct acceleration by the strong wave but an acceleration due to plasma turbulence excited by the strong wave is briefly explored. It is shown that white dwarfs may also be slowly braked stars with braking times longer than 3.15 million years.

  19. Physics of systems containing neutron stars

    NASA Technical Reports Server (NTRS)

    Shaham, Jacob

    1989-01-01

    The following is a summary of work done during the period of Mar. to Oct. 1989. Three major topics were extensively looked into during this time: the reported 2,000 Hz optical signal from the direction of SNR1987A, the possibility that neutron stellar surface magnetic fields do not decay except when the star is accreting, and the 6 Hz QPOs of LMXBs.

  20. Neutron star recoils from anisotropic supernovae.

    NASA Astrophysics Data System (ADS)

    Janka, H.-T.; Mueller, E.

    1994-10-01

    Refering to recent hydrodynamical computations (Herant et al. 1992; Janka & Mueller 1993a) it is argued that neutron star kicks up to a few hundred km/s might be caused by a turbulent overturn of the matter between proto-neutron star and supernova shock during the early phase of the supernova explosion. These recoil speeds ("kick velocities") may be of the right size to explain the measured proper motions of most pulsars and do not require the presence of magnetic fields in the star. It is also possible that anisotropic neutrino emission associated with convective processes in the surface layers of the nascent neutron star (Burrows & Fryxell 1992; Janka & Mueller 1993b; Mueller 1993) provides an acceleration mechanism (Woosley 1987), although our estimates indicate that the maximum attainable velocities are around 200km/s. Yet, it turns out to be very unlikely that the considered stochastic asymmetries of supernova explosions are able to produce large enough recoils to account for pulsar velocities in excess of about 500km/s, which can be found in the samples of Harrison et al. (1993) and Taylor et al. (1993). It is concluded that other acceleration mechanisms have to be devised to explain the fast motion of PSR 2224+65 (transverse speed >=800km/s Cordes et al. 1993) and the high-velocities deduced from associations between supernova remnants and nearby young pulsars (e.g., Frail & Kulkarni 1991; Stewart et al. 1993; Caraveo 1993).

  1. Cooling of neutron stars with diffusive envelopes

    NASA Astrophysics Data System (ADS)

    Beznogov, M. V.; Fortin, M.; Haensel, P.; Yakovlev, D. G.; Zdunik, J. L.

    2016-08-01

    We study the effects of heat blanketing envelopes of neutron stars on their cooling. To this aim, we perform cooling simulations using newly constructed models of the envelopes composed of binary ion mixtures (H-He, He-C, C-Fe) varying the mass of lighter ions (H, He or C) in the envelope. The results are compared with those calculated using the standard models of the envelopes which contain the layers of lighter (accreted) elements (H, He and C) on top of the Fe layer, varying the mass of accreted elements. The main effect is that the chemical composition of the envelopes influences their thermal conductivity and, hence, thermal insulation of the star. For illustration, we apply these results to estimate the internal temperature of the Vela pulsar and to study the cooling of neutron stars of ages of 105 - 106 yr at the photon cooling stage. The uncertainties of the cooling models associated with our poor knowledge of chemical composition of the heat insulating envelopes strongly complicate theoretical reconstruction of the internal structure of cooling neutron stars from observations of their thermal surface emission.

  2. Heating and Cooling in Accreting Neutron Stars

    NASA Astrophysics Data System (ADS)

    Cumming, Andrew

    2015-10-01

    Neutron stars in low mass X-ray binaries accrete enough mass over their lifetimes to replace their entire crust. The accreted matter undergoes a series of nuclear reactions in the crust as it is compressed by continued accretion to higher density. These reactions, which include electron captures, neutron emissions, and pycnonuclear reactions, heat the crust and core of the neutron star. In this talk I will discuss what we can learn from observations of transiently accreting neutron stars in quiescence, when accretion has turned off and we can see emission from the neutron star directly. The quiescent luminosity of these neutron stars constrains the neutrino emissivity in the neutron star core. In systems with long accretion outbursts, observations of thermal relaxation of the crust in quiescence enable, for the first time, constraints on the thermal conductivity and heat capacity of the crust. In this way, low mass X-ray binary neutron stars offer a remarkable chance to constrain the properties of dense neutron-rich matter, such as neutron superfluidity and pasta phases in the inner crust of neutron stars.

  3. Gravitational Redshift of Deformed Neutron Stars

    NASA Astrophysics Data System (ADS)

    Romero, Alexis; Zubairi, Omair; Weber, Fridolin

    2015-04-01

    Non-rotating neutron stars are generally treated in theoretical studies as perfect spheres. Such a treatment, however, may not be correct if strong magnetic fields are present and/or the pressure of the matter in the cores of neutron stars is non-isotropic, leading to neutron stars which are deformed. In this work, we investigate the impact of deformation on the gravitational redshift of neutron stars in the framework of general relativity. Using a parameterized metric to model non-spherical mass distributions, we derive an expression for the gravitational redshift in terms of the mass, radius, and deformity of a neutron star. Numerical solutions for the redshifts of sequences of deformed neutron stars are presented and observational implications are pointed out. This research is funded by the NIH through the Maximizing Access to Research Careers (MARC), under Grant Number: 5T34GM008303-25 and through the National Science Foundation under grant PHY-1411708.

  4. Neutron stars as cosmic hadron physics laboratories

    NASA Technical Reports Server (NTRS)

    Pines, D.

    1985-01-01

    Extensive observations of Her-1 with the Exosat satellite have led to a new understanding of both the dynamics of neutron-star superfluids and the free precession of neutron stars. Detailed microscopic calculations on neutron matter and the properties of the pinned crustal superfluid are provided to serve as a basis for comparing theory with observation on neutron stars. Topics discussed include the Hadron matter equation of state, neutron star structure, Hadron superfluids, the vortex creep theory, Vela pulsar glitches, astrophysical constraints on neutron matter energy gaps, the 35 day periodicity of Her-1, and the neutron matter equation of state. It is concluded that since the post-glitch fits and the identification of the 35th periodicity in Her X-1 as stellar wobble require a rigid neutron matter equation of state, the astrophysical evidence for such an equation seems strong, as well as that for an intermediate Delta(rho) curve.

  5. White Dwarfs, Neutron Stars and Black Holes

    ERIC Educational Resources Information Center

    Szekeres, P.

    1977-01-01

    The three possible fates of burned-out stars: white dwarfs, neutron stars and black holes, are described in elementary terms. Characteristics of these celestial bodies, as provided by Einstein's work, are described. (CP)

  6. Accreting Neutron Stars as Astrophysical Laboratories

    NASA Technical Reports Server (NTRS)

    Chakrabarty, Deepto

    2004-01-01

    In the last year, we have made an extremely important breakthrough in establishing the relationship between thermonuclear burst oscillations in accreting neutron stars and the stellar spin. More broadly, we have continued t o make significant scientific progress in all four of the key focus areas identified in our original proposal: (1) the disk-magnetosphere interaction in neutron stars, (2) rapid variability in accreting neutron stars, (3) physics of accretion flows, and (4) fundamental properties of neutron stars. A list of all publications that have arising from this work since the start of our program is given.

  7. Magnetic fields in Neutron Stars

    NASA Astrophysics Data System (ADS)

    Viganò, D.; Pons, J. A.; Miralles, J. A.; Rea, N.

    2015-05-01

    Isolated neutron stars show a diversity in timing and spectral properties, which has historically led to a classification in different sub-classes. The magnetic field plays a key role in many aspects of the neutron star phenomenology: it regulates the braking torque responsible for their timing properties and, for magnetars, it provides the energy budget for the outburst activity and high quiescent luminosities (usually well above the rotational energy budget). We aim at unifying this observational variety by linking the results of the state-of-the-art 2D magneto-thermal simulations with observational data. The comparison between theory and observations allows to place two strong constraints on the physical properties of the inner crust. First, strong electrical currents must circulate in the crust, rather than in the star core. Second, the innermost part of the crust must be highly resistive, which is in principle in agreement with the presence of a novel phase of matter so-called nuclear pasta phase.

  8. Superfluid Heat Conduction and the Cooling of Magnetized Neutron Stars

    SciTech Connect

    Aguilera, Deborah N.; Cirigliano, Vincenzo; Reddy, Sanjay; Sharma, Rishi; Pons, Jose A.

    2009-03-06

    We report on a new mechanism for heat conduction in the neutron star crust. We find that collective modes of superfluid neutron matter, called superfluid phonons, can influence heat conduction in magnetized neutron stars. They can dominate the heat conduction transverse to the magnetic field when the magnetic field B > or approx. 10{sup 13} G. At a density of {rho}{approx_equal}10{sup 12}-10{sup 14} g/cm{sup 3}, the conductivity due to superfluid phonons is significantly larger than that due to lattice phonons and is comparable to electron conductivity when the temperature {approx_equal}10{sup 8} K. This new mode of heat conduction can limit the surface anisotropy in highly magnetized neutron stars. Cooling curves of magnetized neutron stars with and without superfluid heat conduction could show observationally discernible differences.

  9. The Nearest Neutron Stars

    NASA Technical Reports Server (NTRS)

    Halpern, Jules P.

    1996-01-01

    Extreme Ultraviolet Explorer (EUVE) satellite observations of the Pulsar PSR J0437-4715, the Seyfert Galaxy RX J0437.4-4711, and the Geminga Pulsar are reported on. The main purpose of the PSR J0437-4715 investigation was to examine its soft X-ray flux. The 20 day EUVE observation of RX J0437.4-4711 constitutes a uniformly sampled soft X-ray light curve of a highly variable Seyfert galaxy whose power spectrum can be examined on timescales from 3 hrs. to several days. A unique aspect of the EUVE observation of RX J0437.4-4711 is its long light curve which we have used to measure the power spectrum of soft X-ray variability at low frequencies. Approximately 2100 counts were detected for the Geminga pulsar in a period of 251,000 s by the EUVE Deep Survey instrument. Geminga presents an unusually difficult problem because its multicomponent X-ray spectrum and pulse profile are indicative of a complex distribution of surface emission, and possibly a contribution from nonthermal emission as well.

  10. Planetary Systems Around Neutron Stars

    NASA Astrophysics Data System (ADS)

    Wolszczan, Alexander

    1997-01-01

    This project was initiated in 1993, about one year after the announcement of two planets around PSR B1257+12. Its goal was to investigate planetary systems around neutron stars using high precision timing of radio pulsars as a tool. A microsecond precision of the pulse timing analysis, which is equivalent to a millimeter-per-second radial velocity resolution, makes it possible to detect asteroid-mass bodies in orbit around pulsars and to study the dynamics of pulsar planetary systems. The project originally consisted of two longterm efforts: (i) routine observations and timing analysis of the millisecond pulsar PSR B1257+12 which was found to be orbited by at least two earth-mass bodies (Wolszczan and Frail, Nature, 355, 145) and (ii) a sensitive all-sky search for millisecond pulsars to detect further examples of neutron stars with planetary systems. In the third year of the project, it was expanded to include long-term timing observations of slow pulsars in search for planetary systems around these younger neutron stars. The instrumentation used to conduct these investigations included the 305-m Arecibo antenna with the Penn State Pulsar Machine (PSPM-1), the 100-m Effelsberg telescope with the local pulse timing hardware, and the 32-m paraboloid of the Torun Centre for Astronomy in Torun, Poland (TCFA) with the PSPM-2, the second pulsar machine built at Penn State. The PI's collaborators included pulsar groups led by D. Backer (Berkeley), R. Foster (NRL), S. Kulkarni (Caltech), J. Taylor (Princeton) and R. Wielebinski (Bonn). One postdoc (Stuart Anderson), one graduate student (Brian Cadwell) and several undergraduates have been engaged in various aspects of research related to this project.

  11. On the conversion of neutron stars into quark stars

    NASA Astrophysics Data System (ADS)

    Pagliara, Giuseppe

    2014-03-01

    The possible existence of two families of compact stars, neutron stars and quark stars, naturally leads to a scenario in which a conversion process between the two stellar objects occurs with a consequent release of energy of the order of 1053 erg. We discuss recent hydrodynamical simulations of the burning process and neutrino diffusion simulations of cooling of a newly formed strange star. We also briefly discuss this scenario in connection with recent measurements of masses and radii of compact stars.

  12. Journey to the Center of a Neutron Star

    NASA Technical Reports Server (NTRS)

    Wanjek, Christopher

    2003-01-01

    A neutron star is not a place most would want to visit. This dense remnant of a collapsed star has a magnetic field billions of times stronger than Earth's, enough to shuffle your body's molecules long before you even land. The featureless surface is no fun either. Crushing gravity ensures that the star is a near perfect sphere, compressing all matter so that a sand-grain-sized scoop of neutron star material would weigh as much as a battleship on Earth. At least black holes offer the promise of funky singularity, time warps, and the Odyssean temptation to venture beyond a point of no return. What s a journey to a neutron star good for, one might ask? Well, for starters, it offers the possibility of confirming a theorized state of matter called quark-gluon plasma, which likely existed for a moment after the Big Bang and now might only exist in the superdense interiors of neutron stars. Beneath the neutron star crust, a kilometer-thick plate of crystalline matter, lies the great unknown. The popular theory is that the neutron star interior is made up of a neutron superfluid - a fluid without friction. With the help of two NASA satellites - the Rossi X-Ray Timing Explorer and the Chandra X-Ray Observatory - scientists are journeying to the center of a neutron star. Matter might be so compressed there that it breaks down into quarks, the building blocks of protons and neutrons, and gluons, the carrier of the strong nuclear force. To dig inside a neutron star, no simple drill bit will do. Scientists gain insight into the interior through events called glitches, a sudden change in the neutron star s precise spin rate. 'Glitches are one of the few ways we have to study the neutron star interior,' says Frank Marshall of NASA s Goddard Space Flight Center, who has used the Rossi Explorer to follow the escapades of the glitchiest of all neutron stars, dubbed the Big Glitcher and known scientifically as PSR J0537-6910.

  13. Phase separation in the crust of accreting neutron stars.

    PubMed

    Horowitz, C J; Berry, D K; Brown, E F

    2007-06-01

    Nucleosynthesis, on the surface of accreting neutron stars, produces a range of chemical elements. We perform molecular dynamics simulations of crystallization to see how this complex composition forms new neutron star crust. We find chemical separation, with the liquid ocean phase greatly enriched in low atomic number elements compared to the solid crust. This phase separation should change many crust properties such as the thermal conductivity and shear modulus. PMID:17677319

  14. Neutron Star Interior Composition Explorer (NICE)

    NASA Technical Reports Server (NTRS)

    Gendreau, Keith C.; Arzoumanian, Zaven

    2008-01-01

    This viewgraph presentation contains an overview of the mission of the Neutron Star Interior Composition Explorer (NICE), a proposed International Space Station (ISS) payload dedicated ot the study of neutron stars. There are also reviews of the Science Objectives of the payload,the science measurements, the design and the expected performance for the instruments for NICE,

  15. Thermonuclear runaways on neutron stars

    NASA Technical Reports Server (NTRS)

    Taam, R. E.; Picklum, R. E.

    1979-01-01

    Thermonuclear runaways which develop when neutron stars of 0.476 solar masses accrete hydrogen-rich material at 10 to the -10th and 2 x 10 to the -9th solar masses/year have been followed using a numerical model. It is found that a thermal instability occurs at densities in excess of 10 to the 5th g/cu cm and that the maximum accumulated mass required to initiate the runaway is 0.7 x 10 to the -12th and 2.1 x 10 to the -12th solar masses for the mass accretion rates of 10 to the -10th and 2 x 10 to the -9th solar masses/year, respectively. Heating the of the neutron star envelope by hydrogen burning leads to the ignition of helium. The nonequilibrium burning of helium by a combination of (alpha, p), (p, gamma), and (alpha, gamma) reactions involving O-14, O-15, and other heavy nuclei provides the energy for an X-ray burst. The gross properties of these models bear suggestive resemblance to those observed for some X-ray burst sources.

  16. Neutron stars as dark matter probes

    SciTech Connect

    Lavallaz, Arnaud de; Fairbairn, Malcolm

    2010-06-15

    We examine whether the accretion of dark matter onto neutron stars could ever have any visible external effects. Captured dark matter which subsequently annihilates will heat the neutron stars, although it seems the effect will be too small to heat close neutron stars at an observable rate while those at the galactic center are obscured by dust. Nonannihilating dark matter would accumulate at the center of the neutron star. In a very dense region of dark matter such as that which may be found at the center of the galaxy, a neutron star might accrete enough to cause it to collapse within a period of time less than the age of the Universe. We calculate what value of the stable dark matter-nucleon cross section would cause this to occur for a large range of masses.

  17. Variational calculation of ground-state energy of iron atoms and condensed matter in strong magnetic fields. [at neutron star surfaces

    NASA Technical Reports Server (NTRS)

    Flowers, E. G.; Ruderman, M. A.; Lee, J.-F.; Sutherland, P. G.; Hillebrandt, W.; Mueller, E.

    1977-01-01

    Variational calculations of the binding energies of iron atoms and condensed matter in strong magnetic fields (greater than 10 to the 12th gauss). These calculations include the electron exchange energy. The cohesive energy of the condensed matter, which is the difference between these two binding energies, is of interest in pulsar theories and in the description of the surfaces of neutron stars. It is found that the cohesive energy ranges from 2.6 keV to 8.0 keV.

  18. Collective excitations in neutron-star crusts

    NASA Astrophysics Data System (ADS)

    Chamel, N.; Page, D.; Reddy, S.

    2016-01-01

    We explore the spectrum of low-energy collective excitations in the crust of a neutron star, especially in the inner region where neutron-proton clusters are immersed in a sea of superfluid neutrons. The speeds of the different modes are calculated systematically from the nuclear energy density functional theory using a Skyrme functional fitted to essentially all experimental atomic mass data.

  19. Quark matter droplets in neutron stars

    NASA Technical Reports Server (NTRS)

    Heiselberg, H.; Pethick, C. J.; Staubo, E. F.

    1993-01-01

    We show that, for physically reasonable bulk and surface properties, the lowest energy state of dense matter consists of quark matter coexisting with nuclear matter in the presence of an essentially uniform background of electrons. We estimate the size and nature of spatial structure in this phase, and show that at the lowest densities the quark matter forms droplets embedded in nuclear matter, whereas at higher densities it can exhibit a variety of different topologies. A finite fraction of the interior of neutron stars could consist of matter in this new phase, which would provide new mechanisms for glitches and cooling.

  20. Neutron Star Science with the NuSTAR

    SciTech Connect

    Vogel, J. K.

    2015-10-16

    The Nuclear Spectroscopic Telescope Array (NuSTAR), launched in June 2012, helped scientists obtain for the first time a sensitive high-­energy X-­ray map of the sky with extraordinary resolution. This pioneering telescope has aided in the understanding of how stars explode and neutron stars are born. LLNL is a founding member of the NuSTAR project, with key personnel on its optics and science team. We used NuSTAR to observe and analyze the observations of different neutron star classes identified in the last decade that are still poorly understood. These studies not only help to comprehend newly discovered astrophysical phenomena and emission processes for members of the neutron star family, but also expand the utility of such observations for addressing broader questions in astrophysics and other physics disciplines. For example, neutron stars provide an excellent laboratory to study exotic and extreme phenomena, such as the equation of state of the densest matter known, the behavior of matter in extreme magnetic fields, and the effects of general relativity. At the same time, knowing their accurate populations has profound implications for understanding the life cycle of massive stars, star collapse, and overall galactic evolution.

  1. Validating Neutron Star Radius Measurements

    NASA Astrophysics Data System (ADS)

    Chakrabarty, Deepto

    2010-09-01

    Spectral analysis of transient neutron star X-ray emission during bursts and quiescence were both used to estimate the NS radii for different sources. The validities of these methods need to be verified by performing them on the same source respectively. Transient type-I (thermonuclear) X-ray bursters are excellent candidates for testing the consistency between these methods, since they were detected in both bursts and quiescence. Out of 3 candidates: Cen X-4, Aql X-1 and 4U 1608-52, 4U 1608-52 turns out to be the best one due to the lack of archival RXTE burst data for Cen X-4 and the previous reported significant luminosity and temperature variability for Aql X-1 in quiescence. Therefore, we propose a 25 ks Chandra/ACIS-S observation of 4U 1608-52.

  2. The breaking strain of neutron star crust

    SciTech Connect

    Kadau, Kai; Horowitz, C J

    2009-01-01

    Mountains on rapidly rotating neutron stars efficiently radiate gravitational waves. The maximum possible size of these mountains depends on the breaking strain of neutron star crust. With multimillion ion molecular dynamics simulations of Coulomb solids representing the crust, we show that the breaking strain of pure single crystals is very large and that impurities, defects, and grain boundaries only modestly reduce the breaking strain to around 0.1. Due to the collective behavior of the ions during failure found in our simulations, the neutron star crust is likely very strong and can support mountains large enough so that their gTavitational wave radiation could limit the spin periods of some stars and might be detectable in large scale interferometers. Furthermore, our microscopic modeling of neutron star crust material can help analyze mechanisms relevant in Magnetar Giant and Micro Flares.

  3. Experimental approach to neutron stars

    SciTech Connect

    Leifels, Yvonne

    2014-05-09

    The equation of state (EOS) of nuclear matter is of fundamental importance in many areas of nuclear physics and astrophysics In the laboratory, there are different means to study the nuclearmatter equation of state and its density dependence in particular: nuclear masses, neutron skins, pygmy resonance, and nuclear structure at the drip line give access to nuclear matter properties at densities lower than and at saturation density ρ0. Heavy ion reactions at energies above 0.1 AGeV are the only means to study nuclear matter at densities larger than normal nuclear matter density ρ0. In the beamenergy range of 0.1 to 2A GeV nuclear matter is compressed upto three times ρ0. Access to nuclear matter properties is achieved by simulating nuclear collisions by means of microscopic transport codes, or statistical or hydrodynamicalmodels. Characteristics of heavy-ion collisions are discussed, and experimental observables which allow to constrain nuclear matter properties by comparing experimental results with those of transport codes are presented. Special emphasis will be given to the density dependence of the symmetry energy which is the most relevant connection between neutron stars and heavy ion collisions.

  4. Gravitational Waves from Neutron Stars: A Review

    NASA Astrophysics Data System (ADS)

    Lasky, Paul D.

    2015-09-01

    Neutron stars are excellent emitters of gravitational waves. Squeezing matter beyond nuclear densities invites exotic physical processes, many of which violently transfer large amounts of mass at relativistic velocities, disrupting spacetime and generating copious quantities of gravitational radiation. I review mechanisms for generating gravitational waves with neutron stars. This includes gravitational waves from radio and millisecond pulsars, magnetars, accreting systems, and newly born neutron stars, with mechanisms including magnetic and thermoelastic deformations, various stellar oscillation modes, and core superfluid turbulence. I also focus on what physics can be learnt from a gravitational wave detection, and where additional research is required to fully understand the dominant physical processes at play.

  5. Radio Detection of Neutron Star Binary Mergers

    NASA Astrophysics Data System (ADS)

    Bear, Brandon; Cardena, Brett; Dispoto, Dana; Papadopoulos, Joanna; Kavic, Michael; Simonetti, John

    2011-10-01

    Neutron star binary systems lose energy through gravitational radiation, and eventually merge. The gravitational radiation from the merger can be detected by the Laser Interferometer Gravitational-Wave Observatory (LIGO). It is expected that a transient radio pulse will also be produced during the merger event. Detection of such radio transients would allow for LIGO to search for signals within constrained time periods. We calculate the LWA-1 detection rate of transient events from neutron star binary mergers. We calculate the detection rate of transient events from neutron star binary mergers for the Long Wavelength Array and the Eight-meter-wavelength Transient Array.

  6. Observations of Neutron Stars with NICER

    NASA Astrophysics Data System (ADS)

    Bogdanov, Slavko

    2016-07-01

    The Neutron Star Interior Composition Explorer (NICER) is an approved NASA Explorer Mission of Opportunity that will be deployed as an attached payload on the International Space Station in August of 2016. By virtue of its unprecedented combination of throughput and fast timing capabilities, NICER will enable an empirical determination of the neutron star equation of state via realistic modeling of the pulsed X-ray radiation from millisecond pulsars. In this talk, I will describe the NICER instrument and measurement techniques it will employ, as well as the expected constraints on neutron star structure, and by extension the behavior of matter at supra-nuclear densities.

  7. Pocked surface neutron detector

    DOEpatents

    McGregor, Douglas; Klann, Raymond

    2003-04-08

    The detection efficiency, or sensitivity, of a neutron detector material such as of Si, SiC, amorphous Si, GaAs, or diamond is substantially increased by forming one or more cavities, or holes, in its surface. A neutron reactive material such as of elemental, or any compound of, .sup.10 B, .sup.6 Li, .sup.6 LiF, U, or Gd is deposited on the surface of the detector material so as to be disposed within the cavities therein. The portions of the neutron reactive material extending into the detector material substantially increase the probability of an energetic neutron reaction product in the form of a charged particle being directed into and detected by the neutron detector material.

  8. Neutron Stars and Thermonuclear X-ray Bursts

    NASA Technical Reports Server (NTRS)

    Bhattacharyya, Supid

    2007-01-01

    This viewgraph presentation describes neutron stars and thermonuclear x ray bursts. The contents include: 1) Neutron Stars: why do we care?; 2) Thermonuclear Bursts: why do we care?; 3) Neutron Stars: Mass, Radius and Spin: a. Continuum Spectroscopy of Bursts b. Spectral Lines from Bursts c. Timing Properties of Bursts; 4) Neutron Star Atmosphere: Thermonuclear Flame Spreading; and 5) Future Prospects and Conclusions.

  9. Rotation and cooling of neutron stars

    NASA Astrophysics Data System (ADS)

    Negreiros, R.; Schramm, S.; Weber, F.

    2014-09-01

    Driven by the loss of energy, isolated rotating neutron stars (pulsars) are gradually slowing down to lower frequencies, which increases the tremendous compression of the matter inside of them. This increase in compression changes both the global properties of rotating neutron stars as well as their hadronic core compositions. Both effects may register themselves observationally in the thermal evolution of such stars, as demonstrated in this work. The rotation-driven particle process which we consider here is the direct Urca (DU) process, which is known to become operative in neutron stars if the number of protons in the stellar core exceeds a critical limit of around 11 % to 15 %. We find that neutron stars spinning down from moderately high rotation rates of a few hundred Hertz may be creating just the right conditions where the DU process becomes operative, leading to an observable effect (enhanced cooling) in the temperature evolution of such neutron stars. We will also study the thermal evolution of neutron stars whose spherical symmetry has been broken due to non-zero rotation. For this we will derive the energy balance and transport equations, taking into account the metric of a rotating fluid distribution and solve these equations numerically.

  10. Neutron-star matter within the energy-density functional theory and neutron-star structure

    SciTech Connect

    Fantina, A. F.; Chamel, N.; Goriely, S.; Pearson, J. M.

    2015-02-24

    In this lecture, we will present some nucleonic equations of state of neutron-star matter calculated within the nuclear energy-density functional theory using generalized Skyrme functionals developed by the Brussels-Montreal collaboration. These equations of state provide a consistent description of all regions of a neutron star. The global structure of neutron stars predicted by these equations of state will be discussed in connection with recent astrophysical observations.

  11. Geminga: A cooling superfluid neutron star

    NASA Technical Reports Server (NTRS)

    Page, Dany

    1994-01-01

    We compare the recent temperature estimate for Geminga with neutron star cooling models. Because of its age (approximately 3.4 x 10(exp 5) yr), Geminga is in the photon cooling era. We show that its surface temperature (approximately 5.2 x 10(exp 5) K) can be understood by both types of neutrino cooling scenarios, i.e., slow neutrino cooling by the modified Urca process or fast neutrino cooling by the direct Urca process or by some exotic matter, and thus does not allow us to discriminate between these two competing schemes. However, for both types of scenarios, agreement with the observed temperature can only be obtained if baryon pairing is present in most, if not all, of the core of the star. Within the slow neutrino cooling scenario, early neutrino cooling is not sufficient to explain the observed low temperature, and extensive pairing in the core is necessary to reduce the specific heat and increase the cooling rate in the present photon cooling era. Within all the fast neutrino cooling scenarios, pairing is necessary throughout the whole core to control the enormous early neutrino emission which, without pairing suppression, would result in a surface temperature at the present time much lower than observed. We also comment on the recent temperature estimates for PSR 0656+14 and PSR 1055-52, which pertain to the same photon cooling era. If one assumes that all neutron stars undergo fast neutrino cooling, then these two objects also provide evidence for extensive baryon pairing in their core; but observational uncertainties also permit a more conservative interpretation, with slow neutrino emission and no pairing at all. We argue though that observational evidence for the slow neutrino cooling model (the 'standard' model) is in fact very dim and that the interpretation of the surface temperature of all neutron stars could be done with a reasonable theoretical a priori within the fast neutrino cooling scenarios only. In this case, Geminga, PSR 0656+14, and PSR

  12. Transport coefficients in superfluid neutron stars

    NASA Astrophysics Data System (ADS)

    Tolos, Laura; Manuel, Cristina; Sarkar, Sreemoyee; Tarrus, Jaume

    2016-01-01

    We study the shear and bulk viscosity coefficients as well as the thermal conductivity as arising from the collisions among phonons in superfluid neutron stars. We use effective field theory techniques to extract the allowed phonon collisional processes, written as a function of the equation of state and the gap of the system. The shear viscosity due to phonon scattering is compared to calculations of that coming from electron collisions. We also comment on the possible consequences for r-mode damping in superfluid neutron stars. Moreover, we find that phonon collisions give the leading contribution to the bulk viscosities in the core of the neutron stars. We finally obtain a temperature-independent thermal conductivity from phonon collisions and compare it with the electron-muon thermal conductivity in superfluid neutron stars.

  13. Magnetic Fields in Superconducting Neutron Stars

    NASA Astrophysics Data System (ADS)

    Lander, S. K.

    2013-02-01

    The interior of a neutron star is likely to be predominantly a mixture of superfluid neutrons and superconducting protons. This results in the quantization of the star’s magnetic field into an array of thin flux tubes, producing a macroscopic force very different from the Lorentz force of normal matter. We show that in an axisymmetric superconducting equilibrium the behavior of a magnetic field is governed by a single differential equation. Solving this, we present the first self-consistent superconducting neutron star equilibria with poloidal and mixed poloidal-toroidal fields and also give the first quantitative results for the corresponding magnetically induced distortions to the star. The poloidal component is dominant in all our configurations. We suggest that the transition from normal to superconducting matter in a young neutron star may cause a large-scale field rearrangement.

  14. Plasma magnetosphere of deformed magnetized neutron star

    NASA Astrophysics Data System (ADS)

    Rayimbaev, J. R.; Ahmedov, B. J.; Juraeva, N. B.; Rakhmatov, A. S.

    2015-04-01

    The plasma magnetosphere surrounding a rotating magnetized neutron star described by non-Kerr spacetime metric in slow rotation approximation has been studied. First we have studied the vacuum solutions of the Maxwell equations in spacetime of slowly rotating magnetized non-Kerr star with dipolar magnetic configuration. Then for the magnetospheric model we have derived second-order differential equation for electrostatic potential from the system of Maxwell equations in spacetime of slowly rotating magnetized non-Kerr star. Analytical solutions of Goldreich-Julian (GJ) charge density along open field lines of slowly rotating magnetized non-Kerr neutron star have been obtained which indicate the modification of an accelerating electric field, charge density along the open field lines and radiating losses of energy of the neutron star by the deformation parameter.

  15. Hydrodynamical evolution of coalescing binary neutron stars

    NASA Technical Reports Server (NTRS)

    Rasio, Frederic A.; Shapiro, Stuart L.

    1992-01-01

    The hydrodynamics of the final merging of two neutron stars and the corresponding gravitational wave emission is studied in detail. Various test calculations are presented, including the compressible Roche and Darwin problems and the head-on collision of two polytropes. A complete coalescence calculation is presented for the simplest case of two identical neutron stars, represented by Gamma = 2 polytropes, in a circular orbit, with their spins aligned and synchronized with the orbital rotation.

  16. Direct URCA process in neutron stars

    NASA Technical Reports Server (NTRS)

    Lattimer, James M.; Prakash, Madappa; Pethick, C. J.; Haensel, Pawel

    1991-01-01

    It is shown that the direct URCA process can occur in neutron stars if the proton concentration exceeds some critical value in the range 11-15 percent. The proton concentration, which is determined by the poorly known symmetry energy of matter above nuclear density, exceeds the critical value in many current calculations. If it occurs, the direct URCA process enhances neutrino emission and neutron star cooling rates by a large factor compared to any process considered previously.

  17. Population Synthesis of isolated Neutron Stars

    NASA Astrophysics Data System (ADS)

    Gullón Juanes, Miguel

    2015-12-01

    Neutron Stars present a wide variety from the observational point of view. The advent of new and powerful detectors and instruments has opened a new era where the classical picture of neutrons stars seen as radio-pulsars has been modified with new classes such as magnetars, X-ray Isolated Neutron Stars (XINSs) or Central Compact Objects (CCOs) in Supernova Remnants . In addition to the more than 2500 sources detected in the radio band, more than two hundred have also been detected as X-ray and gamma-ray sources. This number is expected to increase in the near future. Despite this apparent diversity, some studies demand a theory able to explain the different classes in terms of the same physical scenario (Kaspi, 2010), in which the evolution of the magnetic field appears to play an important role (Viganò et al., 2013). The Population Synthesis of Neutron Stars, which is the central subject of this thesis, is an interesting approach to understand the problem, as both intrinsic properties and observational biases are taken into account. These technique is based on Monte Carlo methods, applied to simulate the whole population of neutron stars. The main objective of the thesis has been to perform a multi-wavelength study of the different populations of Neutron Stars focusing in the effects of magneto-thermal evolution. This report consists of a global summary of the objectives, methods and main results of the thesis. It is structured as follows. The first chapter gives an introduction to Neutron Stars. Chapter two is a description of the method of Population Synthesis of Neutron Stars. In chapter three a global discussion of the main results is presented. Chapter four closes the report with the conclusions. An appendix is also included which constitutes a description of a method based on the pulsar current analysis.

  18. Superfluidity of {Lambda} hyperons in neutron stars

    SciTech Connect

    Wang, Y. N.; Shen, H.

    2010-02-15

    We study the {sup 1}S{sub 0} superfluidity of {Lambda} hyperons in neutron star matter and neutron stars. We use the relativistic mean field (RMF) theory to calculate the properties of neutron star matter. In the RMF approach, the meson-hyperon couplings are constrained by reasonable hyperon potentials that include the updated information from recent developments in hypernuclear physics. To examine the {sup 1}S{sub 0} pairing gap of {Lambda} hyperons, we employ several {Lambda}{Lambda} interactions based on the Nijmegen models and used in double-{Lambda} hypernuclei studies. It is found that the maximal pairing gap obtained is a few tenths of a MeV. The magnitude and the density region of the pairing gap are dependent on the {Lambda}{Lambda} interaction and the treatment of neutron star matter. We calculate neutron star properties and find that whether the {sup 1}S{sub 0} superfluidity of {Lambda} hyperons exists in the core of neutron stars mainly depends on the {Lambda}{Lambda} interaction used.

  19. ULXs: Neutron stars versus black holes

    NASA Astrophysics Data System (ADS)

    King, Andrew; Lasota, Jean-Pierre

    2016-05-01

    We consider ultraluminous X-ray systems (ULXs) where the accretor is a neutron star rather than a black hole. We show that the recently discovered example (M82 X-2) fits naturally into the simple picture of ULXs as beamed X-ray sources fed at super-Eddington rates, provided that its magnetic field is weaker (≃1011G) than a new-born X-ray pulsar, as expected if there has been mass gain. Continuing accretion is likely to weaken the field to the point that pulsing stops, and make the system indistinguishable from a ULX containing a black hole. Accordingly we suggest that a significant fraction of all ULXs may actually contain neutron star accretors rather than black holes, reflecting the neutron-star fraction among their X-ray binary progenitors. We emphasize that neutron-star ULXs are likely to have higher apparent luminosities than black hole ULXs for a given mass transfer rate, as their tighter beaming outweighs their lower Eddington luminosities. This further increases the likely proportion of neutron-star accretors among all ULXs. Cygnus X-2 is probably a typical descendant of neutron-star ULXs, which may therefore ultimately end as millisecond pulsar binaries with massive white dwarf companions.

  20. Neutron stars as laboratories for gravity physics

    SciTech Connect

    Deliduman, Cemsinan

    2014-01-01

    We study the structure of neutron stars in R+αR² gravity model with perturbative method. We obtain mass-radius relations for four representative equations of state (EoS). We find that, for |α|~10⁹ cm², the results differ substantially from the results of general relativity. The effects of modified gravity are seen as mimicking a stiff or soft EoS for neutron stars depending upon whether α is negative or positive, respectively. Some of the soft EoS that are excluded within the framework of general relativity can be reconciled for certain values of α of this order with the 2 solar mass neutron star recently observed. Indeed, if the EoS is ever established to be soft, modified gravity of the sort studied here may be required to explain neutron star masses as large as 2 M{sub ⊙}. The associated length scale √(α)~10⁵ cm is of the order of the the typical radius of neutron stars implying that this is the smallest value we could find by using neutron stars as a probe. We thus conclude that the true value of α is most likely much smaller than 10⁹ cm².

  1. Tables of model atmospheres of bursting neutron stars

    NASA Technical Reports Server (NTRS)

    Madej, Jerzy

    1991-01-01

    This paper presents tables of plane-parallel neutron star model atmospheres in radiative and hydrostatic equilibrium, with effective temperatures of 8 x 10 exp 6, 1.257 x 10 exp 7, 2 x 10 exp 7, and 3 x 10 exp 7 K, and surface gravities of 15.0 and less (cgs units). The equations of model atmospheres on which the tables are based fully account for nonisotropies of the radiation field and effects of noncoherent Compton scattering of thermal X-rays by free electrons. Both the effective temperatures and gravities listed above are measured on the neutron star surface.

  2. Diffusive heat blanketing envelopes of neutron stars

    NASA Astrophysics Data System (ADS)

    Beznogov, M. V.; Potekhin, A. Y.; Yakovlev, D. G.

    2016-06-01

    We construct new models of outer heat blanketing envelopes of neutron stars composed of binary ion mixtures (H-He, He-C, C-Fe) in and out of diffusive equilibrium. To this aim, we generalize our previous work on diffusion of ions in isothermal gaseous or Coulomb liquid plasmas to handle non-isothermal systems. We calculate the relations between the effective surface temperature Ts and the temperature Tb at the bottom of heat blanketing envelopes (at a density ρb ˜ 108 - 1010 g cm-3) for diffusively equilibrated and non-equilibrated distributions of ion species at different masses ΔM of lighter ions in the envelope. Our principal result is that the Ts-Tb relations are fairly insensitive to detailed distribution of ion fractions over the envelope (diffusively equilibrated or not) and depend almost solely on ΔM. The obtained relations are approximated by analytic expressions which are convenient for modelling the evolution of neutron stars.

  3. Dynamical stability of nascent neutron stars

    NASA Astrophysics Data System (ADS)

    Liu, Yuk Tung

    This thesis presents a study of the dynamical stability of nascent neutron stars resulting from the accretion induced collapse of rapidly rotating white dwarfs. Chapter 2 and part of Chapter 3 study the equilibrium models for these neutron stars. They are constructed by assuming that the neutron stars have the same masses, angular momenta, and specific angular momentum distributions as the pre-collapse white dwarfs. If the pre-collapse white dwarf is rapidly rotating, the collapsed object will contain a high density central core of size about 20 km, surrounded by a massive accretion torus extending to hundreds of kilometers from the rotation axis. The ratio of the rotational kinetic energy to gravitational binding energy, β, of these neutron stars is all found to be less than 0.27. Chapter 3 studies the dynamical stability of these neutron stars by numerically evolving the linearized hydrodynamical equations. A dynamical bar-mode instability is observed when the β of the star is greater than the critical value β d ≈ 0.25. It is expected that the unstable mode will persist until a substantial amount of angular momentum is carried away by gravitational radiation. The detectability of these sources is studied and it is estimated that LIGO II is unlikely to detect them unless the event rate is greater than 10-6/year/galaxy. All the calculations on the structure and stability of the neutron stars in Chapters 2 and 3 are carried out using Newtonian hydrodynamics and gravity. Chapter 4 studies the relativistic effects on the structure of these neutron stars. New techniques are developed and used to construct neutron star models to the first post- Newtonian (1PN) order. The structures of the ON models are qualitatively similar to the corresponding Newtonian models, but the values of β are somewhat smaller. The maximum β for these ON neutron stars is found to be 0.24, which is 8% smaller than the Newtonian result (0.26). However, relativistic effects will also change

  4. HUBBLE SEES A NEUTRON STAR ALONE IN SPACE

    NASA Technical Reports Server (NTRS)

    2002-01-01

    his is the first direct look, in visible light, at a lone neutron star, as seen by NASA's Hubble Space Telescope. The Hubble results show the star is very hot (1.2 million degrees Fahrenheit at the surface), and can be no larger than 16.8 miles (28 kilometers) across. These results prove that the object must be a neutron star, because no other known type of object can be this hot, small, and dim (below 25th magnitude). The first clue that there was a neutron star at this location came in 1992, when the ROSAT (the Roentgen Satellite) found a bright X-ray source without any optical counterpart in optical sky surveys. Hubble's Wide Field Planetary Camera 2 was used in October 1996 to undertake a sensitive search for the optical object, and found a stellar pinpoint of light within only 2 arc seconds (1/900th the diameter of the Moon) of the X-ray position. Astronomers haven't directly measured the neutron star's distance, but fortunately the neutron star lies in front of a molecular cloud known to be about 400 light-years away in the southern constellation Corona Australis. Credit: Fred Walter (State University of New York at Stony Brook), and NASA

  5. Conditions for jet formation in accreting neutron stars: the magnetic field decay

    NASA Astrophysics Data System (ADS)

    García, Federico; Aguilera, Deborah N.; Romero, Gustavo E.

    2011-02-01

    Accreting neutron stars can produce jets only if they are weakly magnetized (B ~ 108 G). On the other hand, neutron stars are compact objects born with strong surface magnetic fields (B ~ 1012 G). In this work we study the conditions for jet formation in a binary system formed by a neutron star and a massive donor star once the magnetic field has decayed due to accretion. We solve the induction equation for the magnetic field diffusion in a realistic neutron star crust and discuss the possibility of jet launching in systems like the recently detected Supergiant Fast X-ray Transients.

  6. The decompression of cold neutron star matter

    NASA Technical Reports Server (NTRS)

    Lattimer, J. M.; Mackie, F.; Ravenhall, D. G.; Schramm, D. N.

    1977-01-01

    The ejection of cold neutron-star matter is examined, and an attempt is made to determine whether the final composition of this matter may be similar to that normally associated with the hot high-neutron-flux r-process. A semiempirical liquid-drop model is used for the nucleus, and the equilibrium composition of the matter is determined by assuming it to be in its absolute ground state at a given density. Physical mechanisms operating during the expansion are analyzed, and the composition of the ejected matter is found as a function of its density during expansion. The results indicate that it is virtually impossible for deuterium to form, that neutrons can be captured only after beta decay increases the atomic numbers of nuclei, and that no free neutrons can escape. It is concluded that neutron-star ejecta can produce heavy neutron-rich nuclei and may produce somewhat heavier nuclei than a standard r-process.

  7. Magnetic field decay in isolated neutron stars

    NASA Technical Reports Server (NTRS)

    Goldreich, Peter; Reisenegger, Andreas

    1992-01-01

    Three mechanisms that promote the loss of magnetic flux from an isolated neutron star - Ohmic decay, ambipolar diffusion, and Hall drift - are investigated. Equations of motions are solved for charged particles in the presence of a magnetic field and a fixed background of neutrons, while allowing for the creation and destruction of particles by weak interactions. Although these equations apply to normal neutrons and protons, the present interpretations of their solutions are extended to cover cases of neutron superfluidity and proton superconductivity. The equations are manipulated to prove that, in the presence of a magnetic force, the charged particles cannot be simultaneously in magnetostatic equilibrium and chemical equilibrium with the neutrons. The application of the results to real neutron stars is discussed.

  8. DISCOVERY OF A NEUTRON STAR OSCILLATION MODE DURING A SUPERBURST

    SciTech Connect

    Strohmayer, Tod; Mahmoodifar, Simin

    2014-10-01

    Neutron stars are among the most compact objects in the universe and provide a unique laboratory for the study of cold ultra-dense matter. While asteroseismology can provide a powerful probe of the interiors of stars, for example, helioseismology has provided unprecedented insights about the interior of the Sun, comparable capabilities for neutron star seismology have not yet been achieved. Here, we report the discovery of a coherent X-ray modulation from the neutron star 4U 1636–536 during the 2001 February 22 thermonuclear superburst seen with NASA's Rossi X-Ray Timing Explorer (RXTE) that is very likely produced by a global oscillation mode. The observed frequency is 835.6440 ± 0.0002 Hz (1.43546 times the stellar spin frequency of 582.14323 Hz) and the modulation is well described by a sinusoid (A + Bsin (φ – φ{sub 0})) with a fractional half-amplitude of B/A = 0.19 ± 0.04% (4-15 keV). The observed frequency is consistent with the expected inertial frame frequency of a rotationally modified surface g-mode, an interfacial mode in the ocean-crust interface, or perhaps an r-mode. Observing an inertial frame frequency—as opposed to a co-rotating frame frequency—appears consistent with the superburst's thermal emission arising from the entire surface of the neutron star, and the mode may become visible by perturbing the local surface temperature. We briefly discuss the implications of the mode detection for the neutron star's projected velocity and mass. Our results provide further strong evidence that global oscillation modes can produce observable modulations in the X-ray flux from neutron stars.

  9. Neutron Stars and the Discovery of Pulsars.

    ERIC Educational Resources Information Center

    Greenstein, George

    1985-01-01

    Part one recounted the story of the discovery of pulsars and examined the Crab Nebula, supernovae, and neutron stars. This part (experts from the book "Frozen Star") shows how an understanding of the nature of pulsars allowed astronomers to tie these together. (JN)

  10. Local distribution of old neutron stars

    NASA Technical Reports Server (NTRS)

    Frei, Szolt; Huang, Xiaolan; Paczynski, Bohdan

    1992-01-01

    The local distribution of old disk neutron stars is approximated with a 1D model, in which the steady state distribution in the direction perpendicular to the Galactic plane is calculated, assuming a variety of the initial radio pulsar positions and velocities, and various Galactic potentials. It is found that the local distribution of old neutron stars is dominated by those that were born with very low velocities. The high-velocity neutron stars spend most of their lifetime far in the Galactic halo and do not contribute much to the local density. Therefore, the rms velocity at birth is not a good indicator of the scale height of the old population. The most likely half-density scale height for the old disk neutron stars is approximately 350 pc, the same as for the old disk G, K, and M stars. If gamma-ray bursts originate on old disk neutron stars, then 350 pc should also be the scale height for the bursters.

  11. Discriminating strange star mergers from neutron star mergers by gravitational-wave measurements

    SciTech Connect

    Bauswein, A.; Oechslin, R.; Janka, H.-T.

    2010-01-15

    We perform three-dimensional relativistic hydrodynamical simulations of the coalescence of strange stars and explore the possibility to decide on the strange matter hypothesis by means of gravitational-wave measurements. Self-binding of strange quark matter and the generally more compact stars yield features that clearly distinguish strange star from neutron star mergers, e.g. hampering tidal disruption during the plunge of quark stars. Furthermore, instead of forming dilute halo structures around the remnant as in the case of neutron star mergers, the coalescence of strange stars results in a differentially rotating hypermassive object with a sharp surface layer surrounded by a geometrically thin, clumpy high-density strange quark matter disk. We also investigate the importance of including nonzero temperature equations of state in neutron star and strange star merger simulations. In both cases we find a crucial sensitivity of the dynamics and outcome of the coalescence to thermal effects, e.g. the outer remnant structure and the delay time of the dense remnant core to black hole collapse depend on the inclusion of nonzero temperature effects. For comparing and classifying the gravitational-wave signals, we use a number of characteristic quantities like the maximum frequency during inspiral or the dominant frequency of oscillations of the postmerger remnant. In general, these frequencies are higher for strange star mergers. Only for particular choices of the equation of state the frequencies of neutron star and strange star mergers are similar. In such cases additional features of the gravitational-wave luminosity spectrum like the ratio of energy emitted during the inspiral phase to the energy radiated away in the postmerger stage may help to discriminate coalescence events of the different types. If such characteristic quantities could be extracted from gravitational-wave signals, for instance with the upcoming gravitational-wave detectors, a decision on the

  12. Population Synthesis of Double Neutron Stars

    NASA Astrophysics Data System (ADS)

    Tenney, Craig; Lorimer, D.; Bagchi, M.

    2014-01-01

    Globular clusters in our galaxy provide a fertile ground for stars to undergo supernova which leads to the creation of neutron stars. A population synthesis was created to study the population of double neutron stars (DNS) in our Galaxy that originated in globular clusters. The rate of DNS formation is proportional to the cluster's luminosity and the resulting kick from the supernova at birth ejects the DNS from the cluster. Initial conditions are given to the DNS after being ejected and allowed to evolve throughout the galaxy to the present time. With a simulated population of DNS we test to see how many of them are detectable from Earth with radio telescopes. DNS are being used as a way to detect gravitation waves when the two neutron stars spiral into each other. A better constraint on their formation and existence will lead to more accurate predictions for gravitational wave detectors.

  13. A neutron star with a carbon atmosphere in the Cassiopeia A supernova remnant.

    PubMed

    Ho, Wynn C G; Heinke, Craig O

    2009-11-01

    The surface of hot neutron stars is covered by a thin atmosphere. If there is accretion after neutron-star formation, the atmosphere could be composed of light elements (H or He); if no accretion takes place or if thermonuclear reactions occur after accretion, heavy elements (for example, Fe) are expected. Despite detailed searches, observations have been unable to confirm the atmospheric composition of isolated neutron stars. Here we report an analysis of archival observations of the compact X-ray source in the centre of the Cassiopeia A supernova remnant. We show that a carbon atmosphere neutron star (with low magnetic field) produces a good fit to the spectrum. Our emission model, in contrast with others, implies an emission size consistent with theoretical predictions for the radius of neutron stars. This result suggests that there is nuclear burning in the surface layers and also identifies the compact source as a very young ( approximately 330-year-old) neutron star. PMID:19890325

  14. Binary neutron stars with arbitrary spins in numerical relativity

    NASA Astrophysics Data System (ADS)

    Tacik, Nick; Foucart, Francois; Pfeiffer, Harald P.; Haas, Roland; Ossokine, Serguei; Kaplan, Jeff; Muhlberger, Curran; Duez, Matt D.; Kidder, Lawrence E.; Scheel, Mark A.; Szilágyi, Béla

    2015-12-01

    We present a code to construct initial data for binary neutron star systems in which the stars are rotating. Our code, based on a formalism developed by Tichy, allows for arbitrary rotation axes of the neutron stars and is able to achieve rotation rates near rotational breakup. We compute the neutron star angular momentum through quasilocal angular momentum integrals. When constructing irrotational binary neutron stars, we find a very small residual dimensionless spin of ˜2 ×10-4 . Evolutions of rotating neutron star binaries show that the magnitude of the stars' angular momentum is conserved, and that the spin and orbit precession of the stars is well described by post-Newtonian approximation. We demonstrate that orbital eccentricity of the binary neutron stars can be controlled to ˜0.1 % . The neutron stars show quasinormal mode oscillations at an amplitude which increases with the rotation rate of the stars.

  15. The neutron star mass distribution

    SciTech Connect

    Kiziltan, Bülent; Kottas, Athanasios; De Yoreo, Maria; Thorsett, Stephen E.

    2013-11-20

    In recent years, the number of pulsars with secure mass measurements has increased to a level that allows us to probe the underlying neutron star (NS) mass distribution in detail. We critically review the radio pulsar mass measurements. For the first time, we are able to analyze a sizable population of NSs with a flexible modeling approach that can effectively accommodate a skewed underlying distribution and asymmetric measurement errors. We find that NSs that have evolved through different evolutionary paths reflect distinctive signatures through dissimilar distribution peak and mass cutoff values. NSs in double NS and NS-white dwarf (WD) systems show consistent respective peaks at 1.33 M {sub ☉} and 1.55 M {sub ☉}, suggesting significant mass accretion (Δm ≈ 0.22 M {sub ☉}) has occurred during the spin-up phase. The width of the mass distribution implied by double NS systems is indicative of a tight initial mass function while the inferred mass range is significantly wider for NSs that have gone through recycling. We find a mass cutoff at ∼2.1 M {sub ☉} for NSs with WD companions, which establishes a firm lower bound for the maximum NS mass. This rules out the majority of strange quark and soft equation of state models as viable configurations for NS matter. The lack of truncation close to the maximum mass cutoff along with the skewed nature of the inferred mass distribution both enforce the suggestion that the 2.1 M {sub ☉} limit is set by evolutionary constraints rather than nuclear physics or general relativity, and the existence of rare supermassive NSs is possible.

  16. Outer crust of nonaccreting cold neutron stars

    NASA Astrophysics Data System (ADS)

    Rüster, Stefan B.; Hempel, Matthias; Schaffner-Bielich, Jürgen

    2006-03-01

    The properties of the outer crust of nonaccreting cold neutron stars are studied by using modern nuclear data and theoretical mass tables, updating in particular the classic work of Baym, Pethick, and Sutherland. Experimental data from the atomic mass table from Audi, Wapstra, and Thibault of 2003 are used and a thorough comparison of many modern theoretical nuclear models, both relativistic and nonrelativistic, is performed for the first time. In addition, the influences of pairing and deformation are investigated. State-of-the-art theoretical nuclear mass tables are compared to check their differences concerning the neutron drip line, magic neutron numbers, the equation of state, and the sequence of neutron-rich nuclei up to the drip line in the outer crust of nonaccreting cold neutron stars.

  17. Outer crust of nonaccreting cold neutron stars

    SciTech Connect

    Ruester, Stefan B.; Hempel, Matthias; Schaffner-Bielich, Juergen

    2006-03-15

    The properties of the outer crust of nonaccreting cold neutron stars are studied by using modern nuclear data and theoretical mass tables, updating in particular the classic work of Baym, Pethick, and Sutherland. Experimental data from the atomic mass table from Audi, Wapstra, and Thibault of 2003 are used and a thorough comparison of many modern theoretical nuclear models, both relativistic and nonrelativistic, is performed for the first time. In addition, the influences of pairing and deformation are investigated. State-of-the-art theoretical nuclear mass tables are compared to check their differences concerning the neutron drip line, magic neutron numbers, the equation of state, and the sequence of neutron-rich nuclei up to the drip line in the outer crust of nonaccreting cold neutron stars.

  18. Encounters between binaries and neutron stars

    NASA Technical Reports Server (NTRS)

    Davies, M. B.; Benz, W.; Hills, J. G.

    1993-01-01

    We simulated encounters between a neutron star and primordial and tidal-capture binaries. In the case of encounters involving a tidal-capture binary, comprising a white dwarf and a main-sequence star, we find that most exchange encounters will produce a single merged object with the white dwarf and neutron star engulfed in a common envelope of gas donated by the main-sequence primary of the original binary. A small fraction of exchanges induce a merger of the white dwarf and main-sequence star, with this object being unbound to the neutron star, and the two objects having a large relative speed at infinity. For encounters involving a primordial binary, fewer encounters require the inclusion of hydrodynamical effects. Those involving collisions or close encounters tend to produce a binary comprised of the two merged stars (now forming one star) and the third star. The binaries produced typically have large enough separations to prevent the formation of a single merged object until subsequent stellar evolution of one of the components causes it to fill its Roche lobe. Clean exchanges produce binaries with large eccentricities; they are typically sufficiently wide to avoid circularization.

  19. Short-range nucleon correlations and neutrino emission by neutron stars

    SciTech Connect

    Frankfurt, Leonid; Strikman, Mark

    2008-10-13

    We argue that significant probability of protons with momenta above their Fermi surface leads for proton concentrations p/n{>=}1/8 to the enhancement of termally excited direct and modified URCA processes within a cold neutron star, and to a nonzero probability of direct URCA processes for small proton concentrations (p/n{<=}1/8). We evaluate high momentum tails of neutron, proton and electrons distributions within a neutron star. We expect also significantly faster neutrino cooling of hyperon stars.

  20. Constraints on neutron star models of gamma-burst sources from the Einstein Observatory

    NASA Technical Reports Server (NTRS)

    Pizzichini, G.; Gottardi, M.; Atteia, J.-L.; Barat, C.; Hurley, K.; Niel, M.; Vedrenne, G.; Laros, J. G.; Cline, T. L.; Desai, U. D.

    1986-01-01

    Six Einstein observations of five gamma-ray burst sources are presented and discussed. With one possible exception, no point source was detected in any of the observations. The data are interpreted in the framework of neutron star models for gamma bursters. Upper limits are derived for the surface temperatures of the neutron stars assumed to be responsible for the bursts. It is shown that the lack of soft X-ray emission may impose stringent constraints on accretion rates onto neutron stars.

  1. X-ray bursts and neutron-star thermonuclear flashes

    NASA Technical Reports Server (NTRS)

    Joss, P. C.

    1977-01-01

    A description is presented of a model concerning the production of X-ray bursts by thermonuclear flashes in the freshly accreted matter near the surface of an accreting neutron star. An investigation is conducted regarding the physical processes relevant to such thermonuclear flashes. It is concluded that thermonuclear flashes may account for some, but not all, of the observed X-ray burst sources. Attention is given to a neutron star undergoing accretion of mass from a binary stellar companion, aspects of energetics, nuclear reactions, and heat transport mechanisms.

  2. Physics in strong magnetic fields near neutron stars

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.

    1991-01-01

    Electromagnetic phenomena occurring in the strong magnetic fields of neutron stars are currently of great interest in high-energy astrophysics. Observations of rotation rate changes and cyclotron lines in pulsars and gamma-ray bursts indicate that surface magnetic fields of neutron stars often exceed a trillion gauss. In fields this strong, where electrons behave much as if they were in bound atomic states, familiar processes undergo profound changes, and exotic processes become important. Strong magnetic fields affect the physics in several fundamental ways: energies perpendicular to the field are quantized, transverse momentum is not conserved, and electron-positron spin is important. Neutron stars therefore provide a unique laboratory for the study of physics in extremely high fields that cannot be generated on earth.

  3. Thermonuclear processes on accreting neutron stars - A systematic study

    NASA Technical Reports Server (NTRS)

    Ayasli, S.; Joss, P. C.

    1982-01-01

    A series of model calculations for the evolution of the surface layers of an accreting neutron star is carried out. The neutron star mass, radius, core temperature, and surface magnetic field strength are systematically varied, as are the accretion rate onto the neutron star surface and the metallicity of the accreting matter, in order to determine the effects of these parameters on the properties of thermonuclear flashes in the surface layers and the emitted X-ray bursts that result from such flashes. The core temperatures required for thermal equilibrium are found to be approximately a factor of 2 lower than estimated in earlier work. Owing to the effects of the gravitational redshift, the emitted X-ray bursts have lower peak luminosities and longer durations than those calculated in the Newtonian approximation. The entrainment of hydrogen into helium flashes can cause the flashes to exhibit a rather wide range of observable effects and can decrease by a factor of more than 2 the ratio of persistent accretion-driven luminosity to time-averaged burst luminosity emitted by the neutron star.

  4. Testing general metric theories of gravity with bursting neutron stars

    SciTech Connect

    Psaltis, Dimitrios

    2008-03-15

    I show that several observable properties of bursting neutron stars in metric theories of gravity can be calculated using only conservation laws, Killing symmetries, and the Einstein equivalence principle, without requiring the validity of the general relativistic field equations. I calculate, in particular, the gravitational redshift of a surface atomic line, the touchdown luminosity of a radius-expansion burst, which is believed to be equal to the Eddington critical luminosity, and the apparent surface area of a neutron star as measured during the cooling tails of bursts. I show that, for a general metric theory of gravity, the apparent surface area of a neutron star depends on the coordinate radius of the stellar surface and on its gravitational redshift in the exact same way as in general relativity. On the other hand, the Eddington critical luminosity depends also on an additional parameter that measures the degree to which the general relativistic field equations are satisfied. These results can be used in conjunction with current and future high-energy observations of bursting neutron stars to test general relativity in the strong-field regime.

  5. Dissipative processes in superfluid neutron stars

    SciTech Connect

    Mannarelli, Massimo; Colucci, Giuseppe; Manuel, Cristina

    2011-05-23

    We present some results about a novel damping mechanism of r-mode oscillations in neutron stars due to processes that change the number of protons, neutrons and electrons. Deviations from equilibrium of the number densities of the various species lead to the appearance in the Euler equations of the system of a dissipative mechanism, the so-called rocket effect. The evolution of the r-mode oscillations of a rotating neutron star are influenced by the rocket effect and we present estimates of the corresponding damping timescales. In the description of the system we employ a two-fluid model, with one fluid consisting of all the charged components locked together by the electromagnetic interaction, while the second fluid consists of superfluid neutrons. Both components can oscillate however the rocket effect can only efficiently damp the countermoving r-mode oscillations, with the two fluids oscillating out of phase. In our analysis we include the mutual friction dissipative process between the neutron superfluid and the charged component. We neglect the interaction between the two r-mode oscillations as well as effects related with the crust of the star. Moreover, we use a simplified model of neutron star assuming a uniform mass distribution.

  6. Relativistic tidal properties of neutron stars

    SciTech Connect

    Damour, Thibault; Nagar, Alessandro

    2009-10-15

    We study the various linear responses of neutron stars to external relativistic tidal fields. We focus on three different tidal responses, associated to three different tidal coefficients: (i) a gravito-electric-type coefficient G{mu}{sub l}=[length]{sup 2l+1} measuring the lth-order mass multipolar moment GM{sub a{sub 1}}{sub ...a{sub I}} induced in a star by an external lth-order gravito-electric tidal field G{sub a{sub 1}}{sub ...a{sub I}}; (ii) a gravito-magnetic-type coefficient G{sigma}{sub l}=[length]{sup 2l+1} measuring the lth spin multipole moment GS{sub a{sub 1}}{sub ...a{sub I}} induced in a star by an external lth-order gravito-magnetic tidal field H{sub a{sub 1}}{sub ...a{sub I}}; and (iii) a dimensionless 'shape' Love number h{sub l} measuring the distortion of the shape of the surface of a star by an external lth-order gravito-electric tidal field. All the dimensionless tidal coefficients G{mu}{sub l}/R{sup 2l+1}, G{sigma}{sub l}/R{sup 2l+1}, and h{sub l} (where R is the radius of the star) are found to have a strong sensitivity to the value of the star's 'compactness'c{identical_to}GM/(c{sub 0}{sup 2}R) (where we indicate by c{sub 0} the speed of light). In particular, G{mu}{sub l}/R{sup 2l+1}{approx}k{sub l} is found to strongly decrease, as c increases, down to a zero value as c is formally extended to the 'black hole (BH) limit'c{sup BH}=1/2. The shape Love number h{sub l} is also found to significantly decrease as c increases, though it does not vanish in the formal limit c{yields}c{sup BH}, but is rather found to agree with the recently determined shape Love numbers of black holes. The formal vanishing of {mu}{sub l} and {sigma}{sub l} as c{yields}c{sup BH} is a consequence of the no-hair properties of black holes. This vanishing suggests, but in no way proves, that the effective action describing the gravitational interactions of black holes may not need to be augmented by nonminimal worldline couplings.

  7. The Neutron Star Interior Composition Explorer (NICER)

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.; Gendreau, K.; Arzoumanian, Z.

    2014-01-01

    The Neutron Star Interior Composition Explorer (NICER) is an approved NASA Explorer Mission of Opportunity dedicated to the study of the extraordinary gravitational, electromagnetic, and nuclear-physics environments embodied by neutron stars. Scheduled to be launched in 2016 as an International Space Station payload, NICER will explore the exotic states of matter, using rotation-resolved spectroscopy of the thermal and non-thermal emissions of neutron stars in the soft (0.2-12 keV) X-ray band. Grazing-incidence "concentrator" optics coupled with silicon drift detectors, actively pointed for a full hemisphere of sky coverage, will provide photon-counting spectroscopy and timing registered to GPS time and position, with high throughput and relatively low background. The NICER project plans to implement a Guest Observer Program, which includes competitively selected user targets after the first year of flight operations. I will describe NICER and discuss ideas for potential Be/X-ray binary science.

  8. EUV/soft x-ray spectra for low B neutron stars

    SciTech Connect

    Romani, R.W.; Rajagopal, M.; Rogers, F.J.; Iglesias, C.A.

    1995-05-23

    Recent ROSAT and EUVE detections of spin-powered neutron stars suggest that many emit ``thermal`` radiation, peaking in the EUV/soft X-ray band. These data constrain the neutron stars` thermal history, but interpretation requires comparison with model atmosphere computations, since emergent spectra depend strongly on the surface composition and magnetic field. As recent opacity computations show substantial change to absorption cross sections at neutron star photospheric conditions, we report here on new model atmosphere computations employing such data. The results are compared with magnetic atmosphere models and applied to PSR J0437-4715, a low field neutron star.

  9. EUV/soft x-ray spectra for low B neutron stars

    NASA Technical Reports Server (NTRS)

    Romani, Roger W.; Rajagopal, Mohan; Rogers, Forrest J.; Iglesias, Carlos A.

    1995-01-01

    Recent ROSAT and EUVE detections of spin-powered neutron stars suggest that many emit 'thermal' radiation, peaking in the EUV/soft X-ray band. These data constrain the neutron stars' thermal history, but interpretation requires comparison with model atmosphere computations, since emergent spectra depend strongly on the surface composition and magnetic field. As recent opacity computations show substantial change to absorption cross sections at neutron star photospheric conditions, we report here on new model atmosphere computations employing such data. The results are compared with magnetic atmosphere models and applied to PSR J0437-4715, a low field neutron star.

  10. Quasiparticle Interactions in Neutron Matter for Applications in Neutron Stars

    NASA Technical Reports Server (NTRS)

    Wambach, J.; Anisworth, T. L.; Pines, D.

    1993-01-01

    A microscopic model for the quaisiparticle interaction in neutron matter is presented. Both particle-particle (pp) and particle-hole (ph) correlation are are included. The pp correlations are treated in semi-empirical way, while ph correlations are incorporated by solving coupled two-body equations for the particle hole interaction and the scattering amplitude on the Fermi sphere. The resulting integral equations self-consistently sum the ph reducible diagrams. Antisymmetry is kept at all stages and hence the forward-scattering sum rules are obeyed. Results for Landau parameters and transport coefficients in a density regime representing the crust of a neutron star are presented. We also estimate the S-1 gap parameter for neutron superfluidity and comment briefly on neutron-star implications.

  11. Quasiparticle Interactions in Neutron Matter for Applications in Neutron Stars

    NASA Technical Reports Server (NTRS)

    Wambach, J; Ainsworth, T. L.; Pines, D.

    1993-01-01

    A microscopic model for the quasiparticle interaction in neutron matter is presented. Both-particle (pp) and particle-hole (ph) correlations are included. The pp correlations are treated in semi-empirical way, while ph correlations are incorporated by solving coupled two-body equations for particle-hole interaction and the scattering amplitude of the Fermi sphere. The resulting integral equations self-consistently sum the ph reducible diagrams. Antisymmetry is kept at all stages and hence the forward-scattering sum rules for the scattering amplitude are obeyed. Results for Landau parameters and transport coefficients in a density regime representing the crust of a neutron star are presented. We also estimate the (1)S(sub 0) gap parameter for neutron superfluidity and comment briefly on neutron-star implications.

  12. Towards a metallurgy of neutron star crusts.

    PubMed

    Kobyakov, D; Pethick, C J

    2014-03-21

    In the standard picture of the crust of a neutron star, matter there is simple: a body-centered-cubic lattice of nuclei immersed in an essentially uniform electron gas. We show that, at densities above that for neutron drip (∼ 4 × 1 0(11)  g cm(-3) or roughly one-thousandth of nuclear matter density), the interstitial neutrons give rise to an attractive interaction between nuclei that renders the lattice unstable. We argue that the likely equilibrium structure is similar to that in displacive ferroelectric materials such as BaTiO3. As a consequence, the properties of matter in the inner crust are expected to be much richer than previously appreciated, and we mention possible consequences for observable neutron star properties. PMID:24702357

  13. Magnetic field evolution in superconducting neutron stars

    NASA Astrophysics Data System (ADS)

    Graber, Vanessa; Andersson, Nils; Glampedakis, Kostas; Lander, Samuel K.

    2015-10-01

    The presence of superconducting and superfluid components in the core of mature neutron stars calls for the rethinking of a number of key magnetohydrodynamical notions like resistivity, the induction equation, magnetic energy and flux-freezing. Using a multifluid magnetohydrodynamics formalism, we investigate how the magnetic field evolution is modified when neutron star matter is composed of superfluid neutrons, type-II superconducting protons and relativistic electrons. As an application of this framework, we derive an induction equation where the resistive coupling originates from the mutual friction between the electrons and the vortex/fluxtube arrays of the neutron and proton condensates. The resulting induction equation allows the identification of two time-scales that are significantly different from those of standard magnetohydrodynamics. The astrophysical implications of these results are briefly discussed.

  14. Dark-matter admixed neutron stars

    NASA Astrophysics Data System (ADS)

    Leung, S.-C.; Chu, M.-C.; Lin, L.-M.

    2011-11-01

    We study the hydrostatic equilibrium configuration of an admixture of degenerate dark matter and normal nuclear matter by using a general relativistic two-fluid formalism. We consider non-self-annihilating dark matter particles of mass ˜1GeV. The mass-radius relations and moments of inertia of these dark-matter admixed neutron stars are investigated and the stability of these stars is demonstrated by performing a radial perturbation analysis. We find a new class of compact stars which consists of a small normal matter core with radius of a few kilometers embedded in a ten-kilometer-sized dark matter halo. These stellar objects may be observed as extraordinarily small neutron stars that are incompatible with realistic nuclear matter models.

  15. Asteroseismology of neutron stars and black holes

    NASA Astrophysics Data System (ADS)

    Schutz, B. F.

    2008-10-01

    One of the goals of the large gravitational wave detectors is eventually to observe radiation from oscillations of neutron stars and black holes. These objects have characteristic frequencies of what are called 'quasi-normal' mode oscillations, and these frequencies reveal important information about the source. The frequency spectrum of black holes is very different from that of any stars, so if one or more modes are observed then one can conclusively identify the source as a black hole. For neutron stars the spectrum is similar to that of main-sequence stars, but observing a single mode is enough to put strong constraints on the nuclear-matter equation of state, something which is still highly uncertain. Current detectors could make these observations only if the source were exceptionally close. But planned upgrades could make the first relativistic asteroseismological observations; in particular the GEO600 detector will be optimised for these observations by 2010.

  16. Physics in Strong Magnetic Fields Near Neutron Stars.

    ERIC Educational Resources Information Center

    Harding, Alice K.

    1991-01-01

    Discussed are the behaviors of particles and energies in the magnetic fields of neutron stars. Different types of possible research using neutron stars as a laboratory for the study of strong magnetic fields are proposed. (CW)

  17. An instability in neutron stars at birth

    NASA Technical Reports Server (NTRS)

    Burrows, Adam; Fryxell, Bruce A.

    1992-01-01

    Calculations with a two-dimensional hydrodynamic simulation show that a generic Raleigh-Taylor-like instability occurs in the mantles of nascent neutron stars, that it is possibly violent, and that the standard spherically symmetric models of neutron star birth and supernova explosion may be inadequate. Whether this 'convective' instability is pivotal to the supernova mechanism, pulsar nagnetic fields, or a host of other important issues that attend stellar collapse remains to be seen, but its existence promises to modify all questions concerning this most energetic of astronomical phenomena.

  18. Chandra Observations of Neutron Stars: An Overview

    NASA Technical Reports Server (NTRS)

    Weisskopf, Martin C.; Karovska, M.; Pavlov, G. G.; Zavlin, V. E.; Clarke, Tracy

    2006-01-01

    We present a brief review of Chandra X-ray Observatory observations of neutron stars. The outstanding spatial and spectral resolution of this great observatory have allowed for observations of unprecedented clarity and accuracy. Many of these observations have provided new insights into neutron star physics. We present an admittedly biased and overly brief overview of these observations, highlighting some new discoveries made possible by the Observatory's unique capabilities. We also include our analysis of recent multiwavelength observations of the putative pulsar and its pulsar-wind nebula in the IC 443 SNR.

  19. Holographic Quark Matter and Neutron Stars

    NASA Astrophysics Data System (ADS)

    Hoyos, Carlos; Jokela, Niko; Rodríguez Fernández, David; Vuorinen, Aleksi

    2016-07-01

    We use a top-down holographic model for strongly interacting quark matter to study the properties of neutron stars. When the corresponding equation of state (EOS) is matched with state-of-the-art results for dense nuclear matter, we consistently observe a first-order phase transition at densities between 2 and 7 times the nuclear saturation density. Solving the Tolman-Oppenheimer-Volkov equations with the resulting hybrid EOSs, we find maximal stellar masses in excess of two solar masses, albeit somewhat smaller than those obtained with simple extrapolations of the nuclear matter EOSs. Our calculation predicts that no quark matter exists inside neutron stars.

  20. ASTROPHYSICS: Neutron Stars Imply Relativity's a Drag.

    PubMed

    Schilling, G

    2000-09-01

    A new finding, based on x-rays from distant neutron stars, could be the first clear evidence of a weird relativistic effect called frame dragging, in which a heavy chunk of spinning matter wrenches the space-time around it like an eggbeater. Using data from NASA's Rossi X-ray Timing Explorer, three astronomers in Amsterdam found circumstantial evidence for frame dragging in the flickering of three neutron stars in binary systems. They announced their results in the 1 September issue of The Astrophysical Journal. PMID:17839511

  1. Holographic Quark Matter and Neutron Stars.

    PubMed

    Hoyos, Carlos; Jokela, Niko; Rodríguez Fernández, David; Vuorinen, Aleksi

    2016-07-15

    We use a top-down holographic model for strongly interacting quark matter to study the properties of neutron stars. When the corresponding equation of state (EOS) is matched with state-of-the-art results for dense nuclear matter, we consistently observe a first-order phase transition at densities between 2 and 7 times the nuclear saturation density. Solving the Tolman-Oppenheimer-Volkov equations with the resulting hybrid EOSs, we find maximal stellar masses in excess of two solar masses, albeit somewhat smaller than those obtained with simple extrapolations of the nuclear matter EOSs. Our calculation predicts that no quark matter exists inside neutron stars. PMID:27472110

  2. Oscillations of general relativistic superfluid neutron stars

    NASA Astrophysics Data System (ADS)

    Andersson, N.; Comer, G. L.; Langlois, D.

    2002-11-01

    We develop a general formalism to treat, in general relativity, the nonradial oscillations of a superfluid neutron star about static (non-rotating) configurations. The matter content of these stars can, as a first approximation, be described by a two-fluid model: one fluid is the neutron superfluid, which is believed to exist in the core and inner crust of mature neutron stars; the other fluid is a conglomerate of all charged constituents (crust nuclei, protons, electrons, etc.). We use a system of equations that governs the perturbations both of the metric and of the matter variables, whatever the equation of state for the two fluids. The entrainment effect is explicitly included. We also take the first step towards allowing for the superfluid to be confined to a part of the star by allowing for an outer envelope composed of ordinary fluid. We derive and implement the junction conditions for the metric and matter variables at the core-envelope interface, and briefly discuss the nature of the involved phase transition. We then determine the frequencies and gravitational-wave damping times for a simple model equation of state, incorporating entrainment through an approximation scheme which extends present Newtonian results to the general relativistic regime. We investigate how the quasinormal modes of a superfluid star are affected by changes in the entrainment parameter, and unveil a series of avoided crossings between the various modes. We provide a proof that, unless the equation of state is very special, all modes of a two-fluid star must radiate gravitationally. We also discuss the future detectability of pulsations in a superfluid star and argue that it may be possible (given advances in the relevant technology) to use gravitational-wave data to constrain the parameters of superfluid neutron stars.

  3. Merger of Magnetized Binary Neutron Stars

    NASA Astrophysics Data System (ADS)

    Motl, Patrick M.; Anderson, Matthew; Lehner, Luis; Liebling, Steven L.; Hirschmann, Eric; Neilsen, David; Palenzuela, Carlos

    2016-01-01

    We present simulations of the merger of binary neutron star systems calculated with full general relativity and incorporating the global magnetic field structure for the stars evolved with resistive magnetohydrodynamics. We also incorporate the effects of neutrino transport and tabular equations of state to describe the degenerate matter. We gratefully acknowledge the support of NASA through the Astrophysics Theory Program grant NNX13AH01G.

  4. A Theoretical Analysis of Thermal Radiation from Neutron Stars

    NASA Technical Reports Server (NTRS)

    Applegate, James H.

    1993-01-01

    As soon as it was realized that the direct URCA process is allowed by many modern nuclear equation of state, an analysis of its effect on the cooling of neutron stars was undertaken. A primary study showed that the occurrence of the direct URCA process makes the surface temperature of a neutron star suddenly drop by almost an order of magnitude when the cold wave from the core reaches the surface when the star is a few years old. The results of this study are published in Page and Applegate. As a work in progress, we are presently extending the above work. Improved expressions for the effect of nucleon pairing on the neutrino emissivity and specific heat are now available, and we have incorporated them in a recalculation of rate of the direct URCA process.

  5. Neutron Star Observations and the Equation of State

    SciTech Connect

    Lattimer, James M.

    2009-05-07

    This talk reviews limits to the properties of neutron stars established from physical considerations such as causality and stability. In addition, it summarizes recent attempts to determine realistic bounds to the equation of state (EOS) from a simultaneous measurement of a neutron star's mass and radius. Observational constraints on the neutron star radius from thermal emission, seismology, spin-orbit coupling, and tidal effects in mergers are discussed. Possible constraints from neutron star cooling, including neutrino emissions, are discussed.

  6. MAGNETIC INTERACTIONS IN COALESCING NEUTRON STAR BINARIES

    SciTech Connect

    Piro, Anthony L.

    2012-08-10

    It is expected on both evolutionary and empirical grounds that many merging neutron star (NS) binaries are composed of a highly magnetized NS in orbit with a relatively low magnetic field NS. I study the magnetic interactions of these binaries using the framework of a unipolar inductor model. The electromotive force generated across the non-magnetic NS as it moves through the magnetosphere sets up a circuit connecting the two stars. The exact features of this circuit depend on the uncertain resistance in the space between the stars R{sub space}. Nevertheless, I show that there are interesting observational and/or dynamical effects irrespective of its exact value. When R{sub space} is large, electric dissipation as great as {approx}10{sup 46} erg s{sup -1} (for magnetar-strength fields) occurs in the magnetosphere, which would exhibit itself as a hard X-ray precursor in the seconds leading up to merger. With less certainty, there may also be an associated radio transient. When R{sub space} is small, electric dissipation largely occurs in the surface layers of the magnetic NS. This can reach {approx}10{sup 49} erg s{sup -1} during the final {approx}1 s before merger, similar to the energetics and timescales of short gamma-ray bursts. In addition, for dipole fields greater than Almost-Equal-To 10{sup 12} G and a small R{sub space}, magnetic torques spin up the magnetized NS. This drains angular momentum from the binary and accelerates the inspiral. A faster coalescence results in less orbits occurring before merger, which would impact matched-filtering gravitational-wave searches by ground-based laser interferometers and could create difficulties for studying alternative theories of gravity with compact inspirals.

  7. Neutron stars: A cosmic hadron physics laboratory

    NASA Technical Reports Server (NTRS)

    Pines, David

    1989-01-01

    A progress report is given on neutron stars as a cosmic hadron physics laboratory. Particular attention is paid to the crustal neutron superfluid, and to the information concerning its properties which may be deduced from observations of pulsar glitches and postglitch behavior. Current observational evidence concerning the softness or stiffness of the high density neutron matter equation of state is reviewed briefly, and the (revolutionary) implications of a confirmation of the existence of a 0.5 ms pulsar at the core of (Supernova) SN1987A are discussed.

  8. Neutron stars - A cosmic hadron physics laboratory

    NASA Technical Reports Server (NTRS)

    Pines, David

    1989-01-01

    A progress report is given on neutron stars as a cosmic hadron physics laboratory. Particular attention is paid to the crustal neutron superfluid, and to the information concerning its properties which may be deduced from observations of pulsar glitches and postglitch behavior. Current observational evidence concerning the softness or stiffness of the high density neutron matter equation of state is reviewed briefly, and the (revolutionary) implications of a confirmation of the existence of a 0.5 ms pulsar at the core of (Supernova) SN1987A are discussed.

  9. Surface Mounted Neutron Generators

    NASA Astrophysics Data System (ADS)

    Elizondo-Decanini, Juan M.

    2012-10-01

    A deuterium-tritium (DT) base reaction pulsed neutron generator packaged in a flat computer chip shape of 1.54 cm (0.600 in) wide by 3.175 cm (1.25 in) length and 0.3 cm (0.120 in) thick has been successfully demonstrated to produce 14 MeV neutrons at a rate of 10^9 neutrons per second. The neutron generator is based on a deuterium ion beam accelerated to impact a tritium loaded target. The accelerating voltage is in the 15 to 20 kV in a 3 mm (0.120 in) gap, the ion beam is shaped by using a lens design to produce a flat ion beam that conforms to the flat rectangular target. The ion source is a simple surface mounted deuterium filled titanium film with a fused gap that operates at a current-voltage design to release the deuterium during a pulse length of about 1 μs. We present the general description of the working prototypes, which we have labeled the ``NEUTRISTOR.''[4pt] Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration. Work funded by the LDRD office.

  10. Measurement of the Radius of Neutron Stars

    NASA Astrophysics Data System (ADS)

    Guillot, Sebastien

    2012-07-01

    A physical understanding of the behavior of cold ultra-dense matter -- at and above nuclear density -- can only be achieved by the study of neutron stars. The recent 1.97+/-0.04 Msun measurement for PSR 1614-2230 suggests that strange quark matter and hyperons/kaons condensate equations of state (EoSs) are disfavored, in favor of hadronic EoSs. Over much of the neutron star mass-radius parameter space, the latter EoSs produce lines of nearly constant radii (within about 10%). We present a simultaneous spectral analysis of several globular cluster quiescent low-mass x-ray binaries where we require the radius to be the same among all neutron stars analyzed. Our (preliminary) results suggest a neutron star radius much smaller than previously reported, in the range 7.5-10 km (90% confidence). The Markov-Chain Monte-Carlo method and the Bayesian approach developed in this analysis permits including uncertainties in the distance, in the hydrogen column density, and possible contributions to the spectra due to unmodelled spectrally hard components.

  11. Measurement of the Radius of Neutron Stars

    NASA Astrophysics Data System (ADS)

    Guillot, Sebastien; Rutledge, R. E.; Servillat, M.; Webb, N.

    2013-01-01

    A physical understanding of the behavior of cold ultra dense matter - at and above nuclear density - can only be achieved by the study of neutron stars. The recent 1.97 ± 0.04 M⊙ measurement for PSR 1614-2230 suggests that strange quark matter and hyperons/kaons condensate equations of state (EoSs) are disfavored, in favor of hadronic EoSs. Over much of the neutron star mass-radius parameter space, the latter EoSs produce lines of nearly constant radii (within about 10%). We present a simultaneous spectral analysis of several globular cluster quiescent low-mass X-ray binaries where we require the radius to be the same among all neutron stars analyzed. Our (preliminary) results suggest a neutron star radius much smaller than previously reported, in the range 7.5-10 km (90% confidence). The Markov-Chain Monte-Carlo method and the Bayesian approach developed in this analysis permits including uncertainties in the distance, in the hydrogen column density, and possible contributions to the spectra due to unmodeled spectrally hard components.

  12. Neutron star solutions in perturbative quadratic gravity

    SciTech Connect

    Deliduman, Cemsinan; Ekşi, K.Y.; Keleş, Vildan E-mail: eksi@itu.edu.tr

    2012-05-01

    We study the structure of neutron stars in R+βR{sup μν}R{sub μν} gravity model with perturbative method. We obtain mass-radius relations for six representative equations of state (EoSs). We find that, for |β| ∼ 10{sup 11} cm{sup 2}, the results differ substantially from the results of general relativity. Some of the soft EoSs that are excluded within the framework of general relativity can be reconciled for certain values of β of this order with the 2 solar mass neutron star recently observed. For values of β greater than a few 10{sup 11} cm{sup 2} we find a new solution branch allowing highly massive neutron stars. By referring some recent observational constraints on the mass–radius relation we try to constrain the value of β for each EoS. The associated length scale (β){sup 1/2} ∼ 10{sup 6} cm is of the order of the the typical radius of neutron stars, the probe used in this test. This implies that the true value of β is most likely much smaller than 10{sup 11} cm{sup 2}.

  13. Tidal Love Numbers of Neutron Stars

    SciTech Connect

    Hinderer, Tanja

    2008-04-20

    For a variety of fully relativistic polytropic neutron star models we calculate the star's tidal Love number k{sub 2}. Most realistic equations of state for neutron stars can be approximated as a polytrope with an effective index n {approx} 0.5-1.0. The equilibrium stellar model is obtained by numerical integration of the Tolman-Oppenheimer-Volkhov equations. We calculate the linear l = 2 static perturbations to the Schwarzschild spacetime following the method of Thorne and Campolattaro. Combining the perturbed Einstein equations into a single second-order differential equation for the perturbation to the metric coefficient g{sub tt} and matching the exterior solution to the asymptotic expansion of the metric in the star's local asymptotic rest frame gives the Love number. Our results agree well with the Newtonian results in the weak field limit. The fully relativistic values differ from the Newtonian values by up to {approx}24%. The Love number is potentially measurable in gravitational wave signals from inspiralling binary neutron stars.

  14. Induced Pairing Interaction in Neutron Star Matter

    NASA Astrophysics Data System (ADS)

    Lombardo, U.; Schulze, H.-J.; Zuo, W.

    2013-01-01

    The three superfluid phases supposed to occur in neutron stars are reviewed in the framework of the generalized BCS theory with the induced interaction. The structure of neutron stars characterized by beta-stable asymmetric nuclear matter in equilibrium with the gravitational force discloses new aspects of the pairing mechanism. Some of them are discussed in this report, in particular the formation in dense matter of Cooper pairs in the presence of three-body forces and the interplay between repulsive and attractive polarization effects on isospin T = 1 Cooper pairs embedded into the neutron and proton environment. Quantitative estimates of the energy gaps are reported and their sensitivity to the medium effects, i.e., interaction and polarization, is explored.

  15. Numerical relativistic hydrodynamic simulations of neutron stars

    NASA Astrophysics Data System (ADS)

    Haywood, Joe R.

    Developments in numerical relativistic hydrodynamics over the past thirty years, along with the advent of high speed computers, have made problems needing general relativity and relativistic hydrodynamics tractable. One such problem is the relativistic evolution of neutron stars, either in a head on collision or in binary orbit. Also of current interest is the detection of gravitational radiation from binary neutron stars, black-hole neutron star binaries, binary black holes, etc. Such systems expected to emit gravitational radiation with amplitude large enough to be detected on Earth by such groups as LIGO and VIRGO. Unfortunately, the expected signal strength is below the current noise level. However, signal processing techniques have been developed which should eventually find a signal, if a good theoretical template can be found. In the cases above it is not possible to obtain an analytic solution to the Einstein equations and a numerical approximation is therefore most necessary. In this thesis the Einstein equations are written using the formalism of Arnowitt, Desser and Misner and a conformally flat metric is assumed. Numerical simulations of colliding neutron stars, having either a realistic or Gamma = 2 polytropic equation of state (EOS), are presented which confirm the rise in central density seen by [51, 89] for the softer EOS. For the binary calculation, the results of Wilson et al. [89] are confirmed, which show that the neutron stars can collapse to black holes before colliding when the EOS is realistic and we also confirm results of Miller [56] and others that there is essentially no compression, the central density does not increase, when the stiffer equation of state is used. Finally, a template for the gravitational radiation emitted from the binary is calculated and we show that the frequency of the emitted gravitational waves changes more slowly for the [89] EOS, which may result in a stronger signal in the 50-100 Hz band of LIGO.

  16. Non-identical neutron star twins

    SciTech Connect

    Glendenning, Norman K.; Kettner, Christiane

    1998-07-01

    The work of J. A. Wheeler in the mid 1960's showed that forsmooth equations of state no stable stellar configurations with centraldensities above that corresponding to the limiting mass of 'neutronstars' (in the generic sense) were stable against acoustical vibrationalmodes. A perturbation would cause any such star to collapse to a blackhole or explode. Accordingly, there has been no reason to expect that astable degenerate family of stars with higher density than the knownwhite dwarfs and neutron stars might exist. We have found a class ofexceptions corresponding to certain equations of state that describe afirst order phase transition. We discuss how such a higher density familyof stars could be formed in nature, and how the promising new explorationof oscillations in the X-ray brightness of accreting neutron stars mightprovide a means of identifying them. Our proof of the possible existenceof a third family of degenerate stars is one of principle and rests ongeneral principles like causality, microstability of matter and GeneralRelativity.

  17. Does SN 1987A contain a rapidly vibrating neutron star

    NASA Technical Reports Server (NTRS)

    Wang, Q.; Chen, K.; Hamilton, T. T.; Ruderman, M.; Shaham, Jacob

    1989-01-01

    If the recently reported 0.5 ms-period pulsed optical signal from the direction of Supernova 1987A originated in a young neutron star, its interpretation as a rotational period has difficulties. The surface magnetic field would have to be much lower than expected, and the high rotation rate may rule out preferred nuclear equations of state. It is pointed out here that a remnant radial vibration of a neutron star, excited in the supernova event, may survive for several years with about the observed (gravitationally redshifted) period. Heavy ions at the low-density stellar surface, periodically shocked by the vibration, may efficiently produce narrow pulses of optical cyclotron radiation in a surface field of about a trillion gauss.

  18. Neutron stars in Horndeski gravity

    NASA Astrophysics Data System (ADS)

    Maselli, Andrea; Silva, Hector O.; Minamitsuji, Masato; Berti, Emanuele

    2016-06-01

    Horndeski's theory of gravity is the most general scalar-tensor theory with a single scalar whose equations of motion contain at most second-order derivatives. A subsector of Horndeski's theory known as "Fab Four" gravity allows for dynamical self-tuning of the quantum vacuum energy, and therefore it has received particular attention in cosmology as a possible alternative to the Λ CDM model. Here we study compact stars in Fab Four gravity, which includes as special cases general relativity ("George"), Einstein-dilaton-Gauss-Bonnet gravity ("Ringo"), theories with a nonminimal coupling with the Einstein tensor ("John"), and theories involving the double-dual of the Riemann tensor ("Paul"). We generalize and extend previous results in theories of the John class and were not able to find realistic compact stars in theories involving the Paul class.

  19. Relativistic simulations of eccentric binary neutron star mergers: One-arm spiral instability and effects of neutron star spin

    NASA Astrophysics Data System (ADS)

    East, William E.; Paschalidis, Vasileios; Pretorius, Frans; Shapiro, Stuart L.

    2016-01-01

    We perform general-relativistic hydrodynamical simulations of dynamical capture binary neutron star mergers, emphasizing the role played by the neutron star spin. Dynamical capture mergers may take place in globular clusters, as well as other dense stellar systems, where most neutron stars have large spins. We find significant variability in the merger outcome as a function of initial neutron star spin. For cases where the spin is aligned with the orbital angular momentum, the additional centrifugal support in the remnant hypermassive neutron star can prevent the prompt collapse to a black hole, while for antialigned cases the decreased total angular momentum can facilitate the collapse to a black hole. We show that even moderate spins can significantly increase the amount of ejected material, including the amount unbound with velocities greater than half the speed of light, leading to brighter electromagnetic signatures associated with kilonovae and interaction of the ejecta with the interstellar medium. Furthermore, we find that the initial neutron star spin can strongly affect the already rich phenomenology in the postmerger gravitational wave signatures that arise from the oscillation modes of the hypermassive neutron star. In several of our simulations, the resulting hypermassive neutron star develops the one-arm (m =1 ) spiral instability, the most pronounced cases being those with small but non-negligible neutron star spins. For long-lived hypermassive neutron stars, the presence of this instability leads to improved prospects for detecting these events through gravitational waves, and thus may give information about the neutron star equation of state.

  20. Constraining the neutron star equation of state with gravitational wave signals from coalescing binary neutron stars

    NASA Astrophysics Data System (ADS)

    Agathos, M.; Meidam, J.; Del Pozzo, W.; Li, T. G. F.; Tompitak, M.; Veitch, J.; Vitale, S.; Van Den Broeck, C.

    2015-07-01

    Recently exploratory studies were performed on the possibility of constraining the neutron star equation of state (EOS) using signals from coalescing binary neutron stars, or neutron star-black hole systems, as they will be seen in upcoming advanced gravitational wave detectors such as Advanced LIGO and Advanced Virgo. In particular, it was estimated to what extent the combined information from multiple detections would enable one to distinguish between different equations of state through hypothesis ranking or parameter estimation. Under the assumption of zero neutron star spins both in signals and in template waveforms and considering tidal effects to 1 post-Newtonian (1PN) order, it was found that O (20 ) sources would suffice to distinguish between a stiff, moderate, and soft equation of state. Here we revisit these results, this time including neutron star tidal effects to the highest order currently known, termination of gravitational waveforms at the contact frequency, neutron star spins, and the resulting quadrupole-monopole interaction. We also take the masses of neutron stars in simulated sources to be distributed according to a relatively strongly peaked Gaussian, as hinted at by observations, but without assuming that the data analyst will necessarily have accurate knowledge of this distribution for use as a mass prior. We find that especially the effect of the latter is dramatic, necessitating many more detections to distinguish between different EOSs and causing systematic biases in parameter estimation, on top of biases due to imperfect understanding of the signal model pointed out in earlier work. This would get mitigated if reliable prior information about the mass distribution could be folded into the analyses.

  1. Equation of state for neutron star matter

    SciTech Connect

    Shang-Hui, G.; Yun-Zao, G.; Leung, Y.C.; Zong-Wei, L.; Shao-Rong, L.

    1981-05-01

    We modify the relativistic mean field model proposed by Walecka to handle differently the short-range interaction induced by the vector meson. There are three parameters in the modified model, which are then fixed by fitting them to the properties of nuclear matter at saturation. The equation of state for pure neutron matter is computed. Our results differ substantially from those obtained by Walecka, but are in line with those obtained from the potential approach. The maximum neutron star mass is found tobe 1.7 M/sub sun/.

  2. Why neutron stars have three hairs

    NASA Astrophysics Data System (ADS)

    Stein, Leo; Yagi, Kent; Pappas, George; Yunes, Nicolas; Apostolatos, Theocharis

    2015-04-01

    Neutron stars have recently been found to enjoy a certain `baldness' in their multipolar structure which is independent of the equation of state (EoS) of dense nuclear matter. This is reminiscent of the black hole no-hair relations, and in stark contrast to regular stars. Why is this? Is it because realistic EoSs are sufficiently similar, or because GR effects are especially important, or because the nuclear matter is `cold'? We explore the physics behind these and more hypotheses, and give a convincing explanation for the true origin of the three-hair relations.

  3. Axisymmetric toroidal modes of general relativistic magnetized neutron star models

    SciTech Connect

    Asai, Hidetaka; Lee, Umin E-mail: lee@astr.tohoku.ac.jp

    2014-07-20

    We calculate axisymmetric toroidal modes of magnetized neutron stars with a solid crust in the general relativistic Cowling approximation. We assume that the interior of the star is threaded by a poloidal magnetic field, which is continuous at the surface with an outside dipole field. We examine the cases of the field strength B{sub S} ∼ 10{sup 16} G at the surface. Since separation of variables is not possible for the oscillations of magnetized stars, we employ finite series expansions for the perturbations using spherical harmonic functions. We find discrete normal toroidal modes of odd parity, but no toroidal modes of even parity are found. The frequencies of the toroidal modes form distinct mode sequences and the frequency in a given mode sequence gradually decreases as the number of radial nodes of the eigenfunction increases. From the frequency spectra computed for neutron stars of different masses, we find that the frequency is almost exactly proportional to B{sub S} and is well represented by a linear function of R/M for a given B{sub S}, where M and R are the mass and radius of the star. The toroidal mode frequencies for B{sub S} ∼ 10{sup 15} G are in the frequency range of the quasi-periodic oscillations (QPOs) detected in the soft-gamma-ray repeaters, but we find that the toroidal normal modes cannot explain all the detected QPO frequencies.

  4. FAST FOSSIL ROTATION OF NEUTRON STAR CORES

    SciTech Connect

    Melatos, A.

    2012-12-10

    It is argued that the superfluid core of a neutron star super-rotates relative to the crust, because stratification prevents the core from responding to the electromagnetic braking torque, until the relevant dissipative (viscous or Eddington-Sweet) timescale, which can exceed {approx}10{sup 3} yr and is much longer than the Ekman timescale, has elapsed. Hence, in some young pulsars, the rotation of the core today is a fossil record of its rotation at birth, provided that magnetic crust-core coupling is inhibited, e.g., by buoyancy, field-line topology, or the presence of uncondensed neutral components in the superfluid. Persistent core super-rotation alters our picture of neutron stars in several ways, allowing for magnetic field generation by ongoing dynamo action and enhanced gravitational wave emission from hydrodynamic instabilities.

  5. 'Tertiary' nuclear burning - Neutron star deflagration?

    NASA Technical Reports Server (NTRS)

    Michel, F. Curtis

    1988-01-01

    A motivation is presented for the idea that dense nuclear matter can burn to a new class of stable particles. One of several possibilities is an 'octet' particle which is the 16 baryon extension of alpha particle, but now composed of a pair of each of the two nucleons, (3Sigma, Delta, and 2Xi). Such 'tertiary' nuclear burning (here 'primary' is H-He and 'secondary' is He-Fe) may lead to neutron star explosions rather than collapse to a black hole, analogous to some Type I supernovae models wherein accreting white dwarfs are pushed over the Chandrasekhar mass limit but explode rather than collapse to form neutron stars. Such explosions could possibly give gamma-ray bursts and power quasars, with efficient particle acceleration in the resultant relativistic shocks. The new stable particles themselves could possibly be the sought-after weakly interacting, massive particles (WIMPs) or 'dark' matter.

  6. Fast Fossil Rotation of Neutron Star Cores

    NASA Astrophysics Data System (ADS)

    Melatos, A.

    2012-12-01

    It is argued that the superfluid core of a neutron star super-rotates relative to the crust, because stratification prevents the core from responding to the electromagnetic braking torque, until the relevant dissipative (viscous or Eddington-Sweet) timescale, which can exceed ~103 yr and is much longer than the Ekman timescale, has elapsed. Hence, in some young pulsars, the rotation of the core today is a fossil record of its rotation at birth, provided that magnetic crust-core coupling is inhibited, e.g., by buoyancy, field-line topology, or the presence of uncondensed neutral components in the superfluid. Persistent core super-rotation alters our picture of neutron stars in several ways, allowing for magnetic field generation by ongoing dynamo action and enhanced gravitational wave emission from hydrodynamic instabilities.

  7. Analysing neutron star in HESS J1731-347 from thermal emission and cooling theory

    NASA Astrophysics Data System (ADS)

    Ofengeim, D. D.; Kaminker, A. D.; Klochkov, D.; Suleimanov, V.; Yakovlev, D. G.

    2015-12-01

    The central compact object in the supernova remnant HESS J1731-347 appears to be the hottest observed isolated cooling neutron star. The cooling theory of neutron stars enables one to explain observations of this star by assuming the presence of strong proton superfluidity in the stellar core and the existence of the surface heat blanketing envelope which almost fully consists of carbon. The cooling model of this star is elaborated to take proper account of the neutrino emission due to neutron-neutron collisions which is not suppressed by proton superfluidity. Using the results of spectral fits of observed thermal spectra for the distance of 3.2 kpc and the cooling theory for the neutron star of age 27 kyr, new constraints on the stellar mass and radius are obtained which are more stringent than those derived from the spectral fits alone.

  8. Prospects for neutron star equation of state constraints using "recycled" millisecond pulsars

    NASA Astrophysics Data System (ADS)

    Bogdanov, Slavko

    2016-02-01

    "Recycled" millisecond pulsars are a variety of rapidly spinning neutron stars that typically show thermal X-ray radiation due to the heated surface of their magnetic polar caps. Detailed numerical modeling of the rotation-induced thermal X-ray pulsations observed from recycled millisecond pulsars, including all relevant relativistic and stellar atmospheric effects, has been identified as a promising approach towards an astrophysical determination of the true neutron star mass-radius relation, and by extension the state of cold matter at densities exceeding those of atomic nuclei. Herein, I review the basic model and methodology commonly used to extract information regarding neutron star structure from the pulsed X-ray radiation observed from millisecond pulsars. I also summarize the results of past X-ray observations of these objects and the prospects for precision neutron star mass-radius measurements with the upcoming Neutron Star Interior Composition Explorer (NICER) X-ray timing mission.

  9. Constraining the State of Ultra-dense Matter with the Neutron Star Interior Composition Explorer

    NASA Astrophysics Data System (ADS)

    Bogdanov, Slavko

    2016-04-01

    [This presentation is submitted on behalf of the entire NICER Science Team] The state of cold matter at densities exceeding those of atomic nuclei remains one of the principal outstanding problems in modern physics. Neutron stars provide the only known setting in the universe where these physical conditions can be explored. Thermal X-ray radiation from the physical surface of a neutron star can serve as a powerful tool for probing the poorly understood behavior of the matter in the dense stellar interior. For instance, realistic modeling of the thermal X-ray modulations observed from rotation-powered millisecond pulsars can produce stringent constraints on the neutron star mass-radius relation, and by extension the state of supra-nuclear matter. I will describe the prospects for precision neutron star equation of state constraints with millisecond pulsars using the forthcoming Neutron Star Interior Composition Explorer (NICER) X-ray timing mission.

  10. Particle acceleration in axisymmetric, magnetized neutron stars

    NASA Technical Reports Server (NTRS)

    Baker, K. B.; Sturrock, P. A.

    1977-01-01

    The potential drop in the polar cap region of a rotating, magnetized neutron star is found assuming that the magnetic field is dipolar, with the field aligned (or anti-aligned) with the rotation axis. The curvature of the field lines is of critical importance. Charge flow is assumed to be along magnetic field lines. The electric field has a maximum at radius 1.5 R and the magnitude and functional form of the current is determined.

  11. HEAD II: Exotic Neutron Stars Introduction

    NASA Astrophysics Data System (ADS)

    Harding, A. K.

    1998-12-01

    There has recently been growing evidence for a new class of astronomical object: isolated neutron stars with extremely high magnetic fields. Such objects were predicted to exist and would be the first known source to be powered by magnetic energy. The talks in this sessions will review evidence from observations of two types of sources: Soft Gamma-ray Repeaters, a class of galactic gamma-ray burst source, and Anomalous X-ray Pulsars, as well as current models.

  12. Mergers of Binary Neutron Star Systems

    NASA Astrophysics Data System (ADS)

    Motl, Patrick M.; Anderson, Matthew; Lehner, Luis; Liebling, Steven; Neilsen, David; Palenzuela, Carlos

    2016-04-01

    We present results from fully relativistic simulations of binary neutron star mergers varying the tabular equation of state used to approximate the degenerate material and the mass ratio. The simulations incorporate both magnetic fields and the effects of neutrino cooling. In particular, we examine the amount and properties of material ejected from the merger. We gratefully acknowledge the support of NASA through the Astrophysics Theory Program grant NNX13AH01G.

  13. Electromagnetic field dynamics in Binary Neutron Stars

    NASA Astrophysics Data System (ADS)

    Palenzuela, Carlos; Anderson, Matthew; Hirschmann, Eric; Lehner, Luis; Liebling, Steven; Neilsen, David; Motl, Patrick

    2011-04-01

    Neutron star mergers represent one of the most promising sources of gravitational waves (GW) within the bandwidth of advLIGO. In addition to GW, strong magnetic fields may offer the possibility of a characteristic electromagnetic signature allowing for concurrent detection. In this talk we present results from numerical evolutions of such mergers, studying the dynamics of both the gravitational and electromagnetic degrees of freedom.

  14. Neutron Star Structure in the Presence of Conformally Coupled Scalar Fields

    NASA Technical Reports Server (NTRS)

    Sultana, Joseph; Bose, Benjamin; Kazanas, Demosthenes

    2014-01-01

    Neutron star models are studied in the context of scalar-tensor theories of gravity in the presence of a conformally coupled scalar field, using two different numerical equations of state (EoS) representing different degrees of stiffness. In both cases we obtain a complete solution by matching the interior numerical solution of the coupled Einstein-scalar field hydrostatic equations, with an exact metric on the surface of the star. These are then used to find the effect of the scalar field and its coupling to geometry, on the neutron star structure, particularly the maximum neutron star mass and radius. We show that in the presence of a conformally coupled scalar field, neutron stars are less dense and have smaller masses and radii than their counterparts in the minimally coupled case, and the effect increases with the magnitude of the scalar field at the center of the star.

  15. Neutron star structure in the presence of conformally coupled scalar fields

    NASA Astrophysics Data System (ADS)

    Sultana, Joseph; Bose, Benjamin; Kazanas, Demosthenes

    2014-10-01

    Neutron star models are studied in the context of scalar-tensor theories of gravity in the presence of a conformally coupled scalar field, using two different numerical equations of state (EoS) representing different degrees of stiffness. In both cases we obtain a complete solution by matching the interior numerical solution of the coupled Einstein-scalar field hydrostatic equations, with an exact metric on the surface of the star. These are then used to find the effect of the scalar field and its coupling to geometry, on the neutron star structure, particularly the maximum neutron star mass and radius. We show that in the presence of a conformally coupled scalar field, neutron stars are less dense and have smaller masses and radii than their counterparts in the minimally coupled case, and the effect increases with the magnitude of the scalar field at the center of the star.

  16. Dragging of inertial frames inside the rotating neutron stars

    SciTech Connect

    Chakraborty, Chandrachur; Modak, Kamakshya Prasad; Bandyopadhyay, Debades E-mail: kamakshya.modak@saha.ac.in

    2014-07-20

    We derive the exact frame-dragging rate inside rotating neutron stars. This formula is applied to show that the frame-dragging rate monotonically decreases from the center to the surface of the neutron star along the pole. In the case of the frame-dragging rate along the equatorial distance, it decreases initially away from the center, becomes negligibly small well before the surface of the neutron star, rises again, and finally approaches to a small value at the surface. The appearance of a local maximum and minimum in this case is the result of the dependence of frame-dragging frequency on the distance and angle. Moving from the equator to the pole, it is observed that this local maximum and minimum in the frame-dragging rate along the equator disappear after crossing a critical angle. It is also noted that the positions of the local maximum and minimum of the frame-dragging rate along the equator depend on the rotation frequency and central energy density of a particular pulsar.

  17. Neutron stars interiors: Theory and reality

    NASA Astrophysics Data System (ADS)

    Stone, J. R.

    2016-03-01

    There are many fascinating processes in the universe which we observe in more detail thanks to increasingly sophisticated technology. One of the most interesting phenomena is the life cycle of stars, their birth, evolution and death. If the stars are massive enough, they end their lives in a core-collapse supernova explosion, one of the most violent events in the universe. As a result, the densest objects in the universe, neutron stars and/or black holes, are created. The physical basis of these events should be understood in line with observation. Unfortunately, available data do not provide adequate constraints for many theoretical models of dense matter. One of the most open areas of research is the composition of matter in the cores of neutron stars. Unambiguous fingerprints for the appearance and evolution of particular components, such as strange baryons and mesons, with increasing density, have not been identified. In particular, the hadron-quark phase transition remains a subject of intensive research. In this contribution we briefly survey the most promising observational and theoretical directions leading to progress in understanding high density matter in neutron stars. A possible way forward in modeling high-density matter is outlined, exemplified by the quark-meson-coupling model (QMC). This model makes connection between hadronic structure and the underlying quark make-up. It offers a natural explanation for the saturation of nuclear force and treats high-density matter, containing the full baryon octet, in terms of four uniquely defined parameters adjusted to properties of symmetric nuclear matter at saturation.

  18. Magnetically driven crustquakes in neutron stars

    NASA Astrophysics Data System (ADS)

    Lander, S. K.; Andersson, N.; Antonopoulou, D.; Watts, A. L.

    2015-05-01

    Crustquake events may be connected with both rapid spin-up `glitches' within the regular slowdown of neutron stars, and high-energy magnetar flares. We argue that magnetic-field decay builds up stresses in a neutron star's crust, as the elastic shear force resists the Lorentz force's desire to rearrange the global magnetic-field equilibrium. We derive a criterion for crust-breaking induced by a changing magnetic-field configuration, and use this to investigate strain patterns in a neutron star's crust for a variety of different magnetic-field models. Universally, we find that the crust is most liable to break if the magnetic field has a strong toroidal component, in which case the epicentre of the crustquake is around the equator. We calculate the energy released in a crustquake as a function of the fracture depth, finding that it is independent of field strength. Crust-breaking is, however, associated with a characteristic local field strength of 2.4 × 1014 G for a breaking strain of 0.001, or 2.4 × 1015 G at a breaking strain of 0.1. We find that even the most luminous magnetar giant flare could have been powered by crustal energy release alone.

  19. Neutron stars and strange stars in the chiral SU(3) quark mean field model

    SciTech Connect

    P. Wang; S. Lawley; D. B. Leinweber; A. W. Thomas; A. G. Williams

    2005-06-01

    We investigate the equations of state for pure neutron matter and strange hadronic matter in {beta}-equilibrium, including {Lambda}, {Sigma} and {Xi} hyperons. The masses and radii of pure neutron stars and strange hadronic stars are obtained. For a pure neutron star, the maximum mass is about 1.8 M{sub sun}, while for a strange hadronic star, the maximum mass is around 1.45M{sub sun}. The typical radii of pure neutron stars and strange hadronic stars are about 11.0-12.3 km and 10.7-11.7 km, respectively.

  20. Levitating atmospheres of Eddington-luminosity neutron stars

    NASA Astrophysics Data System (ADS)

    Wielgus, Maciek; Sądowski, Aleksander; Kluźniak, Włodek; Abramowicz, Marek; Narayan, Ramesh

    2016-06-01

    We construct models of static, spherically symmetric shells supported by the radiation flux of a luminous neutron star in the Schwarzschild metric. The atmospheres are disconnected from the star and levitate above its surface. Gas pressure and density inversion appear in the inner region of these atmospheres, which is a purely relativistic phenomenon. We account for the scattering opacity dependence on temperature green by using the Klein-Nishina formula. The relativistic M1 closure scheme for the radiation tensor provides a general relativity-consistent treatment of the photon flux and radiation tensor anisotropy. In this way, we are able to address atmospheres of both large and moderate/low optical depths with the same set of equations. We discuss properties of the levitating atmospheres and find that they may indeed be optically thick, with the distance between star surface and the photosphere expanding as luminosity increases. These results may be relevant for the photosphereric radius expansion X-ray bursts.

  1. Mesoscopic pinning forces in neutron star crusts

    NASA Astrophysics Data System (ADS)

    Seveso, S.; Pizzochero, P. M.; Grill, F.; Haskell, B.

    2016-02-01

    The crust of a neutron star is thought to be comprised of a lattice of nuclei immersed in a sea of free electrons and neutrons. As the neutrons are superfluid, their angular momentum is carried by an array of quantized vortices. These vortices can pin to the nuclear lattice and prevent the neutron superfluid from spinning down, allowing it to store angular momentum which can then be released catastrophically, giving rise to a pulsar glitch. A crucial ingredient for this model is the maximum pinning force that the lattice can exert on the vortices, as this allows us to estimate the angular momentum that can be exchanged during a glitch. In this paper, we perform, for the first time, a detailed and quantitative calculation of the pinning force per unit length acting on a vortex immersed in the crust and resulting from the mesoscopic vortex-lattice interaction. We consider realistic vortex tensions, allow for displacement of the nuclei and average over all possible orientations of the crystal with respect to the vortex. We find that, as expected, the mesoscopic pinning force becomes weaker for longer vortices and is generally much smaller than previous estimates, based on vortices aligned with the crystal. Nevertheless, the forces we obtain still have maximum values of the order of fpin ≈ 1015 dyn cm-1, which would still allow for enough angular momentum to be stored in the crust to explain large Vela glitches, if part of the star is decoupled during the event.

  2. A new class of g-modes in neutron stars

    NASA Technical Reports Server (NTRS)

    Reisenegger, Andreas; Goldreich, Peter

    1992-01-01

    Because a neutron star is born hot, its internal composition is close to chemical equilibrium. In the fluid core, this implies that the ratio of the number densities of charged particles (protons and electrons) to neutrons is an increasing function of the mass density. This composition gradient stably stratifies the matter giving rise to a Brunt-Vaisala frequency N of about 500/s. Consequently, a neutron star core provides a cavity that supports gravity modes (g-modes). These g-modes are distinct from those previously identified with the thermal stratification of the surface layers and the chemical stratification of the crust. We compute the lowest-order, quadrupolar, g-modes for cold, Newtonian, neutron star models with M/solar M = 0.581 and M/solar M = 1.405, and show that the crustal and core g-modes have similar periods. We also discuss damping mechanisms and estimate damping rates for the core g-modes. Particular attention is paid to damping due to the emission of gravitational radiation.

  3. Supernova Explosions and the Birth of Neutron Stars

    SciTech Connect

    Janka, H.-Thomas; Marek, Andreas; Mueller, Bernhard; Scheck, Leonhard

    2008-02-27

    We report here on recent progress in understanding the birth conditions of neutron stars and the way how supernovae explode. More sophisticated numerical models have led to the discovery of new phenomena in the supernova core, for example a generic hydrodynamic instability of the stagnant supernova shock against low-mode nonradial deformation and the excitation of gravity-wave activity in the surface and core of the nascent neutron star. Both can have supportive or decisive influence on the inauguration of the explosion, the former by improving the conditions for energy deposition by neutrino heating in the postshock gas, the latter by supplying the developing blast with a flux of acoustic power that adds to the energy transfer by neutrinos. While recent two-dimensional models suggest that the neutrino-driven mechanism may be viable for stars from {approx}8M{sub {center_dot}} to at least 15M{sub {center_dot}}, acoustic energy input has been advocated as an alternative if neutrino heating fails. Magnetohydrodynamic effects constitute another way to trigger explosions in connection with the collapse of sufficiently rapidly rotating stellar cores, perhaps linked to the birth of magnetars. The global explosion asymmetries seen in the recent simulations offer an explanation of even the highest measured kick velocities of young neutron stars.

  4. HOW CAN NEWLY BORN RAPIDLY ROTATING NEUTRON STARS BECOME MAGNETARS?

    SciTech Connect

    Cheng, Quan; Yu, Yun-Wei

    2014-05-10

    In a newly born (high-temperature and Keplerian rotating) neutron star, r-mode instability can lead to stellar differential rotation, which winds the seed poloidal magnetic field (∼10{sup 11} G) to generate an ultra-high (∼10{sup 17} G) toroidal field component. Subsequently, by succumbing to the Tayler instability, the toroidal field could be partially transformed into a new poloidal field. Through such dynamo processes, the newly born neutron star with sufficiently rapid rotation could become a magnetar on a timescale of ∼10{sup 2} {sup –} {sup 3} s, with a surface dipolar magnetic field of ∼10{sup 15} G. Accompanying the field amplification, the star could spin down to a period of ∼5 ms through gravitational wave radiation due to the r-mode instability and, in particular, the non-axisymmetric stellar deformation caused by the toroidal field. This scenario provides a possible explanation for why the remnant neutron stars formed in gamma-ray bursts and superluminous supernovae could be millisecond magnetars.

  5. PSR J1840-1419: A VERY COOL NEUTRON STAR

    SciTech Connect

    Keane, E. F.; Kramer, M.; McLaughlin, M. A.; Stappers, B. W.; Bassa, C. G.; Purver, M. B.; Weltevrede, P.

    2013-02-20

    We present upper limits on the X-ray emission for three neutron stars. For PSR J1840-1419, with a characteristic age of 16.5 Myr, we calculate a blackbody temperature upper limit (at 99% confidence) of kT {sup {infinity}} {sub bb} < 24{sup +17} {sub -10} eV, making this one of the coolest neutron stars known. PSRs J1814-1744 and J1847-0130 are both high magnetic field pulsars, with inferred surface dipole magnetic field strengths of 5.5 Multiplication-Sign 10{sup 13} and 9.4 Multiplication-Sign 10{sup 13} G, respectively. Our temperature upper limits for these stars are kT {sup {infinity}} {sub bb} < 123{sup +20} {sub -33} eV and kT {sup {infinity}} {sub bb} < 115{sup +16} {sub -33} eV, showing that these high magnetic field pulsars are not significantly hotter than those with lower magnetic fields. Finally, we put these limits into context by summarizing all temperature measurements and limits for rotation-driven neutron stars.

  6. X-ray Polarisation in highly-magnetized neutron stars

    NASA Astrophysics Data System (ADS)

    Turolla, Roberto

    2016-07-01

    Radiation emitted in the vicinity of an isolated neutron star is expected to be intrinsically polarized because the high magnetic field (B˜10^{12}-10^{15} G) strongly affects the plasma opacity. The polarization fraction and polarization angle measured by an instrument, however, do not necessary coincide with the intrinsic ones, due to the effects of both quantum electrodynamics in the highly magnetized vacuum around the star (the vacuum polarization) and rotation of the Stokes parameters in the plane perpendicular to the line of sight induced by the non-uniform magnetic field. I'll review theoretical estimates for the polarization observables in the case of thermal surface emission from neutron stars and of the (soft) X-ray emission from magnetars, where magnetospheric reprocessing of radiation by resonant cyclotron scattering is important. The potentials of X-ray polarimetry to probe the physical conditions in neutron star sources and to test, for the first time, vacuum polarization are discussed in connection with the recently proposed polarimetric missions, like XIPE.

  7. Accretion Acceleration of Neutron Stars and Effects of Gravitational Radiation

    NASA Astrophysics Data System (ADS)

    Fu, Yan-yan; Zhang, Yue-zhu; Wei, Yi-huan; Zhang, Cheng-min; Yu, Shao-hua; Pan, Yuan-yue; Guo, Yuan-qi; Wang, De-hua

    2016-01-01

    In this paper we studied the neutron star's spin acceleration in the accretion process of the neutron star binary system, and the relation how the spin period changes with the accreted mass. We analyzed further the evolutions of both magnetic field and spin period of a neutron star, and compared the modeled results with the observational data of pulsars, to show that they are consistent with each other. Based on above studies, we investigated the effect of gravitational radiation on the spin-up process of a neutron star, and derived the change rate of the neutron star's spin period in the accretion process. We also estimated the critical angular velocity Ωcr, at which the accretion torque is balanced by that of gravitational radiation, and discussed the influence of gravitational radiation on the neutron star's spin evolution.

  8. Relativistic density functional theory for finite nuclei and neutron stars

    NASA Astrophysics Data System (ADS)

    Piekarewicz, Jorge

    In 1939 Oppenheimer and Volkoff demonstrated using Einstein's theory of general relativity that a neutron star supported exclusively by neutron degeneracy pressure will collapse into a black hole if its mass exceeds seven tenths of a solar mass. Seventy five years after such a pioneering prediction the existence of neutron stars with masses as large as two solar masses has been firmly established. This fact alone highlights the critical role that nuclear interactions play in explaining the structure of neutron stars. Indeed, a neutron star is a gold mine for the study of nuclear phenomena that span an enormous range of densities and neutron-proton asymmetries. Physical phenomena over such diverse scales are best described by a formalism based on Relativistic Density Functional Theory. In this contribution I focus on the synergy between theory, experiment, and observation that is needed to elucidate the myriad of exotic states of matter that are believed to exist in a neutron star.

  9. Disk accretion by magnetic neutron stars

    NASA Technical Reports Server (NTRS)

    Ghosh, P.; Lamb, F. K.

    1978-01-01

    A model for disk accretion by a rotating magnetic neutron star is proposed which includes a detailed description of matter flow in the transition region between the disk and the magnetosphere. It is shown that the disk plasma cannot be completely screened from the stellar magnetic field and that the resulting magnetic coupling between the star and the disk exerts a significant torque on the star. On the assumption that the distortion of the residual stellar field lines threading the disk is limited by reconnection, the total accretion torque on the star is calculated. The calculated torque gives period changes in agreement with those observed in the pulsating X-ray sources and provides a natural explanation of why a fast rotator like Her X-1 has a spin-up rate much below the conventional estimate for slow rotators. It is shown that for such fast rotators, fluctuations in the mass-accretion rate can produce fluctuations in the accretion torque about 100 times larger. For sufficiently fast rotators or, equivalently, for sufficiently low accretion rates, the star experiences a braking torque even while accretion continues and without any mass ejection from its vicinity.

  10. Surface abundances of ON stars

    NASA Astrophysics Data System (ADS)

    Martins, F.; Simón-Díaz, S.; Palacios, A.; Howarth, I.; Georgy, C.; Walborn, N. R.; Bouret, J.-C.; Barbá, R.

    2015-06-01

    Context. Massive stars burn hydrogen through the CNO cycle during most of their evolution. When mixing is efficient or when mass transfer in binary systems occurs, chemically processed material is observed at the surface of O and B stars. Aims: ON stars show stronger lines of nitrogen than morphologically normal counterparts. Whether this corresponds to the presence of material processed through the CNO cycle is not known. Our goal is to answer this question. Methods: We performed a spectroscopic analysis of a sample of ON stars with atmosphere models. We determined the fundamental parameters as well as the He, C, N, and O surface abundances. We also measured the projected rotational velocities. We compared the properties of the ON stars to those of normal O stars. Results: We show that ON stars are usually rich in helium. Their CNO surface abundances are fully consistent with predictions of nucleosynthesis. ON stars are more chemically evolved and rotate - on average - faster than normal O stars. Evolutionary models including rotation cannot account for the extreme enrichment observed among ON main sequence stars. Some ON stars are members of binary systems, but others are single stars as indicated by stable radial velocities. Mass transfer is therefore not a simple explanation for the observed chemical properties. Conclusions: We conclude that ON stars show extreme chemical enrichment at their surface, consistent with nucleosynthesis through the CNO cycle. Its origin is not clear at present. Based on observations obtained 1) at the Anglo-Australian Telescope; 2) at the Canada-France-Hawaii Telescope (CFHT), which is operated by the National Research Council (NRC) of Canada, the Institut National des Science de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii; 3) at the ESO/La Silla Observatory under programs 081.D-2008, 083.D-0589, 086.D-0997; 4) the Nordic Optical Telescope, operated on the island of La

  11. Low-mass neutron stars: universal relations, the nuclear symmetry energy and gravitational radiation

    NASA Astrophysics Data System (ADS)

    Silva, Hector O.; Sotani, Hajime; Berti, Emanuele

    2016-04-01

    The lowest neutron star masses currently measured are in the range 1.0 - 1.1~M⊙, but these measurement have either large uncertainties or refer to isolated neutron stars. The recent claim of a precisely measured mass M/M⊙ = 1.174 ± 0.004 (Martinez et al. 2015) in a double neutron star system suggests that low-mass neutron stars may be an interesting target for gravitational-wave detectors. Furthermore, Sotani et al. (2014) recently found empirical formulas relating the mass and surface redshift of nonrotating neutron stars to the star's central density and to the parameter η ≡ (K0L2)1/3, where K0 is the incompressibility of symmetric nuclear matter and L is the slope of the symmetry energy at saturation density. Motivated by these considerations, we extend the work by Sotani et al. (2014) to slowly rotating and tidally deformed neutron stars. We compute the moment of inertia, quadrupole moment, quadrupole ellipticity, tidal and rotational Love number and apsidal constant of slowly rotating neutron stars by integrating the Hartle-Thorne equations at second order in rotation, and we fit all of these quantities as functions of η and of the central density. These fits may be used to constrain η, either via observations of binary pulsars in the electromagnetic spectrum, or via near-future observations of inspiralling compact binaries in the gravitational-wave spectrum.

  12. Low-mass neutron stars: universal relations, the nuclear symmetry energy and gravitational radiation

    NASA Astrophysics Data System (ADS)

    Silva, Hector O.; Sotani, Hajime; Berti, Emanuele

    2016-07-01

    The lowest neutron star masses currently measured are in the range 1.0-1.1 M⊙, but these measurement have either large uncertainties or refer to isolated neutron stars. The recent claim of a precisely measured mass M/M⊙ = 1.174 ± 0.004 (Martinez et al. 2015) in a double neutron star system suggests that low-mass neutron stars may be an interesting target for gravitational-wave detectors. Furthermore, Sotani et al. recently found empirical formulas relating the mass and surface redshift of non-rotating neutron stars to the star's central density and to the parameter η ≡ (K0L2)1/3, where K0 is the incompressibility of symmetric nuclear matter and L is the slope of the symmetry energy at saturation density. Motivated by these considerations, we extend the work by Sotani et al. to slowly rotating and tidally deformed neutron stars. We compute the moment of inertia, quadrupole moment, quadrupole ellipticity, tidal and rotational Love number and apsidal constant of slowly rotating neutron stars by integrating the Hartle-Thorne equations at second order in rotation, and we fit all of these quantities as functions of η and of the central density. These fits may be used to constrain η, either via observations of binary pulsars in the electromagnetic spectrum, or via near-future observations of inspiralling compact binaries in the gravitational-wave spectrum.

  13. Nonlinear Tides in Coalescing Binary Neutron Stars

    NASA Astrophysics Data System (ADS)

    Weinberg, Nevin

    2016-03-01

    Coalescing binary neutron stars are among the most promising sources for ground-based gravitational wave detectors such as Advanced LIGO. Tidal interactions in such systems extract energy from the orbit and, at some level, modify the gravitational wave signal. Previous studies found that tidal effects are probably too small to be detected from individual systems with LIGO. However, these studies typically assumed that the tide can be treated as a linear perturbation to the star. I will show that the linear approximation is invalid even during the early stages of inspiral and that nonlinear fluid effects in the form of tide-internal wave interactions become important around the time the binary first enters LIGO's bandpass (at gravitational wave frequencies around 30 Hz). Although the precise influence of nonlinear fluid effects is not yet well constrained, I will show that they may significantly modify the gravitational wave signal and electromagnetic emission from coalescing binary neutron stars. This research was supported by NASA Grant NNX14AB40G.

  14. Observational results from cooling neutron stars in X-ray binaries

    NASA Astrophysics Data System (ADS)

    Degenaar, Nathalie

    2016-07-01

    The composition and structure of the ~1 km thick, solid crust of neutron stars is responsible for many of their observable properties, and plays a fundamental role in the emission of gravitational waves and the evolution of their magnetic field. When residing in an X-ray binary, a neutron star accretes gas from a companion star. As matter accumulates on the neutron star surface, the underlying crust is compressed and heated due to nuclear reactions induced by this compression. Once accretion switches off, sensitive X-ray satellites can be employed to observe how the heated crust cools. Comparing these observations with theoretical simulations provides very valuable insight into the structure and composition of the crusts of neutron stars. I will present the latest observational results and challenges in this research field.

  15. The energetics and environments of young neutron stars

    NASA Astrophysics Data System (ADS)

    Gelfand, Joseph David

    In this thesis, information concerning the energetics and environments of isolated young neutron star is used to study the formation and physical properties of these objects. I first present evidence that compact X-ray source, 1E 1547.0-5408, is a magnetar--a neutron star with an extremely strong magnetic field. I then present the results of radio observations of SGR 1806-20 after the 2004 December 27 giant flare which detected a new, variable radio source at the position of this magnetar. Measurements of the flux, position, size, and orientation of this source suggest that the observed radio emission is being powered by the interaction between material ablated off the surface of this neutron star during the giant flare and the surrounding ambient medium, and that this emission is now dominated by hotspots in the layer of shocked ambient material which surrounds the neutron star ejecta. Lastly, I present a hydrodynamic model for the evolution of a pulsar wind nebula (PWN) inside a supernova remnant (SNR), and use this model to infer the properties of the progenitor supernova and central neutron star for three objects--SNR G292.0+1.8, PWN 3C 58, and non-thermal Galactic radio source G328.4+0.2. I find that, if G292.0+1.8 is a SNR where the PWN has not yet collided with the reverse shock, as suggested by the weakness of S, Si, and Fe lines in the thermal X-ray spectrum of this source, G292.0+1.8 was most likely created in a low kinetic energy ([Special characters omitted.] 10 51 ergs), high ejecta mass ([Special characters omitted.] 10 [Special characters omitted.] ) explosion. For 3C 58, I am unable to find a combination of supernova explosion energy and ejecta mass, ambient density, and neutron star initial period and braking index which can reproduced the observed size, expansion velocity, and mass of thermal X-ray emitting material of this PWN if it was created during SN 1181. If I relax this restriction on the age of 3C 58, we find that the observed properties

  16. A SECOND NEUTRON STAR IN M4?

    SciTech Connect

    Kaluzny, J.; Rozanska, A.; Rozyczka, M.; Krzeminski, W.; Thompson, Ian B.

    2012-05-01

    We show that the optical counterpart of the X-ray source CX 1 in M4 is a {approx}20th magnitude star, located in the color-magnitude diagram on (or very close to) the main sequence of the cluster, and exhibiting sinusoidal variations of the flux. We find the X-ray flux to be also periodically variable, with X-ray and optical minima coinciding. Stability of the optical light curve, lack of UV-excess, and unrealistic mean density resulting from period-density relation for semidetached systems speak against the original identification of CX 1 as a cataclysmic variable. We argue that the X-ray active component of this system is a neutron star (probably a millisecond pulsar).

  17. Coalescence of Magnetized Binary Neutron Star Systems

    NASA Astrophysics Data System (ADS)

    Motl, Patrick M.; Anderson, Matthew; Lehner, Luis; Liebling, Steven L.; Neilsen, David; Palenzuela, Carlos; Ponce, Marcelo

    2015-01-01

    We present simulations of the merger of binary neutron star systems calculated with full general relativity and incorporating the global magnetic field structure for the stars evolved with resistive magnetohydrodynamics. Our simulation tools have recently been improved to incorporate the effects of neutrino cooling and have been generalized to allow for tabular equations of state to describe the degenerate matter. Of particular interest are possible electromagnetic counterparts to the gravitational radiation that emerges from these systems. We focus on magnetospheric interactions that ultimately tap into the gravitational potential energy of the binary to power a Poynting flux and deposition of energy through Joule heating and magnetic reconnection. We gratefully acknowledge the support of NASA through the Astrophysics Theory Program grant NNX13AH01G.

  18. Holographic cold nuclear matter and neutron star

    NASA Astrophysics Data System (ADS)

    Ghoroku, Kazuo; Kubo, Kouki; Tachibana, Motoi; Toyoda, Fumihiko

    2014-04-01

    We have previously found a new phase of cold nuclear matter based on a holographic gauge theory, where baryons are introduced as instanton gas in the probe D8//lineD8 branes. In our model, we could obtain the equation of state (EOS) of our nuclear matter by introducing Fermi momentum. Then, here we apply this model to the neutron star and study its mass and radius by solving the Tolman-Oppenheimer-Volkoff (TOV) equations in terms of the EOS given here. We give some comments for our holographic model from a viewpoint of the other field theoretical approaches.

  19. Neutron star cooling and pion condensation

    NASA Technical Reports Server (NTRS)

    Umeda, Hideyuki; Nomoto, Ken'ichi; Tsuruta, Sachiko; Muto, Takumi; Tatsumi, Toshitaka

    1994-01-01

    The nonstandard cooling of a neutron star with the central pion core is explored. By adopting the latest results from the pion condensation theory, neutrino emissivity is calulated for both pure charged pions and a mixture of charged and neutral pions, and the equations of state are constructed for the pion condensate. The effect of superfluidity on cooling is investigated, adopting methods more realistic than in previous studies. Our theoretical models are compared with the currently updated observational data, and possible implications are explored.

  20. Light curves from binary neutron star coalescence

    NASA Astrophysics Data System (ADS)

    Ortiz, Nestor; Green, Stephen; Lehner, Luis; Ponce, Marcelo; HAD Collaboration

    2015-04-01

    Evolution of binary neutron stars, and the extraction of associated gravitational waveforms, have acquired certain maturity using numerical simulations. In this work we look to augment the observational predictions by extracting electromagnetic counterparts. That is, given results from a merger simulation, we produce a photon emission sky map. Our ray-tracing algorithm employ the two-pole caustic model of gamma-ray emission from the binary system's magnetosphere. The combined measurement of both gravitational and electromagnetic wave signals provides additional information to characterize the merger.

  1. Sound Velocity Bound and Neutron Stars

    SciTech Connect

    Bedaque, Paulo; Steiner, Andrew W

    2015-01-01

    It has been conjectured that the velocity of sound in any medium is smaller than the velocity of light in vacuum divided by sqrt(3). Simple arguments support this bound in nonrelativistic and/or weakly coupled theories. The bound has been demonstrated in several classes of strongly coupled theories with gravity duals and is saturated only in conformal theories. We point out that the existence of neutron stars with masses around two solar masses combined with the knowledge of the equation of state of hadronic matter at low densities is in strong tension with this bound.

  2. Neutron star binaries, pulsars and burst sources

    NASA Technical Reports Server (NTRS)

    Lamb, F. K.

    1981-01-01

    Unresolved issues involving neutron star binaries, pulsars, and burst sources are described. Attention is drawn to the types of observations most likely to resolve them. Many of these observations are likely to be carried out during the next decade by one or more missions that have been approved or proposed. Flux measurements with an imaging detector and broad-band spectroscopic studies in the energy range 30-150 keV are discussed. The need for soft X-ray and X-ray observations with an instrument which has arcminute angular resolution and an effective area substantially greater than of ROSAT or EXOSAT is also discussed.

  3. Spectral Models of Neutron Star Magnetospheres

    NASA Technical Reports Server (NTRS)

    Romani, Roger W.

    1997-01-01

    We revisit the association of unidentified Galactic plane EGRET sources with tracers of recent massive star formation and death. Up-to-date catalogs of OB associations, SNR's, young pulsars, H2 regions and young open clusters were used in finding counterparts for a recent list of EGRET sources. It has been argued for some time that EGRET source positions are correlated with SNR's and OB associations as a class; we extend such analyses by finding additional counterparts and assessing the probability of individual source identifications. Among the several scenarios relating EGRET sources to massive stars, we focus on young neutron stars as the origin of the gamma-ray emission. The characteristics of the candidate identifications are compared to the known gamma-ray pulsar sample and to detailed Galactic population syntheses using our outer gap pulsar model of gamma-ray emission. Both the spatial distribution and luminosity function of the candidates are in good agreement with the model predictions; we infer that young pulsars can account for the bulk of the excess low latitude EGRET sources. We show that with this identification, the gamma-ray point sources provide an important new window into the history of recent massive star death in the solar neighborhood.

  4. Accreting neutron stars by QFT

    NASA Astrophysics Data System (ADS)

    Chen, Shao-Guang

    measuring value of one-way velocity of light (H05-0020-08) to replace the infinity value of light speed measured by Galileo in 1607, thereby the mass m in NM will become variable m. Or else, the energy of electron in accelerator should not larger than 0.51Mev which conflict with the experimental fact. According to the variable mass and the definition of force we again get Eq.(1) from NM without hypothesis, i.e., NM is generalized in which Galileo coordinates transformation and the action at a distance will be of no effect. Eq.(1) has more reliable experimental base and generalized NM may be applied to the high-speed and the microscopic conditions. Because of the result of a test of GR with use of a hydrogen-maser frequency standard in a spacecraft launched nearly vertically upward to 10000 km (R. F. C. Vessot et.al., Phys. Rev. Lett. 45, 2081(1980)), the isotropy of one-way velocity of light had been validated at the 1*10 (-10) level (D2.4-0030-12, H0.1-0009-12, H0.2-0008-12). Again from the Lorentz transformation (H01-0006 -08) and the uncertainty principle (H05-0036-10) deduced from the metrical results of Doppler effects, SR and QM, thereby QFT and GR all become the inferential theorems from generalized NM. Eq.(1) is as a bridge to join the modern physics and classical physics. In my paper ‘Basal electric and magnetic fields of celestial bodies come from positive-negative charge separation caused by gravitation of quasi-Casimir pressure in weak interaction’ (D31-0054-10): According to QFT the gravitation is the statistic average pressure collided by net virtual neutrinos nuν _{0} flux, the net nuν _{0} flux can press a part freedom electrons in plasma of ionosphere into the surface of celestial bodies. The static electric force of redundant positive ions prevents electrons further falling and till reach the equilibrium of stable spatial charge distribution, which is just the cause of the geomagnetic field and the geo-electric field. In the solar surface plasma add

  5. Maximum pulsar mass, equation of state and structure of neutron-star cores

    NASA Astrophysics Data System (ADS)

    Haensel, P.; Zdunik, J. L.

    2016-01-01

    The structure of neutron stars is determined by the equation of state of dense matter in their interiors. Brief review of the equation of state from neutron star surface to its center is presented. Recent discovery of two two-solar-mass pulsars puts interesting constraints on the poorly known equation of state of neutron-star cores for densities greater than normal nuclear matter density. Namely, this equation of state has to be stiff enough to yield maximum allowable mass of neutron stars greater than two solar masses. There are many models of neutron stars cores involving exclusively nucleons that satisfy this constraint. However, for neutron-star models based on recent realistic baryon interaction, and allowing for the presence of hyperons, the hyperon softening of the equation of state yields maximum masses significantly lower than two solar masses. Proposed ways out from this ”hyperon puzzle” are presented. They require a very fine tuning of parameters of dense hadronic matter and quark matter models. Consequences for the mass-radius relation for neutron stars are illustrated. A summary of the present situation and possible perspectives/challenges, as well as possible observational tests, are given.

  6. Effects of neutrino emissivity on the cooling of neutron stars in the presence of a strong magnetic field

    NASA Astrophysics Data System (ADS)

    Coelho, Eduardo Lenho; Chiapparini, Marcelo; Negreiros, Rodrigo Picanço

    2015-12-01

    One of the most interesting kind of neutron stars are the pulsars, which are highly magnetized neutron stars with fields up to 1014 G at the surface. The strength of magnetic field in the center of a neutron star remains unknown. According to the scalar virial theorem, magnetic field in the core could be as large as 1018 G. In this work we study the influence of strong magnetic fields on the cooling of neutron stars coming from direct Urca process. Direct Urca process is an extremely efficient mechanism for cooling a neutron star after its formation. The matter is described using a relativistic mean-field model at zero temperature with eight baryons (baryon octet), electrons and muons. We obtain the relative population of each species of particles as function of baryon density for different magnetic fields. We calculate numerically the cooling of neutron stars for a parametrized magnetic field and compare the results for the case without a magnetic field.

  7. Frontiers the Physics of Dense Matter for Neutron Stars

    NASA Astrophysics Data System (ADS)

    Steiner, Andrew W.

    2016-04-01

    Neutron stars are an excellent laboratory for nuclear physics. They probe the nucleon-nucleon interaction, the structure of nuclei, and the nature of dense QCD in ways which complement current experimental efforts. This article very briefly summarizes some of the current frontiers in neutron stars and dense matter with an emphasis on how our understanding might be improved in the near future.

  8. The Thermodynamic Functions in Curved Space of Neutron Star

    NASA Astrophysics Data System (ADS)

    Hussein, N. A.; Eisa, D. A.; Sayed, E. G.

    2016-04-01

    The aim of this article is to calculate the thermodynamic functions of a neutron star in curved space. We obtained equation of state (EOS) and the excess free energy for a neutron star in curved space up to order n4, where n is the density of particles.

  9. Transient radio bursts from rotating neutron stars.

    PubMed

    McLaughlin, M A; Lyne, A G; Lorimer, D R; Kramer, M; Faulkner, A J; Manchester, R N; Cordes, J M; Camilo, F; Possenti, A; Stairs, I H; Hobbs, G; D'Amico, N; Burgay, M; O'Brien, J T

    2006-02-16

    The radio sky is relatively unexplored for transient signals, although the potential of radio-transient searches is high. This was demonstrated recently by the discovery of a previously unknown type of source, varying on timescales of minutes to hours. Here we report a search for radio sources that vary on much shorter timescales. We found eleven objects characterized by single, dispersed bursts having durations between 2 and 30 ms. The average time intervals between bursts range from 4 min to 3 h with radio emission typically detectable for <1 s per day. From an analysis of the burst arrival times, we have identified periodicities in the range 0.4-7 s for ten of the eleven sources, suggesting origins in rotating neutron stars. Despite the small number of sources detected at present, their ephemeral nature implies a total Galactic population significantly exceeding that of the regularly pulsing radio pulsars. Five of the ten sources have periods >4 s, and the rate of change of the pulse period has been measured for three of them; for one source, we have inferred a high magnetic field strength of 5 x 10(13) G. This suggests that the new population is related to other classes of isolated neutron stars observed at X-ray and gamma-ray wavelengths. PMID:16482150

  10. How loud are neutron star mergers?

    NASA Astrophysics Data System (ADS)

    Bernuzzi, Sebastiano; Radice, David; Ott, Christian D.; Roberts, Luke F.; Mösta, Philipp; Galeazzi, Filippo

    2016-07-01

    We present results from the first large parameter study of neutron star mergers using fully general relativistic simulations with finite-temperature microphysical equations of state and neutrino cooling. We consider equal and unequal-mass binaries drawn from the galactic population and simulate each binary with three different equations of state. Our focus is on the emission of energy and angular momentum in gravitational waves in the postmerger phase. We find that the emitted gravitational-wave energy in the first ˜10 ms of the life of the resulting hypermassive neutron star (HMNS) is about twice the energy emitted over the entire inspiral history of the binary. The total radiated energy per binary mass is comparable to or larger than that of nonspinning black hole inspiral-mergers. About 0.8-2.5% of the binary mass-energy is emitted at kHz frequencies in the early HMNS evolution. We find a clear dependence of the postmerger gravitational wave emission on binary configuration and equation of state and show that it can be encoded as a broad function of the binary tidal coupling constant κ2T. Our results also demonstrate that the dimensionless spin of black holes resulting from subsequent HMNS collapse are limited to ≲0.7 - 0.8 . This may significantly impact the neutrino pair annihilation mechanism for powering short gamma-ray bursts (sGRB).

  11. Physics of systems containing neutron stars

    NASA Technical Reports Server (NTRS)

    Ruderman, Malvin

    1996-01-01

    This grant dealt with several topics related to the dynamics of systems containing a compact object. Most of the research dealt with systems containing Neutron Stars (NS's), but a Black Hole (BH) or a White Dwarf (WD) in situations relevant to NS systems were also addressed. Among the systems were isolated regular pulsars, Millisecond Pulsars (MSP's) that are either Single (SMP's) or in a binary (BMP's), Low Mass X-Ray Binaries (LMXB's) and Cataclysmic Variables (CV's). Also dealt with was one aspect of NS structure, namely NS superfluidity. A large fraction of the research dealt with irradiation-driven winds from companions which turned out to be of importance in the evolution of LMXB's and MSP's, be they SMP's or BMP's. While their role during LMXB evolution (i.e. during the accretion phase) is not yet clear, they may play an important role in turning BMP's into SMP's and also in bringing about the formation of planets around MSP's. Work was concentrated on the following four problems: The Windy Pulsar B197+20 and its Evolution; Wind 'Echoes' in Tight Binaries; Post Nova X-ray Emission in CV's; and Dynamics of Pinned Superfluids in Neutron Stars.

  12. BINARY NEUTRON STARS IN QUASI-EQUILIBRIUM

    SciTech Connect

    Taniguchi, Keisuke; Shibata, Masaru

    2010-05-15

    Quasi-equilibrium sequences of binary neutron stars are constructed for a variety of equations of state in general relativity. Einstein's constraint equations in the Isenberg-Wilson-Mathews approximation are solved together with the relativistic equations of hydrostationary equilibrium under the assumption of irrotational flow. We focus on unequal-mass sequences as well as equal-mass sequences, and compare those results. We investigate the behavior of the binding energy and total angular momentum along a quasi-equilibrium sequence, the endpoint of sequences, and the orbital angular velocity as a function of time, changing the mass ratio, the total mass of the binary system, and the equation of state of a neutron star. It is found that the orbital angular velocity at the mass-shedding limit can be determined by an empirical formula derived from an analytic estimation. We also provide tables for 160 sequences, which will be useful as a guideline of numerical simulations for the inspiral and merger performed in the near future.

  13. Neutron star accretion and the neutrino fireball

    SciTech Connect

    Colgate, S.A.; Herant, M.E.; Benz, W.

    1991-11-26

    The mixing necessary to explain the ``Fe`` line widths and possibly the observed red shifts of 1987A is explained in terms of large scale, entropy conserving, up and down flows (calculated with a smooth particle 2-D code) taking place between the neutron star and the explosion shock wave due to the gravity and neutrino deposition. Depending upon conditions of entropy and mass flux further accretion takes place in single events, similar to relaxation oscillator, fed by the downward flows of low entropy matter. The shock, in turn, is driven by the upflow of the buoyant high entropy bubbles. Some accretion events will reach a temperature high enough to create a neutrino ``fireball,`` a region hot enough, 11 Mev, so as to be partially opaque to its own (neutrino) radiation. The continuing neutrino deposition drives the explosion shock until the entropy of matter flowing downwards onto the neutron star is high enough to prevent further accretion. This process should result in a robust supernova explosion.

  14. Constraining decaying dark matter with neutron stars

    NASA Astrophysics Data System (ADS)

    Pérez-García, M. Ángeles; Silk, Joseph

    2015-05-01

    The amount of decaying dark matter, accumulated in the central regions in neutron stars together with the energy deposition rate from decays, may set a limit on the neutron star survival rate against transitions to more compact objects provided nuclear matter is not the ultimate stable state of matter and that dark matter indeed is unstable. More generally, this limit sets constraints on the dark matter particle decay time, τχ. We find that in the range of uncertainties intrinsic to such a scenario, masses (mχ /TeV) ≳ 9 ×10-4 or (mχ /TeV) ≳ 5 ×10-2 and lifetimes τχ ≲1055 s and τχ ≲1053 s can be excluded in the bosonic or fermionic decay cases, respectively, in an optimistic estimate, while more conservatively, it decreases τχ by a factor ≳1020. We discuss the validity under which these results may improve with other current constraints.

  15. Investigating variability of quiescent neutron stars in the globular clusters NGC 6440 and Terzan 5

    NASA Astrophysics Data System (ADS)

    Walsh, A. R.; Cackett, E. M.; Bernardini, F.

    2015-05-01

    The quiescent spectrum of neutron star low-mass X-ray binaries typically consists of two components - a thermal component associated with emission from the neutron star surface, and a non-thermal power-law component whose origin is not well understood. Spectral fitting of neutron star atmosphere models to the thermal component is one of the leading methods for measuring the neutron star radius. However, it has been known for years that the X-ray spectra of quiescent neutron stars vary between observations. While most quiescent variability is explained through a variable power-law component, the brightest and best-studied object, Cen X-4, requires a change in the thermal component and such thermal variability could be a problem for measuring neutron star radii. In this paper, we significantly increase the number of sources whose quiescent spectra have been studied for variability. We examine nine potential quiescent neutron stars with luminosities ≤1034 erg s-1 over the course of multiple Chandra observations of the globular clusters NGC 6440 and Terzan 5 and find no strong evidence for variability in the effective temperature in seven of the nine sources. Two sources show a potential change in temperature, though this depends on the exact model fitted. CX1 in NGC 6440 is equally well fitted by a variable thermal component or a variable power law. Therefore, the results are inconclusive and we cannot exclude or require thermal variability in that source. CX5 in NGC 6440 shows a potential change in temperature, though this depends on whether a power law is included in the spectral fit or not. This suggests that thermal variability may not be widespread among quiescent neutron stars with luminosities ≤1034 erg s-1, and hence thermal radiation remains a promising means to constraining neutron star radii.

  16. Do hyperons exist in the interior of neutron stars?

    NASA Astrophysics Data System (ADS)

    Chatterjee, Debarati; Vidaña, Isaac

    2016-02-01

    In this work we review the role of hyperons on the properties of neutron and proto-neutron stars. In particular, we revise the so-called "hyperon puzzle", go over some of the solutions proposed to tackle it, and discuss the implications that the recent measurements of unusually high neutron star masses have on our present knowledge of hypernuclear physics. We re-examine also the role of hyperons on the cooling properties of newly born neutron stars and on the so-called r-mode instability.

  17. Microscopic vortex velocity and implications for neutron star dynamics

    NASA Astrophysics Data System (ADS)

    Gügercinoǧlu, Erbil; Alpar, Mehmet Ali

    2016-07-01

    Rotational dynamics of a neutron star is governed by the distribution and motion of vortex lines within the neutron superfluid. Interaction of the vortex lines with the ambient matter plays an important role in the glitches, thermal evolution and magnetic field evolution of pulsars. Thus, correctly treating the vortex motion both in the inner crust and in the outer core of neutron stars is a key ingredient in modeling a great variety of observational phenomena of pulsars. In this work we outline the first principles to calculate the microscopic vortex velocity in the inner crust as well as in the outer core. Then we discuss some implications for neutron star's dynamics.

  18. The Ps - e relation of double neutron stars

    NASA Astrophysics Data System (ADS)

    Dewi, J. D. M.; Podsiadlowski, Ph.; Pols, O. R.

    2007-08-01

    The seven Galactic double neutron stars (DNS)s exhibit a relation between the pulsar spin period and the orbital eccentricity. We show that this relation can only be produced if the second neutron star received a kick that is substantially smaller (with a velocity dispersion of less than 50 km s-1) than the standard kick received by a single radio pulsar. This demonstrates that the kick mechanism depends on the evolutionary history of the NS progenitor and that the orbital parameters of DNSs are completely determined by the evolution in the preceding helium star - neutron star phase.

  19. Nuclear Matter Equations of State and the Neutron Stars

    SciTech Connect

    Urbanec, M.; Stuchlik, Z.; Betak, E.

    2008-05-12

    The equations of state (EoS) of relativistic asymmetric nuclear matter are obtainable from assumed form of the interaction Lagrangian. They are one of important inputs to describe the neutron stars. The structure of the neutron stars, i.e. the density of matter and the pressure as functions of radial distance starting from their values at the center of a star, is straightforwardly dependent on EoS. Similarly, a limitation on the total mass of the neutron star can be obtained therefrom. Thus, EoS and the underlying nucleon interactions can be tested also by the means of astronomical observations.

  20. Observational constraints on neutron star masses and radii

    NASA Astrophysics Data System (ADS)

    Miller, M. Coleman; Lamb, Frederick K.

    2016-03-01

    Precise and reliable measurements of the masses and radii of neutron stars with a variety of masses would provide valuable guidance for improving models of the properties of cold matter with densities above the saturation density of nuclear matter. Several different approaches for measuring the masses and radii of neutron stars have been tried or proposed, including analyzing the X-ray fluxes and spectra of the emission from neutron stars in quiescent low-mass X-ray binary systems and thermonuclear burst sources; fitting the energy-dependent X-ray waveforms of rotation-powered millisecond pulsars, burst oscillations with millisecond periods, and accretion-powered millisecond pulsars; and modeling the gravitational radiation waveforms of coalescing double neutron star and neutron star - black hole binary systems. We describe the strengths and weaknesses of these approaches, most of which currently have substantial systematic errors, and discuss the prospects for decreasing the systematic errors in each method.

  1. Quasistatic Evolution of Binary Neutron Star Systems Before Merging

    NASA Astrophysics Data System (ADS)

    Eriguchi, Y.; Usui, F.

    Binary neutron star systems evolve due to the back reaction of gravitational wave emission. Although this evolution is essentially a time dependent phenomenon, most stages of the evolution can be regarded as if the system were in a stationary state. Consequently we can follow the evolution of binary neutron star systems quasistatically by connecting quasiequilibrium states of binary neutron stars. On the equilibrium sequences of congruent binary neutron star systems there are two important states of equilibrium configurations: 1) the minimum angular momentum state where some unstable phenomenon sets in and 2) the contact state from which a single body sequence will continue. Recent numerical results of quasiequilibrium approaches for the binary neutron star evolution are briefly reviewed and some problems in general relativistic treatments are discussed.

  2. NARROW ATOMIC FEATURES FROM RAPIDLY SPINNING NEUTRON STARS

    SciTech Connect

    Bauboeck, Michi; Psaltis, Dimitrios; Oezel, Feryal E-mail: dpsaltis@email.arizona.edu

    2013-04-01

    Neutron stars spinning at moderate rates ({approx}300-600 Hz) become oblate in shape and acquire a nonzero quadrupole moment. In this paper, we calculate the profiles of atomic features from such neutron stars using a ray-tracing algorithm in the Hartle-Thorne approximation. We show that line profiles acquire cores that are much narrower than the widths expected from pure Doppler effects for a large range of observer inclinations. As a result, the effects of both the oblateness and the quadrupole moments of neutron stars need to be taken into account when aiming to measure neutron-star radii from rotationally broadened lines. Moreover, the presence of these narrow cores substantially increases the likelihood of detecting atomic lines from rapidly spinning neutron stars.

  3. Computation of Neutron Star Structure Using Modern Equation of State

    NASA Astrophysics Data System (ADS)

    Bordbar, G. H.; Hayati, M.

    Using the modern equations of state derived from microscopic calculations, we have calculated the neutron star structure. For the neutron star, we have obtained a minimum mass about 0.1 M⊙ which is nearly independent of the equation of state, and a maximum mass between 1.47 M⊙ and 1.98 M⊙ which is strongly dependent on the equation of state. It is shown that among the equations of state of neutron star matter which we have used, the stiffest one leads to higher maximum mass and radius and lower central density. It is seen that the given maximum mass for the Reid-93 equation of state shows a good consistency with the accurate observations of radio pulsars. We have indicated that the thickness of neutron star crust is very small compared to the predicted neutron star radius.

  4. Entrainment coefficient and effective mass for conduction neutrons in neutron star crust: simple microscopic models

    NASA Astrophysics Data System (ADS)

    Carter, Brandon; Chamel, Nicolas; Haensel, Pawel

    2005-02-01

    In the inner crust of a neutron star, at densities above the "drip" threshold, unbound "conduction" neutrons can move freely past through the ionic lattice formed by the nuclei. The relative current density ni=nv¯i of such conduction neutrons will be related to the corresponding mean particle momentum pi by a proportionality relation of the form ni=Kpi in terms of a physically well defined mobility coefficient K whose value in this context has not been calculated before. Using methods from ordinary solid state and nuclear physics, a simple quantum mechanical treatment based on the independent particle approximation, is used here to formulate K as the phase space integral of the relevant group velocity over the neutron Fermi surface. The result can be described as an "entrainment" that changes the ordinary neutron mass m to a macroscopic effective mass per neutron that will be given—subject to adoption of a convention specifying the precise number density n of the neutrons that are considered to be "free"—by m⋆=n/K. The numerical evaluation of the mobility coefficient is carried out for nuclear configurations of the "lasagna" and "spaghetti" type that may be relevant at the base of the crust. Extrapolation to the middle layers of the inner crust leads to the unexpected prediction that m⋆ will become very large compared with m.

  5. Gravitational radiation from neutron stars deformed by crustal Hall drift

    NASA Astrophysics Data System (ADS)

    Suvorov, A. G.; Mastrano, A.; Geppert, U.

    2016-07-01

    A precondition for the radio emission of pulsars is the existence of strong, small-scale magnetic field structures (`magnetic spots') in the polar cap region. Their creation can proceed via crustal Hall drift out of two qualitatively and quantitatively different initial magnetic field configurations: a field confined completely to the crust and another which penetrates the whole star. The aim of this study is to explore whether these magnetic structures in the crust can deform the star sufficiently to make it an observable source of gravitational waves. We model the evolution of these field configurations, which can develop, within ˜104-105 yr, magnetic spots with local surface field strengths ˜1014 G maintained over ≳106 yr. Deformations caused by the magnetic forces are calculated. We show that, under favourable initial conditions, a star undergoing crustal Hall drift can have ellipticity ɛ ˜ 10-6, even with sub-magnetar polar field strengths, after ˜105 yr. A pulsar rotating at ˜102 Hz with such ɛ is a promising gravitational wave source candidate. Since such large deformations can be caused only by a particular magnetic field configuration that penetrates the whole star and whose maximum magnetic energy is concentrated in the outer core region, gravitational wave emission observed from radio pulsars can thus inform us about the internal field structures of young neutron stars.

  6. The EOS of neutron matter, and the effect of Lambda hyperons to neutron star structure

    SciTech Connect

    Gandolfi, Stefano

    2015-01-13

    The following topics are addressed: the model and the method; equation of state of neutron matter, role of three-neutron force; symmetry energy; Λ-hypernuclei; Λ-neutron matter; and neutron star structure. In summary, quantum Monte Carlo methods are useful to study nuclear systems in a coherent framework; the three-neutron force is the bridge between Esym and neutron star structure; and neutron star observations are becoming competitive with experiments. Λ-nucleon data are very limited, but ΛNN is very important. The role of Λ in neutron stars is far from understood; more ΛN data are needed. The author's conclusion: We cannot conclude anything with present models.

  7. Modeling the Electromagnetic and Gravitational Radiation from Neutron Stars

    NASA Astrophysics Data System (ADS)

    Liebling, Steven; Anderson, Matthew; Hirschmann, Eric; Neilsen, David; Hanna, Chad; Lehner, Luis; Palenzuela, Carlos; Thompson, Christopher; Motl, Patrick

    2012-03-01

    The dynamics of magnetized neutron stars both in binaries and in isolation are modeled with a novel numerical approach able to capture the dynamics of the star(s) and of the surrounding plasma. The stellar dynamics incorporate ideal MHD which appropriately models the regime in which the fluid pressure dominates that of the magnetic field, while the stellar exterior is modeled within the force free approach (magnetic pressure largely dominates that of the fluid). The approach is shown to approach certain known solutions. An intense electromagnetic outburst is observed for the collapsing, rotating star. The approach is also applied to the coalescence of a neutron star binary.

  8. PSR J1400--1438: A Potential Laboratory for Fundamental Neutron Star Physics

    NASA Astrophysics Data System (ADS)

    Bogdanov, Slavko

    2013-10-01

    The pulsed thermal X-ray radiation from radio millisecond pulsars (MSPs) can provide valuable insight into the fundamental physics of neutron stars. Realistic pulse shape modeling, including relativistic and atmospheric effects, has begun to offer important constraints on the magnetic field geometry, properties of the surface, and most importantly, the neutron star equation of state. For binary MSPs, combining this method with an independent precision mass measurement can yield definitive constraints on neutron star structure. We propose an exploratory XMM-Newton energy-resolved timing observation of PSR J1400-1438, a recently discovered nearby binary MSP, to establish if it is suitable as a laboratory for fundamental neutron star physics.

  9. I-Love-Q: unexpected universal relations for neutron stars and quark stars.

    PubMed

    Yagi, Kent; Yunes, Nicolás

    2013-07-26

    Neutron stars and quark stars are not only characterized by their mass and radius but also by how fast they spin, through their moment of inertia, and how much they can be deformed, through their Love number and quadrupole moment. These depend sensitively on the star's internal structure and thus on unknown nuclear physics. We find universal relations between the moment of inertia, the Love number, and the quadrupole moment that are independent of the neutron and quark star's internal structure. These can be used to learn about neutron star deformability through observations of the moment of inertia, break degeneracies in gravitational wave detection to measure spin in binary inspirals, distinguish neutron stars from quark stars, and test general relativity in a nuclear structure-independent fashion. PMID:23888033

  10. Neutron Star Discovered Where a Black Hole Was Expected

    NASA Astrophysics Data System (ADS)

    2005-11-01

    A very massive star collapsed to form a neutron star and not a black hole as expected, according to new results from NASA's Chandra X-ray Observatory. This discovery shows that nature has a harder time making black holes than previously thought. Scientists found this neutron star -- a dense whirling ball of neutrons about 12 miles in diameter -- in an extremely young star cluster. Astronomers were able to use well-determined properties of other stars in the cluster to deduce that the progenitor of this neutron star was at least 40 times the mass of the Sun. ESO Optical Image of Westerlund 1 ESO Optical Image of Westerlund 1 "Our discovery shows that some of the most massive stars do not collapse to form black holes as predicted, but instead form neutron stars," said Michael Muno, a UCLA postdoctoral Hubble Fellow and lead author of a paper to be published in The Astrophysical Journal Letters. When very massive stars make neutron stars and not black holes, they will have a greater influence on the composition of future generations of stars. When the star collapses to form the neutron star, more than 95% of its mass, much of which is metal-rich material from its core, is returned to the space around it. "This means that enormous amounts of heavy elements are put back into circulation and can form other stars and planets," said J. Simon Clark of the Open University in the United Kingdom. Animation: Dissolve from Optical to X-ray Image of Westerlund 1 Animation: Dissolve from Optical to X-ray Image of Westerlund 1 Astronomers do not completely understand how massive a star must be to form a black hole rather than a neutron star. The most reliable method for estimating the mass of the progenitor star is to show that the neutron star or black hole is a member of a cluster of stars, all of which are close to the same age. Because more massive stars evolve faster than less massive ones, the mass of a star can be estimated from if its evolutionary stage is known. Neutron