Science.gov

Sample records for neutron transport resolution

  1. Design studies for a high-resolution, transportable neutron radiography/radioscopy system

    SciTech Connect

    Gillespie, G.H.; Micklich, B.J.; McMichael, G.E.

    1996-09-30

    A preliminary design has been developed for a high-resolution, transportable neutron radiology system (TNRS) concept. The primary system requirement is taken to be a thermal neutron flux of 10[sup 6] n/(cm[sup 2]-sec) with a L/D ratio of 100. The approach is to use an accelerator-driven neutron source, with a radiofrequency quadrupole (RFQ) as the primary accelerator component. Initial concepts for all of the major components of the system have been developed,and selected key parts have been examined further. An overview of the system design is presented, together with brief summaries of the concepts for the ion source, low energy beam transport (LEBT), RFQ, high energy beam transport (HEBT), target, moderator, collimator, image collection, power, cooling, vacuum, structure, robotics, control system, data analysis, transport vehicle, and site support. The use of trade studies for optimizing the TNRS concept are also described.

  2. Coupled multi-group neutron photon transport for the simulation of high-resolution gamma-ray spectroscopy applications

    SciTech Connect

    Burns, Kimberly A.

    2009-08-01

    The accurate and efficient simulation of coupled neutron-photon problems is necessary for several important radiation detection applications. Examples include the detection of nuclear threats concealed in cargo containers and prompt gamma neutron activation analysis for nondestructive determination of elemental composition of unknown samples.

  3. An Improved Neutron Transport Algorithm for HZETRN

    NASA Technical Reports Server (NTRS)

    Slaba, Tony C.; Blattnig, Steve R.; Clowdsley, Martha S.; Walker, Steven A.; Badavi, Francis F.

    2010-01-01

    Long term human presence in space requires the inclusion of radiation constraints in mission planning and the design of shielding materials, structures, and vehicles. In this paper, the numerical error associated with energy discretization in HZETRN is addressed. An inadequate numerical integration scheme in the transport algorithm is shown to produce large errors in the low energy portion of the neutron and light ion fluence spectra. It is further shown that the errors result from the narrow energy domain of the neutron elastic cross section spectral distributions, and that an extremely fine energy grid is required to resolve the problem under the current formulation. Two numerical methods are developed to provide adequate resolution in the energy domain and more accurately resolve the neutron elastic interactions. Convergence testing is completed by running the code for various environments and shielding materials with various energy grids to ensure stability of the newly implemented method.

  4. Coupled Neutron Transport for HZETRN

    NASA Technical Reports Server (NTRS)

    Slaba, Tony C.; Blattnig, Steve R.

    2009-01-01

    Exposure estimates inside space vehicles, surface habitats, and high altitude aircrafts exposed to space radiation are highly influenced by secondary neutron production. The deterministic transport code HZETRN has been identified as a reliable and efficient tool for such studies, but improvements to the underlying transport models and numerical methods are still necessary. In this paper, the forward-backward (FB) and directionally coupled forward-backward (DC) neutron transport models are derived, numerical methods for the FB model are reviewed, and a computationally efficient numerical solution is presented for the DC model. Both models are compared to the Monte Carlo codes HETC-HEDS, FLUKA, and MCNPX, and the DC model is shown to agree closely with the Monte Carlo results. Finally, it is found in the development of either model that the decoupling of low energy neutrons from the light particle transport procedure adversely affects low energy light ion fluence spectra and exposure quantities. A first order correction is presented to resolve the problem, and it is shown to be both accurate and efficient.

  5. Superconducting High Resolution Fast-Neutron Spectrometers

    SciTech Connect

    Hau, I D

    2006-05-25

    Superconducting high resolution fast-neutron calorimetric spectrometers based on {sup 6}LiF and TiB{sub 2} absorbers have been developed. These novel cryogenic spectrometers measure the temperature rise produced in exothermal (n, {alpha}) reactions with fast neutrons in {sup 6}Li and {sup 10}B-loaded materials with heat capacity C operating at temperatures T close to 0.1 K. Temperature variations on the order of 0.5 mK are measured with a Mo/Cu thin film multilayer operated in the transition region between its superconducting and its normal state. The advantage of calorimetry for high resolution spectroscopy is due to the small phonon excitation energies k{sub B}T on the order of {mu}eV that serve as signal carriers, resulting in an energy resolution {Delta}E {approx} (k{sub B}T{sup 2}C){sup 1/2}, which can be well below 10 keV. An energy resolution of 5.5 keV has been obtained with a Mo/Cu superconducting sensor and a TiB{sub 2} absorber using thermal neutrons from a {sup 252}Cf neutron source. This resolution is sufficient to observe the effect of recoil nuclei broadening in neutron spectra, which has been related to the lifetime of the first excited state in {sup 7}Li. Fast-neutron spectra obtained with a {sup 6}Li-enriched LiF absorber show an energy resolution of 16 keV FWHM, and a response in agreement with the {sup 6}Li(n, {alpha}){sup 3}H reaction cross section and Monte Carlo simulations for energies up to several MeV. The energy resolution of order of a few keV makes this novel instrument applicable to fast-neutron transmission spectroscopy based on the unique elemental signature provided by the neutron absorption and scattering resonances. The optimization of the energy resolution based on analytical and numerical models of the detector response is discussed in the context of these applications.

  6. Singular perturbation applications in neutron transport

    SciTech Connect

    Losey, D.C.; Lee, J.C.

    1996-09-01

    This is a paper on singular perturbation applications in neutron transport for submission at the next ANS conference. A singular perturbation technique was developed for neutron transport analysis by postulating expansion in terms of a small ordering parameter {eta}. Our perturbation analysis is carried, without approximation, through {Omicron}({eta}{sup 2}) to derive a material interface correction for diffusion theory. Here we present results from an analytical application of the perturbation technique to a fixed source problem and then describe and implementation of the technique in a computational scheme.

  7. Neutron transport study of a beam port based dynamic neutron radiography facility

    NASA Astrophysics Data System (ADS)

    Khaial, Anas M.

    Neutron radiography has the ability to differentiate between gas and liquid in two-phase flow due both to the density difference and the high neutron scattering probability of hydrogen. Previous studies have used dynamic neutron radiography -- in both real-time and high-speed -- for air-water, steam-water and gas-liquid metal two-phase flow measurements. Radiography with thermal neutrons is straightforward and efficient as thermal neutrons are easier to detect with relatively higher efficiency and can be easily extracted from nuclear reactor beam ports. The quality of images obtained using neutron radiography and the imaging speed depend on the neutron beam intensity at the imaging plane. A high quality neutron beam, with thermal neutron intensity greater than 3.0x 10 6 n/cm2-s and a collimation ratio greater than 100 at the imaging plane, is required for effective dynamic neutron radiography up to 2000 frames per second. The primary objectives of this work are: (1) to optimize a neutron radiography facility for dynamic neutron radiography applications and (2) to investigate a new technique for three-dimensional neutron radiography using information obtained from neutron scattering. In this work, neutron transport analysis and experimental validation of a dynamic neutron radiography facility is studied with consideration of real-time and high-speed neutron radiography requirements. A beam port based dynamic neutron radiography facility, for a target thermal neutron flux of 1.0x107 n/cm2-s, has been analyzed, constructed and experimentally verified at the McMaster Nuclear Reactor. The neutron source strength at the beam tube entrance is evaluated experimentally by measuring the thermal and fast neutron fluxes using copper activation flux-mapping technique. The development of different facility components, such as beam tube liner, gamma ray filter, beam shutter and biological shield, is achieved analytically using neutron attenuation and divergence theories. Monte

  8. Higher Resolution Neutron Velocity Spectrometer Measurements of Enriched Uranium

    DOE R&D Accomplishments Database

    Rainwater, L. J.; Havens, W. W. Jr.

    1950-08-09

    The slow neutron transmission of a sample of enriched U containing 3.193 gm/cm2 was investigated with a resolution width of 1 microsec/m. Results of transmission measurements are shown graphically. (B.J.H.)

  9. High spatial resolution fast-neutron imaging detectors for Pulsed Fast-Neutron Transmission Spectroscopy

    NASA Astrophysics Data System (ADS)

    Mor, I.; Vartsky, D.; Bar, D.; Feldman, G.; Goldberg, M. B.; Katz, D.; Sayag, E.; Shmueli, I.; Cohen, Y.; Tal, A.; Vagish, Z.; Bromberger, B.; Dangendorf, V.; Mugai, D.; Tittelmeier, K.; Weierganz, M.

    2009-05-01

    Two generations of a novel detector for high-resolution transmission imaging and spectrometry of fast-neutrons are presented. These devices are based on a hydrogenous fiber scintillator screen and single- or multiple-gated intensified camera systems (ICCD). This detector is designed for energy-selective neutron radiography with nanosecond-pulsed broad-energy (1-10 MeV) neutron beams. Utilizing the Time-of-Flight (TOF) method, such a detector is capable of simultaneously capturing several images, each at a different neutron energy (TOF). In addition, a gamma-ray image can also be simultaneously registered, allowing combined neutron/gamma inspection of objects. This permits combining the sensitivity of the fast-neutron resonance method to low-Z elements with that of gamma radiography to high-Z materials.

  10. Measurement of water content in polymer electrolyte membranes using high resolution neutron imaging

    SciTech Connect

    Spernjak, Dusan; Mukundan, Rangachary; Borup, Rodney L; Davey, John; Mukherjee, Partha P; Hussey, Daniel S; Jacobson, David

    2010-01-01

    Sufficient water content within a polymer electrolyte membrane (PEM) is necessary for adequate ionic conductivity. Membrane hydration is therefore a fundamental requirement for fuel cell operation. The hydration state of the membrane affects the water transport within, as both the diffusion coefficient and electro-osmotic drag depend on the water content. Membrane's water uptake is conventionally measured ex situ by weighing free-swelling samples equilibrated at controlled water activity. In the present study, water profiles in Nafion{reg_sign} membranes were measured using the high-resolution neutron imaging. The state-of-the-art, 10 {micro}m resolution neutron detector is capable of resolving water distributions across N1120, N1110 and N117 membranes. It provides a means to measure the water uptake and transport properties of fuel cell membranes in situ.

  11. High resolution neutron imaging of water in the polymer electrolyte fuel cell membrane

    SciTech Connect

    Mukherjee, Partha P; Makundan, Rangachary; Spendelow, Jacob S; Borup, Rodney L; Hussey, D S; Jacobson, D L; Arif, M

    2009-01-01

    Water transport in the ionomeric membrane, typically Nafion{reg_sign}, has profound influence on the performance of the polymer electrolyte fuel cell, in terms of internal resistance and overall water balance. In this work, high resolution neutron imaging of the Nafion{reg_sign} membrane is presented in order to measure water content and through-plane gradients in situ under disparate temperature and humidification conditions.

  12. Stable Difference Schemes for the Neutron Transport Equation

    SciTech Connect

    Ashyralyev, Allaberen; Taskin, Abdulgafur

    2011-09-22

    The initial boundary value problem for the neutron transport equation is considered. The first and second orders of accuracy difference schemes for the approximate solution of this problem are presented. In applications, the stability estimates for solutions of difference schemes for the approximate solution of the neutron transport equation are obtained. Numerical techniques are developed and algorithms are tested on an example in MATLAB.

  13. Neutron imaging of root water uptake, transport and hydraulic redistribution

    NASA Astrophysics Data System (ADS)

    Warren, J.; Bilheux, H.; Kang, M.; Voisin, S.; Cheng, C.; Horita, J.; Perfect, E.

    2012-12-01

    within the roots and soil. Even so, sub-millimeter scale image resolution could reveal the timing and relative magnitudes of root water uptake, internal rehydration and redistribution of water within the roots, and root-shoot hydraulic linkages - relationships not well characterized by other techniques.n situ root uptake and transport of deuterium oxide (D2O) in young maize seedlings based on neutron radiography.

  14. Neutron Transport Characteristics of a Nuclear Reactor Based Dynamic Neutron Imaging System

    SciTech Connect

    Khaial, Anas M.; Harvel, Glenn D.; Chang, Jen-Shih

    2006-07-01

    An advanced dynamic neutron imaging system has been constructed in the McMaster Nuclear Reactor (MNR) for nondestructive testing and multi-phase flow studies in energy and environmental applications. A high quality neutron beam is required with a thermal neutron flux greater than 5.0 x 10{sup 6} n/cm{sup 2}-s and a collimation ratio of 120 at image plane to promote high-speed neutron imaging up to 2000 frames per second. Neutron source strength and neutron transport have been experimentally and numerically investigated. Neutron source strength at the beam tube entrance was evaluated experimentally by measuring the thermal and fast neutron fluxes, and simple analytical neutron transport calculations were performed based upon these measured neutron fluxes to predict facility components in accordance with high-speed dynamic neutron imaging and operation safety requirements. Monte-Carlo simulations (using MCNP-4B code) with multiple neutron energy groups have also been used to validate neutron beam parameters and to ensure shielding capabilities of facility shutter and cave walls. Neutron flux distributions at the image plane and the neutron beam characteristics were experimentally measured by irradiating a two-dimensional array of Copper foils and using a real-time neutron radiography system. The neutron image characteristics -- such as neutron flux, image size, beam quality -- measured experimentally and predicted numerically for beam tube, beam shutter and radiography cave are compared and discussed in detail in this paper. The experimental results show that thermal neutron flux at image plane is nearly uniform over an imaging area of 20.0-cm diameter and its magnitude ranges from 8.0 x 10{sup 6} - 1.0 x 10{sup 7} n/cm{sup 2}-sec while the neutron-to-gamma ratio is 6.0 x 10{sup 5} n/cm{sup 2}-{mu}Sv. (authors)

  15. Efficiency and spatial resolution of the CASCADE thermal neutron detector

    NASA Astrophysics Data System (ADS)

    Köhli, M.; Allmendinger, F.; Häußler, W.; Schröder, T.; Klein, M.; Meven, M.; Schmidt, U.

    2016-08-01

    We report on the CASCADE project - a detection system, which has been designed for the purposes of neutron Spin Echo spectroscopy and which is continuously further developed and adapted to various applications. It features 2D spatially resolved detection of thermal neutrons at high rates. The CASCADE detector is composed of a stack of solid 10B coated Gas Electron Multiplier foils, which serve both as a neutron converter and as an amplifier for the primary ionization deposited in the standard counting gas environment. This multi-layer setup efficiently increases the detection efficiency and by extracting the signal of the charge traversing the stack the conversion layer can be identified allowing a precise determination of the time-of-flight. The spatial resolution is found by optical contrast determination to be σ =(1.39 ± 0.05) mm and by divergence corrected aperture measurements σ =(1.454 ± 0.007) mm , which is in agreement with the simulated detector model. Furthermore this enabled to investigate and describe the non-Gaussian resolution function. At the HEiDi diffractometer the absolute detection efficiency has been studied. At 0.6 Å for the 6 layer detector, which is currently part of the RESEDA spectrometer, an efficiency of 7.8% has been measured, which by means of Monte Carlo simulations translates to (21.0±1.5)% for thermal neutrons at 1.8 Å and (46.9±3.3)% at 5.4 Å.

  16. Multiphase Flow Characterization Using Simultaneous High Resolution Neutron and X-Ray Imaging

    NASA Astrophysics Data System (ADS)

    LaManna, J.; Anovitz, L. M.; Hussey, D. S.; Jacobson, D. L.

    2015-12-01

    Multiphase flow in geologic materials is an important area of research for hydrology and oil recovery. A valuable tool for determining how liquid water and/or hydrocarbons transport through soils and rocks is neutron tomography due to its high sensitivity to hydrogen. This technique allows for the 3D reconstruction of the liquid phase in the sample. In order to resolve the solid phase structure of the sample it is necessary to perform x-ray tomography which often must be conducted at a separate facility from the neutron imaging. When imaging deformable samples or stochastic flow this delay in imaging modes ruins the analysis as the sample is no longer in an identical state. To address this issue and bring a unique capability to NIST, an instrument has been commissioned for the simultaneous imaging with neutrons and x-rays. The new system orients a micro-focus 90 kV x-ray beam 90° to the neutron beam which facilitates rapid dual-mode tomography of samples. Current highest spatial resolutions are 20 μm and 10 μm for the neutron and x-ray detectors, respectively, with upcoming improvements. This presentation will focus on introducing the new system and demonstrating its ability with several cases. Examples of high resolution water uptake and high speed imaging of uptake dynamics will be given.

  17. Ultra high resolution neutron scattering: Neutron Resonance Spin-Echo and Larmor Diffraction

    NASA Astrophysics Data System (ADS)

    Walters, Andrew; Keller, Thomas; Keimer, Bernhard

    2012-02-01

    The TRISP spectrometer at the FRM II neutron source near Munich, Germany, is a unique world-leading neutron scattering instrument which employs the Neutron Resonance Spin-Echo technique (NRSE). Linewidths of dispersive excitations with energy transfers up to 50 meV can be measured with an energy resolution in the μeV range without the restrictive flux limitations that normally apply to high resolution neutron triple-axis spectrometers. Pioneering studies on the electron-phonon interaction in elemental superconductorsootnotetextP. Aynajian et al., Science 319 1509 (2008) and the lifetimes of magnetic excitations in archetypal magnetic systems will be reviewed.ootnotetextS. Bayrakci et al., Science 312 1928 (2006) The instrument can also be used as a Larmor diffractometer, enabling d-spacings to be measured with a resolution of δdd ˜10-6, i.e. more than one order of magnitude more sensitive than conventional diffraction techniques.ootnotetextC. Pfleiderer et al., Science 316 1871 (2007) Ongoing and future NRSE and Larmor diffraction projects will be outlined, especially in regard to prospective studies which will take full advantage of the new low temperature and high pressure sample environment capabilities now available at TRISP.

  18. Design of a transportable high efficiency fast neutron spectrometer

    NASA Astrophysics Data System (ADS)

    Roecker, C.; Bernstein, A.; Bowden, N. S.; Cabrera-Palmer, B.; Dazeley, S.; Gerling, M.; Marleau, P.; Sweany, M. D.; Vetter, K.

    2016-08-01

    A transportable fast neutron detection system has been designed and constructed for measuring neutron energy spectra and flux ranging from tens to hundreds of MeV. The transportability of the spectrometer reduces the detector-related systematic bias between different neutron spectra and flux measurements, which allows for the comparison of measurements above or below ground. The spectrometer will measure neutron fluxes that are of prohibitively low intensity compared to the site-specific background rates targeted by other transportable fast neutron detection systems. To measure low intensity high-energy neutron fluxes, a conventional capture-gating technique is used for measuring neutron energies above 20 MeV and a novel multiplicity technique is used for measuring neutron energies above 100 MeV. The spectrometer is composed of two Gd containing plastic scintillator detectors arranged around a lead spallation target. To calibrate and characterize the position dependent response of the spectrometer, a Monte Carlo model was developed and used in conjunction with experimental data from gamma ray sources. Multiplicity event identification algorithms were developed and used with a Cf-252 neutron multiplicity source to validate the Monte Carlo model Gd concentration and secondary neutron capture efficiency. The validated Monte Carlo model was used to predict an effective area for the multiplicity and capture gating analyses. For incident neutron energies between 100 MeV and 1000 MeV with an isotropic angular distribution, the multiplicity analysis predicted an effective area of 500 cm2 rising to 5000 cm2. For neutron energies above 20 MeV, the capture-gating analysis predicted an effective area between 1800 cm2 and 2500 cm2. The multiplicity mode was found to be sensitive to the incident neutron angular distribution.

  19. Neutron transport in Eulerian coordinates with bulk material motion

    SciTech Connect

    Baker, R. S.; Dahl, J. A.; Fichtl, E. D.; Morel, J. E.

    2013-07-01

    A consistent, numerically stable algorithm for the solution of the neutron transport equation in the presence of a moving material background is presented for one-dimensional spherical geometry. Manufactured solutions are used to demonstrate the correctness and stability of our numerical algorithm. The importance of including moving material corrections is shown for the r-process in proto-neutron stars. (authors)

  20. Improving the Spatial Resolution of Neutron Imaging at Paul Scherrer Institut - The Neutron Microscope Project

    NASA Astrophysics Data System (ADS)

    Trtik, Pavel; Hovind, Jan; Grünzweig, Christian; Bollhalder, Alex; Thominet, Vincent; David, Christian; Kaestner, Anders; Lehmann, Eberhard H.

    Here we present results stemming from the first prototype of the Neutron Microscope instrument at Paul ScherrerInstitut (PSI). The instrument is based on a very thin gadolinium oxysulfide (Gd2O2S:Tb+) scintillator screen and a magnifying optics. The Neutron Microscope prototype has been tested at the ICON and the BOA beamlines at PSI and sub-10 μm features can be clearly resolved on a focussed ion beam (FIB) enhance test object - a gadolinium-based Siemens star. The spatial resolution of the images of the gadolinium-based Siemensstar assessed by Fourier ring correlation was about 7.6 μm. The outlook for future improvement of the Neutron Microscope system is presented.

  1. Scattered Neutron Tomography Based on A Neutron Transport Inverse Problem

    SciTech Connect

    William Charlton

    2007-07-01

    Neutron radiography and computed tomography are commonly used techniques to non-destructively examine materials. Tomography refers to the cross-sectional imaging of an object from either transmission or reflection data collected by illuminating the object from many different directions.

  2. Novel Large Area High Resolution Neutron Detector for the Spallation Neutron Source

    SciTech Connect

    Lacy, Jeffrey L

    2009-05-22

    Neutron scattering is a powerful technique that is critically important for materials science and structural biology applications. The knowledge gained from past developments has resulted in far-reaching advances in engineering, pharmaceutical and biotechnology industries, to name a few. New facilities for neutron generation at much higher flux, such as the SNS at Oak Ridge, TN, will greatly enhance the capabilities of neutron scattering, with benefits that extend to many fields and include, for example, development of improved drug therapies and materials that are stronger, longer-lasting, and more impact-resistant. In order to fully realize this enhanced potential, however, higher neutron rates must be met with improved detection capabilities, particularly higher count rate capability in large size detectors, while maintaining practicality. We have developed a neutron detector with the technical and economic advantages to accomplish this goal. This new detector has a large sensitive area, offers 3D spatial resolution, high sensitivity and high count rate capability, and it is economical and practical to produce. The proposed detector technology is based on B-10 thin film conversion of neutrons in long straw-like gas detectors. A stack of many such detectors, each 1 meter in length, and 4 mm in diameter, has a stopping power that exceeds that of He-3 gas, contained at practical pressures within an area detector. With simple electronic readout methods, straw detector arrays can provide spatial resolution of 4 mm FWHM or better, and since an array detector of such form consists of several thousand individual elements per square meter, count rates in a 1 m^2 detector can reach 2?10^7 cps. Moreover, each individual event can be timetagged with a time resolution of less than 0.1 ?sec, allowing accurate identification of neutron energy by time of flight. Considering basic elemental cost, this novel neutron imaging detector can be commercially produced economically

  3. Transport coefficients in superfluid neutron stars

    NASA Astrophysics Data System (ADS)

    Tolos, Laura; Manuel, Cristina; Sarkar, Sreemoyee; Tarrus, Jaume

    2016-01-01

    We study the shear and bulk viscosity coefficients as well as the thermal conductivity as arising from the collisions among phonons in superfluid neutron stars. We use effective field theory techniques to extract the allowed phonon collisional processes, written as a function of the equation of state and the gap of the system. The shear viscosity due to phonon scattering is compared to calculations of that coming from electron collisions. We also comment on the possible consequences for r-mode damping in superfluid neutron stars. Moreover, we find that phonon collisions give the leading contribution to the bulk viscosities in the core of the neutron stars. We finally obtain a temperature-independent thermal conductivity from phonon collisions and compare it with the electron-muon thermal conductivity in superfluid neutron stars.

  4. Neutrons and Granite: Transport and Activation

    SciTech Connect

    Bedrossian, P J

    2004-04-13

    In typical ground materials, both energy deposition and radionuclide production by energetic neutrons vary with the incident particle energy in a non-monotonic way. We describe the overall balance of nuclear reactions involving neutrons impinging on granite to demonstrate these energy-dependencies. While granite is a useful surrogate for a broad range of soil and rock types, the incorporation of small amounts of water (hydrogen) does alter the balance of nuclear reactions.

  5. Quantification of Water Content Across a Cement-clay Interface Using High Resolution Neutron Radiography

    NASA Astrophysics Data System (ADS)

    Shafizadeh, A.; Gimmi, T.; Van Loon, L.; Kaestner, A.; Lehmann, E.; Maeder, U. K.; Churakov, S. V.

    In many designs for radioactive waste repositories, cement and clay will come into direct contact. The geochemical contrast between cement and clay will lead to mass fluxes across the interface, which consequently results in alteration of structural and transport properties of both materials that may affect the performance of the multi-barrier system. We present an experimental approach to study cement-clay interactions with a cell to accommodate small samples of cement and clay. The cell design allows both in situ measurement of water content across the sample using neutron radiography and measurement of transport parameters using through-diffusion tracer experiments. The aim of the high-resolution neutron radiography experiments was to monitor changes in water content (porosity) and their spatial extent. Neutron radiographs of several evolving cement-clay interfaces delivered quantitative data which allow resolving local water contents within the sample domain. In the present work we explored the uncertainties of the derived water contents with regard to various input parameters and with regard to the applied image correction procedures. Temporal variation of measurement conditions created absolute uncertainty of the water content in the order of ±0.1 (m3/m3), which could not be fully accounted for by correction procedures. Smaller relative changes in water content between two images can be derived by specific calibrations to two sample regions with different, invariant water contents.

  6. The Lattice Boltzmann Method applied to neutron transport

    SciTech Connect

    Erasmus, B.; Van Heerden, F. A.

    2013-07-01

    In this paper the applicability of the Lattice Boltzmann Method to neutron transport is investigated. One of the main features of the Lattice Boltzmann method is the simultaneous discretization of the phase space of the problem, whereby particles are restricted to move on a lattice. An iterative solution of the operator form of the neutron transport equation is presented here, with the first collision source as the starting point of the iteration scheme. A full description of the discretization scheme is given, along with the quadrature set used for the angular discretization. An angular refinement scheme is introduced to increase the angular coverage of the problem phase space and to mitigate lattice ray effects. The method is applied to a model problem to investigate its applicability to neutron transport and the results are compared to a reference solution calculated, using MCNP. (authors)

  7. Neutron radiography with sub-15 μm resolution through event centroiding

    NASA Astrophysics Data System (ADS)

    Tremsin, Anton S.; McPhate, Jason B.; Vallerga, John V.; Siegmund, Oswald H. W.; Bruce Feller, W.; Lehmann, Eberhard; Kaestner, Anders; Boillat, Pierre; Panzner, Tobias; Filges, Uwe

    2012-10-01

    Conversion of thermal and cold neutrons into a strong ˜1 ns electron pulse with an absolute neutron detection efficiency as high as 50-70% makes detectors with 10B-doped Microchannel Plates (MCPs) very attractive for neutron radiography and microtomography applications. The subsequent signal amplification preserves the location of the event within the MCP pore (typically 6-10 μm in diameter), providing the possibility to perform neutron counting with high spatial resolution. Different event centroiding techniques of the charge landing on a patterned anode enable accurate reconstruction of the neutron position, provided the charge footprints do not overlap within the time required for event processing. The new fast 2×2 Timepix readout with >1.2 kHz frame rates provides the unique possibility to detect neutrons with sub-15 μm resolution at several MHz/cm2 counting rates. The results of high resolution neutron radiography experiments presented in this paper, demonstrate the sub-15 μm resolution capability of our detection system. The high degree of collimation and cold spectrum of ICON and BOA beamlines combined with the high spatial resolution and detection efficiency of MCP-Timepix detectors are crucial for high contrast neutron radiography and microtomography with high spatial resolution. The next generation of Timepix electronics with sparsified readout should enable counting rates in excess of 107 n/cm2/s taking full advantage of high beam intensity of present brightest neutron imaging facilities.

  8. Computing the moments of the neutron population using deterministic neutron transport

    SciTech Connect

    Fichtl, E. D.; Baker, R. S.

    2013-07-01

    It is important to treat the inherent stochasticity of the fission process in systems where the behavior of the system is stochastic. This occurs when there are few neutrons in the system, or when the neutron source is weak. In order to characterize such systems, the capability to compute the first four moments of the neutron population distribution has been added to the deterministic neutral particle transport code, PARTISN. The moments are then fitted to probability density functions from the Pearson family. PARTISN is compared against MCNP6, with which it agrees well. (authors)

  9. High resolution neutron imaging capabilities at BOA beamline at Paul Scherrer Institut

    NASA Astrophysics Data System (ADS)

    Tremsin, A. S.; Morgano, M.; Panzner, T.; Lehmann, E.; Filgers, U.; Vallerga, J. V.; McPhate, J. B.; Siegmund, O. H. W.; Feller, W. B.

    2015-06-01

    The cold neutron spectrum of the Beamline for neutron Optics and other Applications (BOA) at Paul Scherrer Institut enables high contrast neutron imaging because neutron cross sections for many materials increase with neutron wavelength. However, for many neutron imaging applications, spatial resolution can be as important as contrast. In this paper the neutron transmission imaging capabilities of an MCP/Timepix detector installed at the BOA beamline are presented, demonstrating the possibilities for studying sub-20 μm features in various samples. In addition to conventional neutron radiography and microtomography, the high degree of neutron polarization at the BOA beamline can be very attractive for imaging of magnetic fields, as demonstrated by our measurements. We also show that a collimated cold neutron beamline combined with a high resolution detector can produce image artifacts, (e.g. edge enhancements) due to neutron refraction and scattering. The results of our experiments indicate that the BOA beamline is a valuable addition to neutron imaging facilities, providing improved and sometimes unique capabilities for non-destructive studies with cold neutrons.

  10. High resolution neutron imaging of water in PEM fuel cells

    SciTech Connect

    Mukundan, Rangachary; Borup, Rodney L; Davey, John R; Spendelow, Jacob S

    2008-01-01

    Optimal water management in Polymer Electrolyte Membrane (PEM) fuel cells is critical to improving the performance and durability of fuel cell systems especially during transient, start-up and shut-down operations. For example, while a high water content is desirable for improved membrane and catalyst ionomer conductivity, high water content can also block gas access to the triple-phase boundary resulting in lowered performance due to catalyst and gas diffusion layer (GDL) flooding. Visualizing liquid water by neutron imaging has been used over the past decade to study the water distribution inside operating fuel cells. In this paper, the results from our imaging at NIST using their recently installed higher resolution ({approx} 25 mm) Microchannel Plate (MCP) detector with a pixel pitch of 14.7 mm are presented. This detector is capable of quantitatively imaging the water inside the MEA (Membrane Electrode Assembly)/GDL (Gas Diffusion Layer) of working fuel cells and can provide the water profiles within these various components in addition to the channel water. Specially designed fuel cells (active area = 2.25 cm{sup 2}) have been used in order to take advantage of the full detector resolution. The cell design is illustrated in a figure where one of the current collector/end plates is shown. The serpentine pattern was machined into a block of aluminum and plated with nickel and then gold to form the flow field. The measurements were performed using beam no. 1 and aperture no. 2 with a fluence rate of 1.9 x 10{sup 6} neutrons cm{sup -2} sec{sup -1}. The cells were assembled with Gore{sup TM} Primea{sup R} MEAs and SGL Sigracet {sup R} 24 series GDLs (PRIMEA, GORE-SELECT and GORE are trademarks of W. L. Gore & Associates, Inc). All the cells were tested at 80 {sup o}C with 1.2 stoichiometry H{sub 2} and 2.0 stoichiometry air flows.

  11. Transport simulation and image reconstruction for fast-neutron detection of explosives and narcotics

    SciTech Connect

    Micklich, B.J.; Fink, C.L.; Sagalovsky, L.

    1995-07-01

    Fast-neutron inspection techniques show considerable promise for explosive and narcotics detection. A key advantage of using fast neutrons is their sensitivity to low-Z elements (carbon, nitrogen, and oxygen), which are the primary constituents of these materials. We are currently investigating two interrogation methods in detail: Fast-Neutron Transmission Spectroscopy (FNTS) and Pulsed Fast-Neutron Analysis (PFNA). FNTS is being studied for explosives and narcotics detection in luggage and small containers for which the transmission ratio is greater than about 0.01. The Monte-Carlo radiation transport code MCNP is being used to simulate neutron transmission through a series of phantoms for a few (3-5) projection angles and modest (2 cm) resolution. Areal densities along projection rays are unfolded from the transmission data. Elemental abundances are obtained for individual voxels by tomographic reconstruction, and these reconstructed elemental images are combined to provide indications of the presence or absence of explosives or narcotics. PFNA techniques are being investigated for detection of narcotics in cargo containers because of the good penetration of the fast neutrons and the low attenuation of the resulting high-energy gamma-ray signatures. Analytic models and Monte-Carlo simulations are being used to explore the range of capabilities of PFNA techniques and to provide insight into systems engineering issues. Results of studies from both FNTS and PFNA techniques are presented.

  12. 3D Multigroup Sn Neutron Transport Code

    Energy Science and Technology Software Center (ESTSC)

    2001-02-14

    ATTILA is a 3D multigroup transport code with arbitrary order ansotropic scatter. The transport equation is solved in first order form using a tri-linear discontinuous spatial differencing on an arbitrary tetrahedral mesh. The overall solution technique is source iteration with DSA acceleration of the scattering source. Anisotropic boundary and internal sources may be entered in the form of spherical harmonics moments. Alpha and k eigenvalue problems are allowed, as well as fixed source problems. Forwardmore » and adjoint solutions are available. Reflective, vacumn, and source boundary conditions are available. ATTILA can perform charged particle transport calculations using slowing down (CSD) terms. ATTILA can also be used to peform infra-red steady-state calculations for radiative transfer purposes.« less

  13. 3D Multigroup Sn Neutron Transport Code

    SciTech Connect

    McGee, John; Wareing, Todd; Pautz, Shawn

    2001-02-14

    ATTILA is a 3D multigroup transport code with arbitrary order ansotropic scatter. The transport equation is solved in first order form using a tri-linear discontinuous spatial differencing on an arbitrary tetrahedral mesh. The overall solution technique is source iteration with DSA acceleration of the scattering source. Anisotropic boundary and internal sources may be entered in the form of spherical harmonics moments. Alpha and k eigenvalue problems are allowed, as well as fixed source problems. Forward and adjoint solutions are available. Reflective, vacumn, and source boundary conditions are available. ATTILA can perform charged particle transport calculations using slowing down (CSD) terms. ATTILA can also be used to peform infra-red steady-state calculations for radiative transfer purposes.

  14. Grid resolution study of ground water flow and transport.

    PubMed

    Bower, Kathleen M; Gable, Carl W; Zyvoloski, George A

    2005-01-01

    Three-dimensional grids representing a heterogeneous, ground water system are generated at 10 different resolutions in support of a site-scale flow and transport modeling effort. These grids represent hydrostratigraphy near Yucca Mountain, Nevada, consisting of 18 stratigraphic units with contrasting fluid flow and transport properties. The grid generation method allows the stratigraphy to be modeled by numerical grids of different resolution so that comparison studies can be performed to test for grid quality and determine the resolution required to resolve geologic structure and physical processes such as fluid flow and solute transport. The process of generating numerical grids with appropriate property distributions from geologic conceptual models is automated, thus making the entire process easy to implement with fewer user-induced errors. The series of grids of various resolutions are used to assess the level at which increasing resolution no longer influences the flow and solute transport results. Grid resolution is found to be a critical issue for ground water flow and solute transport. The resolution required in a particular instance is a function of the feature size of the model, the intrinsic properties of materials, the specific physics of the problem, and boundary conditions. The asymptotic nature of results related to flow and transport indicate that for a hydrologic model of the heterogeneous hydrostratigraphy under Yucca Mountain, a horizontal grid spacing of 600 m and vertical grid spacing of 40 m resolve the hydrostratigraphic model with sufficient precision to accurately model the hypothetical flow and solute transport to within 5% of the value that would be obtained with much higher resolution. PMID:15726930

  15. In situ quantification and visualization of lithium transport with neutrons.

    PubMed

    Liu, Danny X; Wang, Jinghui; Pan, Ke; Qiu, Jie; Canova, Marcello; Cao, Lei R; Co, Anne C

    2014-09-01

    A real-time quantification of Li transport using a nondestructive neutron method to measure the Li distribution upon charge and discharge in a Li-ion cell is reported. By using in situ neutron depth profiling (NDP), we probed the onset of lithiation in a high-capacity Sn anode and visualized the enrichment of Li atoms on the surface followed by their propagation into the bulk. The delithiation process shows the removal of Li near the surface, which leads to a decreased coulombic efficiency, likely because of trapped Li within the intermetallic material. The developed in situ NDP provides exceptional sensitivity in the temporal and spatial measurement of Li transport within the battery material. This diagnostic tool opens up possibilities to understand rates of Li transport and their distribution to guide materials development for efficient storage mechanisms. Our observations provide important mechanistic insights for the design of advanced battery materials. PMID:25044527

  16. CMFD acceleration of spatial domain-decomposed neutron transport problems

    SciTech Connect

    Kelley, B. W.; Larsen, E. W.

    2012-07-01

    A significant limitation to parallelizing the solution of neutron transport problems is the need for sweeps across the entirety of the problem domain. Angular domain decomposition is common practice, as the equations for each direction are independent aside from their shared scattering/fission source. Accordingly, spatial domain decomposition does not naturally arise in the transport equations and is therefore less frequent in practice. In this paper, we show that a neutron transport domain can be straightforwardly divided into independent, parallelizable sweep regions, globally linked with the standard CMFD method, with an additional update equation. We verify, theoretically (via Fourier analysis) and computationally, that the convergence properties of this method are stable and nominally as rapid as standard CMFD. (authors)

  17. Singular perturbation analysis of the neutron transport equation

    SciTech Connect

    Losey, D.C.; Lee, J.C.

    1996-07-01

    A singular perturbation technique is applied to the one-speed, one- dimensional neutron transport equation with isotropic scattering. Our technique extends previous singular perturbation applications to higher-order and reduces the transport problem to a series of diffusion theory problems in the interior medium and a series of analytically solvable transport problems in the boundary layers. Asymptotic matching links the two solutions, yielding boundary conditions and a composite expansion valid throughout the media. Our formulation generates an accurate correction for the material interface condition used in global diffusion theory calculations.

  18. A deterministic method for transient, three-dimensional neutron transport

    SciTech Connect

    Goluoglu, S.; Bentley, C.; DeMeglio, R.; Dunn, M.; Norton, K.; Pevey, R.; Suslov, I.; Dodds, H.L.

    1998-05-01

    A deterministic method for solving the time-dependent, three-dimensional Boltzmann transport equation with explicit representation of delayed neutrons has been developed and evaluated. The methodology used in this study for the time variable of the neutron flux is known as the improved quasi-static (IQS) method. The position, energy, and angle-dependent neutron flux is computed deterministically by using the three-dimensional discrete ordinates code TORT. This paper briefly describes the methodology and selected results. The code developed at the University of Tennessee based on this methodology is called TDTORT. TDTORT can be used to model transients involving voided and/or strongly absorbing regions that require transport theory for accuracy. This code can also be used to model either small high-leakage systems, such as space reactors, or asymmetric control rod movements. TDTORT can model step, ramp, step followed by another step, and step followed by ramp type perturbations. It can also model columnwise rod movement. A special case of columnwise rod movement in a three-dimensional model of a boiling water reactor (BWR) with simple adiabatic feedback is also included. TDTORT is verified through several transient one-dimensional, two-dimensional, and three-dimensional benchmark problems. The results show that the transport methodology and corresponding code developed in this work have sufficient accuracy and speed for computing the dynamic behavior of complex multi-dimensional neutronic systems.

  19. Graphical User Interface for Simplified Neutron Transport Calculations

    SciTech Connect

    Schwarz, Randolph; Carter, Leland L

    2011-07-18

    A number of codes perform simple photon physics calculations. The nuclear industry is lacking in similar tools to perform simplified neutron physics shielding calculations. With the increased importance of performing neutron calculations for homeland security applications and defense nuclear nonproliferation tasks, having an efficient method for performing simple neutron transport calculations becomes increasingly important. Codes such as Monte Carlo N-particle (MCNP) can perform the transport calculations; however, the technical details in setting up, running, and interpreting the required simulations are quite complex and typically go beyond the abilities of most users who need a simple answer to a neutron transport calculation. The work documented in this report resulted in the development of the NucWiz program, which can create an MCNP input file for a set of simple geometries, source, and detector configurations. The user selects source, shield, and tally configurations from a set of pre-defined lists, and the software creates a complete MCNP input file that can be optionally run and the results viewed inside NucWiz.

  20. TRINIDY: Transport of ions and neutrons in dynamic materials

    NASA Astrophysics Data System (ADS)

    Spencer, Joshua B.

    The TRansport of Ions and Neutrons In DYnamic (TRINIDY) materials code is a new code designed to study the effects of high fluence ion and neutron radiation on solid surfaces. This is done in a quasi-deterministic way, in that the transport of pseudo-particles within target material is accomplished via a Monte Carlo approach while the changes within the target are calculated deterministically by use of a one-dimensional Lagrangian mesh into which each of the tracked pseudo-particles are either deposited or removed. After each cycle the mesh is allowed to relax to a solid state areal density adjusted for its new constituency. As a natural corollary to the change in material compositions in each mesh element comes the resultant change in thickness of the target. Within TRINIDY charged particles are transported by means of a Binary Collision Approximation (BCA) where the elastic nuclear and inelastic electronic stopping forces are decoupled in such a way that the projectile only interacts with one target atom at a time. TRINIDY builds on the legacy of the Transport of Ions in Matter (TRIM), TRIM-SP and TRIDYN codes, in that it uses Biersack's analytic approximation to the quantum scattering integral and a screened coulomb potential as the basic for the charged particle transport. The neutron transport within TRINIDY is based on 32-group elastic scattering and total absorption cross-section data which has been derived from the ENDF7 continuous neutron data sets for each of the naturally occurring elements Hydrogen through Uranium. This work is comprised of essentially three sections. First, there is a detailed technical description of the science behind TRINIDY. Secondly there will be a complete write-up of the validation and verification work done during the development of TRINIDY. Lastly, a series of practical demonstration of particular interest to the semi-conductor industry are presented to exemplify the use of TRINIDY within the realm of applied materials

  1. A diamond 14 MeV neutron energy spectrometer with high energy resolution.

    PubMed

    Shimaoka, Takehiro; Kaneko, Junichi H; Ochiai, Kentaro; Tsubota, Masakatsu; Shimmyo, Hiroaki; Chayahara, Akiyoshi; Umezawa, Hitoshi; Watanabe, Hideyuki; Shikata, Shin-ichi; Isobe, Mitsutaka; Osakabe, Masaki

    2016-02-01

    A self-standing single-crystal chemical vapor deposited diamond was obtained using lift-off method. It was fabricated into a radiation detector and response function measurements for 14 MeV neutrons were taken at the fusion neutronics source. 1.5% of high energy resolution was obtained by using the (12)C(n, α)(9)Be reaction at an angle of 100° with the deuteron beam line. The intrinsic energy resolution, excluding energy spreading caused by neutron scattering, slowing in the target and circuit noises was 0.79%, which was also the best resolution of the diamond detector ever reported. PMID:26931845

  2. A diamond 14 MeV neutron energy spectrometer with high energy resolution

    NASA Astrophysics Data System (ADS)

    Shimaoka, Takehiro; Kaneko, Junichi H.; Ochiai, Kentaro; Tsubota, Masakatsu; Shimmyo, Hiroaki; Chayahara, Akiyoshi; Umezawa, Hitoshi; Watanabe, Hideyuki; Shikata, Shin-ichi; Isobe, Mitsutaka; Osakabe, Masaki

    2016-02-01

    A self-standing single-crystal chemical vapor deposited diamond was obtained using lift-off method. It was fabricated into a radiation detector and response function measurements for 14 MeV neutrons were taken at the fusion neutronics source. 1.5% of high energy resolution was obtained by using the 12C(n, α)9Be reaction at an angle of 100° with the deuteron beam line. The intrinsic energy resolution, excluding energy spreading caused by neutron scattering, slowing in the target and circuit noises was 0.79%, which was also the best resolution of the diamond detector ever reported.

  3. The AN neutron transport by nodal diffusion

    SciTech Connect

    Barbarino, A.; Tomatis, D.

    2013-07-01

    The two group diffusion model combined to a nodal approach in space is the preferred scheme for the industrial simulation of nuclear water reactors. The main selling point is the speed of computation, allowing a large number of parametric studies. Anyway, the drawbacks of the underlying diffusion equation may arise with highly heterogeneous interfaces, often encountered in modern UO{sub 2} and MO{sub x} fuel loading patterns, and boron less controlled systems. This paper aims at showing how the simplified AN transport model, equivalent to the well known SPN, can be implemented in standard diffusion codes with minor modifications. Some numerical results are illustrated. (authors)

  4. A multi-DSP system for the neutron high resolution Fourier diffractometer

    SciTech Connect

    Drozdov, V.A.; Butenko, V.A.; Prikhodko, V.I.

    1998-08-01

    The multi-DSP data acquisition system for neutron time-of-flight spectrum measurements requiring fast real-time data processing is designed and is operated at the neutron High Resolution Fourier Diffractometer (HRFD). The use of high performance DSPs and front-end electronics based on flexible PLDs allows increasing of the efficiency of neutron diffractometers with a Fourier chopper and a multi-element detector system by the method of electronic time-focusing.

  5. First measurements with new high-resolution gadolinium-GEM neutron detectors

    NASA Astrophysics Data System (ADS)

    Pfeiffer, D.; Resnati, F.; Birch, J.; Etxegarai, M.; Hall-Wilton, R.; Höglund, C.; Hultman, L.; Llamas-Jansa, I.; Oliveri, E.; Oksanen, E.; Robinson, L.; Ropelewski, L.; Schmidt, S.; Streli, C.; Thuiner, P.

    2016-05-01

    European Spallation Source instruments like the macromolecular diffractometer (NMX) require an excellent neutron detection efficiency, high-rate capabilities, time resolution, and an unprecedented spatial resolution in the order of a few hundred micrometers over a wide angular range of the incoming neutrons. For these instruments solid converters in combination with Micro Pattern Gaseous Detectors (MPGDs) are a promising option. A GEM detector with gadolinium converter was tested on a cold neutron beam at the IFE research reactor in Norway. The μTPC analysis, proven to improve the spatial resolution in the case of 10B converters, is extended to gadolinium based detectors. For the first time, a Gd-GEM was successfully operated to detect neutrons with a measured efficiency of 11.8% at a wavelength of 2 Åand a position resolution better than 250 μm.

  6. Instrument resolution of the vertical-type cold-neutron reflectometer at HANARO

    NASA Astrophysics Data System (ADS)

    Lee, Jeong Soo

    2016-05-01

    The characteristics of the instrument resolution of the vertical-type cold-neutron reflectometer installed at HANARO, a research reactor in Korea, are estimated. In order to ascertain differences in the instrument resolution according to two scan modes, i.e., the fixed-slit and the variable-slit scan modes, for the measurement of the neutron reflectivity profile, we estimated the beam status of the instrument. Moreover, because the footprint effect and the limitation of the neutron beam window arise during measurements of the neutron reflectivity profiles and affect the instrument resolution, the causes of their occurrence were determined and a correction method was devised. The neutron reflectivity profiles of a SiO2 standard thin-film sample were measured in a Q range up to 0.2 Å-1 by using the two scan modes, and the sample structure was analyzed with the weighted least-squares fitting program Parratt32. During the process of the least-squares fitting of the neutron reflectivity profiles for the structural analysis, the method used to correct for the footprint effect and the limitation of neutron beam window was found to be reasonable. Also, the modified instrument resolutions in the two scan modes for the vertical-type cold-neutron reflectometer were found to be suitable.

  7. Tagged Neutron Source for API Inspection Systems with Greatly Enhanced Spatial Resolution

    SciTech Connect

    2012-06-04

    We recently developed induced fission and transmission imaging methods with time- and directionally-tagged neutrons offer new capabilities for characterization of fissile material configurations and enhanced detection of special nuclear materials (SNM). An Advanced Associated Particle Imaging (API) generator with higher angular resolution and neutron yield than existing systems is needed to fully exploit these methods.

  8. Neutron imaging of ion transport in mesoporous carbon materials.

    PubMed

    Sharma, Ketki; Bilheux, Hassina Z; Walker, Lakeisha M H; Voisin, Sophie; Mayes, Richard T; Kiggans, Jim O; Yiacoumi, Sotira; DePaoli, David W; Dai, Sheng; Tsouris, Costas

    2013-07-28

    Neutron imaging is presented as a tool for quantifying the diffusion of ions inside porous materials, such as carbon electrodes used in the desalination process via capacitive deionization and in electrochemical energy-storage devices. Monolithic mesoporous carbon electrodes of ∼10 nm pore size were synthesized based on a soft-template method. The electrodes were used with an aqueous solution of gadolinium nitrate in an electrochemical flow-through cell designed for neutron imaging studies. Sequences of neutron images were obtained under various conditions of applied potential between the electrodes. The images revealed information on the direction and magnitude of ion transport within the electrodes. From the time-dependent concentration profiles inside the electrodes, the average value of the effective diffusion coefficient for gadolinium ions was estimated to be 2.09 ± 0.17 × 10(-11) m(2) s(-1) at 0 V and 1.42 ± 0.06 × 10(-10) m(2) s(-1) at 1.2 V. The values of the effective diffusion coefficient obtained from neutron imaging experiments can be used to evaluate model predictions of the ion transport rate in capacitive deionization and electrochemical energy-storage devices. PMID:23756558

  9. Exact-to-precision generalized perturbation for neutron transport calculation

    SciTech Connect

    Wang, C.; Abdel-Khalik, H. S.

    2013-07-01

    This manuscript extends the exact-to-precision generalized perturbation theory (E{sub P}GPT), introduced previously, to neutron transport calculation whereby previous developments focused on neutron diffusion calculation only. The E{sub P}GPT collectively denotes new developments in generalized perturbation theory (GPT) that place premium on computational efficiency and defendable accuracy in order to render GPT a standard analysis tool in routine design and safety reactor calculations. EPGPT constructs a surrogate model with quantifiable accuracy which can replace the original neutron transport model for subsequent engineering analysis, e.g. functionalization of the homogenized few-group cross sections in terms of various core conditions, sensitivity analysis and uncertainty quantification. This is achieved by reducing the effective dimensionality of the state variable (i.e. neutron angular flux) by projection onto an active subspace. Confining the state variations to the active subspace allows one to construct a small number of what is referred to as the 'active' responses which are solely dependent on the physics model rather than on the responses of interest, the number of input parameters, or the number of points in the state phase space. (authors)

  10. Mathematical models for volume rendering and neutron transport

    SciTech Connect

    Max, N.

    1994-09-01

    This paper reviews several different models for light interaction with volume densities of absorbing, glowing, reflecting, or scattering material. They include absorption only, glow only, glow and absorption combined, single scattering of external illumination, and multiple scattering. The models are derived from differential equations, and illustrated on a data set representing a cloud. They are related to corresponding models in neutron transport. The multiple scattering model uses an efficient method to propagate the radiation which does not suffer from the ray effect.

  11. High-Resolution Fast-Neutron Spectrometry for Arms Control and Treaty Verification

    SciTech Connect

    David L. Chichester; James T. Johnson; Edward H. Seabury

    2012-07-01

    Many nondestructive nuclear analysis techniques have been developed to support the measurement needs of arms control and treaty verification, including gross photon and neutron counting, low- and high-resolution gamma spectrometry, time-correlated neutron measurements, and photon and neutron imaging. One notable measurement technique that has not been extensively studied to date for these applications is high-resolution fast-neutron spectrometry (HRFNS). Applied for arms control and treaty verification, HRFNS has the potential to serve as a complimentary measurement approach to these other techniques by providing a means to either qualitatively or quantitatively determine the composition and thickness of non-nuclear materials surrounding neutron-emitting materials. The technique uses the normally-occurring neutrons present in arms control and treaty verification objects of interest as an internal source of neutrons for performing active-interrogation transmission measurements. Most low-Z nuclei of interest for arms control and treaty verification, including 9Be, 12C, 14N, and 16O, possess fast-neutron resonance features in their absorption cross sections in the 0.5- to 5-MeV energy range. Measuring the selective removal of source neutrons over this energy range, assuming for example a fission-spectrum starting distribution, may be used to estimate the stoichiometric composition of intervening materials between the neutron source and detector. At a simpler level, determination of the emitted fast-neutron spectrum may be used for fingerprinting 'known' assemblies for later use in template-matching tests. As with photon spectrometry, automated analysis of fast-neutron spectra may be performed to support decision making and reporting systems protected behind information barriers. This paper will report recent work at Idaho National Laboratory to explore the feasibility of using HRFNS for arms control and treaty verification applications, including simulations and

  12. Benchmarking of Neutron Production of Heavy-Ion Transport Codes

    SciTech Connect

    Remec, Igor; Ronningen, Reginald M.; Heilbronn, Lawrence

    2012-01-01

    Accurate prediction of radiation fields generated by heavy ion interactions is important in medical applications, space missions, and in design and operation of rare isotope research facilities. In recent years, several well-established computer codes in widespread use for particle and radiation transport calculations have been equipped with the capability to simulate heavy ion transport and interactions. To assess and validate these capabilities, we performed simulations of a series of benchmark-quality heavy ion experiments with the computer codes FLUKA, MARS15, MCNPX, and PHITS. We focus on the comparisons of secondary neutron production. Results are encouraging; however, further improvements in models and codes and additional benchmarking are required.

  13. Neutron transport in WIMS by the characteristics method

    SciTech Connect

    Halsall, M.J. )

    1993-01-01

    The common methods of solving the neutron transport equation in reactor assembly geometries involve some geometric approximation. The standard differential transport methods and diffusion methods rely on pin-cell smearing, and transmission probability methods make approximations to the boundary fluxes linking pin cells. Integral transport methods (collision probabilities) can cope with pin geometries by numerical integration but require excessive computing times that increase with the square of the number of regions. The characteristics method in WIMS, known as CACTUS, solves the differential transport equation by a numerical tracking technique whose accuracy is limited only by computing resources; in its WIMS implementation it can handle any pin-type geometry without the need for preliminary spatial smearing.

  14. The relationship between contrast, resolution and detectability in accelerator-based fast neutron radiography

    SciTech Connect

    Ambrosi, R. M.; Watterson, J. I. W.

    1999-06-10

    Fast neutron radiography as a method for non destructive testing is a fast growing field of research. At the Schonland Research Center for Nuclear Sciences we have been engaged in the formulation of a model for the physics of image formation in fast neutron radiography (FNR). This involves examining all the various factors that affect image formation in FNR by experimental and Monte Carlo methods. One of the major problems in the development of a model for fast neutron radiography is the determination of the factors that affect image contrast and resolution. Monte Carlo methods offer an ideal tool for the determination of the origin of many of these factors. In previous work the focus of these methods has been the determination of the scattered neutron field in both a scintillator and a fast neutron radiography facility. As an extension of this work MCNP has been used to evaluate the role neutron scattering in a specimen plays in image detectability. Image processing of fast neutron radiographs is a necessary method of enhancing the detectability of features in an image. MCNP has been used to determine the part it can play in indirectly improving image resolution and aiding in image processing. The role noise plays in fast neutron radiography and its impact on image reconstruction has been evaluated. All these factors aid in the development of a model describing the relationship between contrast, resolution and detectability.

  15. Numerical research on the anisotropic transport of thermal neutron in heterogeneous porous media with micron X-ray computed tomography.

    PubMed

    Wang, Yong; Yue, Wenzheng; Zhang, Mo

    2016-01-01

    The anisotropic transport of thermal neutron in heterogeneous porous media is of great research interests in many fields. In this paper, it is the first time that a new model based on micron X-ray computed tomography (CT) has been proposed to simultaneously consider both the separation of matrix and pore and the distribution of mineral components. We apply the Monte Carlo method to simulate thermal neutrons transporting through the model along different directions, and meanwhile detect those unreacted thermal neutrons by an array detector on the other side of the model. Therefore, the anisotropy of pore structure can be imaged by the amount of received thermal neutrons, due to the difference of rock matrix and pore-filling fluids in the macroscopic reaction cross section (MRCS). The new model has been verified by the consistent between the simulated data and the pore distribution from X-ray CT. The results show that the evaluation of porosity can be affected by the anisotropy of media. Based on the research, a new formula is developed to describe the correlation between the resolution of array detectors and the quality of imaging. The formula can be further used to analyze the critical resolution and the suitable number of thermal neutrons emitted in each simulation. Unconventionally, we find that a higher resolution cannot always lead to a better image. PMID:27271330

  16. Numerical research on the anisotropic transport of thermal neutron in heterogeneous porous media with micron X-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Wang, Yong; Yue, Wenzheng; Zhang, Mo

    2016-06-01

    The anisotropic transport of thermal neutron in heterogeneous porous media is of great research interests in many fields. In this paper, it is the first time that a new model based on micron X-ray computed tomography (CT) has been proposed to simultaneously consider both the separation of matrix and pore and the distribution of mineral components. We apply the Monte Carlo method to simulate thermal neutrons transporting through the model along different directions, and meanwhile detect those unreacted thermal neutrons by an array detector on the other side of the model. Therefore, the anisotropy of pore structure can be imaged by the amount of received thermal neutrons, due to the difference of rock matrix and pore-filling fluids in the macroscopic reaction cross section (MRCS). The new model has been verified by the consistent between the simulated data and the pore distribution from X-ray CT. The results show that the evaluation of porosity can be affected by the anisotropy of media. Based on the research, a new formula is developed to describe the correlation between the resolution of array detectors and the quality of imaging. The formula can be further used to analyze the critical resolution and the suitable number of thermal neutrons emitted in each simulation. Unconventionally, we find that a higher resolution cannot always lead to a better image.

  17. Numerical research on the anisotropic transport of thermal neutron in heterogeneous porous media with micron X-ray computed tomography

    PubMed Central

    Wang, Yong; Yue, Wenzheng; Zhang, Mo

    2016-01-01

    The anisotropic transport of thermal neutron in heterogeneous porous media is of great research interests in many fields. In this paper, it is the first time that a new model based on micron X-ray computed tomography (CT) has been proposed to simultaneously consider both the separation of matrix and pore and the distribution of mineral components. We apply the Monte Carlo method to simulate thermal neutrons transporting through the model along different directions, and meanwhile detect those unreacted thermal neutrons by an array detector on the other side of the model. Therefore, the anisotropy of pore structure can be imaged by the amount of received thermal neutrons, due to the difference of rock matrix and pore-filling fluids in the macroscopic reaction cross section (MRCS). The new model has been verified by the consistent between the simulated data and the pore distribution from X-ray CT. The results show that the evaluation of porosity can be affected by the anisotropy of media. Based on the research, a new formula is developed to describe the correlation between the resolution of array detectors and the quality of imaging. The formula can be further used to analyze the critical resolution and the suitable number of thermal neutrons emitted in each simulation. Unconventionally, we find that a higher resolution cannot always lead to a better image. PMID:27271330

  18. Parameters affecting temporal resolution of Time Resolved Integrative Optical Neutron Detector (TRION)

    NASA Astrophysics Data System (ADS)

    Mor, I.; Vartsky, D.; Dangendorf, V.; Bar, D.; Feldman, G.; Goldberg, M. B.; Tittelmeier, K.; Bromberger, B.; Brandis, M.; Weierganz, M.

    2013-11-01

    The Time-Resolved Integrative Optical Neutron (TRION) detector was developed for Fast Neutron Resonance Radiography (FNRR), a fast-neutron transmission imaging method that exploits characteristic energy-variations of the total scattering cross-section in the En = 1-10 MeV range to detect specific elements within a radiographed object. As opposed to classical event-counting time of flight (ECTOF), it integrates the detector signal during a well-defined neutron Time of Flight window corresponding to a pre-selected energy bin, e.g., the energy-interval spanning a cross-section resonance of an element such as C, O and N. The integrative characteristic of the detector permits loss-free operation at very intense, pulsed neutron fluxes, at a cost however, of recorded temporal resolution degradation This work presents a theoretical and experimental evaluation of detector related parameters which affect temporal resolution of the TRION system.

  19. Estimation of Orbital Neutron Detector Spatial Resolution by Systematic Shifting of Differential Topographic Masks

    NASA Technical Reports Server (NTRS)

    McClanahan, T. P.; Mitrofanov, I. G.; Boynton, W. V.; Chin, G.; Livengood, T.; Starr, R. D.; Evans, L. G.; Mazarico, E.; Smith, D. E.

    2012-01-01

    We present a method and preliminary results related to determining the spatial resolution of orbital neutron detectors using epithermal maps and differential topographic masks. Our technique is similar to coded aperture imaging methods for optimizing photonic signals in telescopes [I]. In that approach photon masks with known spatial patterns in a telescope aperature are used to systematically restrict incoming photons which minimizes interference and enhances photon signal to noise. Three orbital neutron detector systems with different stated spatial resolutions are evaluated. The differing spatial resolutions arise due different orbital altitudes and the use of neutron collimation techniques. 1) The uncollimated Lunar Prospector Neutron Spectrometer (LPNS) system has spatial resolution of 45km FWHM from approx. 30km altitude mission phase [2]. The Lunar Rennaissance Orbiter (LRO) Lunar Exploration Neutron Detector (LEND) with two detectors at 50km altitude evaluated here: 2) the collimated 10km FWHM spatial resolution detector CSETN and 3) LEND's collimated Sensor for Epithermal Neutrons (SETN). Thus providing two orbital altitudes to study factors of: uncollimated vs collimated and two average altitudes for their effect on fields-of-view.

  20. An Improved Neutron Transport Algorithm for Space Radiation

    NASA Technical Reports Server (NTRS)

    Heinbockel, John H.; Clowdsley, Martha S.; Wilson, John W.

    2000-01-01

    A low-energy neutron transport algorithm for use in space radiation protection is developed. The algorithm is based upon a multigroup analysis of the straight-ahead Boltzmann equation by using a mean value theorem for integrals. This analysis is accomplished by solving a realistic but simplified neutron transport test problem. The test problem is analyzed by using numerical and analytical procedures to obtain an accurate solution within specified error bounds. Results from the test problem are then used for determining mean values associated with rescattering terms that are associated with a multigroup solution of the straight-ahead Boltzmann equation. The algorithm is then coupled to the Langley HZETRN code through the evaporation source term. Evaluation of the neutron fluence generated by the solar particle event of February 23, 1956, for a water and an aluminum-water shield-target configuration is then compared with LAHET and MCNPX Monte Carlo code calculations for the same shield-target configuration. The algorithm developed showed a great improvement in results over the unmodified HZETRN solution. In addition, a two-directional solution of the evaporation source showed even further improvement of the fluence near the front of the water target where diffusion from the front surface is important.

  1. Beam-transport optimization for cold-neutron spectrometer

    NASA Astrophysics Data System (ADS)

    Nakajima, Kenji; Ohira-Kawamura, Seiko; Kikuchi, Tatsuya; Kajimoto, Ryoichi; Takahashi, Nobuaki; Nakamura, Mitsutaka; Soyama, Kazuhiko; Osakabe, Toyotaka

    2015-01-01

    We report the design of the beam-transport system (especially the vertical geometry) for a cold-neutron disk-chopper spectrometer AMATERAS at J-PARC. Based on the elliptical shape, which is one of the most effective geometries for a ballistic mirror, the design was optimized to obtain, at the sample position, a neutron beam with high flux without serious degrading in divergence and spacial homogeneity within the boundary conditions required from actual spectrometer construction. The optimum focal point was examined. An ideal elliptical shape was modified to reduce its height without serious loss of transmission. The final result was adapted to the construction requirements of AMATERAS. Although the ideas studied in this paper are considered for the AMATERAS case, they can be useful also to other spectrometers in similar situations.

  2. Novel Parallel Numerical Methods for Radiation& Neutron Transport

    SciTech Connect

    Brown, P N

    2001-03-06

    In many of the multiphysics simulations performed at LLNL, transport calculations can take up 30 to 50% of the total run time. If Monte Carlo methods are used, the percentage can be as high as 80%. Thus, a significant core competence in the formulation, software implementation, and solution of the numerical problems arising in transport modeling is essential to Laboratory and DOE research. In this project, we worked on developing scalable solution methods for the equations that model the transport of photons and neutrons through materials. Our goal was to reduce the transport solve time in these simulations by means of more advanced numerical methods and their parallel implementations. These methods must be scalable, that is, the time to solution must remain constant as the problem size grows and additional computer resources are used. For iterative methods, scalability requires that (1) the number of iterations to reach convergence is independent of problem size, and (2) that the computational cost grows linearly with problem size. We focused on deterministic approaches to transport, building on our earlier work in which we performed a new, detailed analysis of some existing transport methods and developed new approaches. The Boltzmann equation (the underlying equation to be solved) and various solution methods have been developed over many years. Consequently, many laboratory codes are based on these methods, which are in some cases decades old. For the transport of x-rays through partially ionized plasmas in local thermodynamic equilibrium, the transport equation is coupled to nonlinear diffusion equations for the electron and ion temperatures via the highly nonlinear Planck function. We investigated the suitability of traditional-solution approaches to transport on terascale architectures and also designed new scalable algorithms; in some cases, we investigated hybrid approaches that combined both.

  3. A concurrent, multigroup, discrete ordinates model of neutron transport

    SciTech Connect

    Dorr, M.R.; Still, C.H.

    1993-10-22

    The authors present an algorithm for the concurrent solution of the linear system arising from a multigroup, discrete ordinates model of neutron transport. The target architectures consist of distributed memory computers ranging from workstation clusters to massively parallel computers. Based on an analysis of the memory requirement and floating point complexity of matrix-vector multiplication in the iterative solution of the linear system, the authors propose a data layout and communication strategy designed to achieve scalability with respect to all phase space variables. Numerical results are presented to demonstrate the performance of the algorithm on the nCUBE/2.

  4. A killer micro attack on 3D neutron transport

    SciTech Connect

    Dorr, M.R.; Ferguson, J.M.

    1990-11-01

    We describe the deterministic solution of the neutron transport equation and the computation of the effective criticality of three-dimensional assemblies using the BBN TC2000 killer micros. We observe that the performance of our research code PTRAN running on 48 processors of the TC2000 is competitive with the partially vectorizable version running on a single Cray Y/MP processor. This performance scales well with the number of processors on real problems, including those that are not load balanced a priori. To obtain this performance, we explicitly specify and exploit data locality and data dependence using domain decomposition and dynamic job scheduling. 3 refs., 4 figs., 2 tabs.

  5. Current status of the PSG Monte Carlo neutron transport code

    SciTech Connect

    Leppaenen, J.

    2006-07-01

    PSG is a new Monte Carlo neutron transport code, developed at the Technical Research Centre of Finland (VTT). The code is mainly intended for fuel assembly-level reactor physics calculations, such as group constant generation for deterministic reactor simulator codes. This paper presents the current status of the project and the essential capabilities of the code. Although the main application of PSG is in lattice calculations, the geometry is not restricted in two dimensions. This paper presents the validation of PSG against the experimental results of the three-dimensional MOX fuelled VENUS-2 reactor dosimetry benchmark. (authors)

  6. Geometric Correction for Diffusive Expansion of Steady Neutron Transport Equation

    NASA Astrophysics Data System (ADS)

    Wu, Lei; Guo, Yan

    2015-06-01

    We revisit the diffusive limit of a steady neutron transport equation in a two-dimensional unit disk with one-speed velocity. A classical theorem by Bensoussan et al. (Publ Res Inst Math Sci 15(1):53-157, 1979) states that its solution can be approximated in L ∞ by the leading order interior solution plus the Knudsen layer in the diffusive limit. In this paper, we construct a counterexample to this result via a different boundary layer expansion with geometric correction.

  7. Stochastic analog neutron transport with TRIPOLI-4 and FREYA: Bayesian uncertainty quantification for neutron multiplicity counting

    DOE PAGESBeta

    Verbeke, J. M.; Petit, O.

    2016-06-01

    From nuclear safeguards to homeland security applications, the need for the better modeling of nuclear interactions has grown over the past decades. Current Monte Carlo radiation transport codes compute average quantities with great accuracy and performance; however, performance and averaging come at the price of limited interaction-by-interaction modeling. These codes often lack the capability of modeling interactions exactly: for a given collision, energy is not conserved, energies of emitted particles are uncorrelated, and multiplicities of prompt fission neutrons and photons are uncorrelated. Many modern applications require more exclusive quantities than averages, such as the fluctuations in certain observables (e.g., themore » neutron multiplicity) and correlations between neutrons and photons. In an effort to meet this need, the radiation transport Monte Carlo code TRIPOLI-4® was modified to provide a specific mode that models nuclear interactions in a full analog way, replicating as much as possible the underlying physical process. Furthermore, the computational model FREYA (Fission Reaction Event Yield Algorithm) was coupled with TRIPOLI-4 to model complete fission events. As a result, FREYA automatically includes fluctuations as well as correlations resulting from conservation of energy and momentum.« less

  8. Structures of the fractional spaces generated by the difference neutron transport operator

    SciTech Connect

    Ashyralyev, Allaberen; Taskin, Abdulgafur

    2015-09-18

    The initial boundary value problem for the neutron transport equation is considered. The first, second and third order of accuracy difference schemes for the approximate solution of this problem are presented. Highly accurate difference schemes for neutron transport equation based on Padé approximation are constructed. In applications, stability estimates for solutions of difference schemes for the approximate solution of the neutron transport equation are obtained.The positivity of the neutron transport operator in Slobodeckij spaces is proved. Numerical techniques are developed and algorithms are tested on an example in MATLAB.

  9. Quantum transport in neutron-irradiated modulation-doped heterojunctions. I. Fast neutrons

    SciTech Connect

    Jin, W.; Zhou, J.; Huang, Y.; Cai, L.

    1988-12-15

    We have investigated the characteristics of low-temperature quantum transport in Al/sub x/Ga/sub 1-//sub x/As/GaAs modulation-doped heterojunctions irradiated by fast neutrons of about 14 MeV energy. The concentration and the mobility of the two-dimensional electron gas (2D EG) under low magnetic fields decrease with increase in the concentrations of scatterers, such as ionized impurities, lattice defects, and interface roughness. On the other hand, under strong magnetic fields, the Hall plateau broadening associated with the Landau localized states, and the Shubnikov--de Hass (SdH) oscillation enhancement associated with the Landau extended states, increase markedly after fast-neutron irradiation.

  10. Quantum transport in neutron-irradiated modulation-doped heterojunctions. II. Thermal neutrons

    SciTech Connect

    Jin, W.; Zhou, J.; Huang, Y.; Cai, L.

    1988-12-15

    We have investigated the characteristics of the low-temperature quantum transport Al/sub x/Ga/sub 1-//sub x/As/GaAs modulation-doped heterojunctions irradiated by thermal neutrons of about 0.025 eV energy. Time-dependent effects related to nuclear radiation such as ..beta../sup -/ decay and ..gamma.. radiation are discussed in detail. The concentration and the mobility of the two-dimensional electron gas (2D EG) under low magnetic fields, the Hall plateau broadening, and the Shubnikov--de Haas (SdH) oscillation enhancement under strong magnetic fields all increase immediately after the irradiation, and then relax for long times. Above all, parallel conduction without illumination is first observed by us with a higher flux of thermal neutrons.

  11. Performance improvements of wavelength-shifting-fiber neutron detectors using high-resolution positioning algorithms.

    PubMed

    Wang, C L

    2016-05-01

    Three high-resolution positioning methods based on the FluoroBancroft linear-algebraic method [S. B. Andersson, Opt. Express 16, 18714 (2008)] are proposed for wavelength-shifting fiber (WLSF) neutron detectors. Using a Gaussian or exponential-decay light-response function, the non-linear relation of photon-number profiles vs. x-pixels was linearized and neutron positions were determined. After taking the super-Poissonian photon noise into account, the proposed algorithms give an average of 0.03-0.08 pixel position error much smaller than that (0.29 pixel) from a traditional maximum photon algorithm (MPA). The new algorithms result in better detector uniformity, less position misassignment (ghosting), better spatial resolution, and an equivalent or better instrument resolution in powder diffraction than the MPA. These improvements will facilitate broader applications of WLSF detectors at time-of-flight neutron powder diffraction beamlines, including single-crystal diffraction and texture analysis. PMID:27250410

  12. A Segmented Neutron Detector with a High Position Resolution for the (p,pn) Reactions

    NASA Astrophysics Data System (ADS)

    Kubota, Yuki; Sasano, Masaki; Uesaka, Tomohiro; Dozono, Masanori; Itoh, Masatoshi; Kawase, Shoichiro; Kobayashi, Motoki; Lee, CheongSoo; Matsubara, Hiroaki; Miki, Kenjiro; Miya, Hiroyuki; Ota, Shinsuke; Sekiguchi, Kimiko; Shima, Tatsushi; Taguchi, Takahiro; Tamii, Atsushi; Tang, Tsz Leung; Tokieda, Hiroshi; Wakasa, Tomotsugu; Wakui, Takashi; Yasuda, Jumpei; Zenihiro, Juzo

    We are developing a neutron detector with a high position resolution to study the single particle properties of nuclei by the knockout (p,pn) reaction at intermediate energies. We constructed a prototype detector consisting of plastic scintillating fibers and multi-anode photomultiplier tubes (PMTs). Test experiments using 200- and 70-MeV proton and 199-, 188-, 68-, and 50-MeV neutron were performed for characterizing its performance. Preliminary results show that a position resolution of about 3 mm at full-width at half-maximum (FWHM) is realized as designed. The resulting separation-energy resolution to be obtained for (p,pn) measurement would be 1 MeV in FWHM, when the detector is used at a distance of 2 m from the target for measuring the neutron momentum.

  13. Techniques for obtaining high vertical resolution formation capture cross sections from pulsed neutron logs

    SciTech Connect

    Smith, H.D. Jr.; Wyatt, D.F. Jr.; Smith, M.P.

    1991-02-05

    This patent describes a method for measuring high vertical resolution earth formation thermal neutron capture cross sections of earth formations in the vicinity of a well borehole. It comprises repetitively emitting in a well borehole relatively short duration bursts of fast neutrons; detecting, as a function of depth, in the borehole during time intervals between the repetitive bursts of fast neutrons; filtering count rate signals to reduce statistical fluctuations in subsequent computations; combining at least two filtered count rate signals; selecting at least one of the at least two filtered gate count rate signals.

  14. Neutron Transport Models and Methods for HZETRN and Coupling to Low Energy Light Ion Transport

    NASA Technical Reports Server (NTRS)

    Blattnig, S.R.; Slaba, T.C.; Heinbockel, J.H.

    2008-01-01

    Exposure estimates inside space vehicles, surface habitats, and high altitude aircraft exposed to space radiation are highly influenced by secondary neutron production. The deterministic transport code HZETRN has been identified as a reliable and efficient tool for such studies, but improvements to the underlying transport models and numerical methods are still necessary. In this paper, the forward-backward (FB) and directionally coupled forward-backward (DC) neutron transport models are derived, numerical methods for the FB model are reviewed, and a computationally efficient numerical solution is presented for the DC model. Both models are compared to the Monte Carlo codes HETCHEDS and FLUKA, and the DC model is shown to agree closely with the Monte Carlo results. Finally, it is found in the development of either model that the decoupling of low energy neutrons from the light ion (A<4) transport procedure adversely affects low energy light ion fluence spectra and exposure quantities. A first order correction is presented to resolve the problem, and it is shown to be both accurate and efficient.

  15. The vacuum geometry effect on neutron transmission and spatial resolution of neutron transmission.

    PubMed

    Khanouchi, A; Sabir, A; Boulkheir, M; Ichaoui, R; Ghassoun, J; Jehouani, A

    1997-01-01

    Frequently, shields used against radiation contain some vacuum channels. We have therefore considered an infinite slab with a fixed thickness (thickness 20 lambda with lambda the mean free path of the neutron in the slab) and an infinite plane source of neutrons which arrived on the left side of the slab; transmitted neutrons through the slab to its right side are detected by finite detectors having windows equal to 2 lambda. This slab contains a vacuum channel. This channel has many legs with several horizontal parts. We used the Monte Carlo method for sampling the neutron history in the slab with a spatial biasing technique in order to accelerate the calculation convergence (Levitt, L. B. (1968) Nuclear Science and Engineering 31, 500-504; Jehouani, A., Ghassoun, J. and Aboubker, A. (1994) In Proceedings of 6th International Symposium on Radiation Physics, Rabat, Morocco). We studied the effects of the angle position and the number of horizontal parts of the channel on the neutron transmission. We have studied the effect of the vacuum channel opening (Artigas, R. and Hungerford, H. E. (1969) Nuclear Science and Engineering 36, 295-303) on the neutron transmission; for several values of this opening we have calculated the neutron transmission probability for each detector position. This study allowed us to determine the optimal conditions of vacuum geometries to improve protection against neutrons. In the second part we considered a shield which consists of a slab and a two-legged vacuum channel with two horizontal parts. The spatial distribution of neutrons transmitted through the protection screen was determined. This distribution shows two peaks. The study was made for different distances between the two horizontal parts. We have determined the smallest distance between the two horizontal parts for which the two peaks can be resolved. PMID:9463882

  16. Quantitative observation of tracer transport with high-resolution PET

    NASA Astrophysics Data System (ADS)

    Kulenkampff, Johannes; Gruendig, Marion; Zakhnini, Abdelhamid; Lippmann-Pipke, Johanna

    2016-04-01

    Transport processes in natural porous media are typically heterogeneous over various scales. This heterogeneity is caused by the complexity of pore geometry and molecular processes. Heterogeneous processes, like diffusive transport, conservative advective transport, mixing and reactive transport, can be observed and quantified with quantitative tomography of tracer transport patterns. Positron Emission Tomography (PET) is by far the most sensitive method and perfectly selective for positron-emitting radiotracers, therefore it is suited as reference method for spatiotemporal tracer transport observations. The number of such PET-applications is steadily increasing. However, many applications are afflicted by the low spatial resolution (3 - 5 mm) of the clinical scanners from cooperating nuclear medical departments. This resolution is low in relation to typical sample dimensions of 10 cm, which are restricted by the mass attenuation of the material. In contrast, our GeoPET-method applies a high-resolution scanner with a resolution of 1 mm, which is the physical limit of the method and which is more appropriate for samples of the size of soil columns or drill cores. This higher resolution is achieved at the cost of a more elaborate image reconstruction procedure, especially considering the effects of Compton scatter. The result of the quantitative image reconstruction procedure is a suite of frames of the quantitative tracer distribution with adjustable frame rates from minutes to months. The voxel size has to be considered as reference volume of the tracer concentration. This continuous variable includes contributions from structures far below the spatial resolution, as far as a detection threshold, in the pico-molar range, is exceeded. Examples from a period of almost 10 years (Kulenkampff et al. 2008a, Kulenkampff et al. 2008b) of development and application of quantitative GeoPET-process tomography are shown. These examples include different transport processes

  17. High-resolution neutron crystallographic studies of the hydration of the coenzyme cob(II)alamin

    SciTech Connect

    Jogl, Gerwald; Wang, Xiaoping; Mason, Sax A.; Kovalevsky, Andrey; Mustyakimov, Marat; Fisher, Zöe; Hoffman, Christina; Kratky, Christoph; Langan, Paul

    2011-06-01

    High-resolution crystallographic studies of the hydration of the coenzyme cob(II)alamin have provided hydrogen-bond parameters of unprecedented accuracy for a biomacromolecule. The hydration of the coenzyme cob(II)alamin has been studied using high-resolution monochromatic neutron crystallographic data collected at room temperature to a resolution of 0.92 Å on the original D19 diffractometer with a prototype 4° × 64° detector at the high-flux reactor neutron source run by the Institute Laue–Langevin. The resulting structure provides hydrogen-bonding parameters for the hydration of biomacromolecules to unprecedented accuracy. These experimental parameters will be used to define more accurate force fields for biomacromolecular structure refinement. The presence of a hydrophobic bowl motif surrounded by flexible side chains with terminal functional groups may be significant for the efficient scavenging of ligands. The feasibility of extending the resolution of this structure to ultrahigh resolution was investigated by collecting time-of-flight neutron crystallographic data during commissioning of the TOPAZ diffractometer with a prototype array of 14 modular 2° × 21° detectors at the Spallation Neutron Source run by Oak Ridge National Laboratory.

  18. Monte Carlo simulation of a very high resolution thermal neutron detector composed of glass scintillator microfibers.

    PubMed

    Song, Yushou; Conner, Joseph; Zhang, Xiaodong; Hayward, Jason P

    2016-02-01

    In order to develop a high spatial resolution (micron level) thermal neutron detector, a detector assembly composed of cerium doped lithium glass microfibers, each with a diameter of 1 μm, is proposed, where the neutron absorption location is reconstructed from the observed charged particle products that result from neutron absorption. To suppress the cross talk of the scintillation light, each scintillating fiber is surrounded by air-filled glass capillaries with the same diameter as the fiber. This pattern is repeated to form a bulk microfiber detector. On one end, the surface of the detector is painted with a thin optical reflector to increase the light collection efficiency at the other end. Then the scintillation light emitted by any neutron interaction is transmitted to one end, magnified, and recorded by an intensified CCD camera. A simulation based on the Geant4 toolkit was developed to model this detector. All the relevant physics processes including neutron interaction, scintillation, and optical boundary behaviors are simulated. This simulation was first validated through measurements of neutron response from lithium glass cylinders. With good expected light collection, an algorithm based upon the features inherent to alpha and triton particle tracks is proposed to reconstruct the neutron reaction position in the glass fiber array. Given a 1 μm fiber diameter and 0.1mm detector thickness, the neutron spatial resolution is expected to reach σ∼1 μm with a Gaussian fit in each lateral dimension. The detection efficiency was estimated to be 3.7% for a glass fiber assembly with thickness of 0.1mm. When the detector thickness increases from 0.1mm to 1mm, the position resolution is not expected to vary much, while the detection efficiency is expected to increase by about a factor of ten. PMID:26708515

  19. Improving the resolution of chopper spectrometers at pulsed neutron sources

    SciTech Connect

    Carpenter, J.M. ); Mildner, D.F.R. . Center for Analytical Chemistry)

    1990-01-01

    We examine the relationships between intensity and resolution in pulsed-source chopper spectrometers, including the effects of Soller collimation, narrower rotor slits and higher rotor speeds. The basis is a simplified description of a spectrometer, approximately optimizing the rotor pulse and lighthouse effects. the analysis includes a new treatment of the angular distribution transmitted through a system consisting of a coarse collimator and a Soller collimator. The results encourage the prospect for a reasonably easily accomplished, higher resolution, optional configuration of the pulsed source chopper spectrometers at IPNS. 6 refs., 5 figs.

  20. Quantifying moisture transport in cementitious materials using neutron radiography

    NASA Astrophysics Data System (ADS)

    Lucero, Catherine L.

    A portion of the concrete pavements in the US have recently been observed to have premature joint deterioration. This damage is caused in part by the ingress of fluids, like water, salt water, or deicing salts. The ingress of these fluids can damage concrete when they freeze and expand or can react with the cementitious matrix causing damage. To determine the quality of concrete for assessing potential service life it is often necessary to measure the rate of fluid ingress, or sorptivity. Neutron imaging is a powerful method for quantifying fluid penetration since it can describe where water has penetrated, how quickly it has penetrated and the volume of water in the concrete or mortar. Neutrons are sensitive to light atoms such as hydrogen and thus clearly detect water at high spatial and temporal resolution. It can be used to detect small changes in moisture content and is ideal for monitoring wetting and drying in mortar exposed to various fluids. This study aimed at developing a method to accurately estimate moisture content in mortar. The common practice is to image the material dry as a reference before exposing to fluid and normalizing subsequent images to the reference. The volume of water can then be computed using the Beer-Lambert law. This method can be limiting because it requires exact image alignment between the reference image and all subsequent images. A model of neutron attenuation in a multi-phase cementitious composite was developed to be used in cases where a reference image is not available. The attenuation coefficients for water, un-hydrated cement, and sand were directly calculated from the neutron images. The attenuation coefficient for the hydration products was then back-calculated. The model can estimate the degree of saturation in a mortar with known mixture proportions without using a reference image for calculation. Absorption in mortars exposed to various fluids (i.e., deionized water and calcium chloride solutions) were investigated

  1. Prospects for High Resolution Neutron Spectroscopy on high power fusion devices in view of the recent diagnostic developments at JET

    SciTech Connect

    Ericsson, Goeran; Sunden, E. Andersson; Conroy, S.; Johnson, M. Gatu; Giacomelli, L.; Hellesen, C.; Hjalmarsson, A.; Ronchi, E.; Sjsoetrand, H.; Weiszflog, M.; Kaellne, J.; Gorini, G.; Ognissanto, F.; Tardocchi, M.; Angelone, M.; Popovichev, S.

    2008-03-12

    An evaluation of three different candidate techniques for a 14-MeV High Resolution Neutron Spectrometer for a high power fusion device is presented. The performance is estimated for a modelled neutron emission for ITER plasma scenario 4. As performance indicators we use the estimated time-resolution achieved in measurements of three plasma parameters, namely, the ion temperature, the intensity of neutron emission due to neutral beam--thermal plasma interactions and the intensity of the so-called alpha knock-on neutron tail. It is found that only the MPR technique can deliver results on all three parameters with reasonable time resolution.

  2. Performance improvements of wavelength-shifting-fiber neutron detectors using high-resolution positioning algorithms

    DOE PAGESBeta

    Wang, C. L.

    2016-05-17

    On the basis of FluoroBancroft linear-algebraic method [S.B. Andersson, Opt. Exp. 16, 18714 (2008)] three highly-resolved positioning methodswere proposed for wavelength-shifting fiber (WLSF) neutron detectors. Using a Gaussian or exponential-decay light-response function (LRF), the non-linear relation of photon-number profiles vs. x-pixels was linearized and neutron positions were determined. The proposed algorithms give an average 0.03-0.08 pixel position error, much smaller than that (0.29 pixel) from a traditional maximum photon algorithm (MPA). The new algorithms result in better detector uniformity, less position misassignment (ghosting), better spatial resolution, and an equivalent or better instrument resolution in powder diffraction than the MPA. Moreover,more » these characters will facilitate broader applications of WLSF detectors at time-of-flight neutron powder diffraction beamlines, including single-crystal diffraction and texture analysis.« less

  3. FREND neutron telescope for mapping the Martian water with fine spatial resolution

    NASA Astrophysics Data System (ADS)

    Mitrofanov, Igor; Malakhov, Alexey; Mokrousov, Maxim; Golovin, Dmitry; Fedosov, Fedor; Kozyrev, Alexandr; Lisov, Denis; Litvak, Maxim; Nikiforov, Sergey; Sanin, Anton; Tret'yakov, Vlad; Vostrukhin, Andrey

    2016-04-01

    The concept of Fine Resolution Exploration Neutron Detector (FREND) is presented, as the Russian contributed instrument for the first element of ESA ExoMars mission, the TGO. FREND is the neutron collimated telescope, which is capable to measure the prompt neutron radiation of Mars from the 400 km orbit with the spatial resolution of about 40 km. The flux of epithermal neutrons is known to depend on the content of water in the shallow subsurface about 1 meter, so such measurements could allow to study the ground water distribution with fine spatial resolution over the entire martian surface from 70 degrees of the north latitude down to 70 degree of the south latitude. The resolution of tens of km is necessary to characterize the particular relief features on the surface by the content of water in the soil. Such mapping data should resolve the water distribution within the Gale crater, which is necessary to explain the paradoxic difefrence between the estimated contents of water in this crater, as about 5% by HEND on the Mars Odyssy and the ground data about 2 -3 % by DAN on the Curiosity. Also, the FREND mapping data of the ground water should be useful for the landing site selection of future Mars rovers, such as ExoMars or Mars 2020.

  4. High resolution neutron crystallographic studies of the hydration of coenzyme cob(II)alamin

    SciTech Connect

    Jogl, Gerwald; Wang, Xiaoping; Mason, Sax; Kovalevsky, Andrey; Mustyakimov, Marat; Fisher, Zoe; Hoffmann, Christina; Kratky, Christoph; Langan, Paul

    2011-01-01

    The hydration of coenzyme cob(II)alamin has been studied using high resolution monochromatic neutron crystallographic data collected at room temperature to a resolution of surrounded by flexible side chains with terminal functional groups may be significant for 0.92 on the original diffractometer D19 with a prototype 4o x 64o detector at the high-flux reactor neutron source run by the Institute Laue Langevin. The resulting structure provides H bonding parameters for the hydration of biomacromolecules to unprecedented accuracy. These experimental parameters will be used to define more accurate force-fields for biomacromolecular structure refinement. The presence of a hydrophobic bowl motif efficient scavenging of ligands. The feasibility of extending the resolution of this structure to ultra high resolution was investigated by collecting time-of-flight neutron crystallographic data on diffractometer TOPAZ with a prototype array of 14 modular 21o x 21o detectors at the Spallation Neutron Source run by Oak Ridge National Laboratory.

  5. Flexible sample environment for high resolution neutron imaging at high temperatures in controlled atmosphere

    NASA Astrophysics Data System (ADS)

    Makowska, Małgorzata G.; Theil Kuhn, Luise; Cleemann, Lars N.; Lauridsen, Erik M.; Bilheux, Hassina Z.; Molaison, Jamie J.; Santodonato, Louis J.; Tremsin, Anton S.; Grosse, Mirco; Morgano, Manuel; Kabra, Saurabh; Strobl, Markus

    2015-12-01

    High material penetration by neutrons allows for experiments using sophisticated sample environments providing complex conditions. Thus, neutron imaging holds potential for performing in situ nondestructive measurements on large samples or even full technological systems, which are not possible with any other technique. This paper presents a new sample environment for in situ high resolution neutron imaging experiments at temperatures from room temperature up to 1100 °C and/or using controllable flow of reactive atmospheres. The design also offers the possibility to directly combine imaging with diffraction measurements. Design, special features, and specification of the furnace are described. In addition, examples of experiments successfully performed at various neutron facilities with the furnace, as well as examples of possible applications are presented. This covers a broad field of research from fundamental to technological investigations of various types of materials and components.

  6. Flexible sample environment for high resolution neutron imaging at high temperatures in controlled atmosphere

    SciTech Connect

    Makowska, Małgorzata G.; Theil Kuhn, Luise; Cleemann, Lars N.; Lauridsen, Erik M.; Bilheux, Hassina Z.; Molaison, Jamie J.; Santodonato, Louis J.; Tremsin, Anton S.; Grosse, Mirco; Morgano, Manuel; Kabra, Saurabh; Strobl, Markus

    2015-12-15

    High material penetration by neutrons allows for experiments using sophisticated sample environments providing complex conditions. Thus, neutron imaging holds potential for performing in situ nondestructive measurements on large samples or even full technological systems, which are not possible with any other technique. This paper presents a new sample environment for in situ high resolution neutron imaging experiments at temperatures from room temperature up to 1100 °C and/or using controllable flow of reactive atmospheres. The design also offers the possibility to directly combine imaging with diffraction measurements. Design, special features, and specification of the furnace are described. In addition, examples of experiments successfully performed at various neutron facilities with the furnace, as well as examples of possible applications are presented. This covers a broad field of research from fundamental to technological investigations of various types of materials and components.

  7. Flexible sample environment for high resolution neutron imaging at high temperatures in controlled atmosphere

    SciTech Connect

    Makowska, Małgorzata G.; Theil Kuhn, Luise; Cleemann, Lars N.; Lauridsen, Erik M.; Bilheux, Hassina Z.; Molaison, Jamie J.; Santodonato, Louis J.; Tremsin, Anton S.; Grosse, Mirco; Morgano, Manuel; Kabra, Saurabh; Strobl, Markus

    2015-12-17

    In high material penetration by neutrons allows for experiments using sophisticated sample environments providing complex conditions. Thus, neutron imaging holds potential for performing in situ nondestructive measurements on large samples or even full technological systems, which are not possible with any other technique. Our paper presents a new sample environment for in situ high resolution neutron imaging experiments at temperatures from room temperature up to 1100 degrees C and/or using controllable flow of reactive atmospheres. The design also offers the possibility to directly combine imaging with diffraction measurements. Design, special features, and specification of the furnace are described. In addition, examples of experiments successfully performed at various neutron facilities with the furnace, as well as examples of possible applications are presented. Our work covers a broad field of research from fundamental to technological investigations of various types of materials and components.

  8. Flexible sample environment for high resolution neutron imaging at high temperatures in controlled atmosphere.

    PubMed

    Makowska, Małgorzata G; Theil Kuhn, Luise; Cleemann, Lars N; Lauridsen, Erik M; Bilheux, Hassina Z; Molaison, Jamie J; Santodonato, Louis J; Tremsin, Anton S; Grosse, Mirco; Morgano, Manuel; Kabra, Saurabh; Strobl, Markus

    2015-12-01

    High material penetration by neutrons allows for experiments using sophisticated sample environments providing complex conditions. Thus, neutron imaging holds potential for performing in situ nondestructive measurements on large samples or even full technological systems, which are not possible with any other technique. This paper presents a new sample environment for in situ high resolution neutron imaging experiments at temperatures from room temperature up to 1100 °C and/or using controllable flow of reactive atmospheres. The design also offers the possibility to directly combine imaging with diffraction measurements. Design, special features, and specification of the furnace are described. In addition, examples of experiments successfully performed at various neutron facilities with the furnace, as well as examples of possible applications are presented. This covers a broad field of research from fundamental to technological investigations of various types of materials and components. PMID:26724075

  9. Flexible sample environment for high resolution neutron imaging at high temperatures in controlled atmosphere

    DOE PAGESBeta

    Makowska, Małgorzata G.; Theil Kuhn, Luise; Cleemann, Lars N.; Lauridsen, Erik M.; Bilheux, Hassina Z.; Molaison, Jamie J.; Santodonato, Louis J.; Tremsin, Anton S.; Grosse, Mirco; Morgano, Manuel; et al

    2015-12-17

    In high material penetration by neutrons allows for experiments using sophisticated sample environments providing complex conditions. Thus, neutron imaging holds potential for performing in situ nondestructive measurements on large samples or even full technological systems, which are not possible with any other technique. Our paper presents a new sample environment for in situ high resolution neutron imaging experiments at temperatures from room temperature up to 1100 degrees C and/or using controllable flow of reactive atmospheres. The design also offers the possibility to directly combine imaging with diffraction measurements. Design, special features, and specification of the furnace are described. In addition,more » examples of experiments successfully performed at various neutron facilities with the furnace, as well as examples of possible applications are presented. Our work covers a broad field of research from fundamental to technological investigations of various types of materials and components.« less

  10. High-resolution reactive transport: A coupled parallel hydrogeochemical model

    NASA Astrophysics Data System (ADS)

    Beisman, J. J.; Maxwell, R. M.; Steefel, C. I.; Sitchler, A.; Molins, S.

    2013-12-01

    Subsurface hydrogeochemical systems are an especially complex component of the terrestrial environment and play host to a multitude of interactions. Parameterizations of these interactions are perhaps the least understood component of terrestrial systems, presenting uncertainties in the predictive understanding of biogeochemical cycling and transport. Thorough knowledge of biogeochemical transport processes is critical to the quantification of carbon/nutrient fluxes in the subsurface, and to the development of effective contaminant remediation techniques. Here we present a coupled parallel hydrogeochemical model, ParCrunchFlow, as a tool to further our understanding of governing processes and interactions in natural hydrogeochemical systems. ParCrunchFlow is a coupling of the reactive transport simulator CrunchFlow with the hydrologic model ParFlow. CrunchFlow is a multicomponent reactive flow and transport code that can be used to simulate a range of important processes and environments, including reactive contaminant transport, chemical weathering, carbon sequestration, biogeochemical cycling, and water-rock interaction. ParFlow is a parallel, three-dimensional, variably-saturated, coupled surface-subsurface flow and transport code with the ability to simulate complex topography, geology, and heterogeneity. ParCrunchflow takes advantage of the efficient parallelism built into Parflow, allowing the numerical simulation of reactive transport processes in chemically and physically heterogeneous media at high spatial resolutions. This model provides an ability to further examine the interactions and feedbacks between biogeochemical systems and complex subsurface flow fields. In addition to the details of model construction, results will be presented that show floodplain nutrient cycling and the effects of heterogeneity on small-scale mixing reactions at the Department of Energy's Old Rifle Legacy site.

  11. A POD reduced order model for resolving angular direction in neutron/photon transport problems

    SciTech Connect

    Buchan, A.G.; Calloo, A.A.; Goffin, M.G.; Dargaville, S.; Fang, F.; Pain, C.C.; Navon, I.M.

    2015-09-01

    This article presents the first Reduced Order Model (ROM) that efficiently resolves the angular dimension of the time independent, mono-energetic Boltzmann Transport Equation (BTE). It is based on Proper Orthogonal Decomposition (POD) and uses the method of snapshots to form optimal basis functions for resolving the direction of particle travel in neutron/photon transport problems. A unique element of this work is that the snapshots are formed from the vector of angular coefficients relating to a high resolution expansion of the BTE's angular dimension. In addition, the individual snapshots are not recorded through time, as in standard POD, but instead they are recorded through space. In essence this work swaps the roles of the dimensions space and time in standard POD methods, with angle and space respectively. It is shown here how the POD model can be formed from the POD basis functions in a highly efficient manner. The model is then applied to two radiation problems; one involving the transport of radiation through a shield and the other through an infinite array of pins. Both problems are selected for their complex angular flux solutions in order to provide an appropriate demonstration of the model's capabilities. It is shown that the POD model can resolve these fluxes efficiently and accurately. In comparison to high resolution models this POD model can reduce the size of a problem by up to two orders of magnitude without compromising accuracy. Solving times are also reduced by similar factors.

  12. A killer micro attack on 3D neutron transport

    SciTech Connect

    Dorr, M.R.; Ferguson, J.M.

    1990-11-16

    In this paper, we describe the deterministic solution of the neutron transport equation and the computation of the effective criticality of three-dimensional assemblies using the BBN TC2000 killer micros. We observe that the performance of our research code PTRAN running on 48 processors of the TC2000 is competitive with the partially vectorizable version running on a single Cray Y/MP processor. This performance scales well with the number of processors on real problems, including those that are not load balanced a priori. To obtain this performance, we explicitly specify and exploit data locality and data dependence using domain decomposition and dynamic job scheduling. From the results obtained here, it appears that, at least for this application, a production machine based on the TC2000 architecture with more powerful processors and a commensurate increase in switch speed could yield a significant gain in our design capability. 2 refs., 5 figs., 2 tabs.

  13. A novel approach to the microdosimetry of neutron capture therapy. Part I. High-resolution quantitative autoradiography applied to microdosimetry in neutron capture therapy

    SciTech Connect

    Solares, G.R.; Zamenhof, R.G. |

    1995-10-01

    A novel approach to the microdosimetry of neutron capture therapy has been developed using high-resolution quantitative autoradiography (HRQAR) and two-dimensional Monte Carlo simulation. This approach has been applied using actual cell morophology (nuclear and cytoplasmic cell structures) and the measured microdistribution of boron-10 in a transplanted murine brain tumor (GL261) containing p-boronophenylalanine (BPA) as the boron compound. The 2D Monte Carlo transport code for the {alpha} and {sup 7}Li charged particles from the {sup 10}B(n,{alpha}){sup 7}Li reactions has been developed as a surrogate to a full 3D approach to calculate a variety of different microdosimetric parameters. The HRQAR method and the surrogate 2D Monte Carlo approach are described in detail and examples of their use are presented. 27 refs., 11 figs., 1 tab.

  14. NMDB: real-time database for high resolution neutron monitor measurements

    NASA Astrophysics Data System (ADS)

    Steigies, Christian

    The worldwide network of standardized neutron monitors is, after 50 years, still the stateof-the-art instrumentation to measure variations of the primary cosmic rays in the energy range 500 MeV-60 GeV. These measurements are an ideal complement to space based cosmic ray measurements. Unlike data from satellite experiments, neutron monitor data has never been available in high time resolution from many neutron monitor stations in real-time. The data is often available only from the individual station's website, in varying formats, and not in real-time. To overcome this deficit, the European Commission is supporting the Neutron Monitor database (NMDB) since January 2008 as an e-Infrastructures project in the Seventh Framework Programme in the Capacities section. Neutron Monitor stations that do not yet have 1-minute resolution will be supported by software and the development of an affordable standard registration system to submit the measurements to the database via internet in realtime. This resolves the problem of different data formats and for the first time allows use of realtime cosmic ray measurements for space weather applications. Besides creating a database and developing applications that use this data, a part of the project is dedicated to create a public outreach website to inform about cosmic rays and possible effects on humans, technological systems, and the environment.

  15. Method for improving the angular resolution of a neutron scatter camera

    DOEpatents

    Mascarenhas, Nicholas; Marleau, Peter; Gerling, Mark; Cooper, Robert Lee; Mrowka, Stanley; Brennan, James S.

    2012-12-25

    An instrument that will directly image the fast fission neutrons from a special nuclear material source wherein the neutron detection efficiency is increased has been described. Instead of the previous technique that uses a time-of-flight (TOF) between 2 widely spaced fixed planes of neutron detectors to measure scatter neutron kinetic energy, we now use the recoil proton energy deposited in the second of the 2 scatter planes which can now be repositioned either much closer together or further apart. However, by doubling the separation distance between the 2 planes from 20 cm to a distance of 40 cm we improved the angular resolution of the detector from about 12.degree. to about 10.degree.. A further doubling of the separation distance to 80 cm provided an addition improvement in angular resolution of the detector to about 6.degree. without adding additional detectors or ancillary electronics. The distance between planes also may be dynamically changed using a suitable common technique such as a gear- or motor-drive to toggle between the various positions. The angular resolution of this new configuration, therefore, is increased at the expanse of detection sensitivity. However, the diminished sensitivity may be acceptable for those applications where the detector is able to interrogate a particular site for an extended period.

  16. Fine Resolution Epithermal Neutron Detector (FREND) for ExoMarsTrace Gas Orbiter

    NASA Astrophysics Data System (ADS)

    Malakhov, A.; Mitrofanov, I.; Sanin, A.; Litvak, M.; Kozyrev, A.; Tretiyakov, V.; Mokrousov, M.; Vostrukhin, A.; Golovin, D.; Fedosov, F.

    2012-04-01

    ExoMars is now under considerations, as a joint mission of the three agencies, ESA,Roscosmos and NASA to explore the red planet. Planned for launch in 2016, its first element, the Trace Gas Orbiter (TGO) is going to spend one Martian year (687 Earth days) orbiting around the planet. Fine Resolution Epithermal Neutron Detector (FREND), once aboard TGO, will be measuring thermal, epithermal and high energy neutrons with energy ranges up to 10 MeV, which variations are an excellent signature of H bearing elements presence in the regolith at up to 1 meter depth. Neutron mapping of Mars is being performed since 2002 by HEND instrument on board of Mars Odyssey, but the significant step up in FREND design compared to this previous mission will be its ability to collimate neutrons and thus have a very narrow Field of View of 40 km at a 400 km altitude. Its collimator consists of layers of polyethylene to moderate neutrons and 10B to absorb them. The collimator's design is equal to one used in LEND instrument on board the Lunar Reconnaissance Orbiter and proved to be efficient. The instrument design and detectors will also be very similar to ones used in its both ancestors, LEND and HEND, benefitting from the best heritage there is. FREND will use a set of 3He proportional counters to cover the thermal and epithermal neutrons energy ranges, providing a set of several independent measurements for higher statistics, as well as a stilbene scintillation detector for high energy neutrons. FREND will be the first collimated neutron instrument to fly towards Mars and, like LEND on the Moon, FREND will be able to produce Martian neutron maps that could supersede previously created ones by about 10 times in the linear spatial resolution. This will potentially clarify the available global Mars neutron maps, but could also point out new, never before seen small water/hydrogen rich features and other places of interest on the surface of the planet. Without a doubt, this kind of

  17. High-resolution spectroscopy used to measure inertial confinement fusion neutron spectra on Omega (invited).

    PubMed

    Forrest, C J; Radha, P B; Glebov, V Yu; Goncharov, V N; Knauer, J P; Pruyne, A; Romanofsky, M; Sangster, T C; Shoup, M J; Stoeckl, C; Casey, D T; Gatu-Johnson, M; Gardner, S

    2012-10-01

    The areal density (ρR) of cryogenic DT implosions on Omega is inferred by measuring the spectrum of neutrons that elastically scatter off the dense deuterium (D) and tritium (T) fuel. Neutron time-of-flight (nTOF) techniques are used to measure the energy spectrum with high resolution. High signal-to-background data has been recorded on cryogenic DT implosions using a well-collimated 13.4-m line of sight and an nTOF detector with an advanced liquid scintillator compound. An innovative method to analyze the elastically scattered neutron spectra was developed using well-known cross sections of the DT nuclear reactions. The estimated areal densities are consistent with alternative ρR measurements and 1-D simulations. PMID:23126921

  18. High-resolution spectroscopy used to measure inertial confinement fusion neutron spectra on Omega (invited)

    SciTech Connect

    Forrest, C. J.; Radha, P. B.; Glebov, V. Yu.; Goncharov, V. N.; Knauer, J. P.; Pruyne, A.; Romanofsky, M.; Sangster, T. C.; Shoup, M. J. III; Stoeckl, C.; Casey, D. T.; Gatu-Johnson, M.; Gardner, S.

    2012-10-15

    The areal density ({rho}R) of cryogenic DT implosions on Omega is inferred by measuring the spectrum of neutrons that elastically scatter off the dense deuterium (D) and tritium (T) fuel. Neutron time-of-flight (nTOF) techniques are used to measure the energy spectrum with high resolution. High signal-to-background data has been recorded on cryogenic DT implosions using a well-collimated 13.4-m line of sight and an nTOF detector with an advanced liquid scintillator compound. An innovative method to analyze the elastically scattered neutron spectra was developed using well-known cross sections of the DT nuclear reactions. The estimated areal densities are consistent with alternative {rho}R measurements and 1-D simulations.

  19. Design of a neutron penumbral-aperture microscope with 10-. mu. m resolution

    SciTech Connect

    Ress, D.; Lerche, R.A.; Ellis, R.J.; Lane, S.M.

    1990-05-01

    We are currently designing a 10-{mu}m resolution neutron penumbral-aperture microscope to diagnose high-convergence targets at the Nova laser facility. To achieve such high resolution, the new microscope will require substantial improvements in three areas. First, we have designed thick penumbral apertures with extremely sharp cutoffs over a useful ({approx}100 {mu}m) field of view; fabrication of such apertures appears feasible using gold electroplating techniques. Second, the limited field of view and required close proximity of the aperture to the target (2 cm) necessitates a durable mounting and alignment system with {plus}25 {mu}m accuracy. Finally, a neutron detector containing 160,000 scintillator elements is required; readout and optimization of this large array are outstanding issues. 5 refs., 3 figs.

  20. Superconducting gamma and fast-neutron spectrometers with high energy resolution

    DOEpatents

    Friedrich, Stephan; , Niedermayr, Thomas R.; Labov, Simon E.

    2008-11-04

    Superconducting Gamma-ray and fast-neutron spectrometers with very high energy resolution operated at very low temperatures are provided. The sensor consists of a bulk absorber and a superconducting thermometer weakly coupled to a cold reservoir, and determines the energy of the incident particle from the rise in temperature upon absorption. A superconducting film operated at the transition between its superconducting and its normal state is used as the thermometer, and sensor operation at reservoir temperatures around 0.1 K reduces thermal fluctuations and thus enables very high energy resolution. Depending on the choice of absorber material, the spectrometer can be configured either as a Gamma-spectrometer or as a fast-neutron spectrometer.

  1. Study of Transport Behavior and Conversion Efficiency in Pillar Structured Neutron Detectors

    SciTech Connect

    Nikolic, R

    2007-04-26

    Room temperature, high efficiency and scalable radiation detectors can be realized by manipulating materials at the micro scale. With micro-semiconductor-pillars, we will advance the thermal neutron detection efficiency of semiconductor detectors to over 70% with 50 mm in detector thickness. New material science, new transport behavior, neutron to alpha conversion dynamics and their relationship with neutron detection will be discovered with the proposed structures.

  2. Realization of a small-size high resolution linear neutron scintillation detector

    SciTech Connect

    Engels, R.; Reinartz, R.; Reinhart, P.; Schelten, J.; Jansen, E.; Schaefer, W.

    1998-06-01

    The spectrum of position sensitive neutron scintillation detectors, which have been developed and designed in the institute during the last decade, comprises several high resolution linear detectors. The design of the small size high resolution detector is based on a modified Anger technology using a linear array of 24 HAMAMATSU type R1770 rectangular photomultipliers and a 1 mm {sup 6}Li glass scintillator. The sensitive detector area is 200 x 20 mm{sup 2} and the spatial resolution is 1.2 mm. The neutron sensitivity at 1{angstrom} is about 65% and the residual gamma sensitivity is less than 10{sup {minus}4} and the maximum count rate is about 100 kHz. The detector is linked to a highly flexible PC-based data acquisition system with 12 bit position and 16 bit time resolution. The stand alone detector and data acquisition system is aimed preferably at pulsed sources performing high resolution angle-dispersive time-of-flight experiments.

  3. Cooperative learning of neutron diffusion and transport theories

    SciTech Connect

    Robinson, Michael A.

    1999-04-30

    A cooperative group instructional strategy is being used to teach a unit on neutron transport and diffusion theory in a first-year-graduate level, Reactor Theory course that was formerly presented in the traditional lecture/discussion style. Students are divided into groups of two or three for the duration of the unit. Class meetings are divided into traditional lecture/discussion segments punctuated by cooperative group exercises. The group exercises were designed to require the students to elaborate, summarize, or practice the material presented in the lecture/discussion segments. Both positive interdependence and individual accountability are fostered by adjusting individual grades on the unit exam by a factor dependent upon group achievement. Group collaboration was also encouraged on homework assignments by assigning each group a single grade on each assignment. The results of the unit exam have been above average in the two classes in which the cooperative group method was employed. In particular, the problem solving ability of the students has shown particular improvement. Further,the students felt that the cooperative group format was both more educationally effective and more enjoyable than the lecture/discussion format.

  4. The measurement of the presampled MTF of a high spatial resolution neutron imaging system

    NASA Astrophysics Data System (ADS)

    Cao, Raymond Lei.; Biegalski, Steven R.

    2007-11-01

    A high spatial resolution neutron imaging device was developed at the Mark II TRIGA reactor at The University of Texas at Austin. As the modulation transfer function (MTF) is recognized as a well-established parameter for evaluation of imaging system resolution, the aliasing associated with digital sampling adds complexity to its measurement. Aliasing is especially problematic when using a high spatial resolution micro-channel plate (MCP) neutron detector that has a pixel grid size similar to that of a CCD array. To compensate for the aliasing an angulated edge method was used to evaluate the neutron imaging facility, overcoming aliasing by obtaining an oversampled edge spread function (ESF). Baseline correction was applied to the ESF to remove the noticeable trends and the LSF was multiplied by Hann window to obtain a smoothed version of presampled MTF. The computing procedure is confirmed by visual inspection of a testing phantom; in addition, it is confirmed by comparison to the MTF measurement of a scintillation screen with a known MTF curve.

  5. Multigroup Time-Independent Neutron Transport Code System for Plane or Spherical Geometry.

    Energy Science and Technology Software Center (ESTSC)

    1986-12-01

    Version 00 PALLAS-PL/SP solves multigroup time-independent one-dimensional neutron transport problems in plane or spherical geometry. The problems solved are subject to a variety of boundary conditions or a distributed source. General anisotropic scattering problems are treated for solving deep-penetration problems in which angle-dependent neutron spectra are calculated in detail.

  6. Experimental Transport Benchmarks for Physical Dosimetry to Support Development of Fast-Neutron Therapy with Neutron Capture Augmentation

    SciTech Connect

    D. W. Nigg; J. K. Hartwell; J. R. Venhuizen; C. A. Wemple; R. Risler; G. E. Laramore; W. Sauerwein; G. Hudepohl; A. Lennox

    2006-06-01

    The Idaho National Laboratory (INL), the University of Washington (UW) Neutron Therapy Center, the University of Essen (Germany) Neutron Therapy Clinic, and the Northern Illinois University(NIU) Institute for Neutron Therapy at Fermilab have been collaborating in the development of fast-neutron therapy (FNT) with concurrent neutron capture (NCT) augmentation [1,2]. As part of this effort, we have conducted measurements to produce suitable benchmark data as an aid in validation of advanced three-dimensional treatment planning methodologies required for successful administration of FNT/NCT. Free-beam spectral measurements as well as phantom measurements with Lucite{trademark} cylinders using thermal, resonance, and threshold activation foil techniques have now been completed at all three clinical accelerator facilities. The same protocol was used for all measurements to facilitate intercomparison of data. The results will be useful for further detailed characterization of the neutron beams of interest as well as for validation of various charged particle and neutron transport codes and methodologies for FNT/NCT computational dosimetry, such as MCNP [3], LAHET [4], and MINERVA [5].

  7. Angular neutron transport investigation in the HZETRN free-space ion and nucleon transport and shielding computer program

    NASA Technical Reports Server (NTRS)

    Singleterry, R. C., Jr.; Wilson, J. W.

    1997-01-01

    Extension of the high charge and energy (HZE) transport computer program HZETRN for angular transport of neutrons is considered. For this paper, only light ion transport, He4 and lighter, will be analyzed using a pure solar proton source. The angular transport calculator is the ANISN/PC program which is being controlled by the HZETRN program. The neutron flux values are compared for straight-ahead transport and angular transport in one dimension. The shield material is aluminum and the target material is water. The thickness of these materials is varied; however, only the largest model calculated is reported which is 50 gm/sq cm of aluminum and 100 gm/sq cm of water. The flux from the ANISN/PC calculation is about two orders of magnitude lower than the flux from HZETRN for very low energy neutrons. It is only a magnitude lower for the neutrons in the 10 to 20 MeV range in the aluminum and two orders lower in the water. The major reason for this difference is in the transport modes: straight-ahead versus angular. The angular treatment allows a longer path length than the straight-ahead approximation. Another reason is the different cross section sets used by the ANISN/PC-BUGLE-80 mode and the HZETRN mode. The next step is to investigate further the differences between the two codes and isolate the differences to just the angular versus straight-ahead transport mode. Then, create a better coupling between the angular neutron transport and the charged particle transport.

  8. High resolution imaging of vadose zone transport using crosswell radar and seismic methods

    SciTech Connect

    Majer, Ernest L.; Williams, Kenneth H.; Peterson, John E.; Daley, Thomas E.

    2001-10-10

    The summary and conclusions are that overall the radar and seismic results were excellent. At the time of design of the experiments we did not know how well these two methods could penetrate or resolve the moisture content and structure. It appears that the radar could easily go up to 5, even 10 meters between boreholes at 200 Mhz and even father (up to 20 to 40 m) at 50 Mhz. The seismic results indicate that at several hundred hertz propagation of 20 to 30 meters giving high resolution is possible. One of the most important results, however is that together the seismic and radar are complementary in their properties estimation. The radar being primarily sensitive to changes in moisture content, and the seismic being primarily sensitive to porosity. Taken in a time lapse sense the radar can show the moisture content changes to a high resolution, with the seismic showing high resolution lithology. The significant results for each method are: Radar: (1) Delineated geological layers 0.25 to 3.5 meters thick with 0.25 m resolution; (2) Delineated moisture movement and content with 0.25 m resolution; (3) Compared favorably with neutron probe measurements; and (4) Penetration up to 30 m. Radar results indicate that the transport of the riverwater is different from that of the heavier and more viscous sodium thiosulfate. It appears that the heavier fluids are not mixing readily with the in-situ fluids and the transport may be influenced by them. Seismic: (1) Delineated lithology at .25 m resolution; (2) Penetration over 20 meters, with a possibility of up to 30 or more meters; and (3) Maps porosity and density differences of the sediments. Overall the seismic is mapping the porosity and density distribution. The results are consistent with the flow field mapped by the radar, there is a change in flow properties at the 10 to 11 meter depth in the flow cell. There also appears to be break through by looking at the radar data with the denser sodium thiosulfate finally

  9. PHISICS multi-group transport neutronic capabilities for RELAP5

    SciTech Connect

    Epiney, A.; Rabiti, C.; Alfonsi, A.; Wang, Y.; Cogliati, J.; Strydom, G.

    2012-07-01

    PHISICS is a neutronic code system currently under development at INL. Its goal is to provide state of the art simulation capability to reactor designers. This paper reports on the effort of coupling this package to the thermal hydraulic system code RELAP5. This will enable full prismatic core and system modeling and the possibility to model coupled (thermal-hydraulics and neutronics) problems with more options for 3D neutron kinetics, compared to the existing diffusion theory neutron kinetics module in RELAP5 (NESTLE). The paper describes the capabilities of the coupling and illustrates them with a set of sample problems. (authors)

  10. Development of a high spatial resolution neutron imaging system and performance evaluation

    NASA Astrophysics Data System (ADS)

    Cao, Lei

    The combination of a scintillation screen and a charged coupled device (CCD) camera is a digitized neutron imaging technology that has been widely employed for research and industry application. The maximum of spatial resolution of scintillation screens is in the range of 100 mum and creates a bottleneck for the further improvement of the overall system resolution. In this investigation, a neutron sensitive micro-channel plate (MCP) detector with pore pitch of 11.4 mum is combined with a cooled CCD camera with a pixel size of 6.8 mum to provide a high spatial resolution neutron imaging system. The optical path includes a high reflection front surface mirror for keeping the camera out of neutron beam and a macro lens for achieving the maximum magnification that could be achieved. All components are assembled into an aluminum light tight box with heavy radiation shielding to protect the camera as well as to provide a dark working condition. Particularly, a remote controlled stepper motor is also integrated into the system to provide on-line focusing ability. The best focus is guaranteed through use of an algorithm instead of perceptual observation. An evaluation routine not previously utilized in the field of neutron radiography is developed in this study. Routines like this were never previously required due to the lower resolution of other systems. Use of the augulation technique to obtain presampled MTF addresses the problem of aliasing associated with digital sampling. The determined MTF agrees well with the visual inspection of imaging a testing target. Other detector/camera combinations may be integrated into the system and their performances are also compared. The best resolution achieved by the system at the TRIGA Mark II reactor at the University of Texas at Austin is 16.2 lp/mm, which is equivalent to a minimum resolvable spacing of 30 mum. The noise performance of the device is evaluated in terms of the noise power spectrum (NPS) and the detective quantum

  11. Multigroup Neutron/Gamma-Ray Direct Integration Transport Code System for Two-Dimensional Cylindrical Geometry.

    Energy Science and Technology Software Center (ESTSC)

    1980-10-15

    Version 00 PALLAS-2DCY-FX is a code for direct integration of the transport equation in two-dimensional (r,z) geometry. It solves the energy and angular-dependent Boltzmann transport equation with general anisotropic scattering in cylindrical geometry. Its principal applications are to neutron or gamma-ray transport problems in the forward mode. The code is particularly designed for and suited to the solution of deep penetration radiation transport problems with an external (fixed) source.

  12. Cosmic ray heliospheric transport study with neutron monitor data

    NASA Astrophysics Data System (ADS)

    Ahluwalia, H. S.; Ygbuhay, R. C.; Modzelewska, R.; Dorman, L. I.; Alania, M. V.

    2015-10-01

    Determining transport coefficients for galactic cosmic ray (GCR) propagation in the turbulent interplanetary magnetic field (IMF) poses a fundamental challenge in modeling cosmic ray modulation processes. GCR scattering in the solar wind involves wave-particle interaction, the waves being Alfven waves which propagate along the ambient field (B). Empirical values at 1 AU are determined for the components of the diffusion tensor for GCR propagation in the heliosphere using neutron monitor (NM) data. At high rigidities, particle density gradients and mean free paths at 1 AU in B can only be computed from the solar diurnal anisotropy (SDA) represented by a vector A (components Ar, Aϕ, and Aθ) in a heliospherical polar coordinate system. Long-term changes in SDA components of NMs (with long track record and the median rigidity of response Rm ~ 20 GV) are used to compute yearly values of the transport coefficients for 1963-2013. We confirm the previously reported result that the product of the parallel (to B) mean free path (λ||) and radial density gradient (Gr) computed from NM data exhibits a weak Schwabe cycle (11y) but strong Hale magnetic cycle (22y) dependence. Its value is most depressed in solar activity minima for positive (p) polarity intervals (solar magnetic field in the Northern Hemisphere points outward from the Sun) when GCRs drift from the polar regions toward the helioequatorial plane and out along the heliospheric current sheet (HCS), setting up a symmetric gradient Gθs pointing away from HCS. Gr drives all SDA components and λ|| Gr contributes to the diffusive component (Ad) of the ecliptic plane anisotropy (A). GCR transport is commonly discussed in terms of an isotropic hard sphere scattering (also known as billiard-ball scattering) in the solar wind plasma. We use it with a flat HCS model and the Ahluwalia-Dorman master equations to compute the coefficients α (=λ⊥/λ∥) and ωτ (a measure of turbulence in the solar wind) and transport

  13. Hexagonal boron nitride thin film thermal neutron detectors with high energy resolution of the reaction products

    NASA Astrophysics Data System (ADS)

    Doan, T. C.; Majety, S.; Grenadier, S.; Li, J.; Lin, J. Y.; Jiang, H. X.

    2015-05-01

    Hexagonal boron nitride (h-BN) is highly promising for solid-state thermal neutron detector applications due to its many outstanding physical properties, especially its very large thermal neutron capture cross-section (~3840 barns for 10B), which is several orders of magnitude larger than those of most other isotopes. The focus of the present work is to carry out studies on h-BN thin film and detector properties to lay the foundation for the development of a direct-conversion solid-state thermal neutron detector with high sensitivity. The measured carrier mobility-lifetime (μτ) product of h-BN thin films grown on sapphire substrates is 2.83×10-7 cm2/V for electrons and holes, which is comparable to the value of about 10-7 cm2/V for GaN thin films grown on sapphire. Detectors based on h-BN thin films were fabricated and the nuclear reaction product pulse height spectra were measured. Under a bias of 20 V, very narrow individual peaks corresponding to the reaction product energies of α and Li particles as well as the sum peaks have been clearly resolved in the pulse height spectrum for the first time by a B-based direct-conversion semiconductor neutron detector. Our results indicate that h-BN thin film detectors possess unique advantages including small size, low weight, portability, low voltage operation and high energy resolution of specific reaction products.

  14. On-the-fly Neutron Tomography of Water Transport into Lupine Roots

    NASA Astrophysics Data System (ADS)

    Zarebanadkouki, Mohsen; Carminati, Andrea; Kaestner, Anders; Mannes, David; Morgano, Manuel; Peetermans, Steven; Lehmann, Eberhard; Trtik, Pavel

    Measurement and visualization of water flow in soil and roots is essential for understanding of how roots take up water from soils. Such information would allow for the optimization of irrigation practices and for the identification of the optimal traits for the capture of water, in particular when water is scarce. However, measuring water flow in roots growing in soil is challenging. The previous 2D experiments (Zarebanadkouki et al., 2012) have not been sufficient for understanding the water transport across the root and therefore we employed an on-the-fly tomography technique with temporal resolution of three minutes. In this paper, we show that the series of on-the-fly neutron tomographic experiments performed on the same sample allow for monitoring the three-dimensional spatial distribution of D2O across the root tissue. The obtained data will allow us to calculate the convective and diffusive transport properties across root tissue and to estimate the relative importance of different pathways of water across the root tissue.

  15. Neutron interaction and their transport with bulk materials

    NASA Astrophysics Data System (ADS)

    Rani, Esther Kalpana; Radhika, K.

    2015-05-01

    In the current paper an attempt was made to study and provide fundamental information about neutron interactions that are important to nuclear material measurements. The application of this study is explained about macroscopic interactions with bulk compound materials through a program in DEV C++ language which is done by enabling interaction of neutrons in nature. The output of the entire process depends upon the random number (i.e., incident neutron number), thickness of the material and mean free path as input parameters. Further the current study emphasizes on the usage of materials in shielding.

  16. Neutron interaction and their transport with bulk materials

    SciTech Connect

    Rani, Esther Kalpana; Radhika, K.

    2015-05-15

    In the current paper an attempt was made to study and provide fundamental information about neutron interactions that are important to nuclear material measurements. The application of this study is explained about macroscopic interactions with bulk compound materials through a program in DEV C++ language which is done by enabling interaction of neutrons in nature. The output of the entire process depends upon the random number (i.e., incident neutron number), thickness of the material and mean free path as input parameters. Further the current study emphasizes on the usage of materials in shielding.

  17. Development of a High-performance Optical System and Fluorescent Converters for High-resolution Neutron Imaging

    NASA Astrophysics Data System (ADS)

    Sakai, T.; Yasuda, R.; Iikura, H.; Nojima, T.; Matsubayashi, M.

    Two novel devices for use in neutron imaging technique are introduced. The first one is a high-performance optical lens for video camera systems. The lens system has a magnification of 1:1 and an F value of 3. The optical resolution is less than 5 μm. The second device is a high-resolution fluorescent plate that converts neutrons into visible light. The fluorescent converter material consists of a mixture of 6LiF and ZnS(Ag) fine powder, and the thickness of the converter is material is as little as 15 μm. The surface of the plate is coated with a 1 μm-thick gadolinium oxide layer. This layer is optically transparent and acts as an electron emitter for neutron detection. Our preliminary results show that the developed optical lens and fluorescent converter plates are very promising for high-resolution neutron imaging.

  18. HEIMDAL: A thermal neutron powder diffractometer with high and flexible resolution combined with SANS and neutron imaging - Designed for materials science studies at the European Spallation Source

    NASA Astrophysics Data System (ADS)

    Holm, Sonja L.; Lefmann, Kim; Henry, Paul F.; Bertelsen, Mads; Schefer, Jürg; Christensen, Mogens

    2016-08-01

    HEIMDAL will be a multi length scale neutron scattering instrument for the study of structures covering almost nine orders of magnitude from 0.01 nm to 50 mm. The instrument is accepted for construction at the European Spallation Source (ESS) and features a variable resolution thermal neutron powder diffractometer (TNPD), combined with small angle neutron scattering (SANS) and neutron imaging (NI). The instrument uses a novel combination of a cold and a thermal guide to fulfill the diverse requirements for diffraction and SANS. With an instrument length of 170 m, HEIMDAL will take advantage of the high neutron flux of the long pulse at ESS, whilst maintaining a high q-resolution due to the long flight path. The q-range coverage is up to 20 Å-1 allowing low-resolution PDF analysis. With the addition of SANS, HEIMDAL will be able to cover a uniquely broad length scale within a single instrumental set-up. HEIMDAL will be able to accommodate modern materials research in a broad variety of fields, and the task of the instrument will be to study advanced functional materials in action, as in situ and in operandi at multiple length scales (0.01-100 nm) quasi simultaneously. The instrument combines state-of-the-art neutron scattering techniques (TNPD, SANS, and NI) with the goal of studying real materials, in real time, under real conditions. This article describes the instrument design ideas, calculations and results of simulations and virtual experiments.

  19. In situ studies of mass transport in liquid alloys by means of neutron radiography.

    PubMed

    Kargl, F; Engelhardt, M; Yang, F; Weis, H; Schmakat, P; Schillinger, B; Griesche, A; Meyer, A

    2011-06-29

    When in situ techniques became available in recent years this led to a breakthrough in accurately determining diffusion coefficients for liquid alloys. Here we discuss how neutron radiography can be used to measure chemical diffusion in a ternary AlCuAg alloy. Neutron radiography hereby gives complementary information to x-ray radiography used for measuring chemical diffusion and to quasielastic neutron scattering used mainly for determining self-diffusion. A novel Al(2)O(3) based furnace that enables one to study diffusion processes by means of neutron radiography is discussed. A chemical diffusion coefficient of Ag against Al around the eutectic composition Al(68.6)Cu(13.8)Ag(17.6) at.% was obtained. It is demonstrated that the in situ technique of neutron radiography is a powerful means to study mass transport properties in situ in binary and ternary alloys that show poor x-ray contrast. PMID:21654050

  20. High resolution measurement of neutron inelastic scattering cross-sections for 23Na

    NASA Astrophysics Data System (ADS)

    Rouki, C.; Archier, P.; Borcea, C.; De Saint Jean, C.; Drohé, J. C.; Kopecky, S.; Moens, A.; Nankov, N.; Negret, A.; Noguère, G.; Plompen, A. J. M.; Stanoiu, M.

    2012-04-01

    The neutron inelastic scattering cross-section of 23Na has been measured in response to the relevant request of the OECD-NEA High Priority Request List, which requires a target uncertainty of 4% in the energy range up to 1.35 MeV for the development of sodium-cooled fast reactors. The measurement was performed at the GELINA facility with the Gamma Array for Inelastic Neutron Scattering (GAINS), featuring eight high purity germanium detectors. The setup is installed at a 200 m flight path from the neutron source and provides high resolution measurements using the (n,n'γ)-technique. The sample was an 80 mm diameter metallic sodium disk prepared at IRMM. Transitions up to the seventh excited state were observed and the differential gamma cross-sections at 110° and 150° were measured, showing mostly isotropic gamma emission. From these the gamma production, level and inelastic cross-sections were determined for neutron energies up to 3838.9 keV. The results agree well with the existing data and the evaluated nuclear data libraries in the low energies, and provide new experimental points in the little studied region above 2 MeV. Following a detailed review of the methodology used for the gamma efficiency calibrations and flux normalization of GAINS data, an estimated total uncertainty of 2.2% was achieved for the inelastic cross-section integrals over the energy ranges 0.498-1.35 MeV and 1.35-2.23 MeV, meeting the required targets.

  1. Sub-atomic resolution X-ray crystallography and neutron crystallography: promise, challenges and potential.

    PubMed

    Blakeley, Matthew P; Hasnain, Samar S; Antonyuk, Svetlana V

    2015-07-01

    The International Year of Crystallography saw the number of macromolecular structures deposited in the Protein Data Bank cross the 100000 mark, with more than 90000 of these provided by X-ray crystallography. The number of X-ray structures determined to sub-atomic resolution (i.e. ≤1 Å) has passed 600 and this is likely to continue to grow rapidly with diffraction-limited synchrotron radiation sources such as MAX-IV (Sweden) and Sirius (Brazil) under construction. A dozen X-ray structures have been deposited to ultra-high resolution (i.e. ≤0.7 Å), for which precise electron density can be exploited to obtain charge density and provide information on the bonding character of catalytic or electron transfer sites. Although the development of neutron macromolecular crystallography over the years has been far less pronounced, and its application much less widespread, the availability of new and improved instrumentation, combined with dedicated deuteration facilities, are beginning to transform the field. Of the 83 macromolecular structures deposited with neutron diffraction data, more than half (49/83, 59%) were released since 2010. Sub-mm(3) crystals are now regularly being used for data collection, structures have been determined to atomic resolution for a few small proteins, and much larger unit-cell systems (cell edges >100 Å) are being successfully studied. While some details relating to H-atom positions are tractable with X-ray crystallography at sub-atomic resolution, the mobility of certain H atoms precludes them from being located. In addition, highly polarized H atoms and protons (H(+)) remain invisible with X-rays. Moreover, the majority of X-ray structures are determined from cryo-cooled crystals at 100 K, and, although radiation damage can be strongly controlled, especially since the advent of shutterless fast detectors, and by using limited doses and crystal translation at micro-focus beams, radiation damage can still take place. Neutron

  2. Sub-atomic resolution X-ray crystallography and neutron crystallography: promise, challenges and potential

    PubMed Central

    Blakeley, Matthew P.; Hasnain, Samar S.; Antonyuk, Svetlana V.

    2015-01-01

    The International Year of Crystallography saw the number of macromolecular structures deposited in the Protein Data Bank cross the 100000 mark, with more than 90000 of these provided by X-ray crystallography. The number of X-ray structures determined to sub-atomic resolution (i.e. ≤1 Å) has passed 600 and this is likely to continue to grow rapidly with diffraction-limited synchrotron radiation sources such as MAX-IV (Sweden) and Sirius (Brazil) under construction. A dozen X-ray structures have been deposited to ultra-high resolution (i.e. ≤0.7 Å), for which precise electron density can be exploited to obtain charge density and provide information on the bonding character of catalytic or electron transfer sites. Although the development of neutron macromolecular crystallography over the years has been far less pronounced, and its application much less widespread, the availability of new and improved instrumentation, combined with dedicated deuteration facilities, are beginning to transform the field. Of the 83 macromolecular structures deposited with neutron diffraction data, more than half (49/83, 59%) were released since 2010. Sub-mm3 crystals are now regularly being used for data collection, structures have been determined to atomic resolution for a few small proteins, and much larger unit-cell systems (cell edges >100 Å) are being successfully studied. While some details relating to H-atom positions are tractable with X-ray crystallography at sub-atomic resolution, the mobility of certain H atoms precludes them from being located. In addition, highly polarized H atoms and protons (H+) remain invisible with X-rays. Moreover, the majority of X-ray structures are determined from cryo-cooled crystals at 100 K, and, although radiation damage can be strongly controlled, especially since the advent of shutterless fast detectors, and by using limited doses and crystal translation at micro-focus beams, radiation damage can still take place. Neutron

  3. Development of deterministic transport methods for low energy neutrons for shielding in space

    NASA Technical Reports Server (NTRS)

    Ganapol, Barry

    1993-01-01

    Transport of low energy neutrons associated with the galactic cosmic ray cascade is analyzed in this dissertation. A benchmark quality analytical algorithm is demonstrated for use with BRYNTRN, a computer program written by the High Energy Physics Division of NASA Langley Research Center, which is used to design and analyze shielding against the radiation created by the cascade. BRYNTRN uses numerical methods to solve the integral transport equations for baryons with the straight-ahead approximation, and numerical and empirical methods to generate the interaction probabilities. The straight-ahead approximation is adequate for charged particles, but not for neutrons. As NASA Langley improves BRYNTRN to include low energy neutrons, a benchmark quality solution is needed for comparison. The neutron transport algorithm demonstrated in this dissertation uses the closed-form Green's function solution to the galactic cosmic ray cascade transport equations to generate a source of neutrons. A basis function expansion for finite heterogeneous and semi-infinite homogeneous slabs with multiple energy groups and isotropic scattering is used to generate neutron fluxes resulting from the cascade. This method, called the FN method, is used to solve the neutral particle linear Boltzmann transport equation. As a demonstration of the algorithm coded in the programs MGSLAB and MGSEMI, neutron and ion fluxes are shown for a beam of fluorine ions at 1000 MeV per nucleon incident on semi-infinite and finite aluminum slabs. Also, to demonstrate that the shielding effectiveness against the radiation from the galactic cosmic ray cascade is not directly proportional to shield thickness, a graph of transmitted total neutron scalar flux versus slab thickness is shown. A simple model based on the nuclear liquid drop assumption is used to generate cross sections for the galactic cosmic ray cascade. The ENDF/B V database is used to generate the total and scattering cross sections for neutrons in

  4. Least-squares finite element discretizations of neutron transport equations in 3 dimensions

    SciTech Connect

    Manteuffel, T.A; Ressel, K.J.; Starkes, G.

    1996-12-31

    The least-squares finite element framework to the neutron transport equation introduced in is based on the minimization of a least-squares functional applied to the properly scaled neutron transport equation. Here we report on some practical aspects of this approach for neutron transport calculations in three space dimensions. The systems of partial differential equations resulting from a P{sub 1} and P{sub 2} approximation of the angular dependence are derived. In the diffusive limit, the system is essentially a Poisson equation for zeroth moment and has a divergence structure for the set of moments of order 1. One of the key features of the least-squares approach is that it produces a posteriori error bounds. We report on the numerical results obtained for the minimum of the least-squares functional augmented by an additional boundary term using trilinear finite elements on a uniform tesselation into cubes.

  5. High-resolution inelastic neutron scattering and neutron powder diffraction study of the adsorption of dihydrogen by the Cu(II) metal-organic framework material HKUST-1

    NASA Astrophysics Data System (ADS)

    Callear, Samantha K.; Ramirez-Cuesta, Anibal J.; David, William I. F.; Millange, Franck; Walton, Richard I.

    2013-12-01

    We present new high-resolution inelastic neutron scattering (INS) spectra (measured using the TOSCA and MARI instruments at ISIS) and powder neutron diffraction data (measured on the diffractometer WISH at ISIS) from the interaction of the prototypical metal-organic framework HKUST-1 with various dosages of dihydrogen gas. The INS spectra show direct evidence for the sequential occupation of various distinct sites for dihydrogen in the metal-organic framework, whose population is adjusted during increasing loading of the guest. The superior resolution of TOSCA reveals subtle features in the spectra, not previously reported, including evidence for split signals, while complementary spectra recorded on MARI present full information in energy and momentum transfer. The analysis of the powder neutron patterns using the Rietveld method shows a consistent picture, allowing the crystallographic indenisation of binding sites for dihydrogen, thus building a comprehensive picture of the interaction of the guest with the nanoporous host.

  6. Computational Transport Modeling of High-Energy Neutrons Found in the Space Environment

    NASA Technical Reports Server (NTRS)

    Cox, Brad; Theriot, Corey A.; Rohde, Larry H.; Wu, Honglu

    2012-01-01

    The high charge and high energy (HZE) particle radiation environment in space interacts with spacecraft materials and the human body to create a population of neutrons encompassing a broad kinetic energy spectrum. As an HZE ion penetrates matter, there is an increasing chance of fragmentation as penetration depth increases. When an ion fragments, secondary neutrons are released with velocities up to that of the primary ion, giving some neutrons very long penetration ranges. These secondary neutrons have a high relative biological effectiveness, are difficult to effectively shield, and can cause more biological damage than the primary ions in some scenarios. Ground-based irradiation experiments that simulate the space radiation environment must account for this spectrum of neutrons. Using the Particle and Heavy Ion Transport Code System (PHITS), it is possible to simulate a neutron environment that is characteristic of that found in spaceflight. Considering neutron dosimetry, the focus lies on the broad spectrum of recoil protons that are produced in biological targets. In a biological target, dose at a certain penetration depth is primarily dependent upon recoil proton tracks. The PHITS code can be used to simulate a broad-energy neutron spectrum traversing biological targets, and it account for the recoil particle population. This project focuses on modeling a neutron beamline irradiation scenario for determining dose at increasing depth in water targets. Energy-deposition events and particle fluence can be simulated by establishing cross-sectional scoring routines at different depths in a target. This type of model is useful for correlating theoretical data with actual beamline radiobiology experiments. Other work exposed human fibroblast cells to a high-energy neutron source to study micronuclei induction in cells at increasing depth behind water shielding. Those findings provide supporting data describing dose vs. depth across a water-equivalent medium. This

  7. Surface harmonics method equations for solving the time-dependent neutron transport problems and their verification

    SciTech Connect

    Boyarinov, V. F.; Kondrushin, A. E.; Fomichenko, P. A.

    2012-07-01

    Finite-difference time-dependent equations of Surface Harmonics method have been obtained for plane geometry. Verification of these equations has been carried out by calculations of tasks from 'Benchmark Problem Book ANL-7416'. The capacity and efficiency of the Surface Harmonics method have been demonstrated by solution of the time-dependent neutron transport equation in diffusion approximation. The results of studies showed that implementation of Surface Harmonics method for full-scale calculations will lead to a significant progress in the efficient solution of the time-dependent neutron transport problems in nuclear reactors. (authors)

  8. Energy-selective neutron imaging with high spatial resolution and its impact on the study of crystalline-structured materials

    NASA Astrophysics Data System (ADS)

    Lehmann, E. H.; Peetermans, S.; Josic, L.; Leber, H.; van Swygenhoven, H.

    2014-01-01

    Crystalline-structured materials with preferentially large grains were investigated by means of energy-selective neutron imaging methods (transmission radiography and tomography) under the conditions of the best possible spatial resolution at the ICON facility, SINQ, and PSI. Because of the cold spectrum at that beam line, access to the Bragg diffraction features was possible even when the energy resolution of the used selector device was only 15%. Grains with a size below the detector resolution (approximately 25 μm) are not visible, and a quasi-homogeneous contrast variation is found when the neutron energy is varied.In the cases of welded stainless steel samples and rolled Al plates, we obtained structural information from a very short exposure of approximately 60 s. Tomographic examinations of these samples at suitable neutron energies qualitatively verified the radiographic findings by showing the same features in the bulk. Comparison to common electron backscatter diffraction (EBSD) investigations in selected regions of the samples provided a complete verification of the neutron-image data with respect to the grain size and the different grain orientations. The method of energy-selective neutron imaging provides an easy and straightforward approach for non-invasive material research that can be performed without any sample preparation if the most suitable neutron energy is chosen. Further studies will be necessary to extend the experimental data base to other materials with different crystal structures and grain sizes. A comparison to diffraction data will enhance the quantitative value of the investigations.

  9. Transport analysis of measured neutron energy spectra in a graphite stack with a collimated deuterium-tritium neutron beam

    SciTech Connect

    Tsechanski, A.; Ofek, R.; Goldfeld, A.; Shani, G.

    1989-02-01

    The Ben-Gurion University measurements of neutron energy spectra in a graphite stack, resulting from the scattering of 14.7-MeV neutrons streaming through a 6-cm-diam collimator in a 121-cm-thick paraffin wall, have been used as a benchmark for the compatability and accuracy of discrete ordinates, P/sub n/, and transport calculations and as a tool for fusion reactor neutronics. The transport analysis has been carried out with the DOT 4.2 discrete ordinates code and with cross sections processed with the NJOY code. Most of the parameters affecting the accuracy of the flux and L system scattering cross sections in the P/sub n/ approximation, the quadrature set employed, and the energy multigroup structure. First, a spectrum calculated with DOT 4.2, with a detector located on the axis of the system, was compared with a spectrum calculated with the MCNP Monte Carlo code, which was a preliminary verification of the DOT 4.2 results. Both calculated spectra were in good agreement. Next, the DOT 4.2 calculations were compared with the measured spectra. The comparison showed that the discrepancies between the measurements and the calculations increase as the distance between the detector and the system axis increases. This trend indicates that when the flux is determined mainly by multiple scatterings, a more divided multigroup structure should be employed.

  10. Flexible polyvinyl chloride neutron guides for transporting ultracold and very cold neutrons

    SciTech Connect

    Arzumanov, S. S. Bondarenko, L. N.; Geltenbort, P.; Morozov, V. I.; Nesvizhevsky, V. V.; Panin, Yu. N.; Strepetov, A. N.; Chuvilin, D. Yu.

    2011-12-15

    The transmission of ultracold neutrons (UCNs) through flexible polyvinyl chloride (PVC) tubes with lengths of up to 3 m and an internal diameter of 6-8 mm has been studied. High UCN transmission is found even for arbitrarily bent tubes (single bend, double bend, triple bend, figure eight, etc.). The transmission can be improved significantly by coating the inner surface of the tube with a thin layer of liquid fluorine polymer. The prospects of these neutron guides in fundamental and applied research are discussed.

  11. Neutron light output response and resolution functions in EJ-309 liquid scintillation detectors

    SciTech Connect

    Enqvist, Andreas; Lawrence, Christopher C.; Wieger, Brian M.; Pozzi, Sara A.; Massey, Thomas N.

    2013-03-26

    Here, the neutron light output response functions and detector resolution functions were measured at Ohio University's tandem Van de Graaff generator for three cylindrical EJ-309 liquid scintillator cells, having dimensions 12.7(circle divide)-by-12.7, 7.6-by-7.6, and 7.6-by-5.1 cm. A 7.44 MeV deuteron beam was used on an Al-27 target generating a continuous spectrum over the energy range from a few hundred keV to over 10 MeV. The light output response functions are determined using an exponential fit. Detector resolution functions are obtained for the 12.7-by-12.7 and 7.6-by-7.6 cm detectors. It is demonstrated that the dependence on detector size is important for the light output response functions, but not to the same extent for the resolution function, even when photomultiplier tubes, detector material, and other detector characteristics are carefully matched.

  12. Neutron light output response and resolution functions in EJ-309 liquid scintillation detectors

    DOE PAGESBeta

    Enqvist, Andreas; Lawrence, Christopher C.; Wieger, Brian M.; Pozzi, Sara A.; Massey, Thomas N.

    2013-03-26

    Here, the neutron light output response functions and detector resolution functions were measured at Ohio University's tandem Van de Graaff generator for three cylindrical EJ-309 liquid scintillator cells, having dimensions 12.7(circle divide)-by-12.7, 7.6-by-7.6, and 7.6-by-5.1 cm. A 7.44 MeV deuteron beam was used on an Al-27 target generating a continuous spectrum over the energy range from a few hundred keV to over 10 MeV. The light output response functions are determined using an exponential fit. Detector resolution functions are obtained for the 12.7-by-12.7 and 7.6-by-7.6 cm detectors. It is demonstrated that the dependence on detector size is important for themore » light output response functions, but not to the same extent for the resolution function, even when photomultiplier tubes, detector material, and other detector characteristics are carefully matched.« less

  13. Nonlinear Acceleration Methods for Even-Parity Neutron Transport

    SciTech Connect

    W. J. Martin; C. R. E. De Oliveira; H. Park

    2010-05-01

    Convergence acceleration methods for even-parity transport were developed that have the potential to speed up transport calculations and provide a natural avenue for an implicitly coupled multiphysics code. An investigation was performed into the acceleration properties of the introduction of a nonlinear quasi-diffusion-like tensor in linear and nonlinear solution schemes. Using the tensor reduced matrix as a preconditioner for the conjugate gradients method proves highly efficient and effective. The results for the linear and nonlinear case serve as the basis for further research into the application in a full three-dimensional spherical-harmonics even-parity transport code. Once moved into the nonlinear solution scheme, the implicit coupling of the convergence accelerated transport method into codes for other physics can be done seamlessly, providing an efficient, fully implicitly coupled multiphysics code with high order transport.

  14. A multi-resolution approach for optimal mass transport

    NASA Astrophysics Data System (ADS)

    Dominitz, Ayelet; Angenent, Sigurd; Tannenbaum, Allen

    2007-09-01

    Optimal mass transport is an important technique with numerous applications in econometrics, fluid dynamics, automatic control, statistical physics, shape optimization, expert systems, and meteorology. Motivated by certain problems in image registration and medical image visualization, in this note, we describe a simple gradient descent methodology for computing the optimal L2 transport mapping which may be easily implemented using a multiresolution scheme. We also indicate how the optimal transport map may be computed on the sphere. A numerical example is presented illustrating our ideas.

  15. L/sub 2/-error estimates for the discrete ordinates method for three-dimensional neutron transport

    SciTech Connect

    Asadzadeh, M.

    1988-02-01

    We prove L/sub 2/-error estimates for the discrete ordinates method for the angular discretization of the three-dimensional neutron transport equation. The analysis is for monoenergetic three-dimensional transport of neutrons in a homogeneous uniform media and isotropic scattering is assumed. A special quadrature rule with relatively uniformly distributed discrete directions is considered.

  16. Insights into Analogue Perovskite Solid Solutions from High-Resolution Neutron Powder Diffraction

    NASA Astrophysics Data System (ADS)

    Redfern, S. A.; Chaddock, E. H.; Becerro, A. I.

    2002-12-01

    Neutron powder diffraction provides a powerful tool for the study of phase transitions as a function of pressure, temperature, or chemical composition. The structural information obtainable from powders using diffractometers such as HRPD (ISIS, UK) or D2B (ILL, France) rivals, and in some respects exceeds what may be possible using conventional crystallographic techniques reliant on single crystals. We have used both instruments to explore the subtle phase transitions observed in the (CaxSr1-x)TiO3 and (SrxBa1-x)SnO3 solid solutions. We have also used low resolution high flux instruments to explore the thermal dependence of the superlattice behavior below the cubic to tetragonal phase transition in (CaxSr1-x)TiO3. In each case a sequence of phase transitions from Pm-3m through I4/mcm to Pbnm is seen as a function of composition, and is driven by the change in average radius of the B-cation. This sequence of transitions is the same as expected for a magnesium silicate perovskite structure on increasing temperature. It is now recognised that lower mantle perovskite is likely aluminous, with solid solution towards either a stoichiometric or oxygen-defect end-member. The analogue systems we have characterised have been doped with trivalent cations on the B site to explore the effect of such substitution on the sequence of phase transitions. High-temperature neutron diffraction shows that oxygen defects stabilize the higher symmetry structures, lowering Tc for the transition to cubic. New developments in high-T high-P neutron diffraction techniques will allow the extension of these ambient pressure studies to the investigation of the influence of pressure as a variable, and hence the extension of such analogue studies to the whole range of variables experienced in the lower mantle. These will be briefly outlined.

  17. Radiation transport calculations for the ANS (Advanced Neutron Source) beam tubes

    SciTech Connect

    Engle, W.W., Jr.; Lillie, R.A.; Slater, C.O.

    1988-01-01

    The Advanced Neutron Source facility (ANS) will incorporate a large number of both radial and no-line-of-sight (NLS) beam tubes to provide very large thermal neutron fluxes to experimental facilities. The purpose of this work was to obtain comparisons for the ANS single- and split-core designs of the thermal and damage neutron and gamma-ray scalar fluxes in these beams tubes. For experimental locations far from the reactor cores, angular flux data are required; however, for close-in experimental locations, the scalar fluxes within each beam tube provide a credible estimate of the various signal to noise ratios. In this paper, the coupled two- and three-dimensional radiation transport calculations employed to estimate the scalar neutron and gamma-ray fluxes will be described and the results from these calculations will be discussed. 6 refs., 2 figs.

  18. Low energy nuclear spin excitations in Ho metal investigated by high resolution neutron spectroscopy.

    PubMed

    Chatterji, Tapan; Jalarvo, Niina

    2013-04-17

    We have investigated the low energy excitations in metallic Ho by high resolution neutron spectroscopy. We found at T = 3 K clear inelastic peaks in the energy loss and energy gain sides, along with the central elastic peak. The energy of this low energy excitation, which is 26.59 ± 0.02 μeV at T = 3 K, decreased continuously and became zero at TN ≈ 130 K. By fitting the data in the temperature range 100-127.5 K with a power law we obtained the power-law exponent β = 0.37 ± 0.02, which agrees with the expected value β = 0.367 for a three-dimensional Heisenberg model. Thus the energy of the low energy excitations can be associated with the order parameter. PMID:23507905

  19. High-Resolution Neutron Total and Capture Cross-Section Measurements on 206Pb

    SciTech Connect

    Borella, A.; Brusegan, A.; Siegler, P.; Schillebeeckx, P.; Moxon, M.C.; Aerts, G.; Gunsing, F.

    2005-05-24

    High-resolution neutron total and capture cross-section measurements have been performed on a 99.82% enriched 206Pb metallic sample. The transmission and capture measurements were carried out at the 25- and 60-m stations, respectively, of the Time-Of-Flight facility GELINA of the IRMM in Geel (B). The small amount of material allowed us to detect 13 resonances below 80 keV in the transmission measurements and 70 were seen in the capture measurements below 150 keV. The resonance parameters for the resonances seen in transmission agree within the uncertainties of the parameters determined by Horen et al. at ORELA. The capture yield was measured up to 600 keV and the capture areas for resonances up to 150 keV were compared with published data. This comparison reveals systematic differences, which are due to the detection geometry, the different neutron sensitivity in the detection systems, the applied weighting function, and normalisation.

  20. High-resolution measurements of the DT neutron spectrum using new CD foils in the Magnetic Recoil neutron Spectrometer (MRS) on the National Ignition Facility

    DOE PAGESBeta

    Gatu Johnson, M.; Frenje, J. A.; Bionta, R. M.; Casey, D. T.; Eckart, M. J.; Farrell, M. P.; Grim, G. P.; Hartouni, E. P.; Hatarik, R.; Hoppe, M.; et al

    2016-08-09

    The Magnetic Recoil neutron Spectrometer (MRS) on the National Ignition Facility measures the DT neutron spectrum from cryogenically layered inertial confinement fusion implosions. Yield, areal density, apparent ion temperature, and directional fluid flow are inferred from the MRS data. Here, this paper describes recent advances in MRS measurements of the primary peak using new, thinner, reduced-area deuterated plastic (CD) conversion foils. The new foils allow operation of MRS at yields 2 orders of magnitude higher than previously possible, at a resolution down to ~200 keV FWHM.

  1. Neutron beam characterization measurements at the Manuel Lujan Jr. neutron scattering center

    SciTech Connect

    Mocko, Michal; Muhrer, Guenter; Daemen, Luke L; Kelsey, Charles T; Duran, Michael A; Tovesson, Fredrik K

    2010-01-01

    We have measured the neutron beam characteristics of neutron moderators at the Manuel Lujan Jr. Neutron Scattering Center at LANSCE. The absolute thermal neutron flux, energy spectra and time emission spectra were measured for the high resolution and high intensity decoupled water, partially coupled liquid hydrogen and partially coupled water moderators. The results of our experimental study will provide an insight into aging of different target-moderator-reflector-shield components as well as new experimental data for benchmarking of neutron transport codes.

  2. Theoretical analysis of integral neutron transport equation using collision probability method with quadratic flux approach

    SciTech Connect

    Shafii, Mohammad Ali Meidianti, Rahma Wildian, Fitriyani, Dian; Tongkukut, Seni H. J.; Arkundato, Artoto

    2014-09-30

    Theoretical analysis of integral neutron transport equation using collision probability (CP) method with quadratic flux approach has been carried out. In general, the solution of the neutron transport using the CP method is performed with the flat flux approach. In this research, the CP method is implemented in the cylindrical nuclear fuel cell with the spatial of mesh being conducted into non flat flux approach. It means that the neutron flux at any point in the nuclear fuel cell are considered different each other followed the distribution pattern of quadratic flux. The result is presented here in the form of quadratic flux that is better understanding of the real condition in the cell calculation and as a starting point to be applied in computational calculation.

  3. Asymptotic Analysis of Time-Dependent Neutron Transport Coupled with Isotopic Depletion and Radioactive Decay

    SciTech Connect

    Brantley, P S

    2006-09-27

    We describe an asymptotic analysis of the coupled nonlinear system of equations describing time-dependent three-dimensional monoenergetic neutron transport and isotopic depletion and radioactive decay. The classic asymptotic diffusion scaling of Larsen and Keller [1], along with a consistent small scaling of the terms describing the radioactive decay of isotopes, is applied to this coupled nonlinear system of equations in a medium of specified initial isotopic composition. The analysis demonstrates that to leading order the neutron transport equation limits to the standard time-dependent neutron diffusion equation with macroscopic cross sections whose number densities are determined by the standard system of ordinary differential equations, the so-called Bateman equations, describing the temporal evolution of the nuclide number densities.

  4. Numerical solution of the time dependent neutron transport equation by the method of the characteristics

    SciTech Connect

    Talamo, Alberto

    2013-05-01

    This study presents three numerical algorithms to solve the time dependent neutron transport equation by the method of the characteristics. The algorithms have been developed taking into account delayed neutrons and they have been implemented into the novel MCART code, which solves the neutron transport equation for two-dimensional geometry and an arbitrary number of energy groups. The MCART code uses regular mesh for the representation of the spatial domain, it models up-scattering, and takes advantage of OPENMP and OPENGL algorithms for parallel computing and plotting, respectively. The code has been benchmarked with the multiplication factor results of a Boiling Water Reactor, with the analytical results for a prompt jump transient in an infinite medium, and with PARTISN and TDTORT results for cross section and source transients. The numerical simulations have shown that only two numerical algorithms are stable for small time steps.

  5. A/sub n/ method in monokinetic neutron transport theory: Convergence and numerical applications

    SciTech Connect

    Coppa, G.; Ravetto, P.; Sumini, M.

    1981-10-01

    The convergence of the approximate method, referred to as A/sub n/, to study the solution of the monokinetic transport equation is fully investigated, when it is applied to the description of the neutron population in both infinite and finite media.

  6. The low resolution structure of ApoA1 in spherical high density lipoprotein revealed by small angle neutron scattering.

    PubMed

    Wu, Zhiping; Gogonea, Valentin; Lee, Xavier; May, Roland P; Pipich, Vitaliy; Wagner, Matthew A; Undurti, Arundhati; Tallant, Thomas C; Baleanu-Gogonea, Camelia; Charlton, Francesca; Ioffe, Alexander; DiDonato, Joseph A; Rye, Kerry-Anne; Hazen, Stanley L

    2011-04-01

    Spherical high density lipoprotein (sHDL), a key player in reverse cholesterol transport and the most abundant form of HDL, is associated with cardiovascular diseases. Small angle neutron scattering with contrast variation was used to determine the solution structure of protein and lipid components of reconstituted sHDL. Apolipoprotein A1, the major protein of sHDL, forms a hollow structure that cradles a central compact lipid core. Three apoA1 chains are arranged within the low resolution structure of the protein component as one of three possible global architectures: (i) a helical dimer with a hairpin (HdHp), (ii) three hairpins (3Hp), or (iii) an integrated trimer (iT) in which the three apoA1 monomers mutually associate over a portion of the sHDL surface. Cross-linking and mass spectrometry analyses help to discriminate among the three molecular models and are most consistent with the HdHp overall architecture of apoA1 within sHDL. PMID:21292766

  7. The coupling of the neutron transport application RATTLESNAKE to the nuclear fuels performance application BISON under the MOOSE framework

    SciTech Connect

    Gleicher, Frederick N.; Williamson, Richard L.; Ortensi, Javier; Wang, Yaqi; Spencer, Benjamin W.; Novascone, Stephen R.; Hales, Jason D.; Martineau, Richard C.

    2014-10-01

    The MOOSE neutron transport application RATTLESNAKE was coupled to the fuels performance application BISON to provide a higher fidelity tool for fuel performance simulation. This project is motivated by the desire to couple a high fidelity core analysis program (based on the self-adjoint angular flux equations) to a high fidelity fuel performance program, both of which can simulate on unstructured meshes. RATTLESNAKE solves self-adjoint angular flux transport equation and provides a sub-pin level resolution of the multigroup neutron flux with resonance treatment during burnup or a fast transient. BISON solves the coupled thermomechanical equations for the fuel on a sub-millimeter scale. Both applications are able to solve their respective systems on aligned and unaligned unstructured finite element meshes. The power density and local burnup was transferred from RATTLESNAKE to BISON with the MOOSE Multiapp transfer system. Multiple depletion cases were run with one-way data transfer from RATTLESNAKE to BISON. The eigenvalues are shown to agree well with values obtained from the lattice physics code DRAGON. The one-way data transfer of power density is shown to agree with the power density obtained from an internal Lassman-style model in BISON.

  8. A neutron crystallographic analysis of a rubredoxin mutant at 1.6 A resolution.

    PubMed

    Chatake, Toshiyuki; Kurihara, Kazuo; Tanaka, Ichiro; Tsyba, Irina; Bau, Robert; Jenney, Francis E; Adams, Michael W W; Niimura, Nobuo

    2004-08-01

    A neutron diffraction study has been carried out at 1.6 A resolution on a mutant rubredoxin from Pyrococcus furiosus using the BIX-3 single-crystal diffractometer at the JRR-3 reactor of the Japan Atomic Energy Research Institute. In order to study the unusual thermostability of rubredoxin from P. furiosus (an organism that grows optimally at 373 K), the hydrogen-bonding patterns were compared between the wild-type protein and a 'triple-mutant' variant. In this mutant protein, three residues were changed (Trp3-->Tyr3, Ile23-->Val23, Leu32-->Ile32) so that they are identical to those in a mesophilic rubredoxin from Clostridium pasteurianum. In the present study, some minor changes were found between the wild-type and mutant proteins in the hydrogen-bonding patterns of the Trp3/Tyr3 region. In this investigation, the H/D-exchange ratios in the protein were also studied. Because the target protein was soaked in D2O during the crystallization procedure, most of the N-H and O-H bonds have become deuterated, while essentially all of the C-H bonds have not. In particular, the H/D-exchange pattern of the N-H amide bonds of the protein backbone is of interest because it may contain some indirect information about the mechanism of unfolding of this small protein. The results are in broad agreement with those from solution NMR studies, which suggest that the backbone amide bonds near the four Cys residues of the FeS4 redox center are most resistant to H/D exchange. Finally, the detailed geometries of the water molecules of hydration around the rubredoxin molecule are also reported. The 1.6 A resolution of the present neutron structure determination has revealed a more detailed picture than previously available of some portions of the water structure, including ordered and disordered O-D bonds. Crystallographic details: space group P2(1)2(1)2(1) (orthorhombic), unit-cell parameters a = 34.48, b = 35.70, c = 43.16 A; final agreement factors R = 0.196 and Rfree = 0.230 for 19

  9. Sensitive and transportable gadolinium-core plastic scintillator sphere for neutron detection and counting

    NASA Astrophysics Data System (ADS)

    Dumazert, Jonathan; Coulon, Romain; Carrel, Frédérick; Corre, Gwenolé; Normand, Stéphane; Méchin, Laurence; Hamel, Matthieu

    2016-08-01

    Neutron detection forms a critical branch of nuclear-related issues, currently driven by the search for competitive alternative technologies to neutron counters based on the helium-3 isotope. The deployment of plastic scintillators shows a high potential for efficient detectors, safer and more reliable than liquids, more easily scalable and cost-effective than inorganic. In the meantime, natural gadolinium, through its 155 and mostly 157 isotopes, presents an exceptionally high interaction probability with thermal neutrons. This paper introduces a dual system including a metal gadolinium core inserted at the center of a high-scale plastic scintillator sphere. Incident fast neutrons are thermalized by the scintillator shell and then may be captured with a significant probability by gadolinium 155 and 157 nuclei in the core. The deposition of a sufficient fraction of the capture high-energy prompt gamma signature inside the scintillator shell will then allow discrimination from background radiations by energy threshold, and therefore neutron detection. The scaling of the system with the Monte Carlo MCNPX2.7 code was carried out according to a tradeoff between the moderation of incident fast neutrons and the probability of slow neutron capture by a moderate-cost metal gadolinium core. Based on the parameters extracted from simulation, a first laboratory prototype for the assessment of the detection method principle has been synthetized. The robustness and sensitivity of the neutron detection principle are then assessed by counting measurement experiments. Experimental results confirm the potential for a stable, highly sensitive, transportable and cost-efficient neutron detector and orientate future investigation toward promising axes.

  10. High-resolution neutron powder diffractometer SPODI at research reactor FRM II

    NASA Astrophysics Data System (ADS)

    Hoelzel, M.; Senyshyn, A.; Juenke, N.; Boysen, H.; Schmahl, W.; Fuess, H.

    2012-03-01

    SPODI is a high-resolution thermal neutron diffractometer at the research reactor Heinz Maier-Leibnitz (FRM II) especially dedicated to structural studies of complex systems. Unique features like a very large monochromator take-off angle of 155° and a 5 m monochromator-sample distance in its standard configuration achieve both high-resolution and a good profile shape for a broad scattering angle range. Two dimensional data are collected by an array of 80 vertical position sensitive 3He detectors. SPODI is well suited for studies of complex structural and magnetic order and disorder phenomena at non-ambient conditions. In addition to standard sample environment facilities (cryostats, furnaces, magnet) specific devices (rotatable load frame, cell for electric fields, multichannel potentiostat) were developed. Thus the characterisation of functional materials at in-operando conditions can be achieved. In this contribution the details of the design and present performance of the instrument are reported along with its specifications. A new concept for data reduction using a 2 θ dependent variable height for the intensity integration along the Debye-Scherrer lines is introduced.

  11. Conflict Detection and Resolution for Future Air Transportation Management

    NASA Technical Reports Server (NTRS)

    Krozel, Jimmy; Peters, Mark E.; Hunter, George

    1997-01-01

    With a Free Flight policy, the emphasis for air traffic control is shifting from active control to passive air traffic management with a policy of intervention by exception. Aircraft will be allowed to fly user preferred routes, as long as safety Alert Zones are not violated. If there is a potential conflict, two (or more) aircraft must be able to arrive at a solution for conflict resolution without controller intervention. Thus, decision aid tools are needed in Free Flight to detect and resolve conflicts, and several problems must be solved to develop such tools. In this report, we analyze and solve problems of proximity management, conflict detection, and conflict resolution under a Free Flight policy. For proximity management, we establish a system based on Delaunay Triangulations of aircraft at constant flight levels. Such a system provides a means for analyzing the neighbor relationships between aircraft and the nearby free space around air traffic which can be utilized later in conflict resolution. For conflict detection, we perform both 2-dimensional and 3-dimensional analyses based on the penetration of the Protected Airspace Zone. Both deterministic and non-deterministic analyses are performed. We investigate several types of conflict warnings including tactical warnings prior to penetrating the Protected Airspace Zone, methods based on the reachability overlap of both aircraft, and conflict probability maps to establish strategic Alert Zones around aircraft.

  12. Anisotropic Elastic Resonance Scattering model for the Neutron Transport equation

    SciTech Connect

    Mohamed Ouisloumen; Abderrafi M. Ougouag; Shadi Z. Ghrayeb

    2014-11-24

    The resonance scattering transfer cross-section has been reformulated to account for anisotropic scattering in the center-of-mass of the neutron-nucleus system. The main innovation over previous implementations is the relaxation of the ubiquitous assumption of isotropic scattering in the center-of-mass and the actual effective use of scattering angle distributions from evaluated nuclear data files in the computation of the angular moments of the resonant scattering kernels. The formulas for the high order anisotropic moments in the laboratory system are also derived. A multi-group numerical formulation is derived and implemented into a module incorporated within the NJOY nuclear data processing code. An ultra-fine energy mesh cross section library was generated using these new theoretical models and then was used for fuel assembly calculations with the PARAGON lattice physics code. The results obtained indicate a strong effect of this new model on reactivity, multi-group fluxes and isotopic inventory during depletion.

  13. Marine transportation and burial of the Shippingport reactor pressure vessel/neutron shield tank package

    SciTech Connect

    Coughlin, P.J.

    1989-01-01

    The Shippingport Station Decommissioning Project (SSDP) is a US Department of Energy (DOE) project for dismantling the Shippingport atomic power station. One of the more significant and challenging technical aspects of the project, which is being managed for DOE by General Electric-Nuclear Energy, is the marine transport of the reactor pressure vessel (RPV) and its associated neutron shield tank (NST) to the government-owned Hanford Reservation near Richland, Washington. Planning of the transport activity, barge transportation operations, and Hanford transportation operations, are discussed. This work will be the first use of barge transportation in the United States of a radioactive RPV package from a decommissioned land-based nuclear power plant. This extensive transportation operation has been accomplished in a timely, safe, and cost-effective manner.

  14. Radiative or neutron transport modeling using a lattice Boltzmann equation framework

    NASA Astrophysics Data System (ADS)

    Bindra, H.; Patil, D. V.

    2012-07-01

    In this paper, the lattice Boltzmann equation (LBE)-based framework is used to obtain the solution for the linear radiative or neutron transport equation. The LBE framework is devised for the integrodifferential forms of these equations which arise due to the inclusion of the scattering terms. The interparticle collisions are neglected, hence omitting the nonlinear collision term. Furthermore, typical representative examples for one-dimensional or two-dimensional geometries and inclusion or exclusion of the scattering term (isotropic and anisotropic) in the Boltzmann transport equation are illustrated to prove the validity of the method. It has been shown that the solution from the LBE methodology is equivalent to the well-known Pn and Sn methods. This suggests that the LBE can potentially provide a more convenient and easy approach to solve the physical problems of neutron and radiation transport.

  15. A discrete ordinates nodal method for one-dimensional neutron transport calculation in curvilinear geometries

    SciTech Connect

    Wu, Y.; Xie, Z.; Fischer, U.

    1999-11-01

    A discrete ordinates nodal transport method has been developed for numerical solution of the one-dimensional neutron transport equation in curvilinear geometries. The nodal transport equation is solved by the Green's function method, using the Legendre polynomial expansion for spatial dependence and the discrete ordinates (S{sub N}) approximation for angular dependence. The calculation for various test problems has been performed to verify the method. The numerical results demonstrate that it has very high precision on coarse spatial meshes relative to the standard fine-mesh S{sub N} method with the spatial diamond-differencing scheme.

  16. Transport simulation and image reconstruction for fast-neutron detection of explosives and narcotics

    NASA Astrophysics Data System (ADS)

    Micklich, Bradley J.; Fink, Charles L.; Sagalovsky, Leonid

    1995-09-01

    Fast-neutron inspection techniques show considerable promise for explosive and narcotics detection. A key advantage of using fast neutron is their sensitivity to low-Z elements (carbon, nitrogen, and oxygen), which are the primary constituents of these materials. We are currently investigating two interrogation methods in detail: fast-neutron transmission spectroscopy (FNTS) and pulsed fast-neutron analysis (PFNA). FNTS is being studied for explosives and narcotics detection in luggage and small containers for which the transmission ration is greater than about 0.01. The Monte Carlo radiation transport code MCNP is being used to simulate neutron transmission through a series of phantoms for a few (3-5) projections angles and modest (2 cm) reolution. Areal densities along projection rays are unfolded from the transmission data. Elemental abundances are obtained for individual voxels by tomographic reconstruction, and the reconstructed elemental images are combined to provide indications of the presence or absence of explosives or narcotics. PFNA techniques are being investigated for detection of narcotics in cargo containers because of the good penetration of the fast neutrons and the low attenuation of the resulting high-energy gamma-ray signatures. Analytic models and Monte Carlo simulations are being used to explore the range of capabilities of PFNA techniques and to provide insight into systems engineering issues. Results of studies from both FNTS and PFNA technqiues are presented.

  17. A 109 neutrons/pulse transportable pulsed D-D neutron source based on flexible head plasma focus unit

    NASA Astrophysics Data System (ADS)

    Niranjan, Ram; Rout, R. K.; Srivastava, R.; Kaushik, T. C.; Gupta, Satish C.

    2016-03-01

    A 17 kJ transportable plasma focus (PF) device with flexible transmission lines is developed and is characterized. Six custom made capacitors are used for the capacitor bank (CB). The common high voltage plate of the CB is fixed to a centrally triggered spark gap switch. The output of the switch is coupled to the PF head through forty-eight 5 m long RG213 cables. The CB has a quarter time-period of 4 μs and an estimated current of 506 kA is delivered to the PF device at 17 kJ (60 μF, 24 kV) energy. The average neutron yield measured using silver activation detector in the radial direction is (7.1 ± 1.4) × 108 neutrons/shot over 4π sr at 5 mbar optimum D2 pressure. The average neutron yield is more in the axial direction with an anisotropy factor of 1.33 ± 0.18. The average neutron energies estimated in the axial as well as in the radial directions are (2.90 ± 0.20) MeV and (2.58 ± 0.20) MeV, respectively. The flexibility of the PF head makes it useful for many applications where the source orientation and the location are important factors. The influence of electromagnetic interferences from the CB as well as from the spark gap on applications area can be avoided by putting a suitable barrier between the bank and the PF head.

  18. High resolution inelastic gamma-ray measurements with a white neutron source from 1 to 200 MeV

    SciTech Connect

    Nelson, R.O.; Laymon, C.M.; Wender, S.A.

    1990-01-01

    Measurements of prompt gamma rays following neutron-induced reactions have recently been made at the spallation neutron source at the WNR target area of LAMPF using germanium detectors. These experiments provide extensive excitation function data for inelastic neutron scattering as well as for other reactions such as (n,{alpha}), (n,n{alpha}), (n,p), (n,np), (n,nnp) and (n,xn) for 1 {le} {times} {le} 11. The continuous energy coverage available from 1 MeV to over 200 MeV is ideal for excitation function measurements and greatly extends the energy range for such data. The results of these measurements will provide a database for interpretation of gamma-ray spectra from the planned Mars Observer mission, aid in radiation transport calculations, allow verification of nuclear reaction models, and improve the evaluated neutron reaction data base.

  19. Ageing of a neutron shielding used in transport/storage casks

    SciTech Connect

    Nizeyiman, Fidele; Alami, Aatif; Issard, Herve; Bellenger, Veronique

    2012-07-11

    In radioactive materials transport/storage casks, a mineral-filled vinylester composite is used for neutron shielding which relies on its hydrogen and boron atoms content. During cask service life, this composite is mainly subjected to three types of ageing: hydrothermal ageing, thermal oxidation and neutron irradiation. The aim of this study is to investigate the effect of hydrothermal ageing on the properties and chemical composition of this polymer composite. At high temperature (120 Degree-Sign C and 140 Degree-Sign C), the main consequence is the strong decrease of mechanical properties induced by the filler/matrix debonding.

  20. High Spatial Resolution Studies of Epithermal Neutron Emission from the Lunar Poles: Constraints on Hydrogen Mobility

    NASA Technical Reports Server (NTRS)

    Boynton, W. V.; Droege, G. F.; Mitrofanov, I. G.; McClanahan, T. P.; Sanin, A. B.; Litvak, M. L.; Schaffner, M.; Chin, G.; Evans, L. G.; Garvin, J. B.; Harshman, K.; Malakhov, A.; Milikh, G.; Sagdeev, R.; Starr, R.

    2012-01-01

    The data from the collimated sensors of the LEND instrument are shown to be of exceptionally high quality. Counting uncertainties are about 0.3% relative and are shown to be the only significant source of random error, thus conclusions based on small differences in count rates are valid. By comparison with the topography of Shoemaker crater, the spatial resolution of the instrument is shown to be consistent with the design value of 5 km for the radius of the circle over which half the counts from the lunar surface would be determined. The observed epithermal-neutron suppression factor due to the hydrogen deposit in Shoemaker crater of 0.25 plus or minus 0.04 cps is consistent with the collimated field-of-view rate of 1.7 cps estimated by Mitrofanov et al. (2010a). The statistical significance of the neutron suppressed regions (NSRs) relative to the larger surrounding polar region is demonstrated, and it is shown that they are not closely related to the permanently shadowed regions. There is a significant increase in H content in the polar regions independent of the H content of the NSRs. The non-NSR H content increases directly with latitude, and the rate of increase is virtually identical at both poles. There is little or no increase with latitude outside the polar region. Various mechanisms to explain this steep increase in the non-NSR polar H with latitude are investigated, and it is suggested that thermal volatilization is responsible for the increase because it is minimized at the low surface temperatures close to the poles.

  1. Neutron and high-resolution room-temperature X-ray data collection from crystallized lytic polysaccharide monooxygenase.

    PubMed

    Bacik, John Paul; Mekasha, Sophanit; Forsberg, Zarah; Kovalevsky, Andrey; Nix, Jay C; Cuneo, Matthew J; Coates, Leighton; Vaaje-Kolstad, Gustav; Chen, Julian C H; Eijsink, Vincent G H; Unkefer, Clifford J

    2015-11-01

    Bacteria and fungi express lytic polysaccharide monooxgyenase (LPMO) enzymes that act in conjunction with canonical hydrolytic sugar-processing enzymes to rapidly convert polysaccharides such as chitin, cellulose and starch to single monosaccharide products. In order to gain a better understanding of the structure and oxidative mechanism of these enzymes, large crystals (1-3 mm(3)) of a chitin-processing LPMO from the Gram-positive soil bacterium Jonesia denitrificans were grown and screened for their ability to diffract neutrons. In addition to the collection of neutron diffraction data, which were processed to 2.1 Å resolution, a high-resolution room-temperature X-ray diffraction data set was collected and processed to 1.1 Å resolution in space group P212121. To our knowledge, this work marks the first successful neutron crystallographic experiment on an LPMO. Joint X-ray/neutron refinement of the resulting data will reveal new details of the structure and mechanism of this recently discovered class of enzymes. PMID:26527275

  2. High-resolution neutron protein crystallography with radically small crystal volumes: application of perdeuteration to human aldose reductase.

    PubMed

    Hazemann, I; Dauvergne, M T; Blakeley, M P; Meilleur, F; Haertlein, M; Van Dorsselaer, A; Mitschler, A; Myles, D A A; Podjarny, A

    2005-10-01

    Neutron diffraction data have been collected to 2.2 Angstrom resolution from a small (0.15 mm(3)) crystal of perdeuterated human aldose reductase (h-AR; MW = 36 kDa) in order to help to determine the protonation state of the enzyme. h-AR belongs to the aldo-keto reductase family and is implicated in diabetic complications. Its ternary complexes (h-AR-coenzyme NADPH-selected inhibitor) provide a good model to study both the enzymatic mechanism and inhibition. Here, the successful production of fully deuterated human aldose reductase [h-AR(D)], subsequent crystallization of the ternary complex h-AR(D)-NADPH-IDD594 and neutron Laue data collection at the LADI instrument at ILL using a crystal volume of just 0.15 mm(3) are reported. Neutron data were recorded to 2 Angstrom resolution, with subsequent data analysis using data to 2.2 Angstrom. This is the first fully deuterated enzyme of this size (36 kDa) to be solved by neutron diffraction and represents a milestone in the field, as the crystal volume is at least one order of magnitude smaller than those usually required for other high-resolution neutron structures determined to date. This illustrates the significant increase in the signal-to-noise ratio of data collected from perdeuterated crystals and demonstrates that good-quality neutron data can now be collected from more typical protein crystal volumes. Indeed, the signal-to-noise ratio is then dominated by other sources of instrument background, the nature of which is under investigation. This is important for the design of future instruments, which should take maximum advantage of the reduction in the intrinsic diffraction pattern background from fully deuterated samples. PMID:16204895

  3. High-resolution neutron protein crystallography with radically small crystal volumes: Application of perdeuteration to human aldose reductase

    SciTech Connect

    Hazemann, I.; Dauvergne, M. T.; Blakeley, M. P.; Meilleur, Flora; Haertlein, M.; Van Dorsselaer, A.; Mitschler, A.; Myles, Dean A A; Podjarny, A.

    2005-08-01

    Neutron diffraction data have been collected to 2.2 {angstrom} resolution from a small (0.15 mm{sup 3}) crystal of perdeuterated human aldose reductase (h-AR; MW = 36 kDa) in order to help to determine the protonation state of the enzyme. h-AR belongs to the aldo-keto reductase family and is implicated in diabetic complications. Its ternary complexes (h-AR-coenzyme NADPH-selected inhibitor) provide a good model to study both the enzymatic mechanism and inhibition. Here, the successful production of fully deuterated human aldose reductase [h-AR(D)], subsequent crystallization of the ternary complex h-AR(D)-NADPH-IDD594 and neutron Laue data collection at the LADI instrument at ILL using a crystal volume of just 0.15 mm{sup 3} are reported. Neutron data were recorded to 2 {angstrom} resolution, with subsequent data analysis using data to 2.2 {angstrom}. This is the first fully deuterated enzyme of this size (36 kDa) to be solved by neutron diffraction and represents a milestone in the field, as the crystal volume is at least one order of magnitude smaller than those usually required for other high-resolution neutron structures determined to date. This illustrates the significant increase in the signal-to-noise ratio of data collected from perdeuterated crystals and demonstrates that good-quality neutron data can now be collected from more typical protein crystal volumes. Indeed, the signal-to-noise ratio is then dominated by other sources of instrument background, the nature of which is under investigation. This is important for the design of future instruments, which should take maximum advantage of the reduction in the intrinsic diffraction pattern background from fully deuterated samples.

  4. Secondary fusion coupled deuteron/triton transport simulation and thermal-to-fusion neutron convertor measurement

    SciTech Connect

    Wang, G. B.; Wang, K.; Liu, H. G.; Li, R. D.

    2013-07-01

    A Monte Carlo tool RSMC (Reaction Sequence Monte Carlo) was developed to simulate deuteron/triton transportation and reaction coupled problem. The 'Forced particle production' variance reduction technique was used to improve the simulation speed, which made the secondary product play a major role. The mono-energy 14 MeV fusion neutron source was employed as a validation. Then the thermal-to-fusion neutron convertor was studied with our tool. Moreover, an in-core conversion efficiency measurement experiment was performed with {sup 6}LiD and {sup 6}LiH converters. Threshold activation foils was used to indicate the fast and fusion neutron flux. Besides, two other pivotal parameters were calculated theoretically. Finally, the conversion efficiency of {sup 6}LiD is obtained as 1.97x10{sup -4}, which matches well with the theoretical result. (authors)

  5. Unambiguous determination of H-atom positions: comparing results from neutron and high-resolution X-ray crystallography

    SciTech Connect

    Gardberg, Anna S.; Del Castillo, Alexis R.; Weiss, Kevin L.; Meilleur, Flora; Blakeley, Matthew P.; Myles, Dean A.A.

    2010-11-19

    The locations of H atoms in biological structures can be difficult to determine using X-ray diffraction methods. Neutron diffraction offers a relatively greater scattering magnitude from H and D atoms. Here, 1.65 {angstrom} resolution neutron diffraction studies of fully perdeuterated and selectively CH{sub 3}-protonated perdeuterated crystals of Pyrococcus furiosus rubredoxin (D-rubredoxin and HD-rubredoxin, respectively) at room temperature (RT) are described, as well as 1.1 {angstrom} resolution X-ray diffraction studies of the same protein at both RT and 100 K. The two techniques are quantitatively compared in terms of their power to directly provide atomic positions for D atoms and analyze the role played by atomic thermal motion by computing the {sigma} level at the D-atom coordinate in simulated-annealing composite D-OMIT maps. It is shown that 1.65 {angstrom} resolution RT neutron data for perdeuterated rubredoxin are {approx}8 times more likely overall to provide high-confidence positions for D atoms than 1.1 {angstrom} resolution X-ray data at 100 K or RT. At or above the 1.0{sigma} level, the joint X-ray/neutron (XN) structures define 342/378 (90%) and 291/365 (80%) of the D-atom positions for D-rubredoxin and HD-rubredoxin, respectively. The X-ray-only 1.1 {angstrom} resolution 100 K structures determine only 19/388 (5%) and 8/388 (2%) of the D-atom positions above the 1.0{sigma} level for D-rubredoxin and HD-rubredoxin, respectively. Furthermore, the improved model obtained from joint XN refinement yielded improved electron-density maps, permitting the location of more D atoms than electron-density maps from models refined against X-ray data only.

  6. Performance of European chemistry transport models as function of horizontal resolution

    NASA Astrophysics Data System (ADS)

    Schaap, M.; Cuvelier, C.; Hendriks, C.; Bessagnet, B.; Baldasano, J. M.; Colette, A.; Thunis, P.; Karam, D.; Fagerli, H.; Graff, A.; Kranenburg, R.; Nyiri, A.; Pay, M. T.; Rouïl, L.; Schulz, M.; Simpson, D.; Stern, R.; Terrenoire, E.; Wind, P.

    2015-07-01

    Air pollution causes adverse effects on human health as well as ecosystems and crop yield and also has an impact on climate change trough short-lived climate forcers. To design mitigation strategies for air pollution, 3D Chemistry Transport Models (CTMs) have been developed to support the decision process. Increases in model resolution may provide more accurate and detailed information, but will cubically increase computational costs and pose additional challenges concerning high resolution input data. The motivation for the present study was therefore to explore the impact of using finer horizontal grid resolution for policy support applications of the European Monitoring and Evaluation Programme (EMEP) model within the Long Range Transboundary Air Pollution (LRTAP) convention. The goal was to determine the "optimum resolution" at which additional computational efforts do not provide increased model performance using presently available input data. Five regional CTMs performed four runs for 2009 over Europe at different horizontal resolutions. The models' responses to an increase in resolution are broadly consistent for all models. The largest response was found for NO2 followed by PM10 and O3. Model resolution does not impact model performance for rural background conditions. However, increasing model resolution improves the model performance at stations in and near large conglomerations. The statistical evaluation showed that the increased resolution better reproduces the spatial gradients in pollution regimes, but does not help to improve significantly the model performance for reproducing observed temporal variability. This study clearly shows that increasing model resolution is advantageous, and that leaving a resolution of 50 km in favour of a resolution between 10 and 20 km is practical and worthwhile. As about 70% of the model response to grid resolution is determined by the difference in the spatial emission distribution, improved emission allocation

  7. Interfacing MCNPX and McStas for simulation of neutron transport

    NASA Astrophysics Data System (ADS)

    Klinkby, Esben; Lauritzen, Bent; Nonbøl, Erik; Kjær Willendrup, Peter; Filges, Uwe; Wohlmuther, Michael; Gallmeier, Franz X.

    2013-02-01

    Simulations of target-moderator-reflector system at spallation sources are conventionally carried out using Monte Carlo codes such as MCNPX (Waters et al., 2007 [1]) or FLUKA (Battistoni et al., 2007; Ferrari et al., 2005 [2,3]) whereas simulations of neutron transport from the moderator and the instrument response are performed by neutron ray tracing codes such as McStas (Lefmann and Nielsen, 1999; Willendrup et al., 2004, 2011a,b [4-7]). The coupling between the two simulation suites typically consists of providing analytical fits of MCNPX neutron spectra to McStas. This method is generally successful but has limitations, as it e.g. does not allow for re-entry of neutrons into the MCNPX regime. Previous work to resolve such shortcomings includes the introduction of McStas inspired supermirrors in MCNPX. In the present paper different approaches to interface MCNPX and McStas are presented and applied to a simple test case. The direct coupling between MCNPX and McStas allows for more accurate simulations of e.g. complex moderator geometries, backgrounds, interference between beam-lines as well as shielding requirements along the neutron guides.

  8. An Algorithm for the Transport of Anisotropic Neutrons

    NASA Technical Reports Server (NTRS)

    Tweed, J.

    2005-01-01

    One major obstacle to human space exploration is the possible limitations imposed by the adverse effect of long-term exposure to the space environment. Even before human spaceflight began, the potentially brief exposure of astronauts to the very intense random solar particle events (SPE) were of great concern. A new challenge appears in deep space exploration from exposure to the low-intensity heavy-ion flux of the galactic cosmic rays (GCR) since the missions are of long duration and the accumulated GCR exposures can be high. Because cancer induction rates increase behind low to rather large thicknesses of aluminum shielding, according to available biological data on mammalian exposures to GCR like ions, the shield requirements for a Mars mission are prohibitively expensive in terms of mission launch costs. Therefore, a critical issue in the Human Exploration and Development of Space enterprise is cost effective mitigation of risk associated with ionizing radiation exposure. In order to estimate astronaut risk to GCR exposure and associated cancer risks and health hazards, it is necessary to do shield material studies. To determine an optimum radiation shield material it is necessary to understand nuclear interaction processes such as fragmentation and secondary particle production which is a function of energy dependent cross sections. This requires knowledge of material transmission characteristics either through laboratory testing or improved theoretical modeling. Here ion beam transport theory is of importance in that testing of materials in the laboratory environment generated by particle accelerators is a necessary step in materials development and evaluation for space use. The approximations used in solving the Boltzmann transport equation for the space setting are often not sufficient for laboratory work and those issues are a major emphasis of the present work.

  9. 5f-electron states in uranium dioxide investigated using high-resolution neutron spectroscopy

    NASA Astrophysics Data System (ADS)

    Amoretti, G.; Blaise, A.; Caciuffo, R.; Fournier, J. M.; Hutchings, M. T.; Osborn, R.; Taylor, A. D.

    1989-07-01

    High-resolution, high-energy-transfer, inelastic neutron scattering has been used to explore the crystal-field (CF) excitations in UO2. As all the dipole-allowed transitions within the free-ion ground manifold have been identified, the observations provide a complete determination of the crystal-field potential and 5f-electron eigenstates. The fourth- and sixth-degree CF parameters are V4=-123 meV and V6=26.5 meV. In spite of the strength of the CF, the ground state is accurately given by the intermediate-coupling approximation with little modification by J-mixing effects. In the antiferromagnetic phase below TN=30.8 K, a splitting of the cubic CF levels, due to the combined effects of the molecular field and the distortion of the oxygen-ligand cage surrounding the U4+ ions, has been observed. Detailed CF calculations are presented both for the case of a double-k magnetic structure with a monoclinic distortion of the oxygen sublattice, and for a combined triple-k distortion and magnetic order. The observed splittings are shown to be more consistent with the triple-k model.

  10. Preliminary time-of-flight neutron diffraction studies of Escherichia coli ABC transport receptor phosphate-binding protein at the Protein Crystallography Station

    PubMed Central

    Sippel, K. H.; Bacik, J.; Quiocho, F. A.; Fisher, S. Z.

    2014-01-01

    Inorganic phosphate is an essential molecule for all known life. Organisms have developed many mechanisms to ensure an adequate supply, even in low-phosphate conditions. In prokaryotes phosphate transport is instigated by the phosphate-binding protein (PBP), the initial receptor for the ATP-binding cassette (ABC) phosphate transporter. In the crystal structure of the PBP–phosphate complex, the phosphate is completely desolvated and sequestered in a deep cleft and is bound by 13 hydrogen bonds: 12 to protein NH and OH donor groups and one to a carboxylate acceptor group. The carboxylate plays a key recognition role by accepting a phosphate hydrogen. PBP phosphate affinity is relatively consistent across a broad pH range, indicating the capacity to bind monobasic (H2PO4 −) and dibasic (HPO4 2−) phosphate; however, the mechanism by which it might accommodate the second hydrogen of monobasic phosphate is unclear. To answer this question, neutron diffraction studies were initiated. Large single crystals with a volume of 8 mm3 were grown and subjected to hydrogen/deuterium exchange. A 2.5 Å resolution data set was collected on the Protein Crystallography Station at the Los Alamos Neutron Science Center. Initial refinement of the neutron data shows significant nuclear density, and refinement is ongoing. This is the first report of a neutron study from this superfamily. PMID:24915101

  11. Discontinuous Galerkin finite element method applied to the 1-D spherical neutron transport equation

    SciTech Connect

    Machorro, Eric . E-mail: machorro@amath.washington.edu

    2007-04-10

    Discontinuous Galerkin finite element methods are used to estimate solutions to the non-scattering 1-D spherical neutron transport equation. Various trial and test spaces are compared in the context of a few sample problems whose exact solution is known. Certain trial spaces avoid unphysical behaviors that seem to plague other methods. Comparisons with diamond differencing and simple corner-balancing are presented to highlight these improvements.

  12. Modular, object-oriented redesign of a large-scale Monte Carlo neutron transport program

    SciTech Connect

    Moskowitz, B.S.

    2000-02-01

    This paper describes the modular, object-oriented redesign of a large-scale Monte Carlo neutron transport program. This effort represents a complete 'white sheet of paper' rewrite of the code. In this paper, the motivation driving this project, the design objectives for the new version of the program, and the design choices and their consequences will be discussed. The design itself will also be described, including the important subsystems as well as the key classes within those subsystems.

  13. Monte Carlo Simulations on Neutron Transport and Absorbed Dose in Tissue-Equivalent Phantoms Exposed to High-Flux Epithermal Neutron Beams

    NASA Astrophysics Data System (ADS)

    Bartesaghi, G.; Gambarini, G.; Negri, A.; Carrara, M.; Burian, J.; Viererbl, L.

    2010-04-01

    Presently there are no standard protocols for dosimetry in neutron beams for boron neutron capture therapy (BNCT) treatments. Because of the high radiation intensity and of the presence at the same time of radiation components having different linear energy transfer and therefore different biological weighting factors, treatment planning in epithermal neutron fields for BNCT is usually performed by means of Monte Carlo calculations; experimental measurements are required in order to characterize the neutron source and to validate the treatment planning. In this work Monte Carlo simulations in two kinds of tissue-equivalent phantoms are described. The neutron transport has been studied, together with the distribution of the boron dose; simulation results are compared with data taken with Fricke gel dosimeters in form of layers, showing a good agreement.

  14. Low-energy beam transport studies supporting the Spallation Neutron Source 1-MW beam operationa

    SciTech Connect

    Han, Baoxi; Kalvas, T.; Tarvainen, O.; Welton, Robert F; Murray Jr, S N; Pennisi, Terry R; Santana, Manuel; Stockli, Martin P

    2012-01-01

    The H- injector consisting of a cesium enhanced RF-driven ion source and a 2-lens electrostatic low-energy beam transport (LEBT) system supports the Spallation Neutron Source 1-MW beam operation with ~38 mA beam current in the linac at 60 Hz with a pulse length of up to ~1.0 ms. In this work, two important issues associated with the low-energy beam transport are discussed: 1) inconsistent dependence of the post-RFQ beam current on the ion source tilt angle, and 2) high power beam losses on the LEBT electrodes under some off-nominal conditions compromising their reliability.

  15. Hybrid method of deterministic and probabilistic approaches for multigroup neutron transport problem

    SciTech Connect

    Lee, D.

    2012-07-01

    A hybrid method of deterministic and probabilistic methods is proposed to solve Boltzmann transport equation. The new method uses a deterministic method, Method of Characteristics (MOC), for the fast and thermal neutron energy ranges and a probabilistic method, Monte Carlo (MC), for the intermediate resonance energy range. The hybrid method, in case of continuous energy problem, will be able to take advantage of fast MOC calculation and accurate resonance self shielding treatment of MC method. As a proof of principle, this paper presents the hybrid methodology applied to a multigroup form of Boltzmann transport equation and confirms that the hybrid method can produce consistent results with MC and MOC methods. (authors)

  16. Synergism of the method of characteristics and CAD technology for neutron transport calculation

    SciTech Connect

    Chen, Z.; Wang, D.; He, T.; Wang, G.; Zheng, H.

    2013-07-01

    The method of characteristics (MOC) is a very popular methodology in neutron transport calculation and numerical simulation in recent decades for its unique advantages. One of the key problems determining whether the MOC can be applied in complicated and highly heterogeneous geometry is how to combine an effective geometry processing method with MOC. Most of the existing MOC codes describe the geometry by lines and arcs with extensive input data, such as circles, ellipses, regular polygons and combination of them. Thus they have difficulty in geometry modeling, background meshing and ray tracing for complicated geometry domains. In this study, a new idea making use of a CAD solid modeler MCAM which is a CAD/Image-based Automatic Modeling Program for Neutronics and Radiation Transport developed by FDS Team in China was introduced for geometry modeling and ray tracing of particle transport to remove these geometrical limitations mentioned above. The diamond-difference scheme was applied to MOC to reduce the spatial discretization error of the flat flux approximation in theory. Based on MCAM and MOC, a new MOC code was developed and integrated into SuperMC system, which is a Super Multi-function Computational system for neutronics and radiation simulation. The numerical testing results demonstrated the feasibility and effectiveness of the new idea for geometry treatment in SuperMC. (authors)

  17. Apparatus, Method and Program Storage Device for Determining High-Energy Neutron/Ion Transport to a Target of Interest

    NASA Technical Reports Server (NTRS)

    Wilson, John W. (Inventor); Tripathi, Ram K. (Inventor); Badavi, Francis F. (Inventor); Cucinotta, Francis A. (Inventor)

    2012-01-01

    An apparatus, method and program storage device for determining high-energy neutron/ion transport to a target of interest. Boundaries are defined for calculation of a high-energy neutron/ion transport to a target of interest; the high-energy neutron/ion transport to the target of interest is calculated using numerical procedures selected to reduce local truncation error by including higher order terms and to allow absolute control of propagated error by ensuring truncation error is third order in step size, and using scaling procedures for flux coupling terms modified to improve computed results by adding a scaling factor to terms describing production of j-particles from collisions of k-particles; and the calculated high-energy neutron/ion transport is provided to modeling modules to control an effective radiation dose at the target of interest.

  18. A Computer Program for the Calculation of Reactivity and Kinetic Parameters by Two-Dimensional Neutron Transport Perturbation Theory.

    Energy Science and Technology Software Center (ESTSC)

    1985-02-01

    Version 00 TP2 is a transport theory code, developed to determine reactivity effects and kinetic parameters such as effective delayed neutron fractions and mean generation time by applying the usual perturbation formalism for two-dimensional geometry.

  19. A Computer Code System for the Calculation of Reactivity and Kinetic Parameters by One-Dimensional Neutron Transport Perturbation Theory.

    Energy Science and Technology Software Center (ESTSC)

    1985-02-01

    Version 00 TP1 is a transport theory code, developed to determine reactivity effects and kinetic parameters such as effective delayed neutron fractions and mean generation time by applying the usual perturbation formalism for one-dimensional geometry.

  20. 66 Neutron, 22 Gamma-Ray Group Cross Sections for Radiation Transport for Neutron Energies Up to 400 MeV.

    Energy Science and Technology Software Center (ESTSC)

    1995-12-12

    Version 00 For a variety of applications (accelerator shielding, the use of neutrons in radiotherapy, radiation damage studies, etc.) It is necessary to carry out transport calculations involving medium-energy neutrons. HILO86R multigroup cross sections are in the form needed for the CCC-254/ANISN-ORNL and CCC-543/TORT-DORT discrete ordinates codes and in the CCC-474/MORSE-CGA Monte Carlo code.

  1. A portable, parallel, object-oriented Monte Carlo neutron transport code in C++

    SciTech Connect

    Lee, S.R.; Cummings, J.C.; Nolen, S.D. |

    1997-05-01

    We have developed a multi-group Monte Carlo neutron transport code using C++ and the Parallel Object-Oriented Methods and Applications (POOMA) class library. This transport code, called MC++, currently computes k and {alpha}-eigenvalues and is portable to and runs parallel on a wide variety of platforms, including MPPs, clustered SMPs, and individual workstations. It contains appropriate classes and abstractions for particle transport and, through the use of POOMA, for portable parallelism. Current capabilities of MC++ are discussed, along with physics and performance results on a variety of hardware, including all Accelerated Strategic Computing Initiative (ASCI) hardware. Current parallel performance indicates the ability to compute {alpha}-eigenvalues in seconds to minutes rather than hours to days. Future plans and the implementation of a general transport physics framework are also discussed.

  2. Digitized neutron imaging with high spatial resolution at a low power research reactor: I. Analysis of detector performance

    NASA Astrophysics Data System (ADS)

    Zawisky, M.; Hameed, F.; Dyrnjaja, E.; Springer, J.

    2008-03-01

    Imaging techniques provide an indispensable tool for investigation of materials. Neutrons, due to their specific properties, offer a unique probe for many aspects of condensed matter. Neutron imaging techniques present a challenging experimental task, especially at a low power research reactor. The Atomic Institute with a 250 kW TRIGA MARK II reactor looks back at a long tradition in neutron imaging. Here we report on the advantages gained in a recent upgrade of the imaging instrument including the acquisition of a thin-plate scintillation detector, a single counting micro-channel plate detector, and an imaging plate detector in combination with a high resolution scanner. We analyze the strengths and limitations of each detector in the field of neutron radiography and tomography, and demonstrate that high resolution digitized imaging down to the 50 μm scale can be accomplished with weak beam intensities of 1.3×10 5 n/cm 2 s, if appropriate measures are taken for the inevitable extension of measurement times. In a separate paper we will present some promising first results from the fields of engineering and geology.

  3. Benchmark test of transport calculations of gold and nickel activation with implications for neutron kerma at Hiroshima.

    PubMed

    Hoshi, M; Hiraoka, M; Hayakawa, N; Sawada, S; Munaka, M; Kuramoto, A; Oka, T; Iwatani, K; Shizuma, K; Hasai, H

    1992-11-01

    A benchmark test of the Monte Carlo neutron and photon transport code system (MCNP) was performed using a 252Cf fission neutron source to validate the use of the code for the energy spectrum analyses of Hiroshima atomic bomb neutrons. Nuclear data libraries used in the Monte Carlo neutron and photon transport code calculation were ENDF/B-III, ENDF/B-IV, LASL-SUB, and ENDL-73. The neutron moderators used were granite (the main component of which is SiO2, with a small fraction of hydrogen), Newlight [polyethylene with 3.7% boron (natural)], ammonium chloride (NH4Cl), and water (H2O). Each moderator was 65 cm thick. The neutron detectors were gold and nickel foils, which were used to detect thermal and epithermal neutrons (4.9 eV) and fast neutrons (> 0.5 MeV), respectively. Measured activity data from neutron-irradiated gold and nickel foils in these moderators decreased to about 1/1,000th or 1/10,000th, which correspond to about 1,500 m ground distance from the hypocenter in Hiroshima. For both gold and nickel detectors, the measured activities and the calculated values agreed within 10%. The slopes of the depth-yield relations in each moderator, except granite, were similar for neutrons detected by the gold and nickel foils. From the results of these studies, the Monte Carlo neutron and photon transport code was verified to be accurate enough for use with the elements hydrogen, carbon, nitrogen, oxygen, silicon, chlorine, and cadmium, and for the incident 252Cf fission spectrum neutrons. PMID:1399639

  4. A high-resolution disk chopper with two-stage rotors for neutron time-of-flight spectroscopy

    NASA Astrophysics Data System (ADS)

    Ono, Masayoshi

    1997-02-01

    Two-stage three-rotor disk chopper has been designed and constructed with the aim of bringing the resolution of crystal lattive strain ° d/ d = 10 -4-10 -5. The first two of them rotate at 150 rps in reverse directions from each other by a timing-belt system. This means that the actual rotation speed becomes 300 rps. The last rotor rotates as a tail-cutter for TOF measurements. The highest time resolution of the present Bragg scattering set-up is about 15 μs for 2 Å neutrons, realizing ° {d}/{d}<10 -4.

  5. High resolution neutron imaging of water in the polymer electrolyte membrane

    SciTech Connect

    Spernjak, Dusan; Mukundan, Rangachary; Borup, Rodney L; Spendelow, Jacob S; Davey, John; Fairweather, Joseph; Mukherjee, Partha

    2010-01-01

    To achieve a deeper understanding of water transport and performance issues associated with water management, we have conducted in situ water examinations to help understand the effects of components and operation. High Frequency Resistance (HFR), AC Impedance and neutron radiography were used to measure water content in operating fuel cells under various operating conditions. Variables examined include: sub-freezing conditions, inlet relative humidities, cell temperature, current density and response transients, different flow field orientations and different component materials (membranes, GDLs and MEAs). Quantification of the water within the membrane was made by neutron radiography after equilibration to different humidified gases, during fuel cell operation and in hydrogen pump mode. The water content was evaluated in bare Nafion{reg_sign} membranes as well as in MEAs operated in both fuel cell and H{sub 2} pump mode. These in situ imaging results allow measurement of the water content and gradients in the PEFC membrane and relate the membrane water transport characteristics to the fuel cell operation and performance under disparate materials and operational combinations. Flow geometry makes a large impact on MEA water content. Higher membrane water with counter flow was measured compared with co-flow for sub-saturated inlet RH's. This correlates to lower HFR and higher performance compared with co-flow. Higher anode stoichiometry helps remove water which accumulates in the anode channels and GDL material. Cell orientation was measured to affect both the water content and cell performance. While membrane water content was measured to be similar regardless of orientation, cells with the cathode on top show flooding and loss of performance compared with similarly operated cells with the anode on top. Transient fuel cell current measurements show a large degree of hysteresis in terms of membrane hydration as measured by HFR. Current step transients from 0.01 A cm

  6. Calculation of the Local Neutronic Parameters for CANDU Fuel Bundles Using Transport Methods

    SciTech Connect

    Balaceanu, Victoria; Rizoiu, Andrei; Hristea, Viorel

    2006-07-01

    For a realistic neutronic evaluation of the CANDU reactor core it is important to accurately perform the local neutronic parameters (i.e. multigroup macroscopic cross sections for the core materials) calculation. This means using codes that allow a good geometric representation of the CANDU fuel bundle and then solving the transport equation. The paper reported here intends to study in detail the local behavior for two types of CANDU fuel, NU{sub 3}7 (Natural Uranium, 37 elements) and SEU{sub 4}3 (Slightly Enriched Uranium, 43 elements, with 1.1 wt% enrichment). The considered fuel types represent fresh and used bundles. The two types of CANDU super-cells are reference NU{sub 3}7, perturbed NU{sub 3}7, reference SEU{sub 4}3 and perturbed SEU{sub 4}3. The perturbed super-cells contain a Mechanical Control Absorber (a very strong reactivity device). For reaching the proposed objective a methodology is used based on WIMS and PIJXYZ codes. WIMS is a standard lattice-cell code, based on transport theory and it is used for producing fuel cell multigroup macroscopic cross sections. For obtaining the fine local neutronic parameters in the CANDU super-cells (k-eff values, local MCA reactivity worth, flux distributions and reaction rates), the PIJXYZ code is used. PIJXYZ is a 3D integral transport code using the first collision probability method and it has been developed for CANDU cell geometry. It is consistent with WIMS lattice-cell calculations and allows a good geometrical representation of the CANDU bundle in three dimensions. The analysis of the neutronic parameters consists of comparing the obtained results with the similar results calculated with the DRAGON code. This comparison shows a good agreement between these results. (authors)

  7. High-temperature structural phase transitions in neighborite: a high-resolution neutron powder diffraction investigation

    NASA Astrophysics Data System (ADS)

    Knight, Kevin S.; Price, G. David; Stuart, John A.; Wood, Ian G.

    2015-01-01

    The nature of the apparently continuous structural phase transition at 1,049 K in the perovskite-structured, MgSiO3 isomorph, neighborite (NaMgF3), from the orthorhombic ( Pbnm) hettotype phase to the cubic () aristotype structure, has been re-investigated using high-resolution, time-of-flight neutron powder diffraction. Using data collected at 1 K intervals close to the nominal phase transition temperature, the temperature dependence of the intensities of superlattice reflections at the M point and the R point of the pseudocubic Brillouin zone indicate the existence of a new intermediate tetragonal phase in space group P4/ mbm, with a narrow phase field extending from ~1,046.5 to ~1,048.5 K, at ambient pressure. Group theoretical analysis shows that the structural transitions identified in this study, Pbnm- P4/ mbm, and P4/ mbm-, are permitted to be second order. The observation of the tetragonal phase resolves the longstanding issue of why the high-temperature phase transition, previously identified as Pbnm-, and which would be expected to be first order under Landau theory, is in fact found to be continuous. Analysis of the pseudocubic shear strain shows it to vary with a critical exponent of 0.5 implying that the phase transition from Pbnm to P4/ mbm is tricritical in character. The large librational modes that exist in the MgF6 octahedron at high temperature, and the use of Gaussian probability density functions to describe atomic displacements, result in apparent bond shortening in the Mg-F distances, making mode amplitude determination an unreliable method for determination of the critical exponent from internal coordinates. Crystal structures are reported for the three phases of NaMgF3 at 1,033 K ( Pbnm), 1,047 K ( P4/ mbm) and 1,049 K ().

  8. High Resolution Spectroscopy And Timing Of The Isolated Neutron Star RBS 1774

    NASA Technical Reports Server (NTRS)

    Mushotzky, Richard (Technical Monitor); Drake, Jeremy

    2005-01-01

    The 2004 May 31 XMM-Newton observation was reprocessed using SASv6.0.0 and times of high background were filtered out. The net exposure time remaining was 23 ks. The source was clearly detected in MOS1, MOS2 and PN chips. We performed both timing and spectroscopic analysis on the data. We performed a spectral analysis by fitting data from the three EPIC detectors simultaneously, finding that the broadband spectrum can be represented by a single absorbed blackbody, with kT = 0.10 keV. The fitting revealed the presence of an absorption feature at 0:7 keV, but the data did have enough resolution to allow us to discriminate between an absorption line and an edge. We also tested magnetized models of Pavlov et a1 and Zavlin et al, but found that fits with these models were considerably worse than with a blackbody. For the timing analysis, we extracted the counts within a 3000 radius aperture in both PN and MOS 1 and MOS2 but with the aperture truncated by a chord where it approached the edge of the CCD window in each case: this maximized the counts while avoiding any edge effects. We analyzed PN, MOSl and MOS2 data both individually and combined using the Maximum Likelihood Periodogram technique of Zane et al. (2002) and Cropper et al. (2004). Periods from 10000 s to 30 ms were searched, ensuring that in each case the period grid was 2.5 times better sampled than the Nyquist frequency. The search revealed a significant period at 9.437s. Taken overall, we found the characteristics of RBS 1774 to be remarkably similar to those of another X-ray faint isolated neutron stars. These results were written up for the Astrophysical Journal, and the paper has recently been accepted for publication.

  9. An Improved Elastic and Nonelastic Neutron Transport Algorithm for Space Radiation

    NASA Technical Reports Server (NTRS)

    Clowdsley, Martha S.; Wilson, John W.; Heinbockel, John H.; Tripathi, R. K.; Singleterry, Robert C., Jr.; Shinn, Judy L.

    2000-01-01

    A neutron transport algorithm including both elastic and nonelastic particle interaction processes for use in space radiation protection for arbitrary shield material is developed. The algorithm is based upon a multiple energy grouping and analysis of the straight-ahead Boltzmann equation by using a mean value theorem for integrals. The algorithm is then coupled to the Langley HZETRN code through a bidirectional neutron evaporation source term. Evaluation of the neutron fluence generated by the solar particle event of February 23, 1956, for an aluminum water shield-target configuration is then compared with MCNPX and LAHET Monte Carlo calculations for the same shield-target configuration. With the Monte Carlo calculation as a benchmark, the algorithm developed in this paper showed a great improvement in results over the unmodified HZETRN solution. In addition, a high-energy bidirectional neutron source based on a formula by Ranft showed even further improvement of the fluence results over previous results near the front of the water target where diffusion out the front surface is important. Effects of improved interaction cross sections are modest compared with the addition of the high-energy bidirectional source terms.

  10. Atmospheric transport of neutrons and gamma rays from near-horizon nuclear detonations

    SciTech Connect

    Byrd, R.C.; Heerema, B.D.

    1996-03-01

    This report continues a study of the transport of neutrons and rays from nuclear detonations at high altitudes to a set of detectors, with an emphasis on the limiting case of sources even beyond the horizon. To improve the calculational efficiency, the standard arrangement of a single source with multiple detectors is transformed to an equivalent one with a single detector and sources at multiple locations. Particular attention is paid to the critical problem of transport at near-horizon angles in an atmosphere whose density decreases exponentially with altitude. As a check, calculations for this region are made using both analytical and Monte Carlo approaches. For sources approaching the horizon, the fluence of gamma rays and neutrons reaching the detector drops gradually as the increasing column density attenuates the direct, unscattered fluence. Near the grazing angle, the direct fluence plummets, but the scattered component continues to decrease slowly and remains observable. Over this range, the timedependent flux of direct-plus-scattered gamma rays changes dramatically in both shape and magnitude, but it probably remains distinct from typical natural backgrounds. The neutron time-of-flight spectrum is dominated by scattering and reflects only the most important aspects of the original source spectrum; its most obvious features are a prominent low-energy tail and the resonance structure produced by nuclear interactions in the atmosphere. In some cases, the fluence of secondary gamma rays produced by these interactions may be larger than that from the source itself.

  11. A hybrid approach to the neutron transport K-eigenvalue problem using NDA-based algorithms

    SciTech Connect

    Willert, J. A.; Kelley, C. T.; Knoll, D. A.; Park, H.

    2013-07-01

    In order to provide more physically accurate solutions to the neutron transport equation it has become increasingly popular to use Monte Carlo simulation to model nuclear reactor dynamics. These Monte Carlo methods can be extremely expensive, so we turn to a class of methods known as hybrid methods, which combine known deterministic and stochastic techniques to solve the transport equation. In our work, we show that we can simulate the action of a transport sweep using a Monte Carlo simulation in order to solve the k-eigenvalue problem. We'll accelerate the solution using nonlinear diffusion acceleration (NDA) as in [1,2]. Our work extends the results in [1] to use Monte Carlo simulation as the high-order solver. (authors)

  12. THE COMMISSIONING PLAN FOR THE SPALLATION NEUTRON SOURCE RING AND TRANSPORT LINES.

    SciTech Connect

    RAPARIA,D.BLASKIEWICZ,M.LEE,Y.Y.WEI,J.ET AL.

    2004-03-10

    The Spallation Neutron Source (SNS) accelerator systems will provide a 1 GeV, 1.44 MW proton beam to a liquid mercury target for neutron production. In order to satisfy the accelerator systems' portion of the Critical Decision 4 (CD-4) commissioning goal (which marks the completion of the construction phase of the project), a beam pulse with intensity greater than 1 x 10{sup 13} protons must be accumulated in the ring, extracted in a single turn and delivered to the target. A commissioning plan has been formulated for bringing into operation and establishing nominal operating conditions for the various ring and transport line subsystems as well as for establishing beam conditions and parameters which meet the commissioning goal.

  13. Application of three-dimensional transport code to the analysis of the neutron streaming experiment

    SciTech Connect

    Chatani, K.; Slater, C.O.

    1990-01-01

    This paper summarized the calculational results of neutron streaming through a Clinch River Breeder Reactor (CRBR) Prototype coolant pipe chaseway. Particular emphasis is placed on results at bends in the chaseway. Calculations were performed with three three-dimensional codes: the discrete ordinates radiation transport code TORT and Monte Carlo radiation transport code MORSE, which were developed by Oak Ridge National Laboratory (ORNL), and the discrete ordinates code ENSEMBLE, which was developed in Japan. The purpose of the calculations is not only to compare the calculational results with the experimental results, but also to compare the results of TORT and MORSE with those of ENSEMBLE. In the TORT calculations, two types of difference methods, weighted-difference method was applied in ENSEMBLE calculation. Both TORT and ENSEMBLE produced nearly the same calculational results, but differed in the number of iterations required for converging each neutron group. Also, the two types of difference methods in the TORT calculations showed no appreciable variance in the number of iterations required. However, a noticeable disparity in the computer times and some variation in the calculational results did occur. The comparisons of the calculational results with the experimental results, showed for the epithermal neutron flux generally good agreement in the first and second legs and at the first bend where the two-dimensional modeling might be difficult. Results were fair to poor along the centerline of the first leg near the opening to the second leg because of discrete ordinates ray effects. Additionally, the agreement was good throughout the first and second legs for the thermal neutron region. Calculations with MORSE were made. These calculational results and comparisons are described also. 8 refs., 4 figs.

  14. Benchmark test of neutron transport calculations: indium, nickel, gold, europium, and cobalt activation with and without energy moderated fission neutrons by iron simulating the Hiroshima atomic bomb casing.

    PubMed

    Iwatani, K; Hoshi, M; Shizuma, K; Hiraoka, M; Hayakawa, N; Oka, T; Hasai, H

    1994-10-01

    A benchmark test of the Monte Carlo neutron and photon transport code system (MCNP) was performed using a bare- and energy-moderated 252Cf fission neutron source which was obtained by transmission through 10-cm-thick iron. An iron plate was used to simulate the effect of the Hiroshima atomic bomb casing. This test includes the activation of indium and nickel for fast neutrons and gold, europium, and cobalt for thermal and epithermal neutrons, which were inserted in the moderators. The latter two activations are also to validate 152Eu and 60Co activity data obtained from the atomic bomb-exposed specimens collected at Hiroshima and Nagasaki, Japan. The neutron moderators used were Lucite and Nylon 6 and the total thickness of each moderator was 60 cm or 65 cm. Measured activity data (reaction yield) of the neutron-irradiated detectors in these moderators decreased to about 1/1,000th or 1/10,000th, which corresponds to about 1,500 m ground distance from the hypocenter in Hiroshima. For all of the indium, nickel, and gold activity data, the measured and calculated values agreed within 25%, and the corresponding values for europium and cobalt were within 40%. From this study, the MCNP code was found to be accurate enough for the bare- and energy-moderated 252Cf neutron activation calculations of these elements using moderators containing hydrogen, carbon, nitrogen, and oxygen. PMID:8083048

  15. Benchmark test of neutron transport calculations: Indium, nickel, gold, europium, and cobalt activation with and without energy moderated fission neutrons by iron simulating the Hiroshima atomic bomb casing

    SciTech Connect

    Iwatani, Kazuo; Shizuma, Kiyoshi; Hasai, Hiromi; Hoshi, Masaharu; Hiraoka, Masayuki; Hayakawa, Norihiko; Oka, Takamitsu

    1994-10-01

    A benchmark test of the Monte Carlo neutron and photon transport code system (MCNP) was performed using a bare- and energy-moderated {sup 252}Cf fission neutron source which was obtained by transmission through 10-cm-thick iron. An iron plate was used to simulate the effect of the Hiroshima atomic bomb casing. This test includes the activation of indium and nickel for fast neutrons and gold, europium, and cobalt for thermal and epithermal neutrons, which were inserted in the moderators. The latter two activations are also to validate {sup 152}Eu and {sup 60}Co activity data obtained from the atomic bomb-exposed specimens collected at Hiroshima and Nagasaki, Japan. The neutron moderators used were Lucite and Nylon 6 and the total thickness of each moderator was 60 cm or 65 cm. Measured activity data (reaction yield) of the neutron-irradiated detectors in these moderators decreased to about 1/1,000th or 1/10,000th, which corresponds to about 1,500 m ground distance from the hypocenter in Hiroshima. For all of the indium, nickel, and gold activity data, the measured and calculated values agreed within 25%, and the corresponding values for europium and cobalt were within 40%. From this study, the MCNP code was found to be accurate enough for the bare- and energy-moderated {sup 252}Cf neutron activation calculations of these elements using moderators containing hydrogen, carbon, nitrogen, and oxygen. 18 refs., 10 figs., 4 tabs.

  16. Radiation Transport Analysis in Chalcogenide-Based Devices and a Neutron Howitzer Using MCNP

    NASA Astrophysics Data System (ADS)

    Bowler, Herbert

    As photons, electrons, and neutrons traverse a medium, they impart their energy in ways that are analytically difficult to describe. Monte Carlo methods provide valuable insight into understanding this behavior, especially when the radiation source or environment is too complex to simplify. This research investigates simulating various radiation sources using the Monte Carlo N-Particle (MCNP) transport code, characterizing their impact on various materials, and comparing the simulation results to general theory and measurements. A total of five sources were of interest: two photon sources of different incident particle energies (3.83 eV and 1.25 MeV), two electron sources also of different energies (30 keV and 100 keV), and a californium-252 (Cf-252) spontaneous fission neutron source. Lateral and vertical programmable metallization cells (PMCs) were developed by other researchers for exposure to these photon and electron sources, so simplified PMC models were implemented in MCNP to estimate the doses and fluences. Dose rates measured around the neutron source and the predicted maximum activity of activation foils exposed to the neutrons were determined using MCNP and compared to experimental results obtained from gamma-ray spectroscopy. The analytical fluence calculations for the photon and electron cases agreed with MCNP results, and differences are due to MCNP considering particle movements that hand calculations do not. Doses for the photon cases agreed between the analytical and simulated results, while the electron cases differed by a factor of up to 4.8. Physical dose rate measurements taken from the neutron source agreed with MCNP within the 10% tolerance of the measurement device. The activity results had a percent error of up to 50%, which suggests a need to further evaluate the spectroscopy setup.

  17. Resolution and linearity of Anger-type neutron-position detectors as simulated with different signal processing and optics

    SciTech Connect

    Roche, C.T.; Brenner, R.; Strauss, M.G.

    1985-02-01

    The apatial linearity and resolution of Anger-type neutron-position scintillation detectors are studied using a semi-empirical model. Detector optics with either an air gap or optical grease between the scintillator and the dispersive light guide are considered. An air gap focuses the scintillation light on the photomultiplier tubes nearest the scintillation point. Four signal processing methods which truncate signals from photomultipler tubes distant from the scintillation are compared with the linear resistive weighting method. Using linear processing, air-gap optics yield a 25% improvement in resolution distance and an 80% reduction in integral nonlinearity relative to grease-coupled optics. With either optics, using signal truncation instead of linear processing improves the resolution distance 5-15%.

  18. On the optimisation of the spectral resolution in spectrographs for cold neutrons based on refraction at grazing incidence

    NASA Astrophysics Data System (ADS)

    Jark, Werner

    2014-01-01

    Recently the wavelength dispersion of cold neutrons in the refraction process at inclined interfaces was identified as an efficient tool for neutron spectrographs, in which a larger wavelength band can be registered simultaneously. This registration mode reduces the data acquisition time significantly as no need to monochromatise the incident neutron beam by use of inefficient choppers exists. In the related studies the spectrograph performance is treated with rather complex equations. This study instead provides a theoretical treatment of the dispersion properties with simpler analytical equations, which were previously used in connection with X-rays. It can be shown, that the spectral resolution in the original spectrographs is mostly limited by the finite size of the refracted beam, which is inconveniently increasing upon refraction at grazing internal incidence onto an inclined refracting interface. The blurring of the beam size of a monochromatic beam at the detector due to the angular spread of the incident beam is mostly negligible. It is thus proposed that a significant improvement in the spectral resolution of such a spectrograph can be achieved, when the beam size at the detector is reduced by introducing focusing in the refraction process. It is shown, that the spectral resolution can then ultimately be limited by the smaller size of the blurred image caused by the angular spread of the beam. Then the improvement in this beam divergence limit can be by an order of magnitude and it is achieved by refraction upon internal incidence onto a concave interface. It is found that such a configuration will focus appropriately in a larger wavelength interval. By this means for wavelengths between 5 Å and 12 Å spectral resolutions of below 1% are feasible, which are not yet reported for such prism spectrographs.

  19. Coupled Neutron-Photon, 3-D, Combinatorial Geometry, Time Dependent, Monte Carlo Transport Code System.

    Energy Science and Technology Software Center (ESTSC)

    2013-06-24

    Version 07 TART2012 is a coupled neutron-photon Monte Carlo transport code designed to use three-dimensional (3-D) combinatorial geometry. Neutron and/or photon sources as well as neutron induced photon production can be tracked. It is a complete system to assist you with input preparation, running Monte Carlo calculations, and analysis of output results. TART2012 is also incredibly FAST; if you have used similar codes, you will be amazed at how fast this code is compared tomore » other similar codes. Use of the entire system can save you a great deal of time and energy. TART2012 extends the general utility of the code to even more areas of application than available in previous releases by concentrating on improving the physics, particularly with regard to improved treatment of neutron fission, resonance self-shielding, molecular binding, and extending input options used by the code. Several utilities are included for creating input files and displaying TART results and data. TART2012 uses the latest ENDF/B-VI, Release 8, data. New for TART2012 is the use of continuous energy neutron cross sections, in addition to its traditional multigroup cross sections. For neutron interaction, the data are derived using ENDF-ENDL2005 and include both continuous energy cross sections and 700 group neutron data derived using a combination of ENDF/B-VI, Release 8, and ENDL data. The 700 group structure extends from 10-5 eV up to 1 GeV. Presently nuclear data are only available up to 20 MeV, so that only 616 of the groups are currently used. For photon interaction, 701 point photon data were derived using the Livermore EPDL97 file. The new 701 point structure extends from 100 eV up to 1 GeV, and is currently used over this entire energy range. TART2012 completely supersedes all older versions of TART, and it is strongly recommended that one use only the most recent version of TART2012 and its data files. Check author’s homepage for related information: http

  20. Study of water distribution and transport in a polymer electrolyte fuel cell using neutron imaging

    NASA Astrophysics Data System (ADS)

    Pekula, N.; Heller, K.; Chuang, P. A.; Turhan, A.; Mench, M. M.; Brenizer, J. S.; Ünlü, K.

    2005-04-01

    A procedure to utilize neutron imaging for the visualization of two-phase flow within an operating polymer electrolyte fuel cell has been developed at the Penn State Breazeale Nuclear Reactor. Neutron images allow us to visualize the liquid water inside the flow channel (˜0.5 mm deep) and gas diffusion media (˜200 μm thick) in real operating conditions. The current temporal and spatial resolution for radioscopy is approximately 30 frames/s and 129 μm/pixel in a 50 cm 2 image area. Continuous digital radioscopy can be recorded for 45 min. The determination of water volume within the cell has been enabled by referencing a calibration look-up table that correlates neutron attenuation to an equivalent liquid water thickness. It was found that liquid water tends to accumulate at specific locations within the fuel cell, depending on operating conditions. Anode flow channel blockage was observed to occur at low power, while higher power conditions resulted in more dispersed distribution of liquid droplets. Under high-power conditions, liquid water tended to accumulate along or under the channel walls at 180° turns, and radioscopy revealed that individual liquid droplet velocities were several orders of magnitude less than that of the reactant flow, indicating a slug-flow regime up to at least 1 A/cm 2.

  1. Applying nonlinear diffusion acceleration to the neutron transport k-Eigenvalue problem with anisotropic scattering

    SciTech Connect

    Willert, Jeffrey; Park, H.; Taitano, William

    2015-10-12

    High-order/low-order (or moment-based acceleration) algorithms have been used to significantly accelerate the solution to the neutron transport k-eigenvalue problem over the past several years. Recently, the nonlinear diffusion acceleration algorithm has been extended to solve fixed-source problems with anisotropic scattering sources. In this paper, we demonstrate that we can extend this algorithm to k-eigenvalue problems in which the scattering source is anisotropic and a significant acceleration can be achieved. Lastly, we demonstrate that the low-order, diffusion-like eigenvalue problem can be solved efficiently using a technique known as nonlinear elimination.

  2. Petrov-galerkin finite element method for solving the neutron transport equation

    SciTech Connect

    Greenbaum, A.; Ferguson, J.M.

    1986-05-01

    A finite element using different trial and test spaces in introduced for solving the neutron transport equation in spherical geometry. It is shown that the widely used discrete ordinates method can also be thought of as such a finite element technique, in which integrals appearing in the difference equations are replaced by one-point Gauss quadrature formulas (midpoint rule). Comparison of accuracy between the new method and the discrete ordinates method is discussed, and numerical examples are given to illustrate the greater accuracy of the new technique.

  3. Variational Determination of the Neutron Integral Transport Equation Eigenvalues Using Space Asymptotic Trial Functions

    NASA Astrophysics Data System (ADS)

    Colombo, V.; Ravetto, P.; Sumini, M.

    1988-08-01

    An approximate determination of the critical eigenvalue of the neutron transport equation in integral form, within both the one speed and energy multigroup models, for a homogeneous medium, is achieved by means of a variational technique. The space asymptotic solutions for both the direct and adjoint problems are used as trial functions. A variational procedure is also developed and numerically exploited within the Fourier transformed domain, where noticeable theoretical features can be demonstrated. It is evidenced that excellent results can be obtained with little computational effort, and a set of critical calculations in plane geometry is presented and discussed.

  4. Variational determination of the neutron integral transport equation eigenvalues using space asymptotic trial functions

    SciTech Connect

    Colombo, V.; Ravetto, P.; Sumini, M.

    1988-08-01

    An approximate determination of the critical eigenvalue of the neutron transport equation in integral form, within both the one speed and energy multigroup models, for a homogeneous medium, is achieved by means of a variational technique. The space asymptotic solutions for both the direct and adjoint problems are used as trial functions. A variational procedure is also developed and numerically exploited within the Fourier transformed domain, where noticeable theoretical features can be demonstrated. It is evidenced that excellent results can be obtained with little computational effort, and a set of critical calculations in plane geometry is presented and discussed. copyright 1988 Academic Press, Inc.

  5. Hybrid Parallel Programming Models for AMR Neutron Monte-Carlo Transport

    NASA Astrophysics Data System (ADS)

    Dureau, David; Poëtte, Gaël

    2014-06-01

    This paper deals with High Performance Computing (HPC) applied to neutron transport theory on complex geometries, thanks to both an Adaptive Mesh Refinement (AMR) algorithm and a Monte-Carlo (MC) solver. Several Parallelism models are presented and analyzed in this context, among them shared memory and distributed memory ones such as Domain Replication and Domain Decomposition, together with Hybrid strategies. The study is illustrated by weak and strong scalability tests on complex benchmarks on several thousands of cores thanks to the petaflopic supercomputer Tera100.

  6. A Two-Dimensional Monte Carlo Code System for Linear Neutron Transport Calculations.

    Energy Science and Technology Software Center (ESTSC)

    1980-04-24

    Version 00 KIM (k-infinite-Monte Carlo) solves the steady-state linear neutron transport equation for a fixed source problem or, by successive fixed-source runs, for the eigenvalue problem, in a two-dimensional infinite thermal reactor lattice using the Monte Carlo method. In addition to the combinatorial description of domains, the program allows complex configurations to be represented by a discrete set of points whereby the calculation speed is greatly improved. Configurations are described as the result of overlaysmore » of elementary figures over a basic domain.« less

  7. Hybrid method of deterministic and probabilistic approaches for continuous energy neutron transport problem

    SciTech Connect

    Lee, H.; Lee, D.

    2013-07-01

    This paper presents a new hybrid method of continuous energy Monte Carlo (MC) and multi-group Method of Characteristics (MOC). For a continuous energy neutron transport analysis, the hybrid method employs a continuous energy MC for resonance energy range to treat the resonances accurately and a multi-group MOC for high and low energy ranges for efficiency. Numerical test with a model problem confirms that the hybrid method can produce consistent results with the reference continuous energy MC-only calculation as well as multi-group MOC-only calculation. (authors)

  8. High temporal resolution tracing of xylem CO2 transport in oak trees

    NASA Astrophysics Data System (ADS)

    Bloemen, Jasper; Ingrisch, Johannes; Bahn, Michael

    2016-04-01

    Carbon (C) allocation defines the flows of C between plant organs and their storage pools and metabolic processes and is therefore considered as an important determinant of forest C budgets and their responses to climate change. In trees, assimilates derived from leaf photosynthesis are transported via the phloem to above- and belowground sink tissues, where partitioning between growth, storage, and respiration occurs. At the same time, root- and aboveground respired CO2 can be dissolved in water and transported in the xylem tissue, thereby representing a C flux of large magnitude whose role in C allocation yet is unresolved. In this study, we infused 13C labeled water into the stem base of five year old potted oak (Quercus rubra) trees as a surrogate for respired CO2 to investigate the role of respired CO2 transport in trees in C allocation. We used high-resolution laser-based measurements of the isotopic composition of stem and soil CO2 efflux combined with stem gas probes to monitor the transport of 13C label. The high enrichment of the gas probes in the stem at the bottom of the canopy showed that the label was transported upwards from the base of the tree toward the top. During its ascent, the 13C label was removed from the transpiration stream and lost to the atmosphere at stem level, as was observed using the stem CO2 efflux laser-based measurements. This study is the first to show results from tracing xylem CO2 transport in trees at high temporal resolution using a 13C labeling approach. Moreover, they extend results from previous studies on internal CO2 transport in species with high transpiration rates like poplar to species with lower transpiration rates like oak. Internal transport of CO2 indicates that the current concepts of the tree C allocation need to be revisited, as they show that current gas exchange approach to estimating above- and belowground autotrophic respiration is inadequate.

  9. A Deterministic-Monte Carlo Hybrid Method for Time-Dependent Neutron Transport Problems

    SciTech Connect

    Justin Pounders; Farzad Rahnema

    2001-10-01

    A new deterministic-Monte Carlo hybrid solution technique is derived for the time-dependent transport equation. This new approach is based on dividing the time domain into a number of coarse intervals and expanding the transport solution in a series of polynomials within each interval. The solutions within each interval can be represented in terms of arbitrary source terms by using precomputed response functions. In the current work, the time-dependent response function computations are performed using the Monte Carlo method, while the global time-step march is performed deterministically. This work extends previous work by coupling the time-dependent expansions to space- and angle-dependent expansions to fully characterize the 1D transport response/solution. More generally, this approach represents and incremental extension of the steady-state coarse-mesh transport method that is based on global-local decompositions of large neutron transport problems. An example of a homogeneous slab is discussed as an example of the new developments.

  10. Low-energy beam transport studies supporting the spallation neutron source 1-MW beam operation

    SciTech Connect

    Han, B. X.; Welton, R. F.; Murray, S. N. Jr.; Pennisi, T. R.; Santana, M.; Stockli, M. P.; Kalvas, T.; Tarvainen, O.

    2012-02-15

    The H{sup -} injector consisting of a cesium enhanced RF-driven ion source and a 2-lens electrostatic low-energy beam transport (LEBT) system supports the spallation neutron source 1 MW beam operation with {approx}38 mA beam current in the linac at 60 Hz with a pulse length of up to {approx}1.0 ms. In this work, two important issues associated with the low-energy beam transport are discussed: (1) inconsistent dependence of the post-radio frequency quadrupole accelerator beam current on the ion source tilt angle and (2) high power beam losses on the LEBT electrodes under some off-nominal conditions compromising their reliability.

  11. Low-energy beam transport studies supporting the spallation neutron source 1-MW beam operation

    SciTech Connect

    Kalvas, T.; Welton, Robert F; Pennisi, Terry R

    2012-01-01

    The H{sup -} injector consisting of a cesium enhanced RF-driven ion source and a 2-lens electrostatic low-energy beam transport (LEBT) system supports the spallation neutron source 1 MW beam operation with {approx}38 mA beam current in the linac at 60 Hz with a pulse length of up to {approx}1.0 ms. In this work, two important issues associated with the low-energy beam transport are discussed: (1) inconsistent dependence of the post-radio frequency quadrupole accelerator beam current on the ion source tilt angle and (2) high power beam losses on the LEBT electrodes under some off-nominal conditions compromising their reliability.

  12. Micromachining of commodity plastics by proton beam writing and fabrication of spatial resolution test-chart for neutron radiography

    NASA Astrophysics Data System (ADS)

    Sakai, T.; Yasuda, R.; Iikura, H.; Nojima, T.; Matsubayashi, M.; Kada, W.; Kohka, M.; Satoh, T.; Ohkubo, T.; Ishii, Y.; Takano, K.

    2013-07-01

    Proton beam writing is a direct-write technique and a promising method for the micromachining of commodity plastics such as acrylic resins. Herein, we describe the fabrication of microscopic devices made from a relatively thick (∼75 μm) acrylic sheet using proton beam writing. In addition, a software package that converts image pixels into coordinates data was developed, and the successful fabrication of a very fine jigsaw puzzle was achieved. The size of the jigsaw puzzle pieces was 50 × 50 μm. For practical use, a prototype of a line and space test-chart was also successfully fabricated for the determination of spatial resolution in neutron radiography.

  13. Improved Convergence Rate of Multi-Group Scattering Moment Tallies for Monte Carlo Neutron Transport Codes

    NASA Astrophysics Data System (ADS)

    Nelson, Adam

    Multi-group scattering moment matrices are critical to the solution of the multi-group form of the neutron transport equation, as they are responsible for describing the change in direction and energy of neutrons. These matrices, however, are difficult to correctly calculate from the measured nuclear data with both deterministic and stochastic methods. Calculating these parameters when using deterministic methods requires a set of assumptions which do not hold true in all conditions. These quantities can be calculated accurately with stochastic methods, however doing so is computationally expensive due to the poor efficiency of tallying scattering moment matrices. This work presents an improved method of obtaining multi-group scattering moment matrices from a Monte Carlo neutron transport code. This improved method of tallying the scattering moment matrices is based on recognizing that all of the outgoing particle information is known a priori and can be taken advantage of to increase the tallying efficiency (therefore reducing the uncertainty) of the stochastically integrated tallies. In this scheme, the complete outgoing probability distribution is tallied, supplying every one of the scattering moment matrices elements with its share of data. In addition to reducing the uncertainty, this method allows for the use of a track-length estimation process potentially offering even further improvement to the tallying efficiency. Unfortunately, to produce the needed distributions, the probability functions themselves must undergo an integration over the outgoing energy and scattering angle dimensions. This integration is too costly to perform during the Monte Carlo simulation itself and therefore must be performed in advance by way of a pre-processing code. The new method increases the information obtained from tally events and therefore has a significantly higher efficiency than the currently used techniques. The improved method has been implemented in a code system

  14. Reprint of The improvement of the energy resolution in epi-thermal neutron region of Bonner sphere using boric acid water solution moderator.

    PubMed

    Ueda, H; Tanaka, H; Sakurai, Y

    2015-12-01

    Bonner sphere is useful to evaluate the neutron spectrum in detail. We are improving the energy resolution in epi-thermal neutron region of Bonner sphere, using boric acid water solution as a moderator. Its response function peak is narrower than that for polyethylene moderator and the improvement of the resolution is expected. The resolutions between polyethylene moderator and boric acid water solution moderator were compared by simulation calculation. Also the influence in the uncertainty of Bonner sphere configuration to spectrum estimation was simulated. PMID:26508275

  15. The improvement of the energy resolution in epi-thermal neutron region of Bonner sphere using boric acid water solution moderator.

    PubMed

    Ueda, H; Tanaka, H; Sakurai, Y

    2015-10-01

    Bonner sphere is useful to evaluate the neutron spectrum in detail. We are improving the energy resolution in epi-thermal neutron region of Bonner sphere, using boric acid water solution as a moderator. Its response function peak is narrower than that for polyethylene moderator and the improvement of the resolution is expected. The resolutions between polyethylene moderator and boric acid water solution moderator were compared by simulation calculation. Also the influence in the uncertainty of Bonner sphere configuration to spectrum estimation was simulated. PMID:26133664

  16. Solution and Study of the Two-Dimensional Nodal Neutron Transport Equation

    SciTech Connect

    Panta Pazos, Ruben; Biasotto Hauser, Eliete; Tullio de Vilhena, Marco

    2002-07-01

    In the last decade Vilhena and coworkers reported an analytical solution to the two-dimensional nodal discrete-ordinates approximations of the neutron transport equation in a convex domain. The key feature of these works was the application of the combined collocation method of the angular variable and nodal approach in the spatial variables. By nodal approach we mean the transverse integration of the SN equations. This procedure leads to a set of one-dimensional S{sub N} equations for the average angular fluxes in the variables x and y. These equations were solved by the old version of the LTS{sub N} method, which consists in the application of the Laplace transform to the set of nodal S{sub N} equations and solution of the resulting linear system by symbolic computation. It is important to recall that this procedure allow us to increase N the order of S{sub N} up to 16. To overcome this drawback we step forward performing a spectral painstaking analysis of the nodal S{sub N} equations for N up to 16 and we begin the convergence of the S{sub N} nodal equations defining an error for the angular flux and estimating the error in terms of the truncation error of the quadrature approximations of the integral term. Furthermore, we compare numerical results of this approach with those of other techniques used to solve the two-dimensional discrete approximations of the neutron transport equation. (authors)

  17. High resolution inventory of GHG emissions of the road transport sector in Argentina

    NASA Astrophysics Data System (ADS)

    Puliafito, Salvador Enrique; Allende, David; Pinto, Sebastián; Castesana, Paula

    2015-01-01

    Air quality models require the use of extensive background information, such as land use and topography maps, meteorological data and emission inventories of pollutant sources. This challenge increases when considering the vehicular sources. The available international databases have uneven resolution for all countries including some areas with low spatial resolution associated with large districts (several hundred km). A simple procedure is proposed in order to develop an inventory of emissions with high resolution (9 km) for the transport sector based on a geographic information system using readily available information applied to Argentina. The basic variable used is the vehicle activity (vehicle - km transported) estimated from fuel consumption and fuel efficiency. This information is distributed to a spatial grid according to a road hierarchy and segment length assigned to each street within the cell. Information on fuel is obtained from district consumption, but weighted using the DMSP-OLS satellite "Earth at night" image. The uncertainty of vehicle estimation and emission calculations was tested using sensitivity Montecarlo analysis. The resulting inventory is calibrated using annual average daily traffic counts in around 850 measuring points all over the country leading to an uncertainty of 20%. Uncertainties in the emissions calculation at pixel level can be estimated to be less than 12%. Comparison with international databases showed a better spatial distribution of greenhouse gases (GHG) emissions in the transport sector, but similar total national values.

  18. Tuning the instrument resolution using chopper and time of flight at the small-angle neutron scattering diffractometer KWS-2

    PubMed Central

    Radulescu, Aurel; Székely, Noémi Kinga; Polachowski, Stephan; Leyendecker, Marko; Amann, Matthias; Buitenhuis, Johan; Drochner, Matthias; Engels, Ralf; Hanslik, Romuald; Kemmerling, Günter; Lindner, Peter; Papagiannopoulos, Aristeidis; Pipich, Vitaliy; Willner, Lutz; Frielinghaus, Henrich; Richter, Dieter

    2015-01-01

    Following demand from the user community regarding the possibility of improving the experimental resolution, the dedicated high-intensity/extended Q-range SANS diffractometer KWS-2 of the Jülich Centre for Neutron Science at the Heinz Maier-Leibnitz Center in Garching was equipped with a double-disc chopper with a variable opening slit window and time-of-flight (TOF) data acquisition option. The chopper used in concert with a dedicated high-intensity velocity selector enables the tuning at will of the wavelength resolution Δλ/λ within a broad range, from 20% (standard) down to 2%, in a convenient and safe manner following pre-planned or spontaneous decisions during the experiment. The new working mode is described in detail, and its efficiency is demonstrated on several standard samples with known properties and on a completely new crystallizable copolymer system, which were investigated using both the conventional (static) and TOF modes. PMID:26664343

  19. HIGH SPATIAL RESOLUTION IMAGING OF INERTIAL FUSION TARGET PLASMAS USING BUBBLE NEUTRON DETECTORS, Final Report for the Period November 1, 1999 - February 28, 2001

    SciTech Connect

    FISHER,RK

    2003-02-01

    OAK B202 HIGH SPATIAL RESOLUTION IMAGING OF INERTIAL FUSION TARGET PLASMAS USING BUBBLE NEUTRON DETECTORS. Bubble detectors, which can detect neutrons with a spatial 5 to 30 {micro}, are the most promising approach to imaging NIF target plasmas with the desired 5 {micro} spatial resolution in the target plane. Gel bubble detectors are being tested to record neutron images of ICF implosions in OMEGA experiments. By improving the noise reduction techniques used in analyzing the data taken in June 2000, we have been able to image the neutron emission from 6 {center_dot} 10{sup 13} yield DT target plasmas with a target plane spatial resolution of {approx} 140 {micro}. As expected, the spatial resolution was limited by counting statistics as a result of the low neutron detection efficiency of the easy-to-use gel bubble detectors. The results have been submitted for publication and will be the subject of an invited talk at the October 2001 Meeting of the Division of Plasma Physics of the American Physical Society. To improve the counting statistics, data was taken in May 2001 using a stack of four gel detectors and integrated over a series of up to seven high-yield DT shots. Analysis of the 2001 data is still in its early stages. Gel detectors were chosen for these initial tests since the bubbles can be photographed several hours after the neutron exposure. They consist of {approx} 5000 drops ({approx} 100 {micro} in diameter) of bubble detector liquid/cm{sup 3} suspended in an inactive support gel that occupies {approx} 99% of the detector volume. Using a liquid bubble chamber detector and a light scattering system to record the bubble locations a few microseconds after the neutron exposure when the bubbles are {approx} 10 {micro} in diameter, should result in {approx} 1000 times higher neutron detection efficiency and a target plane resolution on OMEGA of {approx} 10 to 50 {micro}.

  20. Effect of cross-flow on PEFC liquid-water distribution: An in-situ high-resolution neutron radiography study

    NASA Astrophysics Data System (ADS)

    Santamaria, Anthony D.; Becton, Maxwell K.; Cooper, Nathanial J.; Weber, Adam Z.; Park, Jae Wan

    2015-10-01

    Liquid-water management in polymer-electrolyte fuel cells (PEFCs) remains an area of ongoing research. To enhance water removal, certain flow-fields induce cross-flow, or flow through the gas-diffusion layer (GDL) via channel-to-channel pressure differences. While beneficial to water removal, cross-flow comes at the cost of higher pumping pressures and may lead to membrane dehydration and other deleterious issues. This paper examines the impact of cross-flow on component saturation levels as determined through in-plane high-resolution neutron radiography. Various humidities and operating conditions are examined, and the results demonstrate that cell saturation levels correlate strongly with the level of cross-flow rate, and lower GDL saturation levels are found to correlate with an increase in permeability at higher flow rates. Effective water removal is found to occur at channel-to-channel pressure gradients greater than the measured breakthrough pressure of the GDL, evidence that similar liquid-water transport mechanisms exist for under-land area transport as in transverse GDL flow.

  1. Vectorization of a 2D-1D Iterative Algorithm for the 3D Neutron Transport Problem in Prismatic Geometries

    NASA Astrophysics Data System (ADS)

    Moustafa, Salli; Févotte, François; Lathuilière, Bruno; Plagne, Laurent

    2014-06-01

    The past few years have been marked by a noticeable increase in the interest in 3D whole-core heterogeneous deterministic neutron transport solvers for reference calculations. Due to the extremely large problem sizes tackled by such solvers, they need to use adapted numerical methods and need to be efficiently implemented to take advantage of the full computing power of modern systems. As for numerical methods, one possible approach consists in iterating over resolutions of 2D and 1D MOC problems by taking advantage of prismatic geometries. The MICADO solver, developed at EDF R&D, is a parallel implementation of such a method in distributed and shared memory systems. However it is currently unable to use SIMD vectorization to leverage the full computing power of modern CPUs. In this paper, we describe our first effort to support vectorization in MICADO, typically targeting Intel© SSE CPUs. Both the 2D and 1D algorithms are vectorized, allowing for high expected speedups for the whole spatial solver. We present benchmark computations, which show nearly optimal speedups for our vectorized implementation on the TAKEDA case.

  2. Equations of the surface harmonics method for solving time-dependent neutron transport problems and their verification

    NASA Astrophysics Data System (ADS)

    Boyarinov, V. F.; Kondrushin, A. E.; Fomichenko, P. A.

    2013-12-01

    Time-dependent equations of the surface harmonics method (SHM) are obtained for planar one-dimensional geometry. The equations are verified by calculations of test problems from Benchmark Problem Book ANL-7416, and the capabilities and efficiency of applying the SHM for solving the time-dependent neutron transport equation in the diffusion approximation are demonstrated. The results of the work show that the implementation of the SHG for full-scale computations will make possible substantial progress in the efficient solution of time-dependent problems of neutron transport in nuclear reactors.

  3. Monte Carlo Neutrino Transport through Remnant Disks from Neutron Star Mergers

    NASA Astrophysics Data System (ADS)

    Richers, Sherwood; Kasen, Daniel; O'Connor, Evan; Fernández, Rodrigo; Ott, Christian D.

    2015-11-01

    We present Sedonu, a new open source, steady-state, special relativistic Monte Carlo (MC) neutrino transport code, available at bitbucket.org/srichers/sedonu. The code calculates the energy- and angle-dependent neutrino distribution function on fluid backgrounds of any number of spatial dimensions, calculates the rates of change of fluid internal energy and electron fraction, and solves for the equilibrium fluid temperature and electron fraction. We apply this method to snapshots from two-dimensional simulations of accretion disks left behind by binary neutron star mergers, varying the input physics and comparing to the results obtained with a leakage scheme for the cases of a central black hole and a central hypermassive neutron star. Neutrinos are guided away from the densest regions of the disk and escape preferentially around 45° from the equatorial plane. Neutrino heating is strengthened by MC transport a few scale heights above the disk midplane near the innermost stable circular orbit, potentially leading to a stronger neutrino-driven wind. Neutrino cooling in the dense midplane of the disk is stronger when using MC transport, leading to a globally higher cooling rate by a factor of a few and a larger leptonization rate by an order of magnitude. We calculate neutrino pair annihilation rates and estimate that an energy of 2.8 × 1046 erg is deposited within 45° of the symmetry axis over 300 ms when a central BH is present. Similarly, 1.9 × 1048 erg is deposited over 3 s when an HMNS sits at the center, but neither estimate is likely to be sufficient to drive a gamma-ray burst jet.

  4. In operando visualization of hydride-graphite composites during cyclic hydrogenation by high-resolution neutron imaging

    NASA Astrophysics Data System (ADS)

    Pohlmann, Carsten; Herbrig, Kai; Gondek, Łukasz; Kardjilov, Nikolay; Hilger, André; Figiel, Henryk; Banhart, John; Kieback, Bernd; Manke, Ingo; Röntzsch, Lars

    2015-03-01

    Hydrogen solid-state storage in metal hydrides has attracted remarkable attention within the past decades due to their high volumetric storage densities at low operating pressures. In particular, recently emerged hydride-graphite composites (HGC) can enable a safe, reliable and very compact hydrogen storage solution for various applications. In this regard, only little is known about the activation behavior of such HGC, their cycle stability and degradation effects. Because of the high sensitivity to hydrogen, neutron imaging offers a distinctive approach to examine in operando reaction fronts, swelling effects and microstructural changes of hydrogen absorbing materials with high spatial and temporal resolution. In this contribution, a comprehensive analysis of various phenomena during activation and cycling of HGC based on a Ti-Mn hydrogen absorbing alloy and expanded natural graphite is reported for the first time. A neutron radiography and tomography set-up with a spatial resolution down to 7 μm was utilized allowing highest detection precision. During initial hydrogenation, regions with enhanced reactivity are observed which contradicts a theoretically expected homogeneous reactivity inside the HGC. These active regions grow with the number of hydrogenation-dehydrogenation cycles until the whole HGC volume uniformly participates in the hydrogen sorption reaction. With regard to long-term hydrogenation-dehydrogenation cycling, inhomogeneous swelling effects were observed from which essential conclusions for technical HGC-based tank systems can be derived.

  5. Hydrogen and deuterium in myoglobin as seen by a neutron structure determination at 1.5 A resolution.

    PubMed

    Ostermann, Andreas; Tanaka, Ichiro; Engler, Niklas; Niimura, Nobuo; Parak, Fritz G

    2002-03-28

    From the first days of protein neutron structure determination sperm whale myoglobin was an object under investigation [Nature 224 (1969) 143, J. Mol. Biol. 220 (1991) 381]. Nevertheless myoglobin is still of interest [Proc. Natl. Acad. Sci. USA 97 (2000) 3872]. The feasibility of the monochromatic neutron diffractometer BIX-3 at the JRR-3M reactor at the JAERI [J. Phys. Chem. Solids 60 (1999) 1623], to collect high-resolution diffraction data in a relatively short time stimulated us to repeat the structural determination of myoglobin. The structure of metmyoglobin has been determined up to a resolution of 1.5 A. The hydrogen atoms were replaced in part, by deuterium soaking the crystals for more than 10 years in D(2)O. A refinement of all atoms has been performed including the refinement of individual mean square displacements and occupancies of the exchangeable protons in backbone hydrogen bonds. A method is described to show clear negative scattering densities of the H atoms. Water molecules within the protein and on the molecule surface are shown. The exchangeability of H atoms is correlated with structural distribution and flexibility. PMID:12062378

  6. Toward resolving the catalytic mechanism of dihydrofolate reductase using neutron and ultrahigh-resolution X-ray crystallography [Neutron and ultrahigh resolution X-ray crystallography reveals water as the proton donor in the catalytic mechanism of dihydrofolate reductase

    DOE PAGESBeta

    Wan, Qun; Bennett, Brad C.; Wilson, Mark A.; Kovalevsky, Andrey; Langan, Paul; Howell, Elizabeth E.; Dealwis, Chris

    2014-12-01

    Dihydrofolate reductase (DHFR) catalyzes the NADPH-dependent reduction of dihydrofolate (DHF) to tetrahydrofolate (THF). An important step in the mechanism involves proton donation to the N5 atom of DHF. The inability to determine the protonation states of active site residues and substrate has led to the lack of consensus on a catalytic mechanism. To resolve this ambiguity, we conducted neutron and ultrahigh resolution X-ray crystallographic studies of the pseudo-Michaelis ternary complex of DHFR with folate and NADP+ from E. coli. The neutron data were collected to 2.0 Å resolution using a 3.6 mm3 crystal with the quasi-Laue technique, and the structuremore » reveals that the N3 atom of folate is protonated while Asp27 is negatively charged. Previous mechanisms have proposed a keto-to-enol tautomerization of the substrate to facilitate protonation of the N5 atom. The structure supports the existence of the keto tautomer due to protonation of the N3 atom, suggesting tautomerization is unnecessary for catalysis. In the 1.05 Å resolution X-ray structure of the ternary complex, conformational disorder of the Met20 side chain is coupled to electron density for a partially occupied water within hydrogen-bonding distance of the N5 atom of folate; this suggests direct protonation of substrate by solvent. We propose a catalytic mechanism for DHFR that involves stabilization of the keto tautomer of the substrate, elevation of the pKa of the N5 atom of DHF by Asp27, and protonation of N5 by water whose access to the active site is gated by fluctuation of the Met20 side chain even though the Met-20 loop is closed.« less

  7. Toward resolving the catalytic mechanism of dihydrofolate reductase using neutron and ultrahigh-resolution X-ray crystallography [Neutron and ultrahigh resolution X-ray crystallography reveals water as the proton donor in the catalytic mechanism of dihydrofolate reductase

    SciTech Connect

    Wan, Qun; Bennett, Brad C.; Wilson, Mark A.; Kovalevsky, Andrey; Langan, Paul; Howell, Elizabeth E.; Dealwis, Chris

    2014-12-01

    Dihydrofolate reductase (DHFR) catalyzes the NADPH-dependent reduction of dihydrofolate (DHF) to tetrahydrofolate (THF). An important step in the mechanism involves proton donation to the N5 atom of DHF. The inability to determine the protonation states of active site residues and substrate has led to the lack of consensus on a catalytic mechanism. To resolve this ambiguity, we conducted neutron and ultrahigh resolution X-ray crystallographic studies of the pseudo-Michaelis ternary complex of DHFR with folate and NADP+ from E. coli. The neutron data were collected to 2.0 Å resolution using a 3.6 mm3 crystal with the quasi-Laue technique, and the structure reveals that the N3 atom of folate is protonated while Asp27 is negatively charged. Previous mechanisms have proposed a keto-to-enol tautomerization of the substrate to facilitate protonation of the N5 atom. The structure supports the existence of the keto tautomer due to protonation of the N3 atom, suggesting tautomerization is unnecessary for catalysis. In the 1.05 Å resolution X-ray structure of the ternary complex, conformational disorder of the Met20 side chain is coupled to electron density for a partially occupied water within hydrogen-bonding distance of the N5 atom of folate; this suggests direct protonation of substrate by solvent. We propose a catalytic mechanism for DHFR that involves stabilization of the keto tautomer of the substrate, elevation of the pKa of the N5 atom of DHF by Asp27, and protonation of N5 by water whose access to the active site is gated by fluctuation of the Met20 side chain even though the Met-20 loop is closed.

  8. A neutron crystallographic analysis of T{sub 6} porcine insulin at 2.1 Å resolution

    SciTech Connect

    Iwai, Wakari; Yamada, Taro; Kurihara, Kazuo; Ohnishi, Yuki; Kobayashi, Yoichiro; Tanaka, Ichiro; Takahashi, Haruyuki; Kuroki, Ryota; Tamada, Taro; Niimura, Nobuo

    2009-10-01

    The charge balance and hydrogen-bonding network at the core of the insulin T{sub 6} hexamer have been investigated by neutron diffraction analysis at 2.1 Å resolution. Neutron diffraction data for T{sub 6} porcine insulin were collected to 2.1 Å resolution from a single crystal partly deuterated by exchange of mother liquor. A maximum-likelihood structure refinement was undertaken using the neutron data and the structure was refined to a residual of 0.179. The hydrogen-bonding network of the central core of the hexamer was observed and the charge balance between positively charged Zn ions and their surrounding structure was interpreted by considering the protonation and/or deprotonation states and interactions of HisB10, water and GluB13. The observed double conformation of GluB13 was essential to interpreting the charge balance and could be compared with the structure of a dried crystal of T{sub 6} human insulin at 100 K. Differences in the dynamic behaviour of the water molecules coordinating the upper and lower Zn ions were observed and interpreted. The hydrogen bonds in the insulin molecules, as well as those involving HisB10 and GluB13, are discussed. The hydrogen/deuterium (H/D) exchange ratios of the amide H atoms of T{sub 6} porcine insulin in crystals were obtained and showed that regions highly protected from H/D exchange are concentrated in the centre of a helical region of the B chains. From the viewpoint of soaking time versus H/D-exchange ratios, the amide H atoms can be classified into three categories.

  9. A digitally configurable measurement platform using audio cards for high-resolution electronic transport studies.

    PubMed

    Gopman, D B; Bedau, D; Kent, A D

    2012-05-01

    We report on a software-defined digitally configurable measurement platform for determining electronic transport properties in nanostructures with small readout signals. By using a high-resolution audio analog-to-digital/digital-to-analog converter in a digitally compensated bridge configuration we significantly increase the measurement speed compared to established techniques and simultaneously acquire large and small signal characteristics. We characterize the performance (16 bit resolution, 100 dB dynamic range at 192 kS/s) and demonstrate the application of this measurement platform for studying the transport properties of spin-valve nanopillars, a two-terminal device that exhibits giant magnetoresistance and whose resistance can be switched between two levels by applied magnetic fields and by currents applied by the audio card. The high resolution and fast sampling capability permits rapid acquisition of deep statistics on the switching of a spin-valve nanopillar and reduces the time to acquire the basic properties of the device - a state-diagram showing the magnetic configurations as function of applied current and magnetic field - by orders of magnitude. PMID:22667635

  10. A digitally configurable measurement platform using audio cards for high-resolution electronic transport studies

    NASA Astrophysics Data System (ADS)

    Gopman, D. B.; Bedau, D.; Kent, A. D.

    2012-05-01

    We report on a software-defined digitally configurable measurement platform for determining electronic transport properties in nanostructures with small readout signals. By using a high-resolution audio analog-to-digital/digital-to-analog converter in a digitally compensated bridge configuration we significantly increase the measurement speed compared to established techniques and simultaneously acquire large and small signal characteristics. We characterize the performance (16 bit resolution, 100 dB dynamic range at 192 kS/s) and demonstrate the application of this measurement platform for studying the transport properties of spin-valve nanopillars, a two-terminal device that exhibits giant magnetoresistance and whose resistance can be switched between two levels by applied magnetic fields and by currents applied by the audio card. The high resolution and fast sampling capability permits rapid acquisition of deep statistics on the switching of a spin-valve nanopillar and reduces the time to acquire the basic properties of the device - a state-diagram showing the magnetic configurations as function of applied current and magnetic field - by orders of magnitude.

  11. Neutron transport with the method of characteristics for 3-D full core boiling water reactor applications

    NASA Astrophysics Data System (ADS)

    Thomas, Justin W.

    2006-12-01

    The Numerical Nuclear Reactor (NNR) is a code suite that is being developed to provide high-fidelity multi-physics capability for the analysis of light water nuclear reactors. The focus of the work here is to extend the capability of the NNR by incorporation of the neutronics module, DeCART, for Boiling Water Reactor (BWR) applications. The DeCART code has been coupled to the NNR fluid mechanics and heat transfer module STAR-CD for light water reactor applications. The coupling has been accomplished via an interface program, which is responsible for mapping the STAR-CD and DeCART meshes, managing communication, and monitoring convergence. DeCART obtains the solution of the 3-D Boltzmann transport equation by performing a series of 2-D modular ray tracing-based method of characteristics problems that are coupled within the framework of 3-D coarse-mesh finite difference. The relatively complex geometry and increased axial heterogeneity found in BWRs are beyond the modeling capability of the original version of DeCART. In this work, DeCART is extended in three primary areas. First, the geometric capability is generalized by extending the modular ray tracing scheme and permitting an unstructured mesh in the global finite difference kernel. Second, numerical instabilities, which arose as a result of the severe axial heterogeneity found in BWR cores, have been resolved. Third, an advanced nodal method has been implemented to improve the accuracy of the axial flux distribution. In this semi-analytic nodal method, the analytic solution to the transverse-integrated neutron diffusion equation is obtained, where the nonhomogeneous neutron source was first approximated by a quartic polynomial. The successful completion of these three tasks has allowed the application of the coupled DeCART/STAR-CD code to practical BWR problems.

  12. High Resolution Neutron Radiography and Tomography of Hydrided Zircaloy-4 Cladding Materials

    SciTech Connect

    Smith, Tyler S; Bilheux, Hassina Z; Ray, Holly B; Bilheux, Jean-Christophe; Yan, Yong

    2015-01-01

    Neutron radiography for hydrogen analysis was performed with several Zircaloy-4 cladding samples with controlled hydrogen concentrations up to 1100 ppm. Hydrogen charging was performed in a process tube that was heated to facilitate hydrogen absorption by the metal. A correlation between the hydrogen concentration in the hydrided tubes and the neutron intensity was established, by which hydrogen content can be determined precisely in a small area (55 m x 55 m). Radiography analysis was also performed to evaluate the heating rate and its correlation with the hydrogen distribution through hydrided materials. In addition to radiography analysis, tomography experiments were performed on Zircaloy-4 tube samples to study the local hydrogen distribution. Through tomography analysis a 3D reconstruction of the tube was evaluated in which an uneven hydrogen distribution in the circumferential direction can be observed.

  13. A comparison of acceleration methods for solving the neutron transport k-eigenvalue problem

    SciTech Connect

    Willert, Jeffrey; Park, H.; Knoll, D.A.

    2014-10-01

    Over the past several years a number of papers have been written describing modern techniques for numerically computing the dominant eigenvalue of the neutron transport criticality problem. These methods fall into two distinct categories. The first category of methods rewrite the multi-group k-eigenvalue problem as a nonlinear system of equations and solve the resulting system using either a Jacobian-Free Newton–Krylov (JFNK) method or Nonlinear Krylov Acceleration (NKA), a variant of Anderson Acceleration. These methods are generally successful in significantly reducing the number of transport sweeps required to compute the dominant eigenvalue. The second category of methods utilize Moment-Based Acceleration (or High-Order/Low-Order (HOLO) Acceleration). These methods solve a sequence of modified diffusion eigenvalue problems whose solutions converge to the solution of the original transport eigenvalue problem. This second class of methods is, in our experience, always superior to the first, as most of the computational work is eliminated by the acceleration from the LO diffusion system. In this paper, we review each of these methods. Our computational results support our claim that the choice of which nonlinear solver to use, JFNK or NKA, should be secondary. The primary computational savings result from the implementation of a HOLO algorithm. We display computational results for a series of challenging multi-dimensional test problems.

  14. A comparison of acceleration methods for solving the neutron transport k-eigenvalue problem

    NASA Astrophysics Data System (ADS)

    Willert, Jeffrey; Park, H.; Knoll, D. A.

    2014-10-01

    Over the past several years a number of papers have been written describing modern techniques for numerically computing the dominant eigenvalue of the neutron transport criticality problem. These methods fall into two distinct categories. The first category of methods rewrite the multi-group k-eigenvalue problem as a nonlinear system of equations and solve the resulting system using either a Jacobian-Free Newton-Krylov (JFNK) method or Nonlinear Krylov Acceleration (NKA), a variant of Anderson Acceleration. These methods are generally successful in significantly reducing the number of transport sweeps required to compute the dominant eigenvalue. The second category of methods utilize Moment-Based Acceleration (or High-Order/Low-Order (HOLO) Acceleration). These methods solve a sequence of modified diffusion eigenvalue problems whose solutions converge to the solution of the original transport eigenvalue problem. This second class of methods is, in our experience, always superior to the first, as most of the computational work is eliminated by the acceleration from the LO diffusion system. In this paper, we review each of these methods. Our computational results support our claim that the choice of which nonlinear solver to use, JFNK or NKA, should be secondary. The primary computational savings result from the implementation of a HOLO algorithm. We display computational results for a series of challenging multi-dimensional test problems.

  15. Toward resolving the catalytic mechanism of dihydrofolate reductase using neutron and ultrahigh-resolution X-ray crystallography.

    PubMed

    Wan, Qun; Bennett, Brad C; Wilson, Mark A; Kovalevsky, Andrey; Langan, Paul; Howell, Elizabeth E; Dealwis, Chris

    2014-12-23

    Dihydrofolate reductase (DHFR) catalyzes the NADPH-dependent reduction of dihydrofolate (DHF) to tetrahydrofolate (THF). An important step in the mechanism involves proton donation to the N5 atom of DHF. The inability to determine the protonation states of active site residues and substrate has led to a lack of consensus regarding the catalytic mechanism involved. To resolve this ambiguity, we conducted neutron and ultrahigh-resolution X-ray crystallographic studies of the pseudo-Michaelis ternary complex of Escherichia coli DHFR with folate and NADP(+). The neutron data were collected to 2.0-Å resolution using a 3.6-mm(3) crystal with the quasi-Laue technique. The structure reveals that the N3 atom of folate is protonated, whereas Asp27 is negatively charged. Previous mechanisms have proposed a keto-to-enol tautomerization of the substrate to facilitate protonation of the N5 atom. The structure supports the existence of the keto tautomer owing to protonation of the N3 atom, suggesting that tautomerization is unnecessary for catalysis. In the 1.05-Å resolution X-ray structure of the ternary complex, conformational disorder of the Met20 side chain is coupled to electron density for a partially occupied water within hydrogen-bonding distance of the N5 atom of folate; this suggests direct protonation of substrate by solvent. We propose a catalytic mechanism for DHFR that involves stabilization of the keto tautomer of the substrate, elevation of the pKa value of the N5 atom of DHF by Asp27, and protonation of N5 by water that gains access to the active site through fluctuation of the Met20 side chain even though the Met20 loop is closed. PMID:25453083

  16. Toward resolving the catalytic mechanism of dihydrofolate reductase using neutron and ultrahigh-resolution X-ray crystallography

    PubMed Central

    Wan, Qun; Bennett, Brad C.; Wilson, Mark A.; Kovalevsky, Andrey; Langan, Paul; Howell, Elizabeth E.; Dealwis, Chris

    2014-01-01

    Dihydrofolate reductase (DHFR) catalyzes the NADPH-dependent reduction of dihydrofolate (DHF) to tetrahydrofolate (THF). An important step in the mechanism involves proton donation to the N5 atom of DHF. The inability to determine the protonation states of active site residues and substrate has led to a lack of consensus regarding the catalytic mechanism involved. To resolve this ambiguity, we conducted neutron and ultrahigh-resolution X-ray crystallographic studies of the pseudo-Michaelis ternary complex of Escherichia coli DHFR with folate and NADP+. The neutron data were collected to 2.0-Å resolution using a 3.6-mm3 crystal with the quasi-Laue technique. The structure reveals that the N3 atom of folate is protonated, whereas Asp27 is negatively charged. Previous mechanisms have proposed a keto-to-enol tautomerization of the substrate to facilitate protonation of the N5 atom. The structure supports the existence of the keto tautomer owing to protonation of the N3 atom, suggesting that tautomerization is unnecessary for catalysis. In the 1.05-Å resolution X-ray structure of the ternary complex, conformational disorder of the Met20 side chain is coupled to electron density for a partially occupied water within hydrogen-bonding distance of the N5 atom of folate; this suggests direct protonation of substrate by solvent. We propose a catalytic mechanism for DHFR that involves stabilization of the keto tautomer of the substrate, elevation of the pKa value of the N5 atom of DHF by Asp27, and protonation of N5 by water that gains access to the active site through fluctuation of the Met20 side chain even though the Met20 loop is closed. PMID:25453083

  17. Atomic resolution structure of the E. coli YajR transporter YAM domain

    SciTech Connect

    Jiang, Daohua; Zhao, Yan; Fan, Junping; Liu, Xuehui; Wu, Yan; Feng, Wei; Zhang, Xuejun C.

    2014-07-25

    Highlights: • We report the crystal structure of the YAM domain of YajR transporter at 1.07 Å. • The YAM dimerization is related to the halogen-dependent high thermal stability. • A belt of poly-pentagonal water molecules was observed in the dimer interface. - Abstract: YajR is an Escherichia coli transporter that belongs to the major facilitator superfamily. Unlike most MFS transporters, YajR contains a carboxyl terminal, cytosolic domain of 67 amino acid residues termed YAM domain. Although it is speculated that the function of this small soluble domain is to regulate the conformational change of the 12-helix transmembrane domain, its precise regulatory role remains unclear. Here, we report the crystal structure of the YAM domain at 1.07-Å resolution, along with its structure determined using nuclear magnetic resonance. Detailed analysis of the high resolution structure revealed a symmetrical dimer in which a belt of well-ordered poly-pentagonal water molecules is embedded. A mutagenesis experiment and a thermal stability assay were used to analyze the putative role of this dimerization in response to changes in halogen concentration.

  18. Imaging ion and molecular transport at subcellular resolution by secondary ion mass spectrometry

    NASA Astrophysics Data System (ADS)

    Chandra, Subhash; Morrison, George H.

    1995-05-01

    The transport of K+, Na+, and Ca2+ were imaged in individual cells with a Cameca IMS-3f ion microscope. Strict cryogenic frozen freeze-dry sample preparations were employed. Ion redistribution artifacts in conventional chemical preparations are discussed. Cryogenically prepared freeze-fractured freeze-dried cultured cells allowed the three-dimensional ion microscopic imaging of elements. As smaller structures in calcium images can be resolved with the 0.5 [mu]m spatial resolution, correlative techniques are needed to confirm their identity. The potentials of reflected light microscopy, scanning electron microscopy and laser scanning confocal microscopy are discussed for microfeature recognition in freeze-fractured freeze-dried cells. The feasibility of using frozen freeze-dried cells for imaging molecular transport at subcellular resolution was tested. Ion microscopy successfully imaged the transport of the isotopically tagged (13C, 15N) amino acid, -arginine. The labeled amino acid was imaged at mass 28 with a Cs+ primary ion beam as the 28(13C15N)- species. After a 4 h exposure of LLC-PK1 kidney cells to 4 mM labeled arginine, the amino acid was localized throughout the cell with a preferential incorporation into the nucleus and nucleolus. An example is also shown of the ion microscopic imaging of sodium borocaptate, an experimental therapeutic drug for brain tumors, in cryogenically prepared frozen freeze-dried Swiss 3T3 cells.

  19. New Potentiometric Wireless Chloride Sensors Provide High Resolution Information on Chemical Transport Processes in Streams

    NASA Astrophysics Data System (ADS)

    Smettem, Keith; Harris, Nick; Cranny, Andy; Klaus, Julian; Pfister, Laurent

    2016-04-01

    Quantifying the travel times, pathways and dispersion of solutes moving through stream environments is critical for understanding the biogeochemical cycling processes that control ecosystem functioning. Validation of stream solute transport and exchange process models requires data obtained from in-stream measurement of chemical concentration changes through time. This can be expensive and time consuming, leading to a need for cheap distributed sensor arrays that respond instantly and record chemical transport at points of interest on timescales of seconds. To meet this need we apply new, low-cost (in the order of a euro per sensor) potentiometric chloride sensors used in a distributed array to obtain data with high spatial and temporal resolution. The application here is to monitoring in-stream hydrodynamic transport and dispersive mixing of an injected chemical, in this case NaCl. We present data obtained from the distributed sensor array under baseflow conditions for three stream reaches in Luxembourg. Sensor results are comparable to data obtained from more expensive electrical conductivity meters and allow spatial resolution of hydrodynamic mixing processes and identification of chemical 'dead zones' in the study reaches.

  20. Low Resolution Structure and Dynamics of a Colicin-Receptor Complex Determined by Neutron Scattering

    SciTech Connect

    Clifton, Luke A; Johnson, Christopher L; Solovyova, Alexandra; Callow, Phil; Weiss, Kevin L; Ridley, Helen; Le Brun, Anton P; Kinane, Christian; Webster, John; Holt, Stephen A; Lakey, Jeremy H

    2012-01-01

    Proteins that translocate across cell membranes need to overcome a significant hydrophobic barrier. This is usually accomplished via specialized protein complexes, which provide a polar transmembrane pore. Exceptions to this include bacterial toxins, which insert into and cross the lipid bilayer itself. We are studying the mechanism by which large antibacterial proteins enter Escherichia coli via specific outer membrane proteins. Here we describe the use of neutron scattering to investigate the interaction of colicin N with its outer membrane receptor protein OmpF. The positions of lipids, colicin N, and OmpF were separately resolved within complex structures by the use of selective deuteration. Neutron reflectivity showed, in real time, that OmpF mediates the insertion of colicin N into lipid monolayers. This data were complemented by Brewster Angle Microscopy images, which showed a lateral association of OmpF in the presence of colicin N. Small angle neutron scattering experiments then defined the three-dimensional structure of the colicin N-OmpF complex. This revealed that colicin N unfolds and binds to the OmpF-lipid interface. The implications of this unfolding step for colicin translocation across membranes are discussed.

  1. Membrane Transport Processes Analyzed by a Highly Parallel Nanopore Chip System at Single Protein Resolution.

    PubMed

    Urban, Michael; Vor der Brüggen, Marc; Tampé, Robert

    2016-01-01

    Membrane protein transport on the single protein level still evades detailed analysis, if the substrate translocated is non-electrogenic. Considerable efforts have been made in this field, but techniques enabling automated high-throughput transport analysis in combination with solvent-free lipid bilayer techniques required for the analysis of membrane transporters are rare. This class of transporters however is crucial in cell homeostasis and therefore a key target in drug development and methodologies to gain new insights desperately needed. The here presented manuscript describes the establishment and handling of a novel biochip for the analysis of membrane protein mediated transport processes at single transporter resolution. The biochip is composed of microcavities enclosed by nanopores that is highly parallel in its design and can be produced in industrial grade and quantity. Protein-harboring liposomes can directly be applied to the chip surface forming self-assembled pore-spanning lipid bilayers using SSM-techniques (solid supported lipid membranes). Pore-spanning parts of the membrane are freestanding, providing the interface for substrate translocation into or out of the cavity space, which can be followed by multi-spectral fluorescent readout in real-time. The establishment of standard operating procedures (SOPs) allows the straightforward establishment of protein-harboring lipid bilayers on the chip surface of virtually every membrane protein that can be reconstituted functionally. The sole prerequisite is the establishment of a fluorescent read-out system for non-electrogenic transport substrates. High-content screening applications are accomplishable by the use of automated inverted fluorescent microscopes recording multiple chips in parallel. Large data sets can be analyzed using the freely available custom-designed analysis software. Three-color multi spectral fluorescent read-out furthermore allows for unbiased data discrimination into different

  2. Using the transportable, computer-operated, liquid-scintillator fast-neutron spectrometer system

    SciTech Connect

    Thorngate, J.H.

    1988-11-01

    When a detailed energy spectrum is needed for radiation-protection measurements from approximately 1 MeV up to several tens of MeV, organic-liquid scintillators make good neutron spectrometers. However, such a spectrometer requires a sophisticated electronics system and a computer to reduce the spectrum from the recorded data. Recently, we added a Nuclear Instrument Module (NIM) multichannel analyzer and a lap-top computer to the NIM electronics we have used for several years. The result is a transportable fast-neutron spectrometer system. The computer was programmed to guide the user through setting up the system, calibrating the spectrometer, measuring the spectrum, and reducing the data. Measurements can be made over three energy ranges, 0.6--2 MeV, 1.1--8 MeV, or 1.6--16 MeV, with the spectrum presented in 0.1-MeV increments. Results can be stored on a disk, presented in a table, and shown in graphical form. 5 refs., 51 figs.

  3. A demonstration of a whole core neutron transport method in a gas cooled reactor

    SciTech Connect

    Connolly, K. J.; Rahnema, F.

    2013-07-01

    This paper illustrates a capability of the whole core transport method COMET. Building on previous works which demonstrated the accuracy of the method, this work serves to emphasize the robust capability of the method while also accentuating its efficiency. A set of core configurations is presented based on an operating gas-cooled thermal reactor, Japan's HTTR, and COMET determines the eigenvalue and fission density profile throughout each core configuration. Results for core multiplication factors are compared to MCNP for accuracy and also to compare runtimes. In all cases, the values given by COMET differ by those given by MCNP by less than the uncertainty inherent in the stochastic solution procedure, however, COMET requires runtimes shorter on the order of a few hundred. Figures are provided illustrating the whole core fission density profile, with segments of pins explicitly modeled individually, so that pin-level neutron flux behavior can be seen without any approximation due to simplification strategies such as homogenization. (authors)

  4. TART97 a coupled neutron-photon 3-D, combinatorial geometry Monte Carlo transport code

    SciTech Connect

    Cullen, D.E.

    1997-11-22

    TART97 is a coupled neutron-photon, 3 Dimensional, combinatorial geometry, time dependent Monte Carlo transport code. This code can on any modern computer. It is a complete system to assist you with input preparation, running Monte Carlo calculations, and analysis of output results. TART97 is also incredibly FAST; if you have used similar codes, you will be amazed at how fast this code is compared to other similar codes. Use of the entire system can save you a great deal of time and energy. TART97 is distributed on CD. This CD contains on- line documentation for all codes included in the system, the codes configured to run on a variety of computers, and many example problems that you can use to familiarize yourself with the system. TART97 completely supersedes all older versions of TART, and it is strongly recommended that users only use the most recent version of TART97 and its data riles.

  5. Coupled full core neutron transport/CFD simulations of pressurized water reactors

    SciTech Connect

    Kochunas, B.; Stimpson, S.; Collins, B.; Downar, T.; Brewster, R.; Baglietto, E.; Yan, J.

    2012-07-01

    Recently as part of the CASL project, a capability to perform 3D whole-core coupled neutron transport and computational fluid dynamics (CFD) calculations was demonstrated. This work uses the 2D/1D transport code DeCART and the commercial CFD code STAR-CCM+. It builds on previous CASL work demonstrating coupling for smaller spatial domains. The coupling methodology is described along with the problem simulated and results are presented for fresh hot full power conditions. An additional comparison is made to an equivalent model that uses lower order T/H feedback to assess the importance and cost of high fidelity feedback to the neutronics problem. A simulation of a quarter core Combustion Engineering (CE) PWR core was performed with the coupled codes using a Fixed Point Gauss-Seidel iteration technique. The total approximate calculation requirements are nearly 10,000 CPU hours and 1 TB of memory. The problem took 6 coupled iterations to converge. The CFD coupled model and low order T/H feedback model compared well for global solution parameters, with a difference in the critical boron concentration and average outlet temperature of 14 ppm B and 0.94 deg. C, respectively. Differences in the power distribution were more significant with maximum relative differences in the core-wide pin peaking factor (Fq) of 5.37% and average relative differences in flat flux region power of 11.54%. Future work will focus on analyzing problems more relevant to CASL using models with less approximations. (authors)

  6. Radiation transport codes for potential applications related to radiobiology and radiotherapy using protons, neutrons, and negatively charged pions

    NASA Technical Reports Server (NTRS)

    Armstrong, T. W.

    1972-01-01

    Several Monte Carlo radiation transport computer codes are used to predict quantities of interest in the fields of radiotherapy and radiobiology. The calculational methods are described and comparisions of calculated and experimental results are presented for dose distributions produced by protons, neutrons, and negatively charged pions. Comparisons of calculated and experimental cell survival probabilities are also presented.

  7. Transport realization of high resolution fossil fuel CO2 emissions in an urban domain

    NASA Astrophysics Data System (ADS)

    Zhou, Y.; Gurney, K. R.

    2010-12-01

    CO2 emissions from fossil fuel combustion are the largest net annual flux of carbon in the earth atmosphere system and energy consumption in urban environments is a major contributor to total fossil fuel CO2 emissions. Understanding how the emissions are transported in space and time, especially in urban environments and resolving contributions from individual sources of fossil-fuel CO2 emissions are an essential component of a complete reliable monitoring, reporting, and verification (MRV) system that are emerging at local, national, and international levels. As grid models are not designed to resolve concentrations on local scales, we tested the transport realization of fossil fuel CO2 emissions using the Hybrid Single Particle Lagrangian Integrated Trajectory Model (HYSPLIT) model, a commonly used transport algorithm for small domain air quality studies, in the greater Indianapolis region, USA. A typical 24-hour point, mobile, and area sources fossil fuel CO2 emissions in four seasons (spring, summer, autumn and winter) were processed from hourly emissions data and prepared at 500-meter spatial resolution for the model inputs together with other parameters. The simulation result provides a complete 4-dimensional concentration matrix transported from all sources for the urban domain which can be analyzed in order to isolate individual sources or test sampling strategies for verification at selected time periods. In addition, the urban 4-dimensional concentration matrix can be visualized in a virtual environment, which provides a powerful education and outreach platform for researchers, students, and public.

  8. High resolution model studies of transport of sedimentary material in the south-western Baltic

    NASA Astrophysics Data System (ADS)

    Seifert, Torsten; Fennel, Wolfgang; Kuhrts, Christiane

    2009-02-01

    The paper presents high resolution model simulations of transport, deposition and resuspension of sedimentary material in the south-western Baltic, based on an upgrade of the sediment transport model described in the work of Kuhrts et al. [Kuhrts, C., Fennel, W., Seifert, T., 2004. Model studies of transport of sedimentary material in the Western Baltic. Journal of Marine Systems 52, 167.]. In the western Baltic, a grid spacing of at least 1 nautical mile is required to resolve the shallow and narrow bathymetry and the associated current patterns. A series of experimental model simulations is carried out with forcing data for the year 1993, which include a sequence of storms in January. Compared to earlier model versions, a more detailed description of potential deposition areas can be provided. The study quantifies the influence of enhanced bottom roughness caused by biological structures, like mussels and worm holes, provides estimates of the regional erosion risks for fine grained sediments, and analyses scenarios of the settling and spreading of material at dumping sites. Although the effects of changed bottom roughness, as derived from more detailed, re-classified sea floor data, are relatively small, the sediment transport and deposition patterns are clearly affected by the variation of the sea bed properties.

  9. Improved Edge Directed Super-Resolution (EDSR) with hardware realization for surveillance, transportation, and multimedia applications

    NASA Astrophysics Data System (ADS)

    Wang, Yue; de Lima, Osborn; Saber, Eli; Bengtson, Kurt R.

    2014-03-01

    In this paper, we present an improved Edge Directed Super Resolution (EDSR) technique to produce enhanced edge definition and improved image quality in the resulting high resolution image. The basic premise behind this algorithm remains, like its predecessor, to utilize gradient and spatial information and interpolate along the edge direction in a multiple pass iterative fashion. The edge direction map generated from horizontal and vertical gradients and resized to the target resolution is quantized into eight directions over a 5 × 5 block compared to four directions over a 3 × 3 block in the previous algorithm. This helps reduce the noise caused in part due to the quantization error and the super resolved results are significantly improved. In addition, an appropriate weighting encompassing the degree of similarity between the quantized edge direction and the actual edge direction is also introduced. In an attempt to determine the optimal super resolution parameters for the case of still image capture, a hardware setup was utilized to investigate and evaluate those factors. In particular, the number of images captured as well as the amount of sub pixel displacement that yield a high quality result was studied. This is done by utilizing a XY stage capable of sub-pixel movement. Finally, an edge preserving smoothing algorithm contributes to improved results by reducing the high frequency noise introduced by the super resolution process. The algorithm showed favorable results on a wide variety of datasets obtained from transportation to multimedia based print/scan application in addition to images captured with the aforementioned hardware setup.

  10. MCNP: a general Monte Carlo code for neutron and photon transport

    SciTech Connect

    Forster, R.A.; Godfrey, T.N.K.

    1985-01-01

    MCNP is a very general Monte Carlo neutron photon transport code system with approximately 250 person years of Group X-6 code development invested. It is extremely portable, user-oriented, and a true production code as it is used about 60 Cray hours per month by about 150 Los Alamos users. It has as its data base the best cross-section evaluations available. MCNP contains state-of-the-art traditional and adaptive Monte Carlo techniques to be applied to the solution of an ever-increasing number of problems. Excellent user-oriented documentation is available for all facets of the MCNP code system. Many useful and important variants of MCNP exist for special applications. The Radiation Shielding Information Center (RSIC) in Oak Ridge, Tennessee is the contact point for worldwide MCNP code and documentation distribution. A much improved MCNP Version 3A will be available in the fall of 1985, along with new and improved documentation. Future directions in MCNP development will change the meaning of MCNP to Monte Carlo N Particle where N particle varieties will be transported.