Science.gov

Sample records for neutron-based non-destructive assessment

  1. Non-destructive methods for food texture assessment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Food texture is important to the successful marketing and profitability of food products. Non-destructive sensing would allow food producers and processors to inspect, sort, grade, or track individual product items, so that they can deliver consistent, superior food products to the marketplace. Over...

  2. Application of non-destructive techniques to assess the state of Hagia Sophia's mosaics

    NASA Astrophysics Data System (ADS)

    Moropoulou, Antonia; Karoglou, Maria; Labropoulos, Kyriakos C.; Delegou, Ekaterini T.; Katsiotis, Nikolaos K.; Karagiannis-Bakolas, Asterios

    2012-04-01

    The church of Hagia Sophia in Istanbul is a world heritage monument that epitomizes the byzantine ecclesiastic architecture. The church is decorated with mosaics from various historic periods. The preservation state of the mosaics is of high importance. In this study, non-destructive techniques (ground penetrating radar, infra-red thermography, fibreoptics microscopy) were employed on south upper gallery mosaic areas. The main aim of this on-site investigation was the evaluation of the preservation state of the mosaics and the previous interventions (materials characterization and decay diagnosis) in order to assess the performance of previous conservation/restoration interventions, as well as to verify the presence of mosaics in layers below the external plaster surfaces. Results indicated that is indeed possible to locate the grid of rendered mosaics. Regarding the preservation state of the mosaics, it was indicated that the main environmental decay factors were the high relative humidity levels with co-action of salt damp as well as the air pollutants. Moreover, it was revealed that previous incompatible restoration/conservation interventions have often accelerated the mosaics' degradation processes. Using non-destructive techniques it was possible to identify areas where the mosaic materials (tesserae and mortars) presented decay problems and in addition identify sub-layers that pose risk of detachment or decay intensification. In this way, NDT can contribute to the development of a strategic planning for mosaics conservation, protection and revealing.

  3. Rapid non-destructive assessment of pork edible quality by using VIS/NIR spectroscopic technique

    NASA Astrophysics Data System (ADS)

    Zhang, Leilei; Peng, Yankun; Dhakal, Sagar; Song, Yulin; Zhao, Juan; Zhao, Songwei

    2013-05-01

    The objectives of this research were to develop a rapid non-destructive method to evaluate the edible quality of chilled pork. A total of 42 samples were packed in seal plastic bags and stored at 4°C for 1 to 21 days. Reflectance spectra were collected from visible/near-infrared spectroscopy system in the range of 400nm to 1100nm. Microbiological, physicochemical and organoleptic characteristics such as the total viable counts (TVC), total volatile basic-nitrogen (TVB-N), pH value and color parameters L* were determined to appraise pork edible quality. Savitzky-Golay (SG) based on five and eleven smoothing points, Multiple Scattering Correlation (MSC) and first derivative pre-processing methods were employed to eliminate the spectra noise. The support vector machines (SVM) and partial least square regression (PLSR) were applied to establish prediction models using the de-noised spectra. A linear correlation was developed between the VIS/NIR spectroscopy and parameters such as TVC, TVB-N, pH and color parameter L* indexes, which could gain prediction results with Rv of 0.931, 0.844, 0.805 and 0.852, respectively. The results demonstrated that VIS/NIR spectroscopy technique combined with SVM possesses a powerful assessment capability. It can provide a potential tool for detecting pork edible quality rapidly and non-destructively.

  4. Development of vibrational spectroscopic methods to rapidly and non-destructively assess quality of chicken breast meat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Development of Vibrational Spectroscopic Methods to Rapidly and Non-Destructively Assess Quality of Chicken Breast Meat H. Zhuang1, M. Sohn2, S. Trabelsi1 and K. Lawrence1 1Quality and Safety Assessment Research Unit, ARS-USDA, 950 College Station Road, Athens, GA 30605 2University of Georgia, De...

  5. Numerical study of light propagation in agricultural products for non-destructive assessment of food quality

    NASA Astrophysics Data System (ADS)

    Hattori, Kiyohito; Fujii, Hiroyuki; Tatekura, Yuki; Kobayashi, Kazumichi; Watanabe, Masao

    2015-12-01

    An accurate determination of optical properties of agricultural products is crucial for non-destructive assessment of food quality. For the determination, light intensity is measured at the surface of the product; then, inverse analysis is employed based on a light propagation model such as the radiative transfer equation (RTE). The inverse analysis requires high computational loads because the light intensity is numerically calculated using the model every time the optical properties are changed. For the calculation, we propose an efficient technique by combining a numerical solution with an analytical solution of the RTE, and investigate the validity of the technique in a two-dimensional homogeneous circular medium which is regarded as a light propagation model with optical properties of kiwifruit. The proposed technique can provide accurate results of the light intensity in change of the optical properties, and the accuracy is less dependent on the boundary conditions and source-detector angles. In addition, the technique can reduce computation time compared with that for numerical calculation of the RTE. These results indicate usefulness of the proposed technique for the inverse analysis.

  6. Non-destructive assessment of mechanical properties of microcrystalline cellulose compacts.

    PubMed

    Palomäki, Emmi; Ehlers, Henrik; Antikainen, Osmo; Sandler, Niklas; Yliruusi, Jouko

    2015-11-30

    In the present study the mechanical properties of microcrystalline cellulose compacts compressed were studied. The resistance to crushing was tested using diametral compression testing and apparent Young's modulus was determined using consecutive uniaxial compression of the full cross-sectional area of single tablets. As non-elastic deformation during the first compression cycle and reverse plasticity were discovered, the loading phase of the second compression cycle was used to determine Young's modulus. The relative standard deviation of 10 consecutive measurements was 3.6%. The results indicate a direct correlation between crushing strength and Young's modulus, which found further support when comparing surface roughness data and radial recovery of the tablets to Young's modulus. The extrapolated elastic modulus at zero-porosity was found to be 1.80±0.08 GPa, which is slightly lower than previously reported values, confirming the complexity of measuring the elastic properties of microcrystalline cellulose compacts. The method can be used for non-destructive assessment of mechanical properties of powder compacts for example during storage studies. PMID:26410756

  7. Non-destructive assessment of Hot Mix Asphalt density with a Step Frequency Radar - Case study

    NASA Astrophysics Data System (ADS)

    Fauchard, Cyrille; Beaucamp, Bruno

    2013-04-01

    The density of Hot Mix Asphalt (HMA) layers is a key parameter for assessing newly paved roads. It allows the quality control and ensures the time performance of the road layers. The standard methods for measuring the in-place HMA density are destructive and based on cores testing. Knowing the specific gravity of the HMA (data provided by builder), the bulk density can be determined in the laboratory either by weighting cores methods or by measuring the absorption ratio of gamma rays through road samples. Non destructive (ND) methods are highly needed in order to gain time and to avoid the strong constraints due to the nuclear gauges use. The Step Frequency Radar (SFR) is an electromagnetic method based on wave propagation in matter, similar in its principle to the Ground Penetrating Radar (GPR). It can use wide band and higher frequencies than GPR, allowing a thinner spatial resolution, but with a lower speed of acquisition. It is used in the present work as a tool providing the dielectric constant of HMA. Recent results in the laboratory have shown that the density can be relied on HMA dielectric constant with the use of a dielectric model (Complex Refractive Index model, or CRI model) taking into account the volume concentration and the dielectric constant of each HMA component. In this approach, the knowledge of the rock dielectric constant that composes the main part of HMA is required. If not, the in-place measurements can be calibrated according to one or more core drillings and the previous approach is still available. The main objective of this paper is to apply the methodology developed in the laboratory on a new HMA layer (case study located on A13 highway, nearby the city of Cagny, Normandie, France) for assessing the HMA density. The SFR system is composed of a vector network analyser sweeping a large frequency band [1.4 GHz - 20 GHz] and an ultra wide band antenna placed above the HMA surface. The whole system is pc-controlled and embedded in a

  8. Neural network and principal component regression in non-destructive soluble solids content assessment: a comparison.

    PubMed

    Chia, Kim-seng; Abdul Rahim, Herlina; Abdul Rahim, Ruzairi

    2012-02-01

    Visible and near infrared spectroscopy is a non-destructive, green, and rapid technology that can be utilized to estimate the components of interest without conditioning it, as compared with classical analytical methods. The objective of this paper is to compare the performance of artificial neural network (ANN) (a nonlinear model) and principal component regression (PCR) (a linear model) based on visible and shortwave near infrared (VIS-SWNIR) (400-1000 nm) spectra in the non-destructive soluble solids content measurement of an apple. First, we used multiplicative scattering correction to pre-process the spectral data. Second, PCR was applied to estimate the optimal number of input variables. Third, the input variables with an optimal amount were used as the inputs of both multiple linear regression and ANN models. The initial weights and the number of hidden neurons were adjusted to optimize the performance of ANN. Findings suggest that the predictive performance of ANN with two hidden neurons outperforms that of PCR. PMID:22302428

  9. Neural network and principal component regression in non-destructive soluble solids content assessment: a comparison*

    PubMed Central

    Chia, Kim-seng; Abdul Rahim, Herlina; Abdul Rahim, Ruzairi

    2012-01-01

    Visible and near infrared spectroscopy is a non-destructive, green, and rapid technology that can be utilized to estimate the components of interest without conditioning it, as compared with classical analytical methods. The objective of this paper is to compare the performance of artificial neural network (ANN) (a nonlinear model) and principal component regression (PCR) (a linear model) based on visible and shortwave near infrared (VIS-SWNIR) (400–1000 nm) spectra in the non-destructive soluble solids content measurement of an apple. First, we used multiplicative scattering correction to pre-process the spectral data. Second, PCR was applied to estimate the optimal number of input variables. Third, the input variables with an optimal amount were used as the inputs of both multiple linear regression and ANN models. The initial weights and the number of hidden neurons were adjusted to optimize the performance of ANN. Findings suggest that the predictive performance of ANN with two hidden neurons outperforms that of PCR. PMID:22302428

  10. Recent advances in rapid and non-destructive assessment of meat quality using hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Tao, Feifei; Ngadi, Michael

    2016-05-01

    Meat is an important food item in human diet. Its production and consumption has greatly increased in the last decades with the development of economies and improvement of peoples' living standards. However, most of the traditional methods for evaluation of meat quality are time-consuming, laborious, inconsistent and destructive to samples, which make them not appropriate for a fast-paced production and processing environment. Development of innovative and non-destructive optical sensing techniques to facilitate simple, fast, and accurate evaluation of quality are attracting increasing attention in the food industry. Hyperspectral imaging is one of the promising techniques. It integrates the combined merits of imaging and spectroscopic techniques. This paper provides a comprehensive review on recent advances in evaluation of the important quality attributes of meat including color, marbling, tenderness, pH, water holding capacity, and also chemical composition attributes such as moisture content, protein content and fat content in pork, beef and lamb. In addition, the future potential applications and trends of hyperspectral imaging are also discussed in this paper.

  11. Assessment of the non-destructive nature of PASD on wire insulation integrity.

    SciTech Connect

    Lockner, Thomas Ramsbeck; Peña, Gary Edward; Schneider, Larry X.; Higgins, Matthew B.; Glover, Steven Frank

    2003-09-01

    The potential of a new cable diagnostic known as Pulse-Arrested Spark Discharge technique (PASD) is being studied. Previous reports have documented the capability of the technique to locate cable failures using a short high voltage pulse. This report will investigate the impact of PASD on the sample under test. In this report, two different energy deposition experiments are discussed. These experiments include the PASD pulse ({approx}6 mJ) and a high energy discharge ({approx}600 mJ) produced from a charged capacitor source. The high energy experiment is used to inflict detectable damage upon the insulators and to make comparisons with the effects of the low energy PASD pulse. Insulator breakdown voltage strength before and after application of the PASD pulse and high energy discharges are compared. Results indicate that the PASD technique does not appear to degrade the breakdown strength of the insulator or to produce visible damage. However, testing of the additional materials, including connector insulators, may be warranted to verify PASDs non-destructive nature across the full spectrum of insulators used in commercial aircraft wiring systems.

  12. Spatial distribution pattern analysis of subtidal macroalgae assemblages by a non-destructive rapid assessment method

    NASA Astrophysics Data System (ADS)

    Guinda, Xabier; Juanes, José Antonio; Puente, Araceli; Echavarri-Erasun, Beatriz

    2012-01-01

    The extensive field work carried out over the last century has allowed the worldwide description of general distribution patterns and specific composition of rocky intertidal communities. However, the information concerning subtidal communities on hard substrates is more recent and scarce due to the difficulties associated with working in such environments. In this work, a non-destructive method is applied to the study and mapping of subtidal rocky bottom macroalgae assemblages on the coast of Cantabria (N Spain) which is quick, easy and economical. Gelidium corneum and Cystoseira baccata were the dominant species, however, the composition and coverage of macroalgae assemblages varied significantly at different locations and depth ranges. The high presence of Laminaria ochroleuca and Saccorhiza polyschides, characteristic of colder waters, shows the transitional character of this coastal area. The results obtained throughout this study have been very useful to the application of the European Water Framework Directive (WFD 2000/60/EC) and could be of great interest for the future conservation and management of these ecosystems (e.g. Habitats Directive 92/43/EEC).

  13. Non-destructive assessment of the Ancient 'Tholos Acharnon' Tomb building geometry

    NASA Astrophysics Data System (ADS)

    Santos-Assunçao, Sonia; Dimitriadis, Klisthenis; Konstantakis, Yiannis; Pérez-Gracia, Vega; Anagnostopoulou, Eirini; Solla, Mercedes; Lorenzo, Henrique

    2014-05-01

    Ancient Greek Monuments are considered glorious buildings that still remain on the modern times. Tombs were specifically built according to the architecture of respective epoch. Hence, the main function was to royal families in Greece and other countries. The lack of systematic preservation could promote the damage of the structure. Therefore, a correct maintenance can diminish the impact of the main causes of pathologies. Schist, limestone and sandstone have been the main geological building materials of the Greek Ancient tombs. In order to preserve several of these monumental tombs, in depth non-destructive evaluation by means of Ground-penetrating radar (GPR) is proposed in a scientific mission with partners from Greece and Spain surveying with the 1 GHz and 2.3 GHz antennas. High frequency antennas are able to identify small size cracks or voids. Grandjean et al. [1] used the 300 MHz and 900 MHz antennas, obtaining 2 cm and 5 cm of resolution. Later on, Faize et al. [2] employed a 2.3 GHz antenna to detect anomalies and create a pathological model. The structure of this Mycenaean Tomb (14th - 13th c. BC) is composed by a corridor which is supported by irregular stones and the inner is 8.74 m high and 8.35 m diameter. The surface of the wall is composed by diverse geological materials of irregular shapes that enhance the GPR acquisition difficulty: 1) Passing the GPR antenna in a waved surface may randomly change the directivity of the emission. 2) The roof of the tomb is described by a pseudo-conical form with a decreasing radio for higher levels, with a particular beehive. If the roof of the Tomb is defined by a decreasing radius, innovative processes must be carried out with GPR to non constant radius structures. With GPR, the objective is to define the wall thickness, voids and/or cracks detection as well as other structural heterogeneities. Therefore, the aim is to create a three dimensional model based in the interpolation of the circular profiles. Three

  14. Risk assessment of turbine rotor failure using probabilistic ultrasonic non-destructive evaluations

    SciTech Connect

    Guan, Xuefei; Zhang, Jingdan; Zhou, S. Kevin; Rasselkorde, El Mahjoub; Abbasi, Waheed A.

    2014-02-18

    The study presents a method and application of risk assessment methodology for turbine rotor fatigue failure using probabilistic ultrasonic nondestructive evaluations. A rigorous probabilistic modeling for ultrasonic flaw sizing is developed by incorporating the model-assisted probability of detection, and the probability density function (PDF) of the actual flaw size is derived. Two general scenarios, namely the ultrasonic inspection with an identified flaw indication and the ultrasonic inspection without flaw indication, are considered in the derivation. To perform estimations for fatigue reliability and remaining useful life, uncertainties from ultrasonic flaw sizing and fatigue model parameters are systematically included and quantified. The model parameter PDF is estimated using Bayesian parameter estimation and actual fatigue testing data. The overall method is demonstrated using a realistic application of steam turbine rotor, and the risk analysis under given safety criteria is provided to support maintenance planning.

  15. Risk assessment of turbine rotor failure using probabilistic ultrasonic non-destructive evaluations

    NASA Astrophysics Data System (ADS)

    Guan, Xuefei; Zhang, Jingdan; Zhou, S. Kevin; Rasselkorde, El Mahjoub; Abbasi, Waheed A.

    2014-02-01

    The study presents a method and application of risk assessment methodology for turbine rotor fatigue failure using probabilistic ultrasonic nondestructive evaluations. A rigorous probabilistic modeling for ultrasonic flaw sizing is developed by incorporating the model-assisted probability of detection, and the probability density function (PDF) of the actual flaw size is derived. Two general scenarios, namely the ultrasonic inspection with an identified flaw indication and the ultrasonic inspection without flaw indication, are considered in the derivation. To perform estimations for fatigue reliability and remaining useful life, uncertainties from ultrasonic flaw sizing and fatigue model parameters are systematically included and quantified. The model parameter PDF is estimated using Bayesian parameter estimation and actual fatigue testing data. The overall method is demonstrated using a realistic application of steam turbine rotor, and the risk analysis under given safety criteria is provided to support maintenance planning.

  16. A Comparison of Neutron-Based Non-Destructive Assessment Methods for Chemical Warfare Material and High Explosives

    SciTech Connect

    Seabury, E. H.; Chichester, D. L.; Wharton, C. J.; Caffrey, A. J.

    2009-03-10

    Prompt Gamma Neutron Activation Analysis (PGNAA) systems employ neutrons as a probe to interrogate items, e.g. chemical warfare materiel-filled munitions. The choice of a neutron source in field-portable systems is determined by its ability to excite nuclei of interest, operational concerns such as radiological safety and ease-of-use, and cost. Idaho National Laboratory's PINS Chemical Assay System has traditionally used a {sup 252}Cf isotopic neutron source, but recently a deuterium-tritium (DT) electronic neutron generator (ENG) has been tested as an alternate neutron source. This paper presents the results of using both of these neutron sources to interrogate chemical warfare materiel (CWM) and high explosive (HE) filled munitions.

  17. A Comparison of Neutron-Based Non-Destructive Assessment Methods for Chemical Warfare Materiel and High Explosives

    SciTech Connect

    E.H. Seabury; D.L. Chichester; C.J. Wharton; A.J. Caffrey

    2008-08-01

    Prompt Gamma Neutron Activation Analysis (PGNAA) systems employ neutrons as a probe to interrogate items, e.g. chemical warfare materiel-filled munitions. The choice of a neutron source in field-portable systems is determined by its ability to excite nuclei of interest, operational concerns such as radiological safety and ease-of-use, and cost. Idaho National Laboratory’s PINS Chemical Assay System has traditionally used a Cf-252 isotopic neutron source, but recently a Deuterium-Tritium (DT) Electronic Neutron Generator (ENG) has been tested as an alternate neutron source. This paper presents the results of using both of these neutron sources to interrogate chemical warfare materiel (CWM) and high explosive (HE) filled munitions.

  18. A Comparison of Neutron-Based Non-Destructive Assessment Methods for Chemical Warfare Materiel and High Explosives

    NASA Astrophysics Data System (ADS)

    Seabury, E. H.; Chichester, D. L.; Wharton, C. J.; Caffrey, A. J.

    2009-03-01

    Prompt Gamma Neutron Activation Analysis (PGNAA) systems employ neutrons as a probe to interrogate items, e.g. chemical warfare materiel-filled munitions. The choice of a neutron source in field-portable systems is determined by its ability to excite nuclei of interest, operational concerns such as radiological safety and ease-of-use, and cost. Idaho National Laboratory's PINS Chemical Assay System has traditionally used a 252Cf isotopic neutron source, but recently a deuterium-tritium (DT) electronic neutron generator (ENG) has been tested as an alternate neutron source. This paper presents the results of using both of these neutron sources to interrogate chemical warfare materiel (CWM) and high explosive (HE) filled munitions.

  19. Applications of Non-destructive methods (GPR and 3D Laser Scanner) in Historic Masonry Arch Bridge Assessment

    NASA Astrophysics Data System (ADS)

    Alani, Amir; Banks, Kevin

    2014-05-01

    There exist approximately 70,000 masonry arch bridge spans (brick and stone) in the UK with tens of thousands more throughout Europe. A significant number of these bridges are still in operation and form part of the road and rail network systems in many countries. A great majority of these bridges are in desperate need of repair and maintenance. Applications of non-destructive testing methods such as ground penetrating radar (GPR), 3D laser scanning, accelerometer sensors and vibration detecting sensors amongst many others have been used to assess and monitor such structures in the past few years. This presentation provides results of the applications of a 2GHz GPR antenna system and a 3D laser scanner on a historic masonry arch bridge (the Old Bridge, Aylesford) located in Kent, in the south east of England. The older part of the bridge (the mid-span) is 860 years old. The bridge was the subject of a major alteration in 1811. This presentation forms part of a larger ongoing study which is using the two above mentioned non-destructive methods for long-term monitoring of the bridge. The adopted survey planning strategy and technique, data acquisition and processing as well as challenges encountered during actual survey and fieldworks have been discussed in this presentation. As a result of this study the position of different layers of the deck structure has been established with the identification of the original stone base of the bridge. This information in addition to the location of a number of structural ties (anchors - remedial work carried out previously) in the absence of reliable and accurate design details proved to be extremely useful for the modelling of the bridge using the finite element method. Results of the 3D laser scanning of the bridge have also been presented which have provided invaluable data essential for the accurate modelling of the bridge as well as the long term monitoring of the bridge. 2014 EGU-GA GI3.1 Session, organised by COST Action

  20. Monte Carlo uncertainty assessment of ultrasonic beam parameters from immersion transducers used to non-destructive testing.

    PubMed

    Alvarenga, A V; Silva, C E R; Costa-Félix, R P B

    2016-07-01

    The uncertainty of ultrasonic beam parameters from non-destructive testing immersion probes was evaluated using the Guide to the expression of uncertainty in measurement (GUM) uncertainty framework and Monte Carlo Method simulation. The calculated parameters such as focal distance, focal length, focal widths and beam divergence were determined according to EN 12668-2. The typical system configuration used during the mapping acquisition comprises a personal computer connected to an oscilloscope, a signal generator, axes movement controllers, and a water bath. The positioning system allows moving the transducer (or hydrophone) in the water bath. To integrate all system components, a program was developed to allow controlling all the axes, acquire waterborne signals, and calculate essential parameters to assess and calibrate US transducers. All parameters were calculated directly from the raster scans of axial and transversal beam profiles, except beam divergence. Hence, the positioning system resolution and the step size are principal source of uncertainty. Monte Carlo Method simulations were performed by another program that generates pseudo-random samples for the distributions of the involved quantities. In all cases, there were found statistical differences between Monte Carlo and GUM methods. PMID:27107164

  1. A new optical leaf-clip meter for simultaneous non-destructive assessment of leaf chlorophyll and epidermal flavonoids.

    PubMed

    Cerovic, Zoran G; Masdoumier, Guillaume; Ghozlen, Naïma Ben; Latouche, Gwendal

    2012-11-01

    We have characterized a new commercial chlorophyll (Chl) and flavonoid (Flav) meter called Dualex 4 Scientific (Dx4). We compared this device to two other Chl meters, the SPAD-502 and the CCM-200. In addition, Dx4 was compared to the leaf-clip Dualex 3 that measures only epidermal Flav. Dx4 is factory-calibrated to provide a linear response to increasing leaf Chl content in units of µg cm(-2), as opposed to both SPAD-502 and CCM-200 that have a non-linear response to leaf Chl content. Our comparative calibration by Chl extraction confirmed these responses. It seems that the linear response of Dx4 derives from the use of 710 nm as the sampling wavelength for transmittance. The major advantage of Dx4 is its simultaneous assessment of Chl and Flav on the same leaf spot. This allows the generation of the nitrogen balance index (NBI) used for crop surveys and nitrogen nutrition management. The Dx4 leaf clip, that incorporates a GPS receiver, can be useful for non-destructive estimation of leaf Chl and Flav contents for ecophysiological research and ground truthing of remote sensing of vegetation. In this work, we also propose a consensus equation for the transformation of SPAD units into leaf Chl content, for general use. PMID:22568678

  2. A new optical leaf-clip meter for simultaneous non-destructive assessment of leaf chlorophyll and epidermal flavonoids

    PubMed Central

    Cerovic, Zoran G; Masdoumier, Guillaume; Ghozlen, NaÏma Ben; Latouche, Gwendal

    2012-01-01

    We have characterized a new commercial chlorophyll (Chl) and flavonoid (Flav) meter called Dualex 4 Scientific (Dx4). We compared this device to two other Chl meters, the SPAD-502 and the CCM-200. In addition, Dx4 was compared to the leaf-clip Dualex 3 that measures only epidermal Flav. Dx4 is factory-calibrated to provide a linear response to increasing leaf Chl content in units of µg cm–2, as opposed to both SPAD-502 and CCM-200 that have a non-linear response to leaf Chl content. Our comparative calibration by Chl extraction confirmed these responses. It seems that the linear response of Dx4 derives from the use of 710 nm as the sampling wavelength for transmittance. The major advantage of Dx4 is its simultaneous assessment of Chl and Flav on the same leaf spot. This allows the generation of the nitrogen balance index (NBI) used for crop surveys and nitrogen nutrition management. The Dx4 leaf clip, that incorporates a GPS receiver, can be useful for non-destructive estimation of leaf Chl and Flav contents for ecophysiological research and ground truthing of remote sensing of vegetation. In this work, we also propose a consensus equation for the transformation of SPAD units into leaf Chl content, for general use. PMID:22568678

  3. Non-destructive testing on aramid fibres for the long-term assessment of interventions on heritage structures

    NASA Astrophysics Data System (ADS)

    Ceravolo, R.; De Marchi, A.; Pinotti, E.; Surace, C.; Zanotti Fragonara, L.

    2015-07-01

    High strength fibre reinforced polymers (FRPs) are composite materials made of fibres such as carbon, aramid and/or glass, and a resin matrix. FRPs are commonly used for structural repair and strengthening interventions and exhibit high potential for applications to existing constructions, including heritage buildings. In regard to aramid fibres, uncertainties about the long-term behaviour of these materials have often made the designers reluctant to use them in structural engineering. The present study describes simple and non-destructive nonlinearity tests for assessing damage or degradation of structural properties in Kevlar fibres. This was obtained by using high precision measurements to detect small deviations in the dynamic response measured on fibres and ropes. The change in dynamic properties was then related to a damage produced by exposure of the sample to UV rays for a defined time period, which simulated long-term sun exposure. In order to investigate the sensitivity of such an approach to damage detection, non-linearity characterisation tests were conducted on aramid fibres in both damaged and undamaged states. With the purpose of carrying out dynamic tests on small fibre specimens, a dedicated instrumentation was designed and built in cooperation with the Metrology Laboratory of the Department of Electronics at the Politecnico di Torino.

  4. Integrated non-destructive assessment of relevant structural elements of an Italian heritage site: the Carthusian monastery of Trisulti

    NASA Astrophysics Data System (ADS)

    Rainieri, C.; Marra, A.; Rainieri, G. M.; Gargaro, D.; Pepe, M.; Fabbrocino, G.

    2015-07-01

    The analysis of historical structures in need of preservation and restoration interventions is a very complex task due to the large uncertainties in the characterization of structural properties and detailing in view of the structural response. Moreover, the predictive performance of numerical analyses and simulations depend on the availability of information about the constructional properties of the architectural complex, crack patterns and active degradation phenomena. In particular, local changes in material properties or damage due to past events (such as earthquakes) can affect individual structural elements. They can be hardly detected as a result of the maintenance interventions carried out over the centuries and the possibility to carry out limited or even no destructive investigations due to the historical relevance of the structure. Thus, non-destructive investigations play a fundamental role in the assessment of historical structures minimizing, at the same time, the invasiveness of interventions. The present paper deals with an explanatory case study concerning the structural investigations carried out in view of the seismic assessment of an Italian historical monument, the Carthusian monastery of Trisulti in Collepardo, erected in 1204 under Pope Innocenzo HI. The relevance of the case study is due to the application, in combination, of different NDT methods, such as sonic tests, and active and passive infrared thermography, in order to characterize relevant masonry elements. Moreover, an advanced system for the in-situ nondestructive vibration-based estimation of the tensile loads in ancient tie-rods is described and the main results obtained from its application for the characterization of the tie-rods of the cloister are presented.

  5. Characterization and Source Term Assessments of Radioactive Particles from Marshall Islands Using Non-Destructive Analytical Techniques

    SciTech Connect

    Jernstrom, J; Eriksson, M; Simon, R; Tamborini, G; Bildstein, O; Carlos-Marquez, R; Kehl, S R; Betti, M; Hamilton, T

    2005-06-11

    A considerable fraction of radioactivity entering the environment from different nuclear events is associated with particles. The impact of these events can only be fully assessed where there is some knowledge about the mobility of particle bound radionuclides entering the environment. The behavior of particulate radionuclides is dependent on several factors, including the physical, chemical and redox state of the environment, the characteristics of the particles (e.g., the chemical composition, crystallinity and particle size) and on the oxidative state of radionuclides contained in the particles. Six plutonium-containing particles stemming from Runit Island soil (Marshall Islands) were characterized using non-destructive analytical and microanalytical methods. By determining the activity of {sup 239,240}Pu and {sup 241}Am isotopes from their gamma peaks structural information related to Pu matrix was obtained, and the source term was revealed. Composition and elemental distribution in the particles were studied with synchrotron radiation based micro X-ray fluorescence (SR-{mu}-XRF) spectrometry. Scanning electron microscope equipped with energy dispersive X-ray detector (SEMEDX) and secondary ion mass spectrometer (SIMS) were used to examine particle surfaces. Based on the elemental composition the particles were divided into two groups; particles with plain Pu matrix, and particles where the plutonium is included in Si/O-rich matrix being more heterogeneously distributed. All of the particles were identified as fragments of initial weapons material. As containing plutonium with low {sup 240}Pu/{sup 239}Pu atomic ratio, {approx}2-6%, which corresponds to weapons grade plutonium, the source term was identified to be among the safety tests conducted in the history of Runit Island.

  6. Characterization and source term assessments of radioactive particles from Marshall Islands using non-destructive analytical techniques

    NASA Astrophysics Data System (ADS)

    Jernström, J.; Eriksson, M.; Simon, R.; Tamborini, G.; Bildstein, O.; Marquez, R. Carlos; Kehl, S. R.; Hamilton, T. F.; Ranebo, Y.; Betti, M.

    2006-08-01

    Six plutonium-containing particles stemming from Runit Island soil (Marshall Islands) were characterized by non-destructive analytical and microanalytical methods. Composition and elemental distribution in the particles were studied with synchrotron radiation based micro X-ray fluorescence spectrometry. Scanning electron microscope equipped with energy dispersive X-ray detector and with wavelength dispersive system as well as a secondary ion mass spectrometer were used to examine particle surfaces. Based on the elemental composition the particles were divided into two groups: particles with pure Pu matrix, and particles where the plutonium is included in Si/O-rich matrix being more heterogenously distributed. All of the particles were identified as nuclear fuel fragments of exploded weapon components. As containing plutonium with low 240Pu/ 239Pu atomic ratio, less than 0.065, which corresponds to weapons-grade plutonium or a detonation with low fission yield, the particles were identified to originate from the safety test and low-yield tests conducted in the history of Runit Island. The Si/O-rich particles contained traces of 137Cs ( 239 + 240 Pu/ 137Cs activity ratio higher than 2500), which indicated that a minor fission process occurred during the explosion. The average 241Am/ 239Pu atomic ratio in the six particles was 3.7 × 10 - 3 ± 0.2 × 10 - 3 (February 2006), which indicated that plutonium in the different particles had similar age.

  7. A Non-destructive method to assess freshness of raw bovine milk using FT-NIR spectroscopy.

    PubMed

    Wang, Yanwen; Ding, Wu; Kou, Liping; Li, Liang; Wang, Chen; Jurick, Wayne M

    2015-08-01

    A non-destructive method to analyze the freshness of raw milk was developed using a FT-NIR spectrometer and a fiber optic probe. Diffuse transmittance spectra were acquired in the spectral range 833 ~ 2,500 nm from raw milk samples collected from Northwest A&F University Animal Husbandry Station. After each spectral acquisition, quality parameters such as acidity, pH, and lactose content were measured by traditional detection methods. For all milk samples, PLS (partial least square regression), MLR (multiple linear regression), and ANN (artificial neural networks) analyses were carried out in order to develop models to predict parameters that were indicative of freshness. Predictive models showed R(2) values up to 0.9647, 0.9876 and 0.8772 for acidity, pH, and lactose content, respectively (validation set validations). The similarity analysis and classification between raw milk freshness during storage was also conducted by means of hierarchical cluster analysis. Over an 8 day storage period, the highest heterogeneity was evident between days 1 and 2. PMID:26243957

  8. Biospectroscopy of Rhododendron indicum flowers. Non-destructive assessment of anthocyanins in petals using a reflectance-based method.

    PubMed

    Iriel, Analia; Lagorio, María Gabriela

    2009-03-01

    Reflectance spectra from pink petals of Rhododendron indicum flowers showed absorption in the NIR (1470, 1930 and 2500 nm) due to water, in the visible (533 nm, due to anthocyanins) and in the UV (broad absorption due to phenolic compounds other than anthocyanins). A linear correlation between the remission function at 533 nm and the anthocyanin content in micromol per g fresh weight has been found, allowing non-destructive quantification of anthocyanins. The remission function could be obtained either from reflectance of a group of stacked petals (Kubelka-Munk theory) or through determination of the absorption and scattering coefficients following the Pile of Plates model. The intact petals have shown fluorescence emission in the blue (400-500 nm) and in the visible around 624 nm under UV excitation. The red emission was attributed to anthocyanins whereas blue emission was assigned to other phenolic compounds. On the basis of absorption and fluorescence measurements of crude and purified extracts from the petals, the last compounds could possibly be a mixture of flavonoids and hydroxycinnamic-type plant phenolics such as ferulic acid, chlorogenic acid or others. PMID:19255674

  9. Assessment of herbicidal toxicity based on non-destructive measurement of local chlorophyll content in photoautotrophic hairy roots.

    PubMed

    Ninomiya, Kazuaki; Oogami, Yoshihiro; Kino-Oka, Masahiro; Taya, Masahito

    2003-01-01

    Changes in local chlorophyll (Chl) content in photoautotrophic hairy roots of pak-bung (Ipomoea aquatica) were evaluated at incident light intensities of I=11 and 22 W/m2 by non-destructive measurement of the pigment based on color image analysis. Upon addition of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), 1-1'-dimethyl-4,4'-bipyridylium dichloride (paraquat) and 2,4-dichlorophenoxyacetic acid (2,4-D) to the medium at the median effective concentrations (0.40, 0.37 and 0.45 micromol/dm3 for DCMU, paraquat and 2,4-D, respectively), the roots showed different Chl pigmentation responses when the Chl content was measured at longitudinal lengths of l0=2.5 mm (Chl accumulation position) and l(0)=35 mm (Chl saturation position) under light irradiation. Chl accumulation index (beta) and Chl degradation index (gamma) were determined from the changes in Chl content at l0=2.5 and 35 mm, respectively, during the cultures for 96 h: beta=0% (DCMU), 93.6% (paraquat) and 93.8% (2,4-D), and gamma=98.4% (DCMU), 282% (paraquat) and 86.5% (2,4-D) at I=22 W/m2. Moreover, the bioassay system with the hairy roots was applied to the evaluation of a model sample of field water. The values of beta and gamma for the field water were determined, respectively, to be 105% and 217% at I=22 W/m2, from which the field water tested was judged to be a "paraquat-like" toxicant against the roots. PMID:16233403

  10. Second derivative infrared spectroscopy as a non-destructive tool to assess the purity and structural integrity of proteins.

    PubMed

    Byler, D M; Wilson, R M; Randall, C S; Sokoloski, T D

    1995-03-01

    Second derivative infrared (IR) spectroscopy can be used as a quick, easy, reproducible, cost-effective, non-destructive tool by which to evaluate the purity and structural integrity of samples of water-soluble proteins from a variety of sources. For this study, second derivative IR spectra were collected at ambient conditions for aqueous (D2O) solutions of seven different commercial samples of the same enzyme, porcine pancreatic elastase (2.0 to 3.8 mg protein/100 microL D2O, pD = 5.4 to 9.1). As with other globular proteins possessing a large fraction of beta-structure, the amide I' region [1700-1620 cm-1] of the second derivative IR spectra for each of the seven elastase samples exhibits a characteristic pair of bands: one of weak intensity appears near 1684 cm-1; the other close to 1633 cm-1 is moderate-to-strong. However, one of the seven samples shows a striking decrease in the observed intensities of the amide I' bands relative to the 1516 cm-1 absorption, along with the appearance of a strong, new band at 1614 cm-1. These intensity disparities strongly suggest that this sample is of much lower quality than the others and clearly has an appreciable proportion of the protein present in a non-native state. In addition, minor differences evident in the position and relative intensity of some individual amide I' bands among the seven spectra imply that subtle variations exist in the conformation of the peptide backbone of the seven samples. For two of the samples, these small, but reproducible, changes seem to be correlated with marked losses of enzyme activity.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7617535

  11. Non-destructive assessment of the polarity of GaN nanowire ensembles using low-energy electron diffraction and x-ray photoelectron diffraction

    SciTech Connect

    Romanyuk, O. Jiříček, P.; Bartoš, I.; Fernández-Garrido, S.; Geelhaar, L.; Brandt, O.; Paskova, T.

    2015-01-12

    We investigate GaN nanowire ensembles spontaneously formed in plasma-assisted molecular beam epitaxy by non-destructive low-energy electron diffraction (LEED) and x-ray photoelectron diffraction (XPD). We show that GaN nanowire ensembles prepared on AlN-buffered 6H-SiC(0001{sup ¯}) substrates with well-defined N polarity exhibit similar LEED intensity-voltage curves and angular distribution of photo-emitted electrons as N-polar free-standing GaN layers. Therefore, as in the case of GaN layers, LEED and XPD are found to be suitable techniques to assess the polarity of GaN nanowire ensembles on a macroscopic scale. The analysis of GaN nanowire ensembles prepared on bare Si(111) allows us to conclude that, on this non-polar substrate, the majority of nanowires is also N-polar.

  12. Contrast-enhanced CT using a cationic contrast agent enables non-destructive assessment of the biochemical and biomechanical properties of mouse tibial plateau cartilage.

    PubMed

    Lakin, Benjamin A; Patel, Harsh; Holland, Conor; Freedman, Jonathan D; Shelofsky, Joshua S; Snyder, Brian D; Stok, Kathryn S; Grinstaff, Mark W

    2016-07-01

    Mouse models of osteoarthritis (OA) are commonly used to study the disease's pathogenesis and efficacy of potential treatments. However, measuring the biochemical and mechanical properties of articular cartilage in these models currently requires destructive and time-consuming histology and mechanical testing. Therefore, we examined the feasibility of using contrast-enhanced CT (CECT) to rapidly and non-destructively image and assess the glycosaminoglycan (GAG) content. Using three ex vivo C57BL/6 mouse tibial plateaus, we determined the time required for the cationic contrast agent CA4+ to equilibrate in the cartilage. The whole-joint coefficient of friction (μ) of 10 mouse knees (some digested with Chondroitenase ABC to introduce variation in GAG) was evaluated using a modified Stanton pendulum. For both the medial and lateral tibial plateau cartilage of these knees, linear regression was used to compare the equilibrium CECT attenuations to μ, as well as each side's indentation equilibrium modulus (E) and Safranin-O determined GAG content. CA4+ equilibrated in the cartilage in 30.9 ± 0.95 min (mean ± SD, tau value of 6.17 ± 0.19 min). The mean medial and lateral CECT attenuation was correlated with μ (R(2)  = 0.69, p < 0.05), and the individual medial and lateral CECT attenuations correlated with their respective GAG contents (R(2)  ≥ 0.63, p < 0.05) and E (R(2)  ≥ 0.63, p < 0.05). In conclusion, CECT using CA4+ is a simple, non-destructive technique for three-dimensional imaging of ex vivo mouse cartilage, and significant correlations between CECT attenuation and GAG, E, and μ are observed. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1130-1138, 2016. PMID:26697956

  13. Process analytical technology: non-destructive assessment of anastrozole entrapment within PLGA microparticles by near infrared spectroscopy and chemical imaging.

    PubMed

    Zidan, A S; Sammour, O A; Hammad, M A; Megrab, N A; Habib, M J; Khan, M A

    2008-05-01

    The objective of this study was to evaluate near-infrared (NIR) spectroscopy and imaging as approaches to assess anastrozole entrapment within PLGA microparticles. By varying the polymer concentration, three batches containing the same amount of the drug were prepared. The spectral features that allow NIR drug quantitation were evaluated and compared with a best fit line algorithm. Actual entrapment efficiencies (EEF) determined via a destructive method were used for construction of calibration models using partial least square regression (PLS) or the algorithm. On the other hand, a chemical imaging system based on array detector technology was used to rapidly collect high contrast NIR images of the formulated microparticles. A quantitative measure of anastrozole entrapped was determined by calculating the percentage standard deviation of the distribution of pixel intensities in the PLS score images and histograms. Concerning conventional NIR analysis, both methods were equivalent for the prediction of EEF over the range of polymer levels studied. Correlation coefficients of more than 0.992 were obtained for either the calibration or prediction of EEF by the two methods; 0.392% and 0.374% were the standard errors of calibration and prediction (SEC and SEP) obtained for the prediction of EEF using the fit line, respectively, whereas the prediction of the EEF by the partial least square regression showed a SEC of 0.195% and SEP of 0.179%. As a result, the spectral best fit algorithm method compared favourably to the multivariate PLS method, but was easier to develop. In contrast, NIR spectral imaging was capable of clearly differentiating the three batches, both qualitatively and quantitatively. The percentage standard deviation increased progressively by increasing the ratio of drug-to-polymer concentrations. In conclusion, both NIR approaches were capable of accurate assessment of drug entrapment within microparticles. In addition, the NIR spectral imaging system

  14. An Assessment of the Influence of the Industry Distribution Chain on the Oxygen Levels in Commercial Modified Atmosphere Packaged Cheddar Cheese Using Non-Destructive Oxygen Sensor Technology.

    PubMed

    O' Callaghan, Karen A M; Papkovsky, Dmitri B; Kerry, Joseph P

    2016-01-01

    The establishment and control of oxygen levels in packs of oxygen-sensitive food products such as cheese is imperative in order to maintain product quality over a determined shelf life. Oxygen sensors quantify oxygen concentrations within packaging using a reversible optical measurement process, and this non-destructive nature ensures the entire supply chain can be monitored and can assist in pinpointing negative issues pertaining to product packaging. This study was carried out in a commercial cheese packaging plant and involved the insertion of 768 sensors into 384 flow-wrapped cheese packs (two sensors per pack) that were flushed with 100% carbon dioxide prior to sealing. The cheese blocks were randomly assigned to two different storage groups to assess the effects of package quality, packaging process efficiency, and handling and distribution on package containment. Results demonstrated that oxygen levels increased in both experimental groups examined over the 30-day assessment period. The group subjected to a simulated industrial distribution route and handling procedures of commercial retailed cheese exhibited the highest level of oxygen detected on every day examined and experienced the highest rate of package failure. The study concluded that fluctuating storage conditions, product movement associated with distribution activities, and the possible presence of cheese-derived contaminants such as calcium lactate crystals were chief contributors to package failure. PMID:27331815

  15. An Assessment of the Influence of the Industry Distribution Chain on the Oxygen Levels in Commercial Modified Atmosphere Packaged Cheddar Cheese Using Non-Destructive Oxygen Sensor Technology

    PubMed Central

    O’ Callaghan, Karen A.M.; Papkovsky, Dmitri B.; Kerry, Joseph P.

    2016-01-01

    The establishment and control of oxygen levels in packs of oxygen-sensitive food products such as cheese is imperative in order to maintain product quality over a determined shelf life. Oxygen sensors quantify oxygen concentrations within packaging using a reversible optical measurement process, and this non-destructive nature ensures the entire supply chain can be monitored and can assist in pinpointing negative issues pertaining to product packaging. This study was carried out in a commercial cheese packaging plant and involved the insertion of 768 sensors into 384 flow-wrapped cheese packs (two sensors per pack) that were flushed with 100% carbon dioxide prior to sealing. The cheese blocks were randomly assigned to two different storage groups to assess the effects of package quality, packaging process efficiency, and handling and distribution on package containment. Results demonstrated that oxygen levels increased in both experimental groups examined over the 30-day assessment period. The group subjected to a simulated industrial distribution route and handling procedures of commercial retailed cheese exhibited the highest level of oxygen detected on every day examined and experienced the highest rate of package failure. The study concluded that fluctuating storage conditions, product movement associated with distribution activities, and the possible presence of cheese-derived contaminants such as calcium lactate crystals were chief contributors to package failure. PMID:27331815

  16. Influence of porosity and relative humidity on consolidation of dolostone with calcium hydroxide nanoparticles: Effectiveness assessment with non-destructive techniques

    SciTech Connect

    Lopez-Arce, P.; Gomez-Villalba, L.S.; Pinho, L.; Fernandez-Valle, M.E.; Alvarez de Buergo, M.; Fort, R.

    2010-02-15

    Slaked lime (Ca(OH){sub 2}) nanoparticles were exposed at 33% and 75% relative humidity (RH) to consolidate dolostone samples used in historical buildings. Non-destructive techniques (NDT) were applied to determine the chemical, morphological, physical and hydric properties of the stone samples, before and after 20 days treatment. Morphological and mineralogical characterisation of the nanoparticles was performed. 75% RH favors the consolidation process studied under Environmental Scanning Electron Microscopy (ESEM-EDS), spectrophotometry, capillarity, water absorption under vacuum, ultrasound velocity, Nuclear Magnetic Resonance (imaging and relaxometry) and Optical Surface Roughness analyses. At 75% RH the nanoparticles fill the pores and inter-crystalline dolomite grain contacts but do not favor calcite re-crystallization as it occurs at 33% RH. The ESEM, XRD and TEM analyses under 75% RH reveal the fast transformation of portlandite (Ca(OH){sub 2}) into vaterite (CaCO{sub 3}), monohydrocalcite (CaCO{sub 3} . H{sub 2}O) and calcite (CaCO{sub 3}), and eventually the physical and hydric properties of the stones significantly improve. New insights are provided for the assessment of consolidation effectiveness of porous carbonate stones with calcium hydroxide nanoparticles under optimum RH conditions combining several NDT.

  17. NON-DESTRUCTIVE BEAM MEASUREMENTS.

    SciTech Connect

    BAI,M.

    2004-07-05

    In high energy accelerators, especially storage rings, non-destructive beam measurements are highly desirable to minimize the impact on the beam quality. In principle, the non-destructive tools can be either passive detectors like Schottky, or active devices which excite either longitudinal or transverse beam motions for the corresponding measurements. An example of such a device is an ac dipole, a magnet with oscillating field, which can be used to achieve large coherent betatron oscillations. It has been demonstrated in the Brookhaven AGS that by adiabatically exciting the beam, the beam emittance growth due to the filamentation in the phase space can be avoided. This paper overviews both techniques in general. In particular, this paper also presents the beam tune measurement with a Schottky detector, phase advance measurements as well as nonlinear resonance measurements with the ac dipoles in the Brookhaven RHIC.

  18. An assessment of COMSCAN, a Compton backscatter imaging camera, for the one-sided non-destructive inspection of aerospace components

    NASA Astrophysics Data System (ADS)

    Sponder, L.

    1993-07-01

    This report presents some results obtained using a Compton backscatter imaging camera, developed by Philips Industries, which were obtained during a visit to the Defense Research Establishment Pacific (DREP) during May/June 1992. Compton backscatter imaging is an X-ray technique which can be used to non-destructively inspect the interior of both metallic and non-metallic structures and, unlike conventional X-ray methods, requires access to only one side of the part being inspected.

  19. Non-Destructive Testing Scanner

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Bio-Imaging Research's technology that originated in an aerospace program has come full circle with a new aerospace adaptation called the Advanced Computed Tomography Inspection System, or ACTIS. The medical version of CT scans the human body for tumors or other abnormalities, the ACTIS system finds imperfections in aerospace structures and components, such as castings, assemblies, rocket motors and nozzles. ACTIS is described by its developer as the most versatile CT scanner available for non-destructive testing applications. ACTIS is a variable geometry system. ACTIS source and detectors can be moved closer together or farther apart to optimize the geometry for different sizes of test objects. The combination of variable geometry, three sources, and focusing detectors makes ACTIS cost effective for a broad range of applications. System can scan anything from very small turbine blades to large rocket assemblies.

  20. A quasi non-destructive approach for amber geological provenance assessment based on head space solid-phase microextraction gas chromatography-mass spectrometry.

    PubMed

    van der Werf, I D; Aresta, A; Truică, G I; Radu, G L; Palmisano, F; Sabbatini, L

    2014-02-01

    Head space (HS) solid-phase micro-extraction (SPME) combined with gas chromatography-mass spectrometry (GC-MS) was used to analyze the volatile fraction of ambers of different geological origin. In particular, Romanian (romanite) and Baltic (succinite) amber samples were studied. Both types of amber have nearly similar bulk chemical compositions and could probably reflect only some differences of paleobiological and/or diagenetic origin. The present study shows that amber head space fingerprint, obtained by SPME/GC-MS, can provide a simple and quasi non-destructive method capable of romanite/succinite differentiation. Among the numerous compounds present in the head space, a number of few informative variables could be selected that were able to differentiate the ambers as demonstrated by Principal Component and Cluster Analysis. PMID:24401437

  1. Non-destructive identification of twisted light.

    PubMed

    Li, Pengyun; Wang, Bo; Song, Xinbing; Zhang, Xiangdong

    2016-04-01

    The non-destructive identification of the orbital angular momentum (OAM) is essential to various applications in the optical information processing. Here, we propose and demonstrate experimentally an efficient method to identify non-destructively the OAM by using a modified Mach-Zehnder interferometer. Our schemes are applicable not only to the case with integer charges, but also to optical vortices with noninteger charges. Our Letter presents the first experimental demonstration of the non-destructive identification of twisted light with integer or noninteger topological charges, which has potential applications in the OAM-based data transmission for optical communications. PMID:27192290

  2. Design and development of a LabVIEW-based LED-induced fluorescence spectroscopy system with applications in non-destructive quality assessment of agricultural products

    NASA Astrophysics Data System (ADS)

    Abbasi, Hamed; Nazeri, Majid; Mireei, Seyed Ahmad

    2016-01-01

    Over the past several years, the demand for high quality agricultural products has been remarkably increased. Thus, it is important to use non-destructive methods for product quality monitoring. LED-induced fluorescence spectroscopy has proved its potential for nondestructive detection of some defects in agricultural products, such as tissue browning and bruising. Due to such defects, changes in the polyphenol and chlorophyll contents occur which can be considered as the visible marks of decreasing fruit quality. In the present work, a fluorescence spectrometer (spectrofluorometer) controlled by LabVIEW software was designed and developed. In this spectrometer, a consumer-grade webcam was used as an imaging sensor. The spectrometer was able to measure the fluorescence spectra directly from the fruit and vegetable surface in the desired regions. To do so, the spectrometer was equipped with a suitable fiber-optic probe. The hardware solution was based on data acquisition working on the USB platform and controlled by the application running on the PC. In this system, light emitting diodes with different wavelengths were used as the excitation sources for inducing fluorescence spectra of some famous fruits and vegetables.

  3. Assessment of Raman spectroscopy as a tool for the non-destructive identification of organic minerals and biomolecules for Mars studies

    NASA Astrophysics Data System (ADS)

    Jehlička, J.; Edwards, H. G. M.; Vítek, P.

    2009-05-01

    Several characteristic geological features found on the surface of Mars by planetary rovers suggest that a possible extinct biosphere could exist based on similar sources of energy as occurred on Earth. For this reason, analytical instrumental protocols for the detection of biomarkers in suitable geological matrices unequivocally have to be elaborated for future unmanned explorations including the forthcoming ESA ExoMars mission. As part of the Pasteur suite of analytical instrumentation on ExoMars, the Raman/LIBS instrument will seek elemental and molecular information about geological, biological and biogeological markers in the Martian record. A key series of experiments on terrestrial Mars analogues, of which this paper addresses a particularly important series of compounds, is required to obtain the Raman spectra of key molecules and crystals, which are characteristic for each biomarker. Here, we present Raman spectra of several examples of organic compounds which have been recorded non-destructively - higher n-alkanes, polycyclic aromatic hydrocarbons, carotenoids, salts of organic acids, pure crystalline terpenes as well as oxygen-containing organic compounds. In addition, the lower limit of β-carotene detection in sulphate matrices using Raman microspectroscopy was estimated.

  4. Method for non-destructive testing

    DOEpatents

    Akers, Douglas W.

    2011-08-30

    Non-destructive testing method may include providing a source material that emits positrons in response to bombardment of the source material with photons. The source material is exposed to photons. The source material is positioned adjacent the specimen, the specimen being exposed to at least some of the positrons emitted by the source material. Annihilation gamma rays emitted by the specimen are detected.

  5. Non-destructive measurement and role of surface residual stress monitoring in residual life assessment of a steam turbine blading material

    NASA Astrophysics Data System (ADS)

    Prabhu-Gaunkar, Gajanana; Rawat, M. S.; Prasad, C. R.

    2014-02-01

    Steam turbine blades in power generation equipment are made from martensitic stainless steels having high strength, good toughness and corrosion resistance. However, these steels are susceptible to pitting which can promote early failures of blades in the turbines, particularly in the low pressure dry/wet areas by stress corrosion and corrosion fatigue. Presence of tensile residual stresses is known to accelerate failures whereas compressive stresses can help in delaying failures. Shot peening has been employed as an effective tool to induce compressive residual stresses which offset a part of local surface tensile stresses in the surface layers of components. Maintaining local stresses at stress raisers, such as pits formed during service, below a threshold level can help in preventing the initiation microcracks and failures. The thickness of the layer in compression will, however, depend of the shot peening parameters and should extend below the bottom of corrosion pits. The magnitude of surface compressive drops progressively during service exposure and over time the effectiveness of shot peening is lost making the material susceptible to micro-crack initiation once again. Measurement and monitoring of surface residual stress therefore becomes important for assessing residual life of components in service. This paper shows the applicability of surface stress monitoring to life assessment of steam turbine blade material based on data generated in laboratory on residual surface stress measurements in relation to fatigue exposure. An empirical model is proposed to calculate the remaining life of shot peened steam turbine blades in service.

  6. Hybrid holographic non-destructive test system

    NASA Technical Reports Server (NTRS)

    Kurtz, R. L. (Inventor)

    1978-01-01

    An automatic hybrid holographic non-destructive testing (HNDT) method and system capable of detecting flaws or debonds contained within certain materials are described. This system incorporates the techniques of optical holography, acoustical/optical holography and holographic correlation in determining the structural integrity of a test object. An automatic processing system including a detector and automatic data processor is used in conjunction with the three holographic techniques for correlating and interpreting the information supplied by the non-destructive systems. The automatic system also includes a sensor which directly translates an optical data format produced by the holographic techniques into electrical signals and then transmits this information to a digital computer for indicating the structural properties of the test object. The computer interprets the data gathered and determines whether further testing is necessary as well as the format of this new testing procedure.

  7. Non-Destructive Testing for Control of Radioactive Waste Package

    NASA Astrophysics Data System (ADS)

    Plumeri, S.; Carrel, F.

    2015-10-01

    Characterization and control of radioactive waste packages are important issues in the management of a radioactive waste repository. Therefore, Andra performs quality control inspection on radwaste package before disposal to ensure the compliance of the radwast characteristics with Andra waste disposal specifications and to check the consistency between Andra measurements results and producer declared properties. Objectives of this quality control are: assessment and improvement of producer radwaste packages quality mastery, guarantee of the radwaste disposal safety, maintain of the public confidence. To control radiological characteristics of radwaste package, non-destructive passive methods (gamma spectrometry and neutrons counting) are commonly used. These passive methods may not be sufficient, for instance to control the mass of fissile material contained inside radwaste package. This is particularly true for large concrete hull of heterogeneous radwaste containing several actinides mixed with fission products like 137Cs. Non-destructive active methods, like measurement of photofission delayed neutrons, allow to quantify the global mass of actinides and is a promising method to quantify mass of fissile material. Andra has performed different non-destructive measurements on concrete intermediate-level short lived nuclear waste (ILW-SL) package to control its nuclear material content. These tests have allowed Andra to have a first evaluation of the performance of photofission delayed neutron measurement and to identify development needed to have a reliable method, especially for fissile material mass control in intermediate-level long lived waste package.

  8. Monitoring of non-destructive sampling strategies to assess the exposure of avian species in Jiangsu Province, China to heavy metals.

    PubMed

    Fu, Jie; Wang, Qing; Wang, Hui; Yu, Hongxia; Zhang, Xiaowei

    2014-02-01

    To assess the exposure of avian species in Jiangsu Province, China to eight heavy metals (As, Cd, Cr, Cu, Hg, Ni, Pb and Zn), the flight feathers, eggshells and feces of total ten avian species (including four herons, four cranes, one stork and one gull) were collected during March to May in 2012. The total concentrations of As, Cd and Hg were measured by Atomic Fluorescence Spectrometer; Cr, Cu, Ni, Pb and Zn were measured by inductively coupled plasma optical emission spectrometer. The determined concentrations of Cr (3.94, 1.33-8.30 mg kg(-1)), Cu (15.02, 7.34-35.53 mg kg(-1)) and Zn (134.66, 77.26-242.25 mg kg(-1)) in fresh feathers and Cd (7.93, 7.44-9.12 mg kg(-1)), Ni (22.74, 19.38-24.71 mg kg(-1)), Pb (85.06, 78.72-91.95 mg kg(-1)) and Zn (63.54, 55.82-72.14 mg kg(-1)) in eggshells were higher than the mean values of other reported data, indicating a considerable heavy metal pollution status in local area. Comparing to the heavy metal levels in early historic feathers (1992-2000), a significant elevation of concentrations has been observed in recent bird feathers. For feathers of Grus japonensis, the heavy metal concentrations increased by 19-267%. This increased tendency was consistent with local GDP (Gross Domestic Products) development. The anthropogenic economic activity especially industrial development may be a critical reason that caused the increase of heavy metal levels in local avian species. PMID:24154854

  9. FIRST 100 T NON-DESTRUCTIVE MAGNET

    SciTech Connect

    J. R. SIMS; ET AL

    1999-10-01

    The first 100 T non-destructive (100 T ND) magnet and power supplies as currently designed are described. This magnet will be installed as part of the user facility research equipment at the National High Magnetic Field Laboratory (NHMFL) Pulsed Field Facility at Los Alamos National Laboratory. The 100 T ND magnet will provide a 100 T pulsed field of 5 ms duration (above 90% of full field) in a 15 mm diameter bore once per hour. Magnet operation will be non-destructive. The magnet will consist of a controlled power outer coil set which produces a 47 T platform field in a 225 mm diameter bore. Located within the outer coil set will be a 220 mm outer diameter capacitor powered insert coil. Using inertial energy storage a synchronous motor/generator will provide ac power to a set of seven ac-dc converters rated at 64 MW/80 MVA each. These converters will energize three independent coil circuits to create 170 MJ of field energy in the outer coil set at the platform field of 47 T. The insert will then be energized to produce the balance of the 100 T peak field using a 2.3 MJ, 18 kV (charged to 15 kV), 14.4 mF capacitor bank controlled with solid-state switches. The magnet will be the first of its kind and the first non-destructive, reusable 100 T pulsed magnet. The operation of the magnet will be described along with special features of its design and construction.

  10. Complementary Electromagnetic Non-Destructive Evaluation

    NASA Astrophysics Data System (ADS)

    Tian, Gui Yun; Wilson, John; Morozov, Maxim

    2011-06-01

    The use of non-destructive evaluation (NDE) for defect detection and failure prediction in structures and specimens is widespread in energy industries, aimed at ageing power plants and pipelines, material degradation, fatigue and radiation damage, etc. At present there are no suitable electromagnetic NDE methods for the measurement and characterization of material degradation, in irradiated samples in particular, which is very important and timely for the nuclear power industry in the UK. This paper reports recent developments in the field of electromagnetic (EM) NDE at Newcastle University, including pulsed eddy current (PEC), pulsed magnetic flux leakage (PMFL), magnetic Barkhausen emission (MBE) and magneto-acoustic emission (MAE). As different EM methods have different strengths, an integrative EM framework is introduced. Case studies through the second round robin tests organized by the Universal Network for Magnetic Non-Destructive Evaluation (UNMNDE), representing eighteen leading research groups worldwide in the area of electromagnetic NDE, are reported. Twelve samples with different ageing times and rolling reduction ratios were tested using different magnetic methods among the UNMNDE members. Based on the studies, the complementary characteristics of electromagnetic techniques for NDE are discussed.

  11. Non-destructive evaluation of composites

    NASA Technical Reports Server (NTRS)

    Chu, Tsuchin Philip

    1996-01-01

    The composite materials have been used in aerospace industries for quite some time. Several non-destructive evaluation (NDE) methods have been developed to inspect composites in order to detect flaws, matrix cracking, and delamination. These methods include ultrasonics, acoustic emission, shearography, thermography, X-ray, and digital image correlation. The NDE Branch of Marshall Space Flight Center has recently acquired a thermal imaging NDE system. The same system has been used at NASA Langley Research Center for detecting disbonds. In order to compare different NDE methods, three carbon/carbon composite panels were used for experiment using ultrasonic C-scan, shearography, and thermography methods. These panels have teflon inserts to simulate the delamination between plies in a composite panel. All three methods have successfully located the insert. The experiment and results are presented in the following sections.

  12. Non-destructive testing method and apparatus

    DOEpatents

    Akers, Douglas W.

    2011-10-04

    Non-destructive testing apparatus may comprise a photon source and a source material that emits positrons in response to bombardment of the source material with photons. The source material is positionable adjacent the photon source and a specimen so that when the source material is positioned adjacent the photon source it is exposed to photons produced thereby. When the source material is positioned adjacent the specimen, the specimen is exposed to at least some of the positrons emitted by the source material. A detector system positioned adjacent the specimen detects annihilation gamma rays emitted by the specimen. Another embodiment comprises a neutron source and a source material that emits positrons in response to neutron bombardment.

  13. NON-DESTRUCTIVE FLAW DETECTION APPARATUS

    DOEpatents

    Stateman, M.J.; Holloway, H.R.

    1957-12-17

    An apparatus is described for the non-destructive detection of flaws in electrical conducting articles. The particular feature of the detection apparatus is that a flaw in the front or back of the test article will not be masked by signals caused by the passage of the end and front of the article through the detection apparatus. The present invention alleviates the above problem by mounting detection coils on directly opposite sides of the test passageway so that the axes of the pickup coils are perpendicular to the axis of an energizing coil through which the article is passed. A flaw in the article will cause a change in the voltage induced in one pickup coil, but passage of the end or front of the article will not produce unequal signals. The signals are compared in appropriate electrical circuitry to actuate a recorder only when unequal signals are present, indicating the presence of a flaw.

  14. Non destructive testing of soft body armor

    NASA Astrophysics Data System (ADS)

    Bhise, Karan

    Pristine bullet proof vests are extremely effective at halting pre-determined projectile threats and have saved over 3000 lives. However, the effectiveness of these vests to halt a bullet is seen to decrease over time.Owing to the importance of bullet proof vests over a period of time, tests to determine their effectiveness have been carried out on every batch of vests at the time of inception and at certain time intervals by shooting a bullet through them. A few vests from every batch are picked up and shot at to check for bullet penetration during this process while these results are extrapolated onto the other vests from the batch.One of the main issues with this method is the fact that testing a few jackets among a large set of jackets does not guarantee the safety of every jacket in the entire batch.Further the jackets that are shot-at have the possibility of undergoing substantial damage during the process thus compromising its safety rendering them unsafe for future use.As the vest penetration phenomenon is extremely complex too, there arose a need for a better testing procedure that could not only help ensure more safety, but also save time and money.The new testing procedure proposed a non-destructive evaluation of the jackets that would solve the issues previous faced in testing the vests. This would lead to the building of a portable set up which could be carried to any location to test jackets in a matter of minutes thus saving time and money.

  15. Cryogenic Storage Tank Non-Destructive Evaluation

    NASA Technical Reports Server (NTRS)

    Arens, Ellen

    2010-01-01

    This slide presentation reviews the work in non-destructive evaluation (NDE) of cryogenic storage tanks. Four large cryogenic tanks, constructed in 1965 with perlite insulation in the annular regions, are of concern. The construction of the tanks, two Liquid Oxygen (LOX) and two Liquid Hydrogen (LH2), are described. The loss rate for the LOX tank at Pad A is slightly higher than that for the one at Pad B. The concerns for the LH2 tank at Pad B are that there is a significantly higher boil-off rate than that at Pad A, that there is mold growth, indicative of increased heat flow, that there is a long down-time needed for repairs, and that 3 of 5 full thermal cycles have been used on the Pad B LH2 tank. The advantages and disadvantages of thermal imaging are given. A detailed description of what is visible of the structures in the infra-red is given and views of the thermal images are included. Missing Perlite is given as the probable cause of the cold spot on the Pad B LH2 tank. There is no indications of problematic cold regions on the Pad A LH2 tank, as shown by the thermal images given in the presentation. There is definite indication of a cold region on the Pad A LOX tank. There is however concerns with thermal imaging, as thermal images can be significantly effected by environmental conditions, image differences on similar days but with different wind speeds. Other effects that must be considered include ambient temperature, humidity levels/dew, and cloud reflections

  16. Induction thermography for non-destructive evaluation of adhesive bonds

    NASA Astrophysics Data System (ADS)

    Balaji, L.; Balasubramaniam, Krishnan; Krishnamurthy, C. V.

    2013-01-01

    Adhesive bonding is widely used in automotive industry in the recent times. One of the major problems with adhesive bonds is the lack of a suitable non-destructive evaluation technique for assessing bonding. In this paper, an experimental study was carried out to apply induction thermography technique to evaluate adhesively bonded steel plates. Samples were fabricated with artificial defects such as air gap, foreign material, and improper adhesive filling. Induction thermography technique was found to detect defects and foreign inclusions. The sample specimen was also inspected using standard techniques such as Ultrasonic testing and Radiography testing. Defect detecting capabilities of the three techniques are compared. Induction thermography heating was FE modelled in 3D using COMSOL 3.5a. The simulated Induction thermography model was compared and validated with experimental results.

  17. NON-DESTRUCTIVE SOIL CARBON ANALYZER.

    SciTech Connect

    Wielopolski, Lucian; Hendrey, G.; Orion, I.; Prior, S.; Rogers, H.; Runion, B.; Torbert, A.

    2004-02-01

    This report describes the feasibility, calibration, and safety considerations of a non-destructive, in situ, quantitative, volumetric soil carbon analytical method based on inelastic neutron scattering (INS). The method can quantify values as low as 0.018 gC/cc, or about 1.2% carbon by weight with high precision under the instrument's configuration and operating conditions reported here. INS is safe and easy to use, residual soil activation declines to background values in under an hour, and no radiological requirements are needed for transporting the instrument. The labor required to obtain soil-carbon data is about 10-fold less than with other methods, and the instrument offers a nearly instantaneous rate of output of carbon-content values. Furthermore, it has the potential to quantify other elements, particularly nitrogen. New instrumentation was developed in response to a research solicitation from the U.S. Department of Energy (DOE LAB 00-09 Carbon Sequestration Research Program) supporting the Terrestrial Carbon Processes (TCP) program of the Office of Science, Biological and Environmental Research (BER). The solicitation called for developing and demonstrating novel techniques for quantitatively measuring changes in soil carbon. The report includes raw data and analyses of a set of proof-of-concept, double-blind studies to evaluate the INS approach in the first phase of developing the instrument. Managing soils so that they sequester massive amounts of carbon was suggested as a means to mitigate the atmospheric buildup of anthropogenic CO{sub 2}. Quantifying changes in the soils' carbon stocks will be essential to evaluating such schemes and documenting their performance. Current methods for quantifying carbon in soil by excavation and core sampling are invasive, slow, labor-intensive and locally destroy the system being observed. Newly emerging technologies, such as Laser Induced Breakdown Spectroscopy and Near-Infrared Spectroscopy, offer soil

  18. Using magnetic levitation for non-destructive quality control of plastic parts.

    PubMed

    Hennek, Jonathan W; Nemiroski, Alex; Subramaniam, Anand Bala; Bwambok, David K; Yang, Dian; Harburg, Daniel V; Tricard, Simon; Ellerbee, Audrey K; Whitesides, George M

    2015-03-01

    Magnetic levitation (MagLev) enables rapid and non-destructive quality control of plastic parts. The feasibility of MagLev as a method to: i) rapidly assess injection-molded plastic parts for defects during process optimization, ii) monitor the degradation of plastics after exposure to harsh environmental conditions, and iii) detect counterfeit polymers by density is demonstrated. PMID:25589230

  19. Non-Destructive Classification Approaches for Equilibrated Ordinary Chondrites

    NASA Astrophysics Data System (ADS)

    Righter, K.; Harrington, R.; Schroeder, C.; Morris, R. V.

    2013-09-01

    In order to compare a few non-destructive classification techniques with the standard approaches, we have characterized a group of chondrites from the Larkman Nunatak region using magnetic susceptibility and Mössbauer spectroscopy.

  20. NON-DESTRUCTIVE TESTING METHODS FOR GEOTHERMAL PIPING.

    SciTech Connect

    BERNDT,M.L.

    2001-03-23

    Non-destructive testing is a key component of optimized plant inspection and maintenance programs. Risk based inspection, condition based maintenance and reliability centered maintenance systems all require detection, location and sizing of defects or flaws by non-destructive methods. Internal damage of geothermal piping by corrosion and erosion-corrosion is an ongoing problem requiring inspection and subsequent maintenance decisions to ensure safe and reliable performance. Conventional manual ultrasonic testing to determine remaining wall thickness has major limitations, particularly when damage is of a random and localized nature. Therefore, it is necessary to explore alternative non-destructive methods that offer potential benefits in terms of accurate quantification of size, shape and location of damage, probability of detection, ability to use on-line over long ranges, and economics. A review of non-destructive methods and their applicability to geothermal piping was performed. Based on this, ongoing research will concentrate on long range guided wave and dynamic methods.

  1. Non-destructive testing and fracture mechanics: A short discussion

    NASA Astrophysics Data System (ADS)

    Zerbst, Uwe; Heckel, Thomas; Carboni, Michele

    2016-02-01

    A short discussion is provided on the relationship between non-destructive testing and fracture mechanics. The basic tasks behind this are to guarantee the safety of a component at a potential hazard loading event, to specify inspection intervals or, alternatively, of demands on non-destructive testing for a fixed inspection regime, to plan accompanying actions for cases of temporary continued operation of structures in which cracks have been detected, and, finally, fatigue strength considerations which take into account initial defects.

  2. Non-destructive evaluation of anchorage zones by ultrasonics techniques.

    PubMed

    Kharrat, M; Gaillet, L

    2015-08-01

    This work aims to evaluate the efficiency and reliability of two Non-Destructive Testing (NDT) methods for damage assessment in bridges' anchorages. The Acousto-Ultrasonic (AU) technique is compared to classical Ultrasonic Testing (UT) in terms of defect detection and structural health classification. The AU technique is firstly used on single seven-wire strands damaged by artificial defects. The effect of growing defects on the waves traveling through the strands is evaluated. Thereafter, three specimens of anchorages with unknown defects are inspected by the AU and UT techniques. Damage assessment results from both techniques are then compared. The structural health conditions of the specimens can be then classified by a damage severity criterion. Finally, a damaged anchorage socket with mastered defects is controlled by the same techniques. The UT allows the detection and localization of damaged wires. The AU technique is used to bring out the effect of defects on acoustic features by comparing a healthy and damaged anchorage sockets. It is concluded that the UT method is suitable for local and crack-like defects, whereas the AU technique enables the assessment of the global structural health of the anchorage zones. PMID:25824342

  3. Non-Destructive Evaluation of Materials via Ultraviolet Spectroscopy

    NASA Technical Reports Server (NTRS)

    Pugel, Betsy

    2008-01-01

    A document discusses the use of ultraviolet spectroscopy and imaging for the non-destructive evaluation of the degree of cure, aging, and other properties of resin-based composite materials. This method can be used in air, and is portable for field use. This method operates in reflectance, absorbance, and luminescence modes. The ultraviolet source is used to illuminate a composite surface of interest. In reflectance mode, the reflected response is acquired via the imaging system or via the spectrometer. The spectra are analyzed for organic compounds (conjugated organics) and inorganic compounds (semiconducting band-edge states; luminescing defect states such as silicates, used as adhesives for composite aerospace applications; and metal oxides commonly used as thermal coating paints on a wide range of spacecraft). The spectra are compared with a database for variation in conjugation, substitution, or length of molecule (in the case of organics) or band edge position (in the case of inorganics). This approach is useful in the understanding of material quality. It lacks the precision in defining the exact chemical structure that is found in other materials analysis techniques, but it is advantageous over methods such as nuclear magnetic resonance, infrared spectroscopy, and chromatography in that it can be used in the field to assess significant changes in chemical structure that may be linked to concerns associated with weaknesses or variations in structural integrity, without disassembly of or destruction to the structure of interest.

  4. Non-destructive decontamination of building materials

    NASA Astrophysics Data System (ADS)

    Holecek, Josef; Otahal, Petr

    2015-11-01

    For nondestructive radiation decontamination of surfaces it is necessary to use varnishes, such as ARGONNE, DG1101, DG1108, etc. This text evaluates the use of manufactured strippable coatings for radiation decontamination. To evaluate decontamination capability of such coatings the following varnishes were selected and subsequently used: AZ 1-700 and AXAL 1807S. The varnishes were tested on different building materials surfaces contaminated by short-term radioisotopes of Na-24 or La-140, in water soluble or water insoluble forms. Decontamination quality was assessed by the decontamination efficiency value, defined as the proportion of removed activity to the applied activity. It was found that decontamination efficiency of both used varnishes depends not only on the form of contaminant, but in the case of application of AXAL 1807S varnish it also depends on the method of its application on the contaminated surface. The values of the decontamination efficiency for AZ1-700 varnish range from 46% for decontamination of a soluble form of the radioisotope from concrete surface to 98% for the decontamination of a soluble form of the radioisotope from ceramic tile surface. The decontamination efficiency values determined for AXAL 1807S varnish range from 48% for decontamination of a soluble form of the radioisotope from concrete surface to 96% for decontamination of an insoluble form of the radioisotope from ceramic tile surface. Comparing these values to the values given for the decontaminating varnishes we can conclude that AXAL 1807S varnish is possible to use on all materials, except highly porous materials, such as plasterboard or breeze blocks, or plastic materials. AZ 1-700 varnish can be used for all dry materials except plasterboard.

  5. Evaluation of Damage in Steels Subjected to Exploitation Loading - Destructive and Non-Destructive Methods

    NASA Astrophysics Data System (ADS)

    Kowalewski, Zbigniew L.; Mackiewicz, Sławomir; Szelążek, Jacek; Pietrzak, Krystyna; Augustyniak, Bolesław

    Damage due to creep and plastic flow is assessed using destructive and non-destructive methods in steels (40HNMA and P91). In the destructive methods the standard tension tests were carried out after prestraining and variations of the selected tension parameters were taken into account for damage identification. In order to assess a damage development during the creep and plastic deformation the tests for both steels were interrupted for a range of the selected strain magnitudes. The ultrasonic and magnetic techniques were used as the non-destructive methods for damage evaluation. The last step of the experimental programme contained microscopic observations. A very promising correlation between parameters of methods for damage development evaluation was achieved. It is well proved for the ultimate tensile stress and birefringence coefficient.

  6. Automated Non-Destructive Testing Array Evaluation System

    SciTech Connect

    Wei, T; Zavaljevski, N; Bakhtiari, S; Miron, A; Kupperman, D

    2004-12-24

    Automated Non-Destructive Testing Array Evaluation System (ANTARES) sofeware alogrithms were developed for use on X-probe(tm) data. Data used for algorithm development and preliminary perfomance determination was obtained for USNRC mock-up at Argone and data from EPRI.

  7. Non-destructive imaging of buried electronic interfaces using a decelerated scanning electron beam.

    PubMed

    Hirohata, Atsufumi; Yamamoto, Yasuaki; Murphy, Benedict A; Vick, Andrew J

    2016-01-01

    Recent progress in nanotechnology enables the production of atomically abrupt interfaces in multilayered junctions, allowing for an increase in the number of transistors in a processor. However, uniform electron transport has not yet been achieved across the entire interfacial area in junctions due to the existence of local defects, causing local heating and reduction in transport efficiency. To date, junction uniformity has been predominantly assessed by cross-sectional transmission electron microscopy, which requires slicing and milling processes that can potentially introduce additional damage and deformation. It is therefore essential to develop an alternative non-destructive method. Here we show a non-destructive technique using scanning electron microscopy to map buried junction properties. By controlling the electron-beam energy, we demonstrate the contrast imaging of local junction resistances at a controlled depth. This technique can be applied to any buried junctions, from conventional semiconductor and metal devices to organic devices. PMID:27586090

  8. Non-destructive evaluation of TBC by electrochemical impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Jianqi

    suggested. An alternative electrolyte (trifluoroacetic acid) was investigated using EIS in order to be used as compatible or friendly solution to TBC. A similar characteristic EIS result was found using the alternative electrolyte compared with the commonly used electrolyte [Fe(CN)6]-3/[Fe(CN) 6]-4 in this work. It has indicated that a friendly electrolyte be viable for EIS technique to be used for non-destructive evaluation of TBC. Visualization of a flexible probe for EIS field detection has also been designed. (Abstract shortened by UMI.)

  9. Non-Destructive Techniques Based on Eddy Current Testing

    PubMed Central

    García-Martín, Javier; Gómez-Gil, Jaime; Vázquez-Sánchez, Ernesto

    2011-01-01

    Non-destructive techniques are used widely in the metal industry in order to control the quality of materials. Eddy current testing is one of the most extensively used non-destructive techniques for inspecting electrically conductive materials at very high speeds that does not require any contact between the test piece and the sensor. This paper includes an overview of the fundamentals and main variables of eddy current testing. It also describes the state-of-the-art sensors and modern techniques such as multi-frequency and pulsed systems. Recent advances in complex models towards solving crack-sensor interaction, developments in instrumentation due to advances in electronic devices, and the evolution of data processing suggest that eddy current testing systems will be increasingly used in the future. PMID:22163754

  10. Infrared Thermography for Temperature Measurement and Non-Destructive Testing

    PubMed Central

    Usamentiaga, Rubèn; Venegas, Pablo; Guerediaga, Jon; Vega, Laura; Molleda, Julio; Bulnes, Francisco G.

    2014-01-01

    The intensity of the infrared radiation emitted by objects is mainly a function of their temperature. In infrared thermography, this feature is used for multiple purposes: as a health indicator in medical applications, as a sign of malfunction in mechanical and electrical maintenance or as an indicator of heat loss in buildings. This paper presents a review of infrared thermography especially focused on two applications: temperature measurement and non-destructive testing, two of the main fields where infrared thermography-based sensors are used. A general introduction to infrared thermography and the common procedures for temperature measurement and non-destructive testing are presented. Furthermore, developments in these fields and recent advances are reviewed. PMID:25014096

  11. Non-destructive NIR FT Raman analysis of plants

    NASA Astrophysics Data System (ADS)

    Schrader, B.; Klump, H. H.; Schenzel, K.; Schulz, H.

    1999-10-01

    Non-destructive analyses of animal and plant cells and tissues by 'classical' Raman spectroscopy with excitation in the visible range have not been possible since the samples are destroyed photochemically or their fluorescence conceals the Raman spectra completely. When excited with the Nd:YAG laser line at 1064 nm fluorescence-free Raman spectra of animal or plant cells and tissues can be recorded without special preparation. In this paper we concentrate on plants and its constituents: essential oils, natural dyes, flavors, spices, alkaloids and fibers can be characterized. The spectra allow the observation of biochemical processes, to observe the distribution of natural products, application to taxonomy, optimizing plant breeding, the harvesting time and control of food—everything non-destructively in living plants!

  12. Non-destructive examination system of vitreous body

    NASA Astrophysics Data System (ADS)

    Shibata, Takuma; Gong, Jin; Watanabe, Yosuke; Kabir, M. Hasnat; Masato, Makino; Furukawa, Hidemitsu; Nishitsuka, Koichi

    2014-04-01

    Eyeball plays a quite important role in acquiring the vision. Vitreous body occupies the largest part of the eyeball and consists of biological, elastic, transparent, gel materials. In the present medical examination, the non-destructive examination method of the vitreous body has not been well established. Here, we focus on an application of dynamic light scattering to this topic. We tried to apply our lab-made apparatus, scanning microscopic light scattering (SMILS), which was specially designed for observing the nanometer-scale network structure in gel materials. In order to examine the vitreous body using SMILS method, a commercial apparatus, nano Partica (Horiba Co. Ltd.) was also customized. We analyzed vitreous body using both the SMILS and the customized nano Partica. We successfully examined the vitreous bodies of healthy pigs in non-destructive way.

  13. Mathematical models applied in inductive non-destructive testing

    NASA Astrophysics Data System (ADS)

    Wac-Wlodarczyk, A.; Goleman, R.; Czerwinski, D.; Gizewski, T.

    Non-destructive testing are the wide group of investigative methods of non-homogenous material. Methods of computer tomography, ultrasonic, magnetic and inductive methods still developed are widely applied in industry. In apparatus used for non-destructive tests, the analysis of signals is made on the basis of complex system answers. The answer is linearized due to the model of research system. In this paper, the authors will discuss the applications of the mathematical models applied in investigations of inductive magnetic materials. The statistical models and other gathered in similarity classes will be taken into consideration. Investigation of mathematical models allows to choose the correct method, which in consequence leads to precise representation of the inner structure of examined object. Inductive research of conductive media, especially those with ferromagnetic properties, are run with high frequency magnetic field (eddy-currents method), which considerably decrease penetration depth.

  14. Non-destructive techniques based on eddy current testing.

    PubMed

    García-Martín, Javier; Gómez-Gil, Jaime; Vázquez-Sánchez, Ernesto

    2011-01-01

    Non-destructive techniques are used widely in the metal industry in order to control the quality of materials. Eddy current testing is one of the most extensively used non-destructive techniques for inspecting electrically conductive materials at very high speeds that does not require any contact between the test piece and the sensor. This paper includes an overview of the fundamentals and main variables of eddy current testing. It also describes the state-of-the-art sensors and modern techniques such as multi-frequency and pulsed systems. Recent advances in complex models towards solving crack-sensor interaction, developments in instrumentation due to advances in electronic devices, and the evolution of data processing suggest that eddy current testing systems will be increasingly used in the future. PMID:22163754

  15. Non-destructive metallurgical analysis of astrolabes utilizing synchrotron radiation.

    SciTech Connect

    Newbury, B.; Stephenson, B.; Almer, J. D.; Notis, M.; Haeffner, D. R.; Slade Cargill, G., III

    2002-05-22

    From the experiments performed it is possible to determine a wide range of information about the metallurgy of the astrolabes studied. It was found that different brass alloys were used for components that were cast and those that were mechanically deformed. Chemical composition, forming history, and thickness measurements are all determined non-destructively, illustrating that this technique could be useful for many applications with metal artifact analysis where non-intrusive methods are required.

  16. Investigations and Non-destructive Testing in New Building Design

    NASA Astrophysics Data System (ADS)

    Klimenov, V.; Ovchinnikov, A.; Osipov, S.; Shtein, A.; Ustinov, A.; Danilson, A.

    2016-01-01

    Mechanical rebar couplers are preferable in the advanced building construction and structural design of antiseismic elements. The paper presents destructive inspection techniques used to investigate stress fields (tensile and compressive) and deformation curves for mechanical rebar splicing. The properties of mechanical rebar splicing are investigated by the non-destructive testing digital radiography. The behavior of real connections (column-to- column, beam-to-column) is studied under static and dynamic loads. Investigation results allow the elaboration of recommendations on their application in the universal prefabricated antiseismic structural system developed at Tomsk State University of Architecture and Building, Tomsk, Russia.

  17. Potential techniques for non-destructive evaluation of cable materials

    NASA Astrophysics Data System (ADS)

    Gillen, Kenneth T.; Clough, Roger L.; Mattson, Bengt; Stenberg, Bengt; Oestman, Erik

    This paper describes the connection between mechanical degradation of common cable materials, in radiation and elevated temperature environments, and density increases caused by the oxidation which leads to this degradation. Two techniques based on density changes are suggested as potential non-destructive evaluation (NDE) procedures which may be applicable to monitoring the mechanical condition of cable materials in power plant environments. The first technique is direct measurement of density changes, via a density gradient column, using small shavings removed from the surface of cable jackets at selected locations. The second technique is computed X-ray tomography, utilizing a portable scanning device.

  18. APPARATUS FOR NON-DESTRUCTIVE INSPECTION OF CANTILEVERED MEMBERS

    DOEpatents

    Taylor, E.R.; Mahoney, C.H.; Lay, C.R.

    1961-10-24

    An apparatus for non-destructive inspection of cantilevered members, such as compressor blades, is described. The member under inspection is vibrated with a regulated source of air under pressure. The amplitude of vibration of the member is maintained at its natural frequency. The frequency of vibration of the member is measured. An indication of an excessive decay or erratic shifting in the measured frequency above an allowable hysteretic decay is provided as an indication of a fault in the member. The member is vibrated for a selected test period. (AEC)

  19. Non-destructive characterization using pulsed fast-thermal neutrons

    NASA Astrophysics Data System (ADS)

    Womble, P. C.; Schultz, F. J.; Vourvopoulos, G.

    1995-05-01

    Explosives, illicit drugs, and other contraband materials contain various chemical elements in quantities and ratios that differentiate them from each other and from innocuous substances. Furthermore, the major chemical elements in coal can provide information about various parameters of importance to the coal industry. In both examples, the non-destructive identification of chemical elements can be performed using pulsed fast-thermal neutrons that, through nuclear reactions, excite the nuclei of the various elements. This technique is being currently developed for the dismantling of nuclear weapons classified as trainers, and for the on-line coal bulk analysis.

  20. Local defect resonance for sensitive non-destructive testing

    NASA Astrophysics Data System (ADS)

    Adebahr, W.; Solodov, I.; Rahammer, M.; Gulnizkij, N.; Kreutzbruck, M.

    2016-02-01

    Ultrasonic wave-defect interaction is a background of ultrasound activated techniques for imaging and non-destructive testing (NDT) of materials and industrial components. The interaction, primarily, results in acoustic response of a defect which provides attenuation and scattering of ultrasound used as an indicator of defects in conventional ultrasonic NDT. The derivative ultrasonic-induced effects include e.g. nonlinear, thermal, acousto-optic, etc. responses also applied for NDT and defect imaging. These secondary effects are normally relatively inefficient so that the corresponding NDT techniques require an elevated acoustic power and stand out from conventional ultrasonic NDT counterparts for their specific instrumentation particularly adapted to high-power ultrasonic. In this paper, a consistent way to enhance ultrasonic, optical and thermal defect responses and thus to reduce an ultrasonic power required is suggested by using selective ultrasonic activation of defects based on the concept of local defect resonance (LDR). A strong increase in vibration amplitude at LDR enables to reliably detect and visualize the defect as soon as the driving ultrasonic frequency is matched to the LDR frequency. This also provides a high frequency selectivity of the LDR-based imaging, i.e. an opportunity of detecting a certain defect among a multitude of other defects in material. Some examples are shown how to use LDR in non-destructive testing techniques, like vibrometry, ultrasonic thermography and shearography in order to enhance the sensitivity of defect visualization.

  1. Non destructive testing of works of art by terahertz analysis

    NASA Astrophysics Data System (ADS)

    Bodnar, Jean-Luc; Metayer, Jean-Jacques; Mouhoubi, Kamel; Detalle, Vincent

    2013-11-01

    Improvements in technologies and the growing security needs in airport terminals lead to the development of non destructive testing devices using terahertz waves. Indeed, these waves have the advantage of being, on one hand, relatively penetrating. They also have the asset of not being ionizing. It is thus potentially an interesting contribution in the non destructive testing field. With the help of the VISIOM Company, the possibilities of this new industrial analysis method in assisting the restoration of works of art were then approached. The results obtained within this framework are presented here and compared with those obtained by infrared thermography. The results obtained show first that the THZ method, like the stimulated infrared thermography allows the detection of delamination located in murals paintings or in marquetries. They show then that the THZ method seems to allow detecting defects located relatively deeply (10 mm) and defects potentially concealed by other defects. It is an advantage compared to the stimulated infra-red thermography which does not make it possible to obtain these results. Furthermore, they show that the method does not seem sensitive to the various pigments constituting the pictorial layer, to the presence of a layer of "Japan paper" and to the presence of a layer of whitewash. It is not the case of the stimulated infrared thermography. It is another advantage of the THZ method. Finally, they show that the THZ method is limited in the detection of low-size defects. It is a disadvantage compared to the stimulated infrared thermography.

  2. Non-destructive estimation of foliar carotenoid content of tree species using merged vegetation indices.

    PubMed

    Fassnacht, Fabian E; Stenzel, Stefanie; Gitelson, Anatoly A

    2015-03-15

    Leaf pigment content is an important indicator of plant status and can serve to assess the vigor and photosynthetic activity of plants. The application of spectral information gathered from laboratory, field and remote sensing-based spectrometers to non-destructively assess total chlorophyll (Chl) content of higher plants has been demonstrated in earlier studies. However, the precise estimation of carotenoid (Car) content with non-destructive spectral measurements has so far not reached accuracies comparable to the results obtained for Chl content. Here, we examined the potential of a recently developed angular vegetation index (AVI) to estimate total foliar Car content of three tree species. Based on an iterative search of all possible band combinations, we identified a best candidate AVIcar. The identified index showed quite close but essentially not linear relation with Car contents of the examined species with increasing sensitivity to high Car content and a lack of sensitivity to low Car content for which earlier proposed vegetation indices (VI) performed better. To make use of the advantages of both VI types, we developed a simple merging procedure, which combined the AVIcar with two earlier proposed carotenoid indices. The merged indices had close linear relationship with total Car content and outperformed all other examined indices. The merged indices were able to accurately estimate total Car content with a percental root mean square error (%RMSE) of 8.12% and a coefficient of determination of 0.88. Our findings were confirmed by simulations using the radiative transfer model PROSPECT-5. For simulated data, the merged indices again showed a quasi linear relationship with Car content. This strengthens the assumption that the proposed merged indices have a general ability to accurately estimate foliar Car content. Further examination of the proposed merged indices to estimate foliar Car content of other plant species is desirable to prove the general

  3. Research Performed within the Non-Destructive Evaluation Team at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Burns, Erin A.

    2004-01-01

    Non-destructive testing is essential in many fields of manufacturing and research in order to perform reliable examination of potentially damaged materials and parts without destroying the inherent structure of the materials. Thus, the Non-Destructive Evaluation (NDE) Team at NASA Glenn Research Center partakes in various projects to improve materials testing equipment as well as analyze materials, material defects, and material deficiencies. Due to the array of projects within the NDE Team at this time, five research aims were supplemental to some current projects. A literature survey of "DE and testing methodologies as related to rocks was performed. Also, Mars Expedition Rover technology was assessed to understand the requirements for instrumentation in harsh space environments (e.g. temperature). Potential instrumentation and technologies were also considered and documented. The literature survey provided background and potential sources for a proposal to acquire funding for ultrasonic instrumentation on board a future Mars expedition. The laboratory uses a Santec Systems AcousticScope AS200 acoustography system. Labview code was written within the current program in order to improve the current performance of the acoustography system. A sample of Reinforced Carbon/Carbon (RCC) material from the leading edge of the space shuttle underwent various non-destructive tests (guided wave scanning, thermography, computed tomography, real time x-ray, etc.) in order to characterize its structure and examine possible defects. Guided wave scan data of a ceramic matrix composite (CMC) panel was reanalyzed utilizing image correlations and signal processing variables. Additional guided wave scans and thermography were also performed on the CMC panel. These reevaluated data and images will be used in future presentations and publications. An additional axis for the guided wave scanner was designed, constructed, and implemented. This additional axis allowed incremental spacing

  4. The use of non destructive biomarkers in the study of marine mammals.

    PubMed

    M Cristina Fossi And Letizia Marsili

    1997-01-01

    Marine mammals have been subject to heavy anthropogenic pressure by direct killing and chemical pollution all over the world. Most studies of contamination and biomarker responses in marine mammals have been conducted using animals killed by hunting out of a total of 12 cetacean species studied, 45 of the specimens were obtained by sacrificing the animal; out of a total of eight pinniped species studied, 40 of the specimens were obtained by killing. The development of a series of non destructive techniques to evaluate biomarker responses and residue levels is recommended for the hazard assessment and conservation of endangered species of marine mammals. Here we review the current status of the non destructive biomarker approach in marine mammals, describing the biological materials available for non destructive tests in stranded brain, liver, blood, skin, subcutaneous blubber, muscle and fur and free ranging animals blood, skin biopsy, fur and faeces and the respective biomarker techniques mixed function oxidase activity and DNA damage in skin biopsy samples; porphyrins in faeces and fur; esterases, porphyrins, clinical biochemical parameter, vitamin A and micronuclei in blood samples. Residue analysis can be carried out in the various biological materials. We also report the results of applying this methodological approach to cetaceans minke whale Balaenoptera acutorostrata, fin whale-- Balaenoptera physalus, beluga whale-- Delphinapterus leucas, short finned pilot whale-- Globicephala macrorhynchus, harbour porpoise -- Phocoena phocoena, Rissos dolphin-- Risso s Grampus griseus, Dall s porpoise-- Phocoenoides dalli dalli, melon headed whale-- Peponocephala electra, bottlenose dolphin -- Tursiops truncatus, striped dolphin-- Stenella coeruleoalba, spinner dolphin-- Stenella longirostris, killer whale-- Orcinus orca and pinnipeds northern fur seal- Callorhinus ursinus, hooded seal-- Cystophora cristata, grey seal-- Halichoerus grypus, harbour seal-- Phoca vitulina

  5. Non-destructive analysis of extracellular matrix development in cardiovascular tissue-engineered constructs.

    PubMed

    Tuemen, M; Nguyen, D V A; Raffius, J; Flanagan, T C; Dietrich, M; Frese, J; Schmitz-Rode, T; Jockenhoevel, S

    2013-05-01

    In the field of tissue engineering, there is an increasing demand for non-destructive methods to quantify the synthesis of extracellular matrix (ECM) components such as collagens, elastin or sulphated glycosaminoglycans (sGAGs) in vitro as a quality control before clinical use. In this study, procollagen I carboxyterminal peptide (PICP), procollagen III aminoterminal peptide (PIIINP), tropoelastin and sGAGs are investigated for their potential use as non-destructive markers in culture medium of statically cultivated cell-seeded fibrin gels. Measurement of PICP as marker for type I collagen synthesis, and PIIINP as marker of type III collagen turnover, correlated well with the hydroxyproline content of the fibrin gels, with a Pearson correlation coefficient of 0.98 and 0.97, respectively. The measurement of tropoelastin as marker of elastin synthesis correlated with the amount of elastin retained in fibrin gels with a Pearson correlation coefficient of 0.99. sGAGs were retained in fibrin gels, but were not detectable in culture medium at any time of measurement. In conclusion, this study demonstrates the potential of PICP and tropoelastin as non-destructive culture medium markers for collagen and elastin synthesis. To our knowledge, this is the first study in cardiovascular tissue engineering investigating the whole of here proposed biomarkers of ECM synthesis to monitor the maturation process of developing tissue non-invasively, but for comprehensive assessment of ECM development, these biomarkers need to be investigated in further studies, employing dynamic cultivation conditions and more complex tissue constructs. PMID:23307024

  6. Non-Destructive Classification Approaches for Equilbrated Ordinary Chondrites

    NASA Technical Reports Server (NTRS)

    Righter, K.; Harrington, R.; Schroeder, C.; Morris, R. V.

    2013-01-01

    Classification of meteorites is most effectively carried out by petrographic and mineralogic studies of thin sections, but a rapid and accurate classification technique for the many samples collected in dense collection areas (hot and cold deserts) is of great interest. Oil immersion techniques have been used to classify a large proportion of the US Antarctic meteorite collections since the mid-1980s [1]. This approach has allowed rapid characterization of thousands of samples over time, but nonetheless utilizes a piece of the sample that has been ground to grains or a powder. In order to compare a few non-destructive techniques with the standard approaches, we have characterized a group of chondrites from the Larkman Nunatak region using magnetic susceptibility and Moessbauer spectroscopy.

  7. Electromagnetic non-destructive technique for duplex stainless steel characterization

    NASA Astrophysics Data System (ADS)

    Rocha, João Vicente; Camerini, Cesar; Pereira, Gabriela

    2016-02-01

    Duplex stainless steel (DSS) is a two-phase (ferrite and austenite) material, which exhibits an attractive combination of mechanical properties and high corrosion resistance, being commonly employed for equipment of petrochemical plants, refining units and oil & gas platforms. The best properties of DSS are achieved when the phases are in equal proportions. However, exposition to high temperatures (e.g. welding process) may entail undesired consequences, such as deleterious phases precipitation (e.g. sigma, chi) and different proportion of the original phases, impairing dramatically the mechanical and corrosion properties of the material. A detailed study of the magnetic behavior of DSS microstructure with different ferrite austenite ratios and deleterious phases content was accomplished. The non destructive method evaluates the electromagnetic properties changes in the material and is capable to identify the presence of deleterious phases into DSS microstructure.

  8. Non-destructive evaluation method employing dielectric electrostatic ultrasonic transducers

    NASA Technical Reports Server (NTRS)

    Yost, William T. (Inventor); Cantrell, Jr., John H. (Inventor)

    2003-01-01

    An acoustic nonlinearity parameter (.beta.) measurement method and system for Non-Destructive Evaluation (NDE) of materials and structural members novelly employs a loosely mounted dielectric electrostatic ultrasonic transducer (DEUT) to receive and convert ultrasonic energy into an electrical signal which can be analyzed to determine the .beta. of the test material. The dielectric material is ferroelectric with a high dielectric constant .di-elect cons.. A computer-controlled measurement system coupled to the DEUT contains an excitation signal generator section and a measurement and analysis section. As a result, the DEUT measures the absolute particle displacement amplitudes in test material, leading to derivation of the nonlinearity parameter (.beta.) without the costly, low field reliability methods of the prior art.

  9. Non-destructive Raman analyses - polyacetylenes in plants

    NASA Astrophysics Data System (ADS)

    Schrader, Bernhard; Schulz, Hartwig; Baranska, Malgorzata; Andreev, George N.; Lehner, Caroline; Sawatzki, Juergen

    2005-05-01

    Ferdinand Bohlmann has described the isolation, the identification and the structure elucidation of acetylene compounds in many plants, and confirmed it by its synthesis. We have recorded the Raman spectra of most of these plants non-destructively by FT-Raman spectroscopy using radiation at 1064 nm. We could not observe any interfering fluorescence. We found acetylene compounds in some plants, even distinct compounds with different concentration in various parts of it. The distribution of the different compounds over the plant can be observed and their changes during the ontogenesis can be followed by a FT-Raman mapping technique. Of special help is a library of Raman and IR spectra and the structure of the compounds, synthesized by Bohlmann. Thus, the Raman technique allows analyses in a very short time replacing the usual time-consuming separation procedures and avoiding artefacts during clean-up procedures.

  10. Non-destructive Faraday imaging of dynamically controlled ultracold atoms

    NASA Astrophysics Data System (ADS)

    Gajdacz, Miroslav; Pedersen, Poul L.; Mørch, Troels; Hilliard, Andrew J.; Arlt, Jan; Sherson, Jacob F.

    2013-08-01

    We describe an easily implementable method for non-destructive measurements of ultracold atomic clouds based on dark field imaging of spatially resolved Faraday rotation. The signal-to-noise ratio is analyzed theoretically and, in the absence of experimental imperfections, the sensitivity limit is found to be identical to other conventional dispersive imaging techniques. The dependence on laser detuning, atomic density, and temperature is characterized in a detailed comparison with theory. Due to low destructiveness, spatially resolved images of the same cloud can be acquired up to 2000 times. The technique is applied to avoid the effect of shot-to-shot fluctuations in atom number calibration, to demonstrate single-run vector magnetic field imaging and single-run spatial imaging of the system's dynamic behavior. This demonstrates that the method is a useful tool for the characterization of static and dynamically changing properties of ultracold atomic clouds.

  11. Non-destructive Faraday imaging of dynamically controlled ultracold atoms

    NASA Astrophysics Data System (ADS)

    Gajdacz, Miroslav; Pedersen, Poul; Mørch, Troels; Hilliard, Andrew; Arlt, Jan; Sherson, Jacob

    2013-05-01

    We investigate non-destructive measurements of ultra-cold atomic clouds based on dark field imaging of spatially resolved Faraday rotation. In particular, we pursue applications to dynamically controlled ultracold atoms. The dependence of the Faraday signal on laser detuning, atomic density and temperature is characterized in a detailed comparison with theory. In particular the destructivity per measurement is extremely low and we illustrate this by imaging the same cloud up to 2000 times. The technique is applied to avoid the effect of shot-to-shot fluctuations in atom number calibration. Adding dynamic changes to system parameters, we demonstrate single-run vector magnetic field imaging and single-run spatial imaging of the system's dynamic behavior. The method can be implemented particularly easily in standard imaging systems by the insertion of an extra polarizing beam splitter. These results are steps towards quantum state engineering using feedback control of ultracold atoms.

  12. Non-destructive Faraday imaging of dynamically controlled ultracold atoms.

    PubMed

    Gajdacz, Miroslav; Pedersen, Poul L; Mørch, Troels; Hilliard, Andrew J; Arlt, Jan; Sherson, Jacob F

    2013-08-01

    We describe an easily implementable method for non-destructive measurements of ultracold atomic clouds based on dark field imaging of spatially resolved Faraday rotation. The signal-to-noise ratio is analyzed theoretically and, in the absence of experimental imperfections, the sensitivity limit is found to be identical to other conventional dispersive imaging techniques. The dependence on laser detuning, atomic density, and temperature is characterized in a detailed comparison with theory. Due to low destructiveness, spatially resolved images of the same cloud can be acquired up to 2000 times. The technique is applied to avoid the effect of shot-to-shot fluctuations in atom number calibration, to demonstrate single-run vector magnetic field imaging and single-run spatial imaging of the system's dynamic behavior. This demonstrates that the method is a useful tool for the characterization of static and dynamically changing properties of ultracold atomic clouds. PMID:24007051

  13. EVALUATION OF TRANSPORTATION OPTIONS FOR INTERMEDIATE NON DESTRUCTIVE EXAMINATIONS

    SciTech Connect

    Case, Susan; Hoggard, Gary

    2014-07-01

    Idaho National Laboratory (INL) shipments of irradiated experiments from the Advanced Test Reactor (ATR) to the Hot Fuels Examination Facility (HFEF) have historically been accomplished using the General Electric Model 2000 (GE 2000) Type B shipping container. Battelle Energy Alliance (BEA) concerns regarding the future availability and leasing and handling costs associated with the GE 2000 cask have warranted an evaluation of alternative shipping options. One or more of these shipping options may be utilized to perform non destructive examinations (NDE) such as neutron radiography and precision gamma scans of irradiated experiments at HFEF and then return the experiments to ATR for further irradiation, hereafter referred to as “intermediate NDE.”

  14. Assesment of uniaxial compressive strenght of repair mortars by using in situ non destructive techniques

    NASA Astrophysics Data System (ADS)

    Szemerey-Kiss, Balázs; Török, Ákos

    2014-05-01

    The present paper provides information on the strength assessment of restoration mortars by using ultrasonic pulse velocity. The aims of the tests were to determine the compressive strength of the mortars by using non destructive test methods. Four commercially available types of restoration mortars were tested. Besides the pure mortars, specimens with 30 and 50 wt% of limestone sand aggregate (from Sóskút quarry) were also made. The material properties of the tested mortars have been described in details previously (Szemerey-Kiss et al. 2013). Cubic test specimens of 3cm x 3cm x 3cm were prepared from the mortars and after casting and consolidation 10 cubes of each mortar type were tested. Ultrasonic pulse velocity was measured according to the guidelines given by EN 14579:2005. Uniaxial compressive strength of test specimens were measured following the instructions of EN 1015-11:2000. An exponential mathematical formula was outlined that describes the uniaxial compressive strength of mortars based on ultrasonic pulse velocity data. The best fit was found for two mortars while the formula with different constants could be also used for other mortars, too. These experiments have proved that non destructive tests can be used in the assessment of the strength of historic mortars. References: Szemerey-Kiss, B., Török, Á., Siegesmund S 2013. The influence of binder/aggregate ratio on the properties and strength of repair mortars. Environmental Earth Sciences, 69:1439-1449.

  15. Non-destructive investigation of a time capsule using neutron radiography and X-ray fluorescence

    NASA Astrophysics Data System (ADS)

    MacDonald, B. L.; Vanderstelt, J.; O'Meara, J.; McNeill, F. E.

    2016-01-01

    Non-destructive analytical techniques are becoming increasingly important for the study of objects of cultural heritage interest. This study applied two techniques: X-ray fluorescence and neutron radiography, for the investigation of a capped, tubular metal object recovered from an urban construction site in Gore Park, Hamilton, Canada. The site is an urban park containing a World War I commemorative monument that underwent renovation and relocation. Historical documentation suggested that the object buried underneath the monument was a time capsule containing a paper document listing the names of 1800 Canadians who died during WWI. The purpose of this study was to assess the condition of the object, and to verify if it was what the historical records purported. XRF analysis was used to characterize the elemental composition of the metal artifact, while neutron radiography revealed that its contents were congruent with historical records and remained intact after being interred for 91 years. Results of this study demonstrate the value of non-destructive techniques for the analysis and preservation of cultural heritage.

  16. Non-Destructive Techniques in the Tacis and Phare Nuclear Safety Programmes

    SciTech Connect

    Bieth, Michel

    2002-07-01

    Decisions regarding the verification of design plant lifetime and potential license renewal periods involve a determination of the component and circuit condition. In Service Inspection of key reactor components becomes a crucial consideration for continued safe plant operation. The determination of the equipment properties by Non Destructive Techniques during periodic intervals is an important aspect of the assessment of fitness-for-service and safe operation of nuclear power plants The Tacis and Phare were established since 1991 by the European Union as support mechanisms through which projects could be identified and addressed satisfactorily. In Nuclear Safety, the countries mainly concerned are Russia, Ukraine, Armenia, and Kazakhstan for the Tacis programme, and Bulgaria, Czech Republic, Hungary, Slovak Republic, Lithuania, Romania and Slovenia for the Phare programme. The Tacis and Phare programs concerning the Nuclear Power Plants consist of: - On Site Assistance and Operational Safety, - Design Safety, - Regulatory Authorities, - Waste management, and are focused on reactor safety issues, contributing to the improvement in the safety of East European reactors and providing technology and safety culture transfer. The main parts of these programmes are related to the On-Site Assistance and to the Design Safety of VVER and RBMK Nuclear power plants where Non Destructive Techniques for In Service Inspection of the primary circuit components are addressed. (authors)

  17. Non-destructive detection of pesticide residues in cucumber using visible/near-infrared spectroscopy.

    PubMed

    Jamshidi, Bahareh; Mohajerani, Ezeddin; Jamshidi, Jamshid; Minaei, Saeid; Sharifi, Ahmad

    2015-01-01

    The feasibility of using visible/near-infrared (Vis/NIR) spectroscopy was assessed for non-destructive detection of diazinon residues in intact cucumbers. Vis/NIR spectra of diazinon solution and cucumber samples without and with different concentrations of diazinon residue were analysed at the range of 450-1000 nm. Partial least squares-discriminant analysis (PLS-DA) models were developed based on different spectral pre-processing techniques to classify cucumbers with contents of diazinon below and above the MRL as safe and unsafe samples, respectively. The best model was obtained using a first-derivative method with the lowest standard error of cross-validation (SECV = 0.366). Moreover, total percentages of correctly classified samples in calibration and prediction sets were 97.5% and 92.31%, respectively. It was concluded that Vis/NIR spectroscopy could be an appropriate, fast and non-destructive technology for safety control of intact cucumbers by the absence/presence of diazinon residues. PMID:25789964

  18. Non-destructive sampling of rock-dwelling microbial communities using sterile adhesive tape.

    PubMed

    Cutler, Nick A; Oliver, Anna E; Viles, Heather A; Whiteley, Andrew S

    2012-12-01

    Building stone provides a habitat for an array of microorganisms, many of which have been demonstrated to have a deleterious effect on the appearance and/or structural integrity of stone masonry. It is essential to understand the composition and structure of stone-dwelling (lithobiontic) microbial communities if successful stone conservation strategies are to be applied, particularly in the face of global environmental change. Ideally, the techniques used to sample such assemblages should be non-destructive due to the sensitive conservation status of many stone buildings. This paper quantitatively assesses the performance of sterile adhesive tape as a non-destructive sampling technique and compares the results of tape sampling with an alternative, destructive, sampling method. We used DNA fingerprinting (TRFLP) to characterise the algal, fungal and bacterial communities living on a stone slab. Our results demonstrate that tape sampling may be used to collect viable quantities of microbial DNA from environmental samples. This technique is ideally suited to the sampling of microbial biofilms, particularly when these communities are dominated by green algae. It provides a good approximation of total community diversity (i.e. the aggregate diversity of epilithic and endolithic communities). Tape sampling is straightforward, rapid and cost effective. When combined with molecular analytical techniques, this sampling method has the potential to make a major contribution to efforts to understand the structure of lithobiontic microbial communities and our ability to predict the response of such communities to future environmental change. PMID:23022426

  19. Non-destructive forensic latent fingerprint acquisition with chromatic white light sensors

    NASA Astrophysics Data System (ADS)

    Leich, Marcus; Kiltz, Stefan; Dittmann, Jana; Vielhauer, Claus

    2011-02-01

    Non-destructive latent fingerprint acquisition is an emerging field of research, which, unlike traditional methods, makes latent fingerprints available for additional verification or further analysis like tests for substance abuse or age estimation. In this paper a series of tests is performed to investigate the overall suitability of a high resolution off-the-shelf chromatic white light sensor for the contact-less and non-destructive latent fingerprint acquisition. Our paper focuses on scanning previously determined regions with exemplary acquisition parameter settings. 3D height field and reflection data of five different latent fingerprints on six different types of surfaces (HDD platter, brushed metal, painted car body (metallic and non-metallic finish), blued metal, veneered plywood) are experimentally studied. Pre-processing is performed by removing low-frequency gradients. The quality of the results is assessed subjectively; no automated feature extraction is performed. Additionally, the degradation of the fingerprint during the acquisition period is observed. While the quality of the acquired data is highly dependent on surface structure, the sensor is capable of detecting the fingerprint on all sample surfaces. On blued metal the residual material is detected; however, the ridge line structure dissolves within minutes after fingerprint placement.

  20. Non-destructive investigation of thermoplastic reinforced composites

    SciTech Connect

    Hassen, Ahmed; Vaidya, Uday

    2016-01-01

    This paper studies various manufacturing defects in glass fiber/Polypropylene (PP) composite parts and their methods of detection. Foreign Object Inclusion (FOI) of different shapes, sizes, and materials were placed in a glass fiber/PP panel made by compression molding. The paper aims to characterize the fiber orientation and fiber related defects such as fiber waviness in the composite specimen. Comprehensive investigation for different Non Destructive Evaluation (NDE) techniques, namely X-ray radiography and Ultrasonic Testing (UT) techniques to trace and characterize the embedded defects and the composite texture are presented. Conventional X-ray radiography successfully identified the fiber orientation in two dimension (2-D) plane; however, information for the sample depth was not captured. The radiography techniques showed low relative errors for the defect size measurements (maximum error was below 9.5%) when compared to the ultrasonic techniques. Ultrasonic techniques were able to map all the embedded artificial defects. Phase Array (PA) ultrasonic technique was able to precisely locate the FOI in the glass fiber/PP specimen. Nerveless, the shape and size of the defects were not accurately determined due to the high signal attenuation and distortion characteristics of the E-glass fiber.

  1. A non-destructive method for dating human remains

    USGS Publications Warehouse

    Lail, Warren K.; Sammeth, David; Mahan, Shannon; Nevins, Jason

    2013-01-01

    The skeletal remains of several Native Americans were recovered in an eroded state from a creek bank in northeastern New Mexico. Subsequently stored in a nearby museum, the remains became lost for almost 36 years. In a recent effort to repatriate the remains, it was necessary to fit them into a cultural chronology in order to determine the appropriate tribe(s) for consultation pursuant to the Native American Grave Protection and Repatriation Act (NAGPRA). Because the remains were found in an eroded context with no artifacts or funerary objects, their age was unknown. Having been asked to avoid destructive dating methods such as radiocarbon dating, the authors used Optically Stimulated Luminescence (OSL) to date the sediments embedded in the cranium. The OSL analyses yielded reliable dates between A.D. 1415 and A.D. 1495. Accordingly, we conclude that the remains were interred somewhat earlier than A.D. 1415, but no later than A.D. 1495. We believe the remains are from individuals ancestral to the Ute Mouache Band, which is now being contacted for repatriation efforts. Not only do our methods contribute to the immediate repatriation efforts, they provide archaeologists with a versatile, non-destructive, numerical dating method that can be used in many burial contexts.

  2. Non-destructive monitoring of curing process in precast concrete

    NASA Astrophysics Data System (ADS)

    Aparicio, S.; Ranz, J.; Fernández, R.; Albert, V.; Fuente, J. V.; Hernández, M. G.

    2012-12-01

    Currently, the use of precast concrete elements has gained importance because it offers many advantages over site-cast concrete. A disadvantage of site-cast concrete is that its properties vary according to the manufacturing method, the environment and even the operator who carried out the mixing, pouring and implementation of the concrete. Precast concrete elements are manufactured in a controlled environment (typically referred to as a precast plant) and this reduces the shrinkage and creep. One of the key properties of precast concrete is the capability to gain compressive strength rapidly under the appropriate conditions. The compressive strength determines if the precast can be stripped from the form or manipulated. This parameter is measured using destructive testing over cylindrical or cubic samples. The quality control of precast is derived from the fracture suffered by these elements, resulting in a "pass or fail" evaluation. In most cases, the solution to this problem is to allow the material to cure for a few hours until it acquires sufficient strength to handle the precast element. The focus of this paper is the description of the research project "CUREND". This project aims to design a non-destructive methodology to monitor the curing process in precast concrete. The monitoring will be performed using wireless sensor networks.

  3. Data fusion for automated non-destructive inspection

    PubMed Central

    Brierley, N.; Tippetts, T.; Cawley, P.

    2014-01-01

    In industrial non-destructive evaluation (NDE), it is increasingly common for data acquisition to be automated, driving a recent substantial increase in the availability of data. The collected data need to be analysed, typically necessitating the painstaking manual labour of a skilled operator. Moreover, in automated NDE a region of an inspected component is typically interrogated several times, be it within a single data channel due to multiple probe passes, across several channels acquired simultaneously or over the course of repeated inspections. The systematic combination of these diverse readings is recognized to offer an opportunity to improve the reliability of the inspection, but is not achievable in a manual analysis. This paper describes a data-fusion-based software framework providing a partial automation capability, allowing component regions to be declared defect-free to a very high probability while readily identifying defect indications, thereby optimizing the use of the operator's time. The system is designed to applicable to a wide range of automated NDE scenarios, but the processing is exemplified using the industrial ultrasonic immersion inspection of aerospace turbine discs. Results obtained for industrial datasets demonstrate an orders-of-magnitude reduction in false-call rates, for a given probability of detection, achievable using the developed software system. PMID:25002828

  4. Non-destructive testing of the MEGAPIE target

    NASA Astrophysics Data System (ADS)

    Dai, Y.; Wohlmuther, M.; Boutellier, V.; Hahl, S.; Lagotzki, A.; Leu, H.; Linder, H. P.; Schwarz, R.; Spahr, A.; Zanini, L.; Kuster, D.; Gavillet, D.; Wagner, W.

    2016-01-01

    Non-destructive testing (NDT) is one important part of the post-irradiation examination (PIE) of the MEGAPIE target. It includes visual inspection and ultrasonic measurement of the beam window of the T91 LBE container and gamma mapping of the beam window of the AlMg3 safety-container. The visual inspection showed no visible failure in the proton beam window area of the T91 LBE container. The ultrasonic measurement demonstrated no detectable change in the wall thickness of the T91 beam window, which implies no severe corrosion effect induced by flowing LBE during the four-month irradiation period. The gamma mapping provided the distribution of 22Na, a spallation product, in the proton beam window area of the AlMg3 safety-container. The result was used to evaluate the accumulated proton fluence distribution profile, the input data for determining irradiation parameters. A maximum proton fluence of 1.9 × 1025 p/m2 was deduced. The corresponding displacement damage degree in the T91 beam window was 7.1 dpa.

  5. Method of non-destructively inspecting a curved wall portion

    DOEpatents

    Fong, James T.

    1996-01-01

    A method of non-destructively inspecting a curved wall portion of a large and thick walled vessel for a defect by computed tomography is provided. A collimated source of radiation is placed adjacent one side of the wall portion and an array of detectors for the radiation is placed on the other side adjacent the source. The radiation from the source passing through the wall portion is then detected with the detectors over a limited angle, dependent upon the curvature of the wall of the vessel, to obtain a dataset. The source and array are then coordinately moved relative to the wall portion in steps and a further dataset is obtained at each step. The plurality of datasets obtained over the limited angle is then processed to produce a tomogram of the wall portion to determine the presence of a defect therein. In a preferred embodiment, the curved wall portion has a center of curvature so that the source and the array are positioned at each step along a respective arc curved about the center. If desired, the detector array and source can be reoriented relative to a new wall portion and an inspection of the new wall portion can be easily obtained. Further, the source and detector array can be indexed in a direction perpendicular to a plane including the limited angle in a plurality of steps so that by repeating the detecting and moving steps at each index step, a three dimensional image can be created of the wall portion.

  6. Non-destructive investigation of thermoplastic reinforced composites

    DOE PAGESBeta

    Hassen, Ahmed; Taheri, Hossein; Vaidya, Uday

    2016-05-09

    This paper studies various manufacturing defects in glass fiber/Polypropylene (PP) composite parts and their methods of detection. Foreign Object Inclusion (FOI) of different shapes, sizes, and materials were placed in a glass fiber/PP panel made by compression molding. The paper aims to characterize the fiber orientation and fiber related defects such as fiber waviness in the composite specimen. Comprehensive investigation for different Non Destructive Evaluation (NDE) techniques, namely X-ray radiography and Ultrasonic Testing (UT) techniques to trace and characterize the embedded defects and the composite texture are presented. Conventional X-ray radiography successfully identified the fiber orientation in two dimension (2-D)more » plane; however, information for the sample depth was not captured. The radiography techniques showed low relative errors for the defect size measurements (maximum error was below 9.5%) when compared to the ultrasonic techniques. Ultrasonic techniques were able to map all the embedded artificial defects. Phase Array (PA) ultrasonic technique was able to precisely locate the FOI in the glass fiber/PP specimen. Nerveless, the shape and size of the defects were not accurately determined due to the high signal attenuation and distortion characteristics of the E-glass fiber.« less

  7. Non-destructive compositional analysis of historic organ reed pipes

    NASA Astrophysics Data System (ADS)

    Manescu, A.; Fiori, F.; Giuliani, A.; Kardjilov, N.; Kasztovszky, Z.; Rustichelli, F.; Straumal, B.

    2008-03-01

    In order to be able to reproduce historic organ reed pipes, a bulk non-destructive chemical composition analysis was performed on the tongues and shallots, focusing mainly on the ratio between copper and zinc and on the presence of lead. Prompt gamma activation analysis results allowed us to observe for the first time that the ratio between the two main components of the brass alloy changed from Cu:Zn = 3:1 for the old tongues and shallots to Cu:Zn = 2:1 around the middle of the 18th century, which is typical also for the modern alloys offered to the organ builders nowadays. We also discovered that the Pb content in the old historic brass alloy diminished until the middle of 18th century when the brass alloy became mainly Pb free. The non-uniform lead distribution inside one of the shallots obtained from a prompt gamma activation analysis (PGAA) experiment was studied by neutron tomography. It gave us a three-dimensonal (3D) distribution of the lead inclusions inside the shallots. The lead particles are concentrated towards the base of the shallot.

  8. Non-Destructive Evaluation (NDE) Applications of THz Radiation

    NASA Astrophysics Data System (ADS)

    Zimdars, David

    2005-03-01

    The technology and applications of time domain terahertz (THz) imaging to non-destructive evaluation (NDE) will be discussed. THz imaging has shown great promise in 2 and 3 dimensional non-contact inspection of non-conductive materials such as plastics, foam, composites, ceramics, paper, wood and glass. THz imaging employs safe low power non-ionizing electromagnetic pulses, with lateral resolution < 200 um, and depth resolution < 50 um. THz pulses can be analyzed spectroscopically to reveal chemical content. Recently, highly integrated turn-key THz imaging systems have been introduced commercially. We will demonstrate the detection of voids and disbonds intentionally incorporated within the sprayed on foam insulation of a space shuttle external tank mock-up segments. An industrially hardened THz scanning system which has been deployed to scan the space shuttle tank with small remote transceiver will be described. Additional terahertz security imaging applications for the detection of weapons and explosives will also be discussed, as well as the application of terahertz sensors for high speed industrial process monitoring and quality control.

  9. Complex Archaeological Prospection Using Combination of Non-destructive Techniques

    NASA Astrophysics Data System (ADS)

    Faltýnová, M.; Pavelka, K.; Nový, P.; Šedina, J.

    2015-08-01

    This article describes the use of a combination of non-destructive techniques for the complex documentation of a fabulous historical site called Devil's Furrow, an unusual linear formation lying in the landscape of central Bohemia. In spite of many efforts towards interpretation of the formation, its original form and purpose have not yet been explained in a satisfactory manner. The study focuses on the northern part of the furrow which appears to be a dissimilar element within the scope of the whole Devil's Furrow. This article presents detailed description of relics of the formation based on historical map searches and modern investigation methods including airborne laser scanning, aerial photogrammetry (based on airplane and RPAS) and ground-penetrating radar. Airborne laser scanning data and aerial orthoimages acquired by the Czech Office for Surveying, Mapping and Cadastre were used. Other measurements were conducted by our laboratory. Data acquired by various methods provide sufficient information to determine the probable original shape of the formation and proves explicitly the anthropological origin of the northern part of the formation (around village Lipany).

  10. FIRST 100 T NON-DESTRUCTIVE MAGNET OUTER COIL SET

    SciTech Connect

    J. BACON; A. BACA; ET AL

    1999-09-01

    The controlled power outer coil set of the first 100 T non-destructive (100 T ND) magnet is described. This magnet will be installed as part of the user facility research equipment at the National High Magnetic Field laboratory (NHMFL) Pulsed Field Facility at Los Alamos National Laboratory. The 100 T ND controlled power outer coil set consists of seven nested, mechanically independent externally reinforced coils. These coils, in combination, will produce a 47 T platform field in a 225-mm diameter bore. Using inertial energy storage a synchronous motor/generator provides ac power to a set of seven ac-dc converters rated at 64 MW/80 MVA each. These converters energize three independent coil circuits to create 170 MJ of field energy in the outer coil set at the platform field of 47 T. Each coil consists of a multi-layer winding of high strength conductor supported by an external high strength stainless steel shell. Coils with the highest magnetic loads will utilize a reinforcing shell fabricated from highly cold worked 301 stainless steel strip. The autofrettage conditioning method will be used to pre-stress the coils and thereby limit conductor and reinforcement strains to the elastic range. The purpose of pre-stressing the coils is to attain a design life of 10,000 full field pulses. The operation and conditioning of the coil set will be described along with special features of its design, magnetic and structural analyses and construction.

  11. PREDICTION OF DISSOLVER LIFETIMES THROUGH NON-DESTRUCTIVE EVALUATION AND LABORATORY TESTING

    SciTech Connect

    Mickalonis, J.; Woodsmall, T.; Hinz, W.; Edwards, T.

    2011-10-03

    Non-destructive evaluation was used as the primary method of monitoring the corrosion degradation of nuclear material dissolvers and assessing the remaining lifetimes. Materials were typically processed in nitric acid based (4-14M) solutions containing fluoride concentrations less than 0.2 M. The primary corrosion issue for the stainless steel dissolvers is the occurrence of localized corrosion near the tank bottom and the heat affected zones of the welds. Laboratory data for a range of operational conditions, including solution chemistry and temperature, was used to assess the impact of processing changes on the dissolver corrosion rate. Experimental and NDE-based general corrosion rates were found to be in reasonable agreement for standard dissolution chemistries consisting of nitric acid with fluorides and at temperatures less than 95 C. Greater differences were observed when chloride was present as an impurity and temperatures exceeded 100 C.

  12. Geophysical Methods for Non-Destructive Testing in Civil Engineering

    NASA Astrophysics Data System (ADS)

    Niederleithinger, E.

    2013-12-01

    Many non-destructive testing (NDT) methods for civil engineering (e. g. ultrasonics, radar) are similar to geophysical techniques. They just differ in scale, material under investigation and vocabulary used. In spite of the fact that the same principles of physics and mathematics apply to both fields, exchange has been limited in the past. But since a few years more and more geophysical knowledge is used in civil engineering. One of the focal points in research is to improve ultrasonic testing of concrete to be able to image the inside even of large, complex structures and to detect any deterioration as early as possible. One of the main issues is the heterogeneity of concrete, including aggregates, reinforcement, cracks and many other features. Our current research focuses on three points. One is the application of state of the art geophysical migration techniques as Reverse Time Migration (RTM) to image vertical faces or the backside of voids and ducts in thick concrete structures, which isn't possible with conventional techniques used in NDT. Second, we have started to use seismic interferometric techniques to interpolate ultrasonic traces, which can't be measured directly for technical reasons. Third, we are using coda wave interferometry to detect concrete degradation due to load, fatigue, temperature or other influences as early as possible. Practical examples of the application of these techniques are given and potential future research directions will be discussed. It will be shown, how a subset of these techniques can be used for innovative monitoring systems for civil infrastructure. Imaging the interior of a concrete body by ultrasonics and reverse time migration(simulated data).

  13. Recent advances in the use of non-destructive near infrared spectroscopy on intact olive fruits

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this review is to illustrate the state of the art in the use of non-destructive near infrared (NIR) spectroscopy for quality evaluation of intact fruit in the olive industry. First, the most recent studies regarding the application of non-destructive NIR spectroscopy methods to asse...

  14. Non-destructive testing of an original XVI century painting on wood by ESPI system

    NASA Astrophysics Data System (ADS)

    Arena, G.; Paturzo, M.; Fatigati, G.; Grilli, M.; Pezzati, L.; Ferraro, P.

    2015-03-01

    Electronic Speckle Pattern Interferometry (ESPI), a non-contact and non-destructive optical techniques, was employed for assessing the conservation state of a XVI Century painting on wood (72x88x1,9 cm). By a long term analysis, the whole structure alterations, induced by the room temperature and relative humidity variations, were evaluated. Measurement of the whole painting structural bends was achieved. Local flaws and hidden detachments of pictorial layers from the support, which cannot be recognized by traditional art-restorer methods, were also revealed. This work was prevalently aimed at achieving a simple approach, in the laboratory practice, to get an intuitively user-friendly method for art conservators, not accustomed to high-tech or math based methods. The results demonstrate that ESPI can largely improve the traditional art conservation survey techniques.

  15. NON-DESTRUCTIVE TBC SPALLATION DETECTION BY A MICRO-INDENTATION METHOD

    SciTech Connect

    J. M. Tannenbaum; B.S.-J. Kang; M.A. Alvin

    2010-06-18

    In this research, a load-based depth-sensing micro-indentation method for spallation detection and damage assessment of thermal barrier coating (TBC) materials is presented. A non-destructive multiple loading/partial unloading testing methodology was developed where in stiffness responses of TBC coupons subjected to various thermal cyclic loading conditions were analyzed to predict the spallation site and assess TBC degradation state. The measured stiffness responses at various thermal loading cycles were used to generate time-series color maps for correlation with accumulation of TBC residual stress states. The regions with higher stiffness responses can be linked to a rise in out-of-plane residual stress located near or at the yttria stabilized zirconia (YSZ)/thermally grown oxide (TGO) interface, which is ultimately responsible for initiating TBC spallation failure. A TBC thermal exposure testing plan was carried out where time-series cross-sectional microstructural analyses of damage accumulation and spallation failure associated with the evolution of bond coat/TGO/top coat composite (e.g. thickness, ratcheting, localized oxidations, etc.) of air plasma sprayed (APS) TBCs were evaluated and correlated to the measured stiffness responses at various thermal cycles. The results show that the load-based micro-indentation test methodology is capable of identifying the spallation site(s) before actual occurrence. This micro-indentation technique can be viewed as a viable non-destructive evaluation (NDE) technique for determining as-manufactured and process-exposed TBCs. This technique also shows promise for the development of a portable instrument for on-line, in-situ spallation detection/prediction of industrial-size TBC turbine components.

  16. Non-destructive electrical characterization of controlled Waspaloy microstructures

    NASA Astrophysics Data System (ADS)

    G. Kelekanjeri, V. Siva Kumar

    In this research, controlled Waspaloy microstructures are produced with the objective of studying microstructural evolution in this alloy via non-destructive electrical measurements. Waspaloy is a precipitation-hardenable gamma-gamma' nickel-base superalloy that is used in turbine blade applications demanding superior strength retention capabilities at elevated temperatures. Overall, three different sets of microstructures were produced that varied systematically as a function of the matrix (gamma) grain size and gamma' precipitate size distribution or just the latter. Initial solutionizing treatments conducted at 1045°C, 1090°C and 1145°C resulted in average y grain size of 13, 52 and 89 mum respectively. A vacancy stabilization treatment at 1045°C followed the solutionizing treatments in Set I experiments, after which the specimens were aged at 800°C for durations ranging from 0.1 hrs to 100 hrs. In Sets 11 and III, the matrix grain size was kept unchanged by an initial solution-treatment at 1145°C. The stabilization treatment at 1045°C was only conducted in Set II after the solution-treatment. Aging experiments were then conducted at 700°C (or 725°C in Set III), 800°C and 875°C to study the growth kinetics of gamma' precipitate distribution. The specimens with controlled microstructures were investigated using scanning electron microscopy (SEM), atomic force microscopy (AFM), x-ray diffraction (XRD), ultra small-angle x-ray scattering (USAXS) and dc four-point probe resistivity. The applicability of two and four-probe ac impedance techniques was also investigated. Characterization of heat-treated specimens. Solution-treated SEM microstructures showed the presence of polygonal etch-pit shapes, which was proposed to be due to the condensation of excess quenched-in vacancies along crystallographically soft-directions in the gamma phase. The etch-pits evolved upon subsequent aging into progressively irregular shapes, concurrent with gamma' growth inside

  17. Non-destructive hyperspectral imaging of quarantined Mars Returned Samples

    NASA Astrophysics Data System (ADS)

    Simionovici, Alexandre; Viso, Michel; Beck, Pierre; Lemelle, Laurence; Westphal, Andrew; Vincze, Laszlo; Schoonjans, Tom; Fihman, Francois; Chazalnoel, Pascale; Ferroir, Tristan; Solé, Vicente Armando; Tucoulou, R.

    Introduction: In preparation for the upcoming International Mars Sample Return mission (MSR), returning samples containing potential biohazards, we have implemented a hyperspec-tral method of in-situ analysis of grains performed in BSL4 quarantine conditions, by combining several non-destructive imaging diagnostics. This allows sample transportation on optimized experimental setups, while monitoring the sample quarantine conditions. Our hyperspectral methodology was tested during analyses of meteorites [1-2] and cometary and interstellar grains from the recent NASA Stardust mission [3-6]. Synchrotron Radiation protocols: X-ray analysis methods are widely accepted as the least destructive probes of fragile, unique samples. Diffraction, X-ray fluorescence and ab-sorption micro/nano-spectroscopies were performed on chondritic test samples using focused monochromatic beams at the ESRF synchrotron in Grenoble, France. 2D maps of grain com-position down to ppm concentrations and polycrystalline structure have simultaneously been acquired, followed by X-ray absorption performed on elements of Z 26. Ideally, absorption micro-tomography can later be performed in full-beam mode to record the 3D morphology of the grain followed by fluorescence-tomography in focus-beam mode which complements this picture with a 3D elemental image of the grain. Lab-based protocols: Raman and IR-based spectroscopies have been performed in reflection mode for mineralogical imaging of the grains in the laboratory using commercial microscopes. The spatial resolution varied in the 1-10 m range. Laser limited penetration of opaque samples permits only 2D imaging of the few nanometer-thick outer layers of the grains. Mineralogical maps are now routinely acquired using Raman spectroscopy at sub-micron scales through the 3 container walls of the Martian sample holder, followed by IR few-micrometer spot measurements recording C-based and potential aqueous alteration distributions. Sample Holder: A

  18. Non-Destructive Optical Monitoring of Grape Maturation by Proximal Sensing

    PubMed Central

    Ben Ghozlen, Naïma; Cerovic, Zoran G.; Germain, Claire; Toutain, Sandrine; Latouche, Gwendal

    2010-01-01

    A new, commercial, fluorescence-based optical sensor for plant constituent assessment was recently introduced. This sensor, called the Multiplex® (FORCE-A, Orsay, France), was used to monitor grape maturation by specifically monitoring anthocyanin accumulation. We derived the empirical anthocyanin content calibration curves for Champagne red grape cultivars, and we also propose a general model for the influence of the proportion of red berries, skin anthocyanin content and berry size on Multiplex® indices. The Multiplex® was used on both berry samples in the laboratory and on intact clusters in the vineyard. We found that the inverted and log-transformed far-red fluorescence signal called the FERARI index, although sensitive to sample size and distance, is potentially the most widely applicable. The more robust indices, based on chlorophyll fluorescence excitation ratios, showed three ranges of dependence on anthocyanin content. We found that up to 0.16 mg cm−2, equivalent to approximately 0.6 mg g−1, all indices increase with accumulation of skin anthocyanin content. Excitation ratio-based indices decrease with anthocyanin accumulation beyond 0.27 mg cm−2. We showed that the Multiplex® can be advantageously used in vineyards on intact clusters for the non-destructive assessment of anthocyanin content of vine blocks and can now be tested on other fruits and vegetables based on the same model. PMID:22163456

  19. From local to global analysis of defect detectability in infrared non-destructive testing

    NASA Astrophysics Data System (ADS)

    Florez-Ospina, J. F.; Benitez, H. D.

    2014-03-01

    Several image processing techniques are employed in Infrared Non-Destructive Testing (IRNDT) to enhance defect detectability. To date, there is no adequate global measurement that objectively assesses defect visibility in processed frames. In this work, a Global Signal to Noise Ratio (GSNR) that comprehensively evaluates defect detectability in processed infrared (IR) images is proposed, as well as a defect visibility measure named Infrared Image Quality Index (IRIQI) that compares the structural information of defective and sound areas. In addition, GSNR and IRIQI are validated by using the area under ROC curve (AUC). AUC quantitatively assesses defect visibility by comparing the outcomes of processing techniques to human judgements. The remarkable benefit of this global approach is that it allows one to determine the frame at which processing techniques reveals the majority of the defects by evaluating the times at which AUC curves reach their maxima. The test pieces were a Carbon-Fiber Reinforced Plastic (CFRP) sample containing delaminations and a honeycomb specimen with delaminations, skin unbonds, excessive adhesive, and crushed core.

  20. Autofluorescence microscopy: a non-destructive tool to monitor mitochondrial toxicity.

    PubMed

    Rodrigues, Robim M; Macko, Peter; Palosaari, Taina; Whelan, Maurice P

    2011-10-30

    Visualization of NADH by fluorescence microscopy makes it possible to distinguish mitochondria inside living cells, allowing structure analysis of these organelles in a non-invasive way. Mitochondrial morphology is determined by the occurrence of mitochondrial fission and fusion. During normal cell function mitochondria appear as elongated tubular structures. However, cellular malfunction induces mitochondria to fragment into punctiform, vesicular structures. This change in morphology is associated with the generation of reactive oxygen species (ROS) and early apoptosis. The aim of this study is to demonstrate that autofluorescence imaging of mitochondria in living eukaryotic cells provides structural and morphological information that can be used to assess mitochondrial health. We firstly established the illumination conditions that do not affect mitochondrial structure and calculated the maximum safe light dose to which the cells can be exposed. Subsequently, sequential recording of mitochondrial fluorescence was performed and changes in mitochondrial morphology were monitored in a continuous non-destructive way. This approach was then used to assess mitochondrial toxicity induced by potential toxicants exposed to mammalian cells. Both mouse and human cells were used to evaluate mitochondrial toxicity of different compounds with different toxicities. This technique constitutes a novel and promising approach to explore chemical induced toxicity because of its reliability to monitor mitochondrial morphology changes and corresponding toxicity in a non-invasive way. PMID:21864658

  1. Non-Destructive Current Sensing for Energy Efficiency Monitoring in Buildings with Environmental Certification

    PubMed Central

    Mota, Lia Toledo Moreira; Mota, Alexandre de Assis; Coiado, Lorenzo Campos

    2015-01-01

    Nowadays, buildings environmental certifications encourage the implementation of initiatives aiming to increase energy efficiency in buildings. In these certification systems, increased energy efficiency arising from such initiatives must be demonstrated. Thus, a challenge to be faced is how to check the increase in energy efficiency related to each of the employed initiatives without a considerable building retrofit. In this context, this work presents a non-destructive method for electric current sensing to assess implemented initiatives to increase energy efficiency in buildings with environmental certification. This method proposes the use of a sensor that can be installed directly in the low voltage electrical circuit conductors that are powering the initiative under evaluation, without the need for reforms that result in significant costs, repair, and maintenance. The proposed sensor consists of three elements: an air-core transformer current sensor, an amplifying/filtering stage, and a microprocessor. A prototype of the proposed sensor was developed and tests were performed to validate this sensor. Based on laboratory tests, it was possible to characterize the proposed current sensor with respect to the number of turns and cross-sectional area of the primary and secondary coils. Furthermore, using the Least Squares Method, it was possible to determine the efficiency of the air core transformer current sensor (the best efficiency found, considering different test conditions, was 2%), which leads to a linear output response. PMID:26184208

  2. Non-Destructive Current Sensing for Energy Efficiency Monitoring in Buildings with Environmental Certification.

    PubMed

    Mota, Lia Toledo Moreira; Mota, Alexandre de Assis; Coiado, Lorenzo Campos

    2015-01-01

    Nowadays, buildings environmental certifications encourage the implementation of initiatives aiming to increase energy efficiency in buildings. In these certification systems, increased energy efficiency arising from such initiatives must be demonstrated. Thus, a challenge to be faced is how to check the increase in energy efficiency related to each of the employed initiatives without a considerable building retrofit. In this context, this work presents a non-destructive method for electric current sensing to assess implemented initiatives to increase energy efficiency in buildings with environmental certification. This method proposes the use of a sensor that can be installed directly in the low voltage electrical circuit conductors that are powering the initiative under evaluation, without the need for reforms that result in significant costs, repair, and maintenance. The proposed sensor consists of three elements: an air-core transformer current sensor, an amplifying/filtering stage, and a microprocessor. A prototype of the proposed sensor was developed and tests were performed to validate this sensor. Based on laboratory tests, it was possible to characterize the proposed current sensor with respect to the number of turns and cross-sectional area of the primary and secondary coils. Furthermore, using the Least Squares Method, it was possible to determine the efficiency of the air core transformer current sensor (the best efficiency found, considering different test conditions, was 2%), which leads to a linear output response. PMID:26184208

  3. Non-destructive Evaluation of Bonds Between Fiberglass Composite and Metal

    NASA Technical Reports Server (NTRS)

    Zhao, Selina; Sonta, Kestutis; Perey, Daniel F.; Cramer, K. E.; Berger, Libby

    2015-01-01

    To assess the integrity and reliability of an adhesive joint in an automotive composite component, several non-destructive evaluation (NDE) methodologies are correlated to lap shear bond strengths. A glass-fabric-reinforced composite structure was bonded to a metallic structure with a two-part epoxy adhesive. Samples were subsequently cut and tested in shear, and flaws were found in some areas. This study aims to develop a reliable and portable NDE system for service-level adhesive inspection in the automotive industry. The results of the experimental investigation using several NDE methods are presented and discussed. Fiberglass-to-metal bonding is the ideal configuration for NDE via thermography using excitation with induction heating, due to the conductive metal and non-conductive glass-fiber-reinforced composites. Excitation can be either by a research-grade induction heater of highly defined frequency and intensity, or by a service-level heater, such as would be used for sealing windshields in a body shop. The thermographs thus produced can be captured via a high-resolution infrared camera, with principal component analysis and 2D spatial Laplacian processing. Alternatively, the thermographs can be captured by low resolution thermochromic microencapsulated liquid crystal film imaging, which needs no post-processing and can be very inexpensive. These samples were also examined with phased-array ultrasound. The NDE methods are compared to the lap shear values and to each other for approximate cost, accuracy, and time and level of expertise needed.

  4. Non-destructive inspection of drilled holes in reinforced honeycomb sandwich panels using active thermography

    NASA Astrophysics Data System (ADS)

    Usamentiaga, R.; Venegas, P.; Guerediaga, J.; Vega, L.; López, I.

    2012-11-01

    The aerospace industry is in constant need of ever-more efficient inspection methods for quality control. Product inspection is also essential to maintain the safe operation of aircraft components designed to perform for decades. This paper proposes a method for non-destructive inspection of drilled holes in reinforced honeycomb sandwich panels. Honeycomb sandwich panels are extensively employed in the aerospace industry due to their high strength and stiffness to weight ratios. In order to attach additional structures to them, panels are reinforced by filling honeycomb cells and drilling holes into the reinforced areas. The proposed procedure is designed to detect the position of the holes within the reinforced area and to provide a robust measurement of the distance between each hole and the boundary of the reinforced area. The result is a fast, safe and clean inspection method for drilled holes in reinforced honeycomb sandwich panels that can be used to robustly assess a possible displacement of the hole from the center of the reinforced area, which could have serious consequences. The proposed method is based on active infrared thermography, and uses state of the art methods for infrared image processing, including signal-to-nose ratio enhancement, hole detection and segmentation. Tests and comparison with X-ray inspections indicate that the proposed system meets production needs.

  5. Non-destructive testing of critical infrastructure with giant magneto resistive sensors

    NASA Astrophysics Data System (ADS)

    Hunze, A.; Bailey, J.; Sidorov, G.; Bondurant, P.; Mactutis, T.

    2016-04-01

    Corrosion is the leading failure mechanism for metallic structures. One of the standard non-destructive techniques to assess the status and predict remaining lifetime and possible failure is based on the excitation with a varying magnetic field and measuring the change of the magnetic field due to eddy currents in the device under test. Since the magnetic field is decaying quickly a large lift-off between the excitation source, magnetic sensors and the test object will reduce the signals considerably. In order to obtain a deep penetration into the test object excitation at low frequency is desirable. In this study an investigation of a high power excitation system in combination with giant magneto resistance (GMR) based sensors was done. GMR sensors have a good sensitivity and are suitable for low frequency eddy current testing due to their low 1/f noise. Finite element analysis was used to evaluate the excitation setup, sensor alignment and positions and study the influence of different parameters of the excitation and sensor setup as well as the device under test. Based on these results a laboratory setup was build and used to study the influence of main measurement parameters.

  6. Parameter estimation and multivariable model building for the non-destructive, on-line determination of eggshell strength

    NASA Astrophysics Data System (ADS)

    De Ketelaere, B.; Vanhoutte, H.; De Baerdemaeker, J.

    2003-09-01

    In the non-destructive quality assessment of agro-products using vibration analysis, the resonant frequency and the damping of the vibration are the main interest. Those parameters are usually calculated starting from the frequency spectrum, obtained after a fast Fourier transformation (FFT) of the time signal. However, this method faces several drawbacks when applied to short-time signals, as in the case of impact testing of highly damped specimen. An alternative to the FFT method is used for the high-resolution estimation of both resonant frequency and damping. Furthermore, the mass-spring model that is used in the literature for non-destructive quality assessment of various agro-products is extended with the incorporation of the damping and a shape characteristic. As a practical example, eggshell stiffness was estimated using vibration measurements. A data set consisting of 229 eggs was measured. It is shown that both the damping and the shape characteristics are of major importance to explain eggshell strength. This paper makes clear that a univariable model, as is mostly used in the literature, is not always satisfactory to describe the vibration behaviour of biological products.

  7. Non-Destructive Testing A Developing Tool in Science and Engineering

    SciTech Connect

    Lin, Lianshan

    2013-01-01

    Non-destructive testing (NDT), sometimes also known as non-destructive inspection (NDI) or non-destructive examination (NDE), has been applied to solve a wide range of science and industry problems including construction, aerospace, nuclear engineering, manufacturing, space exploration, art objects, forensic studies, biological and medical fields, etc. Without any permanent changing or alteration of testing objects, NDT methods provide great advantages such as increased testing reliability, efficiency, and safety, as well as reduced time and cost. Since the second half of the 20th century, NDT technology has seen significant growth. Depending on the physical properties being measured, NDT techniques can be classified into several branches. This article will provide a brief overview of commonly used NDT methods and their up-to-date progresses including optical examination, radiography, acoustic emission, ultrasonic testing and eddy current testing. For extended reviews on many presently used NDT methods, please refer to articles by Mullins [1, 2].

  8. Edward's sword? - A non-destructive study of a medieval king's sword

    SciTech Connect

    Segebade, Chr.

    2013-04-19

    Non-destructive and instrumental methods including photon activation analysis were applied in an examination of an ancient sword. It was tried to find indication of forgery or, if authentic, any later processing and alteration. Metal components of the hilt and the blade were analysed by instrumental photon activation. Non-destructive metallurgical studies (hardness measurements, microscopic microstructure analysis) are briefly described, too. The results of these investigations did not yield indication of non-authenticity. This stood in agreement with the results of stylistic and scientific studies by weapon experts.

  9. Edward's sword? - A non-destructive study of a medieval king's sword

    NASA Astrophysics Data System (ADS)

    Segebade, Chr.

    2013-04-01

    Non-destructive and instrumental methods including photon activation analysis were applied in an examination of an ancient sword. It was tried to find indication of forgery or, if authentic, any later processing and alteration. Metal components of the hilt and the blade were analysed by instrumental photon activation. Non-destructive metallurgical studies (hardness measurements, microscopic microstructure analysis) are briefly described, too. The results of these investigations did not yield indication of non-authenticity. This stood in agreement with the results of stylistic and scientific studies by weapon experts.

  10. Non destructive evaluation of adhesively bonded carbon fiber reinforced composite lap joints with varied bond quality

    NASA Astrophysics Data System (ADS)

    Vijayakumar, R. L.; Bhat, M. R.; Murthy, C. R. L.

    2012-05-01

    Structural adhesive bonding is widely used to execute assemblies in automobile and aerospace structures. The quality and reliability of these bonded joints must be ensured during service. In this context non destructive evaluation of these bonded structures play an important role. Evaluation of adhesively bonded composite single lap shear joints has been attempted through experimental approach. Series of tests, non-destructive as well as destructive were performed on different sets of carbon fiber reinforced polymer (CFRP) composite lap joint specimens with varied bond quality. Details of the experimental investigations carried out and the outcome are presented in this paper.

  11. Non-destructive genetic sampling in fish. An improved method for DNA extraction from fish fins and scales.

    PubMed

    Wasko, Adriane P; Martins, Cesar; Oliveira, Claudio; Foresti, Fausto

    2003-01-01

    DNA-based studies have been one of the major interests in conservation biology of endangered species and in population genetics. As species and population genetic assessment requires a source of biological material, the sampling strategy can be overcome by non-destructive procedures for DNA isolation. An improved method for obtaining DNA from fish fins and scales with the use of an extraction buffer containing urea and further DNA purification with phenol-chloroform is described. The methodology combines the benefits of a non-destructive DNA sampling and its high efficiency. In addition, comparisons with other methodologies for isolating DNA from fish demonstrated that the present procedure also becomes a very attractive alternative to obtain large amounts of high-quality DNA for use in different molecular analyses. The DNA samples, isolated from different fish species, have been successfully used on random amplified polymorphic DNA (RAPD) experiments, as well as on amplification of specific ribosomal and mitochondrial DNA sequences. The present DNA extraction procedure represents an alternative for population approaches and genetic studies on rare or endangered taxa. PMID:14641478

  12. The use of non-destructive passive neutron measurement methods in dismantling and radioactive waste characterization

    SciTech Connect

    Jallu, F.; Allinei, P. G.; Bernard, P.; Loridon, J.; Soyer, P.; Pouyat, D.; Torreblanca, L.; Reneleau, A.

    2011-07-01

    The cleaning up and dismantling of nuclear facilities lead to a great volume of technological radioactive wastes which need to be characterized in order to be sent to the adequate final disposal or interim storage. The control and characterization can be performed with non-destructive nuclear measurements such as gamma-ray spectrometry. Passive neutron counting is an alternative when the alpha-gamma emitters cannot be detected due to the presence of a high gamma emission resulting from fission or activation products, or when the waste matrix is too absorbing for the gamma rays of interest (too dense and/or made of high atomic number elements). It can also be a complement to gamma-ray spectrometry when two measurement results must be confronted to improve the confidence in the activity assessment. Passive neutron assays involve the detection of spontaneous fission neutrons emitted by even nuclides ({sup 238}Pu, {sup 240}Pu, {sup 242}Pu, {sup 242}Cm, {sup 244}Cm...) and neutrons resulting from ({alpha}, n) reactions with light nuclides (O, F, Be...). The latter is conditioned by the presence of high {alpha}-activity radionuclides ({sup 234}U, {sup 238}Pu, {sup 240}Pu, {sup 241}Am...) and low-Z elements, which depends on the chemical form (metallic, oxide or fluorine) of the plutonium or uranium contaminant. This paper presents the recent application of passive neutron methods to the cleaning up of a nuclear facility located at CEA Cadarache (France), which concerns the Pu mass assessment of 2714 historic, 100 litre radioactive waste drums produced between 1980 and 1997. Another application is the dismantling and decommissioning of an uranium enrichment facility for military purposes, which involves the {sup 235}U and total uranium quantifications in about a thousand, large compressors employed in the gaseous diffusion enrichment process. (authors)

  13. A study of active thermography approaches for the non-destructive testing and evaluation of aerospace structures

    NASA Astrophysics Data System (ADS)

    Avdelidis, Nicolas P.; Ibarra-Castanedo, Clemente; Marioli-Riga, Zaira P.; Bendada, Abdelhakim; Maldague, Xavier P. V.

    2008-03-01

    The prerequisite for more competent and cost effective aircraft has led to the evolution of innovative testing and evaluation procedures. Non-destructive testing and evaluation (NDT & E) techniques for assessing the integrity of an aircraft structure are essential to both reduce manufacturing costs and out of service time of aircraft due to maintenance. Nowadays, active - transient thermal NDT & E (i.e. thermography) is commonly used for assessing aircraft composites. This research work evaluates the potential of pulsed thermography (PT) and/or pulsed phase thermography (PPT) for assessing defects (i.e. impact damage and inclusions for delaminations) on GLARE and GLARE type composites. Finally, in the case of the detection of inserts - delaminations C-Scan ultrasonic testing was also used with the intention of providing supplementary results.

  14. Time Domain Terahertz Non-Destructive Evaluation of Aeroturbine Blade Thermal Barrier Coatings

    NASA Astrophysics Data System (ADS)

    White, Jeffrey; Fichter, G.; Chernovsky, A.; Whitaker, John F.; Das, D.; Pollock, Tresa M.; Zimdars, David

    2009-03-01

    Time domain terahertz (TD-THz) non destructive evaluation (NDE) imaging is used to two-dimensionally map the thickness of yttria stabilized zirconia (YSZ) thermal barrier coatings (TBC) on aircraft engine turbine blades. Indications of thermal degradation can be seen. The method is non-contact, rapid, and requires no special preparation of the blade.

  15. The non-destructive identification of early Chinese porcelain by PIXE

    NASA Astrophysics Data System (ADS)

    Cheng, H. S.; Zhang, Z. Q.; Zhang, B.; Yang, F. J.

    2004-06-01

    PIXE is used for the non-destructive differentiation of early precious Chinese blue and white porcelain made in Yuan (AD 1206-1368), Ming (AD 1368-1644) Dynasty in Jingdezhen from imitations. Also, ancient celadon made in Song Dynasty (AD 960-1279) is identified by measuring the trace elements contained in the glazes.

  16. Non-destructive method for inward leakage detection of a plate evaporator

    NASA Astrophysics Data System (ADS)

    Hribernik, Ales

    2007-05-01

    A new non-destructive method was developed for the detection of refrigerant leakage at an evaporator's inflow. Nitrogen and oxygen gas were successively blown through the evaporator. A gas analyser was applied at the outflow of the evaporator and the oxygen concentration measured. It was possible to detect any leakage by investigating the oxygen concentration-time history diagram.

  17. Rapid, Non-Destructive Estimation of Leaf Area on Field-Grown Vitis labruscana Grapevines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Three potential variables, shoot basal diameter, leaf count per shoot and shoot length, were examined as potential rapid, non-destructive methods for estimating leaf area per shoot, a frequent component of estimates of leaf area per vine. The metrics were recorded in large field-grown vines over fi...

  18. Non-destructive freeze damage detection in oranges using machine vision and ultraviolet fluorescence

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A non-contact, non-destructive, and rapid method of detecting freeze damaged oranges based on ultraviolet (UV) fluorescence of the peel oil constituents visible on the peel surface was investigated. The visual appearance is different from oleocellosis in that freeze damaged oranges exhibit a fine pa...

  19. Research on non-destructive testing method of silkworm cocoons based on image processing technology

    NASA Astrophysics Data System (ADS)

    Gan, Yong; Kong, Qing-hua; Wei, Li-fu

    2008-03-01

    The major studied in this dissertation is the non-destructive testing method of silkworm cocoon's quality, based on the digital image processing and photoelectricity technology. Through the images collection and the data analysis, procession and calculation of the tested silkworm cocoons with the non-destructive testing technology, internet applications automatically reckon all items of the classification indexes. Finally we can conclude the classification result and the purchase price of the silkworm cocoons. According to the domestic classification standard of the silkworm cocoons, the author investigates various testing methods of silkworm cocoons which are used or have been explored at present, and devices a non-destructive testing scheme of the silkworm cocoons based on the digital image processing and photoelectricity technology. They are dissertated about the project design of the experiment. The precisions of all the implements are demonstrated. I establish Manifold mathematic models, compare them with each other and analyze the precision with technology of databank to get the best mathematic model to figure out the weight of the dried silkworm cocoon shells. The classification methods of all the complementary items are designed well and truly. The testing method has less error and reaches an advanced level of the present domestic non-destructive testing technology of the silkworm cocoons.

  20. Development of non-destructive inspection method for the performance of thermal barrier coating.

    PubMed

    Morinaga, M; Takahashi, T

    2001-05-01

    This paper shows that our proprietary non-destructive inspection method can be used to effectively measure the thermal barrier performance of the thermal barrier coating used to coat gas turbine hot parts by the results of numerical analysis and laboratory experiments. PMID:11460665

  1. Non-destructive lichen biomass estimation in northwestern Alaska: a comparison of methods.

    PubMed

    Rosso, Abbey; Neitlich, Peter; Smith, Robert J

    2014-01-01

    Terrestrial lichen biomass is an important indicator of forage availability for caribou in northern regions, and can indicate vegetation shifts due to climate change, air pollution or changes in vascular plant community structure. Techniques for estimating lichen biomass have traditionally required destructive harvesting that is painstaking and impractical, so we developed models to estimate biomass from relatively simple cover and height measurements. We measured cover and height of forage lichens (including single-taxon and multi-taxa "community" samples, n = 144) at 73 sites on the Seward Peninsula of northwestern Alaska, and harvested lichen biomass from the same plots. We assessed biomass-to-volume relationships using zero-intercept regressions, and compared differences among two non-destructive cover estimation methods (ocular vs. point count), among four landcover types in two ecoregions, and among single-taxon vs. multi-taxa samples. Additionally, we explored the feasibility of using lichen height (instead of volume) as a predictor of stand-level biomass. Although lichen taxa exhibited unique biomass and bulk density responses that varied significantly by growth form, we found that single-taxon sampling consistently under-estimated true biomass and was constrained by the need for taxonomic experts. We also found that the point count method provided little to no improvement over ocular methods, despite increased effort. Estimated biomass of lichen-dominated communities (mean lichen cover: 84.9±1.4%) using multi-taxa, ocular methods differed only nominally among landcover types within ecoregions (range: 822 to 1418 g m-2). Height alone was a poor predictor of lichen biomass and should always be weighted by cover abundance. We conclude that the multi-taxa (whole-community) approach, when paired with ocular estimates, is the most reasonable and practical method for estimating lichen biomass at landscape scales in northwest Alaska. PMID:25079228

  2. Non-Destructive Lichen Biomass Estimation in Northwestern Alaska: A Comparison of Methods

    PubMed Central

    Rosso, Abbey; Neitlich, Peter; Smith, Robert J.

    2014-01-01

    Terrestrial lichen biomass is an important indicator of forage availability for caribou in northern regions, and can indicate vegetation shifts due to climate change, air pollution or changes in vascular plant community structure. Techniques for estimating lichen biomass have traditionally required destructive harvesting that is painstaking and impractical, so we developed models to estimate biomass from relatively simple cover and height measurements. We measured cover and height of forage lichens (including single-taxon and multi-taxa “community” samples, n = 144) at 73 sites on the Seward Peninsula of northwestern Alaska, and harvested lichen biomass from the same plots. We assessed biomass-to-volume relationships using zero-intercept regressions, and compared differences among two non-destructive cover estimation methods (ocular vs. point count), among four landcover types in two ecoregions, and among single-taxon vs. multi-taxa samples. Additionally, we explored the feasibility of using lichen height (instead of volume) as a predictor of stand-level biomass. Although lichen taxa exhibited unique biomass and bulk density responses that varied significantly by growth form, we found that single-taxon sampling consistently under-estimated true biomass and was constrained by the need for taxonomic experts. We also found that the point count method provided little to no improvement over ocular methods, despite increased effort. Estimated biomass of lichen-dominated communities (mean lichen cover: 84.9±1.4%) using multi-taxa, ocular methods differed only nominally among landcover types within ecoregions (range: 822 to 1418 g m−2). Height alone was a poor predictor of lichen biomass and should always be weighted by cover abundance. We conclude that the multi-taxa (whole-community) approach, when paired with ocular estimates, is the most reasonable and practical method for estimating lichen biomass at landscape scales in northwest Alaska. PMID:25079228

  3. Analytical Raman spectroscopy in a forensic art context: The non-destructive discrimination of genuine and fake lapis lazuli

    NASA Astrophysics Data System (ADS)

    Ali, Esam M. A.; Edwards, Howell G. M.

    2014-03-01

    The differentiation between genuine and fake lapis lazuli specimens using Raman spectroscopy is assessed using laboratory and portable instrumentation operating at two longer wavelengths of excitation in the near-infrared, namely 1064 and 785 nm. In spite of the differences between the spectra excited here in the near infrared and those reported in the literature using visible excitation, it is clear that Raman spectroscopy at longer wavelengths can provide a means of differentiating between the fakes studied here and genuine lapis lazuli. The Raman spectra obtained from portable instrumentation can also achieve this result, which will be relevant for the verification of specimens which cannot be removed from collections and for the identification of genuine lapis lazuli inlays in, for example, complex jewellery and furniture. The non-destructive and non-contact character of the technique offers a special role for portable Raman spectroscopy in forensic art analysis.

  4. Non-Destructive Evaluation for Corrosion Monitoring in Concrete: A Review and Capability of Acoustic Emission Technique

    PubMed Central

    Zaki, Ahmad; Chai, Hwa Kian; Aggelis, Dimitrios G.; Alver, Ninel

    2015-01-01

    Corrosion of reinforced concrete (RC) structures has been one of the major causes of structural failure. Early detection of the corrosion process could help limit the location and the extent of necessary repairs or replacement, as well as reduce the cost associated with rehabilitation work. Non-destructive testing (NDT) methods have been found to be useful for in-situ evaluation of steel corrosion in RC, where the effect of steel corrosion and the integrity of the concrete structure can be assessed effectively. A complementary study of NDT methods for the investigation of corrosion is presented here. In this paper, acoustic emission (AE) effectively detects the corrosion of concrete structures at an early stage. The capability of the AE technique to detect corrosion occurring in real-time makes it a strong candidate for serving as an efficient NDT method, giving it an advantage over other NDT methods. PMID:26251904

  5. Analytical Raman spectroscopy in a forensic art context: the non-destructive discrimination of genuine and fake lapis lazuli.

    PubMed

    Ali, Esam M A; Edwards, Howell G M

    2014-01-01

    The differentiation between genuine and fake lapis lazuli specimens using Raman spectroscopy is assessed using laboratory and portable instrumentation operating at two longer wavelengths of excitation in the near-infrared, namely 1064 and 785 nm. In spite of the differences between the spectra excited here in the near infrared and those reported in the literature using visible excitation, it is clear that Raman spectroscopy at longer wavelengths can provide a means of differentiating between the fakes studied here and genuine lapis lazuli. The Raman spectra obtained from portable instrumentation can also achieve this result, which will be relevant for the verification of specimens which cannot be removed from collections and for the identification of genuine lapis lazuli inlays in, for example, complex jewellery and furniture. The non-destructive and non-contact character of the technique offers a special role for portable Raman spectroscopy in forensic art analysis. PMID:24287050

  6. Non-Destructive Evaluation for Corrosion Monitoring in Concrete: A Review and Capability of Acoustic Emission Technique.

    PubMed

    Zaki, Ahmad; Chai, Hwa Kian; Aggelis, Dimitrios G; Alver, Ninel

    2015-01-01

    Corrosion of reinforced concrete (RC) structures has been one of the major causes of structural failure. Early detection of the corrosion process could help limit the location and the extent of necessary repairs or replacement, as well as reduce the cost associated with rehabilitation work. Non-destructive testing (NDT) methods have been found to be useful for in-situ evaluation of steel corrosion in RC, where the effect of steel corrosion and the integrity of the concrete structure can be assessed effectively. A complementary study of NDT methods for the investigation of corrosion is presented here. In this paper, acoustic emission (AE) effectively detects the corrosion of concrete structures at an early stage. The capability of the AE technique to detect corrosion occurring in real-time makes it a strong candidate for serving as an efficient NDT method, giving it an advantage over other NDT methods. PMID:26251904

  7. Non-destructive techniques used during the restoration of the relief "Madonna and Child" by Jacopo Sansovino

    NASA Astrophysics Data System (ADS)

    Buccolieri, Alessandro; Buccolieri, Giovanni; Castellano, Alfredo; Colosso, Pietro Quarta; Miotto, Lidiana

    2015-08-01

    The characterization of the main pigments present in the papier-mâché relief depicting a " Madonna and Child" by Jacopo Sansovino, preserved at the National Museum of Fine Arts in Budapest, has been carried out using non-destructive techniques. In particular, an XRF portable instrument and an XRD apparatus were used in order to determine the elements and compounds of the pigments, respectively. The experimental results indicate that zinc and barium are present on the relief, and this demonstrates that the artwork has undergone restoration since zinc has been in use since 1840 AD. Moreover, radiographic and stereoradiographic analyses were performed several times in order to assess the condition of the work and, above all, the state of the boards that support the work, the cavity inside the cardboard, the surface and the presence of nails.

  8. Quality parameters of mango and potential of non-destructive techniques for their measurement - a review.

    PubMed

    Jha, S N; Narsaiah, K; Sharma, A D; Singh, M; Bansal, S; Kumar, R

    2010-01-01

    The king of fruits "Mango" (Mangifera indica L.) is very nutritious and rich in carotenes. India produces about 50% of the total world's mango. Many researchers have reported the maturity indices and quality parameters for determination of harvesting time and eating quality. The methods currently used for determination of quality of mango are mostly based on the biochemical analysis, which leads to destruction of the fruits. Numerous works are being carried out to explore some non-destructive methods such as Near Infrared (NIR), Nuclear Magnetic Resonance (NMR), X-ray and Computed Tomography (CT), electronic nose, machine vision and ultrasound for quality determination of fruits. This paper deals with some recent work reported on quality parameters, harvesting and post-harvest treatments in relation to quality of mango fruits and reviews on some of the potential non-destructive techniques that can be explored for quality determination of mango cultivars. PMID:23572595

  9. Destructive and Non-Destructive Analysis Techniques for Failure Detection of QFN Packages

    NASA Astrophysics Data System (ADS)

    Adhila, M. N.; Wedianti, S.; Suhaimi, W. S. W. M.; Aishah, I.

    2010-03-01

    One of the latest developments in packaging technology is the QFN (Quad Flat Non-Lead) packages, which is both a chip scale package and plastic encapsulated package with lead pad at the bottom. In this paper, different type of commercial QFN single die packages were characterized by using destructive and non-destructive techniques. Non-destructive techniques such as Scanning Acoustic Microscope (SAM) and X-Ray analysis were used to observe package cracking, delamination and other failure mode. Application of SAM include detection of delaminations between lead frame, die face, paddle, heat sink, cracks and plastic encapsulant. In comparison to other techniques, SAM is sensitive to detect beneath the surface of devices which would be inaccessible otherwise by both conventional optical and electron microscopy inspection methods. Destructive technique such as Field Emission Electron Microscopy (FESEM) was implemented to address the failures of the QFN single die packages such as die cracking, lifted ball bonds and other failure mode.

  10. Non-destructive missile seeker flight testing: HWIL in the sky

    NASA Astrophysics Data System (ADS)

    Clements, Jim; Robinson, Joe; Robinson, Richard M.

    2010-04-01

    Surface to air missile development programs typically utilize hardware-in-the-loop (HWIL) simulations when available to provide a non-destructive high volume test environment for what are typically very expensive guidance sections. The HWIL, while invaluable, hasn't been able to obviate the need for missile flight tests. Because of the great expense of these missiles the designers are only allowed to perform a fraction of the desired tests. Missile Airframe Simulation Testbed (MAST) is a program conceived by US Army Aviation and Missile Research Development and Engineering Center (AMRDEC) that blends the non-destructive nature of HWIL with the confidence gained from flight tests to expand the knowledge gained while reducing the development schedule of new missile programs.

  11. The application of non-destructive techniques to the testing of a wind turbine blade

    SciTech Connect

    Sutherland, H.; Beattie, A.; Hansche, B.; Musial, W.; Allread, J.; Johnson, J.; Summers, M.

    1994-06-01

    NonDestructive Testing (NDT), also called NonDestructive Evaluation (NDE), is commonly used to monitor structures before, during, and after testing. This paper reports on the use of two NDT techniques to monitor the behavior of a typical wind turbine blade during a quasi-static test-to-failure. The two NDT techniques used were acoustic emission and coherent optical. The former monitors the acoustic energy produced by the blade as it is loaded. The latter uses electron shearography to measure the differences in surface displacements between two load states. Typical results are presented to demonstrate the ability of these two techniques to locate and monitor both high damage regions and flaws in the blade structure. Furthermore, this experiment highlights the limitations in the techniques that must be addressed before one or both can be transferred, with a high probability of success, to the inspection and monitoring of turbine blades during the manufacturing process and under normal operating conditions.

  12. Inhomogeneous light shift effects on atomic quantum state evolution in non-destructive measurements

    NASA Astrophysics Data System (ADS)

    Windpassinger, Patrick J.; Oblak, Daniel; Busk Hoff, Ulrich; Appel, Jürgen; Kjærgaard, Niels; Polzik, Eugene S.

    2008-05-01

    Various parameters of a trapped collection of cold and ultracold atoms can be determined non-destructively by measuring the phase shift of an off-resonant probe beam, caused by the state-dependent index of refraction of the atoms. The dispersive light-atom interaction, however, gives rise to a differential light shift (ac Stark shift) between the atomic states which, for a non-uniform probe intensity distribution, causes an inhomogeneous dephasing between the atoms. In this paper, we investigate the effects of this inhomogeneous light shift in non-destructive measurement schemes in cold caesium. We interpret our experimental data on dispersively probed Rabi oscillations and Ramsey fringes in terms of a simple light shift model which is shown to describe the observed behavior well. Furthermore, we show that by using spin echo techniques, the inhomogeneous phase shift distribution between the two clock levels can be reversed.

  13. Non-destructive optical methods for the study of soft tissues

    NASA Astrophysics Data System (ADS)

    Santiago-Lona, Cynthia V.; Hernández-Montes, María. del Socorro; Mendoza Santoyo, F.; Muñoz, Silvino; Mendoza, Fernando

    2015-08-01

    In optical metrology, non-destructive methods allow studying some mechanical properties of the samples to investigate by using light, which leads to non-contact testing. This paper shows recent results of the application of non-destructive optical methods based on Digital Holographic Interferometry to the study biological tissues; particularly vocal folds and the tympanic membrane. The displacements data and its corresponding patterns found generates information on its characteristics that can be correlated with their physiological state. These methods prove to be an alternative viable and appropriate to characterize these soft tissues so important for the proper function of the human body. The result shows a potential impact on its possible uses in the field of otorhinolaryngology.

  14. Photoacoustic Spectroscopy as a Non-destructive Tool for Quantification of Pesticide Residue in Apple Cuticle

    NASA Astrophysics Data System (ADS)

    Liu, Lixian; Wang, Yafei; Gao, Chunming; Huan, Huiting; Zhao, Binxing; Yan, Laijun

    2015-06-01

    Photoacoustic spectroscopy (PAS), the non-destructive method to detect residue of dimethyl-dichloro-vinyl-phosphate (DDVP) pesticide in a cuticle of apple, is described. After constructing the PA experimental setup and identifying three characteristic peaks of DDVP in the near ultraviolet region, the PA spectra of an apple cuticle contaminated with DDVP were collected. The artificial neural network method was then applied to analyze data quantitatively. The results show a correlation coefficient exceeding 0.99 and a detection limit of 0.2 ppm, which is within the national food safety standard for maximum residue limits for pesticides in food (GB 2763-2012). This fact and the non-destructive character of PAS make the approach promising for detection of pesticide residue in fruits.

  15. Application of Non-destructive Methods of Stress-strain State at Hazardous Production Facilities

    NASA Astrophysics Data System (ADS)

    Shram, V.; Kravtsova, Ye; Selsky, A.; Bezborodov, Yu; Lysyannikova, N.; Lysyannikov, A.

    2016-06-01

    The paper deals with the sources of accidents in distillation columns, on the basis of which the most dangerous defects are detected. The analysis of the currently existing methods of non-destructive testing of the stress-strain state is performed. It is proposed to apply strain and acoustic emission techniques to continuously monitor dangerous objects, which helps prevent the possibility of accidents, as well as reduce the work.

  16. Non-destructive analysis in a study of the religious art objects

    NASA Astrophysics Data System (ADS)

    Vornicu, Nicoleta; Geba, Maria; Bibire, Cristina

    2009-08-01

    The icon Descending of the Saint Spirit from Bucium Church, dating in the year 1814 and was done in tempera on wood technology. The characterization of cultural heritage materials is essential for the comprehension of their degradation mechanisms. The present study aims at identifying the pigments in the various layers, establishing the possible existence of an organic binder and scientifically evaluating the state of preservation. To this end, were used non-destructive methods, as: microscopic (SEM), XRF and spectroscopic (FTIR).

  17. Rotational magnetic flux sensor with neural network for non-destructive testing

    SciTech Connect

    Enokizono, M.; Todaka, T.; Akita, M. . Faculty of Engineering); Nagata, S. . Faculty of Engineering)

    1993-11-01

    This paper presents a new non-destructive testing (NDT) method which utilizes rotational magnetic flux. In this system, the magnitude and phase value are measured and used to obtain information about defect. These values include the information about the shape or position of an unknown defect. The authors employ the neural network technique for estimation of a defect shape. The experimental results show the validity of the method.

  18. Giant Magnetoresistance Sensors: A Review on Structures and Non-Destructive Eddy Current Testing Applications

    PubMed Central

    Rifai, Damhuji; Abdalla, Ahmed N.; Ali, Kharudin; Razali, Ramdan

    2016-01-01

    Non-destructive eddy current testing (ECT) is widely used to examine structural defects in ferromagnetic pipe in the oil and gas industry. Implementation of giant magnetoresistance (GMR) sensors as magnetic field sensors to detect the changes of magnetic field continuity have increased the sensitivity of eddy current techniques in detecting the material defect profile. However, not many researchers have described in detail the structure and issues of GMR sensors and their application in eddy current techniques for nondestructive testing. This paper will describe the implementation of GMR sensors in non-destructive testing eddy current testing. The first part of this paper will describe the structure and principles of GMR sensors. The second part outlines the principles and types of eddy current testing probe that have been studied and developed by previous researchers. The influence of various parameters on the GMR measurement and a factor affecting in eddy current testing will be described in detail in the third part of this paper. Finally, this paper will discuss the limitations of coil probe and compensation techniques that researchers have applied in eddy current testing probes. A comprehensive review of previous studies on the application of GMR sensors in non-destructive eddy current testing also be given at the end of this paper. PMID:26927123

  19. Non-destructively reading out information embedded inside real objects by using far-infrared light

    NASA Astrophysics Data System (ADS)

    Okada, Ayumi; Silapasuphakornwong, Piyarat; Suzuki, Masahiro; Torii, Hideyuki; Takashima, Youichi; Uehira, Kazutake

    2015-09-01

    This paper presents a technique that can non-destructively read out information embedded inside real objects by using far-infrared-light. We propose a technique that can protect the copyrights of digital content for homemade products using digital fabrication technologies such as those used in 3D printers. It embeds information on copyrights inside real objects produced by 3D printers by forming fine structures inside the objects as a watermark that cannot be observed from the outside. Fine structures are formed near the surface inside real objects when they are being fabricated. Information embedded inside real objects needs to be read out non-destructively. We used a technique that could non-destructively read out information from inside real objects by using far-infrared light. We conducted experiments where we structured fine cavities inside objects. The disposition of the fine domain contained valuable information. We used the flat and curved surfaces of the objects to identify them. The results obtained from the experiments demonstrated that the disposition patterns of the fine structures appeared on the surface of objects as a temperature profile when far-infrared light was irradiated on their surface. Embedded information could be read out successfully by analyzing the temperature profile images of the surface of the objects that were captured with thermography and these results demonstrated the feasibility of the technique we propose.

  20. Non-destructive single-pass low-noise detection of ions in a beamline.

    PubMed

    Schmidt, Stefan; Murböck, Tobias; Andelkovic, Zoran; Birkl, Gerhard; Nörtershäuser, Wilfried; Stahl, Stefan; Vogel, Manuel

    2015-11-01

    We have conceived, built, and operated a device for the non-destructive single-pass detection of charged particles in a beamline. The detector is based on the non-resonant pick-up and subsequent low-noise amplification of the image charges induced in a cylindrical electrode surrounding the particles' beam path. The first stage of the amplification electronics is designed to be operated from room temperature down to liquid helium temperature. The device represents a non-destructive charge counter as well as a sensitive timing circuit. We present the concept and design details of the device. We have characterized its performance and show measurements with low-energy highly charged ions (such as Ar(13+)) passing through one of the electrodes of a cylindrical Penning trap. This work demonstrates a novel approach of non-destructive, low noise detection of charged particles which is, depending on the bunch structure, suitable, e.g., for ion traps, low-energy beamlines or accelerator transfer sections. PMID:26628124

  1. Non-destructive single-pass low-noise detection of ions in a beamline

    SciTech Connect

    Schmidt, Stefan; Murböck, Tobias; Birkl, Gerhard; Andelkovic, Zoran; Vogel, Manuel; Nörtershäuser, Wilfried; Stahl, Stefan

    2015-11-15

    We have conceived, built, and operated a device for the non-destructive single-pass detection of charged particles in a beamline. The detector is based on the non-resonant pick-up and subsequent low-noise amplification of the image charges induced in a cylindrical electrode surrounding the particles’ beam path. The first stage of the amplification electronics is designed to be operated from room temperature down to liquid helium temperature. The device represents a non-destructive charge counter as well as a sensitive timing circuit. We present the concept and design details of the device. We have characterized its performance and show measurements with low-energy highly charged ions (such as Ar{sup 13+}) passing through one of the electrodes of a cylindrical Penning trap. This work demonstrates a novel approach of non-destructive, low noise detection of charged particles which is, depending on the bunch structure, suitable, e.g., for ion traps, low-energy beamlines or accelerator transfer sections.

  2. Non-destructive estimation of root pressure using sap flow, stem diameter measurements and mechanistic modelling

    PubMed Central

    De Swaef, Tom; Hanssens, Jochen; Cornelis, Annelies; Steppe, Kathy

    2013-01-01

    Background Upward water movement in plants via the xylem is generally attributed to the cohesion–tension theory, as a response to transpiration. Under certain environmental conditions, root pressure can also contribute to upward xylem water flow. Although the occurrence of root pressure is widely recognized, ambiguity exists about the exact mechanism behind root pressure, the main influencing factors and the consequences of root pressure. In horticultural crops, such as tomato (Solanum lycopersicum), root pressure is thought to cause cells to burst, and to have an important impact on the marketable yield. Despite the challenges of root pressure research, progress in this area is limited, probably because of difficulties with direct measurement of root pressure, prompting the need for indirect and non-destructive measurement techniques. Methods A new approach to allow non-destructive and non-invasive estimation of root pressure is presented, using continuous measurements of sap flow and stem diameter variation in tomato combined with a mechanistic flow and storage model, based on cohesion–tension principles. Key Results Transpiration-driven sap flow rates are typically inversely related to stem diameter changes; however, this inverse relationship was no longer valid under conditions of low transpiration. This decoupling between sap flow rates and stem diameter variations was mathematically related to root pressure. Conclusions Root pressure can be estimated in a non-destructive, repeatable manner, using only external plant sensors and a mechanistic model. PMID:23211757

  3. Non-destructive mapping of grain orientations in 3D by laboratory X-ray microscopy

    PubMed Central

    McDonald, S. A.; Reischig, P.; Holzner, C.; Lauridsen, E. M.; Withers, P. J.; Merkle, A. P.; Feser, M.

    2015-01-01

    The ability to characterise crystallographic microstructure, non-destructively and in three-dimensions, is a powerful tool for understanding many aspects related to damage and deformation mechanisms in polycrystalline materials. To this end, the technique of X-ray diffraction contrast tomography (DCT) using monochromatic synchrotron and polychromatic laboratory X-ray sources has been shown to be capable of mapping crystal grains and their orientations non-destructively in 3D. Here we describe a novel laboratory-based X-ray DCT modality (LabDCT), enabling the wider accessibility of the DCT technique for routine use and in-depth studies of, for example, temporal changes in crystallographic grain structure non-destructively over time through ‘4D’ in situ time-lapse studies. The capability of the technique is demonstrated by studying a titanium alloy (Ti-β21S) sample. In the current implementation the smallest grains that can be reliably detected are around 40 μm. The individual grain locations and orientations are reconstructed using the LabDCT method and the results are validated against independent measurements from phase contrast tomography and electron backscatter diffraction respectively. Application of the technique promises to provide important insights related to the roles of recrystallization and grain growth on materials properties as well as supporting 3D polycrystalline modelling of materials performance. PMID:26494523

  4. Giant Magnetoresistance Sensors: A Review on Structures and Non-Destructive Eddy Current Testing Applications.

    PubMed

    Rifai, Damhuji; Abdalla, Ahmed N; Ali, Kharudin; Razali, Ramdan

    2016-01-01

    Non-destructive eddy current testing (ECT) is widely used to examine structural defects in ferromagnetic pipe in the oil and gas industry. Implementation of giant magnetoresistance (GMR) sensors as magnetic field sensors to detect the changes of magnetic field continuity have increased the sensitivity of eddy current techniques in detecting the material defect profile. However, not many researchers have described in detail the structure and issues of GMR sensors and their application in eddy current techniques for nondestructive testing. This paper will describe the implementation of GMR sensors in non-destructive testing eddy current testing. The first part of this paper will describe the structure and principles of GMR sensors. The second part outlines the principles and types of eddy current testing probe that have been studied and developed by previous researchers. The influence of various parameters on the GMR measurement and a factor affecting in eddy current testing will be described in detail in the third part of this paper. Finally, this paper will discuss the limitations of coil probe and compensation techniques that researchers have applied in eddy current testing probes. A comprehensive review of previous studies on the application of GMR sensors in non-destructive eddy current testing also be given at the end of this paper. PMID:26927123

  5. [Study on Non-Destructive Testing of Guqin Interior Structure Based on Computed Tomography].

    PubMed

    Zhao, De-da; Liu, Xing-e; Yang, Shu-min; Yu, Shenz; Tian, Gen-lin; Ma, Jian-feng; Wang, Qing-ping

    2015-12-01

    The wood property and production process affect quality of Guqin. At the same time, Guqin shape with cavity layout relations to the improvement of Guqin technology and inheritance, so it's very important to get the internal cavity characteristics and parameters on the condition of non-destructive the structure of Guqin. The image of interior structure in Guqin was investigated by overall scanning based on non-destructive testing technology of computed tomography, which texture of faceplate, connection method between faceplate and soleplate and interior defects were studied. The three-dimensional reconstruction of Guqin cavity was achieved through Mimics software of surface rendering method and put the two-dimensional CT tomography images convert into three-dimensional, which more complete show interior structural form in Guqin, and finally the parameter of cavity dimensions was obtained. Experimental research shows that there is significant difference in Guqin interior structure between Zhong-ni and Luo-xia type, in which the fluctuation of the interior surfacein Zhong-ni type's is larger than that in Luo-xia type; the interior volume of Zhong-ni typeis less than that of Luo-xia type, especially in Guqin neck. The accurate internal information of Guqin obtained through the computed tomography (CT) technology will provide technical support for the Guqin manufacture craft and the quality examination, as well as provide the reference in the aspect of non-destructive testing for other traditional precious internal structure research. PMID:26964242

  6. Non-destructive measurement of carbonic anhydrase activity and the oxygen isotope composition of soil water

    NASA Astrophysics Data System (ADS)

    Jones, Sam; Sauze, Joana; Ogée, Jérôme; Wohl, Steven; Bosc, Alexandre; Wingate, Lisa

    2016-04-01

    oxygen isotope composition of ambient CO2. This non-destructive approach was tested through laboratory incubations of air-dried soils that were re-wetted with water of known isotopic composition. Performance was assessed by comparing estimates of the soil water oxygen isotope composition derived from open chamber flux measurements with those measured in the irrigation water and soil water extracted following incubations. The influence of soil pH and bovine carbonic anhydrase additions on these estimates was also investigated. Coherent values were found between the soil water composition estimates obtained from the dual steady state approach and those measured for irrigation waters. Estimates of carbonic anhydrase activity made using this approach also reflected well artificial increases to the concentration of carbonic anhydrase and indicated that this activity was sensitive to soil pH.

  7. A non-destructive metrology solution for detailed measurements of imprint templates and media

    NASA Astrophysics Data System (ADS)

    Roberts, Jeffrey; Hu, Linlin; Eriksson, Torbjörn; Thulin, Kristian; Heidari, Babak

    2009-10-01

    This study investigates a non-destructive optical metrology technique, that furnishes measurement solutions for hard drive discrete track recording (DTR) and bit patterned media (BPM) templates and imprints. From the measurement and analysis of polarized reflectance and transmittance, feature height and profile of DTR and BPM templates and imprints, as well as residual layer thickness of imprints, are accurately determined, and uniformity maps of these parameters are produced in a fraction of a minute. Simulations of theoretical polarized reflectance and transmittance, relating to next generation structures, demonstrate that the optical metrology solution has capability for future products.

  8. Non-destructive terahertz imaging of illicit drugs using spectral fingerprints

    NASA Astrophysics Data System (ADS)

    Kawase, Kodo; Ogawa, Yuichi; Watanabe, Yuuki; Inoue, Hiroyuki

    2003-10-01

    The absence of non-destructive inspection techniques for illicit drugs hidden in mail envelopes has resulted in such drugs being smuggled across international borders freely. We have developed a novel basic technology for terahertz imaging, which allows detection and identification of drugs concealed in envelopes, by introducing the component spatial pattern analysis. The spatial distributions of the targets are obtained from terahertz multispectral transillumination images, using absorption spectra measured with a tunable terahertz-wave source. The samples we used were methamphetamine and MDMA, two of the most widely consumed illegal drugs in Japan, and aspirin as a reference.

  9. Non-destructive Testing by Infrared Thermography Under Random Excitation and ARMA Analysis

    NASA Astrophysics Data System (ADS)

    Bodnar, J. L.; Nicolas, J. L.; Candoré, J. C.; Detalle, V.

    2012-11-01

    Photothermal thermography is a non-destructive testing (NDT) method, which has many applications in the field of control and characterization of thin materials. This technique is usually implemented under CW or flash excitation. Such excitations are not adapted for control of fragile materials or for multi-frequency analysis. To allow these analyses, in this article, the use of a new control mode is proposed: infrared thermography under random excitation and auto regressive moving average analysis. First, the principle of this NDT method is presented. Then, the method is shown to permit detection, with low energy constraints, of detachments situated in mural paintings.

  10. Non-destructive method for determining neutron exposure and constituent concentrations of a body

    DOEpatents

    Gold, Raymond; McElroy, William N.

    1986-01-01

    A non-destructive method for determination of neutron exposure and constituent concentrations in an object, such as reactor pressure vessel, is based on the observation of characteristic gamma-rays emitted by activation products in the object by using a unique continuous gamma-ray spectrometer. The spectrometer views the object through appropriate collimators to determine the absolute emission rate of these characteristic gamma-rays, thereby ascertaining the absolute activity of given activation products in the object. These data can then be used to deduce the spatial and angular dependence of neutron exposure or the spatial constituent concentration at regions of interest within the object.

  11. Non-Destructive Evaluation Method and Apparatus for Measuring Acoustic Material Nonlinearity

    NASA Technical Reports Server (NTRS)

    Yost, William T. (Inventor); Cantrell, John H. (Inventor)

    2002-01-01

    An acoustic non-linearity parameter (beta) measurement method and system for Non-Destructive Evaluation (NDE) of materials and structural members obviates the need for electronic calibration of the measuring equipment. Unlike known substitutional measuring techniques requiring elaborate calibration procedures, the electrical outputs of the capacitive detector of a sample with known beta and the test sample of unknown beta are compared to determine the unknown beta. In order to provide the necessary stability of the present-inventive reference-based approach, the bandpass filters of the measurement system are maintained in a temperature-controlled environment, and the line voltage supplied to said amplifiers is well-regulated.

  12. Computed tomography for non-destructive evaluation of composites: Applications and correlations

    NASA Technical Reports Server (NTRS)

    Goldberg, B.; Hediger, L.; Noel, E.

    1985-01-01

    The state-of-the-art fabrication techniques for composite materials are such that stringent species-specific acceptance criteria must be generated to insure product reliability. Non-destructive evaluation techniques including computed tomography (CT), X-ray radiography (RT), and ultrasonic scanning (UT) are investigated and compared to determine their applicability and limitations to graphite epoxy, carbon-carbon, and carbon-phenolic materials. While the techniques appear complementary, CT is shown to provide significant, heretofore unattainable data. Finally, a correlation of NDE techniques to destructive analysis is presented.

  13. Non-destructive high-resolution thermal imaging techniques to evaluate wildlife and delicate biological samples

    NASA Astrophysics Data System (ADS)

    Lavers, C.; Franklin, P.; Franklin, P.; Plowman, A.; Sayers, G.; Bol, J.; Shepard, D.; Fields, D.

    2009-07-01

    Thermal imaging cameras now allows routine monitoring of dangerous yet endangered wildlife in captivity. This study looks at the potential applications of radiometrically calibrated thermal data to wildlife, as well as providing parameters for future materials applications. We present a non-destructive active testing technique suitable for enhancing imagery contrast of thin or delicate biological specimens yielding improved thermal contrast at room temperature, for analysis of sample thermal properties. A broad spectrum of animals is studied with different textured surfaces, reflective and emissive properties in the infra red part of the electromagnetic spectrum. Some surface features offer biomimetic materials design opportunities.

  14. Application of magnetic resonance imaging to non-destructive void detection in watermelon

    NASA Astrophysics Data System (ADS)

    Saito, K.; Miki, T.; Hayashi, S.; Kajikawa, H.; Shimada, M.; Kawate, Y.; Nishizawa, T.; Ikegaya, D.; Kimura, N.; Takabatake, K.; Sugiura, N.; Suzuki, M.

    A novel application of magnetic resonance imaging (MRI) is described. The possibility of utilizing MRI for non-destructive quality evaluation of watermelons was studied. In this study, we applied MRI to the detection of internal voids in watermelons. In order to increase the measurement rate, we employed a one-dimensional projection profile method instead of observing a two-dimensional cross-sectional image. The void detection was carried out with this technique over 30 samples and 28 samples were correctly evaluated. The measurement rate was 900 ms per sample, which is an acceptable speed for a sorting machine in the agricultural field.

  15. A new facility for non-destructive assay using a 252Cf source.

    PubMed

    Stevanato, L; Caldogno, M; Dima, R; Fabris, D; Hao, Xin; Lunardon, M; Moretto, S; Nebbia, G; Pesente, S; Pino, F; Sajo-Bohus, L; Viesti, G

    2013-03-01

    A new laboratory facility for non-destructive analysis (NDA) using a time-tagged (252)Cf source is presented. The system is designed to analyze samples having maximum size of about 20 × 25 cm(2), the material recognition being obtained by measuring simultaneously total and energy dependent transmission of neutrons and gamma rays. The equipment technical characteristics and performances of the NDA system are presented, exploring also limits due to the sample thickness. Some recent applications in the field of cultural heritage are presented. PMID:23276691

  16. Non-destructive evaluation of cylindrical composite structures using photothermal radiometry

    NASA Astrophysics Data System (ADS)

    Wang, C.; Mandelis, A.; Liu, Y.

    2005-06-01

    Thermal-wave diagnostics by means of infrared photothermal radiometry (PTR) has been used for quantitative non-destructive evaluation of cylindrical composite structures. To quantitatively evaluate the thermal-wave field of a cylindrical composite material, the Green function corresponding to the composite structure has been developed and subsequently the thermal-wave field has been derived. Furthermore, the characteristics of the thermal-wave field for a cylindrical material with a surface coating are discussed. Experimental results from a stainless steel (AISI 302) tube are used to validate the theoretical model.

  17. Second harmonic generation for contactless non-destructive characterization of silicon on insulator wafers

    NASA Astrophysics Data System (ADS)

    Damianos, D.; Pirro, L.; Soylu, G.; Ionica, I.; Nguyen, V.; Vitrant, G.; Kaminski, A.; Blanc-Pelissier, D.; Onestas, L.; Changala, J.; Kryger, M.; Cristoloveanu, S.

    2016-01-01

    In this work we investigate a non-invasive, non-destructive characterization technique for monitoring the quality of film, oxide and interfaces in silicon-on-insulator (SOI) wafers. This technique is based on optical Second Harmonic Generation (SHG). The principles of SHG and the experimental setup will be thoroughly described. The experimental parameters best suited for testing SOI wafers with SHG are identified. SOI geometry, as well as the passivation of the top surface, both have an impact on the observed SHG signal. The back-gate bias applied on the substrate is shown to modulate the SHG signal.

  18. Non-Destructive Testing with Atmospheric Pressure Radio-Frequency Plasma

    NASA Astrophysics Data System (ADS)

    May, A.; Andarawis, E.

    2007-03-01

    We summarize our recent work using radio-frequency (RF) atmospheric pressure plasma (APP) for non-destructive evaluation (NDE), specifically for: (1) Clearance sensing (0-5mm) on rotating components, and (2) Generation of broadband ultrasound in air at 900kHz. RF-APP showed potential in both of these common NDE requirements, but further work is required to better characterize and optimize the performance of the new techniques. Application of RF-APP to other NDE disciplines, such as plasma spectroscopy and gas flow measurement, is also likely to be advantageous, especially in harsh environments where existing approaches are prohibitively expensive or complex.

  19. Non-destructive evaluation of metal-to-metal adhesive joints using vibration analysis: experimental results

    NASA Astrophysics Data System (ADS)

    Pandurangan, Pradeep; Buckner, Gregory D.

    2006-03-01

    Vibration based non-destructive evaluation shows promise for damage detection in metal-to-metal adhesive joints. This research investigates an experimental technique to diagnose damage in single-lap adhesive joints subject to cyclical tensile loading. Vibration analysis reveals that damage can be correlated with changes in identified modal damping ratios. Constant amplitude forcing functions are employed to eliminate amplitude-dependent nonlinearities in the dynamic response profiles. Damping estimates obtained from time-domain analyses correlate well with damage magnitudes. Finite element modal analysis of the lap joints supports the experimental results.

  20. Photothermal Analysis Applied To Non-Destructive Evaluation Of Paint On Polymer Substrates

    NASA Astrophysics Data System (ADS)

    Vergne, D.; Busse, G.

    1988-10-01

    The decoration and protection quality of coatings on polymers is of considerable interest for industrial applications. However, at present there is no non-destructive (NDE) method to monitor the quality of these coatings during the manufacturing process or while they are in use. As an approach for such a method we use photothermal analysis where the propagation and reflection of optically generated thermal waves is investigated. We found that one can monitor the drying process, the effect of surface temperature treatment, and coating thickness (accuracy + 2 μm in 50 μm thickness). The information obtained with this remote NDE method is adequate for most industrial applications, eg car manufacturing.

  1. Non-destructive qualification tests for ITER cryogenic axial insulating breaks

    SciTech Connect

    Kosek, Jacek; Lopez, Roberto; Tommasini, Davide; Rodriguez-Mateos, Felix

    2014-01-29

    In the ITER superconducting magnets the dielectric separation between the CICC (Cable-In-Conduit Conductors) and the helium supply pipes is made through the so-called insulating breaks (IB). These devices shall provide the required dielectric insulation at a 30 kV level under different types of stresses and constraints: thermal, mechanical, dielectric and ionizing radiations. As part of the R and D program, the ITER Organization launched contracts with industrial companies aimed at the qualification of the manufacturing techniques. After reviewing the main functional aspects, this paper describes and discusses the protocol established for non-destructive qualification tests of the prototypes.

  2. PREFACE: III All-Russian Scientific and Practical Conference on Innovations in Non-Destructive Testing (SibTest 2015)

    NASA Astrophysics Data System (ADS)

    2016-01-01

    This issue of the journal is devoted to the research and studies presented at the III All-Russian Scientific and Practical Conference on Innovations in Non-Destructive Testing SibTest. The conference was held in Altai, Russia, on 27-31 July 2015. The conference brought together experts from different countries and organizations who had a great opportunity to share knowledge during oral and poster presentations and to initiate discussions on topics that are of interest to the conference attendees. The conference aimed to discuss innovative methods and the application of advanced technologies in non-destructive testing. The conference also attempted to bring together university, academic and industrial science, to expand the co-operation of scientists from different countries in research and development and the commercialization of innovative technologies in non-destructive testing. The key themes of the conference were: ultrasonic and acoustic testing; electromagnetic and thermal testing; various types of radiation non-destructive testing; passive and active testing techniques. The conference organizers are the Institute of Non-Destructive Testing, Tomsk Polytechnic University, with the assistance of the Russian Society for Non-Destructive Testing and Technical Diagnostics, Institute of Strength Physics and Materials Science, Siberian Branch of the Russian Academy of Sciences, National Research Tomsk State University, Moscow State Institute of Radio Engineering, Electronics and Automation.

  3. Non-Destructive Evaluation of Grain Structure Using Air-Coupled Ultrasonics

    SciTech Connect

    Belvin, A. D.; Burrell, R. K.; Cole, E.G.

    2009-08-01

    Cast material has a grain structure that is relatively non-uniform. There is a desire to evaluate the grain structure of this material non-destructively. Traditionally, grain size measurement is a destructive process involving the sectioning and metallographic imaging of the material. Generally, this is performed on a representative sample on a periodic basis. Sampling is inefficient and costly. Furthermore, the resulting data may not provide an accurate description of the entire part's average grain size or grain size variation. This project is designed to develop a non-destructive acoustic scanning technique, using Chirp waveforms, to quantify average grain size and grain size variation across the surface of a cast material. A Chirp is a signal in which the frequency increases or decreases over time (frequency modulation). As a Chirp passes through a material, the material's grains reduce the signal (attenuation) by absorbing the signal energy. Geophysics research has shown a direct correlation with Chirp wave attenuation and mean grain size in geological structures. The goal of this project is to demonstrate that Chirp waveform attenuation can be used to measure grain size and grain variation in cast metals (uranium and other materials of interest). An off-axis ultrasonic inspection technique using air-coupled ultrasonics has been developed to determine grain size in cast materials. The technique gives a uniform response across the volume of the component. This technique has been demonstrated to provide generalized trends of grain variation over the samples investigated.

  4. Early non-destructive biofouling detection and spatial distribution: Application of oxygen sensing optodes.

    PubMed

    Farhat, N M; Staal, M; Siddiqui, A; Borisov, S M; Bucs, Sz S; Vrouwenvelder, J S

    2015-10-15

    Biofouling is a serious problem in reverse osmosis/nanofiltration (RO/NF) applications, reducing membrane performance. Early detection of biofouling plays an essential role in an adequate anti-biofouling strategy. Presently, fouling of membrane filtration systems is mainly determined by measuring changes in pressure drop, which is not exclusively linked to biofouling. Non-destructive imaging of oxygen concentrations (i) is specific for biological activity of biofilms and (ii) may enable earlier detection of biofilm accumulation than pressure drop. The objective of this study was to test whether transparent luminescent planar O2 optodes, in combination with a simple imaging system, can be used for early non-destructive biofouling detection. This biofouling detection is done by mapping the two-dimensional distribution of O2 concentrations and O2 decrease rates inside a membrane fouling simulator (MFS). Results show that at an early stage, biofouling development was detected by the oxygen sensing optodes while no significant increase in pressure drop was yet observed. Additionally, optodes could detect spatial heterogeneities in biofouling distribution at a micro scale. Biofilm development started mainly at the feed spacer crossings. The spatial and quantitative information on biological activity will lead to better understanding of the biofouling processes, contributing to the development of more effective biofouling control strategies. PMID:26117369

  5. A Distributive, Non-Destructive, Real-Time Approach to Snowpack Monitoring

    NASA Technical Reports Server (NTRS)

    Frolik, Jeff; Skalka, Christian

    2012-01-01

    This invention is designed to ascertain the snow water equivalence (SWE) of snowpacks with better spatial and temporal resolutions than present techniques. The approach is ground-based, as opposed to some techniques that are air-based. In addition, the approach is compact, non-destructive, and can be communicated with remotely, and thus can be deployed in areas not possible with current methods. Presently there are two principal ground-based techniques for obtaining SWE measurements. The first is manual snow core measurements of the snowpack. This approach is labor-intensive, destructive, and has poor temporal resolution. The second approach is to deploy a large (e.g., 3x3 m) snowpillow, which requires significant infrastructure, is potentially hazardous [uses a approximately equal to 200-gallon (approximately equal to 760-L) antifreeze-filled bladder], and requires deployment in a large, flat area. High deployment costs necessitate few installations, thus yielding poor spatial resolution of data. Both approaches have limited usefulness in complex and/or avalanche-prone terrains. This approach is compact, non-destructive to the snowpack, provides high temporal resolution data, and due to potential low cost, can be deployed with high spatial resolution. The invention consists of three primary components: a robust wireless network and computing platform designed for harsh climates, new SWE sensing strategies, and algorithms for smart sampling, data logging, and SWE computation.

  6. NON-DESTRUCTIVE THERMAL BARRIER COATING SPALLATION PREDICTION BY A LOADBASED MICRO-INDENTATION TECHNIQUE

    SciTech Connect

    J. M. Tannenbaum; K. Lee; B. S.-J. Kang; M.A. Alvin

    2010-11-18

    Currently, the durability and life cycle of thermal barrier coatings (TBC) applied to gas turbine blades and combustor components are limiting the maximum temperature and subsequent efficiency at which gas turbine engines operate. The development of new materials, coating technologies and evaluation techniques is required if enhanced efficiency is to be achieved. Of the current ceramic coating materials used in gas turbine engines, yttria stabilized zirconia (YSZ) is most prevalent, its low thermal conductivity, high thermal expansion coefficient and outstanding mechanical strength make it ideal for use in TBC systems. However, residual stresses caused by coefficients of thermal expansion mismatches within the TBC system and unstable thermally grown oxides are considered the primary causes for its premature and erratic spallation failure. Through finite element simulations, it is shown that the residual stresses generated within the thermally grown oxide (TGO), bond coat (BC), YSZ and their interfaces create slight variations in indentation unloading surface stiffness response prior to spallation failure. In this research, seven air plasma sprayed and one electron beam physical vapor deposition yttria partially stabilized zirconia TBCs were subjected to isothermal and cyclic loadings at 1100°C. The associated coating degradation was evaluated using a non-destructive multiple partial unloading micro-indentation procedure. The results show that the proposed non-destructive micro-indentation evaluation technique can be an effective and specimenindependent TBC failure prediction tool capable of determining the location of initial spallation failure prior to its actual occurrence.

  7. Non-destructive analysis for the investigation of decomposition phenomena of historical manuscripts and prints

    NASA Astrophysics Data System (ADS)

    Faubel, Werner; Staub, Susanne; Simon, Rolf; Heissler, Stefan; Pataki, Andrea; Banik, Gerhard

    2007-07-01

    As a contribution to the increasing efforts to preserve cultural heritage, historical books as well as illuminated manuscripts endangered by corrosive writing and printing materials or destructive coloring matters, non-destructive analytical methods are highly desirable enabling an in-situ examination of the surface status of an object. The development and application of a novel combination of non-destructive analytic methods based on (a) synchrotron radiation induced micro-X-ray fluorescence (SR-μXRF) and (b) Fourier transform infrared (FTIR) microscope allows to investigate the state as well as the effectiveness of conservation procedures for historical manuscripts. Examples of measurements include (1) an iron gall ink manuscript of a historical memo on legal land description of the year 1769, (2) an original hand colored herbal of the years 1536/38 from the Senckenbergische Bibliothek, Frankfurt, and (3) the incunabula Johannes von Saaz: "Der Ackermann aus Boehmen" fated from 1463 and printed by Albrecht Pfister, Bamberg, owned by the Herzog August Bibliothek, Wolfenbuettel.

  8. Non-destructive high-throughput DNA extraction and genotyping methods for cotton seeds and seedlings.

    PubMed

    Zheng, Xiuting; Hoegenauer, Kevin A; Maeda, Andrea B V; Wang, Fei; Stelly, David M; Nichols, Robert L; Jones, Don C

    2015-05-01

    Extensive use of targeted PCR-based genotyping is precluded for many plant research laboratories by the cost and time required for DNA extraction. Using cotton (Gossypium hirsutum) as a model for plants with medium-sized seeds, we report here manual procedures for inexpensive non-destructive high-throughput extraction of DNA suitable for PCR-based genotyping of large numbers of individual seeds and seedlings. By sampling only small amounts of cotyledon tissue of ungerminated seed or young seedlings, damage is minimized, and viability is not discernibly affected. The yield of DNA from each seed or seedling is typically sufficient for 1000 or 500 PCR reactions, respectively. For seeds, the tissue sampling procedure relies on a modified 96-well plate that is used subsequently for seed storage. For seeds and seedlings, the DNA is extracted in a strongly basic DNA buffer that is later neutralized and diluted. Extracts can be used directly for high-throughput PCR-based genotyping. Any laboratory can thus extract DNA from thousands of individual seeds/seedlings per person-day at a very modest cost for consumables (~$0.05 per sample). Being non-destructive, our approach enables a wide variety of time- and resource-saving applications, such as marker-assisted selection (MAS), before planting, transplanting, and flowering. PMID:25967902

  9. Non-destructive inspection in industrial equipment using robotic mobile manipulation

    NASA Astrophysics Data System (ADS)

    Maurtua, Iñaki; Susperregi, Loreto; Ansuategui, Ander; Fernández, Ane; Ibarguren, Aitor; Molina, Jorge; Tubio, Carlos; Villasante, Cristobal; Felsch, Torsten; Pérez, Carmen; Rodriguez, Jorge R.; Ghrissi, Meftah

    2016-05-01

    MAINBOT project has developed service robots based applications to autonomously execute inspection tasks in extensive industrial plants in equipment that is arranged horizontally (using ground robots) or vertically (climbing robots). The industrial objective has been to provide a means to help measuring several physical parameters in multiple points by autonomous robots, able to navigate and climb structures, handling non-destructive testing sensors. MAINBOT has validated the solutions in two solar thermal plants (cylindrical-parabolic collectors and central tower), that are very demanding from mobile manipulation point of view mainly due to the extension (e.g. a thermal solar plant of 50Mw, with 400 hectares, 400.000 mirrors, 180 km of absorber tubes, 140m height tower), the variability of conditions (outdoor, day-night), safety requirements, etc. Once the technology was validated in simulation, the system was deployed in real setups and different validation tests carried out. In this paper two of the achievements related with the ground mobile inspection system are presented: (1) Autonomous navigation localization and planning algorithms to manage navigation in huge extensions and (2) Non-Destructive Inspection operations: thermography based detection algorithms to provide automatic inspection abilities to the robots.

  10. Compressive strength evaluation of structural lightweight concrete by non-destructive ultrasonic pulse velocity method.

    PubMed

    Bogas, J Alexandre; Gomes, M Glória; Gomes, Augusto

    2013-07-01

    In this paper the compressive strength of a wide range of structural lightweight aggregate concrete mixes is evaluated by the non-destructive ultrasonic pulse velocity method. This study involves about 84 different compositions tested between 3 and 180 days for compressive strengths ranging from about 30 to 80 MPa. The influence of several factors on the relation between the ultrasonic pulse velocity and compressive strength is examined. These factors include the cement type and content, amount of water, type of admixture, initial wetting conditions, type and volume of aggregate and the partial replacement of normal weight coarse and fine aggregates by lightweight aggregates. It is found that lightweight and normal weight concretes are affected differently by mix design parameters. In addition, the prediction of the concrete's compressive strength by means of the non-destructive ultrasonic pulse velocity test is studied. Based on the dependence of the ultrasonic pulse velocity on the density and elasticity of concrete, a simplified expression is proposed to estimate the compressive strength, regardless the type of concrete and its composition. More than 200 results for different types of aggregates and concrete compositions were analyzed and high correlation coefficients were obtained. PMID:23351273

  11. Non-destructive Testing of Forged Metallic Materials by Active Infrared Thermography

    NASA Astrophysics Data System (ADS)

    Maillard, S.; Cadith, J.; Bouteille, P.; Legros, G.; Bodnar, J. L.; Detalle, V.

    2012-11-01

    Nowadays, infrared thermography is considered as the reference method in many applications such as safety, the inspection of electric installations, or the inspection of buildings' heat insulation. In recent years, the evolution of both material and data-processing tools also allows the development of thermography as a real non-destructive testing method. Thus, by subjecting the element to be inspected to an external excitation and by analyzing the propagation of heat in the examined zone, it is possible to highlight surface or subsurface defects such as cracks, delaminations, or corrosion. One speaks then about active infrared thermography. In this study, some results obtained during the collective studies carried out by CETIM and the University of Reims for the forging industry are presented. Various experimental possibilities offered by active thermography are presented and the interest in this method in comparison with the traditional non-destructive testing methods (penetrant testing and magnetic particle inspection) is discussed. For example, comparative results on a forged cracked hub, a steering joint, and a threaded rod are presented. They highlight the interest of infrared thermography stimulated by induction for forged parts.

  12. Non-invasive and non-destructive measurements of confluence in cultured adherent cell lines.

    PubMed

    Busschots, Steven; O'Toole, Sharon; O'Leary, John J; Stordal, Britta

    2015-01-01

    Many protocols used for measuring the growth of adherent monolayer cells in vitro are invasive, destructive and do not allow for the continued, undisturbed growth of cells within flasks. Protocols often use indirect methods for measuring proliferation. Microscopy techniques can analyse cell proliferation in a non-invasive or non-destructive manner but often use expensive equipment and software algorithms. In this method images of cells within flasks are captured by photographing under a standard inverted phase contract light microscope using a digital camera with a camera lens adaptor. Images are analysed for confluence using ImageJ freeware resulting in a measure of confluence known as an Area Fraction (AF) output. An example of the AF method in use on OVCAR8 and UPN251 cell lines is included. •Measurements of confluence from growing adherent cell lines in cell culture flasks is obtained in a non-invasive, non-destructive, label-free manner.•The technique is quick, affordable and eliminates sample manipulation.•The technique provides an objective, consistent measure of when cells reach confluence and is highly correlated to manual counting with a haemocytometer. The average correlation co-efficient from a Spearman correlation (n = 3) was 0.99 ± 0.008 for OVCAR8 (p = 0.01) and 0.99 ± 0.01 for UPN251 (p = 0.01) cell lines. PMID:26150966

  13. Non-destructive quantification of pharmaceutical tablet coatings using terahertz pulsed imaging and optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Zhong, Shuncong; Shen, Yao-Chun; Ho, Louise; May, Robert K.; Zeitler, J. Axel; Evans, Mike; Taday, Philip F.; Pepper, Michael; Rades, Thomas; Gordon, Keith C.; Müller, Ronny; Kleinebudde, Peter

    2011-03-01

    Optical coherence tomography (OCT) and terahertz pulsed imaging (TPI) are two powerful techniques allowing high quality cross-sectional images from within scattering media to be obtained non-destructively. In this paper, we report experimental results of using OCT and TPI for quantitatively characterizing pharmaceutical tablet coatings in the thickness range of 10-140 μm. We found that the spectral OCT system developed in-house has an axial resolution of 0.9 μm, and is capable of quantifying very thin coatings in the range of 10-60 μm. The upper limit of 60 μm within the tablet coating and core is owed to the strong scattering of OCT light, which has relatively short wavelengths in the range of 0.5-1.0 μm. On the other hand, TPI utilizes terahertz radiation that has substantially long wavelengths in the range of hundreds of microns, and thus is less prone to the scattering problem. Consequently TPI has been demonstrated to be able to quantify thicker coatings in the range of 40-140 μm and beyond. We concluded that OCT and TPI are two complementary analytical techniques for non-destructive and quantitative characterization of pharmaceutical tablet coatings.

  14. Non-destructive Magnetic Evaluation of Laser Weld Quality in Hot Rolled Coils

    NASA Astrophysics Data System (ADS)

    Mohapatra, J. N.; Chakradhar, I.; Rao, K. R. C.; Rao, V. V. L.; Kaza, Marutiram

    2015-06-01

    Weld quality evaluation was conducted on laser welded thin sectsions (2 mm) of hot-rolled (HR) low-carbon steel coils during cold rolling process. The analysis revealed that the poor welds consisting of the weld defects like incomplete fusion, cluster of porosity, and large difference in hardness between the weld zone and base metal were responsible for the weld failures. Experiments were conducted by varying the welding parameters; laser power and welding speed to optimize the parameters for minimizing the weld defects. The optimized weld process parameters have helped elimination of weld defects and the results are verified with microscopy and microhardness measurements. As destructive evaluation techniques are time consuming and not always permitted in industrial applications, attempts have been made in the present investigation for the utilization of suitable non-destructive techniques for the evaluation of weld quality. Non-destructive magnetic techniques of magnetic hysteresis loop and magnetic Barkhausen emissions were used in the present investigation to establish possible correlations of magnetic properties across the weld seam with the mechanical property (microhardness) for evaluation of weld quality. It is inferred that the magnetic properties of coercivity and inverse of root mean square voltage can be effectively utilized to determine weld quality in HR steel coils.

  15. Checking collagen preservation in archaeological bone by non-destructive studies (Micro-CT and IBA)

    NASA Astrophysics Data System (ADS)

    Beck, L.; Cuif, J.-P.; Pichon, L.; Vaubaillon, S.; Dambricourt Malassé, A.; Abel, R. L.

    2012-02-01

    The material to be studied is a piece of human skull discovered (1999) in Pleistocene sediments from the Orsang river (Gujarat state, India). From anatomical view point, this skull is highly composite: modern Homo sapiens characters are associated to undoubtedly more ancient features. Absolute dating by 14C is critical to understand this discovery. Prior to dating measurements, non-destructive studies have been carried out. Micro-CT reconstruction (X-ray microtomography) and Ion Beam Analysis (IBA) have been undertaken to check the structural preservation of the fossil and the collagen preservation. PIXE elemental map was used to select well-preserved bone area. RBS/EBS and NRA were used for light element quantification, in particular C, N and O contents. We also demonstrate that the PIXE-RBS/EBS combination is a effective tool for the whole characterization of archaeological and recent bones by analysing in one experiment both mineral and organic fractions. We have shown that the archaeological bone, a fragment of the potentially oldest modern Indian, is enough preserved for radiocarbon dating. We propose that Elastic Backscattering Spectrometry (EBS) using 3 MeV protons could be a good non destructive alternative to conventional CHN method using Carbon-Hydrogen-Nitrogen analyzer for measuring C and N before 14C dating.

  16. Non-Destructive Evaluation of Thermal Spray Coating Interface Quality by Eddy Current Method

    SciTech Connect

    B.Mi; X. Zhao; R. Bayles

    2006-05-26

    Thermal spray coating is usually applied through directing molten or softened particles at very high velocities onto a substrate. An eddy current non-destructive inspection technique is presented here for thermal spray coating interface quality characterization. Several high-velocity-oxy-fuel (HVOF) coated steel plates were produced with different surface preparation conditions before applying the coating, e.g., grit-blasted surface, wire-brush cleaned surface, and a dirty surface. A quad-frequency eddy current probe was used to manually scan over the coating surface to evaluate the bonding quality. Experimental results show that the three surface preparation conditions can be successfully differentiated by looking into the impedance difference observed from the eddy current probe. The measurement is fairly robust and consistent. More specimens are also prepared with variations of process parameters, such as spray angle, stand-off distance, and application of corrosion protective sealant, etc. They are blindly tested to evaluate the reliability of the eddy current system. Quantitative relations between the coating bond strength and the eddy current response are also established with the support of destructive testing. This non-contact, non-destructive, easy to use technique has the potential for evaluating the coating quality immediately after its application so that any defects can be corrected immediately.

  17. Non-destructive on-line monitoring of MIC (microbially influenced corrosion)

    SciTech Connect

    White, D.C. Tennessee Univ., Knoxville, TN ); Nivens, D.E.; Mittelman, M.W. . Inst. for Applied Microbiology); Chambers, J.Q. . Dept. of Chemistry); King, J.M.H. . Center for Environmental Biotechnology); Sayler, G.S. (Tennessee Univ., Knoxville, TN

    1990-01-01

    The formation of microbial biofilms on metal surfaces with the subsequent increase in heat transfer resistance and the induction of microbially influenced corrosion (MIC) is being increasingly recognized as an extremely important economic and safety problem for industrial water systems. The development of sufficiently rugged and accurate monitoring devices by which biofilm formation and activity of microbial biofilms can be monitored non-destructively, directly in water systems is the goal of this research. This on-line systems would allow the effective utilization of minimal levels of biocides and inhibitors as well as permit in situ testing of materials for MIC resistance. Several non-destructive technologies such as the quartz crystal microbalance (QCM), the attenuated total reflectance-Fourier transforming infrared spectrometer (ATR-FT/IR), and a genetically engineered bacterium containing the lux gene cassette in which its bioluminescence can be used to define its presence on coupons are on-line devices which accurately measure biofilm formation. Corrosion activity can be estimated by electrochemical impedance. 12 refs., 8 figs.

  18. Non-destructive measurement of soil liquefaction density change by crosshole radar tomography, Treasure Island, California

    USGS Publications Warehouse

    Kayen, Robert E.; Barnhardt, Walter A.; Ashford, Scott; Rollins, Kyle

    2000-01-01

    A ground penetrating radar (GPR) experiment at the Treasure Island Test Site [TILT] was performed to non-destructively image the soil column for changes in density prior to, and following, a liquefaction event. The intervening liquefaction was achieved by controlled blasting. A geotechnical borehole radar technique was used to acquire high-resolution 2-D radar velocity data. This method of non-destructive site characterization uses radar trans-illumination surveys through the soil column and tomographic data manipulation techniques to construct radar velocity tomograms, from which averaged void ratios can be derived at 0.25 - 0.5m pixel footprints. Tomograms of void ratio were constructed through the relation between soil porosity and dielectric constant. Both pre- and post-blast tomograms were collected and indicate that liquefaction related densification occurred at the site. Volumetric strains estimated from the tomograms correlate well with the observed settlement at the site. The 2-D imagery of void ratio can serve as high-resolution data layers for numerical site response analysis.

  19. Non-invasive and non-destructive measurements of confluence in cultured adherent cell lines

    PubMed Central

    Busschots, Steven; O’Toole, Sharon; O’Leary, John J.; Stordal, Britta

    2014-01-01

    Many protocols used for measuring the growth of adherent monolayer cells in vitro are invasive, destructive and do not allow for the continued, undisturbed growth of cells within flasks. Protocols often use indirect methods for measuring proliferation. Microscopy techniques can analyse cell proliferation in a non-invasive or non-destructive manner but often use expensive equipment and software algorithms. In this method images of cells within flasks are captured by photographing under a standard inverted phase contract light microscope using a digital camera with a camera lens adaptor. Images are analysed for confluence using ImageJ freeware resulting in a measure of confluence known as an Area Fraction (AF) output. An example of the AF method in use on OVCAR8 and UPN251 cell lines is included. • Measurements of confluence from growing adherent cell lines in cell culture flasks is obtained in a non-invasive, non-destructive, label-free manner. • The technique is quick, affordable and eliminates sample manipulation. • The technique provides an objective, consistent measure of when cells reach confluence and is highly correlated to manual counting with a haemocytometer. The average correlation co-efficient from a Spearman correlation (n = 3) was 0.99 ± 0.008 for OVCAR8 (p = 0.01) and 0.99 ± 0.01 for UPN251 (p = 0.01) cell lines. PMID:26150966

  20. A semi-automatic non-destructive method to quantify grapevine downy mildew sporulation.

    PubMed

    Peressotti, Elisa; Duchêne, Eric; Merdinoglu, Didier; Mestre, Pere

    2011-02-01

    The availability of fast, reliable and non-destructive methods for the analysis of pathogen development contributes to a better understanding of plant-pathogen interactions. This is particularly true for the genetic analysis of quantitative resistance to plant pathogens, where the availability of a method allowing a precise quantification of pathogen development allows the reliable detection of different genomic regions involved in the resistance. Grapevine downy mildew, caused by the biotrophic Oomycete Plasmopara viticola, is one of the most important diseases affecting viticulture. Here we report the development of a simple image analysis-based semi-automatic method for the quantification of grapevine downy mildew sporulation, requiring just a compact digital camera and the open source software ImageJ. We confirm the suitability of the method for the analysis of the interaction between grapevine and downy mildew by performing QTL analysis of resistance to downy mildew as well as analysis of the kinetics of downy mildew infection. The non-destructive nature of the method will enable comparison between the phenotypic and molecular data obtained from the very same sample, resulting in a more accurate description of the interaction, while its simplicity makes it easily adaptable to other plant-pathogen interactions, in particular those involving downy mildews. PMID:21167874

  1. Processes for non-destructive transfer of graphene: widening the bottleneck for industrial scale production

    NASA Astrophysics Data System (ADS)

    Zaretski, Aliaksandr V.; Lipomi, Darren J.

    2015-05-01

    The exceptional charge-transport, mechanical, and barrier properties of graphene are well known. High-quality films of single-layer graphene produced over large areas, however, are extremely expensive. The high cost of graphene precludes its use in industries--such as transparent electrodes and flexible packaging--that might take full advantage of its properties. This minireview presents several strategies for the transfer of graphene from the substrates used for growth to substrates used for the final application. Each strategy shares the characteristic of being non-destructive: that is, the growth substrate remains reusable for further synthesis of new graphene. These processes have the potential to lower significantly the costs of manufacturing graphene, to increase production yields, and to minimize environmental impact. This article is divided into sections on (i) the synthesis of high-quality single-layer graphene and (ii) its non-destructive transfer to a host substrate. Section (ii) is further divided according to the substrate from which graphene is transferred: single-crystalline wafers or flexible copper foils. We also comment, wherever possible, on defects produced as a result of the transfer, and potential strategies to mitigate these defects. We conclude that several methods for the green synthesis and transfer of graphene have several of the right characteristics to be useful in industrial scale production.

  2. Processes for non-destructive transfer of graphene: widening the bottleneck for industrial scale production.

    PubMed

    Zaretski, Aliaksandr V; Lipomi, Darren J

    2015-06-14

    The exceptional charge-transport, mechanical, and barrier properties of graphene are well known. High-quality films of single-layer graphene produced over large areas, however, are extremely expensive. The high cost of graphene precludes its use in industries-such as transparent electrodes and flexible packaging-that might take full advantage of its properties. This minireview presents several strategies for the transfer of graphene from the substrates used for growth to substrates used for the final application. Each strategy shares the characteristic of being non-destructive: that is, the growth substrate remains reusable for further synthesis of new graphene. These processes have the potential to lower significantly the costs of manufacturing graphene, to increase production yields, and to minimize environmental impact. This article is divided into sections on (i) the synthesis of high-quality single-layer graphene and (ii) its non-destructive transfer to a host substrate. Section (ii) is further divided according to the substrate from which graphene is transferred: single-crystalline wafers or flexible copper foils. We also comment, wherever possible, on defects produced as a result of the transfer, and potential strategies to mitigate these defects. We conclude that several methods for the green synthesis and transfer of graphene have several of the right characteristics to be useful in industrial scale production. PMID:25924926

  3. Infrared thermal wave nondestructive testing for rotor blades in wind turbine generators non-destructive evaluation and damage monitoring

    NASA Astrophysics Data System (ADS)

    Zhao, Shi bin; Zhang, Cun-lin; Wu, Nai-ming; Duan, Yu-xia; Li, Hao

    2009-07-01

    The rotor blades are key components in wind turbine generators. A visual inspection of the laminated shells for delaminations, air pockets, missing/disoriented fabric etc. is in most cases also not possible due to the manufacturing process, so Non-destructive testing and evaluation (NDT & E) techniques for assessing the integrity of rotor blades structure are essential to both reduce manufacturing costs and out of service time of wind turbine generators due to maintenance. Nowadays, Infrared Thermal Wave Nondestructive Testing (Pulsed thermography) is commonly used for assessing composites. This research work utilizes Infrared Thermal Wave Nondestructive Testing system (EchoTherm, Thermal Wave Imaging, Inc.) to inspect a specimen with embedded defects (i.e. foreign matter and air inclusions) in different depth which is a part of rotor blades in wind turbine generators, we have successfully identified defects including foreign matter and air inclusions, and discovered a defective workmanship. The system software allows us to simultaneously view and analyze the results for an entire transition.

  4. Potential applicability of stress wave velocity method on pavement base materials as a non-destructive testing technique

    NASA Astrophysics Data System (ADS)

    Mahedi, Masrur

    Aggregates derived from natural sources have been used traditionally as the pavement base materials. But in recent times, the extraction of these natural aggregates has become more labor intensive and costly due to resource depletion and environmental concerns. Thus, the uses of recycled aggregates as the supplementary of natural aggregates are increasing considerably in pavement construction. Use of recycled aggregates such as recycled crushed concrete (RCA) and recycled asphalt pavement (RAP) reduces the rate of natural resource depletion, construction debris and cost. Although recycled aggregates could be used as a viable alternative of conventional base materials, strength characteristics and product variability limit their utility to a great extent. Hence, their applicability is needed to be evaluated extensively based on strength, stiffness and cost factors. But for extensive evaluation, traditionally practiced test methods are proven to be unreasonable in terms of time, cost, reliability and applicability. On the other hand, rapid non-destructive methods have the potential to be less time consuming and inexpensive along with the low variability of test results; therefore improving the reliability of estimated performance of the pavement. In this research work, the experimental program was designed to assess the potential application of stress wave velocity method as a non-destructive test in evaluating recycled base materials. Different combinations of cement treated recycled concrete aggregate (RAP) and recycled crushed concrete (RCA) were used to evaluate the applicability of stress wave velocity method. It was found that, stress wave velocity method is excellent in characterizing the strength and stiffness properties of cement treated base materials. Statistical models, based on P-wave velocity were derived for predicting the modulus of elasticity and compressive strength of different combinations of cement treated RAP, Grade-1 and Grade-2 materials. Two

  5. Photonic non-destructive measurement methods for investigating the evolution of polar firn and ice

    NASA Astrophysics Data System (ADS)

    Breton, Daniel James

    When snow falls on glaciers or ice sheets, it persists for many tens, hundreds and sometimes thousands of years before becoming ice. The granular material in between fresh snow and glacial ice is known as firn and is generally 50 to 100 m thick over polar ice sheets. The compaction mechanism of firn into ice (called densification) has important glaciological ramifications in determination of ice sheet stability and related sea level rise effects via remote sensing altimetry. Firn densification is also important for correctly interpreting ice core paleoclimate records, especially those analyzing gases trapped in air bubbles within the glacial ice. Densification is thought to depend strongly on microstructure: the sizes, shapes, orientations and inter-particle bonds of the ice grains that make up polar firn. Microstructure-dependent densification is poorly understood and occurs in the region where two-thirds of the overall densification takes place. This work focuses on developing non-destructive methods for simultaneously evaluating changes in both the bulk density and microstructure of polar firn to better understand structure- dependent densification processes. The first method is an automated density gauge which uses gamma-ray transmission methods to non-destructively produce high resolution (3.3 mm) and high precision (+/-4 kg m-3) density profiles of firn and ice cores. This instrument was used to collect a density profile for the first 160 m of the West Antarctic Ice Sheet Divide WDCO6A deep ice core. The second method involves optical scattering measurements on firn and ice cores to determine the important microstructural parameters of ice grain and air bubble size and air-ice interface surface area. These measurements are modeled using both Monte Carlo radiative transfer and ray-tracing geometric optics methods, and are then tested against experiment using digital photography of the WDC06A core. Combining the results of both bulk density and optical

  6. Non-destructive infrared analyses: a method for provenance analyses of sandstones

    NASA Astrophysics Data System (ADS)

    Bowitz, Jörg; Ehling, Angela

    2008-12-01

    Infrared spectroscopy (IR spectroscopy) is commonly applied in the laboratory for mineral analyses in addition to XRD. Because such technical efforts are time and cost consuming, we present an infrared-based mobile method for non-destructive mineral and provenance analyses of sandstones. IR spectroscopy is based on activating chemical bonds. By irradiating a mineral mixture, special bonds are activated to vibrate depending on the bond energy (resonance vibration). Accordingly, the energy of the IR spectrum will be reduced thereby generating an absorption spectrum. The positions of the absorption maxima within the spectral region indicate the type of the bonds and in many cases identify minerals containing these bonds. The non-destructive reflection spectroscopy operates in the near infrared region (NIR) and can detect all common clay minerals as well as sulfates, hydroxides and carbonates. The spectra produced have been interpreted by computer using digital mineral libraries that have been especially collected for sandstones. The comparison of all results with XRD, RFA and interpretations of thin sections demonstrates impressively the accuracy and reliability of this method. Not only are different minerals detectable, but also differently ordered kaolinites and varieties of illites can be identified by the shape and size of the absorption bands. Especially clay minerals and their varieties in combination with their relative contents form the characteristic spectra of sandstones. Other components such as limonite, hematite and amorphous silica also influence the spectra. Sandstones, similar in colour and texture, often can be identified by their characteristic reflectance spectra. Reference libraries with more than 60 spectra of important German sandstones have been created to enable entirely computerized interpretations and identifications of these dimension stones. The analysis of infrared spectroscopy results is demonstrated with examples of different sandstones

  7. Non-destructive monitoring of microbial biofilms at solid-liquid interfaces using on-line devices

    SciTech Connect

    Nivens, D.E. . Dept. of Chemistry Tennessee Univ., Knoxville, TN . Inst. for Applied Microbiology); Chambers, J.Q. . Dept. of Chemistry); White, D.C. . Inst. for Applied Microbiology Tennessee Univ., Knoxville, TN . Dept. of Microbiology Oak Ridge National Lab., TN )

    1990-01-01

    Corrosion, biofouling, and related problems have been an impetus for investigating interactions between microorganisms and solid surfaces. In recent years, a number of studies have been performed to assess the damages caused by microbial influenced corrosion (MIC). In a number of these studies, electrochemical techniques have monitored the performance of metal surfaces exposed to bacteria. However, most of these methods can only indirectly detect the presence of biofilms. In this paper, two non-destructive on-line monitoring devices, attenuated total reflection Fourier transform infrared spectroscopy (ATR-FT/IR) and the quartz crystal microbalance (QCM) were used to directly monitor biofilm formation. These devices have been developed to study the initial fouling process and subsequent biofilm development and not merely the effects of the living film on the host material. The ATR-FT/IR technique provides information about biomass, exopolymer production, and the nutritional status of microbial biofilms. The QCM provides a direct measure of biomass. ATR-FT/IR and QCM detect 10{sup 6} and 10{sup 4} Caulobacter crescentus cells/cm{sup 2}, respectively. Both techniques can be coupled with electrochemical methods for deeper insight into mechanisms of MIC. 20 refs., 2 figs.

  8. Non-destructive fraud detection in rosehip oil by MIR spectroscopy and chemometrics.

    PubMed

    Santana, Felipe Bachion de; Gontijo, Lucas Caixeta; Mitsutake, Hery; Mazivila, Sarmento Júnior; Souza, Leticia Maria de; Borges Neto, Waldomiro

    2016-10-15

    Rosehip oil (Rosa eglanteria L.) is an important oil in the food, pharmaceutical and cosmetic industries. However, due to its high added value, it is liable to adulteration with other cheaper or lower quality oils. With this perspective, this work provides a new simple, fast and accurate methodology using mid-infrared (MIR) spectroscopy and partial least squares discriminant analysis (PLS-DA) as a means to discriminate authentic rosehip oil from adulterated rosehip oil containing soybean, corn and sunflower oils in different proportions. The model showed excellent sensitivity and specificity with 100% correct classification. Therefore, the developed methodology is a viable alternative for use in the laboratory and industry for standard quality analysis of rosehip oil since it is fast, accurate and non-destructive. PMID:27173556

  9. Rapid, non-destructive evaluation of ultrathin WSe{sub 2} using spectroscopic ellipsometry

    SciTech Connect

    Eichfeld, Sarah M.; Lin, Yu-Chuan; Hossain, Lorraine; Eichfeld, Chad M.; Robinson, Joshua A.

    2014-09-01

    The utilization of tungsten diselenide (WSe{sub 2}) in electronic and optoelectronic devices depends on the ability to understand and control the process-property relationship during synthesis. We demonstrate that spectroscopic ellipsometry is an excellent technique for accurate, non-destructive determination of ultra-thin (<30 nm) WSe{sub 2} properties. The refractive index (n) and extinction coefficient (k) were found to be independent of thickness down to 1.3 nm, and were used to determine film thickness, which was confirmed to be within 9% of values found via atomic force microscopy. Finally, the optical bandgap was found to closely correlate with thickness, ranging from 1.2 to 1.55 eV as the WSe{sub 2} is thinned to the equivalent of 2 atomic layers.

  10. Monitoring ground anchor using non-destructive ground anchor integrity test (NDT-GRANIT)

    NASA Astrophysics Data System (ADS)

    Robbany, Z.; Handayani, G.

    2015-09-01

    Monitoring at ground anchor commonly uses a pull out test method, therefor we developing a non-destructive ground anchor integrity testing (NDT-GRANIT). NDT-GRANIT using the principle of seismic waves that have been modified into form of sweep signal, the signal will be demodulated, filtered, and Fourier transformation (inverse discrete Fourier transform) so the data can be interpreted reflected wave from the ground anchor. The method was applied to determine whether the ground anchor still gripped in the subsurface by looking the attenuation of the wave generated sources. From the result we can see that ground anchor does not grip. To validate the results of the comparison method of measurement used pile integrity test.

  11. MCNP ESTIMATE OF THE SAMPLED VOLUME IN A NON-DESTRUCTIVE IN SITU SOIL CARBON ANALYSIS.

    SciTech Connect

    WIELOPOLSKI, L.; DIOSZEGI, I.; MITRA, S.

    2004-05-03

    Global warming, promoted by anthropogenic CO{sub 2} emission into the atmosphere, is partially mitigated by the photosynthesis processes of the terrestrial echo systems that act as atmospheric CO{sub 2} scrubbers and sequester carbon in soil. Switching from till to no till soils management practices in agriculture further augments this process. Carbon sequestration is also advanced by putting forward a carbon ''credit'' system whereby these can be traded between CO{sub 2} producers and sequesters. Implementation of carbon ''credit'' trade will be further promulgated by recent development of a non-destructive in situ carbon monitoring system based on inelastic neutron scattering (INS). Volumes and depth distributions defined by the 0.1, 1.0, 10, 50, and 90 percent neutron isofluxes, from a point source located at either 5 or 30 cm above the surface, were estimated using Monte Carlo calculations.

  12. Non-destructive evaluation of depth of surface cracks using ultrasonic frequency analysis.

    PubMed

    Her, Shiuh-Chuan; Lin, Sheng-Tung

    2014-01-01

    Ultrasonic is one of the most common uses of a non-destructive evaluation method for crack detection and characterization. The effectiveness of the acoustic-ultrasound Structural Health Monitoring (SHM) technique for the determination of the depth of the surface crack was presented. A method for ultrasonic sizing of surface cracks combined with the time domain and frequency spectrum was adopted. The ultrasonic frequency spectrum was obtained by Fourier transform technique. A series of test specimens with various depths of surface crack ranging from 1 mm to 8 mm was fabricated. The depth of the surface crack was evaluated using the pulse-echo technique. In this work, three different longitudinal waves with frequencies of 2.25 MHz, 5 MHz and 10 MHz were employed to investigate the effect of frequency on the sizing detection of surface cracks. Reasonable accuracies were achieved with measurement errors less than 7%. PMID:25225875

  13. In-situ and non-destructive focus determination device for high-precision laser applications

    NASA Astrophysics Data System (ADS)

    Armbruster, Oskar; Naghilou, Aida; Pöhl, Hannes; Kautek, Wolfgang

    2016-09-01

    A non-destructive, in-line, and low-cost focusing device based on an image sensor has been developed and demonstrated. It allows an in situ focus determination for a broad variety of laser types (e.g. cw and pulsed lasers). It provides stringent focusing conditions with high numerical apertures. This approach does not require sub-picosecond and/or auxiliary lasers, or high fluences above damage thresholds. Applications of this system include, but are not limited to the laser-illumination of micro-electrodes, pump-probe microscopy on thin films, and laser ablation of small samples without sufficient surface area for focus determination by ablation. An uncertainty of the focus position by an order of magnitude less than the respective Rayleigh length could be demonstrated.

  14. High-resolution thermal imaging methodology for non-destructive evaluation of historic structures

    NASA Astrophysics Data System (ADS)

    Hess, Michael; Vanoni, David; Petrovic, Vid; Kuester, Falko

    2015-11-01

    This paper presents a methodology for automated, portable thermography, for the acquisition of high-resolution thermal image mosaics supporting the non-destructive evaluation of historic structures. The presented approach increases the spatial resolution of thermal surveys to a level of detail needed for building scale analysis. The integration of a robotic camera platform enables automated alignment of multiple images into a high-resolution thermal image mosaic giving a holistic view of the structure while maintaining a level of detail equaling or exceeding that of traditional spot surveys using existing cameras. Providing a digital workflow for automated data and metadata recording increases the consistency and accuracy of surveys regardless of the location or operator. An imaging workflow and instrumentation are shown for a case-study on buildings in Florence, Italy demonstrating the effectiveness of this methodology for structural diagnostics.

  15. Evaluation and correction of readout artifacts from flat panel detectors for non-destructive testing purposes

    NASA Astrophysics Data System (ADS)

    Burtzlaff, S.; Voland, V.; Salamon, M.; Hofmann, Th.; Uhlmann, N.

    2009-08-01

    Flat panel detectors are commonly used for non-destructive testing purposes using X-ray technology. During a series of measurements with high absorbing objects, we observed an unknown kind of artifacts especially apparent with high contrast edges. These artifacts lead to unwanted results in radioscopic and computed tomography inspection. Given the object is fully occupying the lower part and half of the upper part of the detector. Looking at the image with high contrast visualization, it can be seen that the covered upper part of the detector is brighter than the covered lower half. The horizontal border of the detector tile is clearly recognizable. Furthermore, the uncovered area directly above the object is darker than next to the edge. In this area the vertical border of the edge below can be localized. We examined and evaluated the effect and developed a correction algorithm. The effect and its correction results are presented.

  16. Non-destructive research methods applied on materials for the new generation of nuclear reactors

    NASA Astrophysics Data System (ADS)

    Bartošová, I.; Slugeň, V.; Veterníková, J.; Sojak, S.; Petriska, M.; Bouhaddane, A.

    2014-06-01

    The paper is aimed on non-destructive experimental techniques applied on materials for the new generation of nuclear reactors (GEN IV). With the development of these reactors, also materials have to be developed in order to guarantee high standard properties needed for construction. These properties are high temperature resistance, radiation resistance and resistance to other negative effects. Nevertheless the changes in their mechanical properties should be only minimal. Materials, that fulfil these requirements, are analysed in this work. The ferritic-martensitic (FM) steels and ODS steels are studied in details. Microstructural defects, which can occur in structural materials and can be also accumulated during irradiation due to neutron flux or alpha, beta and gamma radiation, were analysed using different spectroscopic methods as positron annihilation spectroscopy and Barkhausen noise, which were applied for measurements of three different FM steels (T91, P91 and E97) as well as one ODS steel (ODS Eurofer).

  17. Transient elastodynamic model for beam defect interaction: application to non-destructive testing

    PubMed

    Raillon; Lecoeur-Taibi

    2000-03-01

    Modeling tools have been developed at the French Atomic Energy Commission (CEA) for the simulation of ultrasonic non-destructive testing inspections. In this paper the model for the prediction of echoes arising from defects within a piece (Mephisto) is presented and some examples are given and compared with experimental results. The model for computing wave defect interaction is based on Kirchhoff's approximation, and uses the principle of reciprocity and a mode-by-mode (between the transducer and the defect) calculation of the echoes. It accounts for possible mode conversions. These approximations and other approximations for the radiated field incident on the defect allow us to obtain a formulation of the echo received at the transducer, which is able to be computed rapidly. PMID:10829719

  18. Portable generator-based XRF instrument for non-destructive analysis at crime scenes

    NASA Astrophysics Data System (ADS)

    Schweitzer, Jeffrey S.; Trombka, Jacob I.; Floyd, Samuel; Selavka, Carl; Zeosky, Gerald; Gahn, Norman; McClanahan, Timothy; Burbine, Thomas

    2005-12-01

    Unattended and remote detection systems find applications in space exploration, telemedicine, teleforensics, homeland security and nuclear non-proliferation programs. The National Institute of Justice (NIJ) and the National Aeronautics and Space Administration's (NASA) Goddard Space Flight Center (GSFC) have teamed up to explore the use of NASA developed technologies to help criminal justice agencies and professionals investigate crimes. The objective of the program is to produce instruments and communication networks that have application within both NASA's space program and NIJ, together with state and local forensic laboratories. A general-purpose X-ray fluorescence system has been built for non-destructive analyses of trace and invisible material at crime scenes. This portable instrument is based on a generator that can operate to 60 kV and a Schottky CdTe detector. The instrument has been shown to be successful for the analysis of gunshot residue and a number of bodily fluids at crime scenes.

  19. Three-dimensional non-destructive testing (NDT) in the infrared spectrum

    NASA Astrophysics Data System (ADS)

    Akhloufi, Moulay A.; Guyon, Yannis; Bendada, Abdelhakim; Castenado, Clemente-Ibarra

    2015-05-01

    Three-dimensional (3D) vision scanning for metrology and inspection applications is an area that knows an increasing interest in the industry. This interest is driven by the recent advances in 3D technologies, permitting to attain high precision measurements at an affordable cost. 3D vision allows for the modelling and inspection of the visible surface of objects. When it is necessary to detect subsurface defects, active infrared (IR) thermography is one of the most used tools today for non-destructive testing (NDT) of materials. Fusion of these two modalities allows the simultaneous detection of surface and subsurface defects and to visualize these defects overlaid on a 3D model of the scanned and modelled parts or their 3D computer-aided design (CAD) models. In this work, we present a framework for automatically fusing 3D data (scanned or CAD) with the infrared thermal images for an NDT process in 3D space.

  20. A modified positron lifetime spectrometer as method of non-destructive testing in materials

    NASA Astrophysics Data System (ADS)

    Chen, Z. Q.; Shi, J. J.; Jiang, J.; Liu, X. B.; Wang, R. S.; Wu, Y. C.

    2015-02-01

    This paper aims to develop a new non-destructive testing (NDT) method using positron annihilation spectroscopy, a powerful tool to detect vacancy-type defects and defect's chemical environment. A positron NDT system was designed and constructed by modifying the "sandwich" structure of sample-source-sample in the conventional positron lifetime spectrometer. The positron lifetime spectra of one single sample can be measured and analyzed by subtracting the contribution of a reference sample. The feasibility and reliability of the positron NDT system have been tested by analyzing nondestructively deformation damage caused by mechanical treatment in metals and steels. This system can be used for detecting defects and damage in thick or large-size samples without cutting off the sample materials, as well as for detecting two-dimensional distribution of defects.

  1. Non-Destructive Evaluation of Depth of Surface Cracks Using Ultrasonic Frequency Analysis

    PubMed Central

    Her, Shiuh-Chuan; Lin, Sheng-Tung

    2014-01-01

    Ultrasonic is one of the most common uses of a non-destructive evaluation method for crack detection and characterization. The effectiveness of the acoustic-ultrasound Structural Health Monitoring (SHM) technique for the determination of the depth of the surface crack was presented. A method for ultrasonic sizing of surface cracks combined with the time domain and frequency spectrum was adopted. The ultrasonic frequency spectrum was obtained by Fourier transform technique. A series of test specimens with various depths of surface crack ranging from 1 mm to 8 mm was fabricated. The depth of the surface crack was evaluated using the pulse-echo technique. In this work, three different longitudinal waves with frequencies of 2.25 MHz, 5 MHz and 10 MHz were employed to investigate the effect of frequency on the sizing detection of surface cracks. Reasonable accuracies were achieved with measurement errors less than 7%. PMID:25225875

  2. System and method for non-destructive evaluation of surface characteristics of a magnetic material

    DOEpatents

    Jiles, David C.; Sipahi, Levent B.

    1994-05-17

    A system and a related method for non-destructive evaluation of the surface characteristics of a magnetic material. The sample is excited by an alternating magnetic field. The field frequency, amplitude and offset are controlled according to a predetermined protocol. The Barkhausen response of the sample is detected for the various fields and offsets and is analyzed. The system produces information relating to the frequency content, the amplitude content, the average or RMS energy content, as well as count rate information, for each of the Barkhausen responses at each of the excitation levels applied during the protocol. That information provides a contiguous body of data, heretofore unavailable, which can be analyzed to deduce information about the surface characteristics of the material at various depths below the surface.

  3. Interferometric system for non-destructive testing based on large diameter bacteriorhodopsin films

    NASA Astrophysics Data System (ADS)

    Juchem, Thorsten; Hampp, Norbert

    2000-08-01

    A system for holographic interferometry using bacteriorhodopsin films as an erasable optical recording medium is presented. Bacteriorhodopsin is a photochromic protein found in archaebacteria. Bacteriorhodopsin films with an aperture of 90×90 mm are used for high-resolution lensless recording (5000 lines/mm). The holograms are recorded in reflection-type geometry in order to achieve a compact design. A frequency-doubled Nd : YVO 4 laser, emitting at 532 nm, is used for recording and incoherent blue light is employed for photochemical erasure. The system is suitable for a variety of different interferometric techniques like double-exposure, time-averaging and real-time interferometry. As an example for the application of the BR-based non-destructive testing system the inspection of ceramic motor valves, made from silicone nitride (Si 3N 4), under mechanical load is reported.

  4. Could non-destructive methodologies enhance the microbiologically influenced corrosion (MIC) in pipeline systems?

    NASA Astrophysics Data System (ADS)

    Al-Abbas, F.; Kakpovbia, A.; Mishra, B.; Olson, D.; Spear, J.

    2013-01-01

    Stringent corrosion management programs are being deployed by oil and gas industry to ensure the integrity of pipeline systems. Parts of this program are the corrosion protection systems and inspection detection methods included non-destructive techniques. Those measures induce remnant magnetic field (RMF) in the pipeline steel. Potentially the RMF could affect the corrosion process in the pipeline including microbiologically influenced corrosion (MIC). Microorganisms in pipelines have surface charges and produce a wide variety of metabolic products. Consequently, when they are exposed to RMF generated at the linepipe steel surface by the aforementioned sources there will be potential effects. This sequentially will increase the likelihood of biofilm formation and hence enhance/promote MIC. This study investigates the potential effects of RFM on the MIC by sulfate reducing bacteria (SRB).

  5. Design of ERL Spoke Cavity For Non-Destructive Assay Research

    NASA Astrophysics Data System (ADS)

    Sawamura, M.; Nagai, R.; Nishimori, N.; Hajima, R.

    2015-10-01

    We are proposing non-destructive assay system of nuclear materials with laser Compton scattering combined with an energy-recovery linac (ERL) and a laser. Since constructing accelerator system for nuclear safe guard and security requires small cavities, spoke cavities have many advantages such as shortening the distance between cavities, small frequency detune due to micro-phonics and easy adjustment of field distribution for strong cell coupling. Calculations of optimized cavity shape and HOM coupler shape have been performed and rf properties with aluminum spoke cavity model have been also measured. Considering refrigerator system required for superconducting accelerator, we are planning to develop 325MHz spoke cavity which can be practically operated with 4K liquid helium. We have started to fabricate the niobium one-spoke cavity.

  6. Template synthesis of test tube nanoparticles using non-destructive replication.

    PubMed

    Wagner, Jonathan; Yao, Jingyuan; Rodgers, David; Hinds, Bruce

    2013-03-01

    Nano test tubes are a promising delivery vehicle for a range of therapeutics, including small molecule drugs and biologics. However, current template synthesis methods of producing nano test tubes are prohibitively expensive and time consuming. Here, non-destructive template replication was used to increase nano test tube yield from porous alumina by more than a hundredfold. We demonstrate how to produce nano test tubes of several sizes and compositions, including hybrid tubes with different inner and outer surfaces for targeted surface chemistry. Nano test tubes were readily suspended and stored in aqueous solutions without the need for chemical treatment. These nano test tubes should find application as delivery vehicles for therapeutics, particularly for processive 'bionanoreactors' loaded with enzymes. PMID:23376956

  7. Non-destructive testing of mid-IR optical fiber using infrared imaging

    NASA Astrophysics Data System (ADS)

    Gagnon, Marc-André; Fortin, Vincent; Vallée, Réal; Farley, Vincent; Lagueux, Philippe; Guyot, Éric; Marcotte, Frédérick

    2016-05-01

    Optical fiber lasers offers the advantage of being relatively compact and efficient. However, the materials such as fluoride and chalcogenide glasses used for their fabrication must be exempt of defects in order to make efficient laser systems. However, most existing quality control techniques are not compatible with chalcogenide fibers because of their limited transparency in the visible spectral range. For this reason, the Université Laval's Centre d'optique, photonique et laser (COPL), in Quebec City, Canada, has developed a novel non-destructive testing (NDT) methodology based on infrared imaging to address this problem. The results show how this simple screening technique eases the selection of high-quality fibers for the design of high-power mid-IR lasers.

  8. Evaluation of thermal cameras for non-destructive thermal testing applications

    NASA Astrophysics Data System (ADS)

    Chrzanowski, K.; Park, S. N.

    2001-04-01

    Thermal cameras are nowadays often used in industry and science for non-destructive thermal testing (NDTT). There have been published, by the American Society for Testing of Materials, two standards that present detailed measurement procedures of the minimum resolvable temperature difference (MRTD) and the minimum detectable temperature difference (MDTD) of commercial thermal cameras for NDTT applications. However, the standards provide only very general guidelines about the use of the measured MRTD and MDTD values for evaluation of thermal cameras for NDTT applications. Precise methods that enable evaluation of a thermal imager for NDTT application on the basis of measurement results of the MRTD and the MDTD are presented in this paper. The methods enable estimation of probabilities of detection, orientation, recognition and identification of thermal anomalies generated by flaws in the materials imaged.

  9. Prediction of Service Life of Cordierite-Mullite Refractory Materials by Non-Destructive Methods

    NASA Astrophysics Data System (ADS)

    Boccaccini, D. N.; Kamseu, Elie; Volkov-Husoviæ, T. D.; Cannio, M.; Romagnoli, M.; Veronesi, P.; Dlouhy, I.; Boccaccini, A. R.; Leonelli, C.

    2008-02-01

    Ultrasonic pulse velocity testing was used to perform non-destructive quality control of refractory plates used as substrates in fast firing of porcelain whitewares. The measurement of the ultrasonic velocity was used to asses the presence of internal voids or cracks originated from the manufacturing procedure. Image analysis was used to predict thermal stability of the refractory materials. Two cordierite-mullite compositions were investigated that are characterized by different microstructure morphologies and crack propagation behaviour. A brief discussion about the correlation between microstructure, crack propagation behaviour and thermal shock resistance is presented. Moreover, empirical models were developed to predict the service life of refractory plates from measured values of ultrasonic velocities in plates in the as-received state.

  10. Gigahertz time-domain spectroscopy and imaging for non-destructive materials research and evaluation

    NASA Astrophysics Data System (ADS)

    Bulgarevich, Dmitry S.; Shiwa, Mitsuharu; Furuya, Takashi; Tani, Masahiko

    2016-06-01

    By using optical sampling with repetition frequency modulation of pump/probe laser pulses on photoconductive emitter/detector antennas, the high-speed time/frequency domain gigahertz imaging is reported due to the absence of opto-mechanical delay line in this optical scheme. The clear contrast for a 3-cm wide metal plate, which was placed behind a 5-cm thick concrete block, was observed with a 1 × 1 mm image pixilation. On average, it took only ~0.75 s per pixel/waveform acquisition/assignment with a 675 ps time-domain window. This could become a valuable non-destructive evaluation technique in gigahertz spectral range with all benefits of time-domain spectroscopy.

  11. Gigahertz time-domain spectroscopy and imaging for non-destructive materials research and evaluation.

    PubMed

    Bulgarevich, Dmitry S; Shiwa, Mitsuharu; Furuya, Takashi; Tani, Masahiko

    2016-01-01

    By using optical sampling with repetition frequency modulation of pump/probe laser pulses on photoconductive emitter/detector antennas, the high-speed time/frequency domain gigahertz imaging is reported due to the absence of opto-mechanical delay line in this optical scheme. The clear contrast for a 3-cm wide metal plate, which was placed behind a 5-cm thick concrete block, was observed with a 1 × 1 mm image pixilation. On average, it took only ~0.75 s per pixel/waveform acquisition/assignment with a 675 ps time-domain window. This could become a valuable non-destructive evaluation technique in gigahertz spectral range with all benefits of time-domain spectroscopy. PMID:27302877

  12. Extracting Entanglement Entropy Via Non-Destructive Imaging of an Ultracold Atomic Gas

    NASA Astrophysics Data System (ADS)

    Price, Craig; Liu, Qi; Gemelke, Nathan

    2015-03-01

    Entanglement plays an important role in determining the thermodynamic ground state of many many-body quantum systems, and recent theoretical studies have provided evidence that broad classes of quantum critical and topologically ordered states may be characterized by the scaling properties of their entanglement entropy (EE). We describe how EE can be extracted in a QND imaging process, in which information is transferred from one quantum gas to another using pairwise entangling schemes, and how the subsequent non-local thermal back-action of detection may be used to probe pre-existing entanglement in the sample. We discuss related applications of quantum collisional microscopy, including minimally destructive imaging of non-equilibrium quantum gases, and the algorithmic cooling of a Mott-insulator by non-destructive detection and removal of thermal defects.

  13. Yucca Mountain project container fabrication, closure and non-destructive evaluation development activities; Summary and viewgraphs

    SciTech Connect

    Russell, E.W.; Nelson, T.A.

    1989-06-01

    In this presentation, container fabrication, closure, and non-destructive evaluation (NDE) process development activities are described. All of these activities are interrelated, and will contribute to the metal barrier selection activity. The plan is to use a corrosion-resistant material in the form of a cylinder with a wall thickness of {approximately}1cm (2cm for pure copper.) The materials under consideration include the three austenitic alloys: stainless steel-304L, stainless steel-316L and alloy 825, as well as the three copper alloys: CDA 102, CDA 613, and CDA 715. This document reviews the recommended procedures and processes for fabricating, closing and evaluating each of the candidate materials. (KGD)

  14. Gigahertz time-domain spectroscopy and imaging for non-destructive materials research and evaluation

    PubMed Central

    Bulgarevich, Dmitry S.; Shiwa, Mitsuharu; Furuya, Takashi; Tani, Masahiko

    2016-01-01

    By using optical sampling with repetition frequency modulation of pump/probe laser pulses on photoconductive emitter/detector antennas, the high-speed time/frequency domain gigahertz imaging is reported due to the absence of opto-mechanical delay line in this optical scheme. The clear contrast for a 3-cm wide metal plate, which was placed behind a 5-cm thick concrete block, was observed with a 1 × 1 mm image pixilation. On average, it took only ~0.75 s per pixel/waveform acquisition/assignment with a 675 ps time-domain window. This could become a valuable non-destructive evaluation technique in gigahertz spectral range with all benefits of time-domain spectroscopy. PMID:27302877

  15. In situ non-destructive measurement of biofilm thickness and topology in an interferometric optical microscope.

    PubMed

    Larimer, Curtis; Suter, Jonathan D; Bonheyo, George; Addleman, Raymond Shane

    2016-06-01

    Biofilms are ubiquitous and impact the environment, human health, dental hygiene, and a wide range of industrial processes. Biofilms are difficult to characterize when fully hydrated, especially in a non-destructive manner, because of their soft structure and water-like bulk properties. Herein a method of measuring and monitoring the thickness and topology of live biofilms of using white light interferometry is described. Using this technique, surface morphology, surface roughness, and biofilm thickness were measured over time without while the biofilm continued to grow. The thickness and surface topology of a P. putida biofilm were monitored growing from initial colonization to a mature biofilm. Measured thickness followed expected trends for bacterial growth. Surface roughness also increased over time and was a leading indicator of biofilm growth. PMID:26992071

  16. Non-Destructive Evaluation of Thermal Spray Coating Interface Quality By Eddy Current Method

    SciTech Connect

    B. Mi; G. Zhao; R. Bayles

    2006-08-10

    Thermal spray coating is usually applied through directing molten or softened particles at very high velocities onto a substrate. An eddy current non-destructive inspection technique is presented here for thermal spray coating interface quality characterization. Several high-velocity-oxy-fuel (HVOF) coated steel plates were produced with various surface preparation conditions or spray process parameters. A quad-frequency eddy current probe was used to manually scan over the coating surface to evaluate the bonding quality. Experimental results show that different surface preparation conditions and varied process parameters can be successfully differentiated by the impedance value observed from the eddy current probe. The measurement is fairly robust and consistent. This non-contact, nondestructive, easy-to-use technique has the potential for evaluating the coating quality immediately after its application so that any defects can be corrected immediately.

  17. Template synthesis of test tube nanoparticles using non-destructive replication

    PubMed Central

    Wagner, Jonathan; Yao, Jingyuan; Rodgers, David; Hinds, Bruce

    2013-01-01

    Nano test tubes are a promising delivery vehicle for a range of therapeutics including small molecule drugs and biologics. However, current template synthesis methods of producing nano test tubes are prohibitively expensive and time consuming. Here, non-destructive template replication was used to increase nano test tube yield from porous alumina by more than a hundredfold. We demonstrate how to produce nano test tubes of several sizes and compositions including hybrid tubes with different inner and outer surfaces for targeted surface chemistry. Nano test tubes were readily suspended and stored in aqueous solutions without the need for chemical treatment. These nano test tubes should find application as delivery vehicles for therapeutics, particularly for processive “bionanoreactors” loaded with enzymes. PMID:23376956

  18. Wavelet Processing of Continuous Scanning Laser Doppler Vibrometry data in Non-Destructive Testing

    NASA Astrophysics Data System (ADS)

    Chiariotti, P.; Revel, G. M.; Martarelli, M.

    2015-11-01

    The present paper proposes a novel non-destructive testing procedure based on the exploitation of the simultaneous time and spatial sampling provided by Continuous Scanning Laser Doppler Vibrometry (CSLDV) and the feature extraction capabilities of wavelet-based processing. Two criteria for selecting in an objective way the mother-wavelet to be used in the decomposition procedure, the Relative Wavelet Energy and Energy to Shannon Entropy Ratio, are compared in terms of capability of best locating the damage. The paper demonstrates the applicability of the procedure for the identification of superficial and in-depth defects in simulated and real test cases when an area scan is performed over the test sample. The method shows promising results, since defects are identified in different severity conditions.

  19. Prediction of Service Life of Cordierite-Mullite Refractory Materials by Non-Destructive Methods

    SciTech Connect

    Boccaccini, D. N.; Kamseu, Elie; Cannio, M.; Romagnoli, M.; Veronesi, P.; Leonelli, C.; Volkov-Husoviae, T. D.; Dlouhy, I.; Boccaccini, A. R.

    2008-02-15

    Ultrasonic pulse velocity testing was used to perform non-destructive quality control of refractory plates used as substrates in fast firing of porcelain whitewares. The measurement of the ultrasonic velocity was used to asses the presence of internal voids or cracks originated from the manufacturing procedure. Image analysis was used to predict thermal stability of the refractory materials. Two cordierite-mullite compositions were investigated that are characterized by different microstructure morphologies and crack propagation behaviour. A brief discussion about the correlation between microstructure, crack propagation behaviour and thermal shock resistance is presented. Moreover, empirical models were developed to predict the service life of refractory plates from measured values of ultrasonic velocities in plates in the as-received state.

  20. Contribution to the improvement of heritage mural painting non-destructive testing by stimulated infrared thermography

    NASA Astrophysics Data System (ADS)

    Bodnar, Jean-Luc; Mouhoubi, Kamel; Di Pallo, Luigi; Detalle, Vincent; Vallet, Jean-Marc; Duvaut, Thierry

    2013-10-01

    Non-destructive testing of heritage mural paintings by means of stimulated infrared thermography has now become rather efficient [1-14]. However, pigments, which form a pictorial layer, have contrasting radiative properties possibly leading to artifact detection. In this paper, attempts to alleviate this difficulty are presented. Based on the spectroscopic study of different paint layers, one can argue that, in the medium infrared field, this radiative disparity decreases significantly. Then, with similar settings, it can be shown that ceramic radiative sources allow reaching this wavelength band. Finally, on the basis of a study carried out on an academic sample and a partial copy of a fresco from the cathedral of Angers, combining ceramic heat sources with a laboratory SAMMTHIR experimental setup enables to make real headway in terms of defects' detection.

  1. Magnetic non-destructive evaluation of ruptures of tensile armor in oil risers

    NASA Astrophysics Data System (ADS)

    Pérez-Benitez, J. A.; Padovese, L. R.

    2012-04-01

    Risers are flexible multilayered pipes formed by an inner flexible metal structure surrounded by polymer layers and spiral wound steel ligaments, also known as armor wires. Since these risers are used to link subsea pipelines to floating oil and gas production installations, and their failure could produce catastrophic consequences, some methods have been proposed to monitor the armor integrity. However, until now there is no practical method that allows the automatic non-destructive detection of individual armor wire rupture. In this work we show a method using magnetic Barkhausen noise that has shown high efficiency in the detection of armor wire rupture. The results are examined under the cyclic and static load conditions of the riser. This work also analyzes the theory behind the singular dependence of the magnetic Barkhausen noise on the applied tension in riser armor wires.

  2. Monitoring ground anchor using non-destructive ground anchor integrity test (NDT-GRANIT)

    SciTech Connect

    Robbany, Z. Handayani, G.

    2015-09-30

    Monitoring at ground anchor commonly uses a pull out test method, therefor we developing a non-destructive ground anchor integrity testing (NDT-GRANIT). NDT-GRANIT using the principle of seismic waves that have been modified into form of sweep signal, the signal will be demodulated, filtered, and Fourier transformation (inverse discrete Fourier transform) so the data can be interpreted reflected wave from the ground anchor. The method was applied to determine whether the ground anchor still gripped in the subsurface by looking the attenuation of the wave generated sources. From the result we can see that ground anchor does not grip. To validate the results of the comparison method of measurement used pile integrity test.

  3. Non-destructive quantitative analysis of risperidone in film-coated tablets.

    PubMed

    Orkoula, M G; Kontoyannis, C G

    2008-07-15

    A simple, non-destructive, methodology based on FT-Raman spectroscopy was developed for the quantitative analysis of risperidone in commercially available film-coated tablets. A simple linear regression model was constructed based on standard tablets, prepared using the same manufacturing process as the commercially available. The tablets contained 0.27, 0.54, 1.08, 1.62, 2.16, 3.24 and 4.32 wt% risperidone. The most prominent Raman vibration of the active pharmaceutical ingredient at 1533 cm(-1), recorded using a home-made rotating system, was plotted against concentration. The model was tested on commercial film-coated tablets. The results were compared against those obtained by application of HPLC on the same samples. PMID:18359600

  4. Non-destructive Ripeness Sensing by Using Proton NMR [Nuclear Magnetic Resonance

    DOE R&D Accomplishments Database

    Cho, Seong In; Krutz, G. W.; Stroshine, R. L.; Bellon, V.

    1990-01-01

    More than 80 kinds of fruits and vegetables are available in the United States. But only about 6 of them have their quality standards (Dull, 1986). In the 1990 Fresh Trends survey (Zind, 1990), consumers were asked to rate 16 characteristics important to their decision to purchase fresh produce. The four top ranking factors were ripeness/freshness, taste/flavor, appearance/condition and nutritional value. Of these surveyed, 96% rated ripeness/freshness as extremely important or very important. Therefore, the development of reliable grading or sorting techniques for fresh commodities is essential. Determination of fruit quality often involves cutting and tasting. Non-destructive quality control in fruit and vegetables is a goal of growers and distributors, as well as the food processing industry. Many nondestructive techniques have been evaluated including soft x-ray, optical transmission, near infrared radiation, and machine vision. However, there are few reports of successful non-destructive measurement of sugar content directly in fruit. Higher quality fruit could be harvested and available to consumers if a nondestructive sensor that detects ripeness level directly by measuring sugar content were available. Using proton Nuclear Magnetic Resonance (NMR) principle is the possibility. A nondestructive ripeness (or sweetness) sensor for fruit quality control can be developed with the proton NMR principle (Cho, 1989). Several feasibility studies were necessary for the ripeness sensor development. Main objectives in this paper was to investigate the feasibilities (1) to detect ripeness (or sweetness level) of raw fruit tissue with an high resolution proton NMR spectroscopy (200 MHz) and (2) to measure sugar content of intact fruit with a low resolution proton NMR spectroscopy (10 MHz).

  5. Monitoring fungal growth on brown rice grains using rapid and non-destructive hyperspectral imaging.

    PubMed

    Siripatrawan, U; Makino, Y

    2015-04-16

    This research aimed to develop a rapid, non-destructive, and accurate method based on hyperspectral imaging (HSI) for monitoring spoilage fungal growth on stored brown rice. Brown rice was inoculated with a non-pathogenic strain of Aspergillus oryzae and stored at 30 °C and 85% RH. Growth of A. oryzae on rice was monitored using viable colony counts, expressed as colony forming units per gram (CFU/g). The fungal development was observed using scanning electron microscopy. The HSI system was used to acquire reflectance images of the samples covering the visible and near-infrared (NIR) wavelength range of 400-1000 nm. Unsupervised self-organizing map (SOM) was used to visualize data classification of different levels of fungal infection. Partial least squares (PLS) regression was used to predict fungal growth on rice grains from the HSI reflectance spectra. The HSI spectral signals decreased with increasing colony counts, while conserving similar spectral pattern during the fungal growth. When integrated with SOM, the proposed HSI method could be used to classify rice samples with different levels of fungal infection without sample manipulation. Moreover, HSI was able to rapidly identify infected rice although the samples showed no symptoms of fungal infection. Based on PLS regression, the coefficient of determination was 0.97 and root mean square error of prediction was 0.39 log (CFU/g), demonstrating that the HSI technique was effective for prediction of fungal infection in rice grains. The ability of HSI to detect fungal infection at early stage would help to prevent contaminated rice grains from entering the food chain. This research provides scientific information on the rapid, non-destructive, and effective fungal detection system for rice grains. PMID:25662486

  6. Non-destructive in situ mapping of macroholes, cracks and inhomogeneities of stalagmites in cave environments

    NASA Astrophysics Data System (ADS)

    Hegymegi, Erika; Gyöngy, Miklós; Bodolai, Tamás; Divós, Ferenc; Barta, Edit; Gribovszki, Katalin; Bokelmann, Götz; Hegymegi, Csaba; Lednická, Markéta; Kovács, Károly

    2016-04-01

    Intact and vulnerable, candle-stick type stalagmites can be used as prehistoric-earthquake indicators during seismic-hazard analysis of a given region, because they are old enough to survive several earthquakes. The continued intactness of the stalagmites indicates a lack of earthquakes that had the strength to destroy them. To make sure that the stalagmites are intact, we have to image their internal structure in order to estimate the steadiness more accurate and potential failure in the last few thousand years, during their evolution. These stalagmites play an important indicator role and carry fundamental information; however, legally they are strictly protected natural objects in Europe. Therefore it is impossible to examine them in the laboratory by conventional equipment such as computer tomography (CT) or X-ray, because this would require taking samples. With the presented non-destructive methods (ultrasound and acoustic tomography) we tried to detect macroholes, cracks and velocity anomalies inside the stalagmites on the mm scale in situ, in the cave. The acoustic tomography applied in the current work is an existing method in forest research. Forest researchers use it to non-destructively detect the size and location of decayed or hollow parts in the trunk and this technique is able to detect the velocity changing of wave propagation and anomalies in the stalagmites as well. The other method that we use is ultrasound imaging, which uses (and is able to calculate) the velocity of sound propagation. Here, the frequency used is much higher (typically 250 kHz to 5 MHz), which increases resolution but at the same time decreases penetration depth compared to acoustic tomography. In this latter work, through transmission and TOFD (time-of-flight-diffraction) ultrasound methods are using thickness-mode ultrasound transducers (Panametrics, Olympus). Such equipment is well-adapted to the cave environment and this is the first time that it has been used for these

  7. Non-destructive ripeness sensing by using proton NMR (Nuclear Magnetic Resonance)

    SciTech Connect

    Cho, Seong In; Krutz, G.W.; Stroshine, R.L. . Dept. of Agricultural Engineering); Bellon, V. , 34 - Montpellier )

    1990-01-01

    More than 80 kinds of fruits and vegetables are available in the United States. But only about 6 of them have their quality standards (Dull, 1986). In the 1990 Fresh Trends survey (Zind, 1990), consumers were asked to rate 16 characteristics important to their decision to purchase fresh produce. The four top ranking factors were ripeness/freshness, taste/flavor, appearance/condition and nutritional value. Of these surveyed, 96% rated ripeness/freshness as extremely important or very important. Therefore, the development of reliable grading or sorting techniques for fresh commodities is essential. Determination of fruit quality often involves cutting and tasting. Non-destructive quality control in fruit and vegetables is a goal of growers and distributors, as well as the food processing industry. Many nondestructive techniques have been evaluated including soft x-ray, optical transmission, near infrared radiation, and machine vision. However, there are few reports of successful non-destructive measurement of sugar content directly in fruit. Higher quality fruit could be harvested and available to consumers if a nondestructive sensor that detects ripeness level directly by measuring sugar content were available. Using proton Nuclear Magnetic Resonance (NMR) principle is the possibility. A nondestructive ripeness (or sweetness) sensor for fruit quality control can be developed with the proton NMR principle (Cho, 1989). Several feasibility studies were necessary for the ripeness sensor development. Main objectives in this paper was to investigate the feasibilities (1) to detect ripeness (or sweetness level) of raw fruit tissue with an high resolution proton NMR spectroscopy (200 MHz) and (2) to measure sugar content of intact fruit with a low resolution proton NMR spectroscopy (10 MHz). 7 refs., 4 figs.

  8. μ-XRF analysis of glasses: a non-destructive utility for Cultural Heritage applications.

    PubMed

    Vaggelli, G; Cossio, R

    2012-02-01

    This paper presents a μ-XRF analytical approach for a non-destructive study of Cultural Heritage glass finds. This technique can be used for quantitative analysis of small volumes of solid samples, with a sensitivity that is superior to the electron microprobe but inferior to an ICP-MS system. An experimental set-up with natural and synthetic glass standards is proposed here for the quantitative analyses of major and trace elements on glass objects which cannot be sampled such as small archaeological or historical artefacts from Cultural Heritage. The described method, performed by means of the commercial μ-XRF Eagle III-XPL, was applied to Islamic glass specimens of Sasanian production (III-VII century A.D.) previously analyzed by ICP-MS and SEM-EDS techniques (P. Mirti, M. Pace, M. Negro Ponzi and M. Aceto, Archaeometry, 2008, 50(3), 429-450; P. Mirti, M. Pace, M. Malandrino and M. Negro Ponzi, J. Archaeol. Sci., 36, 1061-1069; and M. Gulmini, M. Pace, G. Ivaldi, M. Negro Ponzi and P. Mirti, J. Non-Cryst. Solids, 2009, 355, 1613-1621) and coming from the archaeological site of Veh Ardasir in modern Iraq. Major elements (Na, Mg, Al, Si, K, Ca, Fe) of glass specimens show an accuracy better than 5%. Trace elements (Cr, Mn, Sr and Zr) display an accuracy better than 5% when the checked elements have a concentration >100 ppm by weight, whereas it is around 10% with a concentration <100 ppm by weight. μ-XRF is, therefore, a suitable elemental analysis technique for the non-destructive study of small glass finds due to its relatively good accuracy, reproducibility and low detection limits (∼tens ppm). PMID:22163367

  9. Portable 1,5 MeV X-Band Linac For Non-destructive Radiography

    NASA Astrophysics Data System (ADS)

    Saversky, A. J.; Rodionov, A. E.; Shaltyrev, A. P.; Shchedrin, I. S.

    1997-05-01

    Portable linear electron accelerator Y-34 developed in Small Accelerator Laboratory of MEPhI for non-destructive industrial radiography. This Linac is a fully self-contained device with the exception of external electric power 220Vx50Gz, 1 phase, 5 kVA. Full mass of Linac Y-34 - less than 300 kg. The Radiographic parameters: Nominal Energy - 1,5 MeV; Energy Range - 0,7...1,8 MeV; Maximum pulse current - 100 mA; Maximum Intensity - 15 R/min@m; Focal spot size - less than 2 mm. The Linac is comprised of 4 subassemblies. The X-ray head with weight less than 100 kg, dimensions: 0,7x0,7x1,0 m contains the traveling-wave accelerating structure with lens 0,4 m, electron gun, vacuum pump, tungsten target and RF-system with 500-kW magnetron. The permanent magnets focusing system provides focal spot less than 2 mm. The high voltage power unit consist of a line-type magnetron/electron gun modulator 2 kW power supply, the weight is equal 70 kg. The self-contained cooling water supply provides temperature controlled water for accelerator structure and magnetron. The control console allows convenient monitoring of critical system and Linac parameters by manual or remote computer. Portable X-band Linac Y-34 is the effective X - ray and/or electron beam source for such applications as non-destructive examination of nuclear reactor systems, solid rocket motors, technology research.

  10. Non-destructive mapping of doping and structural composition of MOVPE-grown high current density resonant tunnelling diodes through photoluminescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Jacobs, K. J. P.; Stevens, B. J.; Mukai, T.; Ohnishi, D.; Hogg, R. A.

    2015-05-01

    We report on photoluminescence (PL) characterisation of metal-organic vapour phase epitaxy (MOVPE) grown high current density (~700 kA/cm2) InGaAs/AlAs/InP based resonant tunnelling diodes (RTDs) for terahertz emission. The PL mapping we describe allows important information about doping level and uniformity, ternary alloy composition and uniformity, and uniformity of quantum well thickness to be deduced. PL as a function of doping concentration is studied for InGaAs test layers at low temperatures and correlated to secondary-ion mass spectroscopy (SIMS) and electrochemical capacitance-voltage (eCV) profiling to provide non-destructive mapping of doping over the wafer. For the RTD structures, we utilise eCV as a selective etch tool to identify the origin of low temperature PL emission from the quantum well (QW) and the highly doped contact layers. PL mapping of the RTD wafer at low temperatures is shown to allow the assessment of variations in InGaAs alloy composition and QW thickness. Details of the growth process are discussed and confirmed using high resolution X-ray diffraction (HRXRD) crystallography. The rapid non-destructive characterisation and wafer mapping of these structures promises a route to future growth optimisation of such structures.

  11. Degradation of the ethyl glucuronide content in hair by hydrogen peroxide and a non-destructive assay for oxidative hair treatment using infra-red spectroscopy.

    PubMed

    Ammann, Dominic; Becker, Roland; Kohl, Anka; Hänisch, Jessica; Nehls, Irene

    2014-11-01

    The assessment of quantification results of the alcohol abuse marker ethyl glucuronide (EtG) in hair in comparison to the cut-off values for the drinking behavior may be complicated by cosmetic hair bleaching. Thus, the impact of increasing exposure to hydrogen peroxide on the EtG content of hair was investigated. Simultaneously, the change of absorbance in the range of 1000-1100 cm(-1) indicative for the oxidation of cystine was investigated non-destructively by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) using pulverized portions of the respective hair samples. Hair samples treated with hydrogen peroxide consistently displayed a significantly increased absorbance at 1040 cm(-1) associated with the formation of cysteic acid. The EtG content decreased significantly if the hair was treated with alkaline hydrogen peroxide as during cosmetic bleaching. It could be shown that ATR-FTIR is capable of detecting an exposure to hydrogen peroxide when still no brightening was visible and already before the EtG content deteriorated significantly. Thus, hair samples suspected of having been exposed to oxidative treatment may be checked non-destructively by a readily available technique. This assay is also possible retrospectively after EtG extraction and using archived samples. PMID:25180828

  12. Accuracy of Non-Destructive Testing of PBRs to Estimate Fragilities

    NASA Astrophysics Data System (ADS)

    Brune, J. N.; Brune, R.; Biasi, G. P.; Anooshehpoor, R.; Purvance, M.

    2011-12-01

    Prior studies of Precariously Balanced Rocks (PBRs) have involved various methods of documenting rock shapes and fragilities. These have included non-destructive testing (NDT) methods such as photomodeling, and potentially destructive testing (PDT) such as forced tilt tests. PDT methods usually have the potential of damaging or disturbing the rock or its pedestal so that the PBR usefulness for future generations is compromised. To date we have force-tilt tested approximately 28 PBRs, and of these we believe 7 have been compromised. We suggest here that given other inherent uncertainties in the current methodologies, NDT methods are now sufficiently advanced as to be adequate for the current state of the art use for comparison with Ground Motion Prediction Equations (GMPEs) and seismic hazard maps (SHMs). Here we compare tilt-test static toppling estimates to three non-destructive methods: (1) 3-D photographic modeling (2) profile analysis assuming the rock is 2-D, and (3) expert judgments from photographs. 3-D modeling uses the commercial Photomodeler program and photographs in the field taken from numerous directions around the rock. The output polyhedral shape is analyzed in Matlab determine the center of mass and in Autocad to estimate the static overturning angle alpha. For the 2-D method we chose the photograph in profile looking perpendicular to the estimated direction of toppling. The rock is outlined as a 2-D object in Matlab. Rock dimensions, rocking points, and a vertical reference are supplied by the photo analyst to estimate the center of gravity and static force overturning angles. For the expert opinion method we used additional photographs taken from different directions to improve the estimates of the center of mass and the rocking points. We used 7 rocks for comparisons. The error in estimating tan alpha from 3-D modeling is about 0.05. For 2-D estimates an average error is about 0.1 (?). For expert opinion estimates the error is about 0.06. For

  13. Non-destructive testing for the structures and civil infrastructures characterization

    NASA Astrophysics Data System (ADS)

    Capozzoli, L.; Rizzo, E.

    2012-04-01

    infrared thermography and sonic testing. Finally, we investigated a radiant floor by GPR (900 MHz to 2000 MHz antennas) and long-wave infrared camera. Non-destructive diagnostic techniques allow to investigate a building structure in reinforced concrete or masonry without altering the characteristics of the element investigated. For this reason, geo-electrical and electromagnetic surveys of masonry are a suitable non-destructive tool for the diagnosis of a deteriorated concrete structure. Moreover, the integration of different NDT techniques (conventional and no-conventional) is a very powerful to maximize the capabilities and to compensate for the limitations of each method.

  14. Fast solver for large scale eddy current non-destructive evaluation problems

    NASA Astrophysics Data System (ADS)

    Lei, Naiguang

    Eddy current testing plays a very important role in non-destructive evaluations of conducting test samples. Based on Faraday's law, an alternating magnetic field source generates induced currents, called eddy currents, in an electrically conducting test specimen. The eddy currents generate induced magnetic fields that oppose the direction of the inducing magnetic field in accordance with Lenz's law. In the presence of discontinuities in material property or defects in the test specimen, the induced eddy current paths are perturbed and the associated magnetic fields can be detected by coils or magnetic field sensors, such as Hall elements or magneto-resistance sensors. Due to the complexity of the test specimen and the inspection environments, the availability of theoretical simulation models is extremely valuable for studying the basic field/flaw interactions in order to obtain a fuller understanding of non-destructive testing phenomena. Theoretical models of the forward problem are also useful for training and validation of automated defect detection systems. Theoretical models generate defect signatures that are expensive to replicate experimentally. In general, modelling methods can be classified into two categories: analytical and numerical. Although analytical approaches offer closed form solution, it is generally not possible to obtain largely due to the complex sample and defect geometries, especially in three-dimensional space. Numerical modelling has become popular with advances in computer technology and computational methods. However, due to the huge time consumption in the case of large scale problems, accelerations/fast solvers are needed to enhance numerical models. This dissertation describes a numerical simulation model for eddy current problems using finite element analysis. Validation of the accuracy of this model is demonstrated via comparison with experimental measurements of steam generator tube wall defects. These simulations generating two

  15. Direct, non-destructive, and rapid evaluation of developmental cotton fibers by ATR FT-IR spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chemical, compositional, and structural differences within the fibers at different growth stages have been investigated considerably through a number of methodologies. Due to its direct, non-destructive, and rapid attribute, this study reports the utilization of attenuated total reflection Fourier t...

  16. A new facility for Non-Destructive Assay with a time-tagged {sup 252}Cf source

    SciTech Connect

    Stevanato, L.; Caldogno, M.; Hao Xin; Dima, R.; Fabris, D.; Nebbia, G.; Lunardon, M.; Moretto, S.; Pesente, S.; Viesti, G.; Sajo-Bohus, L.

    2010-08-04

    A new facility for non-destructive assay using a time-tagged {sup 252}Cf source is presented. The system is designed to analyze samples having maximum size of about 15x20 cm{sup 2}, the material recognition being obtained by measuring simultaneously transmission of neutrons and gamma rays.

  17. Development of non-destructive quality measurement technique for cabbage seed (Brassica campestris L) using hyperspectral reflectance imaging

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cabbage (Brassica campestris L) is an important crop for Asian countries especially in Korea, Japan and China. In order to achieve uniform and high-yield rate of cabbage product, the seed lot quality needs to be controlled. Non-destructive evaluation of seed viability is an important technique for i...

  18. Non-destructive quantification of alignment of nanorods embedded in uniaxially stretched polymer films

    NASA Astrophysics Data System (ADS)

    Stoenescu, Stefan; Truong, Vo-Van; Packirisamy, Muthukumaran

    2014-03-01

    Among several methods developed for uniaxial alignment of metallic nanorods for optical applications, alignment by film stretching consists in embedding the rods in a transparent thin film of thermoplastic polymer, followed by simultaneous heating and uniaxial stretching of the composite film. As to the quantification of the resulting alignment, it has been limited to statistical calculations based on microscopic examination, which is incomplete, subject to errors due to geometric distortions of the scanning electron microscope images and destructive, since it involves cutting of samples. In contrast, we present in this paper a non-destructive quantification of the average orientation of the rods, based on a probabilistic approach combined with numerical simulations of absorbance spectra and spectrometric characterization of the composite film. Assuming electromagnetically non-interacting rods, we consider the longitudinal absorbance peak of their ensemble to consist of the superposition of their individual spectra that we obtain by numerical simulation using the size and shape adapted dielectric function of the metal and the finite difference time domain method. The accuracy of the solution depends on the number of discretization intervals, the accuracy of the numerical simulations, and the accurate knowledge of the polydispersity of the rods. For the sake of concreteness, we used nanorods to describe the quantification steps but the method is equally valid for any dichroic particles.

  19. Non-destructive in-situ method and apparatus for determining radionuclide depth in media

    DOEpatents

    Xu, X. George; Naessens, Edward P.

    2003-01-01

    A non-destructive method and apparatus which is based on in-situ gamma spectroscopy is used to determine the depth of radiological contamination in media such as concrete. An algorithm, Gamma Penetration Depth Unfolding Algorithm (GPDUA), uses point kernel techniques to predict the depth of contamination based on the results of uncollided peak information from the in-situ gamma spectroscopy. The invention is better, faster, safer, and/cheaper than the current practice in decontamination and decommissioning of facilities that are slow, rough and unsafe. The invention uses a priori knowledge of the contaminant source distribution. The applicable radiological contaminants of interest are any isotopes that emit two or more gamma rays per disintegration or isotopes that emit a single gamma ray but have gamma-emitting progeny in secular equilibrium with its parent (e.g., .sup.60 Co, .sup.235 U, and .sup.137 Cs to name a few). The predicted depths from the GPDUA algorithm using Monte Carlo N-Particle Transport Code (MCNP) simulations and laboratory experiments using .sup.60 Co have consistently produced predicted depths within 20% of the actual or known depth.

  20. Non-Destructive Evaluation of Wind Turbine Blades Using an Infrared Camera

    SciTech Connect

    Beattie, A.G.; Rumsey, M.

    1998-12-17

    The use of a digital infrared as a non-destructive evaluation thermography camera (NDE) tool was ex- plored in two separate wind turbine blade fatigue tests. The fwst test was a fatigue test of part of a 13.1 meter wood-epoxy-composite blade. The second test was on a 4.25 meter pultruded fiber glass blade section driven at several mechanical resonant frequencies. The digital infrared camera can produce images of either the static temperature distribution on the surface of the specimen, or the dynamic temperature distribution that is in phase with a specific frequency on a vibrating specimen. The dynamic temperature distribution (due to thermoplastic effects) gives a measure of the sum of the principal stresses at each point on the surface. In the wood- epoxy-composite blade fatigue test, the point of ultimate failure was detected long before failure occurred. The mode shapes obtained with the digital infrared camera, from the resonant blade tests, were in very good agree- ment with the finite-element calculations. In addition, the static temperature images of the resonating blade showed two areas that contained cracks. Close-up dy- namic inf%red images of these areas showed the crack structure that agreed with subsequent dye-penetrant analysis.

  1. Laser ultrasound and simulated time reversal on bulk waves for non destructive control

    NASA Astrophysics Data System (ADS)

    Diot, G.; Walaszek, H.; Kouadri-David, A.; Guégan, S.; Flifla, J.

    2014-06-01

    Laser welding of aluminium generally creates embedded welding defects, such as porosities or cracks. Non Destructive Inspection (NDI) after processing may ensure an acceptable weld quality by defect detection. Nowadays, NDI techniques used to control the inside of a weld are mainly limited to X-Rays or ultrasonics. The current paper describes the use of a Laser Ultrasound (LU) technique to inspect porosities in 2 and 4-mm thick sheet lap welds. First experimentations resulted in the detection of 0.5-mm drilled holes in bulk aluminium sheets. The measurement of the depth of these defects is demonstrated too. Further experimentations shows the applicability of the LU technique to detect porosities in aluminium laser welds. However, as the interpretation of raw measures is limiting the detection capacity of this technique, we developed a signal processing using Time-Reversal capabilities to enhance detection capacities. Furthermore, the signal processing output is a geometrical image of the material's inner state, increasing the ease of interpretation. It is based on a mass-spring simulation which enables the back-propagation of the acquired ultrasound signal. The spring-mass simulation allows the natural generation of all the different sound waves and thus enables the back-propagation of a raw signal without any need of filtering or wave identification and extraction. Therefore the signal processing uses the information contained in the compression wave as well as in the shear wave.

  2. Quantitative impact characterization of aeronautical CFRP materials with non-destructive testing methods

    SciTech Connect

    Kiefel, Denis E-mail: Rainer.Stoessel@airbus.com; Stoessel, Rainer E-mail: Rainer.Stoessel@airbus.com; Grosse, Christian

    2015-03-31

    In recent years, an increasing number of safety-relevant structures are designed and manufactured from carbon fiber reinforced polymers (CFRP) in order to reduce weight of airplanes by taking the advantage of their specific strength into account. Non-destructive testing (NDT) methods for quantitative defect analysis of damages are liquid- or air-coupled ultrasonic testing (UT), phased array ultrasonic techniques, and active thermography (IR). The advantage of these testing methods is the applicability on large areas. However, their quantitative information is often limited on impact localization and size. In addition to these techniques, Airbus Group Innovations operates a micro x-ray computed tomography (μ-XCT) system, which was developed for CFRP characterization. It is an open system which allows different kinds of acquisition, reconstruction, and data evaluation. One main advantage of this μ-XCT system is its high resolution with 3-dimensional analysis and visualization opportunities, which enables to gain important quantitative information for composite part design and stress analysis. Within this study, different NDT methods will be compared at CFRP samples with specified artificial impact damages. The results can be used to select the most suitable NDT-method for specific application cases. Furthermore, novel evaluation and visualization methods for impact analyzes are developed and will be presented.

  3. How clean is clean: Non-destructive/direct methods of flux, residue detection

    NASA Astrophysics Data System (ADS)

    Welch, C. S.; Ray, U.; Stallard, B. R.; Watkins, R. D.; Koch, M. W.; Moya, M. M.

    The feasibility of three different non-destructive and direct methods of evaluating PCB (printed circuit boards) cleanliness was demonstrated. The detection limits associated with each method were established. In addition, the pros and cons of these methods as routine quality control inspection tools were discussed. OSEE (Optically Stimulated Electron Emission) was demonstrated to be a sensitive technique for detection of low levels of flux residues on insulating substances. However, future work including development of rugged OSEE instrumentation will determine whether the PCB industry can accept this technique in a production environment. FTIR (Fourier Transform Infrared) microscopy is a well established technique with well known characteristics. The inability of FTIR to discriminate an organic contaminant from an organic substrate limits its usefulness as a PCB line inspection tool, but it will still remain a technique for the QC/QA laboratory. One advantage of FTIR over the other two techniques described here is its ability to identify the chemical nature of the residue, which is important in Failure Mode Analysis. Optical imaging using sophisticated pattern recognition algorithms was found to be limited to high concentrations of residue. Further work on improved sensor techniques is necessary.

  4. Static characterization of a soft elastomeric capacitor for non destructive evaluation applications

    SciTech Connect

    Saleem, Hussam; Laflamme, Simon; Zhang, Huanhuan; Geiger, Randall; Kessler, Michael; Rajan, Krishna

    2014-02-18

    A large and flexible strain transducer consisting of a soft elastomeric capacitor (SEC) has been proposed by the authors. Arranged in a network setup, the sensing strategy offers tremendous potential at conducting non-destructive evaluation of large-scale surfaces. In prior work, the authors have demonstrated the performance of the sensor at tracking strain history, localizing cracks, and detecting vibration signatures. In this paper, we characterize the static performance of the proposed SEC. The characterization includes sensitivity of the signal, and temperature and humidity dependences. Tests are conducted on a simply supported aluminum beam subjected to bending as well as on a free standing sensor. The performance of the SEC is compared against off-the-shelf resistance-based strain gauges with resolution of 1 με. A sensitivity of 1190 pF/ε is obtained experimentally, in agreement with theory. Results also show the sensor linearity over the given level of strain, showing the promise of the SEC at monitoring of surface strain.

  5. Thermal history sensors for non-destructive temperature measurements in harsh environments

    SciTech Connect

    Pilgrim, C. C.; Heyes, A. L.; Feist, J. P.

    2014-02-18

    The operating temperature is a critical physical parameter in many engineering applications, however, can be very challenging to measure in certain environments, particularly when access is limited or on rotating components. A new quantitative non-destructive temperature measurement technique has been proposed which relies on thermally induced permanent changes in ceramic phosphors. This technique has several distinct advantages over current methods for many different applications. The robust ceramic material stores the temperature information allowing long term thermal exposures in harsh environment to be measured at a convenient time. Additionally, rare earth dopants make the ceramic phosphorescent so that the temperature information can be interpreted by automated interrogation of the phosphorescent light. This technique has been demonstrated by application of YAG doped with dysprosium and europium as coatings through the air-plasma spray process. Either material can be used to measure temperature over a wide range, namely between 300°C and 900°C. Furthermore, results show that the material records the peak exposure temperature and prolonged exposure at lower temperatures would have no effect on the temperature measurement. This indicates that these materials could be used to measure peak operating temperatures in long-term testing.

  6. PHOTOACOUSTIC NON-DESTRUCTIVE EVALUATION AND IMAGING OF CARIES IN DENTAL SAMPLES

    SciTech Connect

    Li, T.; Dewhurst, R. J.

    2010-02-22

    Dental caries is a disease wherein bacterial processes damage hard tooth structure. Traditional dental radiography has its limitations for detecting early stage caries. In this study, a photoacoustic (PA) imaging system with the near-infrared light source has been applied to postmortem dental samples to obtain 2-D and 3-D images. Imaging results showed that the PA technique can be used to image human teeth caries. For non-destructive photoacoustic evaluation and imaging, the induced temperature and pressure rises within biotissues should not cause physical damage to the tissue. For example, temperature rises above 5 deg. C within live human teeth will cause pulpal necrosis. Therefore, several simulations based on the thermoelastic effect have been applied to predict temperature and pressure fields within samples. Predicted temperature levels are below corresponding safety limits, but care is required to avoid nonlinear absorption phenomena. Furthermore, PA imaging results from the phantom provide evidence for high sensitivity, which shows the imaging potential of the PA technique for detecting early stage disease.

  7. Robotic path planning for non-destructive testing of complex shaped surfaces

    NASA Astrophysics Data System (ADS)

    Mineo, Carmelo; Pierce, Stephen Gareth; Wright, Ben; Nicholson, Pascual Ian; Cooper, Ian

    2015-03-01

    The requirement to increase inspection speeds for non-destructive testing (NDT) of composite aerospace parts is common to many manufacturers. The prevalence of complex curved surfaces in the industry provides significant motivation for the use of 6 axis robots for deployment of NDT probes in these inspections. A new system for robot deployed ultrasonic inspection of composite aerospace components is presented. The key novelty of the approach is through the accommodation of flexible robotic trajectory planning, coordinated with the NDT data acquisition. Using a flexible approach in MATLAB, the authors have developed a high level custom toolbox that utilizes external control of an industrial 6 axis manipulator to achieve complex path planning and provide synchronization of the employed ultrasonic phase array inspection system. The developed software maintains a high level approach to the robot programming, in order to ease the programming complexity for an NDT inspection operator. Crucially the approach provides a pathway for a conditional programming approach and the capability for multiple robot control (a significant limitation in many current off-line programming applications). Ultrasonic and experimental data has been collected for the validation of the inspection technique. The path trajectory generation for a large, curved carbon-fiber-reinforced polymer (CFRP) aerofoil component has been proven and is presented. The path error relative to a raster-scan tool-path, suitable for ultrasonic phased array inspection, has been measured to be within + 2mm over the 1.6 m2 area of the component surface.

  8. Non-Destructive Measurement of Vascular Tissue Development in Stems of Miniature Tomato Using Acoustic Method

    NASA Astrophysics Data System (ADS)

    Kageyama, Kensuke; Watanabe, Eiko; Kato, Hiroshi

    The guided wave effect resembling that of annual rings found in woods and the cortical region of bones is believed to be observable in vascular tissues of herbaceous plants. The properties of acoustic waves traveling through the vascular tissue in the stem of a miniature tomato were measured using a piezoelectric pulser and receiver. The thickness of the vascular tissues and the stem's water content were measured. The detected acoustic waves showed a guided wave effect. The apparent sound velocity, va, was related to the vascular tissue thickness, tv. These results reveal that the detected acoustic waves traveled along the vascular tissues in stems. The maximum peak intensity of the detected acoustic waves, Imax was also related to t. Furthermore, wilting of the examined plants decreased the Imax, although va was not changed. The decrease in Imax might result from cavitations and embolisms with a subsequent increase in air pores in xylem tissues. These results demonstrate that the measurement of acoustic waves traveling through vascular tissue is a useful tool for the non-destructive evaluation of vascular tissue development and embolism density in xylem tissues.

  9. An x ray scatter approach for non-destructive chemical analysis of low atomic numbered elements

    NASA Technical Reports Server (NTRS)

    Ross, H. Richard

    1993-01-01

    A non-destructive x-ray scatter (XRS) approach has been developed, along with a rapid atomic scatter algorithm for the detection and analysis of low atomic-numbered elements in solids, powders, and liquids. The present method of energy dispersive x-ray fluorescence spectroscopy (EDXRF) makes the analysis of light elements (i.e., less than sodium; less than 11) extremely difficult. Detection and measurement become progressively worse as atomic numbers become smaller, due to a competing process called 'Auger Emission', which reduces fluorescent intensity, coupled with the high mass absorption coefficients exhibited by low energy x-rays, the detection and determination of low atomic-numbered elements by x-ray spectrometry is limited. However, an indirect approach based on the intensity ratio of Compton and Rayleigh scattered has been used to define light element components in alloys, plastics and other materials. This XRS technique provides qualitative and quantitative information about the overall constituents of a variety of samples.

  10. Guided ultrasonic waves for non-destructive monitoring of the stress levels in prestressed steel strands.

    PubMed

    Chaki, S; Bourse, G

    2009-02-01

    The safety of prestressed civil structures such as bridges, dams, nuclear power plants, etc. directly involves the security of both environment and users. Health monitoring of the tensioning components, such as strands, tendons, bars, anchorage bolts, etc. is an important research topic and a challenging task bringing together the non-destructive evaluation (NDE) and civil engineering communities. This paper deals with a guided ultrasonic wave procedure for monitoring the stress levels in seven-wire steel strands (15.7 mm in diameter). The mechanical and geometrical characteristics of the prestressed strands were taken into account for optimizing the measurement configuration and then the choice of the guided ultrasonic mode at a suitable frequency. Simplified acoustoelastic formulations were derived from the acoustoelasticity theory according to either calibration test or in situ measurement. The results from acoustoelastic measurements on the seven-wire steel strands are presented and discussed in the case of calibration tests and industrially prestressed strands. They show the potential and the suitability of the proposed guided wave method for evaluating the stress levels in the tested seven-wire steel strands. PMID:18804832

  11. Ultra-portable, wireless smartphone spectrometer for rapid, non-destructive testing of fruit ripeness

    PubMed Central

    Das, Anshuman J.; Wahi, Akshat; Kothari, Ishan; Raskar, Ramesh

    2016-01-01

    We demonstrate a smartphone based spectrometer design that is standalone and supported on a wireless platform. The device is inherently low-cost and the power consumption is minimal making it portable to carry out a range of studies in the field. All essential components of the device like the light source, spectrometer, filters, microcontroller and wireless circuits have been assembled in a housing of dimensions 88 mm × 37 mm × 22 mm and the entire device weighs 48 g. The resolution of the spectrometer is 15 nm, delivering accurate and repeatable measurements. The device has a dedicated app interface on the smartphone to communicate, receive, plot and analyze spectral data. The performance of the smartphone spectrometer is comparable to existing bench-top spectrometers in terms of stability and wavelength resolution. Validations of the device were carried out by demonstrating non-destructive ripeness testing in fruit samples. Ultra-Violet (UV) fluorescence from Chlorophyll present in the skin was measured across various apple varieties during the ripening process and correlated with destructive firmness tests. A satisfactory agreement was observed between ripeness and fluorescence signals. This demonstration is a step towards possible consumer, bio-sensing and diagnostic applications that can be carried out in a rapid manner. PMID:27606927

  12. Development of a neutron measurement system in unified non-destructive assay for the PRIDE facility

    NASA Astrophysics Data System (ADS)

    Seo, Hee; Park, Se-Hwan; Won, Byung-Hee; Ahn, Seong-Kyu; Shin, Hee-Sung; Na, Sang-Ho; Song, Dae-Yong; Kim, Ho-Dong; Lee, Seung Kyu

    2013-12-01

    The Korea Atomic Energy Research Institute (KAERI) has made an effort to develop pyroprocessing technology to resolve an on-going problem in Korea, i.e., the management of spent nuclear fuels. To this end, a test-bed facility for pyroprocessing, called PRIDE (PyRoprocessing Integrated inactive DEmonstration facility), is being constructed at KAERI. The main objective of PRIDE is to evaluate the performance of the unit processes, remote operation, maintenance, and proliferation resistance. In addition, integrating all unit processes into a one-step process is also one of the main goals. PRIDE can also provide a good opportunity to test safeguards instrumentations for a pyroprocessing facility such as nuclear material accounting devices, surveillance systems, radiation monitoring systems, and process monitoring systems. In the present study, a non-destructive assay (NDA) system for the testing of nuclear material accountancy of PRIDE was designed by integrating three different NDA techniques, i.e., neutron, gamma-ray, and mass measurements. The developed neutron detection module consists of 56 3He tubes and 16 AMPTEK A111 signal processing circuits. The amplifiers were matched in terms of the gain and showed good uniformity after a gain-matching procedure (%RSD=0.37%). The axial and the radial efficiency distributions within the cavity were then measured using a 252Cf neutron source and were compared with the MCNPX calculation results. The measured efficiency distributions showed excellent agreement with the calculations, which confirmed the accuracy of the MCNPX model of the system.

  13. Wavelet-based subsurface defect characterization in pulsed phase thermography for non-destructive evaluation

    NASA Astrophysics Data System (ADS)

    Zauner, G.; Mayr, G.; Hendorfer, G.

    2009-02-01

    Active infrared thermography is a method for non-destructive testing (NDT) of materials and components. In pulsed thermography (PT), a brief and high intensity flash is used to heat the sample. The decay of the sample surface temperature is detected and recorded by an infrared camera. Any subsurface anomaly (e.g. inclusion, delamination, etc.) gives rise to a local temperature increase (thermal contrast) on the sample surface. Conventionally, in Pulsed Phase Thermography (PPT) the analysis of PT time series is done by means of Discrete Fourier Transform producing phase images which can suppress unwanted physical effects (due to surface emissivity variations or non-uniform heating). The drawback of the Fourier-based approach is the loss of temporal information, making quantitative inversion procedures tricky (e.g. defect depth measurements). In this paper the complex Morlet-Wavelet transform is used to preserve the time information of the signal and thus provides information about the depth of a subsurface defect. Additionally, we propose to use the according phase contrast value to derive supplementary information about the thermal reflection properties at the defect interface. This provides additional information (e.g. about the thermal mismatch factor between the specimen and the defect) making interpretation of PPT results easier and perhaps unequivocal.

  14. Image pixel guided tours: a software platform for non-destructive x-ray imaging

    NASA Astrophysics Data System (ADS)

    Lam, K. P.; Emery, R.

    2009-02-01

    Multivariate analysis seeks to describe the relationship between an arbitrary number of variables. To explore highdimensional data sets, projections are often used for data visualisation to aid discovering structure or patterns that lead to the formation of statistical hypothesis. The basic concept necessitates a systematic search for lower-dimensional representations of the data that might show interesting structure(s). Motivated by the recent research on the Image Grand Tour (IGT), which can be adapted to view guided projections by using objective indexes that are capable of revealing latent structures of the data, this paper presents a signal processing perspective on constructing such indexes under the unifying exploratory frameworks of Independent Component Analysis (ICA) and Projection Pursuit (PP). Our investigation begins with an overview of dimension reduction techniques by means of orthogonal transforms, including the classical procedure of Principal Component Analysis (PCA), and extends to an application of the more powerful techniques of ICA in the context of our recent work on non-destructive testing technology by element specific x-ray imaging.

  15. Non-destructive testing techniques for the forensic engineering investigation of reinforced concrete buildings.

    PubMed

    Hobbs, Brian; Tchoketch Kebir, Mohamed

    2007-04-11

    This study describes in detail the results of a laboratory investigation where the compressive strength of 150mm side-length cubes was evaluated. Non-destructive testing (NDT) was carried out using ultrasonic pulse velocity (UPV) and impact rebound hammer (IRH) techniques to establish a correlation with the compressive strengths of compression tests. To adapt the Schmidt hammer apparatus and the ultrasonic pulse velocity tester to the type of concrete used in Algeria, concrete mix proportions that are recommended by the Algerian code were chosen. The resulting correlation curve for each test is obtained by changing the level of compaction, water/cement ratio and concrete age of specimens. Unlike other works, the research highlights the significant effect of formwork material on surface hardness of concrete where two different mould materials for specimens were used (plastic and wood). A combined method for the above two tests, reveals an improvement in the strength estimation of concrete. The latter shows more improvement by including the concrete density. The resulting calibration curves for strength estimation were compared with others from previous published literature. PMID:16904854

  16. Non-destructive quantification of alignment of nanorods embedded in uniaxially stretched polymer films

    SciTech Connect

    Stoenescu, Stefan Packirisamy, Muthukumaran; Truong, Vo-Van

    2014-03-21

    Among several methods developed for uniaxial alignment of metallic nanorods for optical applications, alignment by film stretching consists in embedding the rods in a transparent thin film of thermoplastic polymer, followed by simultaneous heating and uniaxial stretching of the composite film. As to the quantification of the resulting alignment, it has been limited to statistical calculations based on microscopic examination, which is incomplete, subject to errors due to geometric distortions of the scanning electron microscope images and destructive, since it involves cutting of samples. In contrast, we present in this paper a non-destructive quantification of the average orientation of the rods, based on a probabilistic approach combined with numerical simulations of absorbance spectra and spectrometric characterization of the composite film. Assuming electromagnetically non-interacting rods, we consider the longitudinal absorbance peak of their ensemble to consist of the superposition of their individual spectra that we obtain by numerical simulation using the size and shape adapted dielectric function of the metal and the finite difference time domain method. The accuracy of the solution depends on the number of discretization intervals, the accuracy of the numerical simulations, and the accurate knowledge of the polydispersity of the rods. For the sake of concreteness, we used nanorods to describe the quantification steps but the method is equally valid for any dichroic particles.

  17. Nitrogen Concentration Estimation in Tomato Leaves by VIS-NIR Non-Destructive Spectroscopy

    PubMed Central

    Ulissi, Valentina; Antonucci, Francesca; Benincasa, Paolo; Farneselli, Michela; Tosti, Giacomo; Guiducci, Marcello; Tei, Francesco; Costa, Corrado; Pallottino, Federico; Pari, Luigi; Menesatti, Paolo

    2011-01-01

    Nitrogen concentration in plants is normally determined by expensive and time consuming chemical analyses. As an alternative, chlorophyll meter readings and N-NO3 concentration determination in petiole sap were proposed, but these assays are not always satisfactory. Spectral reflectance values of tomato leaves obtained by visible-near infrared spectrophotometry are reported to be a powerful tool for the diagnosis of plant nutritional status. The aim of the study was to evaluate the possibility and the accuracy of the estimation of tomato leaf nitrogen concentration performed through a rapid, portable and non-destructive system, in comparison with chemical standard analyses, chlorophyll meter readings and N-NO3 concentration in petiole sap. Mean reflectance leaf values were compared to each reference chemical value by partial least squares chemometric multivariate methods. The correlation between predicted values from spectral reflectance analysis and the observed chemical values showed in the independent test highly significant correlation coefficient (r = 0.94). The utilization of the proposed system, increasing efficiency, allows better knowledge of nutritional status of tomato plants, with more detailed and sharp information and on wider areas. More detailed information both in space and time is an essential tool to increase and stabilize crop quality levels and to optimize the nutrient use efficiency. PMID:22163962

  18. Research Based on Optical Non-Destructive Testing of Pigment Identification.

    PubMed

    Wang, Jigang; Hao, Shengcai; Zhou, Wenhua; Qi, Xiaokun; Shi, Jilong

    2016-04-01

    Optical Non-Destructive Testing (ONDT) can be applied as penetrating elemental and structure analysis technology in the Pigments identification field. Three-dimensional video microscopy, Raman microscopy and energy dispersive X-ray fluorescence spectroscopy are employed to measure the materials based on a Qing Dynasty meticulous painting. The results revealed that the dark yellow area within the decorative patterns was presented due to the interaction of Emerald green and hematite, and the bright yellow edge area was delineated by Cu-Zn-Pb composition. The interesting thing is that an artificial synthetic ultramarine blue was checked in the painting. According to the first synthesized time of ultramarine blue and Paris green, the time limit of the painting completion can be identified. The principle of Pigment subtractive colorant and nitikaset method were employed to interpreting the results. Optical testing combined with the area of cultural relic identification can be a potential method to build an expert identification system successfully. This work also help lay the optical method groundwork for further cultural relic identification, sterilization, and preservation. PMID:27451669

  19. Nitrogen concentration estimation in tomato leaves by VIS-NIR non-destructive spectroscopy.

    PubMed

    Ulissi, Valentina; Antonucci, Francesca; Benincasa, Paolo; Farneselli, Michela; Tosti, Giacomo; Guiducci, Marcello; Tei, Francesco; Costa, Corrado; Pallottino, Federico; Pari, Luigi; Menesatti, Paolo

    2011-01-01

    Nitrogen concentration in plants is normally determined by expensive and time consuming chemical analyses. As an alternative, chlorophyll meter readings and N-NO(3) concentration determination in petiole sap were proposed, but these assays are not always satisfactory. Spectral reflectance values of tomato leaves obtained by visible-near infrared spectrophotometry are reported to be a powerful tool for the diagnosis of plant nutritional status. The aim of the study was to evaluate the possibility and the accuracy of the estimation of tomato leaf nitrogen concentration performed through a rapid, portable and non-destructive system, in comparison with chemical standard analyses, chlorophyll meter readings and N-NO(3) concentration in petiole sap. Mean reflectance leaf values were compared to each reference chemical value by partial least squares chemometric multivariate methods. The correlation between predicted values from spectral reflectance analysis and the observed chemical values showed in the independent test highly significant correlation coefficient (r = 0.94). The utilization of the proposed system, increasing efficiency, allows better knowledge of nutritional status of tomato plants, with more detailed and sharp information and on wider areas. More detailed information both in space and time is an essential tool to increase and stabilize crop quality levels and to optimize the nutrient use efficiency. PMID:22163962

  20. Non-destructive testing of ceramic balls using high frequency ultrasonic resonance spectroscopy.

    PubMed

    Petit, S; Duquennoy, M; Ouaftouh, M; Deneuville, F; Ourak, M; Desvaux, S

    2005-12-01

    Although ceramic balls are used more and more for bearings in the aerospace and space industries, defects in this type of ceramic material could be dangerous, particularly if such defects are located close to the surface. In this paper, we propose a non-destructive testing method for silicon nitride balls, based on ultrasonic resonance spectroscopy. Through the theoretical study of their elastic vibrations, it is possible to characterize the balls using a vibration mode that is similar to surface wave propagation. The proposed methodology can both excite spheroidal vibrations in the ceramic balls and detect such vibrations over a large frequency range. Studying their resonance spectrums allows the balls' elastic parameters be characterized. Ours is an original method that can quickly estimate the velocity of surface waves using high frequency resonances, which permits surface and sub-surface areas to be tested specifically. Two applications are described in this paper. Both use velocity measurements to achieve their different goals, the first to differentiate between flawless balls from different manufacturing processes, and the second to detect small defects, such as cracks. Our method is rapid and permits the entire ceramic ball to be tested in an industrial context. PMID:16083931

  1. Non-destructive state detection for quantum logic spectroscopy of molecular ions.

    PubMed

    Wolf, Fabian; Wan, Yong; Heip, Jan C; Gebert, Florian; Shi, Chunyan; Schmidt, Piet O

    2016-02-25

    Precision laser spectroscopy of cold and trapped molecular ions is a powerful tool in fundamental physics--used, for example, in determining fundamental constants, testing for their possible variation in the laboratory, and searching for a possible electric dipole moment of the electron. However, the absence of cycling transitions in molecules poses a challenge for direct laser cooling of the ions, and for controlling and detecting their quantum states. Previously used state-detection techniques based on photodissociation or chemical reactions are destructive and therefore inefficient, restricting the achievable resolution in laser spectroscopy. Here, we experimentally demonstrate non-destructive detection of the quantum state of a single trapped molecular ion through its strong Coulomb coupling to a well controlled, co-trapped atomic ion. An algorithm based on a state-dependent optical dipole force changes the internal state of the atom according to the internal state of the molecule. We show that individual quantum states in the molecular ion can be distinguished by the strength of their coupling to the optical dipole force. We also observe quantum jumps (induced by black-body radiation) between rotational states of a single molecular ion. Using the detuning dependence of the state-detection signal, we implement a variant of quantum logic spectroscopy of a molecular resonance. Our state-detection technique is relevant to a wide range of molecular ions, and could be applied to state-controlled quantum chemistry and to spectroscopic investigations of molecules that serve as probes for interstellar clouds. PMID:26855427

  2. Non-destructive mobile monitoring of microbial contaminations on meat surfaces using porphyrin fluorescence intensities.

    PubMed

    Durek, J; Fröhling, A; Bolling, J; Thomasius, R; Durek, P; Schlüter, O K

    2016-05-01

    A non-destructive mobile system for meat quality monitoring was developed and investigated for the possible application along the whole production chain of fresh meat. Pork and lamb meat was stored at 5 °C for up to 20 days post mortem and measured with a fluorescence spectrometer. Additionally, the bacterial influence on the fluorescence signals was evaluated by different experimental procedures. Fluorescence of NADH and different porphyrins could be correlated to the growth of diverse bacteria and hence used for contamination monitoring. The increase of porphyrin fluorescence started after 9 days p.m. for pork and after 2 days p.m. for lamb meat. Based on the results, a mobile fluorescence system was built and compared with the laboratory system. The corrected function of the meat slices showed a root mean square error of 1156.97 r.u. and a mean absolute percentage error of 12.59%; for lamb the values were 470.81 r.u. and 15.55%, respectively. A mobile and non-invasive measurement system would improve the microbial security of fresh meat. PMID:26773794

  3. Non-destructive Assay Measurements Using the RPI Lead Slowing Down Spectrometer

    SciTech Connect

    Becker, Bjorn; Weltz, Adam; Kulisek, Jonathan A.; Thompson, J. T.; Thompson, N.; Danon, Yaron

    2013-10-01

    The use of a Lead Slowing-Down Spectrometer (LSDS) is consid- ered as a possible option for non-destructive assay of fissile material of used nuclear fuel. The primary objective is to quantify the 239Pu and 235U fissile content via a direct measurement, distinguishing them through their characteristic fission spectra in the LSDS. In this pa- per, we present several assay measurements performed at the Rensse- laer Polytechnic Institute (RPI) to demonstrate the feasibility of such a method and to provide benchmark experiments for Monte Carlo cal- culations of the assay system. A fresh UOX fuel rod from the RPI Criticality Research Facility, a 239PuBe source and several highly en- riched 235U discs were assayed in the LSDS. The characteristic fission spectra were measured with 238U and 232Th threshold fission cham- bers, which are only sensitive to fission neutron with energy above the threshold. Despite the constant neutron and gamma background from the PuBe source and the intense interrogation neutron flux, the LSDS system was able to measure the characteristic 235U and 239Pu responses. All measurements were compared to Monte Carlo simula- tions. It was shown that the available simulation tools and models are well suited to simulate the assay, and that it is possible to calculate the absolute count rate in all investigated cases.

  4. Non-destructive inspection using HTS SQUID on aluminum liner covered by CFRP

    NASA Astrophysics Data System (ADS)

    Hatsukade, Y.; Yotsugi, K.; Sakaguchi, Y.; Tanaka, S.

    2007-10-01

    An eddy-current-based SQUID non-destructive inspection (NDI) system to detect deep-lying cracks in multi-layer composite-Al vessels was developed taking advantage of the uncontested sensitivity of HTS-SQUID in low-frequency range. An HTS-SQUID gradiometer was mounted in a pulse tube cryocooler. A pair of differential coils with C-shaped ferrite cores was employed to induce an enhanced eddy current in an Al vessel wrapped in a carbon fiber reinforced plastic (CFRP) cover. Ellipsoidal dome-shaped Al liners containing through cracks, which were made by pressure cycle tests, in the CFRP covers with total thickness of 6 mm (CFPR 3 mm, and Al 3 mm) were inspected by the system. While inducing eddy currents in the vessels with excitation fields at 100 Hz or 7 kHz, the vessels were rotated under the HTS-SQUID. Above the cracks, anomalous signals due to the cracks were clearly detected at both frequencies. These results suggested the SQUID-NDI technique would be a possible candidate for inspection of high-pressure multi-layer composite-Al vessels.

  5. Non-destructive characterization of microdamage in cortical bone using low field pulsed NMR.

    PubMed

    Nicolella, Daniel P; Ni, Qingwen; Chan, Kwai S

    2011-04-01

    The microcracking and damage accumulation process in human cortical bone was characterized by performing cyclic loading under four-point bending at ambient temperature. A non-destructive nuclear magnetic resonance (NMR) spin-spin (T(2)) relaxation technique was applied to quantify the apparent changes in bone porosity as a function of cyclic loading and prior damage accumulation, first to unloaded cortical bone to quantify the initial porosity and then to fatigued cortical bone that was subjected to cyclic loading to various levels of modulus degradation and microdamage in the form of microcracks. The NMR T(2) relaxation time and amplitude data of the fatigued bone were compared against the undamaged state. The difference in the T(2) relaxation time data was taken as a measure of the increase in pore size, bone porosity or microcrack density due to microdamage induced by cyclic loading. A procedure was developed to deduce the number and size distributions of microcracks formed in cortical bone. Serial sectioning of the fatigued bone showed the formation of microcracks along the cement lines or within the interstitial tissue. The results on the evolution of microdamage derived from NMR measurements were verified by independent experimental measurements of microcrack density using histological characterization techniques. The size distribution and population of the microcracks were then utilized in conjunction with an analytical model to predict the degradation of the elastic modulus of cortical bone as a function of damage accumulation. PMID:21316626

  6. NON-DESTRUCTIVE RADIOCARBON DATING: NATURALLY MUMMIFIED INFANT BUNDLE FROM SW TEXAS

    SciTech Connect

    Steelman, K L; Rowe, M W; Turpin, S A; Guilderson, T P; Nightengale, L

    2004-09-07

    Plasma oxidation was used to obtain radiocarbon dates on six different materials from a naturally mummified baby bundle from the Lower Pecos River region of southwest Texas. This bundle was selected because it was thought to represent a single event and would illustrate the accuracy and precision of the plasma oxidation method. Five of the materials were clearly components of the original bundle with 13 dates combined to yield a weighted average of 2135 {+-} 11 B.P. Six dates from a wooden stick of Desert Ash averaged 939 {+-} 14 B.P., indicating that this artifact was not part of the original burial. Plasma oxidation is shown to be a virtually non-destructive alternative to combustion. Because only sub-milligram amounts of material are removed from an artifact over its exposed surface, no visible change in fragile materials has been observed, even under magnification. The method is best applied when natural organic contamination is unlikely and serious consideration of this issue is needed in all cases. If organic contamination is present, it will have to be removed before plasma oxidation to obtain accurate radiocarbon dates.

  7. Non-destructive determination of anisotropic mechanical properties of pharmaceutical solid dosage forms.

    PubMed

    Akseli, I; Hancock, B C; Cetinkaya, C

    2009-07-30

    The mechanical property anisotropy of compacts made from four commercially available pharmaceutical excipient powders (microcrystalline cellulose, lactose monohydrate, ascorbic acid, and aspartame) was evaluated. The speed of pressure (longitudinal) waves in the uni-axially compressed cubic compacts of each excipient in the three principle directions was determined using a contact ultrasonic method. Average Young's moduli of each compact in the axial (x) and radial (y and z) directions were characterized. The contact ultrasonic measurements revealed that average Young's modulus values vary with different testing orientations which indicate Young's modulus anisotropy in the compacts. The extent of Young's modulus anisotropy was quantified by using a dimensionless ratio and was found to be significantly different for each material (microcrystalline cellulose>lactose>aspartame>ascorbic acid). It is also observed that using the presented contact method, compacts at high solid fraction (0.857-0.859) could be differentiated than those at the solid fraction of 0.85 in their groups. The presented contact ultrasonic method is an attractive tool since it has the advantages of being sensitive to solid fraction ratio, non-destructive, requiring small amount of material and rapid. It is noteworthy that, since the approach provides insight into the performance of common pharmaceutical materials and fosters increased process knowledge, it can be applied to broaden the understanding of the effect of the mechanical properties on the performance (e.g., disintegration profiles) of solid oral dosage forms. PMID:19426791

  8. Plane Wave Imaging for ultrasonic non-destructive testing: Generalization to multimodal imaging.

    PubMed

    Le Jeune, Léonard; Robert, Sébastien; Lopez Villaverde, Eduardo; Prada, Claire

    2016-01-01

    This paper describes a new ultrasonic array imaging method for Non-Destructive Testing (NDT) which is derived from the medical Plane Wave Imaging (PWI) technique. The objective is to perform fast ultrasound imaging with high image quality. The approach is to transmit plane waves at several angles and to record the back-scattered signals with all the array elements. Focusing in receive is then achieved by coherent summations of the signals in every point of a region of interest. The medical PWI is generalized to immersion setups where water acts as a coupling medium and to multimodal (direct, half-skip modes) imaging in order to detect different types of defects (inclusions, porosities, cracks). This method is compared to the Total Focusing Method (TFM) which is the reference imaging technique in NDT. First, the two post-processing algorithms are described. Then experimental results with the array probe either in contact or in immersion are presented. A good agreement between the TFM and the PWI is observed, with three to ten times less transmissions required for the PWI. PMID:26323547

  9. Non-destructive provenance differentiation of prehistoric pigments by external PIXE

    NASA Astrophysics Data System (ADS)

    Beck, L.; Salomon, H.; Lahlil, S.; Lebon, M.; Odin, G. P.; Coquinot, Y.; Pichon, L.

    2012-02-01

    The elemental analysis of minerals/rocks has been often used for the determination of their geological origin. When these natural rocks were exploited by prehistoric civilizations as objects, weapons, or pigments, the composition of the minerals can provide information on the mobility, the exchanges and the interaction between groups of population. In this paper, we will present results obtained from archaeological samples of prehistoric pigments, mainly iron and manganese oxides. PIXE analysis has been applied to samples of the prehistoric cave "La grotte du Renne" in Arcy-sur-Cure, France (Chatelperronian, 38,000-34,000 BP). Because most of the archaeological objects are decorated or display some use marks, it is not possible to take samples. Consequently, we have used a non-destructive technique thanks to the external beam of AGLAE (C2RMF, Paris). In order to improve the limits of detection (LOD less than 10 ppm from Cu to Sb), a metal absorber has been placed on the X-ray detector to preferentially filter the Fe-K or Mn-K lines. Based on the quantitative analysis of major and trace elements, we have obtained groups of compositions corresponding to different geological sources. We demonstrate in this study that it is possible to extend PIXE analysis to the characterization of prehistoric pigments such as iron and manganese oxides for differentiating potential sources of pigments in archaeological contexts.

  10. Non-destructive analysis of DU content in the NIF hohlraums

    SciTech Connect

    Gharibyan, Narek; Moody, Ken J.; Shaughnessy, Dawn A.

    2015-12-16

    The advantage of using depleted uranium (DU) hohlraums in high-yield deuterium-tritium (DT) shots at the National Ignition Facility (NIF) is addressed by Döppner, et al., in great detail [1]. This DU based hohlraum incorporates a thin layer of DU, ~7 μm thick, on the inner surface along with a thin layer of a gold coating, ~0.7 μm thick, while the outer layer is ~22 μm thick gold. A thickness measurement of the DU layer can be performed using an optical microscope where the total DU weight can be computed provided a uniform DU layer. However, the uniformity of the thickness is not constant throughout the hohlraum since CAD drawing calculations of the DU weight do not agree with the computed values from optical measurements [2]. Therefore, a non-destructive method for quantifying the DU content in hohlraums has been established by utilizing gamma-ray spectroscopy. The details of this method, along with results from several hohlraums, are presented in this report.

  11. Feasibility for non-destructive discrimination of natural and beryllium-diffused sapphires using Raman spectroscopy.

    PubMed

    Chang, Kyeol; Lee, Sanguk; Park, Jimin; Chung, Hoeil

    2016-03-01

    Raman spectroscopy based non-destructive discrimination between natural and beryllium-diffused (Be-diffused) sapphires has been attempted. The initial examination of Raman image acquired on a sapphire revealed that microscopic structural and compositional heterogeneity was apparent in the sample, so acquisition of spectra able to represent a whole body of sapphire rather than a localized area was necessary for a reliable discrimination. For this purpose, a wide area illumination (WAI) scheme (illumination area: 28.3mm(2)) providing a large sampling volume was employed to collect representative Raman spectra of sapphires. Upon the diffusion of Be into a sapphire, the band shift originated from varied lattice structure by substitution of Be at cation sites was observed and utilized as a valuable spectral signature for the discrimination. In the domain of principal component (PC) scores, the groups of natural and Be-diffused sapphires were identifiable with minor overlapping and the cross-validated discrimination error was 7.3% when k-Nearest Neighbor (k-NN) was used as a classifier. PMID:26717849

  12. X-ray based methods for non-destructive testing and material characterization

    NASA Astrophysics Data System (ADS)

    Hanke, Randolf; Fuchs, Theobald; Uhlmann, Norman

    2008-06-01

    The increasing complexity and miniaturization in the field of new materials as well as in micro-production requires in the same way improvements and technical advances in the field of micro-NDT to provide better quality data and more detailed knowledge about the internal structures of micro-components. Therefore, non-destructive methods like radioscopy, ultrasound, optical or thermal imaging increasingly gain in importance with respect to ongoing product and material development in the different phases like material characterization, production control or module reliability testing. Because of the manifold different application fields, i.e., certain physical NDT methods applied to material inspection, characterization or reliability testing, this contribution will focus on the radioscopic-based methods related to their most important applications. Today, in modern industrial quality control, X-ray transmission is used in two different ways: Two-dimensional radioscopic transmission imaging (projection technique), usually applied to inline inspection tasks in application fields like lightweight material production, electronic component soldering or food production. Computed tomography (CT) for generation of three-dimensional data, representing spatial information and density distribution of objects. CT application fields are on the one hand the understanding of production process failure or component and module inspection (completeness) and on the other hand the dimensional measuring of hidden geometrical outlines (metrology). This paper demonstrates the methods including technical set-ups (X-ray source and detector), imaging and reconstruction results and the methods for high speed and high-resolution volume data generation and evaluation.

  13. Passive Neutron Non-Destructive Assay for Remediation of Radiological Waste at Hanford Burial Grounds- 13189

    SciTech Connect

    Simpson, A.; Pitts, M.; Ludowise, J.D.; Valentinelli, P.; Grando, C.J.; Haggard, D.L.

    2013-07-01

    The Hanford burial grounds contains a broad spectrum of low activity radioactive wastes, transuranic (TRU) wastes, and hazardous wastes including fission products, byproduct material (thorium and uranium), plutonium and laboratory chemicals. A passive neutron non-destructive assay technique has been developed for characterization of shielded concreted drums exhumed from the burial grounds. This method facilitates the separation of low activity radiological waste containers from TRU waste containers exhumed from the burial grounds. Two identical total neutron counting systems have been deployed, each consisting of He-3 detectors surrounded by a polyethylene moderator. The counts are processed through a statistical filter that removes outliers in order to suppress cosmic spallation events and electronic noise. Upon completion of processing, a 'GO / NO GO' signal is provided to the operator based on a threshold level equivalent to 0.5 grams of weapons grade plutonium in the container being evaluated. This approach allows instantaneous decisions to be made on how to proceed with the waste. The counting systems have been set up using initial on-site measurements (neutron emitting standards loaded into surrogate waste containers) combined with Monte Carlo modeling techniques. The benefit of this approach is to allow the systems to extend their measurement ranges, in terms of applicable matrix types and container sizes, with minimal interruption to the operations at the burial grounds. (authors)

  14. Non-destructive testing of composite materials by means of active thermography-based tools

    NASA Astrophysics Data System (ADS)

    Lizaranzu, Miguel; Lario, Alberto; Chiminelli, Agustín; Amenabar, Ibán

    2015-07-01

    Infrared analysis tools are nowadays widely used for the non-destructive testing of components made up in composite materials, belonging to many different industrial sectors. Being a non-contact method, its capability for the inspection of large areas in short periods of time justifies the great number of works and technical studies that can be found in this field. The growing interest in the technique is also supported by the development, during recent years, of increasingly powerful equipment and data analysis tools. In order to establish a base of knowledge to assist defect identification in real components inspections, the design and manufacturing of inspection samples including controlled defects, is a frequently used strategy. This paper deals with the analysis, by means of transient active thermography, of a set of inspection patterns made out of different composite materials and configurations that can be found in the wind turbine blade manufacturing industry. The design and manufacturing of these patterns are described, including different types of representative defects, stack configurations and composite manufacturing techniques. Reference samples are then inspected by means of active thermography analysis tools and the results obtained are discussed.

  15. Combined non-destructive XRF and SR-XAS study of archaeological artefacts.

    PubMed

    Bardelli, Fabrizio; Barone, Germana; Crupi, Vincenza; Longo, Francesca; Majolino, Domenico; Mazzoleni, Paolo; Venuti, Valentina

    2011-03-01

    We report on a non-destructive study of Sicilian ceramic fragments of cultural heritage interest, classified as "proto-majolica" pottery and dating back to the twelfth to thirteen centuries AD. The analytical approach used is based on the employment of two totally non-invasive spectroscopic techniques: X-ray fluorescence (XRF), using a portable energy-dispersive XRF analyser, and X-ray absorption spectroscopy, using synchrotron radiation as a probe (SR-XAS). XRF measurements allowed us to collect elemental and spatially resolved information on major and minor constituents of the decorated coating of archaeological pottery fragments, so providing preliminary results on the main components characterizing the surface. In particular, we assigned to Fe and Mn the role of key elements of the colouring agent. With the aim of obtaining more detailed information, we performed SR-XAS measurements at the Fe and Mn K-edges at the Italian BM08 beamline at the European Synchrotron Radiation Facility (Grenoble, France). The experimental data were analysed by applying principal component analysis and least-squares fitting to the near-edge part of the spectra (X-ray absorption near-edge structure) to determine the samples' speciation. From the overall results, umber, a class of brownish pigments characterized by a mixture of hydrated iron and manganese oxides, has been ascribed as a pigmenting agent. PMID:21311873

  16. Quantitative impact characterization of aeronautical CFRP materials with non-destructive testing methods

    NASA Astrophysics Data System (ADS)

    Kiefel, Denis; Stoessel, Rainer; Grosse, Christian

    2015-03-01

    In recent years, an increasing number of safety-relevant structures are designed and manufactured from carbon fiber reinforced polymers (CFRP) in order to reduce weight of airplanes by taking the advantage of their specific strength into account. Non-destructive testing (NDT) methods for quantitative defect analysis of damages are liquid- or air-coupled ultrasonic testing (UT), phased array ultrasonic techniques, and active thermography (IR). The advantage of these testing methods is the applicability on large areas. However, their quantitative information is often limited on impact localization and size. In addition to these techniques, Airbus Group Innovations operates a micro x-ray computed tomography (μ-XCT) system, which was developed for CFRP characterization. It is an open system which allows different kinds of acquisition, reconstruction, and data evaluation. One main advantage of this μ-XCT system is its high resolution with 3-dimensional analysis and visualization opportunities, which enables to gain important quantitative information for composite part design and stress analysis. Within this study, different NDT methods will be compared at CFRP samples with specified artificial impact damages. The results can be used to select the most suitable NDT-method for specific application cases. Furthermore, novel evaluation and visualization methods for impact analyzes are developed and will be presented.

  17. Routes for GMR-Sensor Design in Non-Destructive Testing

    PubMed Central

    Pelkner, Matthias; Neubauer, Andreas; Reimund, Verena; Kreutzbruck, Marc; Schütze, Andreas

    2012-01-01

    GMR sensors are widely used in many industrial segments such as information technology, automotive, automation and production, and safety applications. Each area requires an adaption of the sensor arrangement in terms of size adaption and alignment with respect to the field source involved. This paper deals with an analysis of geometric sensor parameters and the arrangement of GMR sensors providing a design roadmap for non-destructive testing (NDT) applications. For this purpose we use an analytical model simulating the magnetic flux leakage (MFL) distribution of surface breaking defects and investigate the flux leakage signal as a function of various sensor parameters. Our calculations show both the influence of sensor length and height and that when detecting the magnetic flux leakage of μm sized defects a gradiometer base line of 250 μm leads to a signal strength loss of less than 10% in comparison with a magnetometer response. To validate the simulation results we finally performed measurements with a GMR magnetometer sensor on a test plate with artificial μm-range cracks. The differences between simulation and measurement are below 6%. We report on the routes for a GMR gradiometer design as a basis for the fabrication of NDT-adapted sensor arrays. The results are also helpful for the use of GMR in other application when it comes to measure positions, lengths, angles or electrical currents.

  18. Photoacoustic Non-Destructive Evaluation and Imaging of Caries in Dental Samples

    NASA Astrophysics Data System (ADS)

    Li, T.; Dewhurst, R. J.

    2010-02-01

    Dental caries is a disease wherein bacterial processes damage hard tooth structure. Traditional dental radiography has its limitations for detecting early stage caries. In this study, a photoacoustic (PA) imaging system with the near-infrared light source has been applied to postmortem dental samples to obtain 2-D and 3-D images. Imaging results showed that the PA technique can be used to image human teeth caries. For non-destructive photoacoustic evaluation and imaging, the induced temperature and pressure rises within biotissues should not cause physical damage to the tissue. For example, temperature rises above 5 °C within live human teeth will cause pulpal necrosis. Therefore, several simulations based on the thermoelastic effect have been applied to predict temperature and pressure fields within samples. Predicted temperature levels are below corresponding safety limits, but care is required to avoid nonlinear absorption phenomena. Furthermore, PA imaging results from the phantom provide evidence for high sensitivity, which shows the imaging potential of the PA technique for detecting early stage disease.

  19. Imaging air volume fraction in sea ice using non-destructive X-ray tomography

    NASA Astrophysics Data System (ADS)

    Crabeck, Odile; Galley, Ryan; Delille, Bruno; Else, Brent; Geilfus, Nicolas-Xavier; Lemes, Marcos; Des Roches, Mathieu; Francus, Pierre; Tison, Jean-Louis; Rysgaard, Søren

    2016-05-01

    Although the presence of a gas phase in sea ice creates the potential for gas exchange with the atmosphere, the distribution of gas bubbles and transport of gases within the sea ice are still poorly understood. Currently no straightforward technique exists to measure the vertical distribution of air volume fraction in sea ice. Here, we present a new fast and non-destructive X-ray computed tomography technique to quantify the air volume fraction and produce separate images of air volume inclusions in sea ice. The technique was performed on relatively thin (4-22 cm) sea ice collected from an experimental ice tank. While most of the internal layers showed air volume fractions < 2 %, the ice-air interface (top 2 cm) systematically showed values up to 5 %. We suggest that the air volume fraction is a function of both the bulk ice gas saturation factor and the brine volume fraction. We differentiate micro bubbles (Ø < 1 mm), large bubbles (1 mm < Ø < 5 mm) and macro bubbles (Ø > 5 mm). While micro bubbles were the most abundant type of gas bubbles, most of the air porosity observed resulted from the presence of large and macro bubbles. The ice texture (granular and columnar) as well as the permeability state of ice are important factors controlling the air volume fraction. The technique developed is suited for studies related to gas transport and bubble migration.

  20. Non-destructive measurement of the steel cable stress based on magneto-mechanical effect

    NASA Astrophysics Data System (ADS)

    Chen, Weimin; Liu, Lin; Zhang, Peng; Hu, Shunren

    2010-03-01

    Since steel cables are widely used to be crucial components in cable-stayed bridges and architectural structures, stress measurement of the steel cables has been given serious attentions. Among the current stress measurement methods, magnetic method seems to be the most potential one, but its application is limited because of the complex theoretical mechanism. According to the magneto-mechanical effect, which demonstrates that magnetization in the ferromagnetic material varies with applied stress, a theoretical model of magnetic method is proposed to perfect the theoretical mechanism. Thus, an equation is derived about the relation between magnetization in steel cables and cable stress. In this model, a magnetic stress sensor is designed, with a smart steel cable as a part of it, and then a cable stress measurement system based on LabVIEW is developed. This method allows new application in non-destructive testing, such as monitoring the conditions of stayed-cable. Considering the impact of the magnetic hysteresis, positive and negative pulsed current excitation was used to demagnetize and decrease the output of heat. This method is applied to the stress measurement of prestressed steel cable in Jiangsu Fasten Nippon Steel Cable Company, the experimental results agree with theoretical assumptions, which indicates that the method is feasible and can improve the mechanical stress measurement.

  1. How clean is clean: Non-destructive/direct methods of flux, residue detection

    SciTech Connect

    Welch, C.S.; Ray, U.; Stallard, B.R.; Watkins, R.D.; Koch, M.W.; Moya, M.M.

    1994-06-01

    The feasibility of three different non-destructive and direct methods of evaluating PCB (printed circuit boards) cleanliness was demonstrated. The detection limits associated with each method were established. In addition, the pros and cons of these methods as routine quality control inspection tools were discussed. OSEE (Optically Stimulated Electron Emission) was demonstrated to be a sensitive technique for detection of low levels of flux residues on insulating substances. However, future work including development of rugged OSEE instrumentation will determine whether the PCB industry can accept this technique in a production environment. FTIR (Fourier Transform Infrared) microscopy is a well established technique with well known characteristics. The inability of FTIR to discriminate an organic contaminant from an organic substrate limits its usefulness as a PCB line inspection tool, but it will still remain a technique for the QC/QA laboratory. One advantage of FTIR over the other two techniques described here is its ability to identify the chemical nature of the residue, which is important in Failure Mode Analysis. Optical imaging using sophisticated pattern recognition algorithms was found to be limited to high concentrations of residue. Further work on improved sensor techniques is necessary.

  2. Ultra-portable, wireless smartphone spectrometer for rapid, non-destructive testing of fruit ripeness.

    PubMed

    Das, Anshuman J; Wahi, Akshat; Kothari, Ishan; Raskar, Ramesh

    2016-01-01

    We demonstrate a smartphone based spectrometer design that is standalone and supported on a wireless platform. The device is inherently low-cost and the power consumption is minimal making it portable to carry out a range of studies in the field. All essential components of the device like the light source, spectrometer, filters, microcontroller and wireless circuits have been assembled in a housing of dimensions 88 mm × 37 mm × 22 mm and the entire device weighs 48 g. The resolution of the spectrometer is 15 nm, delivering accurate and repeatable measurements. The device has a dedicated app interface on the smartphone to communicate, receive, plot and analyze spectral data. The performance of the smartphone spectrometer is comparable to existing bench-top spectrometers in terms of stability and wavelength resolution. Validations of the device were carried out by demonstrating non-destructive ripeness testing in fruit samples. Ultra-Violet (UV) fluorescence from Chlorophyll present in the skin was measured across various apple varieties during the ripening process and correlated with destructive firmness tests. A satisfactory agreement was observed between ripeness and fluorescence signals. This demonstration is a step towards possible consumer, bio-sensing and diagnostic applications that can be carried out in a rapid manner. PMID:27606927

  3. Non-destructive X-ray examination of weft knitted wire structures

    NASA Astrophysics Data System (ADS)

    Obermann, M.; Ellouz, M.; Aumann, S.; Martens, Y.; Bartelt, P.; Klöcker, M.; Kordisch, T.; Ehrmann, A.; Weber, M. O.

    2016-07-01

    Conductive yarns or wires are often integrated in smart textiles to enable data or energy transmission. In woven fabrics, these conductive parts are fixed at defined positions and thus protected from external loads. Knitted fabrics, however, have relatively loose structures, resulting in higher impacts of possible mechanical forces on the individual yarns. Hence, metallic wires with smaller diameters in particular are prone to break when integrated in knitted fabrics. In a recent project, wires of various materials including copper, silver and nickel with diameters varying between 0.05 mm and 0.23 mm were knitted in combination with textile yarns. Hand flat knitting machines of appropriate gauges were used to produce different structures. On these samples, non-destructive examinations, using an industrial X-ray system Seifert x|cube (225 kV) equipped with a minifocus X-ray tube, were carried out, directly after knitting as well as after different mechanical treatments (tensile, burst, and washing tests). In this way, structural changes of the stitch geometry could be visualized before failure. In this paper, the loop geometries in the knitted fabrics are depicted depending on knitted structures, wire properties and the applied mechanical load. Consequently, it is shown which metallic wires and yarns are most suitable to be integrated into knitted smart textiles.

  4. Rapid and non-destructive identification of water-injected beef samples using multispectral imaging analysis.

    PubMed

    Liu, Jinxia; Cao, Yue; Wang, Qiu; Pan, Wenjuan; Ma, Fei; Liu, Changhong; Chen, Wei; Yang, Jianbo; Zheng, Lei

    2016-01-01

    Water-injected beef has aroused public concern as a major food-safety issue in meat products. In the study, the potential of multispectral imaging analysis in the visible and near-infrared (405-970 nm) regions was evaluated for identifying water-injected beef. A multispectral vision system was used to acquire images of beef injected with up to 21% content of water, and partial least squares regression (PLSR) algorithm was employed to establish prediction model, leading to quantitative estimations of actual water increase with a correlation coefficient (r) of 0.923. Subsequently, an optimized model was achieved by integrating spectral data with feature information extracted from ordinary RGB data, yielding better predictions (r = 0.946). Moreover, the prediction equation was transferred to each pixel within the images for visualizing the distribution of actual water increase. These results demonstrate the capability of multispectral imaging technology as a rapid and non-destructive tool for the identification of water-injected beef. PMID:26213059

  5. Non-destructive grading of peaches by near-infrared spectrometry

    NASA Astrophysics Data System (ADS)

    Carlomagno, G.; Capozzo, L.; Attolico, G.; Distante, A.

    2004-12-01

    This paper describes an experimental study on non-destructive methods for sorting peaches according to their degree of ripeness. The method is based on near-infrared (NIR) transmittance spectrometry in the region between 730 and 900 nm. It estimates the ripeness in terms of internal sugar content and firmness. A station for acquiring the NIR signal has been designed and realized, carefully choosing between several options for each component. Four different stations have been realized and compared during the experimental phase. The signals acquired by the station have been pre-processed using a noise-reducing method based on a packets-wavelet transform. In addition, an outlier detection technique has been applied for identifying irregular behaviors inside each of the considered classes. Finally, a minimum distance classifier estimates the grade of each experimental data. The results obtained in classification show that this early version of the station enables the correct discrimination of peaches with a percentage of 82.5%.

  6. A multi-inspection non-destructive testing method for quality evaluation of composite riveted structure

    NASA Astrophysics Data System (ADS)

    Wang, Weihan; He, Jingjing; Yang, Jingsong; Liu, Shengwang; Zhang, Weifang

    2015-03-01

    Carbon fiber composites have excellent mechanical properties, which are widely used in aerospace industry. However, 60% to 80% damages in composite occur in riveted structures. This research focuses on the quality evaluation of three major riveted structures used in mechanical connection: pressure riveted connection, hammer riveted connection and pull riveted connection. The non-destructive testing results show that the pull riveting technology introduces minimal damage to the composite, but the hammer riveted structure can be seriously damaged by the riveting technology. The pull riveted structure is an interference fit, which makes the composite plate firmly fixed. However, the fix is weak in the pressure riveted structure and the hammer riveted structure, due to the small gap between the rivets and plate. The results show that the pull riveted structure has a higher tensile strength compared with the pressure riveted structure and hammer riveted structure. The hammer riveted structure has a large dispersion in mechanical properties caused by the impact loading used in the hammer riveting technology.

  7. Non-destructive diagnosis of relativistic electron beams using a short undulator

    SciTech Connect

    Ponds, M.L.; Madey, J.M.J.; O`Shea, P.G.

    1995-12-31

    The performance of an FEL depends critically on the characteristics of the electron beam used to drive it. In the past it has been very difficult to measure the details of the transverse and longitudinal phase-space distributions of high-energy electron beams with the precision required to predict FEL performance. Furthermore, the available diagnostics were generally pertubative, and could not be used simultaneously with lasing. We investigate the potential use of a short undulator insertion device for non-destructive diagnosis of relativistic electron beams. Incoherent visible to near-infrared synchrotron radiation from a single magnet in the diagnostic undulator will be used to obtain information on beam position and transverse phase-space. Coherent off-axis undulator radiation in the millimeter to sub-millimeter range will be used to measure longitudinal phase-space characteristics of the beam. These two types of radiation can be analyzed simultaneously, while the FEL is lasing; thus giving a complete picture of relevant electron beam characteristics. In this paper we analyze the theoretical and practical design issues associated with such a diagnostic undulator.

  8. Static characterization of a soft elastomeric capacitor for non destructive evaluation applications

    NASA Astrophysics Data System (ADS)

    Saleem, Hussam; Laflamme, Simon; Zhang, Huanhuan; Geiger, Randall; Kessler, Michael; Rajan, Krishna

    2014-02-01

    A large and flexible strain transducer consisting of a soft elastomeric capacitor (SEC) has been proposed by the authors. Arranged in a network setup, the sensing strategy offers tremendous potential at conducting non-destructive evaluation of large-scale surfaces. In prior work, the authors have demonstrated the performance of the sensor at tracking strain history, localizing cracks, and detecting vibration signatures. In this paper, we characterize the static performance of the proposed SEC. The characterization includes sensitivity of the signal, and temperature and humidity dependences. Tests are conducted on a simply supported aluminum beam subjected to bending as well as on a free standing sensor. The performance of the SEC is compared against off-the-shelf resistance-based strain gauges with resolution of 1 μɛ. A sensitivity of 1190 pF/ɛ is obtained experimentally, in agreement with theory. Results also show the sensor linearity over the given level of strain, showing the promise of the SEC at monitoring of surface strain.

  9. Non-destructive evaluation of spiral-welded pipes using flexural guided waves

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaowei; Tang, Zhifeng; Lü, Fuzai; Pan, Xiaohong

    2016-02-01

    Millions of miles of pipes are being used in both civil and industrial fields. Spiral-welded pipes, which are widely applied in fields such as drainage, architecture as well as oil and gas storage and transportation, are difficult to inspect due to their complex geometry. Guided waves have shown a great potential in Non-Destructive Evaluation (NDE) and Structural Health Monitoring (SHM) for such cases. Flexural guided waves that propagate at a helix angle relative to the axial direction of pipe, are the most appropriate modes for inspecting spiral-welded pipes. The classical Normal Mode Expansion method (NME) is adopted to disseminate the forced response and perturbation analysis of a steel pipe with respect to a time delay circular loading. A time delay circular array transducer (TDCAT) is proposed for the purpose of exciting pure flexural mode in pipes. Pure flexural mode can be excited when the time delay parameter is specifically designed. The theoretical prediction is verified by finite element numerical evaluation and spiral-welded pipe inspection experiment.

  10. Non-destructive monitoring of fiber orientation using AC-IS: An industrial-scale application

    SciTech Connect

    Ozyurt, Nilufer . E-mail: ozyurtnil@itu.edu.tr; Mason, Thomas O.; Shah, Surendra P.

    2006-09-15

    A comprehensive study has been undertaken to investigate the ability of AC-impedance spectroscopy (AC-IS) to non-destructively monitor the fiber dispersion of conductive fiber-reinforced cement-based materials. Previous work showed that AC-IS effectively monitors various fiber dispersion issues in lab-scale steel fiber-reinforced specimens. In this part of the study, AC-IS was used to study fiber orientation in an industrial-scale pre-cast concrete beam. A conventional method-image analysis (IA)-was used to verify the results of AC-IS measurements. The results of AC-IS and IA were found to match very well in experimental uncertainty. Splitting tensile tests and bending tests were conducted on the parts of the beam to study the effects of fiber orientation on the mechanical performance. The results of the mechanical tests also confirmed the results of AC-IS with splitting tensile strengths increasing as the alignment of fibers increased.

  11. Development of micronic GMR-magnetoresistive sensors for non-destructive sensing applications (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Jaffrès, Henri; LeMaitre, Yves; Collin, Sophie; Nguyen Vandau, Frédéric; Sergeeva-Chollet, Natalia; Decitre, Jean-Marc

    2015-09-01

    We will present our last development of GMR-based magnetic sensors devoted to sensing application for non-destructive control application. In these first realizations, we have chosen a so-called shape anisotropy - exchange biased strategy to fulfill the field-sensing criteria in the μT range in devices made of micronic single elements. Our devices realized by optical lithography, and whose typical sizes range from 150 μm x 150 μm to 500 μm x 500 μm elements, are made of trilayers GMR-based technology and consist of several circuitries of GMR elements of different lengths, widths and gaps. To obtain a full sensing linearity and reversibility requiring a perpendicular magnetic arrangement between both sensitive and hard layer, the magnetization of the latter have been hardened by pinning it with an antiferromagnetic material. The specific geometry of the design have been engineered in order to optimize the magnetic response of the soft layer via the different magnetic torques exerted on it essentially played by the dipolar fields or shape anisotropy, and the external magnetic field to detect. The smaller dimensions in width and in gap are then respectively of 2 μm and 3 μm to benefit of the full shape anisotropy formatting the magnetic response.

  12. Metal composite as backing for ultrasonic transducers dedicated to non-destructive measurements in hostile

    NASA Astrophysics Data System (ADS)

    Boubenia, R.; Rosenkrantz, E.; Despetis, F.; P, P.; Ferrandis, J.-Y.

    2016-03-01

    Our team is specialized in ultrasonic measurements in hostile environment especially under high temperatures. There is a need for acoustic transducers capable of continuous measurement at temperatures up to 700°C. To improve the performances of acoustic sensors we focus our works on the realisation and characterisation of transducer backings able to operate under very high temperature. Commercially, they are produced by the incorporation of tungsten powder in a plastic matrix, which limits the working temperature. The realisation of ultrasonic transducers for non-destructive measures at high temperatures requires adequate materials, manufacturing and assembly processes. To produce the backings, composites were made using very ductile metals such as tin and tungsten. These composites are manufactured by uniaxial hot pressing. First, we studied the influence of temperature and pressure on the densification of tin pellets. Then, several specimens made of tin/W were made and characterised by measuring the specific weight, speed and attenuation of sound. The acoustic measures were realised by ultrasonic spectroscopy. This test-bench was designed and tested on control samples of PMMA and on standard backings (epoxy / tungsten).

  13. In vitro mucus transportability, cytogenotoxicity, and hematological changes as non-destructive physiological biomarkers in fish chronically exposed to metals.

    PubMed

    Seriani, Robson; Abessa, Denis M S; Moreira, Lucas B; Cabrera, Joana P G; Sanches, Juliana Q; Silva, Carolina L S; Amorim, Francisca A; Rivero, Dolores H R F; Silva, Flavia L; Fitorra, Lilian S; Carvalho-Oliveira, Regiani; Macchione, Mariangela; Ranzani-Paiva, Maria J T

    2015-02-01

    The biomonitoring of fish using biomarkers represents a useful tool for the assessment of aquatic pollution. This study evaluated the sublethal toxic effects of aquatic pollution on fish collected from a site contaminated by metals. Water and fish (Oreochromis niloticus) samples were collected from a pond in the Parque Ecológico do Tietê (PET) that lies along the Tietê River (São Paulo, Brazil), and from a control site (an experimental fish farm). The metal content of the water was evaluated, and fish were used to examine the properties of gill mucus and blood. The PET fish were evaluated for alterations in the in vitro transportability of mucus and changes in blood properties (e.g., cell volume, hemoglobin concentration, red blood cells, and white blood cell count). The results of the water analyzes indicated metal levels above the legal standards for Fe (0.71 mg/L), Ni (0.06 mg/L), Mn (0.11 mg/L), and Pb (0.48 mg/L). Compared to the controls, the hematologic parameter analyzes of PET fish revealed significantly higher numbers of erythrocytes (RBC), leukocytes (WBC), lymphocytes, erythroblasts, and Mean Corpuscular Volume (MCV); however, the hemoglobin content and Mean Corpuscular Hemoglobin Concentration (MCHC) values were significantly lower. The frequencies of nuclear abnormalities and micronuclei were significantly higher and the mucociliary transport was significantly lower in PET fish than in the controls. These results suggest that fish from the contaminated site exhibit a series of physiological responses, which probably indicate health disturbances. Furthermore, the results suggest that blood and mucus are promising, non-destructive targets for use in the monitoring of pollution. PMID:25463867

  14. Simultaneous and integrated neutron-based techniques for material analysis of a metallic ancient flute

    NASA Astrophysics Data System (ADS)

    Festa, G.; Pietropaolo, A.; Grazzi, F.; Sutton, L. F.; Scherillo, A.; Bognetti, L.; Bini, A.; Barzagli, E.; Schooneveld, E.; Andreani, C.

    2013-09-01

    A metallic 19th century flute was studied by means of integrated and simultaneous neutron-based techniques: neutron diffraction, neutron radiative capture analysis and neutron radiography. This experiment follows benchmark measurements devoted to assessing the effectiveness of a multitask beamline concept for neutron-based investigation on materials. The aim of this study is to show the potential application of the approach using multiple and integrated neutron-based techniques for musical instruments. Such samples, in the broad scenario of cultural heritage, represent an exciting research field. They may represent an interesting link between different disciplines such as nuclear physics, metallurgy and acoustics.

  15. Non-destructive geochemical analysis and element mapping using bench-top μ-XRF: applications and uses for geoscience problems

    NASA Astrophysics Data System (ADS)

    Flude, S.; Haschke, M.; Storey, M.; Tindle, A. G.

    2011-12-01

    X-Ray Fluorescence(XRF) has long been used to provide valuable geochemical analysis of bulk rock samples in geological studies. However, it is a destructive technique, requiring samples to be homogenised by grinding to a fine powder and formed into a compacted pellet, or fused glass disk. The resulting sample has to be completely flat for reliable analysis. Until recently, non-destructive, high spatial resolution μ- XRF analysis, was possible only at specialised Synchotron radiation facilities, where high excitation beam energies are possible and specialised X-Ray focussing optical systems are available. Recently, a number of bench-top μ-XRF systems have become available, allowing easy, rapid and non-destructive geochemical analysis of various materials. We present a number of examples of how the new bench-top M4 Tornado μ-XRF system, developed by Bruker AXS, can be used to provide valuable geochemical information on geological samples. Both quantitative and qualitative (in the form of X-Ray area-maps) data can be quickly and easily acquired for a wide range of elements (as light as Na, using a vacuum), with minimal sample preparation, using an X-Ray spot size as low as 25 μm. Large (up to 30 cm) specimens can be analysed due to the large sample chamber. This allows non-destructive characterisation of (for example) archaeological obsidian artefacts, potentially allowing their source to be identified. It also allows rapid chemical characterisation of large heterogenous samples and may be of use applied to (for example) drill core samples, sedimentary or pyroclastic rocks containing a wide variety of clasts, lavas sourced from mixed and mingled magmas and mineralised samples. An obvious application is the ability to produce element maps or line-scans of minerals, allowing zoning of major and trace elements to be identified and thus informing on crystallisation histories. An application of particular interest to 40Ar/39Ar geochronologists is the ability to screen

  16. Non-destructive geochemical analysis and element mapping using bench-top μ-XRF: applications and uses for geoscience problems

    NASA Astrophysics Data System (ADS)

    Flude, Stephanie; Haschke, Michael; Tagle, Roald; Storey, Michael

    2013-04-01

    X-Ray Fluorescence (XRF) has long been used to provide valuable geochemical analysis of bulk rock samples in geological studies. However, it is a destructive technique, requiring samples to be homogenised by grinding to a fine powder and formed into a compacted pellet, or fused glass disk and the resulting sample has to be completely flat for reliable analysis. Until recently, non-destructive, high spatial resolution µ- XRF analysis was possible only at specialised Synchrotron radiation facilities, where high excitation beam energies are possible and specialised X-ray focussing optical systems are available. Recently, a number of bench-top µ-XRF systems have become available, allowing easy, rapid and non-destructive geochemical analysis of various materials. We present a number of examples of how the new bench-top M4 Tornado µ-XRF system, developed by Bruker Nano, can be used to provide valuable geochemical information on geological samples. Both quantitative and qualitative (in the form of X-Ray area-maps) data can be quickly and easily acquired for a wide range of elements (as light as Na, using a vacuum), with minimal sample preparation, using an X-Ray spot size as low as 25 µm. Large specimens up to 30 cm and 5 kg in weight can be analysed due to the large sample chamber, allowing non-destructive characterisation of rare or valuable materials. This technique is particularly useful in characterising heterogeneous samples, such as drill cores, sedimentary and pyroclastic rocks containing a variety of clasts, lavas sourced from mixed and mingled magmas, mineralised samples and fossils. An obvious application is the ability to produce element maps or line-scans of minerals, allowing zoning of major and trace elements to be identified and thus informing on crystallisation histories. An application of particular interest to 40Ar/39Ar geochronologists is the ability to screen and assess the purity of mineral separates, or to characterise polished slabs for

  17. Pallasite formation after a non-destructive impact. An experimental- and image analyses-based study

    NASA Astrophysics Data System (ADS)

    Solferino, Giulio; Golabek, Gregor J.; Nimmo, Francis; Schmidt, Max W.

    2015-04-01

    The formation conditions of pallasite meteorites in the interior of terrestrial planetesimals have been matter of debate over the last 40 years. Among other characteristics, the simple mineralogical composition (i.e., olivine, FeNi, FeS +/- pyroxene) and the dualism between fragmental and rounded olivine-bearing pallasites must be successfully reproduced by a potential formation scenario. This study incorporates a series of annealing experiments with olivine plus Fe-S, and digital image analyses of slabs from Brenham, Brahin, Seymchan, and Springwater pallasites. Additionally a 1D finite-difference numerical model was employed to show that a non-destructive collision followed by mixing of the impactor's core with the target body silicate mantle could lead to the formation of both fragmental and rounded pallasite types. Specifically, an impact occurring right after the accomplishment of the target body differentiation and up to several millions of years afterwards allows for (i) average grain sizes consistent with the observed rounded olivine-bearing pallasites, (ii) a remnant magnetization of Fe-Ni olivine inclusions as measured in natural pallasites and (iii) for the metallographic cooling rates derived from Fe-Ni in pallasites. An important result of this investigation is the definition of the grain growth rate of olivine in molten Fe-S as follows: dn - d0n = k0 exp(-Ea/RT) t, where, d0 is the starting grain size, d the grain size at time t, n = 2.42(46) the growth exponent, k0 = 9.43•E06 μm n s-1 a characteristic constant, Ea = 289 kJ/mol the activation energy for a specific growth process, R the gas constant, and T the absolute temperature. The computed olivine coarsening rate is markedly faster than in olivine-FeNi and olivine-Ni systems.

  18. Non-Destructive Survey of Archaeological Sites Using Airborne Laser Scanning and Geophysical Applications

    NASA Astrophysics Data System (ADS)

    Poloprutský, Z.; Cejpová, M.; Němcová, J.

    2016-06-01

    This paper deals with the non-destructive documentation of the "Radkov" (Svitavy district, Czech Republic) archaeological site. ALS, GPR and land survey mapping will be used for the analysis. The fortified hilltop settlement "Radkov" is an immovable historical monument with preserved relics of anthropogenic origin in relief. Terrain reconnaissance can identify several accentuated objects on site. ALS enables identification of poorly recognizable archaeological objects and their contexture in the field. Geophysical survey enables defunct objects identification. These objects are hidden below the current ground surface and their layout is crucial. Land survey mapping provides technical support for ALS and GPR survey. It enables data georeferencing in geodetic reference systems. GIS can then be used for data analysis. M. Cejpová and J. Němcová have studied this site over a long period of time. In 2012 Radkov was surveyed using ALS in the project "The Research of Ancient Road in Southwest Moravia and East Bohemia". Since 2015 the authors have been examining this site. This paper summarises the existing results of the work of these authors. The digital elevation model in the form of a grid (GDEM) with a resolution 1 m of 2012 was the basis for this work. In 2015 the survey net, terrain reconnaissance and GPR survey of two archaeological objects were done at the site. GDEM was compared with these datasets. All datasets were processed individually and its results were compared in ArcGIS. This work was supported by the Grant Agency of the CTU in Prague, grant No. SGS16/063/OHK1/1T/11.

  19. Fully automated measurement setup for non-destructive characterization of thermoelectric materials near room temperature.

    PubMed

    Schwyter, E S; Helbling, T; Glatz, W; Hierold, C

    2012-07-01

    A measurement setup is presented that allows for a complete and non-destructive material characterization of electrochemically deposited thermoelectric material. All electrical (Seebeck coefficient α, electrical conductivity σ), thermal (thermal conductivity λ), and thermoelectric (figure of merit ZT) material parameters are determined within a single measurement run. The setup is capable of characterizing individual electrochemically deposited Bi(2+x)Te(3-x) pillars of various size and thickness down to a few 10 μm, embedded in a polymer matrix with a maximum measurement area of 1 × 1 cm(2). The temperature range is limited to an application specific window near room temperature of 10 °C to 70 °C. A maximum thermal flux of 1 W/cm(2) can be applied to the device under test (DUT) by the Peltier element driven heat source and sink. The setup has a highly symmetric design and DUTs can be mounted and dismounted within few seconds. A novel in situ recalibration method for a simple, quick and more accurate calibration of all sensors has been developed. Thermal losses within the setup are analysed and are mathematically considered for each measurement. All random and systematic errors are encountered for by a MATLAB routine, calculating all the target parameters and their uncertainties. The setup provides a measurement accuracy of ±2.34 μV/K for α, ±810.16 S/m for σ, ±0.13 W/mK for λ, and ±0.0075 for ZT at a mean temperature of 42.5 °C for the specifically designed test samples with a pillar diameter of 696 μm and thickness of 134 μm, embedded in a polyethylene terephthalate polymer matrix. PMID:22852715

  20. The effect of variation in phased array element performance for Non-Destructive Evaluation (NDE).

    PubMed

    Duxbury, David; Russell, Jonathan; Lowe, Michael

    2013-08-01

    This paper reports the results of an investigation into the effects of phased array element performance on ultrasonic beam integrity. This investigation has been performed using an array beam model based on Huygens' principle to independently investigate the effects of element sensitivity and phase, and non-functioning elements via Monte Carlo simulation. The purpose of this work is to allow a new method of array calibration for Non-Destructive Evaluation (NDE) to be adopted that focuses on probe integrity rather than beam integrity. This approach is better suited to component inspections that utilise Full Matrix Capture (FMC) to record data as the calibration routine is uncoupled from the beams that the array is required to produce. For this approach to be adopted specifications must be placed on element performance that guarantee beam quality without carrying out any beam forming. The principal result of this investigation is that the dominant outcome following variations in array element performance is the introduction of beam artefacts such as main beam broadening, raising of the noise floor of the ultrasonic field, and the enlargement or creation of side lobes. Specifications for practical allowable limits of element sensitivity, element phase, and the number of non-functioning elements have been suggested based on a minimum amplitude difference between beam artefacts and the main beam peak of 8 dB. Simulation at a number of centre frequencies has led to a recommendation that the product of transducer bandwidth and maximum phase error should be kept below 0.051 and 0.035 for focused and plane beams respectively. Element sensitivity should be within 50% of mean value of the aperture, and no more than 9% of the elements should be non-functioning. PMID:23337826

  1. Non-destructive inspection protocol for reinforced concrete barriers and bridge railings

    NASA Astrophysics Data System (ADS)

    Chintakunta, Satish R.; Boone, Shane D.

    2014-02-01

    Reinforced concrete highway barriers and bridge railings serve to prevent errant vehicles from departing the travel way at grade separations. Despite the important role that they play in maintaining safety and their ubiquitous nature, barrier inspection rarely moves beyond visual inspection. In August 2008, a tractor-trailer fatally departed William Preston Lane, Jr. Memorial Bridge after it dislodged a section of the bridge barrier. Investigations following the accident identified significant corrosion of the anchor bolts attaching the bridge railing to the bridge deck. As a result of the information gathered during its investigation of the accident, the National Transportation Safety Board (NTSB) made recommendations to the Federal Highway Administration concerning Non-Destructive Evaluation (NDE) of concrete bridge railings. The Center for nondestructive evaluation (NDE) at Turner Fairbank Highway Research Center in McLean, VA is currently evaluating feasibility of using four technologies - ground penetrating radar (GPR), ultrasonic pulse-echo, digital radiography and infrared thermal imaging methods to develop bridge inspection methods that augment visual inspections, offer reliable measurement techniques, and are practical, both in terms of time and cost, for field inspection work. Controlled samples containing predefined corrosion levels in reinforcing steel were embedded at barrier connection points for laboratory testing. All four NDE techniques were used in the initial phase I testing. An inspection protocol for detecting and measuring the corrosion of reinforced steel embedded in the anchorage system will be developed as part of phase II research. The identified technologies shall be further developed for field testing utilizing a structure with a barrier in good condition and a structure with a barrier in poor condition.

  2. Crime scene investigations using portable, non-destructive space exploration technology

    NASA Technical Reports Server (NTRS)

    Trombka, Jacob I.; Schweitzer, Jeffrey; Selavka, Carl; Dale, Mark; Gahn, Norman; Floyd, Samuel; Marie, James; Hobson, Maritza; Zeosky, Jerry; Martin, Ken; McClannahan, Timothy; Solomon, Pamela; Gottschang, Elyse

    2002-01-01

    The National Institute of Justice (NIJ) and the National Aeronautics and Space Administration's (NASAs) Goddard Space Flight Center (GSFC) have teamed up to explore the use of NASA developed technologies to help criminal justice agencies and professionals solve crimes. The objective of the program is to produce instruments and communication networks that have application within both NASA's space program and NIJ programs with state and local forensic laboratories. A working group of NASA scientists and law enforcement professionals has been established to develop and implement a feasibility demonstration program. Specifically, the group has focused its efforts on identifying gunpowder and primer residue, blood, and semen at crime scenes. Non-destructive elemental composition identification methods are carried out using portable X-ray fluorescence (XRF) systems. These systems are similar to those being developed for planetary exploration programs. A breadboard model of a portable XRF system has been constructed for these tests using room temperature silicon and cadmium-zinc telluride (CZT) detectors. Preliminary tests have been completed with gunshot residue (GSR), blood-spatter and semen samples. Many of the element composition lines have been identified. Studies to determine the minimum detectable limits needed for the analyses of GSR, blood and semen in the crime scene environment have been initiated and preliminary results obtained. Furthermore, a database made up of the inorganic composition of GSR is being developed. Using data obtained from the open literature of the elemental composition of barium (Ba) and antimony (Sb) in handswipes of GSR, we believe that there may be a unique GSR signature based on the Sb to Ba ratio.

  3. Non-destructive inspection protocol for reinforced concrete barriers and bridge railings

    SciTech Connect

    Chintakunta, Satish R.; Boone, Shane D.

    2014-02-18

    Reinforced concrete highway barriers and bridge railings serve to prevent errant vehicles from departing the travel way at grade separations. Despite the important role that they play in maintaining safety and their ubiquitous nature, barrier inspection rarely moves beyond visual inspection. In August 2008, a tractor-trailer fatally departed William Preston Lane, Jr. Memorial Bridge after it dislodged a section of the bridge barrier. Investigations following the accident identified significant corrosion of the anchor bolts attaching the bridge railing to the bridge deck. As a result of the information gathered during its investigation of the accident, the National Transportation Safety Board (NTSB) made recommendations to the Federal Highway Administration concerning Non-Destructive Evaluation (NDE) of concrete bridge railings. The Center for nondestructive evaluation (NDE) at Turner Fairbank Highway Research Center in McLean, VA is currently evaluating feasibility of using four technologies - ground penetrating radar (GPR), ultrasonic pulse-echo, digital radiography and infrared thermal imaging methods to develop bridge inspection methods that augment visual inspections, offer reliable measurement techniques, and are practical, both in terms of time and cost, for field inspection work. Controlled samples containing predefined corrosion levels in reinforcing steel were embedded at barrier connection points for laboratory testing. All four NDE techniques were used in the initial phase I testing. An inspection protocol for detecting and measuring the corrosion of reinforced steel embedded in the anchorage system will be developed as part of phase II research. The identified technologies shall be further developed for field testing utilizing a structure with a barrier in good condition and a structure with a barrier in poor condition.

  4. Non destructive technique for cracks detection by an eddy current in differential mode for steel frames

    SciTech Connect

    Harzalla, S. Chabaat, M.; Belgacem, F. Bin Muhammad

    2014-12-10

    In this paper, a nondestructive technique is used as a tool to control cracks and microcracks in materials. A simulation by a numerical approach such as the finite element method is employed to detect cracks and eventually; to study their propagation using a crucial parameter such as the stress intensity factor. This approach has been used in the aircraft industry to control cracks. Besides, it makes it possible to highlight the defects of parts while preserving the integrity of the controlled products. On the other side, it is proven that the reliability of the control of defects gives convincing results for the improvement of the quality and the safety of the material. Eddy current testing (ECT) is a standard technique in industry for the detection of surface breaking flaws in magnetic materials such as steels. In this context, simulation tools can be used to improve the understanding of experimental signals, optimize the design of sensors or evaluate the performance of ECT procedures. CEA-LIST has developed for many years semi-analytical models embedded into the simulation platform CIVA dedicated to non-destructive testing. The developments presented herein address the case of flaws located inside a planar and magnetic medium. Simulation results are obtained through the application of the Volume Integral Method (VIM). When considering the ECT of a single flaw, a system of two differential equations is derived from Maxwell equations. The numerical resolution of the system is carried out using the classical Galerkin variant of the Method of Moments. Besides, a probe response is calculated by application of the Lorentz reciprocity theorem. Finally, the approach itself as well as comparisons between simulation results and measured data are presented.

  5. Non-destructive microwave evaluation of TBC delamination induced by acute angle laser drilling

    NASA Astrophysics Data System (ADS)

    Sezer, H. K.; Li, Lin; Wu, Z.; Anderson, B.; Williams, P.

    2007-01-01

    Laser drilling has been applied to the production of cooling holes of various size and angles in the modern aerospace gas turbine components such as turbine blades, nozzle guide vanes, combustion chambers and afterburner. These parts are usually made of heat resistant nickel superalloys. The superalloy substrate is coated with yttria-stabilized zirconia thermal barrier coatings (TBCs) to protect them from reaching excessive temperatures in hot engine environments. Drilling the parts at acute angles to the surface is complicated because (i) multiple layers are being drilled through, (ii) the melt ejection and heat flow patterns around the hole are non-symmetrical and (iii) the drilling distance is greater than when drilling normal to the surface. In a previous investigation by the authors, delamination of TBC was addressed as a main problem of angled drilling and mechanisms involved were discussed. Characterization of delamination cracks was normally performed via metallographic techniques. It involves sectioning the samples using an abrasive cutting machine, grinding with successively finer silicon carbide paper up to the centre of the hole and polishing to allow optical microscopic analysis of the cracks. However, clamping and sectioning process of thermal-spray-coated workpieces can introduce cracks in brittle coatings due to the drag of the cut-off wheels. Hence, it is not possible to decide if the delamination is caused as a result of post-process sectioning or laser drilling. In this paper, a microwave non-destructive testing (NDT) technique is employed to evaluate the integrity of TBC after acute angle laser drilling. An Agilent 8510 XF network analyser operating over the frequency range of 45 MHz to 110 GHz was used to measure the amplitude and phase variations of scattered waves. The results significantly indicated the existence of delamination of 1-1.5 mm long at the TBC/substrate interface on the leading edge part of an acute-angled hole laser drilled

  6. Dynamic laser speckle for non-destructive quality evaluation of bread

    NASA Astrophysics Data System (ADS)

    Stoykova, E.; Ivanov, B.; Shopova, M.; Lyubenova, T.; Panchev, I.; Sainov, V.

    2010-10-01

    Coherent illumination of a diffuse object yields a randomly varying interference pattern, which changes over time at any modification of the object. This phenomenon can be used for detection and visualization of physical or biological activity in various objects (e.g. fruits, seeds, coatings) through statistical description of laser speckle dynamics. The present report aims at non-destructive full-field evaluation of bread by spatial-temporal characterization of laser speckle. The main purpose of the conducted experiments was to prove the ability of the dynamic speckle method to indicate activity within the studied bread samples. In the set-up for acquisition and storage of dynamic speckle patterns an expanded beam from a DPSS laser (532 nm and 100mW) illuminated the sample through a ground glass diffuser. A CCD camera, adjusted to focus the sample, recorded regularly a sequence of images (8 bits and 780 x 582 squared pixels, sized 8.1 × 8.1 μm) at sampling frequency 0.25 Hz. A temporal structure function was calculated to evaluate activity of the bread samples in time using the full images in the sequence. In total, 7 samples of two types of bread were monitored during a chemical and physical process of bread's staling. Segmentation of images into matrixes of isometric fragments was also utilized. The results proved the potential of dynamic speckle as effective means for monitoring the process of bread staling and ability of this approach to differentiate between different types of bread.

  7. Near-infrared spectroscopy and hyperspectral imaging: non-destructive analysis of biological materials.

    PubMed

    Manley, Marena

    2014-12-21

    Near-infrared (NIR) spectroscopy has come of age and is now prominent among major analytical technologies after the NIR region was discovered in 1800, revived and developed in the early 1950s and put into practice in the 1970s. Since its first use in the cereal industry, it has become the quality control method of choice for many more applications due to the advancement in instrumentation, computing power and multivariate data analysis. NIR spectroscopy is also increasingly used during basic research performed to better understand complex biological systems, e.g. by means of studying characteristic water absorption bands. The shorter NIR wavelengths (800-2500 nm), compared to those in the mid-infrared (MIR) range (2500-15 000 nm) enable increased penetration depth and subsequent non-destructive, non-invasive, chemical-free, rapid analysis possibilities for a wide range of biological materials. A disadvantage of NIR spectroscopy is its reliance on reference methods and model development using chemometrics. NIR measurements and predictions are, however, considered more reproducible than the usually more accurate and precise reference methods. The advantages of NIR spectroscopy contribute to it now often being favoured over other spectroscopic (colourimetry and MIR) and analytical methods, using chemicals and producing chemical waste, such as gas chromatography (GC) and high performance liquid chromatography (HPLC). This tutorial review intends to provide a brief overview of the basic theoretical principles and most investigated applications of NIR spectroscopy. In addition, it considers the recent development, principles and applications of NIR hyperspectral imaging. NIR hyperspectral imaging provides NIR spectral data as a set of images, each representing a narrow wavelength range or spectral band. The advantage compared to NIR spectroscopy is that, due to the additional spatial dimension provided by this technology, the images can be analysed and visualised as

  8. Non destructive technique for cracks detection by an eddy current in differential mode for steel frames

    NASA Astrophysics Data System (ADS)

    Harzalla, S.; Belgacem, F. Bin Muhammad; Chabaat, M.

    2014-12-01

    In this paper, a nondestructive technique is used as a tool to control cracks and microcracks in materials. A simulation by a numerical approach such as the finite element method is employed to detect cracks and eventually; to study their propagation using a crucial parameter such as the stress intensity factor. This approach has been used in the aircraft industry to control cracks. Besides, it makes it possible to highlight the defects of parts while preserving the integrity of the controlled products. On the other side, it is proven that the reliability of the control of defects gives convincing results for the improvement of the quality and the safety of the material. Eddy current testing (ECT) is a standard technique in industry for the detection of surface breaking flaws in magnetic materials such as steels. In this context, simulation tools can be used to improve the understanding of experimental signals, optimize the design of sensors or evaluate the performance of ECT procedures. CEA-LIST has developed for many years semi-analytical models embedded into the simulation platform CIVA dedicated to non-destructive testing. The developments presented herein address the case of flaws located inside a planar and magnetic medium. Simulation results are obtained through the application of the Volume Integral Method (VIM). When considering the ECT of a single flaw, a system of two differential equations is derived from Maxwell equations. The numerical resolution of the system is carried out using the classical Galerkin variant of the Method of Moments. Besides, a probe response is calculated by application of the Lorentz reciprocity theorem. Finally, the approach itself as well as comparisons between simulation results and measured data are presented.

  9. Crime scene investigations using portable, non-destructive space exploration technology.

    PubMed

    Trombka, Jacob I; Schweitzer, Jeffrey; Selavka, Carl; Dale, Mark; Gahn, Norman; Floyd, Samuel; Marie, James; Hobson, Maritza; Zeosky, Jerry; Martin, Ken; McClannahan, Timothy; Solomon, Pamela; Gottschang, Elyse

    2002-09-10

    The National Institute of Justice (NIJ) and the National Aeronautics and Space Administration's (NASAs) Goddard Space Flight Center (GSFC) have teamed up to explore the use of NASA developed technologies to help criminal justice agencies and professionals solve crimes. The objective of the program is to produce instruments and communication networks that have application within both NASA's space program and NIJ programs with state and local forensic laboratories. A working group of NASA scientists and law enforcement professionals has been established to develop and implement a feasibility demonstration program. Specifically, the group has focused its efforts on identifying gunpowder and primer residue, blood, and semen at crime scenes. Non-destructive elemental composition identification methods are carried out using portable X-ray fluorescence (XRF) systems. These systems are similar to those being developed for planetary exploration programs. A breadboard model of a portable XRF system has been constructed for these tests using room temperature silicon and cadmium-zinc telluride (CZT) detectors. Preliminary tests have been completed with gunshot residue (GSR), blood-spatter and semen samples. Many of the element composition lines have been identified. Studies to determine the minimum detectable limits needed for the analyses of GSR, blood and semen in the crime scene environment have been initiated and preliminary results obtained. Furthermore, a database made up of the inorganic composition of GSR is being developed. Using data obtained from the open literature of the elemental composition of barium (Ba) and antimony (Sb) in handswipes of GSR, we believe that there may be a unique GSR signature based on the Sb to Ba ratio. PMID:12230992

  10. Non-Destructive Evaluation of Kissing Bonds using Local Defect Resonance (LDR) Spectroscopy: A Simulation Study

    NASA Astrophysics Data System (ADS)

    Delrue, S.; Tabatabaeipour, M.; Hettler, J.; Van Den Abeele, K.

    With the growing demand from industry to optimize and further develop existing Non-Destructive Testing & Evaluation (NDT&E) techniques or new methods to detect and characterize incipient damage with high sensitivity and increased quality, ample efforts have been devoted to better understand the typical behavior of kissing bonds, such as delaminations and cracks. Recently, it has been shown experimentally that the nonlinear ultrasonic response of kissing bonds could be enhanced by using Local Defect Resonance (LDR) spectroscopy. LDR spectroscopy is an efficient NDT technique that takes advantage of the characteristic fre- quencies of the defect (defect resonances) in order to provide maximum acoustic wave-defect interaction. In fact, for nonlinear methodologies, the ultrasonic excitation of the sample should occur at either multiples or integer ratios of the characteristic defect resonance frequencies, in order to obtain the highest signal-to-noise response in the nonlinear LDR spectroscopy. In this paper, the potential of using LDR spectroscopy for the detection, localization and characterization of kissing bonds is illustrated using a 3D simulation code for elastic wave propagation in materials containing closed but dynamically active cracks or delaminations. Using the model, we are able to define an appropriate method, based on the Scaling Subtraction Method (SSM), to determine the local defect resonance frequencies of a delamination in a composite plate and to illustrate an increase in defect nonlinearity due to LDR. The simulation results will help us to obtain a better understanding of the concept of LDR and to assist in the further design and testing of LDR spectroscopy for the detection, localization and characterization of kissing bonds.

  11. Iron speciation in ancient Attic pottery pigments: a non-destructive SR-XAS investigation.

    PubMed

    Bardelli, Fabrizio; Barone, Germana; Crupi, Vincenza; Longo, Francesca; Maisano, Giacomo; Majolino, Domenico; Mazzoleni, Paolo; Venuti, Valentina

    2012-09-01

    The present work reports a detailed investigation on the speciation of iron in the pigments of decorated pottery fragments of cultural heritage relevance. The fragments come from the Gioiosa Guardia archaeological site in the area of the `Strait of Messina' (Sicily, Southern Italy), and date back to VI-V century BC. The purpose of this study is to characterize the main pigmenting agents responsible for the dark-red coloration of the specimens using non-destructive analytical techniques such as synchrotron radiation X-ray absorption spectroscopy (SR-XAS), a well established technique for cultural heritage and environmental subjects. Absorption spectra were collected at the Fe K-edge on the Italian beamline for absorption and diffraction (BM8-GILDA) at the European Synchrotron Radiation Facility in Grenoble (France). In order to determine the speciation of Fe in the samples, principal component analysis and least-squares fitting procedures were applied to the near-edge part of the absorption spectra (XANES). Details on the local structure around the Fe sites were obtained by analyzing the extended part of the spectra (EXAFS). Furthermore, an accurate determination of the average Fe oxidation state was carried out through analysis of the pre-edge peaks of the absorption spectra. Samples resulted composed of an admixture of Fe(2)O(3) (hematite or maghemite) and magnetite (Fe(3)O(4)), occurring in different relative abundance in the dark- and light-colored areas of the specimens. The results obtained are complementary to information previously obtained by means of instrumental neutron activation analysis, Fourier transform infrared absorbance and time-of-flight neutron diffraction. PMID:22898958

  12. Non-destructive testing for combined stresses using high-resolution thermal infrared remote sensing and ''three-temperature model'': A case study on mangrove plant Kandelia obovata

    NASA Astrophysics Data System (ADS)

    Shen, X.; LI, R.; Li, Y. H.; Chai, M. W.; Qiu, G. Y.

    2015-12-01

    Mangrove forests are currently facing serious heavy metal pollution and eutrophication problems. Remote sensing of vegetation is a non-invasive methodology to monitor physiological characteristics of plants. The potential of high-resolution thermal infrared remote sensing and the three-temperature model (3T model) for monitoring the effects of combined stresses on mangrove plant Kandelia obovata was assessed. The experiment consists of four levels of CdCl2 stress (0, 1, 5 and 10 mg·L-1) in each of four NH4Cl stress levels: 0, 10, 50 and 100 mg·L-1, respectively. The non-destructive testing indices, including plant transpiration transfer coefficient (hat) and estimated instant transpiration rate, were calculated from thermal images and the 3T model. The photosynthetic rate (Pn), stomatal conductance (Gs) and transpiration rate (Tr) were also tested to validate the results of non-destructive testing. The results showed that: (1) The plant transpiration transfer coefficients (hat) were changed from 0.246 to 0.928 and the estimated instant transpiration rates ranged from 0.590 to 6.119 mmol H2O m-2s-1 among different combined stresses. With increasing stress, there were significant decreases for estimated instant transpiration rate and increases for hat (P < 0.05). (2) The photosynthetic characteristics, including Pn, Gs and Tr, were significantly decreased with the increasing combined stresses (P < 0.05). (3) The effects of Cd, N, and their interaction on non-destructive indices and photosynthetic parameters were significant (P < 0.05). (4) The hat was significantly negatively correlated with photosynthetic parameters and the T-3T was significantly positively correlated with photosynthetic parameters (P < 0.05). Therefore, the transpiration transfer coefficient (hat) andestimated instant transpiration rate detecting by infrared thermography device could be indicators to reflect the stress conditions. Based on high-resolution thermal infrared remote sensing, we

  13. Biomonitoring of environmental stress in Pollicipes pollicipes from the northern coast of Portugal: a non-destructive approach using haemolymph.

    PubMed

    Ramos, A S; Antunes, S C; Nunes, B

    2016-04-01

    In the intertidal area, the interactions between anthropogenic contaminants and natural variations (biotic and abiotic factors) are poorly understood. Consequently, there is a great need for new assessment procedures to characterize the biological responses occurring in organisms from this extreme environment. Considering the intrinsic inter-individual variations among organisms from a single population, it is important to propose new methods that address this variability, by validating a sampling strategy in target groups of organisms, encompassing seasonal fluctuations. This strategy must however be less invasive than traditional methods, avoiding the mandatory sacrifice of the sampled organisms. By doing so, it is also possible to increase the ecological relevance of obtainable data, and contribute to minimize damage to endangered species. The main purpose of the present study was to assess the influence of seasonal variations in the responses elicited by anthropogenic compounds on a marine crustacean species, by using a biomarker-based approach. According to this purpose, the seasonal variations in key physiological responses (biomarkers) were investigated in the crustacean Pollicipes pollicipes from the Northern coast of Portugal. Biomarkers used for this purpose were the activity of the phase II biotransformation isoenzymes glutathione-S-transferases (GSTs), the activity of cholinesterases (ChEs), and the levels of lipid peroxidation (TBARS). All biomarkers were quantified in distinct tissues (such as cirri, and peduncle) and haemolymph (a non-destructive source of biological samples). The glycogen content in peduncle tissue, and the variation in haemocyte number in haemolymph were also analyzed. Samples were collected monthly, during a year, in Lavadores, located in the proximity of an estuarine area (Douro River). The results showed a seasonal pattern in all tested biomarkers. The results also showed a significant increase in GSTs activities, and in

  14. LL/ILW: Post-Qualification of Old Waste through Non-Destructive Extraction of Barrels from Cement Shields - 13535

    SciTech Connect

    Oehmigen, Steffen; Ambos, Frank

    2013-07-01

    Currently there is a large number of radioactive waste drums entombed in cement shields at German nuclear power plants. These concrete containers used in the past for the waste are not approved for the final repository. Compliance with current acceptance criteria of the final repository has to be proven by qualification measures on the waste. To meet these criteria, a new declaration and new packing is necessary. A simple non-destructive extraction of about 2000 drums from their concrete shields is not possible. So different methods were tested to find a way of non-destructive extraction of old waste drums from cement shields and therefore reduce the final repository volume and final repository costs by using a container accepted and approved for Konrad. The main objective was to build a mobile system to offer this service to nuclear plant stations. (authors)

  15. A New Facility For Non-Destructive Assay With A Time-Tagged {sup 252}Cf Source

    SciTech Connect

    Stevanato, L.; Caldogno, M.; Hao, Xin; Dima, R.; Fabris, D.; Nebbia, G.; Lunardon, M.; Moretto, S.; Pesente, S.; Viesti, G.; Sajo-Bohus, L.

    2011-06-01

    A new facility for Non-Destructive Assay based on a time-tagged {sup 252}Cf spontaneous fission source is now in operation at the Padova University. The system is designed to analyze samples with dimensions on the order of 20x20 cm{sup 2}, the material recognition being obtained by measuring simultaneously transmission of neutrons and gamma rays as a function of energy.

  16. Shake and stew: a non-destructive PCR-ready DNA isolation method from a single preserved fish larva.

    PubMed

    Alvarado Bremer, J R; Smith, B L; Moulton, D L; Lu, C-P; Cornic, M

    2014-01-01

    A rapid non-destructive alternative to isolate DNA from an individual fish larva is presented, based on the suspension of epithelial cells through vortex forces, and the release of DNA in a heated alkaline solution. DNA from >6056 fish larvae isolated using this protocol has yielded a high PCR amplification success rate (>93%), suggesting its applicability to other taxonomic groups or sources when tissue amount is the limiting factor. PMID:24383811

  17. Non-destructive assay of spent nuclear fuel using passive neutron Albedo reactivity

    SciTech Connect

    Evans, L G; Schear, M A; Croft, S; Tobin, S J; Swinhoe, M T; Menlove, H O

    2010-01-01

    Passive Neutron Albedo Reactivity (PNAR) is one of fourteen techniques that has been researched and evaluated to form part of a comprehensive and integrated detection system for the non-destructive assay (NDA) of spent nuclear fuel. PNAR implemented with {sup 3}He tubes for neutron detection (PNAR-{sup 3}He) is the measurement of time correlated neutrons from a spent fuel assembly with and without a Cadmium (Cd) layer surrounding the assembly. PNAR utilizes the self-interrogation of the fuel via reflection of neutrons born in the fuel assembly back in to the fuel assembly. The neutrons originate primarily from spontaneous fission events within the fuel itself (Curium-244) but are amplified by multiplication. The presence and removal of the Cd provides two measurement conditions with different neutron energy spectra and therefore different interrogating neutron characteristics. Cd has a high cross-section of absorption for slow neutrons and therefore greatly reduces the low energy (thermal) neutron fluence rate returning. The ratios of the Singles, Doubles and Triples count rates obtained in each case are known as the Cd ratios, which are related to fissile content. A potential safeguards application for which PNAR-{sup 3}He is particularly suited is 'fingerprinting'. Fingerprinting could function as an alternative to plutonium (Pu) mass determination; providing confidence that material was not diverted during transport between sites. PNAR-{sup 3}He has six primary NDA signatures: Singles, Doubles and Triples count rates measured with two energy spectra at both shipping and receiving sites. This is to uniquely identify the fuel assembly, and confirm no changes have taken place during transport. Changes may indicate all attempt to divert material for example. Here, the physics of the PNAR-{sup 3}He concept will be explained, alongside a discussion on the development of a prototypical PNAR-{sup 3}He instrument using simulation. The capabilities and performance of the

  18. A Non-Destructive Investigation of Plutonium Reference Items Used for Calibration

    SciTech Connect

    Curtis, D.; Wormald, M.; Wilkins, C.G.; Croft, S.

    2008-07-01

    The calibration of Non-Destructive Assay (NDA) equipment relies on the availability of certified items of known content and construction. Increasing use is being made of calculational tools to create calibration data and so representative standards are no longer always needed. However, even with this approach it is invaluable to benchmark the tools against the measured response under well known conditions and to apply the Measured: Calculated ratio as a scaling factor. Reference sources for Pu are typically doubly encapsulated for safety reasons and contain Pu of well known chemical form, elemental composition, relative isotopic composition and mass. Destructive analysis techniques are used to characterize the materials and so these attributes are usually known with far greater accuracy than that achievable by the NDA methods to which they are being applied. Construction details are also usually provided in order to permit attenuation and related factors to be estimated. This work concerns the empirical investigation of a set of encapsulated PuO{sub 2} powder standards. The characterization and fabrication of the items is adequately documented with the exception of fill height. The fill height governs the powder density and in turn both the self attenuation of photons and the self multiplication of neutrons, consequently this is an important omission. Initially the location and dimensions of the internal plunger cup was used as a basis to estimate the packing density, but later records of plunger positions made at the time of filling were found and significant revisions followed. As a consequence of discrepancies observed in measurements designed to evaluate a new lump correction algorithm we were led to investigate the powder density and distribution directly by gamma-ray scanning. In some cases this resulted in revised density estimates. Equally importantly it was discovered that for the smallest mass items, the powder was not held fixed in the form of a uniform

  19. Advanced Non-Destructive Assay Systems and Special Instrumentation Requirements for Spent Nuclear Fuel Recycling Facilities

    SciTech Connect

    Simpson, A.P.; Clapham, M.J.; Swinson, B.

    2008-07-01

    The safe and efficient operation of the next generation of Spent Nuclear Fuel (SNF) recycling / reprocessing facilities is dependent upon the availability of high performance real time Non- Destructive Assay (NDA) systems at key in-line points. A diverse variety of such special instrument systems have been developed and commissioned at reprocessing plants worldwide over the past fifty years.. The measurement purpose, technique and plant performance for selected key systems have been reviewed. Obsolescence issues and areas for development are identified in the context of the measurements needs of future recycling facilities and their associated waste treatment plants. Areas of concern include (i) Materials Accountancy and Safeguards, (ii) Head End process control and feed envelope verification, (iii) Real-time monitoring at the Product Finishing Stages, (iv) Criticality safety and (v) Radioactive waste characterization. Common characteristics of the traditional NDA systems in historical recycling facilities are (i) In-house development of bespoke instruments resulting in equipment that if often unique to a given facility and generally not commercially available, (ii) Use of 'novel' techniques - not widely deployed in other applications, (iii) Design features that are tailored to the specific plant requirements of the facility operator, (iv) Systems and software implementation that was not always carried out to modern industry standards and (v) A tendency to be overly complex - refined by on-plant operational usage and experience. Although these systems were 'validated in use' and are generally fit for purpose, there are a number of potential problems in transferring technology that was developed ten or more years ago to the new build SNF recycling facilities of the future. These issues include (i) Obsolescence of components - particularly with respect to computer hardware and data acquisition electronics, (ii) Availability of Intellectual Property and design

  20. Quasi ?non-destructive? laser ablation-inductively coupled plasma-mass spectrometry fingerprinting of sapphires

    NASA Astrophysics Data System (ADS)

    Guillong, M.; Günther, D.

    2001-07-01

    A homogenized 193 nm excimer laser with a flat-top beam profile was used to study the capabilities of LA-ICP-MS for 'quasi' non-destructive fingerprinting and sourcing of sapphires from different locations. Sapphires contain 97-99% of Al 2O 3 (corundum), with the remainder composed of several trace elements, which can be used to distinguish the origin of these gemstones. The ablation behavior of sapphires, as well as the minimum quantity of sample removal that is required to determine these trace elements, was investigated. The optimum ablation conditions were a fluency of 6 J cm -2, a crater diameter of 120 μm, and a laser repetition rate of 10 Hz. The optimum time for the ablation was determined to be 2 s, equivalent to 20 laser pulses. The mean sample removal was 60 nm per pulse (approx. 3 ng per pulse). This allowed satisfactory trace element determination, and was found to cause the minimum amount of damage, while allowing for the fingerprinting of sapphires. More than 40 isotopes were measured using different spatial resolutions (20-120 μm) and eight elements were reproducibly detected in 25 sapphire samples from five different locations. The reproducibility of the trace element distribution is limited by the heterogeneity of the sample. The mean of five or more replicate analyses per sample was used. Calibration was carried out using NIST 612 glass reference material as external standard. The linear dynamic range of the ICP-MS (nine orders of magnitude) allowed the use of Al, the major element in sapphire, as an internal standard. The limits of detection for most of the light elements were in the μg g -1 range and were better for heavier elements (mass >85), being in the 0.1 μg g -1 range. The accuracy of the determinations was demonstrated by comparison with XRF analyses of the same set of samples. Using the quantitative analyses obtained using LA-ICP-MS, natural sapphires from five different origins were statistically classified using ternary plots and

  1. Determining the Stability of Asphalt Concrete at Varying Temperatures and Exposure Times Using Destructive and Non-Destructive Methods

    NASA Astrophysics Data System (ADS)

    Ozgan, Ercan

    This study examined the effect of varying temperatures and varying exposure times on the stability of asphalt concrete using destructive and non-destructive methods. The study also looked at the relationship between destructive and non-destructive methods. In order to investigate the stability according to exposure time and environment temperature, exposure times of 1.5, 3, 4.5 and 6 h and temperatures of 30, 40 and 50°C were selected. The results showed that at the environment temperature of 17°C the stability of the asphalt core samples decreased by 40.16% at 30°C after 1.5 h and 62.39% after 6 h. At 40°C the decrease was 74.31% after 1.5 and 78.10% after 6 h. At 50°C the stability of the asphalt decreased by 83.22% after 1.5 h and 88.66% after 6 h. The results also pointed to a moderate negative relationship (R = -0.533) between second ultrasound and stability indicating that non-destructive ultrasound method can be used to predict stability.

  2. An accurate method for determining residual stresses with magnetic non-destructive techniques in welded ferromagnetic steels

    NASA Astrophysics Data System (ADS)

    Vourna, P.

    2016-03-01

    The scope of the present research work was to investigate the proper selection criteria for developing a suitable methodology for the accurate determination of residual stresses existing in welded parts. Magnetic non-destructive testing took place by the use of two magnetic non-destructive techniques: by the measurement of the magnetic Barkhausen noise and by the evaluation of the magnetic hysteresis loop parameters. The spatial distribution of residual stresses in welded metal parts by both non-destructive magnetic methods and two diffraction methods was determined. The conduction of magnetic measurements required an initial calibration of ferromagnetic steels. Based on the examined volume of the sample, all methods used were divided into two large categories: the first one was related to the determination of surface residual stress, whereas the second one was related to bulk residual stress determination. The first category included the magnetic Barkhausen noise and the X-ray diffraction measurements, while the second one included the magnetic permeability and the neutron diffraction data. The residual stresses determined by the magnetic techniques were in a good agreement with the diffraction ones.

  3. A simple, sensitive and non-destructive technique for characterizing bovine dental enamel erosion: attenuated total reflection Fourier transform infrared spectroscopy.

    PubMed

    Kim, In-Hye; Son, Jun Sik; Min, Bong Ki; Kim, Young Kyoung; Kim, Kyo-Han; Kwon, Tae-Yub

    2016-01-01

    Although many techniques are available to assess enamel erosion in vitro, a simple, non-destructive method with sufficient sensitivity for quantifying dental erosion is required. This study characterized the bovine dental enamel erosion induced by various acidic beverages in vitro using attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy. Deionized water (control) and 10 acidic beverages were selected to study erosion, and the pH and neutralizable acidity were measured. Bovine anterior teeth (110) were polished with up to 1 200-grit silicon carbide paper to produce flat enamel surfaces, which were then immersed in 20 mL of the beverages for 30 min at 37 °C. The degree of erosion was evaluated using ATR-FTIR spectroscopy and Vickers' microhardness measurements. The spectra obtained were interpreted in two ways that focused on the ν1, ν3 phosphate contour: the ratio of the height amplitude of ν3 PO4 to that of ν1 PO4 (Method 1) and the shift of the ν3 PO4 peak to a higher wavenumber (Method 2). The percentage changes in microhardness after the erosion treatments were primarily affected by the pH of the immersion media. Regression analyses revealed highly significant correlations between the surface hardness change and the degree of erosion, as detected by ATR-FTIR spectroscopy (P<0.001). Method 1 was the most sensitive to these changes, followed by surface hardness change measurements and Method 2. This study suggests that ATR-FTIR spectroscopy is potentially advantageous over the microhardness test as a simple, non-destructive, sensitive technique for the quantification of enamel erosion. PMID:27025266

  4. A simple, sensitive and non-destructive technique for characterizing bovine dental enamel erosion: attenuated total reflection Fourier transform infrared spectroscopy

    PubMed Central

    Kim, In-Hye; Son, Jun Sik; Min, Bong Ki; Kim, Young Kyoung; Kim, Kyo-Han; Kwon, Tae-Yub

    2016-01-01

    Although many techniques are available to assess enamel erosion in vitro, a simple, non-destructive method with sufficient sensitivity for quantifying dental erosion is required. This study characterized the bovine dental enamel erosion induced by various acidic beverages in vitro using attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy. Deionized water (control) and 10 acidic beverages were selected to study erosion, and the pH and neutralizable acidity were measured. Bovine anterior teeth (110) were polished with up to 1 200-grit silicon carbide paper to produce flat enamel surfaces, which were then immersed in 20 mL of the beverages for 30 min at 37 °C. The degree of erosion was evaluated using ATR-FTIR spectroscopy and Vickers' microhardness measurements. The spectra obtained were interpreted in two ways that focused on the ν1, ν3 phosphate contour: the ratio of the height amplitude of ν3 PO4 to that of ν1 PO4 (Method 1) and the shift of the ν3 PO4 peak to a higher wavenumber (Method 2). The percentage changes in microhardness after the erosion treatments were primarily affected by the pH of the immersion media. Regression analyses revealed highly significant correlations between the surface hardness change and the degree of erosion, as detected by ATR-FTIR spectroscopy (P<0.001). Method 1 was the most sensitive to these changes, followed by surface hardness change measurements and Method 2. This study suggests that ATR-FTIR spectroscopy is potentially advantageous over the microhardness test as a simple, non-destructive, sensitive technique for the quantification of enamel erosion. PMID:27025266

  5. Non-destructive evaluation of chlorophyll content in quinoa and amaranth leaves by simple and multiple regression analysis of RGB image components.

    PubMed

    Riccardi, M; Mele, G; Pulvento, C; Lavini, A; d'Andria, R; Jacobsen, S-E

    2014-06-01

    Leaf chlorophyll content provides valuable information about physiological status of plants; it is directly linked to photosynthetic potential and primary production. In vitro assessment by wet chemical extraction is the standard method for leaf chlorophyll determination. This measurement is expensive, laborious, and time consuming. Over the years alternative methods, rapid and non-destructive, have been explored. The aim of this work was to evaluate the applicability of a fast and non-invasive field method for estimation of chlorophyll content in quinoa and amaranth leaves based on RGB components analysis of digital images acquired with a standard SLR camera. Digital images of leaves from different genotypes of quinoa and amaranth were acquired directly in the field. Mean values of each RGB component were evaluated via image analysis software and correlated to leaf chlorophyll provided by standard laboratory procedure. Single and multiple regression models using RGB color components as independent variables have been tested and validated. The performance of the proposed method was compared to that of the widely used non-destructive SPAD method. Sensitivity of the best regression models for different genotypes of quinoa and amaranth was also checked. Color data acquisition of the leaves in the field with a digital camera was quick, more effective, and lower cost than SPAD. The proposed RGB models provided better correlation (highest R (2)) and prediction (lowest RMSEP) of the true value of foliar chlorophyll content and had a lower amount of noise in the whole range of chlorophyll studied compared with SPAD and other leaf image processing based models when applied to quinoa and amaranth. PMID:24442792

  6. Non-destructive investigations at the Dionisiac Frieze in the Villa of Mysteries, Pompeii

    NASA Astrophysics Data System (ADS)

    Cristiano, Luigia; Erkul, Ercan; Jepsen, Kalle; Meier, Thomas; Vanacore, Stefano; Stefani, Grete

    2014-05-01

    The Villa of Mysteries with its Dionisiac Frieze is one of the well-known buildings of ancient Pompeii. It has been excavated in the early 20th century. Since then many initiatives have been taken for its preservation. Currently, the Frieze is investigated in detail and tests have been made to clean the wall paintings. Non-destructive investigations as infrared thermography (IR), Ground penetrating radar (GPR), and ultrasonic measurements have been performed in order to test if these methods are well suited to reveal the walls' and paintings' structure and to identify the detachments or cracks. IR, GPR and ultrasonic measurements have different penetration capabilities and resolution in depths. So, using these three methods simultaneously can improve the knowledge of the investigated structures at several depths from millimetres and centimetres to metres. It has been tested if detachments of the paintings, cracks, or alterations of the paintings can be detected by passive and active IR measurements. 6 passive and 3 active measurements have been conducted on the Dionisiac Frieze. Lateral temperature differences present at the Frieze are mapped by passive measurements. Here, we show that temperature differences up to about 0.3°C are present and detectable. These small changes in temperature may be related to detachments, cracks, or wet areas. By active IR measurements the paintings are artificially heated by about 1°C and the cooling to normal temperature is observed and analyzed. Lateral differences in the heating and cooling behavior are related to variability in the heat absorption properties and in thermal conductivity. It is shown that detachments as well as restorative treatments are associated with changes in the thermal behavior. In order to image the construction and the condition of the investigated walls, Ground Penetrating Radar (GPR) was measured with a 2 GHz antenna. Each profile was 1.2 m long, the spacing cross-line was 3 cm and in-line 1 mm. The

  7. Non-destructive detection and characterization of debonded interfaces between road layers with a Step Frequency Radar

    NASA Astrophysics Data System (ADS)

    Fauchard, Cyrille; Guilbert, Vincent; Simonin, Jean-Michel

    2013-04-01

    Unbounded interface in road layers often leads to more visible damages such as potholes or alligator cracking. It is particularly critical when such defects appear between a wearing surface (top layer of the pavement) and an asphalt base course. The detection and characterization of such debonded interface is a major challenge for road maintenance. This work presents the Step Frequency Radar as a non destructive tool for the detection and characterization of debonding. First, some basic theoretical aspects of the study remind the ability of electromagnetic methods based on wave propagation to describe debonding. The vertical and spatial resolutions are studied in function of used frequencies and defect dimensions. We also show how the detection threshold highly depends on the debonding type: major differences exist whether a defect is filled with water or air. Second, an experimental study was carried out on the pavement fatigue carrousel of IFSTTAR. The 15 m long studied test track presents three Hot Mix Asphalt (HMA) layers as base and wearing courses. Various objects such as wood, Teflon, kraft paper and sand were buried at different depth in order to simulate debonding or sliding interfaces. The SFR measurements were performed with an ultra wide band antenna centred at 7.5 GHz. The antenna displacement (0.5 cm step, 1 m length profile) above the surface is controlled with a motorized bench. Most of the buried defects were detected at the interfaces between the first (HMA1), second (HMA2) and third (HMA3) layers, except the kraft paper that is indeed too thin (few mm) to be detected. A sand layer was detected at 11 cm depth between HMA2/HMA3 and its thickness estimated at 0.7 cm. he calculated dielectric constant of defects hardly allowed their characterization in term of nature, except for the Teflon (1*20*20 cm) which calculated permittivity is 2.3 at 6 cm depth. The use of SFR system allows the detection of thin debonding between HMA layers. It requires the

  8. Non Destructive Testing by active infrared thermography coupled with shearography under same optical heat excitation

    NASA Astrophysics Data System (ADS)

    Theroux, Louis-Daniel; Dumoulin, Jean; Maldague, Xavier

    2014-05-01

    As infrastructures are aging, the evaluation of their health is becoming crucial. To do so, numerous Non Destructive Testing (NDT) methods are available. Among them, thermal shearography and active infrared thermography represent two full field and contactless methods for surface inspection. The synchronized use of both methods presents multiples advantages. Most importantly, both NDT are based on different material properties. Thermography depend on the thermal properties and shearography on the mechanical properties. The cross-correlation of both methods result in a more accurate and exact detection of the defects. For real site application, the simultaneous use of both methods is simplified due to the fact that the excitation method (thermal) is the same. Active infrared thermography is the measure of the temperature by an infrared camera of a surface subjected to heat flux. Observation of the variation of temperature in function of time reveal the presence of defects. On the other hand, shearography is a measure of out-of-plane surface displacement. This displacement is caused by the application of a strain on the surface which (in our case) take the form of a temperature gradient inducing a thermal stress To measure the resulting out-of-plane displacement, shearography exploit the relation between the phase difference and the optical path length. The phase difference is measured by the observation of the interference between two coherent light beam projected on the surface. This interference is due to change in optical path length as the surface is deformed [1]. A series of experimentation have been conducted in laboratory with various sample of concrete reinforced with CFRP materials. Results obtained reveal that with both methods it was possible to detect defects in the gluing. An infrared lamp radiating was used as the active heat source. This is necessary if measurements with shearography are to be made during the heating process. A heating lamp in the

  9. Non-destructive, in-field determination of wood density in tropical forests

    NASA Astrophysics Data System (ADS)

    Torello-Raventos, Mireia; Page, Tony; Ford, Andrew; Metcalfe, Dan; Lloyd, Jon; Bird, Michael

    2014-05-01

    the validation of an accurate field-based, non-destructive measurement of wood density. 1Phillips, O. L., et al., 2008. The changing Amazon forest. Philosophical Transactions of the Royal Society of Biological Sciences, 363, 1819-1827. 2Phillips, O. L., et al., 1998. Changes in the carbon balance of tropical forests: evidence from long term plot data. Science 282, 439-442.3Malhi,Y. and Grace, J., 2000. Tropical forests and atmospheric carbon dioxide. Trends Ecology Evolution, 15, 332-337.4Gibbs, H. K., et al, 2007. Monitoring and estimating tropical forest carbon stocks: making REDD a reality. Environmental Research Letters, 2, 1-13.5Nogueira, E. M., et al., 2005. Wood density in dense forest in central Amazonia, Brazil. Forest Ecology and Management, 208, 261-268.6Nogueira, E. M., et al., 2008. Normalization of wood density in biomass estimates of Amazon forests. Forest Ecology and Management, 256, 990-996.7Chave, J., et al., 2003. Spatial and temporal variation of biomass in a tropical forest: Results from a large census plot in Panama. Journal of Ecology, 91, 240-252.

  10. Non-Destructive Evaluation of Material System Using Highly Nonlinear Acoustic Waves

    NASA Astrophysics Data System (ADS)

    Khatri, Devvrath

    model (FEM) using the commercially available software Abaqus, which takes into account many of these characteristic features. The finite element model discretizes particles by considering them as three-dimensional deformable bodies of revolution and describes the nonlinear dynamic response of one-dimensional granular chains composed of particles with various geometries and orientations. We showed that particles' geometries and orientations provide additional design parameters for controlling the dynamic response of the system, compared to chains composed of spherical particles. We also showed that the tunable and compact nature of these waves can be used to tailor the properties of HNSWs for specific application, such as information carriers for actuation and sensing of mechanical properties and boundary effects of adjoining media in Non-Destructive Evaluation (NDE) and Structural Health Monitoring (SHM). Using experiments and numerics, we characterized interface dynamics between granular media and adjoining linear elastic media, and found that the coupling produced temporary localization of the incident waves at the boundaries between the two media and their decomposition into reflected waves. We monitored the formation of reflected solitary waves propagating back from the interface and found that their properties are sensitive to the geometric and material properties of the adjoining media. The work done in this research enhances our understanding of the basic physics and tunability of nonlinear granular media, and further establishes a theoretical and numerical foundation in the applications of HNSWs as information carriers.

  11. Materials processing issues for non-destructive laser gas sampling (NDLGS)

    SciTech Connect

    Lienert, Thomas J

    2010-12-09

    The Non-Destructive Laser Gas Sampling (NDLGS) process essentially involves three steps: (1) laser drilling through the top of a crimped tube made of 304L stainles steel (Hammar and Svennson Cr{sub eq}/Ni{sub eq} = 1.55, produced in 1985); (2) gas sampling; and (3) laser re-welding of the crimp. All three steps are performed in a sealed chamber with a fused silica window under controlled vacuum conditions. Quality requirements for successful processing call for a hermetic re-weld with no cracks or other defects in the fusion zone or HAZ. It has been well established that austenitic stainless steels ({gamma}-SS), such as 304L, can suffer from solidification cracking if their Cr{sub eq}/Ni{sub eq} is below a critical value that causes solidification to occur as austenite (fcc structure) and their combined impurity level (%P+%S) is above {approx}0.02%. Conversely, for Cr{sub eq}/Ni{sub eq} values above the critical level, solidification occurs as ferrite (bcc structure), and cracking propensity is greatly reduced at all combined impurity levels. The consensus of results from studies of several researchers starting in the late 1970's indicates that the critical Cr{sub eq}/Ni{sub eq} value is {approx}1.5 for arc welds. However, more recent studies by the author and others show that the critical Cr{sub eq}/Ni{sub eq} value increases to {approx}1 .6 for weld processes with very rapid thermal cycles, such as the pulsed Nd:YAG laser beam welding (LBW) process used here. Initial attempts at NDLGS using pulsed LBW resulted in considerable solidification cracking, consistent with the results of work discussed above. After a brief introduction to the welding metallurgy of {gamma}-SS, this presentation will review the results of a study aimed at developing a production-ready process that eliminates cracking. The solution to the cracking issue, developed at LANL, involved locally augmenting the Cr content by applying either Cr or a Cr-rich stainless steel (ER 312) to the top of

  12. Optimization of ISOCS Parameters for Quantitative Non-Destructive Analysis of Uranium in Bulk Form

    NASA Astrophysics Data System (ADS)

    Kutniy, D.; Vanzha, S.; Mikhaylov, V.; Belkin, F.

    2011-12-01

    Quantitative calculation of the isotopic masses of fissionable U and Pu is important for forensic analysis of nuclear materials. γ-spectrometry is the most commonly applied tool for qualitative detection and analysis of key radionuclides in nuclear materials. Relative isotopic measurement of U and Pu may be obtained from γ-spectra through application of special software such as MGAU (Multi-Group Analysis for Uranium, LLNL) or FRAM (Fixed-Energy Response Function Analysis with Multiple Efficiency, LANL). If the concentration of U/Pu in the matrix is unknown, however, isotopic masses cannot be calculated. At present, active neutron interrogation is the only practical alternative for non-destructive quantification of fissionable isotopes of U and Pu. An active well coincidence counter (AWCC), an alternative for analyses of uranium materials, has the following disadvantages: 1) The detection of small quantities (≤100 g) of 235U is not possible in many models; 2) Representative standards that capture the geometry, density and chemical composition of the analyzed unknown are required for precise analysis; and 3) Specimen size is severely restricted by the size of the measuring chamber. These problems may be addressed using modified γ-spectrometry techniques based on a coaxial HPGe-detector and ISOCS software (In Situ Object Counting System software, Canberra). We present data testing a new gamma-spectrometry method uniting actinide detection with commonly utilized software, modified for application in determining the masses of the fissionable isotopes in unknown samples of nuclear materials. The ISOCS software, widely used in radiation monitoring, calculates the detector efficiency curve in a specified geometry and range of photon energies. In describing the geometry of the source-detector, it is necessary to clearly describe the distance between the source and the detector, the material and the thickness of the walls of the container, as well as material, density

  13. A non-destructive method for measuring the mechanical properties of ultrathin films prepared by atomic layer deposition

    SciTech Connect

    Zhang, Qinglin; Xiao, Xingcheng Verbrugge, Mark W.; Cheng, Yang-Tse

    2014-08-11

    The mechanical properties of ultrathin films synthesized by atomic layer deposition (ALD) are critical for the liability of their coated devices. However, it has been a challenge to reliably measure critical properties of ALD films due to the influence from the substrate. In this work, we use the laser acoustic wave (LAW) technique, a non-destructive method, to measure the elastic properties of ultrathin Al{sub 2}O{sub 3} films by ALD. The measured properties are consistent with previous work using other approaches. The LAW method can be easily applied to measure the mechanical properties of various ALD thin films for multiple applications.

  14. Litchi freshness rapid non-destructive evaluating method using electronic nose and non-linear dynamics stochastic resonance model

    PubMed Central

    Ying, Xiaoguo; Liu, Wei; Hui, Guohua

    2015-01-01

    In this paper, litchi freshness rapid non-destructive evaluating method using electronic nose (e-nose) and non-linear stochastic resonance (SR) was proposed. EN responses to litchi samples were continuously detected for 6 d Principal component analysis (PCA) and non-linear stochastic resonance (SR) methods were utilized to analyze EN detection data. PCA method could not totally discriminate litchi samples, while SR signal-to-noise ratio (SNR) eigen spectrum successfully discriminated all litchi samples. Litchi freshness predictive model developed using SNR eigen values shows high predictive accuracy with regression coefficients R2 = 0 .99396. PMID:25920547

  15. Development of Non Destructive Evaluation Techniques for the In-Situ Inspection of the Orbiter's Thermal Protection System

    NASA Technical Reports Server (NTRS)

    Hernandez, Jose M.

    2004-01-01

    One of the Columbia Accident Investigation Board's (CAB) recommendation is to develop and implement an inspection plan to determine the structural integrity of all Reinforced Carbon-Carbon (RCC) system components that make part of the Space Shuttle's thermal protection system. This presentation focuses on the efforts to leverage non-destructive evaluation (NDE) expertise from academia, private industry, and government agencies resulting in the design of a comprehensive health monitoring program for RCC components. The different NDE techniques that were considered are presented along with the chosen techniques and preliminary inspection results of RCC materials.

  16. Three-dimensional non-destructive optical evaluation of laser-processing performance using optical coherence tomography

    PubMed Central

    Kim, Youngseop; Choi, Eun Seo; Kwak, Wooseop; Shin, Yongjin; Jung, Woonggyu; Ahn, Yeh-Chan; Chen, Zhongping

    2014-01-01

    We demonstrate the use of optical coherence tomography (OCT) as a non-destructive diagnostic tool for evaluating laser-processing performance by imaging the features of a pit and a rim. A pit formed on a material at different laser-processing conditions is imaged using both a conventional scanning electron microscope (SEM) and OCT. Then using corresponding images, the geometrical characteristics of the pit are analyzed and compared. From the results, we could verify the feasibility and the potential of the application of OCT to the monitoring of the laser-processing performance. PMID:24932051

  17. W-State Characterization and Progress Toward Non-Destructive State-Selective Measurements with an EMCCD Camera in Rb

    NASA Astrophysics Data System (ADS)

    Ebert, Matthew; Kwon, Minho; Saffman, Mark; Walker, Thad

    2016-05-01

    We present a method for differentiating k-partite W-State entanglement from other singly-excited states, under the assumption that there are less than two excitations, valid for Rydberg blockade experiments. We use this method to demonstrate 9 atom W-State entanglement generation via Rydberg blockade with two separate state rotations: a Jx Microwave rotation experiment and a Jz Ramsey fringe experiment. We also report progress towards a non-destructive state-selective readout with an EMCCD camera, which could increase experimental data rates significantly. This work is supported by NSF, AFOSR and MURI Grants.

  18. Non-destructive assay of fissile materials through active neutron interrogation technique using pulsed neutron (plasma focus) device

    NASA Astrophysics Data System (ADS)

    Tomar, B. S.; Kaushik, T. C.; Andola, Sanjay; Ramniranjan; Rout, R. K.; Kumar, Ashwani; Paranjape, D. B.; Kumar, Pradeep; Ramakumar, K. L.; Gupta, S. C.; Sinha, R. K.

    2013-03-01

    Pulsed neutrons emitted from a plasma focus (PF) device have been used for the first time for the non-destructive assay of 235U content in different chemical forms (oxide and metal). The PF device generates (1.2±0.3)×109 D-D fusion neutrons per shot with a pulse width of 46±5 ns. The method involves the measurement of delayed neutrons from an irradiated sample 50 ms after exposure to the neutron pulse for a time of about 100 s in the multichannel scaling (MCS) mode. The calibration of the active interrogation delayed neutron counter (AIDNEC) system was carried out by irradiating U3O8 samples of varying amounts (0.1-40 g) containing enriched 235U (14.8%) in the device. The delayed neutrons were monitored using a bank of six 3He detectors. The sensitivity of the system was found to be about 100 counts/s/g over the accumulation time of 25 s per neutron pulse of ˜109. The detection limit of the system is estimated to be 18 mg of 235U. The system can be suitably modified for applications toward non-destructive assay of fissile content in waste packets.

  19. Evaluation of non-destructive methods for estimating biomass in marshes of the upper Texas, USA coast

    USGS Publications Warehouse

    Whitbeck, M.; Grace, J.B.

    2006-01-01

    The estimation of aboveground biomass is important in the management of natural resources. Direct measurements by clipping, drying, and weighing of herbaceous vegetation are time-consuming and costly. Therefore, non-destructive methods for efficiently and accurately estimating biomass are of interest. We compared two non-destructive methods, visual obstruction and light penetration, for estimating aboveground biomass in marshes of the upper Texas, USA coast. Visual obstruction was estimated using the Robel pole method, which primarily measures the density and height of the canopy. Light penetration through the canopy was measured using a Decagon light wand, with readings taken above the vegetation and at the ground surface. Clip plots were also taken to provide direct estimates of total aboveground biomass. Regression relationships between estimated and clipped biomass were significant using both methods. However, the light penetration method was much more strongly correlated with clipped biomass under these conditions (R2 value 0.65 compared to 0.35 for the visual obstruction approach). The primary difference between the two methods in this situation was the ability of the light-penetration method to account for variations in plant litter. These results indicate that light-penetration measurements may be better for estimating biomass in marshes when plant litter is an important component. We advise that, in all cases, investigators should calibrate their methods against clip plots to evaluate applicability to their situation. ?? 2006, The Society of Wetland Scientists.

  20. Neutron radiography as a non-destructive method for diagnosing neutron converters for advanced thermal neutron detectors

    NASA Astrophysics Data System (ADS)

    Muraro, A.; Albani, G.; Perelli Cippo, E.; Croci, G.; Angella, G.; Birch, J.; Cazzaniga, C.; Caniello, R.; Dell'Era, F.; Ghezzi, F.; Grosso, G.; Hall-Wilton, R.; Höglund, C.; Hultman, L.; Schimdt, S.; Robinson, L.; Rebai, M.; Salvato, G.; Tresoldi, D.; Vasi, C.; Tardocchi, M.

    2016-03-01

    Due to the well-known problem of 3He shortage, a series of different thermal neutron detectors alternative to helium tubes are being developed, with the goal to find valid candidates for detection systems for the future spallation neutron sources such as the European Spallation Source (ESS). A possible 3He-free detector candidate is a charged particle detector equipped with a three dimensional neutron converter cathode (3D-C). The 3D-C currently under development is composed by a series of alumina (Al2O3) lamellas coated by 1 μ m of 10B enriched boron carbide (B4C). In order to obtain a good characterization in terms of detector efficiency and uniformity it is crucial to know the thickness, the uniformity and the atomic composition of the B4C neutron converter coating. In this work a non-destructive technique for the characterization of the lamellas that will compose the 3D-C was performed using neutron radiography. The results of these measurements show that the lamellas that will be used have coating uniformity suitable for detector applications. This technique (compared with SEM, EDX, ERDA, XPS) has the advantage of being global (i.e. non point-like) and non-destructive, thus it is suitable as a check method for mass production of the 3D-C elements.

  1. Non-destructive analyses on a meteorite fragment that fell in the Madrid city centre in 1896.

    PubMed

    Garcia-Guinea, Javier; Tormo, Laura; Rubio Ordoñez, Alvaro; Garcia-Moreno, Olga

    2013-09-30

    The historical Madrid meteorite chondrite fell in 1896 showing thin melt veins with a 65% of brecciated forsterite fragments surrounded by a fine grained matrix formed by troilite, chromite and Fe-Ni blebs. It exhibits a delicate iron infill, neo-formation of troilite in pockets and shock veins and neo-formation of Na-feldspar formed at high temperature and fast quenching. The semi-quantitative mineral determinations were performed with IMAGEJ freeware and chemical mappings resulting in the following approximated compositions: olivine (~55%); augite (~10%); enstatite (~10%); plagioclase (~10%); chromite (~2%); troilite (~4%), kamacite-taenite α-γ-(Fe, Ni) (~7%) and merrillite (~7%). The specimen was also studied by computer tomography, micro-Raman spectroscopy and spectral cathodoluminescence. X-ray diffraction patterns were also recorded in non-destructive way on a polished surface because of the small size of the specimen. This combination of non-destructive techniques provides an improved knowledge on the Madrid-1896 meteorite compared to the previous study performed on the same specimen carried out twenty years ago by electron probe microanalysis and optical microscopy in destructive way. Limits of these techniques are the specimen's size in the analytical chambers and the threshold resolution of the microscopes analyzing shock veins micro-crystals. PMID:23953455

  2. The Non-Destructive Test of Steel Corrosion in Reinforced Concrete Bridges Using a Micro-Magnetic Sensor.

    PubMed

    Zhang, Hong; Liao, Leng; Zhao, Ruiqiang; Zhou, Jianting; Yang, Mao; Xia, Runchuan

    2016-01-01

    This paper presents a non-destructive test method for steel corrosion in reinforced concrete bridges by using a 3-dimensional digital micro-magnetic sensor to detect and analyze the self-magnetic field leakage from corroded reinforced concrete. The setup of the magnetic scanning device and the measurement mode of the micro-magnetic sensor are introduced. The numerical analysis model is also built based on the linear magnetic charge theory. Compared to the self-magnetic field leakage data obtained from magnetic sensor-based measurement and numerical calculation, it is shown that the curves of tangential magnetic field at different lift-off height all intersect near the edge of the steel corrosion zone. The result indicates that the intersection of magnetic field curves can be used to detect and evaluate the range of the inner steel corrosion in engineering structures. The findings of this work propose a new and effective non-destructive test method for steel corrosion, and therefore enlarge the application of the micro-magnetic sensor. PMID:27608029

  3. Advances in neutron based bulk explosive detection

    NASA Astrophysics Data System (ADS)

    Gozani, Tsahi; Strellis, Dan

    2007-08-01

    Neutron based explosive inspection systems can detect a wide variety of national security threats. The inspection is founded on the detection of characteristic gamma rays emitted as the result of neutron interactions with materials. Generally these are gamma rays resulting from thermal neutron capture and inelastic scattering reactions in most materials and fast and thermal neutron fission in fissile (e.g.235U and 239Pu) and fertile (e.g.238U) materials. Cars or trucks laden with explosives, drugs, chemical agents and hazardous materials can be detected. Cargo material classification via its main elements and nuclear materials detection can also be accomplished with such neutron based platforms, when appropriate neutron sources, gamma ray spectroscopy, neutron detectors and suitable decision algorithms are employed. Neutron based techniques can be used in a variety of scenarios and operational modes. They can be used as stand alones for complete scan of objects such as vehicles, or for spot-checks to clear (or validate) alarms indicated by another inspection system such as X-ray radiography. The technologies developed over the last two decades are now being implemented with good results. Further advances have been made over the last few years that increase the sensitivity, applicability and robustness of these systems. The advances range from the synchronous inspection of two sides of vehicles, increasing throughput and sensitivity and reducing imparted dose to the inspected object and its occupants (if any), to taking advantage of the neutron kinetic behavior of cargo to remove systematic errors, reducing background effects and improving fast neutron signals.

  4. Non-contact, non-destructive, quantitative probing of interfacial trap sites for charge carrier transport at semiconductor-insulator boundary

    SciTech Connect

    Choi, Wookjin; Miyakai, Tomoyo; Sakurai, Tsuneaki; Saeki, Akinori; Yokoyama, Masaaki; Seki, Shu

    2014-07-21

    The density of traps at semiconductor–insulator interfaces was successfully estimated using microwave dielectric loss spectroscopy with model thin-film organic field-effect transistors. The non-contact, non-destructive analysis technique is referred to as field-induced time-resolved microwave conductivity (FI-TRMC) at interfaces. Kinetic traces of FI-TRMC transients clearly distinguished the mobile charge carriers at the interfaces from the immobile charges trapped at defects, allowing both the mobility of charge carriers and the number density of trap sites to be determined at the semiconductor-insulator interfaces. The number density of defects at the interface between evaporated pentacene on a poly(methylmethacrylate) insulating layer was determined to be 10{sup 12 }cm{sup −2}, and the hole mobility was up to 6.5 cm{sup 2} V{sup −1} s{sup −1} after filling the defects with trapped carriers. The FI-TRMC at interfaces technique has the potential to provide rapid screening for the assessment of interfacial electronic states in a variety of semiconductor devices.

  5. Non-destructive Investigation of "The Violinist" a Lead Sculpture by Pablo Gargallo, Using the Neutron Imaging Facility NEUTRA in the Paul Scherrer Institute

    NASA Astrophysics Data System (ADS)

    Masalles, Alex; Lehmann, Eberhard; Mannes, David

    The Violinist (1920), the only sculpture made by Gargallo using lead sheet and wood, is being corroded by carbonation, most probably due to the organic vapours released by the wood inside, a material not chemically compatible with lead. Hydrogen plasma has been tested and proved to be an effective treatment meaning that the sculpture has to be dismantled in order to give the plasma gas access to the lead carbonate crusts on the inner surface of the lead sheet. Prior to dismantling, a complete exploration and diagnosis of this lead sculpture has been carried out through neutron imaging at the Paul Scherrer Institute. This non-destructive technique has produced different sets of images including radiography, tomography and 3D reconstruction. Despite the presence of a core made of an organic material such as wood, the digital processing of the images and their in depth visual analysis have yielded new three-dimensional information of inaccessible details of the sculpture, allowing us to assess its present state of conservation and the manufacturing technique and materials used by the artist. The results presented in this article highlight how information from neutron imaging can be of great value when it comes to set the strategies for future conservation treatment

  6. Avian feathers as a non-destructive bio-monitoring tool of trace metals signatures: a case study from severely contaminated areas.

    PubMed

    Abdullah, Muhammad; Fasola, Mauro; Muhammad, Ashiq; Malik, Salman Ahmad; Bostan, Nazish; Bokhari, Habib; Kamran, Muhammad Aqeel; Shafqat, Mustafa Nawaz; Alamdar, Ambreen; Khan, Mudassar; Ali, Nadeem; Eqani, Syed Ali Musstjab Akber Shah

    2015-01-01

    The concentrations of trace metals were assessed using feathers of cattle egrets (Bubulcus ibis), collected within two industrial areas of Pakistan, Lahore and Sialkot. We found, in order of descending concentration: Zinc (Zn), Iron (Fe), Nickel (Ni), Copper (Cu), Cadmium (Cd), and Manganese (Mn), Chromium (Cr), Arsenic (As), and Lithium (Li), without any significant difference (except Fe, Zn, and Ni) between the two areas. The concentrations of trace metals, we recorded were among the highest ever reported in the feathers of avian species worldwide. The concentrations of Cr, Pb, Cd were above the threshold that affects bird reproductive success. The high contamination by heavy metals in the two areas is due to anthropogenic activities as well to natural ones (for As and Fe). The bioaccumulation ratios in eggs and feathers of the cattle egret, their prey, and the sediments from their foraging habitats, confirmed that avian feathers are a convenient and non-destructive sampling tool for the metal contamination. The results of this study will contribute to the environmental management of the Lahore and Sialkot industrial areas. PMID:25112582

  7. Acoustic emission analysis as a non-destructive test procedure for fiber compound structures

    NASA Technical Reports Server (NTRS)

    Block, J.

    1983-01-01

    The concept of acoustic emission analysis is explained in scientific terms. The detection of acoustic events, their localization, damage discrimination, and event summation curves are discussed. A block diagram of the concept of damage-free testing of fiber-reinforced synthetic materials is depicted. Prospects for application of the concept are assessed.

  8. Non-destructive, ultra-low resistance, thermally stable contacts for use on shallow junction InP solar cells

    NASA Technical Reports Server (NTRS)

    Weizer, V. G.; Fatemi, N. S.; Korenyi-Both, A. L.

    1993-01-01

    Contact formation to InP is plagued by violent metal-semiconductor intermixing that takes place during the contact sintering process. Because of this the InP solar cell cannot be sintered after contact deposition. This results in cell contact resistances that are orders of magnitude higher than those that could be achieved if sintering could be performed in a non-destructive manner. We report here on a truly unique contact system involving Au and Ge, which is easily fabricated, which exhibits extremely low values of contact resistivity, and in which there is virtually no metal-semiconductor interdiffusion, even after extended sintering. We present a description of this contact system and suggest possible mechanisms to explain the observed behavior.

  9. Non-destructive readout of 2D and 3D dose distributions using a disk-type radiophotoluminescent glass plate

    NASA Astrophysics Data System (ADS)

    Kurobori, T.; Maruyama, Y.; Miyamoto, Y.; Sasaki, T.; Nanto, H.

    2015-04-01

    Novel disk-type X-ray two- and three-dimensional (2D, 3D) dose distributions have been developed using atomic-scale defects as minimum luminescent units, such as radiation- induced silver (Ag)-related species in a Ag-activated phosphate glass. This luminescent detector is based on the radiophotoluminescence(RPL) phenomenon. Accurate accumulated dose distributions with a high spatial resolution on the order of microns over large areas, a wide dynamic range covering three orders of magnitude and a non-destructive readout were successfully demonstrated for the first time by using a disk-type glass plate with a 100-mm diameter and a 1-mm thickness. In addition, the combination of a confocal optical detection system with a transparent glass detector enables 3D reconstruction by piling up each dose image at different depths within the material.

  10. Non-destructive measurements of cosmogenic Al-26, natural K-40 and fallout Cs-137 in Antarctic meteorites

    NASA Astrophysics Data System (ADS)

    Komura, K.; Tsukamoto, M.; Sakanoue, M.

    1982-12-01

    Non-destructive gamma-ray measurements have been made to determine cosmogenic Al-26, natural K-40 and fallout Cs-137 activities in 15 Antarctic meteorites (14 from Yamato Mountains and 1 from Allan Hills). The Al-26 activities range from 72 to 29 dpm/kg. If it is assumed that the saturation activity of Al-26 in chondrites is 60, about 1/3 of the measured meteorites show the contents close to this value; however, the rest show lower values. A simple graphical method was applied to estimate the exposure and terrestrial ages based on Al-26 and Mn-53 data, and these ages are compared with exposure ages obtained by Ne-21 measurements. The results are generally consistent with the Ne-21 data. It must be noted that the Antarctic meteorites are highly contaminated with fallout Cs-137 derived from nuclear test explosions.

  11. Cleaning up of a nuclear facility: Destocking of Pu radioactive waste and nuclear Non-Destructive Assays

    NASA Astrophysics Data System (ADS)

    Jallu, F.; Allinei, P.-G.; Bernard, Ph.; Loridon, J.; Pouyat, D.; Torreblanca, L.

    2012-07-01

    In view to clean up a nuclear facility located at the CEA, Cadarache, France, three Non Destructive Assay (NDA) methods have been combined to characterize 2714 old, 100 L radioactive waste drums produced between 1980 and 1997. The results of X-ray radiography, passive neutron measurement and gamma-ray spectrometry are used together to extract both the βγ and α activities, and the Pu mass contained in each drum. Those drums will then be re-conditioned and cemented in 870 L containers, in order to be sent to the adequate disposal or interim storage. This paper presents the principle of the three NDA methods, the dedicated measurement setups, and it gives details about the setups, which have been especially designed and developed for that application. Uncertainties are dealt with in the last part of the paper.

  12. High temperature ultrasonic transducers for the generation of guided waves for non-destructive evaluation of pipes

    SciTech Connect

    Sinding, K.; Searfass, C.; Malarich, N.; Reinhardt, B.; Tittmann, B. R.

    2014-02-18

    Applications for non-destructive evaluation and structural health monitoring of steam generators require ultrasonic transducers capable of withstanding the high temperatures of the pipes and heat exchangers. These applications require a strong coupling of the transducer to the heat exchanger’s complex geometry at the elevated temperatures. Our objective is to use spray-on piezo-electrics for depositing comb transducers onto the curved surfaces. This paper shows results for composite transducers such as lead zirconate titanate/ bismuth titanate and bismuth titanate/ lithium niobate. The comb transducers were prepared by precision laser ablation. The feasibility of producing second harmonic waves in rods with these spay-on comb transducers was demonstrated and paves the way toward measuring material degradation early-on before crack initiation occurs.

  13. Non-destructive Measurement of Residual Stress Depth Profile in Laser-peened Steel at SPring-8

    SciTech Connect

    Sato, Masugu; Kajiwara, Kentaro; Sano, Yuji; Tanaka, Hirotomo; Akita, Koichi

    2007-01-19

    We investigated the residual stress depth profile near the surface of steel treated by laser peening without coating using X-ray diffraction at SPring-8. This investigation was carried out using a constant penetration depth sin2{psi} method. In this method, the sin2{psi} diagram is measured controlling both the {psi} angle and the X-ray penetration depth simultaneously with a combination of the {omega} and {chi} axes of the 4-circle goniometer. This method makes it possible to evaluate the residual stress and its depth profile in material with a stress gradient precisely and non-destructively. As a result, we confirmed that a compressive residual stress was successfully formed all over the range of the depth profile in the steel treated properly by laser peening without coating.

  14. Non-destructive Measurement of Residual Stress Depth Profile in Laser-peened Steel at SPring-8

    NASA Astrophysics Data System (ADS)

    Sato, Masugu; Sano, Yuji; Kajiwara, Kentaro; Tanaka, Hirotomo; Akita, Koichi

    2007-01-01

    We investigated the residual stress depth profile near the surface of steel treated by laser peening without coating using X-ray diffraction at SPring-8. This investigation was carried out using a constant penetration depth sin2ψ method. In this method, the sin2ψ diagram is measured controlling both the ψ angle and the X-ray penetration depth simultaneously with a combination of the ω and χ axes of the 4-circle goniometer. This method makes it possible to evaluate the residual stress and its depth profile in material with a stress gradient precisely and non-destructively. As a result, we confirmed that a compressive residual stress was successfully formed all over the range of the depth profile in the steel treated properly by laser peening without coating.

  15. Non-destructive and non-invasive analyses shed light on the realization technique of ancient polychrome prints.

    PubMed

    Striová, Jana; Coccolini, Gabriele; Micheli, Sara; Lofrumento, Cristiana; Galeotti, Monica; Cagnini, Andrea; Castellucci, Emilio Mario

    2009-08-01

    Five polychrome prints representing famous painters, such as Albrecht Dürer, were analyzed using a non-destructive and non-invasive methodology as required by the artwork typology. The diagnostic strategy includes X-ray fluorescence (XRF), reflectance micro-infrared (microFTIR) and micro-Raman (microRaman) spectroscopy. These prints were realized with a la poupée method that involves application of the polychrome inks on a single copper plate, before the printing process. A broad range of compounds (i.e., cinnabar, red lead, white lead, umber earth, hydrated calcium sulfate, calcium carbonate, amorphous carbon, and Prussian blue) was employed as chalcographic inks, using linseed oil as a binding medium. Gamboge was identified in the delicate finishing brush touches realized in watercolor. PMID:19081288

  16. Sensitivity and Calibration of Non-Destructive Evaluation Method That Uses Neural-Net Processing of Characteristic Fringe Patterns

    NASA Technical Reports Server (NTRS)

    Decker, Arthur J.; Weiland, Kenneth E.

    2003-01-01

    This paper answers some performance and calibration questions about a non-destructive-evaluation (NDE) procedure that uses artificial neural networks to detect structural damage or other changes from sub-sampled characteristic patterns. The method shows increasing sensitivity as the number of sub-samples increases from 108 to 6912. The sensitivity of this robust NDE method is not affected by noisy excitations of the first vibration mode. A calibration procedure is proposed and demonstrated where the output of a trained net can be correlated with the outputs of the point sensors used for vibration testing. The calibration procedure is based on controlled changes of fastener torques. A heterodyne interferometer is used as a displacement sensor for a demonstration of the challenges to be handled in using standard point sensors for calibration.

  17. Non-destructive and non-invasive analyses shed light on the realization technique of ancient polychrome prints

    NASA Astrophysics Data System (ADS)

    Striová, Jana; Coccolini, Gabriele; Micheli, Sara; Lofrumento, Cristiana; Galeotti, Monica; Cagnini, Andrea; Castellucci, Emilio Mario

    2009-08-01

    Five polychrome prints representing famous painters, such as Albrecht Dürer, were analyzed using a non-destructive and non-invasive methodology as required by the artwork typology. The diagnostic strategy includes X-ray fluorescence (XRF), reflectance micro-infrared (μFTIR) and micro-Raman (μRaman) spectroscopy. These prints were realized with a la poupée method that involves application of the polychrome inks on a single copper plate, before the printing process. A broad range of compounds (i.e., cinnabar, red lead, white lead, umber earth, hydrated calcium sulfate, calcium carbonate, amorphous carbon, and Prussian blue) was employed as chalcographic inks, using linseed oil as a binding medium. Gamboge was identified in the delicate finishing brush touches realized in watercolor.

  18. Physical Modelling of Nikon Coolpix Camera RGB Responses for Application in non-Destructive Leaf Chlorophyll Imaging

    NASA Astrophysics Data System (ADS)

    Veroustraete, F.; Verstraeten, W. W.; Hufkens, K.; Grielen, B.; Colson, F.; Prinsen, E.

    2012-04-01

    The poster presentation describes the emerging technology of computer aided leaf digital image analysis. The analysis technique is based on a fast, non-destructive imaging measurement of leaf chlorophyll content based on of leaf reflectance in the R band of a commercial reflex camera. The validity of the method is demonstrated by direct comparison of conventional extraction of both leaf chlorophyll pigments from the same species with chlorophyll estimates based on leaf reflectance imagery. The leaves of the species selected for this paper are characterized by heterogeneous chlorophyll distributions. The application of software developed for image analysis at the spatial level (2D) of physiological processes or state variables does allow to reveal and quantify the morphological structures at the origin of the spatial variation of leaf chlorophyll. Keywords: Physical modelling, leaf chlorophyll imaging, spatial analysis, RGB reflex camera.

  19. Non-destructive automated sampling of mycotoxins in bulk food and feed - A new tool for required harmonization.

    PubMed

    Spanjer, M; Stroka, J; Patel, S; Buechler, S; Pittet, A; Barel, S

    2001-06-01

    Mycotoxins contamination is highly non-uniformly distributed as is well recog-nized by the EC, by not only setting legal limits in a series of commodities, but also schedule a sampling plan that takes this heterogeneity into account. In practice however, it turns out that it is very difficult to carry out this sampling plan in a harmonised way. Applying the sampling plan to a container filled with pallets of bags (i.e. with nuts or coffee beans) varies from very laborious to almost impossible. The presented non-destructive automated method to sample bulk food could help to overcome these practical problems and to enforcing of EC directives. It is derived from a tested and approved technology for detection of illicit substances in security applications. It has capability to collect and iden-tify ultra trace contaminants, i.e. from a fingerprint of chemical substance in a bulk of goods, a cargo pallet load (~ 1000 kg) with boxes and commodities.The technology, patented for explosives detection, uses physical and chemistry processes for excitation and remote rapid enhanced release of contaminant residues, vapours and particulate, of the inner/outer surfaces of inspected bulk and collect them on selective probes. The process is automated, takes only 10 minutes, is non-destructive and the bulk itself remains unharmed. The system design is based on applicable international regulations for shipped cargo hand-ling and transportation by road, sea and air. After this process the pallet can be loaded on a truck, ship or plane. Analysis can be carried out before the cargo leaves the place of shipping. The potent application of this technology for myco-toxins detection, has been demonstrated by preliminary feasibility experiments. Aflatoxins were detected in pistachios and ochratoxin A in green coffee beans bulk. Both commodities were naturally contaminated, priory found and confirm-ed by common methods as used at routine inspections. Once the contaminants are extracted from a

  20. Non-destructive and in situ identification of rice paper, seals and pigments by FT-IR and XRD spectroscopy.

    PubMed

    Na, Na; Ouyang, Qi-Ming; Ma, Hui; Ouyang, Jin; Li, Yanping

    2004-11-15

    This paper studied the chemical characteristics of rice paper, pigments and seals on Chinese calligraphies and traditional Chinese paintings. The techniques used here were Fourier transform infrared (FT-IR) spectroscopy and X-ray diffraction (XRD). FT-IR allows good identification of the substances present in pigments and inkpads and differentiates each era of rice paper. This can be the base of estimating the age of rice paper. Different crystalline phases can be identified by XRD, which is further evidence to separate different kinds of pigments or inkpads. Both of these methods were non-destructive in situ analysis and can be used in the identification in calligraphies and traditional Chinese paintings. These results confirmed that the applied techniques are relatively quicker and more reliable than traditional approaches authenticated by years of experience. PMID:18969703

  1. Non-destructive evaluation of the cladding thickness in LEU fuel plates by accurate ultrasonic scanning technique

    SciTech Connect

    Borring, J.; Gundtoft, H.E.; Borum, K.K.; Toft, P.

    1997-08-01

    In an effort to improve their ultrasonic scanning technique for accurate determination of the cladding thickness in LEU fuel plates, new equipment and modifications to the existing hardware and software have been tested and evaluated. The authors are now able to measure an aluminium thickness down to 0.25 mm instead of the previous 0.35 mm. Furthermore, they have shown how the measuring sensitivity can be improved from 0.03 mm to 0.01 mm. It has now become possible to check their standard fuel plates for DR3 against the minimum cladding thickness requirements non-destructively. Such measurements open the possibility for the acceptance of a thinner nominal cladding than normally used today.

  2. Non-destructive evaluation means and method of flaw reconstruction utilizing an ultrasonic multi-viewing transducer data acquistion system

    DOEpatents

    Thompson, Donald O.; Wormley, Samuel J.

    1989-03-28

    A multi-viewing ultrasound transducer acquisition system for non-destructive evaluation, flaw detection and flaw reconstruction in materials. A multiple transducer assembly includes a central transducer surrounded by a plurality of perimeter transducers, each perimeter transducer having an axis of transmission which can be angularly oriented with respect to the axis of transmission of the central transducer to intersect the axis of transmission of the central transducer. A control apparatus automatically and remotely positions the transducer assembly with respect to the material by a positioning apparatus and adjusts the pe GRANT REFERENCE This invention was conceived and reduced to practice at least in part under a grant from the Department of Energy under Contract No. W-7407-ENG-82.

  3. Innovative real-time and non-destructive method of beam profile measurement under large beam current irradiation for BNCT

    NASA Astrophysics Data System (ADS)

    Takada, M.; Kamada, S.; Suda, M.; Fujii, R.; Nakamura, M.; Hoshi, M.; Sato, H.; Endo, S.; Hamano, T.; Arai, S.; Higashimata, A.

    2012-10-01

    We developed a real-time and non-destructive method of beam profile measurement on a target under large beam current irradiation, and without any complex radiation detectors or electrical circuits. We measured the beam profiles on a target by observing the target temperature using an infrared-radiation thermometer camera. The target temperatures were increased and decreased quickly by starting and stopping the beam irradiation within 1 s in response speed. Our method could trace beam movements rapidly. The beam size and position were calibrated by measuring O-ring heat on the target. Our method has the potential to measure beam profiles at beam current over 1 mA for proton and deuteron with the energy around 3 MeV and allows accelerator operators to adjust the beam location during beam irradiation experiments without decreasing the beam current.

  4. Development of Non-destructive Evaluation System Using an HTS-SQUID Gradiometer with an External Pickup Coil

    NASA Astrophysics Data System (ADS)

    Kawano, J.; Kawauchi, S.; Ishikawa, F.; Tanabe, K.

    We are developing a new eddy-current non-destructive evaluation (NDE) system using a high-temperature superconducting quantum interference device (HTS-SQUID) gradiometer with the aim of applying it to power plants. Electric power facilities such as ducts and vessels are generally untransportable because of their size, and thus it is difficult to apply a conventional SQUID NDE system. The new NDE system employs an external Cu pickup coil which is supposed to be driven flexibly by a robot arm at room temperature and an HTS-SQUID chip which is placed in a magnetically shielded vessel. In the present research, we investigated the performance of an HTS-SQUID sensor connected with external pickup coils before mounting them to a robot arm. By varying the Cu coil conditions such as their sizes, the number of turns, and the diameter of wire, we qualitatively evaluated the frequency dependence of the effective area and the cutoff frequency.

  5. Non-Destructive Measurement of in-operando Lithium Concentration in Batteries via X-Ray Compton Scattering

    NASA Astrophysics Data System (ADS)

    Hafiz, Hasnain; Suzuki, K.; Barbiellini, B.; Orikasa, Y.; Kaprzyk, S.; Itou, M.; Yamamoto, K.; Wang, Y. J.; Uchimoto, Y.; Bansil, A.; Sakurai, Y.; Sakurai, H.

    Non-destructive determination of lithium distribution in a working battery is key for addressing both efficiency and safety issues. Although various techniques have been developed to map the lithium distribution in electrodes, these methods are mostly applicable to test cells. Here we propose the use of high-energy x-ray Compton scattering spectroscopy to measure the local lithium concentration in closed electrochemical cells. A combination of experimental measurements and parallel first-principles computations is used to show that the shape parameter S of the Compton profile is linearly proportional to lithium concentration and thus provides a viable descriptor for this important quantity. The merits and applicability of our method are demonstrated with illustrative examples of Lix Mn2O4 cathodes and a working commercial lithium coin battery CR2032.

  6. Non-destructive measurement of in-operando lithium concentration in batteries via x-ray Compton scattering

    NASA Astrophysics Data System (ADS)

    Suzuki, K.; Barbiellini, B.; Orikasa, Y.; Kaprzyk, S.; Itou, M.; Yamamoto, K.; Wang, Yung Jui; Hafiz, H.; Uchimoto, Y.; Bansil, A.; Sakurai, Y.; Sakurai, H.

    2016-01-01

    Non-destructive determination of lithium distribution in a working battery is key for addressing both efficiency and safety issues. Although various techniques have been developed to map the lithium distribution in electrodes, these methods are mostly applicable to test cells. Here, we propose the use of high-energy x-ray Compton scattering spectroscopy to measure the local lithium concentration in closed electrochemical cells. A combination of experimental measurements and parallel first-principles computations is used to show that the shape parameter S of the Compton profile is linearly proportional to lithium concentration and thus provides a viable descriptor for this important quantity. The merits and applicability of our method are demonstrated with illustrative examples of LixMn2O4 cathodes and a working commercial lithium coin battery CR2032.

  7. Non-destructive analysis of didymium and praseodymium molybdate crystals using energy dispersive X-ray fluorescence technique

    NASA Astrophysics Data System (ADS)

    Bhat, C. K.; Joseph, Daisy; Pandita, Sanjay; Kotru, P. N.

    2016-08-01

    Analysis of didymium (Di) and praseodymium molybdate crystals were carried out using energy dispersive X-ray fluorescence (EDXRF). The assigned empirical chemical formulae of the composites were tested and verified by the EDXRF technique by estimating experimental major elemental concentration ratios. On the Basis of these ratios, the established formulae for some of the composite materials have been verified and suggestions made for their refinement. Non-destructive technique used in this analysis enables to retain the original crystal samples and makes rapid simultaneous scan of major elements such as La, Pr, Ned and Mo as well as impurities such as Ce. Absence of samarium(Sm) in the spectrum during analysis of didymium molybdate crystals indicated an incomplete growth of mixed rare earth single crystal. These crystals (e.g.,Di) are shown to be of modified stoichiometry with Ce as trace impurity.

  8. Non-destructive testing (NDT) of metal cracks using a high Tc rf-SQUID and eddy current method

    SciTech Connect

    Lu, D.F.; Fan, C.; Ruan, J.Z.

    1994-12-31

    A SQUID is the most sensitive device to detect change in magnetic field. A non-destructive testing (NDT) device using high temperature SQUIDs and eddy current method will be much more sensitive than those currently used eddy current systems, yet much cheaper than one with low temperature SQUIDs. In this paper, we present our study of such a NDT device using a high temperature superconducting rf-SQUID as a gradiometer sensor. The result clearly demonstrates the expected sensitivity of the system, and indicates the feasibility of building a portable HTS SQUID NDT device with the help from cryocooler industry. Such a NDT device will have a significant impact on metal corrosion or crack detection technology.

  9. High temperature ultrasonic transducers for the generation of guided waves for non-destructive evaluation of pipes

    NASA Astrophysics Data System (ADS)

    Sinding, K.; Searfass, C.; Malarich, N.; Reinhardt, B.; Tittmann, B. R.

    2014-02-01

    Applications for non-destructive evaluation and structural health monitoring of steam generators require ultrasonic transducers capable of withstanding the high temperatures of the pipes and heat exchangers. These applications require a strong coupling of the transducer to the heat exchanger's complex geometry at the elevated temperatures. Our objective is to use spray-on piezo-electrics for depositing comb transducers onto the curved surfaces. This paper shows results for composite transducers such as lead zirconate titanate/ bismuth titanate and bismuth titanate/ lithium niobate. The comb transducers were prepared by precision laser ablation. The feasibility of producing second harmonic waves in rods with these spay-on comb transducers was demonstrated and paves the way toward measuring material degradation early-on before crack initiation occurs.

  10. Modification of steel surfaces induced by turning: non-destructive characterization using Barkhausen noise and positron annihilation

    NASA Astrophysics Data System (ADS)

    Čížek, J.; Neslušan, M.; Čilliková, M.; Mičietová, A.; Melikhova, O.

    2014-11-01

    This paper deals with the characterization of sub-surface damage caused by the machining of 100Cr6 roll bearing steel. The samples turned using tools with variable flank wears were characterized by two non-destructive techniques sensitive to defects introduced by plastic deformation: magnetic Barkhausen noise and positron annihilation. These techniques were combined with light and electron microscopy, x-ray diffraction and microhardness testing. The results of the experiment showed that damage in the sub-surface region increases with increasing flank wear, but from a certain critical value dynamic recovery takes place. The intensity of Barkhausen noise strongly decreases with increasing flank wear due to the increasing density of the dislocations pinning the Bloch walls and suppressing their motion. This was confirmed by positron annihilation spectroscopy, which enables the determination of the dislocation density directly. Hence, a good correlation between Barkhausen noise emission and positron annihilation spectroscopy was found.

  11. The non-destructive identification of solid over-the-counter medications using single particle aerosol mass spectrometry.

    PubMed

    Martin, Audrey N; Farquar, George R; Jones, A Daniel; Frank, Matthias

    2007-01-01

    Single over-the-counter medication tablets were analyzed in real time using Single Particle Aerosol Mass Spectrometry (SPAMS). Dual-polarity time-of-flight mass spectra were obtained for micrometer-sized single particles dislodged from a single tablet without destroying the shape or markings of each tablet. The solid tablet was placed in a modified-top glass vial and shaken to dislodge and introduce micrometer-sized particles into the SPAMS system. Unique spectra from these particles were obtained in less than 1 s for single tablets of aspirin, ibuprofen, pseudoephedrine, phenylephrine, loratadine, or diphenhydramine. The signals obtained allowed the non-destructive identification of an individual tablet in seconds. SPAMS presents an ideal system for high-throughput analysis of solid drugs. PMID:17935106

  12. Multispectral UV imaging for fast and non-destructive quality control of chemical and physical tablet attributes.

    PubMed

    Klukkert, Marten; Wu, Jian X; Rantanen, Jukka; Carstensen, Jens M; Rades, Thomas; Leopold, Claudia S

    2016-07-30

    Monitoring of tablet quality attributes in direct vicinity of the production process requires analytical techniques that allow fast, non-destructive, and accurate tablet characterization. The overall objective of this study was to investigate the applicability of multispectral UV imaging as a reliable, rapid technique for estimation of the tablet API content and tablet hardness, as well as determination of tablet intactness and the tablet surface density profile. One of the aims was to establish an image analysis approach based on multivariate image analysis and pattern recognition to evaluate the potential of UV imaging for automatized quality control of tablets with respect to their intactness and surface density profile. Various tablets of different composition and different quality regarding their API content, radial tensile strength, intactness, and surface density profile were prepared using an eccentric as well as a rotary tablet press at compression pressures from 20MPa up to 410MPa. It was found, that UV imaging can provide both, relevant information on chemical and physical tablet attributes. The tablet API content and radial tensile strength could be estimated by UV imaging combined with partial least squares analysis. Furthermore, an image analysis routine was developed and successfully applied to the UV images that provided qualitative information on physical tablet surface properties such as intactness and surface density profiles, as well as quantitative information on variations in the surface density. In conclusion, this study demonstrates that UV imaging combined with image analysis is an effective and non-destructive method to determine chemical and physical quality attributes of tablets and is a promising approach for (near) real-time monitoring of the tablet compaction process and formulation optimization purposes. PMID:26657202

  13. Non-Destructive Evaluation of Rock Bolts Associated With Optical Strain Sensors at the Homestake Gold Mine

    NASA Astrophysics Data System (ADS)

    Kogle, M. M.; Fratta, D.; Wang, H. F.; Geox^Tm

    2010-12-01

    Fiber-Bragg Grating (FBG) optical strain sensors have been installed in the former Homestake Gold Mine (Lead, SD) as part of an early science project at the Deep Underground Science and Engineering Laboratory (DUSEL). FBG sensors are anchored within an alcove at the 4100’ level of the mine using rock bolts and coupled to the rock mass with resin epoxy and cement grout. The quality of the coupling between the rock bolt and the rock mass is essential to assure that true rock mass strains are being recorded. To evaluate the integrity of the installed rock bolt system, guided ultrasonic waves can be used as a non-destructive monitoring system. The propagation of reflected ultrasonic waves capture information about the degree of coupling between the steel rock bolt and resin epoxy/cement grout and between the resin epoxy/cement grout and the surrounding rock mass, and hence the integrity of the installed rock bolt system. In this study, we use the phase velocity obtained from ultrasonic wave propagation to estimate the rock modulus. In our initial testing we generated a broadband elastic wave along the length of a rock bolt anchored in a concrete cylinder while monitoring multiple reflections with a single accelerometer affixed at the exposed end of the rock bolt. The captured waveforms include several reflections that were then analyzed to obtain frequency response, coherence, phase velocity, and damping between multiple reflections. As the wavelength increases, the response captures first elastic properties of the steel and then the combined elastic properties of the rock bolt/rock mass system. Challenges associated with implementing this non-destructive testing technique in rock masses include the generation of wide bandwidth signals having enough strength to produce multiple reflections with high enough signal-to-noise ratios to capture properties of multi-scale systems.

  14. Non-destructive determination of ethylene vinyl acetate cross-linking in photovoltaic (PV) modules by Raman spectroscopy.

    PubMed

    Chernev, Boril S; Hirschl, Christina; Eder, Gabriele C

    2013-11-01

    Vibrational spectroscopy was found to be a suitable method for the determination of the degree of cross-linking of ethylene vinyl acetate (EVA) polymers. Spectral changes in the Raman spectra of EVA with increasing lamination time (which equals increasing degree of cross-linking) were mainly detected in the CH vibrational regions, namely, in the relative intensities of the characteristic CH3 and CH2 bands. These spectral regions were chosen for a chemometric evaluation where a calibration was performed with the Raman spectra of reference EVA samples and the results obtained from corresponding thermal analysis (differential scanning calorimetry) and Soxhlet extraction data. These datasets were subsequently used to non-destructively determine the progress of cross-linking in EVA foils, embedded in various mini-modules by Raman microscopy. Thus, we could show that Raman spectroscopy is a highly interesting method for quality control in the production of photovoltaic (PV) modules. However, this approach is valid only for a given grade of EVA, meaning a demand for a new calibration when changing the supplier or the type of EVA used. In addition, the applicability of infrared spectroscopy for the determination of the degree of cross-linking was tested. A good correlation of the decrease in intensity of the characteristic cross-linker infrared bands with increasing progress of the cross-linking was found, as determined by reference methods. However, this analytical method requires taking samples of the EVA foils and is, thus, unsuitable for the non-destructive determination of the degree of cross-linking of the EVA encapsulated within a PV module. PMID:24160881

  15. Complementary use of the Raman and XRF techniques for non-destructive analysis of historical paint layers

    NASA Astrophysics Data System (ADS)

    Sawczak, M.; Kamińska, A.; Rabczuk, G.; Ferretti, M.; Jendrzejewski, R.; Śliwiński, G.

    2009-03-01

    The portable XRF spectrometer has been applied in situ for the non-destructive elemental mapping of the pigment components of the XV c. mural painting and frescos of the Little Christopher chamber in the Main Town Hall of Gdańsk, Poland. For a sufficiently large data collection the principal component analysis (PCA) was applied in order to associate the most intense lines of the elements Ca, Cu, Fe, Pb, and Hg in the XRF spectra with the palette of colors: white, brown, green, blue, red, yellow, and black observed in the painting. This allowed to limit the number of extractions of the micro-samples for the complementary Raman measurements thus assuring the practically non-destructive character of the entire analysis. The reliable identification of the pigment compositions was based on coincidence of the XRF, PCA and the Raman results which confirmed the presence of the chalk, malachite, azurite, red lead, mars red, mars yellow and candle black in the historical paints, except of the carbon-based black pigment being out of the XRF detection range. Different hues of the green paint were specified and the variety of the red and brown ones was ascribed to compositions of the Pb- and Fe-based red pigments (Fe 2O 3 and Pb 3O 4) with addition of the vermilion (HgS) and carbon black, in agreement with literature. The traces of elements: Ba and Sr, Sb and Mo, and also Cd, were ascribed to the impurities of Ca, those of some ochre pigments, and to the soluble Cd salts, respectively.

  16. STATUS OF PORTABLE NON DESTRUCTIVE ASSAY (NDA) AT THE PLUTONIUM FINISHING PLANT (PFP)

    SciTech Connect

    KEELE, B.D.

    2005-06-10

    Collimated portable gamma-ray detectors are used to quantify the plutonium holdup in support of facility deactivation and decommissioning. The Generalized Geometry Holdup model recently has been implemented for data reduction to support a new decontamination and decommissioning mission. An approach to assess the total measurement uncertainty (TMU) has been developed. The TMU is added to the assay value for compliance with safety based limits. Details of the measurement techniques and comparisons to assays of materials removed are described.

  17. Non-destructive evaluation of weld discontinuity in steel tubes by gamma ray CT

    NASA Astrophysics Data System (ADS)

    Moura, A. E.; Dantas, C. C.; Nery, M. S.; Barbosa, J. M.; Rolim, T. L.; Lima, E. A. O.; Melo, S. B.; Dos Santos, V. A.

    2015-04-01

    Weld discontinuity in steel tubes was investigated and dimensioned in a data analysis sequence. The correlation matrix, cosine distance and hierarchical cluster were applied as multivariate data processing in this analysis. Welded rings of 9236 mm3 were scanned in gamma ray CT in test tubes and compared with steel base and references. The discontinuity volume detected in the welded rings was assessed based on the pixel volume in data sampling. By modeling gamma ray trajectories and rotation angles in CT scanning, a discontinuity of 0.3 mm was determined and a limit detection of 23 mm3 was obtained.

  18. Verification of recursive probabilistic integration (RPI) method for fatigue life management using non-destructive inspections

    NASA Astrophysics Data System (ADS)

    Chen, Tzikang J.; Shiao, Michael

    2016-04-01

    This paper verified a generic and efficient assessment concept for probabilistic fatigue life management. The concept is developed based on an integration of damage tolerance methodology, simulations methods1, 2, and a probabilistic algorithm RPI (recursive probability integration)3-9 considering maintenance for damage tolerance and risk-based fatigue life management. RPI is an efficient semi-analytical probabilistic method for risk assessment subjected to various uncertainties such as the variability in material properties including crack growth rate, initial flaw size, repair quality, random process modeling of flight loads for failure analysis, and inspection reliability represented by probability of detection (POD). In addition, unlike traditional Monte Carlo simulations (MCS) which requires a rerun of MCS when maintenance plan is changed, RPI can repeatedly use a small set of baseline random crack growth histories excluding maintenance related parameters from a single MCS for various maintenance plans. In order to fully appreciate the RPI method, a verification procedure was performed. In this study, MC simulations in the orders of several hundred billions were conducted for various flight conditions, material properties, and inspection scheduling, POD and repair/replacement strategies. Since the MC simulations are time-consuming methods, the simulations were conducted parallelly on DoD High Performance Computers (HPC) using a specialized random number generator for parallel computing. The study has shown that RPI method is several orders of magnitude more efficient than traditional Monte Carlo simulations.

  19. Delayed Gamma-Ray Spectroscopy for Non-Destructive Assay of Nuclear Materials

    SciTech Connect

    Ludewigt, Bernhard; Mozin, Vladimir; Campbell, Luke; Favalli, Andrea; Hunt, Alan W.; Reedy, Edward T.E.; Seipel, Heather A.

    2015-09-28

    This project has been a collaborative effort of researchers from four National Laboratories, Lawrence Berkley National Laboratory (LBNL), Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Pacific Northwest National Laboratory (PNNL), and Idaho State University’s (ISU) Idaho Accelerator Center (IAC). Experimental measurements at the Oregon State University (OSU) were also supported. The research included two key components, a strong experimental campaign to characterize the delayed gamma-ray signatures of the isotopes of interests and of combined targets, and a closely linked modeling effort to assess system designs and applications. Experimental measurements were performed to evaluate fission fragment yields, to test methods for determining isotopic fractions, and to benchmark the modeling code package. Detailed signature knowledge is essential for analyzing the capabilities of the delayed gamma technique, optimizing measurement parameters, and specifying neutron source and gamma-ray detection system requirements. The research was divided into three tasks: experimental measurements, characterization of fission yields, and development of analysis methods (task 1), modeling in support of experiment design and analysis and for the assessment of applications (task 2), and high-rate gamma-ray detector studies (task 3).

  20. Neutron-based nonintrusive inspection techniques

    NASA Astrophysics Data System (ADS)

    Gozani, Tsahi

    1997-02-01

    Non-intrusive inspection of large objects such as trucks, sea-going shipping containers, air cargo containers and pallets is gaining attention as a vital tool in combating terrorism, drug smuggling and other violation of international and national transportation and Customs laws. Neutrons are the preferred probing radiation when material specificity is required, which is most often the case. Great strides have been made in neutron based inspection techniques. Fast and thermal neutrons, whether in steady state or in microsecond, or even nanosecond pulses are being employed to interrogate, at high speeds, for explosives, drugs, chemical agents, and nuclear and many other smuggled materials. Existing neutron techniques will be compared and their current status reported.

  1. Delayed Gamma-Ray Spectroscopy for Non-Destructive Assay of Nuclear Materials

    SciTech Connect

    Ludewigt, Bernhard; Mozin, Vladimir; Campbell, Luke; Favalli, Andrea; Alan W. Hunt; Edward T. Reedy; Heather A. Seipel

    2015-06-01

    Modeling capabilities were added to an existing framework and codes were adapted as needed for analyzing experiments and assessing application-specific assay concepts including simulation of measurements over many short irradiation/spectroscopy cycles. The code package was benchmarked against the data collected at the IAC for small targets and assembly-scale data collected at LANL. A study of delayed gamma-ray spectroscopy for nuclear safeguards was performed for a variety of assemblies in the extensive NGSI spent fuel library. The modeling results indicate that delayed gamma-ray responses can be collected from spent fuel assemblies with statistical quality sufficient for analyzing their isotopic composition using a 1011 n/s neutron generator and COTS detector instrumentation.

  2. Design and Implementation of a Low-Cost Non-Destructive System for Measurements of Water and Salt Levels in Food Products Using Impedance Spectroscopy

    NASA Astrophysics Data System (ADS)

    Masot, Rafael; Alcañiz, Miguel; Fuentes, Ana; Campos, Franciny; Barat, José M.; Gil, Luis; Labrador, Roberto H.; Soto, Juan; Martínez-Máñez, Ramón

    2009-05-01

    The IQMA and the DTA have developed a low-cost system to determinate the contents of water and salt in food products as cured ham or pork loin using non-destructive methods. The system includes an electronic equipment that allows the implementation of impedance spectroscopy and an electrode. The electrode is a concentric needle which allows carrying out tests in a non-destructive way. Preliminary results indicate that there is a correlation between the water and salt contents and the module and phase of the impedance of the food sample in the range of 1 Hz to 1 MHz.

  3. Non-Destructive Evaluation of Fatigue Damage for SUS316 by Using Electromagnetic Methods

    NASA Astrophysics Data System (ADS)

    Oka, M.; Tsuchida, Y.; Yakushiji, T.; Enokizono, M.

    2009-03-01

    There are some fatigue damage estimation methods for an austenitic stainless steel that uses martensitic transformation. For instance, those are the remanent magnetization method, the excitation method using the differential pick-up coil, and so on. We are researching also those two methods in our laboratory now. In the remanent magnetization method, it is well known that the relationship between fatigue damage and the remanent magnetization is simple, clear, and reproducible. In addition, the excitation method can be easily used at the job site because the special magnetizer is unnecessary. But, these methods have some disadvantages shown as follows. For instance, the former needs a special magnetizer and the latter's output signal is small. On the other hand, it is well known that the inductance of a pancake type coil put on the metallic specimen changes according to the electromagnetic properties of the metallic specimen. In this paper, the assessment method of fatigue of an austenitic stainless steel (SUS316) that uses the change by fatigue of the inductance of the pancake type coil measured with the LCR meter is shown. In addition, the fatigue evaluation performance of this method is described.

  4. Non-destructive Identification of Individual Leukemia Cells by Optical Trapping Raman Spectroscopy

    SciTech Connect

    Chan, J W; Taylor, D S; Lane, S; Zwerdling, T; Tuscano, J; Huser, T

    2007-03-05

    Currently, a combination of technologies is typically required to assess the malignancy of cancer cells. These methods often lack the specificity and sensitivity necessary for early, accurate diagnosis. Here we demonstrate using clinical samples the application of laser trapping Raman spectroscopy as a novel approach that provides intrinsic biochemical markers for the noninvasive detection of individual cancer cells. The Raman spectra of live, hematopoietic cells provide reliable molecular fingerprints that reflect their biochemical composition and biology. Populations of normal T and B lymphocytes from four healthy individuals, and cells from three leukemia patients were analyzed, and multiple intrinsic Raman markers associated with DNA and protein vibrational modes have been identified that exhibit excellent discriminating power for cancer cell identification. A combination of two multivariate statistical methods, principal component analysis (PCA) and linear discriminant analysis (LDA), was used to confirm the significance of these markers for identifying cancer cells and classifying the data. The results indicate that, on average, 95% of the normal cells and 90% of the patient cells were accurately classified into their respective cell types. We also provide evidence that these markers are unique to cancer cells and not purely a function of differences in their cellular activation.

  5. Non-destructive characterisation of mesenchymal stem cell differentiation using LC-MS-based metabolite footprinting.

    PubMed

    Surrati, Amal; Linforth, Rob; Fisk, Ian D; Sottile, Virginie; Kim, Dong-Hyun

    2016-06-21

    Bone regeneration is a complex biological process where major cellular changes take place to support the osteogenic differentiation of mesenchymal bone progenitors. To characterise these biological changes and better understand the pathways regulating the formation of mature bone cells, the metabolic profile of mesenchymal stem cell (MSC) differentiation in vitro has been assessed non-invasively during osteogenic (OS) treatment using a footprinting technique. Liquid chromatography (LC)-mass spectrometry (MS)-based metabolite profiling of the culture medium was carried out in parallel to mineral deposition and alkaline phosphatase activity which are two hallmarks of osteogenesis in vitro. Metabolic profiles of spent culture media with a combination of univariate and multivariate analyses investigated concentration changes of extracellular metabolites and nutrients linked to the presence of MSCs in culture media. This non-invasive LC-MS-based analytical approach revealed significant metabolic changes between the media from control and OS-treated cells showing distinct effects of MSC differentiation on the environmental footprint of the cells in different conditions (control vs. OS treatment). A subset of compounds was directly linked to the osteogenic time-course of differentiation, and represent interesting metabolite candidates as non-invasive biomarkers for characterising the differentiation of MSCs in a culture medium. PMID:27102615

  6. Neural networks and robotics applied to the non-destructive inspection of aircraft. Status report

    SciTech Connect

    Greenwood, D.

    1991-07-01

    The authors are converting the in phase and quadrature measurements into an image and then using the image to classify fault or no fault eddy current. This has been done using old OCR features developed to recognize handwritten numerical characters which are applicable to this situation. The raw data was first smoothed out by taking the average of the nearest 10 measurements, then plotted on a 50 by 50 grid. The X axis is the in phase measurement normalized to accommodate the maximum and minimum in phase values in the data set. The same was done for quadrature values on the Y axis. An efficient path planning method for collision avoidance has been developed. Fast path planning is achieved by decomposing the 3-dimensional space into a number of 2-dimensional subspaces. A method is devised to work directly with arm postures (configurations) instead of dealing with individual joint angles. These two aspects, namely decomposition and posture control, greatly speed up the path finding procedure and make it possible to perform near real-time planning in a moderately cluttered environment. Meetings were held at McDonnell Douglas, McClelland AFB, and Physical Research Inc., manufacturers of Magneto-Optic Crack Detectors to assess the utility of our research and plans for prototyping during Phase II. Discussions have begun with United Technologies concerning the use of our research for a large Air Force NDI program. Prospects for Phase III follow-on look promising.

  7. Non-destructive tree root detection with geophysical methods in urban soils

    NASA Astrophysics Data System (ADS)

    Vianden, Mitja Johannes; Weihs, Ulrich; Kuhnke, Falko; Rust, Steffen

    2010-05-01

    To assess the safety of roadside trees or as part of ecophysiological research it is often important to investigate the spatial distribution and development of tree roots. Conventionally this is done by laborious excavations or by the application of root drills which in many cases do not allow a comprehensive data collection. An indirect method for the investigation of subsurface features is ground penetrating radar (GPR). Its ability to detect tree roots has been shown by several studies (for example Hruska et al. 1999; Butnor et al. 2001; Barton et al. 2004). Another geophysical method which has been successful applied to study different aspects of tree roots is electrical resistivity tomography (ERT) (for example Hagrey 2007; Amato et al. 2008). These former studies by other authors mainly concentrated on a correlation between the measured parameters (signal amplitude and resistivity) and root-biomass on forest sites or controlled conditions. Results of Cermak et al. (2000), studying tree roots in urban areas with GPR, indicated that this method may also be useful for anthropogenic influenced areas. As a continuation of these approaches the authors have been using both techniques to study the spatial root architecture of urban trees. This research is designed to elicit the possibilities and limitations of the methods in urban areas. Reference sites have been established to quantify the methods' resolution and assess possible fields of application. These test site measurements are the basis for the interpretation of results at urban tree sites. Their results highlight the importance of 3D-measurements in urban areas because in inhomogeneous soil other reflectors (like rocks, cables, pipes, etc.) cause similar signals and bear a risk of misinterpretation. This can be minimized if detected objects have a spatial continuation and are connected to a tree. Here we present preliminary results from a combined application of both methods at the river bank of the

  8. Non-destructive estimation of foliar chlorophyll and carotenoid contents: Focus on informative spectral bands

    NASA Astrophysics Data System (ADS)

    Kira, Oz; Linker, Raphael; Gitelson, Anatoly

    2015-06-01

    Leaf pigment content provides valuable insight into the productivity, physiological and phenological status of vegetation. Measurement of spectral reflectance offers a fast, nondestructive method for pigment estimation. A number of methods were used previously for estimation of leaf pigment content, however, spectral bands employed varied widely among the models and data used. Our objective was to find informative spectral bands in three types of models, vegetation indices (VI), neural network (NN) and partial least squares (PLS) regression, for estimating leaf chlorophyll (Chl) and carotenoids (Car) contents of three unrelated tree species and to assess the accuracy of the models using a minimal number of bands. The bands selected by PLS, NN and VIs were in close agreement and did not depend on the data used. The results of the uninformative variable elimination PLS approach, where the reliability parameter was used as an indicator of the information contained in the spectral bands, confirmed the bands selected by the VIs, NN, and PLS models. All three types of models were able to accurately estimate Chl content with coefficient of variation below 12% for all three species with VI showing the best performance. NN and PLS using reflectance in four spectral bands were able to estimate accurately Car content with coefficient of variation below 14%. The quantitative framework presented here offers a new way of estimating foliar pigment content not requiring model re-parameterization for different species. The approach was tested using the spectral bands of the future Sentinel-2 satellite and the results of these simulations showed that accurate pigment estimation from satellite would be possible.

  9. Non destructive characterization of cortical bone micro-damage by nonlinear resonant ultrasound spectroscopy.

    PubMed

    Haupert, Sylvain; Guérard, Sandra; Peyrin, Françoise; Mitton, David; Laugier, Pascal

    2014-01-01

    The objective of the study was to evaluate the ability of a nonlinear ultrasound technique, the so-called nonlinear resonant ultrasound spectroscopy (NRUS) technique, for detecting early microdamage accumulation in cortical bone induced by four-point bending fatigue. Small parallelepiped beam-shaped human cortical bone specimens were subjected to cyclic four-point bending fatigue in several steps. The specimens were prepared to control damage localization during four-point bending fatigue cycling and to unambiguously identify resonant modes for NRUS measurements. NRUS measurements were achieved to follow the evolution of the nonlinear hysteretic elastic behavior during fatigue-induced damage. After each fatigue step, a small number of specimens was removed from the protocol and set apart to quantitatively assess the microcrack number density and length using synchrotron radiation micro-computed tomography (SR-µCT). The results showed a significant effect of damage steps on the nonlinear hysteretic elastic behavior. No significant change in the overall length of microcracks was observed in damaged regions compared to the load-free control regions. Only an increased number of shortest microcracks, those in the lowest quartile, was noticed. This was suggestive of newly formed microcracks during the early phases of damage accumulation. The variation of nonlinear hysteretic elastic behavior was significantly correlated to the variation of the density of short microcracks. Our results suggest that the nonlinear hysteretic elastic behavior is sensitive to early bone microdamage. Therefore NRUS technique can be used to monitor fatigue microdamage progression in in vitro experiments. PMID:24392089

  10. Evaluation of a highway pavement using non destructive tests: Falling Weight Deflectometer and Ground Penetrating Radar

    NASA Astrophysics Data System (ADS)

    Marecos, Vania; Fontul, Simona; de Lurdes Antunes, Maria

    2015-04-01

    This paper presents the results of the application of Falling Weight Deflectometer (FWD) and Ground Penetrating Radar (GPR) to assess the bearing capacity of a rehabilitated flexible highway pavement that began to show the occurrence of cracks in the surface layer, about one year after the improvement works. A visual inspection of the surface of the pavement was performed to identify and characterize the cracks. Several core drills were done to analyse the cracks propagation in depth, these cores were also used for GPR data calibration. From the visual inspection it was concluded that the development of the cracks were top-down and that the cracks were located predominantly in the wheel paths. To determine the thickness of the bituminous and granular layers GPR tests were carried out using two horn antennas of 1,0 GHz and 1,8 GHz and a radar control unit SIR-20, both from GSSI. FWD load tests were performed on the wheel paths and structural models were established, based on the deflections measured, through back calculation. The deformation modulus of the layers was calculated and the bearing capacity of the pavement was determined. Summing up, within this study the GPR was used to continuously detect the layer thickness and the GPR survey data was calibrated with core drills. The results showed variations in the bituminous layer thickness in comparison to project data. From the load tests it was concluded that the deformation modulus of the bituminous layers were also vary variable. Limitations on the pavement bearing capacity were detected in the areas with the lower deformation modulus. This abstract is of interest for COST Action TU1208 Civil Engineering Applications of Ground Penetrating Radar.

  11. Non Destructive Characterization of Cortical Bone Micro-Damage by Nonlinear Resonant Ultrasound Spectroscopy

    PubMed Central

    Haupert, Sylvain; Guérard, Sandra; Peyrin, Françoise; Mitton, David; Laugier, Pascal

    2014-01-01

    The objective of the study was to evaluate the ability of a nonlinear ultrasound technique, the so-called nonlinear resonant ultrasound spectroscopy (NRUS) technique, for detecting early microdamage accumulation in cortical bone induced by four-point bending fatigue. Small parallelepiped beam-shaped human cortical bone specimens were subjected to cyclic four-point bending fatigue in several steps. The specimens were prepared to control damage localization during four-point bending fatigue cycling and to unambiguously identify resonant modes for NRUS measurements. NRUS measurements were achieved to follow the evolution of the nonlinear hysteretic elastic behavior during fatigue-induced damage. After each fatigue step, a small number of specimens was removed from the protocol and set apart to quantitatively assess the microcrack number density and length using synchrotron radiation micro-computed tomography (SR-µCT). The results showed a significant effect of damage steps on the nonlinear hysteretic elastic behavior. No significant change in the overall length of microcracks was observed in damaged regions compared to the load-free control regions. Only an increased number of shortest microcracks, those in the lowest quartile, was noticed. This was suggestive of newly formed microcracks during the early phases of damage accumulation. The variation of nonlinear hysteretic elastic behavior was significantly correlated to the variation of the density of short microcracks. Our results suggest that the nonlinear hysteretic elastic behavior is sensitive to early bone microdamage. Therefore NRUS technique can be used to monitor fatigue microdamage progression in in vitro experiments. PMID:24392089

  12. Energy dispersive X-ray fluorescence spectroscopy/Monte Carlo simulation approach for the non-destructive analysis of corrosion patina-bearing alloys in archaeological bronzes: The case of the bowl from the Fareleira 3 site (Vidigueira, South Portugal)

    NASA Astrophysics Data System (ADS)

    Bottaini, C.; Mirão, J.; Figuereido, M.; Candeias, A.; Brunetti, A.; Schiavon, N.

    2015-01-01

    Energy dispersive X-ray fluorescence (EDXRF) is a well-known technique for non-destructive and in situ analysis of archaeological artifacts both in terms of the qualitative and quantitative elemental composition because of its rapidity and non-destructiveness. In this study EDXRF and realistic Monte Carlo simulation using the X-ray Monte Carlo (XRMC) code package have been combined to characterize a Cu-based bowl from the Iron Age burial from Fareleira 3 (Southern Portugal). The artifact displays a multilayered structure made up of three distinct layers: a) alloy substrate; b) green oxidized corrosion patina; and c) brownish carbonate soil-derived crust. To assess the reliability of Monte Carlo simulation in reproducing the composition of the bulk metal of the objects without recurring to potentially damaging patina's and crust's removal, portable EDXRF analysis was performed on cleaned and patina/crust coated areas of the artifact. Patina has been characterized by micro X-ray Diffractometry (μXRD) and Back-Scattered Scanning Electron Microscopy + Energy Dispersive Spectroscopy (BSEM + EDS). Results indicate that the EDXRF/Monte Carlo protocol is well suited when a two-layered model is considered, whereas in areas where the patina + crust surface coating is too thick, X-rays from the alloy substrate are not able to exit the sample.

  13. Delayed Gamma-Ray Spectroscopy for Non-Destructive Assay of Nuclear Materials

    SciTech Connect

    Ludewigt, Bernhard; Mozin, Vladimir; Campbell, Luke; Favalli, Andrea; Alan W. Hunt; Reedy, Edward T.E.; Seipel, Heather

    2015-06-01

    was investigated as a potential alternative to HPGe detectors. Modeling capabilities were added to an existing framework and codes were adapted as needed for analyzing experiments and assessing application-­specific assay concepts. A de-­convolution analysis of the delayed gamma-­ray response spectra modeled for spent fuel assemblies was performed using the same method that was applied to the experimental spectra.

  14. Non-destructive X-ray Computed Tomography (XCT) Analysis of Sediment Variance in Marine Cores

    NASA Astrophysics Data System (ADS)

    Oti, E.; Polyak, L. V.; Dipre, G.; Sawyer, D.; Cook, A.

    2015-12-01

    Benthic activity within marine sediments can alter the physical properties of the sediment as well as indicate nutrient flux and ocean temperatures. We examine burrowing features in sediment cores from the western Arctic Ocean collected during the 2005 Healy-Oden TransArctic Expedition (HOTRAX) and from the Gulf of Mexico Integrated Ocean Drilling Program (IODP) Expedition 308. While traditional methods for studying bioturbation require physical dissection of the cores, we assess burrowing using an X-ray computed tomography (XCT) scanner. XCT noninvasively images the sediment cores in three dimensions and produces density sensitive images suitable for quantitative analysis. XCT units are recorded as Hounsfield Units (HU), where -999 is air, 0 is water, and 4000-5000 would be a higher density mineral, such as pyrite. We rely on the fundamental assumption that sediments are deposited horizontally, and we analyze the variance over each flat-lying slice. The variance describes the spread of pixel values over a slice. When sediments are reworked, drawing higher and lower density matrix into a layer, the variance increases. Examples of this can be seen in two slices in core 19H-3A from Site U1324 of IODP Expedition 308. The first slice, located 165.6 meters below sea floor consists of relatively undisturbed sediment. Because of this, the majority of the sediment values fall between 1406 and 1497 HU, thus giving the slice a comparatively small variance of 819.7. The second slice, located 166.1 meters below sea floor, features a lower density sediment matrix disturbed by burrow tubes and the inclusion of a high density mineral. As a result, the Hounsfield Units have a larger variance of 1,197.5, which is a result of sediment matrix values that range from 1220 to 1260 HU, the high-density mineral value of 1920 HU and the burrow tubes that range from 1300 to 1410 HU. Analyzing this variance allows us to observe changes in the sediment matrix and more specifically capture

  15. Non destructive FTIR-photoacoustic spectroscopy studies on carbon fiber reinforced polyimide composite and water diffusion in epoxy resin

    NASA Astrophysics Data System (ADS)

    Vijayaraghavan, Ravikumar

    Photo-acoustic (PA) detection is a non-destructive, non-disruptive mode of sample analysis. The principle of PA detection is monitoring the change in thermal properties of the material as a result of optical absorption. The ability to use with any incident radiation source makes it an attractive technique to study molecular excitations, vibrations and defects in any sample. Given the need for non-destructive analysis, the tool can be employed to study plethora of samples ranging from organic to inorganic. In the polymeric domain, there is a significant need for studying samples non-destructively with the architecture intact. For instance, molecular characterization in carbon fiber reinforced polymer, chemical diffusion in polymer resin/membrane and particulate/fillers incorporated thermosets suffer in characterization due to sample make-up. These samples are affected by opacity and thickness, which make them a very difficult set-up to study using conventional spectroscopic tools. We have employed PA mode of detection in tandem with a FTIR source to study the molecular vibrations to get an understanding of the systems considered. The first part of the work involved employing PA spectroscopy to study the curing in carbon fiber reinforced polymer (CFRP). Phenyl-ethynyl terminated oligoamic acid impregnated composite system was studied. The curing of composite and resin was monitored using PAS and compared with Transmission FTIR on resin and dynamic scanning calorimetry (DSC). The composite showed two distinct reactions as a function of thermal treatment. (1) Imidization at low temperatures due to cyclo-dehydration and (2) at high temperatures, crosslinking due to ethynyl addition reaction. Composite exhibited enhanced curing trends compared to neat resin. Our results indicate that the thermal conductivity of the carbon fiber might play a role in heat transfer facilitating the reaction. The activation energy was found to be 23kcal/mol for the crosslinking step. The

  16. Simultaneous monitoring of biofilm growth, microbial activity, and inorganic deposits on surfaces with an in situ, online, real-time, non-destructive, optical sensor.

    PubMed

    Strathmann, Martin; Mittenzwey, Klaus-Henrik; Sinn, Gert; Papadakis, Wassilios; Flemming, Hans-Curt

    2013-01-01

    Deposits on surfaces in water-bearing systems, also known as 'fouling', can lead to substantial losses in the performance of industrial processes as well as a decreased product quality. Early detection and localization of such deposits can, to a considerable extent, save such losses. However, most of the surfaces that become fouled, for example, in process water pipes, membrane systems, power plants, and food and beverage industries, are difficult to access and analyses conducted on the water phase do not reveal the site or extent of deposits. Furthermore, it is of interest to distinguish biological from non-biological deposits. Although they usually occur together, different countermeasures are necessary. Therefore, sensors are required that indicate the development of surface fouling in real-time, non-destructively, and in situ, preferably allowing for discrimination between chemical and/or biological deposits. In this paper, an optical deposit sensor is presented which fulfills these requirements. Based on multiple fluorescence excitation emission matrix analysis, it detects autofluorescence of amino acids as indicators of biomass. Autofluorescence of nicotinamide adenine dinucleotide + hydrogen is interpreted as an indicator of biological activity, thus it acts as a viability marker, making the method suited for assessing the efficacy of disinfection treatments. Scattering signals from abiotic deposits such as calcium carbonate or corrosion products can clearly be distinguished from biotic substances and monitored separately. The sensor provides an early warning of fouling, allowing for timely countermeasures to be deployed. It also provides an assessment of the success of cleaning treatments and is a promising tool for integrated antifouling strategies. PMID:23682638

  17. [Non-destructive detection research for hollow heart of potato based on semi-transmission hyperspectral imaging and SVM].

    PubMed

    Huang, Tao; Li, Xiao-yu; Xu, Meng-ling; Jin, Rui; Ku, Jing; Xu, Sen-miao; Wu, Zhen-zhong

    2015-01-01

    The quality of potato is directly related to their edible value and industrial value. Hollow heart of potato, as a physiological disease occurred inside the tuber, is difficult to be detected. This paper put forward a non-destructive detection method by using semi-transmission hyperspectral imaging with support vector machine (SVM) to detect hollow heart of potato. Compared to reflection and transmission hyperspectral image, semi-transmission hyperspectral image can get clearer image which contains the internal quality information of agricultural products. In this study, 224 potato samples (149 normal samples and 75 hollow samples) were selected as the research object, and semi-transmission hyperspectral image acquisition system was constructed to acquire the hyperspectral images (390-1 040 nn) of the potato samples, and then the average spectrum of region of interest were extracted for spectral characteristics analysis. Normalize was used to preprocess the original spectrum, and prediction model were developed based on SVM using all wave bands, the accurate recognition rate of test set is only 87. 5%. In order to simplify the model competitive.adaptive reweighed sampling algorithm (CARS) and successive projection algorithm (SPA) were utilized to select important variables from the all 520 spectral variables and 8 variables were selected (454, 601, 639, 664, 748, 827, 874 and 936 nm). 94. 64% of the accurate recognition rate of test set was obtained by using the 8 variables to develop SVM model. Parameter optimization algorithms, including artificial fish swarm algorithm (AFSA), genetic algorithm (GA) and grid search algorithm, were used to optimize the SVM model parameters: penalty parameter c and kernel parameter g. After comparative analysis, AFSA, a new bionic optimization algorithm based on the foraging behavior of fish swarm, was proved to get the optimal model parameter (c=10. 659 1, g=0. 349 7), and the recognition accuracy of 10% were obtained for the AFSA

  18. Development of an instrument for non-destructive identification of Unexploded Ordnance using tagged neutrons - a proof of concept study

    SciTech Connect

    Mitra, S.; Dioszegi, I.

    2011-10-23

    Range clearance operations at munitions testing grounds must discriminate Unexploded Ordnance (UXO) from clutter items and distinguish UXO filled with High Explosives (HE) from those with inert fillers. Non-destructive technologies are thus necessary for the cost-effective disposal of UXO during remediation of such sites. The only technique showing promise so far for the non-destructive elemental characterization of UXO fillers utilizes neutron interactions with the material to detect carbon (C), nitrogen (N) and oxygen (O) which have unique ratios in HE. However, several unresolved issues hinder the wide application of this potentially very suitable technique. The most important one is that neutrons interact with all surrounding matter in addition to the interrogated material, leading to a very high gamma-ray background in the detector. Systems requiring bulky shielding and having poor signal-to-noise ratios (SNRs) for measuring elements are unsuitable for field deployment. The inadequacies of conventional neutron interrogation methods are overcome by using the tagged-neutron approach, and the availability of compact sealed neutron generators exploiting this technique offers field deployment of non-intrusive measurement systems for detecting threat materials, like explosives and drugs. By accelerating deuterium ions into a tritium target, the subsequent fusion reaction generates nearly back-to-back emissions of neutrons and alpha particles of energy 14.1 and 3.5 MeV respectively. A position-sensitive detector recognizes the associated alpha particle, thus furnishing the direction of the neutron. The tagged neutrons interact with the nuclei of the interrogated object, producing element-specific prompt gamma-rays that the gamma detectors recognize. Measuring the delay between the detections of the alpha particle and the gamma-ray determines where the reaction occurred along the axis of the neutron beam (14.1 MeV neutrons travel at 5 cm/nanosecond, while gamma rays

  19. An in situ Raman spectroscopy-based microfluidic "lab-on-a-chip" platform for non-destructive and continuous characterization of Pseudomonas aeruginosa biofilms.

    PubMed

    Feng, Jinsong; de la Fuente-Núñez, César; Trimble, Michael J; Xu, Jie; Hancock, Robert E W; Lu, Xiaonan

    2015-05-28

    Pseudomonas aeruginosa biofilm was cultivated and characterized in a microfluidic "lab-on-a-chip" platform coupled with confocal Raman microscopy in a non-destructive manner. Biofilm formation could be quantified by this label-free platform and correlated well with confocal laser scanning microscopy. This Raman-microfluidic platform could also discriminate biofilms at different developmental stages. PMID:25929246

  20. Surface preparation for non-destructive detection of surface cracks in stainless steel and carbon steel piping

    SciTech Connect

    Funderburg, I.M.

    1996-07-01

    Engineers within the chemical process industries are among other things, charged with the task of determining the reliability of piping and equipment. As part of this evaluation, the surfaces of process equipment and piping are often examined for evidence of stress corrosion cracking (SCC) or other tightly closed surface cracks. Presently there is no consensus as to which is the ``best`` technique for preparing and inspecting carbon steel and stainless steel vessels or piping for surface cracks. The specific concern within industry is that Stress Corrosion Cracking (SCC) might go undetected if the surface preparation closes over such tight cracks. This paper presents results of a study, MTI commissioned to collect additional data, examine the literature, and interview industrial materials engineers, independent inspection specialists, non-destructive examination consultants, and other representatives of industries that have equipment which must be inspected for surface cracks. Discussed are the differing surface preparation techniques used, the use of standards for evaluating the effectiveness of the techniques, and what is felt to be the ``Key Learnings`` from the investigation.

  1. Non-destructive trace element microanalysis of as-received cometary nucleus samples using synchrotron x ray fluorescence

    NASA Technical Reports Server (NTRS)

    Sutton, S. R.

    1989-01-01

    The Synchrotron X ray Fluorescence (SXRF) microprobe at the National Synchrotron Light Source (NSLS), Brookhaven National Laboratory, will be an excellent instrument for non-destructive trace element analyses of cometary nucleus samples. Trace element analyses of as-received cometary nucleus material will also be possible with this technique. Bulk analysis of relatively volatile elements will be important in establishing comet formation conditions. However, as demonstrated for meteorites, microanalyses of individual phases in their petrographic context are crucial in defining the histories of particular components in unequilibrated specimens. Perhaps most informative in comparing cometary material with meteorites will be the halogens and trace metals. In-situ, high spatial resolution microanalyses will be essential in establishing host phases for these elements and identifying terrestrial (collection/processing) overprints. The present SXRF microprobe is a simple, yet powerful, instrument in which specimens are excited with filtered, continuum synchrotron radiation from a bending magnet on a 2.5 GeV electron storage ring. A refrigerated cell will be constructed to permit analyses at low temperatures. The cell will consist essentially of an air tight housing with a cold stage. Kapton windows will be used to allow the incident synchrotron beam to enter the cell and fluorescent x rays to exit it. The cell will be either under vacuum or continuous purge by ultrapure helium during analyses. Several other improvements of the NSLS microprobe will be made prior to the cometary nucleus sample return mission that will greatly enhance the sensitivity of the technique.

  2. A non-destructive method for quantification the irradiation doses of irradiated sucrose using Vis/NIR spectroscopy.

    PubMed

    Gong, Aiping; Qiu, Zhengjun; He, Yong; Wang, Zhiping

    2012-12-01

    This article proposes a new method for fast discrimination of irradiation doses of sucrose based on visible-near infrared (Vis/NIR) spectroscopy technology. 250 sucrose samples were categorized into five groups to be irradiated at 0, 1.5, 3.0, 4.5, 6.0 kGy respectively and prepared for the discrimination analysis. The 50 samples of each group were randomly divided into a calibration set containing 40 samples, and a validation set containing the remaining 10 samples. Principal component clustering analysis (PCCA) was applied for the extraction of principal components (PCs) and for clustering analysis. The first five PCs were regarded as the inputs to develop the back propagation neural network (BPNN) model. The performance of the model was validated by the 50 unknown samples and the BPNN achieved an excellent precision and recognition ration of 100%. The results indicated that Vis/NIR spectroscopy could be utilized as a rapid and non-destructive method for the classification of different irradiation doses of irradiated sucrose. PMID:23041915

  3. Laser photothermal non-destructive metrology of cracks in un-sintered powder metallurgy manufactured automotive transmission sprockets

    NASA Astrophysics Data System (ADS)

    Tolev, J.; Mandelis, A.

    2010-03-01

    A non-contact and non-intrusive method of revealing crack presence in un-sintered (green) automotive transmission parts (sprockets), manufactured by means of a powder metallurgy technology based on analysis of photo-thermal radiometric (PTR) signals and their statistical analysis was developed. The inspection methodology relies on the interaction of a modulated laser generated thermal wave with the potential crack and the resulting change in amplitude and phase of the detected signal [1-5]. The crack existence at points in high stress regions of a group of green (unsintered) sprockets was evaluated through frequency scans. The results were validated by independent destructive cross-sectioning of the sprockets following sintering and polishing. Examination of the sectioned sprockets under a microscope at the locations where signal changes was used for correlation with the PTR signals. Statistical analysis confirmed the capabilities of the method to detect the presence of hairline cracks (~5 - 10 μm size) with excellent sensitivity (91%) and good accuracy (78%) and specificity (61%). This measurement technique and the associated statistical analysis can be used as a simple and reliable on-line inspection methodology of industrial powder metallurgy manufactured steel products for non-destructive quality and feedback control of the parts forming process.

  4. Proficiency test for non-destructive assay of 220 liter radioactive waste drums by gamma assay systems

    SciTech Connect

    Van Velzen, L.P.M.; Bruggeman, M.; Botte, J.

    2007-07-01

    The European Network of Testing Facilities for the Quality Checking of Radioactive Waste Packages (ENTRAP) initiated a feasibility study on how to organize in the most cost effective way an international proficiency tests for non-destructive, gamma-ray based, assay of 220 liter radioactive waste drums in the European Union at a regular time interval of 2 or 3 years. This feasibility study addresses all aspects of proficiency testing on radioactive waste packages including the design of a commonly accepted reference 220 liter drum. This design, based on the international response on a send out questionnaire, includes matrixes, radioactive sources; a solution to overcome the tedious and expensive international transport costs of real or even simulated waste packages, general cost estimation for the organization of, and the participation in the proficiency test. The proposed concept for the proficiency testing and the estimated costs are presented. The participation costs of the first proficiency test are mainly determined by the manufacturing of the non-radioactive 220 liter drum ({+-} 55%). Applied reference sources, transport of the drum and reference sources and participation costs in the proficiency test contribute each about {+-} 15%. (authors)

  5. Shearography for Non-destructive Inspection with applications to BAT Mask Tile Adhesive Bonding and Specular Surface Honeycomb Panels

    NASA Technical Reports Server (NTRS)

    Lysak, Daniel B.

    2003-01-01

    The applicability of shearography techniques for non-destructive evaluation in two unique application areas is examined. In the first application, shearography is used to evaluate the quality of adhesive bonds holding lead tiles to the B.4T gamma ray mask for the NASA Swift program. Using a vibration excitation, the more poorly bonded tiles are readily identifiable in the shearography image. A quantitative analysis is presented that compares the shearography results with a destructive pull test measuring the force at bond failure. The second application is to evaluate the bonding between the skin and core of a honeycomb structure with a specular (mirror-like) surface. In standard shearography techniques, the object under test must have a diffuse surface to generate the speckle patterns in laser light, which are then sheared. A novel configuration using the specular surface as a mirror to image speckles from a diffuser is presented, opening up the use of shearography to a new class of objects that could not have been examined with the traditional approach. This new technique readily identifies large scale bond failures in the panel, demonstrating the validity of this approach.

  6. Non-destructive and three-dimensional measurement of local strain development during tensile deformation in an aluminium alloy

    NASA Astrophysics Data System (ADS)

    Kobayashi, M.; Miura, H.; Toda, H.

    2015-08-01

    Anisotropy of mechanical responses depending on crystallographic orientation causes inhomogeneous deformation on the mesoscopic scale (grain size scale). Investigation of the local plastic strain development is important for discussing recrystallization mechanisms, because the sites with higher local plastic strain may act as potential nucleation sites for recrystallization. Recently, high-resolution X-ray tomography, which is non-destructive inspection method, has been utilized for observation of the materials structure. In synchrotron radiation X-ray tomography, more than 10,000 microstructural features, like precipitates, dispersions, compounds and hydrogen pores, can be observed in aluminium alloys. We have proposed employing these microstructural features as marker gauges to measure local strains, and then have developed a method to calculate the three-dimensional strain distribution by tracking the microstructural features. In this study, we report the development of local plastic strain as a function of the grain microstructure in an aluminium alloy by means of this three-dimensional strain measurement technique. Strongly heterogeneous strain development was observed during tensile loading to 30%. In other words, some parts of the sample deform little whereas another deforms a lot. However, strain in the whole specimen was keeping harmony. Comparing the microstructure with the strain concentration that is obtained by this method has a potential to reveal potential nucleation sites of recrystallization.

  7. Preliminary report of the comparison of multiple non-destructive assay techniques on LANL Plutonium Facility waste drums

    SciTech Connect

    Bonner, C.; Schanfein, M.; Estep, R.

    1999-03-01

    Prior to disposal, nuclear waste must be accurately characterized to identify and quantify the radioactive content. The DOE Complex faces the daunting task of measuring nuclear material with both a wide range of masses and matrices. Similarly daunting can be the selection of a non-destructive assay (NDA) technique(s) to efficiently perform the quantitative assay over the entire waste population. In fulfilling its role of a DOE Defense Programs nuclear User Facility/Technology Development Center, the Los Alamos National Laboratory Plutonium Facility recently tested three commercially built and owned, mobile nondestructive assay (NDA) systems with special nuclear materials (SNM). Two independent commercial companies financed the testing of their three mobile NDA systems at the site. Contained within a single trailer is Canberra Industries segmented gamma scanner/waste assay system (SGS/WAS) and neutron waste drum assay system (WDAS). The third system is a BNFL Instruments Inc. (formerly known as Pajarito Scientific Corporation) differential die-away imaging passive/active neutron (IPAN) counter. In an effort to increase the value of this comparison, additional NDA techniques at LANL were also used to measure these same drums. These are comprised of three tomographic gamma scanners (one mobile unit and two stationary) and one developmental differential die-away system. Although not certified standards, the authors hope that such a comparison will provide valuable data for those considering these different NDA techniques to measure their waste as well as the developers of the techniques.

  8. Magnetic Microcalorimeter Gamma Detectors for High-Precision Non-Destructive Analysis, FY14 Extended Annual Report

    SciTech Connect

    Friedrich, S.

    2015-02-06

    Cryogenic gamma (γ) detectors with operating temperatures of ~0.1 K or below offer 10× better energy resolution than conventional high-purity germanium detectors that are currently used for non-destructive analysis (NDA) of nuclear materials. This can greatly increase the accuracy of NDA, especially at low-energies where gamma rays often have similar energies and cannot be resolved by Ge detectors. We are developing cryogenic γ–detectors based on metallic magnetic calorimeters (MMCs), which have the potential of higher resolution, faster count rates and better linearity than other cryogenic detector technologies. High linearity is essential to add spectra from different pixels in detector arrays that are needed for high sensitivity. Here we discuss the fabrication of a new generation of MMC γ–detectors in FY2014, and the resulting improvements in energy resolution and linearity of the new design. As an example of the type of NDA that cryogenic detectors enable, we demonstrate the direct detection of Pu-242 emissions with our MMC γ–detectors in the presence of Pu-240, and show that a quantitative NDA analysis agrees with the mass spectrometry

  9. Waterless Coupling of Ultrasound from Planar Contact Transducers to Curved and Irregular Surfaces during Non-destructive Ultrasonic Evaluations

    SciTech Connect

    Denslow, Kayte M.; Diaz, Aaron A.; Jones, Anthony M.; Meyer, Ryan M.; Cinson, Anthony D.; Wells, Mondell D.

    2012-04-30

    The Applied Physics group at the Pacific The Applied Physics group at the Pacific Northwest National Laboratory (PNNL) in Richland, WA has evaluated a method for waterless/liquidless coupling of ultrasonic energy from planar ultrasonic contact transducers to irregular test surfaces for ultrasonic non-destructive evaluation applications. Dry couplant material placed between a planar transducer face and a curved or uneven steel or plastic surface allows for effective sound energy coupling and preserves the integrity of the planar transducer sound field by serving as an acoustic impedance matching layer, providing good surface area contact between geometrically dissimilar surfaces and conforming to rough and unsmooth surfaces. Sound fields radiating from planar ultrasonic contact transducers coupled to curved and uneven surfaces using the dry coupling method were scanned and mapped using a Pinducer receiver connected to a raster scanner. Transducer sound field coverage at several ultrasonic frequencies and several distances from the transducer contact locations were found to be in good agreement with theoretical beam divergence and sound field coverage predictions for planar transducers coupled to simple, planar surfaces. This method is valuable for applications that do not allow for the use of traditional liquid-based ultrasonic couplants due to the sensitivity of the test materials to liquids and for applications that might otherwise require curved transducers or custom coupling wedges. The selection of dry coupling material is reported along with the results of theoretical sound field predictions, the laboratory testing apparatus and the empirical sound field data.

  10. Non-destructive monitoring of creaming of oil-in-water emulsion-based formulations using magnetic resonance imaging.

    PubMed

    Onuki, Yoshinori; Horita, Akihiro; Kuribayashi, Hideto; Okuno, Yoshihide; Obata, Yasuko; Takayama, Kozo

    2014-07-01

    A non-destructive method for monitoring creaming of emulsion-based formulations is in great demand because it allows us to understand fully their instability mechanisms. This study was aimed at demonstrating the usefulness of magnetic resonance (MR) techniques, including MR imaging (MRI) and MR spectroscopy (MRS), for evaluating the physicochemical stability of emulsion-based formulations. Emulsions that are applicable as the base of practical skin creams were used as test samples. Substantial creaming was developed by centrifugation, which was then monitored by MRI. The creaming oil droplet layer and aqueous phase were clearly distinguished by quantitative MRI by measuring T1 and the apparent diffusion coefficient. Components in a selected volume in the emulsions could be analyzed using MRS. Then, model emulsions having different hydrophilic-lipophilic balance (HLB) values were tested, and the optimal HLB value for a stable dispersion was determined. In addition, the MRI examination enables the detection of creaming occurring in a polyethylene tube, which is commonly used for commercial products, without losing any image quality. These findings strongly indicate that MR techniques are powerful tools to evaluate the physicochemical stability of emulsion-based formulations. This study will make a great contribution to the development and quality control of emulsion-based formulations. PMID:23631538

  11. User Friendly Processing of Sediment CT Data: Software and Application in High Resolution Non-Destructive Sediment Core Data Sets

    NASA Astrophysics Data System (ADS)

    Reilly, B. T.; Stoner, J. S.; Wiest, J.; Abbott, M. B.; Francus, P.; Lapointe, F.

    2015-12-01

    Computed Tomography (CT) of sediment cores allow for high resolution images, three dimensional volumes, and down core profiles, generated through the attenuation of X-rays as a function of density and atomic number. When using a medical CT-Scanner, these quantitative data are stored in pixels using the Hounsfield scale, which are relative to the attenuation of X-rays in water and air at standard temperature and pressure. Here we present MATLAB based software specifically designed for sedimentary applications with a user friendly graphical interface to process DICOM files and stitch overlapping CT scans. For visualization, the software allows easy generation of core slice images with grayscale and false color relative to a user defined Hounsfield number range. For comparison to other high resolution non-destructive methods, down core Hounsfield number profiles are extracted using a method robust to coring imperfections, like deformation, bowing, gaps, and gas expansion. We demonstrate the usefulness of this technique with lacustrine sediment cores from the Western United States and Canadian High Arctic, including Fish Lake, Oregon, and Sawtooth Lake, Ellesmere Island. These sites represent two different depositional environments and provide examples for a variety of common coring defects and lithologies. The Hounsfield profiles and images can be used in combination with other high resolution data sets, including sediment magnetic parameters, XRF core scans and many other types of data, to provide unique insights into how lithology influences paleoenvironmental and paleomagnetic records and their interpretations.

  12. Polychrome glass from Etruscan sites: first non-destructive characterization with synchrotron μ-XRF, μ-XANES and XRPD

    NASA Astrophysics Data System (ADS)

    Arletti, R.; Vezzalini, G.; Quartieri, S.; Ferrari, D.; Merlini, M.; Cotte, M.

    2008-07-01

    This work is devoted to the characterization of a suite of very rare, highly decorated and coloured glass vessels and beads from the VII to the IV century BC. The most serious difficulty in developing this study was that any sampling even micro-sampling was absolutely forbidden. As a consequence, the mineralogical and chemical nature of chromophores and opacifiers present in these Iron Age finds were identified by means of the following synchrotron-based, strictly non-destructive, techniques: micro X-ray fluorescence (μ-XRF), Fe K-edge micro X-ray absorption near edge spectroscopy (μ-XANES) and X-ray powder diffraction (XRPD). The μ-XRF mapping evidenced high levels of Pb and Sb in the yellow decorations and the presence of only Sb in the white and light-blue ones. Purple and black glass show high amounts of Mn and Fe, respectively. The XRPD analyses confirmed the presence of lead and calcium antimonates in yellow, turquoise and white decorations. Fe K-edge μ-XANES spectra were collected in different coloured parts of the finds, thus enabling the mapping of the oxidation state of these elements across the samples. In most of the samples iron is present in the reduced form Fe2+ in the bulk glass of the vessels, and in the oxidized form Fe3+ in the decorations, indicating that these glass artefacts were produced in at least two distinct processing steps under different furnace conditions.

  13. A non-destructive genotyping system from a single seed for marker-assisted selection in watermelon.

    PubMed

    Meru, G; McDowell, D; Waters, V; Seibel, A; Davis, J; McGregor, C

    2013-01-01

    Genomic tools for watermelon breeding are becoming increasingly available. A high throughput genotyping system would facilitate the use of DNA markers in marker-assisted selection. DNA extraction from leaf material requires prior seed germination and is often time-consuming and cost prohibitive. In an effort to develop a more efficient system, watermelon seeds of several genotypes and various seed sizes were sampled by removing ⅓ or ½ sections from the distal ends for DNA extraction, while germinating the remaining proximal parts of the seed. Removing ⅓ of the seed from the distal end had no effect on seed germination percentage or seedling vigor. Different DNA extraction protocols were tested to identify a method that could yield DNA of sufficient quality for amplification by polymerase chain reaction. A sodium dodecyl sulfate extraction protocol with 1% polyvinylpyrrolidone yielded DNA that could be amplified with microsatellite primers and was free of pericarp contamination. In this study, an efficient, non-destructive genotyping protocol for watermelon seed was developed. PMID:23546952

  14. Non-destructive inspection of ferromagnetic pipes based on the discrete Fourier coefficients of magnetic flux leakage

    NASA Astrophysics Data System (ADS)

    Nara, T.; Fujieda, M.; Gotoh, Y.

    2014-05-01

    For non-destructive inspection of ferromagnetic pipes using magnetic flux leakage (MFL), a sensor consisting of two coils to measure the discrete Fourier sine and cosine coefficients of MFL is developed. The position of a crack in a pipe can be estimated from the squared sum and the ratio of the voltages induced in the two coils. Each coil has sixteen elemental coils with 78 permalloy cores which are placed along a circle with a radius of 6.3 mm and connected in series. The number of turns comprising an elemental coil at an angle ϕ is proportional to sinϕ in one coil and proportional to cosϕ in the other. It was experimentally shown that a circular crack 4 mm in diameter in a ferromagnetic pipe with diameter 21.6 mm was localized. The proposed structure is suitable for narrow pipe inspection where the sensitivity of our previous sensor composed of two coaxial crescent-shaped coils decreases.

  15. A Novel High Sensitivity Sensor for Remote Field Eddy Current Non-Destructive Testing Based on Orthogonal Magnetic Field

    PubMed Central

    Xu, Xiaojie; Liu, Ming; Zhang, Zhanbin; Jia, Yueling

    2014-01-01

    Remote field eddy current is an effective non-destructive testing method for ferromagnetic tubular structures. In view of conventional sensors' disadvantages such as low signal-to-noise ratio and poor sensitivity to axial cracks, a novel high sensitivity sensor based on orthogonal magnetic field excitation is proposed. Firstly, through a three-dimensional finite element simulation, the remote field effect under orthogonal magnetic field excitation is determined, and an appropriate configuration which can generate an orthogonal magnetic field for a tubular structure is developed. Secondly, optimized selection of key parameters such as frequency, exciting currents and shielding modes is analyzed in detail, and different types of pick-up coils, including a new self-differential mode pick-up coil, are designed and analyzed. Lastly, the proposed sensor is verified experimentally by various types of defects manufactured on a section of a ferromagnetic tube. Experimental results show that the proposed novel sensor can largely improve the sensitivity of defect detection, especially for axial crack whose depth is less than 40% wall thickness, which are very difficult to detect and identify by conventional sensors. Another noteworthy advantage of the proposed sensor is that it has almost equal sensitivity to various types of defects, when a self-differential mode pick-up coil is adopted. PMID:25615738

  16. Non-destructive evaluation of degradation in EB-PVD thermal barrier coatings by infrared reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Flattum, Richard Y.; Cooney, Adam T.

    2013-01-01

    At room temperature and atmospheric conditions infrared reflectance spectroscopy and X-ray diffraction were employed for the detection of the phase transformation and residual stress within thermal barrier coatings (TBC). The TBC's samples initially consisted of the porous ceramic topcoat deposited by electron beam plasma vapor deposition, a bond coat and a superalloy substrate. Reflectance spectroscopy scans were performed from 7497 cm-1 to 68 cm-1 to analysis the fingerprint region as well as the chemical bonding region. These regions should indicate if a detectable change within the TBC response is a result of thermal degradation of the microstructure and the changes in yttrium dispersion throughout the yttrium stabilized zirconium. The thermal degradation was induced by thermal cycling the samples to 1100° C and then cooling them in an atmospheric environment. X-ray diffraction was also used to detect the phase composition within the TBC samples and see if either would clearly identify failure prior to actual spallation. The eventual measurability and quantify-ability of the phase changes within the TBC's may be used as an effective non-destructive evaluation (NDE) technique that would allow personnel in the field to know when servicing of the turbine blade was necessary.

  17. "Dry-state" surface-enhanced Raman scattering (SERS): toward non-destructive analysis of dyes on textile fibers

    NASA Astrophysics Data System (ADS)

    Zaffino, Chiara; Ngo, Hoan Thanh; Register, Janna; Bruni, Silvia; Vo-Dinh, Tuan

    2016-07-01

    In the present work, we report the proof of concept of the possibility to identify natural dyes on textiles using surface-enhanced Raman scattering (SERS) detection by means of a simple "dry-state" SERS approach, i.e., exploiting the interactions between a solid nanometallic substrate and dye molecules present on textiles, thus avoiding any extraction or necessity to remove samples. The challenges associated with instrumental constraints related to SERS analysis of bulk materials and possible contamination of artworks with metallic nanoparticles were approached. Different silver nanosubstrates, i.e., nanoislands and films obtained starting from two different metal colloids, were tested for this aim. The study also investigates different parameters associated with the synthesis of nanosubstrates influencing the enhancement of the "dry-state" SERS signals obtained. SERS spectra of anthraquinone red dyes were successfully recorded from reference wool threads using this simple approach. The results illustrate the usefulness of the practical and rapid "dry-state" SERS approach that could open new opportunities toward the non-destructive analysis of dyes in artefacts.

  18. Non-destructive evaluation of degradation in EB-PVD thermal barrier coatings by infrared reflectance spectroscopy

    SciTech Connect

    Flattum, Richard Y.; Cooney, Adam T.

    2013-01-25

    At room temperature and atmospheric conditions infrared reflectance spectroscopy and X-ray diffraction were employed for the detection of the phase transformation and residual stress within thermal barrier coatings (TBC). The TBC's samples initially consisted of the porous ceramic topcoat deposited by electron beam plasma vapor deposition, a bond coat and a superalloy substrate. Reflectance spectroscopy scans were performed from 7497 cm{sup -1} to 68 cm{sup -1} to analysis the fingerprint region as well as the chemical bonding region. These regions should indicate if a detectable change within the TBC response is a result of thermal degradation of the microstructure and the changes in yttrium dispersion throughout the yttrium stabilized zirconium. The thermal degradation was induced by thermal cycling the samples to 1100 Degree-Sign C and then cooling them in an atmospheric environment. X-ray diffraction was also used to detect the phase composition within the TBC samples and see if either would clearly identify failure prior to actual spallation. The eventual measurability and quantify-ability of the phase changes within the TBC's may be used as an effective non-destructive evaluation (NDE) technique that would allow personnel in the field to know when servicing of the turbine blade was necessary.

  19. An Innovative Non-Destructive and Computational Method for Uranium Activity and Enrichment Verification of UF{sub 6} Cylinder

    SciTech Connect

    El-Mongy, Sayed A.; Allam, K.M.; Farid, Osama M.

    2006-07-01

    Verification of {sup 235}U enrichment in uranium hexafluoride (UF{sub 6}) cylinders is often achieved by destructive and non-destructive assay techniques. These techniques are time consuming, need suitable and similar standard, in addition to loss of the nuclear material in the case of destructive analysis. This paper introduce an innovative approach for verifying of {sup 235}U enrichment in UF{sub 6} cylinder. The approach is based on measuring dose rate ({mu}Sv/h) resulted from the emitted gamma rays of {sup 235}U at the surface of the cylinder and then calculating the activity of uranium and enrichment percentage inside the cylinder by a three dimensional model. Attenuation of the main {sup 235}U gamma transitions due to the cylinder wall (5A Type of Ni alloy) was also calculated and corrected for. The method was applied on UF{sub 6} cylinders enriched with 19.75% of {sup 235}U. The calculated enrichment was found to be 18% with 9% uncertainty. By the suggested method, the calculated total uranium activity inside one of the investigated UF{sub 6} cylinder was found close to the target (certified) value (5.6 GBq) with 9% uncertainty. The method is being developed by taking into consideration other parameters. (authors)

  20. A novel high sensitivity sensor for remote field eddy current non-destructive testing based on orthogonal magnetic field.

    PubMed

    Xu, Xiaojie; Liu, Ming; Zhang, Zhanbin; Jia, Yueling

    2014-01-01

    Remote field eddy current is an effective non-destructive testing method for ferromagnetic tubular structures. In view of conventional sensors' disadvantages such as low signal-to-noise ratio and poor sensitivity to axial cracks, a novel high sensitivity sensor based on orthogonal magnetic field excitation is proposed. Firstly, through a three-dimensional finite element simulation, the remote field effect under orthogonal magnetic field excitation is determined, and an appropriate configuration which can generate an orthogonal magnetic field for a tubular structure is developed. Secondly, optimized selection of key parameters such as frequency, exciting currents and shielding modes is analyzed in detail, and different types of pick-up coils, including a new self-differential mode pick-up coil, are designed and analyzed. Lastly, the proposed sensor is verified experimentally by various types of defects manufactured on a section of a ferromagnetic tube. Experimental results show that the proposed novel sensor can largely improve the sensitivity of defect detection, especially for axial crack whose depth is less than 40% wall thickness, which are very difficult to detect and identify by conventional sensors. Another noteworthy advantage of the proposed sensor is that it has almost equal sensitivity to various types of defects, when a self-differential mode pick-up coil is adopted. PMID:25615738

  1. Motion induced remote field eddy current effect in a magnetostatic non-destructive testing tool: A finite element prediction

    SciTech Connect

    Sun, Y.S.; Lord, W.; Katragadda, G.; Shin, Y.K.

    1994-09-01

    A hitherto unobserved phenomenon -- motion induced remote field eddy current effect, is presented in this paper. A numerical study of the non-destructive inspection of tubing with conducting walls, using a DC electromagnetic probe led to the detection of this interesting effect. This paper describes a bidirectional transmission of the electromagnetic field energy through the tube walls, similar to the phenomenon responsible for the Remote Field Eddy Current (RFEC) effect in eddy current (an AC electromagnetic nondestructive testing tool) inspection of tubing. Thus far it was considered that the RFEC effect by the nature of its physics was possible only in the presence of AC excitation in tubular geometries. However, it is shown in this paper that currents induced by magnetic flux moving over conducting material produce a RFEC effect even when a DC probe is used. This phenomenon may .enable extraction of valuable information regarding the entire thickness of the tube wall from measurements made on the same side as the excitation source.

  2. A model-based method for the characterisation of stress in magnetic materials using eddy current non-destructive evaluation

    NASA Astrophysics Data System (ADS)

    Dahia, Abla; Berthelot, Eric; Le Bihan and, Yann; Daniel, Laurent

    2015-03-01

    A precise knowledge of the distribution of internal stresses in materials is key to the prediction of magnetic and mechanical performance and lifetime of many industrial devices. This is the reason why many efforts have been made to develop and enhance the techniques for the non-destructive evaluation of stress. In the case of magnetic materials, the use of eddy current (EC) techniques is a promising pathway to stress evaluation. The principle is based on the significant changes in magnetic permeability of magnetic materials subjected to mechanical stress. These modifications of magnetic permeability affect in turn the signal obtained from an EC probe inspecting the material. From this principle, a numerical tool is proposed in this paper to predict the EC signal obtained from a material subjected to stress. This numerical tool is a combination of a 3D finite element approach with a magneto-mechanical constitutive law describing the effect of stress on the magnetic permeability. The model provides the variations of impedance of an EC probe as a function of stress. An experimental setup in which a magnetic material subjected to a tension stress is inspected using EC techniques is tailored in order to validate the model. A very good agreement is found between experimental and modelling results. For the Iron-Cobalt alloy tested in this study, it is shown that a uniaxial tensile stress can be detected with an error lower than 3 MPa in the range from 0 to 100 MPa.

  3. Flat nose low velocity drop-weight impact response of carbon fibre composites using non-destructive damage detection techniques

    NASA Astrophysics Data System (ADS)

    Farooq, Umar; Myler, Peter

    2015-03-01

    This work is mainly concerned with the nondestructive post-impact damage evaluation of carbon fibre reinforced laminated composite panels subject to low velocity drop-weight impact by flat and round nose impactors. Quasi-isotropic laminates consisting of eight-, sixteen-, and twenty-four plies were impacted by flat and round nose impactors at different velocity levels. Load-time history data were recorded and plotted to correlate loaddrop as damage level to the impactor nose profiles. Test produced data, non-destructive damage detection techniques: visual, ultrasonic, and eddy- current, and computer simulations were utilised to identify and quantify status of the impact induced damage. To evaluate damage in relatively thick laminates (consisting of 24-Ply), the damage ratios and deflection quantities were correlated to the corresponding impactor nose profiles. Damage induced by the flat nose impactor to thick laminates was compared against the data produced by the round nose impactor. Results show that relatively thin laminates were largely affected by the impactor nose. Reasonable difference was observed in damage caused by flat and round impactor nose profiles to thick laminates impacted at relatively higher velocity impacts. Resultswere compared and validated against simulation produced data.

  4. Californium interrogation prompt neutron (CIPN) instrument for non-destructive assay of spent nuclear fuel-Design concept and experimental demonstration

    NASA Astrophysics Data System (ADS)

    Henzlova, D.; Menlove, H. O.; Rael, C. D.; Trellue, H. R.; Tobin, S. J.; Park, Se-Hwan; Oh, Jong-Myeong; Lee, Seung-Kyu; Ahn, Seong-Kyu; Kwon, In-Chan; Kim, Ho-Dong

    2016-01-01

    This paper presents results of the first experimental demonstration of the Californium Interrogation Prompt Neutron (CIPN) instrument developed within a multi-year effort launched by the Next Generation Safeguards Initiative Spent Fuel Project of the United States Department of Energy. The goals of this project focused on developing viable non-destructive assay techniques with capabilities to improve an independent verification of spent fuel assembly characteristics. For this purpose, the CIPN instrument combines active and passive neutron interrogation, along with passive gamma-ray measurements, to provide three independent observables. This paper describes the initial feasibility demonstration of the CIPN instrument, which involved measurements of four pressurized-water-reactor spent fuel assemblies with different levels of burnup and two initial enrichments. The measurements were performed at the Post-Irradiation Examination Facility at the Korea Atomic Energy Institute in the Republic of Korea. The key aim of the demonstration was to evaluate CIPN instrument performance under realistic deployment conditions, with the focus on a detailed assessment of systematic uncertainties that are best evaluated experimentally. The measurements revealed good positioning reproducibility, as well as a high degree of insensitivity of the CIPN instrument's response to irregularities in a radial burnup profile. Systematic uncertainty of individual CIPN instrument signals due to assembly rotation was found to be <4.5%, even for assemblies with fairly extreme gradients in the radial burnup profile. These features suggest that the CIPN instrument is capable of providing a good representation of assembly average characteristics, independent of assembly orientation in the instrument.

  5. Advanced Non-Destructive Assessment Technology to Determine the Aging of Silicon Containing Materials for Generation IV Nuclear Reactors

    NASA Astrophysics Data System (ADS)

    Koenig, T. W.; Olson, D. L.; Mishra, B.; King, J. C.; Fletcher, J.; Gerstenberger, L.; Lawrence, S.; Martin, A.; Mejia, C.; Meyer, M. K.; Kennedy, R.; Hu, L.; Kohse, G.; Terry, J.

    2011-06-01

    To create an in-situ, real-time method of monitoring neutron damage within a nuclear reactor core, irradiated silicon carbide samples are examined to correlate measurable variations in the material properties with neutron fluence levels experienced by the silicon carbide (SiC) during the irradiation process. The reaction by which phosphorus doping via thermal neutrons occurs in the silicon carbide samples is known to increase electron carrier density. A number of techniques are used to probe the properties of the SiC, including ultrasonic and Hall coefficient measurements, as well as high frequency impedance analysis. Gamma spectroscopy is also used to examine residual radioactivity resulting from irradiation activation of elements in the samples. Hall coefficient measurements produce the expected trend of increasing carrier concentration with higher fluence levels, while high frequency impedance analysis shows an increase in sample impedance with increasing fluence.

  6. LiDAR based biomass and crop nitrogen estimates for rapid, non-destructive assessment of wheat nitrogen status

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Optical remote sensing of crop nitrogen (N) status is developing into a powerful diagnostic tool that can improve N management decisions. Crop N status is a function of dry mass per unit area (W) and N concentration (%Na), which can be used to calculate N nutrition index (NNI),where NNI is %Na/%Nc (...

  7. Assessment of possible failure modes and non-destructive examination of the ITER pre-compression rings

    NASA Astrophysics Data System (ADS)

    Knaster, J.; Evans, D.; Rajainmaki, H.

    2012-06-01

    The pre-compression rings (PCRs) for the International Thermonuclear Experimental Reactor (ITER) represent one of the largest and most highly stressed composite structures ever designed for long term operation at 4K. Three rings, each 5m in diameter and 337 × 288 mm in cross-section, will be installed at the top and bottom of the eighteen "D" shaped Toroidal Field (TF) coils to apply a total centripetal load of 70 MN per TF coil. The interaction of the 68 kA conductor current circulating in the coil (for a total of 9.1MA) with the required magnetic field to confine the plasma during operation will result in Lorentz forces that build in-plane and out-of-plane loads. The PCRs are essential to keep the stresses below the acceptable level for the ITER magnets structural materials.

  8. Non-destructive assessment of cavity wall adaptation of class V composite restoration using swept-source optical coherence tomography.

    PubMed

    Senawongse, Pisol; Pongprueksa, Pong; Harnirattisai, Choltacha; Sumi, Yasunori; Otsuki, Masayuki; Shimada, Yasushi; Tagami, Junji

    2011-01-01

    The purpose of this study was to evaluate gap formations under class V restoration using swept-source optical coherence tomography (SS-OCT). Wedge-shaped cavities were prepared on the buccal surface of 40 extracted premolar teeth at 2 locations; 1) cemento-enamel junction (CEJ) with enamel and cementum margin and 2) root surfaces with cementum margin. The cavity was treated with Clearfil S(3) Bond, restored with Clearfil Majesty and polished with abrasive disks. The specimens were kept in water at 37°C for 24 hours and subjected to a thermocycling procedure. Gap formations at the tooth-restoration interface were measured with SS-OCT image and conventional dye leakage under a microscope. There was no effect of the locations of the cavity and the margins of the cavity on the gap formation. Therefore, a significant effect of the observational methods was observed. The gap formation was 0.89±0.48 mm with the SS-OCT, and the gap formation was 0.34±0.41 mm with the dye leakage. The observation with SS-OCT demonstrated a greater degree of gap formation than the observation with dye leakage. PMID:21778598

  9. Non-destructive assessment of the effects of elevated CO 2 on plant community structure in a calcareous grassland

    NASA Astrophysics Data System (ADS)

    Rötzel, Christina; Leadley, Paul W.; Körner, Christian

    Calcareous grassland was exposed to ambient or elevated CO 2 using a Screen-Aided CO 2 Control (SACC) system starting in March 1994. The effects of elevated CO 2 on plant community structure were studied using the point intercept method. Measurements were made in March 1994 prior to the start of CO 2 exposure and again in June 1994 at peak plant biomass. There were no significant differences in the initial structure of the communities based on their assigned CO 2 treatments in March. After 9 weeks of exposure of the community to elevated CO 2, the total number of intercepts per plot was not significantly different between CO 2 treatments; however, Carex flacca and Cirsium acaule had marginally significant (P=0.055 and P=0.06) increases in the % sward of the community at elevated CO 2 (number of intercepts for a single species divided by the total number of intercepts for all species). Measurements of leaf extension in Carex flacca showed that at least part of the increase in % sward at elevated CO 2 could be explained by greater leaf length per plant (P=0.02). These measurements and other experiments with calcareous grassland species and communities suggest that rising atmospheric CO 2 concentrations will probably alter the structure of calcareous grassland communities.

  10. Non-destructive functionalisation for atomic layer deposition of metal oxides on carbon nanotubes: effect of linking agents and defects

    NASA Astrophysics Data System (ADS)

    Kemnade, N.; Shearer, C. J.; Dieterle, D. J.; Cherevan, A. S.; Gebhardt, P.; Wilde, G.; Eder, D.

    2015-02-01

    The hybridisation of metal oxides and nanocarbons has created a promising new class of functional materials for environmental and sustainable energy applications. The performance of such hybrids can be further improved by rationally designing interfaces and morphologies. Atomic layer deposition (ALD) is among the most powerful techniques for the controlled deposition of inorganic compounds, due to its ability to form conformal coatings on porous substrates at low temperatures with high surface sensitivity and atomic control of film thickness. The hydrophobic nature of the nanocarbon surface has so far limited the applicability of ALD on CNTs. Herein we investigate the role of structural defects in CNTs, both intrinsic and induced by acid treatment, on coverage, uniformity and crystallinity of ZnO coatings. Furthermore, we demonstrate the potential of small aromatic molecules, including benzyl alcohol (BA), naphthalene carboxylic acid (NA) and pyrene carboxylic acid (PCA), as active nucleation sites and linking agents. Importantly, only PCA exhibits sufficiently strong interactions with the pristine CNT surface to withstand desorption under reaction conditions. Thus, PCA enables a versatile and non-destructive alternative route for the deposition of highly uniform metal oxide coatings onto pristine CNTs via ALD over a wide temperature range and without the typical surface corrosion induced by covalent functionalisation. Importantly, preliminary tests demonstrated that the improved morphology obtained with PCA has indeed considerably increased the hybrid's photocatalytic activity towards hydrogen evolution via sacrificial water splitting. The concept demonstrated in this work is transferable to a wide range of other inorganic compounds including metal oxides, metal (oxy)nitrides and metal chalcogenides on a variety of nanocarbons.The hybridisation of metal oxides and nanocarbons has created a promising new class of functional materials for environmental and

  11. BreedVision — A Multi-Sensor Platform for Non-Destructive Field-Based Phenotyping in Plant Breeding

    PubMed Central

    Busemeyer, Lucas; Mentrup, Daniel; Möller, Kim; Wunder, Erik; Alheit, Katharina; Hahn, Volker; Maurer, Hans Peter; Reif, Jochen C.; Würschum, Tobias; Müller, Joachim; Rahe, Florian; Ruckelshausen, Arno

    2013-01-01

    To achieve the food and energy security of an increasing World population likely to exceed nine billion by 2050 represents a major challenge for plant breeding. Our ability to measure traits under field conditions has improved little over the last decades and currently constitutes a major bottleneck in crop improvement. This work describes the development of a tractor-pulled multi-sensor phenotyping platform for small grain cereals with a focus on the technological development of the system. Various optical sensors like light curtain imaging, 3D Time-of-Flight cameras, laser distance sensors, hyperspectral imaging as well as color imaging are integrated into the system to collect spectral and morphological information of the plants. The study specifies: the mechanical design, the system architecture for data collection and data processing, the phenotyping procedure of the integrated system, results from field trials for data quality evaluation, as well as calibration results for plant height determination as a quantified example for a platform application. Repeated measurements were taken at three developmental stages of the plants in the years 2011 and 2012 employing triticale (×Triticosecale Wittmack L.) as a model species. The technical repeatability of measurement results was high for nearly all different types of sensors which confirmed the high suitability of the platform under field conditions. The developed platform constitutes a robust basis for the development and calibration of further sensor and multi-sensor fusion models to measure various agronomic traits like plant moisture content, lodging, tiller density or biomass yield, and thus, represents a major step towards widening the bottleneck of non-destructive phenotyping for crop improvement and plant genetic studies. PMID:23447014

  12. A Novel Non-Destructive Silicon-on-Insulator Nonvolatile Memory - LDRD 99-0750 Final Report

    SciTech Connect

    DRAPER,BRUCE L.; FLEETWOOD,D. M.; MEISENHEIMER,TIMOTHY L.; MURRAY,JAMES R.; SCHWANK,JAMES R.; SHANEYFELT,MARTY R.; SMITH,PAUL M.; VANHEUSDEN,KAREL J.; WARREN,WILLIAM L.

    1999-11-01

    Defects in silicon-on-insulator (SOI) buried oxides are normally considered deleterious to device operation. Similarly, exposing devices to hydrogen at elevated temperatures often can lead to radiation-induced charge buildup. However, in this work, we take advantage of as-processed defects in SOI buried oxides and moderate temperature hydrogen anneals to generate mobile protons in the buried oxide to form the basis of a ''protonic'' nonvolatile memory. Capacitors and fully-processed transistors were fabricated. SOI buried oxides are exposed to hydrogen at moderate temperatures using a variety of anneal conditions to optimize the density of mobile protons. A fast ramp cool down anneal was found to yield the maximum number of mobile protons. Unfortunately, we were unable to obtain uniform mobile proton concentrations across a wafer. Capacitors were irradiated to investigate the potential use of protonic memories for space and weapon applications. Irradiating under a negative top-gate bias or with no applied bias was observed to cause little degradation in the number of mobile protons. However, irradiating to a total dose of 100 krad(SiO{sub 2}) under a positive top-gate bias caused approximately a 100% reduction in the number of mobile protons. Cycling capacitors up to 10{sup 4} cycles had little effect on the switching characteristics. No change in the retention characteristics were observed for times up to 3 x 10{sup 4} s for capacitors stored unbiased at 200 C. These results show the proof-of-concept for a protonic nonvolatile memory. Two memory architectures are proposed for a protonic non-destructive, nonvolatile memory.

  13. Field testing of prototype systems for the non-destructive measurement of the neutral temperature of railroad tracks

    NASA Astrophysics Data System (ADS)

    Phillips, Robert; Lanza di Scalea, Francesco; Nucera, Claudio; Fateh, Mahmood; Choros, John

    2014-03-01

    In both high speed and freight rail systems, the modern construction method is Continuous Welded Rail (CWR). The purpose of the CWR method is to eliminate joints in order to reduce the maintenance costs for both the rails and the rolling stock. However the elimination of the joints increases the risk of rail breakage in cold weather and buckling in hot weather. In order to predict the temperature at which the rail will break or buckle, it is critical to have knowledge of the temperature at which the rail is stress free, namely, the Rail Neutral Temperature (Rail-NT).The University of California at San Diego has developed an innovative technique based on non-linear ultrasonic guided waves, under FRA research and development grants for the non-destructive measurement of the neutral temperature of railroad tracks. Through the licensing of this technology from the UCSD and under the sponsorship of the FRA Office of Research and Development, a field deployable prototype system has been developed and recently field tested at cooperating railroad properties. Three prototype systems have been deployed to the Union Pacific (UP), Burlington Northern Santa Fe (BNSF), and AMTRAK railroads for field testing and related data acquisition for a comprehensive evaluation of the system, with respect to both performance and economy of operation. The results from these tests have been very encouraging. Based on the lessons learned from these field tests and the feedback from the railroads, it is planned develop a compact 2nd generation Rail-NT system to foster deployment and furtherance of FRA R&D grant purpose of potential contribution to the agency mission of US railroad safety. In this paper, the results of the field tests with the railroads in summer of 2013 are reported.

  14. Measurement of Meteorite Density, Porosity and Magnetic Susceptibility: Fast, Non- destructive, Non-contaminating and Very Informative

    NASA Astrophysics Data System (ADS)

    Macke, R. J.; Britt, D. T.; Consolmagno, G. J.

    2009-05-01

    The development of the "glass bead" method [1] for measuring bulk density, coupled with other fast, non- destructive and non-contaminating methods for measuring grain density and magnetic susceptibility, has enabled broad surveys of large meteorite collections. We have employed these methods extensively on meteorites in numerous collections, including those at the Vatican, the American Museum of Natural History (New York), the National Museum of Natural History (Washington, DC), Texas Christian University, University of New Mexico, and Arizona State University. We present here a summary of some of the findings to date. Using the glass bead method, the meteorite is placed into a container which is then filled entirely with small (sub- millimeter) glass beads. The beads behave collectively as an Archimedean fluid, flowing around the sample to fill the empty space in the container. Through mass measurement, the volume displaced by the sample can be determined. Grain density is determined via helium ideal-gas pycnometry. Magnetic susceptibility is determined using a commercially available hand-held device [2]. Among notable findings to date, grain density and magnetic susceptibility together can distinguish H, L and LL ordinary chondrite falls into clearly distinct groupings [3]. On the other hand, enstatite chondrites of EH and EL subgroups are indistinguishable in these properties, indicating that EH and EL do not differ significantly in iron content [4]. Carbonaceous chondrites can have porosities that are significantly higher than ordinary chondrites and (especially for aqueously altered meteorites) lower density, though these also vary according to subgroups [5]. References: [1] Consolmagno and Britt, 1998. M&PS 33, 1231-1240. [2] Gattacceca et al., 2004. GJI 158, 42-49. [3] Consolmagno et al., 2006. M&PS 41, 331-342. [4] Macke et al., 2009. LPSC 40, 1598. [5] Consolmagno et al., 2008. MetSoc 71, 5038.

  15. Gpr and Seismic Based Non-Destructive Geophysical Survey for Reinforcement of Historical Fire Tower of Sopron-Hungary

    NASA Astrophysics Data System (ADS)

    Kanli, A. I.; Taller, G.; Nagy, P.; Tildy, P.; Pronay, Z.; Toros, E.

    2013-12-01

    The Fire-Tower which is located in the main square at the hearth of Sopron is the symbol of the city. The museum of Sopron exists in the Storno-house west from the tower. The new city hall stands next to the tower to the east. Funds are from the roman age while the tower was first mentioned in writing in 1409. In 1676, it was burned down to the ground, but re-constructed. In 1894, the old City Hall was deconstucted, but the tower became unstable. István Kiss and Frigyes Schulek saved it by the walling up of the gate. In the year 1928, the scuptures of the main gate which symbolizes the fidelity of the town was sculpted by Zsigmond Kisfaludy Strobl. The old building was deconstructed from its west side, a new concrate museum was built in 1970. After years, important renovation and reinforcement studies had to be needed. For this aim, during the renovation and reinforcement studies, GPR and Seismic based non-destructive geophysical surveys were carried out before and after cement injection to observe the changes of the wall conditions of the historical tower located in Sopron-Hungary for understanding the success of the reinforcements studies. In the GPR survey, 400 MHz and 900 MHz antennas were used. The space between each profiles were taken as 0.5 m for 400 MHz and 0.25m for 900 MHz respectively. After the injection process, reflections from the fractured and porous zones were weakened imaged clearly by GPR data and significant rise of the p-wave velocities were observed.

  16. The role of non-destructive assay in support of the exemption of solid waste from nuclear licensed sites

    SciTech Connect

    Fisher, Alan; Adsley, Ian; Green, Tommy

    2007-07-01

    Available in abstract form only. Full text of publication follows: Nuclear Site License Holders within the United Kingdom are increasingly re-examining the options available for disposal of solid waste produced during routine operations and decommissioning activities. The incentives to do so include: 'Compliance with the requirement to minimise radioactive waste, as stipulated in Disposal Authorisations issued by the Environment Agency' Reducing the burden on the UK Low Level Waste Repository (LLWR)' Achieving cost savings on waste management, by avoiding expensive conditioning, transport and disposal costs for certain wastes. Wastes may be exempted from regulation under the Radioactive Substances Act, 1993 (RSA 93) provided they comply with the conditions laid out in the relevant Exemption Orders. In effect, they may be legally disposed as if they were non-radioactive waste. A national Code of Practice on Clearance and Exemption Principles, Processes and Practices was introduced in 2005 to clarify the requirements of these Exemption Orders and provide guidance on their practical application. In order to demonstrate compliance with these Exemption Orders, it is essential to have good knowledge of the items' history and their potential for contamination. Monitoring is frequently used as definitive evidence that the radioactivity content of waste items does not exceed limits proscribed in the relevant Exemption Orders. The practicalities of monitoring require careful consideration in order to achieve meaningful results and be capable of achieving the low specific activity limits quoted in the Exemption Orders. The Cross Industry Assay Working Group is a national collection of non-destructive assay specialists from a range of companies, which meets regularly to discuss challenges relating to the assay of all categories of waste. In this paper, the Group presents examples of how NDA techniques are being used to support the exemption of waste items. (authors)

  17. Non-destructive Measurement of Calcium and Potassium in Apple and Pear Using Handheld X-ray Fluorescence

    PubMed Central

    Kalcsits, Lee A.

    2016-01-01

    Calcium and potassium are essential for cell signaling, ion homeostasis and cell wall strength in plants. Unlike nutrients such as nitrogen and potassium, calcium is immobile in plants. Localized calcium deficiencies result in agricultural losses; particularly for fleshy horticultural crops in which elemental imbalances in fruit contribute to the development of physiological disorders such as bitter pit in apple and cork spot in pear. Currently, elemental analysis of plant tissue is destructive, time consuming and costly. This is a limitation for nutrition studies related to calcium in plants. Handheld portable x-ray fluorescence (XRF) can be used to non-destructively measure elemental concentrations. The main objective was to test if handheld XRF can be used for semi-quantitative calcium and potassium analysis of in-tact apple and pear. Semi-quantitative measurements for individual fruit were compared to results obtained from traditional lab analysis. Here, we observed significant correlations between handheld XRF measurements of calcium and potassium and concentrations determined using MP-AES lab analysis. Pearson correlation coefficients ranged from 0.73 and 0.97. Furthermore, measuring apple and pear using handheld XRF identified spatial variability in calcium and potassium concentrations on the surface of individual fruit. This variability may contribute to the development of localized nutritional imbalances. This highlights the importance of understanding spatial and temporal variability in elemental concentrations in plant tissue. Handheld XRF is a relatively high-throughput approach for measuring calcium and potassium in plant tissue. It can be used in conjunction with traditional lab analysis to better understand spatial and temporal patterns in calcium and potassium uptake and distribution within an organ, plant or across the landscape. PMID:27092160

  18. Non-destructive elemental quantification of polymer-embedded thin films using laboratory based X-ray techniques

    NASA Astrophysics Data System (ADS)

    Cordes, Nikolaus L.; Havrilla, George J.; Usov, Igor O.; Obrey, Kimberly A.; Patterson, Brian M.

    2014-11-01

    Thin coatings are important for a variety of industries including energy (e.g., solar cells, batteries), consumer electronics (e.g., LCD displays, computer chips), and medical devices (e.g., implants). These coatings are typically highly uniform layers with thicknesses ranging from a monolayer up to several micrometers. Characterizing these highly uniform coatings for their thickness, elemental composition, and uniformity are all paramount, but obtaining these measurements can be more difficult when the layers are subsurface and must be interrogated non-destructively. The coupling of confocal micro-X-ray fluorescence (confocal MXRF) and nano-scale X-ray computed tomography (nano-CT) together can make these measurements while meeting these sensitivity and resolution specifications necessary for characterizing thin films. Elemental composition, atomic percent, placement, and uniformity can be measured in three dimensions with this integrated approach. Confocal MXRF uses a pair of polycapillary optics to focus and collect X-rays from a material from a 3D spatially restricted confocal volume. Because of the spatial definition, individual layers (of differing composition) can be characterized based upon the elementally characteristic X-ray fluorescence collected for each element. Nano-scale X-ray computed tomography, in comparison, can image the layers at very high resolution (down to 50 nm) to precisely measure the embedded layer thickness. These two techniques must be used together if both the thickness and atomic density of a layer are unknown. This manuscript will demonstrate that it is possible to measure both the atomic percent of an embedded thin film layer and confirm its manufacturing quality. As a proof of principle, a 1.5 atomic percent, 2 μm-thick Ge layer embedded within polymer capsules, used for laser plasma experiments at the Omega Laser Facility and National Ignition Facility, are measured.

  19. The Role of Mathematical Methods in Efficiency Calibration and Uncertainty Estimation in Gamma Based Non-Destructive Assay - 12311

    SciTech Connect

    Venkataraman, R.; Nakazawa, D.

    2012-07-01

    Mathematical methods are being increasingly employed in the efficiency calibration of gamma based systems for non-destructive assay (NDA) of radioactive waste and for the estimation of the Total Measurement Uncertainty (TMU). Recently, ASTM (American Society for Testing and Materials) released a standard guide for use of modeling passive gamma measurements. This is a testimony to the common use and increasing acceptance of mathematical techniques in the calibration and characterization of NDA systems. Mathematical methods offer flexibility and cost savings in terms of rapidly incorporating calibrations for multiple container types, geometries, and matrix types in a new waste assay system or a system that may already be operational. Mathematical methods are also useful in modeling heterogeneous matrices and non-uniform activity distributions. In compliance with good practice, if a computational method is used in waste assay (or in any other radiological application), it must be validated or benchmarked using representative measurements. In this paper, applications involving mathematical methods in gamma based NDA systems are discussed with several examples. The application examples are from NDA systems that were recently calibrated and performance tested. Measurement based verification results are presented. Mathematical methods play an important role in the efficiency calibration of gamma based NDA systems. This is especially true when the measurement program involves a wide variety of complex item geometries and matrix combinations for which the development of physical standards may be impractical. Mathematical methods offer a cost effective means to perform TMU campaigns. Good practice demands that all mathematical estimates be benchmarked and validated using representative sets of measurements. (authors)

  20. BreedVision--a multi-sensor platform for non-destructive field-based phenotyping in plant breeding.

    PubMed

    Busemeyer, Lucas; Mentrup, Daniel; Möller, Kim; Wunder, Erik; Alheit, Katharina; Hahn, Volker; Maurer, Hans Peter; Reif, Jochen C; Würschum, Tobias; Müller, Joachim; Rahe, Florian; Ruckelshausen, Arno

    2013-01-01

    To achieve the food and energy security of an increasing World population likely to exceed nine billion by 2050 represents a major challenge for plant breeding. Our ability to measure traits under field conditions has improved little over the last decades and currently constitutes a major bottleneck in crop improvement. This work describes the development of a tractor-pulled multi-sensor phenotyping platform for small grain cereals with a focus on the technological development of the system. Various optical sensors like light curtain imaging, 3D Time-of-Flight cameras, laser distance sensors, hyperspectral imaging as well as color imaging are integrated into the system to collect spectral and morphological information of the plants. The study specifies: the mechanical design, the system architecture for data collection and data processing, the phenotyping procedure of the integrated system, results from field trials for data quality evaluation, as well as calibration results for plant height determination as a quantified example for a platform application. Repeated measurements were taken at three developmental stages of the plants in the years 2011 and 2012 employing triticale (×Triticosecale Wittmack L.) as a model species. The technical repeatability of measurement results was high for nearly all different types of sensors which confirmed the high suitability of the platform under field conditions. The developed platform constitutes a robust basis for the development and calibration of further sensor and multi-sensor fusion models to measure various agronomic traits like plant moisture content, lodging, tiller density or biomass yield, and thus, represents a major step towards widening the bottleneck of non-destructive phenotyping for crop improvement and plant genetic studies. PMID:23447014

  1. A quantitative, non-destructive methodology for habitat characterisation and benthic monitoring at offshore renewable energy developments.

    PubMed

    Sheehan, Emma V; Stevens, Timothy F; Attrill, Martin J

    2010-01-01

    Following governments' policies to tackle global climate change, the development of offshore renewable energy sites is likely to increase substantially over coming years. All such developments interact with the seabed to some degree and so a key need exists for suitable methodology to monitor the impacts of large-scale Marine Renewable Energy Installations (MREIs). Many of these will be situated on mixed or rocky substrata, where conventional methods to characterise the habitat are unsuitable. Traditional destructive sampling is also inappropriate in conservation terms, particularly as safety zones around (MREIs) could function as Marine Protected Areas, with positive benefits for biodiversity. Here we describe a technique developed to effectively monitor the impact of MREIs and report the results of its field testing, enabling large areas to be surveyed accurately and cost-effectively. The methodology is based on a high-definition video camera, plus LED lights and laser scale markers, mounted on a "flying array" that maintains itself above the seabed grounded by a length of chain, thus causing minimal damage. Samples are taken by slow-speed tows of the gear behind a boat (200 m transects). The HD video and randomly selected frame grabs are analysed to quantify species distribution. The equipment was tested over two years in Lyme Bay, UK (25 m depth), then subsequently successfully deployed in demanding conditions at the deep (>50 m) high-energy Wave Hub site off Cornwall, UK, and a potential tidal stream energy site in Guernsey, Channel Islands (1.5 ms⁻¹ current), the first time remote samples from such a habitat have been achieved. The next stage in the monitoring development process is described, involving the use of Remote Operated Vehicles to survey the seabed post-deployment of MREI devices. The complete methodology provides the first quantitative, relatively non-destructive method for monitoring mixed-substrate benthic communities beneath MPAs and MREIs

  2. Long-term and high frequency non-destructive monitoring of water stable isotope profiles in an evaporating soil column

    NASA Astrophysics Data System (ADS)

    Rothfuss, Y.; Merz, S.; Vanderborght, J.; Hermes, N.; Weuthen, A.; Pohlmeier, A.; Vereecken, H.; Brüggemann, N.

    2015-04-01

    The stable isotope compositions of soil water (δ2H and δ18O) carry important information about the prevailing soil hydrological conditions and for constraining ecosystem water budgets. However, they are highly dynamic, especially during and after precipitation events. The classical method of determining soil water δ2H and δ18O at different depths, i.e., soil sampling and cryogenic extraction of the soil water, followed by isotope-ratio mass spectrometer analysis is destructive and laborious with limited temporal resolution. In this study, we present a new non-destructive method based on gas-permeable tubing and isotope-specific infrared laser absorption spectroscopy. We conducted a laboratory experiment with an acrylic glass column filled with medium sand equipped with gas-permeable tubing at eight different soil depths. The soil column was initially saturated from the bottom, exposed to evaporation for a period of 290 days, and finally rewatered. Soil water vapor δ2H and δ18O were measured daily, sequentially for each depth. Soil liquid water δ2H and δ18O were inferred from the isotopic values of the vapor assuming thermodynamic equilibrium between liquid and vapor phases in the soil. The experimental setup allowed following the evolution of typical exponential-shaped soil water δ2H and δ18O profiles with unprecedentedly high temporal resolution. As the soil dried out, we could also show for the first time the increasing influence of the isotopically depleted ambient water vapor on the isotopically enriched liquid water close to the soil surface (i.e., atmospheric invasion). Rewatering at the end of the experiment led to instantaneous resetting of the stable isotope profiles, which could be closely followed with the new method.

  3. Experimental and simulated performance of lithium niobate 1-3 piezocomposites for 2 MHz non-destructive testing applications.

    PubMed

    Kirk, K J; Schmarje, N

    2013-01-01

    Lithium niobate piezocomposites have been investigated as the active element in high temperature resistant ultrasonic transducers for non-destructive testing applications up to 400°C. Compared to a single piece of lithium niobate crystal they demonstrate shorter pulse length by 3×, elimination of lateral modes, and resistance to cracking. In a 1-3 connectivity piezocomposite for high temperature use (200-400°C), lithium niobate pillars are embedded in a matrix of flexible high temperature sealant or high temperature cement. In order to better understand the design principles and constraints for use of lithium niobate in piezocomposites experiments and modelling have been carried out. For this work the lithium niobate piezocomposites were investigated at room temperature so epoxy filler was used. 1-3 connectivity piezocomposite samples were prepared with z-cut lithium niobate, pillar width 0.3-0.6mm, sample thickness 1-4mm, pillar aspect ratio (pillar height/width) 3-6, volume fraction 30 and 45%. Operating frequency was 1-2MHz. Experimental measurements of impedance magnitude and resonance frequency were compared with 3-D finite element modelling using PZFlex. Resonance frequencies were predicted within 0.05MHz and impedance magnitude within 2-5% for samples with pillar aspect ratio ≥3 for 45% volume fraction and pillar aspect ratio ⩾6 for 30% volume fraction. Laser vibrometry of pulse excitation of piezocomposite samples in air showed that the lithium niobate pillars and the epoxy filler moved in phase. Experiment and simulation showed that the thickness mode coupling coefficient k(t) of the piezocomposite was maintained at the lithium niobate bulk value of approximately 0.2 down to a volume fraction of 30%, consistent with calculations using the (Smith and Auld, 1991) model for piezocomposites. PMID:22784707

  4. A Quantitative, Non-Destructive Methodology for Habitat Characterisation and Benthic Monitoring at Offshore Renewable Energy Developments

    PubMed Central

    Sheehan, Emma V.; Stevens, Timothy F.; Attrill, Martin J.

    2010-01-01

    Following governments' policies to tackle global climate change, the development of offshore renewable energy sites is likely to increase substantially over coming years. All such developments interact with the seabed to some degree and so a key need exists for suitable methodology to monitor the impacts of large-scale Marine Renewable Energy Installations (MREIs). Many of these will be situated on mixed or rocky substrata, where conventional methods to characterise the habitat are unsuitable. Traditional destructive sampling is also inappropriate in conservation terms, particularly as safety zones around (MREIs) could function as Marine Protected Areas, with positive benefits for biodiversity. Here we describe a technique developed to effectively monitor the impact of MREIs and report the results of its field testing, enabling large areas to be surveyed accurately and cost-effectively. The methodology is based on a high-definition video camera, plus LED lights and laser scale markers, mounted on a “flying array” that maintains itself above the seabed grounded by a length of chain, thus causing minimal damage. Samples are taken by slow-speed tows of the gear behind a boat (200 m transects). The HD video and randomly selected frame grabs are analysed to quantify species distribution. The equipment was tested over two years in Lyme Bay, UK (25 m depth), then subsequently successfully deployed in demanding conditions at the deep (>50 m) high-energy Wave Hub site off Cornwall, UK, and a potential tidal stream energy site in Guernsey, Channel Islands (1.5 ms−1 current), the first time remote samples from such a habitat have been achieved. The next stage in the monitoring development process is described, involving the use of Remote Operated Vehicles to survey the seabed post-deployment of MREI devices. The complete methodology provides the first quantitative, relatively non-destructive method for monitoring mixed-substrate benthic communities beneath MPAs and

  5. Non-destructive Measurement of Calcium and Potassium in Apple and Pear Using Handheld X-ray Fluorescence.

    PubMed

    Kalcsits, Lee A

    2016-01-01

    Calcium and potassium are essential for cell signaling, ion homeostasis and cell wall strength in plants. Unlike nutrients such as nitrogen and potassium, calcium is immobile in plants. Localized calcium deficiencies result in agricultural losses; particularly for fleshy horticultural crops in which elemental imbalances in fruit contribute to the development of physiological disorders such as bitter pit in apple and cork spot in pear. Currently, elemental analysis of plant tissue is destructive, time consuming and costly. This is a limitation for nutrition studies related to calcium in plants. Handheld portable x-ray fluorescence (XRF) can be used to non-destructively measure elemental concentrations. The main objective was to test if handheld XRF can be used for semi-quantitative calcium and potassium analysis of in-tact apple and pear. Semi-quantitative measurements for individual fruit were compared to results obtained from traditional lab analysis. Here, we observed significant correlations between handheld XRF measurements of calcium and potassium and concentrations determined using MP-AES lab analysis. Pearson correlation coefficients ranged from 0.73 and 0.97. Furthermore, measuring apple and pear using handheld XRF identified spatial variability in calcium and potassium concentrations on the surface of individual fruit. This variability may contribute to the development of localized nutritional imbalances. This highlights the importance of understanding spatial and temporal variability in elemental concentrations in plant tissue. Handheld XRF is a relatively high-throughput approach for measuring calcium and potassium in plant tissue. It can be used in conjunction with traditional lab analysis to better understand spatial and temporal patterns in calcium and potassium uptake and distribution within an organ, plant or across the landscape. PMID:27092160

  6. Novel application of X-ray fluorescence microscopy (XFM) for the non-destructive micro-elemental analysis of natural mineral pigments on Aboriginal Australian objects.

    PubMed

    Popelka-Filcoff, Rachel S; Lenehan, Claire E; Lombi, Enzo; Donner, Erica; Howard, Daryl L; de Jonge, Martin D; Paterson, David; Walshe, Keryn; Pring, Allan

    2016-06-01

    This manuscript presents the first non-destructive synchrotron micro-X-ray fluorescence study of natural mineral pigments on Aboriginal Australian objects. Our results demonstrate the advantage of XFM (X-ray fluorescence microscopy) of Aboriginal Australian objects for optimum sensitivity, elemental analysis, micron-resolution mapping of pigment areas and the method also has the advantage of being non-destructive to the cultural heritage objects. Estimates of pigment thickness can be calculated. In addition, based on the elemental maps of the pigments, further conclusions can be drawn on the composition and mixtures and uses of natural mineral pigments and whether the objects were made using traditional or modern methods and materials. This manuscript highlights the results of this first application of XFM to investigate complex mineral pigments used on Aboriginal Australian objects. PMID:26999774

  7. Non-destructive Analysis of Oil-Contaminated Soil Core Samples by X-ray Computed Tomography and Low-Field Nuclear Magnetic Resonance Relaxometry: a Case Study

    PubMed Central

    Mitsuhata, Yuji; Nishiwaki, Junko; Kawabe, Yoshishige; Utsuzawa, Shin; Jinguuji, Motoharu

    2010-01-01

    Non-destructive measurements of contaminated soil core samples are desirable prior to destructive measurements because they allow obtaining gross information from the core samples without touching harmful chemical species. Medical X-ray computed tomography (CT) and time-domain low-field nuclear magnetic resonance (NMR) relaxometry were applied to non-destructive measurements of sandy soil core samples from a real site contaminated with heavy oil. The medical CT visualized the spatial distribution of the bulk density averaged over the voxel of 0.31 × 0.31 × 2 mm3. The obtained CT images clearly showed an increase in the bulk density with increasing depth. Coupled analysis with in situ time-domain reflectometry logging suggests that this increase is derived from an increase in the water volume fraction of soils with depth (i.e., unsaturated to saturated transition). This was confirmed by supplementary analysis using high-resolution micro-focus X-ray CT at a resolution of ∼10 μm, which directly imaged the increase in pore water with depth. NMR transverse relaxation waveforms of protons were acquired non-destructively at 2.7 MHz by the Carr–Purcell–Meiboom–Gill (CPMG) pulse sequence. The nature of viscous petroleum molecules having short transverse relaxation times (T2) compared to water molecules enabled us to distinguish the water-saturated portion from the oil-contaminated portion in the core sample using an M0–T2 plot, where M0 is the initial amplitude of the CPMG signal. The present study demonstrates that non-destructive core measurements by medical X-ray CT and low-field NMR provide information on the groundwater saturation level and oil-contaminated intervals, which is useful for constructing an adequate plan for subsequent destructive laboratory measurements of cores. PMID:21258437

  8. A non-destructive synchrotron X-ray study of the metallurgy and manufacturing processes of Eastern and Western astrolabes in the Adler Planetarium collection

    NASA Astrophysics Data System (ADS)

    Newbury, Brian Dale

    The astrolabe collection of the Adler Planetarium and History of Astronomy Museum, Chicago, IL, was examined using non-destructive synchrotron based high-energy X-ray techniques including diffraction, fluorescence, and radiography to determine the metallurgy, microstructure, and metal forming processes used in astrolabe construction. All high-energy X-ray measurements were performed at the Advanced Photon Source (APS) synchrotron of Argonne National Laboratory, Argonne, IL. Astrolabes from the collection were selected to represent all major astrolabe production centers possible and time periods. It was found that all European astrolabes were manufactured of traditional cementation brass by hand worked metal forming processes consistent with technology in the literature. Of the Islamic astrolabes examined, all seven from Lahore in current-day Pakistan exhibited advanced brass alloys not typical of alloys discussed in the literature. It was found that these alloys were selected for their specific hot working properties, allowing the Lahore metalworkers to more efficiently make brass sheet from which to make astrolabe components. In addition, the alloy required a fundamental change in the brass foundry process, indicating advanced Zn metal production techniques. It was found that analysis by high energy X-rays from the APS was essential to produce data on the chemistry and microstructure from the interior of the astrolabe components in a non-destructive manner. Many astrolabe components had undergone surface dezincification due to heavy annealing during manufacturing, causing the Zn composition measured by the surface sensitive fluorescence technique to be lower than the true bulk alloy Zn composition. This would have been impossible to quantify non-destructively without the high-energy diffraction capability of the APS. The results of this study have proven the effectiveness of the synchrotron as a viable non-destructive analysis technique for examining cultural

  9. Non-destructive determination of 224Ra, 226Ra and 228Ra concentrations in drinking water by gamma spectroscopy.

    PubMed

    Parekh, Pravin; Haines, Douglas; Bari, Abdul; Torres, Miguel

    2003-11-01

    The U.S. Environmental Protection Agency mandates that drinking water showing gross alpha-activity greater than 0.19 Bq L(-1) should be analyzed for radium, a known human carcinogen. The recommended testing methods are intricate and laborious. The method reported in this paper is a direct, non-destructive gamma-spectroscopic method for the determination of 224Ra, 226Ra, and 228Ra, the three radium isotopes of environmental concern in drinking water. Large-volume Marinelli beakers (4.1-L capacity), especially designed for measuring radioactive gases, in conjunction with a low-background, high-efficiency (131%) germanium detector were used in this work. It was first established that radon, the gaseous decay product of radium, and its progeny are quantitatively retained in this Marinelli beaker. The 224Ra, 226Ra, and 228Ra activity concentrations are determined from the equilibrium activities of their progeny: 212Pb, 214Pb (214Bi), and 228Ac; and the gamma-lines used in the analysis are 238.6, 351.9 (and 609.2), and 911.2 keV, respectively. The 224Ra activity is determined from the first 1,000-min measurement performed after expulsion of radon from the sample. The 226Ra activity is determined from the second, 2,400-min measurement, made 3 to 5 d later, and the 228Ra activity is determined from either the first or the second measurement, depending on its concentration level. The method's minimum detectable activities are 0.017 Bq L(-1), 0.020 Bq L(-1), and 0.027 Bq L(-1) for 224Ra, 226Ra, and 228Ra, respectively, when measured under radioactive equilibrium. These limits are well within the National Primary Drinking Water Regulations required limit of 0.037 Bq L(-1) for 226Ra and for 228Ra. The precision and accuracy of the method, evaluated using the U.S. Environmental Protection Agency and the Environmental Resource Associates' quality control samples, were found to be within acceptable limits. PMID:14571995

  10. Developpement de mesures non destructives, par ondes ultrasonores, d'epaisseurs de fronts de solidification dans les reacteurs metallurgiques

    NASA Astrophysics Data System (ADS)

    Floquet, Jimmy

    Dans les cuves d'electrolyse d'aluminium, le milieu de reaction tres corrosif attaque les parois de la cuve, ce qui diminue leur duree de vie et augmente les couts de production. Le talus, qui se forme sous l'effet des pertes de chaleur qui maintiennent un equilibre thermique dans la cuve, sert de protection naturelle a la cuve. Son epaisseur doit etre controlee pour maximiser cet effet. Advenant la resorption non voulue de ce talus, les degats generes peuvent s'evaluer a plusieurs centaines de milliers de dollars par cuve. Aussi, l'objectif est de developper une mesure ultrasonore de l'epaisseur du talus, car elle serait non intrusive et non destructive. La precision attendue est de l'ordre du centimetre pour des mesures d'epaisseurs comprenant 2 materiaux, allant de 5 a 20 cm. Cette precision est le facteur cle permettant aux industriels de controler l'epaisseur du talus de maniere efficace (maximiser la protection des parois tout en maximisant l'efficacite energetique du procede), par l'ajout d'un flux thermique. Cependant, l'efficacite d'une mesure ultrasonore dans cet environnement hostile reste a demontrer. Les travaux preliminaires ont permis de selectionner un transducteur ultrasonore a contact ayant la capacite a resister aux conditions de mesure (hautes temperatures, materiaux non caracterises...). Differentes mesures a froid (traite par analyse temps-frequence) ont permis d'evaluer la vitesse de propagation des ondes dans le materiau de la cuve en graphite et de la cryolite, demontrant la possibilite d'extraire l'information pertinente d'epaisseur du talus in fine. Fort de cette phase de caracterisation des materiaux sur la reponse acoustique des materiaux, les travaux a venir ont ete realises sur un modele reduit de la cuve. Le montage experimental, un four evoluant a 1050 °C, instrumente d'une multitude de capteurs thermique, permettra une comparaison de la mesure intrusive LVDT a celle du transducteur, dans des conditions proches de la mesure

  11. Long Term and High Frequency Non-Destructive Monitoring of Soil Water Stable Isotope Compositions in the Laboratory

    NASA Astrophysics Data System (ADS)

    Rothfuss, Y.; Merz, S.; Pohlmeier, A. J.; Vereecken, H.; Brueggemann, N.

    2014-12-01

    The fate and dynamics of water stable isotopologues (1H2H16O and 1H218O) are currently well implemented into physically based Soil-Vegetation-Atmosphere Transfer (SVAT) models (e.g. Hydrus 1D, SiSPAT-I, Soil-Litter iso, TOUGHREACT). However, contrary to other state variables (e.g., water content and tension) that can be monitored over long periods (e.g., by time-domain reflectometry, capacitive sensing, tensiometry or micro-psychrometry), water stable isotope compositions (δ2H and δ18O) are analyzed following destructive sampling, and thus are available only at a given time. Thus, there are important discrepancies in time resolution between soil water and stable isotope information which greatly limit the insight potential of the latter. Recently however, a technique based on direct infrared laser absorption spectroscopy was developed that allows simultaneous and direct measurements of δ2H and δ18O in water vapor. Here, we present a non-destructive method for monitoring soil liquid δ2H and δ18O by sampling and measuring water vapor equilibrated with soil water using gas-permeable polypropylene tubing and a Cavity Ring-Down laser Spectrometer (CRDS). An acrylic glass column (d=11 cm, h=60 cm) was (i) equipped with temperature and soil water probes in addition to gas-permeable tubing sections at eight different depths, (ii) filled with pure quartz sand, (iii) saturated from the bottom, and (iv) installed on weighing balances and let dry for 250 days. Each day, soil vapor δ2H and δ18O were measured for each depth by purging the soil water vapor sampled in the tubing sections with dry air and analyzing it with a CRDS. Soil liquid water δ2H and δ18O were then inferred from the values measured in the vapor. The experimental setup allowed following the evolution of the soil water δ2H and δ18O profile, which developed as a result of isotope convective capillary rise and back-diffusion of the stable isotope excess at the soil surface due to fractionating soil

  12. Innovative non-destructive evaluation methods on HTR fuel at AREVA NP: towards a 100% non invasive control strategy

    SciTech Connect

    Banchet, J.; Tisseur, D.; Hermosilla Lara, S.; Piriou, M.; Bargain, R.; Guillermier, P.

    2007-07-01

    High Temperature Reactor (HTR) fuel consists in millimetric multilayered particles called TRISO, embedded, depending on the reactor design, in a pebble or cylinder-shaped graphite matrix called compact. Particles are typically composed of a 500 {mu}m fissile material kernel, a 95 {mu}m porous carbon layer called buffer, a 40 {mu}m dense pyrolytic carbon layer, a 35 {mu}m silicon carbide layer and another 40 {mu}m dense pyrolytic carbon layer. In order to ensure fuel qualification, as well as reactor safety, particles and compacts need to satisfy specifications concerning their physical characteristics and their integrity. In particular, geometrical parameters such as particle diameter and sphericity as well as layers thickness, but also layers density and the absence of structural defects such as cracks or de-cohesions need to be detected and characterized. In the past, a huge R and D work was carried out to build a TRISO particle characterization quality control plan, mainly based on particle sampling as well as destructive characterization methods. However, since then, development of industrial non-destructive evaluation techniques and devices contributed to envisage not only a non invasive control of HTR fuel, but also a 100% production control strategy. Since 2004, AREVA NP is engaged in a R and D program aiming at the development of innovative industrial nondestructive evaluation methods for HTR fuel. After investigating a number of potential techniques, some of them were selected based on their performances and/or their industrial potential. In particular, development has been carried out on high resolution X-Ray imaging allowing accurate layer thickness, layer density and structural defects characterization, X-Ray tomography offering the possibility to characterize fuel element homogeneity and determine the number of in-contact particles contained in a fuel element, infrared thermal imaging (ITI) allowing cracks detection, eddy currents (EC) enabling

  13. Comparison of sediment pollution in the rivers of the Hungarian Upper Tisza Region using non-destructive analytical techniques

    NASA Astrophysics Data System (ADS)

    Osán, János; Török, Szabina; Alföldy, Bálint; Alsecz, Anita; Falkenberg, Gerald; Baik, Soo Yeun; Van Grieken, René

    2007-02-01

    The rivers in the Hungarian Upper Tisza Region are frequently polluted mainly due to mining activities in the catchment area. At the beginning of 2000, two major mining accidents occurred in the Romanian part of the catchment area due to the failure of a tailings dam releasing huge amounts of cyanide and heavy metals to the rivers. Surface sediment as well as water samples were collected at six sites in the years 2000-2003, from the northeast-Hungarian section of the Tisza, Szamos and Túr rivers. The sediment pollution of the rivers was compared based on measurements of bulk material and selected single particles, in order to relate the observed compositions and chemical states of metals to the possible sources and weathering of pollution. Non-destructive X-ray analytical methods were applied in order to obtain different kinds of information from the same samples or particles. In order to identify the pollution sources, their magnitude and fate, complementary analyses were carried out. Heterogeneous particulate samples were analyzed from a large geographical territory and a 4-year time period. Individual particles were analyzed only from the "hot" samples that showed elevated concentrations of heavy metals. Particles that were classified as anthropogenic were finally analyzed to identify trace concentrations and chemical states of heavy metals. Although the Tisza river was affected by water pollution due to the two major mining accidents at the beginning of 2000, the concentration of heavy metals in sediments decreased to the mineral background level 1 year after the pollution event. In the tributaries Szamos and Túr, however, no significant decrease of the heavy metal concentrations was observed in the recent years, indicating a continuous pollution. Among the water suspended particles collected from river Túr, fibers of unknown origin were observed by electron microscopy; these particles were aluminosilicates enriched in Zn and Mn. Cd was also concentrated in

  14. Parametrizing soil-vegetation-atmosphere transfer models with non-destructive and high resolution stable isotope data

    NASA Astrophysics Data System (ADS)

    Rothfuss, Youri; Vereecken, Harry; Brüggemann, Nicolas

    2015-04-01

    water processes. An important challenge is to provide models with non-destructive and high resolution isotope data, both in space and time (e.g., using microporous tubing or membrane-based available setups). Moreover, parallel to field studies effort should be made to design specific experiments under controlled conditions, allowing for testing the underlying hypotheses of the above mentioned isotope-enabled SVAT models. Using isotope data obtained from these controlled experiments will improve the characterization of evaporation processes within the soil profile and ameliorate the parametrization of the respective isotope modules.

  15. Interpretation of actinide-distribution data obtained from non-destructive and destructive post-test analyses of an intact-core column of Culebra dolomite.

    PubMed

    Perkins, W G; Lucero, D A

    2001-02-01

    The US Department of Energy (DOE), with technical assistance from Sandia National Laboratories, has successfully received EPA certification and opened the Waste Isolation Pilot Plant (WIPP), a nuclear waste disposal facility located approximately 42 km east of Carlsbad, NM. Performance assessment (PA) analyses indicate that human intrusions by inadvertent, intermittent drilling for resources provide the only credible mechanisms for significant releases of radionuclides from the disposal system. For long-term brine releases, migration pathways through the permeable layers of rock above the Salado formation are important. Major emphasis is placed on the Culebra Member of the Rustler Formation because this is the most transmissive geologic layer overlying the WIPP site. In order to help quantify parameters for the calculated releases, radionuclide transport experiments have been carried out using intact-core columns obtained from the Culebra dolomite member of the Rustler Formation within the WIPP site. This paper deals primarily with results of analyses for 241Pu and 241Am distributions developed during transport experiments in one of these cores. Transport experiments were done using a synthetic brine that simulates Culebra brine at the core recovery location (the WIPP air-intake shaft (AIS)). Hydraulic characteristics (i.e., apparent porosity and apparent dispersion coefficient) for intact-core columns were obtained via experiments using the conservative tracer 22Na. Elution experiments carried out over periods of a few days with tracers 232U and 239Np indicated that these tracers were weakly retarded as indicated by delayed elution of the species. Elution experiments with tracers 241Pu and 241Am were attempted but no elution of either species has been observed to date, including experiments of many months' duration. In order to quantify retardation of the non-eluted species 241Pu and 241Am after a period of brine flow, non-destructive and destructive analyses of

  16. Interpretation of Actinide-Distribution Data Obtained from Non-Destructive and Destructive Post-Test Analyses of an Intact-Core Column of Culebra Dolomite

    SciTech Connect

    LUCERO, DANIEL A; PERKINS, W GEORGE

    1999-08-26

    after a period of brine flow, non-destructive and destructive analyses of one intact-core column were carried out to determine distribution of these actinides in the rock. Analytical results indicate that the majority of the {sup 241}Am remained very near the injection surface of the core (possibly as a precipitate), and that the majority of the {sup 241}Pu was dispersed with a very high apparent retardation value. The {sup 241}Pu distribution is interpreted using a single-porosity advection-dispersion model, and an approximate retardation value is reported.

  17. Halogen-bridged metal-organic frameworks constructed from bipyridinium-based ligand: structures, photochromism and non-destructive readout luminescence switching.

    PubMed

    Yang, Xiao-Dong; Chen, Cheng; Zhang, Ya-Jun; Cai, Li-Xuan; Tan, Bin; Zhang, Jie

    2016-03-21

    Two isomorphous halogen-bridged metal-organic frameworks have been solvothermally synthesized based on the bipyridinium ligand and structurally characterized. The two compounds show an eye-detectable color development upon light irradiation, but different coloration degrees. The relationship between the structure and photosensitivity has been studied in detail. The photochromic properties of the bipyridinium unit have been used to modulate the luminescence under light illumination. Compound 1 is the first example showing photo-modulated luminescence switching featuring a non-destructive readout capability based on transition metals. PMID:26740121

  18. Light-driven supramolecular chiral materials: photoinduced control of liquid-crystalline helical structures and non-destructive erasable molecular memory for photonic applications

    NASA Astrophysics Data System (ADS)

    Kawamoto, Masuki; Shiga, Natsuki; Takaishi, Kazuto; Sassa, Takafumi; Yamashita, Takashi; Ito, Yoshihiro

    2013-09-01

    Light-driven supramolecular chiral materials containing an azobenzene moiety as a photoresponsive part and binaphthyl moiety as a chiral part were designed. We found that the dynamic molecular twisting motion of the binaphthyl moiety could be achieved by irradiation of UV or visible light to cause photoisomerization of the azobenzene moiety. The twisting motion induced by the photochromic reaction gave rise to large change in the molecular structure and the value of optical rotation. The chiral materials were demonstrated to behave uniquely as photomodulation of liquid-crystalline helical structures and non-destructive erasable chiroptical memory through photoinduced switching of the dihedral angle of the binaphthyl moiety.

  19. Infrared image processing devoted to thermal non-contact characterization-Applications to Non-Destructive Evaluation, Microfluidics and 2D source term distribution for multispectral tomography

    NASA Astrophysics Data System (ADS)

    Batsale, Jean-Christophe; Pradere, Christophe

    2015-11-01

    The cost of IR cameras is more and more decreasing. Beyond the preliminary calibration step and the global instrumentation, the infrared image processing is then one of the key step for achieving in very broad domains. Generally the IR images are coming from the transient temperature field related to the emission of a black surface in response to an external or internal heating (active IR thermography). The first applications were devoted to the so called thermal Non-Destructive Evaluation methods by considering a thin sample and 1D transient heat diffusion through the sample (transverse diffusion). With simplified assumptions related to the transverse diffusion, the in-plane diffusion and transport phenomena can be also considered. A general equation can be applied in order to balance the heat transfer at the pixel scale or between groups of pixels in order to estimate several fields of thermophysical properties (heterogeneous field of in-plane diffusivity, flow distributions, source terms). There is a lot of possible strategies to process the space and time distributed big amount of data (previous integral transformation of the images, compression, elimination of the non useful areas...), generally based on the necessity to analyse the derivative versus space and time of the temperature field. Several illustrative examples related to the Non-Destructive Evaluation of heterogeneous solids, the thermal characterization of chemical reactions in microfluidic channels and the design of systems for multispectral tomography, will be presented.

  20. Application of terahertz pulse imaging as PAT tool for non-destructive evaluation of film-coated tablets under different manufacturing conditions.

    PubMed

    Dohi, Masafumi; Momose, Wataru; Yoshino, Hiroyuki; Hara, Yuko; Yamashita, Kazunari; Hakomori, Tadashi; Sato, Shusaku; Terada, Katsuhide

    2016-02-01

    Film-coated tablets (FCTs) are a popular solid dosage form in pharmaceutical industry. Manufacturing conditions during the film-coating process affect the properties of the film layer, which might result in critical quality problems. Here, we analyzed the properties of the film layer using a non-destructive approach with terahertz pulsed imaging (TPI). Hydrophilic tablets that become distended upon water absorption were used as core tablets and coated with film under different manufacturing conditions. TPI-derived parameters such as film thickness (FT), film surface reflectance (FSR), and interface density difference (IDD) between the film layer and core tablet were affected by manufacturing conditions and influenced critical quality attributes of FCTs. Relative standard deviation of FSR within tablets correlated well with surface roughness. Tensile strength could be predicted in a non-destructive manner using the multivariate regression equation to estimate the core tablet density by film layer density and IDD. The absolute value of IDD (Lateral) correlated with the risk of cracking on the lateral film layer when stored in a high-humidity environment. Further, in-process control was proposed for this value during the film-coating process, which will enable a feedback control system to be applied to process parameters and reduced risk of cracking without a stability test. PMID:26678177

  1. Non-destructive characterization of oriental porcelain glazes and blue underglaze pigments using μ-EDXRF, μ-Raman and VP-SEM

    NASA Astrophysics Data System (ADS)

    Coutinho, M. L.; Muralha, V. S. F.; Mirão, J.; Veiga, J. P.

    2014-03-01

    The study of ancient materials with recognized cultural and economic value is a challenge to scientists and conservators, since it is usually necessary an approach through non-destructive techniques. Difficulties in establishing a correct analytical strategy are often significantly increased by the lack of knowledge on manufacture technologies and raw materials employed combined with the diversity of decay processes that may have acted during the lifetime of the cultural artefacts. A non-destructive characterization was performed on the glaze and underglaze pigments from a group of Chinese porcelain shards dated from the late Ming Dynasty (1368-1644) excavated at the Monastery of Santa Clara- a- Velha in Coimbra (Portugal). Chemical analysis was performed using micro-energy dispersive X-ray fluorescence spectrometry (μ-EDXRF). Mineralogical characterization was achieved by Raman microscopy (μ-Raman) and observation of small-surface crystallization dark spots with a metallic lustre in areas with high pigment concentration was done by variable pressure scanning electron microscopy (VP-SEM). Cobalt aluminate was identified as the blue underglaze pigment and a comparison of blue and dark blue pigments was performed by the ratio of Co, Mn, and Fe oxides, indicating a compositional difference between the two blue tonalities. Manganese oxide compounds were also identified as colouring agents in dark blue areas and surface migration of manganese compounds was verified.

  2. Non-invasive and non-destructive micro-XRF and micro-Raman analysis of a decorative wallpaper from the beginning of the 19th century.

    PubMed

    Castro, Kepa; Pérez-Alonso, Maite; Rodríguez-Laso, María Dolores; Etxebarria, Nestor; Madariaga, Juan Manuel

    2007-02-01

    Non-destructive and non-invasive micro-Raman fibre optic and micro-XRF analyses were performed to study a wallpaper from the beginning of the 19th century. The complementarity of these two non-destructive techniques is shown in this work. The analysed artwork is considered one of the most beautiful wallpapers ever manufactured according to the catalogues and books; it is known as Chasse de Compiègne, manufactured by Jacquemart, Paris, in 1812. During the analysis, an unexpected pigment was detected by both analytical techniques: lead-tin yellow type II. This pigment was used until ca. 1750, when other yellow pigments replaced it, thus it is very difficult to find it in paintings afterwards. Together with this pigment, red lead, Prussian blue, brochantite, yellow iron oxide, calcium carbonate, vermilion, carbon black of animal origin (bone black), lead white, and raw and burnt sienna were also determined by combining the analytical information provided by both techniques. A possible degradation of brochantite to antlerite is also discussed. PMID:16838156

  3. A coupled fictitious electric circuit's method for impedance of a sensor with ferromagnetic core calculation. Application to eddy currents non destructive testing

    NASA Astrophysics Data System (ADS)

    Zerguini, S.; Maouche, B.; Latreche, M.; Feliachi, M.

    2009-12-01

    The eddy current testing method is widely used to evaluate conductive pieces. This method requires an adequate mathematical model which is able to describe the complicated interactions between the source and induced currents, primary and secondary, the fields and the flaws in materials. This paper describes a model which predicts the apparent changes in the impedance of an absolute ferrite-cored probe in axially symmetric non destructive testing (NDT) configurations. Originally, this model is based on coupled electromagnetic quantities principle. To include the contribution of the magnetic environment, the state variable chosen is the current because the magnetic magnetization is replaced by the fictional equivalent currents. The obtained modelling results are validated by comparison to finite element computations. Once validated, the suggested model is not only applied to calculation of probe's impedance in the presence of a defect inside the load but it is also applied to determine geometrical and physical characteristics of the eddy current non destructive testing (ECNDT) device. This half-numerical technique with a very weak time of simulation can be used for the design of new probes and offers a simple solution to the inversion problem. The model is implemented within a software tool (CECM: coupling electromagnetic circuits method) developed in MATLAB environment.

  4. Validation of a direct non-destructive quantitative analysis of amiodarone hydrochloride in Angoron((R)) formulations using FT-Raman spectroscopy.

    PubMed

    Orkoula, M G; Kontoyannis, C G; Markopoulou, C K; Koundourellis, J E

    2007-09-15

    Raman spectroscopy was applied for the direct non-destructive analysis of amiodarone hydrochloride (ADH), the active ingredient of the liquid formulation Angoron((R)). The FT-Raman spectra were obtained through the un-broken as-received ampoules of Angoron((R)). Using the most intense vibration of the active pharmaceutical ingredient (API) at 1568cm(-1), a calibration model, based on solutions with known concentrations, was developed. The model was applied to the Raman spectra recorded from three as-purchased commercial formulations of Angoron((R)) having nominal strength of 50mgml(-1) ADH. The average value of the API in these samples was found to be 48.56+/-0.64mgml(-1) while the detection limit of the proposed technique was found to be 2.11mgml(-1). The results were compared to those obtained from the application of HPLC using the methodology described in the European Pharmacopoeia and found to be in excellent agreement. The proposed analytical methodology was also validated by evaluating the linearity of the calibration line as well as its accuracy and precision. The main advantage of Raman spectroscopy over HPLC method during routine analysis is that it is considerably faster and no solvent consuming. Furthermore, Raman spectroscopy is non-destructive for the sample. However, the detection limit for Raman spectroscopy is much higher than the corresponding for the HPLC methodology. PMID:19073025

  5. Interpretation of data obtained from non-destructive and destructive post-test analyses of an intact-core column of culebra dolomite

    SciTech Connect

    Lucero, Daniel L.; Perkins, W. George

    1998-09-01

    tracer `Na. Elution experiments carried out over periods of a few days with tracers `2U and `?Np indicated that these tracers were weakly retarded as indicated by delayed elution of these species. Elution experiments with tracers 24% and 24*Arn were performed, but no elution of either species was observed in any flow experiment to date, including experiments of many months' duration. In order to quanti~ retardation of the non-eluted species 24*Pu and 241Arn afler a period of brine flow, non-destructive and destructive analyses of an intact-core column were carried out to determine distribution of these actinides in the rock. Analytical results indicate that the majority of the 241Am is present very near the top (injection) surface of the core (possibly as a precipitate), and that the majority of the 241Pu is dispersed with a very high apparent retardation value. The 24]Pu distribution is interpreted using a single-porosity advection-dispersion model, and an approximate retardation value is reported for this actinide. The specific radionuclide isotopes used in these experiments were chosen to facilitate analysis. Even though these isotopes are not necessarily the same as those that are most important to WIPP performance, they are isotopes of the same elements, and their chemical and transport properties are therefore identical to those of isotopes in the inventory.

  6. X-ray tomography as a non-destructive tool for evaluating the preservation of primary isotope signatures and mineralogy of Mesozoic fossils

    NASA Astrophysics Data System (ADS)

    Santillan, J. D.; Boyce, J. W.; Eagle, R.; Martin, T.; Tuetken, T.; Eiler, J.

    2010-12-01

    The stable isotope compositions of carbonate and phosphate components in fossil teeth and bone are widely used to infer information on paleoclimate and the physiology of extinct organisms. Recently the potential for measuring the body temperatures of extinct vertebrates from analyses of 13C-18O bond ordering in fossil teeth has been demonstrated (Eagle et al. 2010). The interpretation of these isotopic signatures relies on an assessment of the resistance of fossil bioapatite to alteration, as diffusion within, and partial recrystallization, or replacement of the original bioapatite will lead to measured compositions that represent mixtures between primary and secondary phases and/or otherwise inaccurate apparent temperatures. X-ray computed tomography (CT) allows 3-D density maps of teeth to be made at micron-scale resolution. Such density maps have the potential to record textural evidence for alteration, recrystallization, or replacement of enamel. Because it is non-destructive, CT can be used prior to stable isotope analysis to identify potentially problematic samples without consuming or damaging scientifically significant specimens. As a test, we have applied CT to tooth fragments containing both dentin and enamel from Late Jurassic sauropods and a Late Cretaceous theropod that yielded a range of clumped isotope temperatures from anomalously high ˜60oC to physiologically plausible ≤40oC. This range of temperatures suggests partial, high-temperature modification of some specimens, but possible preservation of primary signals in others. Three-dimensional CT volumes generated using General Electric Phoenix|x-ray CT instruments were compared with visible light and back-scattered electron images of the same samples. The tube-detector combination used for the CT study consisted of a 180 kV nanofocus transmission tube coupled with a 127 micron pixel pitch detector ( ˜3-12μ m voxel edges), allowing us to clearly map out alteration zones in high contrast, while

  7. Contributions of non-destructive testing for determining the provenance of the granites used in the Roman Amphitheatre from Emerita Augusta, Badajoz, Spain.

    NASA Astrophysics Data System (ADS)

    Mota, M. Isabel; Alvarez de Buergo, Monica; Fort, Rafael; Pizzo, Antonio

    2015-04-01

    The Archaeological Ensemble of Emérita Augusta (Mérida, Badajoz, Spain) was listed a World Heritage Site in 1993 by UNESCO. One of the monuments that belongs to this Archaeological Ensemble is the Roman amphitheatre, mainly built with granite from quarries located near the city. Every urban centre in the Roman Empire, in addition to many rural sites, had one or more local quarries from which they extracted the bulk of their stone. In Mérida, there are a group of documented quarries located near the ancient city. In this work the authors have been investigating five of these documented outcrops which, due the distance from the monument or the existence of ancient Roman routes of communication with the city, can be the possible original quarries. The provenance of these materials with which the monument is built is of significant interest in terms of the restoration and conservation and from a historical point of view of the monument. Nowadays, there are many examples of identification of the original quarries that use destructive procedures and techniques which are based on the physical, petrographical, geochemical, magnetic or mechanical properties that are a function of the mineralogical and textural characteristics of the rock. In this work, the combined use of two non-destructive and on-site techniques, ultrasonic velocity and surface hardness determined with a Schmidt hammer rebound tester, allows to determine first, the quality and degree of decay in the granites, usually affecting the material surface and consisting of a decline in surface cohesion, and second, it can discriminate possible provenance areas of the rock used in the building. These two techniques are very useful for this purpose for several reasons. Their combined use allows the selection of the most representative blocks and ashlars for sampling. This reduces sampling to a minimum showing representative results for the whole building, especially in the case of performing ageing tests in the

  8. Rapid and non-destructive determination of drip loss and pH distribution in farmed Atlantic salmon (Salmo salar) fillets using visible and near-infrared (Vis-NIR) hyperspectral imaging.

    PubMed

    He, Hong-Ju; Wu, Di; Sun, Da-Wen

    2014-08-01

    Drip loss and pH are important indices in quality assessment of salmon products. This work was carried out for rapid and non-destructive determination of drip loss and pH distribution in salmon fillets using near-infrared (Vis-NIR) hyperspectral imaging. Hyperspectral images were acquired for salmon fillet samples and their spectral signatures in the 400-1700nm range were extracted. Partial least square regression (PLSR) was used to correlate the spectra with reference drip loss and pH values. Important wavelengths were selected using the regression coefficients method to develop new PLSR models, leading to a correlation coefficient of cross-validation (rCV) of 0.834 with root-mean-square errors by cross-validation (RMSECV) of 0.067 for drip loss and a rCV of 0.877 with RMSECV of 0.046 for pH, respectively. Distribution maps of drip loss and pH were generated based on the new PLSR models using image processing algorithms. The results showed that Vis-NIR hyperspectral imaging technique combined with PLSR calibration analysis offers an effective quantitative capability for determining the spatial distribution of drip loss and pH in salmon fillets. PMID:24629986

  9. 3D Non-destructive morphological analysis of a solid oxide fuel cell anode using full-field X-ray nano-tomography

    NASA Astrophysics Data System (ADS)

    Karen Chen-Wiegart, Yu-chen; Cronin, J. Scott; Yuan, Qingxi; Yakal-Kremski, Kyle J.; Barnett, Scott A.; Wang, Jun

    2012-11-01

    An accurate 3D morphological analysis is critically needed to study the process-structure-property relationship in many application fields such as battery electrodes, fuel cells and porous materials for sensing and actuating. Here we present the application of a newly developed full field X-ray nano-scale transmission microscopy (TXM) imaging for a non-destructive, comprehensive 3D morphology analysis of a porous Ni-YSZ solid oxide fuel cell anode. A unique combination of improved 3D resolution and large analyzed volume (˜3600 μm3) yields structural data with excellent statistical accuracy. 3D morphological parameters quantified include phase volume fractions, surface and interfacial area densities, phase size distribution, directional connectivity, tortuosity, and electrochemically active triple phase boundary density. A prediction of electrochemical anode polarization resistance based on this microstructural data yielded good agreement with a measured anode resistance via electrochemical impedance spectroscopy. The Mclachlan model is used to estimate the anode electrical conductivity.

  10. Evaluation of the veracity of one work by the artist Di Cavalcanti through non-destructive techniques: XRF, imaging and brush stroke analysis

    NASA Astrophysics Data System (ADS)

    Kajiya, E. A. M.; Campos, P. H. O. V.; Rizzutto, M. A.; Appoloni, C. R.; Lopes, F.

    2014-02-01

    This paper presents systematic studies and analysis that contributed to the identification of the forgery of a work by the artist Emiliano Augusto Cavalcanti de Albuquerque e Melo, known as Di Cavalcanti. The use of several areas of expertise such as brush stroke analysis ("pinacologia"), applied physics, and art history resulted in an accurate diagnosis for ascertaining the authenticity of the work entitled "Violeiro" (1950). For this work we used non-destructive methods such as techniques of infrared, ultraviolet, visible and tangential light imaging combined with chemical analysis of the pigments by portable X-Ray Fluorescence (XRF) and graphic gesture analysis. Each applied method of analysis produced specific information that made possible the identification of materials and techniques employed and we concluded that this work is not consistent with patterns characteristic of the artist Di Cavalcanti.

  11. Low Frequency Electrical and Magnetic Methods for Non-Destructive Analysis of Fiber Dispersion in Fiber Reinforced Cementitious Composites: An Overview

    PubMed Central

    Faifer, Marco; Ferrara, Liberato; Ottoboni, Roberto; Toscani, Sergio

    2013-01-01

    Non-destructive analysis of fiber dispersion in structural elements made of Fiber Reinforced Concrete (FRC) and Fiber Reinforced Cementitious Composites (FRCCs) plays a significant role in the framework of quality control and performance prediction. In this paper, the research activity of the authors in the aforementioned field all over the last lustrum will be reviewed. A method based on the measurement of the inductance of a probe to be placed on the specimen will be presented and its progressive development will be described. Obtained correlation with actual fiber dispersion, as checked by means of destructive methods, as well as with the mechanical performance of the composite will also be presented, in an attempt to address the significance of the method from an engineering application perspective. PMID:23337334

  12. Non-destructive observation of in-grown stacking faults in 4H-SiC epitaxial layer using mirror electron microscope

    SciTech Connect

    Hasegawa, Masaki; Ohno, Toshiyuki

    2011-10-01

    Mirror electron microscope (MEM) observation has been conducted for a 4-{mu}m-thick n-doped 4H-SiC epitaxial layer. If the sample is simultaneously illuminated with ultraviolet (UV) light of a slightly greater energy than the bandgap energy of 4H-SiC, in-grown stacking faults (IGSFs) can be clearly observed in MEM images. These observations were performed non-destructively, as almost all irradiated electrons returned without impinging the sample surface due to the negative voltage applied to the sample. High spatial resolution observation via MEM showed that multiple IGSFs were stacked up. The phenomenon in which the contrast of the IGSFs vanished in the absence of UV illumination and under UV illumination with a lower energy than the bandgap energy revealed that the origin of the contrast was the negative charging of IGSFs trapping electrons excited by UV light.

  13. Micro-X-Ray Fluorescence and the Old Masters . Non-destructive in situ characterisation of the varnish of historical Low Countries stringed musical instruments

    NASA Astrophysics Data System (ADS)

    Caruso, Francesco; Saverwyns, Steven; Van Bos, Marina; Chillura Martino, Delia Francesca; Ceulemans, Anne-Emmanuelle; de Valck, Joris; Caponetti, Eugenio

    2012-04-01

    In recent years, a growing attention has been addressed to the study of the varnish from early musical instruments. The surfaces of nine historical Low Countries stringed musical instruments from the collection of the "Musical Instruments Museum" in Brussels were non-destructively analysed by in situ micro-X-Ray Fluorescence spectroscopy in dispersive mode. It was found that the main pigments dispersed in the varnish were iron- and manganese-based earths. The presence of a chromium-based pigment in one of the analysed instruments makes it appreciably different from the others. Other findings were discussed and compared with previously published results. The collection of such information plays a relevant role in the recovery of the applied formulations that is an interesting issue for conservators, luthiers and art historians.

  14. Artifact reduction in non-destructive testing by means of complementary data fusion of x-ray computed tomography and ultrasonic pulse-echo testing

    NASA Astrophysics Data System (ADS)

    Schrapp, Michael; Scharrer, Thomas; Goldammer, Matthias; Rupitsch, Stefan J.; Sutor, Alexander; Ermert, Helmut; Lerch, Reinhard

    2013-12-01

    In industrial non-destructive testing, x-ray computed tomography (CT) and ultrasonic pulse-echo testing play an important role in the investigation of large-scale samples. One major artifact arises in CT, when the x-ray absorption in specific directions is too intense, so that the material cannot be fully penetrated. Due to different physical interaction principles, ultrasonic imaging is able to show features which are not visible in the CT image. In this contribution, we present a novel fusion method for the complementary data provided by x-ray CT and ultrasonic testing. The ultrasonic data are obtained by an adapted synthetic aperture focusing technique (SAFT) and complement the missing edge information in the CT image. Subsequently, the full edge map is incorporated as a priori information in a modified simultaneous iterative reconstruction method (SIRT) and allows a significant reduction of artifacts in the CT image.

  15. Non-destructive generation of nano-scale periodic pinning potentials for magnetic domain walls: a way to bias domain wall propagation

    NASA Astrophysics Data System (ADS)

    Metaxas, Peter; Zermatten, Pierre-Jean; Novak, Rafael; Jamet, Jean-Pierre; Weil, Raphael; Rohart, Stanislas; Ferre, Jacques; Mougin, Alexandra; Stamps, Robert; Baltz, Vincent; Rodmacq, Bernard; Gaudin, Gilles

    2012-02-01

    The stray magnetic field of an array of ferromagnetic nanodots is used to generate a spatially periodic pinning potential for domain walls moving through a physically separate, weakly disordered, magnetic layer lying beneath the array. This technique represents a non-destructive method to create tunable and localised pinning sites for domain walls which are consequently subject to co-existing (but independent) periodic and disordered pinning potentials. Beyond the fundamentally attractive application of creating a model experimental system to study interface motion through multiple co-existing pinning potentials, our system interestingly exhibits many characteristics that are normally associated with exchange bias. This is a direct result of the fact that pinning effects induced by the periodic pinning potential depend upon the polarity of the applied magnetic field which drives the domain wall motion, a phenomenon which manifests itself in field-polarity-dependent domain wall mobilities and profiles.

  16. Low frequency electrical and magnetic methods for non-destructive analysis of fiber dispersion in fiber reinforced cementitious composites: an overview.

    PubMed

    Faifer, Marco; Ferrara, Liberato; Ottoboni, Roberto; Toscani, Sergio

    2013-01-01

    Non-destructive analysis of fiber dispersion in structural elements made of Fiber Reinforced Concrete (FRC) and Fiber Reinforced Cementitious Composites (FRCCs) plays a significant role in the framework of quality control and performance prediction. In this paper, the research activity of the authors in the aforementioned field all over the last lustrum will be reviewed. A method based on the measurement of the inductance of a probe to be placed on the specimen will be presented and its progressive development will be described. Obtained correlation with actual fiber dispersion, as checked by means of destructive methods, as well as with the mechanical performance of the composite will also be presented, in an attempt to address the significance of the method from an engineering application perspective. PMID:23337334

  17. Light Water Reactor Sustainability (LWRS) Program – Non-Destructive Evaluation (NDE) R&D Roadmap for Determining Remaining Useful Life of Aging Cables in Nuclear Power Plants

    SciTech Connect

    Simmons, Kevin L.; Ramuhalli, Pradeep; Brenchley, David L.; Coble, Jamie B.; Hashemian, Hash; Konnik, Robert; Ray, Sheila

    2012-09-14

    The purpose of the non-destructive evaluation (NDE) R&D Roadmap for Cables is to support the Materials Aging and Degradation (MAaD) R&D pathway. The focus of the workshop was to identify the technical gaps in detecting aging cables and predicting their remaining life expectancy. The workshop was held in Knoxville, Tennessee, on July 30, 2012, at Analysis and Measurement Services Corporation (AMS) headquarters. The workshop was attended by 30 experts in materials, electrical engineering, U.S. Nuclear Regulatory Commission (NRC), U.S. Department of Energy (DOE) National Laboratories (Oak Ridge National Laboratory, Pacific Northwest National Laboratory, Argonne National Laboratory, and Idaho National Engineering Laboratory), NDE instrumentation development, universities, commercial NDE services and cable manufacturers, and Electric Power Research Institute (EPRI). The motivation for the R&D roadmap comes from the need to address the aging management of in-containment cables at nuclear power plants (NPPs).

  18. Light Water Reactor Sustainability (LWRS) Program – Non-Destructive Evaluation (NDE) R&D Roadmap for Determining Remaining Useful Life of Aging Cables in Nuclear Power Plants

    SciTech Connect

    Simmons, K.L.; Ramuhali, P.; Brenchley, D.L.; Coble, J.B.; Hashemian, H.M.; Konnick, R.; Ray, S.

    2012-09-01

    Executive Summary [partial] The purpose of the non-destructive evaluation (NDE) R&D Roadmap for Cables is to support the Materials Aging and Degradation (MAaD) R&D pathway. A workshop was held to gather subject matter experts to develop the NDE R&D Roadmap for Cables. The focus of the workshop was to identify the technical gaps in detecting aging cables and predicting their remaining life expectancy. The workshop was held in Knoxville, Tennessee, on July 30, 2012, at Analysis and Measurement Services Corporation (AMS) headquarters. The workshop was attended by 30 experts in materials, electrical engineering, and NDE instrumentation development from the U.S. Nuclear Regulatory Commission (NRC), U.S. Department of Energy (DOE) National Laboratories (Oak Ridge National Laboratory, Pacific Northwest National Laboratory, Argonne National Laboratory, and Idaho National Engineering Laboratory), universities, commercial NDE service vendors and cable manufacturers, and the Electric Power Research Institute (EPRI).

  19. Infrared thermography and ultrasound C-scan for non-destructive evaluation of 3D carbon fiber materials: a comparative study

    NASA Astrophysics Data System (ADS)

    Zhang, Hai; Genest, Marc; Robitaille, Francois; Maldague, Xavier; West, Lucas; Joncas, Simon; Leduc, Catherine

    2015-05-01

    3D Carbon fiber polymer matrix composites (3D CF PMCs) are increasingly used for aircraft construction due to their exceptional stiffness and strength-to-mass ratios. However, defects are common in the 3D combining areas and are challenging to inspect. In this paper, Stitching is used to decrease these defects, but causes some new types of defects. Infrared NDT (non-destructive testing) and ultrasound NDT are used. In particular, a micro-laser line thermography technique (micro-LLT) and a micro-laser spot thermography (micro-LST) with locked-in technique are used to detect the micro-defects. In addition, a comparative study is conducted by using pulsed thermography (PT), vibrothermography (VT). In order to confirm the types of the defects, microscopic inspection is carried out before NDT work, after sectioning and polishing a small part of the sample..

  20. Development of the Non-Destructive Evaluation System Using an Eddy Current Probe for Detection of Fatigue Damage in a Stainless Steel

    SciTech Connect

    Oka, M.; Yakushiji, T.; Tsuchida, Y.; Enokizono, M.

    2006-03-06

    The non-destructive evaluation system which is developed using an eddy current probe to evaluate fatigue damage in an austenitic stainless steel is reported in this paper. This probe is composed of the ferrite core and two pick-up coils connected differentially. The eddy current induced by the excitation coil is disarranged by nonuniform distribution of electromagnetic characteristics due to fatigue damage. The structural function of the eddy current probe proposed, enable to detect the eddy current disarrangement by fatigue damage. This probe detects the change of electromagnetic characteristics in the direction of X. In this paper, SUS304, a austenitic stainless steel was used as the sample. The experimental results show that the output voltage of the probe clearly depends on the number of stress cycles.