Science.gov

Sample records for neutron studies support

  1. Low-energy beam transport studies supporting the Spallation Neutron Source 1-MW beam operationa

    SciTech Connect

    Han, Baoxi; Kalvas, T.; Tarvainen, O.; Welton, Robert F; Murray Jr, S N; Pennisi, Terry R; Santana, Manuel; Stockli, Martin P

    2012-01-01

    The H- injector consisting of a cesium enhanced RF-driven ion source and a 2-lens electrostatic low-energy beam transport (LEBT) system supports the Spallation Neutron Source 1-MW beam operation with ~38 mA beam current in the linac at 60 Hz with a pulse length of up to ~1.0 ms. In this work, two important issues associated with the low-energy beam transport are discussed: 1) inconsistent dependence of the post-RFQ beam current on the ion source tilt angle, and 2) high power beam losses on the LEBT electrodes under some off-nominal conditions compromising their reliability.

  2. Neutron reflectivity studies of single lipid bilayers supported on planar substrates

    SciTech Connect

    Krueger, S.; Orts, W.J.; Berk, N.F.; Majkrzak, C.F.; Koenig, B.W.

    1994-12-31

    Neutron reflectivity was used to probe the structure of single phosphatidylcholine (PC) lipid bilayers adsorbed onto a planar silicon surface in an aqueous environment. Fluctuations in the neutron scattering length density profiles perpendicular to the silicon/water interface were determined for different lipids as a function of the hydrocarbon chain length. The lipids were studied in both the gel and liquid crystalline phases by monitoring changes in the specularly-reflected neutron intensity as a function of temperature. Contrast variation of the neutron scattering length density was applied to both the lipid and the solvent. Scattering length density profiles were determined using both model-independent and model-dependent fitting methods. During the reflectivity measurements, a novel experimental set-up was implemented to decrease the incoherent background scattering due to the solvent. Thus, the reflectivity was measured to Q {approx} 0.3{Angstrom}{sup -1}, covering up to seven orders of magnitude in reflected intensity, for PC bilayers in D{sub 2}O and silicon-matched (38% D{sub 2}O/62% H{sub 2}O) water. The kinetics of lipid adsorption at the silicon/water interface were also explored by observing changes in the reflectivity at low Q values under silicon-matched water conditions.

  3. Low-energy beam transport studies supporting the spallation neutron source 1-MW beam operation

    SciTech Connect

    Han, B. X.; Welton, R. F.; Murray, S. N. Jr.; Pennisi, T. R.; Santana, M.; Stockli, M. P.; Kalvas, T.; Tarvainen, O.

    2012-02-15

    The H{sup -} injector consisting of a cesium enhanced RF-driven ion source and a 2-lens electrostatic low-energy beam transport (LEBT) system supports the spallation neutron source 1 MW beam operation with {approx}38 mA beam current in the linac at 60 Hz with a pulse length of up to {approx}1.0 ms. In this work, two important issues associated with the low-energy beam transport are discussed: (1) inconsistent dependence of the post-radio frequency quadrupole accelerator beam current on the ion source tilt angle and (2) high power beam losses on the LEBT electrodes under some off-nominal conditions compromising their reliability.

  4. Low-energy beam transport studies supporting the spallation neutron source 1-MW beam operation

    SciTech Connect

    Kalvas, T.; Welton, Robert F; Pennisi, Terry R

    2012-01-01

    The H{sup -} injector consisting of a cesium enhanced RF-driven ion source and a 2-lens electrostatic low-energy beam transport (LEBT) system supports the spallation neutron source 1 MW beam operation with {approx}38 mA beam current in the linac at 60 Hz with a pulse length of up to {approx}1.0 ms. In this work, two important issues associated with the low-energy beam transport are discussed: (1) inconsistent dependence of the post-radio frequency quadrupole accelerator beam current on the ion source tilt angle and (2) high power beam losses on the LEBT electrodes under some off-nominal conditions compromising their reliability.

  5. Ordering and lyotropic behavior of a silicon-supported cationic and neutral lipid system studied by neutron reflectivity

    NASA Astrophysics Data System (ADS)

    Domenici, F.; Castellano, C.; Congiu, A.; Pompeo, G.; Felici, R.

    2008-05-01

    Self-assembling of amphipathic lipid films on solid support allows the structural investigation of important biological model systems, such as the vectorlike lipid membranes, in order to improve DNA transfection in nonviral gene therapy. We present a neutron reflectivity study of a binary lipid system composed of dioleoylphosphatidylcholine (DOPC) and dimethyldioctadecylammonium bromide (DDAB) deposited on [100] silicon support by means of spin coating technique. We underline their lyotropic behavior under saturated deuterium oxide (D2O) vapor thus pointing out that the lipid mixture is organized in ordered domains composed of plane lamellar bilayers of noninteractive DOPC and DDAB.

  6. Neutron reflectivity study of substrate surface chemistry effects on supported phospholipid bilayer formation on (1120) sapphire.

    SciTech Connect

    Oleson, Timothy A.; Sahai, Nita; Wesolowski, David J; Dura, Joseph A; Majkrzak, Charles F; Giuffre, Anthony J.

    2012-01-01

    Oxide-supported phospholipid bilayers (SPBs) used as biomimetric membranes are significant for a broad range of applications including improvement of biomedical devices and biosensors, and in understanding biomineralization processes and the possible role of mineral surfaces in the evolution of pre-biotic membranes. Continuous-coverage and/or stacjed SPBs retain properties (e.,g. fluidity) more similar to native biological membranes, which is desirable for most applications. Using neutron reflectivity, we examined face coverage and potential stacking of dipalmitoylphosphatidylcholine (DPPC) bilayers on the (1120) face of sapphire (a-Al2O3). Nearly full bilayers were formed at low to neutral pH, when the sapphire surface is positively charged, and at low ionic strength (l=15 mM NaCl). Coverage decreased at higher pH, close to the isoelectric point of sapphire, and also at high I>210mM, or with addition of 2mM Ca2+. The latter two effects are additive, suggesting that Ca2+ mitigates the effect of higher I. These trends agree with previous results for phospholipid adsorption on a-Al2O3 particles determined by adsorption isotherms and on single-crystal (1010) sapphire by atomic force microscopy, suggesting consistency of oxide surface chemistry-dependent effects across experimental techniques.

  7. Neutron measurement support for radiation material science in research reactors

    SciTech Connect

    Bregadze, Yu.I.; Grigor'ev, E.I.; Ivanov, V.B.; Klinov, A.V.; Kuprienko, V.A.; Starostov, B.I.; Yaryna, V.P.

    1987-07-01

    The authors discuss the need for development of a support system for unity in neutron measurement. Basic problems are outlined with regard to the support of neutron measurement unity for specialized service, such as research of working neutron fields, monitoring neutron fields during irradiation, and classification, analysis and storage of information about the controlled neutron field. Methods of realizing the metrological functions of the Metrological Center of Neutron Measurements are discussed as is the technical equipment used by the Center.

  8. Neutron reflectivity study of substrate surface chemistry effects on supported phospholipid bilayer formation on (11 ̅20) sapphire.

    PubMed

    Oleson, Timothy A; Sahai, Nita; Wesolowski, David J; Dura, Joseph A; Majkrzak, Charles F; Giuffre, Anthony J

    2012-03-15

    Oxide-supported phospholipid bilayers (SPBs) used as biomimetic membranes are significant for a broad range of applications including improvement of biomedical devices and biosensors, and in understanding biomineralization processes and the possible role of mineral surfaces in the evolution of pre-biotic membranes. Continuous-coverage and/or stacked SPBs retain properties (e.g., fluidity) more similar to native biological membranes, which is desirable for most applications. Using neutron reflectivity, we examined the role of oxide surface charge (by varying pH and ionic strength) and of divalent Ca(2+) in controlling surface coverage and potential stacking of dipalmitoylphosphatidylcholine (DPPC) bilayers on the (11 ̅20) face of sapphire (α-Al(2)O(3)). Nearly full bilayers were formed at low to neutral pH, when the sapphire surface is positively charged, and at low ionic strength (I=15 mM NaCl). Coverage decreased at higher pH, close to the isoelectric point of sapphire, and also at high I≥210 mM, or with addition of 2mM Ca(2+). The latter two effects are not additive, suggesting that Ca(2+) mitigates the effect of higher I. These trends agree with previous results for phospholipid adsorption on α-Al(2)O(3) particles determined by adsorption isotherms and on single-crystal (10 ̅10) sapphire by atomic force microscopy, suggesting consistency of oxide surface chemistry-dependent effects across experimental techniques. PMID:22244865

  9. Neutronic Design Studies for the National Spallation Neutron Source (NSNS)

    SciTech Connect

    Charlton, LA

    2001-08-01

    Neutronics analyses are now in progress to support initial selection of target system design features, materials, geometry, and component sizes for the proposed Spallation Neutron Source (SNS). Calculations have been performed to determine the neutron, proton, heavy ion, and gamma-ray flux spectra as a function of time, energy, and space for the major components of the target station (target, moderators, reflectors, etc.). These analyses were also performed to establish an initial set of performance characteristics for the neutron source. The methodology, reference performance characteristics, and results of initial optimization studies involving moderator poison plate location, target material performance, reflector performance, moderator position and premoderator performance for the target system are presented in this paper.

  10. Structure of single-supported DMPC lipid bilayer membranes as a function of hydration level studied by neutron reflectivity and Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Miskowiec, A.; Schnase, P.; Bai, M.; Taub, H.; Hansen, F. Y.; Dubey, M.; Singh, S.; Majewski, J.

    2012-02-01

    We have recently been investigating the diffusion of water on single-supported DMPC lipid bilayer membranes at different levels of hydration, using high-resolution quasielastic neutron scattering (QNS). To aid in the interpretation of these QNS studies, we have conducted neutron reflectivity (NR) measurements on SPEAR at LANSCE to characterize the structure of similarly prepared samples. Protonated DMPC membranes were deposited onto SiO2-coated Si(100) substrates and characterized by Atomic Force Microscopy (AFM) at different levels of hydration. We find reasonable agreement between the membrane thickness determined by NR and AFM at room temperature. We also find consistency between the scattering length density (SLD) profile in the vicinity of the upper leaflet of the supported DMPC membrane and that found in a molecular dynamics simulation of a freestanding membrane at 303 K. However, the fit to the reflectivity curve can be improved by modifying the SLD profile near the leaflet closest to the SiO2 surface.

  11. Actinide Studies with Ultracold Neutrons

    NASA Astrophysics Data System (ADS)

    Broussard, Leah

    2014-03-01

    Understanding the effects of sputtering due to nuclear fission is crucial to the nuclear industry and has wide-reaching applications, including nuclear energy, space science, and national defense. A new program at the Los Alamos Neutron Science Center uses ultracold neutrons (UCN) to induce fission in actinides such as uranium and plutonium. UCN are an ideal tool for finely controlling induced fission as a function of depth in an actinide sample. The mechanism for fission-induced surface damage is not well understood, especially regarding the effect of a surface oxide layer. We will discuss our experimental strategy for studies of UCN-induced fission and the ejected material, and present preliminary data from enriched and depleted uranium. We gratefully acknowledge the support of the G. T. Seaborg Institute for Transactinium Science and the U.S. Department of Energy through the LANL/LDRD Program for this work.

  12. Silicon supported lipid-DNA thin film structures at varying temperature studied by energy dispersive X-ray diffraction and neutron reflectivity.

    PubMed

    Domenici, F; Castellano, C; Dell'Unto, F; Albinati, A; Congiu, A

    2011-11-01

    Non-viral gene transfection by means of lipid-based nanosystems, such as solid supported lipid assemblies, is often limited due to their lack of stability and the consequent loss of efficiency. Therefore not only a detailed thermo-lyotropic study of these DNA-lipid complexes is necessary to understand their interaction mechanisms, but it can also be considered as a first step in conceiving and developing new transfection biosystems. The aim of our study is a structural characterization of 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC)-dimethyl-dioctadecyl-ammonium bromide (DDAB)-DNA complex at varying temperature using the energy dispersive X-ray diffraction (EDXD) and neutron reflectivity (NR) techniques. We have shown the formation of a novel thermo-lyotropic structure of DOPC/DDAB thin film self-organized in multi-lamellar planes on (100)-oriented silicon support by spin coating, thus enlightening its ability to include DNA strands. Our NR measurements indicate that the DOPC/DDAB/DNA complex forms temperature-dependent structures. At 65°C and relative humidity of 100% DNA fragments are buried between single lamellar leaflets constituting the hydrocarbon core of the lipid bilayers. This finding supports the consistency of the hydrophobic interaction model, which implies that the coupling between lipid tails and hypo-hydrated DNA single strands could be the driving force of DNA-lipid complexation. Upon cooling to 25°C, EDXD analysis points out that full-hydrated DOPC-DDAB-DNA can switch in a different metastable complex supposed to be driven by lipid heads-DNA electrostatic interaction. Thermotropic response analysis also clarifies that DOPC has a pivotal role in promoting the formation of our observed thermophylic silicon supported lipids-DNA assembly. PMID:21816578

  13. Study of a spherical torus based volumetric neutron source for nuclear technology testing and development. Final report of a scientific research supported by the USDOE/SBIR program

    SciTech Connect

    E.T. Cheng, et al.

    1999-06-01

    A plasma based, deuterium and tritium (DT) fueled, volumetric 14 MeV neutron source (VNS) has been considered as a possible facility to support the development of the demonstration fusion power reactor (DEMO). It can be used to test and develop necessary fusion blanket and divertor components and provide sufficient database, particularly on the reliability of nuclear components necessary for DEMO. The VNS device complement to ITER by reducing the cost and risk in the development of DEMO. A low cost, scientifically attractive, and technologically feasible volumetric neutron source based on the spherical torus (ST) concept has been conceived. The ST-VNS, which has a major radius of 1.07 m, aspect ratio 1.4, and plasma elongation 3, can produce a neutron wall loading from 0.5 to 5 MW/m{sup 2} at the outboard test section with a modest fusion power level from 38 to 380 MW. It can be used to test necessary nuclear technologies for fusion power reactor and develop fusion core components include divertor, first wall, and power blanket. Using staged operation leading to high neutron wall loading and optimistic availability, a neutron fluence of more than 30 MW-y/m{sup 2} is obtainable within 20 years of operation. This will permit the assessments of lifetime and reliability of promising fusion core components in a reactor relevant environment. A full scale demonstration of power reactor fusion core components is also made possible because of the high neutron wall loading capability. Tritium breeding in such a full scale demonstration can be very useful to ensure the self-sufficiency of fuel cycle for a candidate power blanket concept.

  14. Neutronics R&D efforts in support of the European breeder blanket development programme

    NASA Astrophysics Data System (ADS)

    Fischer, U.; Batistoni, P.; Klix, A.; Kodeli, I.; Leichtle, D.; Perel, R. L.

    2009-06-01

    The recent progress in the R&D neutronics efforts spent in the EU to support the development of the HCLL and HCPB breeder blankets is presented. These efforts include neutronic design activities performed in the framework of the European DEMO reactor study, validation efforts by means of neutronics mock-up experiments using 14 MeV neutron generators and the development of dedicated computational tools such as the conversion software McCad for the automatic generation of a Monte Carlo geometry model from available CAD data, and the MCSEN code for Monte Carlo based calculations of sensitivities and uncertainties by using the track length estimator. The supporting validation effort is devoted to the capability of the neutronics tools and data to predict the tritium production and other nuclear responses of interest in neutronics mock-up experiments. Such an experiment has been conducted on a HCPB mock-up while another on a HCLL mock-up is in progress.

  15. Neutron personnel dosimetry intecomparison studies

    SciTech Connect

    Sims, C.S.

    1991-01-01

    The Dosimetry Applications Research (DOSAR) Group at the Oak Ridge National Laboratory (ORNL) has conducted sixteen Neutron Personnel Dosimetry Intercomparison Studies (PDIS) since 1974. During these studies dosimeters are mailed to DOSAR, exposed to low-level (typically in the 0.3 -- 5.0 mSv range) neutron dose equivalents in a variety of mixed neutron-gamma radiation fields, and then returned to the participants for evaluation. The Health Physics Research Reactor (HPRR) was used as the primary radiation source in PDIS 1--12 and radioisotopic neutron sources at DOSAR's Radiation Calibration Laboratory (RADCAL) were mainly used, along with sources and accelerators at cooperating institutions, in PDIS 13--16. Conclusions based on 13,560 measurements made by 146 different participating organizations (102 - US) are presented.

  16. Neutron radiation embrittlement studies in support of continued operation, and validation by sampling of Magnox reactor steel pressure vessels and components

    SciTech Connect

    Jones, R.B.; Bolton, C.J.

    1997-02-01

    Magnox steel reactor pressure vessels differ significantly from US LWR vessels in terms of the type of steel used, as well as their operating environment (dose level, exposure temperature range, and neutron spectra). The large diameter ferritic steel vessels are constructed from C-Mn steel plates and forgings joined together with manual metal and submerged-arc welds which are stress-relieved. All Magnox vessels are now at least thirty years old and their continued operation is being vigorously pursued. Vessel surveillance and other programmes are summarized which support this objective. The current understanding of the roles of matrix irradiation damage, irradiation-enhanced copper impurity precipitation and intergranular embrittlement effects is described in so far as these influence the form of the embrittlement and hardening trend curves for each material. An update is given on the influence of high temperature exposure, and on the role of differing neutron spectra. Finally, the validation offered by the results of an initial vessel sampling exercise is summarized together with the objectives of a more extensive future sampling programme.

  17. A neutron diffraction study of amorphous boron

    NASA Astrophysics Data System (ADS)

    Delaplane, R. G.; Lundström, T.; Dahlborg, U.; Howells, W. S.

    1991-07-01

    The structure of amorphous boron has been studied with pulsed neutron diffraction techniques using the ISIS facilities at the Rutherford Appleton Laboratory. The experimental static structure factor S(Q) and radial distribution function support a structural model based on units of B12 icosahedra resembling those found in crystalline β-rhombohedral boron, but with a certain degree of disorder occurring in the linking between these subunits.

  18. Study of a nTHGEM-based thermal neutron detector

    NASA Astrophysics Data System (ADS)

    Li, Ke; Zhou, Jian-Rong; Wang, Xiao-Dong; Xiong, Tao; Zhang, Ying; Xie, Yu-Guang; Zhou, Liang; Xu, Hong; Yang, Gui-An; Wang, Yan-Feng; Wang, Yan; Wu, Jin-Jie; Sun, Zhi-Jia; Hu, Bi-Tao

    2016-07-01

    With new generation neutron sources, traditional neutron detectors cannot satisfy the demands of the applications, especially under high flux. Furthermore, facing the global crisis in 3He gas supply, research on new types of neutron detector as an alternative to 3He is a research hotspot in the field of particle detection. GEM (Gaseous Electron Multiplier) neutron detectors have high counting rate, good spatial and time resolution, and could be one future direction of the development of neutron detectors. In this paper, the physical process of neutron detection is simulated with Geant4 code, studying the relations between thermal conversion efficiency, boron thickness and number of boron layers. Due to the special characteristics of neutron detection, we have developed a novel type of special ceramic nTHGEM (neutron THick GEM) for neutron detection. The performance of the nTHGEM working in different Ar/CO2 mixtures is presented, including measurements of the gain and the count rate plateau using a copper target X-ray source. A detector with a single nTHGEM has been tested for 2-D imaging using a 252Cf neutron source. The key parameters of the performance of the nTHGEM detector have been obtained, providing necessary experimental data as a reference for further research on this detector. Supported by National Natural Science Foundation of China (11127508, 11175199, 11205253, 11405191), Key Laboratory of Neutron Physics, CAEP (2013DB06, 2013BB04) and CAS (YZ201512)

  19. Neutron scattering studies in the actinide region

    SciTech Connect

    Beghian, L.E.; Kegel, G.H.R.

    1991-08-01

    During the report period we have investigated the following areas: Neutron elastic and inelastic scattering measurements on {sup 14}N, {sup 181}Ta, {sup 232}Th, {sup 238}U and {sup 239}Pu; Prompt fission spectra for {sup 232}Th, {sup 235}U, {sup 238}U and {sup 239}Pu; Theoretical studies of neutron scattering; Neutron filters; New detector systems; and Upgrading of neutron target assembly, data acquisition system, and accelerator/beam-line apparatus.

  20. Neutron tube design study for boron neutron capture therapy application

    SciTech Connect

    Verbeke, J.M.; Lee, Y.; Leung, K.N.; Vujic, J.; Williams, M.D.; Wu, L.K.; Zahir, N.

    1999-05-06

    Radio-frequency (RF) driven ion sources are being developed in Lawrence Berkeley National Laboratory (LBNL) for sealed-accelerator-tube neutron generator application. By using a 5-cm-diameter RF-driven multicusp source H{sup +} yields over 95% have been achieved. These experimental findings will enable one to develop compact neutron generators based on the D-D or D-T fusion reactions. In this new neutron generator, the ion source, the accelerator and the target are all housed in a sealed metal container without external pumping. Recent moderator design simulation studies have shown that 14 MeV neutrons could be moderated to therapeutically useful energy ranges for boron neutron capture therapy (BNCT). The dose near the center of the brain with optimized moderators is about 65% higher than the dose obtained from a typical neutron spectrum produced by the Brookhaven Medical Research Reactor (BMRR), and is comparable to the dose obtained by other accelerator-based neutron sources. With a 120 keV and 1 A deuteron beam, a treatment time of {approx}35 minutes is estimated for BNCT.

  1. Benchmark field study of deep neutron penetration

    NASA Astrophysics Data System (ADS)

    Morgan, J. F.; Sale, K.; Gold, R.; Roberts, J. H.; Preston, C. C.

    1991-06-01

    A unique benchmark neutron field has been established at the Lawrence Livermore National Laboratory (LLNL) to study deep penetration neutron transport. At LLNL, a tandem accelerator is used to generate a monoenergetic neutron source that permits investigation of deep neutron penetration under conditions that are virtually ideal to model, namely the transport of mono-energetic neutrons through a single material in a simple geometry. General features of the Lawrence Tandem (LATAN) benchmark field are described with emphasis on neutron source characteristics and room return background. The single material chosen for the first benchmark, LATAN-1, is a steel representative of Light Water Reactor (LWR) Pressure Vessels (PV). Also included is a brief description of the Little Boy replica, a critical reactor assembly designed to mimic the radiation doses from the atomic bomb dropped on Hiroshima, and its us in neutron spectrometry.

  2. Benchmark field study of deep neutron penetration

    SciTech Connect

    Morgan, J.F.; Sale, K. ); Gold, R.; Roberts, J.H.; Preston, C.C. )

    1991-06-10

    A unique benchmark neutron field has been established at the Lawrence Livermore National Laboratory (LLNL) to study deep penetration neutron transport. At LLNL, a tandem accelerator is used to generate a monoenergetic neutron source that permits investigation of deep neutron penetration under conditions that are virtually ideal to model, namely the transport of mono-energetic neutrons through a single material in a simple geometry. General features of the Lawrence Tandem (LATAN) benchmark field are described with emphasis on neutron source characteristics and room return background. The single material chosen for the first benchmark, LATAN-1, is a steel representative of Light Water Reactor (LWR) Pressure Vessels (PV). Also included is a brief description of the Little Boy replica, a critical reactor assembly designed to mimic the radiation doses from the atomic bomb dropped on Hiroshima, and its us in neutron spectrometry. 18 refs.

  3. Advanced life support study

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Summary reports on each of the eight tasks undertaken by this contract are given. Discussed here is an evaluation of a Closed Ecological Life Support System (CELSS), including modeling and analysis of Physical/Chemical Closed Loop Life Support (P/C CLLS); the Environmental Control and Life Support Systems (ECLSS) evolution - Intermodule Ventilation study; advanced technologies interface requirements relative to ECLSS; an ECLSS resupply analysis; the ECLSS module addition relocation systems engineering analysis; an ECLSS cost/benefit analysis to identify rack-level interface requirements of the alternate technologies evaluated in the ventilation study, with a comparison of these with the rack level interface requirements for the baseline technologies; advanced instrumentation - technology database enhancement; and a clean room survey and assessment of various ECLSS evaluation options for different growth scenarios.

  4. Neutron-gamma discrimination based on the support vector machine method

    NASA Astrophysics Data System (ADS)

    Yu, Xunzhen; Zhu, Jingjun; Lin, ShinTed; Wang, Li; Xing, Haoyang; Zhang, Caixun; Xia, Yuxi; Liu, Shukui; Yue, Qian; Wei, Weiwei; Du, Qiang; Tang, Changjian

    2015-03-01

    In this study, the combination of the support vector machine (SVM) method with the moment analysis method (MAM) is proposed and utilized to perform neutron/gamma (n/γ) discrimination of the pulses from an organic liquid scintillator (OLS). Neutron and gamma events, which can be firmly separated on the scatter plot drawn by the charge comparison method (CCM), are detected to form the training data set and the test data set for the SVM, and the MAM is used to create the feature vectors for individual events in the data sets. Compared to the traditional methods, such as CCM, the proposed method can not only discriminate the neutron and gamma signals, even at lower energy levels, but also provide the corresponding classification accuracy for each event, which is useful in validating the discrimination. Meanwhile, the proposed method can also offer a predication of the classification for the under-energy-limit events.

  5. Nuclear and neutron matter studies

    SciTech Connect

    Wiringa, R.B.; Akmal, A.; Pandharipande, V.R.

    1995-08-01

    We are studying nuclear and neutron matter with the new Argonne v{sub 18} NN and Urbana 3N potentials. We use variational wave functions and a diagrammatic cluster expansion with Fermi hypernetted and single-operator chain (FHNC/SOC) integral equations to evaluate the energy expectation value. Initial results show some interesting differences with our previous calculations with the older Argonne v{sub 14} potential. In particular, there are a number of diagrams involving L{center_dot}S and L{sup 2} terms which were small with the older model and were rather crudely estimated or even neglected. It appears that these terms are more important with the new potential and will have to be evaluated more accurately. Work on this subject is in progress. A simple line of attack is to just add additional diagrams at the three-body cluster level. A longer term approach may be to adapt some of the methods for evaluating nucleon clusters used in the few-body and closed shell nuclei described above.

  6. Experimental studies of gravity with slow neutrons

    NASA Astrophysics Data System (ADS)

    Kitaguchi, Masaaki; Ichikawa, Go; Hirota, Katsuya; Shimizu, Hirohiko; Sumi, Naoyuki; Matsumoto, Satoru; Yoshioka, Tamaki; Shima, Tatsushi; Mishima, Kenji; Ino, Takashi; Seki, Yoshichika

    2014-09-01

    Neutron is a chargeless massive particle with the lifetime in the macroscopic range, which is suitable for precision measurement of the small influence of new physics including gravity. We have started the experimental studies of the gravity with slow neutrons in order to search non-Newtonian effect at the short range which is lead by the existence of extra-dimension of the space. Combination of the pulsed neutrons provided by J-PARC and the advanced optical devices enables us to perform new types of high precision measurements. Neutron scattering with noble gas target enables us to measure the interaction at the range of the order of 1 nm. The apparatus was installed into beamline NOP and commissioning has been started. Neutron interferometer has the advantage to measure the gravitational potential precisely. We are developing the large-scale interferometer using long-wavelength neutrons, which is realized by using multilayer mirrors. Ultra-cold neutrons in a small cavity can be bound to the discrete energy eigenstates by Earth's gravitational field. We are discussing the direct measurement of the spatial localization of the neutrons with high resolution detectors, for example, CCD and nuclear emulation.

  7. Neutron Decay Array for beta-delayed neutron Decay Studies

    NASA Astrophysics Data System (ADS)

    Lorusso, Giuseppe; Pereira, J.; Hosmer, P.; Kern, L.; Kratz, K.; Montes, F.; Reeder, P.; Santi, P.; Schatz, H.; Schertz, F.; Wör, A.

    The Neutron Emission Ratio Observer (NERO), has been constructed for use at the National Superconducting Cyclotron Laboratory to work in conjunction with the NSCL Beta Counting System BCS [1] in order to detect β-delayed neutrons. The design of the detector provides high and flat efficiency for a wide range of neutron energies, as well as a low neutron background.

  8. Optimizing Crystal Volume for Neutron Diffraction Studies

    NASA Technical Reports Server (NTRS)

    Snell, E. H.

    2003-01-01

    For structural studies with neutron diffraction more intense neutron sources, improved sensitivity detector and larger volume crystals are all means by which the science is being advanced to enable studies on a wider range of samples. We have chosen a simplistic approach using a well understood crystallization method, with minimal amounts of sample and using design of experiment techniques to maximize the crystal volume all for minimum effort. Examples of the application are given.

  9. Neutron source investigations in support of the cross section program at the Argonne Fast-Neutron Generator

    SciTech Connect

    Meadows, J.W.; Smith, D.L.

    1980-05-01

    Experimental methods related to the production of neutrons for cross section studies at the Argonne Fast-Neutron Generator are reviewed. Target assemblies commonly employed in these measurements are described, and some of the relevant physical properties of the neutron source reactions are discussed. Various measurements have been performed to ascertain knowledge about these source reaction that is required for cross section data analysis purposes. Some results from these studies are presented, and a few specific examples of neutron-source-related corrections to cross section data are provided. 16 figures, 3 tables.

  10. Neutron Scattering Studies of Fluorite Compounds.

    NASA Astrophysics Data System (ADS)

    Hackett, Michael Andrew

    Available from UMI in association with The British Library. Requires signed TDF. The properties of some important compounds with the fluorite structure have been investigated using neutron scattering techniques. All of the compounds in this study have important technological applications, as well as being of intrinsic scientific interest. Inelastic neutron scattering and high temperature technology have been used to measure phonon energies in thorium dioxide at temperatures above 3000K. These phonon energies have been used to determine the elastic constants as a function of temperature. Thorium dioxide provides an interesting comparison with uranium dioxide which has been studied in order to try and establish the cause of the anomalously large enthalpy of this compound. Quasielastic neutron scattering has been used to demonstrate that the dynamic ionic-disorder which occurs in ThO_2 behaves in a similar way to that observed in UO _2 at high temperature. Whilst at only 12K, splittings have been measured in the crystal field excitations of UO_2 which have a significant effect on the theoretical analysis of its thermodynamic properties. This experiment was performed using neutrons scattered with a high energy transfer. Elastic and quasielastic diffuse scattering have both been used to investigate the vacancy-stabilised cubic structure of yttria doped zirconia. Computer modelling of the measured neutron scattering intensities has played a vital role in this part of the study. By the combination of neutron scattering measurements and computational techniques a three part model has been developed for the defect structure in yttria-stabilised zirconia which can explain the ionic conductivity in this compound. Ionic disorder has been observed in the anti-fluorite compounds lithium oxide and magnesium silicide at high temperature, using diffuse quasielastic neutron scattering. The full phonon energy dispersion relation and the elastic constants at high temperature have also

  11. β-delayed neutron emission studies

    NASA Astrophysics Data System (ADS)

    Gómez-Hornillos, M. B.; Rissanen, J.; Taín, J. L.; Algora, A.; Kratz, K. L.; Lhersonneau, G.; Pfeiffer, B.; Agramunt, J.; Cano-Ott, D.; Gorlychev, V.; Caballero-Folch, R.; Martínez, T.; Achouri, L.; Calvino, F.; Cortés, G.; Eronen, T.; García, A.; Parlog, M.; Podolyak, Z.; Pretel, C.; Valencia, E.

    2014-01-01

    The study of β-delayed neutron emission plays a major role in different fields such as nuclear technology, nuclear astrophysics and nuclear structure. However the quality of the existing experimental data nowadays is not sufficient for the various technical and scientific applications and new high precision measurements are necessary to improve the data bases. One key aspect to the success of these high precission measurements is the use of a very pure ion beam that ensures that only the ion of interest is produced. The combination of the IGISOL mass separator with the JYFLTRAP Penning trap is an excellent tool for this type of measurement because of the ability to deliver isobarically and even isomerically clean beams. Another key feature of the installation is the non-chemical selectivity of the IGISOL ion source which allows measurements in the important region of refractory elements. This paper summarises the β-delayed neutron emission studies that have been carried out at the IGISOL facility with two different neutron detectors based on 3He counters in a polyethylene moderator: the Mainz neutron detector and the BEta deLayEd Neutron detector.

  12. Nuclear-spectroscopy problems studied with neutrons

    SciTech Connect

    Raman, S.

    1982-01-01

    Nuclear spectroscopy with neutrons continues to have a major impact on the progress of nuclear science. Neutrons, being uncharged, are particularly useful for the study of low energy reactions. Recent advances in time-of-flight spectroscopy, as well as in the gamma ray spectroscopy following neutron capture, have permitted precision studies of unbound and bound nuclear levels and related phenomena. By going to new energy domains, by using polarized beams and targets, through the invention of new kinds of detectors, and through the general improvement in beam quantity and quality, new features of nuclear structure and reactions have been obtained that are not ony interesting per se but are also grist for old and new theory mills. The above technical advances have opened up new opportunities for further discoveries.

  13. Using the TREAT reactor in support of boron neutron capture therapy (BNCT) experiments: A feasibility analysis

    SciTech Connect

    Grasseschi, G.L.; Schaefer, R.W.

    1996-03-01

    The technical feasibility of using the TREAT reactor facility for boron neutron capture therapy (BNCT) research was assessed. Using one-dimensional neutronics calculations, it was shown that the TREAT core neutron spectrum can be filtered to reduce the undesired radiation (contamination) dose per desired neutron more effectively than can the core spectra from two prominent candidate reactors. Using two-dimensional calculations, it was demonstrated that a non-optimized filter replacing the TREAT thermal column can yield a fluence of desired-energy neutrons more than twice as large as the fluence believed to be required and, at the same time, have a contamination dose per desired neutron almost as low as that from any other candidate facility. The time, effort and cost required to adapt TREAT for a mission supporting BNCT research would be modest.

  14. Theoretical Studies of Accreting Neutron Stars

    NASA Technical Reports Server (NTRS)

    Taam, Ronald E.

    2003-01-01

    Among the newly discovered classes of X-ray sources which have attracted wide attention are close binary systems in which mass is transferred via Roche lobe overflow from a low mass donor star to its neutron star companion. Many of these sources exhibit intense bursts of X-ray radiation as well as periodic and quasi-periodic phenomena. Intensive analysis of these sources as a class has provided insight into the accretion process in binary star systems and into the magnetic field, rotational, and nuclear evolution of the underlying neutron star. In this proposal we have focused on theoretical studies of the hydrodynamical and nuclear processes that take place on the surface of accreting neutron stars in these systems. The investigation of these processes is critical for providing an understanding of a number of outstanding problems related to their transient behavior and evolution.

  15. Neutron-scattering studies of magnetic superconductors

    SciTech Connect

    Sinha, S.K.; Crabtree, G.W.; Hinks, D.G.; Mook, H.A.; Pringle, O.A.

    1982-01-01

    Results obtained in the last few years obtained by neutron diffraction on the nature of the magnetic ordering in magnetic superconductors are reviewed. Emphasis is given to studies of the complex intermediate phase in ferromagnetic superconductors where both superconductivity and ferromagnetism appear to coexist.

  16. Structure of unbound neutron-rich 9He studied using single-neutron transfer

    NASA Astrophysics Data System (ADS)

    Al Kalanee, T.; Gibelin, J.; Roussel-Chomaz, P.; Keeley, N.; Beaumel, D.; Blumenfeld, Y.; Fernández-Domínguez, B.; Force, C.; Gaudefroy, L.; Gillibert, A.; Guillot, J.; Iwasaki, H.; Krupko, S.; Lapoux, V.; Mittig, W.; Mougeot, X.; Nalpas, L.; Pollacco, E.; Rusek, K.; Roger, T.; Savajols, H.; de Séréville, N.; Sidorchuk, S.; Suzuki, D.; Strojek, I.; Orr, N. A.

    2013-09-01

    The 8He(d,p) reaction was studied in inverse kinematics at 15.4A MeV using the MUST2 Si-CsI array in order to shed light on the level structure of 9He. The well known 16O(d,p)17O reaction, performed here in reverse kinematics, was used as a test to validate the experimental methods. The 9He missing mass spectrum was deduced from the kinetic energies and emission angles of the recoiling protons. Several structures were observed above the neutron-emission threshold and the angular distributions were used to deduce the multipolarity of the transitions. This work confirms that the ground state of 9He is located very close to the neutron threshold of 8He and supports the occurrence of parity inversion in 9He.

  17. A preliminary neutron crystallographic study of thaumatin

    SciTech Connect

    Teixeira, Susana C. M.; Blakeley, Matthew P.; Leal, Ricardo M. F.; Mitchell, Edward P.; Forsyth, V. Trevor

    2008-05-01

    Preliminary neutron crystallographic data from the sweet protein thaumatin have been recorded using the LADI-III diffractometer at the Institut Laue Langevin (ILL). The results illustrate the feasibility of a full neutron structural analysis aimed at further understanding the molecular basis of the perception of sweet taste. Such an analysis will exploit the use of perdeuterated thaumatin. A preliminary neutron crystallographic study of the sweet protein thaumatin is presented. Large hydrogenated crystals were prepared in deuterated crystallization buffer using the gel-acupuncture method. Data were collected to a resolution of 2 Å on the LADI-III diffractometer at the Institut Laue Langevin (ILL). The results demonstrate the feasibility of a full neutron crystallographic analysis of this structure aimed at providing relevant information on the location of H atoms, the distribution of charge on the protein surface and localized water in the structure. This information will be of interest for understanding the specificity of thaumatin–receptor interactions and will contribute to further understanding of the molecular mechanisms underlying the perception of taste.

  18. Ames collaborative study of cosmic ray neutrons

    NASA Technical Reports Server (NTRS)

    Hewitt, J. E.; Hughes, L.; Mccaslin, J. B.; Stephens, L. D.; Rindi, A.; Smith, A. R.; Thomas, R. H.; Griffith, R. V.; Welles, C. G.; Baum, J. W.

    1976-01-01

    The results of a collaborative study to define both the neutron flux and the spectrum more precisely and to develop a dosimetry package that can be flown quickly to altitude for solar flare events are described. Instrumentation and analysis techniques were used which were developed to measure accelerator-produced radiation. The instruments were flown in the Ames Research Center high altitude aircraft. Neutron instrumentation consisted of Bonner spheres with both active and passive detector elements, threshold detectors of both prompt-counter and activation-element types, a liquid scintillation spectrometer based on pulse-shape discrimination, and a moderated BF3 counter neutron monitor. In addition, charged particles were measured with a Reuter-Stokes ionization chamber system and dose equivalent with another instrument. Preliminary results from the first series of flights at 12.5 km (41,000 ft) are presented, including estimates of total neutron flux intensity and spectral shape and of the variation of intensity with altitude and geomagnetic latitude.

  19. Electrically charged: An effective mechanism for soft EOS supporting massive neutron star

    NASA Astrophysics Data System (ADS)

    Jing, ZhenZhen; Wen, DeHua; Zhang, XiangDong

    2015-10-01

    The massive neutron star discoverer announced that strange particles, such as hyperons should be ruled out in the neutron star core as the soft Equation of State (EOS) can-not support a massive neutron star. However, many of the nuclear theories and laboratory experiments support that at high density the strange particles will appear and the corresponding EOS of super-dense matters will become soft. This situation promotes a challenge between the astro-observation and nuclear physics. In this work, we introduce an effective mechanism to answer this challenge, that is, if a neutron star is electrically charged, a soft EOS will be equivalently stiffened and thus can support a massive neutron star. By employing a representative soft EOS, it is found that in order to obtain an evident effect on the EOS and thus increasing the maximum stellar mass by the electrostatic field, the total net charge should be in an order of 1020 C. Moreover, by comparing the results of two kind of charge distributions, it is found that even for different distributions, a similar total charge: ~ 2.3 × 1020 C is needed to support a ~ 2.0 M ⊙ neutron star.

  20. Neutron scattering studies of heavy Fermions

    NASA Astrophysics Data System (ADS)

    Shapiro, S. M.

    1985-08-01

    Heavy Fermions are f electron materials characterized by a large linear term in the low temperature specific heat and a large magnetic susceptibility at low temperatures. This implies that there is a narrow peak in the f electron density of states at the Fermi energy. Typical examples are CeAl3, UBe13, CeCu2Si2, CeCu6, U2Zn17 and UPt3. Neutron scattering measurements can play an important role in understanding the magnetic interactions in these systems. Measurements of the form reveal details about the nature of the wave functions. Inelastic scattering studies gives information about the energy scale of the spin fluctuations and the narrow f-resonance. Such measurements on the above systems are reviewed with the goal of establishing systematics between the information obtained in neutron studies and that from bulk measurements.

  1. DNA hydration studied by neutron fiber diffraction

    SciTech Connect

    Fuller, W.; Forsyth, V.T.; Mahendrasingam, A.; Langan, P.; Pigram, W.J.

    1994-12-31

    The development of neutron high angle fiber diffraction to investigate the location of water around the deoxyribonucleic acid (DNA) double-helix is described. The power of the technique is illustrated by its application to the D and A conformations of DNA using the single crystal diffractometer, D19, at the Institute Laue-Langevin, Grenoble and the time of flight diffractometer, SXD, at the Rutherford Appleton ISIS Spallation Neutron Source. These studies show the existence of bound water closely associated with the DNA. The patterns of hydration in these two DNA conformations are quite distinct and are compared to those observed in X-ray single crystal studies of two-stranded oligodeoxynucleotides. Information on the location of water around the DNA double-helix from the neutron fiber diffraction studies is combined with that on the location of alkali metal cations from complementary X-ray high angle fiber diffraction studies at the Daresbury Laboratory SRS using synchrotron radiation. These analyses emphasize the importance of viewing DNA, water and ions as a single system with specific interactions between the three components and provide a basis for understanding the effect of changes in the concentration of water and ions in inducing conformations] transitions in the DNA double-helix.

  2. Nab: precise experimental study of unpolarized neutron beta decay

    NASA Astrophysics Data System (ADS)

    Pocanic, Dinko; Nab Collaboration

    2014-09-01

    Nab, a program of experimental study of unpolarized neutron decays at the Spallation Neutron Source, Oak Ridge, TN, aims to determine a, the electron-neutrino correlation with precision of δa / a =10-3 , and b, the Fierz interference term, with uncertainty δb ~= 3 ×10-3 . Neutron beta decay's simple theoretical description in the Standard Model (SM) is overconstrained by the set of available observables, providing opportunities to search for evidence of SM extensions. Planned Nab results will lead to a new precise determination of the ratio λ =GA /GV , and to significant reductions in the allowed limits for both right- and left-handed scalar and tensor currents. Alternatively, the experiment may detect a discrepancy from SM predictions consistent with certain realizations of supersymmetry. An optimized, asymmetric spectrometer has been designed to achieve the narrow proton momentum response function required to meet the physics goals of the experiment. The apparatus is to be used in a follow-up measurement (ABba) of asymmetry observables A and B in polarized neutron decay. Nab is funded, now in the construction stage, with planned beam readiness in 2016. We discuss the experiment's motivation, expected reach, design and method. Nab, a program of experimental study of unpolarized neutron decays at the Spallation Neutron Source, Oak Ridge, TN, aims to determine a, the electron-neutrino correlation with precision of δa / a =10-3 , and b, the Fierz interference term, with uncertainty δb ~= 3 ×10-3 . Neutron beta decay's simple theoretical description in the Standard Model (SM) is overconstrained by the set of available observables, providing opportunities to search for evidence of SM extensions. Planned Nab results will lead to a new precise determination of the ratio λ =GA /GV , and to significant reductions in the allowed limits for both right- and left-handed scalar and tensor currents. Alternatively, the experiment may detect a discrepancy from SM

  3. Study of neutron focusing at the Texas Cold Neutron Source. Final report

    SciTech Connect

    Wehring, B.W.; Uenlue, K.

    1996-12-19

    The goals of this three-year study were: (1) design a neutron focusing system for use with the Texas Cold Neutron Source (TCNS) to produce an intense beam of cold neutrons appropriate for prompt gamma activation analysis (PGAA); (2) orchestrate the construction of the focusing system, integrate it into the TCNS neutron guide complex, and measure its performance; and (3) design, setup, and test a cold-neutron PGAA system which utilizes the guided focused cold neutron beam. During the first year of the DOE grant, a new procedure was developed and used to design a focusing converging guide consisting of truncated rectangular cone sections. Detailed calculations were performed using a 3-D Monte Carlo code which the authors wrote to trace neutrons through the curved guide of the TCNS into the proposed converging guide. Using realistic reflectivities for Ni-Ti supermirrors, the authors obtained gains of 3 to 5 for 4 different converging guide geometries. During the second year of the DOE grant, the subject of this final report, Ovonic Synthetic Materials Company was contracted to build a converging neutron guide focusing system to the specifications. Considerable time and effort were spent working with Ovonics on selecting the materials for the converging neutron guide system. The major portion of the research on the design of a cold-neutron PGAA system was also completed during the second year. At the beginning of the third year of the grant, a converging neutron guide focusing system had been ordered, and a cold-neutron PGAA system had been designed. Since DOE did not fund the third year, there was no money to purchase the required equipment for the cold-neutron PGAA system and no money to perform tests of either the converging neutron guide or the cold-neutron PGAA system. The research already accomplished would have little value without testing the systems which had been designed. Thus the project was continued at a pace that could be sustained with internal funding.

  4. Neutron reflectivity studies of ionomer blends

    NASA Astrophysics Data System (ADS)

    Gabrys, B. J.; Bhutto, A. A.; Bucknall, D. G.; Braiewa, R.; Vesely, D.; Weiss, R. A.

    Preliminary results are presented of a neutron reflectivity study of the interfacial width between lithium- and zinc-sulphonated deuterated polystyrene with polycarbonate (PC). Both systems are partially miscible and exhibit an upper critical solution temperature behaviour. The interdiffusion in these systems was measured by annealing at a temperature above the glass-transition temperature of both polymers. The interfacial profiles obtained for these systems were described by symmetric Gaussian interfaces. No significant diffusion was observed.

  5. Neutron scattering study of dilute supercritical solutions

    SciTech Connect

    Cochran, H.D.; Wignall, G.D.; Shah, V.M.; Londono, J.D.; Bienkowski, P.R.

    1994-10-01

    Dilute solutions in supercritical solvents exhibit interesting microstructures that are related to their dramatic macroscopic behavior. In typical attractive solutions, solutes are believed to be surrounded by clusters of solvent molecules, and solute molecules are believed to congregate in the vicinity of one another. Repulsive solutions, on the other hand, exhibit a local region of reduced solvent density around the solute with solute-solute congregation. Such microstructures influence solubility, partial molar volume, reaction kinetics, and many other properties. We have undertaken to observe these interesting microstructures directly by neutron scattering experiments on dilute noble gas systems including Ar. The three partial structure factors for such systems and the corresponding pair correlation functions can be determined by using the isotope substitution technique. The systems studied are uniquely suited for our objectives because of the large coherent neutron scattering length of the isotope {sup 36}Ar and because of the accurate potential energy functions that are available for use in molecular simulations and theoretical calculations to be compared with the scattering results. We will describe our experiment, the unique apparatus we have built for it, and the neutron scattering results from our initial allocations of beam time. We will also describe planned scattering experiments to follow those with noble gases, including study of long-chain molecules in supercritical solvents. Such studies will involve hydrocarbon mixtures with and without deuteration to provide contrast.

  6. The Neutron Science TeraGrid Gateway, a TeraGrid Science Gateway to Support the Spallation Neutron Source

    SciTech Connect

    Cobb, John W; Geist, Al; Kohl, James Arthur; Miller, Stephen D; Peterson, Peter F; Pike, Gregory; Reuter, Michael A; Swain, William; Vazhkudai, Sudharshan S; Vijayakumar, Nithya N

    2006-01-01

    The National Science Foundation's (NSF's) Extensible Terascale Facility (ETF), or TeraGrid [1] is entering its operational phase. An ETF science gateway effort is the Neutron Science TeraGrid Gateway (NSTG.) The Oak Ridge National Laboratory (ORNL) resource provider effort (ORNL-RP) during construction and now in operations is bridging a large scale experimental community and the TeraGrid as a large-scale national cyberinfrastructure. Of particular emphasis is collaboration with the Spallation Neutron Source (SNS) at ORNL. The U.S. Department of Energy's (DOE's) SNS [2] at ORNL will be commissioned in spring of 2006 as the world's brightest source of neutrons. Neutron science users can run experiments, generate datasets, perform data reduction, analysis, visualize results; collaborate with remotes users; and archive long term data in repositories with curation services. The ORNL-RP and the SNS data analysis group have spent 18 months developing and exploring user requirements, including the creation of prototypical services such as facility portal, data, and application execution services. We describe results from these efforts and discuss implications for science gateway creation. Finally, we show incorporation into implementation planning for the NSTG and SNS architectures. The plan is for a primarily portal-based user interaction supported by a service oriented architecture for functional implementation.

  7. Exchange bias studied with polarized neutron reflectivity

    SciTech Connect

    te Velthuis, S. G. E.

    2000-01-05

    The role of Polarized Neutron Reflectivity (PNR) for studying natural and synthetic exchange biased systems is illustrated. For a partially oxidized thin film of Co, cycling of the magnetic field causes a considerable reduction of the bias, which the onset of diffuse neutron scattering shows to be due to the loosening of the ferromagnetic domains. On the other hand, PNR measurements of a model exchange bias junction consisting of an n-layered Fe/Cr antiferromagnetic (AF) superlattice coupled with an m-layered Fe/Cr ferromagnetic (F) superlattice confirm the predicted collinear magnetization in the two superlattices. The two magnetized states of the F (along or opposite to the bias field) differ only in the relative orientation of the F and adjacent AF layer. The possibility of reading clearly the magnetic state at the interface pinpoints the commanding role that PNR is having in solving this intriguing problem.

  8. Neutron transport study of a beam port based dynamic neutron radiography facility

    NASA Astrophysics Data System (ADS)

    Khaial, Anas M.

    Neutron radiography has the ability to differentiate between gas and liquid in two-phase flow due both to the density difference and the high neutron scattering probability of hydrogen. Previous studies have used dynamic neutron radiography -- in both real-time and high-speed -- for air-water, steam-water and gas-liquid metal two-phase flow measurements. Radiography with thermal neutrons is straightforward and efficient as thermal neutrons are easier to detect with relatively higher efficiency and can be easily extracted from nuclear reactor beam ports. The quality of images obtained using neutron radiography and the imaging speed depend on the neutron beam intensity at the imaging plane. A high quality neutron beam, with thermal neutron intensity greater than 3.0x 10 6 n/cm2-s and a collimation ratio greater than 100 at the imaging plane, is required for effective dynamic neutron radiography up to 2000 frames per second. The primary objectives of this work are: (1) to optimize a neutron radiography facility for dynamic neutron radiography applications and (2) to investigate a new technique for three-dimensional neutron radiography using information obtained from neutron scattering. In this work, neutron transport analysis and experimental validation of a dynamic neutron radiography facility is studied with consideration of real-time and high-speed neutron radiography requirements. A beam port based dynamic neutron radiography facility, for a target thermal neutron flux of 1.0x107 n/cm2-s, has been analyzed, constructed and experimentally verified at the McMaster Nuclear Reactor. The neutron source strength at the beam tube entrance is evaluated experimentally by measuring the thermal and fast neutron fluxes using copper activation flux-mapping technique. The development of different facility components, such as beam tube liner, gamma ray filter, beam shutter and biological shield, is achieved analytically using neutron attenuation and divergence theories. Monte

  9. Neutron diffraction studies of natural glasses

    SciTech Connect

    Wright, A.C.; Erwin Desa, J.A.; Weeks, R.A.; Sinclair, R.N.; Bailey, D.K.

    1983-08-01

    A neutron diffraction investigation has been carried out of the structures of several naturally occurring glasses, viz. Libyan Desert glass, a Fulgurite, Wabar glass, Lechatelierite from Canon Diablo, a Tektite, Obsidian (3 samples), and Macusani glass. Libyan Desert sand has also been examined, together with crystalline ..cap alpha..-quartz and ..cap alpha..-cristobalite. A comparison of data for the natural glasses and synthetic vitreous silica (Spectrosil B) in both reciprocal and real space allows a categorisation into Silicas, which closely resemble synthetic vitreous silica, and Silicates, for which the resemblance to silica is consistently less striking. The data support the view that Libyan Desert glass and sand have a common origin, while the Tektite has a structure similar to that of volcanic glasses.

  10. Neutron Diffraction Studies of Carbonate Apatite

    NASA Astrophysics Data System (ADS)

    Moghaddam, Hadi Y.; Leventouri, Theodora; Chakoumakos, Bryan C.

    1998-11-01

    Moghaddam H.Y., Leventouri Th.* (Dept. of Physics & Alloy Research Center, Florida Atlantic Univ.) Chakoumakos B.C. (Solid State Division, Oak Ridge National Lab.**,kou@ornl.gov) We report Rietveld structural refinements of neutron diffraction data of a highly crystalline, single-phase natural carbonate apatite,(francolite of Epirus, Greece), in order to elucidate the details of carbonate substitution in the apatites. The composition is Ca9.56Na0.38Mg0.08(PO4)4.82(CO3)0.946(SO4)0.2F2.34, as determined by electron microprobe analysis. We report refinements of data for the native francolite as a function of temperature between 296K and 10K after the material had been heated at 750 °C to drive off adsorbed water and CO2. The neutron diffractioii@data were collected using a wavelength 1.0912 A on the HB4 high resolution powder diffractometer at the High Flux Isotope Reactor at Oak Ridge National Laboratory. Analysis of the temperature dependence of the anisotropic displacement parameters can reveal the contribution from the temperature independent static positional disorder. Difference displacement parameters evaluated along various bonding directions are being used to describe the mechanics and dynamics of the carbonate for phosphate substitution.*Supported by a SURA-ORNL Summer Cooperative Research Program 1998.**Supported by the Division of Materials Sciences,U.S. D.O.E. (contract DE-AC05-96OR22464 with Lockheed Martin Energy Research Corporation).

  11. Neutron structure and mechanistic studies of diisopropyl fluorophosphatase (DFPase)

    SciTech Connect

    Chen, Julian C.-H.; Mustyakimov, Marat; Schoenborn, Benno P.; Langan, Paul; Blum, Marc-Michael

    2010-11-01

    The structure and mechanism of diisopropyl fluorophosphatase (DFPase) have been studied using a variety of methods, including isotopic labelling, X-ray crystallography and neutron crystallography. The neutron structure of DFPase, mechanistic studies and subsequent rational design efforts are described. Diisopropyl fluorophosphatase (DFPase) is a calcium-dependent phosphotriesterase that acts on a variety of highly toxic organophosphorus compounds that act as inhibitors of acetylcholinesterase. The mechanism of DFPase has been probed using a variety of methods, including isotopic labelling, which demonstrated the presence of a phosphoenzyme intermediate in the reaction mechanism. In order to further elucidate the mechanism of DFPase and to ascertain the protonation states of the residues and solvent molecules in the active site, the neutron structure of DFPase was solved at 2.2 Å resolution. The proposed nucleophile Asp229 is deprotonated, while the active-site solvent molecule W33 was identified as water and not hydroxide. These data support a mechanism involving direct nucleophilic attack by Asp229 on the substrate and rule out a mechanism involving metal-assisted water activation. These data also allowed for the re-engineering of DFPase through rational design to bind and productively orient the more toxic S{sub P} stereoisomers of the nerve agents sarin and cyclosarin, creating a modified enzyme with enhanced overall activity and significantly increased detoxification properties.

  12. BNL feasibility studies of spallation neutron sources

    SciTech Connect

    Lee, Y.Y.; Ruggiero, A.G.; Van Steenbergen, A.; Weng, W.T.

    1995-12-01

    This paper is the summary of conceptual design studies of a 5 MW Pulsed Spallation Neutron Source (PSNS) conducted by an interdepartmental study group at Brookhaven National Laboratory. The study was made of two periods. First, a scenario based on the use of a 600 MeV Linac followed by two fast-cycling 3.6 GeV Synchrotrons was investigated. Then, in a subsequent period, the attention of the study was directed toward an Accumulator scenario with two options: (1) a 1.25 GeV normal conducting Linac followed by two Accumulator Rings, and (2) a 2.4 GeV superconducting Linac followed by a single Accumulator Ring. The study did not make any reference to a specific site.

  13. Matrixed business support comparison study.

    SciTech Connect

    Parsons, Josh D.

    2004-11-01

    The Matrixed Business Support Comparison Study reviewed the current matrixed Chief Financial Officer (CFO) division staff models at Sandia National Laboratories. There were two primary drivers of this analysis: (1) the increasing number of financial staff matrixed to mission customers and (2) the desire to further understand the matrix process and the opportunities and challenges it creates.

  14. Neutron Induced Capture Reaction Studies in the Resonance Region at GELINA

    SciTech Connect

    Schillebeeckx, Peter; Borella, A.; Kopecky, S.; Mihailescu, L. C.; Siegler, P.; Sirakov, I.; Massimi, C.; Moxon, M.; Ware, T.

    2009-01-28

    The neutron time-of-flight facility GELINA installed at the IRMM Geel (B) has been designed to study neutron-induced reactions in the resonance region. It is a multi-user facility, providing a pulsed white neutron source, with a neutron energy range between 10 meV and 20 MeV and a time resolution of 1 ns. The research program concentrates on cross section data needs for nuclear energy applications. In this paper efforts to improve the quality of cross section data for neutron induced capture reactions in the resolved and unresolved resonance region are presented together with examples of cross section data to support the development of advanced reactor concepts and to optimize the use of present nuclear power plants.

  15. Neutrons scattering studies in the actinide region

    SciTech Connect

    Kegel, G.H.R.; Egan, J.J.

    1992-09-01

    During the report period were investigated the following areas: prompt fission neutron energy spectra measurements; neutron elastic and inelastic scattering from [sup 239]Pu; neutron scattering in [sup 181]Ta and [sup 197]Au; response of a [sup 235]U fission chamber near reaction thresholds; two-parameter data acquisition system; black'' neutron detector; investigation of neutron-induced defects in silicon dioxide; and multiple scattering corrections. Four Ph.D. dissertations and one M.S. thesis were completed during the report period. Publications consisted of three journal articles, four conference papers in proceedings, and eleven abstracts of presentations at scientific meetings. There are currently four Ph.D. and one M.S. candidates working on dissertations directly associated with the project. In addition, three other Ph.D. candidates are working on dissertations involving other aspects of neutron physics in this laboratory.

  16. Neutrons scattering studies in the actinide region

    NASA Astrophysics Data System (ADS)

    Kegel, G. H. R.; Egan, J. J.

    1992-09-01

    During the last report period, we investigated the following areas: prompt fission neutron energy spectra measurements; neutron elastic and inelastic scattering from Pu-239; neutron scattering in Ta-181 and Au-197; response of a U-235 fission chamber near reaction thresholds; two-parameter data acquisition system; 'black' neutron detector; investigation of neutron-induced defects in silicon dioxide; and multiple scattering corrections. Four Ph.D. dissertations and one M.S. thesis were completed during the report period. Publications consisted of three journal articles, four conference papers in proceedings, and eleven abstracts of presentations at scientific meetings. There are currently four Ph.D. and one M.S. candidates working on dissertations directly associated with the project. In addition, three other Ph.D. candidates are working on dissertations involving other aspects of neutron physics in this laboratory.

  17. Neutron capture studies of 206Pb at a cold neutron beam

    NASA Astrophysics Data System (ADS)

    Schillebeeckx, P.; Belgya, T.; Borella, A.; Kopecky, S.; Mengoni, A.; Quétel, C. R.; Szentmiklósi, L.; Trešl, I.; Wynants, R.

    2013-11-01

    Gamma-ray transitions following neutron capture in 206Pb have been studied at the cold neutron beam facility of the Budapest Neutron Centre using a metallic sample enriched in 206Pb and a natural lead nitrate powder pellet. The measurements were performed using a coaxial HPGe detector with Compton suppression. The observed -rays have been incorporated into a decay scheme for neutron capture in 206Pb . Partial capture cross sections for 206Pb(n,) at thermal energy have been derived relative to the cross section for the 1884keV transition after neutron capture in 14N . From the average crossing sum a total thermal neutron capture cross section of mb was derived for the 206Pb(n,) reaction. The thermal neutron capture cross section for 206Pb has been compared with contributions due to both direct capture and distant unbound s-wave resonances. From the same measurements a thermal neutron-induced capture cross section of mb was determined for the 207Pb(n,) reaction.

  18. Neutron scattering studies in the actinide region. Progress report, August 1, 1991--July 31, 1994

    SciTech Connect

    Kegel, G.H.R.; Egan, J.J.

    1994-09-01

    During the period August 1, 1991 to July 31, 1994 the authors report progress on the following: (a) prompt fission neutron energy spectra for {sup 235}U and {sup 239}Pu; (b) two-parameter measurement of nuclear lifetimes; (c) `black` neutron detector; (d) data reduction techniques for neutron scattering experiments; (e) elastic and inelastic neutron scattering studies in {sup 197}Au; (f) elastic and inelastic neutron scattering studies in {sup 239}Pu; (g) neutron induced defects in silicon dioxide MOS structures; (h) response of a {sup 235}U fission chamber near reaction thresholds; (i) efficiency calibration of a liquid scintillation detector using the WNR facility at LAMPF; (j) prompt fission neutron energy spectrum measurements below the incident neutron energy; (k) multi-parameter data acquisition system; (l) accelerator improvements; (m) non-DOE supported research. Eight Ph.D. dissertations and two M.S. theses were completed during the report period. Publications consisted of 6 journal articles, 10 conference proceedings, and 19 abstracts of presentations at scientific meetings. One invited talk was given.

  19. TEM study of neutron-irradiated iron

    SciTech Connect

    Horton, L.L.; Bentley, J.; Farrell, K.

    1981-01-01

    Results of a transmission electron microscopy study of the defect structure in iron neutron-irradiated to low fluences (less than or equal to 1 dpa) at temperatures of 455 to 1013/sup 0/K are presented. The dislocation microstructures coarsen with increasing irradiation temperature from decorated dislocations, through clusters of dislocation loops, to near-edge, interstitial dislocation loops with b = a<100>, and network segments. Significant cavity formation occurred only at 548 to 723/sup 0/K, with homogeneous distributions found only at 623 and 673/sup 0/K. The maximum swelling of 0.07% occurred at 673/sup 0/K. Large cavities had a truncated octahedral shape with (111) facets and (100) truncations. Damage halos were observed around boron-containing precipitates. The effects of interstitial impurities on microstructural development and the differences in the observed microstructures compared to those in refractory bcc metals are discussed. 8 figures, 6 tables.

  20. Use of ultracold neutrons for condensed-matter studies

    SciTech Connect

    Michaudon, A.

    1997-05-01

    Ultracold neutrons have such low velocities that they are reflected by most materials at all incident angles and can be stored in material bottles for long periods of time during which their intrinsic properties can be studied in great detail. These features have been mainly used for fundamental-physics studies including the detection of a possible neutron electric dipole moment and the precise determination of neutron-decay properties. Ultracold neutrons can also play a role in condensed-matter studies with the help of high-resolution spectrometers that use gravity as a strongly dispersive medium for low-velocity neutrons. Such studies have so far been limited by the low intensity of existing ultracold-neutron sources but could be reconsidered with more intense sources, which are now envisaged. This report provides a broad survey of the properties of ultracold neutrons (including their reflectivity by different types of samples), of ultracold-neutron spectrometers that are compared with other high-resolution instruments, of results obtained in the field of condensed matter with these instruments, and of neutron microscopes. All these subjects are illustrated by numerous examples.

  1. Neutron scattering studies of the heavy Fermion superconductors

    NASA Astrophysics Data System (ADS)

    Goldman, A. I.

    Recent neutron scattering measurements of the heavy Fermion superconductors are described. Those materials offer an exciting opportunity for neutron scattering since the f-electrons, which couple directly to magnetic scattering measurements, seem to be the same electrons which form the superconducting state below T sub c. In addition, studies of the magnetic fluctuations in these, and other heavy Fermion systems, by inelastic magnetic neutron scattering can provide information about the nature of the low temperature Fermi liquid character of these novel compounds.

  2. A dosimetry study of deuterium-deuterium neutron generator-based in vivo neutron activation analysis

    NASA Astrophysics Data System (ADS)

    Sowers, Daniel A.

    A neutron irradiation cavity for in vivo Neutron Activation Analysis (IVNAA) to detect manganese, aluminum, and other potentially toxic elements in human hand bone has been designed and its dosimetric specifications measured. The neutron source is a customized deuterium-deuterium neutron generator which produces neutrons at 2.45 MeV by the fusion reaction 2H(d, n)3He at a calculated flux of 7 x 108 +/-30% s-1. A moderator/reflector/shielding (5 cm high density polyethylene (HDPE), 5.3 cm graphite & 5.7 cm borated HDPE) assembly has been designed and built to maximize the thermal neutron flux inside the hand irradiation cavity and to reduce the extremity dose and effective dose to the human subject. Lead sheets are used to attenuate bremsstrahlung x rays and activation gammas. A Monte Carlo simulation (MCNP6) was used to model the system and calculate extremity dose. The extremity dose was measured with neutron and photon sensitive film badges and Fuji electronic pocket dosimeter (EPD). The neutron ambient dose outside the shielding was measured by Fuji NSN3, and photon dose by a Bicron MicroREM scintillator. Neutron extremity dose was calculated to be 32.3 mSv using MCNP6 simulations given a 10 min IVNAA measurement of manganese. Measurements by EPD and film badge indicate hand dose to be 31.7 +/- 0.8 mSv for neutron and 4.2 +/- 0.2 mSv for photon for 10 mins; whole body effective dose was calculated conservatively to be 0.052 mSv. Experimental values closely match values obtained from MCNP6 simulations. These are acceptable doses to apply the technology for a manganese toxicity study in a human population.

  3. A Dosimetry Study of Deuterium-Deuterium Neutron Generator-based In Vivo Neutron Activation Analysis.

    PubMed

    Sowers, Daniel; Liu, Yingzi; Mostafaei, Farshad; Blake, Scott; Nie, Linda H

    2015-12-01

    A neutron irradiation cavity for in vivo neutron activation analysis (IVNAA) to detect manganese, aluminum, and other potentially toxic elements in human hand bone has been designed and its dosimetric specifications measured. The neutron source is a customized deuterium-deuterium neutron generator that produces neutrons at 2.45 MeV by the fusion reaction 2H(d, n)3He at a calculated flux of 7 × 10(8) ± 30% s(-1). A moderator/reflector/shielding [5 cm high density polyethylene (HDPE), 5.3 cm graphite and 5.7 cm borated (HDPE)] assembly has been designed and built to maximize the thermal neutron flux inside the hand irradiation cavity and to reduce the extremity dose and effective dose to the human subject. Lead sheets are used to attenuate bremsstrahlung x rays and activation gammas. A Monte Carlo simulation (MCNP6) was used to model the system and calculate extremity dose. The extremity dose was measured with neutron and photon sensitive film badges and Fuji electronic pocket dosimeters (EPD). The neutron ambient dose outside the shielding was measured by Fuji NSN3, and the photon dose was measured by a Bicron MicroREM scintillator. Neutron extremity dose was calculated to be 32.3 mSv using MCNP6 simulations given a 10-min IVNAA measurement of manganese. Measurements by EPD and film badge indicate hand dose to be 31.7 ± 0.8 mSv for neutrons and 4.2 ± 0.2 mSv for photons for 10 min; whole body effective dose was calculated conservatively to be 0.052 mSv. Experimental values closely match values obtained from MCNP6 simulations. These are acceptable doses to apply the technology for a manganese toxicity study in a human population. PMID:26509624

  4. Neutron scattering studies of 54,56Fe with monoenergetic neutrons

    NASA Astrophysics Data System (ADS)

    Hicks, S. F.; Combs, B. M.; Henderson, S. L.; Sidwell, L. C.; Vanhoy, J. R.; Garza, E.; Steves, J.; Chakraborty, A.; Crider, B. P.; Prados-Estevez, F. M.; Kumar, A.; McEllistrem, M. T.; Peters, E. E.; Ross, T. J.; Yates, S. W.

    2013-10-01

    Neutron scattering data for Fe are important for the development of next generation fission reactors, since Fe is an important structural material in all proposed reactor designs, as well as in existing reactors. How neutrons interact with Fe has an important impact on fuel performance during irradiations and the overall efficiency of fission reactors. While differential scattering cross sections have been previously measured at several incident neutron energies in the fast neutron region, questions remain regarding the uncertainties for existing cross sections and for neutron inelastic scattering. Elastic and inelastic differential scattering cross sections have been measured on 54,56Fe at the University of Kentucky Accelerator Laboratory in the fast neutron energy region between 1.7 and 4 MeV. Results from our measurements and comparisons to model calculations will be presented. This material is based on work supported by the Department of Energy under grant NEUP: NU-12-KY-UK-0201-05 and by the Cowan Physics Fund at the Univ. of Dallas.

  5. Study of a loop heat pipe using neutron radiography.

    PubMed

    Cimbala, John M; Brenizer, Jack S; Chuang, Abel Po-Ya; Hanna, Shane; Thomas Conroy, C; El-Ganayni, A A; Riley, David R

    2004-10-01

    An explanation is given of what a loop heat pipe (LHP) is, and how it works. It is then shown that neutron imaging (both real time neutron radioscopy and single exposure neutron radiography) is an effective experimental tool for the study of LHPs. Specifically, neutron imaging has helped to identify and correct a cooling water distribution problem in the condenser, and has enabled visualization of two-phase flow (liquid and vapor) in various components of the LHP. In addition, partial wick dry-out, a phenomenon of great importance in the effective operation of LHPs, is potentially identifiable with neutron imaging. It is anticipated that neutron radioscopy and radiography will greatly contribute to our understanding of LHP operation, and will lead to improvement of LHP modeling and design. PMID:15246420

  6. Study of neutron focusing at the Texas Cold Neutron Source. Final report

    SciTech Connect

    Wehring, B.W.; Uenlue, K.

    1995-03-06

    Funds were received for the first year of a three year DOE Nuclear Engineering Research Grant, ``Study of Neutron Focusing at the Texas Cold Neutron Source`` (FGO2-92ER75711). The purpose of this three year study was to develop a neutron focusing system to be used with the Texas Cold Neutron Source (TCNS) to produce an intense beam of neutrons. A prompt gamma activation analysis (PGAA) facility was also to be designed, setup, and tested under the three year project. During the first year of the DOE grant, a new procedure was developed and used to design a focusing converging guide consisting of truncated rectangular cone sections. Detailed calculations were performed using a 3-D Monte Carlo code which we wrote to trace neutrons through the curved guide of the TCNS into the proposed converging guide. Using realistic reflectivities for Ni-Ti supermirrors, we obtained gains of 3 to 5 for the neutron flux averaged over an area of 1 {times} 1 cm.

  7. Neutrons for Catalysis: A Workshop on Neutron Scattering Techniques for Studies in Catalysis

    SciTech Connect

    Overbury, Steven {Steve} H; Coates, Leighton; Herwig, Kenneth W; Kidder, Michelle

    2011-10-01

    This report summarizes the Workshop on Neutron Scattering Techniques for Studies in Catalysis, held at the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL) on September 16 and 17, 2010. The goal of the Workshop was to bring experts in heterogeneous catalysis and biocatalysis together with neutron scattering experimenters to identify ways to attack new problems, especially Grand Challenge problems in catalysis, using neutron scattering. The Workshop locale was motivated by the neutron capabilities at ORNL, including the High Flux Isotope Reactor (HFIR) and the new and developing instrumentation at the SNS. Approximately 90 researchers met for 1 1/2 days with oral presentations and breakout sessions. Oral presentations were divided into five topical sessions aimed at a discussion of Grand Challenge problems in catalysis, dynamics studies, structure characterization, biocatalysis, and computational methods. Eleven internationally known invited experts spoke in these sessions. The Workshop was intended both to educate catalyst experts about the methods and possibilities of neutron methods and to educate the neutron community about the methods and scientific challenges in catalysis. Above all, it was intended to inspire new research ideas among the attendees. All attendees were asked to participate in one or more of three breakout sessions to share ideas and propose new experiments that could be performed using the ORNL neutron facilities. The Workshop was expected to lead to proposals for beam time at either the HFIR or the SNS; therefore, it was expected that each breakout session would identify a few experiments or proof-of-principle experiments and a leader who would pursue a proposal after the Workshop. Also, a refereed review article will be submitted to a prominent journal to present research and ideas illustrating the benefits and possibilities of neutron methods for catalysis research.

  8. Neutron Tube Design Study for Boron Neutron Capture TherapyApplication

    SciTech Connect

    Verbeke, J.M.; Lee, Y.; Leung, K.N.; Vujic, J.; Williams, M.D.; Wu, L.K.; Zahir, N.

    1998-01-04

    Radio-frequency (RF) driven ion sources are being developed in Lawrence Berkeley National Laboratory (LBNL) for sealed-accelerator-tube neutron generator application. By using a 5-cm-diameter RF-driven multicusp source H{sup +} yields over 95% have been achieved. These experimental findings will enable one to develop compact neutron generators based on the D-D or D-T fusion reactions. In this new neutron generator, the ion source, the accelerator and the target are all housed in a sealed metal container without external pumping. Recent moderator design simulation studies have shown that 14 MeV neutrons could be moderated to therapeutically useful energy ranges for boron neutron capture therapy (BNCT). The dose near the center of the brain with optimized moderators is about 65% higher than the dose obtained from a typical neutron spectrum produced by the Brookhaven Medical Research Reactor (BMRR), and is comparable to the dose obtained by other accelerator-based neutron sources. With a 120 keV and 1 A deuteron beam, a treatment time of {approx}35 minutes is estimated for BNCT.

  9. Neutron Beta Decay Studies with Nab

    SciTech Connect

    Baessler, S.; Alarcon, R.; Alonzi, L. P.; Balascuta, S.; Barron-Palos, L.; Bowman, James David; Bychkov, M. A.; Byrne, J.; Calarco, J; Chupp, T.; Cianciolo, T. V.; Crawford, C.; Frlez, E.; Gericke, M. T.; Glück, F.; Greene, G. L.; Grzywacz, R. K.; Gudkov, V.; Harrison, D.; Hersman, F. W.; Ito, T.; Makela, M.; Martin, J.; McGaughey, P. L.; McGovern, S.; Page, S.; Penttila, Seppo I; Pocanic, Dinko; Salas-Bacci, A.; Tompkins, Z.; Wagner, D.; Wilburn, W. S.; Young, A. R.

    2013-01-01

    Precision measurements in neutron beta decay serve to determine the coupling constants of beta decay and allow for several stringent tests of the standard model. This paper discusses the design and the expected performance of the Nab spectrometer.

  10. Neutron Scattering Studies of Fluorite Compounds

    NASA Astrophysics Data System (ADS)

    Goff, Jonathan Peter

    1992-01-01

    Available from UMI in association with The British Library. Requires signed TDF. The nature and mobility of defects in ionic materials with the fluorite structure have been studied using neutron scattering techniques. These systems model the behaviour of the fission fuel UO_2 at elevated temperature. A powder sample of beta -PbF_2 has been investigated using neutron diffraction, which gives the time-averaged occupation of sites in the unit cell. The temperature dependence of the lattice parameter, the concentration of Frenkel defects, and the thermal parameters of both fluorine and lead ions, have been determined at temperatures from ambient to well above the transition to the fast-ion phase. The defect structure of the anion-excess fluorite (Sr,Y)Cl_{2.03} has been studied using the coherent diffuse scattering from single -crystal samples. Excess chlorine ions are found to aggregate into cuboctahedral clusters whose ionic coordinates agree with those calculated from a simple hard sphere model. At elevated temperature the scattering exhibits quasielastic energy broadening, indicating the dynamic nature of the disorder. It is possible to account for the high temperature scattering in terms of 'snapshot' models of the diffusing anions and their associated relaxation fields, and to estimate the anion self diffusion coefficient from coherent scattering alone. Consistent and complementary information on the diffusion of chlorine ions in (Sr,Y)Cl_ {2.03} has been obtained from the quasielastic energy broadening of the single-crystal incoherent scattering measured at elevated temperature. Comparison with previous results from SrCl_2 shows that chlorine diffusion is faster in (Sr,Y)Cl_{2.03 }, and that the diffusional process in the anion-excess fluorite resembles that found when the level of thermally generated disorder is high in the pure compound. The coherent scatterer UO_{2 + delta} (delta = 0.13,0.14) transforms from a mixture of oxides at ambient temperature to a

  11. Study of SMM flares in gamma-rays and neutrons

    NASA Technical Reports Server (NTRS)

    Dunphy, Philip P.; Chupp, Edward L.

    1992-01-01

    This report summarizes the results of the research supported by NASA grant NAGW-2755 and lists the papers and publications produced through the grant. The objective of the work was to study solar flares that produced observable signals from high-energy (greater than 10 MeV) gamma-rays and neutrons in the Solar Maximum Mission (SMM) Gamma-Ray Spectrometer (GRS). In 3 of 4 flares that had been studied previously, most of the neutrons and neutral pions appear to have been produced after the 'main' impulsive phase as determined from hard x-rays and gamma-rays. We, therefore, proposed to analyze the timing of the high-energy radiation, and its implications for the acceleration, trapping, and transport of flare particles. It was equally important to characterize the spectral shapes of the interacting energetic electrons and protons - another key factor in constraining possible particle acceleration mechanisms. In section 2.0, we discuss the goals of the research. In section 3.0, we summarize the results of the research. In section 4.0, we list the papers and publications produced under the grant. Preprints or reprints of the publications are attached as appendices.

  12. Neutron diffraction studies of viral fusion peptides

    NASA Astrophysics Data System (ADS)

    Bradshaw, Jeremy P.; J. M. Darkes, Malcolm; Katsaras, John; Epand, Richard M.

    2000-03-01

    Membrane fusion plays a vital role in a large and diverse number of essential biological processes. Despite this fact, the precise molecular events that occur during fusion are still not known. We are currently engaged on a study of membrane fusion as mediated by viral fusion peptides. These peptides are the N-terminal regions of certain viral envelope proteins that mediate the process of fusion between the viral envelope and the membranes of the host cell during the infection process. As part of this study, we have carried out neutron diffraction measurements at the ILL, BeNSC and Chalk River, on a range of viral fusion peptides. The peptides, from simian immunodeficiency virus (SIV), influenza A and feline leukaemia virus (FeLV), were incorporated into stacked phospholipid bilayers. Some of the peptides had been specifically deuterated at key amino acids. Lamellar diffraction data were collected and analysed to yield information on the peptide conformation, location and orientation relative to the bilayer.

  13. First Lunar Outpost support study

    NASA Technical Reports Server (NTRS)

    Bartz, Christopher; Cook, John; Rusingizandekwe, Jean-Luc

    1993-01-01

    The First Lunar Outpost (FLO) is the first manned step in the accomplishment of the Space Exploration Initiative, the Vice President's directive to NASA on the 20th anniversary of the Apollo moon landing. FLO's broad objectives are the establishment of a permanent human presence on the moon, supporting the utilization of extraterrestrial resources in a long-term, sustained program. The primary objective is to emplace and validate the first elements of a man tended outpost on the lunar surface to provide the basis for: (1) establishing, maintaining and expanding human activities and influence across the surface; (2) establishing, maintaining and enhancing human safety and productivity; (3) accommodating space transportation operations to and from the surface; (4) accommodating production of scientific information; (5) exploiting in-situ resources. Secondary objectives are: (1) to conduct local, small scale science (including life science); (2) In-situ resource utilization (ISRU) demonstrations; (3) engineering and operations tests; (4) to characterize the local environment; and (5) to explore locally. The current work is part of ongoing research at the Sasakawa International Center for Space Architecture supporting NASA's First Lunar Outpost initiative. Research at SICSA supporting the First Lunar Outpost initiative has been funded through the Space Exploration Initiatives office at Johnson Space Center. The objectives of the current study are to further develop a module concept from an evaluation of volumetric and programmatic requirements, and pursue a high fidelity design of this concept, with the intention of providing a high fidelity design mockup to research planetary design issues and evaluate future design concepts.

  14. Neutron scattering studies in the actinide region. Progress report, August 1, 1992--July 31, 1993

    SciTech Connect

    Kegel, G.H.R.; Egan, J.J.

    1993-09-01

    This report discusses the following topics: Prompt fission neutron energy spectra for {sup 235}U and {sup 239}Pu; Two-parameter measurement of nuclear lifetimes; ``Black`` neutron detector; Data reduction techniques for neutron scattering experiments; Inelastic neutron scattering studies in {sup 197}Au; Elastic and inelastic scattering studies in {sup 239}Pu; and neutron induced defects in silicon dioxide MOS structures.

  15. Neutron scattering study of unconventional superconductors

    SciTech Connect

    Lee, Seunghun

    2014-06-30

    My group’s primary activity at the University of Virginia supported by DOE is to study novel electronic, magnetic, and structural phenomena that emerge out of strong interactions between electrons. Some of these phenomena are unconventional superconductivity, exotic states in frustrated magnets, quantum spin liquid states, and magneto-electricity. The outcome of our research funded by the grant advanced microscopic understanding of the emergence of the collective states in the systems.

  16. Neutron spectrum studies in the ATR (Advanced Test Reactor)

    SciTech Connect

    Rogers, J.W.; Anderl, R.A.; Putnam, M.H.

    1990-01-01

    The Advanced Test Reactor (ATR) at the Idaho National Engineering Laboratory (INEL) has been and currently is used to provide irradiation fields to study the effects of intense radiation on samples of reactor materials. These samples include fuel, cladding, control and structural materials. The ATR is also used to irradiate target materials for the production of radionuclides used in industrial and medical applications as well as for scientific research. Routine monitoring of the thermal'' and fast'' neutron levels have been conducted during every operational cycle since its startup in 1970. The routine neutron dosimetry has been primarily accomplished using the {sup 59}Co(n,{gamma}){sup 60}Co reaction for thermal'' neutrons and the {sup 58}Ni(n,p) {sup 58}Co reaction for fast'' neutrons as described in ASTM standard methods E261, E262, and E264. Neutron spectrum studies have now been conducted in the epithermal and fast neutron energy ranges for the various capsule irradiation test facilities and the routine neutron monitoring locations. 7 refs., 5 figs., 1 tab.

  17. Inelastic and elastic neutron scattering studies of the vibrational and reorientational dynamics, crystal structure and solid-solid phase transition in [Mn(OS(CH3)2)6](ClO4)2 supported by theoretical (DFT) calculations

    NASA Astrophysics Data System (ADS)

    Szostak, Elżbieta; Hetmańczyk, Joanna; Migdał-Mikuli, Anna

    2015-06-01

    The vibrational and reorientational dynamics of CH3 groups from (CH3)2SO ligands in the high- and low-temperature phases of [Mn(OS(CH3)2)6](ClO4)2 were investigated by quasielastic and inelastic incoherent neutron scattering (QENS and IINS) methods. The results show that above the phase transition temperature (detected earlier by differential scanning calorimetry (DSC) at TC5c = 222.9 K on cooling and at TC5h = 225.4 K on heating) the CH3 groups perform fast (τR ≈ 10-12-10-13 s) reorientational motions. These motions start to slow down below TC5c Neutron powder diffraction (NPD) measurements, performed simultaneously with QENS and IINS, indicated that this phase transition is associated with a change of the crystal structure, too. Theoretical infrared absorption, Raman and inelastic incoherent neutron scattering spectra were calculated using DFT method (B3LYP functional, LANL2DZ ECP basis set (on Mn atom) and 6-311+G(d,p) basis set (on C, H, S, O atoms) for the isolated equilibrium model (isolated [Mn(DMSO)6]2+ cation and ClO4- anion). Calculated spectra show a good agreement with the experimental spectra (FT-IR, RS and IINS). The comparison of the results obtained by these complementary methods was made.

  18. Inelastic and elastic neutron scattering studies of the vibrational and reorientational dynamics, crystal structure and solid-solid phase transition in [Mn(OS(CH₃)₂)₆](ClO₄)₂ supported by theoretical (DFT) calculations.

    PubMed

    Szostak, Elżbieta; Hetmańczyk, Joanna; Migdał-Mikuli, Anna

    2015-06-15

    The vibrational and reorientational dynamics of CH3 groups from (CH3)2SO ligands in the high- and low-temperature phases of [Mn(OS(CH3)2)6](ClO4)2 were investigated by quasielastic and inelastic incoherent neutron scattering (QENS and IINS) methods. The results show that above the phase transition temperature (detected earlier by differential scanning calorimetry (DSC) at TC5(c)=222.9K on cooling and at TC5(h)=225.4K on heating) the CH3 groups perform fast (τR≈10(-12)-10(-13)s) reorientational motions. These motions start to slow down below TC5(c) Neutron powder diffraction (NPD) measurements, performed simultaneously with QENS and IINS, indicated that this phase transition is associated with a change of the crystal structure, too. Theoretical infrared absorption, Raman and inelastic incoherent neutron scattering spectra were calculated using DFT method (B3LYP functional, LANL2DZ ECP basis set (on Mn atom) and 6-311+G(d,p) basis set (on C, H, S, O atoms) for the isolated equilibrium model (isolated [Mn(DMSO)6](2+) cation and ClO4(-) anion). Calculated spectra show a good agreement with the experimental spectra (FT-IR, RS and IINS). The comparison of the results obtained by these complementary methods was made. PMID:25795611

  19. Sensitivity studies for the weak r process: neutron capture rates

    SciTech Connect

    Surman, R.; Mumpower, M.; Sinclair, R.; Jones, K. L.; Hix, W. R.; McLaughlin, G. C.

    2014-04-15

    Rapid neutron capture nucleosynthesis involves thousands of nuclear species far from stability, whose nuclear properties need to be understood in order to accurately predict nucleosynthetic outcomes. Recently sensitivity studies have provided a deeper understanding of how the r process proceeds and have identified pieces of nuclear data of interest for further experimental or theoretical study. A key result of these studies has been to point out the importance of individual neutron capture rates in setting the final r-process abundance pattern for a ‘main’ (A ∼ 130 peak and above) r process. Here we examine neutron capture in the context of a ‘weak’ r process that forms primarily the A ∼ 80 r-process abundance peak. We identify the astrophysical conditions required to produce this peak region through weak r-processing and point out the neutron capture rates that most strongly influence the final abundance pattern.

  20. Hanford personnel dosimeter supporting studies FY-1981

    SciTech Connect

    Not Available

    1982-08-01

    This report examined specific functional components of the routine external personnel dosimeter program at Hanford. Components studied included: dosimeter readout; dosimeter calibration; dosimeter field response; dose calibration algorithm; dosimeter design; and TLD chip acceptance procedures. Additional information is also presented regarding the dosimeter response to light- and medium-filtered x-rays, high energy photons and neutrons. This study was conducted to clarify certain data obtained during the FY-1980 studies.

  1. Advanced Neutron Source Cross Section Libraries (ANSL-V): ENDF/B-V based multigroup cross-section libraries for advanced neutron source (ANS) reactor studies

    SciTech Connect

    Ford, W.E. III; Arwood, J.W.; Greene, N.M.; Moses, D.L.; Petrie, L.M.; Primm, R.T. III; Slater, C.O.; Westfall, R.M.; Wright, R.Q.

    1990-09-01

    Pseudo-problem-independent, multigroup cross-section libraries were generated to support Advanced Neutron Source (ANS) Reactor design studies. The ANS is a proposed reactor which would be fueled with highly enriched uranium and cooled with heavy water. The libraries, designated ANSL-V (Advanced Neutron Source Cross Section Libraries based on ENDF/B-V), are data bases in AMPX master format for subsequent generation of problem-dependent cross-sections for use with codes such as KENO, ANISN, XSDRNPM, VENTURE, DOT, DORT, TORT, and MORSE. Included in ANSL-V are 99-group and 39-group neutron, 39-neutron-group 44-gamma-ray-group secondary gamma-ray production (SGRP), 44-group gamma-ray interaction (GRI), and coupled, 39-neutron group 44-gamma-ray group (CNG) cross-section libraries. The neutron and SGRP libraries were generated primarily from ENDF/B-V data; the GRI library was generated from DLC-99/HUGO data, which is recognized as the ENDF/B-V photon interaction data. Modules from the AMPX and NJOY systems were used to process the multigroup data. Validity of selected data from the fine- and broad-group neutron libraries was satisfactorily tested in performance parameter calculations.

  2. Thermal-hydraulic studies of the Advanced Neutron Source cold source

    SciTech Connect

    Williams, P.T.; Lucas, A.T.

    1995-08-01

    The Advanced Neutron Source (ANS), in its conceptual design phase at Oak Ridge National Laboratory, was to be a user-oriented neutron research facility producing the most intense steady-state flux of thermal and cold neutrons in the world. Among its many scientific applications, the production of cold neutrons was a significant research mission for the ANS. The cold neutrons come from two independent cold sources positioned near the reactor core. Contained by an aluminum alloy vessel, each cold source is a 410-mm-diam sphere of liquid deuterium that functions both as a neutron moderator and a cryogenic coolant. With nuclear heating of the containment vessel and internal baffling, steady-state operation requires close control of the liquid deuterium flow near the vessel`s inner surface. Preliminary thermal-hydraulic analyses supporting the cold source design were performed with heat conduction simulations of the vessel walls and multidimensional computational fluid dynamics simulations of the liquid deuterium flow and heat transfer. This report presents the starting phase of a challenging program and describes the cold source conceptual design, the thermal-hydraulic feasibility studies of the containment vessel, and the future computational and experimental studies that were planned to verify the final design.

  3. Neutron density distributions of neutron-rich nuclei studied with the isobaric yield ratio difference

    NASA Astrophysics Data System (ADS)

    Ma, Chun-Wang; Bai, Xiao-Man; Yu, Jiao; Wei, Hui-Ling

    2014-09-01

    The isobaric yield ratio difference (IBD) between two reactions of similar experimental setups is found to be sensitive to nuclear density differences between projectiles. In this article, the IBD probe is used to study the density variation in neutron-rich 48Ca . By adjusting diffuseness in the neutron density distribution, three different neutron density distributions of 48Ca are obtained. The yields of fragments in the 80 A MeV 40, 48Ca + 12C reactions are calculated by using a modified statistical abrasion-ablation model. It is found that the IBD results obtained from the prefragments are sensitive to the density distribution of the projectile, while the IBD results from the final fragments are less sensitive to the density distribution of the projectile.

  4. Slow Neutron Velocity Spectrometer Transmission Studies Of Pu

    DOE R&D Accomplishments Database

    Havens, W. W. Jr.; Melkonian, E.; Rainwater, L. J.; Levin, M.

    1951-05-28

    The slow neutron transmission of several samples of Pu has been investigated with the Columbia Neutron Velocity Spectrometer. Data are presented in two groups, those covering the energy region from 0 to 6 ev, and those covering the region above 6 ev. Below 6 ev the resolution was relatively good, and a detailed study of the cross section variation was made. Work above 6 ev consisted of merely locating levels and obtaining a rough idea of their strengths.

  5. Using Neutrons to Study Fluid-Rock Interactions in Shales

    NASA Astrophysics Data System (ADS)

    DiStefano, V. H.; McFarlane, J.; Anovitz, L. M.; Gordon, A.; Hale, R. E.; Hunt, R. D.; Lewis, S. A., Sr.; Littrell, K. C.; Stack, A. G.; Chipera, S.; Perfect, E.; Bilheux, H.; Kolbus, L. M.; Bingham, P. R.

    2015-12-01

    Recovery of hydrocarbons by hydraulic fracturing depends on complex fluid-rock interactions that we are beginning to understand using neutron imaging and scattering techniques. Organic matter is often thought to comprise the majority of porosity in a shale. In this study, correlations between the type of organic matter embedded in a shale and porosity were investigated experimentally. Selected shale cores from the Eagle Ford and Marcellus formations were subjected to pyrolysis-gas chromatography, Differential Thermal Analysis/Thermogravimetric analysis, and organic solvent extraction with the resulting affluent analyzed by gas chromatography-mass spectrometry. The pore size distribution of the microporosity (~1 nm to 2 µm) in the Eagle Ford shales was measured before and after solvent extraction using small angle neutron scattering. Organics representing mass fractions of between 0.1 to 1 wt.% were removed from the shales and porosity generally increased across the examined microporosity range, particularly at larger pore sizes, approximately 50 nm to 2 μm. This range reflects extraction of accessible organic material, including remaining gas molecules, bitumen, and kerogen derivatives, indicating where the larger amount of organic matter in shale is stored. An increase in porosity at smaller pore sizes, ~1-3 nm, was also present and could be indicative of extraction of organic material stored in the inter-particle spaces of clays. Additionally, a decrease in porosity after extraction for a sample was attributed to swelling of pores with solvent uptake. This occurred in a shale with high clay content and low thermal maturity. The extracted hydrocarbons were primarily paraffinic, although some breakdown of larger aromatic compounds was observed in toluene extractions. The amount of hydrocarbon extracted and an overall increase in porosity appeared to be primarily correlated with the clay percentage in the shale. This study complements fluid transport neutron

  6. Experimental Transport Benchmarks for Physical Dosimetry to Support Development of Fast-Neutron Therapy with Neutron Capture Augmentation

    SciTech Connect

    D. W. Nigg; J. K. Hartwell; J. R. Venhuizen; C. A. Wemple; R. Risler; G. E. Laramore; W. Sauerwein; G. Hudepohl; A. Lennox

    2006-06-01

    The Idaho National Laboratory (INL), the University of Washington (UW) Neutron Therapy Center, the University of Essen (Germany) Neutron Therapy Clinic, and the Northern Illinois University(NIU) Institute for Neutron Therapy at Fermilab have been collaborating in the development of fast-neutron therapy (FNT) with concurrent neutron capture (NCT) augmentation [1,2]. As part of this effort, we have conducted measurements to produce suitable benchmark data as an aid in validation of advanced three-dimensional treatment planning methodologies required for successful administration of FNT/NCT. Free-beam spectral measurements as well as phantom measurements with Lucite{trademark} cylinders using thermal, resonance, and threshold activation foil techniques have now been completed at all three clinical accelerator facilities. The same protocol was used for all measurements to facilitate intercomparison of data. The results will be useful for further detailed characterization of the neutron beams of interest as well as for validation of various charged particle and neutron transport codes and methodologies for FNT/NCT computational dosimetry, such as MCNP [3], LAHET [4], and MINERVA [5].

  7. Temperature-dependent neutron diffraction measurements from D2O hydrating single-supported lipid bilayers of DMPC

    NASA Astrophysics Data System (ADS)

    Buck, Z. N.; Torres, J.; Mazza, A.; Kaiser, H.; Taub, H.; Hansen, F. Y.; Miskowiec, A.; Tyagi, M.

    The freezing point depression of water associated with biological membranes, studied principally by NMR, has been of interest for decades. Here we have used neutron diffraction measurements at the University of Missouri Research Reactor (MURR) to investigate the freezing behavior of water associated with single-supported zwitterionic lipid bilayers composed of DMPC. Diffraction patterns obtained as a function of temperature reveal that water freezes abruptly into its hexagonal phase at 270 K with no evidence of amorphous ice. Following the initial crystallization of the membrane-associated water there is a region of continuous hexagonal crystal growth, which is believed to occur in the interfacial water closest to the membrane. The temperature-dependent intensity of the observed Bragg peaks have been compared with that of incoherently elastically-scattered neutrons collected on the High-Flux Backscattering Spectrometer at NIST from an identical sample hydrated with H2O [2]. We find excellent agreement between the two data sets, suggesting the absence of amorphous solid water and that all the water hydrating a DMPC membrane eventually freezes into the hexagonal crystalline phase. 2 M. Bai et al., Europhys. Lett. 98, 48006 (2012). Supported by NSF Grant Nos. DMR-0944772 and DGE-1069091.

  8. [Matrix Support: a bibliographical study].

    PubMed

    Iglesias, Alexandra; Avellar, Luziane Zacché

    2014-09-01

    This article presents a bibliographical review of matrix support in mental health. A search was conducted in the Virtual Health Library and the LILACS, SciELO and Google Scholar databases using the key words: "matrix support in mental health." Fourteen articles were located with the desired characteristics, which indicates that only a restricted number of publications are in circulation. The articles were analyzed with respect to their structural and methodological aspects, which revealed the absolute predominance of the use of qualitative methods and health professionals as the target research population. The same articles were then analyzed for their theoretical discussions. Among other issues, the importance of matrix support to enhance the primary health care teams provided to people suffering from psychic distress is highlighted. However, there is still considerable confusion regarding the proposal of the matrix support and shared responsibilities between teams of reference and mental health professionals, which emphasizes the need for training of these professionals, as well as better coordination and organization of the mental health care network. PMID:25184584

  9. Thermal neutron imaging support with other laboratories BL06-IM-TNI

    SciTech Connect

    Vanier,P.E.

    2008-06-17

    The goals of this project are: (1) detect and locate a source of thermal neutrons; (2) distinguish a localized source from uniform background; (3) show shape and size of thermalizing material; (4) test thermal neutron imager in active interrogation environment; and (5) distinguish delayed neutrons from prompt neutrons.

  10. Neutron characterization study for D-T, p-7Li neutron sources with new BCA based direct collision coupling method

    NASA Astrophysics Data System (ADS)

    Wang, Guan-bo; Yang, Xin; Qian, Da-zhi; Li, Run-dong; Tang, Bin

    2014-09-01

    The T(D,n)4He and 7Li(p,n)7Be neutron sources have been used for decades in nuclear physics research, stellar nucleosynthesis research and neutron therapy research. In this work, the neutron characterization including neutron yield, spectra, and angular distribution for D-T and p-7Li sources have been studied with our new binary collision approximation (BCA) based direct collision coupling method. Distinguished from the traditional path integration method for getting the neutron weight, the new model establishes a relationship between the scattering cross section and the impact parameter, which allows the secondary neutron generation carrying out jointly with ions BCA tracking. The experimental measurements of neutron characterizations have been employed for these two reactions, and the new algorithm is validated.

  11. Neutron Imaging Studies of In Situ Growth of Neutron and Gamma Detector Materials

    NASA Astrophysics Data System (ADS)

    Strange, Nicholas; Crain, Christopher; Wahida, Fatema; Stroupe, Zach; Larese, J. Z.

    The studies described here are aimed at addressing the critical need to develop dependable crystal growth techniques of solid-state materials used as radiation detectors for both national security and medical applications. We present our activities using pulsed neutron, radiographic imaging and simultaneous diffraction techniques to examine the synthesis of both CZT and CLYC with the goal of identifying the conditions that favor the production of defect free materials. Using a pulsed neutron beam and time of flight detection methods, we exploit the penetrating power and wavelength dependence of neutron absorption to perform measurements during crystal growth. Furthermore, solid boules can be examined either inside the furnace or free standing. The objective of these studies include the validation/improvement of the modeling studies of CLYC and CZT growth behavior, the development of new/improved furnace design, and the identification of optimum growth techniques that enable the production of large boules of defect free, single crystalline materials in a timely/cost effective manner. We provide our preliminary results that include the experiential setup at LANSCE and sample neutron radiographic and synchrotron based IR images of CZT flat solid plates.

  12. Neutronics analyses in support of the conceptual design of the MAPS NTP reactor

    NASA Astrophysics Data System (ADS)

    Raepsaet, X.; Lenain, R.; Naury, S.

    1996-03-01

    Within the framework of the French nuclear thermal propulsion program called MAPS (Lenain 1996), several neutronics studies and analyses were performed. The aim was to determine the basic design features of a reactor based on the Pebble Bed Reactor concept (Powell 1985) and needing minimum technological developments. In the concern to further enhance the reactor safety posture and to maintain a minimum engine mass breakdown, a beryllium moderated/reflected reactor using highly enriched UO2 or UC2 as fuel has been designed with a mean hydrogen core outlet temperature of 2200 K (theoretical ISP of 859 s). The objective of this paper is to give a detailed neutronics analysis of the MAPS reactor.

  13. Neutronics analyses in support of the conceptual design of the MAPS NTP reactor

    SciTech Connect

    Raepsaet, X.; Lenain, R.

    1996-03-01

    Within the framework of the French nuclear thermal propulsion program called MAPS (Lenain 1996), several neutronics studies and analyses were performed. The aim was to determine the basic design features of a reactor based on the Pebble Bed Reactor concept (Powell 1985) and needing minimum technological developments. In the concern to further enhance the reactor safety posture and to maintain a minimum engine mass breakdown, a beryllium moderated/reflected reactor using highly enriched UO{sub 2} or UC{sub 2} as fuel has been designed with a mean hydrogen core outlet temperature of 2200 K (theoretical ISP of 859 s). The objective of this paper is to give a detailed neutronics analysis of the MAPS reactor. {copyright} {ital 1996 American Institute of Physics.}

  14. STUDY MAGNETIC EXCITATIONS IN DOPED TRANSITION METAL OXIDES USING INELASTIC NEUTRON SCATTERING

    SciTech Connect

    Dai, Pengcheng

    2014-02-18

    Understanding the interplay between magnetism and superconductivity continues to be a “hot” topic in modern condensed matter physics. The discovery of high-temperature superconductivity in iron-based materials in 2008 provided an unique opportunity to compare and contrast these materials with traditional high-Tc copper oxide superconductors. Neutron scattering plays an important role in determining the dynamical spin properties in these materials. This proposal is a continuation of previous DOE supported proposal. This report summarizes the final progress we have made over from May 2005 till Aug. 2013. Overall, we continue to carry out extensive neutron scattering experiments on Fe-based materials, focusing on understanding their magnetic properties. In addition, we have established a materials laboratory at UT that has allowed us to grow these superconductors. Because neutron scattering typically demands a large amount of samples, by growing these materials in our own laboratory, we can now pursuit neutron scattering experiments over the entire electronic phase diagram, focusing on regions of interests. The material synthesis laboratory at UT was established entirely with the support of DOE funding. This not only allowed us to carry out neutron scattering experiments, but also permit us to provide samples to other US/International collaborators for studying these materials.

  15. A study on the optimum fast neutron flux for boron neutron capture therapy of deep-seated tumors.

    PubMed

    Rasouli, Fatemeh S; Masoudi, S Farhad

    2015-02-01

    High-energy neutrons, named fast neutrons which have a number of undesirable biological effects on tissue, are a challenging problem in beam designing for Boron Neutron Capture Therapy, BNCT. In spite of this fact, there is not a widely accepted criterion to guide the beam designer to determine the appropriate contribution of fast neutrons in the spectrum. Although a number of researchers have proposed a target value for the ratio of fast neutron flux to epithermal neutron flux, it can be shown that this criterion may not provide the optimum treatment condition. This simulation study deals with the determination of the optimum contribution of fast neutron flux in the beam for BNCT of deep-seated tumors. Since the dose due to these high-energy neutrons damages shallow tissues, delivered dose to skin is considered as a measure for determining the acceptability of the designed beam. To serve this purpose, various beam shaping assemblies that result in different contribution of fast neutron flux are designed. The performances of the neutron beams corresponding to such configurations are assessed in a simulated head phantom. It is shown that the previously used criterion, which suggests a limit value for the contribution of fast neutrons in beam, does not necessarily provide the optimum condition. Accordingly, it is important to specify other complementary limits considering the energy of fast neutrons. By analyzing various neutron spectra, two limits on fast neutron flux are proposed and their validity is investigated. The results show that considering these limits together with the widely accepted IAEA criteria makes it possible to have a more realistic assessment of sufficiency of the designed beam. Satisfying these criteria not only leads to reduction of delivered dose to skin, but also increases the advantage depth in tissue and delivered dose to tumor during the treatment time. The Monte Carlo Code, MCNP-X, is used to perform these simulations. PMID:25479433

  16. Why neutron guides may end up breaking down? Some results on the macroscopic behaviour of alkali-borosilicate glass support plates under neutron irradiation

    NASA Astrophysics Data System (ADS)

    Boffy, R.; Kreuz, M.; Beaucour, J.; Köster, U.; Bermejo, F. J.

    2015-09-01

    In this paper we report on a first part of a study on the mechanisms leading to brittle fracture in neutron guides made of glass as structural element. Such devices are widely used to deliver thermal and cold neutron beams to experimental lines in most large neutron research facilities. We present results on macroscopic properties of samples of guide glass substrates which are subjected to neutron irradiation at relatively large fluences. The results show a striking dependence of some of the macroscopic properties such as density, shape or surface curvature upon the specific chemical composition of a given glass. The relevance of the present findings for the installation of either replacement guides at the existing facilities or for the deployment of instruments for ongoing projects such as the European Spallation Source is briefly discussed.

  17. Neutron-induced reaction studies using stored ions

    NASA Astrophysics Data System (ADS)

    Glorius, Jan; Litvinov, Yuri A.; Reifarth, René

    2015-11-01

    Storage rings provide unique possibilities for investigations of nuclear reactions. Radioactive ions can be stored if the ring is connected to an appropriate facility and reaction studies are feasible at low beam intensities because of the recycling of beam particles. Using gas jet or droplet targets, charged particle-induced reactions on short-lived isotopes can be studied in inverse kinematics. In such a system a high-flux reactor could serve as a neutron target extending the experimental spectrum to neutron-induced reactions. Those could be studied over a wide energy range covering the research fields of nuclear astrophysics and reactor safety, transmutation of nuclear waste and fusion.

  18. Inelastic Neutron Scattering Study of Mn

    SciTech Connect

    Zhong, Y.; Sarachik, M.P.; Friedman, J.R.; Robinson, R.A.; Kelley, T.M.; Nakotte, H.; Christianson, A.C.; Trouw, F.; Aubin, S.M.J.; Hendrickson, D.N.

    1998-11-09

    The authors report zero-field inelastic neutron scattering experiments on a 14-gram deuterated sample of Mn{sub 12}-Acetate consisting of a large number of identical spin-10 magnetic clusters. Their resolution enables them to see a series of peaks corresponding to transitions between the anisotropy levels within the spin-10 manifold. A fit to the spin Hamiltonian H = {minus}DS{sub z}{sup 2} + {mu}{sub B}B{center_dot}g{center_dot}S-BS{sub z}{sup 4} + C(S{sub +}{sup 4} + S{sub {minus}}{sup 4}) yields an anisotropy constant D = (0.54 {+-} 0.02) K and a fourth-order diagonal anisotropy coefficient B = (1.2 {+-} 0.1) x 10{sup {minus}3}K. Unlike EPR measurements, their experiments do not require a magnetic field and yield parameters that do not require knowledge of the g-value.

  19. Design studies for a high-resolution, transportable neutron radiography/radioscopy system

    SciTech Connect

    Gillespie, G.H.; Micklich, B.J.; McMichael, G.E.

    1996-09-30

    A preliminary design has been developed for a high-resolution, transportable neutron radiology system (TNRS) concept. The primary system requirement is taken to be a thermal neutron flux of 10[sup 6] n/(cm[sup 2]-sec) with a L/D ratio of 100. The approach is to use an accelerator-driven neutron source, with a radiofrequency quadrupole (RFQ) as the primary accelerator component. Initial concepts for all of the major components of the system have been developed,and selected key parts have been examined further. An overview of the system design is presented, together with brief summaries of the concepts for the ion source, low energy beam transport (LEBT), RFQ, high energy beam transport (HEBT), target, moderator, collimator, image collection, power, cooling, vacuum, structure, robotics, control system, data analysis, transport vehicle, and site support. The use of trade studies for optimizing the TNRS concept are also described.

  20. Application of Neutron Reflectivity for Studies of Biomolecular Structures and Functions at Interfaces

    SciTech Connect

    Johs, Alexander; Liang, Liyuan; Gu, Baohua; Ankner, John Francis; Wang, Wei

    2009-01-01

    Structures and functions of cell membranes are of central importance in understanding processes such as cell signaling, chemotaxis, redox transformation, biofilm formation, and mineralization occurring at interfaces. This chapter provides an overview of the application of neutron reflectivity (NR) as a unique tool for probing biomolecular structures and mechanisms as a first step toward understanding protein protein, protein lipid, and protein mineral interactions at the membrane substrate interfaces. Emphasis is given to the review of existing literature on the assembly of biomimetic membrane systems, such as supported membranes for NR studies, and demonstration of model calculations showing the potential of NR to elucidate molecular fundamentals of microbial cell mineral interactions and structure functional relationships of electron transport pathways. The increased neutron flux afforded by current and upcoming neutron sources holds promise for elucidating detailed processes such as phase separation, formation of microdomains, and membrane interactions with proteins and peptides in biological systems.

  1. Halo Nucleus Be11: A Spectroscopic Study via Neutron Transfer

    NASA Astrophysics Data System (ADS)

    Schmitt, K. T.; Jones, K. L.; Bey, A.; Ahn, S. H.; Bardayan, D. W.; Blackmon, J. C.; Brown, S. M.; Chae, K. Y.; Chipps, K. A.; Cizewski, J. A.; Hahn, K. I.; Kolata, J. J.; Kozub, R. L.; Liang, J. F.; Matei, C.; Matoš, M.; Matyas, D.; Moazen, B.; Nesaraja, C.; Nunes, F. M.; O'Malley, P. D.; Pain, S. D.; Peters, W. A.; Pittman, S. T.; Roberts, A.; Shapira, D.; Shriner, J. F., Jr.; Smith, M. S.; Spassova, I.; Stracener, D. W.; Villano, A. N.; Wilson, G. L.

    2012-05-01

    The best examples of halo nuclei, exotic systems with a diffuse nuclear cloud surrounding a tightly bound core, are found in the light, neutron-rich region, where the halo neutrons experience only weak binding and a weak, or no, potential barrier. Modern direct-reaction measurement techniques provide powerful probes of the structure of exotic nuclei. Despite more than four decades of these studies on the benchmark one-neutron halo nucleus Be11, the spectroscopic factors for the two bound states remain poorly constrained. In the present work, the Be10(d,​p) reaction has been used in inverse kinematics at four beam energies to study the structure of Be11. The spectroscopic factors extracted using the adiabatic model were found to be consistent across the four measurements and were largely insensitive to the optical potential used. The extracted spectroscopic factor for a neutron in an nℓj=2s1/2 state coupled to the ground state of Be10 is 0.71(5). For the first excited state at 0.32 MeV, a spectroscopic factor of 0.62(4) is found for the halo neutron in a 1p1/2 state.

  2. Nab: a precise study of unpolarized neutron beta decay

    NASA Astrophysics Data System (ADS)

    Pocanic, Dinko; Nab Collaboration

    2015-10-01

    Nab is a program of measurements of unpolarized neutron decays at the Spallation Neutron Source, Oak Ridge, TN. Nab aims to determine a, the e- ν correlation with precision of δa / a =10-3 , and b, the Fierz interference term, with uncertainty δb ~= 3 ×10-3 . The set of available observables overconstrains neutron beta decay in the Standard Model (SM), opening the door to searches for evidence of possible SM extensions. Projected Nab results will lead to a new precise determination of the ratio λ =GA /GV , and to significant reductions in the allowed limits for both right- and left-handed scalar and tensor currents. Alternatively, Nab may detect a discrepancy from SM predictions consistent with certain realizations of supersymmetry. A long asymmetric spectrometer, optimized to achieve the required narrow proton momentum response function, is currently under construction. The apparatus is to be used in follow-up measurements (ABba experiment) of asymmetry observables A and B in polarized neutron decay. Nab is planned for beam readiness in 2016. We discuss the experiment's motivation, expected reach, design and method, and update its status. Work supported by NSF Grants PHY-1126683, 1205833, 1307328, 1506320, and others.

  3. Radiation Damage Study in Natural Zircon Using Neutrons Irradiation

    NASA Astrophysics Data System (ADS)

    Lwin, Maung Tin Moe; Amin, Yusoff Mohd.; Kassim, Hasan Abu; Mohamed, Abdul Aziz; Karim, Julia Abdul

    2011-03-01

    Changes of atomic displacements in crystalline structure of natural zircon (ZrSiO4) can be studied by using neutron irradiation on the surface of zircon and compared the data from XRD measurements before and after irradiation. The results of neutron irradiation on natural zircon using Pneumatic Transfer System (PTS) at PUSPATI TRIGA Research Reactor in the Malaysian Nuclear Agency are discussed in this work. The reactor produces maximum thermal power output of 1 MWatt and the neutron flux of up to 1×1013 ncm-2s-1. From serial decay processes of uranium and thorium radionuclides in zircon crystalline structure, the emission of alpha particles can produce damage in terms of atomic displacements in zircon. Hence, zircon has been extensively studied as a possible candidate for immobilization of fission products and actinides.

  4. Radiation Damage Study in Natural Zircon Using Neutrons Irradiation

    SciTech Connect

    Lwin, Maung Tin Moe; Amin, Yusoff Mohd.; Kassim, Hasan Abu; Mohamed, Abdul Aziz; Karim, Julia Abdul

    2011-03-30

    Changes of atomic displacements in crystalline structure of natural zircon (ZrSiO{sub 4}) can be studied by using neutron irradiation on the surface of zircon and compared the data from XRD measurements before and after irradiation. The results of neutron irradiation on natural zircon using Pneumatic Transfer System (PTS) at PUSPATI TRIGA Research Reactor in the Malaysian Nuclear Agency are discussed in this work. The reactor produces maximum thermal power output of 1 MWatt and the neutron flux of up to 1x10{sup 13} ncm{sup -2}s{sup -1}. From serial decay processes of uranium and thorium radionuclides in zircon crystalline structure, the emission of alpha particles can produce damage in terms of atomic displacements in zircon. Hence, zircon has been extensively studied as a possible candidate for immobilization of fission products and actinides.

  5. Using Fast Neutrons to Study Collective Nuclear Excitations

    NASA Astrophysics Data System (ADS)

    Yates, S. W.

    2013-03-01

    For many years, the inelastic scattering of accelerator-produced fast neutrons has been used at the University of Kentucky to study nuclei which have been described as vibrational Recent data which have emerged from studies with this reaction and from other probes is reviewed, and conclusions about the applicability of the vibrational phonon description for multiphonon quadrupole and octupole excitations are given.

  6. Performance Support Case Studies from IBM.

    ERIC Educational Resources Information Center

    Duke-Moran, Celia; Swope, Ginger; Morariu, Janis; deKam, Peter

    1999-01-01

    Presents two case studies that show how IBM addressed performance support solutions and electronic learning. The first developed a performance support and expert coaching solution; the second applied performance support to reducing implementation time and total cost of ownership of enterprise resource planning systems. (Author/LRW)

  7. A Study of Predoctoral Student Support.

    ERIC Educational Resources Information Center

    Federal Interagency Committee on Education, Washington, DC. Student Support Study Group.

    This report of the Federal Interagency Committee on Education (FCIE) presents recommendations for expanding current federal support for graduate study. Federal agencies allocated $226.2 million for predoctoral fellowships and supported some 12.9% of the full-time graduate students in the US during the 1968-1969 school year. This support increased…

  8. Neutron-Induced Charged Particle Studies at LANSCE

    NASA Astrophysics Data System (ADS)

    Lee, Hye Young; Haight, Robert C.

    2014-09-01

    Direct measurements on neutron-induced charged particle reactions are of interest for nuclear astrophysics and applied nuclear energy. LANSCE (Los Alamos Neutron Science Center) produces neutrons in energy of thermal to several hundreds MeV. There has been an effort at LANSCE to upgrade neutron-induced charged particle detection technique, which follows on (n,z) measurements made previously here and will have improved capabilities including larger solid angles, higher efficiency, and better signal to background ratios. For studying cross sections of low-energy neutron induced alpha reactions, Frisch-gridded ionization chamber is designed with segmented anodes for improving signal-to-noise ratio near reaction thresholds. Since double-differential cross sections on (n,p) and (n,a) reactions up to tens of MeV provide important information on deducing nuclear level density, the ionization chamber will be coupled with silicon strip detectors (DSSD) in order to stop energetic charged particles. In this paper, we will present the status of this development including the progress on detector design, calibrations and Monte Carlo simulations. This work is funded by the US Department of Energy - Los Alamos National Security, LLC under Contract DE-AC52-06NA25396.

  9. Beta Decay Study of Neutron-rich Magnesium

    NASA Astrophysics Data System (ADS)

    Ash, John; Rajabali, Mustafa; Griffin Collaboration

    2015-10-01

    Within the ``island of inversion'' around the N = 20 shell gap, isotopes of magnesium, and aluminum deviate from the expected closed-shell structure. Particles promoted across the N = 20 shell gap result in a lower energy deformed ground state configuration rather than the expected spherical configuration. An experiment was conducted at TRIUMF laboratory in the summer of 2015 to study the decay of ``island of inversion'' isotopes 33 , 34 , 35Mg and the structure of the respective daughter nuclei. The isotopes of interest were produced by a proton beam from TRIUMF's 500 MeV cyclotron impacting on a UCx target. The magnesium decays populated states along the decay chain in Al, Si, P, and S isotopes. The new GRIFFIN spectrometer in the ISAC-I facility was used to detect the gamma rays. Two sets of scintillators, one for detecting the beta particles (SCEPTAR) and the other for detecting beta-delayed neutrons (DESCANT), were also used in conjunction with GRIFFIN. The GRIFFIN data were energy calibrated and partially analyzed for this project. New algorithms were developed for the analysis. Preliminary results for new transitions detected in 34Mg as well as the half lives obtained will be presented in their current form. This research was supported by the Tennessee Tech research office.

  10. Aerosol backscatter studies supporting LAWS

    NASA Technical Reports Server (NTRS)

    Rothermel, Jeffry

    1989-01-01

    Optimized Royal Signals and Radar Establishment (RSRE), Laser True Airspeed System (LATAS) algorithm for low backscatter conditions was developed. The algorithm converts backscatter intensity measurements from focused continuous-wave (CW) airborne Doppler lidar into backscatter coefficients. The performance of optimized algorithm under marginal backscatter signal conditions was evaluated. The 10.6 micron CO2 aerosol backscatter climatologies were statistically analyzed. Climatologies reveal clean background aerosol mode near 10(exp -10)/kg/sq m/sr (mixing ratio units) through middle and upper troposhere, convective mode associated with planetary boundary layer convective activity, and stratospheric mode associated with volcanically-generated aerosols. Properties of clean background mode are critical to design and simulation studies of Laser Atmospheric Wind Sounder (LAWS), a MSFC facility Instrument on the Earth Observing System (Eos). Previous intercomparisons suggested correlation between aerosol backscatter at CO2 wavelength and water vapor. Field measurements of backscatter profiles with MSFC ground-based Doppler lidar system (GBDLS) were initiated in late FY-88 to coincide with independent program of local rawinsonde releases and overflights by Multi-spectral Atmospheric Mapping Sensor (MAMS), a multi-channel infrared radiometer capable of measuring horizontal and vertical moisture distributions. Design and performance simulation studies for LAWS would benefit from the existence of a relationship between backscatter and water vapor.

  11. Simulation study of Fast Neutron Radiography using GEANT4

    NASA Astrophysics Data System (ADS)

    Bishnoi, S.; Thomas, R. G.; Sarkar, P. S.; Datar, V. M.; Sinha, A.

    2015-02-01

    Fast neutron radiography (FNR) is an important non-destructive technique for the imaging of thick bulk material. We are designing a FNR system using a laboratory based 14 MeV D-T neutron generator [1]. Simulation studies have been carried using Monte Carlo based GEANT4 code to understand the response of the FNR system for various objects. Different samples ranging from low Z, metallic and high Z materials were simulated for their radiographic images. The quality of constructed neutron radiography images in terms of relative contrast ratio and the contrast to noise ratio were investigated for their dependence on various parameters such as thickness, voids inside high/low Z material and also for low Z material hidden behind high Z material. We report here the potential and limitations of FNR for imaging different materials and a few configurations and also the possible areas where FNR can be implemented.

  12. A Fluka study of underground cosmogenic neutron production

    SciTech Connect

    Empl, A.; Hungerford, E.V.; Jasim, R.; Mosteiro, P. E-mail: evhunger@central.uh.edu E-mail: mosteiro@gmail.com

    2014-08-01

    Neutrons produced by cosmic muon interactions are important contributors to backgrounds in underground detectors when searching for rare events. Typically such neutrons can dominate the background, as they are particularly difficult to shield and detect. Since actual data is sparse and not well documented, simulation studies must be used to design shields and predict background rates. Thus validation of any simulation code is necessary to assure reliable results. This work compares in detail predictions of the FLUKA simulation code to existing data, and uses this code to report a simulation of cosmogenic backgrounds for typical detectors embedded in a water tank with liquid scintillator shielding.

  13. Fractal properties of lysozyme: a neutron scattering study.

    PubMed

    Lushnikov, S G; Svanidze, A V; Gvasaliya, S N; Torok, G; Rosta, L; Sashin, I L

    2009-03-01

    The spatial structure and dynamics of hen egg white lysozyme have been investigated by small-angle and inelastic neutron scattering. Analysis of the results was carried using the fractal approach, which allowed determination of the fractal and fracton dimensions of lysozyme, i.e., consideration of the protein structure and dynamics by using a unified approach. Small-angle neutron scattering studies of thermal denaturation of lysozyme have revealed changes in the fractal dimension in the vicinity of the thermal denaturation temperature that reflect changes in the spatial organization of protein. PMID:19391977

  14. Neutron depolarization study of phase transformations in steel

    NASA Astrophysics Data System (ADS)

    van Dijk, N. H.; Te Velthuis, S. G. E.; Rekveldt, M. Th.; Sietsma, J.; van der Zwaag, S.

    1999-06-01

    Three-dimensional neutron depolarization experiments have been performed in order to study the phase transformations from austenite (γ-Fe) into ferrite (α-Fe) and cementite (Fe 3C) in two medium-carbon steel samples with different carbon concentrations. The rotation of the neutron polarization vector during transmission through the sample is a direct measure for the ferromagnetic ferrite fraction. The degree of depolarization is related to the magnetic correlation length, which gives an indication of the characteristic length scales of the microstructure.

  15. STS Case Study Development Support

    NASA Technical Reports Server (NTRS)

    Rosa de Jesus, Dan A.; Johnson, Grace K.

    2013-01-01

    The Shuttle Case Study Collection (SCSC) has been developed using lessons learned documented by NASA engineers, analysts, and contractors. The SCSC provides educators with a new tool to teach real-world engineering processes with the goal of providing unique educational materials that enhance critical thinking, decision-making and problem-solving skills. During this third phase of the project, responsibilities included: the revision of the Hyper Text Markup Language (HTML) source code to ensure all pages follow World Wide Web Consortium (W3C) standards, and the addition and edition of website content, including text, documents, and images. Basic HTML knowledge was required, as was basic knowledge of photo editing software, and training to learn how to use NASA's Content Management System for website design. The outcome of this project was its release to the public.

  16. Study on High Speed Lithium Jet For Neutron Source of Boron Neutron Capture Therapy (BNCT)

    NASA Astrophysics Data System (ADS)

    Takahashi, Minoru; Kobayashi, Tooru; Zhang, Mingguang; Mák, Michael; Štefanica, Jirí; Dostál, Václav; Zhao, Wei

    The feasibility study of a liquid lithium type proton beam target was performed for the neutron source of the boron neutron capture therapy (BNCT). As the candidates of the liquid lithium target, a thin sheet jet and a thin film flow on a concave wall were chosen, and a lithium flow experiment was conducted to investigate the hydrodynamic stability of the targets. The surfaces of the jets and film flows with a thickness of 0.5 mm and a width of 50 mm were observed by means of photography. It has been found that a stable sheet jet and a stable film flow on a concave wall can be formed up to certain velocities by using a straight nozzle and a curved nozzle with the concave wall, respectively.

  17. Calibrations for studies of neutron-rich precursor fragments

    NASA Astrophysics Data System (ADS)

    Mazza, Maria; Parkhurst, Rachel; Wilensky, Samuel; Mosby, Michelle; Stephenson, Sharon; Rogers, Warren; MoNA Collaboration Collaboration

    2015-10-01

    Heavy ion collisions at relativistic energies produce the radioactive beams used at nuclear structure facilities worldwide. However, there are still unanswered questions about the reaction mechanism of projectile fragmentation and the specific roles that ablation, evaporation, and abrasion play. Using the projectile fragmentation of a 32Mg beam at 86 MeV/u on a natural Beryllium target at the National Superconducting Cyclotron Laboratory (NSCL), our experimental goal is to better understand the excitation energy and the momentum distribution of the precursors of the observed final fragments (neon, sodium, and fluorine). A suite of charged particle detectors in conjunction with the Modular Neutron Array (MoNA) allows us to analyze both the charged final fragments as well as the coincident neutrons. Detector calibration results and preliminary results will be presented. This material is based upon work supported by the National Science Foundation under Grants PHY-1205537.

  18. Multitier Portal Architecture for Thin- and Thick-client Neutron Scattering Experiment Support

    SciTech Connect

    Green, Mark L; Miller, Stephen D

    2007-01-01

    Integration of emerging technologies and design patterns into the three-tier client-server architecture is required in order to provide a scalable and flexible architecture for novice to sophisticated portal user groups. The ability to provide user customizable portal interfaces is rapidly becoming commonplace and is driving the expectations of researchers and scientists in the scientific community. This paper describes an architectural design that maximizes information technology service reuse while providing a customizable user interface that scales with user sophistication and requirements. The Spallation Neutron Source (SNS) located at Oak Ridge National Laboratory provides a state-of-the-art facility ideal for implementation of this infrastructure. The SNS Java-based Science Portal (Tier I) and Open Grid Computing Environment (Tier II) provide thin-client support whereas the GumTree Eclipse Rich Client Platform (Tier III) and Eclipse Integrated Development Environment (Tier IV) provide thickclient support within a multitier portal architecture. Each tier incorporates all of the features of the previous tiers while adding new capabilities based on the user requirements.

  19. Ultra Small-Angle Neutron Scattering Study of Porous Glass

    SciTech Connect

    Desai, Reshma R.; Desa, J. A. Erwin; Sen, D.; Mazumder, S.

    2011-07-15

    Compacts of silica micro-spheres prepared for different times at sintering temperatures of 640 deg. C and 740 deg. C have been studied by Ultra Small-Angle Neutron Scattering (USANS) and Scanning Electron Microscopy (SEM). Stress versus strain measurements display several breakage points related to a range of nearest neighbour coordination around each microsphere.

  20. Bariatric support line: a prospective study of support line activity.

    PubMed

    McDougall, Kirsten; Segaran, Ella; Sufi, Pratik; Heath, Dugal I

    2010-03-01

    In this prospective study, we examine the workload of the North London Obesity Surgery Service Bariatric telephone support line (BTSL) and its effects on service provision. Over a 3-month period (June to August 2008), a prospective record was kept of all calls, who they were from, whether the patient was presurgery or postsurgery, the type of procedure planned or undertaken, the nature of the enquiry, and the time taken to answer the query. Seventy-five (72%) calls were related to patients who were postsurgery and 29 (28%) presurgery. Patients scheduled for or having undergone Roux-en-Y gastric bypass accounted for 46 (44%) calls; 24 (23%) were preprocedure and 22 (21%) postprocedure. Patients scheduled for or having undergone gastric banding accounted for 56 (54%) calls; five (0.5%) were preprocedure and 51 (49%) postprocedure. Patients undergoing sleeve gastrectomy accounted for two (<1%) calls. Both calls were postprocedure. The reason for the support line enquiry was psychological support in 15 (14%) patients, questions postsurgery in 26 (25%), general enquiries in 27 (26%), and clinical enquiries in 36 (36%). This study of the BTSL has allowed us to identify areas of need within our bariatric population and improve the service we deliver. The changes we have made should lead to a better use of the team's time, greater patient compliance, and satisfaction as well as reduced complaints and litigation. PMID:19711140

  1. SUPPORT STUDIES IN FLUIDIZED-BED COMBUSTION

    EPA Science Inventory

    The report gives results of working in support of development studies for atmospheric and pressurized fluidized-bed coal combustion. Laboratory and process development studies are aimed at providing needed information on limestone utilization, removal of particulates and alkali m...

  2. SUPPORTIVE STUDIES IN FLUIDIZED-BED COMBUSTION

    EPA Science Inventory

    The report gives results of studies supporting the development of atmospheric and pressurized fluidized-bed combustion (FBC) of coal. It includes laboratory and bench-scale studies to provide needed information on combustion optimization, regeneration process development, solid w...

  3. Study of 19C by One-Neutron Knockout

    NASA Astrophysics Data System (ADS)

    Hwang, Jongwon; Kim, Sunji; Satou, Yoshiteru; Orr, Nigel A.; Nakamura, Takashi; Kondo, Yosuke; Gibelin, Julien; Achouri, N. Lynda; Aumann, Thomas; Baba, Hidetada; Delaunay, Franck; Doornenbal, Pieter; Fukuda, Naoki; Inabe, Naohito; Isobe, Tadaaki; Kameda, Daisuke; Kanno, Daiki; Kobayashi, Nobuyuki; Kobayashi, Toshio; Kubo, Toshiyuki; Leblond, Sylvain; Lee, Jenny; Marqués, F. Miguel; Minakata, Ryogo; Motobayashi, Tohru; Murai, Daichi; Murakami, Tetsuya; Muto, Kotomi; Nakashima, Tomohiro; Nakatsuka, Noritsugu; Navin, Alahari; Nishi, Seijiro; Ogoshi, Shun; Otsu, Hideaki; Sato, Hiromi; Shimizu, Yohei; Suzuki, Hiroshi; Takahashi, Kento; Takeda, Hiroyuki; Takeuchi, Satoshi; Tanaka, Ryuki; Togano, Yasuhiro; Tuff, Adam G.; Vandebrouck, Marine; Yoneda, Ken-ichiro

    2016-03-01

    The spectroscopic structure of 19C, a prominent one-neutron halo nucleus, has been studied with a 20C secondary beam at 290 MeV/nucleon and a carbon target. Neutron-unbound states populated by the one-neutron knockout reaction were investigated by means of the invariant mass method. The preliminary relative energy spectrum and parallel momentum distribution of the knockout residue, 19C*, were reconstructed from the measured four momenta of the 18C fragment, neutron, and beam. Three resonances were observed in the spectrum, which correspond to the states at Ex = 0.62(9), 1.42(10), and 2.89(10) MeV. The parallel momentum distributions for the 0.62-MeV and 2.89-MeV states suggest spin-parity assignments of 5/2+ and 1/2-, respectively. The 1.42-MeV state is in line with the reported 5/22+ state.

  4. Critical Issues in Supporting Self-Study

    ERIC Educational Resources Information Center

    Lunenberg, Mieke; Zwart, Rosanne; Korthagen, Fred

    2010-01-01

    In this article, we focus on an analysis of critical issues in supporting teacher educators conducting a self-study. As data, we have used the digital logbooks written by the participating teacher educators, the outcomes of the interviews we held at the end of the support process, and of a follow-up questionnaire answered by the participating…

  5. Neutron scatter studies of chromatin structures related to functions

    SciTech Connect

    Bradbury, E.M.

    1992-01-01

    Despite of setbacks in the lack of neutrons for the proposed We have made considerable progress in chromatin reconstitution with the VLR histone H1/H5 and in understanding the dynamics of nucleosomes. A ferromagnetic fluid was developed to align biological molecules for structural studies using small-angle-neutron-scattering. We have also identified and characterized an intrinsically bent DNA region flanking the RNA polymerase I binding site of the ribosomal RNA gene in Physarum Polycephalum. Finally projects in progress are in the areas of studying the interatctions of histone H4 amino-terminus peptide 1-23 and acetylated 1-23 peptide with DNA using thermal denaturation; study of GGAAT repeats found in human centromeres using high resolution Nuclear magnetic Resonance and nuclease sentivity assay; and the role of histones and other sperm specific proteins with sperm chromatin.

  6. Preliminary neutron crystallographic study of human transthyretin

    PubMed Central

    Haupt, Melina; Blakeley, Matthew P.; Teixeira, Susana C. M.; Mason, Sax A.; Mitchell, Edward P.; Cooper, Jonathan B.; Forsyth, V. Trevor

    2011-01-01

    Preliminary studies of perdeuterated crystals of human transthyretin (TTR) have been carried out using the LADI-III and D19 diffractometers at the Institut Laue–Langevin in Grenoble. The results demonstrate the feasibility of a full crystallographic analysis to a resolution of 2.0 Å using Laue diffraction and also illustrate the potential of using monochromatic instruments such as D19 for higher resolution studies where larger crystals having smaller unit cells are available. This study will yield important information on hydrogen bonding, amino-acid protonation states and hydration in the protein. Such information will be of general interest for an understanding of the factors that stabilize/destabilize TTR and for the design of ligands that may be used to counter TTR amyloid fibrillogenesis. PMID:22102249

  7. Lunar Outpost Life Support Trade Studies

    NASA Astrophysics Data System (ADS)

    Ewert, Michael; Barta, Daniel J.; Lange, Kevin; Anderson, Molly

    Engineering trade-off studies of life support system architecture and technology options were conducted for potential lunar surface mission scenarios within NASA's Constellation Program. The scenarios investigated are based largely on results of the NASA Lunar Architecture Team (LAT) Phase II study. In particular, the possibility of "Hosted Sortie" missions, the high cost of power during eclipse periods, and the potential to reduce life support consumables through scavenging, in-situ resources, and alternative EVA technologies were all examined. These trade studies were performed within the Systems Integration, Modeling and Analysis (SIMA) element of NASA's Exploration Life Support (ELS) technology development project. The tools and methodology used in the study are described briefly, followed by a discussion of mission scenarios, life support technology options and results presented in terms of "equivalent system mass" for various regenerative life support technologies and architectures. Three classes of repeated or extended lunar surface missions were investigated in this study along with several life support resource scenarios for each mission class. Individual mission durations of 14 days, 90 days and 180 days were considered with 10 missions assumed for each at a rate of 2 missions per year. The 14-day missions represent a class of "Hosted Sortie" missions where a pre-deployed and potentially mobile habitat provides life support for multiple crews at one or more locations. The 90-day and 180-day missions represent lunar outpost expeditions with a larger fixed habitat. The 180-day missions assume continuous human presence and must provide life support through eclipse periods of up to 122 hours while the 90-day missions are planned for best-case periods of nearly continuous sunlight. This paper investigates system optimization within the assumptions of each scenario and addresses how the scenario selected drives the life support system to different designs

  8. Lunar Outpost Life Support Trade Studies

    NASA Technical Reports Server (NTRS)

    Lange, Kevin E.; Anderson, Molly S.; Ewert, Michael K.; Barta, Daniel J.

    2008-01-01

    Engineering trade-off studies of life support system architecture and technology options were conducted for potential lunar surface mission scenarios within NASA's Constellation Program. The scenarios investigated are based largely on results of the NASA Lunar Architecture Team (LAT) Phase II study. In particular, the possibility of Hosted Sortie missions, the high cost of power during eclipse periods, and the potential to reduce life support consumables through scavenging, in-situ resources, and alternative EVA technologies were all examined. These trade studies were performed within the Systems Integration, Modeling and Analysis (SIMA) element of NASA's Exploration Life Support (ELS) technology development project. The tools and methodology used in the study are described briefly, followed by a discussion of mission scenarios, life support technology options and results presented in terms of equivalent system mass for various regenerative life support technologies and architectures. Three classes of repeated or extended lunar surface missions were investigated in this study along with several life support resource scenarios for each mission class. Individual mission durations of 14 days, 90 days and 180 days were considered with 10 missions assumed for each at a rate of 2 missions per year. The 14-day missions represent a class of Hosted Sortie missions where a pre-deployed and potentially mobile habitat provides life support for multiple crews at one or more locations. The 90-day and 180-day missions represent lunar outpost expeditions with a larger fixed habitat. The 180-day missions assume continuous human presence and must provide life support through eclipse periods of up to 122 hours while the 90-day missions are planned for best-case periods of nearly continuous sunlight. This paper investigates system optimization within the assumptions of each scenario and addresses how the scenario selected drives the life support system to different designs

  9. Study of pipe thickness loss using a neutron radiography method

    NASA Astrophysics Data System (ADS)

    Mohamed, Abdul Aziz; Wahab, Aliff Amiru Bin; Yazid, Hafizal B.; Ahmad, Megat Harun Al Rashid B. Megat; Jamro, Rafhayudi B.; Azman, Azraf B.; Zin, Muhamad Rawi Md; Idris, Faridah Mohamad

    2014-02-01

    The purpose of this preliminary work is to study for thickness changes in objects using neutron radiography. In doing the project, the technique for the radiography was studied. The experiment was done at NUR-2 facility at TRIGA research reactor in Malaysian Nuclear Agency, Malaysia. Test samples of varying materials were used in this project. The samples were radiographed using direct technique. Radiographic images were recorded using Nitrocellulose film. The films obtained were digitized to processed and analyzed. Digital processing is done on the images using software Isee!. The images were processed to produce better image for analysis. The thickness changes in the image were measured to be compared with real thickness of the objects. From the data collected, percentages difference between measured and real thickness are below than 2%. This is considerably very low variation from original values. Therefore, verifying the neutron radiography technique used in this project.

  10. Study of pipe thickness loss using a neutron radiography method

    SciTech Connect

    Mohamed, Abdul Aziz; Wahab, Aliff Amiru Bin; Yazid, Hafizal B.; Ahmad, Megat Harun Al Rashid B. Megat; Jamro, Rafhayudi B.; Azman, Azraf B.; Zin, Muhamad Rawi Md; Idris, Faridah Mohamad

    2014-02-12

    The purpose of this preliminary work is to study for thickness changes in objects using neutron radiography. In doing the project, the technique for the radiography was studied. The experiment was done at NUR-2 facility at TRIGA research reactor in Malaysian Nuclear Agency, Malaysia. Test samples of varying materials were used in this project. The samples were radiographed using direct technique. Radiographic images were recorded using Nitrocellulose film. The films obtained were digitized to processed and analyzed. Digital processing is done on the images using software Isee!. The images were processed to produce better image for analysis. The thickness changes in the image were measured to be compared with real thickness of the objects. From the data collected, percentages difference between measured and real thickness are below than 2%. This is considerably very low variation from original values. Therefore, verifying the neutron radiography technique used in this project.

  11. The neutron moderated detector and groundbased cosmic ray modulation studies

    NASA Technical Reports Server (NTRS)

    Stoker, P. H.; Raubenheimer, B. C.

    1985-01-01

    Reports appear on modulation studies with the neutron monitor without lead. Some of these studies cast doubt on the reliability of this detector. The stability of the neutron moderated detector (NMD) at Sanae, Antarctic is discussed. The barometric coeficient of the 4NMD for epoch 1976 appears not to differ statistically from the 0.73%/mb of the 3NM64. The monthly averaged hourly counting rate of our 4NMD and 3NM64 correlates very well (correlation coefficient: 98%) over the years from 1974-1984, with the 4NMD showing a 8% larger long term modulation effect than the 3NM64, indicating a difference in sensitivities of the two detectors. From this difference in sensitivities spectra of ground level solar proton events and modulation functions of Forbush decreases are deduced.

  12. Experimental study on the performance of an epithermal neutron flux monitor for BNCT.

    PubMed

    Guan, Xingcai; Manabe, Masanobu; Tamaki, Shingo; Liu, Shuangtong; Sato, Fuminobu; Murata, Isao; Wang, Tieshan

    2016-07-01

    The performance of an epithermal neutron (0.5eVneutron capture therapy (BNCT) was experimentally studied by using a prototype monitor in an appropriate neutron field at the intense deuterium-tritium neutron source facility OKTAVIAN of Osaka University, Japan. It was convinced from the experimental results that the developed monitor worked well and the epithermal neutron fluxes in BNCT neutron sources can be measured within 5% by the monitor. PMID:27110926

  13. British Support for English Studies in Europe.

    ERIC Educational Resources Information Center

    British Council, London (England). English-Teaching Information Centre.

    This survey attempts to document British support for English Studies in Europe. "English Studies" is interpreted as covering English language, British literature in English, and appropriate background studies. The first part consists of short descriptions of the activities of the principal organizations active in this field: Association of…

  14. Explosives detection studies using Fast-Neutron Transmission Spectroscopy

    SciTech Connect

    Fink, C.L.; Micklich, B.J.; Sagalovsky, L.; Smith, D.L.; Yule, T.J.

    1996-12-31

    Fast-Neutron Transmission Spectroscopy (FNTS) is being investigated for detection of explosives in luggage or air cargo. We present here the principle results of a two-year study of a few-view tomographic FNTS system using the Monte Carlo radiation transport code MCNP to simulate neutron transmission through simple luggage phantoms and Receiver Operator Characteristic (ROC) curves to determine system performance. Elemental distributions along projections through the interrogated object are obtained by analyzing MCNP generated neutron transmission data. Transmission data for few (3-5) angles and relatively coarse resolution ({approximately}2 cm) are used to create a tomographic reconstruction of elemental distributions within the object. The elemental unfolding and tomographic reconstruction algorithms and the concept of transmission-derived cross sections for use in elemental analysis have been validated by application to experimental data. Elemental distributions are combined in an explosives detection algorithm to provide an indication of the presence or absence of explosives. The algorithm in current use, termed the ``equivalent explosive`` algorithm, determines the quantity of explosive that can be formed using the measured amount of the constituent elements in each pixel. Reconstruction and explosives detection algorithms have been applied to a series of randomly packed suitcases to generated ROC that describe system performance in terms of the probability of detection and of false alarms. System studies have been performed to study the operational characteristics and limitations of a FNTS system, and to determine the system`s sensitivity to several important parameters such as neutron source reaction and incident particle energy, flight path length, and the position of the interrogated object.

  15. a Study of Prompt Neutron Emission in Thermal Neutron-Induced Fission of URANIUM-235.

    NASA Astrophysics Data System (ADS)

    Franklyn, Christopher Barry

    An original experiment was performed to measure the angular correlation of fission neutrons from thermal -neutron-induced fission of ('235)U, with respect to the light fission fragment direction, as a function of fragment mass division and neutron energy. A Monte Carlo model, with a realistic description of the fission fragment de -excitation process, was developed to simulate the observed neutron-fragment angular correlation data. The model was capable of investigating various possible forms of neutron emission which were classified into emission before, during and after full fragment acceleration, and correspondingly named scission acceleration and prompt neutron emission. Simulated neutron-fragment angular correlations displaying similar distributions with respect to the light fragment direction for different forms of neutron emission are shown to exhibit differing distributions when examined as a function of fragment mass division or neutron energy, thus illustrating the sensitivity of the experiment to the forms of neutron emission occurring in fission. A primary conclusion of the investigation was that neutron emission solely from fully accelerated fragments, whether isotropically or anisotropically emitted in the fragment centre of mass system, was unable to adequately describe the observed neutron-fragment angular correlations. Simulation of the fission process with some neutron emission before or during fragment acceleration exhibited a closer correspondence with observed phenomena. Within the scope of this work the form of neutron emission that produced the closest overall correspondence with experimental data was a simulation in which 20% of the emitted neutrons were isotropically emitted scission neutrons with a Maxwellian energy distribution of temperature 1.0 MeV. The remaining neutrons were emitted from fully accelerated fragments, being isotropic in the fragment centre of mass frame, except for the n-th(n > 1) neutrons from the light fragment, which

  16. Neutron irradiated uranium silicides studied by neutron diffraction and Rietveld analysis

    SciTech Connect

    Birtcher, R.C.; Mueller, M.H.; Richardson, J.W. Jr.

    1990-11-01

    The irradiation behavior of high-density uranium silicides has been a matter of interest to the nuclear industry for use in high power or low enrichment applications. Transmission electron microscopy studies have found that heavy ion bombardment renders U{sub 3}Si and U{sub 3}Si{sub 2} amorphous at temperatures below about 250 C and that U{sub 3}Si becomes mechanically unstable suffering rapid growth by plastic flow. In this present work, crystallographic changes preceding amorphization by fission fragment damage have been studied by high-resolution neutron diffraction as a function of damage produced by uranium fission at room temperature. Initially, both silicides had tetragonal crystal structures. Crystallographic and amorphous phases were studied simultaneously by combining conventional Rietveld refinement of the crystallographic phases with Fourier-filtering analysis of the non-crystalline scattering component. 13 refs., 5 figs.

  17. Scissors Mode of 162 Dy Studied from Resonance Neutron Capture

    DOE PAGESBeta

    Baramsai, B.; Bečvář, F.; Bredeweg, T. A.; Haight, R. C.; Jandel, M.; Kroll, J.; Krtička, M.; Mitchell, G. E.; O’Donnell, J. M.; Rundberg, R. S.; et al

    2015-05-28

    Multi-step cascade γ-ray spectra from the neutron capture at isolated resonances of 161Dy nucleus were measured at the LANSCE/DANCE time-of-flight facility in Los Alamos National Laboratory. The objectives of this experiment were to confirm and possibly extend the spin assignment of s-wave neutron resonances and get new information on photon strength functions with emphasis on the role of the M1 scissors mode vibration. The preliminary results show that the scissors mode plays a significant role in all transitions between accessible states of the studied nucleus. The photon strength functions describing well our data are compared to results from 3He-induced reactions,more » (n,γ) experiments on Gd isotopes, and (γ,γ’) reactions.« less

  18. Scissors Mode of 162Dy Studied from Resonance Neutron Capture

    NASA Astrophysics Data System (ADS)

    Baramsai, B.; Bečvář, F.; Bredeweg, T. A.; Haight, R. C.; Jandel, M.; Kroll, J.; Krtička, M.; Mitchell, G. E.; O'Donnell, J. M.; Rundberg, R. S.; Ullmann, J. L.; Valenta, S.; Wilhelmy, J. B.

    2015-05-01

    Multi-step cascade γ-ray spectra from the neutron capture at isolated resonances of 161Dy nucleus were measured at the LANSCE/DANCE time-of-flight facility in Los Alamos National Laboratory. The objectives of this experiment were to confirm and possibly extend the spin assignment of s-wave neutron resonances and get new information on photon strength functions with emphasis on the role of the M1 scissors mode vibration. The preliminary results show that the scissors mode plays a significant role in all transitions between accessible states of the studied nucleus. The photon strength functions describing well our data are compared to results from 3He-induced reactions, (n,γ) experiments on Gd isotopes, and (γ,γ') reactions.

  19. Neutron and Synchrotron X-Ray Scattering Studies of Superconductors

    SciTech Connect

    Tranquada,J.M.

    2008-09-01

    Superconductors hold the promise for a more stable and efficient electrical grid, but new isotropic, high-temperature superconductors are needed in order to reduce cable manufacturing costs. The effort to understand high-temperature superconductivity, especially in the layered cuprates, provides guidance to the search for new superconductors. Neutron scattering has long provided an important probe of the collective excitations that are involved in the pairing mechanism. For the cuprates, neutron and x-ray diffraction techniques also provide information on competing types of order, such as charge and spin stripes, that appear to be closely connected to the superconductivity. Recently, inelastic x-ray scattering has become competitive for studying phonons and may soon provide valuable information on electronic excitations. Examples of how these techniques contribute to our understanding of superconductivity are presented.

  20. Systematic study on the performance of elliptic focusing neutron guides

    NASA Astrophysics Data System (ADS)

    Martin Rodriguez, D.; DiJulio, D. D.; Bentley, P. M.

    2016-02-01

    In neutron scattering experiments there is an increasing trend towards the study of smaller volume samples, which make the use of focusing optics more important. Focusing guide geometries based on conic-sections, such as those with parabolic and elliptic shapes, have been extensively used in both recently built neutron instruments and upgrades of existing hardware. A large fraction of proposed instruments at the European Spallation Source feature the requirement of good performance when measuring on small samples. The optimised design of a focusing system comes after time consuming Monte-Carlo (MC) simulations. Therefore, in order to help reduce the time needed to design such focusing systems, it is necessary to study systematically the performance of focusing guides. In the present work, we perform a theoretical analysis of the focusing properties of neutron beams, and validate them using a combination of Monte-Carlo simulations and Particle Swarm Optimisations (PSOs), where there is a close correspondence between the maximum divergence of the beam and the shape of the guide. The analytical results show that two limits can be considered, which bound a range of conic section shapes that provide optimum performance. Finally, we analyse a more realistic guide example and we give an assessment of the importance of the contribution from multiple reflections in different systems.

  1. Advanced Two-Dimensional Thermal Neutron Detectors for Scattering Studies

    SciTech Connect

    Fried, J.; Harder, J.; Mahler, G.J.; Makowiecki, D.S.; Mead, J.A.; Radeka, V.; Schaknowski, N.A.; Smith, G.C.; Yu, B.

    2002-11-18

    Advances in neutron scattering studies will be given a large boost with the advent of new spallation and reactor sources at present under consideration or construction. An important element for future experiments is a commensurate improvement in neutron detection techniques. At Brookhaven, a development program is under way for greatly increasing the angular coverage, rate capability and resolution of detectors for scattering studies. For example, a curved detector with angular coverage of 120{sup o} by 15{sup o} has recently been developed for protein crystallography at a spallation source. Based on neutron detection using {sup 3}He, the detector has the following major, new attributes: eight identical proportional wire segments operating in parallel, a single gas volume with seamless readout at segment boundaries, parallax errors eliminated in the horizontal plane by the detector's appropriate radius of curvature, high-throughput front-end electronics, position decoding based on high performance digital signal processing. The detector has a global rate capability greater than 1 million per second, position resolution less than 1.5 mm FWHM, timing resolution about 1 {micro}s, efficiency of 50% and 90% at 1{angstrom} and 4 {angstrom} respectively, and an active area 1.5 m x 20 cm.

  2. Optimization study for an epithermal neutron beam for boron neutron capture therapy at the University of Virginia Research Reactor

    SciTech Connect

    Burns, T.D. Jr.

    1995-05-01

    The non-surgical brain cancer treatment modality, Boron Neutron Capture Therapy (BNCT), requires the use of an epithermal neutron beam. This purpose of this thesis was to design an epithermal neutron beam at the University of Virginia Research Reactor (UVAR) suitable for BNCT applications. A suitable epithermal neutron beam for BNCT must have minimal fast neutron and gamma radiation contamination, and yet retain an appreciable intensity. The low power of the UVAR core makes reaching a balance between beam quality and intensity a very challenging design endeavor. The MCNP monte carlo neutron transport code was used to develop an equivalent core radiation source, and to perform the subsequent neutron transport calculations necessary for beam model analysis and development. The code accuracy was validated by benchmarking output against experimental criticality measurements. An epithermal beam was designed for the UVAR, with performance characteristics comparable to beams at facilities with cores of higher power. The epithermal neutron intensity of this beam is 2.2 {times} 10{sup 8} n/cm{sup 2} {center_dot} s. The fast neutron and gamma radiation KERMA factors are 10 {times} 10{sup {minus}11}cGy{center_dot}cm{sup 2}/n{sub epi} and 20 {times} 10{sup {minus}11} cGy{center_dot}cm{sup 2}/n{sub epi}, respectively, and the current-to-flux ratio is 0.85. This thesis has shown that the UVAR has the capability to provide BNCT treatments, however the performance characteristics of the final beam of this study were limited by the low core power.

  3. Structural Study of PMN-xPT by Neutron Diffraction

    NASA Astrophysics Data System (ADS)

    Phelan, D.; Gehring, P. M.; Huang, Q.; Ye, Z.-G.; Stock, C.; Xu, G.; Wen, J.

    2009-03-01

    Stark differences between x-ray and neutron measurements of the structures of ferroelectric-relaxors PMN-xPT ((1-x)Pb(Mg1/3Nb2/3)O3+xPbTiO3) and PZN-xPT (Z=Zn) have been reported [1]. One explanation for these differences is that these crystals have strained surface layers on the order of several tens of μm thick, the crystal structure of which differs from that of the crystal bulk. This phenomenon has been coined the ``anomalous skin effect'' but has been recently challenged [2] and thus remains controversial. We reinvestigated the skin effect in PMN-xPT by considering the possibility that the oxygen stoichiometry might play a role. Two sets of powders (x=0.1, 0.2, 0.3, and 0.4) were grown, one with and one without oxygen annealing, and high resolution neutron powder diffraction measurements were carried out for both sets. For a given x, both sets of powders have the same structural phase, suggesting that the effects of oxygen annealing are minimal. For x=0.1 and x=0.2 both sets of powders are rhombohedral, which contrasts with the single crystal neutron diffraction measurements. This supports a skin effect in that the grain size of the powders is small enough that the Bragg peaks are dominated by the strained surface layer. References [1] G. Xu et al., Phase Transitions 79, 135 (2006) [2] E. H. Kisi and J.S. Forrester, J. Phys.:Condens. Matter 17, L381 (2005)

  4. Quasi-elastic neutron scattering studies of protein dynamics

    SciTech Connect

    Rorschach, H.E.

    1993-05-25

    Results that shed new light on the study of protein dynamics were obtained by quasi-elastic neutron scattering. The triple axis instrument H-9 supplied by the cold source was used to perform a detailed study of the quasi-elastic spectrum and the Debye-Waller factor for trypsin in powder form, in solution, and in crystals. A preliminary study of myoglobin crystals was also done. A new way to view the results of quasi-elastic scattering experiments is sketched, and the data on trypsin are presented and analyze according to this new picture.

  5. The study of neutron burst shape of a neutron tube driven by dispenser cathode

    NASA Astrophysics Data System (ADS)

    Grishnyaev, Evgeny; Polosatkin, Sergey

    2016-08-01

    A slim-shaped portable DD-neutron generator is developed at Budker institute of Nuclear Physics. The generator is a combination of Cockcroft-Walton voltage multiplier and a sealed gas-filled neutron tube driven by dispenser cathode. Neutron burst shape in pulsed mode of neutron tube operation is measured with stroboscopic time spectrometry, implemented on scintillation detector, and modeled with Comsol Script 1.3 and Comsol Multiphysics 3.5. Modeling appears to be in good agreement with experimental results. Measured pulse rise and fall times are 110 ns and 100 ns respectively.

  6. Neutron Diffraction Studies of Intercritically Austempered Ductile Irons

    SciTech Connect

    Druschitz, Alan; Aristizabal, Ricardo; Druschitz, Edward; Hubbard, Camden R; Watkins, Thomas R

    2011-01-01

    Neutron diffraction is a powerful tool that can be used to identify the phases present and to measure the spacing of the atomic planes in a material. Thus, the residual stresses can be determined within a component and/or the phases present. New intercritically austempered irons rely on the unique properties of the austenite phase present in their microstructures. If these materials are to see widespread use, methods to verify the quality (behavior consistency) of these materials and to provide guidance for further optimization will be needed. Neutron diffraction studies were performed at the second generation neutron residual stress facility (NRSF2) at the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory on a variety of intercritically austempered irons. For similar materials, such as TRIP steels, the strengthening mechanism involves the transformation of metastable austenite to martensite during deformation. For the intercritically austempered ductile irons two different deformation/strengthening mechanisms, phase transformation and slip, dependent upon the iron chemistry, were observed. Lattice strain and phase fraction data as a function of applied stress are presented.

  7. Neutron scattering studies in the actinide region. Progress report, August 1, 1988--July 31, 1991

    SciTech Connect

    Beghian, L.E.; Kegel, G.H.R.

    1991-08-01

    During the report period we have investigated the following areas: Neutron elastic and inelastic scattering measurements on {sup 14}N, {sup 181}Ta, {sup 232}Th, {sup 238}U and {sup 239}Pu; Prompt fission spectra for {sup 232}Th, {sup 235}U, {sup 238}U and {sup 239}Pu; Theoretical studies of neutron scattering; Neutron filters; New detector systems; and Upgrading of neutron target assembly, data acquisition system, and accelerator/beam-line apparatus.

  8. Preparation of radioactive rare earth targets for neutron capture study

    SciTech Connect

    Miller, G. G.; Rogers, P. S. Z.; Palmer, P. D.; Dry, D. E.; Rundberg, R. S.; Fowler, Malcolm M.; Wilhelmy, J. B.

    2002-01-01

    The understanding of thc details of nucleosynthesis in stars remains a great challenge. Though the basic mechanisms governing the processes have been known since the pioneering work of Burbidge, Burbidge, Fowler and Hoyle (l), we are now evolving into a condition where we can ask more specific questions. Of particular interest are the dynamics of the s ('slow') process. In this process the general condition is one in which sequential neutron captures occur at time scales long compared with the beta decay half lives of the capturing nuclides. The nucleosynthesis period for C or Ne burning stellar shells is believed to be in the year to few year time frame (2). This means that radionuclides with similar half lives to this burning period serve as 'branch point' nuclides. That is, there will be a competition between a capture to the next heavier isotope and a beta decay to the element of nexl higher atomic number. By understanding the abundances of these competing reactions we can learn about the dynamics of the nucleosynthesis process in the stellar medium. Crucial to this understanding is that we have a knowledge of the underlying neutron reaction cross sections on these unstable nuclides in the relevant stellar energy regions (neutrons of 0.1-100 KeV). Tm (1.9 years) and ls'Sm (90 ycws) have decay properties that permit their handling in an open fume hood. These Iwo were therefore selected to be the first radionuclides for neutron capture study in what will be an ongoing effort.

  9. Developments in Neutron Spectrometry and Dosimetry in Support of the U.K. Naval Nuclear Propulsion Program

    SciTech Connect

    P. A. Beeley; N. M. Spyrou; J. M. Brushwood; A. M. Williams

    2000-11-12

    The Defence Radiological Protection Service (DRPS) is tasked with providing the approved dosimetry service to the Naval Nuclear Propulsion Program (NNPP). Within this requirement, DRPS operates a track-etch system for whole-body neutron dosimetry, using the well-known material polyally dyglycol carbonate as the sensitive element. These dosimeters have a number of limitations, including a high limit of detection (typically 200 microsieverts), insensitivity to low-energy neutrons, and a strong angular dependence. Such limitations, along with the incorporation of the recommendations of the International Commission on Radiological Protection (ICRP) 60 into the revised U.K. Ionizing Radiation Regulations 1999, have provided the opportunity to reconsider spectrometric and dosimetric research in support of the NNPP. Area neutron dosimetry is most usually performed using a Leake-type spherical survey meter. In both the case of area and, more significantly, personal dosimetry, the differences in the energy spectra between the calibration and the operational fields require a location correction factor (LCF) to be applied. To determine these LCFs, it is necessary to accurately characterize the operational energy spectra. This characterization is undertaken using the transportable neutron spectrometer (TNS) developed by the U.K. Atomic Energy Establishment at Winfrith in the 1980s. Our research has focused on two areas, the development of an improved TNS system and a complimentary program to design a new area survey meter.

  10. Neutron-induced reaction studies at FIGARO using a spallation source

    NASA Astrophysics Data System (ADS)

    Rochman, D.; Haight, R. C.; O'Donnell, J. M.; Devlin, M.; Ethvignot, T.; Granier, T.

    2004-05-01

    A description is given of the new flexible facility Fast Neutron-Induced Gamma-Ray Observer (FIGARO) at the Los Alamos Neutron Science Center. FIGARO is designed to study fast-neutron-induced reactions that result in the emission of γ rays and neutrons, using the white neutron beam of the Weapons Neutron Research Facility. The emitted neutrons and γ rays are detected by several liquid scintillators and one high-resolution germanium or one barium-fluoride detector, respectively. As an example, the inelastic neutron scattering on Si from 4 to 20 MeV is presented and the results are compared with predictions of the nuclear model calculations performed with the codes GNASH and EMPIRE II.

  11. Recent Advances in Neutron Physics

    ERIC Educational Resources Information Center

    Feshbach, Herman; Sheldon, Eric

    1977-01-01

    Discusses new studies in neutron physics within the last decade, such as ultracold neutrons, neutron bottles, resonance behavior, subthreshold fission, doubly radiative capture, and neutron stars. (MLH)

  12. Experimental Studies of Prompt Fission Neutron Energy Spectra

    NASA Astrophysics Data System (ADS)

    Sardet, A.; Granier, T.; Laurent, B.; Oberstedt, A.

    Prompt fission neutron spectra were measured in the reactions 238U(n,f), 235U(n,f) and 237Np(n,f) at different incident neutron energies. The neutrons were detected using a coaxial doped p-terphenyl scintillation detector in coincidence with fission fragments and their time-of-flight was recorded. The properties of the neutron detector were determined and the results are presented in this work. A preliminary neutron detection efficiency was applied to data from the neutron-induced fission of 238U at En = 5.2 MeV, leading to encouraging results.

  13. Study of a new central compact object: The neutron star in the supernova remnant G15.9+0.2

    NASA Astrophysics Data System (ADS)

    Klochkov, D.; Suleimanov, V.; Sasaki, M.; Santangelo, A.

    2016-08-01

    We present our study of the central point source CXOU J181852.0-150213 in the young Galactic supernova remnant (SNR) G15.9+0.2 based on the recent ~90 ks Chandra observations. The point source was discovered in 2005 in shorter Chandra observations and was hypothesized to be a neutron star associated with the SNR. Our X-ray spectral analysis strongly supports the hypothesis of a thermally emitting neutron star associated with G15.9+0.2. We conclude that the object belongs to the class of young cooling low-magnetized neutron stars referred to as central compact objects (CCOs). We modeled the spectrum of the neutron star with a blackbody spectral function and with our hydrogen and carbon neutron star atmosphere models, assuming that the radiation is uniformly emitted by the entire stellar surface. Under this assumption, only the carbon atmosphere models yield a distance that is compatible with a source located in the Galaxy. In this respect, CXOU J181852.0-150213 is similar to two other well-studied CCOs, the neutron stars in Cas A and in HESS J1731-347, for which carbon atmosphere models were used to reconcile their emission with the known or estimated distances.

  14. Equation of State in the σ - ω - ρ Model Supported by the Observational Data of 4U 1608-52 Neutron Star

    NASA Astrophysics Data System (ADS)

    Wen, De-Hua

    2010-01-01

    The properties of the neutron star rotating at 619Hz (which is the spin frequency of 4U 1608-52 neutron star) are investigated by using an equation of state (EOS) of the nuclear matter in the relativistic σ-ω-ρ model. It is shown that the EOS in the relativistic σ-ω-ρ model is supported by the observational mass and radius of the 4U 1608-52 neutron star. Moreover, a strict constraint on the polar redshift of 4U 1608-52 neutron star is obtained.

  15. Neutronic design studies for an unattended, low power reactor

    SciTech Connect

    Palmer, R.G.; Durkee, J.W. Jr.

    1986-01-01

    The Los Alamos National Laboratory is involved in the design and demonstrations of a small, long-lived nuclear heat and electric power source for potential applications at remote sites where alternate fossil energy systems would not be cost effective. This paper describes the neutronic design analysis that was performed to arrive at two conceptual designs, one using thermoelectric conversion, the other using an organic Rankine cycle. To meet the design objectives and constraints a number of scoping and optimization studies were carried out. The results of calculations of control worths, temperature coefficients of reactivity and fuel depletion effects are reported.

  16. The drying process of concrete: a neutron radiography study.

    PubMed

    de Beer, F C; Strydom, W J; Griesel, E J

    2004-10-01

    The natural drying process of concrete, which has a significant effect on its characteristics, for example durability, was studied at the neutron radiography facility at SAFARI-1 nuclear research reactor, operated by Necsa. Monitoring of the movement of the water in concrete samples, which were wet cured for one day and covered on all the sides but one, was done by means of a CCD camera system. In this paper the methodology in observing the drying process will be described together with results obtained from this investigation. The measured water content and porosity results were quantified and compared reasonably well with conventional gravimetrical measurements. PMID:15246408

  17. Solid phases of spatially nanoconfined oxygen: A neutron scattering study

    SciTech Connect

    Kojda, Danny; Wallacher, Dirk; Hofmann, Tommy; Baudoin, Simon; Hansen, Thomas; Huber, Patrick

    2014-01-14

    We present a comprehensive neutron scattering study on solid oxygen spatially confined in 12 nm wide alumina nanochannels. Elastic scattering experiments reveal a structural phase sequence known from bulk oxygen. With decreasing temperature cubic γ-, orthorhombic β- and monoclinic α-phases are unambiguously identified in confinement. Weak antiferromagnetic ordering is observed in the confined monoclinic α-phase. Rocking scans reveal that oxygen nanocrystals inside the tubular channels do not form an isotropic powder. Rather, they exhibit preferred orientations depending on thermal history and the very mechanisms, which guide the structural transitions.

  18. Solid phases of spatially nanoconfined oxygen: a neutron scattering study.

    PubMed

    Kojda, Danny; Wallacher, Dirk; Baudoin, Simon; Hansen, Thomas; Huber, Patrick; Hofmann, Tommy

    2014-01-14

    We present a comprehensive neutron scattering study on solid oxygen spatially confined in 12 nm wide alumina nanochannels. Elastic scattering experiments reveal a structural phase sequence known from bulk oxygen. With decreasing temperature cubic γ-, orthorhombic β- and monoclinic α-phases are unambiguously identified in confinement. Weak antiferromagnetic ordering is observed in the confined monoclinic α-phase. Rocking scans reveal that oxygen nanocrystals inside the tubular channels do not form an isotropic powder. Rather, they exhibit preferred orientations depending on thermal history and the very mechanisms, which guide the structural transitions. PMID:24437900

  19. Neutron diffraction study of the deuterides of Ti Mo alloys

    NASA Astrophysics Data System (ADS)

    Sun, Kai; Yuan, Xuezhong; Wu, Erdong; Chen, Dongfeng; Gou, Cheng

    2006-11-01

    The structures of the deuterides of seven Ti-Mo alloys with different Mo contents ranging from 5 to 40 at% are studied by neutron diffraction. After deuterization at ∼150 kPa, the saturated deuterides containing ∼1.8-1.9 deuterium per alloy atom with a δ-phase titanium hydride type of structure have formed. The lattice constants of the deuterides decrease consistently with the increase of Mo content. The analysis of the line broadening of the diffraction patterns has revealed the relationship between lattice deformation and the contents of the alloying Mo in the deuterides.

  20. Infrared absorption study of neutron-transmutation-doped germanium

    NASA Technical Reports Server (NTRS)

    Park, I. S.; Haller, E. E.

    1988-01-01

    Using high-resolution far-infrared Fourier transform absorption spectroscopy and Hall effect measurements, the evolution of the shallow acceptor and donor impurity levels in germanium during and after the neutron transmutation doping process was studied. The results show unambiguously that the gallium acceptor level concentration equals the concentration of transmutated Ge-70 atoms during the whole process indicating that neither recoil during transmutation nor gallium-defect complex formation play significant roles. The arsenic donor levels appear at full concentration only after annealing for 1 h at 450 C. It is shown that this is due to donor-radiation-defect complex formation. Again, recoil does not play a significant role.

  1. Precision Neutron Decay Studies with the Nab and UCNB Experiments

    NASA Astrophysics Data System (ADS)

    Sprow, Aaron; Nab Collaboration; UCNB Collaboration

    2016-03-01

    Precision neutron decay correlation experiments are a sensitive means to study the standard model and probe for beyond the standard model physics. Nab and UCNB are two such experiments that will measure the neutrino-electron correlation term, a, and the neutrino asymmetry, B, respectively. Thick, highly-segmented silicon detectors will be used to directly measure the proton and electron from each decay event in coincidence, leading to the extraction of these angular correlations. Preliminary work to understand the systematic uncertainties associated with these experiments, as well as the early analysis of data taken from the 2015-2016 beam time at Los Alamos National Laboratory will be presented.

  2. STUDY OF A 10-MW CONTINUOUS SPALLATION NEUTRON SOURCE.

    SciTech Connect

    RUGGIERO,A.G.LUDEWIG,H.SHAPIRO,S.

    2003-05-12

    This paper reports on the feasibility study of a proton Super-Conducting Linac as the driver for an Accelerator-based Continuous Neutron Source (ACNS) [1] to be located at Brookhaven National Laboratory (BNL). The Linac is to be operated in the Continuous Wave (CW) mode to produce an average 10 MW of beam power. The Linac beam energy is taken to be 1.25 GeV. The required average proton beam intensity in exit is then 8 mA.

  3. Electrostatic levitation facility optimized for neutron diffraction studies of high temperature liquids at a spallation neutron source

    DOE PAGESBeta

    Mauro, N. A.; Vogt, A. J.; Derendorf, K. S.; Johnson, M. L.; Rustan, G. E.; Quirinale, D. G.; Kreyssig, A.; Lokshin, K. A.; Neuefeind, J. C.; An, Ke; et al

    2016-01-01

    Neutron diffraction studies of metallic liquids provide valuable information about inherent topological and chemical ordering on multiple length scales as well as insight into dynamical processes at the level of a few atoms. But, there exist very few facilities in the world that allow such studies to be made of reactive metallic liquids in a containerless environment, and these are designed for use at reactor-based neutron sources. We present an electrostatic levitation facility, NESL (for Neutron ElectroStatic Levitator), which takes advantage of the enhanced capabilities and increased neutron flux available at spallation neutron sources (SNSs). NESL enables high quality elasticmore » and inelastic neutron scattering experiments to be made of reactive metallic and other liquids in the equilibrium and supercooled temperature regime. The apparatus is comprised of a high vacuum chamber, external and internal neutron collimation optics, and a sample exchange mechanism that allows up to 30 samples to be processed between chamber openings. Two heating lasers allow excellent sample temperature homogeneity, even for samples approaching 500 mg, and an automated temperature control system allows isothermal measurements to be conducted for times approaching 2 h in the liquid state, with variations in the average sample temperature of less than 0.5%. Furthermore, to demonstrate the capabilities of the facility for elastic scattering studies of liquids, a high quality total structure factor for Zr64Ni36 measured slightly above the liquidus temperature is presented from experiments conducted on the nanoscale-ordered materials diffractometer (NOMAD) beam line at the SNS after only 30 min of acquisition time for a small sample ( 100 mg).« less

  4. Electrostatic levitation facility optimized for neutron diffraction studies of high temperature liquids at a spallation neutron source

    SciTech Connect

    Mauro, N. A.; Vogt, A. J.; Derendorf, K. S.; Johnson, M. L.; Rustan, G. E.; Quirinale, D. G.; Kreyssig, A.; Lokshin, K. A.; Neuefeind, J. C.; An, Ke; Wang, Xun-Li; Goldman, A. I.; Egami, T.; Kelton, K. F.

    2016-01-01

    Neutron diffraction studies of metallic liquids provide valuable information about inherent topological and chemical ordering on multiple length scales as well as insight into dynamical processes at the level of a few atoms. But, there exist very few facilities in the world that allow such studies to be made of reactive metallic liquids in a containerless environment, and these are designed for use at reactor-based neutron sources. We present an electrostatic levitation facility, NESL (for Neutron ElectroStatic Levitator), which takes advantage of the enhanced capabilities and increased neutron flux available at spallation neutron sources (SNSs). NESL enables high quality elastic and inelastic neutron scattering experiments to be made of reactive metallic and other liquids in the equilibrium and supercooled temperature regime. The apparatus is comprised of a high vacuum chamber, external and internal neutron collimation optics, and a sample exchange mechanism that allows up to 30 samples to be processed between chamber openings. Two heating lasers allow excellent sample temperature homogeneity, even for samples approaching 500 mg, and an automated temperature control system allows isothermal measurements to be conducted for times approaching 2 h in the liquid state, with variations in the average sample temperature of less than 0.5%. Furthermore, to demonstrate the capabilities of the facility for elastic scattering studies of liquids, a high quality total structure factor for Zr64Ni36 measured slightly above the liquidus temperature is presented from experiments conducted on the nanoscale-ordered materials diffractometer (NOMAD) beam line at the SNS after only 30 min of acquisition time for a small sample ( 100 mg).

  5. Electrostatic levitation facility optimized for neutron diffraction studies of high temperature liquids at a spallation neutron source

    NASA Astrophysics Data System (ADS)

    Mauro, N. A.; Vogt, A. J.; Derendorf, K. S.; Johnson, M. L.; Rustan, G. E.; Quirinale, D. G.; Kreyssig, A.; Lokshin, K. A.; Neuefeind, J. C.; An, Ke; Wang, Xun-Li; Goldman, A. I.; Egami, T.; Kelton, K. F.

    2016-01-01

    Neutron diffraction studies of metallic liquids provide valuable information about inherent topological and chemical ordering on multiple length scales as well as insight into dynamical processes at the level of a few atoms. However, there exist very few facilities in the world that allow such studies to be made of reactive metallic liquids in a containerless environment, and these are designed for use at reactor-based neutron sources. We present an electrostatic levitation facility, NESL (for Neutron ElectroStatic Levitator), which takes advantage of the enhanced capabilities and increased neutron flux available at spallation neutron sources (SNSs). NESL enables high quality elastic and inelastic neutron scattering experiments to be made of reactive metallic and other liquids in the equilibrium and supercooled temperature regime. The apparatus is comprised of a high vacuum chamber, external and internal neutron collimation optics, and a sample exchange mechanism that allows up to 30 samples to be processed between chamber openings. Two heating lasers allow excellent sample temperature homogeneity, even for samples approaching 500 mg, and an automated temperature control system allows isothermal measurements to be conducted for times approaching 2 h in the liquid state, with variations in the average sample temperature of less than 0.5%. To demonstrate the capabilities of the facility for elastic scattering studies of liquids, a high quality total structure factor for Zr64Ni36 measured slightly above the liquidus temperature is presented from experiments conducted on the nanoscale-ordered materials diffractometer (NOMAD) beam line at the SNS after only 30 min of acquisition time for a small sample (˜100 mg).

  6. Electrostatic levitation facility optimized for neutron diffraction studies of high temperature liquids at a spallation neutron source.

    PubMed

    Mauro, N A; Vogt, A J; Derendorf, K S; Johnson, M L; Rustan, G E; Quirinale, D G; Kreyssig, A; Lokshin, K A; Neuefeind, J C; An, Ke; Wang, Xun-Li; Goldman, A I; Egami, T; Kelton, K F

    2016-01-01

    Neutron diffraction studies of metallic liquids provide valuable information about inherent topological and chemical ordering on multiple length scales as well as insight into dynamical processes at the level of a few atoms. However, there exist very few facilities in the world that allow such studies to be made of reactive metallic liquids in a containerless environment, and these are designed for use at reactor-based neutron sources. We present an electrostatic levitation facility, NESL (for Neutron ElectroStatic Levitator), which takes advantage of the enhanced capabilities and increased neutron flux available at spallation neutron sources (SNSs). NESL enables high quality elastic and inelastic neutron scattering experiments to be made of reactive metallic and other liquids in the equilibrium and supercooled temperature regime. The apparatus is comprised of a high vacuum chamber, external and internal neutron collimation optics, and a sample exchange mechanism that allows up to 30 samples to be processed between chamber openings. Two heating lasers allow excellent sample temperature homogeneity, even for samples approaching 500 mg, and an automated temperature control system allows isothermal measurements to be conducted for times approaching 2 h in the liquid state, with variations in the average sample temperature of less than 0.5%. To demonstrate the capabilities of the facility for elastic scattering studies of liquids, a high quality total structure factor for Zr64Ni36 measured slightly above the liquidus temperature is presented from experiments conducted on the nanoscale-ordered materials diffractometer (NOMAD) beam line at the SNS after only 30 min of acquisition time for a small sample (∼100 mg). PMID:26827330

  7. Decay studies of the highly neutron-deficient indium isotopes

    SciTech Connect

    Wouters, J.M.

    1982-02-01

    An extension of the experimentally known nuclidic mass surface to nuclei far from the region of beta-stability is of fundamental interest in providing a better determination of the input parameters for the various nuclear mass formulae, allowing a more accurate prediction of the ultimate limits of nuclear stability. In addition, a study of the shape of the mass surface in the vicinity of the doubly-closed nuclide /sup 100/Sn provides initial information on the behavior of the shell closure to be expected when Z = N = 50. Experiments measuring the decay energies of /sup 103/ /sup 105/In by ..beta..-endpoint measurements are described with special attention focused on the development of a plastic scintillator ..beta..-telescope coupled to the on-line mass separator RAMA (Recoil Atom Mass Analyzer). An attempt to measure the ..beta..-endpoint energy of /sup 102/In is also briefly described. The experimentally determined decay energies and derived masses for /sup 103/ /sup 105/In are compared with the predictions of different mass models to identify which models are more successful in this region. Furthermore, the inclusion in these comparisons of the available data on the neutron-rich indium nuclei permits a systematic study of their ground state mass behavior as a function of the neutron number between the shell closures at N = 50 and N = 82. These analyses indicate that the binding energy of /sup 103/In is 1 MeV larger than predicted by the majority of the mass models. An examination of the Q/sub EC/ surface and the single- and two-neutron separation energies in the vicinity of /sup 103/ /sup 105/In is also performed to investigate further the deviation and other possible systematic variations in the mass surface in a model-independent way.

  8. Polarized Neutron Studies on Antiferromagnetic Single Crystals: Technical Report No. 4

    DOE R&D Accomplishments Database

    Nathans, R.; Riste, T.; Shirane, G.; Shull, C.G.

    1958-11-26

    The theory of neutron scattering by magnetic crystals as given by Halpern and Johnson predicts changes in the polarization state of the neutron beam upon scattering which depend upon the relative orientation of the neutron polarization vector and the crystal magnetic axis. This was investigated experimentally with a polarized beam spectrometer using single crystals of Cr{sub 2}O{sub 3} and alpha - Fe{sub 2}O{sub 3} in which reside unique antiferromagnetic axes. Studies were made on several different reflections in both crystals for a number of different temperatures both below and above the Neel point. Results support the theoretical predictions and indicate directions for the moments in these crystals consistent with previous work. A more detailed study of the polarization changes in the (111) reflection in alpha - Fe{sub 2}O{sub 3} at room temperature on application of a magnetic field was carried out, The results indicate that the principal source of the parasitic ferromagnetism in hematite is essentially independent of the orientation of the antiferromagnetic domains within the crystal.

  9. Studies of Neutron-Induced Fission of 235U, 238U, and 239Pu

    NASA Astrophysics Data System (ADS)

    Duke, Dana; TKE Team

    2014-09-01

    A Frisch-gridded ionization chamber and the double energy (2E) analysis method were used to study mass yield distributions and average total kinetic energy (TKE) release from neutron-induced fission of 235U, 238U, and 239Pu. Despite decades of fission research, little or no TKE data exist for high incident neutron energies. Additional average TKE information at incident neutron energies relevant to defense- and energy-related applications will provide a valuable observable for benchmarking simulations. The data can also be used as inputs in theoretical fission models. The Los Alamos Neutron Science Center-Weapons Neutron Research (LANSCE - WNR) provides a neutron beam from thermal to hundreds of MeV, well-suited for filling in the gaps in existing data and exploring fission behavior in the fast neutron region. The results of the studies on 238U, 235U, and 239Pu will be presented. LA-UR-14-24921.

  10. 5 MW pulsed spallation neutron source, Preconceptual design study

    SciTech Connect

    Not Available

    1994-06-01

    This report describes a self-consistent base line design for a 5 MW Pulsed Spallation Neutron Source (PSNS). It is intended to establish feasibility of design and as a basis for further expanded and detailed studies. It may also serve as a basis for establishing project cost (30% accuracy) in order to intercompare competing designs for a PSNS not only on the basis of technical feasibility and technical merit but also on the basis of projected total cost. The accelerator design considered here is based on the objective of a pulsed neutron source obtained by means of a pulsed proton beam with average beam power of 5 MW, in {approx} 1 {mu}sec pulses, operating at a repetition rate of 60 Hz. Two target stations are incorporated in the basic facility: one for operation at 10 Hz for long-wavelength instruments, and one operating at 50 Hz for instruments utilizing thermal neutrons. The design approach for the proton accelerator is to use a low energy linear accelerator (at 0.6 GeV), operating at 60 Hz, in tandem with two fast cycling booster synchrotrons (at 3.6 GeV), operating at 30 Hz. It is assumed here that considerations of cost and overall system reliability may favor the present design approach over the alternative approach pursued elsewhere, whereby use is made of a high energy linear accelerator in conjunction with a dc accumulation ring. With the knowledge that this alternative design is under active development, it was deliberately decided to favor here the low energy linac-fast cycling booster approach. Clearly, the present design, as developed here, must be carried to the full conceptual design stage in order to facilitate a meaningful technology and cost comparison with alternative designs.

  11. Neutron scatter studies of chromatin structures related to functions

    SciTech Connect

    Bradbury, E.M.

    1991-01-01

    We have completed a study on the structure of trypsin trimmed histone octamers using small angle neutron and X-ray scattering studies and nuclear magnetic resonance. We have also completed studies on the structure of TFIIIA induced DNA bending by a circular permutation gel electrophoresis assay. Individual acetylated species of core histones from butyrate treated HeLa cells were isolated and reconstituted into nucleosomes using a 5S rDNA nucleosome positioning DNA sequence from sea urchin. These nucleosomes were characterized by sulfhydryl group probing, nucleoprotein particle gel electrophoresis and DNase I footprinting. Fully acetylated species of histones H3 and H4 were also reconstituted in closed circular minichromosomes and the effect of DNA topology changes caused by acetylation was studied. Finally, protamines isolated from human sperm were characterized and a full set of core histones were isolated and characterized. 7 refs.

  12. Neutron beam studies for a medical therapy reactor.

    PubMed

    Neuman, W A

    1990-01-01

    A conceptual design of a Medical Therapy Reactor (MTR) for neutron capture therapy (NCT) has been performed at the Idaho National Engineering Laboratory (INEL). The initial emphasis of the conceptual design was toward the treatment of glioblastoma multiforme and other presently incurable cancers. The design goal of the facility is to provide routine patient treatments both in brief time intervals (approximately 10 minutes) and inexpensively. The conceptual study has shown this goal to be achievable by locating an MTR at a major medical facility. This paper addresses the next step in the conceptual design process: a guide to the optimization of the epithermal-neutron filter and collimator assembly for the treatment of brain tumors. The current scope includes the sensitivity of the treatment beam to variations in filter length, gamma shield length, and collimator lengths as well as exit beam aperture size. The study shows the areas which can provide the greatest latitude in improving beam intensity and quality. Suggestions are given for future areas of optimization of beam filtering and collimation. PMID:2268234

  13. Inelastic neutron scattering studies of novel quantum magnets

    NASA Astrophysics Data System (ADS)

    Plumb, Kemp W.

    Inelastic neutron scattering was used to study the magnetic excitation spectrum of three quantum magnets: (i) the double perovskite Ba2FeReO 6; (ii) the two-dimensional square lattice Heisenberg antiferromagnet Sr2CuO2Cl2; and (iii) the quasi-two-dimensional frustrated two-leg ladder BiCu2PO6. We have conducted inelastic neutron scattering measurements on powder samples of the double perovskite compound Ba2FeReO6. The measurements revealed two well defined dispersing spin wave modes. No excitation gap was observable and the spectrum can be explained with a local moment model incorporating the interactions of Fe spins with spin-orbital locked degrees of freedom on the Re site. The results reveal that both significant electronic correlations and spin-orbit coupling on the Re site play a significant role in the spin dynamics of Ba2FeReO6. High resolution neutron scattering measurements of magnetic excitations in the parent cuprate Sr2CuO2Cl2 reveal a significant dispersion and momentum dependent damping of the zone boundary magnons. We directly compare our measurements with previous resonant inelastic x-ray scattering measurements and find a ~25 meV discrepancy between the two techniques for the measured zone boundary energy at (1/2, 0). The deviations are greatest precisely in the region of phase space where the magnon damping is strongest. This comparison shows that the inelastic x-ray spectrum must contain significant contributions from higher energy excitations not previously considered. Our measurements demonstrate that the high energy continuum of magnetic fluctuations is a ubiquitous feature of the magnetic spectrum among insulating monolayer cuprates, and that these excitations couple to both inelastic neutron and light scattering. A comprehensive series of inelastic neutron scattering measurements was used to investigate spin excitations in the frustrated two-leg ladder compound BiCu2PO6. The measurements revealed six branches of steeply dispersing triplon

  14. Structure of molten Al and eutectic Al-Si alloy studied by neutron diffraction

    SciTech Connect

    Dahlborg, U.; Kramer, Matthew J.; Besser, M.; Morris, J. R.; Calvo-Dahlborg, M.

    2012-11-24

    The structure of molten eutectic Al87.8Si12.2 alloy has been studied by neutron diffraction during a temperature cycle. For comparison measurements were performed on pure molten Al. The measurements show that the alloy after heating above the liquidus contains particles of two kinds, aluminum-rich and silicon-rich. The silicon-rich particles are partly dissolved after a further heating. Earlier published data obtained by the γ-ray absorption technique of the density of the molten eutectic Al–Si alloy had demonstrated the existence of two temperatures above the liquidus temperature: A dissolution temperature Td, at which the microstructure of the melt inherited from the ingot starts to dissolve and a branching temperature, Tb, at which the melt reaches a fully mixed state. The highest temperature that was possible to reach during the neutron experiments lies between Td and Tb. The obtained results support these conclusions that molten alloys after melting are inhomogeneous up to a temperature well above the liquidus. Moreover, the difference in shape between the static structure factors measured by neutron and X-ray diffraction on molten aluminum is observed and is found to be more accentuated and to extend to larger wavevectors than in earlier works.

  15. Neutron scatter studies of chromatin structures related to functions

    SciTech Connect

    Bradbury, E.M.

    1992-01-01

    We have made considerable progress in chromatin reconstitution with very lysine rich histone H1/H5 and in understanding the dynamics of nucleosomes. A ferromagnetic fluid was developed to align biological molecules for structural studies using small-angle-neutron-scattering. We have also identified and characterized in intrinsically bent DNA region flaking the RNA polymerase I binding site of the ribosomal RNA gene in Physarum Polycephalum. Finally projects in progress are in the areas of studying the interactions of histone H4 amino-terminus peptide 1-23 and acetylated 1-23 peptide with DNA using thermal denaturation; study of GGAAT repeats found in human centromeres using high resolution Nuclear Magnetic Resonance and nuclease sentivity assay; and the role of histones and other sperm specific proteins with sperm chromatin.

  16. The physics experimental study for in-hospital neutron irradiator

    SciTech Connect

    Li Yiguo; Xia Pu; Zou Shuyun; Zhang Yongbao; Zheng Iv; Zheng Wuqing; Shi Yongqian; Gao Jijin; Zhou Yongmao

    2008-07-15

    MNSRs (Miniature Neutron Source Reactor) are low power research reactors designed and manufactured by China Institute of Atomic Energy (CIAE). MNSRs are mainly used for NAA, training and teaching, testing of nuclear instrumentation. The first MNSR, the prototype MNSR, was put into operation in 1984, later, eight other MNSRs had been built both at home and abroad. For MNSRs, highly enriched uranium (90%) is used as the fuel material. The In-Hospital Neutron Irradiator (IHNI) is designed for Boron Neutron Capture Therapy (BNCT) based on Miniature Neutron Source Reactor(MNSR). On both sides of the reactor core, there are two neutron beams, one is thermal neutron beam, and the other opposite to the thermal beam, is epithermal neutron beam. A small thermal neutron beam is specially designed for the measurement of blood boron concentration by the prompt gamma neutron activation analysis (PGNAA). In this paper, the experimental results of critical mass worth of the top Be reflectors worth of the control rod, neutron flux distribution and other components worth were measured, the experiment was done on the Zero Power Experiment equipment of MNSR. (author)

  17. Enzymes for carbon sequestration: neutron crystallographic studies of carbonic anhydrase

    SciTech Connect

    Fisher, S. Z. Kovalevsky, A. Y.; Domsic, J.; Mustyakimov, M.; Silverman, D. N.; McKenna, R.; Langan, P.

    2010-11-01

    The first neutron crystal structure of carbonic anhydrase is presented. The structure reveals interesting and unexpected features of the active site that affect catalysis. Carbonic anhydrase (CA) is a ubiquitous metalloenzyme that catalyzes the reversible hydration of CO{sub 2} to form HCO{sub 3}{sup −} and H{sup +} using a Zn–hydroxide mechanism. The first part of catalysis involves CO{sub 2} hydration, while the second part deals with removing the excess proton that is formed during the first step. Proton transfer (PT) is thought to occur through a well ordered hydrogen-bonded network of waters that stretches from the metal center of CA to an internal proton shuttle, His64. These waters are oriented and ordered through a series of hydrogen-bonding interactions to hydrophilic residues that line the active site of CA. Neutron studies were conducted on wild-type human CA isoform II (HCA II) in order to better understand the nature and the orientation of the Zn-bound solvent (ZS), the charged state and conformation of His64, the hydrogen-bonding patterns and orientations of the water molecules that mediate PT and the ionization of hydrophilic residues in the active site that interact with the water network. Several interesting and unexpected features in the active site were observed which have implications for how PT proceeds in CA.

  18. Neutron Reflectometry Studies Define Prion Protein N-terminal Peptide Membrane Binding

    PubMed Central

    Le Brun, Anton P.; Haigh, Cathryn L.; Drew, Simon C.; James, Michael; Boland, Martin P.; Collins, Steven J.

    2014-01-01

    The prion protein (PrP), widely recognized to misfold into the causative agent of the transmissible spongiform encephalopathies, has previously been shown to bind to lipid membranes with binding influenced by both membrane composition and pH. Aside from the misfolding events associated with prion pathogenesis, PrP can undergo various posttranslational modifications, including internal cleavage events. Alpha- and beta-cleavage of PrP produces two N-terminal fragments, N1 and N2, respectively, which interact specifically with negatively charged phospholipids at low pH. Our previous work probing N1 and N2 interactions with supported bilayers raised the possibility that the peptides could insert deeply with minimal disruption. In the current study we aimed to refine the binding parameters of these peptides with lipid bilayers. To this end, we used neutron reflectometry to define the structural details of this interaction in combination with quartz crystal microbalance interrogation. Neutron reflectometry confirmed that peptides equivalent to N1 and N2 insert into the interstitial space between the phospholipid headgroups but do not penetrate into the acyl tail region. In accord with our previous studies, interaction was stronger for the N1 fragment than for the N2, with more peptide bound per lipid. Neutron reflectometry analysis also detected lengthening of the lipid acyl tails, with a concurrent decrease in lipid area. This was most evident for the N1 peptide and suggests an induction of increased lipid order in the absence of phase transition. These observations stand in clear contrast to the findings of analogous studies of Ab and α-synuclein and thereby support the possibility of a functional role for such N-terminal fragment-membrane interactions. PMID:25418300

  19. Neutron scattering studies on chromatin higher-order structure

    SciTech Connect

    Graziano, V.; Gerchman, S.E.; Schneider, D.K.; Ramakrishnan, V.

    1994-12-31

    We have been engaged in studies of the structure and condensation of chromatin into the 30nm filament using small-angle neutron scattering. We have also used deuterated histone H1 to determine its location in the chromatin 30nm filament. Our studies indicate that chromatin condenses with increasing ionic strength to a limiting structure that has a mass per unit length of 6-7 nucleosomes/11 nm. They also show that the linker histone H1/H5 is located in the interior of the chromatin filament, in a position compatible with its binding to the inner face of the nucleosome. Analysis of the mass per unit length as a function of H5 stoichiometry suggests that 5-7 contiguous nucleosomes need to have H5 bound before a stable higher order structure can exist.

  20. Design study of a medical proton linac for neutron therapy

    SciTech Connect

    Machida, S.; Raparia, D.

    1988-08-26

    This paper describes a design study which establishes the physical parameters of the low energy beam transport, radiofrequency quadrupole, and linac, using computer programs available at Fermilab. Beam dynamics studies verify that the desired beam parameters can be achieved. The machine described here meets the aforementioned requirements and can be built using existing technology. Also discussed are other technically feasible options which could be attractive to clinicians, though they would complicate the design of the machine and increase construction costs. One of these options would allow the machine to deliver 2.3 MeV protons to produce epithermal neutrons for treating brain tumors. A second option would provide 15 MeV protons for isotope production. 21 refs., 33 figs.

  1. Studying 10Be and 11Be Halo States through the (p,d) Single-Neutron Transfer Reaction

    NASA Astrophysics Data System (ADS)

    Kuhn, Keri; Sarazin, Fred; (Pcb)2 Collaboration; Tigress Collaboration

    2015-10-01

    One-neutron transfer reactions are being used to study single-particle neutron states in nuclei. For one-neutron halo nuclei, such as 11Be, the (p,d) reaction enables the removal of the halo neutron or of one of the core neutrons. This way, it is possible to simultaneously study the halo wavefunction of the 11Be ground-state but also a possible excited halo state in 10Be. The 11Be(p, d)10Be transfer reaction at 10 MeV/nucleon is being investigated at the TRIUMF-ISAC II facility with the Printed Circuit Board Based Charged Particle ((PCB)2) array inside the TRIUMF ISAC Gamma-Ray Escape-Suppressed Spectrometer (TIGRESS). The ground state and first excited state of 10Be can be directly identified using deuteron identification and kinematics from the charged particle array, while the four excited states in10Be around 6 MeV, including the suspected halo state (2- state), are identified using coincident gamma rays from TIGRESS with the identified deuterons. Angular distributions for the 10Be populated states will be shown along with their FRESCO fits. This work is partially supported by the US Department of Energy through Grant/Contract No. DE-FG03-93ER40789 (Colorado School of Mines).

  2. Materials Compatibility Studies for the Spallation Neutron Source

    SciTech Connect

    DiStefano, J.R.; Manneschmidt, E.T.; Pawel, S.J.

    1998-09-01

    The Spallation Neutron Source (SNS) is a high power facility for producing neutrons that utilizes flowing liquid mercury inside an austenitic stainless steel container as the target for a 1.0 GeV proton beam. The energy deposited in the target is transported by two separate mercury flow streams: one to transport heat in the interior target region and one to cool the stainless steel container. Three-dimensional computational fluid dynamics simulations have been performed to predict temperature, velocity, and pressure distributions in the target. Results have generally shown that the power deposited in the bulk mercury can be effectively transported with reasonable flow rates and the bulk mercury temperature should not exceed 160{deg}C. Assuming good thermal contact, the maximum stainless steel wall temperature should be 130 {deg}C. Type 316 SS has been selected as the container material for the mercury and consequences of exposure of 316 SS to radiation, thermal shock, thermal stress, cavitation and hot, flowing mercury are all being addressed by R&D programs. In addition, corrosion studies include evaluation of Inconel 718 because it has been successfully used in previous water cooled spallation neutron systems as a window material. With type 316 SS selected to contain the mercury target of the SNS, two types of compatibility issues have been examined: LME and temperature gradient mass transfer. Studies have shown that mercury does not easily wet type 316 SS below 275{deg}C. In the LME experiments, attempts were made to promote wetting of the steel by mercury either by adding gallium to the mercury or coating the specimen with a tin-silver solder that the mercury easily wets. The latter proved more reliable in establishing wetting, but there was no evidence of LME in any of the constant extension rate tensile tests either at 23 or 100 {deg}C. Inconel 718 also showed no change in room temperature properties when tested in mercwy or mercury-gallium. However, there

  3. A critical assembly designed to measure neutronic benchmarks in support of the Space Nuclear Thermal Propulsion program

    NASA Astrophysics Data System (ADS)

    Parma, E. J.; Ball, R. M.; Hoovler, G. S.; Selcow, E. C.; Cerbone, R. J.

    1992-10-01

    A reactor designed to perform criticality experiments in support of the Space Nuclear Thermal Propulsion program is currently in operation at the Sandia National Laboratories' reactor facility. The reactor is a small, water-moderated system that uses highly enriched uranium particle fuel in a 19-element configuration. Its purpose is to obtain neutronic measurements under a variety of experimental conditions that are subsequently used to benchmark reactor-design computer codes. Brookhaven National Laboratory, Babcock & Wilcox, and Sandia National Laboratories participated in determining the reactor's performance requirements, design, follow on experimentation, and in obtaining the licensing approvals. Brookhaven National Laboratory is primarily responsible for the analytical support, Babcock & Wilcox the hardware design, and Sandia National Laboratories the operational safety. All of the team members participate in determining the experimentation requirements, performance, and data reduction. Initial criticality was achieved in October 1989. An over-all description of the reactor is presented along with key design features and safety-related aspects.

  4. Assured Mission Support Space Architecture (AMSSA) study

    NASA Technical Reports Server (NTRS)

    Hamon, Rob

    1993-01-01

    The assured mission support space architecture (AMSSA) study was conducted with the overall goal of developing a long-term requirements-driven integrated space architecture to provide responsive and sustained space support to the combatant commands. Although derivation of an architecture was the focus of the study, there are three significant products from the effort. The first is a philosophy that defines the necessary attributes for the development and operation of space systems to ensure an integrated, interoperable architecture that, by design, provides a high degree of combat utility. The second is the architecture itself; based on an interoperable system-of-systems strategy, it reflects a long-range goal for space that will evolve as user requirements adapt to a changing world environment. The third product is the framework of a process that, when fully developed, will provide essential information to key decision makers for space systems acquisition in order to achieve the AMSSA goal. It is a categorical imperative that military space planners develop space systems that will act as true force multipliers. AMSSA provides the philosophy, process, and architecture that, when integrated with the DOD requirements and acquisition procedures, can yield an assured mission support capability from space to the combatant commanders. An important feature of the AMSSA initiative is the participation by every organization that has a role or interest in space systems development and operation. With continued community involvement, the concept of the AMSSA will become a reality. In summary, AMSSA offers a better way to think about space (philosophy) that can lead to the effective utilization of limited resources (process) with an infrastructure designed to meet the future space needs (architecture) of our combat forces.

  5. Scissors mode of Gd nuclei studied from resonance neutron capture

    SciTech Connect

    Kroll, J.; Baramsai, B.; Becker, J. A.; and others

    2012-10-20

    Spectra of {gamma} rays following the neutron capture at isolated resonances of stable Gd nuclei were measured. The objectives were to get new information on photon strength of {sup 153,155-159}Gd with emphasis on the role of the M1 scissors-mode vibration. An analysis of the data obtained clearly indicates that the scissors mode is coupled not only to the ground state, but also to all excited levels of the nuclei studied. The specificity of our approach ensures unbiasedness in estimating the sumed scissors-mode strength {Sigma}B(M1){up_arrow}, even for odd product nuclei, for which conventional nuclear resonance fluorescence measurements yield only limited information. Our analysis indicates that for these nuclei the sum {Sigma}B(M1){up_arrow} increases with A and for {sup 157,159}Gd it is significantly higher compared to {sup 156,158}Gd.

  6. Neutron scattering studies of the magnetic structure of cupric oxide

    NASA Astrophysics Data System (ADS)

    Yang, B. X.; Tranquada, J. M.; Shirane, G.

    1988-07-01

    In light of the recent discovery of copper oxide high-Tc superconductors, we have reexamined the early neutron diffraction measurements on CuO by Brockhouse [B. N. Brockhouse, Phys. Rev. 94, A781 (1954)]. Our measurement confirmed the antiferromagnetic ordering in CuO below 225 K. The magnetic unit cell has a volume double that of the chemical unit cell. The ordered moment is 0.68μB per Cu, significantly smaller than 1μB expected for a spin-only Cu2+ ion. The diffuse scattering was also studied well above the Néel temperature, and was found to be mostly elastic, in clear contrast to that of La2CuO4.

  7. Neutron scattering studies of the magnetic structure of cupric oxide

    SciTech Connect

    Yang, B.X.; Tranquada, J.M.; Shirane, G.

    1988-07-01

    In light of the recent discovery of copper oxide high-T/sub c/ superconductors, we have reexamined the early neutron diffraction measurements on CuO by Brockhouse (B. N. Brockhouse, Phys. Rev. 94, A781 (1954)). Our measurement confirmed the antiferromagnetic ordering in CuO below 225 K. The magnetic unit cell has a volume double that of the chemical unit cell. The ordered moment is 0.68..mu../sub B/ per Cu, significantly smaller than 1..mu../sub B/ expected for a spin-only Cu/sup 2+/ ion. The diffuse scattering was also studied well above the Neel temperature, and was found to be mostly elastic, in clear contrast to that of La/sub 2/CuO/sub 4/.

  8. Neutron diffraction studies of liquid iso-propanol

    NASA Astrophysics Data System (ADS)

    Zetterström, P.; Dahlborg, U.; Delaplane, R. G.; Howells, W. S.

    1991-07-01

    The structure of deuterated liquid iso-propanol has been studied with neutron diffraction at the LAD diffractometer at the ISIS spallation source. Measurements were performed at temperatures 190, 220, 250 and 275 K. To correct for inelastic effects a model for the dynamic structure factor which obeys detailed balance and included recoil effects was used. The static molecular structure factor SM(Q) exhibits a pre-peak at about 0.75 Å-1. The origin of the pre-peak, which increases in amplitude with temperature, is presently unknown. The structure of the iso-propanol molecule was obtained from the total pair distribution function and from a fit of the intramolecular form factor f1(Q) to the measured SM(Q) at large Q. The obtained values of the bond length and Debye-Waller factors are in good agreement to those obtained from lower alcohols.

  9. Neutron production from flattening filter free high energy medical linac: A Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Najem, M. A.; Abolaban, F. A.; Podolyák, Z.; Spyrou, N. M.

    2015-11-01

    One of the problems arising from using a conventional linac at high energy (>8 MV) is the production of neutrons. One way to reduce neutron production is to remove the flattening filter (FF). The main purpose of this work was to study the effect of FF removal on neutron fluence and neutron dose equivalent inside the treatment room at different photon beam energies. Several simulations based on Monte Carlo techniques were carried out in order to calculate the neutron fluence at different locations in the treatment room from different linac energies with and without a FF. In addition, a step-and-shoot intensity modulated radiotherapy (SnS IMRT) for prostate cancer was modelled using the 15 MV photon beam with and without a FF on a water phantom to calculate the neutron dose received in a full treatment. The results obtained show a significant drop-off in neutrons fluence and dose equivalent when the FF was removed. For example, the neutron fluence was decreased by 54%, 76% and 75% for 10, 15 and 18 MV, respectively. This can decrease the neutron dose to the patient as well as reduce the shielding cost of the treatment room. The neutron dose equivalent of the SnS IMRT for prostate cancer was reduced significantly by 71.3% when the FF was removed. It can be concluded that the flattening filter removal from the head of the linac could reduce the risk of causing secondary cancers and the shielding cost of radiotherapy treatment rooms.

  10. Study of dipole excitations and the single particle structure of neutron rich Ni isotopes

    NASA Astrophysics Data System (ADS)

    Mahata, K.; Paschalis, S.; Adrich, P.; Aksouh, F.; Aumann, T.; Babilon, M.; Behr, K.-H.; Benlliure, J.; Berg, T.; Boehmer, M.; Boretzky, K.; Brünle, A.; Casarejos, E.; Chartier, M.; Chatillon, A.; Cortina-Gil, D.; Pramanik, U. Datta; Deveaux, L.; Elvers, M.; Emling, H.; Fernandez-Dominguez, B.; Gorska, M.; Hüller, W.; Ickert, G.; Johansson, H.; Junghans, A.; Karagiannis, C.; Kern, L.; Kiselev, O.; Klimkiewicz, A.; Kurz, N.; Labiche, M.; Le Bleis, T.; Lemmon, R.; Lindenberg, K.; Litvinov, Y.; Maierbeck, P.; Müller, S.; Nilsson, T.; Nociforo, C.; Palit, R.; Prokopowicz, W.; Rossi, D.; Simon, H.; Sümmerer, K.; Wagner, A.; Walus, W.; Weick, H.; Winkler, M.

    2008-05-01

    An experiment was performed using the FRS-LAND setup at GSI to study the dipole strength distributions above neutron separation threshold for neutron-rich Ni isotopes. Measurements, using the same experimental setup, were also carried out to extract single particle occupancies via knockout reactions to investigate the structure and magicity of the neutron-rich Ni isotopes. The status of the data analysis and preliminary results are presented.

  11. Experimental study of ultracold neutron production in pressurized superfluid helium

    NASA Astrophysics Data System (ADS)

    Schmidt-Wellenburg, P.; Bossy, J.; Farhi, E.; Fertl, M.; Leung, K. K. H.; Rahli, A.; Soldner, T.; Zimmer, O.

    2015-08-01

    We investigate experimentally the pressure dependence of the production of ultracold neutrons (UCNs) in superfluid helium in the range from saturated vapor pressure to 20 bar. A neutron velocity selector allows the separation of underlying single-phonon and multiphonon processes by varying the incident cold neutron (CN) wavelength in the range from 3.5 to 10 Å. The predicted pressure dependence of UCN production derived from inelastic neutron scattering data is confirmed for the single-phonon excitation. For multiphonon-based UCN production we found no significant dependence on pressure, whereas calculations from inelastic neutron scattering data predict an increase of 43(6)% at 20 bar relative to saturated vapor pressure. From our data we conclude that applying pressure to superfluid helium does not increase the overall UCN production rate at a typical CN guide.

  12. Neutron-induced charged-particle emission studies below 100 MeV at WNR

    SciTech Connect

    Haight, R.C.; Lee, T.M.; Sterbenz, S.M.

    1994-07-01

    Charged-particles produced by neutron bombardment of selected targets with Z=5 through 53 have been studied for neutron energies from 1 MeV to about 100 MeV using the spallation neutron source at WNR/LAMPF. Particle detection with energy measurement and particle identification is accomplished by two-element {Delta}E-E counters, three-element {Delta}E{sub l}-{Delta}E{sub 2}-E counters or with pulse-shape discrimination using scintillators directly in the neutron beam. The experimental techniques for these measurements are described and comparisons made among the different approaches. This presentation introduces five papers contributed to this conference.

  13. Spatially resolved in operando neutron scattering studies on Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Senyshyn, A.; Mühlbauer, M. J.; Dolotko, O.; Hofmann, M.; Pirling, T.; Ehrenberg, H.

    2014-01-01

    Spatially-resolved neutron diffraction has been applied to probe the lithium distribution in radial direction of a commercial Li-ion cell of 18650-type. The spatial evolution of selected Bragg reflections for LiCoO2 (positive electrode, "cathode") and graphite and lithium intercalated graphite (negative electrode, "anode") was observed and evaluated by taking beam attenuation and cell geometry effects into account. No evidences for lithium inhomogeneities have been found for the investigated set of cells. Computed neutron tomography using a monochromatic neutron beam confirmed the homogeneous lithium distribution. The relevance of the monochromatic beam to neutron imaging studies of Li-ion cells is discussed.

  14. Theoretical study of diffusion processes around a non-rotating neutron star

    NASA Astrophysics Data System (ADS)

    Andra, D.; Rosyid, M. F.

    2014-10-01

    The general relativistic diffusion process on curved space-time manifold around a non-rotating neutron star has been analyzed. The general relativistic diffusion equation of diffusive particles around non-rotating neutron star is derived by constructing phase space in the parametrization of observer time in the hyperbolic coordinate system. This diffusion equation describes the stochastic dynamic of particles around non-rotating neutron stars. In this work we also have studied the diffusion processes around a non-rotating neutron star for asymptotic case.

  15. Fast neutron (14.5 MeV) radiography: a comparative study

    SciTech Connect

    Klann, R.T.

    1996-07-01

    Fast neutron (14.5 MeV) radiography is a type of non-destructive analysis tool that offers its own benefits and drawbacks. Because cross-sections vary with energy, a different range of materials can be examined with fast neutrons than can be studied with thermal neutrons, epithermal neutrons, or x-rays. This paper details these differences through a comparative study of fast neutron radiography to the other types of radiography available. The most obvious difference among the different types of radiography is in the penetrability of the sources. Fast neutrons can probe much deeper and can therefore obtain details of the internals of thick objects. Good images have been obtained through as much as 15 cm of steel, 10 cm of water, and 15 cm of borated polyethylene. In addition, some objects were identifiable through as much as 25 cm of water or 30 cm of borated polyethylene. The most notable benefit of fast neutron radiography is in the types of materials that can be tested. Fast neutron radiography can view through materials that simply cannot be viewed by X rays, thermal neutrons, or epithermal neutrons due to the high cross-sections or linear attenuation coefficients involved. Cadmium was totally transparent to the fast neutron source. Fast neutron radiography is not without drawbacks. The most pronounced drawback has been in the quality of radiograph produced. The image resolution is only about 0.8 mm for a 1.25 cm thick object, whereas, other forms of radiography have much better resolution.

  16. Studies of 54,56Fe Neutron Scattering Cross Sections

    NASA Astrophysics Data System (ADS)

    Hicks, S. F.; Vanhoy, J. R.; French, A. J.; Henderson, S. L.; Howard, T. J.; Pecha, R. L.; Santonil, Z. C.; Crider, B. P.; Liu, S.; McEllistrem, M. T.; Peters, E. E.; Prados-Estévez, F. M.; Ross, T. J.; Yates, S. W.

    2015-05-01

    Elastic and inelastic neutron scattering differential cross sections and γ-ray production cross sections have been measured on 54,56Fe at several incident energies in the fast neutron region between 1.5 and 4.7 MeV. All measurements were completed at the University of Kentucky Accelerator Laboratory (UKAL) using a 7-MV Model CN Van de Graaff accelerator, along with the neutron production and neutron and γ-ray detection systems located there. The facilities at UKAL allow the investigation of both elastic and inelastic scattering with nearly mono-energetic incident neutrons. Time-of-flight techniques were used to detect the scattered neutrons for the differential cross section measurements. The measured cross sections are important for fission reactor applications and also for testing global model calculations such as those found at ENDF, since describing both the elastic and inelastic scattering is important for determining the direct and compound components of the scattering mechanism. The γ-ray production cross sections are used to determine cross sections to unresolved levels in the neutron scattering experiments. Results from our measurements and comparisons to model calculations are presented.

  17. Target studies for accelerator-based boron neutron capture therapy

    SciTech Connect

    Powell, J.R.; Ludewig, H.; Todosow, M.; Reich, M.

    1996-03-01

    Two new concepts, NIFTI and DISCOS, are described. These concepts enable the efficient production of epithermal neutrons for BNCT (Boron Neutron Capture Therapy) medical treatment, utilizing a low current, low energy proton beam impacting on a lithium target. The NIFTI concept uses an iron layer that strongly impedes the transmission of neutrons with energies above 24 KeV. Lower energy neutrons readily pass through this iron ``filter``, which has a deep ``window`` in its scattering cross section at 24 KeV. The DISCOS concept uses a rapidly rotating, high g disc to create a series of thin ({approximately} 1 micron thickness) liquid lithium targets in the form of continuous films through which the proton beam passes. The average energy lost by a proton as it passes through a single target is small, approximately 10 KeV. Between the targets, the proton beam is reaccelerated by an applied DC electric field. The DISCOS approach enables the accelerator -- target facility to operate with a beam energy only slightly above the threshold value for neutron production -- resulting in an output beam of low-energy epithermal neutrons -- while achieving a high yield of neutrons per milliamp of proton beam current.

  18. Neutron-induced reactions in the hohlraum to study reaction in flight neutrons

    NASA Astrophysics Data System (ADS)

    Boswell, M. S.; Elliott, S. R.; Guiseppe, V.; Kidd, M.; Rundberg, B.; Tybo, J.

    2013-04-01

    We are currently developing the physics necessary to measure the Reaction In Flight (RIF) neutron flux from a NIF capsule. A measurement of the RIF neutron flux from a NIF capsule could be used to deduce the stopping power in the cold fuel of the NIF capsule. A foil irradiated at the Omega laser at LLE was counted at the LANL low-background counting facility at WIPP. The estimated production rate of 195Au was just below our experimental sensitivity. We have made several improvements to our counting facility in recent months. These improvements are designed to increase our sensitivity, and include installing two new low-background detectors, and taking steps to reduce noise in the signals.

  19. Neutron-induced reactions in the hohlraum to study reaction in flight neutrons

    SciTech Connect

    Boswell, M. S.; Elliott, S. R.; Tybo, J.; Guiseppe, V.; Rundberg, B.; Kidd, M.

    2013-04-19

    We are currently developing the physics necessary to measure the Reaction In Flight (RIF) neutron flux from a NIF capsule. A measurement of the RIF neutron flux from a NIF capsule could be used to deduce the stopping power in the cold fuel of the NIF capsule. A foil irradiated at the Omega laser at LLE was counted at the LANL low-background counting facility at WIPP. The estimated production rate of {sup 195}Au was just below our experimental sensitivity. We have made several improvements to our counting facility in recent months. These improvements are designed to increase our sensitivity, and include installing two new low-background detectors, and taking steps to reduce noise in the signals.

  20. Experimental study on anomalous neutron production in deuterium/solid system

    NASA Astrophysics Data System (ADS)

    He Jianyu, Zhu Rongbao, Wang Xiaozhong, Lu Feng, Luo Longjun, Liu Hengjun, Jiang Jincai, Tian Baosheng, Chen Guoan, Yuan Yuan, Dong Baiting, Yang Liucheng, Qiao Shengzhong, Yi Guoan, Guo Hua, Ding Dazhao, Menlove, H. O.

    1991-05-01

    A series of experiments on both D2O electrolysis and thermal cycle of deuterium absorbed Ti Turnings has been designed to examine the anomalous phenomena in Deuterium/Solid System. A neutron detector containing 16 BF3 tubes with a detection limit of 0.38 n/s for two hour counting was used for electrolysis experiments. No neutron counting rate statistically higher than detection limit was observed from Fleischmann & Pons type experiments. An HLNCC neutron detector equipped with 18 3He tubes and a JSR-11 shift register unit with a detection limit of 0.20 n/s for a two hour run was employed to study the neutron signals in D2 gas experiments. Different material pretreatments were selected to review the changes in frequency and size of the neutron burst production. Experiment sequence was deliberately designed to distinguish the neutron burst from fake signals, e.g. electronic noise pickup, the cosmic rays and other sources of environmental background. Ten batches of dry fusion samples were tested, among them, seven batches with neutron burst signals occurred roughly at the temperature from -100 degree centigrade to near room temperature. In the first four runs of a typical sample batch, seven neutron bursts were observed with neutron numbers from 15 to 482, which are 3 and 75 times, respectively, higher than the uncertainty of background. However, no bursts happened for H2 dummy samples running in-between and afterwards and for sample batch after certain runs.

  1. Simulation study of the neutron-gamma discrimination capability of a liquid scintillator neutron detector

    NASA Astrophysics Data System (ADS)

    Xing, Haoyang; Yu, Xunzhen; Zhu, Jingjun; Wang, Li; Ma, Jinglu; Liu, Shukui; Li, Linwei; Chen, Liejian; Tang, Changjian; Yue, Qian

    2014-12-01

    The capability to discriminate between neutrons and gamma rays (n/γ) by means of their pulse shapes is important for many users of liquid scintillator (LS) neutron detectors. To simulate the n/γ discrimination capability of a neutron detector, we have developed a method to simulate the pulse signal generated by an incident n or γ in the LS. Light pulses caused by ionization and excitation from incident n or γ radiation are simulated by the Geant4 simulation package based on the geometry and materials of a prototype LS detector. The response to the incident light of the photomultiplier tube (PMT) and data acquisition (DAQ) circuit was obtained from a single photoelectron experiment. The final output signal from a detector was produced by convolving its light pulse with the response function of the PMT and DAQ. Two methods, the charge comparison method (CCM) and the pulse gradient method (PGM), were applied to discriminate the simulated signals. The simulation was validated by comparing its result to an experimental result from the prototype LS detector. Our method can be applied in the design of an LS detector, which has subsequently been optimized n/γ discrimination. The method can also be helpful to analyze experimental data and evaluate the performance of n/γ discrimination techniques.

  2. Study of {beta}-Decay in the Proton-Neutron Interacting Boson-Fermion Model

    SciTech Connect

    Zuffi, L.; Brant, S.; Yoshida, N.

    2006-04-26

    We study {beta}-decay in odd-A nuclei together with the energy levels and other properties in the proton-neutron interacting-boson-fermion model. We also report on the preliminary results in the odd-odd nuclei in the proton-neutron interacting boson-fermion-fermion model.

  3. Event-by-event study of neutron observables in spontaneous and thermal fission

    NASA Astrophysics Data System (ADS)

    Vogt, R.; Randrup, J.

    2011-10-01

    The event-by-event fission model freya is extended to spontaneous fission of actinides and a variety of neutron observables are studied for spontaneous fission and fission induced by thermal neutrons with a view toward possible applications for detection of special nuclear materials.

  4. Progress on the Europium Neutron-Capture Study using DANCE

    SciTech Connect

    Agvaanluvsan, U; Becker, J A; Macri, R A; Parker, W; Wilk, P; Wu, C Y; Bredeweg, T A; Esch, E; Haight, R C; O'Donnell, J M; Reifarth, R; Rundberg, R S; Schwantes, J M; Ullmann, J L; Vieira, D J; Wilhelmy, J B; Wouters, J M; Mitchell, G E; Sheets, S A; Becvar, F; Krticka, M

    2006-09-05

    The accurate measurement of neutron-capture cross sections of the Eu isotopes is important for many reasons including nuclear astrophysics and nuclear diagnostics. Neutron capture excitation functions of {sup 151,153}Eu targets were measured recently using a 4{pi} {gamma}-ray calorimeter array DANCE located at the Los Alamos Neutron Science Center for E{sub n} = 0.1-100 keV. The progress on the data analysis efforts is given in the present paper. The {gamma}-ray multiplicity distributions for the Eu targets and Be backing are significantly different. The {gamma}-ray multiplicity distribution is found to be the same for different neutron energies for both {sup 151}Eu and {sup 153}Eu. The statistical simulation to model the {gamma}-ray decay cascade is summarized.

  5. Neutron activation studies and the effect of exercise on osteoporosis

    SciTech Connect

    Harrison, J.E.

    1984-01-01

    A technique is described to measure calcium content by in vivo neutron activation analysis of the trunk and upper thighs. In postmenopausal women, estrogen and calcium or fluoride reversed osteoporosis.

  6. Spectroscopic study of lithium oxide irradiated by fast neutrons

    NASA Astrophysics Data System (ADS)

    Masaki, N. M.; Noda, K.; Watanabe, H.; Clemmer, R. G.; Hollenberg, G. W.

    1994-09-01

    Lithium oxide (Li 2O) is a candidate material for solid breeder blankets in d-t fusion reactors. Radiation damage in Li 2O was investigated in IEA BEATRIX-II phase 1 irradiation tests using the Fast Flux Test Facility (FFTF). Li 2O single crystal specimens with various 6Li concentrations, 6Li/( 6Li + 7Li), were irradiated at about 650 K for 300 effective full power days in FFTF by fast neutrons (the fast neutron fluence) ( > 0.1 MeV): 3.9 × 10 26 n/m 2). After the neutron-irradiation, measurements of electron-spin resonance (ESR) and optical absorption were carried out for the specimens at room temperature. From the measurements, colloidal lithium metal was found to be formed in Li 2O irradiated with fast neutrons.

  7. Land-surface studies with a directional neutron detector.

    SciTech Connect

    Desilets, Darin; Brennan, James S.; Mascarenhas, Nicholas; Marleau, Peter

    2009-09-01

    Direct measurements of cosmic-ray neutron intensity were recorded with a neutron scatter camera developed at SNL. The instrument used in this work is a prototype originally designed for nuclear non-proliferation work, but in this project it was used to characterize the response of ambient neutrons in the 0.5-10 MeV range to water located on or above the land surface. Ambient neutron intensity near the land surface responds strongly to the presence of water, suggesting the possibility of an indirect method for monitoring soil water content, snow water equivalent depth, or canopy intercepted water. For environmental measurements the major advantage of measuring neutrons with the scatter camera is the limited (60{sup o}) field of view that can be obtained, which allows observations to be conducted at a previously unattainable spatial scales. This work is intended to provide new measurements of directional fluxes which can be used in the design of new instruments for passively and noninvasively observing land-surface water. Through measurements and neutron transport modeling we have demonstrated that such a technique is feasible.

  8. The application of inelastic neutron scattering to investigate the steam reforming of methane over an alumina-supported nickel catalyst

    NASA Astrophysics Data System (ADS)

    McFarlane, Andrew R.; Silverwood, Ian P.; Norris, Elizabeth L.; Ormerod, R. Mark; Frost, Christopher D.; Parker, Stewart F.; Lennon, David

    2013-12-01

    An alumina-supported nickel catalyst, previously used in methane reforming experiments employing CO2 as the oxidant, is applied here in the steam reforming variant of the process. Micro-reactor experiments are used to discern an operational window compatible with sample cells designed for inelastic neutron scattering (INS) experiments. INS spectra are recorded after 6 h reaction of a 1:1 mixture of CH4 and H2O at 898 K. Weak INS spectra are observed, indicating minimal hydrogen retention by the catalyst in this operational regime. Post-reaction, the catalyst is further characterised by powder X-ray diffraction, transmission electron microscopy and Raman scattering. In a comparable fashion to that seen for the ‘dry’ reforming experiments, the catalyst retains substantial quantities of carbon in the form of filamentous coke. The role for hydrogen incorporation by the catalyst is briefly considered.

  9. Calculation Package: Derivation of Facility-Specific Derived Air Concentration (DAC) Values in Support of Spallation Neutron Source Operations

    SciTech Connect

    McLaughlin, David A

    2009-12-01

    Derived air concentration (DAC) values for 175 radionuclides* produced at the Oak Ridge National Laboratory (ORNL) Spallation Neutron Source (SNS), but not listed in Appendix A of 10 CFR 835 (01/01/2009 version), are presented. The proposed DAC values, ranging between 1 E-07 {micro}Ci/mL and 2 E-03 {micro}Ci/mL, were calculated in accordance with the recommendations of the International Commission on Radiological Protection (ICRP), and are intended to support an exemption request seeking regulatory relief from the 10 CFR 835, Appendix A, requirement to apply restrictive DACs of 2E-13 {micro}Ci/mL and 4E-11 {micro}Ci/mL and for non-listed alpha and non-alpha-emitting radionuclides, respectively.

  10. A neutron study of the feline leukaemia virus fusion peptide: Implications for biological fusion?

    NASA Astrophysics Data System (ADS)

    Davies, Sarah M. A.; Darkes, Malcolm J. M.; Bradshaw, Jeremy P.

    Neutron diffraction studies were performed on stacked phospholipid bilayers to determine the effects of the feline leukaemia virus (FeLV) fusion peptide on membrane structure. Bilayers were composed of dioleoylphosphatidylcholine with 50% (mol) dioleoylphosphatidylglycerol. Neutron scattering profiles with peptide present showed an increase in scattering density in the lipid-tails region, whilst scattering by the lipid headgroup region was decreased. This is interpreted as a lowering of the packing density of the lipid headgroups and an increase in the packing density of the lipid tails. Modelling studies and experimental evidence have suggested that fusion peptides catalyse fusion by increasing the negative curvature of the target membrane's outer monolayer. Our results presented here add support to this hypothesis for the fusion mechanism. The 2H 2O scattering profile was also slightly perturbed in the lipid headgroup region with 1% (mol)FeLV fusion peptide present. The FeLV peptide had no significant effect on the organisation of bilayers containing only dioleoylphosphatidylcholine.

  11. Approaching the true ground state of frustrated A-site spinels: A combined magnetization and polarized neutron scattering study

    NASA Astrophysics Data System (ADS)

    Nair, Harikrishnan S.; Fu, Zhendong; Voigt, Jörg; Su, Yixi; Brückel, Th.

    2014-05-01

    We re-investigate the magnetically frustrated, diamond-lattice-antiferromagnet spinels FeAl2O4 and MnAl2O4 using magnetization measurements and diffuse scattering of polarized neutrons. In FeAl2O4, macroscopic measurements evidence a "cusp" in zero field-cooled susceptibility around 13 K. Dynamic magnetic susceptibility and memory effect experiments provide results that do not conform with a canonical spin-glass scenario in this material. Through polarized neutron-scattering studies, absence of long-range magnetic order down to 4 K is confirmed in FeAl2O4. By modeling the powder averaged differential magnetic neutron-scattering cross section, we estimate that the spin-spin correlations in this compound extend up to the third nearest-neighbor shell. The estimated value of the Landé g factor points towards orbital contributions from Fe2+. This is also supported by a Curie-Weiss analysis of the magnetic susceptibility. MnAl2O4, on the contrary, undergoes a magnetic phase transition into a long-range ordered state below ≈40 K, which is confirmed by macroscopic measurements and polarized neutron diffraction. However, the polarized neutron studies reveal the existence of prominent spin fluctuations co-existing with long-range antiferromagnetic order. The magnetic diffuse intensity suggests a similar short-range order as in FeAl2O4. Results of the present work support the importance of spin-spin correlations in understanding magnetic response of frustrated magnets like A-site spinels which have predominant short-range spin correlations reminiscent of the "spin-liquid" state.

  12. A Novel Approach to Study of Neutron Producing Reactions for Nuclear Astrophysics

    NASA Astrophysics Data System (ADS)

    Febbraro, Michael; Becchetti, Frederick; Pierson, Bruce; Lawrence, Chris; Torres-Isea, Ramon; Robertson, Dan; Stech, Ed; Kolata, James; Peters, William

    2014-03-01

    Neutron producing reactions such as 13C(α,n)16O which serve as dominate neutron sources for the s-process, incur experimental challenges due to the difficulties in detection of neutrons. Measurements of such reactions at low energies usually involve the use of 3He counters or n/γ-convertors but these methods do not provide neutron spectroscopy. Neutron Time-of-Flight (n-ToF) provides spectroscopy but requires ether beam pulsing or a fast recoil trigger. The University of Michigan Deuterated Scintillator Array appears to be well suited for such measurements either above or below ground. The array has been shown to provide n/ γ discrimination, low background, and can yield neutron spectroscopic information without the use of n-ToF relying instead on matrix inversion techniques for spectrum unfolding. Methods such as MLEM, CGRN, and Artificial Neural Networks permit extraction of discrete neutron energy groups imposed on a continuous background. Preliminary measurements of the 13C(α,n)16Oreaction conducted at the 10 MV FN tandem and the new 5U high intensity accelerator at the University of Notre Dame will be shown. This work is supported by NSF grants PHY 0969456.

  13. Using FLUKA to Study Concrete Square Shield Performance in Attenuation of Neutron Radiation Produced by APF Plasma Focus Neutron Source

    NASA Astrophysics Data System (ADS)

    Nemati, M. J.; Habibi, M.; Amrollahi, R.

    2013-04-01

    In 2010, representatives from the Nuclear Engineering and physics Department of Amirkabir University of Technology (AUT) requested development of a project with the objective of determining the performance of a concrete shield for their Plasma Focus as neutron source. The project team in Laboratory of Nuclear Engineering and physics department of Amirkabir University of Technology choose some shape of shield to study on their performance with Monte Carlo code. In the present work, the capability of Monte Carlo code FLUKA will be explored to model the APF Plasma Focus, and investigating the neutron fluence on the square concrete shield in each region of problem. The physical models embedded in FLUKA are mentioned, as well as examples of benchmarking against future experimental data. As a result of this study suitable thickness of concrete for shielding APF will be considered.

  14. MCNP study for epithermal neutron irradiation of an isolated liver at the Finnish BNCT facility.

    PubMed

    Kotiluoto, P; Auterinen, I

    2004-11-01

    A successful boron neutron capture treatment (BNCT) of a patient with multiple liver metastases has been first given in Italy, by placing the removed organ into the thermal neutron column of the Triga research reactor of the University of Pavia. In Finland, FiR 1 Triga reactor with an epithermal neutron beam well suited for BNCT has been extensively used to irradiate patients with brain tumors such as glioblastoma and recently also head and neck tumors. In this work we have studied by MCNP Monte Carlo simulations, whether it would be beneficial to treat an isolated liver with epithermal neutrons instead of thermal ones. The results show, that the epithermal field penetrates deeper into the liver and creates a build-up distribution of the boron dose. Our results strongly encourage further studying of irradiation arrangement of an isolated liver with epithermal neutron fields. PMID:15308144

  15. In situ studies of mass transport in liquid alloys by means of neutron radiography.

    PubMed

    Kargl, F; Engelhardt, M; Yang, F; Weis, H; Schmakat, P; Schillinger, B; Griesche, A; Meyer, A

    2011-06-29

    When in situ techniques became available in recent years this led to a breakthrough in accurately determining diffusion coefficients for liquid alloys. Here we discuss how neutron radiography can be used to measure chemical diffusion in a ternary AlCuAg alloy. Neutron radiography hereby gives complementary information to x-ray radiography used for measuring chemical diffusion and to quasielastic neutron scattering used mainly for determining self-diffusion. A novel Al(2)O(3) based furnace that enables one to study diffusion processes by means of neutron radiography is discussed. A chemical diffusion coefficient of Ag against Al around the eutectic composition Al(68.6)Cu(13.8)Ag(17.6) at.% was obtained. It is demonstrated that the in situ technique of neutron radiography is a powerful means to study mass transport properties in situ in binary and ternary alloys that show poor x-ray contrast. PMID:21654050

  16. Simulation study supporting wastewater treatment plant upgrading.

    PubMed

    Hvala, N; Vrecko, D; Burica, O; Strazar, M; Levstek, M

    2002-01-01

    The paper presents a study where upgrading of an existing wastewater treatment plant was supported by simulation. The aim of the work was to decide between two technologies to improve nitrogen removal: a conventional activated sludge process (ASP) and a moving bed biofilm reactor (MBBR). To perform simulations, the mathematical models of both processes were designed. The models were calibrated based on data from ASP and MBBR pilot plants operating in parallel on the existing plant. Only two kinetic parameters needed to be adjusted to represent the real plant behaviour. Steady-state analyses have shown a similar efficiency of both processes in relation to carbon removal, but improved performance of MBBR in relation to nitrogen removal. Better performance of MBBR can be expected especially at low temperatures. Simulations have not confirmed the expected less volume required for the MBBR process. Finally, the MBBR was chosen for plant upgrading. The developed process model will be further used to evaluate the final plant configuration and to optimise the plant operating parameters. PMID:12361028

  17. Different routes to methanol: Inelastic neutron scattering spectroscopy of adsorbates on supported copper catalysts

    DOE PAGESBeta

    Kandemir, Timur; Friedrich, Matthias; Parker, Stewart F.; Studt, Felix; Lennon, David; Schlögl, Robert; Behrens, Malte

    2016-04-14

    We have investigated methanol synthesis with model supported copper catalysts, Cu/ZnO and Cu/MgO, using CO/H2 and CO2/H2 as feedstocks. Under CO/H2 both catalysts show chemisorbed methoxy as a stable intermediate, the Cu/MgO catalyst also shows hydroxyls on the support. Under CO2/H2 the catalysts behave differently, in that formate is also seen on the catalyst. For the Cu/ZnO catalyst hydroxyls are present on the metal whereas for the Cu/MgO hydroxyls are found on the support. Furthermore, these results are consistent with a recently published model for methanol synthesis and highlight the key role of ZnO in the process.

  18. Different routes to methanol: inelastic neutron scattering spectroscopy of adsorbates on supported copper catalysts.

    PubMed

    Kandemir, Timur; Friedrich, Matthias; Parker, Stewart F; Studt, Felix; Lennon, David; Schlögl, Robert; Behrens, Malte

    2016-06-29

    We have investigated methanol synthesis with model supported copper catalysts, Cu/ZnO and Cu/MgO, using CO/H2 and CO2/H2 as feedstocks. Under CO/H2 both catalysts show chemisorbed methoxy as a stable intermediate, the Cu/MgO catalyst also shows hydroxyls on the support. Under CO2/H2 the catalysts behave differently, in that formate is also seen on the catalyst. For the Cu/ZnO catalyst hydroxyls are present on the metal whereas for the Cu/MgO hydroxyls are found on the support. These results are consistent with a recently published model for methanol synthesis and highlight the key role of ZnO in the process. PMID:27075638

  19. Powder Neutron Diffraction Study of HoCoGa5

    SciTech Connect

    Kabayashi, Riki; Kaneko, Koji; Wakimoto, Shuichi; Chi, Songxue; Sanada, Naoyuki; Watanuki, Ryuta; Suzuki, Kazuya

    2013-01-01

    We have studied successive magnetic transitions of HoCoGa5 at TN1 = 9.6 K and TN2 = 7.5 K by using powder neutron diffraction. Apparent superlattice peaks were observed at temperatures below TN1. With further decreases temperature, the patterns exhibit a substantial change at temperatures below TN2. The observed magnetic peaks at 8 K (AntiFerromagnetic InCommensurate (AFIC) phase : TN2 < T < TN1) can be represented by the propagation vector qL = (1/2 0 ) with = 0.35(2). In contrast, the magnetic structure becomes commensurate with qC = (1/2 0 1/2) at 4 K (AntiFerromagnetic Commensurate (AFC) phase : T < TN2). The temperature dependence of magnetic intensity shows an apparent temperature hysteresis at TN2, indicates a first-order transition at TN2. Analysis of the integrated intensity at 4 K reveals that the Ho moment with a size of 8.6(2) B, oriented parallel to the c-axis in the AFC phase. While the successive transitions of HoCoGa5 are different from those of TbCoGa5, the magnetic structure in the AFC phase of HoCoGa5 is the same as the AFTb I of TbCoGa5, and may indicate an additional transition at a lower temperature in HoCoGa5.

  20. Neutron diffraction studies for realtime leaching of catalytic Ni.

    PubMed

    Iles, Gail N; Devred, François; Henry, Paul F; Reinhart, Guillaume; Hansen, Thomas C

    2014-07-21

    The leaching of Al from intermetallic samples of Nickel Aluminium alloys to form Raney-type nickel catalysts is widely used in the hydrogenation industry, however, little is known of the leaching process itself. In this study, the leaching of Al was measured in realtime, in situ, using the high-flux powder neutron diffractometer, D20, at the Institut Laue-Langevin. Despite the liberation of hydrogen and effervescent nature of the reaction the transformation of the dry powder phases into Raney-type Ni was determined. Samples produced by gas-atomisation were found to leach faster than those produced using the cast and crushed technique. Regardless of processing route of the precursor powder, the formation of spongy-Ni occurs almost immediately, while Ni2Al3 and NiAl3 continue to transform over longer periods of time. Small-angle scattering and broadening of the diffraction peaks is an evidence for the formation of the smaller Ni particles. Understanding the kinetics of the leaching process will allow industry to refine production of catalysts for optimum manufacturing time while knowledge of leaching dynamics of powders produced by different manufacturing techniques will allow further tailoring of catalytic materials. PMID:25053313

  1. Neutron diffraction studies for realtime leaching of catalytic Ni

    SciTech Connect

    Iles, Gail N. Reinhart, Guillaume; Devred, François; Henry, Paul F. Hansen, Thomas C.

    2014-07-21

    The leaching of Al from intermetallic samples of Nickel Aluminium alloys to form Raney-type nickel catalysts is widely used in the hydrogenation industry, however, little is known of the leaching process itself. In this study, the leaching of Al was measured in realtime, in situ, using the high-flux powder neutron diffractometer, D20, at the Institut Laue-Langevin. Despite the liberation of hydrogen and effervescent nature of the reaction the transformation of the dry powder phases into Raney-type Ni was determined. Samples produced by gas-atomisation were found to leach faster than those produced using the cast and crushed technique. Regardless of processing route of the precursor powder, the formation of spongy-Ni occurs almost immediately, while Ni{sub 2}Al{sub 3} and NiAl{sub 3} continue to transform over longer periods of time. Small-angle scattering and broadening of the diffraction peaks is an evidence for the formation of the smaller Ni particles. Understanding the kinetics of the leaching process will allow industry to refine production of catalysts for optimum manufacturing time while knowledge of leaching dynamics of powders produced by different manufacturing techniques will allow further tailoring of catalytic materials.

  2. Neutron diffraction studies for realtime leaching of catalytic Ni

    NASA Astrophysics Data System (ADS)

    Iles, Gail N.; Devred, François; Henry, Paul F.; Reinhart, Guillaume; Hansen, Thomas C.

    2014-07-01

    The leaching of Al from intermetallic samples of Nickel Aluminium alloys to form Raney-type nickel catalysts is widely used in the hydrogenation industry, however, little is known of the leaching process itself. In this study, the leaching of Al was measured in realtime, in situ, using the high-flux powder neutron diffractometer, D20, at the Institut Laue-Langevin. Despite the liberation of hydrogen and effervescent nature of the reaction the transformation of the dry powder phases into Raney-type Ni was determined. Samples produced by gas-atomisation were found to leach faster than those produced using the cast and crushed technique. Regardless of processing route of the precursor powder, the formation of spongy-Ni occurs almost immediately, while Ni2Al3 and NiAl3 continue to transform over longer periods of time. Small-angle scattering and broadening of the diffraction peaks is an evidence for the formation of the smaller Ni particles. Understanding the kinetics of the leaching process will allow industry to refine production of catalysts for optimum manufacturing time while knowledge of leaching dynamics of powders produced by different manufacturing techniques will allow further tailoring of catalytic materials.

  3. Fast Neutron Radioactivity and Damage Studies on Materials

    SciTech Connect

    Anderson, S.; Spencer, J.; Wolf, Z.; Gallagher, G.; Pellett, D.; Boussoufi, M.; Volk, J.; /Fermilab

    2007-07-23

    Many materials and electronics need to be tested for the radiation environment expected at linear colliders (LC) to improve reliability and longevity since both accelerator and detectors will be subjected to large fluences of hadrons, leptons and gammas. Examples include NdFeB magnets, considered for the damping rings, injection and extraction lines and final focus, electronic and electro-optic devices to be utilized in detector readout, accelerator controls and the CCDs required for the vertex detector, as well as high and low temperature superconducting materials (LTSMs) because some magnets will be superconducting. Our first measurements of fast neutron, stepped doses at the UC Davis McClellan Nuclear Reactor Center (UCD MNRC) were presented for NdFeB materials at EPAC04 where the damage appeared proportional to the distances between the effective operating point and Hc. We have extended those doses, included other manufacturer's samples and measured induced radioactivities. We have also added L and HTSMs as well as a variety of relevant semiconductor and electro-optic materials including PBG fiber that we studied previously only with gamma rays.

  4. Neutron scattering studies of the hydration structure of Li+.

    PubMed

    Mason, P E; Ansell, S; Neilson, G W; Rempe, S B

    2015-02-01

    New results derived from the experimental method of neutron diffraction and isotopic substitution (NDIS) are presented for the hydration structure of the lithium cation (Li(+)) in aqueous solutions of lithium chloride in heavy water (D2O) at concentrations of 6, 3, and 1 m and at 1.5 m lithium sulfate. By introducing new and more-accurate data reduction procedures than in our earlier studies (I. Howell and G. W. Neilson, J. Phys: Condens. Matter, 1996, 8, 4455-4463), we find, in the first hydration shell of Li(+), ∼4.3(2) water molecules at 6 m, 4.9(3) at 3 m, 4.8(3) at 1 m in the LiCl solutions, and 5.0(3) water molecules in the case of Li2SO4 solution. The general form of the first hydration shell is similar in all four solutions, with the correlations for Li-O and Li-D sited at 1.96 (0.02) Å and 2.58 (0.02) Å, respectively. The results resemble those presented in 1996, in terms of ion-water distances and local coordination, but the hydration number is significantly lower for the case at 1 m than the 6.5 (1.0) given at that time. Thus, experimental and theoretical results now agree that lithium is hydrated by a small number of water molecules (4-5) in the nearest coordination shell. PMID:25559086

  5. Production of bacterial cellulose with controlled deuterium-hydrogen substitution for neutron scattering studies.

    PubMed

    O'Neill, Hugh; Shah, Riddhi; Evans, Barbara R; He, Junhong; Pingali, Sai Venkatesh; Chundawat, Shishir P S; Jones, A Daniel; Langan, Paul; Davison, Brian H; Urban, Volker

    2015-01-01

    Isotopic enrichment of biomacromolecules is a widely used technique that enables the investigation of the structural and dynamic properties to provide information not accessible with natural abundance isotopic composition. This study reports an approach for deuterium incorporation into bacterial cellulose. A media formulation for growth of Acetobacter xylinus subsp. sucrofermentans and Gluconacetobacter hansenii was formulated that supports cellulose production in deuterium (D) oxide. The level of D incorporation can be varied by altering the ratio of deuterated and protiated glycerol used during cell growth in the D2O-based growth medium. Spectroscopic analysis and mass spectrometry show that the level of deuterium incorporation is high (>90%) for the perdeuterated form of bacterial cellulose. The small-angle neutron scattering profiles of the cellulose with different amounts of D incorporation are all similar indicating that there are no structural changes in the cellulose due to substitution of deuterium for hydrogen. In addition, by varying the amount of deuterated glycerol in the media it was possible to vary the scattering length density of the deuterated cellulose. The ability to control deuterium content of cellulose extends the range of experiments using techniques such as neutron scattering to reveal information about the structure and dynamics of cellulose, and its interactions with other biomacromolecules as well as synthetic polymers used for development of composite materials. PMID:26577730

  6. Pressure Denaturation of Staphylococcal Nuclease Studied by Neutron Small-Angle Scattering and Molecular Simulation

    PubMed Central

    Paliwal, Amit; Asthagiri, Dilipkumar; Bossev, Dobrin P.; Paulaitis, Michael E.

    2004-01-01

    We studied the pressure-induced folding/unfolding transition of staphylococcal nuclease (SN) over a pressure range of ∼1–3 kilobars at 25°C by small-angle neutron scattering and molecular dynamics simulations. We find that applying pressure leads to a twofold increase in the radius of gyration derived from the small-angle neutron scattering spectra, and P(r), the pair distance distribution function, broadens and shows a transition from a unimodal to a bimodal distribution as the protein unfolds. The results indicate that the globular structure of SN is retained across the folding/unfolding transition although this structure is less compact and elongated relative to the native structure. Pressure-induced unfolding is initiated in the molecular dynamics simulations by inserting water molecules into the protein interior and applying pressure. The P(r) calculated from these simulations likewise broadens and shows a similar unimodal-to-bimodal transition with increasing pressure. The simulations also reveal that the bimodal P(r) for the pressure-unfolded state arises as the protein expands and forms two subdomains that effectively diffuse apart during initial stages of unfolding. Hydrophobic contact maps derived from the simulations show that water insertions into the protein interior and the application of pressure together destabilize hydrophobic contacts between these two subdomains. The findings support a mechanism for the pressure-induced unfolding of SN in which water penetration into the hydrophobic core plays a central role. PMID:15347583

  7. Small-Angle Neutron Scattering study of the NIST mAb reference material

    NASA Astrophysics Data System (ADS)

    Castellanos, Maria Monica; Liu, Yun; Krueger, Susan; Curtis, Joseph

    Monoclonal antibodies (mAbs) are of great interest to the biopharmaceutical industry because they can be engineered to target specific antigens. Due to their importance, the biomanufacturing initiative at NIST is developing an IgG1 mAb reference material `NIST mAb', which can be used by industry, academia, and regulatory authorities. As part of this collaborative effort, we aim at characterizing the reference material using neutron scattering techniques. We have studied the small-angle scattering profile of the NIST mAb in a histidine buffer at 0 and 150 mM NaCl. Using Monte Carlo simulations, we generate an ensemble of structures and calculate their theoretical scattering profile, which can be directly compared with experimental data. Moreover, we analyze the structure factor to understand the effect of solution conditions on the protein-protein interactions. Finally, we have measured the solution scattering of the NIST mAb, while simultaneously performing freeze/thaw cycles, in order to investigate if the solution structure was affected upon freezing. The results from neutron scattering not only support the development of the reference material, but also provide insights on its stability and guide efforts for its development under different formulations.

  8. Intelligence support to arms control. Study project

    SciTech Connect

    Grisham, A.E.

    1990-04-09

    This paper argues that intelligence support is critical to the success of arms control. It identifies and describes the roles of intelligence in the arms control process, describes the existing intelligence organizational structure for arms control support, and identifies and analyzes issues. The roles include support to policy formulation, support to treaty negotiation, support to ratification, and finally, during verification, support for the implementation of the treaty through monitoring. The Director of Central Intelligence is responsible for monitoring, while the Arms Control and Disarmament Agency has responsibility for verification. Adjudication of conflicting interpretations occurs within the NSC committee structure. For several reasons, intelligence cannot be expected to do the actual verification of an arms control treaty. Most importantly, determination of an acceptable degree of confidence is always a political issue, although based on military judgement. Assigning intelligence responsibility for monitoring, rather than verification, helps to limit the politicization of intelligence. Issues identified during the research for this paper were analyzed within three subgroups: those inherent in the intelligence discipline; these must be managed successfully to limit adverse impact on intelligence products. Second, issues and challenges inherent in arms control bureaucratic relationships; these are best managed by keeping separate the actual monitoring analysis and verification this gives the West justification for caution, and reinforces the need for continued emphasis on verification.

  9. Simulation study of accelerator based quasi-mono-energetic epithermal neutron beams for BNCT.

    PubMed

    Adib, M; Habib, N; Bashter, I I; El-Mesiry, M S; Mansy, M S

    2016-01-01

    Filtered neutron techniques were applied to produce quasi-mono-energetic neutron beams in the energy range of 1.5-7.5 keV at the accelerator port using the generated neutron spectrum from a Li (p, n) Be reaction. A simulation study was performed to characterize the filter components and transmitted beam lines. The feature of the filtered beams is detailed in terms of optimal thickness of the primary and additive components. A computer code named "QMNB-AS" was developed to carry out the required calculations. The filtered neutron beams had high purity and intensity with low contamination from the accompanying thermal, fast neutrons and γ-rays. PMID:26474209

  10. Feasibility study of using laser-generated neutron beam for BNCT.

    PubMed

    Kasesaz, Y; Rahmani, F; Khalafi, H

    2015-09-01

    The feasibility of using a laser-accelerated proton beam to produce a neutron source, via (p,n) reaction, for Boron Neutron Capture Therapy (BNCT) applications has been studied by MCNPX Monte Carlo code. After optimization of the target material and its thickness, a Beam Shaping Assembly (BSA) has been designed and optimized to provide appropriate neutron beam according to the recommended criteria by International Atomic Energy Agency. It was found that the considered laser-accelerated proton beam can provide epithermal neutron flux of ∼2×10(6) n/cm(2) shot. To achieve an appropriate epithermal neutron flux for BNCT treatment, the laser must operate at repetition rates of 1 kHz, which is rather ambitious at this moment. But it can be used in some BNCT researches field such as biological research. PMID:26115204

  11. Study of muon-induced neutron production using accelerator muon beam at CERN

    SciTech Connect

    Nakajima, Y.; Lin, C. J.; Ochoa-Ricoux, J. P.; Draeger, E.; White, C. G.; Luk, K. B.; Steiner, H.

    2015-08-17

    Cosmogenic muon-induced neutrons are one of the most problematic backgrounds for various underground experiments for rare event searches. In order to accurately understand such backgrounds, experimental data with high-statistics and well-controlled systematics is essential. We performed a test experiment to measure muon-induced neutron production yield and energy spectrum using a high-energy accelerator muon beam at CERN. We successfully observed neutrons from 160 GeV/c muon interaction on lead, and measured kinetic energy distributions for various production angles. Works towards evaluation of absolute neutron production yield is underway. This work also demonstrates that the setup is feasible for a future large-scale experiment for more comprehensive study of muon-induced neutron production.

  12. Neutron detection in nuclear astrophysics experiments: study of organic liquid scintillators

    NASA Astrophysics Data System (ADS)

    Ciani, Giovanni Francesco

    2016-02-01

    In order to study the nuclear reaction 13 C(α,n)16 O, crucial for the nucleosynthesis of heavy nuclei (A>58), the LUNA collaboration at Laboratori Nazionali del Gran Sasso, is looking for the best neutron detector to use in the set up. One of the possibilities is to use detectors based on cell filled with Organic Liquid Scintillator BC501A. These detectors are sensible to fast neutron, but also to gamma rays. A Pulse Shape Discrimination process using the Zero Crossing method has been performed to select only signals from neutrons. Comparing the neutron spectra after the Pulse Shape Discrimination and the spectrum from a GEANT4 simulations, the efficiency of the BC501A, in function of the neutron energy and varying the light threshold, has been evaluated.

  13. Background Neutron Studies for Coherent Elastic Neutrino-Nucleus Scattering Measurements at the SNS

    NASA Astrophysics Data System (ADS)

    Markoff, Diane; Coherent Collaboration

    2015-10-01

    The COHERENT collaboration has proposed to measure coherent, elastic neutrino-nucleus scattering (CE νNS) cross sections on several nuclear targets using neutrinos produced at the Spallation Neutron Source (SNS) located at the Oak Ridge National Laboratory. The largest background of concern arises from beam-induced, fast neutrons that can mimic a nuclear recoil signal event in the detector. Multiple technologies of neutron detection have been employed at prospective experiment sites at the SNS. Analysis of these data have produced a consistent picture of the backgrounds expected for a CE νNS measurement. These background studies show that at suitable locations, the fast neutrons of concern arrive mainly in the prompt 1.3 μs window and the neutrons in the delayed window are primarily of lower energies that are relatively easier to shield.

  14. Study of absolute fast neutron dosimetry using CR-39 track detectors

    NASA Astrophysics Data System (ADS)

    El-Sersy, A. R.

    2010-06-01

    In this work, CR-39 track detectors have extensively been used in the determination of fast neutron fluence-to-dose factor. The registration efficiency, ɛ, of CR-39 detectors for fast neutrons was calculated using different theoretical approaches according to each mode of neutron interaction with the constituent atoms (H, C and O) of the detector material. The induced proton-recoiled showed the most common interaction among the others. The dependence of ɛ on both neutron energy and etching time was also studied. In addition, the neutron dose was calculated as a function of neutron energy in the range from 0.5 to 14 MeV using the values of (d E/d X) for each recoil particle in CR-39 detector. Results showed that the values of ɛ were obviously affected by both neutron energy and etching time where the contribution in ɛ from proton recoil was the most. The contribution from carbon and oxygen recoils in dose calculation was pronounced due to their higher corresponding values of d E/d X in comparison to those from proton recoils. The present calculated fluence-to-dose factor was in agreement with that either from ICRP no. 74 or from TRS no. 285 of IAEA, which reflected the importance of using CR-39 in absolute fast neutron dosimetry.

  15. Dose evaluation of boron neutron capture synovectomy using the THOR epithermal neutron beam: a feasibility study.

    PubMed

    Wu, Jay; Chang, Shu-Jun; Chuang, Keh-Shih; Hsueh, Yen-Wan; Yeh, Kuan-Chuan; Wang, Jeng-Ning; Tsai, Wen-Pin

    2007-03-21

    Rheumatoid arthritis is one of the most common epidemic diseases in the world. For some patients, the treatment with steroids or nonsteroidal anti-inflammatory drugs is not effective, thus necessitating physical removal of the inflamed synovium. Alternative approaches other than surgery will provide appropriate disease control and improve the patient's quality of life. In this research, we evaluated the feasibility of conducting boron neutron capture synovectomy (BNCS) with the Tsing Hua open-pool reactor (THOR) as a neutron source. Monte Carlo simulations were performed with arthritic joint models and uncertainties were within 5%. The collimator, reflector and boron concentration were optimized to reduce the treatment time and normal tissue doses. For the knee joint, polyethylene with 40%-enriched Li(2)CO(3) was used as the collimator material, and a rear reflector of 15 cm thick graphite and side reflector of 10 cm thick graphite were chosen. The optimized treatment time was 5.4 min for the parallel-opposed irradiation. For the finger joint, polymethyl methacrylate was used as the reflector material. The treatment time can be reduced to 3.1 min, while skin and bone doses can be effectively reduced by approximately 9% compared with treatment using the graphite reflector. We conclude that using THOR as a treatment modality for BNCS could be a feasible alternative in clinical practice. PMID:17327660

  16. Dose evaluation of boron neutron capture synovectomy using the THOR epithermal neutron beam: a feasibility study

    NASA Astrophysics Data System (ADS)

    Wu, Jay; Chang, Shu-Jun; Chuang, Keh-Shih; Hsueh, Yen-Wan; Yeh, Kuan-Chuan; Wang, Jeng-Ning; Tsai, Wen-Pin

    2007-03-01

    Rheumatoid arthritis is one of the most common epidemic diseases in the world. For some patients, the treatment with steroids or nonsteroidal anti-inflammatory drugs is not effective, thus necessitating physical removal of the inflamed synovium. Alternative approaches other than surgery will provide appropriate disease control and improve the patient's quality of life. In this research, we evaluated the feasibility of conducting boron neutron capture synovectomy (BNCS) with the Tsing Hua open-pool reactor (THOR) as a neutron source. Monte Carlo simulations were performed with arthritic joint models and uncertainties were within 5%. The collimator, reflector and boron concentration were optimized to reduce the treatment time and normal tissue doses. For the knee joint, polyethylene with 40%-enriched Li2CO3 was used as the collimator material, and a rear reflector of 15 cm thick graphite and side reflector of 10 cm thick graphite were chosen. The optimized treatment time was 5.4 min for the parallel-opposed irradiation. For the finger joint, polymethyl methacrylate was used as the reflector material. The treatment time can be reduced to 3.1 min, while skin and bone doses can be effectively reduced by approximately 9% compared with treatment using the graphite reflector. We conclude that using THOR as a treatment modality for BNCS could be a feasible alternative in clinical practice.

  17. Neutron Diffraction Study of LaSr3Fe3O10 in the Temperature Range 25 - 650 deg. C

    SciTech Connect

    Neov, S.; Prokhnenko, O.; Velinov, N.; Kozhukharov, V.; Neov, D.; Dabrowski, L.

    2007-04-23

    The effect of high temperature on the structure of LaSr3Fe3O10 has been studied by neutron diffraction. Neutron data have been correlated with Moessbauer spectroscopy results and electrical conductivity measurements.

  18. A Study of Neutron Leakage in Finite Objects

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Slaba, Tony C.; Badavi, Francis F.; Reddell, Brandon D.; Bahadori, Amir A.

    2015-01-01

    A computationally efficient 3DHZETRN code capable of simulating High charge (Z) and Energy (HZE) and light ions (including neutrons) under space-like boundary conditions with enhanced neutron and light ion propagation was recently developed for simple shielded objects. Monte Carlo (MC) benchmarks were used to verify the 3DHZETRN methodology in slab and spherical geometry, and it was shown that 3DHZETRN agrees with MC codes to the degree that various MC codes agree among themselves. One limitation in the verification process is that all of the codes (3DHZETRN and three MC codes) utilize different nuclear models/databases. In the present report, the new algorithm, with well-defined convergence criteria, is used to quantify the neutron leakage from simple geometries to provide means of verifying 3D effects and to provide guidance for further code development.

  19. Neutron irradiation facilities for fission and fusion reactor materials studies

    SciTech Connect

    Rowcliffe, A.F.

    1985-01-01

    The successful development of energy-conversion machines based upon nuclear fission or fusion reactors is critically dependent upon the behavior of the engineering materials used to construct the full containment and primary heat extraction systems. The development of radiation damage-resistant materials requires irradiation testing facilities which reproduce, as closely as possible, the thermal and neutronic environment expected in a power-producing reactor. The Oak Ridge National Laboratory (ORNL) reference core design for the Center for Neutron Research (CNR) reactor provides for instrumented facilities in regions of both hard and mixed neutron spectra, with substantially higher fluxes than are currently available. The benefits of these new facilities to the development of radiation damage resistant materials are discussed in terms of the major US fission and fusion reactor programs.

  20. Scoping studies - photon and low energy neutron interrogation

    SciTech Connect

    Becker, G.; Harker, Y.; Jones, J.; Harmon, F.

    1997-11-01

    High energy photon interrogation of waste containers, with the aim of producing photo nuclear reactions, in specific materials, holds the potential of good penetration and rapid analysis. Compact high energy ({le} 10 MeV) photon sources in the form of electron linacs producing bremstrahlung radiation are readily available. Work with the Varitron variable energy accelerator at ISU will be described. Advantages and limitations of the technique will be discussed. Using positive ion induced neutron producing reactions, it is possible to generate neutrons in a specific energy range. By this means, variable penetration and specific reactions can be excited in the assayed material. Examples using the {sup 3}H(p,n) and {sup 7}Li(p,n) reactions as neutron sources will be discussed. 4 refs., 7 figs.

  1. Review of Livermore-Led Neutron Capture Studies Using DANCE

    SciTech Connect

    Parker, W; Sheets, S; Agvaanluvsan, U; Becker, J; Becvar, F; Bredeweg, T; Clement, R; Couture, A; Esch, E; Haight, R; Jandel, M; Krticka, M; Mitchell, G; Macri, R; O'Donnell, J; Reifarth, R; Rundberg, R; Schwantes, J; Ullmann, J; Vieira, D; Wouters, J; Wilk, P

    2007-05-11

    We have made neutron capture cross-section measurements using the white neutron source at the Los Alamos Science Center, the DANCE detector array (Detector for Advanced Neutron Capture Experiments) and targets important for basic science and stockpile stewardship. In this paper, we review results from (n,{gamma}) reactions on {sup 94,95}Mo, {sup 152,154,157,160,nat}Gd, {sup 151,153}Eu and {sup 242m}Am for neutron energies from < 1eV up to {approx} 20 keV. We measured details of the {gamma}-ray cascade following neutron capture, for comparison with results of statistical model simulations. We determined the neutron energy dependent (n,{gamma}) cross section and gained information about statistical decay properties, including the nuclear level density and the photon strength function. Because of the high granularity of the detector array, it is possible to look at gamma cascades with a specified number of transitions (a specific multiplicity). We simulated {gamma}-ray cascades using a combination of the DICEBOX/GEANT computer codes. In the case of the deformed nuclei, we found evidence of a scissors-mode resonance. For the Eu, we also determined the (n,{gamma}) cross sections. For the {sup 94,95}Mo, we focused on the spin and parity assignments of the resonances and the determination of the photon strength functions for the compound nuclei {sup 95,96}Mo. Future plans include measurements on actinide targets; our immediate interest is in {sup 242m}Am.

  2. Radial oscillations of a radiation-supported levitating shell in Eddington luminosity neutron stars

    NASA Astrophysics Data System (ADS)

    Abarca, David; Kluźniak, Włodek

    2016-09-01

    In general relativity, it has been shown that radiation-supported atmospheres exist well outside the surface of a radiating spherical body close to a radius where the gravitational and radiative forces balance each other. We calculate the frequency of oscillation of the incompressible radial mode of such a thin atmospheric shell and show that in the optically thin case, this particular mode is overdamped by radiation drag.

  3. Ab initio study of neutron drops with chiral Hamiltonians

    NASA Astrophysics Data System (ADS)

    Potter, H. D.; Fischer, S.; Maris, P.; Vary, J. P.; Binder, S.; Calci, A.; Langhammer, J.; Roth, R.

    2014-12-01

    We report ab initio calculations for neutron drops in a 10 MeV external harmonic-oscillator trap using chiral nucleon-nucleon plus three-nucleon interactions. We present total binding energies, internal energies, radii and odd-even energy differences for neutron numbers N = 2- 18 using the no-core shell model with and without importance truncation. Furthermore, we present total binding energies for N = 8 , 16 , 20 , 28 , 40 , 50 obtained in a coupled-cluster approach. Comparisons with quantum Monte Carlo results, where available, using Argonne v8‧ with three-nucleon interactions reveal important dependences on the chosen Hamiltonian.

  4. Neutron-source characterization for fusion-materials studies

    SciTech Connect

    Greenwood, L.R.

    1981-06-01

    Neutron-flux and energy-spectrum measurements are conducted for all major fusion-materials irradiation facilities, including fission reactors and accelerators. Dosimetry-characterization experiments and integral cross section measurements have been performed. Multiple activation and helium-production measurements are performed routinely to provide materials experimenters with neutron-exposure parameters including fluence, spectrum, displacements, gas production, and transmutation with typical accuracies of 10 to 15%. Such data are crucial to the fusion-materials program in order to correlate materials-property changes between irradiations and facilities and to confidently predict the performance of materials in fusion reactors.

  5. Sustaining knowledge in the neutron generator community and benchmarking study.

    SciTech Connect

    Barrentine, Tameka C.; Kennedy, Bryan C.; Saba, Anthony W.; Turgeon, Jennifer L.; Schneider, Julia Teresa; Stubblefield, William Anthony; Baldonado, Esther

    2008-03-01

    In 2004, the Responsive Neutron Generator Product Deployment department embarked upon a partnership with the Systems Engineering and Analysis knowledge management (KM) team to develop knowledge management systems for the neutron generator (NG) community. This partnership continues today. The most recent challenge was to improve the current KM system (KMS) development approach by identifying a process that will allow staff members to capture knowledge as they learn it. This 'as-you-go' approach will lead to a sustainable KM process for the NG community. This paper presents a historical overview of NG KMSs, as well as research conducted to move toward sustainable KM.

  6. A study on optical aberrations in parabolic neutron guides

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Wang, Hongli; Liu, Yuntao; Zu, Yong; He, Linfeng; Wei, Guohai; Sun, Kai; Han, Songbai; Chen, Dongfeng

    2015-06-01

    It is widely believed that a neutron beam can be focused to a small spot using a parabolic guide, which will significantly improve the flux. However, researchers have also noted challenges for the neutron inhomogeneous phase space distribution in parabolic focusing guide systems. In this paper, the sources of most prominent optical aberrations, such as an inhomogeneous phase space distribution and irregular divergence distribution, are discussed, and an optimization solution is also proposed. We indicate that optimizing the parabolic guide geometrical configuration removes almost all of the aberrations and yields a considerable intensity gain factor.

  7. Collective microdynamics of liquid lithium: An inelastic neutron scattering study

    NASA Astrophysics Data System (ADS)

    Blagoveshchenskiĭ, N. M.; Novikov, A. G.; Savostin, V. V.

    2010-05-01

    A portion of the dispersion curve for collective modes in liquid lithium has been constructed from experimental data on inelastic scattering of slow neutrons obtained on the DIN-2PI neutron spectrometer (IBR-2 reactor, Joint Institute for Nuclear Research, Dubna, Russia). Measurements have been performed at a temperature of 500 K ( T m (Li) = 453.7 K). The coherent scattering component has been separated from the experimental spectra and analyzed. Information on the characteristics of collective excitations in liquid lithium has been derived.

  8. Investigation of Nanodiamond and Silicon Carbide Foils Product for H-Stripping to Support Spallation Neutron Source

    NASA Astrophysics Data System (ADS)

    Harris, Gary; Griffin, James; Vispute, Rd; CIQM Collaboration

    2015-03-01

    Diamond and silicon carbide (SiC) is an ideal material as an H- stripper foil for spallation neutron source (SNS) applications due to their high thermal conductivity, low molecular weight, and strength. Cubic silicon carbide grown on silicon is a material tension stress and the foil does not curl. Polycrystalline diamond is characterized by a high degree of internal stress, which causes the foil to curl when not supported by the substrate. the sic is grown using a RF CVD system. Hot filament chemical vapor deposition (HFCVD) was used to grow diamond on a silicon substrate. In both cases a 1.2 cm diameter window was etched in the silicon using a 1:1:3 solution of hydrofluoric, nitric, and acetic acids so that the diamond of SiC foil would be suspended while being supported on all sides by the silicon. Wax and or photoresist were used as masks to protect the outer silicon from etching. Raman spectroscopy verified the quality of the grown material. Atomic force microscopy (AFM) revealed that the diamond foil originally against the substrate had an average roughness of <6.7 nm while the foil away from the substrate had an average roughness of 13.2 nm. The SiC foils had roughness less than 3 nm. Scanning electron microscopy (SEM) revealed no cracks in the suspended foil. NSF-STC CIQM.

  9. Structural and Magnetic Phase Transitions in Minerals: In Situ Studies by Neutron Scattering

    NASA Astrophysics Data System (ADS)

    Redfern, Simon A. T.; Harrison, Richard J.

    The application of neutron scattering to the study of structural and magnetic phase transitions in minerals is discussed. The advantages of neutrons for structural characterization of phase transitions are enumerated and compared with the data that might be obtained from X-ray methods. Elements that are difficult to distinguish by X-ray diffraction can show huge contrasts in neutron diffraction experiments; this contrast has been exploited in studies of site occupancies and intra-mineral partitioning of elements difficult to distinguish by other methods, such as Mg-Al and Fe-Mn pairs. Selected examples of the use of these methods in recent studies are outlined. These include the study of cation order-disorder phase transitions in minerals, ranging in complexity from rather simple silicate structures such as olivine and spinel (where ordering may occur between two sites) to more complex double-chain silicates (where partitioning studies by neutron diffraction have identified the trends over as many as four different crystallographic sites). The ability to build complex sample environments around the minerals under study has been beneficial in cases where extreme high temperatures (as great as 2000 K) are of interest, or where buffering of oxidation states is required. The magnetic moment of the neutron provides a unique tool for the study of the magnetic structures of oxide minerals, and the identification of magnetic ordering schemes in minerals such as magnetite were some of the first examples of the application of this method to magnetic minerals. The principles of magnetic scattering of neutrons are briefly outlined; and applications of magnetic studies by powder diffraction using both unpolarized and polarized neutrons are discussed, including recent studies of nanoscale hematite exsolution in ilmenite by polarized neutron scattering. Finally, the extension of the entire family of such studies in mineralogy to conditions pertinent to deep planetary interiors is

  10. Deuterium Labeling Strategies for Creating Contrast in Structure-Function Studies of Model Bacterial Outer Membranes Using Neutron Reflectometry.

    PubMed

    Le Brun, Anton P; Clifton, Luke A; Holt, Stephen A; Holden, Peter J; Lakey, Jeremy H

    2016-01-01

    Studying the outer membrane of Gram-negative bacteria is challenging due to the complex nature of its structure. Therefore, simplified models are required to undertake structure-function studies of processes that occur at the outer membrane/fluid interface. Model membranes can be created by immobilizing bilayers to solid supports such as gold or silicon surfaces, or as monolayers on a liquid support where the surface pressure and fluidity of the lipids can be controlled. Both model systems are amenable to having their structure probed by neutron reflectometry, a technique that provides a one-dimensional depth profile through a membrane detailing its thickness and composition. One of the strengths of neutron scattering is the ability to use contrast matching, allowing molecules containing hydrogen and those enriched with deuterium to be highlighted or matched out against the bulk isotopic composition of the solvent. Lipopolysaccharides, a major component of the outer membrane, can be isolated for incorporation into model membranes. Here, we describe the deuteration of lipopolysaccharides from rough strains of Escherichia coli for incorporation into model outer membranes, and how the use of deuterated materials enhances structural analysis of model membranes by neutron reflectometry. PMID:26791981