Science.gov

Sample records for nh3 temperature-programmed desorption

  1. Temperature programmed desorption of a binary gas mixture

    NASA Astrophysics Data System (ADS)

    Zuniga-Hansen, Nayeli; Calbi, M. Mercedes

    2014-03-01

    Temperature programmed desorption (TPD) is an experimental technique that is widely used to determine the adsorption properties of a surface. Many existing theoretical studies have focused on the desorption of a single gas species, but the desorption of binary mixtures is a subject that has been relatively less explored. We perform computer simulations of the thermal desorption of binary gas mixtures using a kinetic Monte Carlo scheme. We start with a simple structure formed by a single line of adsorption sites and two species of adsorbates which bind to the surface with different energies. By varying the initial surface coverage, the particle-particle interactions and the concentration of the different adsorbates, we study the kinetics of desorption of the mixture and compare our results to available experimental data.

  2. Reduction Kinetics of Graphene Oxide Determined by Temperature Programmed Desorption

    NASA Astrophysics Data System (ADS)

    Ventrice, Carl; Clark, Nicholas; Field, Daniel; Geisler, Heike; Jung, Inhwa; Yang, Dongxing; Piner, Richard; Ruoff, Rodney

    2009-10-01

    Graphene oxide, which is an electrical insulator, shows promise for use in several technological applications such as dielectric layers in nanoscale electronic devices or as the active region of chemical sensors. In principle, graphene oxide films could also be used as a precursor for the formation of large-scale graphene films by either thermal or chemical reduction of the graphene oxide. In order to determine the thermal stability and reduction kinetics of graphene oxide, temperature program desorption (TPD) measurements have been performed on multilayer films of graphene oxide deposited on SiO2/Si(100) substrates. The graphene oxide was exfoliated from the graphite oxide source material by slow-stirring in aqueous solution, which produces single-layer platelets with an average lateral size of 10 ?m. From the TPD measurements, it was determined that the decomposition process begins at 80 ^oC. The primary desorption products of the graphene oxide films for temperatures up to 300 ^oC are H2O, CO2, and CO, with only trace amounts of O2 being detected. An activation energy of 1.4 eV/molecule was determined by assuming an Arrhenius dependence for the decomposition process.

  3. Temperature-programmed desorption of tritium loaded into beryllium

    NASA Astrophysics Data System (ADS)

    Chakin, V.; Rolli, R.; Vladimirov, P.; Kurinskiy, P.; Klimenkov, M.; Moeslang, A.; Ryczek, L.; Dorn, C.; Markovsky, A.

    2009-12-01

    The influence of grain size and amount of beryllium oxide BeO on the tritium release characteristics of the S-65H and I-220H beryllium grades was investigated. The beryllium samples were loaded with hydrogen at a temperature of 1123 K for 6 h at a pressure of 4 bar in a gas mixture of molecular protium with 45 wppm tritium. The tritium release measurements were performed using a stepped heating ramp with steps of 50 K in the temperature range of 473-1373 K with a duration of each step of 1 h. Five major release peaks were observed. Interpretations of the nature of the peaks are suggested. In particular, we ascribe the low-temperature peaks (300-723 K) to desorption from the surface and connect the shift of the peak at elevated temperature (900-1000 K) with the enhanced diffusion of hydrogen along grain boundaries. The high temperature peak (1123-1373 K) is attributed to dissociation of beryllium hydroxide Be(OH)2, which is formed on the surface and grain boundaries of a sample in a reaction of hydrogen isotopes with beryllium oxide.

  4. Temperature programmed desorption studies of water interactions with Apollo lunar samples 12001 and 72501

    NASA Astrophysics Data System (ADS)

    Poston, Michael J.; Grieves, Gregory A.; Aleksandrov, Alexandr B.; Hibbitts, Charles A.; Dyar, M. Darby; Orlando, Thomas M.

    2015-07-01

    The desorption activation energies for water molecules chemisorbed on Apollo lunar samples 72501 (highlands soil) and 12001 (mare soil) were determined by temperature programmed desorption experiments in ultra-high vacuum. A significant difference in both the energies and abundance of chemisorption sites was observed, with 72501 retaining up to 40 times more water (by mass) and with much stronger adsorption interactions, possibly approaching 1.5 eV. The dramatic difference between the samples may be due to differences in mineralogy and surface exposure age. The distribution function of water desorption activation energies for sample 72501 was used as an initial condition to simulate water persistence through a temperature profile matching the lunar day.

  5. Design and construction of a semiautomatic temperature programmed desorption apparatus for ultrahigh vacuum

    NASA Astrophysics Data System (ADS)

    Kondratyuk, Petro; Yates, John T.

    2005-01-01

    A computer-controlled system that allows acquisition of large volumes of temperature programmed desorption data under ultrahigh vacuum conditions has been designed and tested. The vacuum part of the system consists of a sample mounted on a rotation-translation manipulator, a shielded quadrupole mass spectrometer for the desorption flux measurement, and a collimated molecular beam doser for adsorbate delivery. The experiment involves a series of tasks: (1) dosing of the adsorbate onto the surface; (2) calibration of the mass spectrometer gain; (3) translating the dosed sample to the mass spectrometer position; (4) linearly ramping the temperature of the sample to acquire the desorption spectrum; and (5) cooling the sample. In the system described here, these tasks are accomplished automatically. As a result, the time needed for the experiment and the potential for operator errors are substantially reduced. The performance of the system is demonstrated for CCl4 adsorbed on gold-supported single wall carbon nanotubes.

  6. Interactions of phenylglycine with amorphous solid water studied by temperature-programmed desorption and photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Tzvetkov, George; Netzer, Falko P.

    2013-07-01

    Temperature-programmed desorption (TPD) and X-ray photoelectron spectroscopy (XPS) have been employed to study the interactions of phenylglycine (PheGly) with amorphous solid water (ASW) nanolayers (10-50 ML). First, the adsorption and growth of PheGly layers on an AlOx/NiAl(110) surface have been examined. After that, mixed PheGly-ASW layers have been grown on the alumina surface at 110 K. Alternatively, PheGly molecules (from submonolayer to multilayer coverages) have been deposited on top of the ASW surfaces. In mixed PheGly-ASW nanolayers the PheGly phase displays hydrophobic behavior and accumulates near the surfaces of the films, while top-deposited PheGly wets the ASW films forming closed overlayers at low coverages. H2O desorption from the PheGly-ASW films is strongly influenced by the PheGly molecules, i.e., the crystallization of ASW is partially inhibited in the vicinity of the amino acid and a lower desorption temperature of H2O molecules than from pure ASW layers was detected. Thicker PheGly overlayers on ASW provide a kinetic restriction to H2O desorption from the underlying ASW layers until the PheGly molecules become mobile and develop pathways for water desorption at higher temperatures. The results are discussed with respect to the previously obtained data for glycine-ASW layered systems. It has been demonstrated that the substitution of the hydrogen atom in glycine with a phenyl group does not lead to detectable changes in the pathways of ASW desorption. However, desorption of PheGly differs from the desorption of glycine from the similarly structured glycine-ASW nanolayers. The differences are interpreted in terms of adsorbate-adsorbate and adsorbate-substrate interactions.

  7. Monte Carlo simulations of temperature-programmed and isothermal desorption from single-crystal surfaces

    SciTech Connect

    Lombardo, S.J. . Dept. of Chemical Engineering Lawrence Berkeley Lab., CA )

    1990-08-01

    The kinetics of temperature-programmed and isothermal desorption have been simulated with a Monte Carlo model. Included in the model are the elementary steps of adsorption, surface diffusion, and desorption. Interactions between adsorbates and the metal as well as interactions between the adsorbates are taken into account with the Bond-Order-Conservation-Morse-Potential method. The shape, number, and location of the TPD peaks predicted by the simulations is shown to be sensitive to the binding energy, coverage, and coordination of the adsorbates. In addition, the occurrence of lateral interactions between adsorbates is seen to strongly effect the distribution of adsorbates is seen to strongly effect the distribution of adsorbates on the surface. Temperature-programmed desorption spectra of a single type of adsorbate have been simulated for the following adsorbate-metal systems: CO on Pd(100); H{sub 2} on Mo(100); and H{sub 2} on Ni(111). The model predictions are in good agreement with experimental observation. TPD spectra have also been simulated for two species coadsorbed on a surface; the model predictions are in qualitative agreement with the experimental results for H{sub 2} coadsorbed with strongly bound atomic species on Mo(100) and Fe(100) surfaces as well as for CO and H{sub 2} coadsorbed on Ni(100) and Rh(100) surfaces. Finally, the desorption kinetics of CO from Pd(100) and Ni(100) in the presence of gas-phase CO have been examined. The effect of pressure is seen to lead to an increase in the rate of desorption relative to the rate observed in the absence of gas-phase CO. This increase arises as a consequence of higher coverages and therefore stronger lateral interactions between the adsorbed CO molecules.

  8. TEMPERATURE-PROGRAMMED DESORPTION: PRINCIPLES, INSTRUMENT DESIGN, AND DEMONSTRATION WITH NAALH4

    SciTech Connect

    Stowe, A; Ragaiy Zidan, R

    2006-11-07

    This article is a brief introduction to temperature-programmed desorption (TPD), an analytical technique devised to analyze, in this case, materials for their potential as hydrogen storage materials. The principles and requirements of TPD are explained and the different components of a generic TPD apparatus are described. The construction of a modified TPD instrument from commercially available components is reported together with the control and acquisition technique used to create a TPD spectrum. The chemical and instrumental parameters to be considered in a typical TPD experiment and the analytical utility of the technique are demonstrated by the dehydrogenation of titanium-doped NaAlH{sub 4} by means of thermally programmed desorption.

  9. Temperature-programmed desorption studies of the interactions of OD and CO with Pt(111)

    NASA Astrophysics Data System (ADS)

    Weibel, Michael A.; Backstrand, Kyle M.; Curtiss, Thomas J.

    2000-01-01

    Temperature-programmed desorption (TPD) measurements were made to probe the interactions of hydroxyl radicals (OD) with Pt(111). A pure, intense molecular beam of OD was prepared by filtering the effluent from a supersonic corona discharge D2O/He source through an electrostatic hexapole. The hexapole selectively transmitted only OD radicals in the |J?M>=|{3}/{2} {3}/{2} {3}/{2}> rotational state and eliminated any D2O, oxygen or hydrogen atoms, or other contaminants from the beam. Experiments were carried out by dosing the surface with OD at a surface temperature of TS=275 K. Oxide states formed were characterized by desorption temperatures of TS=700, 735, and 790 K. The 735 K feature is believed to correspond to a near-surface oxide (PtOx) as seen previously in O3/Pt(111) studies. CO titration experiments revealed three CO2 desorption features: dominant features at TS=340 K and TS=440 K, the latter being perhaps due to oxidation via the PtOx. Another set of experiments were carried out by dosing OD at a surface temperature of TS=150 K. Major D2O desorption features were observed at TS=210 K corresponding to the decomposition of an OD-intermediate layer and at TS=170 K corresponding to molecular water desorption. The O2 TPD spectra showed the same three features observed at the higher dosing temperature, however, in substantially different ratios. CO oxidation experiments also revealed new behavior. Five CO2 desorption features were detected: the dominant features near TS?300 K and at TS?440 K, a smaller feature at TS=650 K, and two minor features at TS?185 and 230 K. Others have seen the latter two features previously in O2/CO Pt(111) studies.

  10. CO adsorption on Ce-Pt(111) studied with LEED, XPS, and temperature programmed desorption

    SciTech Connect

    Vermang, B.; Juel, M.; Raaen, S.

    2006-01-15

    CO adsorption on Ce-Pt(111) has been studied by temperature programmed desorption (TPD), low energy electron diffraction (LEED) and x-ray photoelectron spectroscopy (XPS). Thin layers (1 to 3 ML) of Ce on Pt(111) form upon annealing to 1000 K a surface alloy which most likely is Pt terminated. The CO overlayer structure on Ce-Pt(111) at saturation coverage is argued to be an intermediate between (2x2) and c(4x2) superstructures. This intermediate structure exhibits a c(4x2) LEED pattern in which some of the spots appear together as ordered triangles. The thermal desorption spectra for the Ce-Pt(111) surface alloy are shifted down by a temperature of about 120 K compared to the CO desorption of pure Pt(111), most likely due to a change in the d-band due to hybridization between Ce and Pt states, which results in a weakening of the resonant interaction between CO 5{sigma} and Pt 5d states.

  11. Temperature programmed desorption characterization of oxidized uranium surfaces: Relation to some gas-uranium reactions

    SciTech Connect

    Danon, A.; Koresh, J.E.; Mintz, M.H.

    1999-08-31

    The chemisorption characteristics and surface composition of oxidation overlayers developing on metals when exposed to oxidizing atmospheres are important in determining the protective ability of these layers against certain gas-phase reactions (e.g., corrosion and hydriding). In the present study, a special setup of supersonic molecular beam-temperature-programmed desorption was utilized to determine the different chemisorbed species present on oxidized uranium surfaces. The main identified species included water (in different binding forms) and hydrogen. The latter hydrogen originates from the water-uranium oxidation reaction, which produces uranium dioxide and two types of hydrogen: a near surface hydride and a surface-chemisorbed form that desorbs at a lower temperature than that of the hydride. Assignments of the different water desorption peaks to different binding sites were proposed. In general, four water desorption features were identified (labeled W{sub 0}, W{sub 1}, W{sub 2}, and W{sub 3}, respectively, in the order of increasing desorption temperatures). These features correspond to a reversibly chemisorbed molecular form (W{sub 0}), a more tightly bound water (chemisorbed on different type of oxide sites) or hydroxyl clusters (W{sub 1}), and strongly bounded (possibly isolated) hydroxyl groups (W{sub 2}). The highest temperature peak (W{sub 3}) is related to the formation of complex water-carbo-oxy compounds and is present only on oxidation overlayers, which contain proper chemisorbed carbo-oxy species. The relation of the water and hydrogen thermal release behavior to some problems addressed to certain effects observed in hydrogen-uranium and water-uranium reactions is discussed. For the latter, a microscopic mechanism is proposed.

  12. Qualitative and quantitative analysis of complex temperature-programmed desorption data by multivariate curve resolution

    NASA Astrophysics Data System (ADS)

    Rodrguez-Reyes, Juan Carlos F.; Teplyakov, Andrew V.; Brown, Steven D.

    2010-10-01

    The substantial amount of information carried in temperature-programmed desorption (TPD) experiments is often difficult to mine due to the occurrence of competing reaction pathways that produce compounds with similar mass spectrometric features. Multivariate curve resolution (MCR) is introduced as a tool capable of overcoming this problem by mathematically detecting spectral variations and correlations between several m/z traces, which is later translated into the extraction of the cracking pattern and the desorption profile for each desorbate. Different from the elegant (though complex) methods currently available to analyze TPD data, MCR analysis is applicable even when no information regarding the specific surface reaction/desorption process or the nature of the desorbing species is available. However, when available, any information can be used as constraints that guide the outcome, increasing the accuracy of the resolution. This approach is especially valuable when the compounds desorbing are different from what would be expected based on a chemical intuition, when the cracking pattern of the model test compound is difficult or impossible to obtain (because it could be unstable or very rare), and when knowing major components desorbing from the surface could in more traditional methods actually bias the quantification of minor components. The enhanced level of understanding of thermal processes achieved through MCR analysis is demonstrated by analyzing three phenomena: i) the cryogenic desorption of vinyltrimethylsilane from silicon, an introductory system where the known multilayer and monolayer components are resolved; ii) acrolein hydrogenation on a bimetallic Pt-Ni-Pt catalyst, where a rapid identification of hydrogenated products as well as other desorbing species is achieved, and iii) the thermal reaction of Ti[N(CH 3) 2] 4 on Si(100), where the products of surface decomposition are identified and an estimation of the surface composition after the thermal reaction is afforded. Since this work constitutes, to the best of our knowledge, the first effort to introduce multivariate analysis to TPD data, the procedures, algorithms and strategies employed are described in full detail.

  13. H(2)O Outgassing Properties of Fumed and Precipitated Silica Particles by Temperature-Programmed Desorption.

    PubMed

    Dinh; Balooch; LeMay

    2000-10-15

    Temperature-programmed desorption was performed at temperatures up to 850 K on as-received fumed and precipitated silica particles. Physisorbed water molecules on both types of silica had activation energies in the range of 38-61 kJ/mol. However, the activation energies of desorption for chemisorbed water varied from approximately 80 to >247 kJ/mol for fumed silica, Cab-O-Sil-M-7D, and approximately 96 to 155 kJ/mol for precipitated silica, Hi-Sil-233. Our results suggest that physisorbed water can be effectively pumped away at room temperature (or preferably at 320 K) in a matter of hours. Chemisorbed water with high activation energies of desorption (>126 kJ/mol) will not escape silica surfaces in 100 years even at 320 K, while a significant amount of the chemisorbed water with medium activation energies (80-109 kJ/mol) will leave the silica surfaces in that time span. Most of the chemisorbed water with activation energies <126 kJ/mol can be pumped away in a matter of days in a good vacuum environment at 500 K. We had previously measured about 0.1-0.4 wt% of water in silica-reinforced polysiloxane formulations containing approximately 21% Cab-O-Sil-M-7D and approximately 4% Hi-Sil-233. Comparing present results with these formulations, we conclude that the adsorbed H(2)O and the Si-OH bonds on the silica surfaces are the major contributors to water outgassing from these types of silica-filled polymers. Copyright 2000 Academic Press. PMID:11017751

  14. Mechanistic understanding of CoO-catalyzed hydrogen desorption from a LiBH4NH3-3LiH system.

    PubMed

    Zhang, Yi; Liu, Yongfeng; Zhang, Xin; Li, You; Gao, Mingxia; Pan, Hongge

    2015-08-28

    Addition of a minor quantity of CoO significantly reduces the dehydrogenation temperature, accelerates the dehydrogenation rate and increases the hydrogen purity of the LiBH4NH3-3LiH system. The LiBH4NH3-3LiH-0.1CoO sample exhibits optimal dehydrogenation properties because it releases 8.5 wt% of hydrogen below 250 C, which is approximately 90 C lower than that of the pristine sample. At 200 C, approximately 8.0 wt% of hydrogen is released from the LiBH4NH3-3LiH-0.1CoO sample within 100 min, whereas only 4.1 wt% is released from the pristine sample under identical conditions. The EXAFS analyses reveal that upon heating, CoO is first reduced to metallic Co at 130 C and then partially combines with B to form a Co-B species. The in situ formed Co and Co-B are finely dispersed in the dehydrogenated intermediates, and they play critical roles as active catalysts in favour of breaking the B-H bonds of the Li-B-N-H species. This effectively decreases the thermodynamic and kinetic barriers of the dehydrogenation reaction of the LiBH4NH3-3LiH system. PMID:26207564

  15. Interactions of N-alcohols with self-assembled monolayer surfaces on nickel(111) studied by temperature-programmed desorption

    NASA Astrophysics Data System (ADS)

    Vogt, Andrew Dale

    1999-12-01

    The interactions of molecules with self-assembled monolayer (SAM) surfaces formed on nickel (111) as studied by temperature-programmed desorption (TPD) are discussed. First, the adsorption of 11-mercaptoundecanoic acid (HS(CH 2)10COOH), 11-mercaptoundecanol (HS(CH2) 11OH) and octadecyl mercaptan (HS(CH2)17CH 3) was characterized by X-ray photoelectron spectroscopy (XPS) and angle-dependent XPS (ADXPS). These long-chain functionalized n-alkanethiols adsorbed onto a clean nickel (111) single crystal via their sulfur atom and the alkyl chain and the carboxyl-, hydroxyl- and methyl-terminal groups were disposed away from the nickel surface. The basic concepts of XPS, AMPS and TPD are discussed. Second, TPD showed that the interactions of low-molecular-weight straight-chain alcohols (n- CxH2x+1 OH for x = 1 through 6) with the carboxyl-, hydroxyl- and methyl-terminated SAM surfaces exhibited an alcohol-coverage-dependent effect on the alcohol's desorption energy based on their respective sets of TPD spectra at different alcohol coverages and based on the desorption spectra's subsequent analysis for desorption energy. The threshold TPD method (TTPD) was used to determine the desorption energy as a function of coverage for all alcohol-substrate pairs. For these adsorbate-substrate systems the desorption energies (TTPD) were the lowest (10--25 kJ mol-1) for the lowest relative alcohol coverages and increased to a desorption energy of 40--60 kJ mol-1 that was invariant with relative coverage after reaching a monolayer. The constant desorption energy (TTPD) at high relative coverages suggests there might be a completely formed hydrogen bonding network between adsorbates on the surfaces at alcohol coverages near a monolayer. The Redhead method, the "complete analysis" and the TTPD method are discussed and compared.

  16. Dissociation energy for O2 release from gas-phase iron oxide clusters measured by temperature-programmed desorption experiments

    NASA Astrophysics Data System (ADS)

    Koyama, Kohei; Kudoh, Satoshi; Miyajima, Ken; Mafun, Fumitaka

    2015-04-01

    Thermal dissociation of gas phase iron oxide cluster ions, FenOm+ (n = 2-6), was observed by mass spectrometry. The dissociation processes were investigated by temperature-programmed desorption (TPD) measurements for different sized clusters. Oxygen molecules were found to be released from the cluster ions. The threshold energy required for dissociation, determined by analyzing TPD, was compared with the energies obtained by experiments of collision-induced dissociation and by calculations of density functional theory. The agreement of the energies indicates that the oxygen atoms bonded to the terminal site of clusters are more readily released into the gas phase than those in the bridge site.

  17. New method for the temperature-programmed desorption (TPD) of ammonia experiment for characterization of zeolite acidity: a review.

    PubMed

    Niwa, Miki; Katada, Naonobu

    2013-10-01

    In this review, a method for the temperature-programmed desorption (TPD) of ammonia experiment for the characterization of zeolite acidity and its improvement by simultaneous IR measurement and DFT calculation are described. First, various methods of ammonia TPD are explained, since the measurements have been conducted under the concepts of kinetics, equilibrium, or diffusion control. It is however emphasized that the ubiquitous TPD experiment is governed by the equilibrium between ammonia molecules in the gas phase and on the surface. Therefore, a method to measure quantitatively the strength of the acid site (?H upon ammonia desorption) under equilibrium-controlled conditions is elucidated. Then, a quantitative relationship between ?H and H0 function is proposed, based on which the acid strength ?H can be converted into the H0 function. The identification of the desorption peaks and the quantitative measurement of the number of acid sites are then explained. In order to overcome a serious disadvantage of the method (i.e., no information is provided about the structure of acid sites), the simultaneous measurement of IR spectroscopy with ammonia TPD, named IRMS-TPD (infrared spectroscopy/mass spectrometry-temperature-programmed desorption), is proposed. Based on this improved measurement, Brnsted and Lewis acid sites were differentiated and the distribution of Brnsted OH was revealed. The acidity characterized by IRMS-TPD was further supported by the theoretical DFT calculation. Thus, the advanced study of zeolite acidity at the molecular level was made possible. Advantages and disadvantages of the ammonia TPD experiment are discussed, and understanding of the catalytic cracking activity based on the derived acidic profile is explained. PMID:23868494

  18. Temperature programed desorption of C{sub 2}H{sub 4} from pure and graphite-covered Pt(111)

    SciTech Connect

    Vermang, B.; Juel, M.; Raaen, S.

    2007-11-15

    Ethylene adsorption on Pt(111) at 95 K was studied by temperature programed desorption (TPD), low energy electron diffraction (LEED), and x-ray photoelectron spectroscopy. Ethylene desorbs reversibly at 112 K and irreversibly at 255 and 280 K. It is generally accepted that annealing of ethylene adsorbed on Pt(111) to 300 K results in a dehydrogenation to ethylidyne through an ethylidene intermediate. This was observed by a hydrogen desorption peak at 300 K. Also, hydrogenation of the adsorbed ethylene was observed by a small ethane desorption peak at 300 K. Upon heating to 700 K, the ethylidyne species will further dehydrogenate to carbidic carbon species with hydrogen desorption peaks at 460 and 640 K. If the carbidic species is heated to higher temperatures (up to 1000 K), it will further dehydrogenate and form graphitic islands which will accumulate by Ostwald ripening in larger islands at the step edges of the surface. After annealing the sample to 1000 K, a statistically distributed 8x8 superstructure of these graphite islands is achieved, as interpreted from A pattern in the LEED data. The TPD results indicate that ethylene adsorption on Pt(111) results in the formation of graphitic islands upon heating to 1000 K, contrary to previous conjectures of formation of a full graphite monolayer.

  19. Improving of understanding of beta-hexachlorocyclohexane (HCH) adsorption on activated carbons by temperature-programmed desorption studies.

    PubMed

    Pass-Coutrin, Nady; Maisonneuve, Laetitia; Durimel, Axelle; Dentzer, Joseph; Gadiou, Roger; Gaspard, Sarra

    2016-01-01

    In order to understand the interactions between beta-hexachlorocyclohexane (HCH) and chemical groups at activated carbon (AC) surface, the solid samples were hydrogenated aiming to decrease the amounts of oxygenated groups. Two AC samples designated by BagH2O and BagP1.5 were prepared by water vapor activation and phosphoric acid activation, respectively, of sugarcane bagasse used as an AC precursor. A more simple molecule 1,2,3-trichloropropane (TCP) is used as a model of chlorinated compound. The AC were characterized by infrared, X-ray photoelectron spectroscopy (XPS), Raman resonance spectroscopies, as well as temperature-programmed desorption coupled with mass spectrometry (TPD-MS). BagP1.5 and BagH2O AC surface contained oxygenated groups. Upon hydrogenation, a decrease of most of these group amxounts was observed for both samples, while hydroxyl groups increased. On the basis of temperature-programmed desorption data obtained for AC samples contaminated with TCP or HCH, it was possible to determine the type of hydrogen bond formed between each AC and HCH. PMID:26018287

  20. Processes for desorption from LiAlO sub 2 treated with H sub 2 as studied by temperature programmed desorption

    SciTech Connect

    Fischer, A.K.

    1990-01-01

    The energetics and kinetics of the evolution of H{sub 2}O and H{sub 2} from LiAlO{sub 2} are being studied by the temperature programmed desorption technique. The concentrations of H{sub 2}, H{sub 2}O, N{sub 2}, and O{sub 2} in a helium stream during a temperature ramp are measured simultaneously with a mass spectrometer. Blank experiments with an empty sample tube showed that square wave spikes of H{sub 2} introduced into the helium gas stream were severely distorted by reaction with the tube walls. The tube could be stabilized, however, by sufficiently prolonged heat treatment with H{sub 2} so that H{sub 2} peaks would not be distorted up to approximately 923 K(650{degree}C). The amount of H{sub 2}adsorption/desorption is small compared to the amount of H{sub 2}O adsorption/desorption. After prolonged treatment with helium containing 990 ppm H{sub 2} at 400{degree}C, H{sub 2}O evolution into the He-H{sub 2} stream was observed during 473 to 1023 K (200 to 750{degree}C) ramps at rates of 2 or 5.6 K/min. The different peak shapes reflecting this process were deconvoluted to show that they are composites of only 2 or 3 reproducible processes. The activation energies and pre-exponential terms was evaluated. The different behavior originates in the differences among different surface sites for adsorption. The interpretation of higher temperature peaks (above 873 K (650{degree}C)) must still consider the possibility of contributions from interactions with steel walls. It was found that H{sub 2} enhances evolution of N{sub 2} from the steel. 1 tab., 6 figs., 11 refs.

  1. The effect of oxygen vacancies on the binding interactions of NH3 with rutile TiO2(110) -11

    SciTech Connect

    Kim, Boseong; Li, Zhenjun; Kay, Bruce D.; Dohnalek, Zdenek; Kim, Yu Kwon

    2012-11-21

    A series of NH3 temperature-programmed desorption (TPD) spectra was taken after the NH3 dose at 70 K on rutile TiO2(110)-11 surfaces with the oxygen vacancy (VO) concentrations of ~0% (p-TiO2) and 5% (r-TiO2), respectively, to study the effect of VOs on the desorption energy of NH3 as a function of the coverage, ?. Our results show that at zero coverage limit, the desorption energy of NH3 on r-TiO2 is 115 kJ/mol, which is 10 kJ/mol less than that on p-TiO2. The desorption energy from the Ti4+ sites decreases with increasing ? due to the repulsive NH3 - NH3 interactions and approaches ~ 55 kJ/mol upon the saturation of Ti4+ sites (? = 1 monolayer, ML) on both p- and r-TiO2. The absolute saturation coverage is determined to be about 10% smaller on r-TiO2 than that on p-TiO2. Further, the trailing edges of the NH3 TPD spectra on the hydroxylated TiO2(110) (h-TiO2) appear to be the same as that on r-TiO2 while those on oxidized TiO2(110) (o-TiO2) shift to higher temperatures. We present the detailed analysis of the results and reconcile the observed differences based on the repulsive adsorbate-adsorbate interactions between neighboring NH3 molecules and the surface charge associated with the presence of VOs. Besides NH3, no other reaction products are observed in the TPD spectra.

  2. A technique for extending the precision and the range of temperature programmed desorption toward extremely low coverages

    NASA Astrophysics Data System (ADS)

    Haegel, Stefan; Zecho, Thomas; Wehner, Stefan

    2010-03-01

    In this paper, an improvement of the temperature programmed desorption (TPD) technique is introduced, which facilitates fully automated sampling of TPD spectra with excellent reproducibility, especially useful for extremely low coverages. By averaging many sampled TPD spectra, the range of the TPD technique can be extended toward lower coverages, as well as the quality of the spectra can be improved. This allows for easy extraction of information about the adsorbate-surface bond. A state of the art TPD apparatus with a two chamber setup and a high quality quadrupole mass spectrometer was extended by automated components. These are an automated gas dosing system, ensuring precise dosing of gas, combined with a motor driven sample manipulation unit and a liquid nitrogen cryostat with automatic refilling. In addition all components were controlled by a computer. A large number of TPD cycles could be sampled without the need of interaction of an operator. Here, it is shown for up to more than 400 TPD cycles. This opens a wide range of new interesting applications for the TPD technique, especially in the limit of zero coverage. Here, basic experiments on well known adsorbate systems are shown to view the ability and limit of this approach.

  3. Temperature-programmed desorption study of the selective oxidation of alcohols on silica-supported vanadium oxide.

    PubMed

    Feng, T; Vohs, J M

    2005-02-17

    The partial oxidation of methanol and ethanol on silica-supported vanadium oxide catalysts was studied using temperature-programmed desorption (TPD), Raman spectroscopy, and diffuse reflectance infrared spectroscopy (DRIFTS). Methanol TPD results for V2O5/SiO2 samples as a function of vanadia loading in conjunction with X-ray diffraction data and Raman spectra indicated that dispersed vanadia on silica agglomerates into vanadia crystallites during a CH3OH TPD experiment. For ethanol-dosed samples, agglomeration of the dispersed vanadia was less severe, and it was possible to measure the activation energy for the dehydrogenation of adsorbed ethoxides to produce CH3CHO. Assuming a preexponential factor of 10(13) s(-1), the activation energy for this reaction was estimated to be 132 kJ/mol. The results of this study further demonstrate that there is a relatively weak interaction between vanadia and silica and suggest that adsorbed methoxide species help facilitate agglomeration of dispersed vanadia. PMID:16851203

  4. UV-Raman spectroscopy, X-ray photoelectron spectroscopy, and temperature programmed desorption studies of model and bulk heterogeneous catalysts

    SciTech Connect

    Tewell, Craig R.

    2002-08-19

    X-ray photoelectron spectroscopy (XPS) and Temperature Programmed Desorption (TPD) have been used to investigate the surface structure of model heterogeneous catalysts in ultra-high vacuum (UHV). UV-Raman spectroscopy has been used to probe the structure of bulk model catalysts in ambient and reaction conditions. The structural information obtained through UV-Raman spectroscopy has been correlated with both the UHV surface analysis and reaction results. The present day propylene and ethylene polymerization catalysts (Ziegler-Natta catalysts) are prepared by deposition of TiCl{sub 4} and a Al(Et){sub 3} co-catalyst on a microporous Mg-ethoxide support that is prepared from MgCl{sub 2} and ethanol. A model thin film catalyst is prepared by depositing metallic Mg on a Au foil in a UHV chamber in a background of TiCl{sub 4} in the gas phase. XPS results indicate that the Mg is completely oxidized to MgCl{sub 2} by TiCl{sub 4} resulting in a thin film of MgCl{sub 2}/TiCl{sub x}, where x = 2, 3, and 4. To prepare an active catalyst, the thin film of MgCl{sub 2}/TiCl{sub x} on Au foil is enclosed in a high pressure cell contained within the UHV chamber and exposed to {approx}1 Torr of Al(Et){sub 3}.

  5. Dosimeter-Type NOx Sensing Properties of KMnO4 and Its Electrical Conductivity during Temperature Programmed Desorption

    PubMed Central

    Groβ, Andrea; Kremling, Michael; Marr, Isabella; Kubinski, David J.; Visser, Jacobus H.; Tuller, Harry L.; Moos, Ralf

    2013-01-01

    An impedimetric NOx dosimeter based on the NOx sorption material KMnO4 is proposed. In addition to its application as a low level NOx dosimeter, KMnO4 shows potential as a precious metal free lean NOx trap material (LNT) for NOx storage catalysts (NSC) enabling electrical in-situ diagnostics. With this dosimeter, low levels of NO and NO2 exposure can be detected electrically as instantaneous values at 380 °C by progressive NOx accumulation in the KMnO4 based sensitive layer. The linear NOx sensing characteristics are recovered periodically by heating to 650 °C or switching to rich atmospheres. Further insight into the NOx sorption-dependent conductivity of the KMnO4-based material is obtained by the novel eTPD method that combines electrical characterization with classical temperature programmed desorption (TPD). The NOx loading amount increases proportionally to the NOx exposure time at sorption temperature. The cumulated NOx exposure, as well as the corresponding NOx loading state, can be detected linearly by electrical means in two modes: (1) time-continuously during the sorption interval including NOx concentration information from the signal derivative or (2) during the short-term thermal NOx release. PMID:23549366

  6. Optimizing the crystallinity and acidity of H-SAPO-34 by fluoride for synthesizing Cu/SAPO-34 NH3-SCR catalyst.

    PubMed

    Ma, Jing; Si, Zhichun; Wu, Xiaodong; Weng, Duan; Ma, Yue

    2016-03-01

    A series of H-SAPO-34 zeolites were synthesized by a hydrothermal method in fluoride media. The as-synthesized H-SAPO-34 zeolites were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), N2 physisorption, temperature-programmed desorption of NH3 (NH3-TPD) and nuclear magnetic resonance (NMR) measurements. The results showed that a certain concentration of F(-) anions promoted the nucleation and crystallization of H-SAPO-34. The H-SAPO-34 synthesized in the fluoride media showed high crystallinity, uniform particle size distribution, large specific surface area and pore volume, and enhanced acidity. Therefore, Cu/SAPO-34 based on the fluoride-assisted zeolite showed a broadened temperature window for the selective catalytic reduction of NO by NH3 (NH3-SCR) reaction due to the enhanced acidity of the zeolite and the improved dispersion of copper species. PMID:26969071

  7. Adsorption and decomposition of formic acid on MgO(001) surface as investigated by temperature programmed desorption and sum-frequency generation spectroscopy: Recurrence induced defect sites

    NASA Astrophysics Data System (ADS)

    Yamamoto, Hiroyoshi; Watanabe, Nobuyuki; Wada, Akihide; Domen, Kazunari; Hirose, Chiaki

    1997-03-01

    The change of the MgO(001) surface during the adsorption and thermal desorption of formic acid was investigated by temperature programmed desorption (TPD) and infrared-visible sum-frequency generation SFG spectroscopy. The TPD results revealed that the feature of desorption signals changed as the adsorption/thermal desorption process was repeated, despite no significant change of the low energy electron diffraction (LEED) pattern. The surface formate, produced by dissociative adsorption of formic acid, decomposed at 560 K and 700 K, giving H2O+CO and H2+CO2 as primary and minor products, respectively, but the broad desorption peak of H2O started to appear at 300 K. The 560 K peak appeared from an early stage, while the 700 K peak gained intensity as the experiment was repeated and the density of defects increased. The adsorption site for the 700 K peak was ascribed to the catalytic reaction of magnesia powder. The SFG spectra gave three resonance peaks of CH stretching bands at 2850 cm-1, 2870 cm-1, and 2920 cm-1 with a different dependence on the dose time, history of surface, and polarization of incident visible beam. The former two bands were assigned to the formates with bridged configuration, and the third band to the formate with unidentate configuration. The polarization dependence suggested that the CH bonds of bridged formates stood perpendicular to the surface, and that of the unidentate formate tilted approximately 30° from the surface normal. A vibration nonresonant background signal was present on the SFG signal, showing characteristic dependence on the polarization of incident light beams, as well as the coverage and history of the surface, and was interpreted as originating from the defect sites on the surface.

  8. Thermal transformation of bioactive caffeic acid on fumed silica seen by UV-Vis spectroscopy, thermogravimetric analysis, temperature programmed desorption mass spectrometry and quantum chemical methods.

    PubMed

    Kulik, Tetiana V; Lipkovska, Natalia O; Barvinchenko, Valentyna M; Palyanytsya, Borys B; Kazakova, Olga A; Dudik, Olesia O; Menyhárd, Alfréd; László, Krisztina

    2016-05-15

    Thermochemical studies of hydroxycinnamic acid derivatives and their surface complexes are important for the pharmaceutical industry, medicine and for the development of technologies of heterogeneous biomass pyrolysis. In this study, structural and thermal transformations of caffeic acid complexes on silica surfaces were studied by UV-Vis spectroscopy, thermogravimetric analysis, temperature programmed desorption mass spectrometry (TPD MS) and quantum chemical methods. Two types of caffeic acid surface complexes are found to form through phenolic or carboxyl groups. The kinetic parameters of the chemical reactions of caffeic acid on silica surface are calculated. The mechanisms of thermal transformations of the caffeic chemisorbed surface complexes are proposed. Thermal decomposition of caffeic acid complex chemisorbed through grafted ester group proceeds via three parallel reactions, producing ketene, vinyl and acetylene derivatives of 1,2-dihydroxybenzene. Immobilization of phenolic acids on the silica surface improves greatly their thermal stability. PMID:26939077

  9. Thermal desorption of ammonia from crystalline forsterite surfaces

    NASA Astrophysics Data System (ADS)

    Suhasaria, T.; Thrower, J. D.; Zacharias, H.

    2015-12-01

    The thermal desorption of ammonia (NH3) from single crystal forsterite (010) has been investigated using temperature-programmed desorption. The effect of defects on the desorption process has been probed by the use of a rough cut forsterite surface prepared from the cleaved forsterite sample. Several approaches have been used to extract the desorption energy and pre-exponential factor describing the desorption kinetics. In the sub-monolayer coverage regime, the NH3 desorption shows a broad distribution of desorption energies, indicating the presence of different adsorption sites, which results in an apparent coverage-dependent desorption energy. This distribution is sensitive to the surface roughness with the cut forsterite surface displaying a significantly broader distribution of desorption energies compared to the cleaved forsterite surface. The cut forsterite surface exhibits sites with desorption energies up to 62.5 kJ mol-1 in comparison to a desorption energy of up to 58.0 kJ mol-1 for the cleaved surface. Multilayer desorption is independent of the nature of the forsterite surface used, with a desorption energy of (25.8 0.9) kJ mol-1. On astrophysically relevant heating time-scales, the presence of a coverage-dependent desorption energy distribution results in a lengthening of the NH3 desorption time-scale by 5.9 104 yr compared to that expected for a single desorption energy. In addition, the presence of a larger number of high-energy adsorption sites on the rougher cut forsterite surface leads to a further lengthening of ca. 7000 yr.

  10. Regeneration of field-spent activated carbon catalysts for low-temperature selective catalytic reduction of NOx with NH3

    SciTech Connect

    Jeon, Jong Ki; Kim, Hyeonjoo; Park, Young-Kwon; Peden, Charles HF; Kim, Do Heui

    2011-10-15

    In the process of producing liquid crystal displays (LCD), the emitted NOx is removed over an activated carbon catalyst by using selective catalytic reduction (SCR) with NH3 at low temperature. However, the catalyst rapidly deactivates primarily due to the deposition of boron discharged from the process onto the catalyst. Therefore, this study is aimed at developing an optimal regeneration process to remove boron from field-spent carbon catalysts. The spent carbon catalysts were regenerated by washing with a surfactant followed by drying and calcination. The physicochemical properties before and after the regeneration were investigated by using elemental analysis, TG/DTG (thermogravimetric/differential thermogravimetric) analysis, N2 adsorption-desorption and NH3 TPD (temperature programmed desorption). Spent carbon catalysts demonstrated a drastic decrease in DeNOx activity mainly due to heavy deposition of boron. Boron was accumulated to depths of about 50 {mu}m inside the granule surface of the activated carbons, as evidenced by cross-sectional SEM-EDX analysis. However, catalyst activity and surface area were significantly recovered by removing boron in the regeneration process, and the highest NOx conversions were obtained after washing with a non-ionic surfactant in H2O at 70 C, followed by treatment with N2 at 550 C.

  11. Effects of Alkali and Alkaline Earth Cocations on the Activity and Hydrothermal Stability of Cu/SSZ-13 NH3-SCR Catalysts

    SciTech Connect

    Gao, Feng; Wang, Yilin; Washton, Nancy M.; Kollar, Marton; Szanyi, Janos; Peden, Charles HF

    2015-10-13

    Using a three-step aqueous solution ion-exchange method, cocation modified Cu/SSZ-13 SCR catalysts were synthesized. These catalysts, in both fresh and hydrothermally aged forms, were characterized with several methods including temperature-programmed reduction by H2 (H2-TPR), temperature-programmed desorption of NH3 (NH3-TPD), and 27Al solid-state nuclear magnetic resonance (NMR) and diffuse reflectance Infrared Fourier Transform (DRIFT) spectroscopies. Their catalytic performance was probed using steady-state standard NH3-SCR. Characterization results indicate that cocations weaken interactions between Cu-ions and the CHA framework making them more readily reducible. By removing a portion of Brønsted acid sites, cocations also help to mitigate hydrolysis of the zeolite catalysts during hydrothermal aging as evidenced from 27Al NMR. Reaction tests show that certain cocations, especially Li+ and Na+, promote low-temperature SCR rates while others show much less pronounced effects. In terms of applications, our results indicate that introducing cocations can be a viable strategy to improve both low- and high-temperature performance of Cu/SSZ-13 SCR catalysts.

  12. Temperature-programmed decomposition desorption of mercury species over activated carbon sorbents for mercury removal from coal-derived fuel gas

    SciTech Connect

    M. Azhar Uddin; Masaki Ozaki; Eiji Sasaoka; Shengji Wu

    2009-09-15

    The mercury (Hg{sup 0}) removal process for coal-derived fuel gas in the integrated gasification combined cycle (IGCC) process will be one of the important issues for the development of a clean and highly efficient coal power generation system. Recently, iron-based sorbents, such as iron oxide (Fe{sub 2}O{sub 3}), supported iron oxides on TiO{sub 2}, and iron sulfides, were proposed as active mercury sorbents. The H{sub 2}S is one of the main impurity compounds in coal-derived fuel gas; therefore, H{sub 2}S injection is not necessary in this system. HCl is also another impurity in coal-derived fuel gas. In this study, the contribution of HCl to the mercury removal from coal-derived fuel gas by a commercial activated carbon (AC) was studied using a temperature-programmed decomposition desorption (TPDD) technique. The TPDD technique was applied to understand the decomposition characteristics of the mercury species on the sorbents. The Hg{sup 0}-removal experiments were carried out in a laboratory-scale fixed-bed reactor at 80-300{sup o}C using simulated fuel gas and a commercial AC, and the TPDD experiments were carried out in a U-tube reactor in an inert carrier gas (He or N{sub 2}) after mercury removal. The following results were obtained from this study: (1) HCl contributed to the mercury removal from the coal-derived fuel gas by the AC. (2) The mercury species captured on the AC in the HCl{sup -} and H{sub 2}S-presence system was more stable than that of the H{sub 2}S-presence system. (3) The stability of the mercury surface species formed on the AC in the H{sub 2}S-absence and HCl-presence system was similar to that of mercury chloride (HgClx) species. 25 refs., 12 figs., 1 tab.

  13. Low Temperature Catalyst for NH3 Removal

    NASA Technical Reports Server (NTRS)

    Monje, Oscar; Melendez, Orlando

    2013-01-01

    Air revitalization technologies maintain a safe atmosphere inside spacecraft by the removal of C02, ammonia (NH3), and trace contaminants. NH3 onboard the International Space Station (ISS) is produced by crew metabolism, payloads, or during an accidental release of thermal control refrigerant. Currently, the ISS relies on removing NH3 via humidity condensate and the crew wears hooded respirators during emergencies. A different approach to cabin NH3 removal is to use selective catalytic oxidation (SCO), which builds on thermal catalytic oxidation concepts that could be incorporated into the existing TCCS process equipment architecture on ISS. A low temperature platinum-based catalyst (LTP-Catalyst) developed at KSC was used for converting NH3 to H20 and N2 gas by SCO. The challenge of implementing SCO is to reduce formation of undesirable byproducts like NOx (N20 and NO). Gas mixture analysis was conducted using FTIR spectrometry in the Regenerable VOC Control System (RVCS) Testbed. The RVCS was modified by adding a 66 L semi-sealed chamber, and a custom NH3 generator. The effect of temperature on NH3 removal using the LTP-Catalyst was examined. A suitable temperature was found where NH3 removal did not produce toxic NO, (NO, N02) and N20 formation was reduced.

  14. In situ supported MnOx-CeOx on carbon nanotubes for the low-temperature selective catalytic reduction of NO with NH3

    NASA Astrophysics Data System (ADS)

    Zhang, Dengsong; Zhang, Lei; Shi, Liyi; Fang, Cheng; Li, Hongrui; Gao, Ruihua; Huang, Lei; Zhang, Jianping

    2013-01-01

    The MnOx and CeOx were in situ supported on carbon nanotubes (CNTs) by a poly(sodium 4-styrenesulfonate) assisted reflux route for the low-temperature selective catalytic reduction (SCR) of NO with NH3. X-Ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), X-ray photoelectron spectroscopy (XPS), H2 temperature-programmed reduction (H2-TPR) and NH3 temperature-programmed desorption (NH3-TPD) have been used to elucidate the structure and surface properties of the obtained catalysts. It was found that the in situ prepared catalyst exhibited the highest activity and the most extensive operating-temperature window, compared to the catalysts prepared by impregnation or mechanically mixed methods. The XRD and TEM results indicated that the manganese oxide and cerium oxide species had a good dispersion on the CNT surface. The XPS results demonstrated that the higher atomic concentration of Mn existed on the surface of CNTs and the more chemisorbed oxygen species exist. The H2-TPR results suggested that there was a strong interaction between the manganese oxide and cerium oxide on the surface of CNTs. The NH3-TPD results demonstrated that the catalysts presented a larger acid amount and stronger acid strength. In addition, the obtained catalysts exhibited much higher SO2-tolerance and improved the water-resistance as compared to that prepared by impregnation or mechanically mixed methods.The MnOx and CeOx were in situ supported on carbon nanotubes (CNTs) by a poly(sodium 4-styrenesulfonate) assisted reflux route for the low-temperature selective catalytic reduction (SCR) of NO with NH3. X-Ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), X-ray photoelectron spectroscopy (XPS), H2 temperature-programmed reduction (H2-TPR) and NH3 temperature-programmed desorption (NH3-TPD) have been used to elucidate the structure and surface properties of the obtained catalysts. It was found that the in situ prepared catalyst exhibited the highest activity and the most extensive operating-temperature window, compared to the catalysts prepared by impregnation or mechanically mixed methods. The XRD and TEM results indicated that the manganese oxide and cerium oxide species had a good dispersion on the CNT surface. The XPS results demonstrated that the higher atomic concentration of Mn existed on the surface of CNTs and the more chemisorbed oxygen species exist. The H2-TPR results suggested that there was a strong interaction between the manganese oxide and cerium oxide on the surface of CNTs. The NH3-TPD results demonstrated that the catalysts presented a larger acid amount and stronger acid strength. In addition, the obtained catalysts exhibited much higher SO2-tolerance and improved the water-resistance as compared to that prepared by impregnation or mechanically mixed methods. Electronic supplementary information (ESI) available: SEM images and EDS analysis, TEM images, and XPS spectrum of samples. See DOI: 10.1039/c2nr33006g

  15. Mn-CeOx/Ti-PILCs for selective catalytic reduction of NO with NH3 at low temperature.

    PubMed

    Shen, Boxiong; Ma, Hongqing; Yao, Yan

    2012-01-01

    Titanium-pillared clays (Ti-PILCs) were obtained by different ways from TiCl4, Ti(OC3H7)4 and TiOSO4, respectively. Mn-CeO(x)/)Ti-PILCs were then prepared and their activities of selective catalytic reduction (SCR) of NO with NH3 at low-temperature were evaluated. Mn-CeO(x)/Ti-PILCs were characterized by X-ray diffraction, N2 adsorption, Fourier transform infrared spectroscopy, thermal analysis, temperature-programmed desorption of ammonia and H2-temperature-programmed reduction. It was found that Ti-pillar tend to be helpful for the enlargement of surface area, pore volume, acidity and the enhancement of thermal stability for Mn-CeO(x)/Ti-PILCs. Mn-CeO(x)/Ti-PILCs catalysts were active for the SCR of NO. Among three resultant Mn-CeO(x)/Ti-PILCs, the catalyst from TiOSO4 showed the highest activity with 98% NO conversion at 220 degrees C, it also exhibited good resistance to H2O and SO2 in flue gas. The catalyst from TiCl4 exhibited the lowest activity due to the unsuccessful pillaring process. PMID:22655365

  16. TES/Aura L3 Ammonia (NH3) Daily (TL3NH3D)

    Atmospheric Science Data Center

    2015-08-28

    TES/Aura L3 Ammonia (NH3) Daily (TL3NH3D) News: TES News ... Level: L3 Instrument: TES/Aura L3 Ammonia Spatial Coverage: 5.3 x 8.5 km Spatial ... Data: TES Order Tool Parameters: Ammonia Order Data: Reverb: Order Data ...

  17. TES/Aura L2 Ammonia (NH3) Nadir (TL2NH3N)

    Atmospheric Science Data Center

    2015-01-30

    TES/Aura L2 Ammonia (NH3) Nadir (TL2NH3N) News: TES News ... Level: L2 Instrument: TES/Aura L2 Ammonia Spatial Coverage: 5.3 x 8.5 km nadir ... Data: TES Order Tool Parameters: Ammonia Order Data: Reverb: Order Data ...

  18. TES/Aura L2 Ammonia (NH3) Lite Nadir (TL2NH3LN)

    Atmospheric Science Data Center

    2015-08-26

    TES/Aura L2 Ammonia (NH3)Lite Nadir (TL2NH3LN) News: TES News ... Level: L2 Instrument: TES/Aura L2 Ammonia Spatial Coverage: 5.3 km nadir Spatial ... OPeNDAP Access: OPeNDAP Parameters: Ammonia Order Data: Reverb: Order Data ...

  19. TES/Aura L2 Ammonia (NH3) Nadir (TL2NH3NS)

    Atmospheric Science Data Center

    2015-01-30

    TES/Aura L2 Ammonia (NH3) Nadir (TL2NH3NS) News: TES News ... Level: L2 Platform: TES/Aura L2 Ammonia Spatial Coverage: 5.3 x 8.5 km nadir ... Data: TES Order Tool Parameters: Ammonia Order Data: Reverb: Order Data ...

  20. A study of the reactions of ethanol on CeO{sub 2} and Pd/CeO{sub 2} by steady state reactions, temperature programmed desorption, and in situ FT-IR

    SciTech Connect

    Yee, A.; Morrison, S.J.; Idriss, H.

    1999-09-10

    The reaction of ethanol on unreduced and H{sub 2}-reduced CeO{sub 2} and 1 wt% Pd/CeO{sub 2} has been investigated by steady state reactions, temperature programmed desorption (TPD), and in situ Fourier transform infrared (FT-IR) spectroscopy. Steady state reactions have shown a zero reaction order dependency for diatomic oxygen at and above 20%, while the addition of Pd to CeO{sub 2} decreases the apparent activation energy of the reaction from 75 kJ/mol on CeO{sub 2} alone to 40 kJ/mol (Pd/CeO{sub 2}). TPD experiments following ethanol adsorption on both CeO{sub 2} and Pd/CeO{sub 2} have shown desorption profiles corresponding to unreacted ethanol and various reaction and decomposition products (acetaldehyde, acetone, CO, CO{sub 2}, and methane). Ethanol conversion to reaction products was increased by the addition of Pd, from 15 to 30% on CeO{sub 2} and H{sub 2}-reduced CeO{sub 2}, to 71 and 63% on Pd/CeO{sub 2} and H{sub 2}-reduced Pd/CeO{sub 2}, respectively.

  1. The influence of the potassium promoter on the kinetics and thermodynamics of CO adsorption on a bulk iron catalyst applied in Fischer-Tropsch synthesis: a quantitative adsorption calorimetry, temperature-programmed desorption, and surface hydrogenation study.

    PubMed

    Graf, Barbara; Muhler, Martin

    2011-03-01

    The adsorption of carbon monoxide on an either unpromoted or potassium-promoted bulk iron catalyst was investigated at 303 K and 613 K by means of pulse chemisorption, adsorption calorimetry, temperature-programmed desorption and temperature-programmed surface reaction in hydrogen. CO was found to adsorb mainly molecularly in the absence of H(2) at 303 K, whereas the presence of H(2) induced CO dissociation at higher temperatures leading to the formation of CH(4) and H(2)O. The hydrogenation of atomic oxygen chemisorbed on metallic iron was found to occur faster than the hydrogenation of atomically adsorbed carbon. At 613 K CO adsorption occurred only dissociatively followed by recombinative CO(2) formation according to C(ads) + 2O(ads)→ CO(2(g)). The presence of the potassium promoter on the catalyst surface led to an increasing strength of the Fe-C bond both at 303 K and 613 K: the initial differential heat of molecular CO adsorption on the pure iron catalyst at 303 K amounted to 102 kJ mol(-1), whereas it increased to 110 kJ mol(-1) on the potassium-promoted sample, and the initial differential heat of dissociative CO adsorption on the unpromoted iron catalyst at 613 K amounted to 165 kJ mol(-1), which increased to 225 kJ mol(-1) in the presence of potassium. The calorimetric CO adsorption experiments also reveal a change of the energetic distribution of the CO adsorption sites present on the catalyst surface induced by the potassium promoter, which was found to block a fraction of the CO adsorption sites. PMID:21170422

  2. NH 3 soil and soil surface gas measurements in a triticale wheat field

    NASA Astrophysics Data System (ADS)

    Neftel, A.; Blatter, A.; Gut, A.; Högger, D.; Meixner, F.; Ammann, C.; Nathaus, F. J.

    We present a new approach for a continuous determination of NH 3 concentration in the open pore space of the soil and on the soil surface. In a semi-permeable membrane of 0.5 m length a flow of 0.5 s1pm maintained. In the tube the NH 3 concentration adjusts itself to the surrounding air concentration by diffusion through the membrane. Continuous measurements have been performed in a triticale wheat field over a period of several weeks in a field experiment at Bellheim (FRG) during June and July 1995 within the frame of the European program EXAMINE (Exchange of Atmospheric Ammonia with European Ecosystems). Soil concentrations are generally below the detection limit of 0.1 μg m -3. We conclude, that the investigated soil is generally a sink for NH 3. The NH 3 concentration on the soil surface shows a diurnal variation due to a combination of physico-chemical desorption and adsorption phenomena associated with changes in wetness of the surrounding surfaces and the NH 3 concentration in the canopy.

  3. Development of ultralow energy (110 eV) ion scattering spectrometry coupled with reflection absorption infrared spectroscopy and temperature programmed desorption for the investigation of molecular solids

    SciTech Connect

    Bag, Soumabha; Bhuin, Radha Gobinda; Methikkalam, Rabin Rajan J.; Pradeep, T.; Kephart, Luke; Walker, Jeff; Kuchta, Kevin; Martin, Dave; Wei, Jian

    2014-01-15

    Extremely surface specific information, limited to the first atomic layer of molecular surfaces, is essential to understand the chemistry and physics in upper atmospheric and interstellar environments. Ultra low energy ion scattering in the 110 eV window with mass selected ions can reveal extremely surface specific information which when coupled with reflection absorption infrared (RAIR) and temperature programmed desorption (TPD) spectroscopies, diverse chemical and physical properties of molecular species at surfaces could be derived. These experiments have to be performed at cryogenic temperatures and at ultra high vacuum conditions without the possibility of collisions of neutrals and background deposition in view of the poor ion intensities and consequent need for longer exposure times. Here we combine a highly optimized low energy ion optical system designed for such studies coupled with RAIR and TPD and its initial characterization. Despite the ultralow collision energies and long ion path lengths employed, the ion intensities at 1 eV have been significant to collect a scattered ion spectrum of 1000 counts/s for mass selected CH{sub 2}{sup +}.

  4. Condensation and vaporization studies of CH3OH and NH3 ices: Major implications for astrochemistry

    NASA Technical Reports Server (NTRS)

    Sandford, Scott A.; Allamandola, Louis J.

    1993-01-01

    In an extension of previously reported work on ices containing H2O, CO, CO2, SO2, H2S, and H2, we present measurements of the physical and infrared spectral properties of ices containing CH3OH and NH3. The condensation and sublimation behavior of these ice systems is discussed and surface binding energies are presented for all of these molecules. The surface binding energies can be used to calculate the residence times of the molecules on grain surfaces as a function of temperature. It is demonstrated that many of the molecules used to generate radio maps of and probe conditions in dense clouds, for example CO and NH3, will be significantly depleted from the gas phase by condensation onto dust grains. Attempts to derive total column densities solely from radio maps that do not take condensation effects into account may vastly underestimate the true column densities of any given species. Simple CO condensation onto and vaporization off of grains appears to be capable of explaining the observed depletion of gas phase CO in cold, dense molecular cores. This is not the case for NH3, however, where thermal considerations alone predict that all of the NH3 should be condensed onto grains. The fact that some gas phase NH3 is observed indicates that additional desorption processes must be involved. The surface binding energies of CH3OH, in conjunction with this molecule's observed behavior during warm up in H2O-rich ices, is shown to provide an explanation of the large excess of CH3OH seen in many warm, dense molecular cores. The near-infrared spectrum and associated integrated band strengths of CH3OH-containing ice are given, as are middle infrared absorption band strengths for both CH3OH and NH3.

  5. Condensation and Vaporization Studies of CH3OH and NH3 Ices: Major Implications for Astrochemistry

    NASA Technical Reports Server (NTRS)

    Sandford, Scott A.; Allamandola, Louis J.

    1993-01-01

    In an extension of previously reported work on ices containing H20, CO, CO2, SO2, H2S, and H2, We present measurements of the physical and infrared spectral properties of ices containing CH30H and NH3.The condensation and sublimation behavior of these ice systems is discussed and surface binding energies are presented for all of these molecules. The surface binding energies can be used to calculate the residence times of the molecules on grain surfaces as a function of temperature. It is demonstrated that many of the molecules used to generate radio maps of and probe conditions in dense clouds, for example CO and NH3, will be significantly depleted from the gas phase by condensation onto dust grains. Attempts to derive total column densities solely from radio maps that do not take condensation effects into account may vastly underestimate the true column densities of any given species. Simple CO condensation onto and vaporization off of grains appears to be capable of explaining the observed 87 of gas phase CO in cold, dense molecular cores. This is not the case for NH3, however, where thermal considerations alone predict that all of the NH3 should be condensed onto grains. The fact that some gas phase NH3 is observed indicates that additional desorption processes must be involved. The surface binding energies of CH3OH, in conjunction with this molecule's observed behavior during warm up in H2O-rich ices, is shown to provide an explanation of the large excess of CH3OH seen in many warm, dense molecular cores. The near-infrared spectrum and associated integrated band strengths of CH3OH-containing ice are given, as are middle infrared absorption band strengths for both CH3OH and NH3.

  6. Growth of an Ultrathin Zirconia Film on Pt3Zr Examined by High-Resolution X-ray Photoelectron Spectroscopy, Temperature-Programmed Desorption, Scanning Tunneling Microscopy, and Density Functional Theory

    PubMed Central

    2014-01-01

    Ultrathin (∼3 Å) zirconium oxide films were grown on a single-crystalline Pt3Zr(0001) substrate by oxidation in 1 × 10–7 mbar of O2 at 673 K, followed by annealing at temperatures up to 1023 K. The ZrO2 films are intended to serve as model supports for reforming catalysts and fuel cell anodes. The atomic and electronic structure and composition of the ZrO2 films were determined by synchrotron-based high-resolution X-ray photoelectron spectroscopy (HR-XPS) (including depth profiling), low-energy electron diffraction (LEED), scanning tunneling microscopy (STM), and density functional theory (DFT) calculations. Oxidation mainly leads to ultrathin trilayer (O–Zr–O) films on the alloy; only a small area fraction (10–15%) is covered by ZrO2 clusters (thickness ∼0.5–10 nm). The amount of clusters decreases with increasing annealing temperature. Temperature-programmed desorption (TPD) of CO was utilized to confirm complete coverage of the Pt3Zr substrate by ZrO2, that is, formation of a closed oxide overlayer. Experiments and DFT calculations show that the core level shifts of Zr in the trilayer ZrO2 films are between those of metallic Zr and thick (bulklike) ZrO2. Therefore, the assignment of such XPS core level shifts to substoichiometric ZrOx is not necessarily correct, because these XPS signals may equally well arise from ultrathin ZrO2 films or metal/ZrO2 interfaces. Furthermore, our results indicate that the common approach of calculating core level shifts by DFT including final-state effects should be taken with care for thicker insulating films, clusters, and bulk insulators. PMID:25688293

  7. Effects of Si/Al Ratio on Cu/SSZ-13 NH3-SCR Catalysts: Implications for the active Cu species and the Roles of Brønsted Acidity

    SciTech Connect

    Gao, Feng; Washton, Nancy M.; Wang, Yilin; Kollar, Marton; Szanyi, Janos; Peden, Charles HF

    2015-09-03

    Cu/SSZ-13 catalysts with three Si/Al ratios of 6, 12 and 35 were synthesized with Cu incorporation via solution ion exchange. The implications of varying Si/Al ratios on the nature of the multiple Cu species that can be present in the SSZ-13 zeolite are a major focus of this work, as highlighted by the results of a variety of catalyst characterization and reaction kinetics measurements. Specifically, catalysts were characterized with surface area/pore volume measurements, temperature programmed reduction by H2 (H2-TPR), NH3 temperature programmed desorption (NH3-TPD), and DRIFTS and solid-state nuclear magnetic resonance (NMR) spectroscopies. Catalytic properties were examined using NO oxidation, ammonia oxidation, and standard ammonia selective catalytic reduction (NH3-SCR) reactions on selected catalysts under differential conditions. Besides indicating possible variably active multiple Cu species for these reactions, the measurements are also used to untangle some of the complexities caused by the interplay between redox of Cu ion centers and Brønsted acidity. All three reactions appear to follow a redox reaction mechanism, yet the roles of Brønsted acidity are quite different. For NO oxidation, increasing Si/Al ratio lowers Cu redox barriers, thus enhancing reaction rates. Brønsted acidity appears to play essentially no role for this reaction. For standard NH3-SCR, residual Brønsted acidity plays a significant beneficial role at both low- and high-temperature regimes. For NH3 oxidation, no clear trend is observed suggesting both Cu ion center redox and Brønsted acidity play important and perhaps competing roles. The authors gratefully acknowledge the US Department of Energy (DOE), Energy Efficiency and Renewable Energy, Vehicle Technologies Office for the support of this work. The research described in this paper was performed in the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE’s Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the US DOE by Battelle.

  8. NH3 Production In Comet C/2002 T7 LINEAR

    NASA Astrophysics Data System (ADS)

    Magee-Sauer, Karen P.; Feuss, J. W.; Dello Russo, N.; DiSanti, M. A.; Bonev, B. P.; Gibb, E. L.; Villanueva, G. L.; Anderson, W. M.; Mumma, M. J.

    2006-09-01

    We observed Comet C/2002 T7 LINEAR (C/T7) from 3-9 May 2004 using CSHELL at the NASA/IRTF. High-resolution spectra of parent volatiles were acquired, emphasizing the oxygen, hydrocarbon, and nitrile chemistry. A major goal was to detect and measure the relative abundance of NH3. At infrared wavelengths, NH3 is difficult to detect since it requires a significant geocentric velocity to shift the strongest NH3 emissions out of the terrestrial atmospheric water absorption. The high Doppler shift (- 65 km/s) of C/T7 during early May made it an excellent target for searching NH3. Several lines of the Q-branch and R-branch of the ?1 band were detected. NH3 is the dominant (observable) nitrogen-containing volatile in comets, present at 1% relative to water. Previously at infrared wavelengths, a single line of the ?1 band near 3-?m was detected in comet C/1995 O1 Hale-Bopp, and a more secure infrared detection was achieved in 153P/Ikeya-Zhang. Our 153P NH3 spectra showed that the NH3 molecule was not rotationally relaxed as previously thought and that a different model was needed to predict line g-factors. Our goal for observing NH3 in C/T7 was to observe a range of rotational levels and transitions to test a newer rotationally equilibrated model for NH3. This paper presents results of that test based on spectra obtained for C/T7. We present production rates and relative abundances to water for C/T7 and we apply this model to our other NH3 detections from past comets. We also compare our results with NH3 production rates reported from radio observations by other groups. We gratefully acknowledge support from the NSF RUI Program to KM-S and the NASA PAST to MJM, MAD, and NDR.

  9. A Comparative Study of N2O Formation during the Selective Catalytic Reduction of NOx with NH3 on Zeolite Supported Cu Catalysts

    SciTech Connect

    Chen, Hai-Ying; Wei, Zhehao; Kollar, Marton; Gao, Feng; Wang, Yilin; Szanyi, Janos; Peden, Charles HF

    2015-09-01

    A comparative study was carried out on a small-pore CHA.Cu and a large-pore BEA.Cu zeolite catalyst to understand the lower N2O formation on small-pore zeolite supported Cu catalysts in the selective catalytic reduction (SCR) of NOx with NH3. On both catalysts, the N2O yield increases with an increase in the NO2/NOx ratios of the feed gas, suggesting N2O formation via the decomposition of NH4NO3. Temperature-programmed desorption experiments reveal that NH4NO3 is more stable on CHA.Cu than on BEA.Cu. In situ FTIR spectra following stepwise (NO2 + O2) and (15NO + NH3 + O2) adsorption and reaction, and product distribution analysis using isotope-labelled reactants, unambiguously prove that surface nitrate groups are essential for the formation of NH4NO3. Furthermore, CHA.Cu is shown to be considerably less active than BEA.Cu in catalyzing NO oxidation and the subsequent formation of surface nitrate groups. Both factors, i.e., (1) the higher thermal stability of NH4NO3 on CHA.Cu, and (2) the lower activity for this catalyst to catalyze NO oxidation and the subsequent formation of surface nitrates, likely contribute to the higher SCR selectivity with less N2O formation on this catalyst as compared to BEA.Cu. The latter is determined as the primary reason since surface nitrates are the source that leads to the formation of NH4NO3 on the catalysts.

  10. Herschel/HIFI deepens the circumstellar NH3 enigma

    NASA Astrophysics Data System (ADS)

    Menten, K. M.; Wyrowski, F.; Alcolea, J.; De Beck, E.; Decin, L.; Marston, A. P.; Bujarrabal, V.; Cernicharo, J.; Dominik, C.; Justtanont, K.; de Koter, A.; Melnick, G.; Neufeld, D. A.; Olofsson, H.; Planesas, P.; Schmidt, M.; Schier, F. L.; Szczerba, R.; Teyssier, D.; Waters, L. B. F. M.; Edwards, K.; Olberg, M.; Phillips, T. G.; Morris, P.; Salez, M.; Caux, E.

    2010-10-01

    Context. Circumstellar envelopes (CSEs) of a variety of evolved stars have been found to contain ammonia (NH3) in amounts that exceed predictions from conventional chemical models by many orders of magnitude. Aims: The observations reported here were performed in order to better constrain the NH3 abundance in the CSEs of four, quite diverse, oxygen-rich stars using the NH3 ortho JK = 10-00 ground-state line. Methods: We used the Heterodyne Instrument for the Far Infrared aboard Herschel to observe the NH3 JK = 10-00 transition near 572.5 GHz, simultaneously with the ortho-H2O JKa , Kc = 11,0 - 10,1 transition, toward VY CMa, OH 26.5+0.6, IRC+10420, and IK Tau. We conducted non-LTE radiative transfer modeling with the goal to derive the NH3 abundance in these objects' CSEs. For the last two stars, Very Large Array imaging of NH3 radio-wavelength inversion lines were used to provide further constraints, particularly on the spatial extent of the NH3-emitting regions. Results: We find remarkably strong NH3 emission in all of our objects with the NH3 line intensities rivaling those of the ground state H2O line. The NH3 abundances relative to H2 are very high and range from 210-7 to 310-6 for the objects we have studied. Conclusions: Our observations confirm and even deepen the circumstellar NH3 enigma. While our radiative transfer modeling does not yield satisfactory fits to the observed line profiles, it does lead to abundance estimates that confirm the very high values found in earlier studies. New ways to tackle this mystery will include further Herschel observations of more NH3 lines and imaging with the Expanded Very Large Array. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.Appendix A (page 5) is only available in electronic form at http://www.aanda.org

  11. Influence of NH3 adsorption on electron transfer in polyaniline thin films

    NASA Astrophysics Data System (ADS)

    Shirshov, Yuri M.; Kukla, A. L.; Pochekaylova, L. P.; Chegel, Vladimir I.; Merker, R.

    1996-04-01

    Electroconducting polymer films of polyaniline (PANI) are a promising material for molecular electronics and microsensors. The results of investigation of the PANI films conductance with help of I-V curves, temperature and concentration measurements are presented. Polymer films were produced by the deposition from a saturated PANI solution in dimethylformamide onto the gold interdigital contacts, followed by drying in air. The ammonia effect on PANI can be explained in such a way that NH3 adsorption/desorption directly modulate the PANI level of doping, i.e., the film resistance.

  12. Diffusion measurements of CO, HNCO, H2CO, and NH3 in amorphous water ice

    NASA Astrophysics Data System (ADS)

    Mispelaer, F.; Theul, P.; Aouididi, H.; Noble, J.; Duvernay, F.; Danger, G.; Roubin, P.; Morata, O.; Hasegawa, T.; Chiavassa, T.

    2013-07-01

    Context. Water is the major component of the interstellar ice mantle. In interstellar ice, chemical reactivity is limited by the diffusion of the reacting molecules, which are usually present at abundances of a few percent with respect to water. Aims: We want to study the thermal diffusion of H2CO, NH3, HNCO, and CO in amorphous water ice experimentally to account for the mobility of these molecules in the interstellar grain ice mantle. Methods: In laboratory experiments performed at fixed temperatures, the diffusion of molecules in ice analogues was monitored by Fourier transform infrared spectroscopy. Diffusion coefficients were extracted from isothermal experiments using Fick's second law of diffusion. Results: We measured the surface diffusion coefficients and their dependence with the temperature in porous amorphous ice for HNCO, H2CO, NH3, and CO. They range from 10-15 to 10-11 cm2 s-1 for HNCO, H2CO, and NH3 between 110 K and 140 K, and between 5-8 10-13 cm2 s-1 for CO between 35 K and 40 K. The bulk diffusion coefficients in compact amorphous ice are too low to be measured by our technique and a 10-15 cm2 s-1 upper limit can be estimated. The amorphous ice framework reorganization at low temperature is also put in evidence. Conclusions: Surface diffusion of molecular species in amorphous ice can be experimentally measured, while their bulk diffusion may be slower than the ice mantle desorption kinetics.

  13. Physical Temperature Measurements of L1551 from NH3 Observations

    NASA Astrophysics Data System (ADS)

    Towner, Allison P.; Hosmer, L.; Langston, G.

    2013-01-01

    We present NH3 and HC7N images of dark cloud L1551 produced from archive observations of the Robert C. Byrd Green Bank Telescope (GBT). The observations were fully calibrated with the GBT pipeline, and the NH3 line strengths are used to compute the physical temperature and number density of NH3 in the region. The observations of dark cloud L1551 reveal regions of strong emission of NH3 (1,1) emission and much weaker emission of NH3 (2,2) and HC7N J=21-20 lines. We were able to determine a physical-temperature range of 11 to 19 Kelvin for this cloud, but feel that the methods used to obtain these data are applicable beyond this single object. Therefore, we further present our method for using the NH3 (1,1) line fits to constrain model fits of the density, velocity, and temperature distributions of the other transitions. These data were produced using the spectral-line data-reduction pipeline and are provided as examples of data available from the GBT archive.

  14. Bias in modeled bi-directional NH3 fluxes associated with temporal averaging of atmospheric NH3 concentrations

    EPA Science Inventory

    Direct flux measurements of NH3 are expensive, time consuming, and require detailed supporting measurements of soil, vegetation, and atmospheric chemistry for interpretation and model parameterization. It is therefore often necessary to infer fluxes by combining measurements of...

  15. The thermal reactivity of HCN and NH3 in interstellar ice analogues

    NASA Astrophysics Data System (ADS)

    Noble, J. A.; Theule, P.; Borget, F.; Danger, G.; Chomat, M.; Duvernay, F.; Mispelaer, F.; Chiavassa, T.

    2013-02-01

    HCN is a molecule central to interstellar chemistry, since it is the simplest molecule containing a carbon-nitrogen bond and its solid state chemistry is rich. The aim of this work was to study the NH3 + HCN ? NH+4CN- thermal reaction in interstellar ice analogues. Laboratory experiments based on Fourier transform infrared spectroscopy and mass spectrometry were performed to characterize the NH+4CN- reaction product and its formation kinetics. This reaction is purely thermal and can occur at low temperatures in interstellar ices without requiring non-thermal processing by photons, electrons or cosmic rays. The reaction rate constant has a temperature dependence of k(T) = 0.016+ 0.010- 0.006 s^{-1}exp (-2.7 0.4 text{kJ mol}^{-1}/RT) when NH3 is much more abundant than HCN. When both reactants are diluted in water ice, the reaction is slowed down. We have estimated the CN- ion band strength to be A_{text{CN}^-} = 1.8 1.5 10-17 cm molecule-1 at both 20 and 140 K. NH+4CN- exhibits zeroth-order multilayer desorption kinetics with a rate of k_{text{des}}(T) = 1028 molecule cm-2 s^{-1}exp (-38.0 1.4text{ kJ mol}^{-1}/RT). The NH3 + HCN ? NH+4CN- thermal reaction is of primary importance because (i) it decreases the amount of HCN available to be hydrogenated into CH2NH, (ii) the NH+4 and CN- ions react with species such as H2CO and CH2NH to form complex molecules and (iii) NH+4CN- is a reservoir of NH3 and HCN, which can be made available to a high-temperature chemistry.

  16. Probing NH3 Formation in Oxygen-rich Circumstellar Envelopes

    NASA Astrophysics Data System (ADS)

    Wong, K. T.; Menten, K. M.; Kami?ski, T.; Wyrowski, F.

    2015-08-01

    The chemistry of ammonia (NH3) in the circumstellar envelopes (CSEs) of AGB stars and red supergiants is poorly understood. Thermodynamic equilibrium (TE) chemistry predicts an abundance of ?10-8, orders of magnitudes below values reported from observations (10-7-10-6). To date, there is no consistent model explaining the origin of such high abundances. To better understand the physical conditions necessary for the formation of NH3, we analysed the NH3 rotational and inversion lines observed in the spectrum of IK Tauri. The strength of the rotational lines clearly confirms the high abundances as compared to the TE predictions. From 1D radiative transfer modelling including infrared pumping via vibrational bands, we infer a total NH3 abundance of 7.5 10-7, along with an ortho-to-para ratio (OPR) of ? 1.5 : 1, slightly above the statistical equilibrium value of 1. We discuss these preliminary results and the possible origin of NH3 in oxygen-rich CSEs.

  17. Evidence of amino acid precursors: C-N bond coupling in simulated interstellar CO2/NH3 ices

    NASA Astrophysics Data System (ADS)

    Esmaili, Sasan

    2015-08-01

    Low energy secondary electrons are abundantly produced in astrophysical or planetary ices by the numerous ionizing radiation fields typically encountered in space environments and may thus play a role in the radiation processing of such ices [1]. One approach to determine their chemical effect is to irradiate nanometer thick molecular solids of simple molecular constituents, with energy selected electron beams and to monitor changes in film chemistry with the surface analytical techniques [2].Of particular interest is the formation of HCN, which is a signature of dense gases in interstellar clouds, and is ubiquitous in the ISM. Moreover, the chemistry of HCN radiolysis products such as CN- may be essential to understand of the formation of amino acids [3] and purine DNA bases. Here we present new results on the irradiation of multilayer films of CO2 and NH3 with 70 eV electrons, leading to CN bond formations. The electron stimulated desorption (ESD) yields of cations and anions are recorded as a function of electron fluence. The prompt desorption of cationic reaction/scattering products [4], is observed at low fluence (~4x1013 electrons/cm2). Detected ions include C2+, C2O2+, C2O+, CO3+, C2O3+ or CO4+ from pure CO2, and N+, NH+, NH2+, NH3+, NH4+, N2+, N2H+ from pure NH3, and NO+, NOH+ from CO2/NH3 mixtures. Most saliently, increasing signals of negative ion products desorbing during prolonged irradiation of CO2/NH3 films included C2-, C2H-, C2H2-, as well as CN-, HCN- and H2CN-. The identification of particular product ions was accomplished by using 13CO2 and 15NH3 isotopes. The chemistry induced by electrons in pure films of CO2 and NH3 and mixtures with composition ratios (3:1), (1:1), and (1:3), was also studied by X-ray photoelectron spectroscopy (XPS). Irradiation of CO2/NH3 mixed films at 22 K produces species containing the following bonds/functional groups identified by XPS: C=O, O-H, C-C, C-O, C=N and N=O. (This work has been funded by NSERC).

  18. Rotation/precession of NH 3 groups in Hofmann clathrates

    NASA Astrophysics Data System (ADS)

    Neumann, Marcus; Kearley, Gordon J.

    1997-02-01

    Vibrational spectra, crystallography and rotational spectra of the Hofmann clathrate Ni(NH 3) 2Ni(CN) 4 2C 6D 6 are all consistent with the displacement of the N atom during the free rotation of the NH 3 groups. Molecular dynamics calculations using a slightly modified universal force field reproduce the measured inelastic neutron scattering spectrum and crystal structure. An examination of the H and N atom trajectories from a simulation show that the NH 3 rotation is best described as a rigid rotor in which the H3 triangle turns around the Ni?N axis whilst the Ni?N axis precesses round the crystallographic z-direction.

  19. A Sensitive Survey of Ammonia (NH3) in Comets

    NASA Astrophysics Data System (ADS)

    Magee-Sauer, Karen P.; Villanueva, G. L.; Bonev, B. P.; Paganini, L.; DiSanti, M. A.; Mumma, M. J.

    2012-10-01

    Being the fully reduced form of nitrogen, ammonia (NH3) is a key molecule for understanding the nitrogen chemistry in comets and to properly characterize the primordial conditions under which these icy bodies formed. Yet, its abundance has not been well characterized, even though NH3 is a major reservoir of volatile nitrogen in comets. To date the abundance has been directly measured in only 10 comets, all at radio and infrared wavelengths. This small sample is largely due to the difficulty in measuring emission from NH3 since its emission is normally weak, can be affected by terrestrial extinction, and (without sufficient spectral resolution) is not resolved from other volatile cometary emissions. In this paper, we present a search for NH3 in seven comets using archival data acquired by our Team using the NIRSPEC instrument at the Keck-2 telescope and the CSHELL instrument at the NASA Infrared Telescope Facility, both atop Mauna Kea, HI. Using an updated fluorescence model that is based on millions of ammonia spectral lines (Villanueva et al., in prep.), we present relative abundances of NH3 with respect to H2O. We find the relative abundance of NH3/H2O varies from 0.3% to 1.6% in these seven comets, and we compare this indicator with other properties measured for these comets (isotopic fractionation and mixing ratios of selected primary volatiles). We gratefully acknowledge support from NASAs Postdoctoral Program (LP), the NASA Astrobiology Institute (PI MJM), NASAs Planetary Astronomy (PI GLV; PI MJM; PI DiSanti) and Planetary Atmospheres (PI DiSanti, PI Villanueva) programs, and from NSF Planetary Astronomy program (PI BPB).

  20. Urban NH3 levels and sources in a Mediterranean environment

    NASA Astrophysics Data System (ADS)

    Reche, Cristina; Viana, Mar; Pandolfi, Marco; Alastuey, Andrés; Moreno, Teresa; Amato, Fulvio; Ripoll, Anna; Querol, Xavier

    2012-09-01

    Urban NH3 concentrations were mapped in Barcelona (Spain) by means of passive samplers (dosimeters). Average NH3 levels were 9.5 μg m-3 in summer and 4.4 μg m-3 in winter, higher than those reported in other urban background sites in Europe, this being especially notable in summer. During this season, values were significantly higher at urban background than at traffic sites, probably indicating the impact of emissions from biological sources, such as humans, sewage systems and garbage containers. Thus, the volatilization of NH3 from the aerosol phase seems to be significant enough during summer to dominate over traffic emissions. Conversely, in winter levels were higher at traffic sites, suggesting a contribution from vehicle emissions. Indeed, NH3 levels decreased by 55% with increasing distance (50 m) to the direct emissions from traffic. A significant correlation between NH3 concentrations averaged for the different districts of the city and the number of waste containers per hm2 was also obtained, highlighting the necessity for controlling and reducing the emissions from garbage collection systems. The urban topography of the Barcelona historical city centre, characterised by narrow streets with a high population density, seemed to exert a strong influence on NH3 levels, with levels reaching up to 30 μg m-3 as a consequence of limited dispersion and ventilation conditions. The impact of the sewage system emissions was also detected with an increase of levels when measuring immediately above the source, even though further studies are required to evaluate the relevance of these emissions.

  1. Enhanced NH3 emission from swine liquid waste

    NASA Astrophysics Data System (ADS)

    Lee, S.; Robarge, W. P.; Walker, J. T.

    2010-12-01

    Swine animal feeding operations are sources of emissions for various gases [ammonia (NH3), hydrogen sulfide (H2S), carbon dioxide (CO2), volatile organic carbons (VOCs)], and fine particulate matter. Gaseous emissions from simple aqueous systems are typically controlled by temperature, pH, wind speed, total dissolved concentration of the chemical species of interest (e.g. NH3+NH4+ = TAN), and the Henry’s law constant. Ammonia emissions from three different sources [ammonium sulfate (AS), swine anaerobic lagoon liquid (SLL), and pit liquid (SPL) from swine housing units] were evaluated using a small flow-through teflon-lined chamber (SFTC; 0.3m × 0.2m × 0.15m) under controlled laboratory conditions. The SFTC was designed for 100% collection efficiency of NH3 gas emitted from the liquids. The internal volume of the chamber, 9 L, was exchanged 1.1 times per minute. All three liquid formulations exhibit the expected response in emissions with changes in temperature and pH. However, NH3 emissions from the SPL and SLL are ~5 times those from pure solutions of AS. Furthermore, the enhancement in NH3 emissions was a function of TAN concentration, decreasing in intensity at higher TAN and approaching rates comparable to the pure solutions of AS. The difference in emissions with solutions of equivalent TAN suggests a synergistic mechanism that is enhancing NH3 emissions in SPL and SLL. Concurrent measurements as part of the National Air Emissions Monitoring Study at the swine operations originally sampled for SPL and SLL document the emissions of CO2, H2S and VOCs (primarily acetic, propionic and butyric acids) at levels that are comparable to observed NH3 emissions. To date, only additions of NaHCO3 to the SPL and SLL have been found to enhance NH3 emissions and exhibit the same response to increasing TAN as exhibited by the original SPL and SLL solutions. Possible reactions that could enhance emissions will be discussed.

  2. High density tracers in outflow regions: NH3 vs. CS

    NASA Astrophysics Data System (ADS)

    Lopez, R.; Morata, O.; Sepulveda, I.; Estalella, R.; Anglada, G.; Pastor, J.; Planesas, P.

    1994-06-01

    We present CS(J = 1 approaches 0) observations of the high density gas in a sample of eleven star forming regions with molecular or optical outflows. The sources of this sample cover a wide range of physical sizes. All these sources had been previously mapped in NH3 (1,1) with similar angular resolution. In all the sources of this sample CS emission was detected, indicating a global correlation between the emissions traced by the CS and the NH3 molecules. However, the detailed characteristics of these two emissions (e.g., the extent and the location of the emission peak) show, in general, significant differences in the sources which are well resolved by the beam. As a general trend, the emission traced by the NH3 molecule appears as compact clumps which engulf an outflow activity center. In contrast, the emission traced by the CS molecule, usually more extended, appears as a background which connects different outflow activity centers associated with each NH3 clump.

  3. Kinetics of the NH3 and CO2 solid-state reaction at low temperature.

    PubMed

    Noble, J A; Theule, P; Duvernay, F; Danger, G; Chiavassa, T; Ghesquiere, P; Mineva, T; Talbi, D

    2014-11-21

    Ammonia and carbon dioxide play an important role in both atmospheric and interstellar ice chemistries. This work presents a theoretical and experimental study of the kinetics of the low-temperature NH3 and CO2 solid-state reaction in ice films, the product of which is ammonium carbamate (NH4(+)NH2COO(-)). It is a first-order reaction with respect to CO2, with a temperature-dependent rate constant fitted to the Arrhenius law in the temperature range 70 K to 90 K, with an activation energy of 5.1 1.6 kJ mol(-1) and a pre-exponential factor of 0.09-0.08(+1.1) s(-1). This work helps to determine the rate of removal of CO2 and NH3, via their conversion into ammonium carbamate, from atmospheric and interstellar ices. We also measure first-order desorption energies of 69.0 0.2 kJ mol(-1) and 76.1 0.1 kJ mol(-1), assuming a pre-exponential factor of 10(13) s(-1), for ammonium carbamate and carbamic acid, respectively. PMID:25198107

  4. Reaction pathway investigation on the selective catalytic reduction of NO with NH3 over Cu/SSZ-13 at low temperatures.

    PubMed

    Su, Wenkang; Chang, Huazhen; Peng, Yue; Zhang, Chaozhi; Li, Junhua

    2015-01-01

    The mechanism of the selective catalytic reduction of NO with NH3 was studied using Cu/SSZ-13. The adspecies of NO and NH3 as well as the active intermediates were investigated using in situ diffuse reflectance infrared Fourier transform spectroscopy and temperature-programmed surface reaction. The results revealed that three reactions were possible between adsorbed NH3 and NOx. NO2(-) could be generated by direct formation or NO3(-) reduction via NO. In a standard selective catalytic reduction (SCR) reaction, NO3(-) was hard to form, because NO2(-) was consumed by ammonia before it could be further oxidized to nitrates. Additionally, adsorbed NH3 on the Lewis acid site was more active than NH4(+). Thus, SCR mainly followed the reaction between Lewis acid site-adsorbed NH3 and directly formed NO2(-). Higher Cu loading could favor the formation of active Cu-NH3, Cu-NO2(-), and Cu-NO3(-), improving the SCR activity at low temperature. PMID:25485842

  5. Rotationally inelastic scattering and potential calculation for NH3+He

    NASA Astrophysics Data System (ADS)

    Meyer, H.; Buck, U.; Schinke, R.; Diercksen, G. H. F.

    1986-05-01

    In a crossed molecular beam experiment, time-of-flight distributions of NH3 molecules scattered from He have been measured as a function of the deflection angle at E=97.7 meV. The spectra, which cover a center-of-mass angular range from 97° to 168° show appreciable rotational energy transfer in the backward direction. These data, which are sensitive to the repulsive anisotropy of the interaction potential, are used together with the diffraction oscillations of total differential cross section to determine a new rigid rotor potential surface for NH3-He. The potential is constructed by combining large basis set self-consistent-field (SCF) calculations with damped long range dispersion coefficients. The two free parameters of the damping function are determined by fitting the measured data to calculations using the quantal coupled states approximation. The potential is in reasonable agreement with calculations where correlation effects are included and reproduces the measured second virial coefficients.

  6. NH3 in IRC plus 10216. [infrared astronomy

    NASA Technical Reports Server (NTRS)

    Betz, A. L.; Mclaren, R. A.; Spears, D. L.

    1978-01-01

    Ammonia was detected in the circumstellar envelope of IRC +10216 by means of three infrared absorption lines in the nu sup 2 band around 950/cm. The lines are fully resolved at a resolution of 0.22 km/sec and indicate that most of the circumstellar gas is accelerated to expansion velocities around 14 km/sec within a few stellar radii. The NH3 profiles indicate a rotational temperature between 400 and 700 K, and H2 density between 10 to the 8th power/cu cm and 10 to the 10th power/cu cm, and NH3 column density of 10 to the 17th power/sq cm. The H2 density indicates that the mass of the circumstellar envelope within a 1 arcsec radius is approximately 0.1 solar masses.

  7. Communication: overtone (2NH) spectroscopy of NH3-Ar.

    PubMed

    Didriche, K; Fldes, T; Vanfleteren, T; Herman, M

    2013-05-14

    The ? (1(1)) ? ? (0(0)) 2NH (?1+?3) band of the NH3-Ar van der Waals complex formed in a supersonic jet expansion, with origin at 6628 cm(-1) was recorded at high-resolution using cavity ring down spectroscopy. The analysis leads to upper state rotational constants and J-dependent predissociation lifetimes estimated from linewidth analysis, with a mean value about 0.6 ns. PMID:23676017

  8. Advanced ammonia (NH3) monitoring system for industrial applications

    NASA Astrophysics Data System (ADS)

    Spector, Oded; Jacobson, Esther

    1999-12-01

    The present paper describes an Electro-Optical Monitoring System developed for the real time in-situ monitoring of Ammonia (NH3) emissions, at very low concentrations in air, well below the hazardous levels. Ammonia is the starting chemical for almost all industrially produced nitrogen compounds and is therefore one of the most important inorganic raw materials. Due to its unique chemical and physical characteristics, the Ammonia (NH3) anhydrous gas is used in various industrial applications such as: Air Conditioning, Refrigeration (including space shuttles), Agriculture and Chemical Processing. NH3 gas, being a highly irritant toxic and flammable gas with a pungent odor detectable by human perception at 53 ppm, has a TLV-TWA of 25 ppm (TLV-STEL of 35 ppm) and a lower explosive limit (LEL) of 15% in air. Being extremely corrosive and irritating to the skin, eyes, nose and respiratory tract, (irritation begins at 130 - 200 ppm), exposures to high concentrations (above 2500 ppm) are life threatening, thus early detection of Ammonia at concentrations up to 50 ppm is essential to prevent its toxic influence. Existing detection methods for NH3 rely mainly on chemical sensors and analytical methods that require the gas to be sampled and introduced into the detection system via a probe, compared to various standards (for determining the concentration) and the result is not always reflecting the actual gas concentration. The emerging optical open path remote sensing technology that analyzes the specific 'finger print' absorption characteristics of NH3 in various narrow spectral bands, specifically in the UV solar blind band, is discussed including the rationale of the detection algorithm and system design. The system offers warning and alarm signals set at the above low concentration detection sensitivity, (10 - 50 ppm(DOT)m) thus providing reliable Ammonia detection over an air path from 3 (including air-duct applications) to 400 ft (1 - 120 m). Typical installations of Ammonia Monitoring Systems, field and laboratory test data are discussed, including spectral cross sensitivity analysis with interfering chemicals and changing environmental conditions (heat, humidity).

  9. New mechanism for the vibrational mode-specific proton-transfer reaction NH 3+ (?) + NH 3 ? NH 2 + NH 4+

    NASA Astrophysics Data System (ADS)

    Tachibana, Akitomo; Suzuki, Tetsuo; Yoshida, Naoto; Teramoto, Yasuhiro; Yamabe, Tokio

    1991-09-01

    A new mechanism has been presented for the vibrational mode-specific depression of the proton-transfer reaction NH 3+ (?) + NH 3 ? NH 2 + NH 4+. We adopt the standpoint of the ADO (average dipole orientation) theory, proposed by Su and Bowers (J. Chem. Phys. 58 (1973) 3027), and append a new long-range interaction created by a vibration-induced dipole to the ADO theory. A "reaction zone" concept is crucial in this approach; outside of the zone the long-range intermolecular interactions play a key role. A qualitatively good agreement is observed for the experimental result of the title reaction obtained by Chupka and Russel (J. Chem. Phys. 48 (1968) 1527).

  10. Polarization of the large COMPASS 14NH3 target

    NASA Astrophysics Data System (ADS)

    Koivuniemi, J.; Doshita, N.; Gautheron, F.; Hess, C. H.; Iwata, T.; Kisselev, Y. U.; Kondo, K.; Meyer, W.; Michigami, T.; Reicherz, G.

    2009-02-01

    The COMPASS experiment in the CERN M2 beam line is using 1508 cm3 granular solid 14NH3 as polarized proton target material to study the nuclear spin with deep inelastic scattering of polarized muons. The target consists of 2.5 T solenoid and 0.63 T dipole magnets, microwave cavity and large dilution cryostat. Continuous wave NMR is used to determine the polarization of the nuclei that are polarized with dynamic nuclear polarization method using 4 mm microwaves. Determination of the target proton polarization with thermal equilibrium NMR signals at temperatures 1.0 - 1.6 K is discussed.

  11. Preparation of highly active manganese oxides supported on functionalized MWNTs for low temperature NOx reduction with NH3

    NASA Astrophysics Data System (ADS)

    Pourkhalil, Mahnaz; Moghaddam, Abdolsamad Zarringhalam; Rashidi, Alimorad; Towfighi, Jafar; Mortazavi, Yadollah

    2013-08-01

    Manganese oxide catalysts (MnOx) supported on functionalized multi-walled carbon nanotubes (FMWNTs) for low temperature selective catalytic reduction (LTSCR) of nitrogen oxides (NOx) with NH3 in the presence of excess O2 were prepared by the incipient wetness impregnation method. These catalysts were characterized by N2 adsorption, Fourier transform infrared spectroscopy (FTIR), transmission electron microscope (TEM), X-ray diffraction (XRD), thermal gravimetric analysis (TGA) and H2-temperature programmed reduction (H2-TPR) methods. The effects of reaction temperature, MnOx loading, calcination temperature and calcination time were investigated. The presence of surface nitrate species under moderate calcination conditions may play a favorable role in the LTSCR of NOx with NH3. Under the reaction conditions of 200 C, 1 bar, NO = NH3 = 900 ppm, O2 = 5 vol%, GHSV = 30,000 h-1 and 12 wt% MnOx, NOx conversion and N2 selectivity were 97% and 99.5%, respectively. The SCR activity was reduced in the presence of 100 ppm SO2 and 2.5 vol% H2O from 97% to 92% within 6 h at 200 C, however such an effect was shown to be reversible by exposing the catalyst to a helium flow for 2 h at 350 C due to thermal decomposition of ammonium sulphate salts.

  12. NH3-SCR denitration catalyst performance over vanadium-titanium with the addition of Ce and Sb.

    PubMed

    Xu, Chi; Liu, Jian; Zhao, Zhen; Yu, Fei; Cheng, Kai; Wei, Yuechang; Duan, Aijun; Jiang, Guiyuan

    2015-05-01

    Selective catalytic reduction technology using NH3 as a reducing agent (NH3-SCR) is an effective control method to remove nitrogen oxides. TiO2-supported vanadium oxide catalysts with different levels of Ce and Sb modification were prepared by an impregnation method and were characterized by X-ray diffractometer (XRD), Brunauer-Emmett-Teller (BET), Transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS), Raman and Hydrogen temperature-programmed reduction (H2-TPR). The catalytic activities of V5CexSby/TiO2 catalysts for denitration were investigated in a fixed bed flow microreactor. The results showed that cerium, vanadium and antimony oxide as the active components were well dispersed on TiO2, and the catalysts exhibited a large number of d-d electronic transitions, which were helpful to strengthen SCR reactivity. The V5CexSby/TiO2 catalysts exhibited a good low temperature NH3-SCR catalytic activity. In the temperature range of 210 to 400°C, the V5CexSby/TiO2 catalysts gave NO conversion rates above 90%. For the best V5Ce35Sb2/TiO2 catalyst, at a reaction temperature of 210°C, the NO conversion rate had already reached 90%. The catalysts had different catalytic activity with different Ce loadings. With the increase of Ce loading, the NO conversion rate also increased. PMID:25968261

  13. Adsorption, diffusion, dewetting, and entrapment of acetone on Ni(111), surface-modified silicon, and amorphous solid water studied by time-of-flight secondary ion mass spectrometry and temperature programmed desorption

    NASA Astrophysics Data System (ADS)

    Souda, Ryutaro

    2011-10-01

    Interactions of acetone with the silicon surfaces terminated with hydrogen, hydroxyl, and perfluorocarbon are investigated; results are compared to those on amorphous solid water (ASW) to gain insights into the roles of hydrogen bonds in surface diffusion and hydration of acetone adspecies. The surface mobility of acetone occurs at 60 K irrespective of the surface functional groups. Cooperative diffusion of adspecies results in a 2D liquid phase on the H- and perfluorocarbon-terminated surfaces, whereas cooperativity tends to be quenched via hydrogen bonding on the OH-terminated surface, thereby forming residues that diffuse slowly on the surface after evaporation of the physisorbed species (i.e., 2D liquid). The interaction of acetone adspecies on the non-porous ASW surface resembles that on the OH-terminated Si surface, but the acetone molecules tend to be hydrated on the porous ASW film, as evidenced by their desorption during the glass-liquid transition and crystallization of water. The roles of micropores in hydration of acetone molecules are discussed from comparison with the results using mesoporous Si substrates.

  14. Infrared photodissociation spectroscopy of Co(+)(NH(3))(n) and Ni(+)(NH(3))(n): preference for tetrahedral or square-planar coordination.

    PubMed

    Imamura, Toshitaka; Ohashi, Kazuhiko; Sasaki, Jun; Inoue, Kazuya; Furukawa, Kazuki; Judai, Ken; Nishi, Nobuyuki; Sekiya, Hiroshi

    2010-10-01

    Coordination structures of the Co(+)(NH(3))(n) and Ni(+)(NH(3))(n) ions are probed by infrared (IR) photodissociation spectroscopy with the aid of density functional theory (DFT) calculations. The IR spectra of N(2)-tagged Co(+)(NH(3))(n) (n = 1-4) exhibit two distinct bands assignable to the symmetric and antisymmetric NH stretches of the NH(3) molecules binding directly to Co(+). Size-dependent changes in the spectra of Co(+)(NH(3))(n) (n = 4-8) indicate that the first shell of Co(+) is filled with four NH(3) molecules and the resulting 4-coordinated structure forms the central core of further solvation. The spectra of Ni(+)(NH(3))(n) (n = 3-8) suggest that the coordination number of Ni(+) is also four, although a minor 3-coordinated isomer is identified for Ni(+)(NH(3))(4). Despite the same coordination number, the DFT calculations predict a distorted square-planar coordination for Ni(+)(NH(3))(4) and a distorted tetrahedral coordination for Co(+)(NH(3))(4). The coordination of Ni(+)(NH(3))(4) is explainable by using a simple model based on the geometry of a half-filled 3d orbital in Ni(+). This suggests that the Ni(+) ion gives priority to the minimization of the metal-ligand repulsion in accommodating four ligands in the first shell. On the other hand, the same model fails to explain the coordination of Co(+)(NH(3))(4). An interpretation for this is that the Co(+) ion gives priority to the minimization of the ligand-ligand repulsion. PMID:20714490

  15. Enhanced Performance of Perovskite CH3NH3PbI3 Solar Cell by Using CH3NH3I as Additive in Sequential Deposition.

    PubMed

    Xie, Yian; Shao, Feng; Wang, Yaoming; Xu, Tao; Wang, Deliang; Huang, Fuqiang

    2015-06-17

    Sequential deposition is a widely adopted method to prepare CH3NH3PbI3 on mesostructured TiO2 electrode for organic lead halide perovskite solar cells. However, this method often suffers from the uncontrollable crystal size, surface morphology, and residual PbI2 in the resulting CH3NH3PbI3, which are all detrimental to the device performance. We herein present an optimized sequential solution deposition method by introducing different amount of CH3NH3I in PbI2 precursor solution in the first step to prepare CH3NH3PbI3 absorber on mesoporous TiO2 substrates. The addition of CH3NH3I in PbI2 precursor solution can affect the crystallization and composition of PbI2 raw films, resulting in the variation of UV-vis absorption and surface morphology. Proper addition of CH3NH3I not only enhances the absorption but also improves the efficiency of CH3NH3PbI3 solar cells from 11.13% to 13.37%. Photoluminescence spectra suggest that the improvement of device performance is attributed to the decrease of recombination rate of carriers in CH3NH3PbI3 absorber. This current method provides a highly repeatable route for enhancing the efficiency of CH3NH3PbI3 solar cell in the sequential solution deposition method. PMID:26009927

  16. Electron Impact Ionization of CH4 and NH3

    NASA Astrophysics Data System (ADS)

    Chaluvadi, Hari; Madison, Don; Nixon, Kate; Murray, Andrew; Ning, Chuangang

    2011-10-01

    Experimental and theoretical Triply Differential Cross Sections (TDCS) will be presented for electron-impact ionization of Methane (CH4) and Ammonia (NH3) (same number of electrons and protons) for both the highest occupied molecular orbital (HOMO) and next highest occupied molecular orbital (NHOMO). M3DW (molecular 3-body distorted wave) results will be compared with experiment for coplanar geometry and for perpendicular plane geometry (a plane which is perpendicular to the incident beam direction). In both cases, the final state electron energies and observation angles are symmetric and the final state electron energies range from 1.5 eV to 30 eV. This work is supported by National Science Foundation (NSF) and the NSF TeraGrid computer system.

  17. NH3 in IRC +10216. [carbon star undergoing mass loss

    NASA Technical Reports Server (NTRS)

    Betz, A. L.; Mclaren, R. A.; Spears, D. L.

    1979-01-01

    Ammonia has been detected in the circumstellar envelope of IRC +10216 by means of three infrared absorption lines in the nu-2 band around 950 kaysers. The profiles are well resolved at a resolution of 0.22 km/s and show that most of the circumstellar gas is accelerated to expansion velocities around 14 km/s within a few stellar radii. The observed ammonia requires a rotational temperature between 400 and 700 K, an H2 density between 100 million and 10 billion per cu cm, and an NH3 column density of 10 to the 17th per sq cm. The H2 density indicates that the mass of the circumstellar envelope within a 1 arcsec radius is about 0.1 solar mass.

  18. Parallel operation of NH3 screw compressors - the optimum way

    NASA Astrophysics Data System (ADS)

    Pijnenburg, B.; Ritmann, J.

    2015-08-01

    The use of more smaller industrial NH3 screw compressors operating in parallel seems to offer the optimum way when it comes to fulfilling maximum part load efficiency, increased redundancy and other highly requested features in the industrial refrigeration industry today. Parallel operation in an optimum way can be selected to secure continuous operation and can in most applications be configured to ensure lower overall operating economy. New compressors are developed to meet requirements for flexibility in operation and are controlled in an intelligent way. The intelligent control system keeps focus on all external demands, but yet striving to offer always the lowest possible absorbed power, including in future scenarios with connection to smart grid.

  19. MetNH3: Metrology for ammonia in ambient air

    NASA Astrophysics Data System (ADS)

    Braban, Christine; Twigg, Marsailidh; Tang, Sim; Leuenberger, Daiana; Ferracci, Valerio; Martin, Nick; Pascale, Celine; Hieta, Tuomas; Pogany, Andrea; Persijn, Stefan; van Wijk, Janneke; Gerwig, Holger; Wirtze, Klaus; Tiebe, Carlo; Balslev-Harder, David; Niederhausen, Bernhardt

    2015-04-01

    Measuring ammonia in ambient air is a sensitive and priority issue due to its harmful effects on human health and ecosystems. The European Directive 2001/81/EC on 'National Emission Ceilings for Certain Atmospheric Pollutants (NEC)' regulates ammonia emissions in the member states. However, there is a lack of regulation to ensure reliable ammonia measurements namely in applicable analytical technology, maximum allowed uncertainty, quality assurance and quality control (QC/QA) procedures as well as in the infrastructure to attain metrological traceability. Validated ammonia measurement data of high quality from air monitoring networks are vitally important for identifying changes due to implementations of environment policies, for understanding where the uncertainties in current emission inventories are derived from and for providing independent verification of atmospheric model predictions. The new EURAMET project MetNH3 aims to develop improved reference gas mixtures by static and dynamic gravimetric generation methods, develop and characterise laser based optical spectrometric standards and establish the transfer from high-accuracy standards to field applicable methods. MetNH3started in June 2014 and in this presentation the first results from the metrological characterisation of a commercially available cavity ring-down spectrometer (CRDS) will be discussed. Also first tests and results from a new design, Controlled Atmosphere Test Facility (CATFAC), which is to be characterised and used to validate the performance of diffusive samplers, denuders and on-line instruments, will be reported. CAFTEC can be used to control test parameters such as ammonia concentration, relative humidity and wind speed. Outline plans for international laboratory and field intercomparisons in 2016 will be presented.

  20. Elevated CO2 decreases the Photorespiratory NH3 production but does not decrease the NH3 compensation point in rice leaves.

    PubMed

    Miyazawa, Shin-Ichi; Hayashi, Kentaro; Nakamura, Hirofumi; Hasegawa, Toshihiro; Miyao, Mitsue

    2014-09-01

    The exchange of gaseous NH3 between the atmosphere and plants plays a pivotal role in controlling the global NH3 cycle. Photorespiration generates NH3 through oxygenation instead of carboxylation by the CO2-fixing enzyme, ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO). The future increase in the atmospheric CO2 concentration, [CO2], is expected to reduce plant NH3 production by suppressing RuBisCO oxygenation (Vo). We measured the net leaf NH3 uptake rate (FNH3) across NH3 concentrations in the air (na) ranging from 0.2 to 1.6 nmol mol(-1) at three [CO2] values (190, 360 and 750 mol mol(-1)) using rice plants. We analyzed leaf NH3 gas exchange using a custom-made whole-leaf chamber system, and determined the NH3 compensation point (?), a measure of potential NH3 emission, as the x-intercept of the linear relationship of FNH3 as a function of na. Our ? values were lower than those reported for other plant species. ? did not decrease under elevated [CO2], although leaf NH4 (+) content decreased with decreasing Vo at higher [CO2]. This was also the case for ? estimated from the pH and NH4 (+) concentration of the leaf apoplast solution (?'). ?' of rice plants, grown at elevated [CO2] for months in a free-air CO2 enrichment facility, was also not decreased by elevated [CO2]. These results suggest that suppression of RuBisCO oxygenation by elevated [CO2] does not decrease potential leaf NH3 emission in rice plants. PMID:24951312

  1. Competing interactions in molecular adsorption: NH(3) on Si(001).

    PubMed

    Owen, J H G

    2009-11-01

    Ammonia is a good model system for the study of co-adsorption interactions, including indirect effects such as charge and strain-induced local effects on adsorption sites, and direct interactions such as hydrogen bonding. On the Si(001) surface, it adsorbs molecularly, via a dative bond from the N atom to the down atom of a buckled dimer, and is therefore very sensitive to the local charge conditions. It will then dissociate into-H and-NH(2) groups, adsorbed on the dangling bonds of the Si dimers. The NH(2) groups do not diffuse, so any correlations deriving from interactions during adsorption are preserved, and can be derived by analysis of the arrangements of the NH(2) groups. Hydrogen-bonding interactions are crucial in understanding the behaviour of this system, with significant co-adsorption interactions occurring both along and across rows, outweighing the electrostatic or buckling-related effects. In recent years, there have been several scanning tunnelling microscopy studies and extensive computational modelling of the NH(3) on Si(001) system, attempting to determine a dominant mechanism governing co-adsorption effects. In this review, I will discuss both experimental and theoretical results, make a comparison with similar molecules such as phosphine (PH(3)), and review the different ways in which experimentalists and modellers have approached this complex system. PMID:21832459

  2. [UO2(NH3)5]Br2NH3: synthesis, crystal structure, and speciation in liquid ammonia solution by first-principles molecular dynamics simulations.

    PubMed

    Woidy, Patrick; Bhl, Michael; Kraus, Florian

    2015-04-28

    Pentaammine dioxido uranium(VI) dibromide ammonia (1/1), [UO2(NH3)5]Br2NH3, was synthesized in the form of yellow crystals by the reaction of uranyl bromide, UO2Br2, with dry liquid ammonia. The compound crystallizes orthorhombic in space group Cmcm and is isotypic to [UO2(NH3)5]Cl2NH3 with a = 13.2499(2), b = 10.5536(1), c = 8.9126(1) , V = 1246.29(3) (3) and Z = 4 at 123 K. The UO2(2+) cation is coordinated by five ammine ligands and the coordination polyhedron can be best described as pentagonal bipyramid. Car-Parrinello molecular dynamics simulations are reported for [UO2(NH3)5](2+) in the gas phase and in liquid NH3 solution (using the BLYP density functional). According to free-energy simulations, solvation by ammonia has only a small effect on the uranyl-NH3 bond strength. PMID:25797497

  3. Relativistic GW calculations on CH3NH3PbI3 and CH3NH3SnI3 perovskites for solar cell applications.

    PubMed

    Umari, Paolo; Mosconi, Edoardo; De Angelis, Filippo

    2014-01-01

    Hybrid AMX3 perovskites (A = Cs, CH3NH3; M = Sn, Pb; X = halide) have revolutionized the scenario of emerging photovoltaic technologies, with very recent results demonstrating 15% efficient solar cells. The CH3NH3PbI3/MAPb(I(1-x)Cl(x))3 perovskites have dominated the field, while the similar CH3NH3SnI3 has not been exploited for photovoltaic applications. Replacement of Pb by Sn would facilitate the large uptake of perovskite-based photovoltaics. Despite the extremely fast progress, the materials electronic properties which are key to the photovoltaic performance are relatively little understood. Density Functional Theory electronic structure methods have so far delivered an unbalanced description of Pb- and Sn-based perovskites. Here we develop an effective GW method incorporating spin-orbit coupling which allows us to accurately model the electronic, optical and transport properties of CH3NH3SnI3 and CH3NH3PbI3, opening the way to new materials design. The different CH3NH3SnI3 and CH3NH3PbI3 electronic properties are discussed in light of their exploitation for solar cells, and found to be dominantly due to relativistic effects. These effects stabilize the CH3NH3PbI3 material towards oxidation, by inducing a deeper valence band edge. Relativistic effects, however, also increase the material band-gap compared to CH3NH3SnI3, due to the valence band energy downshift (~0.7?eV) being only partly compensated by the conduction band downshift (~0.2?eV). PMID:24667758

  4. Structure-Activity Relationships in NH3-SCR over Cu-SSZ-13 as Probed by Reaction Kinetics and EPR Studies

    SciTech Connect

    Gao, Feng; Walter, Eric D.; Karp, Eric M.; Luo, Jin-Yong; Tonkyn, Russell G.; Kwak, Ja Hun; Szanyi, Janos; Peden, Charles HF

    2013-04-01

    Cu-SSZ-13 catalysts with various Cu loadings were prepared via solution ion exchange. The hydrated samples were studied with Electron Paramagnetic Resonance (EPR). Cu2+ ion coordination numbers were obtained by analyzing the hyperfine structures while Cu-Cu distances were estimated from line broadening of the EPR features. By coupling EPR and temperature-programmed reduction (TPR) results, two Cu2+ ion locations were suggested. Standard and fast NH3-SCR, as well as non-selective NH3 oxidation reactions were carried out over these catalysts at high space velocities. For the SCR reaction, intra-particle diffusion limitation was found throughout the reaction temperatures investigated. Although clear structure-activity relationships cannot be derived, the reaction results allow for reactant diffusivities and Cu2+ ion locations to be estimated. The slower NH3 oxidation reaction, on the other hand, is kinetically limited at low temperatures, and, therefore, allows for a correlation between Cu2+ ion location and reaction kinetics to be made. Furthermore, the dynamic Cu2+ ion motion as a function of temperature could also be derived from the NH3 oxidation kinetics.

  5. Analyte separation utilizing temperature programmed desorption of a preconcentrator mesh

    DOEpatents

    Linker, Kevin L. (Albuquerque, NM); Bouchier, Frank A. (Albuquerque, NM); Theisen, Lisa (Albuquerque, NM); Arakaki, Lester H. (Edgewood, NM)

    2007-11-27

    A method and system for controllably releasing contaminants from a contaminated porous metallic mesh by thermally desorbing and releasing a selected subset of contaminants from a contaminated mesh by rapidly raising the mesh to a pre-determined temperature step or plateau that has been chosen beforehand to preferentially desorb a particular chemical specie of interest, but not others. By providing a sufficiently long delay or dwell period in-between heating pulses, and by selecting the optimum plateau temperatures, then different contaminant species can be controllably released in well-defined batches at different times to a chemical detector in gaseous communication with the mesh. For some detectors, such as an Ion Mobility Spectrometer (IMS), separating different species in time before they enter the IMS allows the detector to have an enhanced selectivity.

  6. TECHNICAL DESIGN NOTE: NH3-TPD measurements using a zeolite-based sensor

    NASA Astrophysics Data System (ADS)

    Rodrguez-Gonzlez, Luz; Simon, Ulrich

    2010-02-01

    A novel method for NH3-TPD measurements based on impedance spectroscopy (IS), denoted as IS-TPD, is presented. It applies a highly sensitive zeolite-based NH3-sensor instead of gas chromatography used in the conventional NH3-TPD. The zeolite samples were coated in the form of a thick-film on a directly heated inter-digital electrode (ide) chip. Altogether this set-up allows to substantially reduce the sample mass and to minimize temperature gradients.

  7. Vibrations and reorientations of NH3 molecules in [Mn(NH3)6](ClO4)2 studied by infrared spectroscopy and theoretical (DFT) calculations

    NASA Astrophysics Data System (ADS)

    Hetma?czyk, Joanna; Hetma?czyk, ?ukasz; Migda?-Mikuli, Anna; Mikuli, Edward

    2015-02-01

    The vibrational and reorientational motions of NH3 ligands and ClO4- anions were investigated by Fourier transform middle-infrared spectroscopy (FT-IR) in the high- and low-temperature phases of [Mn(NH3)6](ClO4)2. The temperature dependencies of full width at half maximum (FWHM) of the infrared bands at: 591 and 3385 cm-1, associated with: ?r(NH3) and ?as(N-H) modes, respectively, indicate that there exist fast (correlation times ?R ? 10-12-10-13 s) reorientational motions of NH3 ligands, with a mean values of activation energies: 7.8 and 4.5 kJ mol-1, in the phase I and II, respectively. These reorientational motions of NH3 ligands are only slightly disturbed in the phase transition region and do not significantly contribute to the phase transition mechanism. Fourier transform far-infrared and middle-infrared spectra with decreasing of temperature indicated characteristic changes at the vicinity of PT at TCc = 137.6 K (on cooling), which suggested lowering of the crystal structure symmetry. Infrared spectra of [Mn(NH3)6](ClO4)2 were recorded and interpreted by comparison with respective theoretical spectra calculated using DFT method (B3LYP functional, LANL2DZ ECP basis set (on Mn atom) and 6-311 + G(d,p) basis set (on H, N, Cl, O atoms) for the isolated equilibrium two models (Model 1 - separate isolated [Mn(NH3)6]2+ cation and ClO4- anion and Model 2 - [Mn(NH3)6(ClO4)2] complex system). Calculated optical spectra show a good agreement with the experimental infrared spectra (FT-FIR and FT-MIR) for the both models.

  8. Investigation on thermal evaporated CH3NH3PbI3 thin films

    NASA Astrophysics Data System (ADS)

    Li, Youzhen; Xu, Xuemei; Wang, Chenggong; Wang, Congcong; Xie, Fangyan; Yang, Junliang; Gao, Yongli

    2015-09-01

    CH3NH3I, PbI2 and CH3NH3PbI3 films were fabricated by evaporation and characterized with X-ray Photoelectron Spectroscopy (XPS) and X-ray diffraction (XRD). The XPS results indicate that the PbI2 and CH3NH3PbI3 films are more uniform and stable than the CH3NH3I film. The atomic ratio of the CH3NH3I, PbI2 and CH3NH3PbI3 films are C:N:I=1.00:1.01:0.70, Pb:I= 1.00:1.91 and C: N: Pb: I = 1.29:1.07:1.00:2.94, respectively. The atomic ratio of CH3NH3PbI3 is very close to that of the ideal perovskite. Small angle x-ray diffraction results demonstrate that the as evaporated CH3NH3PbI3 film is crystalline. The valence band maximum (VBM) and work function (WF) of the CH3NH3PbI3 film are about 0.85eV and 4.86eV, respectively.

  9. Rotational study of the NH3-CO complex: millimeter-wave measurements and ab initio calculations.

    PubMed

    Surin, L A; Potapov, A; Dolgov, A A; Tarabukin, I V; Panfilov, V A; Schlemmer, S; Kalugina, Y N; Faure, A; van der Avoird, A

    2015-03-21

    The rotational spectrum of the van der Waals complex NH3-CO has been measured with the intracavity OROTRON jet spectrometer in the frequency range of 112-139 GHz. Newly observed and assigned transitions belong to the K = 0-0, K = 1-1, K = 1-0, and K = 2-1 subbands correlating with the rotationless (jk)NH3 = 00 ground state of free ortho-NH3 and the K = 0-1 and K = 2-1 subbands correlating with the (jk)NH3 = 11 ground state of free para-NH3. The (approximate) quantum number K is the projection of the total angular momentum J on the intermolecular axis. Some of these transitions are continuations to higher J values of transition series observed previously [C. Xia et al., Mol. Phys. 99, 643 (2001)], the other transitions constitute newly detected subbands. The new data were analyzed together with the known millimeter-wave and microwave transitions in order to determine the molecular parameters of the ortho-NH3-CO and para-NH3-CO complexes. Accompanying ab initio calculations of the intermolecular potential energy surface (PES) of NH3-CO has been carried out at the explicitly correlated coupled cluster level of theory with single, double, and perturbative triple excitations and an augmented correlation-consistent triple zeta basis set. The global minimum of the five-dimensional PES corresponds to an approximately T-shaped structure with the N atom closest to the CO subunit and binding energy De = 359.21 cm(-1). The bound rovibrational levels of the NH3-CO complex were calculated for total angular momentum J = 0-6 on this intermolecular potential surface and compared with the experimental results. The calculated dissociation energies D0 are 210.43 and 218.66 cm(-1) for ortho-NH3-CO and para-NH3-CO, respectively. PMID:25796250

  10. Rotational study of the NH3-CO complex: Millimeter-wave measurements and ab initio calculations

    NASA Astrophysics Data System (ADS)

    Surin, L. A.; Potapov, A.; Dolgov, A. A.; Tarabukin, I. V.; Panfilov, V. A.; Schlemmer, S.; Kalugina, Y. N.; Faure, A.; van der Avoird, A.

    2015-03-01

    The rotational spectrum of the van der Waals complex NH3-CO has been measured with the intracavity OROTRON jet spectrometer in the frequency range of 112-139 GHz. Newly observed and assigned transitions belong to the K = 0-0, K = 1-1, K = 1-0, and K = 2-1 subbands correlating with the rotationless (jk)NH3 = 00 ground state of free ortho-NH3 and the K = 0-1 and K = 2-1 subbands correlating with the (jk)NH3 = 11 ground state of free para-NH3. The (approximate) quantum number K is the projection of the total angular momentum J on the intermolecular axis. Some of these transitions are continuations to higher J values of transition series observed previously [C. Xia et al., Mol. Phys. 99, 643 (2001)], the other transitions constitute newly detected subbands. The new data were analyzed together with the known millimeter-wave and microwave transitions in order to determine the molecular parameters of the ortho-NH3-CO and para-NH3-CO complexes. Accompanying ab initio calculations of the intermolecular potential energy surface (PES) of NH3-CO has been carried out at the explicitly correlated coupled cluster level of theory with single, double, and perturbative triple excitations and an augmented correlation-consistent triple zeta basis set. The global minimum of the five-dimensional PES corresponds to an approximately T-shaped structure with the N atom closest to the CO subunit and binding energy De = 359.21 cm-1. The bound rovibrational levels of the NH3-CO complex were calculated for total angular momentum J = 0-6 on this intermolecular potential surface and compared with the experimental results. The calculated dissociation energies D0 are 210.43 and 218.66 cm-1 for ortho-NH3-CO and para-NH3-CO, respectively.

  11. The selective catalytic reduction of NO with NH3 over a novel Ce-Sn-Ti mixed oxides catalyst: Promotional effect of SnO2

    NASA Astrophysics Data System (ADS)

    Yu, Ming'e.; Li, Caiting; Zeng, Guangming; Zhou, Yang; Zhang, Xunan; Xie, Yin'e.

    2015-07-01

    A series of novel catalysts (CexSny) for the selective catalytic reduction of NO by NH3 were prepared by the inverse co-precipitation method. The aim of this novel design was to improve the NO removal efficiency of CeTi by the introduction of SnO2. It was found that the Ce-Sn-Ti catalyst was much more active than Ce-Ti and the best Ce:Sn molar ratio was 2:1. Ce2Sn1 possessed a satisfied NO removal efficiency at low temperature (160-280 C), while over 90% NO removal efficiency maintained in the temperature range of 280-400 C at the gas hourly space velocity (GHSV) of 50,000 h-1. Besides, Ce2Sn1 kept a stable NO removal efficiency within a wide range of GHSV and a long period of reacting time. Meanwhile, Ce2Sn1 exhibited remarkable resistance to both respectively and simultaneously H2O and SO2 poisoning due to the introduction of SnO2. The promotional effect of SnO2 was studied by N2 adsorption-desorption, X-ray diffraction (XRD), Raman spectra, X-ray photoelectron spectroscopy (XPS) and H2 temperature programmed reduction (H2-TPR) for detail information. The characterization results revealed that the excellent catalytic performance of Ce2Sn1 was associated with the higher specific surface area, larger pore volume and poorer crystallization. Besides, the introduction of SnO2 could result in not only greater conversion of Ce4+ to Ce3+ but also the increase amount of chemisorbed oxygen, which are beneficial to improve the SCR activity. More importantly, a novel peak appearing at lower temperatures through the new redox equilibrium of 2Ce4+ + Sn2+ ? 2Ce3+ + Sn4+ and higher total H2 consumption can be obtained by the addition of SnO2. Finally, the possible reaction mechanism of the selective catalytic reduction over Ce2Sn1 was also proposed.

  12. Comparison of preparation methods for ceria catalyst and the effect of surface and bulk sulfates on its activity toward NH3-SCR.

    PubMed

    Chang, Huazhen; Ma, Lei; Yang, Shijian; Li, Junhua; Chen, Liang; Wang, Wei; Hao, Jiming

    2013-11-15

    A series of CeO2 catalysts prepared with sulfate (S) and nitrate (N) precursors by hydrothermal (H) and precipitation (P) methods were investigated in selective catalytic reduction of NOx by NH3 (NH3-SCR). The catalytic activity of CeO2 was significantly affected by the preparation methods and the precursor type. CeO2-SH, which was prepared by hydrothermal method with cerium (IV) sulfate as a precursor, showed excellent SCR activity and high N2 selectivity in the temperature range of 230-450 C. Based on the results obtained by temperature-programmed reduction (H2-TPR), transmission infrared spectra (IR) and thermal gravimetric analysis (TGA), the excellent performance of CeO2-SH was correlated with the surface sulfate species formed in the hydrothermal reaction. These results indicated that sulfate species bind with Ce(4+) on the CeO2-SH catalyst, and the specific sulfate species, such as Ce(SO4)2 or CeOSO4, were formed. The adsorption of NH3 was promoted by these sulfate species, and the probability of immediate oxidation of NH3 to N2O on Ce(4+) was reduced. Accordingly, the selective oxidation of NH3 was enhanced, which contributed to the high N2 selectivity in the SCR reaction. However, the location of sulfate on the CeO2-SP catalyst was different. Plenty of sulfate species were likely deposited on CeO2-SP surface, covering the active sites for NO oxidation, which resulted in poor SCR activity in the test temperature range. Moreover, the resistance to alkali metals, such as Na and K, was improved over the CeO2-SH catalyst. PMID:24140528

  13. Urban NH3 levels and sources in six major Spanish cities.

    PubMed

    Reche, Cristina; Viana, Mar; Karanasiou, Angeliki; Cusack, Michael; Alastuey, Andrs; Artiano, Begoa; Revuelta, M Aranzazu; Lpez-Maha, Purificacin; Blanco-Heras, Gustavo; Rodrguez, Sergio; Snchez de la Campa, Ana M; Fernndez-Camacho, Roco; Gonzlez-Castanedo, Yolanda; Mantilla, Enrique; Tang, Y Sim; Querol, Xavier

    2015-01-01

    A detailed spatial and temporal assessment of urban NH3 levels and potential emission sources was made with passive samplers in six major Spanish cities (Barcelona, Madrid, A Corua, Huelva, Santa Cruz de Tenerife and Valencia). Measurements were conducted during two different periods (winter-autumn and spring-summer) in each city. Barcelona showed the clearest spatial pattern, with the highest concentrations in the old city centre, an area characterised by a high population density and a dense urban architecture. The variability in NH3 concentrations did not follow a common seasonal pattern across the different cities. The relationship of urban NH3 with SO2 and NOX allowed concluding on the causes responsible for the variations in NH3 levels between measurement periods observed in Barcelona, Huelva and Madrid. However, the factors governing the variations in A Corua, Valencia and Santa Cruz de Tenerife are still not fully understood. This study identified a broad variability in NH3 concentrations at the city-scale, and it confirms that NH3 sources in Spanish urban environments are vehicular traffic, biological sources (e.g. garbage containers), wastewater treatment plants, solid waste treatment plants and industry. The importance of NH3 monitoring in urban environments relies on its role as a precursor of secondary inorganic species and therefore PMX. Further research should be addressed in order to establish criteria to develop and implement mitigation strategies for cities, and to include urban NH3 sources in the emission inventories. PMID:25194477

  14. Effects of NH3 flow rate on the thermal plasma synthesis of AlN nanoparticles

    NASA Astrophysics Data System (ADS)

    Kim, Tae-Hee; Choi, Sooseok; Park, Dong-Wha

    2013-11-01

    Aluminium nitride (AlN) nanoparticles were synthesized by using a non-transferred arc plasma. A pellet of micro-sized aluminium (Al) powders was evaporated by using an argon-nitrogen thermal plasma flame, and ammonia (NH3) was introduced into the reactor as a reactive gas. The flow rate of NH3 was controlled from 5 to 25 L/min at a fixed input power of 10.2 kW. In experiments, unreacted Al powder was found at low NH3 flow rates at 5 and 10 L/min. The size and the crystallinity of the synthesized AlN particles increased with increasing flow rate of NH3 until 20 L/min. The maximum particle size of AlN nanoparticle was about 100 nm at a 20 L/min NH3 flow rate. At an excessive flow rate of NH3 of 25 L/min, however, the size and the crystallinity of AlN were decreased. In order to analyze the experimental results for the thermal plasma synthesis of AlN nanoparticles, we carried out numerical simulations on the thermal plasma. The vortex flow of the thermal plasma near the Al pellet was gradually enhanced with increasing NH3 flow rate from 10 to 20 L/min. The strength of the vortex flow, however, was decreased at the highest NH3 flow rate of 25 L/min.

  15. Ultrafast and sensitive room temperature NH3 gas sensors based on chemically reduced graphene oxide.

    PubMed

    Hu, Nantao; Yang, Zhi; Wang, Yanyan; Zhang, Liling; Wang, Ying; Huang, Xiaolu; Wei, Hao; Wei, Liangmin; Zhang, Yafei

    2014-01-17

    Ultrafast and sensitive room temperature NH3 gas sensors based on chemically reduced graphene oxide (rGO) are demonstrated in this work. rGO, which was prepared via the reduction of graphene oxide by pyrrole, exhibited excellent responsive sensitivity and selectivity to ammonia (NH3) gas. The high sensing performance of these rGO sensors with resistance change as high as 2.4% and response time as fast as 1.4 s was realized when the concentration of NH3 gas was as low as 1 ppb. Furthermore, the rGO sensors could rapidly recover to their initial states with IR illumination. The devices also showed excellent repeatability and selectivity to NH3. These rGO sensors, with low cost, low power, and easy fabrication, as well as scalable properties, showed great potential for ultrasensitive detection of NH3 gas in a wide variety of fields. PMID:24334417

  16. Ultrafast and sensitive room temperature NH3 gas sensors based on chemically reduced graphene oxide

    NASA Astrophysics Data System (ADS)

    Hu, Nantao; Yang, Zhi; Wang, Yanyan; Zhang, Liling; Wang, Ying; Huang, Xiaolu; Wei, Hao; Wei, Liangmin; Zhang, Yafei

    2014-01-01

    Ultrafast and sensitive room temperature NH3 gas sensors based on chemically reduced graphene oxide (rGO) are demonstrated in this work. rGO, which was prepared via the reduction of graphene oxide by pyrrole, exhibited excellent responsive sensitivity and selectivity to ammonia (NH3) gas. The high sensing performance of these rGO sensors with resistance change as high as 2.4% and response time as fast as 1.4 s was realized when the concentration of NH3 gas was as low as 1 ppb. Furthermore, the rGO sensors could rapidly recover to their initial states with IR illumination. The devices also showed excellent repeatability and selectivity to NH3. These rGO sensors, with low cost, low power, and easy fabrication, as well as scalable properties, showed great potential for ultrasensitive detection of NH3 gas in a wide variety of fields.

  17. Seasonal NH 3 emissions for the continental united states: Inverse model estimation and evaluation

    NASA Astrophysics Data System (ADS)

    Gilliland, Alice B.; Wyat Appel, K.; Pinder, Robert W.; Dennis, Robin L.

    Significant uncertainty exists in the seasonal distribution of NH 3 emissions since the predominant sources are animal husbandry and fertilizer application. Previous studies that estimated bottom-up and top-down NH 3 emissions have provided the most comprehensive information available about the seasonality of NH 3 emissions. In this study, this bottom-up and top-down emission information is combined with the most recent 2001 USEPA National Emission Inventory (NEI) to construct a best prior estimate of seasonal NH 3 emissions. These emission estimates are then used in an annual 2001 USEPA Community Multiscale Air Quality (CMAQ) model simulation for the continental United States. A key objective of this study is to evaluate these prior NH 3 emission estimates and test the top-down inverse modeling method for a different year and a larger modeling domain than used previously. Based on the final posterior NH 3 emission estimates, the inverse modeling results suggest that the annual total NEI NH 3 emissions are reasonable and that a previous high bias in older USEPA emission inventories has been addressed in the updated inventory. Inverse modeling results suggest that the prior NH 3 emission estimates should be increased in the summer and decreased in the winter, while results for the spring and fall are questionable due to precipitation prediction biases. A final conclusion from this study is that total NH x (NH 3 and aerosol NH 4+) air concentration data are essential for quantitative top-down analyses of NH 3 emissions that can extend beyond what is possible using precipitation chemistry data.

  18. Tetraamminelithium triamminelithium trisulfide, [Li(NH3)4][Li(NH3)3S3

    PubMed Central

    Guentner, Christian; Korber, Nikolaus

    2012-01-01

    The title compound, [Li(NH3)4]+[Li(NH3)3S3]?, an ammoniate of the previously unknown lithium trisulfide, was obtained from the reaction of lithium and sulfur in liquid ammonia. The asymmetric unit consists of two crystallographically independent formula units. The [Li(NH3)4]+ cations are close to regular LiN4 tetrahedra. The anions contain LiSN3 tetrahedra; the SSS bond angles are 110.43?(5) and 109.53?(5). In the crystal, the components are linked by multiple NH?S hydrogen bonds. A weak NH?N hydrogen bond is also present. PMID:23284314

  19. Tetra-amminelithium triamminelithium tris-ulfide, [Li(NH(3))(4)][Li(NH(3))(3)S(3)].

    PubMed

    Guentner, Christian; Korber, Nikolaus

    2012-11-01

    The title compound, [Li(NH(3))(4)](+)[Li(NH(3))(3)S(3)](-), an ammo-niate of the previously unknown lithium tris-ulfide, was obtained from the reaction of lithium and sulfur in liquid ammonia. The asymmetric unit consists of two crystallographically independent formula units. The [Li(NH(3))(4)](+) cations are close to regular LiN(4) tetra-hedra. The anions contain LiSN(3) tetra-hedra; the S-S-S bond angles are 110.43?(5) and 109.53?(5). In the crystal, the components are linked by multiple N-H?S hydrogen bonds. A weak N-H?N hydrogen bond is also present. PMID:23284314

  20. Photosynthesis of Quercus suber is affected by atmospheric NH3 generated by multifunctional agrosystems.

    PubMed

    Pintó-Marijuan, Marta; Da Silva, Anabela Bernardes; Flexas, Jaume; Dias, Teresa; Zarrouk, Olfa; Martins-Loução, Maria Amélia; Chaves, Maria Manuela; Cruz, Cristina

    2013-12-01

    Montados are evergreen oak woodlands dominated by Quercus species, which are considered to be key to biodiversity conservation and ecosystem services. This ecosystem is often used for cattle breeding in most regions of the Iberian Peninsula, which causes plants to receive extra nitrogen as ammonia (NH(3)) through the atmosphere. The effect of this atmospheric NH(3) (NH(3atm)) on ecosystems is still under discussion. This study aimed to evaluate the effects of an NH(3atm) concentration gradient downwind of a cattle barn in a Montado area. Leaves from the selected Quercus suber L. trees along the gradient showed a clear influence of the NH(3) on δ(13)C, as a consequence of a strong limitation on the photosynthetic machinery by a reduction of both stomatal and mesophyll conductance. A detailed study of the impact of NH(3atm) on the photosynthetic performance of Q. suber trees is presented, and new mechanisms by which NH(3) affects photosynthesis at the leaf level are suggested. PMID:24150034

  1. Towards validation of ammonia (NH3) measurements from the IASI satellite

    NASA Astrophysics Data System (ADS)

    Van Damme, M.; Clarisse, L.; Dammers, E.; Liu, X.; Nowak, J. B.; Clerbaux, C.; Flechard, C. R.; Galy-Lacaux, C.; Xu, W.; Neuman, J. A.; Tang, Y. S.; Sutton, M. A.; Erisman, J. W.; Coheur, P. F.

    2015-03-01

    Limited availability of ammonia (NH3) observations is currently a barrier for effective monitoring of the nitrogen cycle. It prevents a full understanding of the atmospheric processes in which this trace gas is involved and therefore impedes determining its related budgets. Since the end of 2007, the Infrared Atmospheric Sounding Interferometer (IASI) satellite has been observing NH3 from space at a high spatio-temporal resolution. This valuable data set, already used by models, still needs validation. We present here a first attempt to validate IASI-NH3 measurements using existing independent ground-based and airborne data sets. The yearly distributions reveal similar patterns between ground-based and space-borne observations and highlight the scarcity of local NH3 measurements as well as their spatial heterogeneity and lack of representativity. By comparison with monthly resolved data sets in Europe, China and Africa, we show that IASI-NH3 observations are in fair agreement, but they are characterized by a smaller variation in concentrations. The use of hourly and airborne data sets to compare with IASI individual observations allows investigations of the impact of averaging as well as the representativity of independent observations for the satellite footprint. The importance of considering the latter and the added value of densely located airborne measurements at various altitudes to validate IASI-NH3 columns are discussed. Perspectives and guidelines for future validation work on NH3 satellite observations are presented.

  2. Towards validation of ammonia (NH3) measurements from the IASI satellite

    NASA Astrophysics Data System (ADS)

    Van Damme, M.; Clarisse, L.; Dammers, E.; Liu, X.; Nowak, J. B.; Clerbaux, C.; Flechard, C. R.; Galy-Lacaux, C.; Xu, W.; Neuman, J. A.; Tang, Y. S.; Sutton, M. A.; Erisman, J. W.; Coheur, P. F.

    2014-12-01

    Limited availability of ammonia (NH3) observations is currently a barrier for effective monitoring of the nitrogen cycle. It prevents a full understanding of the atmospheric processes in which this trace gas is involved and therefore impedes determining its related budgets. Since the end of 2007, the Infrared Atmospheric Sounding Interferometer (IASI) satellite has been observing NH3 from space at a high spatiotemporal resolution. This valuable data set, already used by models, still needs validation. We present here a first attempt to validate IASI-NH3 measurements using existing independent ground-based and airborne data sets. The yearly distributions reveal similar patterns between ground-based and space-borne observations and highlight the scarcity of local NH3 measurements as well as their spatial heterogeneity and lack of representativity. By comparison with monthly resolved data sets in Europe, China and Africa, we show that IASI-NH3 observations are in fair agreement but that they are characterized by a smaller variation in concentrations. The use of hourly and airborne data sets to compare with IASI individual observations allows to investigate the impact of averaging as well as the representativity of independent observations for the satellite footprint. The importance of considering the latter and the added value of densely located airborne measurements at various altitudes to validate IASI-NH3 columns are discussed. Perspectives and guidelines for future validation work on NH3 satellite observations are presented.

  3. NH3 Emission from Fertilizer Application: A Collaborative Study in the Midwestern U.S.

    NASA Astrophysics Data System (ADS)

    Myles, L.; Koloutsou-Vakakis, S.; Bernacchi, C.; Lehmann, C.; Saylor, R. D.; Heuer, M.; Sibble, D.; Caldwell, J. A.; Balasubramanian, S.; Nelson, A. J.; Rood, M. J.

    2014-12-01

    Atmospheric ammonia (NH3) is a precursor for secondary particulate matter and a contributor to soil acidification and eutrophication when deposited to land and surface waters. Fertilizer application is a major source of atmospheric NH3, particularly in intensive agricultural regions such as the Midwestern U.S. Quantification of NH3 emission from fertilized crops remains highly uncertain, which limits the representativeness of NH3 emissions that are used in air quality models. A collaborative study to improve understanding of NH3 emission from fertilizer application focused on [1] measurement of above-canopy NH3 fluxes from a fertilized corn field in Illinois using the relaxed eddy accumulation (REA) and flux gradient methods and in-canopy fluxes with the inverse Lagrangian dispersion analysis method, [2] estimation of NH3 emissions at the regional scale using a process-based approach with available archived independent variables, and the currently used top-down approach, in order to compare and determine differences in predicted spatial and temporal variability of NH3 emissions, and [3] performance of spatial analysis to determine spatial and temporal patterns of ammonia emissions and relate them to independent variables characteristic of land use, soil, meteorology, and agricultural management practices. NH3 flux was measured over and within a maize canopy from pre-cultivation through senescence (May-September 2014) at the University of Illinois at Urbana-Champaign (UIUC) Energy Biosciences Institute Energy Farm, and data from the field study was incorporated into models to facilitate connection of local emissions with the regional scale and to improve understanding of the processes that drive emission and deposition.

  4. Matrix isolation spectroscopy and nuclear spin conversion of NH3 and ND3 in solid parahydrogen.

    PubMed

    Ruzi, Mahmut; Anderson, David T

    2013-10-01

    We present matrix isolation infrared absorption spectra of NH3 and ND3 trapped in solid parahydrogen (pH2) at temperatures around 1.8 K. We used the relatively slow nuclear spin conversion (NSC) of NH3 and ND3 in freshly deposited pH2 samples as a tool to assign the sparse vibration-inversion-rotation (VIR) spectra of NH3 in the regions of the ?2, ?4, 2?4, ?1, and ?3 bands and ND3 in the regions of the ?2, ?4, ?1, and ?3 fundamentals. Partial assignments are also presented for various combination bands of NH3. Detailed analysis of the ?2 bands of NH3 and ND3 indicates that both isotopomers are nearly free rotors; that the vibrational energy is blue-shifted by 1-2%; and that the rotational constants and inversion tunneling splitting are 91-94% and 67-75%, respectively, of the gas-phase values. The line shapes of the VIR absorptions are narrow (0.2-0.4 cm(-1)) for upper states that cannot rotationally relax and broad (>1 cm(-1)) for upper states that can rotationally relax. We report and assign a number of NH3-induced infrared absorption features of the pH2 host near 4150 cm(-1), along with a cooperative transition that involves simultaneous vibrational excitation of a pH2 molecule and rotation-inversion excitation of NH3. The NSCs of NH3 and ND3 were found to follow first-order kinetics with rate constants at 1.8 K of k = 1.88(16) 10(-3) s(-1) and k = 1.08(8) 10(-3) s(-1), respectively. These measured rate constants are compared to previous measurements for NH3 in an Ar matrix and with the rate constants measured for other dopant molecules isolated in solid pH2. PMID:23594210

  5. Field measurements and recent advances in detection of NH3 and HNO3

    NASA Astrophysics Data System (ADS)

    Roscioli, J. R.; Herndon, S. C.; Nowak, J. B.; Zahniser, M. S.; Nelson, D. D.

    2014-12-01

    Ammonia and nitric acid play important roles in aerosol, cloud, and OH chemistry. Presented here are results from several field studies of HNO3 and NH3 sources in the mid- and southwestern United States. Particular focus is paid to NH3 emissions from farming and feedlot operations, and airborne HNO3 measurements over the Denver Metro area. Accurately measuring these species' concentrations on a fast timescale has historically been complicated due to their tendency to slowly and irreversibly interact with instrument surfaces. Recent efforts aimed at mitigating these effects using new inlet technologies will be presented, with demonstrations of time responses of ~1 second for both NH3 and HNO3.

  6. Laser-Induced Reactivity of NH_3 on GaAs Surface

    NASA Astrophysics Data System (ADS)

    Vivet, L.; Dubreuil, B.; Gibert-Legrand, T.; Barthe, M. F.; Perrin, C.

    1997-01-01

    We have studied the reactivity of NH3 on GaAs (100) surface irradiated by 280 nm laser beam at low fluence (< 50 mJ cm^{-2} per pulse) in an experimental set-up which allows a very sensitive characterization of the surface state using mass spectrometry. Thanks to this analysis technique we could follow desorbed NHx (x = 2, 3) species during the laser treatment; this phase achieved, GaN^+ could be identified as an evidence of N fixation using laser desorption mass spectrometry of the treated surface. This characterization mode demonstrates the fluence and laser shot number dependencies on laser treatment efficiency. At 280 nm the N fixation is maximum for laser fluence of about 25 mJ cm^{-2} (per pulse). Still even in the best nitridation conditions, the process appears to be of little efficiency, since it leads to the formation of less than one monolayer of GaN. These results combined with a numerical model of GaAs laser heating give evidence for the laser-induced nitridation to be thermally assisted. Nous avons étudié la réactivité de NH3 sur la surface d'un échantillon de GaAs irradié par un faisceau laser UV (280 nm) de faible fluence (< 50 mJ cm^{-2}). Les expériences ont été menées dans un dispositif expérimental utilisant la spectrométrie de masse et permettant une caractérisation présise de l'état de la surface. Grâce à cette technique d'analyse nous avons pu suivre les espèces NHx^+ (x = 2, 3) désorbées pendant le traitement laser, cette étape terminée, nous avons détecté, par la spectrométrie de masse associée à la désorption laser, les ions GaN^+ émis depuis la surface traitée, ils indiquent que la nitruration de GaAs s'est bien produite pendant le traitement. Cette technique de caractérisation nous a permis d'étudier l'influence de la fluence et du nombre de tirs laser sur l'efficacité du traitement. À 280 nm l'efficacité de la nitruration assistée par laser du GaAs est maximum pour une fluence laser proche de 25 mJ cm^{-2} (par tir). Cependant même dans les conditions optimales de nitruration, le processus apparaît peu efficace puisqu'il conduit à la formation de moins d'une monocouche de GaN. Ces résultats expérimentaux couplés à un modèle numérique du chauffage laser de GaAs ont montré que le laser produit, pour les réactions de surface, des effets essentiellement thermiques proches de ceux obtenus par un chauffage conventionnel, lent, du substrat de GaAs.

  7. Performance Analysis of Rectifier in NH3-H2O Absorprtion Heat Pump

    NASA Astrophysics Data System (ADS)

    Tsujimori, Atsushi; Ozaki, Eiichi; Nakao, Kazushige

    It is necessary to have rectifier in NH3-H20 absorption cycle in order to remove steam from ammonia and steam mixed vapor that is regenerated in generator. Although many studies have made to investigate the performance of rectifier using various fluids experimentally, few theoretical analysis has made without any constant from experimental data. In this study in order to investigate the characteristic of rectifying process, experimental and analytical approach was made concerning plate-type rectifier. In the experiment, the effect of vapor flow rate and NH3 mass concentration of solution on rectifying performance were investigated. And in the analysis the model of heat and mass transfer was proposed considering the distribution of mass concentration in boundary layer. As a result it was found that NH3 mass concentration at rectifier outlet slightly decreased as vapor flow rate increased and that the model could predict NH3 mass concentration in outlet vapor for various concentration in solution.

  8. Cross sections for direct and dissociative ionization of NH3 and CS2 by electron impact

    NASA Technical Reports Server (NTRS)

    Rao, M. V. V. S.; Srivastava, S. K.

    1991-01-01

    A crossed electron beam-molecular beam collision geometry is used to measure cross sections for the production of positive ions by electron impact on NH3 and CS2. Ionization cross-section data for NH3 and the values of various cross sections are presented, as well as ionization efficiency curves for CS2. Considerable differences are found between the various results on NH3. The present values are close to the data of Djuric et al. (1981). The semiempirical calculations of Hare and Meath (1987) differ considerably in the absolute values of cross sections. Discrepancies were observed in comparisons of cross sections of other fragment ions resulting from the ionization and dissociate ionization of NH3.

  9. Indirect measurement of N-14 quadrupolar coupling for NH3 intercalated in potassium graphite

    NASA Technical Reports Server (NTRS)

    Tsang, T.; Fronko, R. M.; Resing, H. A.

    1987-01-01

    A method for indirect measurement of the nuclear quadrupolar coupling was developed and applied to NH3 molecules in the graphite intercalation compound K(NH3)4.3C24, which has a layered structure with alternating carbon and intercalant layers. Three triplets were observed in the H-1 NMR spectra of the compound. The value of the N-14 quadrupolar coupling constant of NH3 (3.7 MHz), determined indirectly from the H-1 NMR spectra, was intermediate between the gas value of 4.1 MHz and the solid-state value of 3.2 MHz. The method was also used to deduce the (H-1)-(H-1) and (N-14)-(H-1) dipolar interactions, the H-1 chemical shifts, and the molecular orientations and motions of NH3.

  10. Worldwide spatiotemporal atmospheric ammonia (NH3) columns variability revealed by satellite

    NASA Astrophysics Data System (ADS)

    Van Damme, M.; Erisman, J. W.; Clarisse, L.; Dammers, E.; Whitburn, S.; Clerbaux, C.; Dolman, A. J.; Coheur, P.-F.

    2015-10-01

    We exploit 6 years of measurements from the Infrared Atmospheric Sounding Interferometer (IASI)/MetOp-A instrument to identify seasonal patterns and interannual variability of atmospheric NH3. This is achieved by analyzing the time evolution of the monthly mean NH3 columns in 12 subcontinental areas around the world, simultaneously considering measurements from IASI morning and evening overpasses. For most regions, IASI has a sufficient sensitivity throughout the years to capture the seasonal patterns of NH3 columns, and we show that each region is characterized by a well-marked and distinctive cycle, with maxima mainly related to underlying emission processes. The largest column abundances and seasonal amplitudes throughout the years are found in southwestern Asia, with maxima twice as large as what is observed in southeastern China. The relation between emission sources and retrieved NH3 columns is emphasized at a smaller regional scale by inferring a climatology of the month of maximum columns.

  11. Quantifying Uncertainty in Daily Temporal Variations of Atmospheric NH3 Emissions Following Application of Chemical Fertilizers

    NASA Astrophysics Data System (ADS)

    Balasubramanian, S.; Koloutsou-Vakakis, S.; Rood, M. J.

    2014-12-01

    Improving modeling predictions of atmospheric particulate matter and deposition of reactive nitrogen requires representative emission inventories of precursor species, such as ammonia (NH3). Anthropogenic NH3 is primarily emitted to the atmosphere from agricultural sources (80-90%) with dominant contributions (56%) from chemical fertilizer usage (CFU) in regions like Midwest USA. Local crop management practices vary spatially and temporally, which influence regional air quality. To model the impact of CFU, NH3 emission inputs to chemical transport models are obtained from the National Emission Inventory (NEI). NH3 emissions from CFU are typically estimated by combining annual fertilizer sales data with emission factors. The Sparse Matrix Operator Kernel Emissions (SMOKE) model is used to disaggregate annual emissions to hourly scale using temporal factors. These factors are estimated by apportioning emissions within each crop season in proportion to the nitrogen applied and time-averaged to the hourly scale. Such approach does not reflect influence of CFU for different crops and local weather and soil conditions. This study provides an alternate approach for estimating temporal factors for NH3 emissions. The DeNitrification DeComposition (DNDC) model was used to estimate daily variations in NH3 emissions from CFU at 14 Central Illinois locations for 2002-2011. Weather, crop and soil data were provided as inputs. A method was developed to estimate site level CFU by combining planting and harvesting dates, nitrogen management and fertilizer sales data. DNDC results indicated that annual NH3 emissions were within ±15% of SMOKE estimates. Daily modeled emissions across 10 years followed similar distributions but varied in magnitudes within ±20%. Individual emission peaks on days after CFU were 2.5-8 times greater as compared to existing estimates from SMOKE. By identifying the episodic nature of NH3 emissions from CFU, this study is expected to provide improvements in predicting atmospheric particulate matter concentrations and deposition of reactive nitrogen.

  12. Toxic effects of Zn2+, Cu2+, Cd2+ and NH3 on Chinese prawn

    NASA Astrophysics Data System (ADS)

    Zang, Weiling; Xu, Xuancheng; Dai, Xilin; Zhu, Zhengguo; Xu, Guirong; Xu, Renguo

    1993-09-01

    This study deals with the toxic effects of Zn2+, Cu2+, Cd2+ and NH3 on Chinese prawn ( Penaeus orientalis). The median lethal concentrations of the toxic matters on Chinese prawn were determined. Cd2+>Cu2+>Zn2+>NH3-Nm is the toxic order of these chemicals to Chinese prawn. The toxic order of concentrated Zn2+ and Cd2+ in tissues and organs of Chinese prawn is in the order. gill>shell+appendage>viscera>muscle.

  13. Global distributions, time series and error characterization of atmospheric ammonia (NH3) from IASI satellite observations

    NASA Astrophysics Data System (ADS)

    Van Damme, M.; Clarisse, L.; Heald, C. L.; Hurtmans, D.; Ngadi, Y.; Clerbaux, C.; Dolman, A. J.; Erisman, J. W.; Coheur, P. F.

    2014-03-01

    Ammonia (NH3) emissions in the atmosphere have increased substantially over the past decades, largely because of intensive livestock production and use of fertilizers. As a short-lived species, NH3 is highly variable in the atmosphere and its concentration is generally small, except near local sources. While ground-based measurements are possible, they are challenging and sparse. Advanced infrared sounders in orbit have recently demonstrated their capability to measure NH3, offering a new tool to refine global and regional budgets. In this paper we describe an improved retrieval scheme of NH3 total columns from the measurements of the Infrared Atmospheric Sounding Interferometer (IASI). It exploits the hyperspectral character of this instrument by using an extended spectral range (800-1200 cm-1) where NH3 is optically active. This scheme consists of the calculation of a dimensionless spectral index from the IASI level1C radiances, which is subsequently converted to a total NH3 column using look-up tables built from forward radiative transfer model simulations. We show how to retrieve the NH3 total columns from IASI quasi-globally and twice daily above both land and sea without large computational resources and with an improved detection limit. The retrieval also includes error characterization of the retrieved columns. Five years of IASI measurements (1 November 2007 to 31 October 2012) have been processed to acquire the first global and multiple-year data set of NH3 total columns, which are evaluated and compared to similar products from other retrieval methods. Spatial distributions from the five years data set are provided and analyzed at global and regional scales. In particular, we show the ability of this method to identify smaller emission sources than those previously reported, as well as transport patterns over the ocean. The five-year time series is further examined in terms of seasonality and interannual variability (in particular as a function of fire activity) separately for the Northern and Southern Hemispheres.

  14. Trigonal-Bipyramidal Coordination in First Ammoniates of ZnF2: ZnF2(NH3)3 and ZnF2(NH3)2.

    PubMed

    Richter, Theresia M M; LeTonquesse, Sylvain; Alt, Nicolas S A; Schlücker, Eberhard; Niewa, Rainer

    2016-03-01

    Single crystals of ZnF2(NH3)3 and ZnF2(NH3)2 were obtained under ammonothermal conditions (250 °C, 196 MPa and 500 °C, 136 MPa). Upon thermal decomposition of both ZnF2(NH3)3 and ZnF2(NH3)2, a microcrystalline powder of ZnF2(NH3) was obtained. ZnF2(NH3)3 and ZnF2(NH3)2 represent probable intermediates in a conceivable ammonothermal synthesis of the semiconductor Zn3N2 and manifest a rare trigonal-bipyramidal coordination of F(-) and NH3 ligands around Zn(2+) according to single-crystal X-ray diffraction. Thermal analysis of all three compounds showed not only ZnF2(NH3) but also ZnF2(NH3)2 to be decomposition intermediates of ZnF2(NH3)3 prior to the formation of ZnF2. All three compounds demonstrate hydrogen bonds, as indicated by the intensities and half-widths of the bands in the vibrational spectra and by short N-H···F distances in the crystal structures of ZnF2(NH3)3 and ZnF2(NH3)2. With ZnF2(NH3)3, ZnF2(NH3)2, and ZnF2(NH3), we present the first ammoniates of ZnF2. PMID:26894942

  15. Improvement of thermal stability of nickel silicide film using NH3 plasma treatment

    NASA Astrophysics Data System (ADS)

    Park, Jingyu; Jeon, Heeyoung; Kim, Hyunjung; Jang, Woochool; Kim, Jinho; Kang, Chunho; Yuh, Junhan; Jeon, Hyeongtag

    2014-09-01

    In this study, the effects of NH3 plasma pre-treatment on the characteristics of NiSi films were investigated. Nickel film was deposited on a Si(100) substrate by meal-organic chemical vapor deposition (MOCVD) using Ni(iPr-DAD)2 as a Ni precursor and NH3 gas as a reactant. Before the Ni deposition, silicon substrate was treated by NH3 plasma with various flow rates to adjust the amount of inserted hydrogen and nitrogen atoms. The Ni films showed a considerable low sheet resistance around 12 ?/?, irrespective of the NH3 plasma pre-treatment conditions. The sheet resistance of the all Ni films was decreased after annealing at 500 C due to formation of a low resistive NiSi phase. NiSi films with a high flow rate of NH3 plasma pre-treatment exhibited a lower sheet resistance and smoother interface between NiSi and the Si substrate than the low flow rate of the NH3 plasma pre-treated NiSi films because lots of nitrogen atoms incorporated at grain boundary of NiSi which result in reduce total surface/interface energy of NiSi and enhancement interface characteristics.

  16. On the Interaction of CO and NH3 with BH3 and BF3

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Ricca, Alessandra; Langhoff, Stephen R. (Technical Monitor)

    1994-01-01

    BH3CO, BF3CO, BH3NH3, and BF3NH3 have been studied using density functional theory (DFT). The computed geometries are in reasonable agreement with experiment. BF3CO is found to be weakly bound. The binding energies of BH3CO, BH3NH3 , and BF3NH3 have also been computed using the coupled cluster singles and doubles level of theory, including a perturbational estimate of the connected triples [CCSD(T)]. These CCSD(T) calculations are performed using correlation consistent polarized-valence triple-zeta basis sets. These are expected to be the most accurate binding energies to date. The DFT binding energies are in good agreement with those obtained at the CCSD(T) level. The bonding is analyzed using the constrained space orbital variation (CSOV) technique. In addition to analyzing the bonding in BH3CO, BH3NH3, and BF3NH3, the CSOV approach is used to study why the bonding in BF3CO is so weak.

  17. Atmospheric NO2 and NH3 deposition into a typical agro-ecosystem in Southeast China.

    PubMed

    Cui, Jian; Zhou, Jing; Yang, Hao; Peng, Ying; He, Yuanqiu; Chan, Andy

    2011-11-01

    The dry deposition of atmospheric nitrogen (including NO(2) and NH(3)) into a typical agro-ecosystem in Southeast China during 2006-2007 was estimated. Results indicated that the dry deposition velocities of NO(2) and NH(3) ranged from 0.04-0.24 cm s(-1) and 0.09-0.47 cm s(-1), respectively. The higher values appeared in the non-crop growing period. Concentrations of atmospheric NO(2) and NH(3) ranged from 24.64-104.10 ?gN m(-3) and 14.40-389.6 ?gN m(-3), respectively. Variation of the NH(3) mixing ratio showed a clear double-peak. NO(2) and NH(3) deposition fluxes were 74.68-80.75 kgN ha(-1), which was equivalent to 162.4 and 175.5 kg ha(-1) of urea applied in 2006-2007. The N deposition fluxes were 13.91-40.38 and 5.33-22.73 kgN ha(-1) in peanut and rice growing periods, accounting for 8.18%-40.38% and 2.13%-23.06% of N fertilizer usages, respectively. NO(2) and NH(3) deposition were significant for the red soil farmland. PMID:21987178

  18. SEASONAL NH3 EMISSION ESTIMATES FOR THE EASTERN UNITED STATES BASED ON AMMONIUM WET CONCENTRATIONS AND AN INVERSE MODELING METHOD

    EPA Science Inventory

    Significant uncertainty exists in the magnitude and variability of ammonia (NH3) emissions. NH3 emissions are needed as input for air quality modeling of aerosols and deposition of nitrogen compounds. Approximately 85% of NH3 emissions are estimated to come from agricultural ...

  19. An apical permeability barrier to NH3/NH4+ in isolated, perfused colonic crypts.

    PubMed Central

    Singh, S K; Binder, H J; Geibel, J P; Boron, W F

    1995-01-01

    Fermentation of nonabsorbed nutrients in the colon generates high concentrations of NH3/NH4+ in the colonic lumen. NH3 is a small, lipophilic neutral weak base that readily permeates almost all cell membranes, whereas its conjugate weak acid NH4+ generally crosses membranes much more slowly. It is not known how colonocytes maintain intracellular pH in the unusual acid-base environment of the colon, where permeant acid-base products of fermentation exist in high concentration. To address this issue, we hand dissected and perfused single, isolated crypts from rabbit proximal colon, adapting techniques from renal-tubule microperfusion. Crypt perfusion permits control of solutions at the apical (luminal) and basolateral (serosal) surfaces of crypt cells. We assessed apical- vs. basolateral-membrane transport of NH3/NH4+ by using fluorescent dyes and digital imaging to monitor intracellular pH of microvacuolated crypt cells as well as luminal pH. We found that, although the basolateral membranes have normal NH3/NH4+ permeability properties, there is no evidence for transport of either NH3 or NH4+ across the apical borders of these crypt cells. Disaggregating luminal mucus did not increase the transport of NH3/NH4+ across the apical border. We conclude that, compared to the basolateral membrane, the apical border of crypt colonocytes has a very low permeability-area product for NH3/NH4+. This barrier may represent an important adaptation for the survival of crypt cells in the environment of the colon. Images Fig. 1 PMID:8524806

  20. MARVEL analysis of the measured high-resolution spectra of 14NH3

    NASA Astrophysics Data System (ADS)

    Al Derzi, Afaf R.; Furtenbacher, Tibor; Tennyson, Jonathan; Yurchenko, Sergei N.; Csszr, Attila G.

    2015-08-01

    Accurate, experimental rotational-vibrational energy levels and line positions, with associated labels and uncertainties, are reported for the ground electronic state of the symmetric-top 14NH3 molecule. All levels and lines are based on critically reviewed and validated high-resolution experimental spectra taken from 56 literature sources. The transition data are in the 0.7-17 000 cm-1 region, with a large gap between 7000 and 15 000 cm-1. The MARVEL (Measured Active Rotational-Vibrational Energy Levels) algorithm is used to determine the energy levels. Out of the 29 450 measured transitions 10 041 and 18 947 belong to ortho- and para-14NH3, respectively. A careful analysis of the related experimental spectroscopic network (SN) allows 28 530 of the measured transitions to be validated, 18 178 of these are unique, while 462 transitions belong to floating components. Despite the large number of spectroscopic measurements published over the last 80 years, the transitions determine only 30 vibrational band origins of 14NH3, 8 for ortho- and 22 for para-14NH3. The highest J value, where J stands for the rotational quantum number, for which an energy level is validated is 31. The number of experimental-quality ortho- and para-14NH3 rovibrational energy levels is 1724 and 3237, respectively. The MARVEL energy levels are checked against ones in the BYTe first-principles database, determined previously. The lists of validated lines and levels for 14NH3 are deposited in the Supporting Information to this paper. Combination of the MARVEL energy levels with first-principles absorption intensities yields a huge number of experimental-quality rovibrational lines, which should prove to be useful for the understanding of future complex high-resolution spectroscopy on 14NH3; these lines are also deposited in the Supporting Information to this paper.

  1. Rotational dynamics of organic cations in the CH3NH3PbI3 perovskite.

    PubMed

    Chen, Tianran; Foley, Benjamin J; Ipek, Bahar; Tyagi, Madhusudan; Copley, John R D; Brown, Craig M; Choi, Joshua J; Lee, Seung-Hun

    2015-12-14

    Methylammonium lead iodide (CH3NH3PbI3) based solar cells have shown impressive power conversion efficiencies of above 20%. However, the microscopic mechanism of the high photovoltaic performance is yet to be fully understood. Particularly, the dynamics of CH3NH3(+) cations and their impact on relevant processes such as charge recombination and exciton dissociation are still poorly understood. Here, using elastic and quasi-elastic neutron scattering techniques and group theoretical analysis, we studied rotational modes of the CH3NH3(+) cation in CH3NH3PbI3. Our results show that, in the cubic (T > 327 K) and tetragonal (165 K < T < 327 K) phases, the CH3NH3(+) ions exhibit four-fold rotational symmetry of the C-N axis (C4) along with three-fold rotation around the C-N axis (C3), while in the orthorhombic phase (T < 165 K) only C3 rotation is present. At around room temperature, the characteristic relaxation times for the C4 rotation are found to be ?C4 ? 5 ps while for the C3 rotation ?C3 ? 1 ps. The T-dependent rotational relaxation times were fitted with Arrhenius equations to obtain activation energies. Our data show a close correlation between the C4 rotational mode and the temperature dependent dielectric permittivity. Our findings on the rotational dynamics of CH3NH3(+) and the associated dipole have important implications for understanding the low exciton binding energy and a slow charge recombination rate in CH3NH3PbI3 which are directly relevant for the high solar cell performance. PMID:26549203

  2. Study on adsorption and desorption of ammonia on graphene.

    PubMed

    Zhang, Zhengwei; Zhang, Xinfang; Luo, Wei; Yang, Hang; He, Yanlan; Liu, Yixing; Zhang, Xueao; Peng, Gang

    2015-12-01

    The gas sensor based on pristine graphene with conductance type was studied theoretically and experimentally. The time response of conductance measurements showed a quickly and largely increased conductivity when the sensor was exposed to ammonia gas produced by a bubble system of ammonia water. However, the desorption process in vacuum took more than 1 h which indicated that there was a larger number of transferred carriers and a strong adsorption force between ammonia and graphene. The desorption time could be greatly shortened down to about 2 min by adding the flow of water-vapor-enriched air at the beginning of the recovery stage which had been confirmed as a rapid and high-efficiency desorption process. Moreover, the optimum geometries, adsorption energies, and the charge transfer number of the composite systems were studied with first-principle calculations. However, the theoretical results showed that the adsorption energy between NH3 and graphene was too small to fit for the experimental phenomenon, and there were few charges transferred between graphene and NH3 molecules, which was completely different from the experiment measurement. The adsorption energy between NH4 and graphene increased stage by stage which showed NH4 was a strong donor. The calculation suggested that H2O molecule could help a quick desorption of NH4 from graphene by converting NH4 to NH3 or (NH3)n(H2O)m groups, which was consistent with the experimental results. This study demonstrates that the ammonia gas produced by a bubble system of ammonia water is mainly ammonium groups of NH3 and NH4, and the NH4 moleculars are ideal candidates for the molecular doping of graphene while the interaction between graphene and the NH3 moleculars is weak. PMID:26377212

  3. Study on adsorption and desorption of ammonia on graphene

    NASA Astrophysics Data System (ADS)

    Zhang, Zhengwei; Zhang, Xinfang; Luo, Wei; Yang, Hang; He, Yanlan; Liu, Yixing; Zhang, Xueao; Peng, Gang

    2015-09-01

    The gas sensor based on pristine graphene with conductance type was studied theoretically and experimentally. The time response of conductance measurements showed a quickly and largely increased conductivity when the sensor was exposed to ammonia gas produced by a bubble system of ammonia water. However, the desorption process in vacuum took more than 1 h which indicated that there was a larger number of transferred carriers and a strong adsorption force between ammonia and graphene. The desorption time could be greatly shortened down to about 2 min by adding the flow of water-vapor-enriched air at the beginning of the recovery stage which had been confirmed as a rapid and high-efficiency desorption process. Moreover, the optimum geometries, adsorption energies, and the charge transfer number of the composite systems were studied with first-principle calculations. However, the theoretical results showed that the adsorption energy between NH3 and graphene was too small to fit for the experimental phenomenon, and there were few charges transferred between graphene and NH3 molecules, which was completely different from the experiment measurement. The adsorption energy between NH4 and graphene increased stage by stage which showed NH4 was a strong donor. The calculation suggested that H2O molecule could help a quick desorption of NH4 from graphene by converting NH4 to NH3 or (NH3)n(H2O)m groups, which was consistent with the experimental results. This study demonstrates that the ammonia gas produced by a bubble system of ammonia water is mainly ammonium groups of NH3 and NH4, and the NH4 moleculars are ideal candidates for the molecular doping of graphene while the interaction between graphene and the NH3 moleculars is weak.

  4. Effects of atmospheric ammonia (NH3) on terrestrial vegetation: a review.

    PubMed

    Krupa, S V

    2003-01-01

    At the global scale, among all N (nitrogen) species in the atmosphere and their deposition on to terrestrial vegetation and other receptors, NH3 (ammonia) is considered to be the foremost. The major sources for atmospheric NH3 are agricultural activities and animal feedlot operations, followed by biomass burning (including forest fires) and to a lesser extent fossil fuel combustion. Close to its sources, acute exposures to NH3 can result in visible foliar injury on vegetation. NH3 is deposited rapidly within the first 4-5 km from its source. However, NH3 is also converted in the atmosphere to fine particle NH4+ (ammonium) aerosols that are a regional scale problem. Much of our current knowledge of the effects of NH3 on higher plants is predominantly derived from studies conducted in Europe. Adverse effects on vegetation occur when the rate of foliar uptake of NH3 is greater than the rate and capacity for in vivo detoxification by the plants. Most to least sensitive plant species to NH3 are native vegetation > forests > agricultural crops. There are also a number of studies on N deposition and lichens, mosses and green algae. Direct cause and effect relationships in most of those cases (exceptions being those locations very close to point sources) are confounded by other environmental factors, particularly changes in the ambient SO2 (sulfur dioxide) concentrations. In addition to direct foliar injury, adverse effects of NH3 on higher plants include alterations in: growth and productivity, tissue content of nutrients and toxic elements, drought and frost tolerance, responses to insect pests and disease causing microorganisms (pathogens), development of beneficial root symbiotic or mycorrhizal associations and inter species competition or biodiversity. In all these cases, the joint effects of NH3 with other air pollutants such as all-pervasive O3 or increasing CO2 concentrations are poorly understood. While NH3 uptake in higher plants occurs through the shoots, NH4+ uptake occurs through the shoots, roots and through both pathways. However, NH4+ is immobile in the soil and is converted to NO3- (nitrate). In agricultural systems, additions of NO3- to the soil (initially as NH3 or NH4+) and the consequent increases in the emissions of N2O (nitrous oxide, a greenhouse gas) and leaching of NO3- into the ground and surface waters are of major environmental concern. At the ecosystem level NH3 deposition cannot be viewed alone, but in the context of total N deposition. There are a number of forest ecosystems in North America that have been subjected to N saturation and the consequent negative effects. There are also heathlands and other plant communities in Europe that have been subjected to N-induced alterations. Regulatory mitigative approaches to these problems include the use of N saturation data or the concept of critical loads. Current information suggests that a critical load of 5-10 kg ha(-1) year(-1) of total N deposition (both dry and wet deposition combined of all atmospheric N species) would protect the most vulnerable terrestrial ecosystems (heaths, bogs, cryptogams) and values of 10-20 kg ha(-1) year(-1) would protect forests, depending on soil conditions. However, to derive the best analysis, the critical load concept should be coupled to the results and consequences of N saturation. PMID:12713921

  5. Theoretical study of adsorption and dissociation of NH3 on pentanuclear Fe(111) surface

    NASA Astrophysics Data System (ADS)

    Purwiandono, G.; Triyono; Wijaya, K.

    2016-02-01

    Theoretical study regarding the adsorption and dissociation of NH3 molecule on Fe(111) surface has been carried out. The method used was DFT-B3LYP, and the basis sets used were ECP and 6-311G**. This research aimed at giving the theoretical understanding of adsorption and dissociation of NH3 molecule on Fe(111) surface. The adsorption and dissociation were studied based on the energetic parameter, bond length, electron population, vibration and orbital interaction. The result of theoretical calculation revealed that the on top position is the interaction position with the minimum energy for the adsorption of NH3 molecule on Fe(111) surface. The analysis of electron population of the two composing molecular orbitals indicated that the transfer of electron has an important role in the mechanism of adsorption. The visualization of molecular orbital showed that the transfer of electron occurred in the electron pairs of the interacting orbital. Relating to the adsorption mechanism and the overlapping of interaction orbitals, NH3 molecule provides the Highest Occupied Molecular Orbital (HOMO) as the interaction pair for the Lowest Unoccupied Molecular Orbital (LUMO) on Fe surface. The insignificant difference between the oxidation state of N and H atoms as well as the higher hemolytic N-H bond dissociation energy (compared to heterolytic dissociation) cause the adsorption mechanism of NH3 on Fe(111) model to occur through homolytic-dissociative chemisorption.

  6. Detection of NH3 by quartz crystal microbalance coated with TiO2

    NASA Astrophysics Data System (ADS)

    Georgieva, V.; Donkov, N.; Spassov, L.; Petkov, P.; Gadjanova, V.

    2008-05-01

    A quartz resonator with a thin TiO2 film is investigated in view of possible applications as a sensor for detecting the presence of ammonia in the ambient. A study of the sorption properties of thin TiO2 films to NH3 vapors is also presented. The films are deposited using electron beam evaporation. In order to determine the sorption ability of TiO2 to NH3, a quartz crystal microbalance (QCM) with a thin TiO2 film is used, the latter serving as a receptor for the NH3 gas. The AT-cut 16-MHz quartz resonator allows conversion of the additional mass load that occurs as a result of sorption into a frequency shift. The experiments are carried out by measuring the QCM resonant frequency shift due to the absorption of vapors from an aqueous solution of NH3 with different concentration ranging from 100 to 1000 ppm. The experimental results obtained indicate that the variation of the resonant frequency is a function of the ammonia concentration. This demonstrates that a QCM covered with a thin TiO2 layer is sensitive to ammonia vapors at room temperature and is capable of detecting NH3 concentrations in the range investigated (100-1000 ppm).

  7. Effects of atmospheric NH 3 on epiphytic lichens in the Netherlands . the pitfalls of biological monitoring

    NASA Astrophysics Data System (ADS)

    Van Dobben, H. F.; Ter Braak, C. J. F.

    The lichen monitoring programme included in the Dutch National Air Quality Survey was used to explore the utility of these organisms as indicators for atmospheric ammonia. Over the period 1977-1990 the "nitrophytic" species (assumed to occur optimally in N-rich habitats) strongly increased at the 150 monitoring stations of the network. Furthermore, a positive correlation was found between the occurrence of these species and local NH 3 concentrations. Earlier reports therefore proposed the use of nitrophytic lichens as bioindicators for NH 3 and considered their increase as an indication for increasing NH 3 concentrations. However, a more careful statistical analysis of the available data shows a strong impact of decreasing SO 2 levels on all epiphytic lichens, including the nitrophytic species. It is now clear that the "nitrophytic" species do respond to atmospheric NH 3, but their response to SO 2 is far stronger. Furthermore, chemical analysis of tree bark shows that nitrophytic lichen species do not respond directly to N levels, but are rather favoured by the high bark pH associated with high NH 3 levels. Three mechanisms are presented to explain the strong response of the nitrophytic lichens to decreasing SO 2 levels.

  8. Re-estimating NH3 Emissions from Chinese Cropland by a New Nonlinear Model.

    PubMed

    Zhou, Feng; Ciais, Philippe; Hayashi, Kentaro; Galloway, James; Kim, Dong-Gill; Yang, Changliang; Li, Shiyu; Liu, Bin; Shang, Ziyin; Gao, Shuoshuo

    2016-01-19

    Ammonia (NH3) released to the atmosphere leads to a cascade of impacts on the environment, yet estimation of NH3 volatilization from cropland soils (VNH3) in a broad spatial scale is still quite uncertain in China. This mainly stems from nonlinear relationships between VNH3 and relevant factors. On the basis of 495 site-years of measurements at 78 sites across Chinese croplands, we developed a nonlinear Bayesian tree regression model to determine how environmental factors modulate the local derivative of VNH3 to nitrogen application rates (Nrate) (VR, %). The VNH3-Nrate relationship was nonlinear. The VR of upland soils and paddy soils depended primarily on local water input and Nrate, respectively. Our model demonstrated good reproductions of VNH3 compared to previous models, i.e., more than 91% of the observed VR variance at sites in China and 79% of those at validation sites outside China. The observed spatial pattern of VNH3 in China agreed well with satellite-based estimates of NH3 column concentrations. The average VRs in China derived from our model were 14.8 ± 2.9% and 11.8 ± 2.0% for upland soils and paddy soils, respectively. The estimated annual NH3 emission in China (3.96 ± 0.76 TgNH3·yr(-1)) was 40% greater than that based on the IPCC Tier 1 guideline. PMID:26710302

  9. Mechanism of NH4(+) Recruitment and NH3 Transport in Rh Proteins.

    PubMed

    Baday, Sefer; Orabi, Esam A; Wang, Shihao; Lamoureux, Guillaume; Bernèche, Simon

    2015-08-01

    In human cells, membrane proteins of the rhesus (Rh) family excrete ammonium and play a role in pH regulation. Based on high-resolution structures, Rh proteins are generally understood to act as NH3 channels. Given that cell membranes are permeable to gases like NH3, the role of such proteins remains a paradox. Using molecular and quantum mechanical calculations, we show that a crystallographically identified site in the RhCG pore actually recruits NH4(+), which is found in higher concentration and binds with higher affinity than NH3, increasing the efficiency of the transport mechanism. A proton is transferred from NH4(+) to a signature histidine (the only moiety thermodynamically likely to accept a proton) followed by the diffusion of NH3 down the pore. The excess proton is circulated back to the extracellular vestibule through a hydrogen bond network, which involves a highly conserved and functionally important aspartic acid, resulting in the net transport of NH3. PMID:26190573

  10. [Effects of superphosphate addition on NH3 and greenhouse gas emissions during vegetable waste composting].

    PubMed

    Yang, Yan; Sun, Qin-ping; Li, Ni; Liu, Chun-sheng; Li, Ji-jin; Liu, Ben-sheng; Zou, Guo-yuan

    2015-01-01

    To study the effects of superphosphate (SP) on the NH, and greenhouse gas emissions, vegetable waste composting was performed for 27 days using 6 different treatments. In addition to the controls, five vegetable waste mixtures (0.77 m3 each) were treated with different amounts of the SP additive, namely, 5%, 10%, 15%, 20% and 25%. The ammonia volatilization loss and greenhouse gas emissions were measured during composting. Results indicated that the SP additive significantly decreased the ammonia volatilization and greenhouse gas emissions during vegetable waste composting. The additive reduced the total NH3 emission by 4.0% to 16.7%. The total greenhouse gas emissions (CO2-eq) of all treatments with SP additives were decreased by 10.2% to 20.8%, as compared with the controls. The NH3 emission during vegetable waste composting had the highest contribution to the greenhouse effect caused by the four different gases. The amount of NH3 (CO2-eq) from each treatment ranged from 59.90 kg . t-1 to 81.58 kg . t-1; NH3(CO2-eq) accounted for 69% to 77% of the total emissions from the four gases. Therefore, SP is a cost-effective phosphorus-based fertilizer that can be used as an additive during vegetable waste composting to reduce the NH3 and greenhouse gas emissions as well as to improve the value of compost as a fertilizer. PMID:25985667

  11. Nitrogen conversion in relation to NH3 and HCN during microwave pyrolysis of sewage sludge.

    PubMed

    Tian, Yu; Zhang, Jun; Zuo, Wei; Chen, Lin; Cui, Yanni; Tan, Tao

    2013-04-01

    The nitrogen conversions in relation to NH3 and HCN were investigated during microwave pyrolysis of sewage sludge. The nitrogen distributions and evolution of nitrogen functionalities in the char, tar, and gas fractions were conducted. The results suggested that the thermal cracking of protein in sludge produced three important intermediate compounds, including the amine-N, heterocyclic-N, and nitrile-N compounds. The deamination of amine-N compounds resulted from labile proteins cracking led to the formation of NH3 (about 7.5% of SS-N) between 300 and 500 C. The cracking of nitrile-N and heterocyclic-N compounds in the tars from the dehydrogenation and polymerization of amine-N generated HCN (6.6%) from 500 to 800 C, respectively. Moreover, the ring-opening of heterocyclic-N in the char and tar contributed to the release of NH3 accounting for about 18.3% of SS-N with the temperature increasing from 500 to 800 C. Specifically, the thermal cracking of amine-N, heterocyclic-N and nitrile-N compounds contributed to above 80% of the total (HCN+NH3) productions. Consequently, it might be able to reduce the HCN and NH3 emissions through controlling the three intermediates production at the temperature of 500-800 C. PMID:23477529

  12. Thermal Durability of Cu-CHA NH3-SCR Catalysts for Diesel NOx Reduction

    SciTech Connect

    Schmieg, Steven J.; Oh, Se H.; Kim, Chang H.; Brown, David B.; Lee, Jong H.; Peden, Charles HF; Kim, Do Heui

    2012-04-30

    Multiple catalytic functions (NOx conversion, NO and NH3 oxidation, NH3 storage) of a commercial Cu-zeolite urea/NH3-SCR catalyst were assessed in a laboratory fixed-bed flow reactor system after differing degrees of hydrothermal aging. Catalysts were characterized by using x-ray diffraction (XRD), 27Al solid state nuclear magnetic resonance (NMR) and transmission electron microscopy (TEM) / energy dispersive X-ray (EDX) spectroscopy to develop an understanding of the degradation mechanisms during catalyst aging. The catalytic reaction measurements of laboratory-aged catalysts were performed, which allows us to obtain a universal curve for predicting the degree of catalyst performance deterioration as a function of time at each aging temperature. Results show that as the aging temperature becomes higher, the zeolite structure collapses in a shorter period of time after an induction period. The decrease in SCR performance was explained by zeolite structure destruction and/or Cu agglomeration, as detected by XRD/27Al NMR and by TEM/EDX, respectively. Destruction of the zeolite structure and agglomeration of the active phase also results in a decrease in the NO/NH3 oxidation activity and the NH3 storage capacity of the catalyst. Selected laboratory aging conditions (16 h at 800oC) compare well with a 135,000 mile vehicle-aged catalyst for both performance and characterization criteria.

  13. Laboratory Spectral Studies of NH3 Ice Mixtures Relevant to Astrophysical Environments

    NASA Astrophysics Data System (ADS)

    White, Douglas; Mastrapa, R. M. E.; Gerakines, P. A.; Sandford, S. A.

    2012-05-01

    Small quantities of NH3 have been detected in interstellar environments such as icy grain mantles and cometary environments via infrared (IR) absorption spectroscopy in the range ? = 0.9-25 ?m (e.g., Hagen et al., 1980; Crovisier, 1997; Lacy et al., 1998). In our presentation, we will describe spectral studies of some H2O-dominated ice mixtures containing small amounts (?10%) of NH3. We also present spectral data collected at the University of Alabama at Birmingham Astrophysics Laboratory of H2O-dominated ice mixtures containing NH3 (White 2010). Positions and profiles of absorption features of NH3 are noted according to temperature and mixture, along with the profiles of H2O. Mixtures with other species such as CO2 are also investigated. These results may then be used to identify IR spectral signatures from NH3 and other species from observational data from ground- and space-based observatories. Crovisier, J. 1997, Earth Moon and Planets, 79, 125 Hagen, W., Allamandola, L. J., & Greenberg, J. M. 1980, A&A, 86, L3 Lacy, J. H., Faraji, H., Sandford, S. A., & Allamandola, L. J. 1998, The Astrophysical Journal Letters, 501, L105 White, D. W. 2010, PhD thesis, University of Alabama at Birmingham

  14. NH2 fluorescence efficiencies and the NH3 abundance in Comet Halley

    NASA Astrophysics Data System (ADS)

    Tegler, S.; Wyckoff, S.

    1989-08-01

    If NH3 is the dominant source of the NH2 observed in comet spectra, then the NH3 abundance can in principle be accurately determined. Fluorescence efficiencies for the (0, v-prime/2/, O) to (0, 0, 0) progression of NH2 bands are calculated for NH2 bands likely to be observed in the 4500-8200-A region of comets. The results differ from previous determinations of the NH2 band fluorescence efficiencies by factors in the range 1.4-5.9, leading t6o significant changes in previously reported NH2 production rates in comets. A recalculation of the NH3/H2O abundance ratio in Comet Halley gives about (0.5 + or - 0.2) percent in better agreement with the Giotto ion-mass-spectrometer results of Allen et al (1987).

  15. Quantifying local traffic contributions to NO2 and NH3 concentrations in natural habitats.

    PubMed

    Gadsdon, Sally R; Power, Sally A

    2009-10-01

    NO(2) and NH(3) concentrations were measured across a Special Area for Conservation in southern England, at varying distances from the local road network. Exceedances of the critical levels for these pollutants were recorded at nearly all roadside locations, extending up to 20 m away from roads at some sites. Further, paired measurements of NH(3) and NO(2) concentrations revealed differences between ground and tree canopy levels. At "background" sites, away from the direct influence of roads, concentrations were higher within tree canopies than at ground level; the reverse pattern was, however, seen at roadside locations. Calculations of pollutant deposition rates showed that nitrogen inputs are dominated by NH(3) at roadside sites. This study demonstrates that local traffic emissions contribute substantially to the exceedance of critical levels and critical loads, and suggests that on-site monitoring is needed for sites of nature conservation value which are in close proximity to local transport routes. PMID:19427723

  16. Do Cu 2+NH 3 and Cu 2+OH 2 exist?: theory confirms `yes!'

    NASA Astrophysics Data System (ADS)

    El-Nahas, Ahmed M.; Tajima, Nobuo; Hirao, Kimihiko

    2000-02-01

    CCSD(T) and MRMP calculations with TZP+ quality basis sets are used to study the interaction of Cu 2+ with up to two ligand molecules L (L=H 2O, H 2S, NH 3, and PH 3). The dissociation to Cu + and L + is much more stable than the formation of Cu 2+L adducts (by 76-100 kcal/mol). Nevertheless, it might be possible to obtain a one-ligand complex for H 2O and NH 3; barrier heights of 7 and 9 kcal/mol, respectively, are assigned for the dissociation process. Two ligands from H 2O and NH 3 can give more stable complexes with Cu 2+ as the barrier heights reach 40 kcal/mol. In order to obtain stable complexes of PH 3 or H 2S with Cu 2+, at least two ligands are required.

  17. Resonances in rotationally inelastic scattering of NH3 and ND3 with H2.

    PubMed

    Ma, Qianli; van der Avoird, Ad; Loreau, Jrme; Alexander, Millard H; van de Meerakker, Sebastiaan Y T; Dagdigian, Paul J

    2015-07-28

    We present theoretical studies on the scattering resonances in rotationally inelastic collisions of NH3 and ND3 molecules with H2 molecules. We use the quantum close-coupling method to compute state-to-state integral and differential cross sections for the NH3/ND3-H2 system for collision energies between 5 and 70 cm(-1), using a previously reported potential energy surface [Maret et al., Mon. Not. R. Astron. Soc. 399, 425 (2009)]. We identify the resonances as shape or Feshbach resonances. To analyze these, we use an adiabatic bender model, as well as examination at the scattering wave functions and lifetimes. The strength and width of the resonance peaks suggest that they could be observed in a crossed molecular beam experiment involving a Stark-decelerated NH3 beam. PMID:26233134

  18. Mixing of Dust and NH3 Observed Globally over Anthropogenic Dust Sources

    NASA Technical Reports Server (NTRS)

    Ginoux, P.; Clarisse, L.; Clerbaux, C.; Coheur, P.-F.; Dubovik, O.; Hsu, N. C.; Van Damme, M.

    2012-01-01

    The global distribution of dust column burden derived from MODIS Deep Blue aerosol products is compared to NH3 column burden retrieved from IASI infrared spectra. We found similarities in their spatial distributions, in particular their hot spots are often collocated over croplands and to a lesser extent pastures. Globally, we found 22% of dust burden collocated with NH3, with only 1% difference between land-use databases. This confirms the importance of anthropogenic dust from agriculture. Regionally, the Indian subcontinent has the highest amount of dust mixed with NH3 (26 %), mostly over cropland and during the pre-monsoon season. North Africa represents 50% of total dust burden but accounts for only 4% of mixed dust, which is found over croplands and pastures in Sahel and the coastal region of the Mediterranean. In order to evaluate the radiative effect of this mixing on dust optical properties, we derive the mass extinction efficiency for various mixtures of dust and NH3, using AERONET sunphotometers data. We found that for dusty days the coarse mode mass extinction efficiency decreases from 0.62 to 0.48 square meters per gram as NH3 burden increases from 0 to 40 milligrams per square meter. The fine mode extinction efficiency, ranging from 4 to 16 square mters per gram, does not appear to depend on NH3 concentration or relative humidity but rather on mineralogical composition and mixing with other aerosols. Our results imply that a significant amount of dust is already mixed with ammonium salt before its long range transport. This in turn will affect dust lifetime, and its interactions with radiation and cloud properties

  19. Correlation of superconductivity with crystal structure in (NH3)yC sxFeSe

    NASA Astrophysics Data System (ADS)

    Zheng, Lu; Miao, Xiao; Sakai, Yusuke; Goto, Hidenori; Uesugi, Eri; Eguchi, Ritsuko; Nishiyama, Saki; Sugimoto, Kunihisa; Fujiwara, Akihiko; Kubozono, Yoshihiro

    2016-03-01

    The superconducting transition temperature Tc of ammoniated metal-doped FeSe (NH3)yMxFeSe (M : metal atom) has been scaled with the FeSe plane spacing, and it has been suggested that the FeSe plane spacing depends on the location of metal atoms in (NH3)yMxFeSe crystals. Although the crystal structure of (NH3)yL ixFeSe exhibiting a high Tc (˜44 K) was determined from neutron diffraction, the structure of (NH3)yMxFeSe exhibiting a low Tc (˜32 K) has not been determined thus far. Here, we determined the crystal structure of (NH3)yC s0.4FeSe (Tc=33 K ) through the Rietveld refinement of the x-ray diffraction (XRD) pattern measured with synchrotron radiation at 30 K. The XRD pattern was analyzed based on two different models, on-center and off-center, under a space group of I 4 /m m m . In the on-center structure, the Cs occupies the 2 a site and the N of N H3 may occupy either the 4 c or 2 b site, or both. In the off-center structure, the Cs may occupy either the 4 c or 2 b site, or both, while the N occupies the 2 a site. Only an on-center structure model in which the Cs occupies the 2 a and the N of N H3 occupies the 4 c site provided reasonable results in the Rietveld analysis. Consequently, we concluded that (NH3)yC s0.4FeSe can be assigned to the on-center structure, which produces a smaller FeSe plane spacing leading to the lower Tc.

  20. Scattering of NH3 and ND3 with rare gas atoms at low collision energy.

    PubMed

    Loreau, J; van der Avoird, A

    2015-11-14

    We present a theoretical study of elastic and rotationally inelastic collisions of NH3 and ND3 with rare gas atoms (He, Ne, Ar, Kr, Xe) at low energy. Quantum close-coupling calculations have been performed for energies between 0.001 and 300 cm(-1). We focus on collisions in which NH3 is initially in the upper state of the inversion doublet with j = 1, k = 1, which is the most relevant in an experimental context as it can be trapped electrostatically and Stark-decelerated. We discuss the presence of resonances in the elastic and inelastic cross sections, as well as the trends in the inelastic cross sections along the rare gas series and the differences between NH3 and ND3 as a colliding partner. We also demonstrate the importance of explicitly taking into account the umbrella (inversion) motion of NH3 in order to obtain accurate scattering cross sections at low collision energy. Finally, we investigate the possibility of sympathetic cooling of ammonia using cold or ultracold rare gas atoms. We show that some systems exhibit a large ratio of elastic to inelastic cross sections in the cold regime, which is promising for sympathetic cooling experiments. The close-coupling calculations are based on previously reported ab initio potential energy surfaces for NH3-He and NH3-Ar, as well as on new, four-dimensional, potential energy surfaces for the interaction of ammonia with Ne, Kr, and Xe, which were computed using the coupled-cluster method and large basis sets. We compare the properties of the potential energy surfaces corresponding to the interaction of ammonia with the various rare gas atoms. PMID:26567658

  1. Scattering of NH3 and ND3 with rare gas atoms at low collision energy

    NASA Astrophysics Data System (ADS)

    Loreau, J.; van der Avoird, A.

    2015-11-01

    We present a theoretical study of elastic and rotationally inelastic collisions of NH3 and ND3 with rare gas atoms (He, Ne, Ar, Kr, Xe) at low energy. Quantum close-coupling calculations have been performed for energies between 0.001 and 300 cm-1. We focus on collisions in which NH3 is initially in the upper state of the inversion doublet with j = 1, k = 1, which is the most relevant in an experimental context as it can be trapped electrostatically and Stark-decelerated. We discuss the presence of resonances in the elastic and inelastic cross sections, as well as the trends in the inelastic cross sections along the rare gas series and the differences between NH3 and ND3 as a colliding partner. We also demonstrate the importance of explicitly taking into account the umbrella (inversion) motion of NH3 in order to obtain accurate scattering cross sections at low collision energy. Finally, we investigate the possibility of sympathetic cooling of ammonia using cold or ultracold rare gas atoms. We show that some systems exhibit a large ratio of elastic to inelastic cross sections in the cold regime, which is promising for sympathetic cooling experiments. The close-coupling calculations are based on previously reported ab initio potential energy surfaces for NH3-He and NH3-Ar, as well as on new, four-dimensional, potential energy surfaces for the interaction of ammonia with Ne, Kr, and Xe, which were computed using the coupled-cluster method and large basis sets. We compare the properties of the potential energy surfaces corresponding to the interaction of ammonia with the various rare gas atoms.

  2. Partial phase diagram for the system NH3-H2O - The water-rich region

    NASA Technical Reports Server (NTRS)

    Johnson, M. L.; Schwake, A.; Nicol, M.

    1984-01-01

    Phase boundaries of the H2O-NH3 system for (NH3)/x/(H2O)/1-x/ have been determined with diamond-anvil cells for mixtures in two composition ranges: (1) for x in the range from 0 to 0.3, at pressures up to 4 GPa at 21 C, and (2) for x in the range from 0.46 to 0.50, at pressures up to 5 GPa from 150 to 400 K. Phases were identified visually with a microscope and polarized optics. The NH3.2(H2O) phase is strongly anisotropic with a much smaller refractive index than that of ice VII and cracks in two nonperpendicular networks. NH3.H2O has a refractive index closer to that of Ice VII and does not appear to form cracks. Both phases are colorless. Phase boundaries were determined on both increasing and decreasing pressures, and compositions of the ammonia ices were determined by estimating relative amounts of water and ammonia ices at known overall compositions. For low-ammonia compositions (x equal to or less than 0.15), the following assemblages succedd one another as pressure increases: liquid; liquid and Ice VI (at 1.0 + GPa); liquid and Ice VII (at 2.1 GPa); Ice VII and NH3.H2O (at 3.5 GPa). For x in the range from 0.15 to 0.30, the water ice and liquid fields are replaced by the NH3.2(H2O) and liquid field at pressures down to 1.0 GPa and lower.

  3. LPG and NH3 sensing characteristics of DC electrochemically deposited Co3O4 films

    NASA Astrophysics Data System (ADS)

    Shelke, P. N.; Khollam, Y. B.; Gunjal, S. D.; Koinkar, P. M.; Jadkar, S. R.; Mohite, K. C.

    2015-03-01

    Present communication reports the LPG and NH3 sensing properties of Co3O4 films prepared on throughly cleaned stainless steel (SS) and copper (CU) substrates by using DC electrochemical deposition method followed by air annealing at 350C/2 h. The resultant films are characterized by using X-ray diffraction (XRD), Raman spectroscopy and scanning electron microscopy (SEM). The LPG and NH3 gas sensing properties of these films are measured at room temperature (RT) by using static gas sensing system at different concentrations of test gas ranging from 25 ppm to 350 ppm. The XRD and Raman spectroscopy studies clearly indicated the formation of pure cubic spinel Co3O4 in all films. The LPG and NH3 gas sensing properties of films showed (i) the increase in sensitivity factor (S.F.) with gas concentrations and (ii) more sensibility to LPG as compared to NH3 gas. In case of NH3 gas (conc. 150 ppm) and LPG gas (conc. 60 ppm) sensing, the maximum S.F. = 270 and 258 are found for the films deposited on CU substrates, respectively. For all films, the response time (3-5 min.) is found to be much higher than the recovery time (30-50 sec). For all films, the response and recovery time are found to be higher for LPG as compared to NH3 gas. Further, repeatability-reproducibility in gas sensing properties is clearly noted by analysis of data for number of cycles recorded for all films from different set of depositions.

  4. Liquid Phase Deposition Of Thin Titanium Dioxide Films For NH3 Detection

    NASA Astrophysics Data System (ADS)

    Georgieva, V.; Stefchev, P.; Stefanov, P.; Spassov, L.; Raicheva, Z.; Ivanova, K.

    2007-04-01

    TiO2 thin films are prepared by a new method called Liquid Phase Deposition (LDP). The layers are obtained by the reaction between the metal fluorocomplex and boric acid in aqueous solution. The morphology of the films and the composition are investigated by scanning electron microscopy (SEM) and x-ray photoelectron spectrometry (XPS). The sorption properties of TiO2 film to NH3 are measured by the Quartz Crystal Microbalance (QCM) method. A correlation between NH3 concentration and the sorption ability of as-deposited and annealed samples is obtained.

  5. Ultraviolet-gas phase and -photocatalytic synthesis from CO and NH3. [photolysis products

    NASA Technical Reports Server (NTRS)

    Hubbard, J. S.; Voecks, G. E.; Hobby, G. L.; Ferris, J. P.; Williams, E. A.; Nicodem, D. E.

    1975-01-01

    Ammonium cyanate is identified as the major product of the photolysis of gaseous NH3-CO mixtures at 206.2 or 184.9 nm. Lesser amounts of urea, biurea, biuret semicarbazide, formamide and cyanide are observed. A series of 18 reactions underlying the formation of photolysis products is presented and discussed. Photocatalytic syntheses of C-14-urea, -formamide, and -formaldehyde are carried out through irradiation of (C-14)O and NH3 in the presence of Vycor, silica gel, or volcanic ash shale surfaces. The possible contributions of the relevant reactions to the abiotic synthesis of organic nitrogen compounds on Mars, the primitive earth, and in interstellar space are examined.

  6. Effect of metal ions doping (M = Ti4+, Sn4+) on the catalytic performance of MnOx/CeO2 catalyst for low temperature selective catalytic reduction of NO with NH3

    NASA Astrophysics Data System (ADS)

    Xiong, Yan; Tang, Changjin; Dong, Lin

    2015-04-01

    Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, PR China The abatement of nitrogen oxides (NOx) emission from exhaust gases of diesel and stationary sources is a significant challenge for economic and social development. Ceria-based solid solutions were synthesized and used as supports to prepare MnOx/Ce0.8Ti0.2O2 and MnOx/Ce0.8Sn0.2O2 catalysts (Mn/CeTi and Mn/CeSn) for low temperature selective catalytic reduction of NO by NH3 (NH3-SCR). The effects of Ti or Sn doping on the catalytic performance of MnOx/CeO2 catalyst were investigated. Experimental results show that doping of Ti or Sn increases the NO removal efficiency of MnOx/CeO2. The NO conversion of Mn/CeTi catalyst is more than 90 % at temperature window of 175 ~ 300 C under a gas hour space velocity of 60,000 mL.g-1.h-1. Modified catalysts are also found to exhibit greatly improved resistance to sulfur-poisoning. NH3-TPD results suggest that NH3 desorption on the catalysts is observed over a wide temperature range, due to the variability of adsorbed NH3 species with different thermal stabilities. Doping of Ti and Sn into Mn/CeO2 greatly increased the NH3 adsorption ability of the composites which could promote the SCR reaction. Characterization results also indicate that doping of Ti or Sn brings about catalysts with higher BET surface area, enhanced oxygen storage capacity and increased surface acidity.

  7. Effect of Ti or Sn doping on the catalytic performance of MnOx/CeO2 catalyst for low temperature selective catalytic reduction of NO with NH3

    NASA Astrophysics Data System (ADS)

    Xiong, Yan; Tang, Changjin; Dong, Lin

    2015-04-01

    The abatement of nitrogen oxides (NOx) emission from exhaust gases of diesel and stationary sources is a significant challenge for economic and social development. Ceria-based solid solutions were synthesized and used as supports to prepare MnOx/Ce0.8Ti0.2O2 and MnOx/Ce0.8Sn0.2O2 catalysts (Mn/CeTi and Mn/CeSn) for low temperature selective catalytic reduction of NO by NH3 (NH3-SCR). The effects of Ti or Sn doping on the catalytic performance of MnOx/CeO2 catalyst were investigated. Experimental results show that doping of Ti or Sn increases the NO removal efficiency of MnOx/CeO2. The NO conversion of Mn/CeTi catalyst is more than 90 % at temperature window of 175 ~ 300 C under a gas hour space velocity of 60,000 mLg-1h-1. Modified catalysts are also found to exhibit greatly improved resistance to sulfur-poisoning. NH3-TPD results suggest that NH3 desorption on the catalysts is observed over a wide temperature range, due to the variability of adsorbed NH3 species with different thermal stabilities. Doping of Ti and Sn into Mn/CeO2 greatly increased the NH3 adsorption ability of the composites which could promote the SCR reaction. Characterization results also indicate that doping of Ti or Sn brings about catalysts with higher BET surface area, enhanced oxygen storage capacity and increased surface acidity. X-ray photoelectron spectroscopy (XPS) analysis of spent catalysts following SCR reaction in the presence of SO2 verify that the loss of surface Mn species was inhibited by doping of Ti, which contributes to extend the catalyst durability.

  8. Characterization of a high pressure, high temperature modification of ammonia borane (BH3NH3)

    NASA Astrophysics Data System (ADS)

    Nyln, Johanna; Eriksson, Lars; Benson, Daryn; Hussermann, Ulrich

    2013-08-01

    At elevated pressures (above 1.5 GPa) dihydrogen bonded ammonia borane, BH3NH3, undergoes a solid-solid phase transition with increasing temperature. The high pressure, high temperature (HPHT) phase precedes decomposition and evolves from the known high pressure, low temperature form with space group symmetry Cmc21 (Z = 4). Structural changes of BH3NH3 with temperature were studied at around 6 GPa in a diamond anvil cell by synchrotron powder diffraction. At this pressure the Cmc21 phase transforms into the HPHT phase at around 140 C. The crystal system, unit cell, and B and N atom position parameters of the HPHT phase were extracted from diffraction data, and a hydrogen ordered model with space group symmetry Pnma (Z = 4) subsequently established from density functional calculations. However, there is strong experimental evidence that HPHT-BH3NH3 is a hydrogen disordered rotator phase. A reverse transition to the Cmc21 phase is not observed. When releasing pressure at room temperature to below 1.5 GPa the ambient pressure (hydrogen disordered) I4mm phase of BH3NH3 is obtained.

  9. Ground-based FTIR measurements of NH3 total columns and comparison with IASI data

    NASA Astrophysics Data System (ADS)

    Vigouroux, Corinne; De Mazière, Martine; Desmet, Filip; Hermans, Christian; Langerock, Bavo; Scolas, Francis; Van Damme, Martin; Clarisse, Lieven; Coheur, Pierre-François

    2013-04-01

    Atmospheric ammonia (NH3) dominates global emissions of total reactive nitrogen. It has an impact on human health, as a precursor of fine particulate matter, and on Earth's ecosystems, via deposition. The main source of global NH3 emissions is agriculture, the remaining ones being the oceans, natural vegetation, humans, wild animals and biomass burning. The global atmospheric budget of NH3 is still very uncertain in chemical models, highlighting the critical need for satellite and ground-based observations. We present, for the first time, time-series (2009 - 2011) of NH3 total columns obtained from ground-based FTIR measurements. These observations are performed at Reunion Island (21°S, 55°E), one of the two subtropical stations, in Southern Hemisphere, of the ground-based Network for the Detection of Atmospheric Composition Change (NDACC) equipped with FTIR instruments. The seasonal and inter-annual variabilities of ammonia observed at Reunion Island from the ground are compared to the ones derived from recent IASI data obtained with a new retrieval method based on the calculation of a Hyperspectral Range Index.

  10. Parametrization of electron impact ionization cross sections for CO, CO2, NH3 and SO2

    NASA Technical Reports Server (NTRS)

    Srivastava, Santosh K.; Nguyen, Hung P.

    1987-01-01

    The electron impact ionization and dissociative ionization cross section data of CO, CO2, CH4, NH3, and SO2, measured in the laboratory, were parameterized utilizing an empirical formula based on the Born approximation. For this purpose an chi squared minimization technique was employed which provided an excellent fit to the experimental data.

  11. The breath ammonia measurement of the hemodialysis with a QCM-NH3 sensor.

    PubMed

    Ishida, Hitoshi; Satou, Toshio; Tsuji, Kiichi; Kawashima, Norimichi; Takemura, Hideo; Kosaki, Yasuhiro; Shiratori, Seimei; Agishi, Tetuzou

    2008-01-01

    Recently, expired gases are analyzed non-invasively for monitoring the substances in the blood. Breath ammonia has been shown to correlate with BUN (blood urea nitrogen) and Cr (creatinine), both of which are indicators of solute removal in hemodialysis. In this study, breath ammonia concentration was continuously measured using a crystal oscillator QCM (quartz crystal microbalance) during the expiration of patients undergoing dialysis treatment. The results show that NH3 (ammonia) decreased gradually as the treatment proceeded. A strong correlation was observed between changes in the frequency of the QCM gas sensor and both the pre-dialysis BUN level (r=0.71, p<0.05) and the post-dialysis BUN level (r=0.90, p<0.05). NH3 was found to fall precipitously during dialysis. The differences were statistically significant. In addition, we found a statistically significant correlation between BUN and NH3 in expired gas. These results suggest that continuous measurement of NH3 is useful to assess the status of solute removal during hemodialysis. PMID:18408261

  12. Evaluating Molecular Co Complexes for the Conversion of N2 to NH3

    PubMed Central

    Del Castillo, Trevor J.; Thompson, Niklas B.; Suess, Daniel L. M.; Ung, Gal; Peters, Jonas C.

    2015-01-01

    Well-defined molecular catalysts for the reduction of N2 to NH3 with protons and electrons remain very rare despite decades of interest, and are currently limited to systems featuring Mo or Fe. This report details the synthesis of a molecular Co complex that generates superstoichiometric yields of NH3 (>200% NH3 per Co-N2 precursor) via the direct reduction of N2 with protons and electrons. While the NH3 yields reported herein are modest by comparison to previously described Fe and Mo systems, they intimate that other metals are likely to be viable as molecular N2 reduction catalysts. Additionally, comparison of the featured tris(phosphine)borane Co-N2 complex with structurally related Co-N2 and Fe-N2 species shows how remarkably sensitive the N2 reduction performance of potential pre-catalysts are. These studies enable consideration of structural and electronic effects that are likely relevant to N2 conversion activity, including ?-basicity, charge state, and geometric flexibility. PMID:26001022

  13. Catalytic reduction of NOx with NH3 over different-shaped MnO2 at low temperature.

    PubMed

    Tian, Wei; Yang, Hangsheng; Fan, Xiaoyu; Zhang, Xiaobin

    2011-04-15

    MnO(2) nanotubes, nanorods, and nanoparticles were prepared using a hydrothermal method, after which the different activities for selective catalytic reduction (SCR) of nitrogen oxides (NO(x)) were compared. MnO(2) nanorods performed the highest activity for reduction of NO(x) under a gas hourly space velocity of 36,000 h(-1) with conversion efficiencies of above 90% between 250 and 300 C; it also had the highest removal efficiency of 98.2% at 300 C. From the analysis of X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, temperature-programmed desorption, and temperature-programmed reduction, we can ascribe the high activity of MnO(2) nanorods to low crystallinity, more lattice oxygen, high reducibility, and a large number of strong acid sites. The apparent activation energy of the SCR reaction on the surface of nanorods was calculated to be 20.9 kJ/mol, which favored the reaction better than the other catalysts. PMID:21333446

  14. A Complete Survey of the Central Molecular Zone in NH3

    NASA Astrophysics Data System (ADS)

    Nagayama, Takumi; Omodaka, Toshihiro; Handa, Toshihiro; Iahak, Hayati Bebe Hajra; Sawada, Tsuyoshi; Miyaji, Takeshi; Koyama, Yasuhiro

    2007-10-01

    We present a map of the major part of the central molecular zone (CMZ) of simultaneous observations in the NH3 (J, K) = (1,1) and (2,2) lines using the Kagoshima 6m telescope. The mapped area is -1.000 ? l ? 1.625 and -0.375 ? b ? 0.250. The kinetic temperatures derived from the (2,2) to (1,1) intensity ratios are 20--80 K, or exceed 80 K. The gases corresponding to temperatures of 20--80 K and ? 80 K contain 75% and 25% of the total NH3 flux, respectively. These temperatures indicate that the dense molecular gas in the CMZ is dominated by gas that is warmer than the majority of the dust present there. A comparison of our observations with a CO survey by Sawada et al. (2001, ApJS, 136, 189) shows that the NH3 emitting region is surrounded by a high-pressure region on the longitude-velocity (l - v) plane. Although NH3 emission traces dense gas, it does not extend over a high-pressure region. Therefore, the high-pressure region is less dense and has to be hotter. This indicates that the molecular-cloud complex in the Galactic center region has a ``core'' of dense and warm clouds that are traced by the NH3 emission, and an ``envelope'' of less-dense and hotter gas clouds. Besides heating by ambipolar diffusion, the hot plasma gas emitting the X-ray emission may heat the hot ``envelope''.

  15. Towards a carbon independent and CO2-free electrochemical membrane process for NH3 synthesis.

    PubMed

    Kugler, K; Ohs, B; Scholz, M; Wessling, M

    2014-04-01

    Ammonia is exclusively synthesized by the Haber-Bosch process starting from precious carbon resources such as coal or CH4. With H2O, H2 is produced and with N2, NH3 can be synthesized at high pressures and temperatures. Regrettably, the carbon is not incorporated into NH3 but emitted as CO2. Valuable carbon sources are consumed which could be used otherwise when carbon sources become scarce. We suggest an alternative process concept using an electrochemical membrane reactor (ecMR). A complete synthesis process with N2 production and downstream product separation is presented and evaluated in a multi-scale model to quantify its energy consumption. A new micro-scale ecMR model integrates mass, species, heat and energy balances with electrochemical conversions allowing further integration into a macro-scale process flow sheet. For the anodic oxidation reaction H2O was chosen as a ubiquitous H2 source. Nitrogen was obtained by air separation which combines with protons from H2O to give NH3 using a hypothetical catalyst recently suggested from DFT calculations. The energy demand of the whole electrochemical process is up to 20% lower than the Haber-Bosch process using coal as a H2 source. In the case of natural gas, the ecMR process is not competitive under today's energy and resource conditions. In future however, the electrochemical NH3 synthesis might be the technology-of-choice when coal is easily accessible over natural gas or limited carbon sources have to be used otherwise but for the synthesis of the carbon free product NH3. PMID:24557153

  16. A Water Maser and NH3 Survey of GLIMPSE Extended Green Objects

    NASA Astrophysics Data System (ADS)

    Cyganowski, C. J.; Koda, J.; Rosolowsky, E.; Towers, S.; Donovan Meyer, J.; Egusa, F.; Momose, R.; Robitaille, T. P.

    2013-02-01

    We present the results of a Nobeyama 45 m H2O maser and NH3 survey of all 94 northern GLIMPSE extended green objects (EGOs), a sample of massive young stellar objects (MYSOs) identified based on their extended 4.5 μm emission. We observed the NH3(1,1), (2,2), and (3,3) inversion lines, and detected emission toward 97%, 63%, and 46% of our sample, respectively (median rms ~ 50 mK). The H2O maser detection rate is 68% (median rms ~ 0.11 Jy). The derived H2O maser and clump-scale gas properties are consistent with the identification of EGOs as young MYSOs. To explore the degree of variation among EGOs, we analyze subsamples defined based on mid-infrared (MIR) properties or maser associations. H2O masers and warm dense gas, as indicated by emission in the higher-excitation NH3 transitions, are most frequently detected toward EGOs also associated with both Class I and II CH3OH masers. Ninety-five percent (81%) of such EGOs are detected in H2O (NH3(3,3)), compared to only 33% (7%) of EGOs without either CH3OH maser type. As populations, EGOs associated with Class I and/or II CH3OH masers have significantly higher NH3 line widths, column densities, and kinetic temperatures than EGOs undetected in CH3OH maser surveys. However, we find no evidence for statistically significant differences in H2O maser properties (such as maser luminosity) among any EGO subsamples. Combining our data with the 1.1 mm continuum Bolocam Galactic Plane Survey, we find no correlation between isotropic H2O maser luminosity and clump number density. H2O maser luminosity is weakly correlated with clump (gas) temperature and clump mass.

  17. Nucleobases and Prebiotic Molecules in Organic Residues Produced from the Ultraviolet Photo-Irradiation of Pyrimidine in NH3 and H2O+NH3 Ices

    NASA Technical Reports Server (NTRS)

    Nuevo, Michel; Milam, Stefanie N.; Sandford, Scott

    2012-01-01

    Although not yet identified in the interstellar medium (ISM), N-heterocycles including nucleobases the information subunits of DNA and RNA are present in carbonaceous chondrites, which indicates that molecules of biological interest can be formed in non-terrestrial environments via abiotic pathways. Recent laboratory experiments and ab-initio calculations have already shown that the irradiation of pyrimidine in pure H2O ices leads to the formation of a suite of oxidized pyrimidine derivatives, including the nucleobase uracil. In the present work, NH3:pyrimidine and H2O:NH3:pyrimidine ice mixtures with different relative proportions were irradiated with UV photons under astrophysically relevant conditions. Liquid- and gas-chromatography analysis of the resulting organic residues has led to the detection of the nucleobases uracil and cytosine, as well as other species of prebiotic interest such as urea and small amino acids. The presence of these molecules in organic residues formed under abiotic conditions supports scenarios in which extraterrestrial organics that formed in space and were subsequently delivered to telluric planets via comets and meteorites could have contributed to the inventory of molecules that triggered the first biological reactions on their surfaces.

  18. Nucleobases and prebiotic molecules in organic residues produced from the ultraviolet photo-irradiation of pyrimidine in NH(3) and H(2)O+NH(3) ices.

    PubMed

    Nuevo, Michel; Milam, Stefanie N; Sandford, Scott A

    2012-04-01

    Although not yet identified in the interstellar medium (ISM), N-heterocycles including nucleobases-the information subunits of DNA and RNA-are present in carbonaceous chondrites, which indicates that molecules of biological interest can be formed in non-terrestrial environments via abiotic pathways. Recent laboratory experiments and ab initio calculations have already shown that the irradiation of pyrimidine in pure H(2)O ices leads to the formation of a suite of oxidized pyrimidine derivatives, including the nucleobase uracil. In the present work, NH(3):pyrimidine and H(2)O:NH(3):pyrimidine ice mixtures with different relative proportions were irradiated with UV photons under astrophysically relevant conditions. Liquid- and gas-chromatography analysis of the resulting organic residues has led to the detection of the nucleobases uracil and cytosine, as well as other species of prebiotic interest such as urea and small amino acids. The presence of these molecules in organic residues formed under abiotic conditions supports scenarios in which extraterrestrial organics that formed in space and were subsequently delivered to telluric planets via comets and meteorites could have contributed to the inventory of molecules that triggered the first biological reactions on their surfaces. PMID:22519971

  19. Chasing the Elusive Benzofuran Impurity of the THR Antagonist NH-3: Synthesis, Isotope Labeling, and Biological Activity.

    PubMed

    Singh, Latika; Pressly, Brandon; Mengeling, Brenda J; Fettinger, James C; Furlow, J David; Lein, Pamela J; Wulff, Heike; Singh, Vikrant

    2016-03-01

    We have synthesized and established the structure of a long-suspected, but hitherto unknown, benzofuran side product (EBI) formed during the synthesis of NH-3. Understanding the mechanism of its formation has enabled isotope (D) labeling. We further developed a highly efficient method for separating EBI from NH-3. Interestingly, EBI was found to be a very potent thyroid hormone receptor (THR) agonist, while NH-3 is an antagonist. In this process, we have also achieved a significantly improved synthesis of NH-3. PMID:26849160

  20. Synthesis and Evaluation of Cu/SAPO-34 Catalysts for NH3-SCR 2: Solid-state Ion Exchange and One-pot Synthesis

    SciTech Connect

    Gao, Feng; Walter, Eric D.; Washton, Nancy M.; Szanyi, Janos; Peden, Charles HF

    2015-01-01

    Cu-SAPO-34 catalysts are synthesized using two methods: solid-state ion exchange (SSIE) and one-pot synthesis. SSIE is conducted by calcining SAPO-34/CuO mixtures at elevated temperatures. For the one-pot synthesis method, Cu-containing chemicals (CuO and CuSO4) are added during gel preparation. A high-temperature calcination step is also needed for this method. Catalysts are characterized with surface area/pore volume measurements, temperature programmed reduction (TPR), electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) spectroscopies, and scanning electron microscopy (SEM). Catalytic properties are examined using standard ammonia selective catalytic reduction (NH3-SCR) and ammonia oxidation reactions. In Cu-SAPO-34 samples formed using SSIE, Cu presents both as isolated Cu2+ ions and unreacted CuO. The former is highly active and selective in NH3-SCR, while the latter catalyzes a side reaction; notably, the non-selective oxidation of NH3 above 350 C. Using the one-pot method followed by a high-temperature aging treatment, it is possible to form Cu SAPO-34 samples with predominately isolated Cu2+ ions at low Cu loadings. However at much higher Cu loadings, isolated Cu2+ ions that bind weakly with the CHA framework and CuO clusters also form. These Cu moieties are very active in catalyzing non-selective NH3 oxidation above 350 C. Low-temperature reaction kinetics indicate that Cu-SAPO-34 samples formed using SSIE have core-shell structures where Cu is enriched in the shell layers; while Cu is more evenly distributed within the one-pot samples. Reaction kinetics also suggest that at low temperatures, the local environment next to Cu2+ ion centers plays little role on the overall catalytic properties. The authors gratefully acknowledge the US Department of Energy (DOE), Energy Efficiency and Renewable Energy, Vehicle Technologies Office for the support of this work. The research described in this paper was performed at the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOEs Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the US DOE by Battelle under contract number DE-AC05-76RL01830. The authors also thank Shari Li (PNNL) for surface area/pore volume measurements, and Bruce W. Arey (PNNL) for SEM measurements. Discussions with Drs. A. Yezerets, K. Kamasamudram, J.H. Li, N. Currier and J.Y. Luo from Cummins, Inc. and H.Y. Chen and H. Hess from Johnson-Matthey are greatly appreciated.

  1. On the reaction CH2O + NH3 Yields CH2NH + H2O

    NASA Technical Reports Server (NTRS)

    Walch, Stephen P.; Bauschlicher, Charles W., Jr.; Ricca, Alessandra; Bakes, E. L. O.; Arnold, James (Technical Monitor)

    2000-01-01

    We study the energetics of CH2O + NH3-Yields CH2NH + H2O in the gas phase at the B3LYP and CCSD(T)levels. This reaction is shown to have a sizeable barrier. Ionization of NH3 reduces the barrier to about 5 kcal/mol. We also show that in water, a proton catalyzed mechanism yields no barriers in excess of the reaction endothermicity. Since this reaction has been proposed as one of the steps in interstellar synthesis of glycine, the simplest amino acid, this work suggests that the formation of amino acids is occurring in and/or on interstellar water ice grains, and not in the gas phase.

  2. Comparison of the biological NH3 removal characteristics among four inorganic packing materials.

    PubMed

    Hirai, M; Kamamoto, M; Yani, M; Shoda, M

    2001-01-01

    Four inorganic packing materials were evaluated in terms of their availability as a packing material of a packed tower deodorization apparatus (biofilter) from the viewpoints of biological NH3 removal characteristics and some physical properties. Porous ceramics (A), calcinated cristobalite (B), calcinated and formed obsidian (C), granulated and calculated soil (D) were used. The superiority of these packing materials determined based on the values of non-biological removal per unit weight or unit volume of packing material, complete removal capacity of NH3 per unit weight of packing material per day or unit volume of packing material per day and pressure drop of the packed bed was in the order of A approximately = C > B > or = D. Packing materials A and C with high porosity, maximum water content, and suitable mean pore diameter showed excellent removal capacity. PMID:16233018

  3. KFPA Mapping of NH3 in the G111 Infrared Dark Cloud Filament

    NASA Astrophysics Data System (ADS)

    Schlingman, Wayne M.; Shirley, Y. L.; Langston, G.; Ginsburg, A.

    2012-01-01

    We present new K-band Focal Plane Array (KFPA) maps of ammonia in the G111 Infrared Dark Cloud near NGC 7538. We observe NH3 (1,1) and (2,2) inversion transitions simultaneously on each of the KFPA's seven pixels. We also present a temperature map of the filament from the ratio of these two lines. We also present H20 masers mapped with the KFPA. We directly compare the kinetic gas temperature with the dust temperature estimated from continuum observations. We also estimate the contribution from turbulence along the filament. We compare the properties of NH3 and H2O emission with evolutionary indicators for the G111 cores.

  4. Semiclassical line broadening calculations using an ab initio potential. Application to NH3 perturbed by argon

    NASA Astrophysics Data System (ADS)

    Ayari, C.; Loreau, J.; Dhib, M.; Daussy, C.; Aroui, H.

    2015-12-01

    The semiclassical formalism of Robert and Bonamy is used to calculate the linewidths of rovibrational transitions of ammonia in collision with argon. Two accurate ab initio potential energy surfaces (PES) have been applied to model the NH3-Ar interactions. In this work and contrary to our previous calculations, the transitions with ?K = 3n (n integer) have been introduced into the expressions of the differential collision cross section S(b). Comparisons with previous theoretical and experimental studies are reported. A detailed analysis of the contribution of the various anisotropic components of the PES shows that the induced ?K = 3 transitions play a crucial role. Calculations performed in the ?4 and ?1 vibrational bands of NH3 are in good agreement with the experimental data and correct dependences of the broadening coefficients with the rotational quantum numbers J and K are obtained.

  5. Electron beam induced chemical dry etching and imaging in gaseous NH3 environments

    NASA Astrophysics Data System (ADS)

    Lobo, Charlene J.; Martin, Aiden; Phillips, Matthew R.; Toth, Milos

    2012-09-01

    We report the use of ammonia (NH3) vapor as a new precursor for nanoscale electron beam induced etching (EBIE) of carbon, and an efficient imaging medium for environmental scanning electron microscopy (ESEM). Etching is demonstrated using amorphous carbonaceous nanowires grown by electron beam induced deposition (EBID). It is ascribed to carbon volatilization by hydrogen radicals generated by electron dissociation of NH3 adsorbates. The volatilization process is also effective at preventing the buildup of residual hydrocarbon impurities that often compromise EBIE, EBID and electron imaging. We also show that ammonia is a more efficient electron imaging medium than H2O, which up to now has been the most commonly used ESEM imaging gas.

  6. Absorption of NH3 on pristine and defected boron nitride nanosheets: A first principle study

    NASA Astrophysics Data System (ADS)

    Li, Hui; Chen, Zheng; Fang, Xiaoliang; Tie, Deyou

    2015-12-01

    Versatile functional groups can be connected to Boron Nitride nanosheet (BNNS) through Lewis acid/base interaction for targeted applications. However, there have been few experimental reports about Lewis acid attack at the N atoms on BNNS, so far as we see. VdW-DFT is employed in this paper to investigate the interaction between NH3 representing Lewis base and pristine or defected BNNS. Comparing the binding energy, separation and charge distribution of NH3 and pristine or defected BNNS systems, the distinctive defect in BNNS is found to be the key role in the absorption progress. Thus, it is supposed that the missing of Lewis acid and BNNS complex can be attributed to the absence of N vacancies and B-edges in BNNS.

  7. Copper (II) oxide nanowires for p-type conductometric NH3 sensing

    NASA Astrophysics Data System (ADS)

    Shao, F.; Hernndez-Ramrez, F.; Prades, J. D.; Fbrega, C.; Andreu, T.; Morante, J. R.

    2014-08-01

    Copper (II) oxide (CuO) is a metal oxide suitable for developing solid state gas sensors. Nevertheless, a detailed insight into the chemical-to-electrical transduction mechanisms between gas molecules and this metal oxide is still limited. Here, individual CuO nanowires were evaluated as ammonia (NH3) and hydrogen sulphide (H2S) sensors, validating the p-type character of this semiconductor. The working principle behind their performance was qualitatively modeled and it was concluded that adsorbed oxygen at the surface plays a key role necessary to explain the experimental data. Compared to their counterparts of SnO2 nanowires, an appreciable sensitivity enhancement to NH3 for concentrations below 100 ppm was demonstrated.

  8. Ab initio determination of the CN-NH 3 capture potential energy surface

    NASA Astrophysics Data System (ADS)

    Faure, Alexandre; Rist, Claire; Valiron, Pierre

    1999-02-01

    Recent comparisons between low temperature measurements on radical-neutral systems and long-range capture theories revealed a strong discrepancy as to the temperature dependence of the reaction rate constant. The most striking example is the reaction of CN with NH 3, which proceeds rapidly below 300 K with a rate constant increasing as T-1.14. We present here detailed ab initio quantum chemical calculations to determine the CN-NH 3 capture potential energy surface. Although the dispersion term is larger than expected and competes with electrostatic interactions, the intermediate- and long-range potential presents no unusual behaviour that could be responsible for the anomalous temperature dependence on the reactivity. We suggest that the capture process may influence the subsequent evolution of the short-range reactive complex.

  9. Porous Anatase TiO2 Thin Films for NH3 Vapour Sensing

    NASA Astrophysics Data System (ADS)

    Ponnusamy, Dhivya; Madanagurusamy, Sridharan

    2015-12-01

    Anatase titanium dioxide (TiO2) thin films were deposited onto cleaned glass substrates by a direct current (DC) reactive magnetron sputtering technique for different deposition times from 10 min to 40 min, which resulted in films of different thicknesses. Characterization techniques, such as x-ray diffraction (XRD) and field emission-scanning electron microscopy (FE-SEM) were used to characterize the structural and morphological properties of the TiO2 thin films. XRD patterns showed the formation of (101) crystal anatase facets. The grain size values of the film increased with increased deposition time, and the films deposited at 40 min exhibited a porous structure. Anatase TiO2 thin films exhibited excellent sensing response, fast response and recovery time, as well as good stability and selectivity towards ammonia (NH3). The enhanced NH3 sensing behavior of anatase TiO2 films is attributed to the porous morphology and oxygen vacancies.

  10. Probing hydrogen bonding orbitals: resonant inelastic soft X-ray scattering of aqueous NH3.

    PubMed

    Weinhardt, L; Ertan, E; Iannuzzi, M; Weigand, M; Fuchs, O; Br, M; Blum, M; Denlinger, J D; Yang, W; Umbach, E; Odelius, M; Heske, C

    2015-10-28

    To probe the influence of hydrogen bonding on the electronic structure of ammonia, gas phase and aqueous NH3 have been investigated using soft X-ray absorption (XAS), resonant inelastic soft X-ray scattering (RIXS), and electronic structure calculations including dynamical effects. Strong spectral differences in the XAS scans as well as in the RIXS spectra between gas phase and aqueous NH3 are attributed to orbital mixing with the water orbitals, dipole-dipole interactions, differences in vibronic coupling, and nuclear dynamics on the time-scale of the RIXS process. All of these effects are consequences of hydrogen bonding and the impact of the associated orbitals, demonstrating the power of XAS and RIXS as unique tools to study hydrogen bonding in liquids. PMID:26417728

  11. Potential energy surface and bound states of the NH3-Ar and ND3-Ar complexes.

    PubMed

    Loreau, J; Livin, J; Scribano, Y; van der Avoird, A

    2014-12-14

    A new, four-dimensional potential energy surface for the interaction of NH3 and ND3 with Ar is computed using the coupled-cluster method with single, double, and perturbative triple excitations and large basis sets. The umbrella motion of the ammonia molecule is explicitly taken into account. The bound states of both NH3-Ar and ND3-Ar are calculated on this potential for total angular momentum values from J = 0 to 10, with the inclusion of Coriolis interactions. The energies and splittings of the rovibrational levels are in excellent agreement with the extensive high-resolution spectroscopic data accumulated over the years in the infrared and microwave regions for both complexes, which demonstrates the quality of the potential energy surface. PMID:25494745

  12. Calculations on the rate of the ion-molecule reaction between NH3(+) and H2

    NASA Technical Reports Server (NTRS)

    Herbst, Eric; Defrees, D. J.; Talbi, D.; Pauzat, F.; Koch, W.

    1991-01-01

    The rate coefficient for the ion-molecule reaction NH3(+) + H2 yields NH4(+) + H has been calculated as a function of temperature with the use of the statistical phase space approach. The potential surface and reaction complex and transition state parameters used in the calculation have been taken from ab initio quantum chemical calculations. The calculated rate coefficient has been found to mimic the unusual temperature dependence measured in the laboratory, in which the rate coefficient decreases with decreasing temperature until 50-100 K and then increases at still lower temperatures. Quantitative agreement between experimental and theoretical rate coefficients is satisfactory given the uncertainties in the ab initio results and in the dynamics calculations. The rate coefficient for the unusual three-body process NH3(+) + H2 + He yields NH4(+) + H + He has also been calculated as a function of temperature and the result found to agree well with a previous laboratory determination.

  13. High-resolution absorption measurements of NH3 at high temperatures: 500-2100 cm-1

    NASA Astrophysics Data System (ADS)

    Barton, Emma J.; Yurchenko, Sergei N.; Tennyson, Jonathan; Clausen, Snnik; Fateev, Alexander

    2015-12-01

    High-resolution absorption spectra of NH3 in the region 500-2100 cm-1 at temperatures up to 1027 C and approximately atmospheric pressure (101320 mbar) are measured. NH3 concentrations of 1000 ppm, 0.5% and 1% in volume fraction were used in the measurements. Spectra are recorded in high temperature gas flow cells using a Fourier Transform Infrared (FTIR) spectrometer at a nominal resolution of 0.09 cm-1. Measurements at 22.7 C are compared to high-resolution cross sections available from the Pacific Northwest National Laboratory (PNNL). The higher temperature spectra are analysed by comparison to a variational line list, BYTe, and experimental energy levels determined using the MARVEL procedure. Approximately 2000 lines have been assigned, of which 851 are newly assigned to mainly hot bands involving vibrational states as high as v2=5.

  14. Photovoltaic performance and the energy landscape of CH3NH3PbI3.

    PubMed

    Zhou, Yecheng; Huang, Fuzhi; Cheng, Yi-Bing; Gray-Weale, Angus

    2015-09-21

    Photovoltaic cells with absorbing layers of certain perovskites have power conversion efficiencies up to 20%. Among these materials, CH3NH3PbI3 is widely used. Here we use density-functional theory to calculate the energies and rotational energy barriers of a methylammonium ion in the ? or ? phase of CH3NH3PbI3 with differently oriented neighbouring methylammonium ions. Our results suggest the methylammonium ions in CH3NH3PbI3 prefer to rotate collectively, and to be parallel to their neighbours. Changes in polarization on rotation of methylammonium ions are two to three times larger than those on relaxation of the lead ion from the centre of its coordination shell. The preferences for parallel configuration and concerted rotation, with the polarisation changes, are consistent with ferroelectricity in the material, and indicate that this polarisation is governed by methylammonium orientational correlations. We show that the field due to this polarisation is strong enough to screen the field hindering charge transport, and find this screening field in agreement with experiment. We examine two possible mechanisms for the effect of methylammonium ion rotation on photovoltaic performance. One is that rearrangement of methylammoniums promotes the creation and transport of charge carriers. Some effective masses change greatly, but changes in band structure with methylammonium rotation are not large enough to explain current-voltage hysteresis behaviour. The second possible mechanism is that polarization screens the hindering electric field, which arises from charge accumulation in the transport layers. Polarization changes on methylammonium rotation favour this second mechanism, suggesting that collective reorientation of methylammonium ions in the bulk crystal are in significant part responsible for the hysteresis and power conversion characteristics of CH3NH3PbI3 photovoltaic cells. PMID:26269196

  15. Room-Temperature NH3 Gas Sensor Based on Hydrothermally Grown ZnO Nanorods

    NASA Astrophysics Data System (ADS)

    Wei, Ang; Wang, Zhao; Pan, Liu-Hua; Li, Wei-Wei; Xiong, Li; Dong, Xiao-Chen; Huang, Wei

    2011-08-01

    A NH3 gas sensor based on a ZnO nanorod array is fabricated by hydrothermal decomposition on a Au electrode. The as-grown ZnO nanorods have uniform diameter distribution and good crystal structure, shown by scanning electron microscopy, x-ray diffraction, high resolution transmission electron microscopy and photoluminescence emission characterizations. The gas sensing results show that the ZnO nanorod-based device responds well to ammonia gas at room temperature (sensitivity S is about 8).

  16. Computational investigation of NH3 adsorption and dehydrogenation on a W-modified Fe(111) surface.

    PubMed

    Hsiao, Ming-Kai; Su, Chia-Hao; Liu, Ching-Yang; Chen, Hui-Lung

    2015-11-11

    Hydrogen gas will play an important role in the future since it could be a replacement for gasoline, heating oil, natural gas, and other fuels. In previous reports ammonia (NH3), which has a high hydrogen content, provides a promising mode for the transferring and storing of hydrogen for its on-site generation. Therefore, the dehydrogenation of NH3 on a metal surface has been studied widely in the last few decades. In our study, we employed monolayer tungsten metal to modify the Fe(111) surface, denoted as W@Fe(111), and calculated the adsorption and dehydrogenation behaviors of NH3 on W@Fe(111) surface via first-principles calculations based on density functional theory (DFT). The three adsorption sites of the surface, top (T), 3-fold-shallow (S), and 3-fold-deep (D) were considered. The most stable structure of the NHx (x = 0-3) species on the surface of W@Fe(111) have been predicted. The calculated activation energies for NHx (x = 1-3) dehydrogenations are 19.29 kcal mol(-1) (for H2N-H bond activation), 29.17 kcal mol(-1) (for HN-H bond activation) and 27.94 kcal mol(-1) (for N-H bond activation), and the entire process is exothermic by 33.05 kcal mol(-1). To gain detailed knowledge of the catalytic processes of the NH3 molecule on the W@Fe(111) surface, the physical insights between the adsorbate/substrate interaction and interface morphology were subjected to a detailed electronic analysis. PMID:26524324

  17. Low energy studies (e,2e) studies from Ammonia (NH3)

    NASA Astrophysics Data System (ADS)

    Chaluvadi, Hari; Madison, Don; Nixon, K. L.; Murray, Andrew J.; Ning, Chuangang; Colgan, James

    2012-10-01

    Experimental and theoretical Triply Differential Cross Sections (TDCS) will be presented for electron-impact ionization of Ammonia (NH3) for highest occupied molecular orbital (HOMO), next highest occupied molecular orbital (NHOMO) and next next highest occupied molecular orbital (N^2HOMO). M3DW (molecular 3-body distorted wave) results will be compared with experiment for coplanar geometry. The final state electron energies and observation angles are symmetric.

  18. NH3 quantum rotators in Hofmann clathrates: intensity and width of rotational transition lines

    NASA Astrophysics Data System (ADS)

    Vorderwisch, Peter; Sobolev, Oleg; Desmedt, Arnaud

    2004-07-01

    Inelastic structure factors for rotational transitions of uniaxial NH3 quantum rotators, measured in a Hofmann clathrate with biphenyl as guest molecule, agree with those calculated for free rotators. A finite intrinsic line width, found for rotational transitions involving the rotational level j=3 at low temperature, supports a recently suggested model based on resonant rotor-rotor coupling. Present address: LPCM, CNRS-Universit de Bordeaux I, 351 Cours de Libration, Talence F-33405, France.

  19. Development and evaluation of optical fiber NH3 sensors for application in air quality monitoring

    NASA Astrophysics Data System (ADS)

    Huang, Yu; Wieck, Lucas; Tao, Shiquan

    2013-02-01

    Ammonia is a major air pollutant emitted from agricultural practices. Sources of ammonia include manure from animal feeding operations and fertilizer from cropping systems. Sensor technologies with capability of continuous real time monitoring of ammonia concentration in air are needed to qualify ammonia emissions from agricultural activities and further evaluate human and animal health effects, study ammonia environmental chemistry, and provide baseline data for air quality standard. We have developed fiber optic ammonia sensors using different sensing reagents and different polymers for immobilizing sensing reagents. The reversible fiber optic sensors have detection limits down to low ppbv levels. The response time of these sensors ranges from seconds to tens minutes depending on transducer design. In this paper, we report our results in the development and evaluation of fiber optic sensor technologies for air quality monitoring. The effect of change of temperature, humidity and carbon dioxide concentration on fiber optic ammonia sensors has been investigated. Carbon dioxide in air was found not interfere the fiber optic sensors for monitoring NH3. However, the change of humidity can cause interferences to some fiber optic NH3 sensors depending on the sensor's transducer design. The sensitivity of fiber optic NH3 sensors was found depends on temperature. Methods and techniques for eliminating these interferences have been proposed.

  20. Quantum scattering calculations on the NH3+OH --> NH2+H2O reaction

    NASA Astrophysics Data System (ADS)

    Nyman, Gunnar

    1996-04-01

    Quantum scattering calculations on the NH3+OH?NH2+H2O reaction have been performed at energies up to 0.8 eV. The rotating bond approximation is used, treating NH2 as a pseudoatom. The OH rotation and a reactive N-H stretch of NH3 are treated explicitly as well as the bending motion and one OH local stretch vibration of H2O. A reduced dimensionality potential energy surface is developed. It has accurate reactant and product rovibrational energy levels for the modes explicitly treated in the scattering calculations and incorporates the zero point energy of the other modes. Quantized transition states gating the flux are found and mode selectivity is observed. Reactants in their ground rovibrational states produce mainly ground state H2O and vibrationally excited NH3 produces mainly vibrationally excited H2O. Rate constants are obtained using an adiabatic approach to account for all degrees of freedom not explicitly treated in the scattering calculations. Tunneling makes a dominant contribution to the rate constants, which are in reasonable agreement with previous theoretical and experimental work.

  1. Constraints on the NH3 and PH3 distributions in the Great Red SPOT

    NASA Astrophysics Data System (ADS)

    Wagener, R.; Caldwell, J.; Owen, T.

    1986-04-01

    Medium resolution (10 A) UV spectra were obtained for the Great Red Spot (GRS) and South Tropical Zone (STZ) of Jupiter using the low dispersion mode of the IUE spectrometers at wavelengths from 1900-2200 A. The scans were carried out to determine the coloring agent for the GRS to improve the database for developing photochemical models of the feature. The wavelengths were selected to cover the absorption features of NH3 and PH3. The resulting data were interpreted using a vertically inhomogeneous Rayleigh scattering radiative transfer model. Various NH3 concentrations were explored in an effort to fit the data, taking into account changes which would occur at different atmospheric pressure levels and due to the projected temperature fields. A forbidden NH3/forbidden H2 mixing ratio that was calculated at the 80-125 mbar pressure level in the GRS was enhanced by 3-10 percent relative to the STZ. An upper limit was obtained for the mixing ratio of PH3 in the GRS that is significantly lower than previously predicted concentrations, implying that vertical transport in the GRS is not much greater than in adjacent regions.

  2. Hydrothermal synthesis and NH3 gas sensing property of WO3 nanorods at low temperature

    NASA Astrophysics Data System (ADS)

    Dien Nguyen, Dac; Vuong Dang, Duc; Chien Nguyen, Duc

    2015-09-01

    One-dimensional self-assembled single-crystalline hexagonal tungsten trioxide (WO3) nanostructures were synthesized by wet chemical-assisted hydrothermal processing at 120 °C for 24 h using sodium tungstate and hydrochloric acid. Urchin-like hierarchical nanorods (petal size: ∼16 nm diameter and 110 nm length) were obtained. The samples were characterized by field emission scanning electron microscopy, transmission electron microscopy, energy dispersive x-ray spectroscopy and x-ray diffraction. Sensors based on WO3 nanorods were fabricated by coating them on SiO2/Si substrate attached with Pt interdigitated electrodes. NH3 gas-sensing properties of WO3 nanorods were measured at different temperatures ranging from 50 °C to 350 °C and the response was evaluated as a function of ammonia gas concentration. The gas-sensing results reveal that WO3 nanorods sensor exhibits high sensitivity and selectivity to NH3 at low operating temperature (50 °C). The maximum response reached at 50 °C was 192 for 250 ppm NH3, with response and recovery times of 10 min and 2 min, respectively.

  3. Dynamics of CH3NH3PbI3 from first principles simulations

    NASA Astrophysics Data System (ADS)

    Kachmar, Ali; Carignano, Marcelo

    2015-03-01

    We address the dynamical and optical properties of CH3NH3PbI3 using molecular dynamics simulations based on forces calculated with density functional theory. We have studied the three stable phases of CH3NH3PbI3 but most of the effort was dedicated to the intermediate tetragonal phase, which is stable at standard ambient conditions. In this case, two different system sizes have been considered, one with 8 unit cells (384 atoms) and a larger one with 27 unit cells (1296 atoms). The total simulated time reached 40 ps. Our findings reveal the interplay between the thermal energy of the system and the electronic degrees of freedom. For example, the organic molecule undergoes relatively fast rotations and the energy band gap, approximated by the LUMO-HOMO energy difference, fluctuates around the equilibrium value of ~1.5 eV with a width of 0.2 eV. The rotation of the CH3NH3 molecule is not isotropic, and more importantly, it is quite sensitive to the size of the simulation box. Our study also provides a quantitative measure for the finite size effects affecting the calculated properties and provides a contextual scenario on which to analyze the more typical density functional theory studies based on static calculations on optimal structures. The authors acknowledge the HPC resources of Texas A&M University at Qatar.

  4. SIMPLE DESIGN FOR AUTOMATION OF TUNGSTEN(VI) OXIDE TECHNIQUE FOR MEASUREMENT OF NH3, AND HNO3

    EPA Science Inventory

    The tungstic acid technique for collection and analysis of NH3 and HNO3 concentrations in the ambient air has been automated in a simple and cost-effective design. The design allows complete separation of HNO3 and NH3 during detection. Unattended operation in field trials has bee...

  5. Rovibrational spectra of ammonia. II. Detailed analysis, comparison, and prediction of spectroscopic assignments for 14NH3, 15NH3, and 14ND3.

    PubMed

    Huang, Xinchuan; Schwenke, David W; Lee, Timothy J

    2011-01-28

    Several aspects of ammonia rovibrational spectra have been investigated using the new HSL-2 potential energy surface that includes an approximate correction for nonadiabatic effects. The unprecedented accuracy of rovibrational energy levels and transition energies computed using HSL-2 was demonstrated in Part I of this study. For (14)NH(3), new assignments for a few ?(3) + ?(4) band transitions and energy levels are suggested, and discrepancies between computed and HITRAN energy levels in the 2?(4) band are analyzed (2?(4) is the most difficult band below 5000 cm(-1)). New assignments are suggested for existing or missing 2?(4) levels. Several new vibrational bands are identified from existing, unassigned HITRAN data, including 2?(2) + ?(4), (?(3) + ?(4)) -A(')?A("), ?(1) + 2?(2), and 2?(2) + 2?(4). The strong mixing between the 2?(4) and 2?(2) + ?(4) bands is carefully examined and found to be the source of the difficulties in the experimental modeling of 2?(4). Discussion is presented for preliminary J = 10 results, where the overall root-mean-square error is estimated to be less than 0.039 cm(-1). The analysis of the 4?(2) band demonstrates both the reliability and the accuracy of predictions from HSL-2. The full list of computed J = 0 band origins (with assignments) and the inversion splittings up to 7000-8000 cm(-1) above the zero-point energy are presented. J = 0-2 levels are reported for those bands below 5100 cm(-1) that are missing from the HITRAN database. For (15)NH(3), excellent agreement is found for the available ?(2) and ?(3) + ?(4)(E) transition energies, but significant deficiencies are shown for HITRAN levels and several corrections are suggested. The (15)N isotopic effects are presented for the J = 0-6 levels of 13 HITRAN bands. For (14)ND(3), we reproduce the pure rotational inversion spectra line frequencies with an accuracy similar to that for (14)NH(3). However, it is not possible to reproduce simultaneously all four pairs of inversion-split vibrational fundamentals to better than 0.05 cm(-1) uncertainty. It is suggested that a reanalysis of some suspicious (14)ND(3) fundamental bands is required. The analyses presented here and in Part I show that rovibrational energy levels and transition frequencies computed with HSL-2 (with nonadiabatic corrections) remain highly accurate well beyond the experimental data used in the refinement procedure. Calculations using HSL-2 are capable of revealing many deficiencies in experimental analyses of ammonia spectra and provide reliable predictions with similar accuracy. It is expected that the results of this study will be useful in the future interpretation of high-resolution spectra from laboratory experiments or from astronomical observations. The present work represents a very significant advance in the state of our knowledge of the spectroscopy of ammonia and its isotopologues. PMID:21280739

  6. Experimental Study of Coaxial Cylinder Dielectric Barrier Discharge in Ar/NH3 Mixtures under the Atmosphere-Pressure.

    PubMed

    Li, Yan-qin; Bu, De-cai; Di, Lan-bo; Zhang, Xiu-ling; Liu, Zhi-sheng; Li, Xue-hui

    2015-03-01

    An atmosphere-pressure Dielectric Barrier Discharge in Ar/NH3 mixtures between cylinder electrodes is studied by Optical Emission Spectroscopy and the main particles of atmosphere-pressure Ar/NH3 DBD plasma are NH, N, N+, N2, Ar, H(?) and OH. NH is decomposition products of NH3, and NH(c 1?) and NH(A 3?) are two kinds of excited-state neutral particles and produced by penning ionization of Ar* and NH3. The nitrogen active atom is detected at 674.5 nm which may provide the experimental foundation for the synthesis of ?-Fe3N ferroparticles by the atmosphere-pressure Ar/NH3 DBD plasma. The intensities of main particles are analyzed at different NH3 flow rate and applied voltage peak-peak value. The results show that the spectral line intensities of various particles increase with the rise of the applied voltage peak-peak value at the same NH3 flow rate, and first increase and then decrease with the increase of the NH3 flow rate at the same applied voltage peak-peak value. The applied voltage peak-peak value being kept constant, the spectral line intensity of nitrogen active atom first increases and then decreases with the increase of the NH3 flow rate. When NH3 flow rate is 20 mL x min(-1), the spectral line intensity of nitrogen active atom reaches a maximum at the same applied voltage peak-peak value. The spectral line intensity of nitrogen active atom decreases gradually with increasing the applied voltage peak-peak value at the same NH3 flow rate and it is mainly because of the translation of discharge mode from multi-pulse APGD to filamentary discharge in the atmosphere-pressure Ar/NH3 DBD. The microdischarge channels overlap and the microdischarges affect each other in multi-pulse APGD; hence the increasing rate of the spectral line intensity is quicker in multi-pulse APGD than in filamentary discharge with increasing the applied voltage peak-peak value. When the applied voltage peak-peak value is up from 4 600 to 6 400 V, the single-pulse and two-pulse APGD mode which are two kinds of homogeneous DBD mode are found in the atmosphere-pressure Ar/NH3 DBD and the increasing rate of the spectral line intensity is quicker in multi-pulse APGD than in filamentary discharge which is beneficial to synthesize ?-Fe3N ferroparticles. PMID:26117894

  7. Combining anti-cancer drugs with artificial sweeteners: synthesis and anti-cancer activity of saccharinate (sac) and thiosaccharinate (tsac) complexes cis-[Pt(sac)2(NH3)2] and cis-[Pt(tsac)2(NH3)2].

    PubMed

    Al-Jibori, Subhi A; Al-Jibori, Ghassan H; Al-Hayaly, Lamaan J; Wagner, Christoph; Schmidt, Harry; Timur, Suna; Baris Barlas, F; Subasi, Elif; Ghosh, Shishir; Hogarth, Graeme

    2014-12-01

    The new platinum(II) complexes cis-[Pt(sac)2(NH3)2] (sac=saccharinate) and cis-[Pt(tsac)2(NH3)2] (tsac=thiosaccharinate) have been prepared, the X-ray crystal structure of cis-[Pt(sac)2(NH3)2] x H2O reveals that both saccharinate anions are N-bound in a cis-arrangement being inequivalent in both the solid-state and in solution at room temperature. Preliminary anti-cancer activity has been assessed against A549 human alveolar type-II like cell lines with the thiosaccharinate complex showing good activity. PMID:25216367

  8. Characterizing the influence of highways on springtime NO2 and NH3 concentrations in regional forest monitoring plots.

    PubMed

    Watmough, Shaun A; McDonough, Andrew M; Raney, Shanel M

    2014-07-01

    Highways are major sources of nitrogen dioxide (NO2) and ammonia (NH3). In this study, springtime NO2 and NH3 concentrations were measured at 17 Ontario Forest Biomonitoring Network (OFBN) plots using passive samplers. Average springtime NO2 concentrations were between 1.3?gm(-3) and 27?gm(-3), and NH3 concentrations were between 0.2?gm(-3) and 1.7?gm(-3), although concentrations measured in May (before leaf out) were typically twice as high as values recorded in June. Average NO2 concentrations, and to a lesser extent NH3, could be predicted by road density at all radii (around the plot) tested (500m, 1000m, 1500m). Springtime NO2 concentrations were predicted for a further 50 OFBN sites. Normalized plant/lichen N concentrations were positively correlated with estimated springtime NO2 and NH3 concentrations. Epiphytic foliose lichen richness decreased with increasing NO2 and NH3, but vascular plant richness was positively related to estimated springtime NO2 and NH3. PMID:24747347

  9. Investigation of the Hydrolysis of Perovskite Organometallic Halide CH3NH3PbI3 in Humidity Environment

    PubMed Central

    Zhao, Jiangtao; Cai, Bing; Luo, Zhenlin; Dong, Yongqi; Zhang, Yi; Xu, Han; Hong, Bin; Yang, Yuanjun; Li, Liangbin; Zhang, Wenhua; Gao, Chen

    2016-01-01

    Instability of emerging perovskite organometallic halide in humidity environment is the biggest obstacle for its potential applications in solar energy harvest and electroluminescent display. Understanding the detailed decay mechanism of these materials in moisture is a critical step towards the final appropriate solutions. As a model study presented in this work, in situ synchrotron radiation x-ray diffraction was combined with microscopy and gravimetric analysis to study the degradation process of CH3NH3PbI3 in moisture, and the results reveal that: 1) intermediate monohydrated CH3NH3PbI3·H2O is detected in the degradation process of CH3NH3PbI3 and the final decomposition products are PbI2 and aqueous CH3NH3I; 2) the aqueous CH3NH3I could hardly further decompose into volatile CH3NH2, HI or I2; 3) the moisture disintegrate CH3NH3PbI3 and then alter the distribution of the decomposition products, which leads to an incompletely-reversible reaction of CH3NH3PbI3 hydrolysis and degrades the photoelectric properties. These findings further elucidate the picture of hydrolysis process of perovskite organometallic halide in humidity environment. PMID:26924112

  10. Investigation of the Hydrolysis of Perovskite Organometallic Halide CH3NH3PbI3 in Humidity Environment

    NASA Astrophysics Data System (ADS)

    Zhao, Jiangtao; Cai, Bing; Luo, Zhenlin; Dong, Yongqi; Zhang, Yi; Xu, Han; Hong, Bin; Yang, Yuanjun; Li, Liangbin; Zhang, Wenhua; Gao, Chen

    2016-02-01

    Instability of emerging perovskite organometallic halide in humidity environment is the biggest obstacle for its potential applications in solar energy harvest and electroluminescent display. Understanding the detailed decay mechanism of these materials in moisture is a critical step towards the final appropriate solutions. As a model study presented in this work, in situ synchrotron radiation x-ray diffraction was combined with microscopy and gravimetric analysis to study the degradation process of CH3NH3PbI3 in moisture, and the results reveal that: 1) intermediate monohydrated CH3NH3PbI3·H2O is detected in the degradation process of CH3NH3PbI3 and the final decomposition products are PbI2 and aqueous CH3NH3I; 2) the aqueous CH3NH3I could hardly further decompose into volatile CH3NH2, HI or I2; 3) the moisture disintegrate CH3NH3PbI3 and then alter the distribution of the decomposition products, which leads to an incompletely-reversible reaction of CH3NH3PbI3 hydrolysis and degrades the photoelectric properties. These findings further elucidate the picture of hydrolysis process of perovskite organometallic halide in humidity environment.

  11. Four-Terminal Tandem Solar Cells Using CH3NH3PbBr3 by Spectrum Splitting.

    PubMed

    Sheng, Rui; Ho-Baillie, Anita W Y; Huang, Shujuan; Keevers, Mark; Hao, Xiaojing; Jiang, Liangcong; Cheng, Yi-Bing; Green, Martin A

    2015-10-01

    In this work, the use of a high bandgap perovskite solar cell in a spectrum splitting system is demonstrated. A remarkable energy conversion efficiency of 23.4% is achieved when a CH3NH3PbBr3 solar cell is coupled with a 22.7% efficient silicon passivated emitter rear locally diffused solar cell. Relative enhancements of >10% are demonstrated by CH3NH3PbBr3/CH3NH3PbI3 and CH3NH3PbBr3/multicrystalline-screen-printed-Si spectral splitting systems with tandem efficiencies of 13.4% and 18.8%, respectively. The former is the first demonstration of an all perovskite split spectrum system. The CH3NH3PbBr3 cell on a mesoporous structure was fabricated by the vapor-assisted method while the planar CH3NH3PbI3 cell was fabricated by the gas-assisted method. This work demonstrates the advantage of the higher voltage output from the high bandgap CH3NH3PbBr3 cell and its suitability in a tandem system. PMID:26722894

  12. Investigation of the Hydrolysis of Perovskite Organometallic Halide CH3NH3PbI3 in Humidity Environment.

    PubMed

    Zhao, Jiangtao; Cai, Bing; Luo, Zhenlin; Dong, Yongqi; Zhang, Yi; Xu, Han; Hong, Bin; Yang, Yuanjun; Li, Liangbin; Zhang, Wenhua; Gao, Chen

    2016-01-01

    Instability of emerging perovskite organometallic halide in humidity environment is the biggest obstacle for its potential applications in solar energy harvest and electroluminescent display. Understanding the detailed decay mechanism of these materials in moisture is a critical step towards the final appropriate solutions. As a model study presented in this work, in situ synchrotron radiation x-ray diffraction was combined with microscopy and gravimetric analysis to study the degradation process of CH3NH3PbI3 in moisture, and the results reveal that: 1) intermediate monohydrated CH3NH3PbI3·H2O is detected in the degradation process of CH3NH3PbI3 and the final decomposition products are PbI2 and aqueous CH3NH3I; 2) the aqueous CH3NH3I could hardly further decompose into volatile CH3NH2, HI or I2; 3) the moisture disintegrate CH3NH3PbI3 and then alter the distribution of the decomposition products, which leads to an incompletely-reversible reaction of CH3NH3PbI3 hydrolysis and degrades the photoelectric properties. These findings further elucidate the picture of hydrolysis process of perovskite organometallic halide in humidity environment. PMID:26924112

  13. NH3 is involved in the NH4+ transport induced by the functional expression of the human Rh C glycoprotein.

    PubMed

    Bakouh, Naziha; Benjelloun, Fatine; Hulin, Philippe; Brouillard, Franck; Edelman, Aleksander; Chrif-Zahar, Baya; Planelles, Gabrielle

    2004-04-16

    Renal ammonium (NH3 + NH4+) transport is a key process for body acid-base balance. It is well known that several ionic transport systems allow NH4+ transmembrane translocation without high specificity NH4+, but it is still debated whether NH3, and more generally, gas, may be transported by transmembrane proteins. The human Rh glycoproteins have been proposed to mediate ammonium transport. Transport of NH4+ and/or NH3 by the epithelial Rh C glycoprotein (RhCG) may be of physiological importance in renal ammonium excretion because RhCG is mainly expressed in the distal nephron. However, RhCG function is not yet established. In the present study, we search for ammonium transport by RhCG. RhCG function was investigated by electrophysiological approaches in RhCG-expressing Xenopus laevis oocytes. In the submillimolar concentration range, NH4Cl exposure induced inward currents (IAM) in voltage-clamped RhCG-expressing cells, but not in control cells. At physiological extracellular pH (pHo) = 7.5, the amplitude of IAM increased with NH4Cl concentration and membrane hyperpolarization. The amplitude of IAM was independent of external Na+ or K+ concentrations but was enhanced by alkaline pHo and decreased by acid pHo. The apparent affinity of RhCG for NH4+ was affected by NH3 concentration and by changing pHo, whereas the apparent affinity for NH3 was unchanged by pHo, consistent with direct NH3 involvement in RhCG function. The enhancement of methylammonium-induced current by NH3 further supported this conclusion. Exposure to 500 microm NH4Cl induced a biphasic intracellular pH change in RhCG-expressing oocytes, consistent with both NH3 and NH4+ enhanced influx. Our results support the hypothesis of a specific role for RhCG in NH3 and NH4+ transport. PMID:14761968

  14. Photochemistry of NH3, CH4 and PH3 - Possible applications to the Jovian planets

    NASA Technical Reports Server (NTRS)

    Ferris, J. P.; Morimoto, J. Y.; Benson, R.; Bossard, A.

    1982-01-01

    It is found that the photolysis of NH4 at 185 nm in the presence of a two-fold excess of CH4 results in the loss of about 0.25 mole of CH4 per mole of NH3 decomposed. The loss is shown to arise from the abstraction of hydrogen atoms from CH4 by photolytically generated hot hydrogen atoms. It is concluded that NH3 photolysis in the H2-abundant atmosphere of Jupiter is not responsible for the presence of the carbon compounds observed there, such as ethane, acetylene, and hydrogen cyanide, but may have had a role in the early atmosphere of Titan. Also, it is found that the photolysis of PH3 with a 206 nm light source gives P2H4, which in turn is converted to a red-brown solid. The course of the photolysis is not changed appreciably when the temperature is lowered to 157 K except that the concentration of P2H4 increases, while the presence of H2 has no effect on the P2H4 yield. Photolysis of 9:1 NH3:PH3 is found to give a rate of decomposition of PH3 that is comparable with that observed by the direct photolysis of PH3 and comparable amounts of the red-brown solid and P2H4 are observed. In addition, the implications of these results for the structures of the compounds responsible for the wide array of colors observed in the atmosphere of Jupiter are examined.

  15. OT1_ccodella_1: Peering into the protostellar shocks: NH3 emission at high-velocities

    NASA Astrophysics Data System (ADS)

    Codella, C.

    2010-07-01

    Ammonia and water are key molecules for determining the physical and chemical structure of star forming regions because of their large abundance variations. In shocked regions where jets driven by low-mass protostars impact the surrounding medium, the NH3 and H2O abundances undergo a dramatic enhancement due to ice grain mantle sublimation. Thanks to the very recent HIFI (CHESS KPs) observations performed towards the prototype L1157 outflow, we compared the line profiles due to the NH3(1_0-0_0) and H2O(1_10-1_01) transitions in the HIFI-band 1b. The high-spectral resolution provided by HIFI allowed us to observe a striking difference in profile between water and ammonia, with H2O emitting at definitely higher velocities. In Codella et al. (2010) we propose that such difference reflects different formation mechanisms: while NH3 is believed to be a direct product of grain surface reactions, water is enhanced by the release of the icy mantles as well as by endothermic reactions occurring in the warm (> 220 K) shocked gas, which convert all gaseous atomic oxygen into water. We propose here the obvious next step, i.e. to observe the NH3(1_0-0_0) line at 572.5 GHz in a sample of 8 bright low-mass outflow spots already observed in the H2O(1_10-1_01) line within the WISH KP. The analysis of the profiles in such sample will allow us to: (i) determine whether the difference in profiles is unique to L1157 or a common characteristic of chemically rich outflows; (ii) provide clues to the physical characteristics of the shock and of the pre-existing material. Such analysis will be performed by using a suite of chemical, PDR, radiative transfer and shocks models which our team has developed. The present proposal can be considered as a WISH+CHESS KPs synergy and indeed it gathers components of the teams leading the investigations of protostellar outflows in both CHESS and WISH Herschel GT-KPs.

  16. H2O/Ni(100) and NH3/Ni(100) - A computational approach

    NASA Technical Reports Server (NTRS)

    Bauschlicher, C. W., Jr.

    1985-01-01

    The adsorption of NH3 and H2O on the Ni(100) is treated using a cluster model. The adsorption is found to have only a small effect on the HXH angle. Rotation about the principal ligand axis requires virtually no energy. Ligand tilts of 15 deg are found to require small amounts of energy, leading to the suggestion that the ESDIAD signal is a result of excited tilting modes, not a change in the HXH angle. For H2O additional bending modes are considered and all are found to be quite flat in energy.

  17. Overtone, 2NH (?1 + ?3) spectroscopy of 15NH3-Ar

    NASA Astrophysics Data System (ADS)

    Vanfleteren, T.; Fldes, T.; Herman, M.; Di Lonardo, G.; Fusina, L.

    2015-12-01

    We report on the observation of the ? (11; 2NH) ? ? (00; ground state) band in 15NH3-Ar, with origin at 6615.943 cm-1, using jet-cooled cw-cavity ring-down spectroscopy. The rotational temperature is estimated to be 7 K. Nineteen rotational lines were assigned. Perturbations were evidenced from anomalous line positions and line widths, but not unraveled. Upper state rotational constants were obtained from the analysis of the nine unperturbed R/P lines. The e-symmetry upper state predissociation lifetimes appear to decrease with J?, from about 1.2 ns to 250 ps from J? = 1 to 9.

  18. Spectroscopic line parameters of NH3 and PH3 in the far infrared

    NASA Technical Reports Server (NTRS)

    Husson, N.; Goldman, A.; Orton, G.

    1982-01-01

    NH3 and PH3 rotation and rotation-inversion line parameters in the far to medium IR are calculated for remote sounding purposes of planetary atmospheres; 1607 lines of (N-14)H3, 362 lines of (N-15)H3 and 325 lines of PH3 are compiled. The absolute intensity formulation has been reviewed in the case of rotation and rotation-inversion lines of molecules with C(3v) symmetry. The justification for the general agreement between the authors, and comparisons with other published expressions are given.

  19. A DFT study of reaction pathways of NH3 decomposition on InN (0001) surface

    NASA Astrophysics Data System (ADS)

    Walkosz, Weronika; Zapol, Peter; Stephenson, G. Brian

    2012-08-01

    Reaction pathways for complete decomposition of ammonia on the InN (0001) surface are investigated using first principles calculations. We show that while the initial NH3 decomposition on this surface can proceed by H dissociation, its further decomposition is most favorable by H transfer. The calculated low diffusion barriers for the decomposed species on the surface imply that the metal-organic chemical vapor deposition growth of InN is a reaction-limited process rather than diffusion-limited at low adsorbate coverage.

  20. Experimental and theoretical studies of reactions of neutral vanadium and tantalum oxide clusters with NO and NH3.

    PubMed

    Heinbuch, S; Dong, F; Rocca, J J; Bernstein, E R

    2010-11-01

    Reactions of neutral vanadium and tantalum oxide clusters with NO, NH(3), and an NO/NH(3) mixture in a fast flow reactor are investigated by time of flight mass spectrometry and density functional theory (DFT) calculations. Single photon ionization through a 46.9 nm (26.5 eV) extreme ultraviolet (EUV) laser is employed to detect both neutral cluster distributions and reaction products. Association products VO(3)NO and V(2)O(5)NO are detected for V(m)O(n) clusters reacting with pure NO, and reaction products, TaO(3,4)(NO)(1,2), Ta(2)O(5)NO, Ta(2)O(6)(NO)(1-3), and Ta(3)O(8)(NO)(1,2) are generated for Ta(m)O(n) clusters reacting with NO. In both instances, oxygen-rich clusters are the active metal oxide species for the reaction M(m)O(n)+NO?M(m)O(n)(NO)(x). Both V(m)O(n) and Ta(m)O(n) cluster systems are very active with NH(3). The main products of the reactions with NH(3) result from the adsorption of one or two NH(3) molecules on the respective clusters. A gas mixture of NO:NH(3) (9:1) is also added into the fast flow reactor: the V(m)O(n) cluster system forms stable, observable clusters with only NH(3) and no V(m)O(n)(NO)(x)(NH(3))(y) species are detected; the Ta(m)O(n) cluster system forms stable, observable mixed clusters, Ta(m)O(n)(NO)(x)(NH(3))(y), as well as Ta(m)O(n)(NO)(x) and Ta(m)O(n)(NH(3))(y) individual clusters, under similar conditions. The mechanisms for the reactions of neutral V(m)O(n) and Ta(m)O(n) clusters with NO/NH(3) are explored via DFT calculations. Ta(m)O(n) clusters form stable complexes based on the coadsorption of NO and NH(3). V(m)O(n) clusters form weakly bound complexes following the reaction pathway toward end products N(2)+H(2)O without barrier. The calculations give an interpretation of the experimental data that is consistent with the condensed phase reactivity of V(m)O(n) catalyst and suggest the formation of intermediates in the catalytic chemistry. PMID:21054039

  1. High sensitivity detection of NO2 and NH3 in air using chemical vapor deposition grown graphene

    NASA Astrophysics Data System (ADS)

    Yavari, Fazel; Castillo, Eduardo; Gullapalli, Hemtej; Ajayan, Pulickel M.; Koratkar, Nikhil

    2012-05-01

    We show that graphene films synthesized by chemical-vapor-deposition enables detection of trace amounts of nitrogen dioxide (NO2) and ammonia (NH3) in air at room temperature and atmospheric pressure. The gas species are detected by monitoring changes in electrical resistance of the graphene film due to gas adsorption. The sensor response time was inversely proportional to the gas concentration. Heating the film expelled chemisorbed molecules from the graphene surface enabling reversible operation. The detection limits of 100 parts-per-billion (ppb) for NO2 and 500 ppb for NH3 obtained using our device are markedly superior to commercially available NO2 and NH3 detectors.

  2. Comparison of Recombination Dynamics in CH3NH3PbBr3 and CH3NH3PbI3 Perovskite Films: Influence of Exciton Binding Energy.

    PubMed

    Yang, Ye; Yang, Mengjin; Li, Zhen; Crisp, Ryan; Zhu, Kai; Beard, Matthew C

    2015-12-01

    Understanding carrier recombination in semiconductors is a critical component when developing practical applications. Here we measure and compare the monomolecular, bimolecular, and trimolecular (Auger) recombination rate constants of CH3NH3PbBr3 and CH3NH3PbI3. The monomolecular and bimolecular recombination rate constants for both samples are limited by trap-assisted recombination. The bimolecular recombination rate constant for CH3NH3PbBr3 is ?3.3 times larger than that for CH3NH3PbI3 and both are in line with that found for radiative recombination in other direct-gap semiconductors. The Auger recombination rate constant is 4 times larger in lead-bromide-based perovskite compared with lead-iodide-based perovskite and does not follow the reduced Auger rate when the bandgap increases. The increased Auger recombination rate, which is enhanced by Coulomb interactions, can be ascribed to the larger exciton binding energy, ?40 meV, in CH3NH3PbBr3 compared with ?13 meV in CH3NH3PbI3. PMID:26551036

  3. Effects of NO2 and NH3 from road traffic on epiphytic lichens.

    PubMed

    Frati, L; Caprasecca, E; Santoni, S; Gaggi, C; Guttova, A; Gaudino, S; Pati, A; Rosamilia, S; Pirintsos, S A; Loppi, S

    2006-07-01

    The results of a survey aimed at investigating whether NO2 and NH3 emitted by road traffic can influence lichen diversity, lichen vitality and the accumulation of nitrogen in lichen thalli are reported. For this purpose, distance from a highway in a rural environment of central Italy was regarded as the main parameter to check this hypothesis. The results of the present survey indicated that road traffic is not a relevant source of NH3. On the other hand, NO2 concentrations, although rather low, were negatively correlated with distance from the highway according to a typical logarithmic function. No association between NO2 concentrations and the diversity of epiphytic lichens was found, probably because of the low NO2 values measured. Also bark properties were not influenced by distance from the highway. Accumulation of nitrogen, reduction in the content of chlorophyll a, chlorophyll b and total carotenoids were found in transplanted thalli of Evernia prunastri, but NO2 was not responsible for these changes, which were probably caused by applications of N-based fertilizers. PMID:16310300

  4. The ν1 and ν3 band system of 15NH3

    NASA Astrophysics Data System (ADS)

    Fusina, Luciano; Nivellini, Giandomenico; Spezzano, Silvia

    2011-09-01

    The infrared spectrum of 15NH3 has been investigated by high-resolution Fourier transform infrared spectroscopy in the region of the stretching fundamentals. A large number of ro-vibration transitions in the 3050-3650 cm-1 spectral range has been recorded and assigned to the fundamentals ν1 and ν3, and to the 2ν 4 overtone bands. In total, 1606 transitions involving the (s) and (a) inversion-rotation-vibration levels have been identified and assigned. They include 256 perturbation-allowed transitions with selection rules ΔK = ±2, Δl = -1 in ν3 and Δl = +2 in 2ν4^±2, and ΔK = ±3, Δl = 0 in ν1 and 2ν4^0. All assigned transitions were fitted simultaneously to a model Hamiltonian that includes all symmetry-allowed interactions between and within the excited state levels in order to obtain accurate sets of spectroscopic parameters for both inversion states. The standard deviation of the fit, 0.034 cm-1, is about 70 times larger than the estimated measurement precision. This result is similar to that reported for the same band system in 14NH3 by Kleiner et al. [J. Mol. Spectrosc. 193, 46 (1999)] and is a consequence of the neglect of vibration and ro-vibration interactions between the analysed states and vibrationally excited states with close energies.

  5. Crystal structure of [Co(NH3)6][Co(CO)4]2

    PubMed Central

    Müller, Thomas G.; Kraus, Florian

    2015-01-01

    Hexaamminecobalt(II) bis­[tetra­carbonyl­cobaltate(-I)], [Co(NH3)6][Co(CO)4]2, was synthesized by reaction of liquid ammonia with Co2(CO)8. The CoII atom is coordinated by six ammine ligands. The resulting polyhedron, the hexa­amminecobalt(II) cation, exhibits point group symmetry -3. The Co-I atom is coordinated by four carbonyl ligands, leading to a tetra­carbonyl­cobaltate(−I) anion in the shape of a slightly distorted tetra­hedron, with point group symmetry 3. The crystal structure is related to that of high-pressure BaC2 (space group R-3m), with the [Co(NH3)6]2+ cations replacing the Ba sites and the [Co(CO)4]− anions replacing the C sites. N—H⋯O hydrogen bonds between cations and anions stabilize the structural set-up in the title compound. PMID:26594524

  6. Plasma nitridation of silicon by N2 and NH3 in PECVD reactor

    NASA Astrophysics Data System (ADS)

    Bakardjieva, V. S.; Alexieva, Z. I.; Beshkov, G. D.; Mateev, E. S.

    2010-04-01

    The effect was investigated of nitrogen and ammonia plasma treatment of monocrystalline Si wafers. The experiments were carried out in a plasma-enhanced chemical vapor deposition reactor. The wafers were subjected to N2 and NH3 plasma treatment for varying times at temperature of 380 C. The plasma treated surfaces were studied by transmission electron microscopy with C-Pt replicas, reflection high-energy electron diffraction and Auger electron spectroscopy. The results point to the growth of an amorphous layer on the surface. The Auger electron spectroscopy depth profiles obtained by sputtering show the presence of an oxynitride layer with varying composition depending on the time of plasma treatment. The Auger electron spectroscopy analysis shows that after 60 s of treatment in N2 plasma, the nitrogen content is 8 at.%, while after 300 s it is 22 at.%, the thickness of the oxynitride nanolayer being 2.5-7.2 nm. In the case of NH3 plasma the thickness calculated from the sputtering time (from 50 s to 15 min) varies between 2 and 12 nm, and the nitrogen content, between 5 and 35 at.%.

  7. Enhanced NH3-Sensitivity of Reduced Graphene Oxide Modified by Tetra-?-Iso-Pentyloxymetallophthalocyanine Derivatives.

    PubMed

    Li, Xiaocheng; Wang, Bin; Wang, Xiaolin; Zhou, Xiaoqing; Chen, Zhimin; He, Chunying; Yu, Zheying; Wu, Yiqun

    2015-12-01

    Three kinds of novel hybrid materials were prepared by noncovalent functionalized reduced graphene oxide (rGO) with tetra-?-iso-pentyloxyphthalocyanine copper (CuPc), tetra-?-iso-pentyloxyphthalocyanine nickel (NiPc) and tetra-?-iso-pentyloxyphthalocyanine lead (PbPc) and characterized by Fourier transform infrared spectroscopy (FT-IR), ultraviolet-visible spectroscopy (UV-vis), Raman spectra, X-ray photoelectron spectroscopy (XPS), transmission electron microscope (TEM), and atomic force microscope (AFM). The as-synthesized MPc/rGO hybrids show excellent NH3 gas-sensing performance with high response value and fast recovery time compared with bare rGO. The enhancement of the sensing response is mainly attributed to the synergism of gas adsorption of MPc to NH3 gas and conducting network of rGO with greater electron transfer efficiency. Strategies for combining the good properties of rGO and MPc derivatives will open new opportunities for preparing and designing highly efficient rGO chemiresistive gas-sensing hybrid materials for potential applications in gas sensor field. PMID:26403926

  8. HCN and NH3 formation during coal/char gasification in the presence of NO.

    PubMed

    Lin, Jian-Ying; Zhang, Shu; Zhang, Lian; Min, Zhenhua; Tay, Huiling; Li, Chun-Zhu

    2010-05-15

    Understanding the conversion of coal-N during gasification is an important part of the development of gasification-based power generation technologies to reduce NO(x) emissions from coal utilization. This study investigated the conversion of coal-N in the presence of NO during the gasification of three rank-ordered coals and their chars in steam and low-concentration O(2). Our results show that NO can be incorporated into the char structure during gasification. The inherent char-N and the N incorporated into the char from NO-char reactions behave very similarly during gasification. During the gasification in steam, significant amounts of HCN and NH(3) can be formed from the incorporated N structure in char, especially for the relatively "aged" chars, mainly due to the availability of abundant H radicals on the char surface during the gasification in steam. During the gasification in 2000 ppm O(2), the formation of HCN or NH(3) from the N structures in char, including those incorporated into the char from the NO-char reactions, was not a favored route of reaction mainly due to the lack of H on char surface in the presence of O(2). PMID:20415414

  9. Mobilities of NH4+(NH3)n clusters in helium from 100 K to 298 K

    NASA Astrophysics Data System (ADS)

    Midey, Anthony J.; Viggiano, A. A.

    2001-04-01

    A variable temperature-selected ion flow drift tube (VT-SIFDT) has been used to measure the mobilities of NH4+(NH3)n clusters drifting in He. The mobilities have been measured for n=0-2 at 298 K, n=0-3 at 200 K, and n=0-5 at 100 K, marking the first mobilities experiments for these clusters below room temperature. The reduced mobilities measured at 298 K are compared to the previous SIFDT results of Krishnamurthy et al. [J. Chem. Phys. 106, 530 (1997)] for n=0-2. While the current results compare quite favorably for n=0-2, there is a discrepancy for n=3 which is addressed by current 100 K and 200 K data where these species are thermally stable. The trends in the mobilities from 100 K to 298 K as a function of E/N and effective temperature reveal that the repulsive part of the He-NH4+(NH3)n interaction potential is sampled predominantly for n=1-5. However, the attractive part of the potential is accessed at the lowest temperatures for He-NH4+.

  10. Flexible NH3 sensors fabricated by in situ self-assembly of polypyrrole.

    PubMed

    Su, Pi-Guey; Lee, Chi-Ting; Chou, Cheng-Yi

    2009-12-15

    Novel flexible NH(3) gas sensors were formed by the in situ self-assembly of polypyrrole (PPy) on plastic substrates. A negatively charged substrate was prepared by the formation of an organic monolayer (3-mercapto-1-propanesulfonic acid sodium salt-MPS) on a polyester (PET) substrate using a pair of comb-like Au electrodes. Two-cycle poly(4-styrenesulfonic acid) sodium salt/poly(allylamine hydrochloride) (PSS/PAH) bilayers (precursor layer) were then layer-by-layer (LBL) deposited on an MPS-modified substrate. Finally, a monolayer of PPy self-assembled in situ and PPy multilayer thin films self-assembled LBL in situ on a (PSS/PAH)(2)/MPS/Au/Cr/PET substrate. The thin films were analyzed by atomic force microscopy (AFM). The effects of the precursor layer (PSS), the deposition time of the monolayer of PPy and the number of PPy multilayers on the gas sensing properties (response) and the flexibility of the sensors were investigated to optimize the fabrication of the film. Additionally, other sensing properties such as sensing linearity, reproducibility, response and recovery times, as well as cross-sensitivity effects were studied. The flexible NH(3) gas sensor exhibited a strong response that was comparable to or even greater than that of sensors that were fabricated on rigid substrate at room temperature. PMID:19836549

  11. Correlations between NH3(1,1) and far-IR emission

    NASA Astrophysics Data System (ADS)

    Stenholm, L. G.; Baud, B.; Mauersberger, R.

    1986-06-01

    NH3 (1,1 and 2,2) observations obtained using a 1024-channel autocorrelator and K-band maser amplifier at the 100-m Effelsberg radio telescope (angular resolution 40 arcsec at 1.3 cm; velocity resolution 0.16 km/s; rms error 0.1 K) are reported for six Taurus-region IRAS sources for which the 100-micron flux is greater than the 60-micron flux. The data are presented in maps and tables and compared with the IRAS FIR data in graphs. A strong correlation between the NH3 line intensity and the 100-micron flux and an anticorrelation between peak main-beam brightness temperature and Delta-V (where V is the line velocity) are observed and found to be consistent with the hypothesis of Henriksen and Turner (1984), that the velocity field in molecular clouds is controlled by star/cloud turbulence, with a conversion of small-scale angular momentum to larger-scale turbulence.

  12. Temperature dependence for the CN+NH_3 reaction under interstellar conditions: beyond capture theories?

    NASA Astrophysics Data System (ADS)

    Faure, Alexandre; Rist, Claire; Valiron, Pierre

    1999-08-01

    The reaction between the radical CN and NH_3 is representative of the important class of radical-neutral reactions that proceed rapidly at low temperature, due to strong inverse temperature dependences. Such reactions are assumed to be of great importance in the gas-phase chemistry of dense interstellar clouds; unfortunately, their temperature dependence is poorly understood theoretically. We estimated the rate constant for the CN+NH_3 reaction as a function of temperature in the range 25-300 K, using the classical trajectory Monte Carlo approach. Employing an accurate ab initio potential energy surface, we confirm that capture approximations lead to a flat temperature dependence for the rate constant, in severe disagreement with the strong inverse temperature dependence observed experimentally. In order to understand the cause of this severe discrepancy, we investigated the possible influence of the rotation of reactants on the short-range dynamics. We present a crude illustrative model which reproduces both magnitude and temperature dependence of the experimental rate constant. This study emphasizes the importance of the formation conditions of the reaction complex and constitutes a first attempt to evaluate the relevance of processes subsequent to capture.

  13. Enhanced NH3-Sensitivity of Reduced Graphene Oxide Modified by Tetra-α-Iso-Pentyloxymetallophthalocyanine Derivatives

    NASA Astrophysics Data System (ADS)

    Li, Xiaocheng; Wang, Bin; Wang, Xiaolin; Zhou, Xiaoqing; Chen, Zhimin; He, Chunying; Yu, Zheying; Wu, Yiqun

    2015-09-01

    Three kinds of novel hybrid materials were prepared by noncovalent functionalized reduced graphene oxide (rGO) with tetra-α-iso-pentyloxyphthalocyanine copper (CuPc), tetra-α-iso-pentyloxyphthalocyanine nickel (NiPc) and tetra-α-iso-pentyloxyphthalocyanine lead (PbPc) and characterized by Fourier transform infrared spectroscopy (FT-IR), ultraviolet-visible spectroscopy (UV-vis), Raman spectra, X-ray photoelectron spectroscopy (XPS), transmission electron microscope (TEM), and atomic force microscope (AFM). The as-synthesized MPc/rGO hybrids show excellent NH3 gas-sensing performance with high response value and fast recovery time compared with bare rGO. The enhancement of the sensing response is mainly attributed to the synergism of gas adsorption of MPc to NH3 gas and conducting network of rGO with greater electron transfer efficiency. Strategies for combining the good properties of rGO and MPc derivatives will open new opportunities for preparing and designing highly efficient rGO chemiresistive gas-sensing hybrid materials for potential applications in gas sensor field.

  14. NH3 and NH2 in the coma of Comet Brorsen-Metcalf

    NASA Technical Reports Server (NTRS)

    Tegler, Stephen C.; Burke, Luke F.; Wyckoff, Susan; Womack, Maria; Fink, Uwe; Disanti, Michael

    1992-01-01

    Evidence consistent with NH3 ice in the nucleus of Comet Brorsen-Metcalf as the source of the NH2 observed in the comet coma is presented. The distribution of NH2 is symmetric and shows no evidence for jet structure at the 3-sigma significance level above background emission. An azimuthal average of the NH2 image produces an NH2 surface brightness profile for Comet Brorsen-Metcalf which yields a factor of about-10 improvement in the signal-to-noise ratio over previous 1D long-slit NH2 observations, and provides a significant constraint on the NH2 photodissociation time scale in comets. A Monte Carlo simulation of the comet coma, assuming that NH2 is the primary source of NH2, is described and compared with the observations. For an observed production rate, Q(H2O) is approximately equal to 7 x 10 exp 28 molecules/s, collisional effects on the NH3 and NH2 outflow had at most an approximately 10-percent effect on the NH2 surface brightness profile. Because Comet Brorsen-Metcalf showed no significant dust or gas production rate variability, it is argued that steady state conditions best match the comet at the time of the observations.

  15. Synthesis of multi-walled carbon nanotubes for NH 3 gas detection

    NASA Astrophysics Data System (ADS)

    Nguyen, L. H.; Phi, T. V.; Phan, P. Q.; Vu, H. N.; Nguyen-Duc, C.; Fossard, F.

    2007-03-01

    It has been recently demonstrated that carbon nanotubes (CNTs) represent a new type of chemical sensor capable of detecting a small concentration of molecules such as CO, NO 2, NH 3. In this work, CNTs were synthesized by chemical vapor deposition (CVD) on the SiO 2/Si substrate by decomposition of acetylene (C 2H 2) on sputtered Ni catalyst nanoparticles. Their structural properties are studied by atomic force microscopy, high-resolution scanning electron microscopy (HRSEM) and Raman spectroscopy. The CNTs grown at 700 C exhibit a low dispersion in size, are about 1 ?m long and their average diameter varies in the range 25-60 nm as a function of the deposition time. We have shown that their diameter can be reduced either by annealing in oxygen environment or by growing at lower temperature (less than 600 C). We developed a test device with interdigital Pt electrodes on an Al 2O 3 substrate in order to evaluate the CNTs-based gas sensor capabilities. We performed room temperature current-voltage measurements for various gas concentrations. The CNT films are found to exhibit a fast response and a high sensitivity to NH 3 gas.

  16. Axicons et Pompage Optique du Laser NH(3) dans L'infrarouge Moyen

    NASA Astrophysics Data System (ADS)

    Couture, Marc

    Cette these propose une nouvelle application des axicons: le pompage optique axial. On presente d'abord une investigation theorique et experimentale des proprietes de focalisation d'un systeme forme de deux axicons reflecteurs, examinant en particulier les effets de divers defauts de positionnement. On presente ensuite les resultats obtenus avec une configuration de pompage optique (un laser NH _3 pompe a l'aide d'un laser CO _2-TEA) ou ce systeme sert a la fois a decoupler les deux cavites et focaliser la radiation de pompage. Les caracteristiques de l'emission laser dans l'infrarouge moyen sont explorees dans les conditions maximisant l'efficacite, qui se compare a celle obtenue avec d'autres configurations. Finalement, on expose les resultats du pompage d'un melange de NH _3 et de gaz-tampons a pression supra-atmospherique, qui indiquent que ce sont les melanges ternaires qui permettent d'obtenir un effet laser a la plus haute pression, soit 1,4 bar.

  17. Etude calorimtrique et structure cristalline du putrescinium monohydrognomonophosphate dihydrate NH 3(CH 2) 4NH 3HPO 42H 2O

    NASA Astrophysics Data System (ADS)

    Kamoun, Slaheddine; Jouini, Amor

    1990-11-01

    Chemical preparation, calorimetric studies, and crystal structure are given for a new monophosphate. The putrescinium monohydrogen monophosphate dihydrate salt is monoclinic with the unit cell dimensions a = 6.541(1) , b = 16.648(3) , c = 9.175(1) , ? = 95.74(1), V = 994.1(5) 3, Dm = 1.498 Mgm -3, Dx = 1.484 Mgm -3, ? = 2.732 mm -1, space group {P2 1}/{c} with Z = 4. The structure was solved by the Patterson method and refined to a final value of 0.046 for 1732 observed independent reflections. The structure shows a layer arrangement perpendicular to the overlinec axis: planes of the [HPO 4] 2- tetrahedra alternate with planes of the [(CH 2) 4(NH 3) 2] 2+ dication. The zeolitic water molecules are located between these planes separated by a distance of 2.294 . The monohydrogen phosphate group is roughly tetrahedral with the symmetry 3 m. The P?O distances in this group range from 1.495(2) to 1.592(2) . The amino groups of putrescine are protonated. The putrescinium dication has an extensive all- trans configuration with a noncrystallographic inversion center. The cohesion and the stability of the atomic arrangement result from three kinds of hydrogen bonds, N?HO, P?OHO(w), and O(W)?HO. The differential scanning calorimetric study shows that the dehydration of this salt occurs in two steps respectively at 105 and 121C with a loss of one water molecule per step. The anhydrous salt undergoes four phase transitions respectively at temperatures of 133, 143, 159, and 165C.

  18. Effects of NH 3 Plasma Treatment of the Substrate on Metal Organic Chemical Vapor Deposition of Copper Films

    NASA Astrophysics Data System (ADS)

    Kim, Young; Jung, Donggeun; Kim, Dong; Min, Suk-Ki

    1998-08-01

    Surface modification by NH3 plasma treatment enabled selective copper (Cu) chemical vapor deposition (CVD) andchanged the structure of the deposited Cu film. After NH3 plasma treatment of the substrate, Cu nucleation was suppressedon borophosphosilicate glass (BPSG), while Cu films were formed on TiN. NH3 plasma treatment was not as effective as N2 plasma treatment in inducing the selectivity. The lower efficiency of the NH3 plasma in inducing the selectivitycan be explained by the generation of NH++ or H species. A Cu film deposited on plasma-treated TiN showed larger grainsand enhanced (111) preferential orientation compared with that deposited on untreated TiN, which could be explained in termsof surface energy minimization.

  19. Detection of a CO and NH3 gas mixture using carboxylic acid-functionalized single-walled carbon nanotubes.

    PubMed

    Dong, Ki-Young; Choi, Jinnil; Lee, Yang Doo; Kang, Byung Hyun; Yu, Youn-Yeol; Choi, Hyang Hee; Ju, Byeong-Kwon

    2013-01-01

    Carbon nanotubes (CNT) are extremely sensitive to environmental gases. However, detection of mixture gas is still a challenge. Here, we report that 10 ppm of carbon monoxide (CO) and ammonia (NH3) can be electrically detected using a carboxylic acid-functionalized single-walled carbon nanotubes (C-SWCNT). CO and NH3 gases were mixed carefully with the same concentrations of 10 ppm. Our sensor showed faster response to the CO gas than the NH3 gas. The sensing properties and effect of carboxylic acid group were demonstrated, and C-SWCNT sensors with good repeatability and fast responses over a range of concentrations may be used as a simple and effective detection method of CO and NH3 mixture gas. PMID:23286690

  20. Detection of a CO and NH3 gas mixture using carboxylic acid-functionalized single-walled carbon nanotubes

    PubMed Central

    2013-01-01

    Carbon nanotubes (CNT) are extremely sensitive to environmental gases. However, detection of mixture gas is still a challenge. Here, we report that 10 ppm of carbon monoxide (CO) and ammonia (NH3) can be electrically detected using a carboxylic acid-functionalized single-walled carbon nanotubes (C-SWCNT). CO and NH3 gases were mixed carefully with the same concentrations of 10 ppm. Our sensor showed faster response to the CO gas than the NH3 gas. The sensing properties and effect of carboxylic acid group were demonstrated, and C-SWCNT sensors with good repeatability and fast responses over a range of concentrations may be used as a simple and effective detection method of CO and NH3 mixture gas. PMID:23286690

  1. Characterization of NH3 Seeded He Supersonic Free-Jet Beams for Growth of GaN Thin Films.

    NASA Astrophysics Data System (ADS)

    Torres, V. M.; Meloni, M. A.; Doak, R. B.; Lai, K.; Lamb, H. H.; Davis, R. F.

    1996-03-01

    The characterization of NH3 supersonic seeded He free-jet beams (SSFJ) is presented. The mean kinetic energy and energy spreads were determined as a function of the product of nozzle pressure times nozzle diameter, nozzle temperature and NH3 content. Preliminary results on the growth of GaN thin films using SSFJ in conjunction with a Triethylgallium doser is presented. The nozzle temperature had a noticeable effect on the surface morphology of the films.

  2. The photolysis of NH3 in the presence of substituted acetylenes - A possible source of oligomers and HCN on Jupiter

    NASA Technical Reports Server (NTRS)

    Ferris, James P.; Jacobson, Richard R.; Guillemin, Jean C.

    1992-01-01

    An NMR spectral study is presently conducted of NH3 photolysis in the presence of substituted acetylenes with NMR spectra and gas chromatography. Quantum yields and percentage conversions to products are reported. It is shown that acetylenic hydrocarbons generated during methane photolysis in Jupiter's stratosphere can react with radicals formed by NH3 photolysis to yield nonvolatile, yellow-brown polymers, alkylnitriles, and in due course, HCN, as observed on Jupiter.

  3. Immobilization of enzyme and antibody on ALD-HfO2-EIS structure by NH3 plasma treatment

    PubMed Central

    2012-01-01

    Thin hafnium oxide layers deposited by an atomic layer deposition system were investigated as the sensing membrane of the electrolyte-insulator-semiconductor structure. Moreover, a post-remote NH3 plasma treatment was proposed to replace the complicated silanization procedure for enzyme immobilization. Compared to conventional methods using chemical procedures, remote NH3 plasma treatment reduces the processing steps and time. The results exhibited that urea and antigen can be successfully detected, which indicated that the immobilization process is correct. PMID:22401350

  4. Phase transitions in [Co(NH3)6](ClO4)3 investigated by neutron scattering methods

    NASA Astrophysics Data System (ADS)

    Hetmańczyk, Łukasz; Górska, Natalia; Hetmańczyk, Joanna; Mikuli, Edward; Natkaniec, Ireneusz

    2013-02-01

    [Co(NH3)6](ClO4)3 was investigated by neutron scattering methods in the temperature range of 20-290 K. Neutron powder diffraction revealed that the crystal structure does not change at the TC2 and TC3 phase transitions. High temperature phases are orientationally disordered. QENS study showed that NH3 ligands perform rapid reorientational motion around their 3-fold axes in a wide temperature range. However, below TC3 some excess of elastic scattering is observed, which can be explained by the assumption that only half of the NH3 groups reorient fast enough to contribute to the QENS broadening, whereas the remaining NH3 groups reorient more slowly. The activation energy for NH3 jumps, estimated from the temperature dependence of QENS broadening, is small but comparable with the results obtained for other hexaammine complexes. Quantum chemical calculation, carried out on the basis of DFT for isolated [Co(NH3)6]3+ cation and ClO4- anion, and experimental (IR, RS, IINS) spectra are in good agreement.

  5. Epitaxial growth of NH 3-doped ZnO thin films on < 0 2 2 4 > oriented sapphire substrates

    NASA Astrophysics Data System (ADS)

    Wang, Jinzhong; Du, Guotong; Zhao, Baijun; Yang, Xiaotian; Zhang, Yuantao; Ma, Yan; Liu, Dali; Chang, Yuchun; Wang, Haisong; Yang, Hongjun; Yang, Shuren

    2003-08-01

    NH 3-doped ZnO films were grown on < 0 2 2 4> oriented sapphire substrates at 610C by metalorganic chemical vapor deposition. The crystal quality of the films was investigated by X-ray diffraction method, and the results indicated that the crystal quality of the doped film with NH 3 flux 80 sccm (standard cubic centimeter per minute) is the best. At the same time, AFM images showed that this sample surface was also the most smooth. The Hall measurement results indicated that the film with 50 sccm NH 3 flux showed p-type conductivity with hole concentrations of 10 16 cm -3, and the other films with more NH 3 flux still showed n-type, though their resistivity was very high. At last, the nature of nitrogen in the films was investigated by X-ray photoelectron spectroscopy (XPS). The results indicated that nitrogen in NH 3 combines with zinc by N -3 at 50 sccm flux of NH 3, and the O:Zn:N ratio is 40:45.5:14.6. As the flux increases, some hydrogen binding to nitrogen has been introduced into the ZnO films, which causes the resistivity to decrease again.

  6. Synergistic formation of sulfate and ammonium resulting from reaction between SO2 and NH3 on typical mineral dust.

    PubMed

    Yang, Weiwei; He, Hong; Ma, Qingxin; Ma, Jinzhu; Liu, Yongchun; Liu, Pengfei; Mu, Yujing

    2016-01-14

    The heterogeneous reactions of SO2 and NH3 on typical mineral oxides were investigated using in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). A new sulfate formation pathway was proposed where NH3 accelerated the formation of sulfate species. The results revealed that surface hydroxyls and oxygen played principal roles in the conversion of SO2 to sulfate. It was proposed that NH3 adsorbed onto Lewis acid sites, and hydroxyls and water molecules adsorbed on the surfaces of mineral dust. The enhancement of surface Lewis basicity by NH3 induced more SO2 molecules to adsorb on the surface, which were further oxidized to sulfate by interacting with surface hydroxyls and oxygen atoms. The formation of sulfate, in turn, contributed to the adsorption of NH3, mainly as NH4(+) due to enhanced Brnsted acid sites. The IC results showed that the synergistic effect between SO2 and NH3 was more significant on acidic oxides like ?-Al2O3 and ?-Fe2O3 compared to basic oxides like MgO. PMID:26650181

  7. NH3, H2S, and the Radio Brightness Temperature Spectra of the Giant Planets

    NASA Technical Reports Server (NTRS)

    Spilker, Thomas R.

    1995-01-01

    Recent radio interferometer observations of Neptune enable comparisons of the radio brightness temperature (T(sub B)) spectra of all four giant planets. This comparison reveals evidence for fundamental differences in the compositions of Uranus' and Neptune's upper tropospheres, particularly in their ammonia (NH3) and hydrogen sulfide (H2S) mixing ratios, despite those planets' outward similarities. The tropospheric abundances of these constituents yield information about their deep abundances, and ultimately about the formation of the planets from the presolar nebula (Atreya et al.). Figures 1, 2, 3, and 4 show the T(sub B) spectra of Jupiter, Saturn, Uranus, and Neptune, respectively, from 0.1 to tens of cm wavelength. The data shown are collected from many observers. Data for Jupiter, Saturn, and Uranus are those cataloged by de Pater and Massie (1985), plus the Saturn Very Large Array (VLA) data by Grossman et al. Figure 3, Uranus, shows only data acquired since 1973. Before 1973 Uranus' T(sub B) increased steadily as its pole moved into view, causing significant scatter in those data. Neptune data at greater than 1 cm, all taken at the VLA, are collected from de Pater and Richmond, de Pater et al., and Hofstadter. For a variety of reasons, such as susceptibility to source confusion, single-dish data at those wavelengths are much noisier than the more reliable VLA data and have been ignored. Single-dish data by Griffin and Orton shortward of 0.4 cm are shown, along with the Owens Valley Radio Observatory (interferometer) datum at 0.266 cm by Muhleman and Berge. Spectra of Jupiter, Saturn, and Neptune share certain gross characteristics. In each spectrum, T(sub B) at 1.3 cm is approximately 120-140 K, less than approximately 30 K different from that at 0.1 cm. All three spectra show a break in slope at or near 1.3 cm, with T(sub B) increasing fairly rapidly with wavelength longward of 1.3 cm. Visible and IR spectroscopy show that NH3, whose strong inversion spectrum peaks at appropximately 1.3 cm, is an important tropospheric species at Jupiter and Saturn. Its signature on the Jovian radio spectrum is obvious, causing the prominent "hole" at 1.3 cm. At Saturn it is more subdued but is the source of that spectrum's change in slope at 1.3 cm. Radiative transfer models of Jupiter and Saturn with near-solar deep NH3 abundances agree well with the data (e.g., de Pater).

  8. Trends of NO-, NO 2-, and NH 3-emissions from gasoline-fueled Euro-3- to Euro-4-passenger cars

    NASA Astrophysics Data System (ADS)

    Heeb, Norbert V.; Saxer, Christian J.; Forss, Anna-Maria; Brhlmann, Stefan

    Vehicular emissions of reactive nitrogen compounds (RNCs) such as nitric oxide (NO), nitrogen dioxide (NO 2), and ammonia (NH 3) have a substantial impact on urban air quality. NO and NO 2 support the photochemical formation of ozone, and NH 3 is involved in the atmospheric formation of secondary aerosols. Vehicular NO is mainly formed during combustion, whereas NO 2 and NH 3 are both secondary pollutants of the catalytic converter systems. Herein we report on tail-pipe RNC emissions of gasoline-fueled Euro-3- and Euro-4-passenger cars at transient driving from 0 to 150 km h -1. Two sets of 10 in-use vehicles with comparable engine size and mileage were studied with time-resolved chemical ionization-mass spectrometry (CI-MS). Each vehicle was tested in 7 different driving cycles including the legislative European (EDC) and the US FTP-75 driving cycles. Mean emission factors (EFs) for different traffic situations are reported and effects of cold start, velocity, acceleration, and deceleration are discussed. Furthermore, critical operating conditions supporting the de novo formation of NH 3 have been identified. In the EDC, mean NO- and NH 3-EFs of 5726 and 1612 mg km -1 were obtained for Euro-3-vehicles; those of the Euro-4-technology were lower by about 25% and 33% at the levels of 4346 and 107 mg km -1, respectively. NO 2 emissions of the investigated three-way catalyst (TWC) vehicles accounted for <1% of the detected RNCs, whereas NH 3 was found to be the dominant RNC for most vehicle conditions. Molar NH 3 proportions varied from about 0.4-0.8, as soon as catalyst light-off occurred. NO was found in large excess only during the cold-start period. Catalyst light-off is indicated by a fast transition from NO- to NH 3-rich exhaust. Velocity and acceleration had pronounced effects on the RNC emission characteristics. Mean velocity-dependent EFs for NO and NH 3 varied by about one order of magnitude from 10 to 74 and 15 to 161 mg km -1 for Euro-3-vehicles and from 12 to 44 and 7 to 144 mg km -1 for the Euro-4 fleet. We conclude that the investigated Euro-3- and Euro-4-vehicles are mainly operated under slightly reducing conditions, where the NH 3 emissions dominate over those of the NO. Under these conditions, both vehicle fleets on an average fulfilled the valid Euro-3 and Euro-4 limits for nitrogen oxides (NO x) of 150 and 80 mg km -1, respectively (as NO 2 equivalents).

  9. Zwitterion formation in titan ice analogs: reaction between HC3N and NH3.

    PubMed

    Couturier-Tamburelli, Isabelle; Sessouma, Bintou; Chiavassa, Thierry; Pitri, Nathalie

    2012-11-01

    A zwitterion is formed in the laboratory at low temperatures in the solid phase from the thermal reaction of HC(3)N and NH(3). We report for the first time its infrared spectrum. We study its reaction using Fourier transform infrared spectroscopy. Its reaction rate is estimated to be k(T) = 2.9 10(5) exp(-2.3 0.1 (kJ mol(-1))/RT). Calculations using density functional theory (B3LYP/6-31g**) are used to characterize all the species (complexes, zwitterions, and transition states) and are in good agreement with the infrared spectra. The structure of the zwitterion is determined planar and it is characterized by a N-C bond around 1.5 . PMID:23075265

  10. RELAP5/MOD2 assessment simulation of semiscale MOD-2C test S-NH-3

    SciTech Connect

    Megahed, M M

    1987-10-01

    This report documents an evaluation of the RELAP5/MOD2/Cycle 36.05 thermal hydraulic computer code for a simulation of a small-break loss-of-coolant accident transient (SBLOCA). The experimental data base for the evaluation is the results of Test S-NH-3 performed in the Semiscale MOD-2C test facility. The test modeled a 0.5% SBLOCA with an accompanying failure of the high-pressure injection emergency core cooling system. The test facility and RELAP5/MOD2 model used in the calculations are described. Evaluations of the accuracy of the calculations are presented in the form of comparisons of measured and calculated histories of selected parameters associated with the primary and secondary systems. A conclusion was reached that the code is capable of making SBLOCA calculations efficiently. However, some of the SBLOCA-related phenomena were not properly predicted by the code, suggesting a need for code improvement.

  11. Atomic Structures of CH3NH3PbI3 (001) Surfaces.

    PubMed

    She, Limin; Liu, Meizhuang; Zhong, Dingyong

    2016-01-26

    We report on the atomic structures of methylammonium (MA) lead iodide (CH3NH3PbI3) perovskite surfaces, based on a combined scanning tunneling microscopy and density functional theory calculation study. A reconstructed surface phase with iodine dimers, coexisting with the pristine zigzag phase, was found at the MA-iodine-terminated (001) surfaces of the orthorhombic perovskite films grown on Au(111) surfaces. The reorientation of surface MA dipoles, which strengthens the interactions with surface iodine anions, resulting in a slight energy reduction of 34 meV per unit cell, is responsible for the surface iodine dimerization. According to our calculation, the surface MA dipoles weaken the surface polarity and are therefore considered to be stabilizing the surface structures. PMID:26643387

  12. Investigation of the stability of Co-doped apatite ionic conductors in NH 3

    NASA Astrophysics Data System (ADS)

    Headspith, D. A.; Orera, A.; Slater, P. R.; Young, N. A.; Francesconi, M. G.

    2010-12-01

    Hydrogen powered solid oxide fuel cells (SOFCs) are of enormous interest as devices for the efficient and clean production of electrical energy. However, a number of problems linked to hydrogen production, storage and transportation are slowing down the larger scale use of SOFCs. Identifying alternative fuel sources to act as intermediate during the transition to the full use of hydrogen is, therefore, of importance. One excellent alternative is ammonia, which is produced on a large scale, is relatively cheap and has the infrastructure for storage and transportation already in place. However, considering that SOFCs operate at temperatures higher than 500 C, a potential problem is the interaction of gaseous ammonia with the materials in the cathode, anode and solid electrolyte. In this paper, we extend earlier work on high temperature reactions of apatite electrolytes with NH 3 to the transition metal (Co) doped systems, La 9.67Si 5CoO 26 and La 10(Si/Ge) 5CoO 26.5. A combination of PXRD, TGA and XAFS spectroscopy data showed a better structural stability for the silicate systems. Apatite silicates and germanates not containing transition metals tend to substitute nitride anions for their interstitial oxide anions, when reacted with NH 3 at high temperature and, consequentially, lower the interstitial oxide content. In La 9.67Si 5CoO 26 and La 10(Si/Ge) 5CoO 26.5 reduction of Co occurs as a competing process, favouring lower levels of nitride-oxide substitution.

  13. VLBI Observations and NH3 Mapping of the Star-forming Region NGC2264

    NASA Astrophysics Data System (ADS)

    Kamezaki, Tatsuya; Imura, Kenji; Nagayama, Takumi; Omodaka, Toshihiro; Handa, Toshihiro; Yamaguchi, Yoshiyuki; Chibueze, James O.; Sunada, Kazuyoshi; Nakano, Makoto

    2013-03-01

    We have measured the annual parallax of the water maser source associated with star forming region NGC2264 from observations with VLBI Exploration of Radio Astrometry (VERA). We detected masers at V LSR = 7.2 km s-1. We discussed its driving sources of detected maser spots. One of the maser spots was associated with a centimeter continuum source observed with VLA. Neither optical, infrared nor X-ray sources is catalogued near the spot. The other maser spot is located close to an X-ray source, although there is no optical or infrared counterpart. The proper motion of the former spot was (??, ??) = (23.91 4.29, -29.81 4.27) and the proper motion of latter spot was (??, ??) = (-0.96 0.58, -6.05 3.06). For the latter spot, the peculiar motion is 150 km s-1 and it has the high velocity and this may be a jet or an outflow from a young star. The observed parallax is 1.365 0.098 mas, corresponding to the distance of 738+57 -50 pc. This value is constant with the photometric distance of NGC2264 previously measured. The fitting result of the parallax is shown in figure 1. We also observed in NH3 (1,1), (2,2), (3,3) lines of NGC2264 with the Kashima 34m telescope. We estimated the star formation efficiency (SFE) of NGC2264 from the dense molecular mass of NH3 and the stellar mass calculated by Teixeira et al. (2012). The SFE is 9 - 12% which is consistent with previous results.

  14. Effects of acute NH3 air pollution on N-sensitive and N-tolerant lichen species.

    PubMed

    Paoli, Luca; Masla?kov, Ivana; Grassi, Alice; Ba?kor, Martin; Loppi, Stefano

    2015-12-01

    Lichens are sensitive to the presence of ammonia (NH3) in the environment. However, in order to use them as reliable indicators in biomonitoring studies, it is necessary to establish unequivocally the occurrence of certain symptoms following the exposure to NH3 in the environment. In this paper, we simulated an episode of acute air pollution due to the release of NH3. The biological effects of acute air pollution by atmospheric NH3 have been investigated using N-sensitive (Flavoparmelia caperata) and N-tolerant (Xanthoria parietina) species. Lichen samples were exposed to ecologically relevant NH3 concentrations for 8 weeks, simulating three areas of impact: a control area (2 ?g/m(3)), an area of intermediate impact (2-35 ?g/m(3)) and an area of high impact (10-315 ?g/m(3)), with a peak of pollution reached between the fourth and fifth week. Ammonia affected both the photobiont and the mycobiont in F. caperata, while in X. parietina only the photosynthetic performance of the photobiont was altered after exposure to the highest concentration. In the photobiont of F. caperata we recorded chlorophyll degradation as indicated by OD435/415 ratio, decrease of the photosynthetic performance (as reflected by the maximum quantum yield of primary photochemistry FV/FM and the performance index PIABS); in the mycobiont, ergosterol reduction, membrane lipid peroxidation (as reflected by the increase of thiobarbituric acid reactive substances), alteration (decrease) of the secondary metabolite usnic acid. No effects were detected on caperatic acid and dehydrogenase activity. In X. parietina, the only signal determined by NH3 was the alteration of FV/FM and the performance index PIABS. The results suggest that physiological parameters in N-sensitive lichens well reflect the effects of NH3 exposure and can be applied as early indicators in monitoring studies. PMID:26342688

  15. Effect of ambient NH 3 levels on PM 2.5 composition in the Great Smoky Mountains National Park

    NASA Astrophysics Data System (ADS)

    Olszyna, Kenneth J.; Bairai, Solomon T.; Tanner, Roger L.

    Continuous measurements were made of gaseous NH 3, gaseous HNO 3, PM 2.5 sulfate, aerosol mass, air temperature, and relative humidity (RH), and 24-h filter samples of PM 2.5 aerosols were analyzed to determine the effects of ambient NH 3 levels on PM 2.5 aerosol composition. These measurements were conducted from 2 to 15 August 2002, at Look Rock, TN, at an air monitoring station located on a mountain ridge (elevation 800 m MSL) on the southwestern edge of the Great Smoky Mountains National Park. A strong diurnal pattern was observed for gaseous NH 3 levels at this site with higher daytime and much lower NH 3 during the night hours. The diurnal variability of both gaseous NH 3 concentrations and RH suggests that conditions controlling aerosol nitrate formation and acidic aerosol neutralization are complex. The observations during this 2-week long sampling period showed that measurable NH 4NO 3 aerosol was not present under the ambient conditions encountered. However, modest perturbations from observed ambient conditions could have enabled NH 4NO 3 aerosol production. The extent of neutralization of sulfate aerosol collected on filters indicates that there was insufficient regional NH 3 to neutralize the acidic sulfate aerosols to the degree predicted from local NH 3 and RH conditions. Incomplete neutralization of acidic sulfate could also result if neutralization proceeds more slowly under field conditions compared to laboratory conditions or model predictions. Continuous measurements of aerosol ammonium and/or acidity are needed to determine if ammonia availability or kinetic limitations (or both) restrict neutralization of acidic sulfate aerosols, a key factor for modeling and exposure studies.

  16. Platinum complexes with one radiosensitizing ligand (PtCl2(NH3) (sensitizer)): radiosensitization and toxicity studies in vitro

    SciTech Connect

    Skov, K.A.; Farrell, N.P.; Adomat, H.

    1987-11-01

    Complexes of general formula (PtCl2(NH3)L) with one radiosensitizing ligand per platinum are compared with ligand L alone, complexes with two radiosensitizers per platinum (PtCl2L2), and their analogs with NH3 ligands, with respect to radiosensitizing properties and toxicity in CHO cells. Radiosensitizing ligands, L, were misonidazole, metronidazole, 4(5)-nitroimidazole, and 2-amino-5-nitrothiazole, and the ammine analogs were cis- and trans-DDP (diamminedichloroplatinum(II)) and the monoammine, K(PtCl3(NH3)). Results are related to a previous study on plasmid DNA binding by these series. The toxicity of the mono series (PtCl2(NH3)L), attributable to DNA binding, is much higher than the corresponding bis complexes, (PtCl2L2). For L = misonidazole, toxicity is similar to the monoammine, but higher in hypoxic than in aerobic cells. trans-(PtCl2(NH3)-(misonidazole)) is more toxic than the cis isomer. Except for L = 4(5)-nitroimidazole, the complexes (PtCl2(NH3)L) are more toxic than L in air and hypoxia. Hypoxic radiosensitization by the mono complexes is comparable to the monoammine and is not better than free sensitizers, again except for L = 4(5)-nitroimidazole. Significantly lower sensitization is observed in oxic cells. The bis complexes (PtCl2L2), which do not bind to DNA as well as the mono complexes, are less effective radiosensitizers and less toxic than the (PtCl2(NH3)L) series.

  17. Desorption Kinetics of Methanol, Ethanol, and Water from Graphene

    SciTech Connect

    Smith, R. Scott; Matthiesen, Jesper; Kay, Bruce D.

    2014-09-18

    The desorption kinetics of methanol, ethanol, and water from graphene covered Pt(111) are investigated. The temperature programmed desorption (TPD) spectra for both methanol and ethanol have well-resolved first, second, third, and multilayer layer desorption peaks. The alignment of the leading edges is consistent with zero-order desorption kinetics from all layers. In contrast, for water the first and second layers are not resolved. At low water coverages (< 1 ML) the initial desorption leading edges are aligned but then fall out of alignment at higher temperatures. For thicker water layers (10 to 100 ML), the desorption leading edges are in alignment throughout the desorption of the film. The coverage dependence of the desorption behavoir suggests that at low water coverages the non-alignment of the desorption leading edges is due to water dewetting from the graphene substrate. Kinetic simulations reveal that the experimental results are consistent with zero-order desorption. The simulations also show that fractional order desorption kinetics would be readily apparent in the experimental TPD spectra.

  18. Validation of flux measurements with artificial sources: simulating CH4 from cows and NH3 emissions from medium plot scales

    NASA Astrophysics Data System (ADS)

    Sintermann, Jrg; Felber, Raphael; Hni, Christoph; Ammann, Christof; Neftel, Albrecht

    2014-05-01

    Mitigation of ammonia (NH3) emissions with detrimental environmental effects as well as of greenhouse gas emissions (GHG: CO2, N2O, CH4) are key challenges faced by the agricultural production sector. While NH3 originates mainly from polluted surfaces, e.g. after slurry application, the main source for CH4 emissions are cows and other ruminating animals, representing point sources. There are two widespread state-of-the-art techniques to determine agricultural emissions: eddy covariance (EC) flux measurements and Lagrangian stochastic (LS) dispersion modelling, namely the WindTrax (WT) model. Whereas GHG emissions can be measured with both techniques, NH3 emissions are usually not feasible with EC measurements due to the stickiness of NH3 molecules on surfaces. In addition, point sources render difficulties for the interpretation of EC flux data. We tested the EC technique and the WT model using artificial sources with known gas release rates. i) The effect of a point source on EC fluxes was investigated by placing an artificial CH4 source with known release rate upwind of the EC tower at two different heights and during different wind conditions. ii) The WT model was checked with a NH3 release grid of 314 m2 of known source strength. Ambient NH3 concentrations were measured by open path DOAS systems and impinger sampling. The CH4 concentration timeseries influenced by the point source showed a similar pattern as in the presence of cows upwind of the EC system. CH4 release rates from the point source were reproduced by the EC flux measurement with stationary background conditions only. The experiments with the NH3 release showed that WT performs well for emission determination, even in complex terrain (asphalt surrounded by grassland) with associated micrometeorology, given a realistic description of the vertical profile of wind velocity. Calculated gas recoveries ranged between 73 to 105%. Such a result is encouraging considering the immanent uncertainties from a NH3 experiment (variable background concentration, relatively small downwind concentrations, NH3 interception on ground/tubing).

  19. Global analytical potential energy surface for the electronic ground state of NH3 from high level ab initio calculations.

    PubMed

    Marquardt, Roberto; Sagui, Kenneth; Zheng, Jingjing; Thiel, Walter; Luckhaus, David; Yurchenko, Sergey; Mariotti, Fabio; Quack, Martin

    2013-08-15

    The analytical, full-dimensional, and global representation of the potential energy surface of NH(3) in the lowest adiabatic electronic state developed previously (Marquardt, R.; et al. J. Phys. Chem. B 2005, 109, 84398451) is improved by adjustment of parameters to an enlarged set of electronic energies from ab initio calculations using the coupled cluster method with single and double substitutions and a perturbative treatment of connected triple excitations (CCSD(T)) and the method of multireference configuration interaction (MRCI). CCSD(T) data were obtained from an extrapolation of aug-cc-pVXZ results to the basis set limit (CBS), as described in a previous work (Yurchenko, S.N.; et al. J. Chem. Phys 2005, 123, 134308); they cover the region around the NH3 equilibrium structures up to 20,000 hc cm(1). MRCI energies were computed using the aug-cc-pVQZ basis to describe both low lying singlet dissociation channels. Adjustment was performed simultaneously to energies obtained from the different ab initio methods using a merging strategy that includes 10,000 geometries at the CCSD(T) level and 500 geometries at the MRCI level. Characteristic features of this improved representation are NH3 equilibrium geometry r(eq)(NH(3)) ? 101.28 pm, ?(eq)(NH(3)) ? 107.03, the inversion barrier at r(inv)(NH(3)) ? 99.88 pm and 1774 hc cm(1) above the NH(3) minimum, and dissociation channel energies 41,051 hc cm(1) (for NH(3) ? ((2)B(2))NH(2) + ((2)S(1/2))H) and 38,450 hc cm(1) (for NH(3) ? ((3)?())NH +((1)?(g)(+))H(2)); the average agreement between calculated and experimental vibrational line positions is 11 cm(1) for (14)N(1)H(3) in the spectral region up to 5000 cm(1). A survey of our current knowledge on the vibrational spectroscopy of ammonia and its isotopomers is also given. PMID:23688044

  20. The tropospheric abundances of NH3 and PH3 in Jupiter's Great Red Spot, from Voyager IRIS observations.

    PubMed

    Griffith, C A; Bezard, B; Owen, T; Gautier, D

    1992-01-01

    To investigate the chemistry and dynamics of Jupiter's Great Red Spot (GRS), the tropospheric abundances of NH3 and PH3 in the GRS are determined and compared to those of the surrounding region, the South Tropical Zone (STZ). These gases well up from deep in the atmosphere, and, in the upper troposphere, are depleted by condensation (in the case of NH3), chemical reactions, and UV photolysis. At Jupiter's tropopause, the chemical lifetimes of NH3 and PH3 are comparable to the time constant for vertical transport over the atmospheric scale height. The distributions of these gases are therefore diagnostic of the rate of vertical transport in the upper troposphere and lower stratosphere. Three groups of Voyager IRIS spectra are analyzed, two of the STZ and one of the GRS. The two groups of STZ spectra are defined on the basis of their radiances at 602 and 226 cm-1, which reflect, respectively, the temperature near 150 mbar and the cloud opacity in the 300-600 mbar region. One selection of STZ spectra is chosen to have the same radiance as does the GRS at 226 cm-1. The other STZ selection has a significantly greater radiance, indicative of reduced cloudiness. Variations in the abundances of NH3 and PH3 are determined within the STZ, as a background for our studies of the GRS. Within the uncertainty of our measurements (-55% and +75%), the PH3 mixing ratio at 600 mbar is 3 x 10(-7), the same for all three selections. The NH3 mixing ratio profile in the pressure region between 300 and 600 mbar is the same within error (-25% and +50% at 300 mbar) for both STZ selections. In the GRS, however, NH3 is significantly depleted at 300 mbar, with an abundance of 25% that derived for the STZ selections. Since the GRS is believed to be a region of strong vertical transport, our finding of a depletion of NH3 below the tropopause within the GRS is particularly unexpected. One of the STZ selections has a temperature-pressure profile similar to that of the GRS below the 300-mbar level; therefore, condensation at this level does not easily explain the low NH3 abundance in the GRS. All samples are taken at essentially the same latitude; photolysis and/or charged particle precipitation is probably not directly responsible either. The observed NH3 depletion may have a dynamical origin or result from some unidentified chemical processes at work in the GRS. PMID:11540935

  1. Shock-heated NH3 in a Molecular Jet Associated with a High-Mass Young Star.

    PubMed

    Zhang; Hunter; Sridharan; Cesaroni

    1999-12-20

    We present the discovery of shock-excited NH3 in a well-collimated jet associated with the extremely young high-mass star IRAS 20126+4104. The NH3 (3, 3) and (4, 4) emission is dominated by three clumps along the SiO jet. At the end of the jet, there exists strong and broad (+/-10 km s-1) NH3 (3, 3) emission. With typical brightness temperatures greater than 500 K, the overall emission indicates a weakly inverted population and appears in an arc, consistent with the excitation by bow shocks. There are two bright spots in the NH3 (3, 3) emission with brightness temperatures of approximately 2000 K. The narrow line width (1.5 km s-1 FWHM), the small sizes (<0&farcs;3), and the unusually high brightness temperature of the features are indicative of maser emission. Our observations provide clear evidence that NH3 (3, 3) masers are excited in shock regions in molecular outflows. PMID:10577953

  2. Electronic Structure and Optical Properties of α-CH3NH3PbBr3 Perovskite Single Crystal.

    PubMed

    Park, Ji-Sang; Choi, Sukgeun; Yan, Yong; Yang, Ye; Luther, Joseph M; Wei, Su-Huai; Parilla, Philip; Zhu, Kai

    2015-11-01

    The electronic structure and related optical properties of an emerging thin-film photovoltaic material CH3NH3PbBr3 are studied. A block-shaped α-phase CH3NH3PbBr3 single crystal with the natural ⟨100⟩ surface is synthesized solvothermally. The room-temperature dielectric function ε = ε1 + iε2 spectrum of CH3NH3PbBr3 is determined by spectroscopic ellipsometry from 0.73 to 6.45 eV. Data are modeled with a series of Tauc-Lorentz oscillators, which show the absorption edge with a strong excitonic transition at ∼2.3 eV and several above-bandgap optical structures associated with the electronic interband transitions. The energy band structure and ε data of CH3NH3PbBr3 for the CH3NH3(+) molecules oriented in the ⟨111⟩ and ⟨100⟩ directions are obtained from first-principles calculations. The overall shape of ε data shows a qualitatively good agreement with experimental results. Electronic origins of major optical structures are discussed. PMID:26722966

  3. High Resolution Infrared and Microwave Spectra of NH3-HCCH and NH3-OCS Complexes: Studies of Weak C-H\\cdotsN Hydrogen Bond and Electric Multipole Interactions

    NASA Astrophysics Data System (ADS)

    Liu, Xunchen; Xu, Yunjie

    2011-06-01

    C-H\\cdotsN weak hydrogen bond is of much current interest. We report the first high resolution infrared spectroscopic study of a prototypical C-H\\cdotsN bonded system, i.e. NH3-HCCH, at the vicinity of the ν4 band of NH3. The spectrum has been recorded using an infrared spectrometer equipped with an astigmatic multipass cell aligned for 366 passes and a room temperature external cavity quantum cascade laser at the 6 μm region. The perpendicular band spectrum of symmetric top rotor observed is consistent with the previous microwave and infrared studies at 3 μm. We also extended the previous microwave measurement to higher J and K. For the related NH3-OCS complex, microwave spectrum of J up to 6 and infrared spectrum at the vicinity of the ν4 band of NH3 have been recorded and analyzed for the first time. Comparison has been made with the previously studied isoelectronic complexes such as NH3-N2O and NH3-CO2. The source of the difference will be discussed with the aid of ab initio calculations. G.T. Fraser, K.R. Leopold, and W. Klemperer, J. Chem. Phys. 80(4), 1423, (1984) G. Hilpert, G.T. Fraser, and A.S. Pine, J. Chem. Phys. 105(15), 6183, (1996) G.T. Fraser, D.D. Nelson, JR., G.J. Gerfen, and W. Klemperer, J. Chem. Phys. 83(11), 5442, (1985) G.T. Fraser, K.R. Leopold, and W. Klemperer, J. Chem. Phys. 81(6), 2577, (1984)

  4. Enhancement of NH3 sensing performance in flower-like ZnO nanostructures and their growth mechanism

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Liu, Tianmo; Hao, Jinghua; Lin, Liyang; Zeng, Wen; Peng, Xianghe; Wang, Zhongchang

    2015-12-01

    ZnO nanostructures hold substantial promise for gas-sensing applications owing to their outstanding ethanol sensing performance, yet their sensing performance toward NH3 has rarely been reported. Here, we report on a successful preparation of sunflower-like ZnO nanostructures and ZnO nanoparticle via a facile hydrothermal method, and demonstrate that the ZnO nanoflowers have high gas-sensing performances toward NH3 under a low concentration of 10-50 ppm. Further structural characterization reveals that the sunflower-like nanostructure comprises six triangles-like and one sphere-like nanostructures, and the triangle-like nanostructure is single crystalline with {0 0 1} crystal face. As a consequence of their unique morphology, the nanoflowers show much improved NH3 sensing performances than the nanoparticles with a high sensitivity of 49.5.

  5. Controlled reaction for improved CH3NH3PbI3 transition in perovskite solar cells.

    PubMed

    Zhao, J J; Wang, P; Liu, Z H; Wei, L Y; Yang, Z; Chen, H R; Fang, X Q; Liu, X L; Mai, Y H

    2015-10-28

    Hybrid halide perovskites represent one of the most promising solutions toward the fabrication of all solid nanostructured solar cells, with improved efficiency and long-term stability. This article aims at investigating the properties of CH3NH3PbI3 with controlled loading time in CH3NH3I solution via a two-step sequential deposition and correlating them with their photovoltaic performances. It is found that the optimum PCE of the loading time in the CH3NH3I solution is possible only at a relatively short time (10 min). Prolonging the loading time will degrade the perovskite film, and deteriorate the device performance by introducing a large amount of excessive defects and recombination. However, even if the material band gap remains substantially unchanged, a suitable loading time can dramatically improve the charge transport within the perovskite layer, exhibiting the out-standing performances of meso-superstructured solar cells. PMID:26399298

  6. Revealing the role of organic cations in hybrid halide perovskite CH3NH3PbI3

    NASA Astrophysics Data System (ADS)

    Motta, Carlo; El-Mellouhi, Fedwa; Kais, Sabre; Tabet, Nouar; Alharbi, Fahhad; Sanvito, Stefano

    2015-04-01

    The hybrid halide perovskite CH3NH3PbI3 has enabled solar cells to reach an efficiency of about 20%, demonstrating a pace for improvements with no precedents in the solar energy arena. Despite such explosive progress, the microscopic origin behind the success of such material is still debated, with the role played by the organic cations in the light-harvesting process remaining unclear. Here van der Waals-corrected density functional theory calculations reveal that the orientation of the organic molecules plays a fundamental role in determining the material electronic properties. For instance, if CH3NH3 orients along a (011)-like direction, the PbI6 octahedral cage will distort and the bandgap will become indirect. Our results suggest that molecular rotations, with the consequent dynamical change of the band structure, might be at the origin of the slow carrier recombination and the superior conversion efficiency of CH3NH3PbI3.

  7. Characterization of Biochar using Temperature Programmed Oxidation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biochar from the fast pyrolysis of biomass was characterized by Temperature Programmed Oxidation. This technique can be used to assess the oxidative reactivity of carbonaceous solids where higher temperature reactivity indicates greater structural order. The samples examined include soy and barley...

  8. Emission factor of ammonia (NH3) from on-road vehicles in China: tunnel tests in urban Guangzhou

    NASA Astrophysics Data System (ADS)

    Liu, Tengyu; Wang, Xinming; Wang, Boguang; Ding, Xiang; Deng, Wei; Lü, Sujun; Zhang, Yanli

    2014-05-01

    Ammonia (NH3) is the primary alkaline gas in the atmosphere that contributes to formation of secondary particles. Emission of NH3 from vehicles, particularly gasoline powered light duty vehicles equipped with three-way catalysts, is regarded as an important source apart from emissions from animal wastes and soils, yet measured emission factors for motor vehicles are still not available in China, where traffic-related emission has become an increasingly important source of air pollutants in urban areas. Here we present our tunnel tests for NH3 from motor vehicles under ‘real world conditions’ in an urban roadway tunnel in Guangzhou, a central city in the Pearl River Delta (PRD) region in south China. By attributing all NH3 emissions in the tunnel to light-duty gasoline vehicles, we obtained a fuel-based emission rate of 2.92 ± 0.18 g L-1 and a mileage-based emission factor of 229.5 ± 14.1 mg km-1. These emission factors were much higher than those measured in the United States while measured NO x emission factors (7.17 ± 0.60 g L-1 or 0.56 ± 0.05 g km-1) were contrastingly near or lower than those previously estimated by MOBILE/PART5 or COPERT IV models. Based on the NH3 emission factors from this study, on-road vehicles accounted for 8.1% of NH3 emissions in the PRD region in 2006 instead of 2.5% as estimated in a previous study using emission factors taken from the Emission Inventory Improvement Program (EIIP) in the United States.

  9. Depletion of the heaviest stable N isotope is associated with NH4+/NH3 toxicity in NH4+-fed plants

    PubMed Central

    2011-01-01

    Background In plants, nitrate (NO3-) nutrition gives rise to a natural N isotopic signature (δ15N), which correlates with the δ15N of the N source. However, little is known about the relationship between the δ15N of the N source and the 14N/15N fractionation in plants under ammonium (NH4+) nutrition. When NH4+ is the major N source, the two forms, NH4+ and NH3, are present in the nutrient solution. There is a 1.025 thermodynamic isotope effect between NH3 (g) and NH4+ (aq) which drives to a different δ15N. Nine plant species with different NH4+-sensitivities were cultured hydroponically with NO3- or NH4+ as the sole N sources, and plant growth and δ15N were determined. Short-term NH4+/NH3 uptake experiments at pH 6.0 and 9.0 (which favours NH3 form) were carried out in order to support and substantiate our hypothesis. N source fractionation throughout the whole plant was interpreted on the basis of the relative transport of NH4+ and NH3. Results Several NO3--fed plants were consistently enriched in 15N, whereas plants under NH4+ nutrition were depleted of 15N. It was shown that more sensitive plants to NH4+ toxicity were the most depleted in 15N. In parallel, N-deficient pea and spinach plants fed with 15NH4+ showed an increased level of NH3 uptake at alkaline pH that was related to the 15N depletion of the plant. Tolerant to NH4+ pea plants or sensitive spinach plants showed similar trend on 15N depletion while slight differences in the time kinetics were observed during the initial stages. The use of RbNO3 as control discarded that the differences observed arise from pH detrimental effects. Conclusions This article proposes that the negative values of δ15N in NH4+-fed plants are originated from NH3 uptake by plants. Moreover, this depletion of the heavier N isotope is proportional to the NH4+/NH3 toxicity in plants species. Therefore, we hypothesise that the low affinity transport system for NH4+ may have two components: one that transports N in the molecular form and is associated with fractionation and another that transports N in the ionic form and is not associated with fractionation. PMID:21575190

  10. Synthesis, single-crystal structure and characterization of (CH3 NH3 )2 Pb(SCN)2 I2.

    PubMed

    Daub, Michael; Hillebrecht, Harald

    2015-09-14

    The perovskite phase (CH3 NH3 )2 Pb(SCN)2 I2 with a structure closely related to the K2 NiF4 -type was identified as the product of the reaction of CH3 NH3 I and Pb(SCN)2 by single-crystal X-ray analysis. This extends the range of suitable dyes for solar cell applications to a class of perovskite-related structures of the general composition (AMX3 )n (AX)m . PMID:26352018

  11. Separation of H2S and NH3 gases from tofu waste water-based biogas using activated carbon adsorption

    NASA Astrophysics Data System (ADS)

    Harihastuti, Nani; Purwanto, P.; Istadi, I.

    2015-12-01

    Research on the separation of H2S and NH3 gases from tofu waste water-based biogas has been conducted to improve the content of CH4 of biogas in order to increase calorific value. Biogas from tofu waste water contained many kinds of gases such as: CH4 of 53-64%, CO2 of 36-45%, H2S of 3,724-5,880 mg/Nm3, NH3 of 0.19-70.36 mg/Nm3, and H2O of 33,800-19,770,000 mg/Nm3. In fact, CO2, H2S, NH3, and moisture are impurities that have disturbance to human and environment, so that they are necessary to be separated from biogas. Particularly, H2S and NH3 have high toxicity to people, particularly the workers in the tofu industry. Therefore, separation of H2S and NH3 from biogas to increase calorific value is the focus of this research. The method used in this research is by adsorption of H2S and NH3 gases using activated carbon as adsorbent. It also used condensation as pretreatment to remove moisture content in biogas. Biogas was flowed to adsorption column (70 cm height and 9 cm diameter containing activated carbon as much as 500 g) so that the H2S and NH3 gases were adsorbed. This research was conducted by varying flow rate and flow time of biogas. From this experiment, it was found that the optimum adsorption conditions were flow rate of 3.5 l/min and 4 hours flow time. This condition could reach 99.95% adsorption efficiency of H2S from 5,879.50 mg/Nm3 to 0.67 mg/Nm3, and 74.96% adsorption efficiency of NH3 from 2.93 mg/Nm3 to 0.73 mg/Nm3. The concentration of CH4 increased from 63.88% to 76.24% in the biogas.

  12. Hydrophobic recovery of VUV/NH3 modified polyolefin surfaces: Comparison with plasma treatments in nitrogen

    NASA Astrophysics Data System (ADS)

    Truica-Marasescu, F.; Guimond, S.; Jedrzejowski, P.; Wertheimer, M. R.

    2005-07-01

    Film samples of two very pure polyolefins (low density polyethylene, LDPE and biaxially oriented polypropylene, BOPP) were surface-modified by two different methods, namely vacuum ultraviolet (VUV) irradiation with a Kr resonant lamp in low-pressure NH3 gas, and atmospheric pressure glow discharge (APGD) plasma treatment in pure N2 gas. Samples were then stored in air and the time-dependence of surface properties (the surface energy and chemical composition) was monitored using several complementary surface-sensitive techniques: contact angle goniometry (CAG), X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). We show that the main mechanism responsible for hydrophobic recovery is the motion of polymer chains and chain segments, which governs an apparent "loss" of functional groups, within the first monolayers of the surface (1 nm). Finally, comparing BOPP samples modified by both techniques, we show that aging can be reduced by crosslinking near the surface, as illustrated by depth-sensing nano-indentation measurements.

  13. Mechanism of N2 reduction to NH3 by aqueous solvated electrons.

    PubMed

    Christianson, Jeffrey R; Zhu, Di; Hamers, Robert J; Schmidt, J R

    2014-01-01

    Recently a novel approach to the photocatalytic reduction of molecular nitrogen under ambient conditions was reported in which hydrated electrons generated from ultraviolet illumination of diamond served as the reducing agent [Zhu, D.; Zhang, L.; Ruther, R. E.; Hamers, R. J. Photo-Illuminated Diamond as a Solid-State Source of Solvated Electrons in Water for Nitrogen Reduction. Nat. Mater. 2013, 12, 836-841]. This surprising reduction of N2 by aqueous solvated electrons is absent from the vast existing radiolysis literature and thus has little mechanistic precedent. In this work, a combination of experimental and computational approaches is used to elucidate the detailed molecular-level mechanistic pathway from nitrogen to ammonia. A variety of approaches, including electronic structure calculations, molecular dynamics simulations, kinetic modeling, and pH-dependent experimental measures of NH3 and competing H2 production, implicate a hydrogen atom addition mechanism at early reduction steps and sequential protonation/direct reduction by a solvated electron at later steps, thus involving both direct and indirect reactions with solvated electrons. This work provides a framework for understanding the possible application of solvated electrons as energetic reducing agents for chemically inert species under mild conditions. PMID:24320049

  14. Selective catalytic reduction operation with heavy fuel oil: NOx, NH3, and particle emissions.

    PubMed

    Lehtoranta, Kati; Vesala, Hannu; Koponen, Pivi; Korhonen, Satu

    2015-04-01

    To meet stringent NOx emission limits, selective catalytic reduction (SCR) is increasingly utilized in ships, likely also in combination with low-priced higher sulfur level fuels. In this study, the performance of SCR was studied by utilizing NOx, NH3, and particle measurements. Urea decomposition was studied with ammonia and isocyanic acid measurements and was found to be more effective with heavy fuel oil (HFO) than with light fuel oil. This is suggested to be explained by the metals found in HFO contributing to metal oxide particles catalyzing the hydrolysis reaction prior to SCR. At the exhaust temperature of 340 C NOx reduction was 85-90%, while at lower temperatures the efficiency decreased. By increasing the catalyst loading, the low temperature behavior of the SCR was enhanced. The drawback of this, however, was the tendency of particle emissions (sulfate) to increase at higher temperatures with higher loaded catalysts. The particle size distribution results showed high amounts of nanoparticles (in 25-30 nm size), the formation of which SCR either increased or decreased. The findings of this work provide a better understanding of the usage of SCR in combination with a higher sulfur level fuel and also of ship particle emissions, which are a growing concern. PMID:25780953

  15. The NH3 Hyperfine Intensity Anomaly in High-Mass Star-Forming Regions

    NASA Astrophysics Data System (ADS)

    Camarata, Matthew A.; Jackson, James M.; Chambers, Edward

    2015-06-01

    Anomalous ammonia (NH3) spectra, exhibiting asymmetric hyperfine satellite intensity profiles in the (J,K) = (1, 1) inversion transition, have been observed in star-forming regions for over 35 years. We present a systematic study of this hyperfine intensity anomaly (HIA) toward a sample of 334 high-mass star forming regions: 310 high-mass (?100 {{M}? }) clumps and 24 infrared dark clouds. The HIA is ubiquitous in high-mass star forming regions. Although LTE excitation predicts that the intensity ratios of the outer satellites and inner satellites are exactly unity, for this sample the ensemble average ratios are 0.812 0.004 and 1.125 0.005, respectively. We have quantified the HIA and find no significant relationships between the HIA and temperature, line width, optical depth, and the stage of stellar evolution. The fact that HIAs are common in high-mass star-forming regions suggests that the conditions that lead to HIAs are ubiquitous in these regions. A possible link between HIAs and the predictions of the competitive accretion model of high-mass star formation is suggested; however, the expected trends of HIA strength with clump evolutionary stage, rotational temperature, and line width for evolving cores in competitive accretion models are not found. Thus, the exact gas structures that produce HIAs remain unknown. Turbulent gas structures are a possible explanation, but the details need to be explored.

  16. cis-Pt I2(NH3)2: a reappraisal.

    PubMed

    Marzo, Tiziano; Pillozzi, Serena; Hrabina, Ondrej; Kasparkova, Jana; Brabec, Viktor; Arcangeli, Annarosa; Bartoli, Gianluca; Severi, Mirko; Lunghi, Alessandro; Totti, Federico; Gabbiani, Chiara; Quiroga, Adracion G; Messori, Luigi

    2015-09-01

    The investigation of cis-PtI2(NH3)2, the diiodido analogue of cisplatin (cisPtI2 hereafter), has been unjustly overlooked so far mainly because of old claims of pharmacological inactivity. Some recent - but still fragmentary - findings prompted us to reconsider more systematically the chemical and biological profile of cisPtI2 in comparison with cisplatin. Its solution behaviour, interactions with DNA and cytotoxic properties versus selected cancer cell lines were thus extensively analysed through a variety of biophysical and computational methods. Notably, we found that cisPtI2 is highly cytotoxic in vitro toward a few solid tumour cell lines and that its DNA platination pattern closely reproduces that of cisplatin; cisPtI2 is also shown to completely overcome resistance to cisplatin in a platinum resistant cancer cell line. The differences in the biological actions of these two Pt complexes are most likely related to slight but meaningful differences in their solution behaviour and reactivity. Overall, a very encouraging and unexpected pharmacological profile emerges for cisPtI2 with relevant implications both in terms of mechanistic knowledge and of prospective clinical application. An ab initio DFT study is also included to support the interpretation of the solution behaviour of cisPtI2 under physiological and slightly acidic pH conditions. PMID:26226326

  17. Crystal structure of NH3-dependent NAD+ synthetase from Bacillus subtilis.

    PubMed Central

    Rizzi, M; Nessi, C; Mattevi, A; Coda, A; Bolognesi, M; Galizzi, A

    1996-01-01

    NAD+ synthetase catalyzes the last step in the biosynthesis of nicotinamide adenine dinucleotide. The three-dimensional structure of NH3-dependent NAD+ synthetase from Bacillus subtilis, in its free form and in complex with ATP, has been solved by X-ray crystallography (at 2.6 and 2.0 angstroms resolution, respectively) using a combination of multiple isomorphous replacement and density modification techniques. The enzyme consists of a tight homodimer with alpha/beta subunit topology. The catalytic site is located at the parallel beta-sheet topological switch point, where one AMP molecule, one pyrophosphate and one Mg2+ ion are observed. Residue Ser46, part of the neighboring 'P-loop', is hydrogen bonded to the pyrophosphate group, and may play a role in promoting the adenylation of deamido-NAD+ during the first step of the catalyzed reaction. The deamido-NAD+ binding site, located at the subunit interface, is occupied by one ATP molecule, pointing towards the catalytic center. A conserved structural fingerprint of the catalytic site, comprising Ser46, is very reminiscent of a related protein region observed in glutamine-dependent GMP synthetase, supporting the hypothesis that NAD+ synthetase belongs to the newly discovered family of 'N-type' ATP pyrophosphatases. Images PMID:8895556

  18. Adsorption capacity of H2O, NH3, CO, and NO2 on the pristine graphene

    NASA Astrophysics Data System (ADS)

    Lin, Xianqing; Ni, Jun; Fang, Chao

    2013-01-01

    First-principles together with statistical mechanics calculations have been performed to study the adsorption behavior of H2O, NH3, CO, and NO2 on the pristine graphene. In the first-principles calculations, we find that the most recent van der Waals (vdW) density functional vdW-DF2 gives even larger binding energies (Eb) that those obtained with the local density approximation, indicating vdW-DF2 may be inappropriate for describing the interaction between these molecules and graphene. With the potential energy curves of the molecules on graphene calculated by the density functional theory, the adsorption capacity (n) of the molecules on the pristine graphene is calculated with the statistical mechanics method. NO2 has the largest n of the order of 108 cm-2 among the four molecules on graphene at room temperature and concentration of 1.0 ppm, but still smaller by almost two order than that on graphene devices estimated from the experimental results. This is probably due to the strong binding of NO2 to the graphene edges with terminating oxygen atoms with Eb as large as 1.0 eV. The calculations of the adsorption capacity of small polar molecules on the pristine graphene and comparison with the experimental values may contribute to the understanding of the mechanism and designing of graphene based gas sensors.

  19. DFT based study of transition metal nano-clusters for electrochemical NH3 production.

    PubMed

    Howalt, J G; Bligaard, T; Rossmeisl, J; Vegge, T

    2013-05-28

    Theoretical studies of the possibility of producing ammonia electrochemically at ambient temperature and pressure without direct N2 dissociation are presented. Density functional theory calculations were used in combination with the computational standard hydrogen electrode to calculate the free energy profile for the reduction of N2 admolecules and N adatoms on transition metal nanoclusters in contact with an acidic electrolyte. This work has established linear scaling relations for the dissociative reaction intermediates NH, NH2, and NH3. In addition, linear scaling relations for the associative reaction intermediates N2H, N2H2, and N2H3 have been determined. Furthermore, correlations between the adsorption energies of N, N2, and H have been established. These scaling relations and the free energy corrections are used to establish volcanoes describing the onset potential for electrochemical ammonia production and hence describe the potential determining steps for the electrochemical ammonia production. The competing hydrogen evolution reaction has also been analyzed for comparison. PMID:23598667

  20. The efficiency limit of CH3NH3PbI3 perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Sha, Wei E. I.; Ren, Xingang; Chen, Luzhou; Choy, Wallace C. H.

    2015-06-01

    With the consideration of photon recycling effect, the efficiency limit of methylammonium lead iodide (CH3NH3PbI3) perovskite solar cells is predicted by a detailed balance model. To obtain convincing predictions, both AM 1.5 spectrum of Sun and experimentally measured complex refractive index of perovskite material are employed in the detailed balance model. The roles of light trapping and angular restriction in improving the maximal output power of thin-film perovskite solar cells are also clarified. The efficiency limit of perovskite cells (without the angular restriction) is about 31%, which approaches to Shockley-Queisser limit (33%) achievable by gallium arsenide (GaAs) cells. Moreover, the Shockley-Queisser limit could be reached with a 200 nm-thick perovskite solar cell, through integrating a wavelength-dependent angular-restriction design with a textured light-trapping structure. Additionally, the influence of the trap-assisted nonradiative recombination on the device efficiency is investigated. The work is fundamentally important to high-performance perovskite photovoltaics.

  1. IR spectrum of the protonated neurotransmitter 2-phenylethylamine: dispersion and anharmonicity of the NH3(+)-? interaction.

    PubMed

    Bouchet, Aude; Schtz, Markus; Chiavarino, Barbara; Crestoni, Maria Elisa; Fornarini, Simonetta; Dopfer, Otto

    2015-10-21

    The structure and dynamics of the highly flexible side chain of (protonated) phenylethylamino neurotransmitters are essential for their function. The geometric, vibrational, and energetic properties of the protonated neutrotransmitter 2-phenylethylamine (H(+)PEA) are characterized in the N-H stretch range by infrared photodissociation (IRPD) spectroscopy of cold ions using rare gas tagging (Rg = Ne and Ar) and anharmonic calculations at the B3LYP-D3/(aug-)cc-pVTZ level including dispersion corrections. A single folded gauche conformer (G) protonated at the basic amino group and stabilized by an intramolecular NH(+)-? interaction is observed. The dispersion-corrected density functional theory calculations reveal the important effects of dispersion on the cation-? interaction and the large vibrational anharmonicity of the NH3(+) group involved in the NH(+)-? hydrogen bond. They allow for assigning overtone and combination bands and explain anomalous intensities observed in previous IR multiple-photon dissociation spectra. Comparison with neutral PEA reveals the large effects of protonation on the geometric and electronic structure. PMID:25757357

  2. Two-Dimensional CH3NH3PbI3 Perovskite: Synthesis and Optoelectronic Application.

    PubMed

    Liu, Jingying; Xue, Yunzhou; Wang, Ziyu; Xu, Zai-Quan; Zheng, Changxi; Weber, Bent; Song, Jingchao; Wang, Yusheng; Lu, Yuerui; Zhang, Yupeng; Bao, Qiaoliang

    2016-03-22

    Hybrid organic-inorganic perovskite materials have received substantial research attention due to their impressively high performance in photovoltaic devices. As one of the oldest functional materials, it is intriguing to explore the optoelectronic properties in perovskite after reducing it into a few atomic layers in which two-dimensional (2D) confinement may get involved. In this work, we report a combined solution process and vapor-phase conversion method to synthesize 2D hybrid organic-inorganic perovskite (i.e., CH3NH3PbI3) nanocrystals as thin as a single unit cell (∼1.3 nm). High-quality 2D perovskite crystals have triangle and hexagonal shapes, exhibiting tunable photoluminescence while the thickness or composition is changed. Due to the high quantum efficiency and excellent photoelectric properties in 2D perovskites, a high-performance photodetector was demonstrated, in which the current can be enhanced significantly by shining 405 and 532 nm lasers, showing photoresponsivities of 22 and 12 AW(-1) with a voltage bias of 1 V, respectively. The excellent optoelectronic properties make 2D perovskites building blocks to construct 2D heterostructures for wider optoelectronic applications. PMID:26910395

  3. Dependence of nitrogen doping on TiO 2 precursor annealed under NH 3 flow

    NASA Astrophysics Data System (ADS)

    Fang, Xiaoming; Zhang, Zhengguo; Chen, Qinglin; Ji, Hongbing; Gao, Xuenong

    2007-04-01

    N-doped TiO 2 photocatalysts were prepared by annealing two different precursors, P25 and a TiO 2 xerogel powder under NH 3/Ar flow at 500, 550, and 600 °C. The xerogel powder prepared by peptizing Ti(OH) 4 with HNO 3 was composed of nanoparticles and had large specific surface area. During the annealing process, the xerogel powder underwent increase in crystallinity, grain growth and phase transformation, whereas P25 did not show obvious changes. Compared with the N-doped TiO 2 photocatalysts from P25, the N-doped TiO 2 photocatalysts from the xerogel powder possessed higher concentrations of the substitutional nitrogen and exhibited more obvious absorption in the visible light region. The N-doped TiO 2 photocatalysts from the xerogel powder exhibited obvious visible-light activities for photodegrading methylene blue and the sample prepared at 500 °C achieved the best performance with a rate constant ( k) about 0.44 h -1, whereas those from P25 did not exhibit improved visible-light activities.

  4. Performance Analysis of Rectifier in NH3-H2O Absorprtion Heat Pump

    NASA Astrophysics Data System (ADS)

    Tsujimori, Atsushi; Ozaki, Eiichi; Nakao, Kazushige

    Heat and mass transfer model for plate-type rectifier was presented in the previous paper and it was found that there existed the distribution of NH3 concentration in boundary layer in vapor and solution phase, which was the resistance to heat and mass transfer. In order to enhance heat and mass transfer, packed tower-type rectifiers have been considered effective and used in the field of chemical engineering. And many data have been accumulated for each rectification-packing with give fluid to design packed tower. But it has rarely be seen to present heat and mass transfer model in order to evaluate the performance of packed tower rectifier without any experimental constant. In this study heat and mass transfer model in packed tower-type rectifier was presented considering the specification of rectification-packing decided by surface area and porosity, and the calculation results were compared with experimental data. As a result it was found that over-all mass transfer coefficient increased as mass flow rate of vapor increased and that the model could expect over-all mass transfer coefficient within 30 [%] difference to experimental data. It was also cleared that mass transfer in packed-type rectifier was two to five times more enhanced than that in plate-type rectifier.

  5. Computed and Experimental Absorption Spectra of the Perovskite CH3NH3PbI3.

    PubMed

    Zhu, Xi; Su, Haibin; Marcus, Rudolph A; Michel-Beyerle, Maria E

    2014-09-01

    Electronic structure and light absorption properties of the perovskite CH3NH3PbI3 are investigated by relativistic density functional theory with quasiparticle GW corrections and many-body interactions. The nature of the Wannier exciton is studied by solving the Bethe-Salpeter equation augmented with the analysis of a conceptual hydrogen-like model. The computed absorption spectrum unravels a remarkable absorption "gap" between the first two absorption peaks. This discontinuity is maintained in the calculated tetragonal structure that, however, is not stable at low temperature. Most importantly, the discontinuity is also observed in the experimental absorption spectrum of the orthorhombic single crystal at low temperature (4 K). However, in contrast to the single crystal, in a polycrystalline perovskite film at 5 K the "gap" is filled by a monotonously increasing absorption throughout the visible range. This feature of thin films points to the potential significance of defect absorption for the excellent light harvesting properties of perovskite-based solar cells. PMID:26278260

  6. Desorption kinetics from a surface derived from direct imaging of the adsorbate layer

    NASA Astrophysics Data System (ADS)

    Gnther, S.; Mente?, T. O.; Nio, M. A.; Locatelli, A.; Bcklein, S.; Wintterlin, J.

    2014-05-01

    There are numerous indications that adsorbed particles on a surface do not desorb statistically, but that their spatial distribution is important. Evidence almost exclusively comes from temperature-programmed desorption, the standard method for measuring desorption rates. However, this method, as a kinetics experiment, cannot uniquely prove an atomic mechanism. Here we report a low-energy electron microscopy investigation in which a surface is microscopically imaged while simultaneously temperature-programmed desorption is recorded. The data show that during desorption of oxygen molecules from a silver single crystal surface, islands of oxygen atoms are present. By correlating the microscopy and the kinetics data, a model is derived that includes the shapes of the islands and assumes that the oxygen molecules desorb from the island edges. The model quantitatively reproduces the complex desorption kinetics, confirming that desorption is affected by islands and that the often used mean-field treatment is inappropriate.

  7. Analogues of Cis- and Transplatin with a Rich Solution Chemistry: cis-[PtCl2 (NH3 )(1-MeC-N3)] and trans-[PtI2 (NH3 )(1-MeC-N3)].

    PubMed

    Siebel, Sabine; Dammann, Claudia; Sanz Miguel, Pablo J; Drewello, Thomas; Kampf, Gunnar; Teubner, Natascha; Bednarski, Patrick J; Freisinger, Eva; Lippert, Bernhard

    2015-12-01

    Mono(nucleobase) complexes of the general composition cis-[PtCl2 (NH3 )L] with L=1-methylcytosine, 1-MeC (1?a) and L=1-ethyl-5-methylcytosine, as well as trans-[PtX2 (NH3 )(1-MeC)] with X=I (5?a) and X=Br (5?b) have been isolated and were characterized by X-ray crystallography. The Pt coordination occurs through the N3 atom of the cytosine in all cases. The diaqua complexes of compounds 1?a and 5?a, cis-[Pt(H2 O)2 (NH3 )(1-MeC)](2+) and trans-[Pt(H2 O)2 (NH3 )(1-MeC)](2+) , display a rich chemistry in aqueous solution, which is dominated by extensive condensation reactions leading to ?-OH- and ?-(1-MeC(-) -N3,N4)-bridged species and ready oxidation of Pt to mixed-valence state complexes as well as diplatinum(III) compounds, one of which was characterized by X-ray crystallography: h,t-[{Pt(NH3 )2 (OH)(1-MeC(-) -N3,N4)}2 ](NO3 )2 ?2?[NH4 ](NO3 )?2?H2 O. A combination of (1) H?NMR spectroscopy and ESI mass spectrometry was applied to identify some of the various species present in solution and the gas phase, respectively. As it turned out, mass spectrometry did not permit an unambiguous assignment of the structures of +1 cations due to the possibilities of realizing multiple bridging patterns in isomeric species, the occurrence of different tautomers, and uncertainties regarding the Pt oxidation states. Additionally, compound 1?a was found to have selective and moderate antiproliferative activity for a human cervix cancer line (SISO) compared to six other human cancer cell lines. PMID:26493181

  8. Formation of TiO2 Thin Films using NH3 as Catalyst by Metalorganic Chemical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Jung, Sung-Hoon; Kang, Sang-Won

    2001-05-01

    We have studied metalorganic chemical vapor deposition of TiO2 thin films using titanium tetra-isopropoxide [TTIP, Ti(O--C3H7)4] and NH3 as a catalyst at deposition temperatures ranging from 250 to 365C. At deposition temperatures above 330C, pyrolytic self-decomposition of TTIP is dominant regardless of the use of NH3, and the activation energy for TiO2 film formation is 152 kJ/mol. At deposition temperatures below 330C, the films can be formed with the help of the catalytic activity of NH3, and the activation energy is reduced to 55 kJ/mol. TiO2 films deposited through the pyrolytic self-decomposition of TTIP have an anatase structure before and after performing post-deposition annealing in oxygen ambient for 30 min at 750C. On the other hand, the as-deposited films formed through the catalytic reaction of TTIP with NH3 incorporate nitrogen impurities and have microcrystallites of the rutile structure within the amorphous matrix. However, the post-deposition annealing, the nitrogen impurities are completely removed from the films, and the films are converted into polycrystalline TiO2 films with the rutile structure, which have a high dielectric constant of 82 and a low leakage current.

  9. Role of hydrogen-bonding and its interplay with octahedral tilting in CH3NH3PbI3.

    PubMed

    Lee, Jung-Hoon; Bristowe, Nicholas C; Bristowe, Paul D; Cheetham, Anthony K

    2015-04-14

    First principles calculations on the hybrid perovskite CH3NH3PbI3 predict strong hydrogen-bonding which influences the structure and dynamics of the methylammonium cation and reveal its interaction with the tilting of the PbI6 octahedra. The calculated atomic coordinates are in excellent agreement with neutron diffraction results. PMID:25766075

  10. Understanding the Impact of Bromide on the Photovoltaic Performance of CH3 NH3 PbI3 Solar Cells.

    PubMed

    Ibrahim Dar, M; Abdi-Jalebi, Mojtaba; Arora, Neha; Moehl, Thomas; Grtzel, Michael; Nazeeruddin, Mohammad Khaja

    2015-11-01

    An optimum amount of lead bromide (1%) can enhance the power conversion efficiency of CH3 NH3 PbI3-x Brx (where x ? 0) devices from 14.7% to 16.9% without altering the bandgap of the perovskite material. PMID:26450524

  11. Collisional excitation of NH3 by He and H2: Towards a new interpretation of the inversion effect

    NASA Astrophysics Data System (ADS)

    Scifoni, E.; Valiron, P.; Faure, A.; Rist, C.

    2007-07-01

    New calculations, including the ammonia inversion degree of freedom as an average on the potential energy surface, are reported as an attempt to overcome the longstanding gap between theoretical and experimental results about rotational excitation of NH3 by He and H2 collisions in interstellar medium conditions.

  12. Chloride Incorporation Process in CH3NH3PbI3-xClx Perovskites via Nanoscale Bandgap Maps

    PubMed Central

    Chae, Jungseok; Dong, Qingfeng; Huang, Jinsong; Centrone, Andrea

    2016-01-01

    CH3NH3PbI3-xClx perovskites enable fabrication of highly efficient solar cells. Chloride ions benefit the morphology, carrier diffusion length and stability of perovskite films; however, whether those benefits stem from the presence of Cl− in the precursor solution or from their incorporation in annealed films is debated. In this work, the photothermal induced resonance (PTIR), an in situ technique with nanoscale resolution, is leveraged to measure the bandgap of CH3NH3PbI3-xClx films obtained by a multicycle coating process that produces high efficiency (≈ 16 %) solar cells. Because chloride ions modify the perovskite lattice, thereby widening the bandgap, measuring the bandgap locally yields the local chloride content. After a mild annealing (60 min, 60°C) the films consist of Cl-rich (x < 0.3) and Cl-poor phases that, upon further annealing (110 °C), evolve into a homogenous Cl-poorer (x < 0.06) phase, suggesting that methylammonium-chrloride is progressively expelled from the film. Despite the small chloride content, CH3NH3PbI3-xClx films show better thermal stability up to 140 °C with respect CH3NH3PbI3 films fabricated with the same methodology. PMID:26528710

  13. Galvanic deposition of Rh and Ru on randomly structured Ti felts for the electrochemical NH3 synthesis.

    PubMed

    Kugler, Kurt; Luhn, Mareike; Schramm, Jean André; Rahimi, Khosrow; Wessling, Matthias

    2015-02-01

    Nowadays NH3 is exclusively synthesized by the Haber process. Unfortunately, the energy demand and the CO2 emissions due to H2 production are high. Hydrogen production utilizes precious carbon sources such as coal and natural gas. In the past we proposed an alternative process concept using a membrane electrode assembly in an electrochemical membrane reactor (ecMR). At the anode H2O is oxidized at an IrMMO catalyst to form protons. By applying an external potential to the ecMR N2 is reduced to NH3 at the cathode. Just recently Rh and Ru were identified as possible cathodic electrocatalysts by DFT calculations. We present an easy and highly efficient method for galvanic coatings of Rh and Ru on randomly structured Ti felts to be used in a membrane electrode assembly. Linear sweep voltammetry measurements give a slightly higher activity of Ru for the liquid phase electrochemical NH3 synthesis. The NH4(+) concentration reached is 8 times higher for Ru than for Rh. From an economical point of view, Ru is also more feasible for an electrochemical NH3 synthesis process. Such electrodes can now be evaluated in an ecMR in comparison to recently demonstrated Ti-based electrodes. PMID:25556769

  14. Selective autocatalytic reduction of NO from sintering flue gas by the hot sintered ore in the presence of NH3.

    PubMed

    Chen, Wangsheng; Luo, Jing; Qin, Linbo; Han, Jun

    2015-12-01

    In this paper, the selective autocatalytic reduction of NO by NH3 combined with multi-metal oxides in the hot sintered ore was studied, and the catalytic activity of the hot sintered ore was investigated as a function of temperature, NH3/NO ratio, O2 content, H2O and SO2. The experimental results indicated that the hot sintered ore, when combined with NH3, had a maximum denitration efficiency of 37.67% at 450 °C, 3000 h(-1) gas hourly space velocity (GHSV) and a NH3/NO ratio of 0.4/1. Additionally, it was found that O2 played an important role in removing NOx. However, high O2 content had a negative effect on NO reduction. H2O was found to promote the denitration efficiency in the absence of SO2, while SO2 inhibited the catalytic activity of the sintered ore. In the presence of H2O and SO2, the catalytic activity of the sintered ore was dramatically suppressed. PMID:26363262

  15. How are CH3OH, HNC/HCN, and NH3 Formed in the Interstellar Medium?

    NASA Astrophysics Data System (ADS)

    Hiraoka, Kenzo; Mochizuki, Noritaka; Wada, Akira

    2006-09-01

    Simulation experiments for the formation of CH3OH, HNC/HCN, and NH3 in solid-phase reactions were performed. CH3OH and H2CO were formed as major products from the 100 eV electron-irradiated mixed CH4/H2O solid at 10 K. There found to be two pathways for the formation of methanol with about equal importance, i.e., the recombination reaction: CH3 + OH --> CH3OH, and the insertion reaction: CH2+H2O --> CH3OH. One CH3OH molecule was formed per 60 electron irradiation with the electron energy of 100 eV. By using mixed H2O/CD4 ice, it was confirmed that formaldehyde was formed by the insertion reaction, C + H2O -->H2CO. A mixed gas of N2/HCN (50/1) at a few Torr was activated by a dc discharge and was deposited on the gold-plated copper substrate at 10, 15, and 20 K. During the deposition of plasma-activated sample gas, D atoms produced by the dc discharge of D2 were simultaneously sprayed over the solid film. The association reactions of CN with D at 10 K were found to generate DNC and DCN with the intensity ratio DNC/DCN of about 3 in the infrared absorption spectra. This high ratio is in line with the high abundance ratios of HNC/HCN observed in the dark clouds. The formation of DNC and DCN became negligible at 20 K, due to the decrease of the sticking probability of D atoms on the solid surface. Ammonia was not detected as a reaction product from reaction of D with N atoms trapped in the N2 matrix.

  16. Charge transport in bulk CH3NH3PbI3 perovskite

    NASA Astrophysics Data System (ADS)

    Slonopas, Andre; Foley, Benjamin J.; Choi, Joshua J.; Gupta, Mool C.

    2016-02-01

    The variation of leakage current and polarization hysteresis properties for bulk CH3NH3PbI3 perovskite was studied as a function of temperature to understand the reported hysteresis in photocurrent and the role of ferroelectricity. The leakage current decreased by two orders of magnitude when the temperature was lowered from 350 K to 100 K. The transitions in leakage current were observed at structural phase transition temperatures. The temperature dependence study allowed the identification of current conduction mechanism based on various models for ferroelectrics and insulating materials. Our results show that the leakage current is governed by the space charge limited conduction mechanism which should be considered in addition to ion conduction and ferroelectricity when analyzing current-voltage hysteresis for thin film and bulk materials. The Mott's variable range hopping model fits well to the experimental data indicating the charge conduction is through hopping mechanism from 300 K to 160 K and possibly tunneling below 160 K. The conclusions from polarization hysteresis study are: (1) the hysteresis loop shape is highly dependent upon frequency and show non-saturating behavior, an indicative of strong non-ferroelectric contributions such as resistive component. (2) No domain switching current was observed between the temperature range of 100 K-350 K. (3) An electric field off-set was observed in polarization-electric field curves and it was dependent upon the frequency and temperature. This offset could be caused by the accumulation of vacancies at one interface, which could give rise to hysteresis in forward and reverse bias photocurrent. (4) The time dependence study of instantaneous current as the voltage was increased linearly show strong resistive contribution to hysteresis loop at temperatures above 200 K and capacitive contribution at 100 K.

  17. Evaluation of a plant material-based air purifier for removing H2S, NH3 and swine manure odour.

    PubMed

    Zhou, Xuezhi; Zhang, Qiang; Huang, Anhong

    2012-12-01

    A plant material-based air purifier (PMAP) was evaluated for odour removal. Laboratory tests were performed using two identical chambers: one treated by PMAP, and one as the control. Swine manure, hydrogen sulphide (H2S) and ammonia (NH3) were tested as odour sources. The test was also conducted in a swine barn. Air samples were taken from test chambers and two rooms in the pig barn and analysed for H2S, NH3 and odour concentrations. When treated with PMAP, the H2S concentration in the sealed chamber was subject to exponential decay, with the decay constant ranging from 0.59 to 0.70 l/h. The H2S concentration was reduced from 20 to 3 ppm in 3 h and to 0.2 ppm in 7h for H2S produced by chemical reaction, and from 0.4 to 0.02 ppm in 3 h for swine manure as the odour source. When an equal amount of ammonia solution was placed in the two test chambers, the NH3 concentration reached a peak value of 25 ppm in the chamber treated by PMAP, and 43 ppm in the control. The NH3 concentration in the treated chamber was reduced to 5 ppm in 3.5 h but stayed at 37 ppm in the control. The PMAP reduced the NH3 concentration from 38 to 10 ppm when swine manure was used as the odour source. The PMAP was capable of reducing swine odour in both laboratory and in-barn conditions. The reduction rate was at least 50%. The results from this research indicate the plant-based materials provide an alternative, environmentally friendly way for odour control. It is also shown that the mode of odour reduction by the PMAP was the removal of odour compounds, in contrast to odour masking, which occurs for most plant materials that have been used for odour control. PMID:23437676

  18. Emergence of Multiple Superconducting Phases in (NH3)yMxFeSe (M: Na and Li).

    PubMed

    Zheng, Lu; Miao, Xiao; Sakai, Yusuke; Izumi, Masanari; Goto, Hidenori; Nishiyama, Saki; Uesugi, Eri; Kasahara, Yuichi; Iwasa, Yoshihiro; Kubozono, Yoshihiro

    2015-01-01

    We previously discovered multiple superconducting phases in the ammoniated Na-doped FeSe material, (NH3)yNaxFeSe. To clarify the origin of the multiple superconducting phases, the variation of Tc was fully investigated as a function of x in (NH3)yNaxFeSe. The 32 K superconducting phase is mainly produced in the low-x region below 0.4, while only a single phase is observed at x ?=? 1.1, with Tc =? 45 K, showing that the Tc depends significantly on x, but it changes discontinuously with x. The crystal structure of (NH3)yNaxFeSe does not change as x increases up to 1.1, i.e., the space group of I4/mmm. The lattice constants, a and c, of the low-Tc phase (Tc = 32.5 K) are 3.9120(9) and 14.145(8) , respectively, while a = 3.8266(7) and c = 17.565(9) for the high-Tc phase (~46 K). The c increases in the high Tc phase, implying that the Tc is directly related to c. In (NH3)yLixFeSe material, the Tc varies continuously within the range of 39 to 44 K with changing x. Thus, the behavior of Tc is different from that of (NH3)yNaxFeSe. The difference may be due to the difference in the sites that the Na and Li occupy. PMID:26239256

  19. ZnO Nanoparticles/Reduced Graphene Oxide Bilayer Thin Films for Improved NH3-Sensing Performances at Room Temperature

    NASA Astrophysics Data System (ADS)

    Tai, Huiling; Yuan, Zhen; Zheng, Weijian; Ye, Zongbiao; Liu, Chunhua; Du, Xiaosong

    2016-03-01

    ZnO nanoparticles and graphene oxide (GO) thin film were deposited on gold interdigital electrodes (IDEs) in sequence via simple spraying process, which was further restored to ZnO/reduced graphene oxide (rGO) bilayer thin film by the thermal reduction treatment and employed for ammonia (NH3) detection at room temperature. rGO was identified by UV-vis absorption spectra and X-ray photoelectron spectroscope (XPS) analyses, and the adhesion between ZnO nanoparticles and rGO nanosheets might also be formed. The NH3-sensing performances of pure rGO film and ZnO/rGO bilayer films with different sprayed GO amounts were compared. The results showed that ZnO/rGO film sensors exhibited enhanced response properties, and the optimal GO amount of 1.5 ml was achieved. Furthermore, the optimal ZnO/rGO film sensor showed an excellent reversibility and fast response/recovery rate within the detection range of 10-50 ppm. Meanwhile, the sensor also displayed good repeatability and selectivity to NH3. However, the interference of water molecules on the prepared sensor is non-ignorable; some techniques should be researched to eliminate the effect of moisture in the further work. The remarkably enhanced NH3-sensing characteristics were speculated to be attributed to both the supporting role of ZnO nanoparticles film and accumulation heterojunction at the interface between ZnO and rGO. Thus, the proposed ZnO/rGO bilayer thin film sensor might give a promise for high-performance NH3-sensing applications.

  20. Emergence of Multiple Superconducting Phases in (NH3)yMxFeSe (M: Na and Li)

    PubMed Central

    Zheng, Lu; Miao, Xiao; Sakai, Yusuke; Izumi, Masanari; Goto, Hidenori; Nishiyama, Saki; Uesugi, Eri; Kasahara, Yuichi; Iwasa, Yoshihiro; Kubozono, Yoshihiro

    2015-01-01

    We previously discovered multiple superconducting phases in the ammoniated Na-doped FeSe material, (NH3)yNaxFeSe. To clarify the origin of the multiple superconducting phases, the variation of Tc was fully investigated as a function of x in (NH3)yNaxFeSe. The 32 K superconducting phase is mainly produced in the low-x region below 0.4, while only a single phase is observed at x ?=? 1.1, with Tc?=? 45?K, showing that the Tc depends significantly on x, but it changes discontinuously with x. The crystal structure of (NH3)yNaxFeSe does not change as x increases up to 1.1, i.e., the space group of I4/mmm. The lattice constants, a and c, of the low-Tc phase (Tc?=?32.5?K) are 3.9120(9) and 14.145(8)?, respectively, while a?=?3.8266(7)? and c?=?17.565(9)? for the high-Tc phase (~46?K). The c increases in the high Tc phase, implying that the Tc is directly related to c. In (NH3)yLixFeSe material, the Tc varies continuously within the range of 39 to 44?K with changing x. Thus, the behavior of Tc is different from that of (NH3)yNaxFeSe. The difference may be due to the difference in the sites that the Na and Li occupy. PMID:26239256

  1. ZnO Nanoparticles/Reduced Graphene Oxide Bilayer Thin Films for Improved NH3-Sensing Performances at Room Temperature.

    PubMed

    Tai, Huiling; Yuan, Zhen; Zheng, Weijian; Ye, Zongbiao; Liu, Chunhua; Du, Xiaosong

    2016-12-01

    ZnO nanoparticles and graphene oxide (GO) thin film were deposited on gold interdigital electrodes (IDEs) in sequence via simple spraying process, which was further restored to ZnO/reduced graphene oxide (rGO) bilayer thin film by the thermal reduction treatment and employed for ammonia (NH3) detection at room temperature. rGO was identified by UV-vis absorption spectra and X-ray photoelectron spectroscope (XPS) analyses, and the adhesion between ZnO nanoparticles and rGO nanosheets might also be formed. The NH3-sensing performances of pure rGO film and ZnO/rGO bilayer films with different sprayed GO amounts were compared. The results showed that ZnO/rGO film sensors exhibited enhanced response properties, and the optimal GO amount of 1.5 ml was achieved. Furthermore, the optimal ZnO/rGO film sensor showed an excellent reversibility and fast response/recovery rate within the detection range of 10-50 ppm. Meanwhile, the sensor also displayed good repeatability and selectivity to NH3. However, the interference of water molecules on the prepared sensor is non-ignorable; some techniques should be researched to eliminate the effect of moisture in the further work. The remarkably enhanced NH3-sensing characteristics were speculated to be attributed to both the supporting role of ZnO nanoparticles film and accumulation heterojunction at the interface between ZnO and rGO. Thus, the proposed ZnO/rGO bilayer thin film sensor might give a promise for high-performance NH3-sensing applications. PMID:26956599

  2. Thermal desorption of CO from Mo(110)

    NASA Astrophysics Data System (ADS)

    Raaen, S.; Juel, M.

    2003-03-01

    Adsorption of CO on Mo(110) has been studied by temperature programmed desorption (TPD), photoelectron spectroscopy, and Monte-Carlo simulations. Carbon monoxide is partly dissociated when adsorbed on this surface at ambient temperatures. Two desorption regions, 250-400 K (molecular adsorption) and 850-1100 K (dissociative adsorption) are observed in the TPD spectra. Molecular species were identified by orbitals present in the photoemission measurements. It was found that the desorption signal corresponding to dissociative adsorption saturates rapidly for CO exposures below 1L, whereas the desorption intensity corresponding to molecular adsorption increases with exposure up to about 5L. Interpretation of desorption data is generally not straight forward due to the dependence of several properties of the surface and absorbed species. Therefore, the experimental data for the molecular adsorption region has been compared to Monte-Carlo simulations. The algorithm proposed by Meng and Weinberg [1] was employed. The presence of dissociated species on the surface has been modeled. Two different adsorption sites, "on-top" and "bridge" sites, was considered. Three different near neighbor interactions on the bcc(110) surface have been included. [1] B.Meng and W.H. Weinberg, J. Chem. Phys. 100, 5280 (1994).

  3. Selective catalytic reduction of NOx with NH3 over a Cu-SSZ-13 catalyst prepared by a solid state ion exchange method

    SciTech Connect

    Wang, Di; Gao, Feng; Peden, Charles HF; Li, Junhui; Kamasamudram, Krishna; Epling, William S.

    2014-06-01

    A novel solid state method was developed to synthesize Cu-SSZ-13 catalysts with excellent NH3-SCR performance and durable hydrothermal stability. After the solid state ion exchange (SSIE) process, the SSZ framework structure and surface area was maintained. In-situ DRIFTS and NH3-TPD experiments provide evidence that isolated Cu ions were successfully exchanged into the pores, which are the active centers for the NH3-SCR reaction.

  4. Crystal structure of the ionic liquid EtNH3NO3-insights into the thermal phase behavior of protic ionic liquids.

    PubMed

    Henderson, Wesley A; Fylstra, Paul; De Long, Hugh C; Trulove, Paul C; Parsons, Simon

    2012-12-14

    The crystal structure of the salt ethylammonium nitrate (EtNH(3)NO(3)) has been determined. EtNH(3)NO(3) is one of the most widely studied protic ionic liquids (PILs)-ILs formed by proton transfer from a Brnsted acid to a Brnsted base. The structural features from the crystal structure, in concert with a Raman spectroscopic analysis of the ions, provide direct insight as to why EtNH(3)NO(3) melts below ambient temperature, while other related salts (such as EtNH(3)Cl) do not. PMID:23099473

  5. Study of the structural phase transitions of (CH 3NH 3) 3Sb 2Cl 9 (MACA) and (CH 3NH 3) 3Bi 2Cl 9 (MACB) by infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Bator, G.; Jakubas, R.; Malarski, Z.

    1991-06-01

    Infrared spectra of polycrystalline (CH 3NH 3) 3Sb 2Cl 9 and (CH 3NH 3) 3Bi 2Cl 9 have been studied in the temperature range 90-300 K. A systematic temperature dependence study of the internal modes has been carried out. We discuss the effects of the dynamic state of methylammonium (MA) cations on their vibrational spectra. The results show that the dynamics of MA cations in both compounds is similar in higher (about 300 K) and lower temperature (in the vicinity of 100 K) regions. Substantial differences are revealed in the intermediate temperature interval. The results are in good agreement with earlier dielectric, calorimetric and 1H NMR studies.

  6. [NH3, N2O, CH4 and CO2 emissions from growing process of caged broilers].

    PubMed

    Zhou, Zhong-Kai; Zhu, Zhi-Ping; Dong, Hong-Min; Chen, Yong-Xing; Shang, Bin

    2013-06-01

    To obtain Ammonia and greenhouse gas (GHG) emission factors of caged broilers, ammonia (NH3), methane (CH4), nitrous oxide (N2O) and carbon dioxide (CO2) emissions of broilers aged 0 d to 42 days were monitored in caged broilers production systems located in Shandong province. Gas concentrations of incoming and exhaust air streams were measured by using INNOVA 1312 multi-gas monitor with multi-channel samplers. Building ventilation rates were determined by on site FANS (Fan Assessment Numeration System) measurement systems. The NH3 emission factors showed a trend of increase at the beginning and then decreased with the broiler ages. The NH3 emission rates were 8.5 to 342.1 mg x (d x bird)(-1) and the average daily emission rate was 137.9 mg x (d x bird)(-1) [48.6 g x (d x AU)(-1)] over the 42-d period. The GHGs emission rates were 19.5-351.9 mg x (d x bird)(-1) with an average of 154.5 mg x (d x bird)(-1) [54.4 g x (d x AU)(-1)] for CH4, and 2.2- 152.9 g x (d x bird)(-10 with an average of 65.9 g x (d x bird)(-1) [23.2 kg x (d x AU)(-1)] for CO2. No emission of N2O was observed. The CH4 and CO2 emission rates increased with the increase of broilers ages. The total NH3 emission over the 42 d growing period averaged (5.65 +/- 1.02) g x (bird x life cycle)(-1). The NH3 emission contribution in different growth phase to the total emission were 33.6% in growth phase 1 (0-17 day, GP1), 36.4% in GP2 (18-27 days), and 29.9% in GP3 (28-42 days), respectively. The NH3 emission in GP2 was significantly higher than emission in GP1 and GP3. CH4 and CO2 cumulative emission rates were (6.30 +/- 0.16) g x (bird(-1) x life cycle)(-1) and (2.68 +/- 0.18) kg x (bird x life cycle)(-1), respectively. The cumulative emission rates of CH4 and CO2 in GP3 were significantly higher than emission rates in GP2 and in GP1, accounting for 50% of total emissions. The results of this study could provide the data support for mitigation of gas emission from broilers production. PMID:23947019

  7. Novel nanoporous MnOx (x=∼1.75) sorbent for the removal of SO2 and NH3 made from MnC2O4·2H2O.

    PubMed

    Ma, Xiaowei; Campbell, Nicholas; Madec, Lénaïc; Rankin, Matthew A; Croll, Lisa M; Dahn, J R

    2016-03-01

    In this work, nanoporous manganese oxides (MnOx) were prepared by thermal decomposition of MnC2O4·2H2O at 225°C for 6h in air. The manganese oxalate dihydrate precipitate was made from manganese sulfate and ammonium oxalate during ultrasonication and stirring. The physical properties of the oxalate precursors and the resulting MnOx samples were characterized with SEM, TGA-DSC, FTIR and powder XRD. The specific surface areas and porosity of MnOx were studied by single-point BET and multi-point N2 adsorption-desorption measurements. The amorphous MnOx from oxalate prepared by sonication showed a specific surface area as large as 499.7m(2)/g. Dynamic SO2 and NH3 flow tests indicated that the adsorption capacity of MnOx, especially for SO2, can be increased by increased surface area. Compared to the best Mn3O4-impregnated activated carbon adsorbent, nanoporous MnOx could remove approximately three times as much SO2 and a comparable amount of NH3 per gram of adsorbent. This could lead to respirators of lower weight and smaller size which will be attractive to users. PMID:26692496

  8. Improving the NH3 gas sensitivity of ZnO nanowire sensors by reducing the carrier concentration

    NASA Astrophysics Data System (ADS)

    Law, J. B. K.; Thong, J. T. L.

    2008-05-01

    We report a method to improve the sensitivity of a zinc oxide (ZnO) nanowire gas sensor towards ammonia (NH3) without the use of catalyst nanoparticles on the nanowire surface. This improvement is achieved by lowering the nominal carrier concentration in the as-grown ZnO nanowires. The carrier concentration in the as-grown ZnO nanowires can be tuned by treating these nanowires to either an oxidizing gas plasma or a reducing gas plasma, as observed from the measured current-voltage (I-V) characteristics response. We demonstrate that a ZnO nanowire sensor device that has been subjected to oxygen plasma treatment, thereby having a reduced carrier concentration, exhibits a sensitivity towards 0.75% NH3 gas that is improved by approximately four times. The origin of this gas sensitivity improvement is discussed based on x-ray photoelectron spectroscopy analysis results of the plasma-treated ZnO nanowires.

  9. Effect of tube radius on the exohedral chemical functionalization of boron-nitride zigzag nanotubes with NH3

    NASA Astrophysics Data System (ADS)

    Zahedi, Ehsan

    2012-09-01

    The interaction between zigzag BNNTs with chirality index n=3-10 and ammonia has been studied at the level of B3LYP/6-31G*. Ammonia can be chemically adsorbed on (3,0) to (7,0) BNNTs and physically adsorbed on other studied BNNTs. From NBO analysis charge transfer occur from NH3 to BNNTs and change in the natural electron configuration of B atom of BNNTs at adsorption site for the (3,0) and (4,0) BNNTs cases is larger than others. The DOS result show that after functionalization of BNNTs with NH3 molecules electronic properties of tubes are largely preserved and can be viewed as some kind of harmless modification. Electronic analysis revealed that the interaction of zigzag BNNTs with ammonia is more electrostatic (ionic) in nature, rather than the sole covalent and electrostatic nature increased with increasing of tube diameter.

  10. Excellent activity and selectivity of Cu-SSZ-13 in the selective catalytic reduction of NOx with NH3

    SciTech Connect

    Kwak, Ja Hun; Tonkyn, Russell G.; Kim, Do Heui; Szanyi, Janos; Peden, Charles HF

    2010-10-21

    Superior activity and selectivity of a Cu ion-exchanged SSZ-13 zeolite in the selective catalytic reduction (SCR) of NOx with NH3 were observed, in comparison to Cu-beta and Cu-ZSM-5 zeolites. Cu-SSZ-13 was not only more active in the NOx SCR reaction over the entire temperature range studied (up to 550 C), but also more selective toward nitrogen formation, resulting in significantly lower amounts of NOx by-products (i.e., NO2 and N2O) than the other two zeolites. In addition, Cu-SSZ-13 demonstrated the highest activity and N2 formation selectivity in the oxidation of NH3. The results of this study strongly suggest that Cu-SSZ-13 is a promising candidate as a catalyst for NOx SCR with great potential in after-treatment systems for either mobile or stationary sources.

  11. A simple rule for determining the band offset at CH3NH3PbI3/organic semiconductor heterojunctions

    NASA Astrophysics Data System (ADS)

    Thibau, E. S.; Llanos, A.; Lu, Z. H.

    2016-01-01

    Organo-metal halide perovskites have recently emerged as a highly promising class of semiconductors for optoelectronic device applications. Integrating these hybrid materials within organic molecular thin film devices is key to fabricate functional devices. By evaporating ultra-thin films of organic semiconductor on thermally evaporated CH3NH3PbI3 and using in-situ ultraviolet photoemission spectroscopy, we directly measure the interfacial energy offset between CH3NH3PbI3 valence band maximum and the highest occupied molecular orbital for 5 different archetypal organic semiconductors. It is found that the energy offsets scale linearly as a function of the ionization energies of the organic semiconductors. The experimental data are in excellent agreement with a theoretical model for ideal semiconductor heterojunctions.

  12. Synthesis, structure, and properties of SrC(NH)3 , a nitrogen-based carbonate analogue with the trinacria motif.

    PubMed

    Missong, Ronja; George, Janine; Houben, Andreas; Hoelzel, Markus; Dronskowski, Richard

    2015-10-01

    Strontium guanidinate, SrC(NH)3 , the first compound with a doubly deprotonated guanidine unit, was synthesized from strontium and guanidine in liquid ammonia and characterized by X-ray and neutron diffraction, IR spectroscopy, and density-functional theory including harmonic phonon calculations. The compound crystallizes in the hexagonal space group P63 /m, constitutes the nitrogen analogue of strontium carbonate, SrCO3 , and its structure follows a layered motif between Sr(2+) ions and complex anions of the type C(NH)3 (2-) ; the anions adopt the peculiar trinacria shape. A comparison of theoretical phonons with experimental IR bands as well as quantum-chemical bonding analyses yield a first insight into bonding and packing of the formerly unknown anion in the crystal. PMID:26308739

  13. Exploring the PX3:NCH and PX3:NH3 potential surfaces, with X = F, Cl, and Br

    NASA Astrophysics Data System (ADS)

    Alkorta, Ibon; Elguero, José; Del Bene, Janet E.

    2015-11-01

    Ab initio MP2/aug‧-cc-pVTZ calculations have been carried out to explore the PX3:NCH and PX3:NH3 potential surfaces, with X = F, Cl and Br. Four unique minima exist on the PX3:NCH surfaces, and three on the PX3:NH3 surfaces. Complexes stabilized by pnicogen bonds, hydrogen bonds, halogen bonds, and electrostatic interactions have been found at these minima. The global minimum on each surface is a complex with a P···N pnicogen bond. Binding energies at corresponding minima are ordered with respect to the PX3 molecules as PF3 < PCl3 < PBr3. Charge-transfer stabilizes all complexes with intermolecular bonds.

  14. The role of NH3 and hydrocarbon mixtures in GaN pseudo-halide CVD: a quantum chemical study.

    PubMed

    Gadzhiev, Oleg B; Sennikov, Peter G; Petrov, Alexander I; Kachel, Krzysztof; Golka, Sebastian; Gogova, Daniela; Siche, Dietmar

    2014-11-01

    The prospects of a control for a novel gallium nitride pseudo-halide vapor phase epitaxy (PHVPE) with HCN were thoroughly analyzed for hydrocarbons-NH3-Ga gas phase on the basis of quantum chemical investigation with DFT (B3LYP, B3LYP with D3 empirical correction on dispersion interaction) and ab-initio (CASSCF, coupled clusters, and multireference configuration interaction including MRCI+Q) methods. The computational screening of reactions for different hydrocarbons (CH4, C2H6, C3H8, C2H4, and C2H2) as readily available carbon precursors for HCN formation, potential chemical transport agents, and for controlled carbon doping of deposited GaN was carried out with the B3LYP method in conjunction with basis sets up to aug-cc-pVTZ. The gas phase intermediates for the reactions in the Ga-hydrocarbon systems were predicted at different theory levels. The located π-complexes Ga…C2H2 and Ga…C2H4 were studied to determine a probable catalytic activity in reactions with NH3. A limited influence of the carbon-containing atmosphere was exhibited for the carbon doping of GaN crystal in the conventional GaN chemical vapor deposition (CVD) process with hydrocarbons injected in the gas phase. Our results provide a basis for experimental studies of GaN crystal growth with C2H4 and C2H2 as auxiliary carbon reagents for the Ga-NH3 and Ga-C-NH3 CVD systems and prerequisites for reactor design to enhance and control the PHVPE process through the HCN synthesis. PMID:25316343

  15. Ultrasensitive room temperature NH3 sensor based on a graphene-polyaniline hybrid loaded on PET thin film.

    PubMed

    Bai, Shouli; Zhao, Yangbo; Sun, Jianhua; Tian, Ye; Luo, Ruixian; Li, Dianqing; Chen, Aifan

    2015-05-01

    This research was motivated by the need to develop a smart ammonia (NH3) sensor based on a flexible polyethylene terephthalate (PET) thin film loaded with a reduced graphene oxide-polyaniline (rGO-PANI hybrid) using in situ chemical oxidative polymerization. The sensor not only exhibited high sensitivity, good selectivity and a fast response at room temperature but was also flexible, cheap and had wearable characteristics. PMID:25845668

  16. Surface Properties of CH3NH3PbI3 for Perovskite Solar Cells.

    PubMed

    Haruyama, Jun; Sodeyama, Keitaro; Han, Liyuan; Tateyama, Yoshitaka

    2016-03-15

    Perovskite solar cells (PSCs) have attracted considerable interest because of their high potential for solar energy conversion. Power conversion efficiencies of the PSCs have rapidly increased from 3.8 to over 20% only in the past few years. PSCs have several similarities to dye-sensitized solar cells in their device compositions; mesoporous TiO2 (mp-TiO2) is sensitized by light-absorbing components and placed into a medium containing hole transporting materials (HTMs). On the other hand, the perovskite materials for the light-harvesting, for example, CH3NH3PbI3 (MAPbI3), have a greater advantage for the photovoltaic applications; extremely long photocarrier diffusion lengths (over 1 μm) enable carrier transports without singnificant loss. In this respect, the surface states, that can be possible recombination centers, are also of great importance. Availability of solution processes is another important aspect in terms of low cost fabrication of PSCs. Two-step methods, where PbI2 is first introduced from solution onto a mp-TiO2 film and subsequently transformed into the MAPbI3 by the exposition of a solution containing MAI, suggest that use of such a high PbI2 concentration is crucial to obtain higher performance. The experiments also indicate that the PbI2-rich growth condition modifies TiO2/ or HTM/MAPbI3 interfaces in such a way that the photocarrier transport is improved. Thus, the characteristics of surfaces and interfaces play key roles in the high efficiencies of the PSCs. In this Account, we focus on the structural stability and electronic states of the representative (110), (001), (100), and (101) surfaces of tetragonal MAPbI3, which can be regarded as reasonable model HTM/MAPbI3 interfaces, by use of first-principles calculations. By examining various types of PbIx polyhedron terminations, we found that there are two major phases on all of the four surface facets. They can be classified as vacant- and flat-type terminations, and the former is more stable than the latter under thermodynamically equilibrium conditions. More interestingly, both terminations can coexist especially on the more probable (110) and (001) surfaces. Electronic states, that is, projected density of states, of the stable-vacant and PbI2-rich-flat terminations on the two surfaces are almost the same as that in bulk MAPbI3. These surfaces can contribute to the long carrier lifetime actually observed for the PSCs because they have no midgap surface states. Furthermore, the shallow surface states on the (110) and (001) flat terminations can be efficient intermediates for hole transport to HTMs. Consequently, the formation of the flat terminations under the PbI2-rich condition will be beneficial for the improvement of PSC performance. PMID:26901120

  17. NH3 in Oph A: Studying the small-scale temperature structure in a cluster-forming core

    NASA Astrophysics Data System (ADS)

    Friesen, Rachel; Bourke, Tyler; di Francesco, James; Myers, Phil; Caselli, Paola; Rushton, Christopher

    2010-04-01

    We propose to observe a small mosaic over the nearby, small stellar group-forming Ophiuchus A Core in NH3 (1,1) and (2,2) inversion emission at 23.7 GHz. Ophiuchus is our nearest source of ongoing, clustered star formation, allowing sensitive, high resolution observations of the physical conditions of dense gas associated with the formation of stellar groups. Through these observations, we will determine the kinetic temperature of the dense gas associated with this active star forming region, and study the distribution, kinematics and chemical differentiation of the Core at densities n ~ 10^4 cm^-3 where the NH3 lines are excited. We will use the derived temperatures to model the physical and chemical structure of embedded small-scale clumps within Oph A using radiative transfer codes, and compare the NH3 distribution with the thermal dust continuum and previously published N2H+ observations. These data are key to understanding the initial conditions of clustered star formation in Ophiuchus, and will help constrain models of dense core fragmentation and evolution in the Oph A Core.

  18. Irradiation of NH3-CH4 mixtures as a model of photochemical processes in the Jovian planets and Titan

    NASA Technical Reports Server (NTRS)

    Ferris, J. P.; Morimoto, J. Y.

    1981-01-01

    The reactions occurring upon the ultraviolet irradiation of ammonia-methane mixtures are investigated in a simulation of the atmospheric chemistry of the Jovian planets and Titan. Gas mixtures were irradiated at 185 nm at temperatures from 156-298 K, and product and reactant concentrations were determined by means of gas chromatography. The ratio of the moles of CH4 lost per mole of NH3 decomposed is found to be 0.25, with the extent of CH4 decomposition independent of temperature. The absence of a temperature effect suggests that nonthermal atoms, probably hydrogen, initiate CH4 decomposition by the extraction of a hydrogen atom. A decrease in CH4 loss with increasing pressure or the addition of other gases to the photolysis mixture, and the lack of an increase in NH3 photolysis with CH4 pressure support this mechanism. Major reaction products obtained include C2H2, C3H8 or CH3NH2, and C4H10. Considerations of atmospheric concentrations of H2 and He indicate that NH3 photolysis does not contribute to CH4 decomposition on Jupiter, Saturn, Uranus, and Neptune, although it may have had a role in the formation of the Titan atmosphere.

  19. Biological gas channels for NH3 and CO2: evidence that Rh (Rhesus) proteins are CO2 channels.

    PubMed

    Kustu, S; Inwood, W

    2006-01-01

    Physiological evidence from our laboratory indicates that Amt/Mep proteins are gas channels for NH3, the first biological gas channels to be described. This view has now been confirmed by structural evidence and is displacing the previous belief that Amt/Mep proteins were active transporters for the NH4+ ion. Still disputed is the physiological substrate for Rh proteins, the only known homologues of Amt/Mep proteins. Many think they are mammalian ammonium (NH4+ or NH3) transporters. Following Monod's famous dictum, "Anything found to be true of E. coli must also be true of elephants" [Perspect. Biol. Med. 47(1) (2004) 47], we explored the substrate for Rh proteins in the unicellular green alga Chlamydomonas reinhardtii. C. reinhardtii is one of the simplest organisms to have Rh proteins and it also has Amt proteins. Physiological studies in this microbe indicate that the substrate for Rh proteins is CO2 and confirm that the substrate for Amt proteins is NH3. Both are readily hydrated gases. Knowing that transport of CO2 is the ancestral function of Rh proteins supports the inference from hematological research that a newly evolving role of the human Rh30 proteins, RhCcEe and RhD, is to help maintain the flexible, flattened shape of the red cell. PMID:16563833

  20. Ultrasound-assistant preparation of Cu-SAPO-34 nanocatalyst for selective catalytic reduction of NO by NH3.

    PubMed

    Panahi, Parvaneh Nakhostin; Niaei, Ali; Salari, Darush; Mousavi, Seyed Mahdi; Delahay, Grard

    2015-09-01

    The influence of the various preparation methods of Cu-SAPO-34 nanocatalysts on the selective catalytic reduction of NO with NH3 under excess oxygen was studied. Cu-SAPO-34 nanocatalysts were prepared by using four techniques: conventional impregnation (IM), ultrasound-enhanced impregnation (UIM), conventional deposition precipitation (DP) using NaOH and homogeneous deposition precipitation (HDP) using urea. These catalysts were characterized in detail by various techniques such as N2-sorption, XRD, TEM, H2-TPR, NH3-TPD and XPS to understand the catalyst structure, the nature and the dispersed state of the copper species, and the acid sites for NH3 adsorption. All of the nanocatalysts showed high activities for NO removal. However, the activities were different and followed the sequence of Cu-SAPO-34 (UIM)>Cu-SAPO-34 (HDP)>Cu-SAPO-34 (IM)>Cu-SAPO-34 (DP). Based on the obtained results, it was concluded that the NO conversion on Cu-SAPO-34 nanocatalysts was mainly related to the high reducibility of the isolated Cu(2+) ions and CuO species, the number of the acid sites and the dispersion of CuO species on SAPO-34. PMID:26354702

  1. Mechanistic insights into the Bazarov synthesis of urea from NH3 and CO2 using electronic structure calculation methods.

    PubMed

    Tsipis, Constantinos A; Karipidis, Paraskevas A

    2005-09-29

    The mechanism of the noncatalyzed and reagent-catalyzed Bazarov synthesis of urea has extensively been investigated in the gas phase by means of density functional (B3LYP/6-31G(d,p)) and high quality ab initio (CBS-QB3) computational techniques. It was found that the first step of urea formation from NH3(g) and CO2(g) corresponds to a simple addition reaction leading to the carbamic acid intermediate, a process being slightly endothermic. Among the three possible reaction mechanisms considered, the addition-elimination-addition (AEA) and the double addition-elimination (DAE) mechanisms are almost equally favored, while the concerted (C) one was predicted kinetically forbidden. The second step involves the formation of loose adducts between NH3 and carbamic acid corresponding to an ammonium carbamate intermediate, which subsequently dehydrates to urea. The formation of "ammonium carbamate" corresponds to an almost thermoneutral process, whereas its dehydration, which is the rate-determining step, is highly endothermic. The Bazarov synthesis of urea is strongly assisted by the active participation of extra NH3 or H2O molecules (autocatalysis). For all reaction pathways studied the entire geometric and energetic profiles were computed and thoroughly analyzed. The reaction scheme described herein can be related with the formation of both isocyanic acid, H-N=C=O, and carbamic acid, H2N-COOH, as key intermediates in the initial formation of organic molecules, such as urea, under prebiotic conditions. PMID:16834254

  2. CH3NH3SnxPb(1-x)I3 Perovskite Solar Cells Covering up to 1060 nm.

    PubMed

    Ogomi, Yuhei; Morita, Atsushi; Tsukamoto, Syota; Saitho, Takahiro; Fujikawa, Naotaka; Shen, Qing; Toyoda, Taro; Yoshino, Kenji; Pandey, Shyam S; Ma, Tingli; Hayase, Shuzi

    2014-03-20

    We report photovoltaic performances of all-solid state Sn/Pb halide-based perovskite solar cells. The cell has the following composition: F-doped SnO2 layered glass/compact titania layer/porous titania layer/CH3NH3SnxPb(1-x)I3/regioregular poly(3-hexylthiophene-2,5-diyl). Sn halide perovskite itself did not show photovoltaic properties. Photovoltaic properties were observed when PbI2 was added in SnI2. The best performance was obtained by using CH3NH3Sn0.5Pb0.5I3 perovskite. 4.18% efficiency with open circuit voltage 0.42 V, fill factor 0.50, and short circuit current 20.04 mA/cm(2) are reported. The edge of the incident photon to current efficiency curve reached 1060 nm, which was 260 nm red-shifted compared with that of CH3NH3PbI3 perovskite solar cells. PMID:26270980

  3. Fiber-Amplifier-Enhanced QEPAS Sensor for Simultaneous Trace Gas Detection of NH3 and H2S

    PubMed Central

    Wu, Hongpeng; Dong, Lei; Liu, Xiaoli; Zheng, Huadan; Yin, Xukun; Ma, Weiguang; Zhang, Lei; Yin, Wangbao; Jia, Suotang

    2015-01-01

    A selective and sensitive quartz enhanced photoacoustic spectroscopy (QEPAS) sensor, employing an erbium-doped fiber amplifier (EDFA), and a distributed feedback (DFB) laser operating at 1582 nm was demonstrated for simultaneous detection of ammonia (NH3) and hydrogen sulfide (H2S). Two interference-free absorption lines located at 6322.45 cm−1 and 6328.88 cm−1 for NH3 and H2S detection, respectively, were identified. The sensor was optimized in terms of current modulation depth for both of the two target gases. An electrical modulation cancellation unit was equipped to suppress the background noise caused by the stray light. An Allan-Werle variance analysis was performed to investigate the long-term performance of the fiber-amplifier-enhanced QEPAS sensor. Benefitting from the high power boosted by the EDFA, a detection sensitivity (1σ) of 52 parts per billion by volume (ppbv) and 17 ppbv for NH3 and H2S, respectively, were achieved with a 132 s data acquisition time at atmospheric pressure and room temperature. PMID:26506351

  4. Scattering of NH3 by ortho- and para-H2 - Expansion of the potential and collisional propensity rules

    NASA Astrophysics Data System (ADS)

    Rist, Claire; Alexander, Millard H.; Valiron, P.

    1993-03-01

    We present the general expansion of the interaction potential between a rigid, but invertible symmetric top and a linear molecule. The development is derived from the average over electronic coordinates of the fundamental electrostatic interaction. Our expansion for the electrostatic potential takes into account explicitly the symmetry under inversion of the position of all the nuclei, which was not included in earlier expansions. A numerical fit of calculated ab initio points for the NH3-H2 system suggests the presence of a similar inversion symmetry for the total interaction potential. We then use our expansion to derive, in the Born and energy sudden limits, propensity rules for collisions of NH3 with ortho- and para-hydrogen. Although at a formal level these propensity rules are equally valid for both hydrogen rotomers, close coupling calculations show that they are considerably weakened for o-H2. This is a manifestation of the additional anisotropy in the interaction between NH3 and a nonspherical collision partner.

  5. Solvent-Mediated Crystallization of CH3NH3SnI3 Films for Heterojunction Depleted Perovskite Solar Cells.

    PubMed

    Hao, Feng; Stoumpos, Constantinos C; Guo, Peijun; Zhou, Nanjia; Marks, Tobin J; Chang, Robert P H; Kanatzidis, Mercouri G

    2015-09-01

    Organo-lead halide perovskite solar cells have gained enormous significance and have now achieved power conversion efficiencies of ?20%. However, the potential toxicity of lead in these systems raises environmental concerns for widespread deployment. Here we investigate solvent effects on the crystallization of the lead-free methylammonium tin triiodide (CH3NH3SnI3) perovskite films in a solution growth process. Highly uniform, pinhole-free perovskite films are obtained from a dimethyl sulfoxide (DMSO) solution via a transitional SnI23DMSO intermediate phase. This high-quality perovskite film enables the realization of heterojunction depleted solar cells based on mesoporous TiO2 layer but in the absence of any hole-transporting material with an unprecedented photocurrent up to 21 mA cm(-2). Charge extraction and transient photovoltage decay measurements reveal high carrier densities in the CH3NH3SnI3 perovskite device which are one order of magnitude larger than CH3NH3PbI3-based devices but with comparable recombination lifetimes in both devices. The relatively high background dark carrier density of the Sn-based perovskite is responsible for the lower photovoltaic efficiency in comparison to the Pb-based analogues. These results provide important progress toward achieving improved perovskite morphology control in realizing solution-processed highly efficient lead-free perovskite solar cells. PMID:26313318

  6. Effect of phosphogypsum and dicyandiamide as additives on NH3, N20 and CH4 emissions during composting.

    PubMed

    Luo, Yiming; Li, Guoxue; Luo, Wenhai; Schuchardt, Frank; Jiang, Tao; Xu, Degang

    2013-07-01

    A laboratory scale experiment of composting in a forced aeration system using pig manure with cornstalks was carried out to investigate the effects of both phosphogypsum and dicyandiamide (DCD, C2H4N4) as additives on gaseous emissions and compost quality. Besides a control, there were three amended treatments with different amounts of additives. The results indicated that the phosphogypsum addition at the rate of 10% of mixture dry weight decreased NH3 and CH4 emissions significantly during composting. The addition of DCD at the rate of 0.2% of mixture dry weight together with 10% of phosphogypsum further reduced the N2O emission by affecting the nitrification process. Reducing the phosphogypsum addition to 5% in the presence of 0.2% DCD moderately increased the NH3 emissions but not N2O emission. The additives increased the ammonium content and electrical conductivity significantly in the final compost. No adverse effect on organic matter degradation or the germination index of the compost was found in the amended treatments. It was recommended that phosphogypsum and DCD could be used in composting for the purpose of reducing NH3, CH4 and N2O emissions. Optimal conditions and dose of DCD additive during composting should be determined with different materials and composting systems in further study. PMID:24218845

  7. Revealing the role of organic cations in hybrid halide perovskite CH3NH3PbI3

    PubMed Central

    Motta, Carlo; El-Mellouhi, Fedwa; Kais, Sabre; Tabet, Nouar; Alharbi, Fahhad; Sanvito, Stefano

    2015-01-01

    The hybrid halide perovskite CH3NH3PbI3 has enabled solar cells to reach an efficiency of about 20%, demonstrating a pace for improvements with no precedents in the solar energy arena. Despite such explosive progress, the microscopic origin behind the success of such material is still debated, with the role played by the organic cations in the light-harvesting process remaining unclear. Here van der Waals-corrected density functional theory calculations reveal that the orientation of the organic molecules plays a fundamental role in determining the material electronic properties. For instance, if CH3NH3 orients along a (011)-like direction, the PbI6 octahedral cage will distort and the bandgap will become indirect. Our results suggest that molecular rotations, with the consequent dynamical change of the band structure, might be at the origin of the slow carrier recombination and the superior conversion efficiency of CH3NH3PbI3. PMID:25912782

  8. A novel [Ag(NH3)2]+ probe for chemiluminescent imaging detection of proteins after polyacrylamide gel electrophoresis.

    PubMed

    Xiong, Xin; Wang, Zhenzhen; Baeyens, Willy R G; Delanghe, Joris R; Huang, Zhi; Huang, Guangming; Ouyang, Jin

    2007-08-01

    The development of a novel [Ag(NH3)2]+ probe chemiluminescence (CL)-based imaging method for the detection of various proteins after PAGE is described. The detection is based upon the probe [Ag(NH3)2]+ catalyzing the CL reaction of the luminol-potassium persulfate system. The proposed method detects various proteins labeled by [Ag(NH3)2]+ and expands the application scope to SDS gels. It also detects proteins directly in polyacrylamide gels, without tedious transferring procedures. Furthermore, successful identification of proteins by peptide mass profiling using ionization MS was easily performed, and no pretreatments of gel prior to digestion are needed. Detection limits for standard marker proteins match CBB-R250 staining and the linear dynamic range is superior to CBB-R250 staining and silver staining. The CL imaging conditions, including luminescent reagents, silver ion concentration, the ammonia-controlled system and the washing reagents parameters have also been optimized. PMID:17610207

  9. Effect of NH3 plasma passivation on the electrical characteristics of a nanolaminated ALD HfAlO on InGaAs MOS capacitor

    NASA Astrophysics Data System (ADS)

    Choi, Jae-Sung; Park, Jea-Gun

    2015-06-01

    The electrical characteristics of a nanolaminated atomic layer deposition (ALD) HfAlO/InGaAs metal-oixde-semiconductor (MOS) capacitor with NH3 plasma passivation are investigated. Results show that the samples with NH3 plasma passivation exhibit better capacitance behavior with relatively small frequency dispersion in the inversion region than the unpassivated sample. The leakage current level of the NH3 plasma-passivated samples shows a much lower value compared to the unpassivated sample. The mid-gap value for the density of interface traps, D it , also shows that NH3 plasma-passivated samples have relatively low values compared to the unpassivated sample. Superior electrical performance, compared to the unpassivated sample, was demonstrated with NH3 plasma passivation through those electrical characterizations.

  10. Water desorption from nanostructured graphite surfaces.

    PubMed

    Clemens, Anna; Hellberg, Lars; Grnbeck, Henrik; Chakarov, Dinko

    2013-12-21

    Water interaction with nanostructured graphite surfaces is strongly dependent on the surface morphology. In this work, temperature programmed desorption (TPD) in combination with quadrupole mass spectrometry (QMS) has been used to study water ice desorption from a nanostructured graphite surface. This model surface was fabricated by hole-mask colloidal lithography (HCL) along with oxygen plasma etching and consists of a rough carbon surface covered by well defined structures of highly oriented pyrolytic graphite (HOPG). The results are compared with those from pristine HOPG and a rough (oxygen plasma etched) carbon surface without graphite nanostructures. The samples were characterized using scanning electron microscopy (SEM) and atomic force microscopy (AFM). The TPD experiments were conducted for H2O coverages obtained after exposures between 0.2 and 55 langmuir (L) and reveal a complex desorption behaviour. The spectra from the nanostructured surface show additional, coverage dependent desorption peaks. They are assigned to water bound in two-dimensional (2D) and three-dimensional (3D) hydrogen-bonded networks, defect-bound water, and to water intercalated into the graphite structures. The intercalation is more pronounced for the nanostructured graphite surface in comparison to HOPG surfaces because of a higher concentration of intersheet openings. From the TPD spectra, the desorption energies for water bound in 2D and 3D (multilayer) networks were determined to be 0.32 0.06 and 0.41 0.03 eV per molecule, respectively. An upper limit for the desorption energy for defect-bound water was estimated to be 1 eV per molecule. PMID:24018989

  11. Ft-Ir Measurements of NH_3 Line Intensities in the 60 - 550 CM-1 Using Soleil/ailes Beamline

    NASA Astrophysics Data System (ADS)

    Sung, Keeyoon; Yu, Shanshan; Pearson, John; Manceron, Laurent; Kwabia Tchana, F.; Pirali, Olivier

    2015-06-01

    Ammonia (NH_3) has been found ubiquitous, e.g., in the interstellar medium, low-mass stars, Jovian planets of our solar system, and possibly in the low temperature exoplanets. Their spectroscopic line parameters are essential in the accurate interpretation of the planetary and astrophysical spectra observed with Herschel, SOFIA, ALMA, and JWST. In our previous paper, the NH_3 line positions in the far-IR region were studied for the ground state and ?_2 in an unprecedented accuracy, which revealed significant deficiencies in the NH_3 intensities, for instance, some weak ?K = 3 lines were predicted to be ~100 times stronger. Measurement of line intensity for these lines in a consistent manner is demanded because the ?K = 3 forbidden lines are only way other than collisions and l-doubled states to excite NH_3 to K > 0 levels. Recalling that NH_3 transition lines in the high J and K up to 18 were detected toward the galactic center in the star forming region of Sgr B_2, their accurate intensity measurements are critical in explaining the observed high K excitation, which will provide insights into radiative-transfer vs.levels. The interaction between a large amplitude torsional motion and the hyperfine coupling may also lead to a less known hyperfine effect, the so-called magnetic spin-torsion coupling, which was first studied by Heuvel and Dymanus and which has not yet been conclusively evidenced. In this talk, the magnetic hyperfine structure of the non-rigid methanol molecule will be investigated experimentally and theoretically. 13 hyperfine patterns were recorded using two molecular beam microwave spectrometers. These patterns, along with previously recorded ones,^c were analyzed in an attempt to evidence the effects of the magnetic spin-torsion coupling. The theoretical approach setup to analyze the observed data accounts for the spin-torsion coupling, in addition to the familiar magnetic spin-rotation and spin-spin couplings, and relies on symmetry considerations to build a hyperfine coupling Hamiltonian and a spin-rotation-torsion wavefunction compatible with the Pauli exclusion principle. In the talk, the results of the analysis will be presented. The hyperfine coupling parameters retrieved will be discussed and we hope to be able to conclusively evidence the effects of the magnetic spin-torsion. S. Yu, et al. J. Chem. Phys. (2010) 174317/1-174317/14. Coudert and Lopez, J. Mol. Spectrosc.~239 (2006) 135; and Tudorie, Coudert, Huet, Jegouso, and Sedes, J. Chem. Phys.~134 (2011) 074314

  12. Fabrication and characterization of perovskite-based CH3NH3Pb1-xGexI3, CH3NH3Pb1-xTlxI3 and CH3NH3Pb1-xInxI3 photovoltaic devices

    NASA Astrophysics Data System (ADS)

    Ohishi, Yuya; Oku, Takeo; Suzuki, Atsushi

    2016-02-01

    Perovskite-type CH3NH3PbI3-based photovoltaic devices were fabricated and characterized. Doping effects of thallium (Tl), indium (In), or germanium (Ge) element on the photovoltaic properties and surface structures of the perovskite phase were investigated. The open circuit voltage increased by Ge addition, and fill factors were improved by adding a small amount of Ge, Tl or In. In addition, the wavelength range of incident photon conversion efficiencies was expanded by the Tl addition.

  13. Estimating NH3 emissions from agricultural fertilizer application in China using the bi-directional CMAQ model coupled to an agro-ecosystem model

    NASA Astrophysics Data System (ADS)

    Fu, X.; Wang, S. X.; Ran, L. M.; Pleim, J. E.; Cooter, E.; Bash, J. O.; Benson, V.; Hao, J. M.

    2015-01-01

    Atmospheric ammonia (NH3) plays an important role in atmospheric chemistry. China is one of the largest NH3 emitting countries with the majority of NH3 emissions coming from the agricultural practices, such as fertilizer application and livestock. The current NH3 emission estimates in China are mainly based on pre-defined emission factors that lack the temporal or spatial details, which are needed to accurately predict NH3 emissions. In this study, we estimate, for the first time, the NH3 emission from the agricultural fertilizer application in China online using an agricultural fertilizer modeling system coupling a regional air quality model (the Community Multi-Scale Air Quality model, CMAQ) and an agro-ecosystem model (the Environmental Policy Integrated Climate model, EPIC), which improves the spatial and temporal resolution of NH3 emission from this sector. Cropland area data of 14 crops from 2710 counties and the Moderate Resolution Imaging Spectroradiometer (MODIS) land use data are combined to determine the crop distribution. The fertilizer application rate and method for different crop are collected at provincial or agriculture-regional level. The EPIC outputs of daily fertilizer application and soil characteristics are inputed into the CMAQ model and the hourly NH3 emission are calculated online with CMAQ running. The estimated agricultural fertilizer NH3 emission in this study is about 3 Tg in 2011. The regions with the highest modeled emission rates are located in the North China Plain. Seasonally, the peak ammonia emissions occur from April to July.Compared with previous researches, this method considers more influencing factors, such as meteorological fields, soil and the fertilizer application, and provides improved NH3 emission with higher spatial and temporal resolution.

  14. Estimating NH3 emissions from agricultural fertilizer application in China using the bi-directional CMAQ model coupled to an agro-ecosystem model

    NASA Astrophysics Data System (ADS)

    Fu, X.; Wang, S. X.; Ran, L. M.; Pleim, J. E.; Cooter, E.; Bash, J. O.; Benson, V.; Hao, J. M.

    2015-06-01

    Atmospheric ammonia (NH3) plays an important role in atmospheric aerosol chemistry. China is one of the largest NH3 emitting countries with the majority of NH3 emissions coming from agricultural practices, such as fertilizer application and livestock production. The current NH3 emission estimates in China are mainly based on pre-defined emission factors that lack temporal or spatial details, which are needed to accurately predict NH3 emissions. This study provides the first online estimate of NH3 emissions from agricultural fertilizer application in China, using an agricultural fertilizer modeling system which couples a regional air quality model (the Community Multi-scale Air Quality model, or CMAQ) and an agro-ecosystem model (the Environmental Policy Integrated Climate model, or EPIC). This method improves the spatial and temporal resolution of NH3 emissions from this sector. We combined the cropland area data of 14 crops from 2710 counties with the Moderate Resolution Imaging Spectroradiometer (MODIS) land use data to determine the crop distribution. The fertilizer application rates and methods for different crops were collected at provincial or agricultural region levels. The EPIC outputs of daily fertilizer application and soil characteristics were input into the CMAQ model and the hourly NH3 emissions were calculated online with CMAQ running. The estimated agricultural fertilizer NH3 emissions in this study were approximately 3 Tg in 2011. The regions with the highest modeled emission rates are located in the North China Plain. Seasonally, peak ammonia emissions occur from April to July. Compared with previous researches, this study considers an increased number of influencing factors, such as meteorological fields, soil and fertilizer application, and provides improved NH3 emissions with higher spatial and temporal resolution.

  15. Microscopic Model of Associative Desorption for Hydrogen on Mo(110)

    NASA Astrophysics Data System (ADS)

    Yakovkin, I. N.; Osovskii, V. D.; Petrova, N. V.; Ptushinskii, Yu. G.

    Adsorbed hydrogen layers on the Mo(110) surface have been investigated both experimentally by temperature programmed desorption (TPD) method and theoretically by means of DFT-based optimization of surface structures. We suggest a novel microscopic model of the associative hydrogen desorption, which explains essential features of the process. In this model, the process of hydrogen desorption can be described as association of hydrogen atoms on the surface, but molecular formation is actually accomplished while the molecule moves away from the surface. We also suggest a new algorithm for realistic Monte Carlo simulations of associative desorption, which implements the microscopic description of the association of hydrogen adatoms into a molecule with activation energy, found from the DFT calculations. Good agreement between simulated and experimental TPD spectra gives insight into different behavior of the spectra, obtained for low and high hydrogen coverages on the Mo(110) surface.

  16. N2 and CO Desorption Energies from Water Ice

    NASA Astrophysics Data System (ADS)

    Fayolle, Edith C.; Balfe, Jodi; Loomis, Ryan; Bergner, Jennifer; Graninger, Dawn; Rajappan, Mahesh; Öberg, Karin I.

    2016-01-01

    The relative desorption energies of CO and N2 are key to interpretations of observed interstellar CO and N2 abundance patterns, including the well-documented CO and N2H+ anti-correlations in disks, protostars, and molecular cloud cores. Based on laboratory experiments on pure CO and N2 ice desorption, the difference between CO and N2 desorption energies is small; the N2-to-CO desorption energy ratio is 0.93 ± 0.03. Interstellar ices are not pure, however, and in this study we explore the effect of water ice on the desorption energy ratio of the two molecules. We present temperature programmed desorption experiments of different coverages of 13CO and 15N2 on porous and compact amorphous water ices and, for reference, of pure ices. In all experiments, 15N2 desorption begins a few degrees before the onset of 13CO desorption. The 15N2 and 13CO energy barriers are 770 and 866 K for the pure ices, 1034-1143 K and 1155-1298 K for different submonolayer coverages on compact water ice, and 1435 and 1575 K for ˜1 ML of ice on top of porous water ice. For all equivalent experiments, the N2-to-CO desorption energy ratio is consistently 0.9. Whenever CO and N2 ice reside in similar ice environments (e.g., experience a similar degree of interaction with water ice) their desorption temperatures should thus be within a few degrees of one another. A smaller N2-to-CO desorption energy ratio may be present in interstellar and circumstellar environments if the average CO ice molecules interacts more with water ice compared to the average N2 molecules.

  17. Desorption from interstellar ices

    NASA Astrophysics Data System (ADS)

    Roberts, J. F.; Rawlings, J. M. C.; Viti, S.; Williams, D. A.

    2007-12-01

    The desorption of molecular species from ice mantles back into the gas phase in molecular clouds results from a variety of very poorly understood processes. We have investigated three mechanisms: desorption resulting from H2 formation on grains, direct cosmic ray heating and cosmic ray-induced photodesorption. Whilst qualitative differences exist between these processes (essentially deriving from the assumptions concerning the species selectivity of the desorption and the assumed threshold adsorption energies, Et), all the three processes are found to be potentially very significant in dark cloud conditions. It is therefore important that all three mechanisms should be considered in studies of molecular clouds in which freeze-out and desorption are believed to be important. Employing a chemical model of a typical static molecular core and using likely estimates for the quantum yields of the three processes, we find that desorption by H2 formation probably dominates over the other two mechanisms. However, the physics of the desorption processes and the nature of the dust grains and ice mantles are very poorly constrained. We therefore conclude that the best approach is to set empirical constraints on the desorption, based on observed molecular depletions - rather than try to establish the desorption efficiencies from purely theoretical considerations. Applying this method to one such object (L1689B) yields upper limits to the desorption efficiencies that are consistent with our understanding of these mechanisms.

  18. Messung der Geschwindigkeitskonstanten der Reaktion NH2+CH4?NH3+CH3 hinter einfallenden Stowellen / Measurements of the Rate Constant of the Reaction NH2+CH4?NH3+CH3 behind Incident Shock Waves

    NASA Astrophysics Data System (ADS)

    Mller, W.; Wagner, H. Gg.

    1984-09-01

    The rate constant of the reaction NH2+CH4?NH3+CH3 was measured at temperatures of about 1800 K by time-resolved UV-spectroscopy of the products behind incident shock waves. NH2 was produced by the presence and thermal decomposition of hydrazine. The data were evaluated by fitting simulated concentration-time-profiles to the measured ones. A mean rate constant k = (42) 1011 cm3 mol-1 s-1 1730

  19. Analysis of desorption species from MOS structure surfaces induced by gate voltages

    NASA Astrophysics Data System (ADS)

    Hirota, Nozomu; Hattori, Ken; Daimon, Hiroshi

    2014-03-01

    Hot carriers, which have energies over the Fermi level, are able to activate surface reaction. A MOS structure is able to generate tunable hot carriers under gate bias-voltages, would be suitable for the hot-carrier injection to surface from the metal side, but not vacuum side. In this research, I desire to make a proposition of catalytic devices using MOS structures. Desorption is one of the important paths in catalytic reaction, and would be observed when the bais-voltage is applied. We found desorption on N2O exposed MOS (Fe/SiO2/ p-Si) structure, detected by a mass spectrometer. The desorption were observed only when the metal surface was in negative polarity, the hole injection. The desorption of CH4 molecules was confirmed by mass analysis with cracking corrections. Since non-polar molecules (e.g., CH4) are hard to adsorb, the origin of CH4 is not adsorbed one as the molecule, but the catalytic reaction. At the same time, NH3 and H2O background intensities decreased. We consider the following scenario. The CH4 is generated from CO and adsorbed H over FexNy/SiO2 surface with hot-carrier activation. The CH4 formation inhibit H2O and NH3 suitable generation via decrease adsorbed H concentration. Most of desorption species can be expl

  20. THERMAL DESORPTION TREATMENT

    EPA Science Inventory

    Thermal desorption is an ex situ means to physically separate volatile and some semivolatile contaminants from soil, sediments, sludges, and filter cakes. or wastes containing up to 10% organics or less, thermal desorption can be used alone for site remediation. t also may find a...

  1. Lattice potential energy and standard molar enthalpy in the formation of 1dodecylamine hydrobromide (1-C12H25NH3Br)(s)

    NASA Astrophysics Data System (ADS)

    Liu, Yu-Pu; Di, You-Ying; Dan, Wen-Yan; He, Dong-Hua; Kong, Yu-Xia; Yang, Wei-Wei

    2011-02-01

    This paper reports that 1-dodecylamine hydrobromide (1-C12H25NH3Br)(s) has been synthesized using the liquid phase reaction method. The lattice potential energy of the compound 1-C12H25NH3Br and the ionic volume and radius of the 1-C12H25NH3+ cation are obtained from the crystallographic data and other auxiliary thermodynamic data. The constant-volume energy of combustion of 1-C12H25NH3Br(s) is measured to be ?cUmo(1-C12H25NH3Br, s) = -(7369.033.28) kJmol-1 by means of an RBC-II precision rotating-bomb combustion calorimeter at T = (298.150.001) K. The standard molar enthalpy of combustion of the compound is derived to be ?cHmo(1-C12H25NH3Br, s) = -(7384.523.28) kJmol-1 from the constant-volume energy of combustion. The standard molar enthalpy of formation of the compound is calculated to be ?fHmo(1-C12H25NH3Br, s)=-(1317.863.67) kJmol-1 from the standard molar enthalpy of combustion of the title compound and other auxiliary thermodynamic quantities through a thermochemical cycle.

  2. Development and uncertainty analysis of a high-resolution NH3 emissions inventory and its implications with precipitation over the Pearl River Delta region, China

    NASA Astrophysics Data System (ADS)

    Zheng, J. Y.; Yin, S. S.; Kang, D. W.; Che, W. W.; Zhong, L. J.

    2011-12-01

    Detailed NH3 emission inventories are important to understand various atmospheric processes, air quality modeling study, air pollution management, and related environmental and ecological issues. A high-resolution NH3 emission inventory is developed based on the state-of-the-science techniques, the up-to-date information, and the advanced expert knowledge for the Pearl River Delta region, China. To provide model-ready emissions input, this NH3 emissions inventory is spatially allocated to 3 km 3 km grid cells using source-based spatial surrogates with Geographical Information System (GIS) technology. For NH3 emissions, 9 source categories and 45 sub-categories are identified in this region, and detailed spatial and temporal characteristics are investigated. Results show that livestock is by far the most important NH3 emission source that contributes about 61.7% of the total NH3 emissions in this region, followed by nitrogen fertilizer applications (~23.7%) and non-agricultural sources (~14.6%). Uncertainty analysis reveals that the uncertainties associated with different sources vary from source to source and the magnitude of the uncertainty associated with a specific source mainly depends on the degree of accuracy of the emission factors and activity data as well as the technique used to perform the estimate. The validity of the NH3 emissions inventory is justified by the trend analysis of local rainwater compositions, especially pH values, the Ca2+ + NH4+/SO42- + NO3- ratios, and NH4+ concentrations which are directly or indirectly related to NH3 emissions. Based on the analysis, recommendations for additional work to further improve the accuracy of the NH3 emissions inventory are also discussed and proposed.

  3. Interfacial interaction of Ag nanoparticles with graphene oxide supports for improving NH3 and NO adsorption: a first-principles study.

    PubMed

    Tang, Shaobin; Wu, Weihua; Yu, Jianping

    2016-03-01

    We investigated the structural and electronic properties of Ag13 nanoparticles (NPs) deposited on graphene oxides (GOs) and the effect of the interfacial interaction on NH3 and NO adsorption using density functional theory calculations. The epoxy functional group and its neighboring sp(2) carbon atoms of GOs, rather than the hydroxyl group, are used as active sites to enhance the binding of Ag13 to graphene through the C-O-Ag and C-Ag chemical bonds. The stability of deposited Ag NPs depends on the chemical environment of active sites in GOs, including the atomic arrangement of epoxides and their concentration. The deposited Ag13 NPs are likely to be further oxidized to form Ag13O by neighboring oxygen irrespective of the oxidation level of GOs. The strong interfacial interaction of Ag13/GOs, which effectively tunes the position of the d-band center of NPs due to large charge transfer from Ag13 to GOs, has a significant impact on the adsorption of NH3. The NH3 is strongly adsorbed on deposited Ag13 through the formation of an N-Ag bond and an NHO hydrogen bond between NH3 and O from C-O-Ag. The electronic structure calculations show that the hybridization of the HOMO of NH3 with the conduction bands of Ag13-GOs results in the strong donor doping by an NH3 molecule, and gives rise to larger charge transfers from NH3 to the hybrid, compared to NH3 adsorption on isolated Ag13 and GOs. The adsorption of NO on oxidized Ag13 on GOs is obviously improved due to the oxidation of NO to NO2 by its neighboring oxygen atoms. In contrast to NH3, the adsorbed NO acts as an acceptor. The calculated results show good agreement with experimental observations. PMID:26912023

  4. On-board Measurement of HCN and NH3 Emissions from Vehicles During Real-World Driving

    NASA Astrophysics Data System (ADS)

    Moss, J. A.; Baum, M. M.

    2013-12-01

    Emission control systems in light-duty motor vehicles have played an important role in improving regional air quality by dramatically reducing the concentration of criteria pollutants (carbon monoxide, hydrocarbons, and nitrogen oxides) in exhaust emissions. Unintended side-reactions occurring on the surface of three-way catalysts can, however, lead to emission of non-criteria pollutants such as ammonia (NH3) and hydrogen cyanide (HCN). A pair of spectrometers based on tunable diode lasers (TDL) emitting in the near-infrared (1529 nm) and mid-infrared (2975 nm) have been developed for determination of HCN and acetylene (C2H2) emission rates from light-duty motor vehicles in real-time, while driving. Both spectrometers have been evaluated extensively using standard gas mixtures in the laboratory and exhaust from idling and moving vehicles. The TDL spectrometers were incorporated into an on-board instrument suite containing instrumentation for measurement of CO2, HCN, C2H2, NH3 and amines, and exhaust flow rate. On-board measurements were carried out on a fleet of ten vehicles driving a 30 minute circuit representative of real-world urban driving conditions. These measurements afforded emission factors for NH3 (194 × 147 mg km-1) and HCN (3.33 × 3.61 mg km-1), as well as the first report of methylamine emission factors, 0.70 × 0.61 mg km-1. Emissions of both amines were highly correlated (R2 = 0.95). The temporally-resolved TDL spectrometer measurements indicate that the highest HCN and C2H2 emissions occur during specific emission modes that are a function of driving conditions.

  5. Sub-ppm NH3 sensor for control of de-nitrification process using diode laser spectroscopy

    NASA Astrophysics Data System (ADS)

    Gu, Haitao; Liu, Lipeng; Li, Ying; Chen, Ren; Wen, Luhong; Wang, Jian

    2008-12-01

    Diode laser absorption spectroscopy (DLAS) has become an important analytical technique for highly sensitive and specific gas concentration measurements as it is reliable, fast and accurate. In this work a diode laser sensor has been developed to monitor ammonia at sub-ppm in 1510-nm region. The system was designed to control the de-nitrification process with selective catalytic reduction (SCR) abatement system. To ensure that NOx is reacted completely and to avoid secondary pollution resulted from ammonia slip, it is essential to monitor emissions of ammonia for controlling the amount of NH3 injection. NH3 concentration is demanded not to exceed 5ppm, preferably 2-3ppm. In order to provide enough sensitivity, the sensor uses DLAS with wavelength modulation as AC detection of absorption line derivatives, at frequencies where the laser noise is reduced, coupled with coherent electronic detection techniques. Experiment results demonstrate that the sensor with the second-harmonic detection shows in-situ, continuous measurements with low detection limit (60 ppb), fast response (<1s) and long-term stability all of which is difficult to obtain with conventional techniques such as wet chemical analysis, non-dispersive infrared (NDIR). In addition, the influence of water vapor on ammonia measurements due to line broadening effects is investigated. A real-time spectrum analysis algorithm is developed. The systematic measurement error is corrected by means of the line width measurements based on fast pattern correlation analysis of second-harmonic line shape. This offers the advantage of accurate NH3 concentration measurement even though the moisture content is above 40%.

  6. Desorption Kinetics of Ar, Kr, Xe, N2, O2, CO, Methane, Ethane, and Propane from Graphene and Amorphous Solid Water Surfaces.

    PubMed

    Smith, R Scott; May, R Alan; Kay, Bruce D

    2016-03-01

    The desorption kinetics for Ar, Kr, Xe, N2, O2, CO, methane, ethane, and propane from graphene-covered Pt(111) and amorphous solid water (ASW) surfaces are investigated using temperature-programmed desorption (TPD). The TPD spectra for all of the adsorbates from graphene have well-resolved first, second, third, and multilayer desorption peaks. The alignment of the leading edges is consistent the zero-order desorption for all of the adsorbates. An Arrhenius analysis is used to obtain desorption energies and prefactors for desorption from graphene for all of the adsorbates. In contrast, the leading desorption edges for the adsorbates from ASW do not align (for coverages < 2 ML). The nonalignment of TPD leading edges suggests that there are multiple desorption binding sites on the ASW surface. Inversion analysis is used to obtain the coverage dependent desorption energies and prefactors for desorption from ASW for all of the adsorbates. PMID:26595145

  7. Fe/SSZ-13 as an NH3-SCR Catalyst: A Reaction Kinetics and FTIR/Mssbauer Spectroscopic Study

    SciTech Connect

    Gao, Feng; Kollar, Marton; Kukkadapu, Ravi K.; Washton, Nancy M.; Wang, Yilin; Szanyi, Janos; Peden, Charles H.F.

    2015-03-01

    Using a traditional aqueous solution ion-exchange method under a protecting atmosphere of N2, an Fe/SSZ-13 catalyst active in NH3-SCR was synthesized. Mssbauer and FTIR spectroscopies were used to probe the nature of the Fe sites. In the fresh sample, the majority of Fe species are extra-framework cations. The likely monomeric and dimeric ferric ions in hydrated form are [Fe(OH)2]+ and [HO-Fe-O-Fe-OH]2+, based on Mssbauer measurements. During the severe hydrothermal aging (HTA) applied in this study, a majority of cationic Fe species convert to FeAlOx and clustered FeOx species, accompanied by severe dealumination of the SSZ-13 framework. The clustered FeOx species do not give a sextet Mssbauer spectrum, indicating that these are highly disordered. However, some Fe species in cationic positions remain after aging as determined from Mssbauer measurements and CO/NO FTIR titrations. NO/NH3 oxidation reaction tests reveal that dehydrated cationic Fe are substantially more active in catalyzing oxidation reactions than the hydrated ones. For NH3-SCR, enhancement of NO oxidation under dry conditions promotes SCR rates below ~300 C. This is due mainly to contribution from the fast SCR channel. Above ~300 C, enhancement of NH3 oxidation under dry conditions, however, becomes detrimental to NOx conversions. The HTA sample loses much of the SCR activity below ~300 C; however, above ~400 C much of the activity remains. This may suggest that the FeAlOx and FeOx species become active at such elevated temperatures. Alternatively, the high-temperature activity may be maintained by the remaining extra-framework cationic species. For potential practical applications, Fe/SSZ-13 may be used as a co-catalyst for Cu/CHA as integral aftertreatment SCR catalysts on the basis of the stable high temperature activity after hydrothermal aging. The authors gratefully acknowledge the US Department of Energy (DOE), Energy Efficiency and Renewable Energy, Vehicle Technologies Office for the support of this work. The research described in this paper was performed at the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOEs Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the US DOE by Battelle.

  8. Highly Sensitive NH3 Detection Based on Organic Field Effect Transistors with Tris(pentafluorophenyl)Borane as Receptor

    PubMed Central

    Huang, Weiguo; Besar, Kalpana; LeCover, Rachel; Rule, Ana Mara; Breysse, Patrick N.; Katz, Howard E.

    2012-01-01

    We have increased organic field-effect transistor (OFET) NH3 response using tris-(pentafluorophenyl)borane (TPFB) as receptor. OFETs with this additive detect concentrations of 450 ppb v/v, with a limit of detection of 350 ppb, the highest sensitivity yet from semiconductor films; in comparison, when triphenylmethane (TPM) and triphenylborane (TFB) were used as an additive, no obvious improvement of sensitivity was observed. These OFETs also show considerable selectivity with respect to common organic vapors, and stability to storage. Furthermore, excellent memory of exposure was achieved by keeping the exposed devices in a sealed container stored at ?30C, the first such capability demonstrated with OFETs. PMID:22934620

  9. The C(3P) + NH3 Reaction in Interstellar Chemistry. II. Low Temperature Rate Constants and Modeling of NH, NH2, and NH3 Abundances in Dense Interstellar Clouds

    NASA Astrophysics Data System (ADS)

    Hickson, Kevin M.; Loison, Jean-Christophe; Bourgalais, Jrmy; Capron, Michael; Le Picard, Sbastien D.; Goulay, Fabien; Wakelam, Valentine

    2015-10-01

    A continuous supersonic flow reactor has been used to measure rate constants for the C(3P) + NH3 reaction over the temperature range 50-296 K. C(3P) atoms were created by the pulsed laser photolysis of CBr4. The kinetics of the title reaction were followed directly by vacuum ultra-violet laser induced fluorescence of C(3P) loss and through H(2S) formation. The experiments show unambiguously that the reaction is rapid at 296 K, becoming faster at lower temperatures, reaching a value of (1.8 0.2) 10-10 cm3 molecule-1 s-1 at 50 K. As this reaction is not currently included in astrochemical networks, its influence on interstellar nitrogen hydride abundances is tested through a dense cloud model including gas-grain interactions. In particular, the effect of the ortho-to-para ratio of H2, which plays a crucial role in interstellar NH3 synthesis, is examined.

  10. Electron irradiation and thermal driven chemistry on H2S-CH3OH-NH3-H2O and CH3OH-NH3-H2O ices: application to Jupiter Trojans

    NASA Astrophysics Data System (ADS)

    Mahjoub, A.; Poston, M.; Hand, K.; Brown, M.; Blacksberg, J.; Eiler, J.; Hodyss, R.; Carlson, R.; Ehlmann, B.; Choukroun, M.

    2015-10-01

    In this work we investigate chemical reactions driven by irradiation and thermal processing of outer solar system simulants and the resultant products. The main goal of this laboratory simulation work is testing migration hypotheses predicted by solar system formation models [1]. The ice samples are chosen to simulate the differences between chemistry in objects initially located inside and outside the stability line of H2S. CH3OH-NH3-H2O (3-ice) and H2S-CH3OH-NH3-H2O (4-ice) ice films was irradiated under ultrahigh vacuum conditions. Mid- IR analysis of the ice composition and mass spectrometry monitoring of the released volatiles during the heating of the irradiated mixtures show a rich chemistry for both mixtures. Our experimental work suggests that S-bearing molecules like OCS and SO2 could be formed under conditions expected for objects that initially contained near-surface frozen H2S and were then exposed to space weathering, particularly heating and irradiation while migrating to a position close to Jupiter's orbit.

  11. Mobile mapping and eddy covariance flux measurements of NH3 emissions from cattle feedlots with a portable laser-based open-path sensor

    NASA Astrophysics Data System (ADS)

    Tao, L.; Sun, K.; Pan, D.; Golston, L.; Stanton, L. G.; Ham, J. M.; Shonkwiler, K. B.; Nash, C.; Zondlo, M. A.

    2014-12-01

    Ammonia (NH3) is the dominant alkaline species in the atmosphere and an important compound in the global nitrogen cycle. There is a large uncertainty in NH3 emission inventory from agriculture, which is the largest source of NH3, including livestock farming and fertilizer applications. In recent years, a quantum cascade laser (QCL)-based open-path sensor has been developed to provide high-resolution, fast-response and high-sensitivity NH3 measurements. It has a detection limit of 150 pptv with a sample rate up to 20 Hz. This sensor has been integrated into a mobile platform mounted on the roof of a car to perform measurement of multiple trace gases. We have also used the sensor for eddy covariance (EC) flux measurements. The mobile sensing method provides high spatial resolution and fast mapping of measured gases. Meanwhile, the EC flux method offers accurate flux measurements and resolves the diurnal variability of NH3emissions. During the DISCOVER-AQ and FRAPP field campaigns in 2014, this mobile platform was used to study NH3 emissions from cattle feedlot near Fort Morgan, Colorado. This specific feedlot was mapped multiple times in different days to study the variability of its plume characteristics. At the same time, we set up another open-path NH3 sensor with LICOR open-path sensors to perform EC flux measurements of NH3, CH4 and CO2 simultaneously in the same cattle feedlot as shown in Fig. 1. NH3/CH4 emission flux ratio show a strong temperature dependence from EC flux measurements. The median value of measured NH3 and CH4 emission flux ratio is 0.60 ppmv/ppmv. In contrast, the median value of ?NH3/?CH4 ratios measured from mobile platform is 0.53 ppmv/ppmv for the same farm. The combination of mobile mapping and EC flux measurements with the same open-path sensors greatly improves understanding of NH3 emissions both spatially and temporally.

  12. ZnO nanoplates surfaced-decorated by WO3 nanorods for NH3 gas sensing application

    NASA Astrophysics Data System (ADS)

    Dien Nguyen, Dac; Do, Duc Tho; Hien Vu, Xuan; Vuong Dang, Duc; Chien Nguyen, Duc

    2016-03-01

    Zinc oxide (ZnO) nanoplates and tungsten trioxide (WO3) nanorods were synthesized by hydrothermal treatment from zinc nitrate/potassium hydroxide and sodium tungstate/hydrochloric acid, respectively. The structure, morphology and compositions of the as-prepared WO3/ZnO nano-composites were characterized by x-ray diffraction, field emission scanning electron microscopy and energy dispersive spectroscopy. The obtained ZnO nanoplates have regular shape, single-crystal wurtzite structure with the thickness of 40 nm and 200 versus 400 nm in lateral dimensions. The WO3 nanorods possess the average diameter of 20 nm and the length of approximately 120 nm which were distributed on the surfaces of ZnO nanoplates. The WO3/ZnO nano-composites were prepared by grinding WO3 nanorods powder with ZnO nanoplates powder in various weight ratios (1:2, 1:1 and 2:1). The NH3 gas sensing properties of WO3/ZnO nano-composites were examined through the electrical resistance measurement. The gas sensing performance of the WO3/ZnO composite with weight ratio of 1:1 was better compared with that of other samples. For this sample, the maximum response to 300 ppm NH3 was 24 at the operating temperature of 250 °C. In addition, the gas sensing mechanism of the WO3/ZnO composites was discussed.

  13. Electrical behaviour of Ti-doped Ta2O5 on N2O- and NH3-nitrided Si

    NASA Astrophysics Data System (ADS)

    Spassov, D.; Atanassova, E.; Paskaleva, A.; Novkovski, N.; Skeparovski, A.

    2009-07-01

    The influence of process parameters: doping approach, Si surface nitridation ambient (NH3 and N2O), type of the gate (Al and W) and its technology of deposition on the electrical characteristics (capacitance-voltage, temperature-dependent current-voltage curves), and the mechanism of conductivity of Ti-doped stacks (6 nm) have been investigated. Among the three factors studied, the surface engineering appears to be with the greatest impact on the film permittivity and stack charges. It is shown that the Ti incorporation through the surface of Ta2O5 deposited on NH3-rapid thermally nitrided Si is effective in achieving films with high permittivity. The interface metal/doped high-k layer is a critical factor in leakage current behaviour. The evaporated Al is a good candidate as a top electrode of Ti-doped stacks giving satisfactory level of leakage current while radiation defects introduced in the stack during W sputtering cause current deterioration, making sputtered W less favourable as a metal electrode of Ta2O5-based capacitors. The conduction mechanism in Ti-doped Ta2O5 stacks is controlled by the gate electrode processing rather than by both the substrate nitridation and the doping approach. The energy levels of the traps responsible for the current transport are estimated.

  14. Triggering N2 Uptake via Redox Induced Expulsion of Coordinated NH3 and N2 Silylation at Trigonal Bipyramidal Iron

    PubMed Central

    Lee, Yunho; Mankad, Neal P.

    2010-01-01

    The biological reduction of nitrogen to ammonia may occur via one of two predominant pathways in which nitrogenous NxHy intermediates including hydrazine (N2H4), diazene (N2H2), nitride (N3-) and imide (NH2-) may be involved. To test the validity of hypotheses concerning irons direct role in the stepwise reduction of N2, iron model systems are needed. Such systems can test the chemical compatibility of iron with various proposed NxHy intermediates, and the reactivity patterns of such species. Here we describe a TBP (SiPR3)Fe-L scaffold (SiPR3 represents [Si(o-C6H4PR2)3]?; R = Ph and iPr) where the apical site is occupied by nitrogenous ligands such as N2, N2H4, NH3 and N2R. The system accommodates terminally bound N2 in the three formal oxidation states (iron(0), +1, and +2). N2 uptake is demonstrated via displacement of its reduction partners NH3 and N2H4, and N2 functionalizaton is illustrated via electrophilic silylation. PMID:20571574

  15. Depletion region effect of highly efficient hole conductor free CH3NH3PbI3 perovskite solar cells.

    PubMed

    Aharon, Sigalit; Gamliel, Shany; El Cohen, Bat; Etgar, Lioz

    2014-06-14

    The inorganic-organic perovskite is currently attracting a lot of attention due to its use as a light harvester in solar cells. The large absorption coefficients, high carrier mobility and good stability of organo-lead halide perovskites present good potential for their use as light harvesters in mesoscopic heterojunction solar cells. This work concentrated on a unique property of the lead halide perovskite, its function simultaneously as a light harvester and a hole conductor in the solar cell. A two-step deposition technique was used to optimize the perovskite deposition and to enhance the solar cell efficiency. It was revealed that the photovoltaic performance of the hole conductor free perovskite solar cell is strongly dependent on the depletion layer width which was created at the TiO2-CH3NH3PbI3 junction. X-ray diffraction measurements indicate that there were no changes in the crystallographic structure of the CH3NH3PbI3 perovskite over time, which supports the high stability of these hole conductor free perovskite solar cells. Furthermore, the power conversion efficiency of the best cells reached 10.85% with a fill factor of 68%, a Voc of 0.84 V, and a Jsc of 19 mA cm(-2), the highest efficiency to date of a hole conductor free perovskite solar cell. PMID:24736900

  16. [Catalytic performance of a novel ceramic-supported vanadium oxide catalyst for NO reduction with NH3].

    PubMed

    Tian, Liu-qing; Ye, Dai-qi

    2004-01-01

    A novel TiO2/Al2O3/ceramic cordierite honeycomb (CC)-supported V2O5-MoO3-WO3 monolithic catalyst was studied for the selective reduction of NO with NH3. The effects of reaction temperature, space velocity, NH3/NO ratio and oxygen content on selective catalytic reduction (SCR) activity were evaluated. Two other V2O5-MoO3-WO3 monolithic catalysts supported on Al2O3/CC or TiO2/CC support, two types of pellet catalysts supported on TiO2/Al2O3 or Al2O3, as well as three types of pellet catalysts V2O5-MoO3-WO3-Al2O3 and V2O5-MoO3-WO3-TiO2 were tested for comparison. The experiment results showed that this catalyst had a higher catalytic activity for SCR with comparison to others. The results of characterization showed, the preparation method of this catalyst can give rise to a higher Brunauer, Emmett, Teller (BET) surface area and pore volume, which was strongly related with the highly active performance of this catalyst. At the same time, the function of the combined carrier of TiO2/Al2O3 cannot be excluded. PMID:15330412

  17. Growth of freshly nucleated particles in the troposphere: Roles of NH3, H2SO4, HNO3, and HCl

    NASA Astrophysics Data System (ADS)

    Kerminen, Veli-Matti; Wexler, Anthony S.; Potukuchi, Sudhakar

    1997-02-01

    Growth of airborn, nanometer-size nuclei was examined in a H2SO4-HNO3-HCl-NH3-H2O system using a single-particle condensation model. Under conditions typical of the lower troposphere, growth is driven initially by the flux of sulfuric acid, followed by thermodynamic equilibration by the more abundant water and ammonia vapors. Pure sulfuric acid-water-ammonia condensation was shown to be rather slow and unable to produce cloud condensation nuclei (CCN) in the atmosphere. Under favorable conditions and after reaching a certain size, nuclei may start to absorb large quantities of nitric or hydrochloric acid together with ammonia, which produces CCN-size particles over a timescale of a few minutes. The resulting CCN are susceptible to evaporation as the ambient conditions change but may become stable via cloud processing. The fast, HNO3-HCl-NH3-driven condensation was estimated to occur frequently in continental aerosol systems. Marine CCN production cannot be explained by this process; it requires either the participation of other condensable vapors, such as organics, or a different growth mechanism.

  18. Low-temperature SCR of NO with NH3 over activated semi-coke composite-supported rare earth oxides

    NASA Astrophysics Data System (ADS)

    Wang, Jinping; Yan, Zheng; Liu, Lili; Zhang, Yingyi; Zhang, Zuotai; Wang, Xidong

    2014-08-01

    The catalysts with different rare earth oxides (La, Ce, Pr and Nd) loaded onto activated semi-coke (ASC) via hydrothermal method are prepared for the selective catalytic reduction (SCR) of NO with NH3 at low temperature (150-300 C). It is evidenced that CeO2 loaded catalysts present the best performance, and the optimum loading amount of CeO2 is about 10 wt%. Composite catalysts by doping La, Pr and Nd into CeO2 are prepared to obtain further improved catalytic properties. The SCR mechanism is investigated through various characterizations, including XRD, Raman, XPS and FT-IR, the results of which indicate that the oxygen defect plays an important role in SCR process and the doped rare earth elements effectively serve as promoters to increase the concentration of oxygen vacancies. It is also found that the oxygen vacancies in high concentration are favored for the adsorption of O2 and further oxidation of NO, which facilitates a rapid progressing of the following reduction reactions. The SCR process of NO with NH3 at low temperature over the catalysts of ASC composite-supported rare earth oxides mainly follows the Langmuir-Hinshlwood mechanism.

  19. Dynamic Growth of Pinhole-Free Conformal CH3NH3PbI3 Film for Perovskite Solar Cells.

    PubMed

    Li, Bo; Tian, Jianjun; Guo, Lixue; Fei, Chengbin; Shen, Ting; Qu, Xuanhui; Cao, Guozhong

    2016-02-24

    Two-step dipping is one of the popular low temperature solution methods to prepare organic-inorganic halide perovskite (CH3NH3PbI3) films for solar cells. However, pinholes in perovskite films fabricated by the static growth method (SGM) result in low power conversion efficiency (PCE) in the resulting solar cells. In this work, the static dipping process is changed into a dynamic dipping process by controlled stirring PbI2 substrates in CH3NH3I isopropanol solution. The dynamic growth method (DGM) produces more nuclei and decreases the pinholes during the nucleation and growth of perovskite crystals. The compact perovskite films with free pinholes are obtained by DGM, which present that the big perovskite particles with a size of 350 nm are surrounded by small perovskite particles with a size of 50 nm. The surface coverage of the perovskite film is up to nearly 100%. Such high quality perovskite film not only eliminated pinholes, resulting in reduced charge recombination of the solar cells, but also improves the light harvesting efficiency. As a result, the PCE of the perovskite solar cells is increased from 11% for SGM to 13% for DGM. PMID:26820581

  20. Lattice thermal conductivity of organic-inorganic hybrid perovskite CH3NH3PbI3

    NASA Astrophysics Data System (ADS)

    Qian, Xin; Gu, Xiaokun; Yang, Ronggui

    2016-02-01

    Great success has been achieved in improving the photovoltaic energy conversion efficiency of the organic-inorganic hybrid perovskite-based solar cells, but with very limited knowledge on the thermal transport in hybrid perovskites, which could affect the device lifetime and stability. Based on the potential field derived from the density functional theory calculations, we studied the lattice thermal conductivity of the hybrid halide perovskite CH3NH3PbI3 using equilibrium molecular dynamics simulations. Temperature-dependent thermal conductivity is reported from 160 K to 400 K, which covers the tetragonal phase (160-330 K) and the pseudocubic phase (>330 K). A very low thermal conductivity (0.59 W/m K) is found in the tetragonal phase at room temperature, whereas a much higher thermal conductivity is found in the pseudocubic phase (1.80 W/m K at 330 K). The low group velocity of acoustic phonons and the strong anharmonicity are found responsible for the relatively low thermal conductivity of the tetragonal CH3NH3PbI3.

  1. Anharmonic calculation of the structure, vibrational frequencies and intensities of the NH3trans-HONO complex.

    PubMed

    Bulychev, Valentin P; Buturlimova, Marina V; Tokhadze, Konstantin G

    2013-09-19

    The equilibrium geometry of the NH3trans-HONO complex and the harmonic vibrational frequencies and intensities are calculated in the MP2/aug-cc-pVTZ approximation with the basis set superposition error taken into account. Effects of anharmonic interactions on spectroscopic parameters are studied by solving vibrational Schrdinger equations in 1-4 dimensions using the variational method. Anharmonic vibrational equations are formulated in the space of normal coordinates of the complex. Detailed analysis is performed for the H-bond stretching vibration and internal vibrations of the trans-HONO isomer in the complex. The intermode anharmonicity and anharmonic coupling between two, three, and four vibrational modes are studied on the basis of correct ab initio potential energy surfaces calculated in the above approximation. The combinations of normal modes of the complex most strongly coupled to one another are examined. The calculated frequencies and intensities of vibrational bands are compared with the experimental data on the NH3trans-HONO complex in an argon matrix and results of earlier calculations of monomeric HONO. In this calculation the strong resonance between the first excited state of the OH stretching vibration and the doubly excited state of the NOH bending vibration of trans-HONO isomer in the complex is thoroughly studied by solving vibrational equations in two and four dimensions. PMID:23944642

  2. The C(3P) + NH3 Reaction in Interstellar Chemistry. I. Investigation of the Product Formation Channels

    NASA Astrophysics Data System (ADS)

    Bourgalais, Jrmy; Capron, Michael; Abhinavam Kailasanathan, Ranjith Kumar; Osborn, David L.; Hickson, Kevin M.; Loison, Jean-Christophe; Wakelam, Valentine; Goulay, Fabien; Le Picard, Sbastien D.

    2015-10-01

    The product formation channels of ground state carbon atoms, C(3P), reacting with ammonia, NH3, have been investigated using two complementary experiments and electronic structure calculations. Reaction products are detected in a gas flow tube experiment (330 K, 4 Torr) using tunable vacuum-ultraviolet (VUV) photoionization coupled with time of flight mass spectrometry. Temporal profiles of the species formed and photoionization spectra are used to identify primary products of the C + NH3 reaction. In addition, H-atom formation is monitored by VUV laser induced fluorescence (LIF) from room temperature to 50 K in a supersonic gas flow generated by the Laval nozzle technique. Electronic structure calculations are performed to derive intermediates, transition states, and complexes formed along the reaction coordinate. The combination of photoionization and LIF experiments supported by theoretical calculations indicate that in the temperature and pressure range investigated, the H + H2CN production channel represents 100% of the product yield for this reaction. Kinetics measurements of the title reaction down to 50 K and the effect of the new rate constants on interstellar nitrogen hydride abundances using a model of dense interstellar clouds are reported in Paper II.

  3. TiO2 particles on a 3D network of single-walled nanotubes for NH3 gas sensors.

    PubMed

    Jo, Yong Deok; Lee, Sooken; Seo, Jeongeun; Lee, Soobum; Ann, Doyeon; Lee, Haiwon

    2014-12-01

    Ammonia (NH3) gas is one of the gases which causes damage to environment such as acidification and climate change. In this study, a gas sensor based on the three-dimensional (3D) network of single-walled nanotubes (SWNTs) was fabricated for the detection of NH3 gas in dry air. The sensor showed enhanced performance due to the fast gas diffusion rate and weak interactions between the carbon nanotubes and the substrate. Metal oxide particles were introduced to enhance the performance of the gas sensor. Atomic layer deposition (ALD) was employed to deposit the metal oxide in the complex structure, and good control over thickness was achieved. The hybrid gas sensor consisting of the 3D network of SWNTs with anatase TiO2 particles showed stable, repeatable, and enhanced gas sensor performance. The phase of TiO2 particles was characterized by Raman and the morphology of the TiO2 particles on the 3D network of SWNTs was analyzed by transmission electron microscope. PMID:25971027

  4. [Emission of CH4, N2O and NH3 from vegetable field applied with animal manure composts].

    PubMed

    Wan, He-Feng; Zhao, Chen-Yang; Zhong, Jia; Ge, Zhen; Wei, Yuan-Song; Zheng, Jia-Xi; Wu, Yu-Long; Han, Sheng-Hui; Zheng, Bo-Fu; Li, Hong-Mei

    2014-03-01

    Greenhouse gas (GHG) emission from vegetable land is of great concern recently because agriculture land is one of the major sources contributing to global GHG emission. In this study, an experiment of Lactuca sativa L. land applied with different animal manure composts was carried out in a greenhouse vegetable land located in the surburb of Beijing to monitor the emission of GHG (CH4 and N2O) and ammonia in situ, and to analyze the affecting factors of GHG and ammonia emission. Results showed that the emission factors (EFs) of CH4 from Treatment NRM, RM and CF were 0.2%, 0.027% and 0.004%, respectively,the EFs of N2O from these three treatments were 0.18%, 0.63% and 0.74%, respectively, and the EFs of ammonia were 2.00%, 3.98% and 2.53%, respectively. CH4 emission flux was significantly affected by soil temperature and humidity, while N2O emission flux was related to soil temperature, surface temperature and humidity. The emission fluxes of CH4, N2O and NH3 were significantly affected by soil moisture, but there was little relation between CH4, N2O and NH3 emissions and the ambient temperature in the greenhouse. PMID:24881375

  5. Shape-controlled CH3NH3PbI3 nanoparticles for planar heterojunction perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Shahiduzzaman, Md.; Yamamoto, Kohei; Furumoto, Yoshikazu; Kuwabara, Takayuki; Takahashi, Kohshin; Taima, Tetsuya

    2016-02-01

    Hybrid organic/inorganic perovskites such as methylammonium lead iodide (CH3NH3PbI3) are potential candidates for thin-film photovoltaics because of their excellent cost- and energy-efficient light absorption. In this work, we have prepared CH3NH3PbI3 nanoparticles (NPs) on the TiOx/ITO glass substrates by a simple spin-coating method to control the size and shape of NPs. The effect of varying the weight percentage (wt %) of ionic liquid (IL) has also been investigated. Analysis of the films revealed spherical NP morphology in the presence of 1, 3, and 7 wt % IL with respective diameters of 540, 350, and 600 nm. Conversely, 10 wt % IL resulted in irregular aggregation of NP blocks. The power conversion efficiency (PCE) changed upon varying the NP size, shape, and morphology. The optimization of the concentration with 3 wt % IL yielded NPs with the most uniform shape, size, and morphology and, consequently, the maximum PCE.

  6. NH3 assisted photoreduction and N-doping of graphene oxide for high performance electrode materials in supercapacitors

    NASA Astrophysics Data System (ADS)

    Huang, Haifu; Luo, Guangsheng; Xu, Lianqiang; Lei, Chenglong; Tang, Yanmei; Tang, Shaolong; Du, Youwei

    2015-01-01

    Nitrogen-doped graphene was synthesized by simple photoreduction of graphene oxide (GO) deposited on nickel foam under NH3 atmosphere. The combination of photoreduction and NH3 not only reduces the GO in a shorter time but also induces nitrogen doping easily. The nitrogen doped content of N-rGO@NF reaches a high of 5.99 at% with 15 min of irradiation. The nitrogen-doped graphene deposited on Ni foam (N-rGO@NF) can be directly used as an electrode for supercapacitors, without any conductive agents and polymer binders. In the electrochemical measurement, N-rGO@NF displays remarkable electrochemical performance. In particular, the N-rGO@NF irradiated for 45 min at a high current density of 92.3 A g-1 retained about 77% (190.4 F g-1) of its initial specific capacitance (247.1 F g-1 at 0.31 A g-1). Furthermore, the stable voltage window could be extended to 2.0 and 1.5 V by using Li2SO4 and a mixed Li2SO4/KOH electrolyte, and the maximum energy density was high up to 32.6 and 21.2 Wh kg-1, respectively. The results show that compared to Li2SO4, a mixed electrolyte (Li2SO4/KOH) more efficiently balances the relationship between the high energy densities and high power densities.Nitrogen-doped graphene was synthesized by simple photoreduction of graphene oxide (GO) deposited on nickel foam under NH3 atmosphere. The combination of photoreduction and NH3 not only reduces the GO in a shorter time but also induces nitrogen doping easily. The nitrogen doped content of N-rGO@NF reaches a high of 5.99 at% with 15 min of irradiation. The nitrogen-doped graphene deposited on Ni foam (N-rGO@NF) can be directly used as an electrode for supercapacitors, without any conductive agents and polymer binders. In the electrochemical measurement, N-rGO@NF displays remarkable electrochemical performance. In particular, the N-rGO@NF irradiated for 45 min at a high current density of 92.3 A g-1 retained about 77% (190.4 F g-1) of its initial specific capacitance (247.1 F g-1 at 0.31 A g-1). Furthermore, the stable voltage window could be extended to 2.0 and 1.5 V by using Li2SO4 and a mixed Li2SO4/KOH electrolyte, and the maximum energy density was high up to 32.6 and 21.2 Wh kg-1, respectively. The results show that compared to Li2SO4, a mixed electrolyte (Li2SO4/KOH) more efficiently balances the relationship between the high energy densities and high power densities. Electronic supplementary information (ESI) available: Digital images of nickel foam, GO deposited in nickel foam, N-rGO@NF, and N-rGO@NF electrodes (1.0 × 1.0 cm); Digital images: (1) N-rGO@NF sheet was put into 1 M FeCl3 at room temperature dissolve the Ni metal and (2) a whole N-rGO sheet without Ni foam support after nickel etching; image of film with fragile features after being irradiated by a high-pressure Hg lamp (500 W) in Ar and NH3 atmosphere. See DOI: 10.1039/c4nr05776g

  7. NH3 adsorption on PtM (Fe, Co, Ni) surfaces: Cooperating effects of charge transfer, magnetic ordering and lattice strain

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Satadeep; Yoo, S. J.; Waghmare, Umesh V.; Lee, S. C.

    2016-03-01

    Adsorption of a molecule or group with an atom which is less electronegative than oxygen (O) and directly interacting with the surface is very relevant to development of PtM (M = 3d-transition metal) catalysts with high activity. Here, we present theoretical analysis of the adsorption of NH3 molecule (N being less electronegative than O) on (111) surfaces of PtM (Fe, Co, Ni) alloys using the first principles density functional approach. We find that, while NH3-Pt interaction is stronger than that of NH3 with the elemental M-surfaces, it is weaker than the strength of interaction of NH3 with M-site on the surface of PtM alloy.

  8. Comparison of ?-hole tetrel bonding with ?-hole halogen bonds in complexes of XCN (X = F, Cl, Br, I) and NH3.

    PubMed

    Nziko, Vincent de Paul N; Scheiner, Steve

    2016-02-01

    In addition to the standard halogen bond formed when NH3 approaches XCN (X = F, Cl, Br, I) along its molecular axis, a perpendicular approach is also possible, toward a ?-hole that is present above the X-C bond. MP2/aug-cc-pVDZ calculations indicate the latter geometry is favored for X = F, and the ?-hole structure is preferred for the heavier halogens. The ?-hole structure is stabilized by charge transfer from the NH3 lone pair into the ?*(CN) antibonding orbital, and is characterized by a bond path from the N of NH3 to the C atom of XCN, a form of tetrel bond. The most stable 2?:?1 NH3/XCN heterotrimer for X = F and Cl is cyclic and contains a tetrel bond augmented by a pair of NHN H-bonds. For X = Br and I, the favored trimer is noncyclic, stabilized by a tetrel and a halogen bond. PMID:26750543

  9. Development and uncertainty analysis of a high-resolution NH3 emissions inventory and its implications with precipitation over the Pearl River Delta region, China

    NASA Astrophysics Data System (ADS)

    Zheng, J. Y.; Yin, S. S.; Kang, D. W.; Che, W. W.; Zhong, L. J.

    2012-08-01

    Detailed NH3 emission inventories are important to understand various atmospheric processes, air quality modeling studies, air pollution management, and related environmental and ecological issues. A high-resolution NH3 emission inventory was developed based on state-of-the-science techniques, up-to-date information, and advanced expert knowledge for the Pearl River Delta region, China. To provide model-ready emissions input, this NH3 emissions inventory was spatially allocated to 3 km 3 km grid cells using source-based spatial surrogates with geographical information system (GIS) technology. For NH3 emissions, 9 source categories and 45 subcategories were identified in this region, and detailed spatial and temporal characteristics were investigated. Results show that livestock is by far the most important NH3 emission source by contributing about 61.7% of the total NH3 emissions in this region, followed by nitrogen fertilizer applications (~23.7%) and non-agricultural sources (~14.6%). Uncertainty analysis reveals that the uncertainties associated with different sources vary from source to source and the magnitude of the uncertainty associated with a specific source mainly depends on the degree of accuracy of the emission factors and activity data as well as the technique used to perform the estimate. Further studies should give priority to the hog, broiler, goose subsectors of the livestock source and N fertilizer application source in order to reduce uncertainties of ammonia emission estimates in this region. The validity of the NH3 emissions inventory is justified by the trend analysis of local precipitation compositions, such as pH values, the Ca2++NH4+/SO42-+ NO3- ratios, and NH4+ concentrations which are directly or indirectly related to NH3 emissions.

  10. The dramatic effect of NH3 co-ligation on the Fe+-assisted activation of carbon dioxide in the gas phase: from bare metal ions to complexes.

    PubMed

    Karipidis, Paraskevas A; Tsipis, Constantinos A

    2008-11-15

    The catalytic efficiency of Fe(+) ion over the CO(2) decomposition in the gas phase has been extensively investigated with the help of electronic structure calculation methods. Potential-energy profiles for the activation process Fe(+) + CO(2) --> CO + FeO(+) along two rival potential reaction paths, namely the insertion and addition pathways, originating from the end-on kappa(1)-O and kappa(2)-O,O coordination modes of CO(2) with the metal ion, respectively, have been explored by DFT calculations. For each pathway the potential energy surfaces of the high-spin sextet (S = 5/2) and the intermediate-spin quartet (S = 3/2) spin-states have been explored. The complete energy reaction profile calculated by a combination of ab initio and density functional theory (DFT) computational techniques reveals a two-state reactivity, involving two spin inversions, for the decomposition process and accounts well for the experimentally observed inertness of bare Fe(+) ions towards CO(2) activation. Furthermore, the coordination of up to three extra ancillary NH(3) ligands with the Fe(+) metal ion has been explored and the geometric and energetic reaction profiles of the CO(2) activation processes Fe(+) + n x NH(3) + CO(2) --> [Fe(NH(3))(n)(CO(2))](+) --> [Fe(NH(3))(n)(O)(CO)](+) --> CO + [Fe(O)(NH(3))(n)](+) (n = 1, 2 or 3) have thoroughly been scrutinized for both the insertion and the addition mechanisms. Inter alia, the geometries and energies of the various states of the [Fe(NH(3))(n)(CO(2))](+) and [Fe(NH(3))(n)(O)(CO)](+) complexes are explored and compared. Finally, a detailed analysis of the coordination modes of CO(2) in the cationic [Fe(NH(3))(n)(CO(2))](+) (n = 0, 1, 2 and 3) complexes is presented. PMID:18452127

  11. Resistive Switching Behavior in Organic-Inorganic Hybrid CH3 NH3 PbI3-x Clx Perovskite for Resistive Random Access Memory Devices.

    PubMed

    Yoo, Eun Ji; Lyu, Miaoqiang; Yun, Jung-Ho; Kang, Chi Jung; Choi, Young Jin; Wang, Lianzhou

    2015-10-01

    The CH3 NH3 PbI3- x Clx organic-inorganic hybrid perovskite material demonstrates remarkable resistive switching behavior, which can be applicable in resistive random access memory devices. The simply designed Au/CH3 NH3 PbI3- x Clx /FTO structure is fabricated by a low-temperature, solution-processable method, which exhibits remarkable bipolar resistive switching and nonvolatile properties. PMID:26331363

  12. H-bonding of an NH3 gas molecule to H2O/Pt(111) - A barrier-free path.

    PubMed

    Henkelman, Graeme; Feibelman, Peter J

    2016-02-01

    Does an OH-flipping barrier hinder H-bond formation between a gas phase molecule and a water monolayer whose free OH ligands point toward a substrate? According to density functional theory calculations for water on Pt(111) the answer is yes, when the molecule is CO or N2, but no when it is NH3. The difference is the relatively strong attraction of the NH3 lone pair to free OH ligands. PMID:26851928

  13. H-bonding of a NH3 gas molecule to H2O/Pt(111) A barrier-free path

    NASA Astrophysics Data System (ADS)

    Henkelman, Graeme; Feibelman, Peter J.

    2016-02-01

    Does an OH-flipping barrier hinder H-bond formation between a gas phase molecule and a water monolayer whose free OH ligands point toward a substrate? According to density functional theory calculations for water on Pt(111) the answer is yes, when the molecule is CO or N2, but no when it is NH3. The difference is the relatively strong attraction of the NH3 lone pair to free OH ligands.

  14. Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells.

    PubMed

    Im, Jeong-Hyeok; Jang, In-Hyuk; Pellet, Norman; Grtzel, Michael; Park, Nam-Gyu

    2014-11-01

    Perovskite solar cells with submicrometre-thick CH(3)NH(3)PbI(3) or CH(3)NH(3)PbI(3-x)Cl(x) active layers show a power conversion efficiency as high as 15%. However, compared to the best-performing device, the average efficiency was as low as 12%, with a large standard deviation (s.d.). Here, we report perovskite solar cells with an average efficiency exceeding 16% and best efficiency of 17%. This was enabled by the growth of CH(3)NH(3)PbI(3) cuboids with a controlled size via a two-step spin-coating procedure. Spin-coating of a solution of CH(3)NH(3)I with different concentrations follows the spin-coating of PbI(2), and the cuboid size of CH(3)NH(3)PbI(3) is found to strongly depend on the concentration of CH(3)NH(3)I. Light-harvesting efficiency and charge-carrier extraction are significantly affected by the cuboid size. Under simulated one-sun illumination, average efficiencies of 16.4% (s.d. 0.35), 16.3% (s.d. 0.44) and 13.5% (s.d. 0.34) are obtained from solutions of CH(3)NH(3)I with concentrations of 0.038 M, 0.050 M and 0.063 M, respectively. By controlling the size of the cuboids of CH(3)NH(3)PbI(3) during their growth, we achieved the best efficiency of 17.01% with a photocurrent density of 21.64 mA cm(-2), open-circuit photovoltage of 1.056 V and fill factor of 0.741. PMID:25173829

  15. Kinetic compensation effect in thermal desorption

    NASA Astrophysics Data System (ADS)

    Zuniga-Hansen, Nayeli; Silbert, Leonardo E.; Calbi, Mercedes

    The parameters which characterize the rates of many thermally activated processes are often extracted using the Arrhenius equation. A series of closely related thermally activated processes exhibit systematic variations in the energies of activation, Ea, and preexponential factor, ?, in response to a perturbation, which leads to the concept of `kinetic compensation', such that the different parameters in the Arrhenius equation balance each other out thereby leading to an implicitly assumed constant rate. However, the compensation effect has not been generally demonstrated and its origins are not completely understood. Using kinetic Monte Carlo simulations on a model interface, we explore how site-adsorbate and adsorbate-adsorbate interactions, and surface structural changes influence surface coverage and the kinetic parameters during a typical temperature programmed desorption process. We find that the concept of the compensation effect for interacting species breaks down and the time characterizing desorption increases with increasing interaction strength due to an increase in the effective activation energy. At the `molecular' level the changes are the result of enhanced site correlations with increasing adsorbate interaction strength suppressing the onset of desorption.

  16. In situ IR studies of Co and Ce doped Mn/TiO2 catalyst for low-temperature selective catalytic reduction of NO with NH3

    NASA Astrophysics Data System (ADS)

    Qiu, Lu; Pang, Dandan; Zhang, Changliang; Meng, Jiaojiao; Zhu, Rongshu; Ouyang, Feng

    2015-12-01

    The Mn-Co-Ce/TiO2 catalyst was prepared by wet co-impregnation method for selective catalytic reduction of NO by NH3 in the presence of oxygen. The adsorption and co-adsorption of NH3, NO and O2 on catalysts were investigated by in situ FTIR spectroscopy. The results suggested that addition of cobalt and cerium oxides increased the numbers of acid and redox sites. Especially, the cobalt oxide produced lots of Brønsted acid sites, which favor to the adsorption of coordinated NH3 through NH3 migration. Ce addition improved amide ions formation to reach best NO reduction selectivity. A mechanistic pathway over Mn-Co-Ce/TiO2 was proposed. At low-temperature SCR reaction, coordinated NH3 reacted with NO2-, and amide reacted with NO (ad) or NO (g) to form N2. NO2 was related to the formation of nitrite on Co-contained catalysts and the generation of sbnd NH2- on Ce-contained catalysts. At high temperature, the other branch reaction also occurred between the coordinated NH3 and nitrate species, resulting in N2O yield increase.

  17. The influence of leaf-atmosphere NH3(g ) exchange on the isotopic composition of nitrogen in plants and the atmosphere.

    PubMed

    Johnson, Jennifer E; Berry, Joseph A

    2013-10-01

    The distribution of nitrogen isotopes in the biosphere has the potential to offer insights into the past, present and future of the nitrogen cycle, but it is challenging to unravel the processes controlling patterns of mixing and fractionation. We present a mathematical model describing a previously overlooked process: nitrogen isotope fractionation during leaf-atmosphere NH3(g ) exchange. The model predicts that when leaf-atmosphere exchange of NH3(g ) occurs in a closed system, the atmospheric reservoir of NH3(g ) equilibrates at a concentration equal to the ammonia compensation point and an isotopic composition 8.1 lighter than nitrogen in protein. In an open system, when atmospheric concentrations of NH3(g ) fall below or rise above the compensation point, protein can be isotopically enriched by net efflux of NH3(g ) or depleted by net uptake. Comparison of model output with existing measurements in the literature suggests that this process contributes to variation in the isotopic composition of nitrogen in plants as well as NH3(g ) in the atmosphere, and should be considered in future analyses of nitrogen isotope circulation. The matrix-based modelling approach that is introduced may be useful for quantifying isotope dynamics in other complex systems that can be described by first-order kinetics. PMID:23452149

  18. Study on the mechanism of NH3-selective catalytic reduction over CuCe x Zr1-x /TiO2

    NASA Astrophysics Data System (ADS)

    Chen, Xujuan; Sun, Xiaoliang; Gong, Cairong; Lv, Gang; Song, Chonglin

    2016-03-01

    Copper-cerium-zirconium catalysts loaded on TiO2 prepared by a wet impregnation method were investigated for NH3-selective catalytic reduction (SCR) of NO x . The reaction mechanism was proposed on the basis of results from in situ diffuse reflectance infrared transform spectroscopy (DRIFT). When NH3 is introduced, ammonia bonded to Lewis acid sites is more stable over CuCe0.25Zr0.75/TiO2 at high temperature, while Brønsted acid sites are more important than Lewis acid sites at low temperature. For the NH3+NO+O2 co-adsorption, NH3 species occupy most of activity sites on CuCe0.25Zr0.75/TiO2 catalyst, and mainly exist in the forms of NH{4/+} (at low temperature) and NH3 coordinated (at high temperature), playing a crucial role in the NH3-SCR process. Two different reaction routes, the L-H mechanism at low temperature ( < 200°C) and the E-R mechanism at high temperature ( > 200°C), are presented for the SCR reaction over CuCe0.25Zr0.75/TiO2 catalyst.

  19. B40 fullerene as a highly sensitive molecular device for NH3 detection at low bias: a first-principles study

    NASA Astrophysics Data System (ADS)

    Lin, Bin; Dong, Huilong; Du, Chunmiao; Hou, Tingjun; Lin, Haiping; Li, Youyong

    2016-02-01

    The adsorption of small molecules (NH3, N2, H2 and CH4) on all-boron fullerene B40 is investigated by density functional theory (DFT) and the non-equilibrium Green’s function (NEGF) for its potential application in the field of single-molecular gas sensors. The high adsorption energies (‑1.09 to ‑0.75 eV) of NH3 on different adsorption sites of the B40 surface indicate that NH3 strongly chemisorbs to B40. The charge transfer induced by the NH3 adsorption results in a modification of the density of states (DOS) of B40 near the Fermi level, and therefore changes its electronic transport properties. For all possible adsorption sites, the adsorption of NH3 exclusively leads to a decrease of the conductance of B40. Taking into consideration that the non-polar gas molecules (e.g. N2, H2 and CH4) are only physisorbed and show negligible effect on the conductance properties of B40, we would expect that B40 can be used as a single-molecular gas sensor to distinguish NH3 from non-polar gas molecules at low bias.

  20. B40 fullerene as a highly sensitive molecular device for NH3 detection at low bias: a first-principles study.

    PubMed

    Lin, Bin; Dong, Huilong; Du, Chunmiao; Hou, Tingjun; Lin, Haiping; Li, Youyong

    2016-02-19

    The adsorption of small molecules (NH3, N2, H2 and CH4) on all-boron fullerene B40 is investigated by density functional theory (DFT) and the non-equilibrium Green's function (NEGF) for its potential application in the field of single-molecular gas sensors. The high adsorption energies (-1.09 to -0.75 eV) of NH3 on different adsorption sites of the B40 surface indicate that NH3 strongly chemisorbs to B40. The charge transfer induced by the NH3 adsorption results in a modification of the density of states (DOS) of B40 near the Fermi level, and therefore changes its electronic transport properties. For all possible adsorption sites, the adsorption of NH3 exclusively leads to a decrease of the conductance of B40. Taking into consideration that the non-polar gas molecules (e.g. N2, H2 and CH4) are only physisorbed and show negligible effect on the conductance properties of B40, we would expect that B40 can be used as a single-molecular gas sensor to distinguish NH3 from non-polar gas molecules at low bias. PMID:26775574

  1. Efficient hybrid mesoscopic solar cells with morphology-controlled CH3NH3PbI3-xClx derived from two-step spin coating method.

    PubMed

    Xu, Yuzhuan; Zhu, Lifeng; Shi, Jiangjian; Lv, Songtao; Xu, Xin; Xiao, Junyan; Dong, Juan; Wu, Huijue; Luo, Yanhong; Li, Dongmei; Meng, Qingbo

    2015-02-01

    A morphology-controlled CH3NH3PbI3-xClx film is synthesized via two-step solution deposition by spin-coating a mixture solution of CH3NH3Cl and CH3NH3I onto the TiO2/PbI2 film for the first time. It is revealed that the existence of CH3NH3Cl is supposed to result in a preferential growth along the [110] direction of perovskite, which can improve both the crystallinity and surface coverage of perovskite and reduce the pinholes. Furthermore, the formation process of CH3NH3PbI3-xClx perovskite is explored, in which intermediates containing chlorine are suggested to exist. 13.12% of power conversion efficiency has been achieved for the mesoscopic cell, higher than 12.08% of power conversion efficiency of the devices fabricated without CH3NH3Cl via the same process. The improvement mainly lies in the increasing open-circuit photovoltage which is ascribed to the reduction of reverse saturation current density. PMID:25587643

  2. DRIFT study on cerium-tungsten/titania catalyst for selective catalytic reduction of NOx with NH3.

    PubMed

    Chen, Liang; Li, Junhua; Ge, Maofa

    2010-12-15

    CeO(2)/TiO(2) and CeO(2)-WO(3)/TiO(2) catalysts prepared by impregnation method assisted with ultrasonic energy were investigated on the selective catalytic reduction (SCR) of NO(x) (NO and NO(2)) by NH(3). The catalytic activity of 10% CeO(2)/TiO(2) (CeTi) was greatly enhanced by the addition of 6% WO(3) in the broad temperature range of 200-500 C, the promotion mechanism was proposed on basis of the results of in situ diffuse reflectance infrared transform spectroscopy (DRIFT). When NH(3) was introduced into both catalysts preadsorbed with NO + O(2), SCR would not proceed except for the reaction between NO(2) and ammonia. For CeO(2)/TiO(2) catalysts, coordinated NH(3) linked to Lewis acid sites were the main adsorbed ammonia species. When NO + O(2) was introduced, all the ammonia species consumed rapidly, indicating that these species could react with NO(x) effectively. Two different reaction routes, L-H mechanism at low temperature (<200 C) and E-R mechanism at high temperatures (>200 C), were presented for SCR reaction over CeO(2)/TiO(2) catalyst. For CeO(2)-WO(3)/TiO(2) catalysts, the Lewis acid sites on Ce(4+) state could be converted to Brnsted acid sites due to the unsaturated coordination of Ce(n+) and W(n+) ions. When NO + O(2) was introduced, the reaction proceeded more quickly than that on CeO(2)/TiO(2). The reaction route mainly followed E-R mechanism in the temperature range investigated (150-350 C) over CeO(2)-WO(3)/TiO(2) catalysts. Tungstation was beneficial for the formation of Ce(3+), which would influence the active sites of the catalyst and further change the mechanisms of SCR reaction. In this way, the cooperation of tungstation and the presence of Ce(3+) state resulted in the better activity of CeO(2)-WO(3)/TiO(2) compared to that of CeO(2)/TiO(2). PMID:21087047

  3. Estimates of N2O, NO and NH3 Emissions From Croplands in East, Southeast and South Asia

    NASA Astrophysics Data System (ADS)

    Yan, X.; Ohara, T.; Akimoto, H.

    2002-12-01

    Agricultural activities have greatly altered the global nitrogen cycle and produced nitrogenous gases of environmentally significance. More than half of the global chemical nitrogen fertilizer is used for crop production in East, Southeast and South Asia where rice the center of nutrition. Emissions of nitrous oxide (N2O), nitric oxide (NO) and ammonia (NH3) from croplands in this region were estimated by considering both background emission and emissions resulted from nitrogen added to croplands, including chemical nitrogen, animal manure used as fertilizer, biological fixed nitrogen and nitrogen in crop residue returned to field. Background emission fluxes of N2O and NO from croplands were estimated at 1.16 and 0.52 kg N ha-1yr-1, respectively. A fertilizer-induced N2O emission factor of 1.25% for upland was adopted from IPCC guidelines, and a factor of 0.25% was derived for paddy field from measurements. Total N2O emission from croplands in the region was estimated at 1.16 Tg N yr-1, with 41% contributed by background emission which was not considered in previous global estimates. However, the average fertilizer-induced N2O emission is only 0.93%, lower than the default IPCC value of 1.25% due to the low emission factor from paddy field. A fertilizer-induced NO emission factor of 0.66% for upland was derived from field measurements, and a factor of 0.13% was assumed for paddy field. Total NO emission was 572 Gg N yr-1 in the region, with 38% due to background emission. Average fertilizer-induce NO emission factor was 0.48%. Extrapolating this estimate to global scale will result in a global NO emission from cropland of 1.6 Tg N yr-1, smaller than other global estimates. Total NH3 emission was estimated at 11.8 Tg N yr-1. The use of urea and ammonium bicarbonate and the cultivation of rice lead to a high average NH3 loss rate of chemical fertilizer in the region. Emissions were distributed at 0.5 grid by using a global landuse database.

  4. Experimental and theoretical investigation of homogeneous gaseous reaction of CO2(g) + nH2O(g) + nNH3(g) ? products (n = 1, 2).

    PubMed

    Li, Zhuangjie; Zhang, Baoquan

    2012-09-13

    Decreasing CO2 emissions into the atmosphere is key for reducing global warming. To facilitate the CO2 emission reduction efforts, our laboratory conducted experimental and theoretical investigations of the homogeneous gaseous reaction of CO2(g) + nH2O(g) + nNH3(g) ? (NH4)HCO3(s)/(NH4)2CO3(s) (n = 1 and 2) using Fourier transform infrared attenuated total reflectance (FTIR-ATR) spectroscopy and ab initio molecular orbital theory. Our FTIR-ATR experimental results indicate that (NH4)2CO3(s) and (NH4)HCO3(s) are formed as aerosol particulate matter when carbon dioxide reacts with ammonia and water in the gaseous phase at room temperature. Ab initio study of this chemical system suggested that the reaction may proceed through formation of NH3H2O(g), NH3CO2(g), and CO2H2O(g) complexes. Subsequent complexes, NH3H2OCO2 and (NH3)2H2OCO2, can be formed by adding gaseous reactants to the NH3H2O(g), NH3CO2(g), and CO2H2O(g) complexes, respectively. The NH3H2OCO2 and (NH3)2H2OCO2 complexes can then be rearranged to produce (NH4)HCO3 and (NH4)2CO3 as final products via a transition state, and the NH3 molecule acts as a medium accepting and donating hydrogen atoms in the rearrangement process. Our computational results also reveal that the presence of an additional water molecule can reduce the activation energy of the rearrangement process. The high activation energy predicted in the present work suggests that the reaction is kinetically not favored, and our experimental observation of (NH4)HCO3(s) and (NH4)2CO3(s) may be attributed to the high concentrations of reactants increasing the reaction rate of the title reactions in the reactor. PMID:22900762

  5. The optoelectronic role of chlorine in CH3NH3PbI3(Cl)-based perovskite solar cells

    PubMed Central

    Chen, Qi; Zhou, Huanping; Fang, Yihao; Stieg, Adam Z.; Song, Tze-Bin; Wang, Hsin-Hua; Xu, Xiaobao; Liu, Yongsheng; Lu, Shirong; You, Jingbi; Sun, Pengyu; McKay, Jeff; Goorsky, Mark S.; Yang, Yang

    2015-01-01

    Perovskite photovoltaics offer a compelling combination of extremely low-cost, ease of processing and high device performance. The optoelectronic properties of the prototypical CH3NH3PbI3 can be further adjusted by introducing other extrinsic ions. Specifically, chlorine incorporation has been shown to affect the morphological development of perovksite films, which results in improved optoelectronic characteristics for high efficiency. However, it requires a deep understanding to the role of extrinsic halide, especially in the absence of unpredictable morphological influence during film growth. Here we report an effective strategy to investigate the role of the extrinsic ion in the context of optoelectronic properties, in which the morphological factors that closely correlate to device performance are mostly decoupled. The chlorine incorporation is found to mainly improve the carrier transport across the heterojunction interfaces, rather than within the perovskite crystals. Further optimization according this protocol leads to solar cells achieving power conversion efficiency of 17.91%. PMID:26068804

  6. Vibrational signatures of hydrogen bonding in the protonated ammonia clusters NH4+(NH3)1-4

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Kühn, O.; Santambrogio, G.; Goebbert, D. J.; Asmis, K. R.

    2008-12-01

    The gas phase vibrational spectroscopy of the protonated ammonia dimer N2H7+, a prototypical system for strong hydrogen bonding, is studied in the spectral region from 330 to 1650 cm-1 by combining infrared multiple photon dissociation and multidimensional quantum mechanical simulations. The fundamental transition of the antisymmetric proton stretching vibration is observed at 374 cm-1 and assigned on the basis of a six-dimensional model Hamiltonian, which predicts this transition at 471 cm-1. Photodissociation spectra of the larger protonated ammonia clusters NH4+(NH3)n with n =2-4 are also reported for the range from 1050 to 1575 cm-1. The main absorption features can be assigned within the harmonic approximation, supporting earlier evidence that hydrogen bonding in these clusters is considerably weaker than for n =1.

  7. CH(3)NH(3)PbI(3) perovskite / silicon tandem solar cells: characterization based optical simulations.

    PubMed

    Filipi?, Miha; Lper, Philipp; Niesen, Bjoern; De Wolf, Stefaan; Kr?, Janez; Ballif, Christophe; Topi?, Marko

    2015-04-01

    In this study we analyze and discuss the optical properties of various tandem architectures: mechanically stacked (four-terminal) and monolithically integrated (two-terminal) tandem devices, consisting of a methyl ammonium lead triiodide (CH(3)NH(3)PbI(3)) perovskite top solar cell and a crystalline silicon bottom solar cell. We provide layer thickness optimization guidelines and give estimates of the maximum tandem efficiencies based on state-of-the-art sub cells. We use experimental complex refractive index spectra for all involved materials as input data for an in-house developed optical simulator CROWM. Our characterization based simulations forecast that with optimized layer thicknesses the four-terminal configuration enables efficiencies over 30%, well above the current single-junction crystalline silicon cell record of 25.6%. Efficiencies over 30% can also be achieved with a two-terminal monolithic integration of the sub-cells, combined with proper selection of layer thicknesses. PMID:25968792

  8. A theoretical investigation of gaseous absorption by water droplets from SO2-HNO3-NH3-CO2-HCl mixtures

    NASA Technical Reports Server (NTRS)

    Adewuyi, Y. G.; Carmichael, G. R.

    1982-01-01

    A physical-chemical model is developed and used to investigate gaseous absorption by water droplets from trace gas mixtures. The model is an extension of that of Carmichael and Peters (1979) and includes the simultaneous absorption of SO2, NH3, HNO3, CO2, and HCl. Gas phase depletion is also considered. Presented results demonstrate that the absorption behavior of raindrops is strongly dependent on drop size, fall distance, trace gas concentrations, and the chemical and physical properties of the constituents of the mixture. In addition, when gas phase depletion is considered, the absorption rates and equilibrium values are also dependent on the precipitation rate itself. Also, the trace constituents liquid phase concentrations may be a factor of six or more lower when gas depletion is considered then when the depletion is ignored. However, the hydrogen ion concentration may be insensitive to the gas phase depletion.

  9. Growth of bulk AlN crystals by vapor-phase epitaxy from atomic Al and NH3

    NASA Astrophysics Data System (ADS)

    Pogorel'skii, M. Yu.; Alekseev, A. N.; Pogorel'skii, Yu. V.; Shkurko, A. P.

    2015-09-01

    A new approach to obtaining bulk AlN single crystals by vapor-phase epitaxy has been tested. NH3 and Al vapor were used as growth reagents. The following ranges of growth parameters were admissible for the laboratory equipment (experimental growth installation): temperatures of 1050-1500C at ammonia flow rates of up to 50 sccm and pressures on the order of 10-5-10-4 bar, growth rates of up to 200 ?m h-1. At a temperature of 1450C, samples of strained bulk block AlN crystals with thicknesses of up to 200 ?m were obtained in the wurtzite phase in the [0001] direction on MBE templates based on sapphire substrates with a diameter of 2?.

  10. Mobile Ion Induced Slow Carrier Dynamics in Organic-Inorganic Perovskite CH3NH3PbBr3.

    PubMed

    Chen, Sheng; Wen, Xiaoming; Sheng, Rui; Huang, Shujuan; Deng, Xiaofan; Green, Martin A; Ho-Baillie, Anita

    2016-03-01

    Here, we investigate photoluminescence (PL) and time-resolved photoluminescence (TRPL) in CH3NH3PbBr3 perovskite under continuous illumination, using optical and electro-optical techniques. Under continuous excitation at constant intensity, PL intensity and PL decay (carrier recombination) exhibit excitation intensity dependent reductions in the time scale of seconds to minutes. The enhanced nonradiative recombination is ascribed to light activated negative ions and their accumulation which exhibit a slow dynamics in a time scale of seconds to minutes. The observed result suggests that the organic-inorganic hybrid perovskite is a mixed electronic-ionic semiconductor. The key findings in this work suggest that ions are photoactivated or electro-activated and their accumulation at localized sites can result in a change of carrier dynamics. The findings are therefore useful for the understanding of instability of perovskite solar cells and shed light on the necessary strategies for performance improvement. PMID:26863286

  11. Toward a chemiresistive ammonia (NH3) gas sensor based on viral-templated gold nanoparticles embedded in polypyrrole nanowires

    NASA Astrophysics Data System (ADS)

    Yan, Yiran; Zhang, Miluo; Su, Heng Chia; Myung, Nosang V.; Haberer, Elaine D.

    2014-08-01

    Preliminary studies toward the assembly of a gold-polypyrrole (PPy) peapod-like chemiresistive ammonia (NH3) gas sensors are presented. The proposed synthesis process will use electropolymerization to embed gold nanoparticles in polypyrrole nanowires. Viral-templating of gold nanoparticles and PPy electrodeposition via cyclic voltammetry are the focus of this investigation. A gold-binding M13 bacteriophage was used as a bio-template to assemble continuous chains of gold nanoparticles on interdigitated Pt working electrodes. The dimensions of the resulting nanowire-like structures were examined and the electrical resistance measured. PPy films were electropolymerized using an interdigitated planar, Pt electrode integrated counter and reference electrode. Morphological characterization of the polymer films was completed.

  12. Laboratory measurements of the microwave opacity of gaseous ammonia (NH3) under simulated conditions for the Jovian atmosphere

    NASA Astrophysics Data System (ADS)

    Steffes, P. G.; Jenkins, J. M.

    1987-10-01

    Gaseous ammonia (NH3) has long been recognized as a primary source of microwave opacity in the atmosphere of Jupiter. In order to more accurately infer the abundance and distribution of ammonia from radio emission measurements in the 1- to 20-cm wavelength range and radio occultation measurements at 3.6 and 13 cm, the authors have made measurements of the microwave opacity from gaseous ammonia under simulated conditions for the Jovian atmosphere. Measurements of ammonia absorptivity were made at five frequencies from 1.62 to 21.7 GHz (wavelengths from 18.5 to 1.38 cm), at temperatures from 178 to 300K, and at pressures from 1 to 6 atm, in a 90% hydrogen/10% helium atmosphere.

  13. Influence of annealing temperature on the crystallization and ferroelectricity of perovskite CH3NH3PbI3 film

    NASA Astrophysics Data System (ADS)

    Wang, Fangfang; Meng, Dechao; Li, Xiaoning; Zhu, Zhu; Fu, Zhengping; Lu, Yalin

    2015-12-01

    Organometal halide perovskite materials are emerging as solar cell materials, but the understanding of its performance is not yet enough, especially in its ferroelectricity which is important for the separation of photo-generated carriers. In this paper, we report investigations on influences of annealing temperature on the ferroelectricity of solution-processed methylammonium lead triiodide (CH3NH3PbI3) thin film. It is found that annealing temperature has significant effect on the crystallinity and the crystal size, which further affects the ferroelectricity and the luminescence property. It indicates that the crystallization degree of the thin film and the uniformity of crystal growth are gradually getting better, and the phase contrast of positive polarization areas and negative polarization areas are gradually strengthened.

  14. Controlled growth of CH3NH3PbI3 nanowires in arrays of open nanofluidic channels

    NASA Astrophysics Data System (ADS)

    Spina, Massimo; Bonvin, Eric; Sienkiewicz, Andrzej; Forró, László; Horváth, Endre

    2016-01-01

    Spatial positioning of nanocrystal building blocks on a solid surface is a prerequisite for assembling individual nanoparticles into functional devices. Here, we report on the graphoepitaxial liquid-solid growth of nanowires of the photovoltaic compound CH3NH3PbI3 in open nanofluidic channels. The guided growth, visualized in real-time with a simple optical microscope, undergoes through a metastable solvatomorph formation in polar aprotic solvents. The presently discovered crystallization leads to the fabrication of mm2-sized surfaces composed of perovskite nanowires having controlled sizes, cross-sectional shapes, aspect ratios and orientation which have not been achieved thus far by other deposition methods. The automation of this general strategy paves the way towards fabrication of wafer-scale perovskite nanowire thin films well-suited for various optoelectronic devices, e.g. solar cells, lasers, light-emitting diodes and photodetectors.

  15. Controlled growth of CH3NH3PbI3 nanowires in arrays of open nanofluidic channels.

    PubMed

    Spina, Massimo; Bonvin, Eric; Sienkiewicz, Andrzej; Forr, Lszl; Horvth, Endre

    2016-01-01

    Spatial positioning of nanocrystal building blocks on a solid surface is a prerequisite for assembling individual nanoparticles into functional devices. Here, we report on the graphoepitaxial liquid-solid growth of nanowires of the photovoltaic compound CH3NH3PbI3 in open nanofluidic channels. The guided growth, visualized in real-time with a simple optical microscope, undergoes through a metastable solvatomorph formation in polar aprotic solvents. The presently discovered crystallization leads to the fabrication of mm(2)-sized surfaces composed of perovskite nanowires having controlled sizes, cross-sectional shapes, aspect ratios and orientation which have not been achieved thus far by other deposition methods. The automation of this general strategy paves the way towards fabrication of wafer-scale perovskite nanowire thin films well-suited for various optoelectronic devices, e.g. solar cells, lasers, light-emitting diodes and photodetectors. PMID:26806213

  16. The optoelectronic role of chlorine in CH3NH3PbI3(Cl)-based perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Chen, Qi; Zhou, Huanping; Fang, Yihao; Stieg, Adam Z.; Song, Tze-Bin; Wang, Hsin-Hua; Xu, Xiaobao; Liu, Yongsheng; Lu, Shirong; You, Jingbi; Sun, Pengyu; McKay, Jeff; Goorsky, Mark S.; Yang, Yang

    2015-06-01

    Perovskite photovoltaics offer a compelling combination of extremely low-cost, ease of processing and high device performance. The optoelectronic properties of the prototypical CH3NH3PbI3 can be further adjusted by introducing other extrinsic ions. Specifically, chlorine incorporation has been shown to affect the morphological development of perovksite films, which results in improved optoelectronic characteristics for high efficiency. However, it requires a deep understanding to the role of extrinsic halide, especially in the absence of unpredictable morphological influence during film growth. Here we report an effective strategy to investigate the role of the extrinsic ion in the context of optoelectronic properties, in which the morphological factors that closely correlate to device performance are mostly decoupled. The chlorine incorporation is found to mainly improve the carrier transport across the heterojunction interfaces, rather than within the perovskite crystals. Further optimization according this protocol leads to solar cells achieving power conversion efficiency of 17.91%.

  17. Highly sensitive NH3 detection based on organic field-effect transistors with tris(pentafluorophenyl)borane as receptor.

    PubMed

    Huang, Weiguo; Besar, Kalpana; LeCover, Rachel; Rule, Ana Mara; Breysse, Patrick N; Katz, Howard E

    2012-09-12

    We have increased organic field-effect transistor (OFET) NH(3) response using tris(pentafluorophenyl)borane (TPFB) as a receptor. OFETs with this additive could detect concentrations of 450 ppb v/v, with a limit of detection of 350 ppb, the highest sensitivity reported to date for semiconductor films; in comparison, when triphenylmethane (TPM) or triphenylborane (TFB) was used as an additive, no obvious improvement in the sensitivity was observed. These OFETs also showed considerable selectivity with respect to common organic vapors and stability toward storage. Furthermore, excellent memory of exposure was achieved by keeping the exposed devices in a sealed container stored at -30 C, the first such capability demonstrated with OFETs. PMID:22934620

  18. Exploring Deep Icy World Oceans through New Experimental Equations of State for Aqueous MgSO4 and NH3

    NASA Astrophysics Data System (ADS)

    Vance, S.; Brown, J.

    2011-12-01

    Observational evidence supports the presence of very deep oceans in Europa, Ganymede, Callisto, Titan, and Enceladus. Thermal models for other bodies to be more thoroughly explored also suggest internal liquid layers in the present or past. Hydrostatic pressure at the bottom oceans in the three largest of the solar system's icy world oceans exceeds the formation pressures of high-pressure ice phases. Temperature- and pressure-dependent thermodynamic effects on fluid transport and phase stability may have profound geophysical and astrobiological implications, but experimental constraints on these properties are only now becoming available. In this context, we present equations of state for aqueous NH3 and MgSO4 derived from speeds of sound obtained by the method of impulsive stimulated scattering. Using these, we provide new constraints on the presence of liquids within ice layers at the tops and bottoms of icy world oceans.

  19. NH3 Trace Detection Using a Tunable Lead-Salt Diode Laser Near 10 μm

    NASA Astrophysics Data System (ADS)

    Dallah, M.; Salloum, A.

    2015-11-01

    We demonstrate a closed path ammonia gas sensor based on a tunable lead-salt diode laser. In order to measure NH3 concentrations, the laser is scanned over two absorption lines 992.68 and 992.45 cm-1 of the ν2 vibrational band. These lines have free interference patterns with other species in the atmosphere. The experiments are performed with an ammonia mixture in the air at room temperature in an optical multi-path White cell. In our preliminary experiments, a detection limit of ~4 ppb is achieved using direct absorption at 100 mbar pressure and 15 m path length. A detection limit of 0.2 ppb can be reached.

  20. Photolysis products of CO, NH3 aND H2O and their significance to reactions on interstellar grains

    NASA Technical Reports Server (NTRS)

    Ferris, J. P.

    1986-01-01

    With the increase in evidence that interstellar grains are the basic building blocks of comets and with the realization that comet collisions with the earth have probably occured at a much higher frequency than earlier assumed it may be presumed that interstellar dust chemistry played an important role in the early chemistry of the earth. As a part of the study of the photochemical processes taking place on interstellar grains the photolysis of mixtures of CO, NH3 and H2O was performed at 10 K, 77K and 298K. The reaction products were determined by GC/MS and HPLC analysis to be lactic acid, glycolic acid, hydroxyacetamide, urea, biuret, oxamic acid, oxamide, glyceric acid and glyceramide. Ethylene glycol and glycerol were also detected but is is not clear at present whether these are true photoproducts or contaminants. The mechanism of formation of these molecules are discussed as well as their possible significance to the origins of life.

  1. Controlled growth of CH3NH3PbI3 nanowires in arrays of open nanofluidic channels

    PubMed Central

    Spina, Massimo; Bonvin, Eric; Sienkiewicz, Andrzej; Forró, László; Horváth, Endre

    2016-01-01

    Spatial positioning of nanocrystal building blocks on a solid surface is a prerequisite for assembling individual nanoparticles into functional devices. Here, we report on the graphoepitaxial liquid-solid growth of nanowires of the photovoltaic compound CH3NH3PbI3 in open nanofluidic channels. The guided growth, visualized in real-time with a simple optical microscope, undergoes through a metastable solvatomorph formation in polar aprotic solvents. The presently discovered crystallization leads to the fabrication of mm2-sized surfaces composed of perovskite nanowires having controlled sizes, cross-sectional shapes, aspect ratios and orientation which have not been achieved thus far by other deposition methods. The automation of this general strategy paves the way towards fabrication of wafer-scale perovskite nanowire thin films well-suited for various optoelectronic devices, e.g. solar cells, lasers, light-emitting diodes and photodetectors. PMID:26806213

  2. Electron-Temperature Dependence of the Recombination of NH4(+)((NH3)(sub n) Ions with Electrons

    NASA Technical Reports Server (NTRS)

    Skrzypkowski, M. P.; Johnson, R.

    1997-01-01

    The two-body recombination of NH4(+)(NH3)(sub 2,3) cluster-ions with electrons has been studied in an afterglow experiment in which the electron temperature T, was elevated by radio-frequency heating from 300 K up to 900 K. The recombination coefficients for the n = 2 and n = 3 cluster ions were found to be equal, alpha(sub 2, sup(2)) = alpha(sub 3, sup(2)) = (4.8 +/- 0.5) x 10(exp - 6)cu cm/s, and to vary with electron temperature as T(sub c, sup -0.65) rather than to be nearly temperature-independent as had been inferred from measurements in microwave-heated plasmas.

  3. Electronic transport in organometallic perovskite CH3NH3PbI3: The role of organic cation orientations

    NASA Astrophysics Data System (ADS)

    Berdiyorov, G. R.; El-Mellouhi, F.; Madjet, M. E.; Alharbi, F. H.; Rashkeev, S. N.

    2016-02-01

    Density functional theory in combination with the nonequilibrium Green's function formalism is used to study the electronic transport properties of methylammonium lead-iodide perovskite CH3NH3PbI3. Electronic transport in homogeneous ferroelectric and antiferroelectric phases, both of which do not contain any charged domain walls, is quite similar. The presence of charged domain wall drastically (by about an order of magnitude) enhances the electronic transport in the lateral direction. The increase of the transmission originates from the smaller variation of the electrostatic potential profile along the charged domain walls. This fact may provide a tool for tuning transport properties of such hybrid materials by manipulating molecular cations having dipole moment.

  4. Ultrasensitive 1D field-effect phototransistors: CH3NH3PbI3 nanowire sensitized individual carbon nanotubes.

    PubMed

    Spina, M; Náfrádi, B; Tóháti, H M; Kamarás, K; Bonvin, E; Gaal, R; Forró, L; Horváth, E

    2016-02-25

    Field-effect phototransistors were fabricated based on individual carbon nanotubes (CNTs) sensitized by CH3NH3PbI3 nanowires (MAPbI3NWs). These devices represent light responsivities of R = 7.7 × 10(5) A W(-1) under low-lighting conditions in the nW mm(-2) range, unprecedented among CNT-based photodetectors. At high incident power (∼1 mW mm(-2)), light soaking results in a negative photocurrent, turning the device insulating. We interpret the phenomenon as a result of efficient free photoexcited charge generation and charge transfer of photoexcited holes from the perovskite to the carbon nanotube. The charge transfer improves conductance by increasing the number of carriers, but leaves electrons behind. At high illumination intensity their random electrostatic potential quenches mobility in the nanotube. PMID:26864708

  5. Direct Transformation of Ethylarenes into Primary Aromatic Amides with N-Bromosuccinimide and I2-Aqueous NH3.

    PubMed

    Shimokawa, Shohei; Kawagoe, Yuhsuke; Moriyama, Katsuhiko; Togo, Hideo

    2016-02-19

    A variety of ethylarenes were converted into the corresponding primary aromatic amides in good yields via treatment with N-bromosuccinimide in the presence of a catalytic amount of 2,2'-azobis(isobutyronitrile) in a mixture of ethyl acetate and water, acetonitrile and water, or chloroform and water, followed by reaction with molecular iodine and aq NH3 in one pot. It was found that aryl ?-bromomethyl ketones and/or aryl methyl ketones were formed at the first reaction step and their iodoform-type reaction occurred at the second reaction step to provide primary aromatic amides. The present reaction is a useful and practical transition-metal-free method for the preparation of primary aromatic amides from ethylarenes. PMID:26814945

  6. Effect of humidity on the a.c. impedance of CH3NH3SnCl3 hybrid films

    NASA Astrophysics Data System (ADS)

    Mosca, R.; Ferro, P.; Besagni, T.; Calestani, D.; Chiarella, F.; Licci, F.

    2011-09-01

    Impedance spectroscopy measurements show that complex conductivity of thermally ablated CH3NH3SnCl3 films is strongly enhanced when humidity increases. Coplanar two-electrode test devices are modeled through an equivalent circuit comprising one resistance and two constant phase elements. It is shown that the influence of ambient humidity is mainly resistive. The dynamic responses of the devices to humidification/dehumidification cycles point out that the a.c. current varies by more than three orders of magnitude when humidity is varied between dry air and 80% relative humidity. The rise times are few hundred seconds while fall times are as short as few tens of seconds. This observation suggests that impedance variations are determined by mechanisms involving loosely bound water molecules physisorbed at the surface of the hybrid film. The results obtained are discussed in terms of protonic conduction.

  7. Low surface recombination velocity in solution-grown CH3NH3PbBr3 perovskite single crystal

    NASA Astrophysics Data System (ADS)

    Yang, Ye; Yan, Yong; Yang, Mengjin; Choi, Sukgeun; Zhu, Kai; Luther, Joseph M.; Beard, Matthew C.

    2015-08-01

    Organic-inorganic hybrid perovskites are attracting intense research effort due to their impressive performance in solar cells. While the carrier transport parameters such as mobility and bulk carrier lifetime shows sufficient characteristics, the surface recombination, which can have major impact on the solar cell performance, has not been studied. Here we measure surface recombination dynamics in CH3NH3PbBr3 perovskite single crystals using broadband transient reflectance spectroscopy. The surface recombination velocity is found to be 3.4+/-0.1 103 cm s-1, ~2-3 orders of magnitude lower than that in many important unpassivated semiconductors employed in solar cells. Our result suggests that the planar grain size for the perovskite thin films should be larger than ~30 ?m to avoid the influence of surface recombination on the effective carrier lifetime.

  8. Theory of electronic structure and nuclear quadrupole interactions in the BF3-NH3 complex and methyl derivatives

    NASA Astrophysics Data System (ADS)

    Pink, R. H.; Dubey, Archana; Mahato, Dip N.; Badu, S. R.; Scheicher, R. H.; Mahanti, Mahendra K.; Huang, M. B.; Saha, H. P.; Chow, Lee; Das, T. P.

    Magnetic Hyperfine and Nuclear Quadrupole Interactions (HPI and NQI) are now important tools for characterization of systems of interest in materials research and industry. Boron-Trifluoride is an inorganic compound that is very important in this respect as a catalyst in chemical physics research and industry, forming complexes in the process with compounds like ammonia, water and methyl alcohol. The present paper deals with the BP3-NH3 complex and methyl derivatives BP3NHx(CH3)3-x for which we have studied the electronic structures, binding energies, and 19F* (I=5/2) nuclear quadrupole interactions using the first-principles Hartree-Fock-Roothaan procedure combined with electron correlation effects. Our results for the 19F* nuclear quadrupole coupling constant (e 2qQ/h) in units of MHz compare well with experiment. Trends in the binding energies and NQI parameters between the complexes are discussed.

  9. Theory of electronic structure and nuclear quadrupole interactions in the BF3 NH3 complex and methyl derivatives

    NASA Astrophysics Data System (ADS)

    Pink, R. H.; Dubey, Archana; Mahato, Dip N.; Badu, S. R.; Scheicher, R. H.; Mahanti, Mahendra K.; Huang, M. B.; Saha, H. P.; Chow, Lee; Das, T. P.

    2007-04-01

    Magnetic Hyperfine and Nuclear Quadrupole Interactions (HFI and NQI) are now important tools for characterization of systems of interest in materials research and industry. Boron-Trifluoride is an inorganic compound that is very important in this respect as a catalyst in chemical physics research and industry, forming complexes in the process with compounds like ammonia, water and methyl alcohol. The present paper deals with the BF3 NH3 complex and methyl derivatives BF3NHx(CH3)3-x for which we have studied the electronic structures, binding energies, and 19F* ( I = 5/2) nuclear quadrupole interactions using the first-principles Hartree Fock Roothaan procedure combined with electron correlation effects. Our results for the 19F* nuclear quadrupole coupling constant ( e 2 qQ/ h) in units of MHz compare well with experiment. Trends in the binding energies and NQI parameters between the complexes are discussed.

  10. Two mixed-NH3/amine platinum (II) anticancer complexes featuring a dichloroacetate moiety in the leaving group

    NASA Astrophysics Data System (ADS)

    Liu, Weiping; Su, Jia; Jiang, Jing; Li, Xingyao; Ye, Qingsong; Zhou, Hongyu; Chen, Jialin; Li, Yan

    2013-08-01

    Two mixed-NH3/amine platinum (II) complexes of 3-dichoroacetoxylcyclobutane-1, 1-dicarboxylate have been prepared in the present study and characterized by elemental analysis and IR, HPLC-MS and 1H, 13C-NMR. The complexes exist in equilibrium between two position isomeric forms and undergo hydrolysis reaction in aqueous solution, releasing the platinum pharmacophores and dichloroacetate which is a small-molecular cell apoptosis inducer. Both complexes were evaluated for in vitro cytotoxic profile in A549, SGC-7901 and SK-OV-3 caner cells as well as in BEAS-2B normal cells. They exhibit markedly cytoxicity toward cancer cells by selectively inducing the apoptosis of cancer cells, whereas leaving normal cells less affected. They have also the ability to overcome the resistance of SK-OV-3 cancer cells to cisplatin. Our findings offer an alternative novel way to develop platinum drugs which can both overcome the drug resistance and selectively target tumor cells.

  11. Low surface recombination velocity in solution-grown CH3NH3PbBr3 perovskite single crystal.

    PubMed

    Yang, Ye; Yan, Yong; Yang, Mengjin; Choi, Sukgeun; Zhu, Kai; Luther, Joseph M; Beard, Matthew C

    2015-01-01

    Organic-inorganic hybrid perovskites are attracting intense research effort due to their impressive performance in solar cells. While the carrier transport parameters such as mobility and bulk carrier lifetime shows sufficient characteristics, the surface recombination, which can have major impact on the solar cell performance, has not been studied. Here we measure surface recombination dynamics in CH3NH3PbBr3 perovskite single crystals using broadband transient reflectance spectroscopy. The surface recombination velocity is found to be 3.40.1 10(3)?cm?s(-1), ?2-3 orders of magnitude lower than that in many important unpassivated semiconductors employed in solar cells. Our result suggests that the planar grain size for the perovskite thin films should be larger than ?30??m to avoid the influence of surface recombination on the effective carrier lifetime. PMID:26245855

  12. Selective detection toward quercetin and kaempferol on NH3-plasma treated carbon nanotubes modified glassy carbon electrode.

    PubMed

    Song, Jing-Jing; Lu, Yong; Zhu, Si-Wei; Huang, Qin-An; Wei, Yan

    2015-01-01

    NH3-plasma treated multi-walled carbon nanotubes (pn-MWCNTs) were prepared based on the plasma technique and developed as sensing materials for detection of quercetin and kaempferol with the differential pulse voltammetry (DPV) and amperometric measurement. Such experimental parameters as pH values, accumulation potential and accumulation time were carefully investigated. The pn-MWCNTs modified electrode (pn-MWCNTs/GCE) was further explored for the analysis of quercetin and kaempferol in diluted blood serum and average recovery rates of 96.91 and 100.5% were obtained, respectively. In addition, the interference and stability measurements were evaluated under the optimized experimental conditions. More importantly, selective detection toward quercetin and kaempferol was achieved, and the proposed electrochemical sensing strategy was available to distinguish substances with similar oxidation potential. PMID:25765278

  13. Rh proteins vs Amt proteins: an organismal and phylogenetic perspective on CO2 and NH3 gas channels.

    PubMed

    Peng, J; Huang, C H

    2006-01-01

    Rh (Rhesus) proteins are homologues of ammonium transport (Amt) proteins. Physiological and structural evidence shows that Amt proteins are gas channels for NH(3), but the substrate of Rh proteins, be it CO2 as shown in green alga, or NH3/NH4+ as shown in mammalian cells, remains disputed. We assembled a large dataset generated of Rh and Amt to explore how Rh originated from and evolved independently of Amt relatives. Analysis of this rich data implies that Rh was split from Amt first to emerge in archaeal species. The Rh ancestor underwent divergence and duplication along speciation, leading to neofunctionalization and subfunctionalization of the Rh family. The characteristic organismal distribution of Rh vs. Amt reflects their early separation and subsequent independent evolution: they coexist in microbes and invertebrates but do not in fungi, vascular plants or vertebrates. Rh gene-duplication was prominent in vertebrates: while epithelial RhBG/RhCG displayed strong purifying selection, erythroid Rh30 and RhAG experienced different episodes of positive selection in each of which adaptive evolution occurred at certain time points and in a few codon sites. Mammalian Rh30 and RhAG were subject to particularly strong positive selection in some codon sites in the lineage from rodents to human. The grounds of this adaptive evolution may be driven by the necessity to increase the surface/volume ratio of biconcave erythrocytes for facilitative gas diffusion. Altogether, these results are consistent with Rh proteins not being the orthologue of Amt proteins but having gained the function for CO2/HCO3- transport, with important roles in systemic pH regulation. PMID:16564193

  14. Phase coexistence and hysteresis effects in the pressure-temperature phase diagram of NH3BH3

    NASA Astrophysics Data System (ADS)

    Andersson, Ove; Filinchuk, Yaroslav; Dmitriev, Vladimir; Quwar, Issam; Talyzin, Alexandr V.; Sundqvist, Bertil

    2011-07-01

    The potential hydrogen storage compound NH3BH3 has three known structural phases in the temperature and pressure ranges 110-300 K and 0-1.5 GPa, respectively. We report here the boundaries between, and the ranges of stability of, these phases. The phase boundaries were located by in situ measurements of the thermal conductivity, while the actual structures in selected areas were identified by in situ Raman spectroscopy and x-ray diffraction. Below 0.6 GPa, reversible transitions involving only small hysteresis effects occur between the room-temperature tetragonal plastic crystal I4mm phase and the low-temperature orthorhombic Pmn21 phase. Transformations of the I4mm phase into the high-pressure orthorhombic Cmc21 phase, occurring above 0.8 GPa, are associated with very large hysteresis effects, such that the reverse transition may occur at up to 0.5 GPa lower pressures. Below 230 K, a fraction of the Cmc21 phase is metastable to atmospheric pressure, suggesting the possibility that dense structural phases of NH3BH3, stable at room temperature, could possibly be created and stabilized by alloying or by other methods. Mixed orthorhombic Pmn21/Cmc21 phases were observed in an intermediate pressure-temperature range, but a fourth structural phase predicted by Filinchuk [Phys. Rev. BPLRBAQ1098-012110.1103/PhysRevB.79.214111 79, 214111 (2009)] was not observed in the pressure-temperature ranges of this experiment. The thermal conductivity of the plastic crystal I4mm phase is about 0.6 W m-1 K-1 and only weakly dependent on temperature, while the ordered orthorhombic phases have higher thermal conductivities limited by phonon-phonon scattering.

  15. Ultrasensitive 1D field-effect phototransistors: CH3NH3PbI3 nanowire sensitized individual carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Spina, M.; Náfrádi, B.; Tóháti, H. M.; Kamarás, K.; Bonvin, E.; Gaal, R.; Forró, L.; Horváth, E.

    2016-02-01

    Field-effect phototransistors were fabricated based on individual carbon nanotubes (CNTs) sensitized by CH3NH3PbI3 nanowires (MAPbI3NWs). These devices represent light responsivities of R = 7.7 × 105 A W-1 under low-lighting conditions in the nW mm-2 range, unprecedented among CNT-based photodetectors. At high incident power (~1 mW mm-2), light soaking results in a negative photocurrent, turning the device insulating. We interpret the phenomenon as a result of efficient free photoexcited charge generation and charge transfer of photoexcited holes from the perovskite to the carbon nanotube. The charge transfer improves conductance by increasing the number of carriers, but leaves electrons behind. At high illumination intensity their random electrostatic potential quenches mobility in the nanotube.Field-effect phototransistors were fabricated based on individual carbon nanotubes (CNTs) sensitized by CH3NH3PbI3 nanowires (MAPbI3NWs). These devices represent light responsivities of R = 7.7 × 105 A W-1 under low-lighting conditions in the nW mm-2 range, unprecedented among CNT-based photodetectors. At high incident power (~1 mW mm-2), light soaking results in a negative photocurrent, turning the device insulating. We interpret the phenomenon as a result of efficient free photoexcited charge generation and charge transfer of photoexcited holes from the perovskite to the carbon nanotube. The charge transfer improves conductance by increasing the number of carriers, but leaves electrons behind. At high illumination intensity their random electrostatic potential quenches mobility in the nanotube. Electronic supplementary information (ESI) available: Infrared and Raman spectroscopy with additional electronic transfer characterization. See DOI: 10.1039/c5nr06727h

  16. Emissions of NO and NH3 from a Typical Vegetable-Land Soil after the Application of Chemical N Fertilizers in the Pearl River Delta

    PubMed Central

    Li, Dejun

    2013-01-01

    Cropland soil is an important source of atmospheric nitric oxide (NO) and ammonia (NH3). Chinese croplands are characterized by intensive management, but limited information is available with regard to NO emissions from croplands in China and NH3 emissions in south China. In this study, a mesocosm experiment was conducted to measure NO and NH3 emissions from a typical vegetable-land soil in the Pearl River Delta following the applications of 150 kg N ha−1 as urea, ammonium nitrate (AN) and ammonium bicarbonate (ABC), respectively. Over the sampling period after fertilization (72 days for NO and 39 days for NH3), mean NO fluxes (± standard error of three replicates) in the control and urea, AN and ABC fertilized mesocosms were 10.9±0.9, 73.1±2.9, 63.9±1.8 and 66.0±4.0 ng N m−2 s−1, respectively; mean NH3 fluxes were 8.9±0.2, 493.6±4.4, 144.8±0.1 and 684.7±8.4 ng N m−2 s−1, respectively. The fertilizer-induced NO emission factors for urea, AN and ABC were 2.6±0.1%, 2.2±0.1% and 2.3±0.2%, respectively. The fertilizer-induced NH3 emission factors for the three fertilizers were 10.9±0.2%, 3.1±0.1% and 15.2±0.4%, respectively. From the perspective of air quality protection, it would be better to increase the proportion of AN application due to its lower emission factors for both NO and NH3. PMID:23527173

  17. Optical Transitions in Hybrid Perovskite Solar Cells: Ellipsometry, Density Functional Theory, and Quantum Efficiency Analyses for CH3NH3PbI3

    NASA Astrophysics Data System (ADS)

    Shirayama, Masaki; Kadowaki, Hideyuki; Miyadera, Tetsuhiko; Sugita, Takeshi; Tamakoshi, Masato; Kato, Masato; Fujiseki, Takemasa; Murata, Daisuke; Hara, Shota; Murakami, Takurou N.; Fujimoto, Shohei; Chikamatsu, Masayuki; Fujiwara, Hiroyuki

    2016-01-01

    Light-induced photocarrier generation is an essential process in all solar cells, including organic-inorganic hybrid (CH3NH3PbI3 ) solar cells, which exhibit a high short-circuit current density (Jsc ) of approximately 20 mA /cm2 . Although the high Jsc observed in the hybrid solar cells relies on strong electron-photon interaction, the optical transitions in the perovskite material remain unclear. Here, we report artifact-free CH3NH3PbI3 optical constants extracted from ultrasmooth perovskite layers without air exposure and assign all of the optical transitions in the visible and ultraviolet region unambiguously, based on density-functional theory (DFT) analysis that assumes a simple pseudocubic crystal structure. From the self-consistent spectroscopic ellipsometry analysis of the ultrasmooth CH3NH3PbI3 layers, we find that the absorption coefficients of CH3NH3PbI3 (α =3.8 ×104 cm-1 at 2.0 eV) are comparable to those of CuInGaSe2 and CdTe, and high α values reported in earlier studies are overestimated seriously by the extensive surface roughness of CH3NH3PbI3 layers. The polarization-dependent DFT calculations show that CH3NH3 + interacts strongly with the PbI3 - cage, modifying the CH3NH3PbI3 dielectric function in the visible region rather significantly. In particular, the transition matrix element of CH3NH3PbI3 varies, depending on the position of CH3NH3 + within the Pb—I network. When the effect of CH3NH3 + on the optical transition is eliminated in the DFT calculation, the CH3NH3PbI3 dielectric function deduced from DFT shows an excellent agreement with the experimental result. As a result, distinct optical transitions observed at E0(Eg)=1.61 eV , E1=2.53 eV , and E2=3.24 eV in CH3NH3PbI3 are attributed to the direct semiconductor-type transitions at the R , M , and X points in the pseudocubic Brillouin zone, respectively. We further perform the quantum efficiency (QE) analysis for a standard hybrid-perovskite solar cell incorporating a mesoporous TiO2 layer and demonstrate that the QE spectrum can be reproduced almost perfectly when the revised CH3NH3PbI3 optical constants are employed. Depth-resolved QE simulations confirm that Jsc is limited by the material's longer wavelength response and indicate the importance of optical confinement and long carrier-diffusion lengths in hybrid perovskite solar cells.

  18. A photoelectrochemical biosensor for fibroblast-like synoviocyte cell using visible light-activated NCQDs sensitized-ZnO/CH3NH3PbI3 heterojunction.

    PubMed

    Pang, Xuehui; Zhang, Yong; Pan, Jihong; Zhao, Yanxia; Chen, Yao; Ren, Xiang; Ma, Hongmin; Wei, Qin; Du, Bin

    2016-03-15

    Based on ZnO nanorods (NRs)/CH3NH3PbI3/nitrogen-doped carbon quantum dots (NCQDs) nanocomposites, the highly sensitive detection of fibroblast-like synoviocyte (FLS) cell was realized by a photoelectrochemical (PEC) biosensor. ZnO/CH3NH3PbI3/NCQDs nanocomposites were exploited as the photo-to-electron generator to produce the signal. CH3NH3PbI3 was spin-coated on ZnO surface after ZnO NRs grew on ITO electrode then by dropping on the modified electrode, NCQDs were diffused and adhered to the surface of ZnO and CH3NH3PbI3. In the presence of EDC/NHS, the combination of CH3NH3PbI3 and NCQDs was achieved by the carboxyl groups (-COOH) and amino groups (-NH2) in the preparation process. Furthermore, the capture probe of FLS cell, CD95 antibody, can be anchored by -COOH and -NH2 groups through EDC/NHS. The specific recognition between the antibody capture probes and cell targets gained high-sensitive detection for FLS cell for the first time. The developed biosensor showed a wide linear range from 1.0 × 10(4)cell/mL to 10 cell/mL and a low detection limit of 2 cell/mL. This kind of biosensor would provide a novel detection strategy for FLS cell. PMID:26433065

  19. Internal Rotation in CF3ICdotsNH3 and CF3I\\cdotsN(CH3)_3 Probed by Cp-Ftmw Spectroscopy

    NASA Astrophysics Data System (ADS)

    Walker, N. R.; Stephens, S. L.; Legon, A. C.

    2011-06-01

    The pure rotational spectra of CF3ICdotsNH3 and CF3I\\cdotsN(CH3)_3 have been measured by chirped-pulse, Fourier transform microwave (CP-FTMW) spectroscopy between 7 and 18.5 GHz. Both molecules are generated by supersonic expansion of a gas sample containing a small percentage of each precursor in a balance of argon. The spectra of both complexes are consistent with {C}3v prolate symmetric top structures. The observed spectrum of CF3ICdotsNH3 displays evidence for internal rotation of NH3 about the principal axis. More than one hundred transitions of CF3ICdotsNH3 have been assigned to the internal rotor {A} state allowing rotational, centrifugal distortion constants and a nuclear quadrupole coupling constant for the iodine atom to be determined for this state. Measurements performed using a Balle-Flygare FTMW spectrometer further allow determination of a nuclear quadrupole coupling constant for the 14N nucleus. Many transitions in the spectrum of the CF3ICdots15NH3 isotopologue have also been measured and the length of the halogen bond between the iodine and nitrogen atoms has been determined. Measurements of hyperfine components in nine different J''←J' transitions of CF3I\\cdotsN(CH3)_3 have allowed assignment of the spectrum of this complex to determine rotational, centrifugal distortion and nuclear quadrupole coupling constants.

  20. Influence of NH3 plasma pretreatment on the properties of plasma-enhanced chemical-vapor-deposited SiON on GaAs interface

    NASA Astrophysics Data System (ADS)

    Wu, C. Y.; Lin, M. S.

    1986-09-01

    Interface properties of plasma-enhanced chemical-vapor-deposited dielectric SiON on GaAs systems pretreated by NH3 plasma were studied. The effects of the process parameters in the NH3 plasma pretreatment, such as total pressure, radio-frequency power, substrate temperature, NH3 flow rate and pretreatment time, were investigated by the measurements of Auger electron spectroscopy, Raman spectroscopy, current-voltage, and capacitance-voltage characteristics. The transient region width and the surface strain field, surface leakage current, hysteresis, and degree of Fermi-level pinning evidently related to interface properties, are increased with increasing total pressure, decreased with increasing radio-frequency power, substrate temperature, and pretreatment time, and independent of NH3 flow rate. The physical and electrical properties of SiON/GaAs interface have been significantly improved under an optimum NH3 plasma pretreatment condition. The correlation of these parameters in pretreatment process with the interface properties including interdiffusion, surface strain field, surface leakage current, hysteresis, and Fermi-level pinning are discussed.

  1. Study on the correlations between the structure and photoelectric properties of CH3NH3PbI3 perovskite light-harvesting material

    NASA Astrophysics Data System (ADS)

    Xie, Junjie; Liu, Yan; Liu, Jianjun; Lei, Lei; Gao, Qianqian; Li, Jiaqing; Yang, Songwang

    2015-07-01

    The [PbI6] inorganic framework in the CH3NH3PbI3 could be affected by the oxidization effect of I- ions in atmosphere. The [PbI6] octahedral torsion angle increased ∼4.94° after the newly prepared CH3NH3PbI3 powders were stored in dry atmosphere for 30 days at 20 °C according to the results of XRD Rietveld refinement and X-ray Absorption Fine Structure. Analyses based on density of states indicated that UV-vis adsorption edge at ∼850 cm-1 corresponded to electron transition from I-5p orbitals to empty Pb-6p orbitals. The increased [PbI6] octahedral torsion angle made the band gap energy of CH3NH3PbI3 increased according to First-principle calculation and UV-vis absorption spectra. As a result, the band gap energy of CH3NH3PbI3 were strongly related to the structure of [PbI6] inorganic framework because the electrons diffused along the [PbI6] octahedral chains in CH3NH3PbI3 perovskite.

  2. The abundances of CH4, CH3D, NH3, and PH3 in the troposphere of Jupiter derived from high-resolution 1100-1200/cm spectra

    NASA Technical Reports Server (NTRS)

    Knacke, R. F.; Kim, S. J.; Ridgway, S. T.; Tokunaga, A. T.

    1982-01-01

    High-resolution spectra of the 1100-1200/cm region of the central part of Jupiter obtained in March 1980 and April 1981 are analyzed. The best fit NH3 distribution curve reveals a higher than solar mixing ratio, the abundance of NH3 to that of H2 being (3.3 + or - 1.7) x 10 to the -4th, below the 147 K layer (greater than 0.6 atmosphere). If NH3 ice particles are introduced as an opacity source, the NH3 mixing ratio below the 147 K layer can be lowered, but the fit is worse than that given by the model that excludes NH3 ice particles. The best fit PH3 distribution curve exhibits a PH3/H2 mixing ratio of (8.3 + or - 2.0) x 10 to the -7th in the troposphere. In addition, a CH4/H2 mixing ratio of (2.5 + or - 0.4) x 10 to the -3rd is found in the troposphere.

  3. Hysteresis-free, stable and efficient perovskite solar cells achieved by vacuum-treated thermal annealing of CH3NH3PbI3

    NASA Astrophysics Data System (ADS)

    Xie, Fengxian; Zhang, Di; Choy, Wallace C. H.

    2015-09-01

    The lead halide-based perovskite solar cells have emerged as a promising candidate in photovoltaic applications. However, the precise control over the morphologiy of the perovskite films (minimizing pore formation) and enhanced stability and reproducibility of the devices remain challenging, even though both will be necessary for further advancements. Here we introduce vacuum-assisted thermal annealing as a means of controlling the composition and morphology of the CH3NH3PbI3 films formed from PbCl2 and CH3NH3I as precursors. We identify the critical role that the CH3NH3Cl generated as a byproduct during the pervoskite synthesis plays for the photovoltaic performance of the perovskite film. Removing this byproduct through vacuum-assisted thermal annealing we succeeded in producing pure, pore-free planar CH3NH3PbI3 films showing high conversion efficiency (PCE) reaching 14.5%). Removal of CH3NH3Cl strongly attenuate the photocurrent hysteresis.

  4. Low Dislocation Densities of Nitride-Based Light-Emitting Diodes with a Preflow of NH3 Source before Growth of AlN Buffer Layer

    NASA Astrophysics Data System (ADS)

    Wang, Chun-Kai; Chiou, Yu-Zung; Sun, De-Jun; Chiang, Tsung-Hsun

    2013-01-01

    In this study, the AlN buffer layer grown on c-plane sapphire (Al2O3) substrates by metal-organic chemical vapor deposition (MOCVD) was controlled by a preflow of the NH3 source. With the treatment of NH3 preflow, the monolayer of AlN was formed on the surface of a sapphire substrate by the decomposition of the NH3 source and Al2O3 substrate. It was found that the density of threading dislocations significantly decreased owing to the abatement of lattice mismatch between a GaN layer and a sapphire substrate. At an injection current of 350 mA, the light output intensity of the light-emitting diode (LED) with NH3 preflow was increased by 14.1% compared with that of a conventional LED. On the other hand, LEDs with NH3 preflow treatment could endure electrostatic discharge (ESD) surges up to -3000 V and caused a low rate of light output degradation at a high ambient temperature.

  5. Efficient planar heterojunction solar cell employing CH3NH3PbI2+xCl1-x mixed halide perovskite utilizing modified sequential deposition

    NASA Astrophysics Data System (ADS)

    Zhang, Chunfu; Tang, Shi; Yan, Jing; Wang, Zhizhe; Xi, He; Chen, Dazheng; Yang, Haifeng; Zhang, Jincheng; Han, Genquan; Liu, Yan; Hao, Yue

    2015-09-01

    In this work, a modified method of sequential deposition of a CH3NH3PbI2+xCl1-x organometal halide perovskite material with a low chlorine fraction and easy morphology control is developed. The as-prepared mixed halide perovskite CH3NH3PbI2+xCl1-x thin film shows an intense adsorption from 400-800 nm. Scanning electron microscopy images show that almost the entire compact TiO2 surface is covered with CH3NH3PbI2+xCl1-x mixed halide perovskite with grain sizes of 250-350 nm. The planar heterojunction solar cell employing CH3NH3PbI2+xCl1-x mixed halide perovskite shows a twofold enhancement of photovoltaic performance, compared with a planar CH3NH3PbI3 heterojunction solar cell, achieving a 9.53% power conversion efficiency (PCE) with a VOC of 0.96 V, a JSC of 18.86 mA/cm2, and a fill factor (FF) of 0.53.

  6. Influence of bulking agents on CH4, N2O, and NH3 emissions during rapid composting of pig manure from the Chinese Ganqinfen system*

    PubMed Central

    Sun, Xiang-ping; Lu, Peng; Jiang, Tao; Schuchardt, Frank; Li, Guo-xue

    2014-01-01

    Mismanagement of the composting process can result in emissions of CH4, N2O, and NH3, which have caused severe environmental problems. This study was aimed at determining whether CH4, N2O, and NH3 emissions from composting are affected by bulking agents during rapid composting of pig manure from the Chinese Ganqinfen system. Three bulking agents, corn stalks, spent mushroom compost, and sawdust, were used in composting with pig manure in 60 L reactors with forced aeration for more than a month. Gas emissions were measured continuously, and detailed gas emission patterns were obtained. Concentrations of NH3 and N2O from the composting pig manure mixed with corn stalks or sawdust were higher than those from the spent mushroom compost treatment, especially the sawdust treatment, which had the highest total nitrogen loss among the three runs. Most of the nitrogen was lost in the form of NH3, which accounts for 11.16% to 35.69% of the initial nitrogen. One-way analysis of variance for NH3 emission showed no significant differences between the corn stalk and sawdust treatments, but a significant difference was noted between the spent mushroom compost and sawdust treatments. The introduction of sawdust reduced CH4 emission more than the corn stalks and spent mushroom compost. However, there were no significant differences among the three runs for total carbon loss. All treatments were matured after 30 d. PMID:24711356

  7. Growth and evolution of solution-processed CH3NH3PbI3-xClx layer for highly efficient planar-heterojunction perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Liu, Jiang; Lin, Jiahui; Xue, Qifan; Ye, Qinyan; He, Xulin; Ouyang, Liangqi; Zhuang, Daming; Liao, Cheng; Yip, Hin-Lap; Mei, Jun; Lau, Woon-Ming

    2016-01-01

    Methylammoniumn lead iodide perovskites have attracted great attention in photovoltaic research community. In this work, we demonstrate the results of studies focusing on the chemical reaction of CH3NH3PbI3-xClx layer formation during the annealing of perovskite precursor films. We identified two kinds of grain morphologies during the formation of perovskite films grown from non-stoichiometric precursor solution. To form single-phase and high absorbance perovskite films, higher concentration of chloride in precursor solution needs longer annealing time and only a very low Cl content could be incorporated in the final CH3NH3PbI3-xClx films. Adding PbCl2-3CH3NH3I to PbI2-CH3NH3I precursor solution can allow a good control of the growth rate and morphology for the final perovskite film, and is beneficial to the photovoltaic performance of perovskite devices. By employing the precursor solutions of PbCl2, PbI2 and CH3NH3I with a mole ratio of 1:1:4 and inserting an ultrathin amino-functionalized polymer interlayer, we achieved planar perovskite solar cell with maximum power conversion efficiency of over 15%.

  8. Effect of water vapor on NH3-NO/NO2 SCR performance of fresh and aged MnOx-NbOx-CeO2 catalysts.

    PubMed

    Chen, Lei; Si, Zhichun; Wu, Xiaodong; Weng, Duan; Wu, Zhenwei

    2015-05-01

    A MnOx-NbOx-CeO2 catalyst for low temperature selective catalytic reduction (SCR) of NOx with NH3 was prepared by a sol-gel method, and characterized by NH3-NO/NO2 SCR catalytic activity, NO/NH3 oxidation activity, NOx/NH3 TPD, XRD, BET, H2-TPR and in-situ Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS). The results indicate that the MnOx-NbOx-CeO2 catalyst shows excellent low temperature NH3-SCR activity in the temperature range of 150-300°C. Water vapor inhibits the low temperature activity of the catalyst in standard SCR due to the inhibition of NOx adsorption. As the NO2 content increases in the feed, water vapor does not affect the activity in NO2 SCR. Meanwhile, water vapor significantly enhances the N2 selectivity of the fresh and the aged catalysts due to its inhibition of the decomposition of NH4NO3 into N2O. PMID:25968280

  9. The reaction NH2 + PH3 yields NH3 + PH2: Absolute rate constant measurement and implication for NH3 and PH3 photochemistry in the atmosphere of Jupiter

    NASA Technical Reports Server (NTRS)

    Bosco, S. R.; Brobst, W. D.; Nava, D. F.; Stief, L. J.

    1983-01-01

    The rate constant is measured over the temperature interval 218-456 K using the technique of flash photolysis-laser-induced fluorescence. NH2 radicals are produced by the flash photolysis of ammonia highly diluted in argon, and the decay of fluorescent NH2 photons is measured by multiscaling techniques. For each of the five temperatures employed in the study, the results are shown to be independent of variations in PH3 concentration, total pressure (argon), and flash intensity. It is found that the rate constant results are best represented for T between 218 and 456 K by the expression k = (1.52 + or - 0.16) x 10 to the -12th exp(-928 + or - 56/T) cu cm per molecule per sec; the error quoted is 1 standard deviation. This is the first determination of the rate constant for the reaction NH2 + PH3. The data are compared with an estimate made in order to explain results of the radiolysis of NH3-PH3 mixtures. The Arrhenius parameters determined here for NH2 + PH3 are then constrasted with those for the corresponding reactions of H and OH with PH3.

  10. Synthesis and molecular structure of [Cu(NH3)4][Ni(CN)4]: A missing piece in the [Cu(NH3)n][Ni(CN)4] story

    NASA Astrophysics Data System (ADS)

    Solanki, Dina; Hogarth, Graeme

    2015-11-01

    Reaction of CuCl22H2O and K2[Ni(CN)4]2H2O in aqueous ammonia gave blue rod-like crystals of [Cu(NH3)4][Ni(CN)4]. An X-ray crystallographic reveals that square-planar anions and cations are weakly associated through coordination of a cis pair of cyanide ligands to copper, with one short and one long contact and thus the copper centre is best described as a square-based pyramid. Crystals lose ammonia readily upon removal from the solvent and this has been probed by TGA and DSC measurements. For comparison we have also re-determined the structure of the related ethylenediamine (en) complex [Cu(en)2][Ni(CN)4] at 150K. This consists of a 1D chain in which a trans pair of cyanide ligands bind to copper such that the latter has an overall tetragonally distorted octahedral coordination geometry.

  11. The reaction NH2 + PH3 yields NH3 + PH2 - Absolute rate constant measurement and implication for NH3 and PH3 photochemistry in the atmosphere of Jupiter

    NASA Technical Reports Server (NTRS)

    Bosco, S. R.; Brobst, W. D.; Nava, D. F.; Stief, L. J.

    1983-01-01

    The rate constant is measured over the temperature interval 218-456 K using the technique of flash photolysis-laser-induced fluorescence. NH2 radicals are produced by the flash photolysis of ammonia highly diluted in argon, and the decay of fluorescent NH2 photons is measured by multiscaling techniques. For each of the five temperatures employed in the study, the results are shown to be indepenent of variations in PH3 concentration, total pressure (argon), and flash intensity. It is found that the rate constant results are best represented for T between 218 and 456 K by the expression k = (1.52 + or - 0.16) x 10 to the -12th exp(-928 + or - 56/T) cu cm per molecule per sec; the error quoted is 1 standard deviation. This is the first determination of the rate constant for the reaction NH2 + PH3. The data are compared with an estimate made in order to explain results of the radiolysis of NH3-PH3 mixtures. The Arrhenius parameters determined here for NH2 + PH3 are then contrasted with those for the corresponding reactions of H and OH with PH3.

  12. Probing Electron Transfer Dynamics at MgO Surfaces by Mg-Atom Desorption

    SciTech Connect

    Joly, Alan G.; Henyk, Matthias; Beck, Kenneth M.; Trevisanutto, P. E.; Sushko, Petr V.; Hess, Wayne P.; Shluger, Alexander L.

    2006-08-14

    Desorption of a weakly bound adsorbate from a porous solid was studied for the case of N2 on amorphous solid water (ASW). Porous ASW films of different thickness were grown on Pt(111) by ballistic deposition. N2 adsorption and desorption kinetics were monitored mass-spectrometrically. Temperature programmed desorption spectra show that with the increasing film thickness, the N2 desorption peak systematically shifts to higher temperatures. The results are explained and quantitatively reproduced by a simple model, which assumes that the N2 transport within the film is faster than the depletion rate to vacuum. The local coverage at the pore mouth determines the desorption rate. For thick ASW films (>1 ?m), the assumption of the fast equilibration within the film is shown to be no longer valid due to diffusion limitations. The mechanisms of the adsorbate transport are discussed.

  13. Excellent performance of one-pot synthesized Cu-SSZ-13 catalyst for the selective catalytic reduction of NOx with NH3.

    PubMed

    Xie, Lijuan; Liu, Fudong; Ren, Limin; Shi, Xiaoyan; Xiao, Feng-Shou; He, Hong

    2014-01-01

    Cu-SSZ-13 samples prepared by a novel one-pot synthesis method achieved excellent NH3-SCR performance and high N2 selectivity from 150 to 550 C after ion exchange treatments. The selected Cu3.8-SSZ-13 catalyst was highly resistant to large space velocity (800?000 h(-1)) and also maintained high NOx conversion in the presence of CO2, H2O, and C3H6 in the simulated diesel exhaust. Isolated Cu(2+) ions located in three different sites were responsible for its excellent NH3-SCR activity. Primary results suggest that the one-pot synthesized Cu-SSZ-13 catalyst is a promising candidate as an NH3-SCR catalyst for the NOx abatement from diesel vehicles. PMID:24295053

  14. Decomposition processes of H3NBH3 (borazane), (BH)3(NH)3 (borazine), and B(CH3)3 (trimethylboron) on heated W wire surfaces

    NASA Astrophysics Data System (ADS)

    Umemoto, Hironobu; Miyata, Atsushi; Nojima, Takuto

    2015-10-01

    The decomposition mechanisms of H3NBH3, (BH)3(NH)3, and B(CH3)3 on heated W wire surfaces were examined using mass spectrometric and laser spectroscopic techniques. These chemicals can be source materials for catalytic chemical vapor deposition as well as for B-atom doping. All the species could be decomposed well when the wire temperature was over 2.0 103 K. When H2 was introduced, the production of B atoms was confirmed in the decomposition of H3NBH3 and B(CH3)3, but not for (BH)3(NH)3. H3NBH3 and B(CH3)3 may be candidates as safe precursors for B-atom doping, while (BH)3(NH)3 could be a viable candidate as a BN film precursor.

  15. P-P heterojunction sensor of self-assembled polyaniline nano-thin film/microstructure silicon array for NH3 detection

    NASA Astrophysics Data System (ADS)

    Tai, Huiling; Xu, Xiaoying; Ye, Zongbiao; Liu, Chunhua; Xie, Guangzhong; Jiang, Yadong

    2015-02-01

    A novel P-P isotype heterojunction sensor was developed by modifying microstructure silicon array (MSSA) with self-assembled polyaniline (PANI) nano-thin film for ammonia (NH3) detection at room temperature, and the comparative study of response performance was focused on sensors with varied etching time of MSSA. The results indicated that PANI nanorods network was successfully deposited on MSSA surface, and PANI/MSSA sensor exhibited superior NH3-sensing properties than PANI/plane silicon sensor, which should be ascribed to three-dimensional structure and p-p heterojunction enhancement effect. Meanwhile, the optimized sensor with 4 min etching time exhibited high response, good reversibility, repeatability and selectivity when exposed to NH3.

  16. Significant Promotion Effect of Mo Additive on a Novel Ce-Zr Mixed Oxide Catalyst for the Selective Catalytic Reduction of NO(x) with NH3.

    PubMed

    Ding, Shipeng; Liu, Fudong; Shi, Xiaoyan; Liu, Kuo; Lian, Zhihua; Xie, Lijuan; He, Hong

    2015-05-13

    A novel Mo-promoted Ce-Zr mixed oxide catalyst prepared by a homogeneous precipitation method was used for the selective catalytic reduction (SCR) of NO(x) with NH3. The optimal catalyst showed high NH3-SCR activity, SO2/H2O durability, and thermal stability under test conditions. The addition of Mo inhibited growth of the CeO2 particle size, improved the redox ability, and increased the amount of surface acidity, especially the Lewis acidity, all of which were favorable for the excellent NH3-SCR performance. It is believed that the catalyst is promising for the removal of NO(x) from diesel engine exhaust. PMID:25894854

  17. Rotational excitation of symmetric top molecules by collisions with atoms: Close coupling, coupled states, and effective potential calculations for NH3-He

    NASA Technical Reports Server (NTRS)

    Green, S.

    1976-01-01

    The formalism for describing rotational excitation in collisions between symmetric top rigid rotors and spherical atoms is presented both within the accurate quantum close coupling framework and also the coupled states approximation of McGuire and Kouri and the effective potential approximation of Rabitz. Calculations are reported for thermal energy NH3-He collisions, treating NH3 as a rigid rotor and employing a uniform electron gas (Gordon-Kim) approximation for the intermolecular potential. Coupled states are found to be in nearly quantitative agreement with close coupling results while the effective potential method is found to be at least qualitatively correct. Modifications necessary to treat the inversion motion in NH3 are discussed.

  18. Real Time Monitoring of NH3 Concentration Using Diffusion Scrubber Sampling Technique and Result of Application to the Processing of Chemically Amplified Resists

    NASA Astrophysics Data System (ADS)

    Park, Jungchul; Bae, Eunyoung; Park, Chungeun; Han, Woosung; Koh, Youngbum; Lee, Moonyoung; Lee, Jonggil

    1995-12-01

    The application of chemically amplified resist is known to cause a problem in the accurate measurement of the concentration of basic gas species ( NH3, N-methylpyrrolidone (NMP)) in a clean room environment because it is sensitive to its environment. Among various methods of measurement, diffusion scrubber sampling method was selected and tested. The environmental sensitivity of a commercial chemically amplified resist, APEX-E, was also tested. For the concentration measurement, the method proved to be suitable for automation and good for measuring NH3 concentration as low as the sub ppb level (limit of detection ˜0.08 ppb). Some measurement results concerning various aspects of application are presented. Test results of the environmental stability of chemically amplified resists showed that NH3 concentration should be controlled to at least under 7.5 ppb for maintaining the process stability.

  19. A facile, solvent vapor-fumigation-induced, self-repair recrystallization of CH3NH3PbI3 films for high-performance perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Zhu, Weidong; Yu, Tao; Li, Faming; Bao, Chunxiong; Gao, Hao; Yi, Yong; Yang, Jie; Fu, Gao; Zhou, Xiaoxin; Zou, Zhigang

    2015-03-01

    A high-quality CH3NH3PbI3 film is crucial in the manufacture of a high-performance perovskite solar cell. Here, a recrystallization process via facile fumigation with DMF vapor has been successfully introduced to self-repair of CH3NH3PbI3 films with poor coverage and low crystallinity prepared by the commonly used one-step spin-coating method. We found that the CH3NH3PbI3 films with dendritic structures can spontaneously transform to the uniform ones with full coverage and high crystallinity by adjusting the cycles of the recrystallization process. The mesostructured perovskite solar cells based on these repaired CH3NH3PbI3 films showed reproducible optimal power conversion efficiency (PCE) of 11.15% and average PCE of 10.25 +/- 0.90%, which are much better than that of devices based on the non-repaired CH3NH3PbI3 films. In addition, the hysteresis phenomenon in the current-voltage test can also be effectively alleviated due to the quality of the films being improved in the optimized devices. Our work proved that the fumigation of solvent vapor can modify metal organic perovskite films such as CH3NH3PbI3. It offers a novel and attractive way to fabricate high-performance perovskite solar cells.A high-quality CH3NH3PbI3 film is crucial in the manufacture of a high-performance perovskite solar cell. Here, a recrystallization process via facile fumigation with DMF vapor has been successfully introduced to self-repair of CH3NH3PbI3 films with poor coverage and low crystallinity prepared by the commonly used one-step spin-coating method. We found that the CH3NH3PbI3 films with dendritic structures can spontaneously transform to the uniform ones with full coverage and high crystallinity by adjusting the cycles of the recrystallization process. The mesostructured perovskite solar cells based on these repaired CH3NH3PbI3 films showed reproducible optimal power conversion efficiency (PCE) of 11.15% and average PCE of 10.25 +/- 0.90%, which are much better than that of devices based on the non-repaired CH3NH3PbI3 films. In addition, the hysteresis phenomenon in the current-voltage test can also be effectively alleviated due to the quality of the films being improved in the optimized devices. Our work proved that the fumigation of solvent vapor can modify metal organic perovskite films such as CH3NH3PbI3. It offers a novel and attractive way to fabricate high-performance perovskite solar cells. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr00225g

  20. Evaluation of biochars by temperature programmed oxidation/mass spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biochar from the thermochemical conversion of biomass was evaluated by Temperature Programmed Oxidation (TPO) coupled with mass spectroscopy. This technique can be used to assess the oxidative reactivity of carbonaceous solids where higher temperature reactivity indicates greater structural order. ...

  1. Bulk intermixing-type perovskite CH3NH3PbI3/TiO2 nanorod hybrid solar cells

    NASA Astrophysics Data System (ADS)

    Li, Shao-Sian; Wang, Ying-Chiao; Tsai, Chin-Ming; Wen, Cheng-Yen; Yu, Chia-Hao; Yang, Yu-Pei; Lin, Jou-Chun; Wang, Di-Yan; Chen, Chia-Chun; Yeh, Yun-Chieh; Chen, Chun-Wei

    2015-08-01

    To replace high-temperature sintered scaffold materials in conventional CH3NH3PbI3-based solar cells, this study demonstrates a new device structure of a bulk intermixing (BI)-type CH3NH3PbI3/TiO2 nanorod (NR) hybrid solar cell, where dispersed TiO2 NRs from chemical synthesis are intermixed with the perovskite absorbing layer to form a BI-type perovskite/TiO2 NR hybrid for device fabrication. Through interface engineering between the TiO2 NR surface and the photoactive perovskite material of CH3NH3PbI3 by ligand exchange treatment, a remarkable power conversion efficiency (PCE) of over 12% was achieved based on the simple BI-type CH3NH3PbI3/TiO2 NR hybrid device structure. The proposed hybrids not only provide great flexibility for deposition on various substrates through spin coating at low temperatures but also enable layer-by-layer deposition for the future development of perovskite-based multi-junction solar cells.To replace high-temperature sintered scaffold materials in conventional CH3NH3PbI3-based solar cells, this study demonstrates a new device structure of a bulk intermixing (BI)-type CH3NH3PbI3/TiO2 nanorod (NR) hybrid solar cell, where dispersed TiO2 NRs from chemical synthesis are intermixed with the perovskite absorbing layer to form a BI-type perovskite/TiO2 NR hybrid for device fabrication. Through interface engineering between the TiO2 NR surface and the photoactive perovskite material of CH3NH3PbI3 by ligand exchange treatment, a remarkable power conversion efficiency (PCE) of over 12% was achieved based on the simple BI-type CH3NH3PbI3/TiO2 NR hybrid device structure. The proposed hybrids not only provide great flexibility for deposition on various substrates through spin coating at low temperatures but also enable layer-by-layer deposition for the future development of perovskite-based multi-junction solar cells. Electronic supplementary information (ESI) available: TiO2 synthesis and ligand exchange process, device fabrication and characterization. See DOI: 10.1039/c5nr04076k

  2. Demonstration of isotype GaN/AlN/GaN heterobarrier diodes by NH3-molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Fireman, Micha N.; Browne, David A.; Mazumder, Baishakhi; Speck, James S.; Mishra, Umesh K.

    2015-05-01

    The results of vertical transport through nitride heterobarrier structures grown by ammonia molecular beam epitaxy are presented. Structures are designed with binary layers to avoid the effects of random alloy fluctuations in ternary nitride barriers. The unintentional incorporation of Ga in the AlN growth is investigated by atom probe tomography and is shown to be strongly dependent on both the NH3 flowrate and substrate temperature growth parameters. Once nominally pure AlN layer growth conditions are achieved, structures consisting of unintentionally doped (UID) GaN spacer layers adjacent to a nominally pure AlN are grown between two layers of n+ GaN, from which isotype diodes are fabricated. Varying the design parameters of AlN layer thickness, UID spacer layer thickness, and threading dislocation density show marked effects on the vertical transport characteristics of these structures. The lack of significant temperature dependence, coupled with Fowler-Nordheim and/or Milliken-Lauritsen analysis, point to a prevalently tunneling field emission mechanism through the AlN barrier. Once flatband conditions in the UID layer are achieved, electrons leave the barrier with significant energy. This transport mechanism is of great interest for applications in hot electron structures.

  3. Thermal Assisted Oxygen Annealing for High Efficiency Planar CH3NH3PbI3 Perovskite Solar Cells

    PubMed Central

    Ren, Zhiwei; Ng, Annie; Shen, Qian; Gokkaya, Huseyin Cem; Wang, Jingchuan; Yang, Lijun; Yiu, Wai-Kin; Bai, Gongxun; Djurii?, Aleksandra B.; Leung, Wallace Woon-fong; Hao, Jianhua; Chan, Wai Kin; Surya, Charles

    2014-01-01

    We report investigations on the influences of post-deposition treatments on the performance of solution-processed methylammonium lead triiodide (CH3NH3PbI3)-based planar solar cells. The prepared films were stored in pure N2 at room temperature or annealed in pure O2 at room temperature, 45C, 65C and 85C for 12?hours prior to the deposition of the metal electrodes. It is found that annealing in O2 leads to substantial increase in the power conversion efficiencies (PCEs) of the devices. Furthermore, strong dependence on the annealing temperature for the PCEs of the devices suggests that a thermally activated process may underlie the observed phenomenon. It is believed that the annealing process may facilitate the diffusion of O2 into the spiro-MeOTAD for inducing p-doping of the hole transport material. Furthermore, the process can result in lowering the localized state density at the grain boundaries as well as the bulk of perovskite. Utilizing thermal assisted O2 annealing, high efficiency devices with good reproducibility were attained. A PCE of 15.4% with an open circuit voltage (VOC) 1.04?V, short circuit current density (JSC) 23?mA/cm2, and fill factor 0.64 had been achieved for our champion device. PMID:25341527

  4. Ionic polarization-induced current-voltage hysteresis in CH3NH3PbX3 perovskite solar cells.

    PubMed

    Meloni, Simone; Moehl, Thomas; Tress, Wolfgang; Franckevičius, Marius; Saliba, Michael; Lee, Yong Hui; Gao, Peng; Nazeeruddin, Mohammad Khaja; Zakeeruddin, Shaik Mohammed; Rothlisberger, Ursula; Graetzel, Michael

    2016-01-01

    CH3NH3PbX3 (MAPbX3) perovskites have attracted considerable attention as absorber materials for solar light harvesting, reaching solar to power conversion efficiencies above 20%. In spite of the rapid evolution of the efficiencies, the understanding of basic properties of these semiconductors is still ongoing. One phenomenon with so far unclear origin is the so-called hysteresis in the current-voltage characteristics of these solar cells. Here we investigate the origin of this phenomenon with a combined experimental and computational approach. Experimentally the activation energy for the hysteretic process is determined and compared with the computational results. First-principles simulations show that the timescale for MA(+) rotation excludes a MA-related ferroelectric effect as possible origin for the observed hysteresis. On the other hand, the computationally determined activation energies for halide ion (vacancy) migration are in excellent agreement with the experimentally determined values, suggesting that the migration of this species causes the observed hysteretic behaviour of these solar cells. PMID:26852685

  5. Ionic polarization-induced current–voltage hysteresis in CH3NH3PbX3 perovskite solar cells

    PubMed Central

    Meloni, Simone; Moehl, Thomas; Tress, Wolfgang; Franckevičius, Marius; Saliba, Michael; Lee, Yong Hui; Gao, Peng; Nazeeruddin, Mohammad Khaja; Zakeeruddin, Shaik Mohammed; Rothlisberger, Ursula; Graetzel, Michael

    2016-01-01

    CH3NH3PbX3 (MAPbX3) perovskites have attracted considerable attention as absorber materials for solar light harvesting, reaching solar to power conversion efficiencies above 20%. In spite of the rapid evolution of the efficiencies, the understanding of basic properties of these semiconductors is still ongoing. One phenomenon with so far unclear origin is the so-called hysteresis in the current–voltage characteristics of these solar cells. Here we investigate the origin of this phenomenon with a combined experimental and computational approach. Experimentally the activation energy for the hysteretic process is determined and compared with the computational results. First-principles simulations show that the timescale for MA+ rotation excludes a MA-related ferroelectric effect as possible origin for the observed hysteresis. On the other hand, the computationally determined activation energies for halide ion (vacancy) migration are in excellent agreement with the experimentally determined values, suggesting that the migration of this species causes the observed hysteretic behaviour of these solar cells. PMID:26852685

  6. Effect of hyperfine interactions on ultracold molecular collisions: NH(3?-) with Mg(1S) in magnetic fields

    NASA Astrophysics Data System (ADS)

    Gonzlez-Martnez, Maykel L.; Hutson, Jeremy M.

    2011-11-01

    We investigate the effect of hyperfine interactions on ultracold molecular collisions in magnetic fields, using 24Mg(1S)+14NH(3?-) as a prototype system. We explore the energy and magnetic-field dependence of the cross sections, comparing the results with previous calculations that neglected hyperfine interactions [A.O.G. Wallis and J. M. Hutson, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.103.183201 103, 183201 (2009)]. The main effect of hyperfine interactions for spin relaxation cross sections is that the kinetic energy release of the dominant outgoing channels does not reduce to zero at low fields. This results in reduced centrifugal suppression of the cross sections and increased inelastic cross sections at low energy and low field. We also analyze state-to-state cross sections, for various initial states, and show that hyperfine interactions introduce additional mechanisms for spin relaxation. In particular, there are hyperfine-mediated collisions to outgoing channels that are not centrifugally suppressed. However, for Mg+NH these unsuppressed channels make only small contributions to the total cross sections. We consider the implications of our results for sympathetic cooling of NH by Mg and conclude that the ratio of elastic to inelastic cross sections remains high enough for sympathetic cooling to proceed.

  7. Direct Observation of Ferroelectric Domains in Solution-Processed CH3NH3PbI3 Perovskite Thin Films.

    PubMed

    Kutes, Yasemin; Ye, Linghan; Zhou, Yuanyuan; Pang, Shuping; Huey, Bryan D; Padture, Nitin P

    2014-10-01

    A new generation of solid-state photovoltaics is being made possible by the use of organometal-trihalide perovskite materials. While some of these materials are expected to be ferroelectric, almost nothing is known about their ferroelectric properties experimentally. Using piezoforce microscopy (PFM), here we show unambiguously, for the first time, the presence of ferroelectric domains in high-quality ?-CH3NH3PbI3 perovskite thin films that have been synthesized using a new solution-processing method. The size of the ferroelectric domains is found to be about the size of the grains (?100 nm). We also present evidence for the reversible switching of the ferroelectric domains by poling with DC biases. This suggests the importance of further PFM investigations into the local ferroelectric behavior of hybrid perovskites, in particular in situ photoeffects. Such investigations could contribute toward the basic understanding of photovoltaic mechanisms in perovskite-based solar cells, which is essential for the further enhancement of the performance of these promising photovoltaics. PMID:26278441

  8. Adsorption behavior of Co anchored on graphene sheets toward NO, SO2, NH3, CO and HCN molecules

    NASA Astrophysics Data System (ADS)

    Tang, Yanan; Chen, Weiguang; Li, Chenggang; Pan, Lijun; Dai, Xianqi; Ma, Dongwei

    2015-07-01

    Based on the first-principles of density-functional theory (DFT), the effects of gas adsorption on the change in geometric stability, electronic structure and magnetic properties of graphene with anchored Co (Co-graphene) systems were investigated. A single Co adatom interacts much weaker with pristine graphene (Co/pri-graphene) than with the graphene containing a single vacancy (Co/SV-graphene). The Co dopant provides more electrons to the dangling bonds of carbon atom at defective site and exhibits more positive charges, which makes Co/SV-graphene less prone to be adsorbed by gas molecules in comparison to Co/pri-graphene. It is found that the electronic structure and magnetic properties of Co-graphene systems can be modulated by adsorbing gas molecules. Except the NH3 molecule, the adsorbed NO, SO2, CO or HCN as electron acceptors on the Co/pri-graphene can exhibit semiconducting properties. Among the gas molecules, the strong adsorption of NO molecule can effectively regulate the magnetic properties of Co-graphene systems. Moreover, the stable configuration of Co/SV-graphene is more likely to be the gas sensor for detecting NO and SO2. The results validate that the reactivity of atomic-scale catalyst is supported on graphene sheets, which is expected to be potentially efficient in the gas sensors and electronic device.

  9. Ionic polarization-induced current-voltage hysteresis in CH3NH3PbX3 perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Meloni, Simone; Moehl, Thomas; Tress, Wolfgang; Franckevičius, Marius; Saliba, Michael; Lee, Yong Hui; Gao, Peng; Nazeeruddin, Mohammad Khaja; Zakeeruddin, Shaik Mohammed; Rothlisberger, Ursula; Graetzel, Michael

    2016-02-01

    CH3NH3PbX3 (MAPbX3) perovskites have attracted considerable attention as absorber materials for solar light harvesting, reaching solar to power conversion efficiencies above 20%. In spite of the rapid evolution of the efficiencies, the understanding of basic properties of these semiconductors is still ongoing. One phenomenon with so far unclear origin is the so-called hysteresis in the current-voltage characteristics of these solar cells. Here we investigate the origin of this phenomenon with a combined experimental and computational approach. Experimentally the activation energy for the hysteretic process is determined and compared with the computational results. First-principles simulations show that the timescale for MA+ rotation excludes a MA-related ferroelectric effect as possible origin for the observed hysteresis. On the other hand, the computationally determined activation energies for halide ion (vacancy) migration are in excellent agreement with the experimentally determined values, suggesting that the migration of this species causes the observed hysteretic behaviour of these solar cells.

  10. Photoluminescence characterisations of a dynamic aging process of organic-inorganic CH3NH3PbBr3 perovskite

    NASA Astrophysics Data System (ADS)

    Sheng, R.; Wen, X.; Huang, S.; Hao, X.; Chen, S.; Jiang, Y.; Deng, X.; Green, M. A.; Ho-Baillie, A. W. Y.

    2016-01-01

    After unprecedented development of organic-inorganic lead halide perovskite solar cells over the past few years, one of the biggest barriers towards their commercialization is the stability of the perovskite material. It is thus important to understand the interaction between the perovskite material and oxygen and/or humidity and the associated degradation process in order to improve device and encapsulation design for better durability. Here we characterize the dynamic aging process in vapour-assisted deposited (VASP) CH3NH3PbBr3 perovskite thin films using advanced optical techniques, such as time-resolved photoluminescence and fluorescence lifetime imaging microscopy (FLIM). Our investigation reveals that the perovskite grains grow spontaneously and the larger grains are formed at room temperature in the presence of moisture and oxygen. This crystallization process leads to a higher density of defects and a shorter carrier lifetime, specifically in the larger grains. Excitation-intensity-dependent steady-state photoluminescence shows both N2 stored and aged perovskite exhibit a super-linear increase of photoluminescence intensity with increasing excitation intensity; and the larger slope in aged sample suggests a larger density of defects is generated, consistent with time-resolved PL measurements.

  11. Thermal Assisted Oxygen Annealing for High Efficiency Planar CH3NH3PbI3 Perovskite Solar Cells

    NASA Astrophysics Data System (ADS)

    Ren, Zhiwei; Ng, Annie; Shen, Qian; Gokkaya, Huseyin Cem; Wang, Jingchuan; Yang, Lijun; Yiu, Wai-Kin; Bai, Gongxun; Djurii?, Aleksandra B.; Leung, Wallace Woon-Fong; Hao, Jianhua; Chan, Wai Kin; Surya, Charles

    2014-10-01

    We report investigations on the influences of post-deposition treatments on the performance of solution-processed methylammonium lead triiodide (CH3NH3PbI3)-based planar solar cells. The prepared films were stored in pure N2 at room temperature or annealed in pure O2 at room temperature, 45C, 65C and 85C for 12 hours prior to the deposition of the metal electrodes. It is found that annealing in O2 leads to substantial increase in the power conversion efficiencies (PCEs) of the devices. Furthermore, strong dependence on the annealing temperature for the PCEs of the devices suggests that a thermally activated process may underlie the observed phenomenon. It is believed that the annealing process may facilitate the diffusion of O2 into the spiro-MeOTAD for inducing p-doping of the hole transport material. Furthermore, the process can result in lowering the localized state density at the grain boundaries as well as the bulk of perovskite. Utilizing thermal assisted O2 annealing, high efficiency devices with good reproducibility were attained. A PCE of 15.4% with an open circuit voltage (VOC) 1.04 V, short circuit current density (JSC) 23 mA/cm2, and fill factor 0.64 had been achieved for our champion device.

  12. Density Functional Studies of Stoichiometric Surfaces of Orthorhombic Hybrid Perovskite CH3NH3PbI3

    SciTech Connect

    Wang, Yun; Huang, Jingsong; Sumpter, Bobby G; Zhang, Haimin; Liu, Porun; Yang, Huagui; Zhao, Huijun

    2015-01-01

    Organic/inorganic hybrid perovskite materials are highly attractive for dye-sensitized solar cells as demonstrated by their rapid advances in energy conversion efficiency. In this work, the structures, energetics, and electronic properties for a range of stoichiometric surfaces of the orthorhombic perovskite CH3NH3PbI3 are theoretically studied using density functional theory. Various possible spatially and constitutionally isomeric surfaces are considered by diversifying the spatial orientations and connectivities of surface Pb-I bonds. The comparison of the surface energies for the most stable configurations identified for various surfaces shows that the stabilities of stoichiometric surfaces are mainly dictated by the coordination numbers of surface atoms, which are directly correlated with the numbers of broken bonds. Additionally, Coulombic interactions between I anions and organic countercations on the surface also contribute to the stabilization. Electronic properties are compared between the most stable (100) surface and the bulk phase, showing generally similar features except for the lifted band degeneracy and the enhanced bandgap energy for the surface. These studies on the stoichiometric surfaces serve as the first step toward gaining a fundamental understanding of the interfacial properties in the current structural design of perovskite based solar cells, in order to achieve further breakthroughs in solar conversion efficiencies.

  13. Line shifts in the ?2, 2 ?2, and ?4 bands of NH 3 perturbed by O 2

    NASA Astrophysics Data System (ADS)

    Aroui, H.; Chelin, P.; Echargui, M. A.; Fellows, C. E.; Orphal, J.

    2008-12-01

    Pressure-induced line shift coefficients have been measured for more than 200 rovibrational lines of NH 3 perturbed by O 2 at room temperature ( T = 295 K) in some branches of the ?2, 2 ?2, and ?4 bands. These lines with J values ranging from 1 to 13 are located in the spectral range 800-1800 cm -1. Experiments were made with a high-resolution Fourier transform spectrometer. The treatment of vibration-rotation lines includes interference effects caused by the overlapping of lines. The O 2 pressure-induced shift coefficients have been derived from the non-linear least-squares multi-pressure fitting technique. The results illustrate a vibrational dependence of line shifts with vibrational quantum number. Most of the measured shifts are negative in the ?4 band. They are positive for the ?2 and 2 ?2 bands. The measured shift coefficients are compared with previous measurements and with those calculated from a semiclassical theory based upon the Robert-Bonamy formalism extended to the case of symmetric top molecule with inversion motion. The predictions are generally in satisfactory agreement with the experimental data. Analyses of measured and predicted results illustrate that these shifts mainly originate from the isotropic part of the intermolecular potential.

  14. Selective catalytic reduction of NO by NH3 on Cu-faujasite catalysts: an experimental and quantum chemical approach.

    PubMed

    Delahay, Grard; Villagomez, Enrique Ayala; Ducere, Jean-Marie; Berthomieu, Dorothe; Goursot, Annick; Coq, Bernard

    2002-08-16

    The selective catalytic reduction (SCR) of NO by NH3 in the presence of O2 on Cu-faujasite (Cu-FAU) has been studied. Substitution of some Cu2+ with H+ and Na+ cations, compensating for the negative charge of the zeolite framework, forms the various CuHNa-FAU studied. The amount of Cu was held constant and the proportion of H+ and Na+ varied in the sample. The substitution of Na+ for H+ increases sharply the SCR rate by lowering the temperature of reaction by about 150 K. It is proposed that the rate increase mainly comes from an unhindered migration of Cu from hidden to active sites and a modification of the redox properties of Cu species. The former was demonstrated by diffuse reflectance IR spectroscopy of adsorbed CO. The change in redox properties was demonstrated by a faster oxidation of Cu+ to Cu2+ (rate-determining step). Quantum chemical calculations on model clusters of CuHNa-FAU indicate that the faster rate of oxidation can be explained by a higher lability of protons in the absence of Na, which can be then removed from the catalyst more easily to yield H2O during the oxidation process. PMID:12503149

  15. Feasible boundaries of aqueous two-phase systems with NH(3) and CO(2) as recyclable volatile salts.

    PubMed

    van Berlo, M; Ottens, M; Luyben, K C; van Der Wielen, L A

    2000-10-01

    Aqueous two-phase systems (ATPSs) have great potential for use in the downstream processing of fermentation products. A major drawback of these systems, limiting application in industrial practice up till now, is the consumption of large amounts of auxiliary materials such as polymers and salts. Making use of alternative auxiliaries can diminish this relatively large discharge. A possible approach is to make use of volatile salts induced by combinations of ammonia and carbon dioxide that can be recycled to the extraction system. As part of an ongoing research effort on ATPSs with volatile salts, this work aims at getting more information on the system boundaries or operating conditions of these systems in terms of phase behavior. The results show that the NH(3)/CO(2) ratio is an important parameter that has a large influence on the system boundaries. Both for systems with PEG 2000 and PEG 4000, this ratio has to be larger than about 1.75 to make a liquid-liquid phase separation possible. The most optimal ratio seems to be 2.0 for reasons of solution composition and absence of solid salt. PMID:10940864

  16. Photoluminescence characterisations of a dynamic aging process of organic-inorganic CH3NH3PbBr3 perovskite.

    PubMed

    Sheng, R; Wen, X; Huang, S; Hao, X; Chen, S; Jiang, Y; Deng, X; Green, M A; Ho-Baillie, A W Y

    2016-01-21

    After unprecedented development of organic-inorganic lead halide perovskite solar cells over the past few years, one of the biggest barriers towards their commercialization is the stability of the perovskite material. It is thus important to understand the interaction between the perovskite material and oxygen and/or humidity and the associated degradation process in order to improve device and encapsulation design for better durability. Here we characterize the dynamic aging process in vapour-assisted deposited (VASP) CH3NH3PbBr3 perovskite thin films using advanced optical techniques, such as time-resolved photoluminescence and fluorescence lifetime imaging microscopy (FLIM). Our investigation reveals that the perovskite grains grow spontaneously and the larger grains are formed at room temperature in the presence of moisture and oxygen. This crystallization process leads to a higher density of defects and a shorter carrier lifetime, specifically in the larger grains. Excitation-intensity-dependent steady-state photoluminescence shows both N2 stored and aged perovskite exhibit a super-linear increase of photoluminescence intensity with increasing excitation intensity; and the larger slope in aged sample suggests a larger density of defects is generated, consistent with time-resolved PL measurements. PMID:26753563

  17. Clumped-isotope signatures at equilibrium of CH4, NH3, H2O, H2S and SO2

    NASA Astrophysics Data System (ADS)

    Liu, Qi; Liu, Yun

    2016-02-01

    High precision Δi values at equilibrium determined by theoretical methods are imperatively needed as references for the development of new clumped-isotope thermometers (or tracers). In this study, quantum chemistry methods with corrections beyond the harmonic approximation are used to obtain the clumped-isotope signatures at equilibrium of several gas-phase molecules (i.e., CH4, NH3, H2O, H2S, and SO2). Here, we consider as many corrections to the traditional Bigeleisen-Mayer equation as possible to obtain accurate Δi values at equilibrium and their temperature dependences. The corrections include anharmonic correction for zero-point energy, anharmonic correction for vibrational excited states, vibration-rotation coupling correction for zero-point energy, vibration-rotation coupling correction for vibrational excited states, quantum mechanical correction to rotation, and centrifugal distortion correction, which are important for theoretical understanding of clumped-isotope signals. Specifically, molecular constants are calculated via second-order perturbative analysis at the MP2/aug-cc-pVTZ level. The CCSD/6-311+G(3df,3pd) and CCSD/aug-cc-pVTZ levels are further employed to ensure the precision of harmonic frequencies of methane. For methane, a polynomial fit of ΔCH133D values over the temperature range of from 273.15 to 1000 K is obtained:

  18. An analytical approach to evaluate the performance of graphene and carbon nanotubes for NH3 gas sensor applications

    PubMed Central

    Akbari, Elnaz; Enzevaee, Aria; Ahmadi, Mohamad T; Saeidmanesh, Mehdi; Khaledian, Mohsen; Karimi, Hediyeh; Yusof, Rubiyah

    2014-01-01

    Summary Carbon, in its variety of allotropes, especially graphene and carbon nanotubes (CNTs), holds great potential for applications in variety of sensors because of dangling ?-bonds that can react with chemical elements. In spite of their excellent features, carbon nanotubes (CNTs) and graphene have not been fully exploited in the development of the nanoelectronic industry mainly because of poor understanding of the band structure of these allotropes. A mathematical model is proposed with a clear purpose to acquire an analytical understanding of the field-effect-transistor (FET) based gas detection mechanism. The conductance change in the CNT/graphene channel resulting from the chemical reaction between the gas and channel surface molecules is emphasized. NH3 has been used as the prototype gas to be detected by the nanosensor and the corresponding currentvoltage (IV) characteristics of the FET-based sensor are studied. A graphene-based gas sensor model is also developed. The results from graphene and CNT models are compared with the experimental data. A satisfactory agreement, within the uncertainties of the experiments, is obtained. Graphene-based gas sensor exhibits higher conductivity compared to that of CNT-based counterpart for similar ambient conditions. PMID:24991510

  19. Rashba Spin-Orbit Coupling Enhanced Carrier Lifetime in CH3NH3PbI3.

    PubMed

    Zheng, Fan; Tan, Liang Z; Liu, Shi; Rappe, Andrew M

    2015-12-01

    Organometal halide perovskites are promising solar-cell materials for next-generation photovoltaic applications. The long carrier lifetime and diffusion length of these materials make them very attractive for use in light absorbers and carrier transporters. While these aspects of organometal halide perovskites have attracted the most attention, the consequences of the Rashba effect, driven by strong spin-orbit coupling, on the photovoltaic properties of these materials are largely unexplored. In this work, taking the electronic structure of CH3NH3PbI3 (methylammonium lead iodide) as an example, we propose an intrinsic mechanism for enhanced carrier lifetime in three-dimensional (3D) Rashba materials. On the basis of first-principles calculations and a Rashba spin-orbit model, we demonstrate that the recombination rate is reduced due to the spin-forbidden transition. These results are important for understanding the fundamental physics of organometal halide perovskites and for optimizing and designing the materials with better performance. The proposed mechanism including spin degrees of freedom offers a new paradigm of using 3D Rashba materials for photovoltaic applications. PMID:26461166

  20. Emissions of Volatile Inorganic Halogens, Carboxylic Acids, NH3, and SO2 From Experimental Burns of Southern African Biofuels

    NASA Astrophysics Data System (ADS)

    Keene, W. C.; Lobert, J. M.; Lobert, J. M.; Maben, J. R.; Scharffe, D. H.; Crutzen, P. J.; Crutzen, P. J.

    2001-12-01

    As part of SAFARI 2000, biofuels (savanna grasses, shrubs, woody plants, litter, agricultural waste, and charcoal) were sampled during late summer and early autumn in the savannah of Kruger National Park, the Kalahari of Etosha National Park, and the Miombo woodlands in Zambia and Malawi. Sixty subsamples were experimentally burned under semi-controlled conditions at the Max Planck Institute for Chemistry in Mainz, Germany. Emissions were sampled with tandem mist chambers to quantify HCl, CH3COOH, HCOOH, NH3, and SO2 and with a high-volume filter pack to quantify volatile inorganic Cl, Br, and I. The elemental compositions of the fuel and ash from each burn were also analyzed. Molar emission ratios of these species relative to CO, CO2, and the elemental composition of the fuel will be calculated and used to estimate regional emissions from biomass burning over southern Africa. The relative contributions of each species to elemental mass balances during burns will also be assessed. >http://jurgenlobert.org/projects/mpi_safari/ and

  1. Effects of SO2 on selective catalytic reduction of NO with NH3 over a TiO2 photocatalyst

    NASA Astrophysics Data System (ADS)

    Yamamoto, Akira; Teramura, Kentaro; Hosokawa, Saburo; Tanaka, Tsunehiro

    2015-04-01

    The effect of SO2 gas was investigated on the activity of the photo-assisted selective catalytic reduction of nitrogen monoxide (NO) with ammonia (NH3) over a TiO2 photocatalyst in the presence of excess oxygen (photo-SCR). The introduction of SO2 (300 ppm) greatly decreased the activity of the photo-SCR at 373 K. The increment of the reaction temperature enhanced the resistance to SO2 gas, and at 553 K the conversion of NO was stable for at least 300 min of the reaction. X-ray diffraction, FTIR spectroscopy, thermogravimetry and differential thermal analysis, x-ray photoelectron spectroscopy (XPS), elemental analysis and N2 adsorption measurement revealed that the ammonium sulfate species were generated after the reaction. There was a strong negative correlation between the deposition amount of the ammonium sulfate species and the specific surface area. Based on the above relationship, we concluded that the deposition of the ammonium sulfate species decreased the specific surface area by plugging the pore structure of the catalyst, and the decrease of the specific surface area resulted in the deactivation of the catalyst.

  2. Brnsted-NH(4)(+) mechanism versus nitrite mechanism: new insight into the selective catalytic reduction of NO by NH(3).

    PubMed

    Yuan, Ru-Ming; Fu, Gang; Xu, Xin; Wan, Hui-Lin

    2011-01-14

    The selective catalytic reduction (SCR) of NO by NH(3) over V(2)O(5)-based catalysts is used worldwide to control NO(x) emission. Understanding the mechanisms involved is vital for the rational design of more effective catalysts. Here, we have performed a systematic density functional theory (DFT) study of a SCR reaction by using cluster models. Three possible mechanisms have been considered, namely (i) a Lewis acid mechanism, (ii) a Brnsted acid mechanism and (iii) a nitrite mechanism. Our calculations down-play the significance of mechanism (i) due to its high barrier as well as the incorrect reaction order. On the other hand, our calculations demonstrate that both mechanisms (ii) and (iii) can lead to a first order reaction with respect to NO with the predicted barriers being consistent with the experimental observations. Thus, we conclude: there exists two competitive pathways for SCR. Mechanism (ii) is dominant when the Brnsted acidity of the catalysts is relatively strong, while mechanism (iii) becomes important when Brnsted acidity is weak or absent. Importantly, we demonstrate that the latter two mechanisms share a common feature where N-N bond formation is ahead of N-H bond cleavage, in contrast to that in mechanism (i). Such a sequence provides an effective way to reduce the side reaction of ammonia combustion since the relatively strong N-N bond has already been formed. PMID:21031223

  3. A cation trap for anodic stripping voltammetry: NH3-plasma treated carbon nanotubes for adsorption and detection of metal ions.

    PubMed

    Wei, Yan; Yang, Ran; Chen, Xing; Wang, Lun; Liu, Jin-Huai; Huang, Xing-Jiu

    2012-11-28

    NH(3)-plasma treated multi-walled carbon nanotubes (pn-MWCNTs) with cation traps for the detection of ultratrace quantities of Zn(II), Cd(II), Cu(II), and Hg(II) using square wave anodic stripping voltammetry (SWASV) is described. The pn-MWCNTs use their adsorption performance to enhance the sensitivity. It is found that under optimized conditions Zn(II), Cd(II), Cu(II) and Hg(II) were individually detected at potentials of -1.16, -0.78, -0.268 and 0.108 V, respectively. The detection limit (3σ method) of 0.314, 0.0272, 0.2263, and 0.1439 nM toward Zn(II), Cd(II), Cu(II), and Hg(II) is achievable, respectively. No interference could be seen during the simultaneous detection of Zn(II), Cd(II), Cu(II), and Hg(II). The pn-MWCNTs exhibit excellent selectivity owing to the different ability of adsorption. A study of the ability of pn-MWCNTs in practical application is carried out using a sample of water collected from Dongpu Reservoir in Hefei City, Anhui, China. It is found that the results were favorable when compared against inductively coupled plasma atomic emission spectrometry (ICP-AES) analysis. PMID:23146394

  4. Impedance Spectroscopic Indication for Solid State Electrochemical Reaction in (CH3NH3)PbI3 Films.

    PubMed

    Zohar, Arava; Kedem, Nir; Levine, Igal; Zohar, Dorin; Vilan, Ayelet; Ehre, David; Hodes, Gary; Cahen, David

    2016-01-01

    Halide perovskite-based solar cells still have limited reproducibility, stability, and incomplete understanding of how they work. We track electronic processes in [CH3NH3]PbI3(Cl) ("perovskite") films in vacuo, and in N2, air, and O2, using impedance spectroscopy (IS), contact potential difference, and surface photovoltage measurements, providing direct evidence for perovskite sensitivity to the ambient environment. Two major characteristics of the perovskite IS response change with ambient environment, viz. -1- appearance of negative capacitance in vacuo or post-vacuo N2 exposure, indicating for the first time an electrochemical process in the perovskite, and -2- orders of magnitude decrease in the film resistance upon transferring the film from O2-rich ambient atmosphere to vacuum. The same change in ambient conditions also results in a 0.5 V decrease in the material work function. We suggest that facile adsorption of oxygen onto the film dedopes it from n-type toward intrinsic. These effects influence any material characterization, i.e., results may be ambient-dependent due to changes in the material's electrical properties and electrochemical reactivity, which can also affect material stability. PMID:26687721

  5. Oxygen sorption and desorption properties of selected lanthanum manganites and lanthanum ferrite manganites.

    PubMed

    Nielsen, Jimmi; Skou, Eivind M; Jacobsen, Torben

    2015-06-01

    Temperature-programmed desorption (TPD) with a carrier gas was used to study the oxygen sorption and desorption properties of oxidation catalysts and solid-oxide fuel cell (SOFC) cathode materials (La(0.85) Sr(0.15)0.95 MnO(3+?) (LSM) and La(0.60) Sr(0.40) Fe(0.80) Mn(0.20) O(3-?) (LSFM). The powders were characterized by X-ray diffractometry, atomic force microscopy (AFM), and BET surface adsorption. Sorbed oxygen could be distinguished from oxygen originating from stoichiometry changes. The results indicated that there is one main site for oxygen sorption/desorption. The amount of sorbed oxygen was monitored over time at different temperatures. Furthermore, through data analysis it was shown that the desorption peak associated with oxygen sorption is described well by second-order desorption kinetics. This indicates that oxygen molecules dissociate upon adsorption and that the rate-determining step for the desorption reaction is a recombination of monatomic oxygen. Typical problems with re-adsorption in this kind of TPD setup were revealed to be insignificant by using simulations. Finally, different key parameters of sorption and desorption were determined, such as desorption activation energies, density of sorption sites, and adsorption and desorption reaction order. PMID:25784205

  6. Indium nitride surface structure, desorption kinetics and thermal stability

    NASA Astrophysics Data System (ADS)

    Acharya, Ananta

    Unique physical properties such as small effective mass, high electron drift velocities, high electron mobility and small band gap energy make InN a candidate for applications in high-speed microelectronic and optoelectronic devices. The aim of this research is to understand the surface properties, desorption kinetics and thermal stability of InN epilayers that affect the growth processes and determine film quality as well as device performance and life time. We have investigated the structural properties, the surface desorption kinetics, and the thermal stability using Auger electron spectroscopy (AES), x-ray diffraction (XRD), Raman spectroscopy, atomic force microscopy (AFM), high resolution electron energy loss spectroscopy (HREELS), and temperature programmed desorption (TPD). Investigations on high pressure chemical vapor deposition (HPCVD)-grown InN samples revealed the presence of tilted crystallites, which were attributed to high group V/III flux ratio and lattice mismatch. A study of the thermal stability of HPCVD-grown InN epilayers revealed that the activation energy for nitrogen desorption was 1.6+/-0.2 eV, independent of the group V/III flux ratio. Initial investigations on the ternary alloy In0.96Ga0.04N showed single-phase, N-polar epilayers using XRD and HREELS, while a thermal desorption study revealed an activation energy for nitrogen desorption of 1.14 +/- 0.06 eV. HREELS investigations of atomic layer epitaxy (ALE)-grown InN revealed vibrational modes assigned to N-N vibrations. The atomic hydrogen cleaned InN surface also exhibited modes assigned to surface N-H without showing In-H species, which indicated N-polar InN. Complete desorption of hydrogen from the InN surface was best described by the first-order desorption kinetics with an activation energy of 0.88 +/- 0.06 eV and pre-exponential factor of (1.5 +/- 0.5) x105 s-1. Overall, we have used a number of techniques to characterize the structure, surface bonding configuration, thermal stability and hydrogen desorption kinetics of InN and In0.96Ga0.04N epilayers grown by HPCVD and ALE. High group V/III precursors ratio and lattice mismatch have a crucial influence on the film orientation. The effects of hydrogen on the decomposition add to the wide variation in the activation energy of nitrogen desorption. Presence of surface defects lowers the activation energy for hydrogen desorption from the surface.

  7. Efficient and stable CH3NH3PbI3-sensitized ZnO nanorod array solid-state solar cells.

    PubMed

    Bi, Dongqin; Boschloo, Gerrit; Schwarzmüller, Stefan; Yang, Lei; Johansson, Erik M J; Hagfeldt, Anders

    2013-12-01

    We report for the first time the use of a perovskite (CH3NH3PbI3) absorber in combination with ZnO nanorod arrays (NRAs) for solar cell applications. The perovskite material has a higher absorption coefficient than molecular dye sensitizers, gives better solar cell stability, and is therefore more suited as a sensitizer for ZnO NRAs. A solar cell efficiency of 5.0% was achieved under 1000 W m(-2) AM 1.5 G illumination for a solar cell with the structure: ZnO NRA/CH3NH3PbI3/spiro-MeOTAD/Ag. Moreover, the solar cell shows a good long-term stability. Using transient photocurrent and photovoltage measurements it was found that the electron transport time and lifetime vary with the ZnO nanorod length, a trend which is similar to that in dye-sensitized solar cells, DSCs, suggesting a similar charge transfer process in ZnO NRA/CH3NH3PbI3 solar cells as in conventional DSCs. Compared to CH3NH3PbI3/TiO2 solar cells, ZnO shows a lower performance due to more recombination losses. PMID:24100947

  8. Structures and Electronic Properties of Different CH3NH3PbI3/TiO2 Interface: A First-Principles Study

    PubMed Central

    Geng, Wei; Tong, Chuan-Jia; Liu, Jiang; Zhu, Wenjun; Lau, Woon-Ming; Liu, Li-Min

    2016-01-01

    Methylammonium lead iodide perovskite, CH3NH3PbI3, has attracted particular attention due to its fast increase in efficiency in dye sensitization TiO2 solid-state solar cells. We performed first-principles calculations to investigate several different types of CH3NH3PbI3/TiO2 interfaces. The interfacial structures between the different terminated CH3NH3PbI3 and phase TiO2 are thoroughly explored, and the calculated results suggest that the interfacial Pb atoms play important roles in the structure stability and electronic properties. A charge transfer from Pb atoms to the O atoms of TiO2 lead to the band edge alignment of Pb-p above Ti-d about 0.4 eV, suggesting a better carries separation. On the other hand, for TiO2, rutile (001) is the better candidate due to the better lattice and atoms arrangement match with CH3NH3PbI3. PMID:26846401

  9. Brightly Luminescent and Color-Tunable Colloidal CH3NH3PbX3 (X = Br, I, Cl) Quantum Dots: Potential Alternatives for Display Technology.

    PubMed

    Zhang, Feng; Zhong, Haizheng; Chen, Cheng; Wu, Xian-gang; Hu, Xiangmin; Huang, Hailong; Han, Junbo; Zou, Bingsuo; Dong, Yuping

    2015-04-28

    Organometal halide perovskites are inexpensive materials with desirable characteristics of color-tunable and narrow-band emissions for lighting and display technology, but they suffer from low photoluminescence quantum yields at low excitation fluencies. Here we developed a ligand-assisted reprecipitation strategy to fabricate brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X = Br, I, Cl) quantum dots with absolute quantum yield up to 70% at room temperature and low excitation fluencies. To illustrate the photoluminescence enhancements in these quantum dots, we conducted comprehensive composition and surface characterizations and determined the time- and temperature-dependent photoluminescence spectra. Comparisons between small-sized CH3NH3PbBr3 quantum dots (average diameter 3.3 nm) and corresponding micrometer-sized bulk particles (2-8 ?m) suggest that the intense increased photoluminescence quantum yield originates from the increase of exciton binding energy due to size reduction as well as proper chemical passivations of the Br-rich surface. We further demonstrated wide-color gamut white-light-emitting diodes using green emissive CH3NH3PbBr3 quantum dots and red emissive K2SiF6:Mn(4+) as color converters, providing enhanced color quality for display technology. Moreover, colloidal CH3NH3PbX3 quantum dots are expected to exhibit interesting nanoscale excitonic properties and also have other potential applications in lasers, electroluminescence devices, and optical sensors. PMID:25824283

  10. Study of the structure, energetics, and vibrational properties of small ammonia clusters (NH3)n (n = 2-5) using correlated ab initio methods.

    PubMed

    Janeiro-Barral, Paula E; Mella, Massimo

    2006-10-01

    Equilibrium geometries, interaction energies, and harmonic frequencies of (NH3)n isomers (n = 2-5) have been computed using correlated calculations (MP2) in conjunction with Dunning's aug-cc-pVXZ (X = D, T, Q) basis sets and the Counterpoise procedure. Whenever available, literature values for the binding energy and geometry of dimers and trimers agree well with our data. Low lying isomers for (NH3)4 and (NH3)5 have been found to have similar binding energies (roughly 16 and 20 kcal/mol for the tetramer and pentamer, respectively), perhaps suggesting the presence of a very smooth energy landscape. Using BSSE corrected forces or freezing the monomer structure to its gas phase geometry have been found to have only a weak impact on the energetic and structural properties of the clusters. The effect of zero-point energy (ZPE) on the relative stability of the clusters has been estimated using harmonic frequencies. The latter also highlighted the presence of vibrational fingerprints for the presence of double acceptor ammonia molecules. Many-body effects for (NH3)n isomers (n = 2-4) have been investigated to explore the possibility of building a pairwise interaction model for ammonia. In the frame of the work presented, we have found the 3-body effect to account for 10-15% of the total interaction energy, whereas the 4-body effects may be neglected as first approximation. PMID:17004733

  11. Origin of the visible-light photoactivity of NH3-treated TiO2: Effect of nitrogen doping and oxygen vacancies

    NASA Astrophysics Data System (ADS)

    Chen, Yilin; Cao, Xiaoxin; Lin, Bizhou; Gao, Bifen

    2013-01-01

    N-doped and oxygen-deficient TiO2 photocatalysts were obtained by heating commercial TiO2 in NH3 atmosphere, followed by a postcalcination process. Catalysts were characterized by X-ray diffraction (XRD), N2-sorption BET surface area, X-ray photoelectron spectroscopy (XPS), Elemental analysis (EA), UV/vis diffuse reflectance spectroscopy (DRS), Electron spin resonance (ESR) and Photoluminescence (PL). It shows that the NH3-heat-treatment of TiO2 resulted in not only nitrogen doping but also creation of oxygen vacancies with optical absorption in visible-light region. The postcalcination achieved several beneficial effects including dramatic removal of surface amino species, a rapid decrease in surface Ti3+ species, and a low recombination rate of photogenerated carriers on the co-doped TiO2. The photocatalytic measurement was carried out by the degradation of gas-phase benzene under visible light irradiation. At steady state, the photocatalytic conversion rate of benzene over the postannealed catalyst was 35.8%, accompanied by the yield of 115 ppmv CO2, which was much higher than that on the NH3-treated TiO2 before postcalcination or the H2-treated TiO2 catalysts. Results show that the visible-light activity of the NH3-treated TiO2 is attributed to a synergistic effect of substitutional nitrogen species and oxygen vacancies in TiO2.

  12. The Impact of Fertilizer Type and Application Method on the Loss of Greenhouse (CO2, N2O, CH4), and Air Quality (NH3) Gases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An experiment initiated in the Spring of 2007 at the Sand Mountain Agricultural Experiment Station in Crossville, AL will be discussed. The objective of this experiment is to evaluate the loss of NH3 from different land management (conventional tillage vs. conservation tillage), fertilizers (urea-a...

  13. Structures and Electronic Properties of Different CH3NH3PbI3/TiO2 Interface: A First-Principles Study.

    PubMed

    Geng, Wei; Tong, Chuan-Jia; Liu, Jiang; Zhu, Wenjun; Lau, Woon-Ming; Liu, Li-Min

    2016-01-01

    Methylammonium lead iodide perovskite, CH3NH3PbI3, has attracted particular attention due to its fast increase in efficiency in dye sensitization TiO2 solid-state solar cells. We performed first-principles calculations to investigate several different types of CH3NH3PbI3/TiO2 interfaces. The interfacial structures between the different terminated CH3NH3PbI3 and phase TiO2 are thoroughly explored, and the calculated results suggest that the interfacial Pb atoms play important roles in the structure stability and electronic properties. A charge transfer from Pb atoms to the O atoms of TiO2 lead to the band edge alignment of Pb-p above Ti-d about 0.4?eV, suggesting a better carries separation. On the other hand, for TiO2, rutile (001) is the better candidate due to the better lattice and atoms arrangement match with CH3NH3PbI3. PMID:26846401

  14. Difference in chemical reactions in bulk plasma and sheath regions during surface modification of graphene oxide film using capacitively coupled NH3 plasma

    NASA Astrophysics Data System (ADS)

    Lee, Sung-Youp; Kim, Chan; Kim, Hong Tak

    2015-09-01

    Reduced graphene oxide (r-GO) films were obtained from capacitively coupled NH3 plasma treatment of spin-coated graphene oxide (GO) films at room temperature. Variations were evaluated according to the two plasma treatment regions: the bulk plasma region (Rbulk) and the sheath region (Rsheath). Reduction and nitridation of the GO films began as soon as the NH3 plasma was exposed to both regions. However, with the increase in treatment time, the reduction and nitridation reactions differed in each region. In the Rbulk, NH3 plasma ions reacted chemically with oxygen functional groups on the GO films, which was highly effective for reduction and nitridation. While in the Rsheath, physical reactions by ion bombardment were dominant because plasma ions were accelerated by the strong electrical field. The accelerated plasma ions reacted not only with the oxygen functional groups but also with the broken carbon chains, which caused the removal of the GO films by the formation of hydrocarbon gas species. These results showed that reduction and nitridation in the Rbulk using capacitively coupled NH3 plasma were very effective for modifying the properties of r-GO films for application as transparent conductive films.

  15. Surface modification of pitch-based spherical activated carbon by CVD of NH 3 to improve its adsorption to uric acid

    NASA Astrophysics Data System (ADS)

    Liu, Chaojun; Liang, Xiaoyi; Liu, Xiaojun; Wang, Qin; Zhan, Liang; Zhang, Rui; Qiao, Wenming; Ling, Licheng

    2008-08-01

    Surface chemistry of pitch-based spherical activated carbon (PSAC) was modified by chemical vapor deposition of NH 3 (NH 3-CVD) to improve the adsorption properties of uric acid. The texture and surface chemistry of PSAC were studied by N 2 adsorption, pH PZC (point of zero charge), acid-base titration and X-ray photoelectron spectroscopy (XPS). NH 3-CVD has a limited effect on carbon textural characteristics but it significantly changed the surface chemical properties, resulting in positive effects on uric acid adsorption. After modification by NH 3-CVD, large numbers of nitrogen-containing groups (especially valley-N and center-N) are introduced on the surface of PSAC, which is responsible for the increase of pH PZC, surface basicity and uric acid adsorption capacity. Pseudo-second-order kinetic model can be used to describe the dynamic adsorption of uric acid on PSAC, and the thermodynamic parameters show that the adsorption of uric acid on PSAC is spontaneous, endothermic and irreversible process in nature.

  16. On the Surface Formation of NH3 and HNCO in Dark Molecular Clouds - Searching for Whler Synthesis in the Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Fedoseev, Gleb; Lamberts, Thanja; Linnartz, Harold; Ioppolo, Sergio; Zhao, Dongfeng

    Despite its potential to reveal the link between the formation of simple species and more complex molecules (e.g., amino acids), the nitrogen chemistry of the interstellar medium (ISM) is still poorly understood. Ammonia (NH _{3}) is one of the few nitrogen-bearing species that have been observed in interstellar ices toward young stellar objects (YSOs) and quiescent molecular clouds. The aim of the present work is to experimentally investigate surface formation routes of NH _{3} and HNCO through non-energetic surface reactions in interstellar ice analogues under fully controlled laboratory conditions and at astrochemically relevant cryogenic temperatures. This study focuses on the formation of NH _{3} and HNCO in CO-rich (non-polar) interstellar ices that simulate the CO freeze-out stage in interstellar dark cloud regions, well before thermal and energetic processing start to become predominant. Our work confirms the surface formation of ammonia through the sequential addition of three hydrogen/deuterium atoms to a single nitrogen atom at low temperature. The H/D fractionation of the formed ammonia is also shown. Furthermore, we show the surface formation of solid HNCO through the interaction of CO molecules with NH radicals - one of the intermediates in the formation of solid NH _{3}. Finally, we discuss the implications of HNCO in astrobiology, as a possible starting point for the formation of more complex prebiotic species.

  17. Low-temperature surface formation of NH3 and HNCO: hydrogenation of nitrogen atoms in CO-rich interstellar ice analogues

    NASA Astrophysics Data System (ADS)

    Fedoseev, G.; Ioppolo, S.; Zhao, D.; Lamberts, T.; Linnartz, H.

    2015-01-01

    Solid-state astrochemical reaction pathways have the potential to link the formation of small nitrogen-bearing species, like NH3 and HNCO, and prebiotic molecules, specifically amino acids. To date, the chemical origin of such small nitrogen-containing species is still not well understood, despite the fact that ammonia is an abundant constituent of interstellar ices towards young stellar objects and quiescent molecular clouds. This is mainly because of the lack of dedicated laboratory studies. The aim of this work is to experimentally investigate the formation routes of NH3 and HNCO through non-energetic surface reactions in interstellar ice analogues under fully controlled laboratory conditions and at astrochemically relevant temperatures. This study focuses on the formation of NH3 and HNCO in CO-rich (non-polar) interstellar ices that simulate the CO freeze-out stage in dark interstellar cloud regions, well before thermal and energetic processing start to become relevant. We demonstrate and discuss the surface formation of solid HNCO through the interaction of CO molecules with NH radicals - one of the intermediates in the formation of solid NH3 upon sequential hydrogenation of N atoms. The importance of HNCO for astrobiology is discussed.

  18. Patterns and quantities of NH(3), N(2)O and CH(4) emissions during swine manure composting without forced aeration--effect of compost pile scale.

    PubMed

    Fukumoto, Yasuyuki; Osada, Takashi; Hanajima, Dai; Haga, Kiyonori

    2003-09-01

    To evaluate the NH(3), N(2)O, and CH(4) emissions from composting of livestock waste without forced aeration in turned piles, and to investigate the possible relationship between the scale of the compost pile and gas emission rates, we conducted swine manure composting experiments in parallel on small- and large-scale compost piles. Continuous measurements of gas emissions during composting were carried out using a chamber system, and detailed gas emission patterns were obtained. The total amount of each gas emission was computed from the amount of ventilation and gas concentration. NH(3) emission was observed in the early period of composting when the material was at a high temperature. Sharp peaks in CH(4) emission occurred immediately after swine manure was piled up, although a high emissions level continued after the first turning only in the large-scale pile. N(2)O emissions started around the middle stage of the composting period when NH(3) emissions and the temperature of the compost material began to decline. The emission rates of each gas in the small and large piles were 112.8 and 127.4 g NH(3)-N/kg T-N, 37.2 and 46.5 g N(2)O-N/kg T-N, and 1.0 and 1.9 g CH(4)/kg OM, respectively. It was found that changing the piling scale of the compost material was a major factor in gas emission rates. PMID:12699927

  19. Surface study and sensing activity of nanotubular indium trioxide to NH3, H2S, NO2 and CO environmental pollutants

    NASA Astrophysics Data System (ADS)

    Zamani, Mehdi

    2016-02-01

    Molecular and electronic structures of nanotubular indium trioxide were studied using B3LYP and CAM-B3LYP density functional methods. Three nanotube models including nanotubes with closed ends (CENT), one opened end (OOENT) and two opened ends (TOENT) were considered. The highest occupied molecular orbital (HOMO) of CENT is distributed over the entire nanotube; while it is distributed on the end cap of OOENT. In both CENT and OOENT, the distribution of the lowest unoccupied molecular orbital (LUMO) is on the end caps. HOMO and LUMO of TOENT are distributed on the center of nanotube. The sensing activity of OOENT to environmental pollutants was evaluated regarding the interaction of nanotube with NH3, H2S, NO2 and CO molecules. Adsorptions over different positions of OOENT are exothermic and the NH3 adsorption is thermodynamically more favorable. The selectivity of OOENT toward gaseous pollutants is investigated as NH3 > H2S > CO > NO2. Interaction of NO2 and CO over the closed end (end cap) of nanotube is preferred; while adsorption of NH3 and H2S on the opened end is more favorable.

  20. Reinterpretation of the Vibrational Spectroscopy of the Medicinal Bioinorganic Synthon c,c,t-[Pt(NH3)2Cl2(OH)2]†

    PubMed Central

    Johnstone, Timothy C.

    2014-01-01

    The Pt(IV) complex c,c,t-[Pt(NH3)2Cl2(OH)2] is an important intermediate in the synthesis of Pt(IV) anticancer prodrugs and has been investigated as an anticancer agent in its own right. An analysis of the vibrational spectroscopy of this molecule was previously reported [Faggiani et al., 1982, Can. J. Chem. 60, 529] in which crystallographic determination of the structure of the complex permitted a site group approach. The space group, however, was incorrectly assigned. In the present study we have redetermined at high resolution crystal structures of c,c,t-[Pt(NH3)2Cl2(OH)2] and c,c,t-[Pt(NH3)2Cl2(OH)2]·H2O2, which enable discussion of the effect of hydrogen bonding on the N–H and O–H vibrational bands. The correct crystallographic site symmetry of the platinum complex in the c,c,t-[Pt(NH3)2Cl2(OH)2] structure is employed to conduct a new vibrational analysis using both group theoretical and modern DFT methods. This analysis reveals the nature and symmetry of the “missing band” described in the original publication and suggests a possible explanation for its disappearance. PMID:24515615

  1. Mesoscopic TiO2/CH3NH3PbI3 perovskite solar cells with new hole-transporting materials containing butadiene derivatives.

    PubMed

    Lv, Songtao; Han, Liying; Xiao, Junyan; Zhu, Lifeng; Shi, Jiangjian; Wei, Huiyun; Xu, Yuzhuan; Dong, Juan; Xu, Xin; Li, Dongmei; Wang, Shirong; Luo, Yanhong; Meng, Qingbo; Li, Xianggao

    2014-07-01

    Two new triphenylamine-based hole-transporting materials (HTMs) containing butadiene derivatives are employed in CH3NH3PbI3 perovskite solar cells. Up to 11.63% of power conversion efficiency (PCE) has been achieved. Advantages such as easy synthesis, low cost and relatively good cell performance exhibit a possibility for commercial applications in the future. PMID:24841233

  2. Structures and Electronic Properties of Different CH3NH3PbI3/TiO2 Interface: A First-Principles Study

    NASA Astrophysics Data System (ADS)

    Geng, Wei; Tong, Chuan-Jia; Liu, Jiang; Zhu, Wenjun; Lau, Woon-Ming; Liu, Li-Min

    2016-02-01

    Methylammonium lead iodide perovskite, CH3NH3PbI3, has attracted particular attention due to its fast increase in efficiency in dye sensitization TiO2 solid-state solar cells. We performed first-principles calculations to investigate several different types of CH3NH3PbI3/TiO2 interfaces. The interfacial structures between the different terminated CH3NH3PbI3 and phase TiO2 are thoroughly explored, and the calculated results suggest that the interfacial Pb atoms play important roles in the structure stability and electronic properties. A charge transfer from Pb atoms to the O atoms of TiO2 lead to the band edge alignment of Pb-p above Ti-d about 0.4 eV, suggesting a better carries separation. On the other hand, for TiO2, rutile (001) is the better candidate due to the better lattice and atoms arrangement match with CH3NH3PbI3.

  3. VizieR Online Data Catalog: A variationally computed hot NH3 line list - BYTe (Yurchenko+, 2011)

    NASA Astrophysics Data System (ADS)

    Yurchenko, S. N.; Barber, R. J.; Tennyson, J.

    2010-11-01

    We present 'BYTe' a comprehensive 'hot' line list of ro-vibrational transitions of ammonia, 14NH3, in its ground electronic state. It comprises 1,138,323,351 transitions with frequencies up to 12,000cm-1^, constructed from 1,373,897 energy levels below 18,000cm-1^ having J values less than 37. The line list is sufficiently accurate and complete for high resolution spectroscopy and atmospheric modelling of astrophysical objects, including brown dwarfs and exoplanets at temperatures up to 1,500K. The data are in two parts. The first, nh3_0-41.dat contains a list of 4,167,360 rovibrational states, ordered by J (max= 41), symmetry block and energy (in cm-1^). Only one third of the states (1,373,897) are within the parameters used for generating transitions (see above), but all the states are required for computing temperature-dependent partition functions. Each state is labelled with: seven normal mode vibrational quantum numbers; three rotational quantum numbers and the total symmetry quantum number, Gamma. In addition there are six local mode vibrational numbers and a local mode vibrational symmetry quantum numbers, which we include because the basis set used in our calculations is expressed in terms of these local mode quantum numbers. Each rovibrational state has a unique number, which is the number of the row in which it appears in the file. This number is the means by which the state is related to the second part of the data system, the transitions files. Because of their size, the transitions are listed in 120 separate files, each containing all the transitions in a 100cm-1^ frequency range. These and their contents are ordered by increasing frequency. The name of the file includes the lowest frequency in the range; thus the a-00500.dat file contains all the transitions in the frequency range 500-600cm-1^. The transition files contain three columns: the reference number in the energy file of the upper state; that of the lower state; and the Einstein A coefficient of the transition. The energy file and the transitions files are zipped, and need to be extracted before use. There is a Fortran 90 programme, sp_byte.f90 which may be used to generate synthetic spectra (see sp_byte.txt for details). Using this, it is possible to generate absorption or emission spectra in either 'stick' form or else convoluted with a gaussian with the half-width at half maximum being specified by the user, or with a the temperature-dependent doppler half-width. Three sample input files for use with sp_byte.f90 are supplied: "stick300.in", "gauss300.in", and "sp08900.in" (generates a spectrum for 8900-9000cm-1^). (126 data files).

  4. Hydrogen-release mechanisms in LiNH2BH3NH3BH3: A theoretical study

    NASA Astrophysics Data System (ADS)

    Tao, Jingcong; Lv, Naixia; Wen, Li; Qi, Yong; Lv, Xiaobo

    2015-02-01

    The molecular mechanism of the dehydrogenation of LiNH2BH3NH3BH3 to form [LiN2B2H] by the loss of five molar equiv of H2 at two consecutive temperatures of 373 K and 501 K has been investigated using computational quantum chemistry methods (B3LYP, MP2 and CCSD(T) methods). The intermediate LiNHBH2NH2BH2 can be obtained through the pathway A at 373 K, in which LiH structures are formed by the transfer of hydridic H- from NH2BH3- to Li+ followed by the redox reactions of H?+ and H?- to form two molar equiv of H2. The intermediate LiNH2BHdbnd NHBH3 can also be generated via the pathway B at 373 K, in which a new Nsbnd B bond forms and two equiv of H2 are released by the redox reactions. At 501 K, the predominant final product P1 (LiNBNBH) is given most likely through the formation of LiH and a series of redox reactions with the loss of three molar equiv of H2 in the pathway A. Meanwhile, the products P2 (LiNBBNH) and P3 [Li(sbnd NBBNsbnd)H] may be also obtained by the dehydrogenation via a sequence of redox reactions of H?+ and H?- to release three equiv of H2 at the temperature of 501 K. The present study would be helpful for experimental chemists to design better hydrogen-storage media.

  5. Efficient hysteresis-less bilayer type CH3NH3PbI3 perovskite hybrid solar cells.

    PubMed

    Park, Jin Kyoung; Heo, Jin Hyuck; Han, Hye Ji; Lee, Min Ho; Song, Dae Ho; You, Myoung Sang; Sung, Shi-Joon; Kim, Dae-Hwan; Im, Sang Hyuk

    2016-01-15

    Bilayer type CH3NH3PbI3 (MAPbI3) perovskite hybrid solar cells were fabricated via a one-step spin-coating process by using solubility controlled MAPbI3 solutions of MAPbI3-DMSO (dimethyl sulfoxide) and MAPbI3-DMF (N, N-dimethylformamide)-HI. The best DMSO-bilayer device showed 1.070.02 V V oc (open-circuit voltage), 20.20.1 mA cm(-2) J sc (short-circuit current density), 682% FF (fill factor), and 15.20.3% ? (overall power conversion efficiency) under the forward scan direction and 1.070.02 V V oc, 20.40.1 mA cm(-2) J sc, 703% FF, and 15.90.4% ? under the reverse scan direction. The best HI-bilayer device had 1.080.02 V V oc, 20.60.1 mA cm(-2) J sc, 751% FF, and 17.20.2% ? under the forward scan direction and 1.080.02 V V oc, 20.60.1 mA cm(-2) J sc, 762% FF, and 17.40.3% ? under the reverse scan direction. The deviation of average device efficiency ([Formula: see text] of 20 DMSO samples and 20 HI samples was 14.20.95% and 16.20.85%, respectively. Therefore, the HI-bilayer devices exhibited better device efficiency and smaller J-V (current density-voltage) hysteresis with respect to the scan direction than the DMSO-bilayer devices due to the reduced recombination and traps by the formation of a purer and larger MAPbI3 perovskite crystalline film. PMID:26618542

  6. Interfacial electronic structure at the CH3NH3PbI3/MoOx interface

    NASA Astrophysics Data System (ADS)

    Liu, Peng; Liu, Xiaoliang; Lyu, Lu; Xie, Haipeng; Zhang, Hong; Niu, Dongmei; Huang, Han; Bi, Cheng; Xiao, Zhengguo; Huang, Jinsong; Gao, Yongli

    2015-05-01

    Interfacial electronic properties of the CH3NH3PbI3 (MAPbI3)/MoOx interface are investigated using ultraviolet photoemission spectroscopy and X-ray photoemission spectroscopy. It is found that the pristine MAPbI3 film coated onto the substrate of poly (3,4-ethylenedioxythiophene) poly(styrenesulfonate)/indium tin oxide by two-step method behaves as an n-type semiconductor, with a band gap of 1.7 eV and a valence band edge of 1.40 eV below the Fermi energy (EF). With the MoOx deposition of 64 upon MAPbI3, the energy levels of MAPbI3 shift toward higher binding energy by 0.25 eV due to electron transfer from MAPbI3 to MoOx. Its conduction band edge is observed to almost pin to the EF, indicating a significant enhancement of conductivity. Meanwhile, the energy levels of MoOx shift toward lower binding energy by 0.30 eV, and an interface dipole of 2.13 eV is observed at the interface of MAPbI3/MoOx. Most importantly, the chemical reaction taking place at this interface results in unfavorable interface energy level alignment for hole extraction. A potential barrier of 1.36 eV observed for hole transport will impede the hole extraction from MAPbI3 to MoOx. On the other hand, a potential barrier of 0.14 eV for electron extraction is too small to efficiently suppress electrons extracted from MAPbI3 to MoOx. Therefore, such an interface is not an ideal choice for hole extraction in organic photovoltaic devices.

  7. Ab initio based potential energy surface and kinetics study of the OH + NH3 hydrogen abstraction reaction.

    PubMed

    Monge-Palacios, M; Rangel, C; Espinosa-Garcia, J

    2013-02-28

    A full-dimensional analytical potential energy surface (PES) for the OH + NH3 ? H2O + NH2 gas-phase reaction was developed based exclusively on high-level ab initio calculations. This reaction presents a very complicated shape with wells along the reaction path. Using a wide spectrum of properties of the reactive system (equilibrium geometries, vibrational frequencies, and relative energies of the stationary points, topology of the reaction path, and points on the reaction swath) as reference, the resulting analytical PES reproduces reasonably well the input ab initio information obtained at the coupled-cluster single double triple (CCSD(T)) = FULL/aug-cc-pVTZ//CCSD(T) = FC/cc-pVTZ single point level, which represents a severe test of the new surface. As a first application, on this analytical PES we perform an extensive kinetics study using variational transition-state theory with semiclassical transmission coefficients over a wide temperature range, 200-2000?K. The forward rate constants reproduce the experimental measurements, while the reverse ones are slightly underestimated. However, the detailed analysis of the experimental equilibrium constants (from which the reverse rate constants are obtained) permits us to conclude that the experimental reverse rate constants must be re-evaluated. Another severe test of the new surface is the analysis of the kinetic isotope effects (KIEs), which were not included in the fitting procedure. The KIEs reproduce the values obtained from ab initio calculations in the common temperature range, although unfortunately no experimental information is available for comparison. PMID:23464149

  8. Ab initio based potential energy surface and kinetics study of the OH + NH3 hydrogen abstraction reaction

    NASA Astrophysics Data System (ADS)

    Monge-Palacios, M.; Rangel, C.; Espinosa-Garcia, J.

    2013-02-01

    A full-dimensional analytical potential energy surface (PES) for the OH + NH3 ? H2O + NH2 gas-phase reaction was developed based exclusively on high-level ab initio calculations. This reaction presents a very complicated shape with wells along the reaction path. Using a wide spectrum of properties of the reactive system (equilibrium geometries, vibrational frequencies, and relative energies of the stationary points, topology of the reaction path, and points on the reaction swath) as reference, the resulting analytical PES reproduces reasonably well the input ab initio information obtained at the coupled-cluster single double triple (CCSD(T)) = FULL/aug-cc-pVTZ//CCSD(T) = FC/cc-pVTZ single point level, which represents a severe test of the new surface. As a first application, on this analytical PES we perform an extensive kinetics study using variational transition-state theory with semiclassical transmission coefficients over a wide temperature range, 200-2000 K. The forward rate constants reproduce the experimental measurements, while the reverse ones are slightly underestimated. However, the detailed analysis of the experimental equilibrium constants (from which the reverse rate constants are obtained) permits us to conclude that the experimental reverse rate constants must be re-evaluated. Another severe test of the new surface is the analysis of the kinetic isotope effects (KIEs), which were not included in the fitting procedure. The KIEs reproduce the values obtained from ab initio calculations in the common temperature range, although unfortunately no experimental information is available for comparison.

  9. The structure, ordering and equation of state of ammonia dihydrate (nh 3 · 2h 2o)

    NASA Astrophysics Data System (ADS)

    Fortes, A. D.; Wood, I. G.; Brodholt, J. P.; Vočadlo, L.

    2003-03-01

    We present the first ab initio simulations of the low-pressure phase of ammonia dihydrate (NH 3 · 2H 2O), ADH I, a likely constituent of many volatile-rich solid bodies in the outer Solar System (e.g., Saturn's moons). Ordered monoclinic (space group P2 1) and orthorhombic (space group P2 12 12 1) variants of the experimentally observed cubic cell (space group P2 13) may be constructed, with fully ordered water molecule orientations that obey the ice rules. Our calculations show that the most stable structure at 0 K is orthorhombic ( P2 12 12 1), the monoclinic variants ( P2 1) being energetically disfavored. We provisionally call this ordered orthorhombic phase ADH III. The, as-yet-unmeasured, bulk modulus, K0, is predicted to be 10.67-0.44+0.56 GPa at 0 K. Our results are also combined with literature data to arrive at a revised coefficient of volume thermal expansion, α v = 2.81 × 10 -7 T 1.39 (from 0-176 K), with the density at 0 K, ρ 0 = 991.7(39) kg m -3. We also present a case, based on literature data, that argues for a gradual transformation from a paraelectrically disordered cubic structure ( P2 13) to the proposed antiferroelectrically ordered orthorhombic structure ( P2 12 12 1) around 130-150 K (cf. ice III → IX), a temperature regime that applies to the surfaces and interiors of many medium-sized (radii ˜500-700 km) icy bodies.

  10. Hot ammonia around young O-type stars. II. JVLA imaging of highly excited metastable NH3 masers in W51-North

    NASA Astrophysics Data System (ADS)

    Goddi, C.; Henkel, C.; Zhang, Q.; Zapata, L.; Wilson, T. L.

    2015-01-01

    Context. This paper is the second in a series of ammonia (NH3) multilevel imaging studies in high-mass star forming regions. Aims: We want to identify the location of the maser emission from highly excited levels of ammonia within the W51 IRS2 high-mass star forming complex that was previously discovered in a single dish monitoring program. Methods: We have used the Karl Jansky Very Large Array (JVLA) at the 1 cm band to map five highly excited metastable inversion transitions of NH3, (J,K) = (6,6), (7, 7), (9, 9), (10, 10), and (13, 13), in W51 IRS2 with ~0.?2 angular resolution. Results: We present detections of both thermal (extended) ammonia emission in the five inversion lines, with rotational states ranging in energy from about 400 K to 1700 K, and point-like ammonia maser emission in the (6, 6), (7, 7), and (9, 9) lines. For the point-like emission, we estimate lower limits to the peak brightness temperatures of 1.7 105 K, 6 103 K, and 1 104 K for the (6, 6), (7, 7), and (9, 9) transitions, respectively, confirming their maser nature. The thermal ammonia emits around a local standard of rest velocity of VLSR = 60 km s-1, near the cloud's systemic velocity, appears elongated in the east-west direction across 4'' and is confined by the HII regions W51d (to the north), W51d1 (to the east), and W51d2 (to the west). The NH3 masers are observed in the eastern tip of the dense clump traced by thermal NH3, offset by 0.?65 to the east from its emission peak, and have a peak velocity at ~47.5 km s-1. No maser components are detected near the systemic velocity. The NH3 masers arise close to but separated from (0.?65 or 3500 AU) the rare vibrationally excited SiO masers, which are excited in a powerful bipolar outflow driven by the deeply embedded high-mass young stellar object (YSO) W51-North. This means that the two maser species cannot be excited by the same object. Interestingly, the NH3 masers originate at the same sky position as a peak in a submm line of SO2 imaged with the Submillimeter Array, tracing a face-on circumstellar disk or ring around W51-North. In addition, the thermal emission from the most highly excited NH3 lines, (10, 10) and (13, 13), shows two main condensations, the dominant one towards W51-North with the SiO and H2O masers, and a weaker peak at the NH3 maser position. Conclusions: We propose a scenario where the ring seen in SO2 emission is a circumbinary disk surrounding (at least) two high-mass YSOs, W51-North (exciting the SiO masers) and a nearby companion (exciting the NH3 masers), separated by 3500 AU. This finding indicates a physical connection (in a binary) between the two rare SiO and NH3 maser species.

  11. Using stable isotopes of reactive N in dry and wet deposition to investigate the source, transport, and fate of NOx and NH3

    NASA Astrophysics Data System (ADS)

    Felix, J.; Elliott, E. M.

    2011-12-01

    Reactive N emissions (NH3 and NOx) can reach the land surfaces via both wet (NH4+, NO3) and dry (NOx, HNO3, NH3, NH4+) depositional processes. Together, these reactive N compounds are important global contributors to air and water quality degradation. Although nitrate concentrations in wet deposition have decreased in the U.S. during the last two decades due to NOx emission regulations set forth by the Clean Air Act, ammonium concentrations in wet deposition have recently increased. In order to further decrease NOx emissions and decrease NH3 emissions, additional tools for reactive N source apportionment are essential. The stable isotopic composition of reactive N may be one such tool for characterizing source, transport, and fate of reactive N emissions. Here, we present results from a comprehensive inventory of the isotopic composition of reactive N emission sources, focusing mainly on agricultural and fossil fuel sources. We build on these inventory results by tracing reactive N emissions across multiple landscapes including: a dairy operation, a conventionally managed cornfield, a tallgrass prairie, and a concentrated animal feeding operation. We then use two examples to illustrate how reactive N isotopes can be used in a regional context. First, we illustrate how passive NH3 samplers deployed at nine U.S. monitoring sites reflect spatial variations in predominant NH3 sources. Secondly, we reconstruct the regional influence of agricultural NOx emissions to nitrate deposition recorded in an ice core from Summit, Greenland. These results reveal significant evidence that the trend in the N isotopic composition of 20th century nitrate deposition in Greenland was driven by increasing biogenic soil NOx emissions induced by fertilizer application in the US over the last century. Together, these studies demonstrate the isotopic composition of reactive N emissions can be an additional tool for investigators to source and trace reactive N emissions in both historical and modern contexts and across spatial scales.

  12. Spontaneous gradual accumulation of hexagonally-aligned nano-silica on gold nanoparticles embedded in stabilized zirconia: a pathway from catalytic to NH3-sensing performance

    NASA Astrophysics Data System (ADS)

    Plashnitsa, Vladimir V.; Elumalai, Perumal; Fujio, Yuki; Kawaguchi, Toshikazu; Miura, Norio

    2011-05-01

    The present study highlights the influence of nano-impurities on the catalytic/sensing performance of nano-structured Au sensing-electrodes (SEs) housed in a quartz reactor and operated at high temperature over a long period of time. The planar sensor, made from a nano-structured Au-SE on a polished-polycrystalline (pp) yttria-stabilized zirconia (YSZ) substrate exhibited initially negligible electromotive force (emf) response to each of the examined gases (CO, CH4, C3H8, C3H6, NOx and NH3; 400 ppm each) at 700 C in the presence of 5 vol.% oxygen and 5 vol.% water vapor. Such a poor emf response was attributed to the excellent gas-phase oxidation/reduction ability of Au nanoparticles embedded in the YSZ substrate at high temperature. The response of the planar sensor made up of nano-structured Au-SE was monitored for about 75 days at 700 C. As a result of this long-term monitoring, we detected the appearance of highly sensitive and selective NH3 gas-sensing properties after 45-75 days of sensor operation. Detailed observation of the morphology and composition of the as-fabricated nano-structured Au-SE after 75 days operation at 700 C revealed the gradual accumulation of hexagonally-aligned SiO2 nano-impurities on the surface of the Au nanoparticles. The NH3 sensing mechanism of the YSZ-based sensor using the spontaneously-formed composite (nano-Au + nano-SiO2)-SE is therefore proposed to be based on a strong acid-base interaction between gaseous NH3 and SiO2 nano-impurities, followed by spillover of adsorbed NH3 towards the nano-Au/pp-YSZ interface.

  13. Spontaneous gradual accumulation of hexagonally-aligned nano-silica on gold nanoparticles embedded in stabilized zirconia: a pathway from catalytic to NH3-sensing performance.

    PubMed

    Plashnitsa, Vladimir V; Elumalai, Perumal; Fujio, Yuki; Kawaguchi, Toshikazu; Miura, Norio

    2011-05-01

    The present study highlights the influence of nano-impurities on the catalytic/sensing performance of nano-structured Au sensing-electrodes (SEs) housed in a quartz reactor and operated at high temperature over a long period of time. The planar sensor, made from a nano-structured Au-SE on a polished-polycrystalline (pp) yttria-stabilized zirconia (YSZ) substrate exhibited initially negligible electromotive force (emf) response to each of the examined gases (CO, CH(4), C(3)H(8), C(3)H(6), NO(x) and NH(3); 400 ppm each) at 700 C in the presence of 5 vol.% oxygen and 5 vol.% water vapor. Such a poor emf response was attributed to the excellent gas-phase oxidation/reduction ability of Au nanoparticles embedded in the YSZ substrate at high temperature. The response of the planar sensor made up of nano-structured Au-SE was monitored for about 75 days at 700 C. As a result of this long-term monitoring, we detected the appearance of highly sensitive and selective NH(3) gas-sensing properties after 45-75 days of sensor operation. Detailed observation of the morphology and composition of the as-fabricated nano-structured Au-SE after 75 days operation at 700 C revealed the gradual accumulation of hexagonally-aligned SiO(2) nano-impurities on the surface of the Au nanoparticles. The NH(3) sensing mechanism of the YSZ-based sensor using the spontaneously-formed composite (nano-Au + nano-SiO(2))-SE is therefore proposed to be based on a strong acid-base interaction between gaseous NH(3) and SiO(2) nano-impurities, followed by spillover of adsorbed NH(3) towards the nano-Au/pp-YSZ interface. PMID:21494733

  14. Study of hydrogen desorption from gallium nitride(0001)

    NASA Astrophysics Data System (ADS)

    Yang, Yong

    2002-09-01

    Earlier work from this lab investigated interaction of hydrogen with GaN(0001) by surface science techniques such as low energy electron diffraction (LEED), Auger electron spectroscopy (AES), electron energy loss spectroscopy (ELS or EELS) and high resolution electron energy loss spectroscopy (HREELS). Based on these, we perform temperature programmed desorption (TPD) and electron stimulated desorption (ESD) studies on the surface. A significant part of this dissertation work has been the design and construction of an ultra-high vacuum (UHV) apparatus, gas manifold system, sample mount, e-beam heater, wide spot electron gun, ion gun and differentially-pumped mass spectrometry system. Therefore, this dissertation also includes a description of the state of the art apparatus which was constructed to perform the experiments described in this work. TPD of deuterium on GaN(0001) from Ga sites has been performed to measure the desorption kinetic parameters and to further understand the desorption mechanism. For a heating rate of 1C/s, the main feature peaks at 410C while the smaller feature occurs as a shoulder near 320C. The ratio between the intensity of the main desorption peak and shoulder gets larger after more sputtering and annealing cycles. Heating rate variation analysis indicates a pseudo-first-order pre-exponential factor of 1 x 106 s-1 and desorption activation energy of 1.1 eV. The values are believed to be too low and attributed to multiple surface sites. Assuming a pre-exponential factor of 1 x 1013 s-1 yields an activation energy of 2.0 eV which implies a value for the molecular hydrogen adsorption barrier of 0.9 eV. After the deuterated sample being exposed to various doses of 90-eV electrons, TPD shows a decrease in the flux of desorbing deuterium centers at 400C. This reduction in deuterium desorption is attributed to removal of surface D via electron stimulated desorption (ESD). The peak desorption temperature does not shift as hydrogen is removed by ESD indicating first order desorption and a diffusion mechanism is proposed. From the area under the TPD curves, an ESD cross-section of 9 x 10-19 cm2 is estimated. (Abstract shortened by UMI.)

  15. Efficient hysteresis-less bilayer type CH3NH3PbI3 perovskite hybrid solar cells

    NASA Astrophysics Data System (ADS)

    Park, Jin Kyoung; Hyuck Heo, Jin; Han, Hye Ji; Lee, Min Ho; Song, Dae Ho; You, Myoung Sang; Sung, Shi-Joon; Kim, Dae-Hwan; Im, Sang Hyuk

    2016-01-01

    Bilayer type CH3NH3PbI3 (MAPbI3) perovskite hybrid solar cells were fabricated via a one-step spin-coating process by using solubility controlled MAPbI3 solutions of MAPbI3–DMSO (dimethyl sulfoxide) and MAPbI3–DMF (N, N-dimethylformamide)–HI. The best DMSO-bilayer device showed 1.07 ± 0.02 V V oc (open-circuit voltage), 20.2 ± 0.1 mA cm‑2 J sc (short-circuit current density), 68 ± 2% FF (fill factor), and 15.2 ± 0.3% η (overall power conversion efficiency) under the forward scan direction and 1.07 ± 0.02 V V oc, 20.4 ± 0.1 mA cm‑2 J sc, 70 ± 3% FF, and 15.9 ± 0.4% η under the reverse scan direction. The best HI-bilayer device had 1.08 ± 0.02 V V oc, 20.6 ± 0.1 mA cm‑2 J sc, 75 ± 1% FF, and 17.2 ± 0.2% η under the forward scan direction and 1.08 ± 0.02 V V oc, 20.6 ± 0.1 mA cm‑2 J sc, 76 ± 2% FF, and 17.4 ± 0.3% η under the reverse scan direction. The deviation of average device efficiency ({η }{{avg}}) of 20 DMSO samples and 20 HI samples was 14.2 ± 0.95% and 16.2 ± 0.85%, respectively. Therefore, the HI-bilayer devices exhibited better device efficiency and smaller J–V (current density–voltage) hysteresis with respect to the scan direction than the DMSO-bilayer devices due to the reduced recombination and traps by the formation of a purer and larger MAPbI3 perovskite crystalline film.

  16. Estimating the agricultural fertilizer NH3 emission in China based on the bi-directional CMAQ model and an agro-ecosystem model

    NASA Astrophysics Data System (ADS)

    Wang, S.

    2014-12-01

    Atmospheric ammonia (NH3) plays an important role in fine particle formation. Accurate estimates of ammonia can reduce uncertainties in air quality modeling. China is one of the largest countries emitting ammonia with the majority of NH3 emissions coming from the agricultural practices, such as fertilizer applications and animal operations. The current ammonia emission estimates in China are mainly based on pre-defined emission factors. Thus, there are considerable uncertainties in estimating NH3 emissions, especially in time and space distribution. For example, fertilizer applications vary in the date of application and amount by geographical regions and crop types. In this study, the NH3 emission from the agricultural fertilizer use in China of 2011 was estimated online by an agricultural fertilizer modeling system coupling a regional air-quality model and an agro-ecosystem model, which contains three main components 1) the Environmental Policy Integrated Climate (EPIC) model, 2) the meso-scale meteorology Weather Research and Forecasting (WRF) model and 3) the CMAQ air quality model with bi-directional ammonia fluxes. The EPIC output information about daily fertilizer application and soil characteristics would be the input of the CMAQ model. In order to run EPIC model, much Chinese local information is collected and processed. For example, Crop land data are computed from the MODIS land use data at 500-m resolution and crop categories at Chinese county level; the fertilizer use rate for different fertilizer types, crops and provinces are obtained from Chinese statistic materials. The system takes into consideration many influencing factors on agriculture ammonia emission, including weather, the fertilizer application method, timing, amount, and rate for specific pastures and crops. The simulated fertilizer data is compared with the NH3 emissions and fertilizer application data from other sources. The results of CMAQ modeling are also discussed and analyzed with field measurements. The estimated agricultural fertilizer NH3 emission in this study is about 3Tg in 2011. The regions with the highest emission rates are located in the North China Plain. Monthly, the peak ammonia emissions occur in April to July.

  17. Investigation of mechanisms contributing to slow desorption of hydrophobic organic compounds from mineral solids

    SciTech Connect

    Farrell, J.; Grassian, D.; Jones, M.

    1999-04-15

    Predicting the transport and fate of hydrophobic organic contaminants in underground aquifers requires a mechanistic understanding of sediment-contaminant interactions. This research investigates the mechanisms contributing to the slow desorption of hydrophobic organic compounds from water-saturated mineral solids. The mechanisms investigated were adsorption-retarded aqueous diffusion, micropore diffusion, high-energy micropore adsorption, and micropore blockage by precipitated minerals. To reduce the potential confounding effects of adsorbent heterogeneity, a set of homogeneous silica gel and glass bead adsorbents were used in the investigation. Desorption rates for the slow-desorbing fractions of chloroform (CF), trichloroethylene (TCE), and perchloroethylene (PCE) from silica gel did not conform to the pore-diffusion model for adsorption-retarded aqueous diffusion. This indicated that diffusion through adsorbent mesopores was not responsible for slow desorption from silica gel. Micropore-diffusion modeling of TCE desorption from three silica gels and microporous glass beads indicated that pores less than 2 nm in diameter were responsible for slow desorption. Desorption rates of CF, TCE, and PCE from silica gel were also measured in methanol solutions. Under methanol extraction conditions, desorption rates for all three compounds were 1--2 orders of magnitude less than under water-saturated conditions. The activation energy for TCE desorption from water-saturated silica gel was measured using temperature-programmed desorption. The TCE desorption activation energy of 15 kJ/mol was close to the dissolution enthalpy for silica gel of 13 kJ/mol. This supported the hypothesis that micropore blockage by precipitated minerals may be limiting contaminant desorption rates under water-saturated conditions.

  18. The naked-eye detection of NH(3) -HCl by polyaniline-infiltrated TiO(2) inverse opal photonic crystals.

    PubMed

    Liu, Cihui; Gao, Guizhi; Zhang, Yuqi; Wang, Libin; Wang, Jingxia; Song, Yanlin

    2012-03-16

    A reversible color change of a polyaniline-infiltrated TiO(2) inverse opal photonic crystal (PC) film can be obtained when the PC is switched from an acidic to alkali vapor environment. In a saturated NH(3) environment, the stopband of the as-prepared PCs changes from 556 to 688 nm; such large shift of 132 nm could be observed, corresponding to a clear color change from green to red. After placing in HCl vapor, the stopband undergoes a blue-shift and the color turns back to green. The result is ascribed to PANI being doped or dedoped by acid or base and the effective refractive index of the PC film varying accordingly. The naked-eye detection of NH(3) and HCl vapors can be realized by the reversible color change of the PC film, which is of importance for chemical and biological sensors. PMID:22287386

  19. Spectroscopic Studies of the Phase Transition in Ammonia Borane: Raman spectroscopy of single crystal NH3BH3 as a function of temperature from 88 to 330 K

    SciTech Connect

    Hess, Nancy J.; Bowden, Mark E.; Parvanov, Vencislav M.; Mundy, Christopher J.; Kathmann, Shawn M.; Schenter, Gregory K.; Autrey, Thomas

    2008-01-21

    Raman spectra of single crystal ammonia borane, NH3BH3, were recorded as a function of temperature from 77 to 300 K using Raman microscopy and a variable temperature stage. The orthorhombic to orientationally disordered tetragonal phase transition at 225 K was clearly evident from the decrease in the number of vibrational modes. However some of the modes in the orthorhombic phase appeared to merge 10 to 12 K below the phase transition perhaps suggesting the presence of an intermediate phase. Factor group analysis of vibrational spectra for both orthorhombic and tetragonal phase is provided. To our knowledge this is first reported vibrational spectra in the BH and NH stretching region of single crystal NH3BH3 in the orthorhombic phase.

  20. A laboratory Atlas of the 5 nu-1 NH3 absorption band at 6475 A with applications to Jupiter and Saturn

    NASA Technical Reports Server (NTRS)

    Giver, L. P.; Miller, J. H.; Boese, R. W.

    1975-01-01

    A complete atlas of the 5 nu-1 absorption band of NH3 is presented together with measurements of the total band intensity, line intensities, and self-broadening coefficients. The spectrum, which is displayed in the interval from 6418 to 6550 A, was obtained photoelectrically at a pressure of 0.061 atm, and many more lines were seen in this spectrum than in a previous one obtained at a pressure of 0.39 atm. The band intensity is used to derive the NH3 abundance in the atmospheres of Jupiter and Saturn, and the abundances in a single vertical path are found to be about 10 m amagat for Jupiter and 2 m amagat for Saturn. These results are shown to be in agreement with previous results obtained from higher resolution photographic spectra.

  1. Enhanced NH3 gas sensing properties of a QCM sensor by increasing the length of vertically orientated ZnO nanorods

    NASA Astrophysics Data System (ADS)

    Minh, Vu Anh; Tuan, Le Anh; Huy, Tran Quang; Hung, Vu Ngoc; Quy, Nguyen Van

    2013-01-01

    Vertically aligned ZnO nanorods were directly synthesised on a gold electrode of quartz crystal microbalance (QCM) by a simple low-temperature hydrothermal method for a NH3 gas sensing application. The length of vertically aligned ZnO nanorods was increased to purpose enhancement in the gas sensing response of the sensor. The length of ZnO nanorods increased with an increase in growth time. The growth time of ZnO nanorods was systematically varied in the range of 1-4 h to examine the effect of the length of the ZnO nanorods on the gas sensing properties of the fabricated sensors. The gas sensing properties of sensors with different ZnO nanorods lengths was examined at room temperature for various concentrations of NH3 (50-800 ppm) in synthetic air. Enhancement in gas sensing response by increasing the length of ZnO nanorods was observed.

  2. Direct Conversion of CH3NH3PbI3 from Electrodeposited PbO for Highly Efficient Planar Perovskite Solar Cells

    NASA Astrophysics Data System (ADS)

    Huang, Jin-Hua; Jiang, Ke-Jian; Cui, Xue-Ping; Zhang, Qian-Qian; Gao, Meng; Su, Mei-Ju; Yang, Lian-Ming; Song, Yanlin

    2015-10-01

    Organic-inorganic hybrid perovskite materials have recently been identified as a promising light absorber for solar cells. In the efficient solar cells, the perovskite active layer has generally been fabricated by either vapor deposition or two-step sequential deposition process. Herein, electrochemically deposited PbO film is in situ converted into CH3NH3PbI3 through solid-state reaction with adjacent CH3NH3I layer, exhibiting a large-scale flat and uniform thin film with fully substrate coverage. The resultant planar heterojunction photovoltaic device yields a best power conversion efficiency of 14.59% and an average power conversion efficiency of 13.12??1.08% under standard AM 1.5 conditions. This technique affords a facile and environment-friendly method for the fabrication of the perovskite based solar cells with high reproducibility, paving the way for the practical application.

  3. Direct Conversion of CH3NH3PbI3 from Electrodeposited PbO for Highly Efficient Planar Perovskite Solar Cells

    PubMed Central

    Huang, Jin-hua; Jiang, Ke-jian; Cui, Xue-ping; Zhang, Qian-qian; Gao, Meng; Su, Mei-ju; Yang, Lian-ming; Song, Yanlin

    2015-01-01

    Organic-inorganic hybrid perovskite materials have recently been identified as a promising light absorber for solar cells. In the efficient solar cells, the perovskite active layer has generally been fabricated by either vapor deposition or two-step sequential deposition process. Herein, electrochemically deposited PbO film is in situ converted into CH3NH3PbI3 through solid-state reaction with adjacent CH3NH3I layer, exhibiting a large-scale flat and uniform thin film with fully substrate coverage. The resultant planar heterojunction photovoltaic device yields a best power conversion efficiency of 14.59% and an average power conversion efficiency of 13.12 ± 1.08% under standard AM 1.5 conditions. This technique affords a facile and environment-friendly method for the fabrication of the perovskite based solar cells with high reproducibility, paving the way for the practical application. PMID:26510520

  4. Fabrication of lead halide perovskite solar cells by annealing spin-coated PbI2 thin films in CH3NH3I vapor

    NASA Astrophysics Data System (ADS)

    Ebe, Hinako; Araki, Hideaki

    2016-02-01

    Lead halide perovskite (CH3NH3PbI3) solar cells possess numerous useful properties, such as appropriate direct bandgaps and high absorption coefficients, and these cells have recently attracted considerable attention owing to their excellent photovoltaic performance and low cost. In this study, perovskite layers intended for use as light-absorbing materials were fabricated by annealing spin-coated PbI2 thin-films in CH3NH3I vapor while assessing the effects of varying the annealing temperature. X-ray diffraction analysis indicated that perovskite began to form at temperatures above 140 °C, with the PbI2 peak completely disappearing above 160 °C. In addition, scanning electron microscopy observations confirmed that the grain size increased with increasing annealing temperature. Solar cells fabricated using perovskite thin-films grown at 140–150 °C for 4 h exhibited a power conversion efficiency of more than 4%.

  5. Air-Stable (CAAC)CuCl and (CAAC)CuBH4 Complexes as Catalysts for the Hydrolytic Dehydrogenation of BH3NH3.

    PubMed

    Hu, Xingbang; Soleilhavoup, Michèle; Melaimi, Mohand; Chu, Jiaxiang; Bertrand, Guy

    2015-05-11

    The first stable copper borohydride complex [(CAAC)CuBH4] [CAAC = cyclic(alkyl)(amino)carbene] bearing a single monodentate ligand was prepared by addition of NaBH4 or BH3NH3 to the corresponding [(CAAC)CuCl] complex. Both complexes are air-stable and promote the catalytic hydrolytic dehydrogenation of ammonia borane. The amount of hydrogen released reaches 2.8 H2/BH3 NH3 with a turnover frequency of 8400 mol H2 molcat(-1) h(-1) at 25 °C. In a fifteen-cycle experiment, the catalyst was reused without any loss of efficiency. PMID:25802096

  6. The recombination mechanisms leading to amplified spontaneous emission at the true-green wavelength in CH3NH3PbBr3 perovskites

    NASA Astrophysics Data System (ADS)

    Priante, D.; Dursun, I.; Alias, M. S.; Shi, D.; Melnikov, V. A.; Ng, T. K.; Mohammed, O. F.; Bakr, O. M.; Ooi, B. S.

    2015-02-01

    We investigated the mechanisms of radiative recombination in a CH3NH3PbBr3 hybrid perovskite material using low-temperature, power-dependent (77 K), and temperature-dependent photoluminescence (PL) measurements. Two bound-excitonic radiative transitions related to grain size inhomogeneity were identified. Both transitions led to PL spectra broadening as a result of concurrent blue and red shifts of these excitonic peaks. The red-shifted bound-excitonic peak dominated at high PL excitation led to a true-green wavelength of 553 nm for CH3NH3PbBr3 powders that are encapsulated in polydimethylsiloxane. Amplified spontaneous emission was eventually achieved for an excitation threshold energy of approximately 350 ?J/cm2. Our results provide a platform for potential extension towards a true-green light-emitting device for solid-state lighting and display applications.

  7. (CH3NH3)2Pb(SCN)2I2: A More Stable Structural Motif for Hybrid Halide Photovoltaics?

    PubMed

    Ganose, Alex M; Savory, Christopher N; Scanlon, David O

    2015-11-19

    Hybrid halide perovskites have recently emerged as a highly efficient class of light absorbers; however, there are increasing concerns over their long-term stability. Recently, incorporation of SCN(-) has been suggested as a novel route to improving stability without negatively impacting performance. Intriguingly, despite crystallizing in a 2D layered structure, (CH3NH3)2Pb(SCN)2I2 (MAPSI) possesses an ideal band gap of 1.53 eV, close to that of the 3D connected champion hybrid perovskite absorber, CH3NH3PbI3 (MAPI). Here, we identify, using hybrid density functional theory, the origin of the smaller than expected band gap of MAPSI through a detailed comparison with the electronic structure of MAPI. Furthermore, assessment of the MAPSI structure reveals that it is thermodynamically stable with respect to phase separation, a likely source of the increased stability reported in experiment. PMID:26525942

  8. Thermodynamic Origin of Photoinstability in the CH3NH3Pb(I1-xBrx)3 Hybrid Halide Perovskite Alloy.

    PubMed

    Brivio, Federico; Caetano, Clovis; Walsh, Aron

    2016-03-17

    The formation of solid-solutions of iodide, bromide, and chloride provides the means to control the structure, band gap, and stability of hybrid halide perovskite semiconductors for photovoltaic applications. We report a computational investigation of the CH3NH3PbI3/CH3NH3PbBr3 alloy from density functional theory with a thermodynamic analysis performed within the generalized quasi-chemical approximation. We construct the phase diagram and identify a large miscibility gap, with a critical temperature of 343 K. The observed photoinstability in some mixed-halide solar cells is explained by the thermodynamics of alloy formation, where an initially homogeneous solution is subject to spinodal decomposition with I and Br-rich phases, which is further complicated by a wide metastable region defined by the binodal line. PMID:26952337

  9. Applications of tunable diode laser spectroscopy for the detection of exhaled endogenous gases: CO, NH3, CH4, N20, and CO2

    NASA Astrophysics Data System (ADS)

    Kouznetsov, Andrian I.; Stepanov, Eugene V.

    1996-04-01

    Tunable diode laser spectroscopy (TDLS) is proposed for content measurements of trace gases like CO, carbon-dioxide, NH3, CH4, NO, NO2 in human and animal's exhalation. High sensitivity and wide dynamic range of the method ensure fast detection of these gases at ppb level and within the accuracy better than 10%. One-expiration sample is enough to reach these parameters. There is no need for any preliminary preparations of tested samples. Some pairs of the gases, for instance, CO and carbon-dioxide, NH3 and carbon- dioxide, or CO and nitrous oxide, can be measured simultaneously by one laser providing complex studies. The high sensitive gas analysis could provide necessary background to the noninvasive diagnostics in a wide variety of medical problems. Perspectives of the TDLS methods in application to medicine diagnostics are demonstrated by the first results of exhalation tests.

  10. SO2 and NH3 gas adsorption on a ternary ZnO/CuO/CuCl2 impregnated activated carbon evaluated using combinatorial methods.

    PubMed

    Romero, Jennifer V; Smith, Jock W H; Sullivan, Braden M; Croll, Lisa M; Dahn, J R

    2012-01-01

    Ternary libraries of 64 ZnO/CuO/CuCl(2) impregnated activated carbon samples were prepared on untreated or HNO(3)-treated carbon and evaluated for their SO(2) and NH(3) gas adsorption properties gravimetrically using a combinatorial method. CuCl(2) is shown to be a viable substitute for HNO(3) and some compositions of ternary ZnO/CuO/CuCl(2) impregnated carbon samples prepared on untreated carbon provided comparable SO(2) and NH(3) gas removal capacities to the materials prepared on HNO(3)-treated carbon. Through combinatorial methods, it was determined that the use of HNO(3) in this multigas adsorbent formulation can be avoided. PMID:22126267

  11. The mechanism of controllable dehydrogenation: CPMD study of M(BH4)x(NH3)y (M = Li, Mg) decomposition.

    PubMed

    Wang, Kun; Zhang, Jian-Guo; Lang, Xu-Qiang

    2016-03-01

    Amine metallic borohydrides were synthesized as a new series of hydrogen-storage materials. Their dehydrogenation can be controlled if appropriate metal centres are chosen. A typical example is LiBH4NH3 (ALB) and Mg(BH4)2(NH3)2 (AMgB) adopt the same symmetries but show totally different appearances when decomposed. Both ALB an