Science.gov

Sample records for ni okeru reaction

  1. Ni-Catalyzed Amination Reactions: An Overview.

    PubMed

    Marín, Mario; Rama, Raquel J; Nicasio, M Carmen

    2016-08-01

    Nitrogen-containing organic compounds are valuable in many fields of science and industry. The most reliable method for the construction of C(sp(2) )-N bonds is undoubtedly palladium-catalyzed amination. In spite of the great achievements made in this area, the use of expensive Pd-based catalysts constitutes an important limitation for large-scale applications. Since nickel is the least expensive and most abundant among the group 10 metals, the interest in Ni-based catalysts for processes typically catalyzed by palladium has grown considerably over the last few years. Herein, we revise the development of Ni-catalyzed amination reactions, emphasizing the most relevant and recent advances in the field. PMID:27265724

  2. Reactions of organonitrogen molecules with Ni(100)

    SciTech Connect

    Schoofs, G.R.; Benziger, J.B.

    1988-02-11

    The adsorption and reaction of a variety of organonitrogen compounds on a Ni(100) surface have been examined with temperature-programmed reaction. Auger electron spectroscopy, and infrared spectroscopy. Monomethylamine adsorbs via the nitrogen lone pair of electrons and then undergoes C-N bond scission yielding adsorbed carbon, dihydrogen, and ammonia. Aniline ..pi..-bonds to the surface and polymerizes to form a thermally stable poly(aniline) surface film. Pyridine undergoes a temperature-induced orientational transformation. At low temperatures pyridine adsorbs with its ring parallel to the surface. At higher temperatures it appears to form an ..cap alpha..-pyridyl species with an activation barrier of 85 kJ/mol. Methyl groups on 2,6-lutidine sterically hinder this reaction. Methyl groups on 3,5-lutidine stabilize bonding via the nitrogen lone pair of electrons. The methyl groups on 3,5-lutidine increase electrophilic addition activity relative to pyridine and lead to polymerization of 3,5-lutidine, forming a thermally stable polymer film. Pyrimidine reacted in almost identical fashion to pyridine, suggesting that increased nucleophilic activity had little effect on the reaction behavior of heterocyclic compounds and that electrophilic reactions predominate.

  3. DFT study of the water gas shift reaction on Ni(111), Ni(100) and Ni(110) surfaces

    NASA Astrophysics Data System (ADS)

    Mohsenzadeh, Abas; Richards, Tobias; Bolton, Kim

    2016-02-01

    Density functional theory (DFT) calculations were used to study the water gas shift (WGS) reaction on Ni(111), Ni(100) and Ni(110) surfaces. The adsorption energy for ten species involved in the reaction together with activation barriers and reaction energies for the nine most important elementary steps were determined using the same model and DFT methods. The results reveal that these energies are sensitive to the surface structure. In spite of this, the WGS reaction occurs mainly via the direct (also referred to as redox) pathway with the CO + O → CO2 reaction as the rate determining step on all three surfaces. The activation barrier obtained for this rate limiting step decreases in the order Ni(110) > Ni(111) > Ni(100). Therefore, if O species are present on the surfaces then the WGS reaction is fastest on the Ni(100) surface. However, the barrier for desorption of H2O (which is the source of the O species) is lower than its dissociation reaction on the Ni(111) and Ni(100) surfaces, but not on the Ni(110) surface. Hence, at low H2O(g) pressures, the direct pathway on the Ni(110) surface will dominate and will be the rate limiting step. The calculations also show that the reason that the WGS reaction does not primarily occur via the formate pathway is that this species is a stable intermediate on all surfaces. The reactions studied here support the Brønsted-Evans-Polanyi (BEP) principles with an R2 value of 0.99.

  4. Shock induced reaction of Ni/Al nanopowder mixture.

    PubMed

    Meng, C M; Wei, J J; Chen, Q Y

    2012-11-01

    Nanopowder Ni/Al mixture (mixed in Al:Ni = 2:1 stoichiometry) was shock compressed by employing single and two-stage light gas gun. The particle size of Al and Ni are 100-200 nm and 50-70 nm respectively, morphologies of Al and Ni are sphere like either. Recovered product was characterized by scanning electron microscope (SEM) and X-ray diffraction (XRD) analysis. According to the XRD spectrum, the mixed powder undergo complete reaction under shock compression, reaction product consist of Ni2Al3, NiAl and corundum structure Al2O3 compound. Grain size of Ni-Al compound is less than 100 nm. With the shock pressure increasing, the ratio of Ni2Al3 decreased obviously. The corundum crystal size is 400-500 nm according to the SEM observation. The results of shock recovery experiments and analysis show that the threshold pressure for reaction of nano size powder Ni/Al mixture is much less than that of micro size powder. PMID:23421276

  5. Fusion reactions of Ni,6458+124Sn

    NASA Astrophysics Data System (ADS)

    Jiang, C. L.; Stefanini, A. M.; Esbensen, H.; Rehm, K. E.; Almaraz-Calderon, S.; Avila, M. L.; Back, B. B.; Bourgin, D.; Corradi, L.; Courtin, S.; Fioretto, E.; Galtarossa, F.; Goasduff, A.; Haas, F.; Mazzocco, M. M.; Montanari, D.; Montagnoli, G.; Mijatovic, T.; Sagaidak, R.; Santiago-Gonzalez, D.; Scarlassara, F.; Strano, E. E.; Szilner, S.

    2015-04-01

    Measurements of fusion excitation functions of 58Ni+124Sn and 64Ni+124Sn are extended towards lower energy to cross sections of 1 μ b and are compared to detailed coupled-channels calculations. The calculations clearly show the importance of including transfer reactions in a coupled-channels treatment for such heavy systems. This result is different from the conclusion made in a previous article which claimed that the influence of transfer on fusion is not important for fusion reactions of Ni +Sn . In the energy region studied in this experiment no indication of fusion hindrance has been observed, which is consistent with a systematic study of this behavior.

  6. Composite Ni/NiO-Cr2O3 Catalyst for Alkaline Hydrogen Evolution Reaction

    SciTech Connect

    Bates, MK; Jia, QY; Ramaswamy, N; Allen, RJ; Mukerjee, S

    2015-03-12

    We report a Ni-Cr/C electrocatalyst with unpreeedented massactivity for the hydrogen evolution reaction (HER). in alkaline electrolyte. The HER Oietics of numerous binary and ternary Ni-alloys and composite Ni/metal-euride/C samples were evaluated in aquebus 0.1 M KOH electrolyte. The highest HER mass-activity was observed for Ni-Cr materials which exhibit metallic Ni as well as NiOx and Cr2O3 phases as determined by X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS) analysis. The onset of the HER is significantly improved compared to munerous binary dor ternary Ni-alloys, inCluding Ni Mg materials. It is likely that at adjacent Ni/NiOx sites, the oxide acts as a sink for OHads, while the metallic Ni acts as a, sink for the H-ads, intermediate of the HER, thus minimizing the high activation energy of hydrogen evolution via water reduction. This is confirmed by in situ XAS studies that show that the synergistic HER enhancement is due to NiO content and that the Cr2O3 appears to stabilize the composite NiO component-under HER conditions (where NiOx would typically be reduced to metallic Ni-0). Furthermore, in contrast to Pt, the Ni(O-x)/Cr2O3 catalyst appears resistant to poisoning by the anion.exchange ionomer (AEI), a serloua consideration when applied to an anionic polymer electrolyte interface. Furthermore, we report a: detailed model of the double layer interface which helps explain the observed ensemble effect in the presence of AEI.

  7. Reaction synthesis of Ni-Al based particle composite coatings

    SciTech Connect

    SUSAN,DONALD F.; MISIOLEK,WOICECK Z.; MARDER,ARNOLD R.

    2000-02-11

    Electrodeposited metal matrix/metal particle composite (EMMC) coatings were produced with a nickel matrix and aluminum particles. By optimizing the process parameters, coatings were deposited with 20 volume percent aluminum particles. Coating morphology and composition were characterized using light optical microscopy (LOM), scanning electron microscopy (SEM), and electron probe microanalysis (EPMA). Differential thermal analysis (DTA) was employed to study reactive phase formation. The effect of heat treatment on coating phase formation was studied in the temperature range 415 to 1,000 C. Long-time exposure at low temperature results in the formation of several intermetallic phases at the Ni matrix/Al particle interfaces and concentrically around the original Al particles. Upon heating to the 500--600 C range, the aluminum particles react with the nickel matrix to form NiAl islands within the Ni matrix. When exposed to higher temperatures (600--1,000 C), diffusional reaction between NiAl and nickel produces ({gamma})Ni{sub 3}Al. The final equilibrium microstructure consists of blocks of ({gamma}{prime})Ni{sub 3}Al in a {gamma}(Ni) solid solution matrix, with small pores also present. Pore formation is explained based on local density changes during intermetallic phase formation and microstructural development is discussed with reference to reaction synthesis of bulk nickel aluminides.

  8. Composite Ni/NiO-Cr2O3 Catalyst for Alkaline Hydrogen Evolution Reaction

    PubMed Central

    Bates, Michael K.; Jia, Qingying; Ramaswamy, Nagappan; Allen, Robert J.; Mukerjee, Sanjeev

    2015-01-01

    We report a Ni–Cr/C electrocatalyst with unprecedented mass-activity for the hydrogen evolution reaction (HER) in alkaline electrolyte. The HER kinetics of numerous binary and ternary Ni-alloys and composite Ni/metal-oxide/C samples were evaluated in aqueous 0.1 M KOH electrolyte. The highest HER mass-activity was observed for Ni–Cr materials which exhibit metallic Ni as well as NiOx and Cr2O3 phases as determined by X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS) analysis. The onset of the HER is significantly improved compared to numerous binary and ternary Ni-alloys, including Ni–Mo materials. It is likely that at adjacent Ni/NiOx sites, the oxide acts as a sink for OHads, while the metallic Ni acts as a sink for the Hads intermediate of the HER, thus minimizing the high activation energy of hydrogen evolution via water reduction. This is confirmed by in situ XAS studies that show that the synergistic HER enhancement is due to NiOx content and that the Cr2O3 appears to stabilize the composite NiOx component under HER conditions (where NiOx would typically be reduced to metallic Ni0). Furthermore, in contrast to Pt, the Ni(Ox)/Cr2O3 catalyst appears resistant to poisoning by the anion exchange ionomer (AEI), a serious consideration when applied to an anionic polymer electrolyte interface. Furthermore, we report a detailed model of the double layer interface which helps explain the observed ensemble effect in the presence of AEI. PMID:26191118

  9. Ni(+) reactions with aminoacetonitrile, a potential prebiological precursor of glycine.

    PubMed

    Lamsabhi, Al Mokhtar; Mó, Otilia; Yáñez, Manuel; Guillemin, Jean-Claude; Haldys, Violette; Tortajada, Jeanine; Salpin, Jean-Yves

    2008-03-01

    The gas-phase reactions between Ni(+) ((2)D(5/2)) and aminoacetonitrile, a molecule of prebiological interest as possible precursor of glycine, have been investigated by means of mass spectrometry techniques. The mass-analyzed ion kinetic energy (MIKE) spectrum reveals that the adduct ions [NC--CH(2)--NH(2), Ni(+)] spontaneously decompose by loosing HCN, H(2), and H(2)CNH, the loss of hydrogen cyanide being clearly dominant. The structures and bonding characteristics of the aminoacetonitrile-Ni(+) complexes as well as the different stationary points of the corresponding potential energy surface (PES) have been theoretically studied by density functional theory (DFT) calculations carried out at B3LYP/6-311G(d,p) level. A cyclic intermediate, in which Ni(+) is bisligated to the cyano and the amino group, plays an important role in the unimolecular reactivity of these ions, because it is the precursor for the observed losses of HCN and H(2)CNH. In all mechanisms associated with the loss of H(2), the metal acts as hydrogen carrier favoring the formation of the H(2) molecule. The estimated bond dissociation energy of aminoacetonitrile-Ni(+) complexes (291 kJ mol(-1)) is larger than those measured for other nitrogen bases such as pyridine or pyrimidine and only slightly smaller than that of adenine. PMID:18064577

  10. Hydrogen evolution reaction measurements of dealloyed porous NiCu

    PubMed Central

    2013-01-01

    Porous metals are of interest for their high surface area and potential for enhanced catalytic behavior. Electrodeposited NiCu thin films with a range of compositions were electrochemically dealloyed to selectively remove the Cu component. The film structure, composition, and reactivity of these samples were characterized both before and after the dealloying step using scanning electron microscopy, energy-dispersive spectroscopy, and electrochemical measurements. The catalytic behavior of the dealloyed porous Ni samples towards the hydrogen evolution reaction was measured and compared to that of the as-deposited samples. The dealloyed samples were generally more reactive than their as-deposited counterparts at low overpotentials, making the dealloying procedure a promising area of exploration for improved hydrogen evolution catalysts. PMID:24341569

  11. Hydrogen evolution reaction measurements of dealloyed porous NiCu

    NASA Astrophysics Data System (ADS)

    Koboski, Kyla R.; Nelsen, Evan F.; Hampton, Jennifer R.

    2013-12-01

    Porous metals are of interest for their high surface area and potential for enhanced catalytic behavior. Electrodeposited NiCu thin films with a range of compositions were electrochemically dealloyed to selectively remove the Cu component. The film structure, composition, and reactivity of these samples were characterized both before and after the dealloying step using scanning electron microscopy, energy-dispersive spectroscopy, and electrochemical measurements. The catalytic behavior of the dealloyed porous Ni samples towards the hydrogen evolution reaction was measured and compared to that of the as-deposited samples. The dealloyed samples were generally more reactive than their as-deposited counterparts at low overpotentials, making the dealloying procedure a promising area of exploration for improved hydrogen evolution catalysts.

  12. Mass and charge transfer in the heavy ion reactions 208Ni and 208Ni

    NASA Astrophysics Data System (ADS)

    Sapotta, K.; Bass, R.; Hartmann, V.; Noll, H.; Renfordt, R. E.; Stelzer, K.

    1985-04-01

    Target-like reaction products corresponding to the transfer of one or several nucleons have been measured as a function of the total kinetic energy loss in the reactions 208Ni (1215 MeV) and 208Ni (1107 MeV) with a focusing time-of-flight spectrometer which provided a unique mass and charge separation and good energy resolution. The analysis of the experimental data covered the range from elastic scattering to deep-inelastic collisions. In the quasielastic region, neutron transfer dominates. The transfer probabilities as a function of the distance of closest approach can be described by a semiclassical theory of tunneling. Quasielastic transfer from the Ni targets to the 208Pb projectile is strongly inhibited by the reaction Q values. For the intermediate and deep-inelastic collisions, the mean values and variances of the mass and charge distributions as a function of the dissipated energy, as well as the correlations between neutron and proton transport, are discussed in a statistical diffusion theory. The important influence of the static potential energy surface on nucleon transport in the deep-inelastic region is demonstrated. Deviations from the simple diffusion model, observed at small to medium energy losses, are discussed.

  13. Exploring dissipative processes at high angular momentum in 58Ni+60Ni reactions

    NASA Astrophysics Data System (ADS)

    Williams, E.; Hinde, D. J.; Dasgupta, M.; Carter, I. P.; Cook, K. J.; Jeung, D. Y.; Luong, D. H.; McNeil, S. D.; Palshetkar, C. S.; Rafferty, D. C.; Ramachandran, K.; Simenel, C.; Simpson, E. C.; Wakhle, A.

    2016-05-01

    Current coupled channels (CC) models treat fusion as a coherent quantum-mechanical process, in which coupling between the collective states of the colliding nuclei influences the probability of fusion in near-barrier reactions. While CC models have been used to successfully describe many experimental fusion barrier distribution (BD) measurements, the CC approach has failed in the notable case of 16O+208Pb. The reason for this is poorly understood; however, it has been postulated that dissipative processes may play a role. Traditional BD experiments can only probe the physics of fusion for collisions at the top of the Coulomb barrier (L = 0ħ). In this work, we will present results using a novel method of probing dissipative processes inside the Coulomb barrier. The method exploits the predicted sharp onset of fission at L ~ 60ħ for reactions forming compound nuclei with A < 160. Using the ANU's 14UD tandem accelerator and CUBE spectrometer, reaction outcomes have been measured for the 58Ni+60Ni reaction at a range of energies, in order to explore dissipative processes at high angular momentum. In this reaction, deep inelastic processes have been found to set in before the onset fission at high angular momentum following fusion. The results will be discussed in relation to the need for a dynamical model of fusion.

  14. Fusion reactions of 58,64Ni+124Sn

    NASA Astrophysics Data System (ADS)

    Galtarossa, F.; Jiang, C. L.; Stefanini, A. M.; Esbensen, H.; Rehm, K. E.; Almaraz Calderon, S.; Avila, M. L.; Back, B. B.; Bourgin, D.; Corradi, L.; Courtin, S.; Fioretto, E.; Goasduff, A.; Haas, F.; Mazzocco, M.; Montanari, D.; Montagnoli, G.; Mijiatovic, T.; Sagaidak, R.; Santiago-Gonzalez, D.; Scarlassara, F.; Strano, E.; Szilner, S.

    2016-05-01

    In order to better understand the influence of transfer in sub-barrier nuclear reactions, cross sections for the system 58,64Ni+124Sn have been measured down to 0.5-1 µb and compared to detailed coupledchannel calculations. In agreement with a phenomenological Q-value systematics, calculations show the importance of including the coupling to the transfer channel for these heavy systems. No clear evidence of fusion hindrance is observed, probably due to the fact that the cross sections measured in this experiment are not low enough for the appearance of that phenomenon.

  15. Reaction dynamics studies for the system 7Be+58Ni

    NASA Astrophysics Data System (ADS)

    Torresi, D.; Mazzocco, M.; Acosta, L.; Boiano, A.; Boiano, C.; Diaz-Torres, A.; Fierro, N.; Glodariu, T.; Grilj, L.; Guglielmetti, A.; Keeley, N.; La Commara, M.; Martel, I.; Mazzocchi, C.; Molini, P.; Pakou, A.; Parascandolo, C.; Parkar, V. V.; Patronis, N.; Pierroutsakou, D.; Romoli, M.; Rusek, K.; Sanchez-Benitez, A. M.; Sandoli, M.; Signorini, C.; Silvestri, R.; Soramel, F.; Stiliaris, E.; Strano, E.; Stroe, L.; Zerva, K.

    2015-04-01

    The study of reactions induced by exotic weakly bound nuclei at energies around the Coulomb barrier had attracted a large interest in the last decade, since the features of these nuclei can deeply affect the reaction dynamics. The discrimination between different reaction mechanisms is, in general, a rather difficult task. It can be achieved by using detector arrays covering high solid angle and with high granularity that allow to measure the reaction products and, possibly, coincidences between them, as, for example, recently done for stable weakly bound nuclei [1, 2]. We investigated the collision of the weakly bound nucleus 7Be on a 58Ni target at the beam energy of 1.1 times the Coulomb barrier, measuring the elastic scattering angular distribution and the energy and angular distributions of 3He and 4He. The 7Be radioactive ion beam was produced by the facility EXOTIC at INFN-LNL with an energy of 22 MeV and an intensity of ~3×105 pps. Results showed that the 4He yeld is about 4 times larger than 3He yield, suggesting that reaction mechanisms other than the break-up mostly produce the He isotopes. Theoretical calculations for transfer channels and compound nucleus reactions suggest that complete fusion accounts for (41±5%) of the total reaction cross section extracted from optical model analysis of the elastic scattering data, and that 3He and 4He stripping are the most populated reaction channels among direct processes. Eventually estimation of incomplete fusion contributions to the 3,4He production cross sections was performed through semi-classical calculations with the code PLATYPUS [3].

  16. Displacement reactions in the Ni-Al-O system resulting in periodic layer structures

    SciTech Connect

    Song, D.W.; Subramanian, R.; Dieckmann, R.

    1995-10-01

    Displacement reactions may play an important role in in situ processing technologies for the production of metal-ceramic composites. To better understand such reactions displacement reactions between NiO and Al were studied at high temperatures. Different reaction layers with periodic structures were observed involving Al{sub 2}O{sub 3}, Al{sub 3}Ni, Al{sub 3}Ni{sub 2}, Ni and Al. The experimental observations are presented and discussed with regard to the reaction mechanism.

  17. Experimental study of the 66Ni(d ,p ) 67Ni one-neutron transfer reaction

    NASA Astrophysics Data System (ADS)

    Diriken, J.; Patronis, N.; Andreyev, A.; Antalic, S.; Bildstein, V.; Blazhev, A.; Darby, I. G.; De Witte, H.; Eberth, J.; Elseviers, J.; Fedosseev, V. N.; Flavigny, F.; Fransen, Ch.; Georgiev, G.; Gernhauser, R.; Hess, H.; Huyse, M.; Jolie, J.; Kröll, Th.; Krücken, R.; Lutter, R.; Marsh, B. A.; Mertzimekis, T.; Muecher, D.; Orlandi, R.; Pakou, A.; Raabe, R.; Randisi, G.; Reiter, P.; Roger, T.; Seidlitz, M.; Seliverstov, M.; Sotty, C.; Tornqvist, H.; Van De Walle, J.; Van Duppen, P.; Voulot, D.; Warr, N.; Wenander, F.; Wimmer, K.

    2015-05-01

    The quasi-SU(3) sequence of the positive parity ν g9 /2,d5 /2,s1 /2 orbitals above the N =40 shell gap are assumed to induce strong quadrupole collectivity in the neutron-rich Fe (Z =26 ) and Cr (Z =24 ) isotopes below the nickel region. In this paper the position and strength of these single-particle orbitals are characterized in the neighborhood of 68Ni (Z =28 ,N =40 ) through the 66Ni(d ,p )67Ni one-neutron transfer reaction at 2.95 MeV/nucleon in inverse kinematics, performed at the REX-ISOLDE facility in CERN. A combination of the Miniball γ -array and T-REX particle-detection setup was used and a delayed coincidence technique was employed to investigate the 13.3-μ s isomer at 1007 keV in 67Ni. Excited states up to an excitation energy of 5.8 MeV have been populated. Feeding of the ν g9 /2 (1007 keV) and ν d5 /2 (2207 keV and 3277 keV) positive-parity neutron states and negative parity (ν p f ) states have been observed at low excitation energy. The extracted relative spectroscopic factors, based on a distorted-wave Born approximation analysis, show that the ν d5 /2 single-particle strength is mostly split over these two excited states. The results are also compared to the distribution of the proton single-particle strength in the 90Zr region (Z =40 ,N =50 ) .

  18. Electrochemical reaction of sulfur cathodes with Ni foam current collector in Li-S batteries

    NASA Astrophysics Data System (ADS)

    Liu, Li-Jun; Chen, Yang; Zhang, Zhi-Feng; You, Xiao-Long; Walle, Maru Dessie; Li, Ya-Juan; Liu, You-Nian

    2016-09-01

    The electrochemical properties of sulfur cathode with Ni foam current collector are investigated in detail. Different from sulfur cathode with stain steel current collector, it is interesting found that novel redox peaks at 1.95 V/1.35 V are observed for sulfur cathode with Ni foam. The electrochemical behavior is further verified by ex-situ XRD, SEM and XPS analyses. The results indicate that Ni foam current collector is involved in the redox reaction in Li/S rechargeable battery, and NiS forms at the surface of the Ni foam. These results demonstrate that the sulfur electrode is transformed into NiS.

  19. Reaction of amorphous Ni-W and Ni-N-W films with substrate silicon

    NASA Technical Reports Server (NTRS)

    Zhu, M. F.; Suni, I.; Nicolet, M.-A.; Sands, T.

    1984-01-01

    Wiley et al. (1982) have studied sputtered amorphous films of Nb-Ni, Mo-Ni, Si-W, and Si-Mo. Kung et al. (1984) have found that amorphous Ni-Mo films as diffusion barriers between multilayer metallizations on silicon demonstrate good electrical and thermal stability. In the present investigation, the Ni-W system was selected because it is similar to the Ni-Mo system. However, W has a higher silicide formation temperature than Mo. Attention is given to aspects of sample preparation, sample characterization, the interaction between amorphous Ni-W films and Si, the crystallization of amorphous Ni(36)W(64) films on SiO2, amorphous Ni-N-W films, silicide formation and phase separation, and the crystallization of amorphous Ni(36)W(64) and Ni(30)N(21)W(49) layers.

  20. Fabrication of NiAl intermetallic from dense elemental powder blends via solid state reactions

    SciTech Connect

    Farber, L.; Gotman, I.; Gutmanas, E.Y.

    1997-12-31

    Dense NiAl intermetallic was synthesized from very fine elemental powders via solid state reactions. Homogeneous blends of micron size Ni and Al powders were consolidated to full density and heat treated in a 425--800 C temperature range. During heat treatment, formation of various intermediate intermetallics phases: NiAl{sub 3}, Ni{sub 2}Al{sub 3}, Ni{sub 3}Al and NiAl was observed. The sequence and kinetics of these phase formations at different temperatures were studied employing X-ray diffraction analysis (XRD). A model for a description of synthesis reaction kinetics in Ni-Al blends was developed. Based on the obtained results, the synthesis of NiAl was performed in two stages: reactions in 425--550 C range with consumption of Al, followed by a reaction at up to 800 C. It allowed uncontrolled SHS (self propagating high temperature synthesis, resulting in the occurrence of liquid phases and in formation of reaction products in a very fast/explosive manner) to be avoided. The synthesis temperatures are considerably lower than those used currently in processing of NiAl.

  1. Interfacial Reactions in the Ni/Sn- xZn/Cu Sandwich Couples

    NASA Astrophysics Data System (ADS)

    Yen, Yee-Wen; Lin, Chung-Yung; Lai, Mei-Ting; Chen, Wan-Ching

    2016-01-01

    The interfacial reactions in Ni/Sn- xZn/Cu sandwich couples which were reflowed at 270°C for 1 h and then aged at 160°C for 1-1000 h were investigated. When the 1000- μm-thick Sn-Zn alloy reacted with Ni and Cu in this couple, the results indicated that the (Ni, Cu)3Sn4, (Ni, Cu)5Zn21, and Ni5Zn21 phases were formed at Sn-1Zn/Ni, Sn-5Zn/Ni, and Sn-9Zn/Ni interfaces for 1 h reflowing, respectively. After 1000 h aging, each intermetallic compound (IMC) was converted to (Cu, Ni, Zn)6Sn5, (Ni, Cu, Sn)5Zn21/Ni5Zn21, and Ni5Zn21 (two layers) phases in the related couples. On the Cu side, the Cu6Sn5 phase in the Sn-1Zn/Cu interface and the Cu5Zn8 phase in the Sn-5Zn/Cu and Sn-9Zn/Cu interfaces were observed when the couple was reflowed at 270°C for 1 h. After 100 h aging, the (Cu, Ni, Zn)6Sn5, Cu5Zn8/(Cu, Zn)6Sn5, and Cu5Zn8 phases were formed at the Sn-1Zn/Cu, Sn-5Zn/Cu and Sn-9Zn/Cu interfaces. When the Sn-Zn alloy thickness was decreased to 500 μm, the (Cu, Ni, Zn)6Sn5 phase at the Sn-1Zn/Ni interface and the (Ni, Cu, Sn)5Zn21 phase at the Sn-5Zn/Ni and Sn-9Zn/Ni interfaces were observed after 1 h reflowing. When the couple was aged at 160°C for 1000 h, each IMC was converted to (Cu, Ni, Zn)6Sn5 and Cu5Zn8/(Cu, Ni, Sn)Zn/Ni5Zn21 phases at the Sn-1Zn/Ni and Sn-(5, 9)Zn/Ni interfaces. (Cu, Ni, Zn)6Sn5 and Cu5Zn8 were, respectively, formed at the Sn-1Zn/Cu and Sn-(5, 9)Zn/Cu interfaces for 1 h reflowing. After 100 h aging, the IMCs were converted to (Cu, Ni, Zn)6Sn5 and Cu5Zn8/(Cu, Zn)6Sn5 phases. This current study reveals that the IMC formation in Ni/(Sn- xZn)/Cu sandwich couples are very sensitive to the Zn concentration and thickness in Sn- xZn alloys.

  2. Effects of Cr and Ni on Interdiffusion and Reaction between U and Fe-Cr-Ni Alloys

    SciTech Connect

    K. Huang; Y. Park; L. Zhou; K.R. Coffey; Y.H. Sohn; B.H. Sencer; J. R. Kennedy

    2014-08-01

    Metallic U-alloy fuel cladded in steel has been examined for high temperature fast reactor technology wherein the fuel cladding chemical interaction is a challenge that requires a fundamental and quantitative understanding. In order to study the fundamental diffusional interactions between U with Fe and the alloying effect of Cr and Ni, solid-to-solid diffusion couples were assembled between pure U and Fe, Fe–15 wt.%Cr or Fe–15 wt.%Cr–15 wt.%Ni alloy, and annealed at high temperature ranging from 580 to 700 °C. The microstructures and concentration profiles that developed from the diffusion anneal were examined by scanning electron microscopy, and X-ray energy dispersive spectroscopy (XEDS), respectively. Thick U6Fe and thin UFe2 phases were observed to develop with solubilities: up to 2.5 at.% Ni in U6(Fe,Ni), up to 20 at.%Cr in U(Fe, Cr)2, and up to 7 at.%Cr and 14 at.% Ni in U(Fe, Cr, Ni)2. The interdiffusion and reactions in the U vs. Fe and U vs. Fe–Cr–Ni exhibited a similar temperature dependence, while the U vs. Fe–Cr diffusion couples, without the presence of Ni, yielded greater activation energy for the growth of intermetallic phases – lower growth rate at lower temperature but higher growth rate at higher temperature.

  3. On the discontinuous precipitation reaction and solute redistribution in a Cu-15%Ni-8%Sn alloy

    SciTech Connect

    Alili, B.; Bradai, D.; Zieba, P.

    2008-10-15

    Optical and transmission electron microscopy studies have been undertaken in order to clarify some morphological aspects of the discontinuous precipitation (DP) reaction in a Cu-15Ni-8Sn (wt.%) alloy in the temperature range 800-950 K. The DP reaction proceeds in the ternary Cu-Ni-Sn system relatively fast (in binary Cu-Ni alloy is not present) with typical morphological features like change of growth direction, appearance and disappearance of solute-rich {gamma} lamellae. A fine continuous precipitation of single Ni and Sn-rich phase was also evidenced within the solute-depleted {alpha} lamellae. An energy-dispersive X-ray analysis showed the level of partitioning of the alloying elements. Most of the Ni and Sn is located in the {gamma} lamellae. However, the formula of the {gamma} lamellae is still close to (Cu{sub 3}Sn), which indicates that some Cu atoms are replaced by Ni.

  4. Effects of Ga Addition on Interfacial Reactions Between Sn-Based Solders and Ni

    NASA Astrophysics Data System (ADS)

    Wang, Chao-Hong; Li, Kuan-Ting

    2016-07-01

    The use of Ga as a micro-alloying element in Sn-based solders can change the microstructure of solder joints to improve the mechanical properties, and even suppress the interfacial intermetallic compound (IMC) growth. This research investigated the effects of Ga addition (0.2-1 wt.%Ga) on the IMC formation and morphological evolution in the Sn-based solder joints with Ni substrate. In the soldering reaction at 250°C and with less than 0.2 wt.%Ga addition, the formed phase was Ni3Sn4. When the Ga addition increased to 0.5 wt.%, it changed to a thin Ni2Ga3 layer of ˜1 μm thick, which stably existed at the interface in the initial 1-h reaction. Subsequently, the whole Ni2Ga3 layer detached from the Ni substrate and drifted into the molten solder. The Ni3Sn4 phase became dominant in the later stage. Notably, the Ga addition significantly reduced the grain size of Ni3Sn4, resulting in the massive spalling of Ni3Sn4 grains. With 1 wt.%Ga addition, the Ni2Ga3 layer remained very thin with no significant growth, and it stably existed at the interface for more than 10 h. In addition, the solid-state reactions were examined at temperatures of 160°C to 200°C. With addition of 0.5 wt.%Ga, the Ni3Sn4 phase dominated the whole reaction. By contrast, with increasing to 1 wt.%Ga, only a thin Ni2Ga3 layer was found even after aging at 160°C for more than 1200 h. The 1 wt.%Ga addition in solder can effectively inhibit the Ni3Sn4 formation in soldering and the long-term aging process.

  5. Neutron spectroscopic factors of 55Ni hole-states from (p,d) transfer reactions

    NASA Astrophysics Data System (ADS)

    Sanetullaev, A.; Tsang, M. B.; Lynch, W. G.; Lee, Jenny; Bazin, D.; Chan, K. P.; Coupland, D.; Henzl, V.; Henzlova, D.; Kilburn, M.; Rogers, A. M.; Sun, Z. Y.; Youngs, M.; Charity, R. J.; Sobotka, L. G.; Famiano, M.; Hudan, S.; Shapira, D.; Peters, W. A.; Barbieri, C.; Hjorth-Jensen, M.; Horoi, M.; Otsuka, T.; Suzuki, T.; Utsuno, Y.

    2014-09-01

    Spectroscopic information has been extracted on the hole-states of 55Ni, the least known of the quartet of nuclei (55Ni, 57Ni, 55Co and 57Cu), one nucleon away from 56Ni, the N=Z=28 double magic nucleus. Using the H1(Ni56,d)Ni55 transfer reaction in inverse kinematics, neutron spectroscopic factors, spins and parities have been extracted for the f7/2, p3/2 and the s1/2 hole-states of 55Ni. These new data provide a benchmark for large basis calculations that include nucleonic orbits in both the sd and pf shells. State of the art calculations have been performed to describe the excitation energies and spectroscopic factors of the s1/2 hole-state below Fermi energy.

  6. [NiFe] hydrogenases: structural and spectroscopic studies of the reaction mechanism.

    PubMed

    Ogata, Hideaki; Lubitz, Wolfgang; Higuchi, Yoshiki

    2009-10-01

    [NiFe] hydrogenases catalyze the reversible oxidation of dihydrogen. For this simple reaction the molecule has developed a complex catalytic mechanism, during which the enzyme passes through various redox states. The [NiFe] hydrogenase contains several metal centres, including the bimetallic Ni-Fe active site, iron-sulfur clusters and a Mg(2+) ion. The Ni-Fe active site is located in the inner part of the protein molecule, therefore a number of pathways are involved in the catalytic reaction route. These consist of an electron transfer pathway, a proton transfer pathway and a gas-access channel. Over the last 10-15 years we have been investigating the crystal structures of the [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki F, which is a sulfate-reducing anaerobic bacterium. So far the crystal structures of the oxidized, H(2)-reduced and carbon monoxide inhibited states have been determined at high resolution and have revealed a rather unique structure of the hetero-bimetallic Ni-Fe active site. Furthermore, intensive spectroscopic studies have been performed on the enzyme. Based on the crystal structure, a water-soluble Ni-Ru complex has been synthesized as a functional model for the [NiFe] hydrogenases. The present review gives an overview of the catalytic reaction mechanism of the [NiFe] hydrogenases. PMID:19759926

  7. Shaped Ir-Ni bimetallic nanoparticles for minimizing Ir utilization in oxygen evolution reaction.

    PubMed

    Lim, Jinkyu; Yang, Sungeun; Kim, Chanyeon; Roh, Chi-Woo; Kwon, Yongwoo; Kim, Yong-Tae; Lee, Hyunjoo

    2016-04-12

    Shaped Ir-Ni bimetallic nanoparticles were synthesized and used for electrocatalytic oxygen evolution reaction (OER). The obtained bimetallic nanoparticles showed significantly enhanced Ir mass activity and durability compared with Ir nanoparticles. PMID:27034092

  8. Structural response of Ni/ZrO2 to feed modulations during CH4 reforming reactions

    NASA Astrophysics Data System (ADS)

    Steib, M.; Jentys, A.; Lercher, J. A.

    2016-05-01

    Time resolved oxidation and reduction cycles of ZrO2-supported Ni catalysts for dry reforming of CH4 (CO2 + CH4 ↔ 2 CO + 2 H2) during feed modulations have been studied. Under reaction conditions (1073 K) Ni remains fully reduced, whereas switching the feed gas to pure CO2 results in a slow (25 sec) formation of a stable NiO phase. When switching back to reaction conditions the NiO phase is rapidly reduced (∼ 1 sec) to metallic Ni. In the context of this study, a novel capillary cell has been built, allowing the parallel treatment of 5 catalyst samples with different gas compositions and different pressures. A comparison of the capillary cell to conventional systems regarding the spectral quality and the kinetic data shows that the capillary cell can be used to obtain identical kinetic data and high quality X-ray absorption spectra.

  9. Microscopic study of 40Ca+58,64Ni fusion reactions

    NASA Astrophysics Data System (ADS)

    Bourgin, D.; Simenel, C.; Courtin, S.; Haas, F.

    2016-03-01

    Background: Heavy-ion fusion reactions at energies near the Coulomb barrier are influenced by couplings between the relative motion and nuclear intrinsic degrees of freedom of the colliding nuclei. The time-dependent Hartree-Fock (TDHF) theory, incorporating the couplings at the mean-field level, as well as the coupled-channels (CC) method are standard approaches to describe low energy nuclear reactions. Purpose: To investigate the effect of couplings to inelastic and transfer channels on the fusion cross sections for the reactions 40Ca+58Ni and 40Ca+64Ni . Methods: Fusion cross sections around and below the Coulomb barrier have been obtained from CC calculations, using the bare nucleus-nucleus potential calculated with the frozen Hartree-Fock method and coupling parameters taken from known nuclear structure data. The fusion thresholds and neutron transfer probabilities have been calculated with the TDHF method. Results: For 40Ca+58Ni , the TDHF fusion threshold is in agreement with the most probable barrier obtained in the CC calculations including the couplings to the low-lying octupole 31- state for 40Ca and to the low-lying quadrupole 21+ state for 58Ni. This indicates that the octupole and quadrupole states are the dominant excitations while neutron transfer is shown to be weak. For 40Ca+64Ni , the TDHF barrier is lower than predicted by the CC calculations including the same inelastic couplings as those for 40Ca+58Ni . TDHF calculations show large neutron transfer probabilities in 40Ca+64Ni which could result in a lowering of the fusion threshold. Conclusions: Inelastic channels play an important role in 40Ca+58Ni and 40Ca+64Ni reactions. The role of neutron transfer channels has been highlighted in 40Ca+64Ni .

  10. Cyclopropane reactions over Bronsted, cation, and metal sites in Ni/NaX zeolites

    SciTech Connect

    Simon, M.W.; Suib, S.L.; Bennett, C.O. )

    1994-07-01

    The reactions of cyclopropane in helium and hydrogen were investigated over two different loadings (10.7 and 6.0 wt%) of ion-exchanged Ni/NaX zeolites. The effects of reduction temperatures and hydrogen treatment times on catalytic activity and acidity were studied. Apparent activation energies ranged from 35.5 to 95.4 kJ/mol for isomerization reactions over two loadings of Ni/NaX zeolite reduced under different conditions. Rates of isomerization, hydrogenation, and hydrogenolysis are also reported. Deactivation and regeneration of catalysts are discussed. Particle sizes of 8.9 and 17.3 nm were observed in highly reduced Ni zeolites. Sintering of Ni was observed on the surfaces of the zeolite crystallites. Temperature programmed reduction studies show that stoichiometric amounts of H[sub 2] were used to completely reduce reduce all Ni in the samples. Infrared analysis of chemisorbed pyridine on these materials show that higher loadings of Ni result in higher initial acidities. Increased amounts of reduced Ni significantly increase the number of Bronsted sites on the surface of the catalyst. Electron paramagnetic resonance revealed that Ni[sup +] was present in low loaded Ni/NaX samples upon reduction at low temperatures (350[degrees]C), while higher reduction temperatures (450[degrees]C) resulted in a broad EPR signal corresponding to Ni[sup 0] only. Na vapor deposition experiments, designed to selectively poison Bronsted sites on the catalyst, reveal that Ni[sup +] ions are active in cyclopropane isomerization reactions at high temperatures. 59 refs., 11 figs., 5 tabs.

  11. Mechanistic aspects of the ethanol steam reforming reaction for hydrogen production on Pt, Ni, and PtNi catalysts supported on gamma-Al2O3.

    PubMed

    Sanchez-Sanchez, Maria Cruz; Navarro Yerga, Rufino M; Kondarides, Dimitris I; Verykios, Xenophon E; Fierro, Jose Luis G

    2010-03-25

    Mechanistic aspects of ethanol steam reforming on Pt, Ni, and PtNi catalysts supported on gamma-Al(2)O(3) are investigated from the analysis of adsorbed species and gas phase products formed on catalysts during temperature-programmed desorption of ethanol and during ethanol steam reforming reaction. DRIFTS-MS analyses of ethanol decomposition and ethanol steam reforming reactions show that PtNi and Ni catalysts are more stable than the Pt monometallic counterpart. Ethanol TPD results on Ni, Pt, and NiPt catalysts point to ethanol dehydrogenation and acetaldehyde decomposition as the first reaction pathways of ethanol steam reforming over the studied catalysts. The active sites responsible for the acetaldehyde decomposition are easily deactivated in the first minutes on-stream by carbon deposits. For Ni and PtNi catalysts, a second reaction pathway, consisting in the decomposition of acetate intermediates formed over the surface of alumina support, becomes the main reaction pathway operating in steam reforming of ethanol once the acetaldehyde decomposition pathway is deactivated. Taking into account the differences observed in the mechanism of ethanol decomposition, the better stability observed for PtNi catalyst is proposed to be related with a cooperative effect between Pt and Ni activities together with the enhanced ability of Ni to gasify the methyl groups formed by decomposition of acetate species. On the contrary, monometallic catalysts are believed to dehydrogenate these methyl groups forming coke that leads to deactivation of metal particles. PMID:19824680

  12. The electrodeposition of FeCrNi stainless steel: microstructural changes induced by anode reactions.

    PubMed

    Hasegawa, Madoka; Yoon, Songhak; Guillonneau, Gaylord; Zhang, Yucheng; Frantz, Cédric; Niederberger, Christoph; Weidenkaff, Anke; Michler, Johann; Philippe, Laetitia

    2014-12-21

    The FeCrNi alloy, whose composition is close to that of stainless steel 304, was prepared by electrodeposition and characterized. Nanocrystalline FeCrNi (nc-FeCrNi) was obtained by employing a double-compartment cell where the anode is separated from the cathode compartment, while amorphous FeCrNi (a-FeCrNi) was deposited in a conventional single electrochemical cell. The carbon content of nc-FeCrNi was found to be significantly lower than that of a-FeCrNi, suggesting that carbon inclusion is responsible for the change in the microstructure. The major source of carbon is associated with the reaction compounds at the anode electrode, presumably decomposed glycine. Crystal structure analysis by XRD and TEM revealed that the as-deposited nc-FeCrNi deposits consist of α-Fe which transforms to γ-Fe upon thermal annealing. Nanoindentation tests showed that nc-FeCrNi exhibits higher hardness than a-FeCrNi, which is consistent with the inverse Hall-Petch behavior. PMID:25367332

  13. Enhancing stability of octahedral PtNi nanoparticles for oxygen reduction reaction by halide treatment

    NASA Astrophysics Data System (ADS)

    Choi, Juhyuk; Lee, Youhan; Kim, Jihan; Lee, Hyunjoo

    2016-03-01

    Because a reduction in the amount of Pt catalysts is essential for the commercialization of fuel cells, various approaches have been tested to maximize the mass activity of Pt-based catalysts. Among these, the most successful results so far were obtained using shaped PtNi alloy nanoparticles, preferably with PtNi(111) facets. However, these nanoparticles typically suffer from much lower activity after the durability tests due to the leaching out of the surface Ni during the oxygen reduction reaction (ORR), which leads to the disappearance of the activity-enhancing effect caused by electronic structure modification. Here, we showed that halide treatment of the octahedral PtNi nanoparticles could significantly enhance their durability. Halides are adsorbed on surface Ni more strongly than on surface Pt, and the surface halides are found to preserve the surface Ni that induces the ORR activity enhancement. Especially, Br can preserve the surface Ni effectively. Durability testing by repeating cyclic voltammetry 10,000 times in the 0.6-1.1 V range showed that the mass activity decreased by 52.6% for the as-prepared PtNi octahedral nanoparticles, whereas the mass activity decreased by only 15.0% for the Br-treated PtNi nanoparticles. The simple treatment significantly enhanced the long-term stability of the highly active PtNi alloy nano-octahedra.

  14. Embedding the Ni-SOD mimetic Ni-NCC within a polypeptide sequence alters specificity of the reaction pathway

    PubMed Central

    Krause, Mary E.; Glass, Amanda M.; Jackson, Timothy A.; Laurence, Jennifer S.

    2013-01-01

    The unique metal abstracting peptide (MAP) asparagine-cysteine-cysteine (NCC) binds nickel in a square planar 2N:2S geometry and acts as a mimic of the enzyme nickel superoxide dismutase (Ni-SOD). The Ni-NCC tripeptide complex undergoes rapid, site-specific chiral inversion to DLD-NCC in the presence of oxygen. Superoxide scavenging activity increases proportionally with the degree of chiral inversion. Characterization of the NCC sequence within longer peptides with absorption, circular dichroism (CD), and magnetic CD (MCD) spectroscopies and mass spectrometry (MS) shows that the geometry of metal coordination is maintained, though the electronic properties of the complex are varied to a small extent due to bis-amide, rather than amine/amide, coordination. In addition, both the Ni-tripeptides and Ni-pentapeptides have a −2 charge. The study here demonstrates that the chiral inversion chemistry does not occur when NCC is embedded in a longer polypeptide sequence. Nonetheless, the superoxide scavenging reactivity of the embedded Ni-NCC module is similar to that of the chirally inverted tripeptide complex, which is consistent with a minor change in reduction potential for the Ni-pentapeptide. Together, this suggests that the charge of the complex could affect the SOD activity as much as a change in primary coordination sphere. In Ni-NCC and other Ni-SOD mimics, changes in chirality, superoxide scavenging activity, and oxidation of the peptide itself all depend on the presence of dioxygen or its reduced derivatives (e.g., superoxide), and the extent to which each of these distinct reactions occurs is ruled by electronic and steric effects that emenate from the organization of ligands around the metal center. PMID:23214928

  15. A study on the orientation inheritance in laminated NiAl produced by in situ reaction annealing.

    PubMed

    Du, Yan; Fan, Guohua; Geng, Lin

    2016-04-01

    In order to promote the performance of B2 NiAl by texture control of orientation during in situ processing, phase transformation in laminated NiAl with bimodal grain size distribution manufactured by reaction annealing of Ni and Al foils has been studied. It turned out that there existed a Kurdjumov-Sachs orientation relationship (K-S OR) between parent Ni and product NiAl by crystallography analysis according to the electron backscatter diffraction (EBSD) results. The parent Ni did not transform to the product NiAl directly but via the formation of Ni3Al firstly according to the transmission electron microscope (TEM) observation of the interface. This led to a new K-S OR between Ni3Al and NiAl with a small atomic misfit, which made less residual stress generated through the formation of Ni3Al than directly from the parent Ni. PMID:26867210

  16. Methanol oxidation and hydrogen reactions on NiZr in acid solution

    NASA Astrophysics Data System (ADS)

    Hays, C. C.; Manoharan, R.; Goodenough, J. B.

    The electrochemical properties of a Ni 50Zr 50 (at.%) alloy have been investigated by cyclic voltammetry and steady-state polarization measurements. The alloy forms a passivating oxyhydroxide film that makes it electrochemically stable in an acid solution. The oxyhydroxide film is shown to be an electrocatalyst for the methanol oxidation reaction (MOR). The reaction proceeds at surface O 2- ions neighboring a Ni 3+ ion of a thicker passivating film; electron transfer from the surface to the electrode occurs diffusively by the nickel atoms of the film. A reaction pathway is presented that accounts for the observation of an optimum thickness for the passivating film. The NiZr alloy was also found to catalyze both hydrogen-oxidation and proton-reduction reactions (HOR and PRR) if it has a thinner surface oxyhydroxide film. The alloy appears to form mixed NiZrH and NiZrH 3- x hydrides on cycling negative of the normal hydrogen potential. The activity of the hydrogen-oxidation reaction on a hydride surface was found to increase in the presence of streaming hydrogen gas and also with increasing negative initial potential. Although the hydride is unstable in acid, it may be an attractive candidate for use as a rechargeable negative electrode in an alkaline metal/air or nickel-metal hydride secondary battery.

  17. Ordering reactions in an Ni-25Mo-8Cr alloy

    SciTech Connect

    Kumar, M.; Vasudevan, V.K.

    1996-04-01

    The transformations from short- to long-range order in Haynes{reg_sign} Alloy 242, a nominal Ni-25Mo-8Cr (in wt%) alloy, during isothermal aging at temperatures between 550 and 750 C are reported using microhardness measurements, and optical and transmission electron microscopy. Aging below the critical transformation temperature ({approximately} 775 C) led to considerable hardening; this hardening was associated with the formation of a very high volume fraction of Ni{sub 2} (Mo,Cr) domains/precipitates. The transformation from short- to long-range order was observed to proceed by a mechanism of continuous ordering at temperatures {le} 700 C, whereas at temperatures (750 C) close to the critical temperature a first order nucleation and growth mechanism appeared to be operative. The sequence of transformations are correlated with the associated diffraction effects and discussed in terms of theoretical formulations and experimental observations of other studies.

  18. Molecular dynamics simulation of surface segregation, diffusion and reaction phenomena in equiatomic Ni-Al systems

    NASA Astrophysics Data System (ADS)

    Evteev, A. V.; Levchenko, E. V.; Belova, I. V.; Murch, G. E.

    2012-12-01

    The molecular dynamics method is used to provide fundamental insights into surface segregation, bulk diffusion and alloying reaction phenomena in equiatomic Ni-Al systems. This knowledge can serve as a guide for the search and development of economic routes for controlling microstructure and properties of the intermetallic compound NiAl. This paper gives an overview of recent molecular dynamics simulations in the area along with other theoretical calculations and experimental measurements.

  19. Enhancing alkaline hydrogen evolution reaction activity through Ni-Mn3O4 nanocomposites.

    PubMed

    Li, Xu; Liu, Peng Fei; Zhang, Le; Zu, Meng Yang; Yang, Yun Xia; Yang, Hua Gui

    2016-08-18

    Developing efficient, stable and cost-effective electrocatalysts towards hydrogen production in alkaline environments is vital to improve energy efficiency for water splitting. In this work, we prepared Ni-Mn3O4 nanocomposites on Ni foam which exhibit an excellent hydrogen evolution reaction catalytic activity with a current density (j) of 10 mA cm(-2) at an overpotential (η) of 91 mV and show good stability in an alkaline medium. PMID:27500290

  20. Theoretical study on the excitation spectrum and the photofragmentation reaction of Ni(CO)4

    NASA Astrophysics Data System (ADS)

    Hada, M.; Imai, Y.; Hidaka, M.; Nakatsuji, H.

    1995-10-01

    The ground and excited states of Ni(CO)4 are studied using the symmetry adapted cluster (SAC)/SAC-configuration interaction (SAC-CI) method. The experimental absorption spectrum is well reproduced by the present calculations. All the peaks observed in the range of 200˜350 nm are assigned to the electronic allowed 1T2 excited states. The third peak is assigned to the 3 1T2 and 4 1T2 states. Next, the potential energy curves of the ground and the low-lying excited states are calculated by the same method and utilized to clarify the mechanism of the photofragmentation reaction of Ni(CO)4 by a XeCl laser (308 nm). A reaction pathway involving several excited states is proposed for the photofragmentation reaction into the excited Ni(CO)3 and CO. The calculated emission energy from the former agrees well with the observed luminescence spectrum.

  1. A fascinating combination of Co, Ni and Al nanomaterial for oxygen evolution reaction

    NASA Astrophysics Data System (ADS)

    Khan, Sher Bahadar; Khan, Shahid Ali; Asiri, Abdullah M.

    2016-05-01

    Interesting combination of Co, Ni and Al have been assessed for oxygen evolution reaction (OER). Layered double hydroxide (LDH) nanosheets of NiCoAl, Co-Al oxide nanoparticles and Co-Ni oxide nanoparticles were prepared and studied for the first time as OER catalyst. Among all the subjected catalysts, the binary LDH comprise of NiCoAl showed comparatively high catalytic activity than Co-Al oxide nanoparticles and Co-Ni oxide nanoparticles. The Co-Al and Co-Ni oxide nanoparticles showed current densities of 34.6 and 24.5 mA cm-2, respectively at 1 V in 0.3 M KOH solution. However at the same conditions, NiCoAl-LDH showed comparatively low overpotential, high current density (40.8 mA cm-2) and lower Tafel slope. The low overpotential and high catalytic activity of NiCoAl-LDH stipulate the possibility to reduce the demand of precious, rare earth and expensive transition metal catalyst in electrochemical water splitting for OER.

  2. Effect of carbon on the Ni catalyzed methane cracking reaction: A DFT study

    NASA Astrophysics Data System (ADS)

    Li, Jingde; Croiset, Eric; Ricardez-Sandoval, Luis

    2014-08-01

    To understand the effects of carbon atoms on the Ni catalyzed methane cracking reactions, methane dissociation on clean, surface-carbon-covered, and subsurface-carbon-accumulated Ni(1 1 1) surfaces were investigated using density functional theory (DFT). The results show that the existence of surface and subsurface C atoms destabilized the adsorption of the surface hydrocarbon species when compared to the clean Ni(1 1 1) surface. The projected density state (PDOS) analysis shows that the deposition of C atoms on and into the Ni surface modified the electronic structure of the Ni surface, and thus reduced the catalytic activity of the bonded Ni atoms. Moreover, it was found that the presence carbon atoms increase the CHx (x = 4-1) species activation barriers especially on the surface carbon covered (1/4 ML) Ni(1 1 1) surface, where CHx (x = 4-1) species encounter highest energy barrier for dissociation due to the electronic deactivation induced by Csbnd Ni bonding and the strong repulsive carbon sbnd CHx interaction. The calculations also show that CHx dissociation barriers are not affected by its neighboring C atom at low surface carbon coverage (1/9 ML). This work can be used to estimate more realistic kinetic parameters for this system.

  3. Excitation function of the 60Ni(p ,γ )61Cu reaction from threshold to 16 MeV

    NASA Astrophysics Data System (ADS)

    Uddin, M. S.; Sudár, S.; Spahn, I.; Shariff, M. A.; Qaim, S. M.

    2016-04-01

    Excitation function of the reaction 60Ni(p ,γ )61Cu was measured via the activation technique in the energy range of 1.3-16.0 MeV using a low-energy accelerator and a small cyclotron. The results are comparable to those previously obtained via prompt γ counting. In addition excitation functions of the more common competing 60Ni(p ,n )60Cu and 60Ni(p ,α )57Co reactions were also measured. Theoretical calculations on proton-induced reactions on 60Ni were performed using the nuclear model code talys. The results suggest that near the threshold of the reaction the compound nucleus mechanism dominates. Thereafter the contribution of direct interactions becomes rather strong, especially between 4 and 6 MeV, i.e., just below the threshold of the 60Ni(p ,n )60Cu reaction. The cross section at the maximum of the excitation function of each of the three reactions, namely, 60Ni(p ,γ )61Cu,60Ni(p ,n )60Cu , and 60Ni(p ,α )57Co , amounts to 2, 320, and 85 mb, respectively. The (p ,n ) reaction is thus the most commonly occurring process, and the (p ,γ ) reaction is the weakest, possibly due to higher probability of particle emission than γ-ray emission from the highly excited intermediate nucleus 61Cu formed in the interaction of a proton with the target nucleus 60Ni.

  4. Influence of M-B (M = Fe, Co, Ni) on aluminum-water reaction

    NASA Astrophysics Data System (ADS)

    Meng, H. X.; Wang, N.; Dong, Y. M.; Jia, Z. L.; Gao, L. J.; Chai, Y. J.

    2014-12-01

    In this work, the aluminum-water reaction induced by Fe-B, Co-B and Ni-B particles was studied. The catalysts were mixtures of the metal boride and metallic particles. The chainlike Fe-B catalyst forms a network structure under the influence of an external magnetic field and has a large specific surface area. Aggregated particles of Co-B and Ni-B catalyst have small specific surface area. Catalytic activity in the initial corrosion of aluminum increases with increasing Fe-B content because of the large specific surface area and the formation of a micro galvanic cell. However, the amount of hydrogen generated slowly decreases with increasing amount of Co-B and Ni-B. The activity of Fe-B, Co-B and Ni-B in the initial Al/H2O reaction decreases in the order Fe-B > Ni-B > Co-B. The calculated apparent activation energies in the presence of Fe-B, Co-B and Ni catalysts are 38.2, 39 and 29.6 kJ mol-1, respectively. Aluminum is rapidly and completely corroded in a weakly alkaline solution (pH < 10) after consecutive additions of Al batches because of high concentrations of OH- in the local domain and an increase in the amount of Al(OH)3 precipitate.

  5. Unique Sandwiched Carbon Sheets@Ni-Mn Nanoparticles for Enhanced Oxygen Evolution Reaction.

    PubMed

    Zhang, Yan; Zhang, Huijuan; Yang, Jiao; Bai, Yuanjuan; Qiu, Huajun; Wang, Yu

    2016-05-11

    A unique sandwich-like architecture, where Ni-Mn nanoparticles are enveloped in coupled carbon sheets (CS@Ni-Mn), has been successfully fabricated. In the synthesis process, a great quantity of uniform NiMnO3 nanosheets generated by a universal hydrothermal method acts as precursors and templates and the cheap, environmentally friendly and recyclable glucose functions as a green carbon source. Via subsequent hydrothermal reaction and thermal annealing, sandwiched nanocomposites with Ni-Mn nanoparticles embedded inside and carbon sheets encapsulating outside can be massively prepared. The novel sandwich-like CS@Ni-Mn possesses numerous advantages, such as an intrinsic porous feature, large specific surface area, and enhanced electronic conductivity. Moreover, as a promising NiMn-based oxygen evolution reaction (OER) catalyst, the special sandwiched nanostructure demonstrates improved electrochemical properties in 1 M KOH, including a low overpotential of about 250 mV, a modest Tafel slope of 40 mV dec(-1), excellent stability over 2000 cycles, and durability for 40 h. PMID:27101350

  6. Reaction pathways of model compounds of biomass-derived oxygenates on Fe/Ni bimetallic surfaces

    NASA Astrophysics Data System (ADS)

    Yu, Weiting; Chen, Jingguang G.

    2015-10-01

    Controlling the activity and selectivity of converting biomass-derivatives to fuels and valuable chemicals is critical for the utilization of biomass feedstocks. There are primarily three classes of non-food competing biomass, cellulose, hemicellulose and lignin. In the current work, glycolaldehyde, furfural and acetaldehyde are studied as model compounds of the three classes of biomass-derivatives. Monometallic Ni(111) and monolayer (ML) Fe/Ni(111) bimetallic surfaces are studied for the reaction pathways of the three biomass surrogates. The ML Fe/Ni(111) surface is identified as an efficient surface for the conversion of biomass-derivatives from the combined results of density functional theory (DFT) calculations and temperature programmed desorption (TPD) experiments. A correlation is also established between the optimized adsorption geometry and experimental reaction pathways. These results should provide helpful insights in catalyst design for the upgrading and conversion of biomass.

  7. The (n, α) Reaction in the s-process Branching Point {sup 59}Ni

    SciTech Connect

    Weiß, C.; Guerrero, C.; Griesmayer, E.; Andrzejewski, J.; Badurek, G.; Chiaveri, E.; Dressler, R.; Ganesan, S.; Jericha, E.; Käppeler, F.; Koehler, P.; Lederer, C.; Leeb, H.; Marganiec, J.; Pavlik, A.; Perkowski, J.; Rauscher, T.; and others

    2014-06-15

    The (n, α) reaction in the radioactive {sup 59}Ni is of relevance in nuclear astrophysics as {sup 59}Ni can be considered as the first branching point in the astrophysical s-process. Its relevance in nuclear technology is especially related to material embrittlement in stainless steel. However, there is a discrepancy between available experimental data and the evaluated nuclear data files for this reaction. At the n{sub T}OF facility at CERN, a dedicated system based on sCVD diamond diodes was set up to measure the {sup 59}Ni(n, α){sup 56}Fe cross section. The results of this measurement, with special emphasis on the dominant resonance at 203 eV, are presented here.

  8. Hole-states of 55Ni from (p,d) transfer reactions

    NASA Astrophysics Data System (ADS)

    Tsang, Betty; Sanetullaev, Alisher; Lynch, William; Lee, Jenny; Bazin, Daniel; Chan, K. P.; Coupland, Daniel; Henzl, Vlad; Henzlova, Daniela; Kilburn, Micha; Rogers, Andrew; Sun, Z. Y.; Youngs, Michael; Charity, Robert; Sobotka, Lee; Famiano, Michael; Hudan, Sylvie; Shapira, Daniel; Peters, W. A.; Barbieri, C.; Hjorth-Jensen, M.; Horoi, M.; Otsuka, T.; Suzuki, T.; Utsuno, Y.

    2014-09-01

    Spectroscopic information has been extracted on the hole-states of 55Ni. Using the 1H(56Ni,d)55Ni transfer reaction in inverse kinematics, neutron spectroscopic factors, spins and parities have been extracted for the f7/2, p3/2 and the s1/2 hole-states of 55Ni. These new data provide a benchmark for large basis calculations that include nucleonic orbits in both the sd and pf shells. Most shell models describe the ground state and the first p3/2 excited state very well. However, most models have difficulties describing the deep hole state in the sd orbits. In this talk, we will compare the experimental energy levels and spectroscopic factors to state of the art shell model calculations. Spectroscopic information has been extracted on the hole-states of 55Ni. Using the 1H(56Ni,d)55Ni transfer reaction in inverse kinematics, neutron spectroscopic factors, spins and parities have been extracted for the f7/2, p3/2 and the s1/2 hole-states of 55Ni. These new data provide a benchmark for large basis calculations that include nucleonic orbits in both the sd and pf shells. Most shell models describe the ground state and the first p3/2 excited state very well. However, most models have difficulties describing the deep hole state in the sd orbits. In this talk, we will compare the experimental energy levels and spectroscopic factors to state of the art shell model calculations. PHY-1102511.

  9. An Investigation of Fragments Produced in the 58,64Ni + 9Be Fragmentation Reactions

    NASA Astrophysics Data System (ADS)

    Zhang, Y. L.; Ma, C. W.; Wang, S. S.; Qiao, C. Y.

    The cross sections of the fragments produced in the 140A MeV 58,64Ni + 9Be reactions have been studied using the empirical parametrization formula EPAX2 and EPAX3, the modified statistical abrasion-ablation (SAA) model, and the antisymmetrized molecular dynamics (AMD) model. The calculated cross sections of fragments are compared and discussed.

  10. 252Cf spectrum-averaged cross section for the 63Cu(n, p)63Ni reaction

    NASA Astrophysics Data System (ADS)

    Imamura, M.; Shibata, T.; Shibata, S.; Ohkubo, T.; Satoh, S.; Nogawa, N.

    1999-01-01

    The 63Ni produced by the 63Cu(n, p)63Ni reaction provides a unique measure to estimate the fast-neutron fluence of the Hiroshima/Nagasaki atomic bomb. In the similarity of the fission neutron spectrum of 252Cf to that of 235U, we have measured activation cross sections of the 63Cu(n, p)63Ni reaction averaged for the 252Cf fission spectrum.

  11. Preliminary studies on NiAl/Nb2Be17 reaction and effectiveness of BeO as an interfacial reaction barrier

    NASA Technical Reports Server (NTRS)

    Misra, Ajay K.

    1991-01-01

    The interfacial reaction between NiAl and Nb2Be17 (used as a reinforcement for the alloy) was studied by measuring diffusion bonding of NiAl and Nb2Be17 plates in a hot press under a vacuum of 10 exp -5 atm. It was found that, after 2 hrs of hot pressing at 1373 K, the reaction between NiAl and Nb2Be17 was extensive. A 40 to 50-micron-thick reaction zone consisted of three distinct layers at the NiAl/Nb2Be17 interface: layer A next to Nb2Be17, layer B in the middle, and layer C next to NiAl. Results of analysis of the reaction layers using energy dispersive spectroscopy (EDS) were inconclusive because of the inabiliaty of EDS to detect Be.

  12. Adsorption and reactions of methanethiol on clean and modified Ni(110)

    SciTech Connect

    Huntley, D.R. )

    1989-08-10

    The reactions of methanethiol on clean and modified Ni(110) have been studied under ultrahigh-vacuum conditions by temperature-programmed reactions (TPR), including deuterium incorporation studies. Surface bound molecular fragments were identified by X-ray photoelectron spectroscopy (XPS) and high-resolution electron energy loss spectroscopy (HREELS). The TPR data indicate that the major products of the reactions of methanethiol with clean Ni(110) surfaces are methane and hydrogen. Methane desorbs in a reaction-limited peak at 276 K, which does not shift with methanethiol exposure. Hydrogen desorption occurs in several peaks depending on the exposure. The coverage dependence of the methane yield indicates a competition between decomposition and reaction to form methane. At low coverages, decomposition is the major pathway while at higher coverages methane formation dominates. Vibrational spectroscopy (HREELS) indicates the presence of the methyl thiolate intermediate at temperatures less than 200 K. X-ray photoelectron spectroscopy and deuterium incorporation experiments confirm this assignment. A mechanism has been proposed based on hydrogenolysis of the methyl thiolate species and is consistent with all of the data. The appropriate rate equations associated with this mechanism have been solved numerically to predict the TPR data, and qualitative agreement was achieved. Methanethiol reacts with sulfur- and oxygen-modified Ni(110) surfaces to produce methane, hydrogen, and, in the case of the oxidized surfaces, water. The major effect of the modifier was to enhance the formation of methane relative to decomposition. These observations can be explained by either electronic or structural effects.

  13. Ni-Mn based alloys as versatile catalyst for different electrochemical reactions

    NASA Astrophysics Data System (ADS)

    Aaboubi, Omar; Ali-Omar, Ahmed-Yassin; Dzoyem, Eunice; Marthe, Jimmy; Boudifa, Mohamed

    2014-12-01

    To develop large scale use of hydrogen and fuel cells as a renewable energy source it is need to increase their durability and reduce their cost mainly due to the use of precious metals. We have examined new type of the low cost binary nickel-manganese (Ni-Mn) catalysts electrodeposited from ammonium chloride bath onto copper substrates. By varying bath composition, polarization potential and essentially bath temperature the operating deposition conditions were optimized to produce Ni-Mn coatings with high active surface (e.g. spongy aspect). The outstanding catalytic activity, the durability and the versatility of the deposited films have been characterized in basic media using several electrochemical processes, such as hydrogen evolution reaction (HER), water oxidation reaction (OER) and ethanol oxidation reaction (EOR).

  14. The ^58,60Ni(n,α) Reactions from Threshold to 50 MeV

    NASA Astrophysics Data System (ADS)

    Haight, R. C.; Bateman, F. B.; Sterbenz, S. M.; Chadwick, M. B.; Young, P. G.; Grimes, S. M.; Wasson, O. A.; Vonach, H.; Maier-Komor, P.

    1996-10-01

    Information on nuclear level densities over a wide range of excitation energies can be obtained from data on (n,α) reactions.(M. B. Chadwick et al., this meeting) We have measured α-particle emission cross sections, angular distributions and emission spectra for neutrons up to 50 MeV on targets of ^58Ni and ^60Ni using the pulsed spallation source of fast neutrons at the Los Alamos Neutron Science Center. The results will be compared with our previous measurements on ^59Co.(S. M. Grimes et al., Nuclear Science and Engineering in press) The possibilities of extending this method to much heavier nuclides will be discussed.

  15. Deuteron-induced reactions on Ni isotopes up to 60 MeV

    NASA Astrophysics Data System (ADS)

    Avrigeanu, M.; Šimečková, E.; Fischer, U.; Mrázek, J.; Novak, J.; Štefánik, M.; Costache, C.; Avrigeanu, V.

    2016-07-01

    Background: The high complexity of the deuteron-nucleus interaction from the deuteron weak binding energy of 2.224 MeV is also related to a variety of reactions induced by the deuteron-breakup (BU) nucleons. Thus, specific noncompound processes as BU and direct reactions (DR) make the deuteron-induced reactions so different from reactions with other incident particles. The scarce consideration of only pre-equilibrium emission (PE) and compound-nucleus (CN) mechanisms led to significant discrepancies with experimental results so that recommended reaction cross sections of high-priority elements as, e.g., Ni have mainly been obtained by fit of the data. Purpose: The unitary and consistent BU and DR account in deuteron-induced reactions on natural nickel may take advantage of an extended database for this element, including new accurate measurements of particular reaction cross sections. Method: The activation cross sections of 64,61,60Cu, Ni,5765, and 55,56,57,58,59m,60Co nuclei for deuterons incident on natural Ni at energies up to 20 MeV, were measured by the stacked-foil technique and high-resolution gamma spectrometry using U-120M cyclotron of CANAM, NPI CAS. Then, within an extended analysis of deuteron interactions with Ni isotopes up to 60 MeV, all processes from elastic scattering until the evaporation from fully equilibrated compound system have been taken into account while an increased attention is paid especially to the BU and DR mechanisms. Results: The deuteron activation cross-section analysis, completed by consideration of the PE and CN contributions corrected for decrease of the total-reaction cross section from the leakage of the initial deuteron flux towards BU and DR processes, is proved satisfactory for the first time to all available data. Conclusions: The overall agreement of the measured data and model calculations validates the description of nuclear mechanisms taken into account for deuteron-induced reactions on Ni, particularly the BU and

  16. On the nucleation of PdSi and NiSi2 during the ternary Ni(Pd)/Si(100) reaction

    NASA Astrophysics Data System (ADS)

    Schrauwen, A.; Demeulemeester, J.; Kumar, A.; Vandervorst, W.; Comrie, C. M.; Detavernier, C.; Temst, K.; Vantomme, A.

    2013-08-01

    During the solid phase reaction of a Ni(Pd) alloy with Si(100), phase separation of binary Ni- and Pd-silicides occurs. The PdSi monosilicide nucleates at temperatures significantly below the widely accepted nucleation temperature of the binary system. The decrease in nucleation temperature originates from the presence of the isomorphous NiSi, lowering the interface energy for PdSi nucleation. Despite the mutual solubility of NiSi and PdSi, the two binaries coexist in a temperature window of 100 °C. Only above 700 °C a Ni1-xPdxSi solid solution is formed, which in turn postpones the NiSi2 formation to a higher temperature due to entropy of mixing. Our findings highlight the overall importance of the interface energy for nucleation in ternary systems.

  17. Theoretical investigation of the methane cracking reaction pathways on Ni (1 1 1) surface

    NASA Astrophysics Data System (ADS)

    Li, Jingde; Croiset, Eric; Ricardez-Sandoval, Luis

    2015-10-01

    A comprehensive methane cracking reaction pathway was investigated by performing density functional theory (DFT) calculations. In addition to the sequential dissociation reaction, i.e. CH4 → CHx + (4 - x)H → C + 2H2, a more sophisticated surface reaction network was studied, i.e. CHx + C → CHx - 1 + CH. The results show that CHx dehydrogenation is promoted with a low energy barrier through bimolecular reaction and provide an alternative kinetic favorable route for methane cracking. This study also demonstrates that the production of gas phase C2 hydrocarbon species, e.g. C2H2 and C2H4, in methane cracking reaction is unlikely due to the high barrier energy of C2H3 formation and their strong adsorption energy on Ni (1 1 1).

  18. Surface segregation effects in electrocatalysis: Kinetics ofoxygen reduction reaction on polycrystalline Pt3Ni alloy surfaces

    SciTech Connect

    Stamenkovic, V.; Schmidt, T.J.; Ross, P.N.; Markovic, N.M.

    2002-11-01

    Effects of surface segregation on the oxygen reduction reaction (ORR) have been studied on a polycrystalline Pt3Ni alloy in acid electrolyte using ultra high vacuum (UHV) surface sensitive probes and the rotating ring disk electrode (RRDE) method. Preparation, modification and characterization of alloy surfaces were done in ultra high vacuum (UHV). Depending on the preparation method, two different surface compositions of the Pt3Ni alloy are produced: a sputtered surface with 75 % Pt and an annealed surface (950 K ) with 100 % Pt. The latter surface is designated as the 'Pt-skin' structure, and is a consequence of surface segregation, i.e., replacement of Ni with Pt atoms in the first few atomic layers. Definitive surface compositions were established by low energy ion scattering spectroscopy (LEISS). The cyclic voltammetry of the 'Pt-skin' surface as well as the pseudocapacitance in the hydrogen adsorption/desorption potential region is similar to a polycrystalline Pt electrode. Activities of ORR on Pt3Ni alloy surfaces were compared to polycrystalline Pt in 0.1M HClO4 electrolyte for the observed temperature range of 293 < T < 333 K. The order of activities at 333 K was: 'Pt-skin' > Pt3Ni (75% Pt) > Pt with the maximum catalytic enhancement obtained for the 'Pt-skin' being 4 times that for pure Pt. Catalytic improvement of the ORR on Pt3Ni and 'Pt-skin' surfaces was assigned to the inhibition of Pt-OHad formation (on Pt sites) versus polycrystalline Pt. Production of H2O2 on both surfaces were similar compared to the pure Pt. Kinetic analyses of RRDE data confirmed that kinetic parameters for the ORR on the Pt3Ni and 'Pt-skin' surfaces are the same as on pure Pt: reaction order, m=1, two identical Tafel slopes, activation energy, {approx} 21-25 kJ/mol. Therefore the reaction mechanism on both Pt3Ni and 'Pt-skin' surfaces is the same as one proposed for pure Pt i.e. 4e{sup -} reduction pathway.

  19. Ion irradiation induced solid-state amorphous reaction in Ni/Ti multilayers

    NASA Astrophysics Data System (ADS)

    Milosavljević, Momir; Toprek, Dragan; Obradović, Marko; Grce, Ana; Peruško, Davor; Dražič, Goran; Kovač, Janez; Homewood, Kevin P.

    2013-03-01

    The effects of Ar ion irradiation on interfacial reactions induced in Ni/Ti multilayers were investigated. Structures consisting of 10 alternate Ni (˜26 nm) and Ti (˜20 nm) layers of a total thickness ˜230 nm were deposited by ion sputtering on Si (1 0 0) wafers. Argon irradiations were done at 180 keV, to the doses of 1-6 × 1016 ions/cm2, the samples being held at room temperature. The projected implanted ion range is 86 ± 36 nm, maximum energy loss is closer to the surface, and maximum displacements per atom (dpa) from 47 to 284 for Ni and 26 to 156 for Ti. Characterizations of samples were performed by transmission electron microscopy (TEM) and Rutherford backscattering spectrometry (RBS). It is shown that ion irradiation induced a progressed intermixing in the mostly affected zone already for the lowest dose, the thickness of the mix increasing linearly with the irradiation dose. The mixed phase is fully amorphous, starting with a higher concentration of Ni (which is the diffusing species) from the initial stages, and saturating at Ni:Ti˜66:34. A thick amorphous layer (˜127 nm) formed towards the surface region of the structure for the irradiation dose of 4 × 1016 ions/cm2 remains stable with increasing the dose to 6 × 1016 ions/cm2, which introduces up to 6-7 at.% of Ar within the mix. The results are discussed in light of the existing models. They can be interesting for introducing a selective and controlled solid-state reaction and towards further studies of ion irradiation stability of amorphous Ni-Ti phase.

  20. Characterization of self-propagating formation reactions in Ni/Zr multilayered foils using reaction heats, velocities, and temperature-time profiles

    DOE PAGESBeta

    Barron, S. C.; Knepper, R.; Walker, N.; Weihs, T. P.

    2011-01-11

    We report on intermetallic formation reactions in vapor-deposited multilayered foils of Ni/Zr with 70 nm bilayers and overall atomic ratios of Ni:Zr, 2 Ni:Zr, and 7 Ni:2 Zr. The sequence of alloy phase formation and the stored energy is evaluated at slow heating rates (~1 K/s) using differential scanning calorimetry (DSC) traces to 725ºC. All three chemistries initially form a Ni-Zr amorphous phase which crystallizes first to the intermetallic NiZr. The heat of reaction to the final phase is 34-36 kJ/mol atom for all chemistries. Intermetallic formation reactions are also studied at rapid heating rates (greater than 105 K/s) inmore » high temperature, self-propagating reactions which can be ignited in these foils by an electric spark. We find that reaction velocities and maximum reaction temperatures (Tmax) are largely independent of foil chemistry at 0.6 ± 0.1 m/s and 1220 ± 50 K, respectively, and that the measured Tmax is more than 200 K lower than predicted adiabatic temperatures (Tad). The difference between Tmax and Tad is explained by the prediction that transformation to the final intermetallic phases occurs after Tmax and results in the release of 20-30 % of the total heat of reaction and a delay in rapid cooling.« less

  1. Characterization of self-propagating formation reactions in Ni/Zr multilayered foils using reaction heats, velocities, and temperature-time profiles

    SciTech Connect

    Barron, S. C.; Knepper, R.; Walker, N.; Weihs, T. P.

    2011-01-01

    We report on intermetallic formation reactions in vapor-deposited multilayered foils of Ni/Zr with 70 nm bilayers and overall atomic ratios of Ni:Zr, 2 Ni:Zr, and 7 Ni:2 Zr. The sequence of alloy phase formation and the stored energy is evaluated at slow heating rates ({approx}1 K/s) using differential scanning calorimetry traces to 725 deg. C. All three chemistries initially form a Ni-Zr amorphous phase which crystallizes first to the intermetallic NiZr. The heat of reaction to the final phase is 34-36 kJ/mol atom for all chemistries. Intermetallic formation reactions are also studied at rapid heating rates (greater than 10{sup 5} K/s) in high temperature, self-propagating reactions which can be ignited in these foils by an electric spark. We find that reaction velocities and maximum reaction temperatures (T{sub max}) are largely independent of foil chemistry at 0.6{+-}0.1 m/s and 1220{+-}50 K, respectively, and that the measured T{sub max} is more than 200 K lower than predicted adiabatic temperatures (T{sub ad}). The difference between T{sub max} and T{sub ad} is explained by the prediction that transformation to the final intermetallic phases occurs after T{sub max} and results in the release of 20%-30% of the total heat of reaction and a delay in rapid cooling.

  2. Charge storage and the oxygen evolution reaction in mixed Ni-Li oxides.

    PubMed

    Villa, Marco; Milanese, Chiara; Salvi, Paolo; Nelli, Paolo; Marini, Amedeo; Zangari, Giovanni

    2009-09-21

    Electronic and catalytic properties of mixed oxides of Ni-Li are studied at room temperature with NMR and with electrochemical techniques in alkaline solutions. Our Li(x)Ni(1-x)O (0.04 < or = x < or = 0.2) samples have an f.c.c crystal structure, are in an anti-ferromagnetic phase, and exhibit a substantial conductivity due to a hole-hopping process with a characteristic rate which is essentially independent of composition. Several processes of reduction and oxidation occur in the voltage region between the hydrogen (HER) and oxygen evolution (OER) reactions, which are compared with related phenomena observed in pure Ni electrodes (Ni(OH)2 and NiO). Repeated cycles of reduction and oxidation yield electrodes with a somewhat improved OER activity, and a high charge-storage capacity. Heavy anodic treatments cause irreversible changes of these properties, particularly when coupled with months-long storage in air. The complex behavior of these electrodes is interpreted in terms of formation of a topotactic surface layer with hydrogenated species. PMID:19950507

  3. α and 2 p 2 n emission in fast neutron-induced reactions on 60Ni

    NASA Astrophysics Data System (ADS)

    Fotiades, N.; Devlin, M.; Haight, R. C.; Nelson, R. O.; Kunieda, S.; Kawano, T.

    2015-06-01

    Background: The cross sections for populating the residual nucleus in the reaction ZAX(n,x) Z -2 A -4Y exhibit peaks as a function of incident neutron energy corresponding to the (n ,n'α ) reaction and, at higher energy, to the (n ,2 p 3 n ) reaction. The relative magnitudes of these peaks vary with the Z of the target nucleus. Purpose: Study fast neutron-induced reactions on 60Ni. Locate experimentally the nuclear charge region along the line of stability where the cross sections for α emission and for 2 p 2 n emission in fast neutron-induced reactions are comparable as a further test of reaction models. Methods: Data were taken by using the Germanium Array for Neutron-Induced Excitations. The broad-spectrum pulsed neutron beam of the Los Alamos Neutron Science Center's Weapons Neutron Research facility provided neutrons in the energy range from 1 to 250 MeV. The time-of-flight technique was used to determine the incident-neutron energies. Results: Absolute partial cross sections for production of seven discrete Fe γ rays populated in 60Ni (n ,α /2 p x n γ ) reactions with 2 ≤x ≤5 were measured for neutron energies 1 MeVreactions on stable targets via α emission at the peak of the (n ,α ) and (n ,n'α ) reactions is comparable to that for 2 p 2 n and 2 p 3 n emission at higher incident energies in the nuclear charge region around Fe.

  4. Time-resolved x-ray microdiffraction studies of phase transformations during rapidly propagating reactions in Al/Ni and Zr/Ni multilayer foils

    NASA Astrophysics Data System (ADS)

    Trenkle, J. C.; Koerner, L. J.; Tate, M. W.; Walker, Noël; Gruner, S. M.; Weihs, T. P.; Hufnagel, T. C.

    2010-06-01

    We showed how intermetallic formation reactions can be studied under rapid heating (106-107 K s-1) using x-ray microdiffraction with temporal resolution on microsecond time scales. Rapid heating was achieved by initiating an exothermic reaction in multilayer foils comprising alternating nanoscale layers of elemental metals. The reaction occurred in a front ˜100 μm wide which propagated across the foil at ˜1-10 m s-1. By using synchrotron x-rays focused to a small spot (60 μm diameter) and a fast pixel-array detector, we were able to track the evolution of phases in the reaction front during the initial heating transient, which occurred in approximately 1 ms, through cooling over a period of hundreds of milliseconds. In Al/Ni multilayer foils, the first phases to form were an Al-rich liquid and the cubic intermetallic AlNi (which likely formed by nucleation from the liquid). In foils of overall composition AlNi, this is the stable intermetallic and the only phase to form. In foils of composition Al3Ni2, during cooling we observed a peritectic reaction between AlNi and the remaining liquid to form Al3Ni2, which is the stable phase at room temperature and the final product of the reaction. This is in contrast to the sequence of phases under slow heating, where we observed formation of nonequilibrium Al9N2 first and do not observe formation of a liquid phase or the AlNi intermetallic. We also observed formation of an amorphous phase (along with crystalline ZrNi) during rapid heating of Zr/Ni multilayers, but in this system the temperature of the reaction front never reached the lowest liquidus temperature on the Zr-Ni phase diagram. This implies that the amorphous phase we observed was not a liquid arising from melting of a crystalline phase. We suggest instead that a Zr-rich amorphous solid formed due to solid-state interdiffusion, which then transformed to a supercooled liquid when the temperature exceeded the glass transition temperature. Formation of the

  5. Moderate temperature sodium cells. V - Discharge reactions and rechargeability of NiS and NiS2 positive electrodes in molten NaAlCl4

    NASA Technical Reports Server (NTRS)

    Abraham, K. M.; Elliot, J. E.

    1984-01-01

    NiS2 and NiS have been characterized as high energy density rechargeable positive electrodes for moderate-temperature Na batteries of the configuration, Na(1)/beta double prime-Al2O3/NaAlCl4(1), NiSx. The batteries operate in the temperature range 170 - 190 C. Positive electrode reactions during discharge/charge cycles have been characterized. Excellent rechargeability of the batteries has been demonstrated by extended cell cycling. A Na/NiS2 cell, operating at 190 C, exceeded 600 deep discharge/charge cycles with practically no capacity deterioration. The feasibility of secondary Na/NiSx batteries with specific energies equal to or greater than 50 Wh/lb and cycle lifes exceeding 1000 deep discharge/charge cycles has been demonstrated.

  6. Theoretical study on the reaction mechanism of the gas-phase H2/CO2/Ni(3D) system.

    PubMed

    Qin, Song; Hu, Changwei; Yang, Huaqing; Su, Zhishan

    2005-07-28

    The ground-state potential energy surface (PES) in the gas-phase H2/CO2/Ni(3D) system is investigated at the CCSD(T)//B3LYP/6-311+G(2d,2p) levels in order to explore the possible reaction mechanism of the reverse water gas shift reaction catalyzed by Ni(3D). The calculations predict that the C-O bond cleavage of CO2 assisted by co-interacted H2 is prior to the dissociation of the H2, and the most feasible reaction path for Ni(3D) + H2 + CO2 --> Ni(3D) + H2O + CO is endothermic by 12.5 kJ mol(-1) with an energy barrier of 103.9 kJ mol(-1). The rate-determining step for the overall reaction is predicted to be the hydrogen migration with water formation. The promotion effect of H2 on the cleavage of C-O bond in CO2 is also discussed and compared with the analogous reaction of Ni(3D) + CO2 --> NiO + CO, and the difference between triplet and singlet H2/CO2/Ni systems is also discussed. PMID:16833994

  7. Growth dynamics and intracluster reactions in Ni{sup +}(CO{sub 2}){sub n} complexes via infrared spectroscopy

    SciTech Connect

    Walker, N.R.; Walters, R.S.; Grieves, G.A.; Duncan, M.A.

    2004-12-01

    Ni{sup +}(CO{sub 2}){sub n}, Ni{sup +}(CO{sub 2}){sub n}Ar, Ni{sup +}(CO{sub 2}){sub n}Ne, and Ni{sup +}(O{sub 2})(CO{sub 2}){sub n} complexes are generated by laser vaporization in a pulsed supersonic expansion. The complexes are mass-selected in a reflectron time-of-flight mass spectrometer and studied by infrared resonance-enhanced photodissociation (IR-REPD) spectroscopy. Photofragmentation proceeds exclusively through the loss of intact CO{sub 2} molecules from Ni{sup +}(CO{sub 2}){sub n} and Ni{sup +}(O{sub 2})(CO{sub 2}){sub n} complexes, and by elimination of the noble gas atom from Ni{sup +}(CO{sub 2}){sub n}Ar and Ni{sup +}(CO{sub 2}){sub n}Ne. Vibrational resonances are identified and assigned in the region of the asymmetric stretch of CO{sub 2}. Small complexes have resonances that are blueshifted from the asymmetric stretch of free CO{sub 2}, consistent with structures having linear Ni{sup +}-O=C=O configurations. Fragmentation of larger Ni{sup +}(CO{sub 2}){sub n} clusters terminates at the size of n=4, and new vibrational bands assigned to external ligands are observed for n{>=}5. These combined observations indicate that the coordination number for CO{sub 2} molecules around Ni{sup +} is exactly four. Trends in the loss channels and spectra of Ni{sup +}(O{sub 2})(CO{sub 2}){sub n} clusters suggest that each oxygen atom occupies a different coordination site around a four-coordinate metal ion in these complexes. The spectra of larger Ni{sup +}(CO{sub 2}){sub n} clusters provide evidence for an intracluster insertion reaction assisted by solvation, producing a metal oxide-carbonyl species as the reaction product.

  8. Fabrication of Ni-silicide/Si heterostructured nanowire arrays by glancing angle deposition and solid state reaction

    PubMed Central

    2013-01-01

    This work develops a method for growing Ni-silicide/Si heterostructured nanowire arrays by glancing angle Ni deposition and solid state reaction on ordered Si nanowire arrays. Samples of ordered Si nanowire arrays were fabricated by nanosphere lithography and metal-induced catalytic etching. Glancing angle Ni deposition deposited Ni only on the top of Si nanowires. When the annealing temperature was 500°C, a Ni3Si2 phase was formed at the apex of the nanowires. The phase of silicide at the Ni-silicide/Si interface depended on the diameter of the Si nanowires, such that epitaxial NiSi2 with a {111} facet was formed at the Ni-silicide/Si interface in Si nanowires with large diameter, and NiSi was formed in Si nanowires with small diameter. A mechanism that is based on flux divergence and a nucleation-limited reaction is proposed to explain this phenomenon of size-dependent phase formation. PMID:23663726

  9. Sessile dislocations by reactions in NiAl severely deformed at room temperature

    SciTech Connect

    Geist, D.; Gammer, C.; Rentenberger, C.; Karnthaler, H. P.

    2015-02-05

    B2 ordered NiAl is known for its poor room temperature (RT) ductility; failure occurs in a brittle like manner even in ductile single crystals deforming by single slip. In the present study NiAl was severely deformed at RT using the method of high pressure torsion (HPT) enabling the hitherto impossible investigation of multiple slip deformation. Methods of transmission electron microscopy were used to analyze the dislocations formed by the plastic deformation showing that as expected dislocations with Burgers vector a(100) carry the plasticity during HPT deformation at RT. In addition, we observe that they often form a(110) dislocations by dislocation reactions; the a(110) dislocations are considered to be sessile based on calculations found in the literature. It is therefore concluded that the frequently encountered 3D dislocation networks containing sessile a(110) dislocations are pinned and lead to deformation-induced embrittlement. In spite of the severe deformation, the chemical order remains unchanged.

  10. Reaction studies near the barrier for medium heavy systems: Ni + Sn

    SciTech Connect

    Henning, W.

    1985-01-01

    Cross sections for elastic and inelastic scattering, single- and multi-nucleon transfer, fusion followed by particle evaporation leaving an evaporation residue, and fusion followed by fission have been measured for /sup 58/ /sup 64/Ni beams incident on even Sn targets at energies from below to above the Coulomb barrier. The Ni beams were provided by the Argonne Superconducting Linac. The aim of these measurements is a comprehensive study of the reaction systematics in a medium-heavy collision system. At present, a small fraction of the data has been fully analyzed and published, a larger part is presently being compared to model calculations. Some of the data needs to be confirmed by additional measurements. This summary should be viewed as a status report and an attempt to formulate some of the open questions. 9 references.

  11. Effect of oxide supports in stabilizing desirable Pt-Ni bimetallic structures for hydrogenation and reforming reactions.

    PubMed

    Wang, Tiefeng; Mpourmpakis, Giannis; Lonergan, William W; Vlachos, Dionisios G; Chen, Jingguang G

    2013-08-01

    Previous surface science studies have shown that bimetallic surfaces often show unique activity for reactions involving the consumption and production of hydrogen, such as hydrogenation and reforming reactions, respectively. These two types of reactions require different bimetallic configurations. For example, for the Pt-Ni bimetallic system, the desirable structure is Pt-terminated for hydrogenation while Ni-terminated for reforming. In the current study, 1,3-butadiene hydrogenation and ethanol reforming were used as probe reactions to investigate the effect of oxide supports (γ-Al2O3 and TiO2) on the structural and catalytic properties of Pt-Ni catalysts. The supported catalysts were characterized by transmission electron microscopy (TEM) and extended X-ray absorption fine structure (EXAFS). The reactions were carried out in a batch reactor equipped with a Fourier transform infrared (FTIR) spectrometer. For ethanol reforming, Pt-Ni/TiO2 showed higher activity than Pt-Ni/γ-Al2O3, and the Pt-Ni bimetallic catalyst outperformed the monometallic catalysts on TiO2 but not on γ-Al2O3. In contrast, for 1,3-butadiene hydrogenation, Pt-Ni/TiO2 showed much lower activity than Pt-Ni/γ-Al2O3. Density functional theory (DFT) calculations of Pt-Ni nanoparticles on γ-Al2O3 and TiO2 were performed to provide possible explanations for the different modification effects of the two oxide supports. PMID:23689424

  12. Novel reactions of homodinuclear Ni2 complexes [Ni(RNPyS4)]2 with Fe3(CO)12 to give heterotrinuclear NiFe2 and mononuclear Fe complexes relevant to [NiFe]- and [Fe]-hydrogenases.

    PubMed

    Song, Li-Cheng; Cao, Meng; Wang, Yong-Xiang

    2015-04-21

    The homodinuclear complexes [Ni(RNPyS4)]2 (; RNPyS4 = 2,6-bis(2-mercaptophenylthiomethyl)-4-R-pyridine; R = H, MeO, Cl, Br, i-Pr) were found to be prepared by reactions of the in situ generated Li2[Ni(1,2-S2C6H4)2] with 2,6-bis[(tosyloxy)methyl]pyridine and its substituted derivatives 2,6-bis[(tosyloxy)methyl]-4-R-pyridine. Further reactions of with Fe3(CO)12 gave both heterotrinuclear complexes NiFe2(RNPyS4)(CO)5 () and mononuclear complexes Fe(RNPyS4)(CO) (), unexpectedly. Interestingly, complexes and could be regarded as models for the active sites of [NiFe]- and [Fe]-hydrogenases, respectively. All the prepared complexes were characterized by elemental analysis, spectroscopy, and particularly for some of them, by X-ray crystallography. In addition, the electrochemical properties of and as well as the electrocatalytic H2 production catalyzed by and were investigated by CV techniques. PMID:25747808

  13. Water-Gas Shift and CO Methanation Reactions over Ni-CeO2(111) Catalysts

    SciTech Connect

    Senanayake, Sanjaya D; Evans, Jaime; Agnoli, Stefano; Barrio, Laura; Chen, Tsung-Liang; Hrbek, Jan; Radriguez, Jose

    2011-01-01

    X-ray and ultraviolet photoelectron spectroscopies were used to study the interaction of Ni atoms with CeO2(111) surfaces. Upon adsorption on CeO2(111) at 300 K, nickel remains in a metallic state. Heating to elevated temperatures (500 800 K) leads to partial reduction of the ceria substrate with the formation of Ni2? species that exists as NiO and/or Ce1-xNixO2-y. Interactions of nickel with the oxide substrate significantly reduce the density of occupied Ni 3d states near the Fermi level. The results of core-level photoemission and near-edge X-ray absorption fine structure point to weakly bound CO species on CeO2(111) which are clearly distinguishable from the formation of chemisorbed carbonates. In the presence of Ni, a stronger interaction is observed with chemisorption of CO on the admetal. When the Ni is in contact with Ce?3 cations, CO dissociates on the surface at 300 K forming NiCx compounds that may be involved in the formation of CH4 at higher temperatures. At medium and large Ni coverages ([0.3 ML), the Ni/CeO2(111) surfaces are able to catalyze the production of methane from CO and H2, with an activity slightly higher than that of Ni(100) or Ni(111). On the other hand, at small coverages of Ni (\\0.3 ML), the Ni/CeO2(111) surfaces exhibit a very low activity for CO methanation but are very good catalysts for the water gas shift reaction.

  14. Fusion Probability in the Reactions {sup 58}Fe+{sup 244}Pu and {sup 64}Ni+{sup 238}U

    SciTech Connect

    Knyazheva, G. N.; Bogachev, A. A.; Itkis, I. M.; Itkis, M. G.; Kozulin, E. M.

    2010-04-30

    Mass-energy distributions, as well as capture cross-section of fission-like fragments for the reactions {sup 64}Ni+{sup 238}U and {sup 58}Fe+{sup 244}Pu leading to the formation of superheavy compound system with Z = 120 and N 182 at energies near the Coulomb barrier have been measured. Fusion-fission cross sections were estimated from the analysis of mass and total kinetic energy distributions. It was found that the fusion probability is about one order of magnitude higher for the reaction {sup 58}Fe+{sup 244}Pu than that for the reaction with {sup 64}Ni-ions.

  15. ({ital p},{ital d}) reaction on {sup 62}Ni at 65 MeV

    SciTech Connect

    Matoba, M.; Kurohmaru, K.; Iwamoto, O.; Nohtomi, A.; Uozumi, Y.; Sakae, T.; Koori, N.; Ohgaki, H.; Ijiri, H.; Maki, T.; Nakano, M.; Sen Gupta, H.M.

    1996-04-01

    The {sup 62}Ni({ital p},{ital d}){sup 61}Ni reaction has been studied with 65 MeV polarized protons. Angular distributions of the differential cross section and analyzing power have been measured for neutron hole states in {sup 61}Ni up to an excitation energy of 7 MeV. The data analysis with a standard distorted-wave Born approximation theory provides transferred angular momenta {ital l} and {ital j} and spectroscopic factors for several strongly excited states. The 1{ital f}{sub 7/2} hole state spreads largely in the excitation energy region of 2{endash}6 MeV, while the 1{ital f}{sub 5/2}, 2{ital p}{sub 3/2}, and 2{ital p}{sub 1/2} hole states into only 2{endash}4 levels. The strength function of the 1{ital f}{sub 7/2} hole state is analyzed with an asymmetrical Lorentzian function. The damping mechanism of the single hole states is discussed. {copyright} {ital 1996 The American Physical Society.}

  16. The borohydride oxidation reaction on La-Ni-based hydrogen-storage alloys.

    PubMed

    Paschoalino, Waldemir J; Thompson, Stephen J; Russell, Andrea E; Ticianelli, Edson A

    2014-07-21

    This work provides insights into the processes involved in the borohydride oxidation reaction (BOR) in alkaline media on metal hydride alloys formed by LaNi(4.7)Sn(0.2)Cu(0.1) and LaNi(4.78)Al(0.22) with and without deposited Pt, Pd, and Au. The results confirm the occurrence of hydrolysis of the borohydride ions when the materials are exposed to BH(4)(-) and a continuous hydriding of the alloys during BH(4)(-) oxidation measurements at low current densities. The activity for the direct BOR is low in both bare metal hydride alloys, but the rate of the BH(4)(-) hydrolysis and the hydrogen-storage capacity are higher, while the rate of H diffusion is slower for bare LaNi(4.78) Al(0.22). The addition of Pt and Pd to both alloys results in an increase of the BH(4)(-) hydrolysis, but the H(2) formed is rapidly oxidized at the Pt-modified catalysts. In the case of Au modification, a small increase in the BH(4)(-) hydrolysis is observed as compared to the bare alloys. The presence of Au and Pd also leads to a reduction of the rates of alloy hydriding/de-hydriding. PMID:24700670

  17. Depletion and phase transformation of a submicron Ni(P) film in the early stage of soldering reaction between Sn-Ag-Cu and Au/Pd(P)/Ni(P)/Cu

    NASA Astrophysics Data System (ADS)

    Ho, Cheng-En; Hsieh, Wan-Zhen; Yang, Tsung-Hsun

    2015-01-01

    The early stage of soldering reaction between Sn-3Ag-0.5Cu solder and ultrathin-Ni(P)-type Au/Pd(P)/Ni(P)/Cu pad was investigated by field-emission scanning electron microscopy (FE-SEM) in conjunction with field-emission electron probe microanalysis (FEEPMA) and high-resolution transmission electron microscopy (HRTEM). FE-SEM, FE-EPMA, and HRTEM investigations showed that Ni2SnP and Ni3P were the predominant P-containing intermetallic compounds (IMCs) in the soldering reaction and that their growth behaviors strongly depended on the depletion of Ni(P). The growth of Ni3P dominated over that of Ni2SnP in the early stage of soldering, whereas the Ni3P gradually transformed into Ni2SnP after Ni(P) depletion. This Ni(P)-depletion-induced Ni2SnP growth behavior is different from the reaction mechanisms reported in the literature. Detailed analyses of the microstructural evolution of the IMC during Ni(P) depletion were conducted, and a two-stage reaction mechanism was proposed to rationalize the unique IMC growth behavior.

  18. Measurement of the 58Ni(α,γ)62Zn reaction and its astrophysical impact

    NASA Astrophysics Data System (ADS)

    Quinn, S. J.; Spyrou, A.; Bravo, E.; Rauscher, T.; Simon, A.; Battaglia, A.; Bowers, M.; Bucher, B.; Casarella, C.; Couder, M.; DeYoung, P. A.; Dombos, A. C.; Görres, J.; Kontos, A.; Li, Q.; Long, A.; Moran, M.; Paul, N.; Pereira, J.; Robertson, D.; Smith, K.; Smith, M. K.; Stech, E.; Talwar, R.; Tan, W. P.; Wiescher, M.

    2014-05-01

    Cross section measurements of the 58Ni(α,γ)62Zn reaction were performed in the energy range Eα=5.5to9.5 MeV at the Nuclear Science Laboratory of the University of Notre Dame, using the NSCL Summing NaI(Tl) detector and the γ-summing technique. The measurements are compared to predictions in the statistical Hauser-Feshbach model of nuclear reactions using the SMARAGD code. It is found that the energy dependence of the cross section is reproduced well but the absolute value is overestimated by the prediction. This can be remedied by rescaling the α width by a factor of 0.45. Stellar reactivities were calculated with the rescaled α width and their impact on nucleosynthesis in type Ia supernovae has been studied. It is found that the resulting abundances change by up to 5% when using the new reactivities.

  19. Reactions of the Terminal NiII–OH Group in Substitution and Electrophilic Reactions with Carbon Dioxide and Other Substrates: Structural Definition of Binding Modes in an Intramolecular NiII…FeII Bridged Site

    PubMed Central

    Huang, Deguang; Holm, R. H.

    2010-01-01

    A singular feature of the catalytic C-cluster of carbon monoxide dehydrogenase is a sulfide-bridged Ni⋯Fe locus where substrate is bound and transformed in the reversible reaction CO + H2O ⇌ CO2 + 2H+ + 2e−. A similar structure has been sought in this work. Mononuclear planar NiII complexes [Ni(pyN2Me2)L]1− (pyN2Me2 = bis(2,6-dimethylphenyl)-2,6-pyridinedicarboxamidate(2-)) derived from a NNN pincer ligand have been prepared including L = OH− (1) and CN− (7). Complex 1 reacts with ethyl formate and CO2 to form unidentate L = HCO2− (5) and HCO3− (6) products. A binucleating macrocycle was prepared which specifically binds NiII at a NNN pincer site and five-coordinate FeII at a triamine site. The NiII macrocyle forms hydroxo (14) and cyanide complexes (15) analogous to 1 and 7. Reaction of 14 with FeCl2 alone and with ethyl formate and 15 with FeCl2 affords molecules with the NiII-L-FeII bridge unit in which L = µ2:η1-OH− (17) and µ2:η2-HCO2− (18) and -CN− (19). All bridges are non-linear (17, 140.0°; 18, M-O-C 135.9° (Ni), 120.2° (Fe); 19, Ni-C-N 170.3°, Fe-N-C 141.8°) with Ni⋯Fe separations of 3.7–4.8 Å. The NiIIFeII complexes, lacking appropriate Ni-Fe-S cluster structures, are not site analogues but their synthesis and reactivity provide the first demonstration that molecular NiII…FeII sites and bridges can be attained, a necessity in the biomimetic chemistry of C-clusters. PMID:20218565

  20. An in situ photoemission study of the dehydrogenation reaction of methanol on Ni( 1 0 0 )

    NASA Astrophysics Data System (ADS)

    Neubauer, R.; Whelan, C. M.; Denecke, R.; Steinrück, H.-P.

    2002-06-01

    Making use of the high intensity and resolution of synchrotron radiation at MAX-II (Sweden) we studied the dehydrogenation reaction of methanol on Ni(1 0 0) as a function of temperature by core level photoelectron spectroscopy. The temperature was increased linearly from 105 to 425 K with a heating rate of 0.06 K s -1. Measurement times of 60 s per C 1s spectrum allowed the dehydrogenation reaction to be monitored in situ. The different binding energies of the core level characteristic of different adsorbed species are reported. After exposure at 105 K, the C 1s spectra exhibit two peaks, representing methanol in multilayer and monolayer states. Above 160 K the multilayer is completely desorbed and methanol from the monolayer starts to dehydrogenate to form a methoxy species which decomposes above 240 K to carbon monoxide adsorbed in the bridge site. The onset of the on-top site occupation is observed at 270 K. The data suggests conversion from bridge to on-top site CO around 290 K. Our results show good agreement with literature values from temperature programmed desorption and Fourier transform infra-red experiments and provide new information in the form of quantitative data on the decomposition pathway of methanol adsorbed on Ni(1 0 0).

  1. The Reaction Mechanism of Decomposing Chloroform by Bi-Metal Nano-Metallic Particles of Fe/Ni

    SciTech Connect

    Hsieh, Su-Hwei; Horng, Jao-Jia

    2004-03-31

    By adding Ni into the production of Fe/Ni nano-metallic particles, the acceleration of reduction ability of particles to decompose Chloroform is observed. The addition also could inhibit the shielding effect of pure iron compounds. This research studied the production and properties of the nano-particle metallic compounds of Fe and Ni, the decomposition of Chloroform by the particles and the mechanism of the decomposition processes. The experimental results indicated effective and rapid decomposition of chloroform by the Fe/Ni nano-particles on aluminum oxides, comparing to nano particles of iron in other researches. The reaction mechanism of Fe/Ni particles was pseudo first order with the half life about 0.7 hour, which was much shorter than the nano-Fe particles.

  2. Reactions of H2, CO, and O2 with active [NiFe]-hydrogenase from Allochromatium vinosum. A stopped-flow infrared study.

    PubMed

    George, Simon J; Kurkin, Sergei; Thorneley, Roger N F; Albracht, Simon P J

    2004-06-01

    The Ni-Fe site in the active membrane-bound [NiFe]-hydrogenase from Allochromatium vinosum can exist in three different redox states. In the most oxidized state (Ni(a)-S) the nickel is divalent. The most reduced state (Ni(a)-SR) likewise has Ni(2+), while the intermediate state (Ni(a)-C) has Ni(3+). The transitions between these states have been studied by stopped-flow Fourier transform infrared spectroscopy. It is inferred from the data that the Ni(a)-S --> Ni(a)-C* and Ni(a)-C* --> Ni(a)-SR transitions induced by dihydrogen require one of the [4Fe-4S] clusters to be oxidized. Enzyme in the Ni(a)-S* state with all of the iron-sulfur clusters reduced reacts with dihydrogen to form the Ni(a)-SR state in milliseconds. By contrast, when one of the cubane clusters is oxidized, the Ni(a)-S state reacts with dihydrogen to form the Ni(a)-C state with all of the iron-sulfur clusters reduced. The competition between dihydrogen and carbon monoxide for binding to the active site was dependent on the redox state of the nickel ion. Formation of the Ni(a)-S.CO state (Ni(2+)) by reacting CO with enzyme in the Ni(a)-SR and Ni(a)-S states (Ni(2+)) is considerably faster than its formation from enzyme in the Ni(a)-C* (Ni(3+)) state. Excess oxygen converted hydrogen-reduced enzyme to the inactive Ni(r)* state within 158 ms, suggesting a direct reaction at the Ni-Fe site. With lower O(2) concentrations the formation of intermediate states was observed. The results are discussed in the light of the present knowledge of the structure and mechanism of action of the A. vinosum enzyme. PMID:15157115

  3. Development of Ni-Mo/Al2O3 catalyst for reverse water gas shift (RWGS) reaction.

    PubMed

    Kharaji, Abolfazl Gharibi; Shariati, Ahmad; Ostadi, Mohammad

    2014-09-01

    In the present study, Mo/Al2O3 catalyst was prepared using impregnation method. Then it was promoted with Ni ions to produce Ni-Mo/Al2O3 catalyst. The structures of the catalysts were studied using X-ray diffraction (XRD), Energy dispersive X-ray (EDAX), Brunauer-Emmett-Teller (BET), X-ray photoelectron spectroscopy (XPS), CO chemisorption, temperature programmed reduction of hydrogen (H2-TPR) and scanning electron microscope (SEM) techniques. Catalytic performances of the two catalysts were investigated in a fixed-bed reactor for RWGS reaction. The results indicated that addition of nickel promoter to Mo/Al2O3 catalyst enhances its activity. It is reasonable for the electron deficient state of the Ni species and existence of NiMoO4 phase to possess high activity in RWGS reaction. Stability test of Ni-Mo/Al2O3 catalyst was carried out in a fixed bed reactor and a high CO2 conversion for 60 h time on stream was demonstrated. This study introduces a new catalyst, Ni-Mo/Al2O3, with high activity and stability for RWGS reaction. PMID:25924339

  4. Paramagnetic intermediates in reactions of the components of catalytic systems of the Ziegler type. Reactions of azo and azomethine complexes of Ni(II) with diethylaluminum chloride

    SciTech Connect

    Abbasov, Ya.A.; Ismailov, E.G.; Medzhidov, A.A.

    1988-04-01

    The intermediate paramagnetic particles, i.e., radical particles, complexes of Ni(I), and Ni/sub n/(O) aggregates, formed as a result of the reaction of azo and azomethine complexes of Ni(II) with Et/sub 2/AlCl in solvent media (toluene, THF, heptane) have been identified with the aid of ESR. The possibility of the stabilization of reactive intermediate complexes of Ni(I) by organophosphorus ligands (DPPE and TPP) has been demonstrated, and the magnetic-resonance parameters of their adducts have been determined. It has been postulated that the formation of radical particles occurs as a result of the coordination of the nitrogen atoms of the azo or azomethine ligands by the organoaluminum compound followed by splitting of the -N=N or -CH=N bonds.

  5. Enhanced Reaction Kinetics and Structure Integrity of Ni/SnO2 Nanocluster toward High-Performance Lithium Storage.

    PubMed

    Jiang, Yinzhu; Li, Yong; Zhou, Peng; Yu, Shenglan; Sun, Wenping; Dou, Shixue

    2015-12-01

    SnO2 is regarded as one of the most promising anodes via conversion-alloying mechanism for advanced lithium ion batteries. However, the sluggish conversion reaction severely degrades the reversible capacity, Coulombic efficiency and rate capability. In this paper, through constructing porous Ni/SnO2 composite electrode composed of homogeneously distributed SnO2 and Ni nanoparticles, the reaction kinetics of SnO2 is greatly enhanced, leading to full conversion reaction, superior cycling stability and improved rate capability. The uniformly distributed Ni nanoparticles provide a fast charge transport pathway for electrochemical reactions, and restrict the direct contact and aggregation of SnO2 nanoparticles during cycling. In the meantime, the void space among the nanoclusters increases the contact area between the electrolyte and active materials, and accommodates the huge volume change during cycling as well. The Ni/SnO2 composite electrode possesses a high reversible capacity of 820.5 mAh g(-1) at 1 A g(-1) up to 100 cycles. More impressively, large capacity of 841.9, 806.6, and 770.7 mAh g(-1) can still be maintained at high current densities of 2, 5, and 10 A g(-1) respectively. The results demonstrate that Ni/SnO2 is a high-performance anode for advanced lithium-ion batteries with high specific capacity, excellent rate capability, and cycling stability. PMID:26580088

  6. Sessile dislocations by reactions in NiAl severely deformed at room temperature

    DOE PAGESBeta

    Geist, D.; Gammer, C.; Rentenberger, C.; Karnthaler, H. P.

    2015-02-05

    B2 ordered NiAl is known for its poor room temperature (RT) ductility; failure occurs in a brittle like manner even in ductile single crystals deforming by single slip. In the present study NiAl was severely deformed at RT using the method of high pressure torsion (HPT) enabling the hitherto impossible investigation of multiple slip deformation. Methods of transmission electron microscopy were used to analyze the dislocations formed by the plastic deformation showing that as expected dislocations with Burgers vector a(100) carry the plasticity during HPT deformation at RT. In addition, we observe that they often form a(110) dislocations by dislocationmore » reactions; the a(110) dislocations are considered to be sessile based on calculations found in the literature. It is therefore concluded that the frequently encountered 3D dislocation networks containing sessile a(110) dislocations are pinned and lead to deformation-induced embrittlement. In spite of the severe deformation, the chemical order remains unchanged.« less

  7. Sessile dislocations by reactions in NiAl severely deformed at room temperature

    PubMed Central

    Geist, D.; Gammer, C.; Rentenberger, C.; Karnthaler, H.P.

    2015-01-01

    B2 ordered NiAl is known for its poor room temperature (RT) ductility; failure occurs in a brittle like manner even in ductile single crystals deforming by single slip. In the present study NiAl was severely deformed at RT using the method of high pressure torsion (HPT) enabling the hitherto impossible investigation of multiple slip deformation. Methods of transmission electron microscopy were used to analyze the dislocations formed by the plastic deformation showing that as expected dislocations with Burgers vector a〈100〉 carry the plasticity during HPT deformation at RT. In addition, we observe that they often form a〈110〉 dislocations by dislocation reactions; the a〈110〉 dislocations are considered to be sessile based on calculations found in the literature. It is therefore concluded that the frequently encountered 3D dislocation networks containing sessile a〈110〉 dislocations are pinned and lead to deformation-induced embrittlement. In spite of the severe deformation, the chemical order remains unchanged. PMID:25663749

  8. Reaction behavior of Ni-Re alloys during direct current polarization in sulfuric acid solutions

    NASA Astrophysics Data System (ADS)

    Bryukvin, V. A.; Elemesov, T. B.; Levchuk, O. M.; Bol'shikh, A. O.

    2016-01-01

    The macrokinetic regularities of the reactivity of synthesized Ni-Re (20 and 60 wt %) alloys in a sulfuric acid solution (100 g/L, 25-40°C) during direct current polarization are studied using physicochemical methods. The phase composition of the synthesized alloys is determined by the formation of solid solutions as a function of the initial Ni/Re weight ratio. These are two types of nickel solid solutions (Ni16Re0.2 and Ni14Re0.9) and one rhenium solution (Ni1.1Re). These solid solutions are anodically oxidized in the sequence of their structural rearrangement Ni16Re0.2 → Ni14Re0.9 → Ni1.1Re with a combined transition of the metals into an electrolyte solution. These solid solutions provide the reduction of Ni3+ to Ni2+ due to the depolarization ability of rhenium, being their component.

  9. Protonation states of intermediates in the reaction mechanism of [NiFe] hydrogenase studied by computational methods.

    PubMed

    Dong, Geng; Ryde, Ulf

    2016-06-01

    The [NiFe] hydrogenases catalyse the reversible conversion of H2 to protons and electrons. The active site consists of a Fe ion with one carbon monoxide, two cyanide, and two cysteine (Cys) ligands. The latter two bridge to a Ni ion, which has two additional terminal Cys ligands. It has been suggested that one of the Cys residues is protonated during the reaction mechanism. We have used combined quantum mechanical and molecular mechanics (QM/MM) geometry optimisations, large QM calculations with 817 atoms, and QM/MM free energy simulations, using the TPSS and B3LYP methods with basis sets extrapolated to the quadruple zeta level to determine which of the four Cys residues is more favourable to protonate for four putative states in the reaction mechanism, Ni-SIa, Ni-R, Ni-C, and Ni-L. The calculations show that for all states, the terminal Cys-546 residue is most easily protonated by 14-51 kJ/mol, owing to a more favourable hydrogen-bond pattern around this residue in the protein. PMID:26940957

  10. Exploring the mechanism of water-splitting reaction in NiOx/β-Ga₂O₃ photocatalysts by first-principles calculations.

    PubMed

    Zhou, Xin; Dong, Hao; Ren, Ai-Min

    2016-04-28

    Experiments found that loading suitable cocatalysts, usually in the form of metal and metal oxide nanoparticles, on the semiconductor surface can remarkably increase the photocatalytic activity of water-splitting reaction. To get insight into the mechanism of experimental observations, we took a NiOx/β-Ga2O3 photocatalytic system as a model and performed detailed density functional theory calculations. Electrochemical computational methods are used to investigate the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Our results show that in the Ni4O2/β-Ga2O3 system, the reaction sites of HER are on cluster oxygen atoms and Ni atoms in the Ni2 cluster. Loading the Ni4O2 cluster on the β-Ga2O3 surface importantly reduces the reaction free energy of HER. On the clean β-Ga2O3 surface, water dissociation is energetically unfavorable. After attaching the Ni4O2 cluster to the surface, water decomposition becomes thermodynamically favorable. The favorable reaction sites of OER focus on the Ni4O2 cluster. The rate-determining step of OER can be changed by adsorbing the Ni4O2 cluster. Notable reduction of overpotential (0.87 V) for OER on Ni4O2/Ga2O3 is found compared with that on the clean Ga2O3 surface, which reasonably explains the experimental observation on significant enhancement of activity for generating oxygen after loading NiOx cocatalysts. PMID:27051886

  11. NiSe@NiOOH Core-Shell Hyacinth-like Nanostructures on Nickel Foam Synthesized by in Situ Electrochemical Oxidation as an Efficient Electrocatalyst for the Oxygen Evolution Reaction.

    PubMed

    Li, Xiao; Han, Guan-Qun; Liu, Yan-Ru; Dong, Bin; Hu, Wen-Hui; Shang, Xiao; Chai, Yong-Ming; Liu, Chen-Guang

    2016-08-10

    NiSe@NiOOH core-shell hyacinth-like nanostructures supported on nickel foam (NF) have been successfully synthesized by a facile solvothermal selenization and subsequent in situ electrochemical oxidation (ISEO). First, the unique NiSe/NF nanopillar arrays were prepared in N,N-dimethylformamide (DMF) as a precursor template that can provide a large surface area, excellent conductivity, and robust support. Next, amorphous NiOOH covering the surface of NiSe nanopillars was fabricated by ISEO, as confirmed by XPS andEDX spectroscopy. SEM images revealed the hyacinth-like morphology of NiSe@NiOOH/NF with NiOOH as the shell and NiSe as the core. The electrochemical performance of NiSe@NiOOH/NF for the oxygen evolution reaction (OER) was investigated. NiSe@NiOOH/NF demonstrates an obviously enhanced OER activity with much lower overpotential of 332 mV at 50 mA cm(-2) compared to other Ni-based electrocatalysts. The low charge-transfer resistance (Rct), large electrochemical double-layer capacitance (Cdl) of electrochemically active surface areas (ECSAs), and excellent long-term stability of NiSe@NiOOH/NF confirm the enhancement of its electrochemical performance for the OER, which can be ascribed to the large amount of active sites derived from the amorphous NiOOH shell and the good conductivity and stability derived from the NiSe core. In addition, the synergistic effect between the NiSe core and NiOOH shell could serve for a highly efficient OER electrocatalyst. PMID:27439758

  12. Preparation of Soft Magnetic Fe-Ni-Pb-B Alloy Nanoparticles by Room Temperature Solid-Solid Reaction

    PubMed Central

    Zhong, Qin

    2013-01-01

    The Fe-Ni-Pb-B alloy nanoparticles was prepared by a solid-solid chemical reaction of ferric trichloride, nickel chloride, lead acetate, and potassium borohydride powders at room temperature. The research results of the ICP and thermal analysis indicate that the resultants are composed of iron, nickel, lead, boron, and PVP, and the component of the alloy is connected with the mole ratio of potassium borohydride and the metal salts. The TEM images show that the resultants are ultrafine and spherical particles, and the particle size is about a diameter of 25 nm. The largest saturation magnetization value of the 21.18 emu g−1 is obtained in the Fe-Ni-Pb-B alloy. The mechanism of the preparation reaction for the Fe-Ni-Pb-B multicomponent alloys is discussed. PMID:24348196

  13. Preparation of soft magnetic Fe-Ni-Pb-B alloy nanoparticles by room temperature solid-solid reaction.

    PubMed

    Zhong, Guo-Qing; Zhong, Qin

    2013-01-01

    The Fe-Ni-Pb-B alloy nanoparticles was prepared by a solid-solid chemical reaction of ferric trichloride, nickel chloride, lead acetate, and potassium borohydride powders at room temperature. The research results of the ICP and thermal analysis indicate that the resultants are composed of iron, nickel, lead, boron, and PVP, and the component of the alloy is connected with the mole ratio of potassium borohydride and the metal salts. The TEM images show that the resultants are ultrafine and spherical particles, and the particle size is about a diameter of 25 nm. The largest saturation magnetization value of the 21.18 emu g(-1) is obtained in the Fe-Ni-Pb-B alloy. The mechanism of the preparation reaction for the Fe-Ni-Pb-B multicomponent alloys is discussed. PMID:24348196

  14. Solid-state chemistry-enabled scalable production of octahedral Pt-Ni alloy electrocatalyst for oxygen reduction reaction.

    PubMed

    Zhang, Changlin; Hwang, Sang Youp; Trout, Alexis; Peng, Zhenmeng

    2014-06-01

    Although octahedral Pt-Ni alloy nanoparticles possess an excelling property in oxygen reduction reaction (ORR) and are of great potential as an electrocatalyst for polymer electrolyte membrane fuel cells (PEMFCs), mass production of the materials at low cost remains a big challenge. By combining the advantages of both solid-state chemistry and wet synthetic chemistry, we developed one scalable, surfactant-free, and cost-effective method for producing octahedral Pt-Ni alloy nanoparticles on carbon support. The octahedral Pt-Ni samples were prepared with different compositions and studied for the ORR property. They exhibit a much improved reaction activity compared to the commercial catalyst. The experiments demonstrate an innovative strategy for preparing shaped metal nanoparticles and make significant progress in the ORR catalyst research. PMID:24827592

  15. Heavy residue masses as possible indicators of the impact parameter in the reaction 20Ni at 742 MeV

    NASA Astrophysics Data System (ADS)

    D'onofrio, A.; Delaunay, B.; Delaunay, J.; Dumont, H.; del Campo, J. Gomez; Andreozzi, F.; Brondi, A.; Moro, R.; Romano, M.; Terrasi, F.; Bruandet, J. F.

    1987-03-01

    Mass and charge distributions for heavy residues in the reaction 20Ni at 37.1 MeV/nucleon were measured by both in-beam and radioactivity γ-ray spectrometry. The general features of the experimental data are well reproduced by a massive transfer model. The heavier residues are also interpreted in the framework of a participant spectator model.

  16. Degradation of aniline by heterogeneous Fenton's reaction using a Ni-Fe oxalate complex catalyst.

    PubMed

    Liu, Yucan; Zhang, Guangming; Fang, Shunyan; Chong, Shan; Zhu, Jia

    2016-11-01

    A Ni-Fe oxalate complex catalyst was synthesized and characterized by means of Brunauer-Emmet-Teller (BET) method, scanning electron microscope (SEM) and X-ray photo-electron spectroscopy (XPS). The catalyst showed good catalytic activity for aniline degradation by heterogeneous Fenton's reaction, in which the synergetic index was 9.3. The effects of reaction temperature, catalyst dosage, hydrogen peroxide concentration and initial pH were investigated. Under the optimum conditions (T = 293 K, catalyst dosage = 0.2 g/L, H2O2 concentration = 4 mmol/L and initial pH = 5.4), 100% aniline could be removed within 35 min, and approximately 88% deamination efficiency was achieved in 60 min. The aniline degradation process followed the pseudo-first-order kinetic (k = 0.177 min(-1)) with activation energy (Ea) of 49.4 kJ mol(-1). Aniline could be removed in a broad initial pH (3-8) due to the excellent pH-tolerance property of the catalyst. The detected ammonium ion indicated that deamination occurred during aniline degradation. It was proposed that deamination synchronized with aniline removal, and aniline was attacked by free radicals to generate benzoquinonimine and phenol. This system is promising for the removal of aniline from water. PMID:27498271

  17. Mechanistic study of chemoselectivity in Ni-catalyzed coupling reactions between azoles and aryl carboxylates.

    PubMed

    Lu, Qianqian; Yu, Haizhu; Fu, Yao

    2014-06-11

    Itami et al. recently reported the C-O electrophile-controlled chemoselectivity of Ni-catalyzed coupling reactions between azoles and esters: the decarbonylative C-H coupling product was generated with the aryl ester substrates, while C-H/C-O coupling product was generated with the phenol derivative substrates (such as phenyl pivalate). With the aid of DFT calculations (M06L/6-311+G(2d,p)-SDD//B3LYP/6-31G(d)-LANL2DZ), the present study systematically investigated the mechanism of the aforementioned chemoselective reactions. The decarbonylative C-H coupling mechanism involves oxidative addition of C(acyl)-O bond, base-promoted C-H activation of azole, CO migration, and reductive elimination steps (C-H/Decar mechanism). This mechanism is partially different from Itami's previous proposal (Decar/C-H mechanism) because the C-H activation step is unlikely to occur after the CO migration step. Meanwhile, C-H/C-O coupling reaction proceeds through oxidative addition of C(phenyl)-O bond, base-promoted C-H activation, and reductive elimination steps. It was found that the C-O electrophile significantly influences the overall energy demand of the decarbonylative C-H coupling mechanism, because the rate-determining step (i.e., CO migration) is sensitive to the steric effect of the acyl substituent. In contrast, in the C-H/C-O coupling mechanism, the release of the carboxylates occurs before the rate-determining step (i.e., base-promoted C-H activation), and thus the overall energy demand is almost independent of the acyl substituent. Accordingly, the decarbonylative C-H coupling product is favored for less-bulky group substituted C-O electrophiles (such as aryl ester), while C-H/C-O coupling product is predominant for bulky group substituted C-O electrophiles (such as phenyl pivalate). PMID:24823646

  18. Strategies for improving the performance and stability of Ni-based catalysts for reforming reactions.

    PubMed

    Li, Shuirong; Gong, Jinlong

    2014-11-01

    Owing to the considerable publicity that has been given to petroleum related economic, environmental, and political problems, renewed attention has been focused on the development of highly efficient and stable catalytic materials for the production of chemical/fuel from renewable resources. Supported nickel nanoclusters are widely used for catalytic reforming reactions, which are key processes for generating synthetic gas and/or hydrogen. New challenges were brought out by the extension of feedstock from hydrocarbons to oxygenates derivable from biomass, which could minimize the environmental impact of carbonaceous fuels and allow a smooth transition from fossil fuels to a sustainable energy economy. This tutorial review describes the recent efforts made toward the development of nickel-based catalysts for the production of hydrogen from oxygenated hydrocarbons via steam reforming reactions. In general, three challenges facing the design of Ni catalysts should be addressed. Nickel nanoclusters are apt to sinter under catalytic reforming conditions of high temperatures and in the presence of steam. Severe carbon deposition could also be observed on the catalyst if the surface carbon species adsorbed on metal surface are not removed in time. Additionally, the production of hydrogen rich gas with a low concentration of CO is a challenge using nickel catalysts, which are not so active in the water gas shift reaction. Accordingly, three strategies were presented to address these challenges. First, the methodologies for the preparation of highly dispersed nickel catalysts with strong metal-support interaction were discussed. A second approach-the promotion in the mobility of the surface oxygen-is favored for the yield of desired products while promoting the removal of surface carbon deposition. Finally, the process intensification via the in situ absorption of CO2 could produce a hydrogen rich gas with low CO concentration. These approaches could also guide the design

  19. Cathode reaction mechanism on the h-BN/Ni (111) heterostructure for the lithium-oxygen battery

    NASA Astrophysics Data System (ADS)

    Lee, Minwook; Hwang, Yubin; Yun, Kyung-Han; Chung, Yong-Chae

    2016-03-01

    In this study, the heterostructure of h-BN and Ni (111) is adopted as effective cathode catalysts for the Li-O2 battery using first-principles calculations. It was determined that h-BN/Ni (111) thermodynamically prefers a 2e- pathway despite the large adsorption energy of O2, even larger than Pt (111), and dissociation of O2 at the formation of the oxygen reduction reaction (ORR) intermediates of the Li-O2 battery on h-BN/Ni (111). In this respect, the result of h-BN/Ni (111) does not accord with previous studies that found that strong adsorption and dissociation of O2 indicate a reaction to proceed via the 4e- pathway. The reason for this behavior is identified as being adsorption of the ORR intermediates mainly conducted by strong ionic bonds between the B atoms of h-BN and the O atoms of the intermediates, while the Li atoms do not participate in the bonds. The electrochemical performance of h-BN/Ni (111) is remarkable with a maximum discharge potential of 1.93 V and a minimum charge potential of 3.83 V, comparable to noble metal based catalysts.

  20. Time-dependent Hartree-Fock calculations for multinucleon transfer and quasifission processes in the 238U+64Ni reaction

    NASA Astrophysics Data System (ADS)

    Sekizawa, Kazuyuki; Yabana, Kazuhiro

    2016-05-01

    Background: Multinucleon transfer (MNT) and quasifission (QF) processes are dominant processes in low-energy collisions of two heavy nuclei. They are expected to be useful to produce neutron-rich unstable nuclei. Nuclear dynamics leading to these processes depends sensitively on nuclear properties such as deformation and shell structure. Purpose: We elucidate reaction mechanisms of MNT and QF processes involving heavy deformed nuclei, making detailed comparisons between microscopic time-dependent Hartree-Fock (TDHF) calculations and measurements for the 238U+64Ni reaction. Methods: Three-dimensional Skyrme-TDHF calculations are performed. Particle-number projection method is used to evaluate MNT cross sections from the TDHF wave function after collision. Results: Fragment masses, total kinetic energy (TKE), scattering angle, contact time, and MNT cross sections are investigated for the 238U+64Ni reaction. They show reasonable agreements with measurements. At small impact parameters, collision dynamics depends sensitively on the orientation of deformed 238U. In tip (side) collisions, we find a larger (smaller) TKE and a shorter (longer) contact time. In tip collisions, we find a strong influence of quantum shells around 208Pb. Conclusions: It is confirmed that the TDHF calculations reasonably describe both MNT and QF processes in the 238U64Ni reaction. Analyses of this system indicate the significance of the nuclear structure effects such as deformation and quantum shells in nuclear reaction dynamics at low energies.

  1. Rationalization of Au concentration and distribution in AuNi@Pt core-shell nanoparticles for oxygen reduction reaction

    SciTech Connect

    An, Wei; Liu, Ping

    2015-09-18

    Improving the activity and stability of Pt-based core–shell nanocatalysts for proton exchange membrane fuel cells while lowering Pt loading has been one of the big challenges in electrocatalysis. Here, using density functional theory, we report the effect of adding Au as the third element to enhance the durability and activity of Ni@Pt core–shell nanoparticles (NPs) during the oxygen reduction reaction (ORR). Our results show that the durability and activity of a Ni@Pt NP can be finely tuned by controlling Au concentration and distribution. For a NiAu@Pt NP, the durability can be greatly promoted by thermodynamically favorable segregation of Au to replace the Pt atoms at vertex, edge, and (100) facets on the shell, while still keeping the ORR activity on the active Pt(111) shell as high as that of Ni@Pt nanoparticles. Such behavior strongly depends on a direct interaction with the Ni interlayer. The results not only highlight the importance of interplay between surface strain on the shell and the interlayer–shell interaction in determining the durability and activity but also provide guidance on how to maximize the usage of Au to optimize the performance of core–shell (Pt) nanoparticles. As a result, such understanding has allowed us to discover a novel NiAu@Pt nanocatalyst for the ORR.

  2. Rationalization of Au concentration and distribution in AuNi@Pt core-shell nanoparticles for oxygen reduction reaction

    DOE PAGESBeta

    An, Wei; Liu, Ping

    2015-09-18

    Improving the activity and stability of Pt-based core–shell nanocatalysts for proton exchange membrane fuel cells while lowering Pt loading has been one of the big challenges in electrocatalysis. Here, using density functional theory, we report the effect of adding Au as the third element to enhance the durability and activity of Ni@Pt core–shell nanoparticles (NPs) during the oxygen reduction reaction (ORR). Our results show that the durability and activity of a Ni@Pt NP can be finely tuned by controlling Au concentration and distribution. For a NiAu@Pt NP, the durability can be greatly promoted by thermodynamically favorable segregation of Au tomore » replace the Pt atoms at vertex, edge, and (100) facets on the shell, while still keeping the ORR activity on the active Pt(111) shell as high as that of Ni@Pt nanoparticles. Such behavior strongly depends on a direct interaction with the Ni interlayer. The results not only highlight the importance of interplay between surface strain on the shell and the interlayer–shell interaction in determining the durability and activity but also provide guidance on how to maximize the usage of Au to optimize the performance of core–shell (Pt) nanoparticles. As a result, such understanding has allowed us to discover a novel NiAu@Pt nanocatalyst for the ORR.« less

  3. NiCo2O4/N-doped graphene as an advanced electrocatalyst for oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Li, Huiyong; Wang, Haiyan; He, Kejian; Wang, Shuangyin; Tang, Yougen; Chen, Jiajie

    2015-04-01

    Developing low-cost catalyst for high-performance oxygen reduction reaction (ORR) is highly desirable. Herein, NiCo2O4/N-doped reduced graphene oxide (NiCo2O4/N-rGO) hybrid is proposed as a high-performance catalyst for ORR for the first time. The well-formed NiCo2O4/N-rGO hybrid is studied by cyclic voltammetry (CV) curves and linear-sweep voltammetry (LSV) performed on the rotating-ring-disk-electrode (RDE) in comparison with N-rGO-free NiCo2O4 and the bare N-rGO. Due to the synergistic effect, the NiCo2O4/N-rGO hybrid exhibits significant improvement of catalytic performance with an onset potential of -0.12 V, which mainly favors a direct four electron pathway in ORR process, close to the behavior of commercial carbon-supported Pt. Also, the benefits of N-incorporation are investigated by comparing NiCo2O4/N-rGO with NiCo2O4/rGO, where higher cathodic currents, much more positive half-wave potential and more electron transfer numbers are observed for the N-doping one, which should be ascribed to the new highly efficient active sites created by N incorporation into graphene. The NiCo2O4/N-rGO hybrid could be used as a promising catalyst for high power metal/air battery.

  4. Quasielastic transfer in the {sup 136}Xe+{sup 64}Ni reaction

    SciTech Connect

    Sanders, S.J.; Dummer, A.K.; Farrar, K.A.; Prosser, F.W.; Fornal, B. |; Janssens, R.V.; Carpenter, M.P.; Khoo, T.L.; Beck, C.; Mahboub, D.; Haas, F.; Sferrazza, M.; Mayer, R.; Nisius, D.; de Angelis, G.

    1997-05-01

    Single and multinucleon transfer yields for the {sup 136}Xe+{sup 64}Ni reaction at a scattering energy {approx}5{percent} above the Coulomb barrier energy are studied using particle{endash}{gamma}-ray coincidence data. Q-value and scattering-angle distributions are extracted for the stronger channels. A fast transfer mechanism dominates the yields to these channels over an extended Q-value range, leading to a concentration of the cross section near the grazing angle. Analysis of the angular distributions based on a semiclassical barrier penetration model suggests that the single-nucleon and two-neutron exchange channels are dominated, respectively, by direct and two-step sequential transfer from the ground or low-lying excited states of the participating nuclei. The multiproton transfer channels have angular distributions that indicate a more complex mechanism, although direct cluster transfer from an excited configuration cannot be fully discounted. In a separate analysis, the relative population of different mass channels is found to be in general agreement with the expectations of a {open_quotes}random walk{close_quotes} model of particle exchange. {copyright} {ital 1997} {ital The American Physical Society}

  5. (p,α) Reaction Cross Sections Calculations of Fe and Ni Target Nuclei Using New Developed Semi-empirical Formula

    NASA Astrophysics Data System (ADS)

    Tel, E.; Akca, S.; Kara, A.; Yiğit, M.; Aydın, A.

    2013-10-01

    Iron (Fe) and nickel (Ni) are important fusion structural materials in reactor technology. The gas production in the metallic structure arising from many different types of nuclear reactions has been a significant damage mechanism in structural components of fusion reactors. The hydrogen and its isotopes at high temperatures leave out of the metallic lattice but the alpha (α) particles that remain in the lattice generate helium (He) gas bubbles. In other words, the α particles can cause serious changes in the physical and mechanical properties of the fusion structural materials. In this study, the excitation functions of 54,57Fe(p,α) and 58,60,61,64Ni(p,α) reactions have been investigated in the incident proton energy range of 10-40 MeV to estimate the radiation damage effects on fusion structural materials used in the construction of the first walls and core of the reactor. The calculations of (p,α) reaction cross sections on 54,57Fe and 58,60,61,64Ni have been made by using PCROSS code and CEM95 code. The full exciton and cascade exciton model (CEM95) for pre-equilibrium calculations and Weisskopf-Ewing model for equilibrium calculations are used. Besides, the semi-empirical cross section formula with new coefficient obtained by Tel et al. (Pramana J Phys 74:931-943, 2010) has been applied for (p,α) reactions at 17.9 MeV proton incident energy.

  6. Effect of electronic structures on catalytic properties of CuNi alloy and Pd in MeOH-related reactions

    SciTech Connect

    Tsai, An-Pang; Kimura, Tomofumi; Suzuki, Yukinori; Kameoka, Satoshi; Shimoda, Masahiko; Ishii, Yasushi

    2013-04-14

    We investigated the catalytic properties of a CuNi solid solution and Pd for methanol-related reactions and associated valence electronic structures. Calculations and X-ray photoelectron spectroscopy measurements revealed that the CuNi alloy has a similar valence electronic structure to Pd and hence they exhibited similar CO selectivities in steam reforming of methanol and decomposition of methanol. Samples prepared by various processes were found to have similar CO selectivities. We conjecture that alloying of Cu and Ni dramatically alters the valence electronic structures, making it similar to that of Pd so that the alloy exhibits similar catalytic properties to Pd. First-principles slab calculations of surface electronic structures support this conjecture.

  7. The dissociative chemisorption of methane on Ni(100) and Ni(111): Classical and quantum studies based on the reaction path Hamiltonian

    SciTech Connect

    Mastromatteo, Michael; Jackson, Bret

    2013-11-21

    Electronic structure methods based on density functional theory are used to construct a reaction path Hamiltonian for CH{sub 4} dissociation on the Ni(100) and Ni(111) surfaces. Both quantum and quasi-classical trajectory approaches are used to compute dissociative sticking probabilities, including all molecular degrees of freedom and the effects of lattice motion. Both approaches show a large enhancement in sticking when the incident molecule is vibrationally excited, and both can reproduce the mode specificity observed in experiments. However, the quasi-classical calculations significantly overestimate the ground state dissociative sticking at all energies, and the magnitude of the enhancement in sticking with vibrational excitation is much smaller than that computed using the quantum approach or observed in the experiments. The origin of this behavior is an unphysical flow of zero point energy from the nine normal vibrational modes into the reaction coordinate, giving large values for reaction at energies below the activation energy. Perturbative assumptions made in the quantum studies are shown to be accurate at all energies studied.

  8. Cyclic oxidation resistance of a reaction milled NiAl-AlN composite

    NASA Technical Reports Server (NTRS)

    Lowell, Carl E.; Barrett, Charles A.; Whittenberger, J. D.

    1990-01-01

    Based upon recent mechanical property tests a NiAl-AlN composite produced by cryomilling has very attractive high temperature strength. This paper focuses on the oxidation resistance of the NiAl-AlN composite at 1473 and 1573 K as compared to that of Ni-47Al-0.15Zr, one of the most oxidation resistant intermetallics. The results of cyclic oxidation tests show that the NiAl-AlN composite has excellent properties although not quite as good as those of Ni-47Al-0.15Zr. The onset of failure of the NiAl-AlN was unique in that it was not accompanied by a change in scale composition from alumina to less protective oxides. Failure in the composite appears to be related to the entrapment of AlN particles within the alumina scale.

  9. The Al-Al3Ni Eutectic Reaction: Crystallography and Mechanism of Formation

    NASA Astrophysics Data System (ADS)

    Fan, Yangyang; Makhlouf, Makhlouf M.

    2015-09-01

    The characteristics of the Al-Al3Ni eutectic structure are examined with emphasis on its morphology and crystallography. Based on these examinations, the mechanism of formation of this technologically important eutectic is postulated. It is found that a thin shell of α-Al forms coherently around each Al3Ni fiber. The excellent thermal stability of the Al-Al3Ni eutectic may be attributed to the presence of this coherent layer.

  10. Electrocatalytic activity of LaNiO3 toward H2O2 reduction reaction: Minimization of oxygen evolution

    NASA Astrophysics Data System (ADS)

    Amirfakhri, Seyed Javad; Meunier, Jean-Luc; Berk, Dimitrios

    2014-12-01

    The catalytic activity of LaNiO3 toward H2O2 reduction reaction (HPRR), with a potential application in the cathode side of fuel cells, is studied in alkaline, neutral and acidic solutions by rotating disk electrode. The LaNiO3 particles synthesised by citrate-based sol-gel method have sizes between 30 and 70 nm with an active specific surface area of 1.26 ± 0.05 m2 g-1. LaNiO3 shows high catalytic activity toward HPRR in 0.1 M KOH solution with an exchange current density based on the active surface area (j0A) of (7.4 ± 1) × 10-6 A cm-2 which is noticeably higher than the j0A of N-doped graphene. The analysis of kinetic parameters suggests that the direct reduction of H2O2, H2O2 decomposition, O2 reduction and O2 desorption occur through HPRR on this catalyst. In order to control and minimize oxygen evolution from the electrode surface, the effects of catalyst loading, bulk concentration of H2O2, and using a mixture of LaNiO3 and N-doped graphene are studied. Although the mechanism of HPRR is independent of the aforementioned operating conditions, gas evolution decreases by increasing the catalyst loading, decreasing the bulk concentration of H2O2, and addition of N-doped graphene to LaNiO3.

  11. Ni- and Mn-Promoted Mesoporous Co3O4: A Stable Bifunctional Catalyst with Surface-Structure-Dependent Activity for Oxygen Reduction Reaction and Oxygen Evolution Reaction.

    PubMed

    Song, Wenqiao; Ren, Zheng; Chen, Sheng-Yu; Meng, Yongtao; Biswas, Sourav; Nandi, Partha; Elsen, Heather A; Gao, Pu-Xian; Suib, Steven L

    2016-08-17

    Efficient bifunctional catalysts for electrochemical oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are highly desirable due to their wide applications in fuel cells and rechargeable metal air batteries. However, the development of nonprecious metal catalysts with comparable activities to noble metals is still challenging. Here we report a one-step wet-chemical synthesis of Ni-/Mn-promoted mesoporous cobalt oxides through an inverse micelle process. Various characterization techniques including powder X-ray diffraction (PXRD), N2 sorption, transmission electron microscopy (TEM), and scanning electron microscopy (SEM) confirm the successful incorporation of Ni and Mn leading to the formation of Co-Ni(Mn)-O solid solutions with retained mesoporosity. Among these catalysts, cobalt oxide with 5% Ni doping demonstrates promising activities for both ORR and OER, with an overpotential of 399 mV for ORR (at -3 mA/cm(2)) and 381 mV (at 10 mA/cm(2)) for OER. Furthermore, it shows better durability than precious metals featuring little activity decay throughout 24 h continuous operation. Analyses of cyclic voltammetry (CV), X-ray photoelectron spectroscopy (XPS), Raman, and O2-temperature-programmed desorption (O2-TPD) reveal that redox activity of Co(3+) to Co(4+) is crucial for OER performance, while the population of surface oxygen vacancies and surface area determine ORR activities. The comprehensive investigation of the intrinsic active sites for ORR and OER by correlating different physicochemical properties to the electrochemical activities is believed to provide important insight toward the rational design of high-performance electrocatalysts for ORR and OER reactions. PMID:27458646

  12. Elucidation of reaction mechanism involved in the formation of LaNiO3 from XRD and TG analysis

    NASA Astrophysics Data System (ADS)

    Dharmadhikari, Dipti V.; Athawale, Anjali A.

    2013-06-01

    The present work is focused on the synthesis and elucidation of reaction mechanism involved in the formation of LaNiO3 with the help of X-ray diffraction (XRD) and thermogravimetric (TG) analysis. LaNiO3 was synthesized by hydrothermal method by heating at 160°C under autogenous pressure for 6h. Pure phase product was obtained after calcining the hydrothermally activated product for 6h at 700°C. The various phases of the product obtained after hydrothermal treatment and calcination followed by the formation of pure phase nanocrystalline lanthanum nickel oxide could be determined from XRD analysis of the samples. The reaction mechanism and phase formation temperature has been interpreted by thermogravimetric analysis of the hydrothermally synthesized product and XRD analysis.

  13. Elastic scattering and total reaction cross section for the {sup 6}He+{sup 58}Ni system

    SciTech Connect

    Morcelle, V.; Lichtenthäler, R.; Lépine-Szily, A.; Guimarães, V.; Gasques, L.; Scarduelli, V.; Condori, R. Pampa; Leistenschneider, E.; Mendes Jr, D. R.; Faria, P. N. de; Pires, K. C. C.; Barioni, A.; Morais, M. C.; Shorto, J. M. B.; Zamora, J. C.

    2014-11-11

    Elastic scattering measurements of {sup 6}He + {sup 58}Ni system have been performed at the laboratory energy of 21.7 MeV. The {sup 6}He secondary beam was produced by a transfer reaction {sup 9}Be ({sup 7}Li, {sup 6}He) and impinged on {sup 58}Ni and {sup 197}Au targets, using the Radioactive Ion Beam (RIB) facility, RIBRAS, installed in the Pelletron Laboratory of the Institute of Physics of the University of São Paulo, Brazil. The elastic angular distribution was obtained in the angular range from 15° to 80° in the center of mass frame. Optical model calculations have been performed using a hybrid potential to fit the experimental data. The total reaction cross section was derived.

  14. Coordination reactions of 2-pyridinecarboxaldehyde-phenylhydrazonatolithium with selected transition metal (Zn, Sn, Fe, Co, Ni and Zr) chlorides and its coupling reaction with dichloromethane.

    PubMed

    Duan, Xin-E; Tong, Hong-Bo; Wei, Xue-Hong; Shi, He-Ping; Bai, Sheng-Di; Bai, Tao; Zhang, Jing; Zhang, Yong-Bin; Liu, Dian-Sheng

    2016-07-01

    The reactions of 2-pyridinecarboxaldehyde-phenylhydrazonatolithium C5H4Npy-CH[double bond, length as m-dash]Ni-NaLi(Ph) (abbreviated as Li) with a 1/2 equivalent of anhydrous metal (Zn, Sn, Fe and Co) chlorides or NiCl2(DME) (DME = 1, 2-dimethoxyethane) produced the corresponding mononuclear metal(ii) complexes ( and ), in which each ligand acts as a bidentate ligand and the coordination geometries around the metals are shown to be tetrahedral within the complexes , , and , respectively, and a tetragonal pyramid in the complex . The reaction of Li successively with sodium tert-butoxide and anhydrous ZrCl4 afforded the unanticipated bizirconium complex , in which each monoanionic ligand behaves as a tridentate bridge. Whereas treatment of Li with NiCl2 and then CH2Cl2 led to an interesting methylene-bridged bis(2-pyridyl-phenylhydrazone) compound in moderate yield; a comparative experiment showed that when the Li reacted with CH2Cl2, the coupling compound was also obtained but in very low yield. A plausible mechanism of compound formation was also proposed and supported by the density functional theory (DFT) calculations. All the synthesized compounds were characterized by single-crystal X-ray diffraction. PMID:27327837

  15. Fundamental studies of high-temperature corrosion reactions. Sixth annual progress report. [Cu-6% Ni

    SciTech Connect

    Rapp, R.A.

    1981-02-01

    Research was conducted on the sulfidation of pure Mo by sulfur gases at 700 to 950/sup 0/C and on the in-situ oxidation of metals and alloys in the hot-stage SEM. Results on the in-situ oxidation of Cu, Ni, Fe, and Cu-6% Ni up to 930/sup 0/C are reported in detail. 21 figures.

  16. N-doped carbon@Ni-Al2O3 nanosheet array@graphene oxide composite as an electrocatalyst for hydrogen evolution reaction in alkaline medium

    NASA Astrophysics Data System (ADS)

    Wang, Juan; Qiu, Tian; Chen, Xu; Lu, Yanluo; Yang, Wensheng

    2015-10-01

    An NiAl-layered double-hydroxide (NiAl-LDH) nanosheet array is grown on a graphene oxide (GO) substrate (NiAl-LDH@GO) by the hydrothermal method. The NiAl-LDH@GO is used as the precursor to synthetize an N-doped carbon@Ni-Al2O3 nanosheet array@GO composite (N-C@Ni-Al2O3@GO) by coating with dopamine followed by calcination. The N-C@Ni-Al2O3@GO is used as a non-noble metal electrocatalyst for hydrogen evolution reaction in alkaline medium, and exhibits high electrocatalytic activity with low onset overpotential (-75 mV). The improved electrocatalytic performance of N-C@Ni-Al2O3@GO arises from its intrinsic features. First, it has a high specific surface area with the Ni nanoparticles in the composite dispersed well and the sizes of Ni nanoparticles are small, which lead to the exposure of more active sites for electrocatalysis. Second, there is a synergistic effect between the Ni nanoparticles and the N-C coating layer, which is beneficial to reduce the activation energy of the Volmer step and improve the electrocatalytic activity. Third, the N-C coating layer and the XC-72 additive can form an electrically conductive network, which serves as a bridge for the transfer of electrons from the electrode to the Ni nanoparticles.

  17. Interfacial Reactions Between In-Sn Solder and Ni-Fe Platings

    NASA Astrophysics Data System (ADS)

    Daghfal, John P.; Shang, P. J.; Liu, Z. Q.; Shang, J. K.

    2009-12-01

    Interfacial interactions in a Ni- xFe-Sn-In eutectic solder ( x = 30 at.%, 55 at.%) have been examined. Transmission and scanning electron microscopy (TEM/SEM) were utilized to investigate the structure, composition, and morphology of the intermetallic compounds (IMCs). Upon reflow, Ni3Sn4 and FeSn2 phases appeared at the interface along with Cu6Sn5 in the solder. Annealing experiments revealed the formation of a bilayer IMC that was Fe-rich adjacent to the Ni-Fe metallization and Ni-rich on the solder side. Kinetic studies established the apparent activation energies for both systems to be 51.8 kJ/mol and 85.1 kJ/mol, for 30 at.% and 55 at.% Fe contents, respectively. In the Fe-rich system, globular Ni3Sn4 crystals were formed upon reflow, but were changed into a cubic/faceted structure after annealing.

  18. Isobaric yield ratio difference between the 140 A MeV 58Ni + 9Be and 64Ni +9Be reactions studied by the antisymmetric molecular dynamics model

    NASA Astrophysics Data System (ADS)

    Qiao, C. Y.; Wei, H. L.; Ma, C. W.; Zhang, Y. L.; Wang, S. S.

    2015-07-01

    Background: The isobaric yield ratio difference (IBD) method is found to be sensitive to the density difference of neutron-rich nucleus induced reaction around the Fermi energy. Purpose: An investigation is performed to study the IBD results in the transport model. Methods: The antisymmetric molecular dynamics (AMD) model plus the sequential decay model gemini are adopted to simulate the 140 A MeV 58 ,64Ni +9Be reactions. A relative small coalescence radius Rc= 2.5 fm is used for the phase space at t = 500 fm/c to form the hot fragment. Two limitations on the impact parameter (b 1 =0 -2 fm and b 2 =0 -9 fm) are used to study the effect of central collisions in IBD. Results: The isobaric yield ratios (IYRs) for the large-A fragments are found to be suppressed in the symmetric reaction. The IBD results for fragments with neutron excess I = 0 and 1 are obtained. A small difference is found in the IBDs with the b 1 and b 2 limitations in the AMD simulated reactions. The IBD with b 1 and b 2 are quite similar in the AMD + GEMINI simulated reactions. Conclusions: The IBDs for the I =0 and 1 chains are mainly determined by the central collisions, which reflects the nuclear density in the core region of the reaction system. The increasing part of the IBD distribution is found due to the difference between the densities in the peripheral collisions of the reactions. The sequential decay process influences the IBD results. The AMD + GEMINI simulation can better reproduce the experimental IBDs than the AMD simulation.

  19. A New Family of Perovskite Catalysts for Oxygen-Evolution Reaction in Alkaline Media: BaNiO3 and BaNi(0.83)O(2.5).

    PubMed

    Lee, Jin Goo; Hwang, Jeemin; Hwang, Ho Jung; Jeon, Ok Sung; Jang, Jeongseok; Kwon, Ohchan; Lee, Yeayeon; Han, Byungchan; Shul, Yong-Gun

    2016-03-16

    Establishment of a sustainable energy society has been strong driving force to develop cost-effective and highly active catalysts for energy conversion and storage devices such as metal-air batteries and electrochemical water splitting systems. This is because the oxygen evolution reaction (OER), a vital reaction for the operation, is substantially sluggish even with precious metals-based catalysts. Here, we show for the first time that a hexagonal perovskite, BaNiO3, can be a highly functional catalyst for OER in alkaline media. We demonstrate that the BaNiO3 performs OER activity at least an order of magnitude higher than an IrO2 catalyst. Using integrated density functional theory calculations and experimental validations, we unveil that the underlying mechanism originates from structural transformation from BaNiO3 to BaNi(0.83)O(2.5) (Ba6Ni5O15) over the OER cycling process. PMID:26910187

  20. The Isospin Diffusion in 58Ni-INDUCED Reactions at Intermediate Energies

    NASA Astrophysics Data System (ADS)

    Galichet, E.; Rivet, M. F.; Borderie, B.; Colonna, M.; Bougault, R.; Durand, D.; Le Neindre, N.; Lopez, O.; Manduci, L.; Vient, E.; Chbihi, A.; Frankland, J. D.; Wieleczko, J. P.; Dayras, R.; Volant, C.; Guinet, D. C. R.; Lautesse, P.; Parlog, M.; Rosato, E.; Vigilante, M.

    Isospin diffusion is probed as a function of the dissipated energy by studying two systems 58Ni+58Ni and 58Ni+197Au, over the incident energy range 52-74A MeV. Experimental data are compared with the results of a microscopic transport model with two different parameterizations of the symmetry energy term. A better overall agreement between data and simulations is obtained when using a symmetry term with a potential part linearly increasing with nuclear density. The isospin equilibration time at 52 A MeV is estimated to 130 ± 10 fm/c.

  1. Isospin diffusion in {sup 58}Ni-induced reactions at intermediate energies. I. Experimental results

    SciTech Connect

    Galichet, E.; Rivet, M. F.; Borderie, B.; Bougault, R.; Durand, D.; Lopez, O.; Manduci, L.; Tamain, B.; Vient, E.; Dayras, R.; Volant, C.; Rosato, E.

    2009-06-15

    Isospin diffusion in semiperipheral collisions is probed as a function of the dissipated energy by studying two systems {sup 58}Ni+{sup 58}Ni and {sup 58}Ni+{sup 197}Au, over the incident energy range 52A-74A MeV. A close examination of the multiplicities of light products in the forward part of the phase space clearly shows an influence of the isospin of the target on the neutron richness of these products. A progressive isospin diffusion is observed when collisions become more central, in connection with the interaction time.

  2. Kinetics and reaction chemistry of catalytic hydrodechlorination of chlorinated benzenes on sulfided NiMo/. gamma. Al sub 2

    SciTech Connect

    Hagh, B.F.

    1989-01-01

    Catalytic hydroprocessing has recently emerged as a treatment and recycling process for waste streams containing chlorinated organics. Compounds such as polychlorinated biphenyls (PCBs), and pentachlorophenol (PCP) can be effectively treated using this chemistry. These applications have created a need for rate and mechanism data for these reactions. In this work, the catalytic hydrodechlorination reactions of hexachlorobenzene and all of its partially dechlorinated intermediates over NiMo/{gamma}Al{sub 2}O{sub 3} hydroprocessing catalyst were examined in a differential microflow reactor. The NiMo catalyst was chosen after a screening study revealed that it had high activity and selectivity for dechlorination. Based on chlorobenzene hydrodechlorination data at 275-375C, a kinetic model was proposed where the rates of adsorption and surface reaction were comparable and neither controlled the overall reaction rate. The dechlorination rate data of hexachlorobenzene and other chlorinated benzenes point toward the presence of steps that involve multiple chlorine removal. Not all possible intermediates are formed; all of the observed intermediate dechlorination steps proceed at comparable rates.

  3. Promoting effect of Co in Ni(m)Co(n) (m + n = 4) bimetallic electrocatalysts for methanol oxidation reaction.

    PubMed

    Cui, Xun; Guo, Wenlong; Zhou, Ming; Yang, Yang; Li, Yanhong; Xiao, Peng; Zhang, Yunhuai; Zhang, Xiaoxing

    2015-01-14

    Ni-based bimetallic alloys have superior physiochemical characteristics compared to monometallic Ni. In this study, a new type of low cost bimetallic NimCon (n + m = 4) electrocatalysts with high active surface were synthesized on Ti substrate through a hydrogen evolution assisted electrodeposition method. The as-prepared NimCon were characterized by XRD, EDS, and SEM. It was revealed that the composition, surface morphology, as well as the crystal phase structure of the bimetallic NimCon electrocatalysts were significantly changed with the increased content of cobalt. Electrochemical measurements showed that the bimetallic NimCon catalysts, compared with the monometallic Ni, have superior catalytic activity and stability toward the methanol electrooxidation reaction. Additionally, Ni2Co2 sample presented the highest oxidation current density and the best durability. The mechanism study based on electrochemical experiments and density functional theory based calculations showed that the doping of Co in NimCon can signally improve the surface coverage of the redox species, weaken the CO adsorption, as well as adjust the CH3OH adsorption. Such understanding is of important directive significance to design efficient nonprecious catalysts. PMID:25482138

  4. Stainless Steel Mesh-Supported NiS Nanosheet Array as Highly Efficient Catalyst for Oxygen Evolution Reaction.

    PubMed

    Chen, Jun Song; Ren, Jiawen; Shalom, Menny; Fellinger, Tim; Antonietti, Markus

    2016-03-01

    Nickel(II) sulfide (NiS) nanosheets with a thickness of 10 nm and a size of 200 nm were facilely grown on stainless steel (SLS) meshes via a one-pot hydrothermal method. This unique construction renders an excellent electrical contact between the porous film of active NiS sheets and the highly conductive substrate, which exhibits a superior catalytic activity toward oxygen evolution reaction (OER). The NiS@SLS electrocatalyst exhibits an unusually low overpotential of 297 mV (i.e., 1.524 V vs RHE) at a current density of 11 mA·cm(-2), and an extra small Tafel slope of only 47 mV·dec(-1) proves an even more competitive performance at high to very high current densities. This performance compares very favorably to other Ni-based catalysts and even to the precious state-of-the-art IrO2 or RuO2 catalyst. PMID:26849857

  5. Interfacial reactions and resistive switching behaviors of metal/NiO/metal structures

    SciTech Connect

    Phark, S. H.; Chang, Y. J.; Noh, T. W.; Jung, R.; Kim, D.-W.

    2009-01-12

    Ag/NiO/Pt structures did (did not) exhibit reproducible resistive switching when a positive bias was applied to the Pt (Ag) electrode. X-ray photoemission spectra revealed that ultrathin NiO films on Pt (Ag) layers did (did not) undergo reversible chemical state change during heat treatment in a vacuum and oxygen ambient. Such differences in interfacial chemical interaction may affect filament formation and rupture processes near the electrode and hence alter the resistive switching behaviors.

  6. An ESR study at 4 K of the reaction between H and Ni(CO)4

    NASA Astrophysics Data System (ADS)

    Morton, J. R.; Preston, K. F.

    1984-12-01

    A new ESR spectrum has been generated by the photolysis at 4 K of Kr matrices containing HI and Ni(CO)4. Analysis of the nuclear hyperfine structure for 1H, 2H, 61Ni, and 13C leads to its assignment to the radical HNi(CO)3 which has trigonal geometry and a 2A1 ground state in C3v symmetry.

  7. Strong enhancement of dynamical emission of heavy fragments in the neutron-rich {sup 124}Sn+{sup 64}Ni reaction at 35A MeV

    SciTech Connect

    Russotto, P.; Amorini, F.; Cavallaro, S.; Di Toro, M.; Giustolisi, F.; Porto, F.; Rizzo, F.; De Filippo, E.; Pagano, A.; Cardella, G.; Lanzano, G.; Papa, M.; Pirrone, S.; Piasecki, E.; Auditore, L.; Trifiro, A.; Trimarchi, M.

    2010-06-15

    A quantitative comparison is made between the absolute cross sections associated with statistical and dynamical emission of heavy fragments in the {sup 124}Sn+{sup 64}Ni and {sup 112}Sn+{sup 58}Ni collisions experimentally investigated at 35A MeV beam energy using the multidetector CHIMERA. The result shows that the dynamical process is about twice as probable in the neutron-rich {sup 124}Sn+{sup 64}Ni system as in the {sup 112}Sn+{sup 58}Ni neutron-poor one. This unexpected and significant difference indicates that the reaction mechanism is strongly dependent on the entrance-channel isospin (N/Z) content.

  8. Oxygen Evolution Reaction Dynamics, Faradaic Charge Efficiency, and the Active Metal Redox States of Ni-Fe Oxide Water Splitting Electrocatalysts.

    PubMed

    Görlin, Mikaela; Chernev, Petko; Ferreira de Araújo, Jorge; Reier, Tobias; Dresp, Sören; Paul, Benjamin; Krähnert, Ralph; Dau, Holger; Strasser, Peter

    2016-05-01

    Mixed Ni-Fe oxides are attractive anode catalysts for efficient water splitting in solar fuels reactors. Because of conflicting past reports, the catalytically active metal redox state of the catalyst has remained under debate. Here, we report an in operando quantitative deconvolution of the charge injected into the nanostructured Ni-Fe oxyhydroxide OER catalysts or into reaction product molecules. To achieve this, we explore the oxygen evolution reaction dynamics and the individual faradaic charge efficiencies using operando differential electrochemical mass spectrometry (DEMS). We further use X-ray absorption spectroscopy (XAS) under OER conditions at the Ni and Fe K-edges of the electrocatalysts to evaluate oxidation states and local atomic structure motifs. DEMS and XAS data consistently reveal that up to 75% of the Ni centers increase their oxidation state from +2 to +3, while up to 25% arrive in the +4 state for the NiOOH catalyst under OER catalysis. The Fe centers consistently remain in the +3 state, regardless of potential and composition. For mixed Ni100-xFex catalysts, where x exceeds 9 atomic %, the faradaic efficiency of O2 sharply increases from ∼30% to 90%, suggesting that Ni atoms largely remain in the oxidation state +2 under catalytic conditions. To reconcile the apparent low level of oxidized Ni in mixed Ni-Fe catalysts, we hypothesize that a kinetic competition between the (i) metal oxidation process and the (ii) metal reduction step during O2 release may account for an insignificant accumulation of detectable high-valent metal states if the reaction rate of process (ii) outweighs that of (i). We conclude that a discussion of the superior catalytic OER activity of Ni-FeOOH electrocatalysts in terms of surface catalysis and redox-inactive metal sites likely represents an oversimplification that fails to capture essential aspects of the synergisms at highly active Ni-Fe sites. PMID:27031737

  9. Microstructure and Fracture Toughness of FeNiCr-TiC Composite Produced by Thermite Reaction

    NASA Astrophysics Data System (ADS)

    Xi, Wenjun; Shi, Chaoliang

    The microstructures of the FeNiCr-TiC composite produced by the rapid solidification thermite process were investigated using X-ray diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscope (TEM). The effects of aging treatment on the microstructure and fracture toughness of the composite were examined. Results showed that the FeNiCr-TiC composite was composed of ferrite (α-FeNiCr), TiC and NiAl (β phase). TiC particles in the matrix were in the shape of polygon and uniformly distributed, and their size was less than 3 µm. The β phase was coherent with the ferrite matrix, and its average size was about 50 nm. The fracture toughness of composite was 22 MPa·m1/2 without aging. When the aging temperature was below 600°C, the fracture toughness of the composite had higher plateau values and reached the maximum of 32 MPa·m1/2 at aging temperature 500°C due to the precipitation of NiAl phase on the nanometer scale. The fracture toughness decreased rapidly aged at 650°C, and then kept homology value in the range of 700 to 900°C, which was attributed to the precipitation of needle-shaped carbide (Cr/Fe)7C3 at the grain boundaries.

  10. Mass-dependent and -independent fractionation of isotopes in Ni and Pb chelate complex formation reactions

    NASA Astrophysics Data System (ADS)

    Nomura, Masao; Kudo, Takashi; Adachi, Atsuhiko; Aida, Masao; Fujii, Yasuhiko

    2013-11-01

    Mass independent fractionation (MIF) has been a very interesting topic in the field of inorganic isotope chemistry, in particular, geo- and cosmo- chemistry. In the present work, we studied the isotope fractionation of Ni(II) and Pb(II) ions in complex formation with chelating reagent EDTA. To obtain clear results on the mass dependence of the isotope fractionation, we have conducted long-distance ion exchange chromatography of Ni(II) and Pb(II), using chelate complex reagent EDTA. The results apparently show that the isotope fractionation in Ni complex formation system is governed by the mass dependent rule. On the other hand the isotope fractionation in the Pb complex system is governed by the mass independent rule or the nuclear volume effect.

  11. Mass-dependent and -independent fractionation of isotopes in Ni and Pb chelate complex formation reactions

    SciTech Connect

    Nomura, Masao; Kudo, Takashi; Adachi, Atsuhiko; Aida, Masao; Fujii, Yasuhiko

    2013-11-13

    Mass independent fractionation (MIF) has been a very interesting topic in the field of inorganic isotope chemistry, in particular, geo- and cosmo- chemistry. In the present work, we studied the isotope fractionation of Ni(II) and Pb(II) ions in complex formation with chelating reagent EDTA. To obtain clear results on the mass dependence of the isotope fractionation, we have conducted long-distance ion exchange chromatography of Ni(II) and Pb(II), using chelate complex reagent EDTA. The results apparently show that the isotope fractionation in Ni complex formation system is governed by the mass dependent rule. On the other hand the isotope fractionation in the Pb complex system is governed by the mass independent rule or the nuclear volume effect.

  12. 1300 K compressive properties of a reaction milled NiAl-AlN composites

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. Daniel; Arzt, Eduard; Luton, Michael J.

    1990-01-01

    When B2 crystal-structure nickel aluminide is subjected to high-intensity mechanical ball milling in a liquid nitrogen bath, or 'cryomilling', an NiAl composite is obtained which contains about 10 vol pct AlN particles. This composition arises from the incorporation of N during cryomilling; during subsequent thermomechanical processing, the N reacts with Al. While compressive testing of extruded or isostatically pressed specimens at 1300 K indicated that strength at relatively fast strain rates is slightly dependent on consolidation method, slower strain rates indicate no clear dependency on densification technique: four different consolidation methods were found to yield similar creep strengths. The creep properties of NiAl-AlN are similar to those of the single-crystal Ni-base superalloy NASAIR 100.

  13. Studies of N ~ 40 Ni isotopes via neutron-knockout (nKO) and deep-inelastic (DI) reactions

    NASA Astrophysics Data System (ADS)

    Chiara, C. J.; Recchia, F.; Gade, A.; Janssens, R. V. F.; Walters, W. B.

    2013-10-01

    V. BADER, T. BAUGHER, D. BAZIN, J.S. BERRYMAN, B.A. BROWN, C. LANGER, N. LARSON, S.N. LIDDICK, E. LUNDERBERG, S. NOJI, C. PROKOP, S.R. STROBERG, S. SUCHYTA, D. WEISSHAAR, S. WILLIAMS, NSCL/MSU, M. ALBERS, M. ALCORTA, P.F. BERTONE, M.P. CARPENTER, J. CHEN, C.R. HOFFMAN, F.G. KONDEV, T. LAURITSEN, A.M. ROGERS, D. SEWERYNIAK, S. ZHU, ANL, C.M. CAMPBELL, LBNL, H.M. DAVID, D.T. DOHERTY, U. of Edinburgh/ANL, A. KORICHI, CSNSM-IN2P3/ANL, C.J. LISTER, U. of Mass.-Lowell, K. WIMMER, Central Mich. U. -- Excited states in 68Ni were populated in 2nKO reactions at NSCL. Prompt γ rays were detected with the GRETINA array located in front of the S800 separator. A hodoscope at the S800 focal plane captured the 68Ni ions, where isomeric decays could be correlated with prompt γ rays. Decay of the first excited state, a 0+ isomer, was observed, confirming that its energy substantially differs from the literature value. Comparing the decay patterns of excited states with shell-model calculations provides insight into their underlying structure. Data from 70Zn + 208Pb DI reactions studied with Gammasphere provide results consistent with the 2nKO. Single-particle strengths are also under investigation in the odd- A Ni isotopes via 1nKO reactions. Supported in part by the DoE (DE-FG02-94ER40834, DE-AC02-06CH11357), NSF (PHY-1102511), and NNSA (DE-NA0000979).

  14. Reactions sup 58,64 Ni( p ,. pi. sup + ) at 201 MeV

    SciTech Connect

    Badala, A.; Barbera, R.; Palmeri, A.; Pappalardo, G.S.; Bonasera, A. ); Riggi, F.; Adorno, A. ); Bimbot, L. )

    1992-08-01

    The production of positive and negative pions induced by 201 MeV protons on {sup 58}Ni and {sup 64}Ni isotopes has been studied. The double differential cross sections have been measured at the laboratory angles 22{degree}, 35{degree}, 55{degree}, 72{degree}, 90{degree}, 105{degree}, 120{degree}, 138{degree}, 155{degree} and from 20 MeV kinetic energy up to the kinematical limit. Features of the double differential cross sections relative to the two targets are discussed and compared to results obtained at higher incident energies.

  15. Production and separation of {sup 55}Co via the {sup 58}Ni(p,{alpha}){sup 55}Co reaction

    SciTech Connect

    Mastren, T.; Sultan, D.; Lapi, S. E.

    2012-12-19

    {sup 55}Co is a positron emitting isotope that is of interest to the nuclear medicine imaging community. {sup 55}Co was produced by the {sup 58}Ni(p,{alpha}){sup 55}Co reaction and purified by chromatography. Our method has produced {sup 55}Co in millicurie quantities with a final recovery of 78% and an effective specific activity of 28{mu}Ci/{mu}mol. The only radioactive impurity recovered with {sup 55}Co is {sup 57}Co(271.8d) and is at a concentration of {approx}0.182% that of {sup 55}Co.

  16. Predominant Time Scales in Fission Processes in Reactions of S, Ti and Ni with W: Zeptosecond versus Attosecond

    SciTech Connect

    Du Rietz, R.; Hinde, D. J.; Dasgupta, M.; Thomas, R. G.; Gasques, L. R.; Evers, M.; Lobanov, N.; Wakhle, A.

    2011-02-04

    The inhibition of fusion by quasifission is crucial in limiting the formation of superheavy elements in collisions of heavy nuclei. Time scales of {approx}10{sup -18} s inferred for fissionlike events from recent crystal blocking measurements were interpreted to show either that quasifission itself is slower than previously believed, or that the fraction of slow fusion-fission is higher than expected. New measurements of mass-angle distributions for {sup 48}Ti and {sup 64}Ni bombarding W targets show that in these reactions quasifission is the dominant process, typically occurring before the system formed after contact has made a single rotation, corresponding to time scales of {<=}10{sup -20} s.

  17. HETERODIMERIZATION OF PROPYLENE AND VINYLARENES: FUNCTIONAL GROUP COMPATIBILITY IN A HIGHLY EFFICIENT NI-CATALYZED CARBON-CARBON BOND-FORMING REACTION. (R826120)

    EPA Science Inventory

    Abstract

    Unlike heterodimerization reactions of ethylene and vinylarenes, no such synthetically useful reactions using propylene are known. We find that propylene reacts with various vinylarenes in the presence of catalytic amounts of [(allyl)NiBr]2, triphen...

  18. Li insertion/extraction reaction at a Si film evaporated on a Ni foil

    NASA Astrophysics Data System (ADS)

    Ohara, Shigeki; Suzuki, Junji; Sekine, Kyoichi; Takamura, Tsutomu

    In an attempt to provide a Si material having a long cycle life as an anode of Li-ion batteries, we prepared a metallic Si film on a Ni foil by a vacuum evaporation method. Due to the presence of a naturally formed compact passivation film on the Ni foil, a homogeneous, compact amorphous-like Si film strongly adhering to the Ni substrate could be obtained very easily. The Si film thus obtained on a Ni foil was evaluated electrochemically with cyclic voltammetry (CV) and constant current charge/discharge cycle test (CT) in two types of solvents containing 1 M LiClO 4, i.e. propylene carbonate (PC), and a 1:1 (v/v) mixture of ethylene carbonate (EC) and dimethyl carbonate (DMC). Two strong peaks were observed on the anodic branch of the CV at 300 mV (versus Li/Li +) and 500 mV and the constant current discharge curve of CT produced a wide plateau at around 400 mV in EC/DMC with a discharge capacity of 1700-2200 mAh/g at a discharge rate of 2 C. Nearly the same performance was observed as well in PC, where no solvent decomposition was detected. The capacity depended on the preparation conditions and the film thickness. The cycleability at 2 C charge/discharge rate was over 750 cycles. One of the important issues to solve is to reduce the large initial charge loss.

  19. Asymmetric pathways in the electrochemical conversion reaction of NiO as battery electrode with high storage capacity.

    PubMed

    Boesenberg, Ulrike; Marcus, Matthew A; Shukla, Alpesh K; Yi, Tanghong; McDermott, Eamon; Teh, Pei Fen; Srinivasan, Madhavi; Moewes, Alexander; Cabana, Jordi

    2014-01-01

    Electrochemical conversion reactions of transition metal compounds create opportunities for large energy storage capabilities exceeding modern Li-ion batteries. However, for practical electrodes to be envisaged, a detailed understanding of their mechanisms is needed, especially vis-à-vis the voltage hysteresis observed between reduction and oxidation. Here, we present such insight at scales from local atomic arrangements to whole electrodes. NiO was chosen as a simple model system. The most important finding is that the voltage hysteresis has its origin in the differing chemical pathways during reduction and oxidation. This asymmetry is enabled by the presence of small metallic clusters and, thus, is likely to apply to other transition metal oxide systems. The presence of nanoparticles also influences the electrochemical activity of the electrolyte and its degradation products and can create differences in transport properties within an electrode, resulting in localized reactions around converted domains that lead to compositional inhomogeneities at the microscale. PMID:25410966

  20. Asymmetric pathways in the electrochemical conversion reaction of NiO as battery electrode with high storage capacity

    PubMed Central

    Boesenberg, Ulrike; Marcus, Matthew A.; Shukla, Alpesh K.; Yi, Tanghong; McDermott, Eamon; Teh, Pei Fen; Srinivasan, Madhavi; Moewes, Alexander; Cabana, Jordi

    2014-01-01

    Electrochemical conversion reactions of transition metal compounds create opportunities for large energy storage capabilities exceeding modern Li-ion batteries. However, for practical electrodes to be envisaged, a detailed understanding of their mechanisms is needed, especially vis-à-vis the voltage hysteresis observed between reduction and oxidation. Here, we present such insight at scales from local atomic arrangements to whole electrodes. NiO was chosen as a simple model system. The most important finding is that the voltage hysteresis has its origin in the differing chemical pathways during reduction and oxidation. This asymmetry is enabled by the presence of small metallic clusters and, thus, is likely to apply to other transition metal oxide systems. The presence of nanoparticles also influences the electrochemical activity of the electrolyte and its degradation products and can create differences in transport properties within an electrode, resulting in localized reactions around converted domains that lead to compositional inhomogeneities at the microscale. PMID:25410966

  1. Asymmetric pathways in the electrochemical conversion reaction of NiO as battery electrode with high storage capacity

    SciTech Connect

    Boesenberg, Ulrike; Marcus, Matthew A.; Shukla, Alpesh K.; Yi, Tanghong; McDermott, Eamon; Teh, Pei Fen; Srinivasan, Madhavi; Moewes, Alexander; Cabana, Jordi

    2014-11-20

    Electrochemical conversion reactions of transition metal compounds create opportunities for large energy storage capabilities exceeding modern Li-ion batteries. However, for practical electrodes to be envisaged, a detailed understanding of their mechanisms is needed, especially vis-à-vis the voltage hysteresis observed between reduction and oxidation. Here, we present such insight at scales from local atomic arrangements to whole electrodes. NiO was chosen as a simple model system. The most important finding is that the voltage hysteresis has its origin in the differing chemical pathways during reduction and oxidation. This asymmetry is enabled by the presence of small metallic clusters and, thus, is likely to apply to other transition metal oxide systems. Lastly, the presence of nanoparticles also influences the electrochemical activity of the electrolyte and its degradation products and can create differences in transport properties within an electrode, resulting in localized reactions around converted domains that lead to compositional inhomogeneities at the microscale.

  2. Functional MoS2 by the Co/Ni doping as the catalyst for oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Xiao, B. B.; Zhang, P.; Han, L. P.; Wen, Z.

    2015-11-01

    Since the discovery of the oxygen reduction reaction (ORR) activity of the metal phthalocyanine, the great enthusiasm is ignited for searching the catalysts with low price replacing Pt-based catalysts. Here, the catalytic activities for the ORR on the Co or Ni doped MoS2 are studied by using density-functional theory (DFT). It is found that Co/MoS2 resembles FeN4 active site while Ni/MoS2 is similar with CoN4 active site. In details, for Co/MoS2, under the acid medium, the rate-determining step (RDS) is located at the second H2O formation with a barrier of 1.49 eV. While under the alkaline medium, RDS is the final OH- formation with the barrier of 0.94 eV. For Ni/MoS2, under the acid medium, the RDS is the same as that of Co/MoS2 with a barrier of 0.87 eV. However, RDS is the O formation with the barrier of 0.92 eV under the alkaline medium. Furthermore, due to the intact HOOH adsorption, it is expected that the 2e- ORR is present on Ni/MoS2, which means inferior activity compared with Co/MoS2. Our calculation demonstrates the ability to functionalize inert materials for the ORR and provides new materials to design effective Pt-free catalysts for fuel-cell technology.

  3. Multiply twinned AgNi alloy nanoparticles as highly active catalyst for multiple reduction and degradation reactions.

    PubMed

    Kumar, Mukesh; Deka, Sasanka

    2014-09-24

    Size dependent surface characteristics of nanoparticles lead to use of these nanomaterials in many technologically important fields, including the field of catalysis. Here Ag(1-x)Ni(x) bimetallic alloy nanoparticles have been developed having a 5-fold twinned morphology, which could be considered as an important alloy because of their excellent and unique catalytic and magnetic properties. Alloying between Ag and Ni atoms on a nanoscale has been confirmed with detailed X-ray diffraction, high resolution transmission electron microscopy, energy-dispersive X-ray analysis, X-ray photoelectron spectroscopy, and magnetization measurements. Although introduced for the first time as a catalyst due to having high active surface sites, the as-synthesized nanoparticles showed one of the best multiple catalytic activity in the industrially important (electro)-catalytic reduction of 4-nitrophenol (4-NP) and 4-nitroaniline (4-NA) to corresponding amines with noticeable reduced reaction time and increased rate constant without the use of any large area support. Additionally the same catalyst showed enhanced catalytic activity in degradation of environment polluting dye molecules. The highest ever activity parameter we report here for Ag0.6Ni0.4 composition is 156 s(-1)g(-1) with an apparent rate constant of 31.1 × 10(-3) s(-1) in a 4-NP reduction reaction where the amount of catalyst used was 0.2 mg and the time taken for complete conversion of 4-NP to 4-aminophenol was 60 s. Similarly, an incredible reaction rate constant (115 s(-1)) and activity parameter (576.6 s(-1)g(-1)) were observed for the catalytic degradation of methyl orange dye where 15 s is the maximum time for complete degradation of the dye molecules. The high catalytic performance of present AgNi alloy NPs over the other catalysts has been attributed to size, structural (twinned defect) and electronic effects. This study may lead to use of these bimetallic nanostructures with excellent recyclable catalytic

  4. Thresholds for igniting exothermic reactions in Al/Ni multilayers using pulses of electrical, mechanical, and thermal energy

    NASA Astrophysics Data System (ADS)

    Fritz, Gregory M.; Spey, Stephen J.; Grapes, Michael D.; Weihs, Timothy P.

    2013-01-01

    We use pulses of electrical, mechanical, and thermal energy to determine the ignition thresholds of self-propagating reactions in Al/(Ni-7 V) and Al/Inconel multilayers. The energy density and power density required to initiate reactions in a Al/(Ni-7 V) foil with a 50 nm bilayer is compared for all three techniques to demonstrate the importance of heat loss on ignition thresholds and its dependence on the test volume and the surrounding thermal resistance. In addition, ignition is shown to occur at temperatures as low as 232 °C when heat losses are very small suggesting that ignition can be controlled by atomic mixing in the solid state. The experiments demonstrate that the ignition threshold drops with increasing ignition volume, and it rises with increasing bilayer spacing and with increasing intermixed thickness. These trends are also supported by an analytical model we derive to predict the effects of ignition volume, multilayer microstructure, and physical properties on the ignition threshold. We calculate an activation energy of 77.3 ± 1.3 kJ/mol for solid state mixing based on measured ignition temperatures.

  5. Kinetic study of hydrogen evolution reaction on Ni{sub 30} Mo{sub 70}, Co{sub 30}Mo{sub 70}, Co{sub 30}Ni{sub 70} and Co{sub 10}Ni{sub 20}Mo{sub 70} alloy electrodes

    SciTech Connect

    Dominguez-Crespo, M.A.; Plata-Torres, M.; Torres-Huerta, A.M.; Arce-Estrada, E.M. . E-mail: earce@ipn.mx; Hallen-Lopez, J.M.

    2005-07-15

    The hydrogen evolution reaction on nanocrystalline Ni{sub 30}Mo{sub 70}, Co{sub 30}Mo{sub 70}, Co{sub 30}Ni{sub 70}, and Co{sub 10}Ni{sub 20}Mo{sub 70}, metallic powders prepared by mechanical alloying was investigated with linear polarization and ac impedance methods, in 30 wt.% KOH aqueous solution at room temperature. The formation process and structural properties of these nanocrystalline materials were characterized by X-ray diffraction and transmission electron microscopy. Alloyed powders showed the presence of two phases: an fcc solid solution and intermetallic compounds of Ni, Co and Mo. Based on polarization and ac impedance measurements, an improved electrocatalytic activity for hydrogen evolution reaction was observed in mechanically alloyed Co{sub 30}Ni{sub 70} powders, which is slightly higher than milled metallic Ni powders.

  6. Unusual Physical and Chemical Properties of Ni in Ce1-xNixO2-y Oxides: Structural Characterization and Catalytic Activity for the Water Gas Shift Reaction

    SciTech Connect

    Rodriguez, J.A.; Barrio, L.; Kubacka, A.; Zhou, G.; Estrella, M.; Martınez-Arias, A.; Hanson, J.C.; Fernandez-Garcıa, M.

    2010-07-29

    The structural and electronic properties of Ce{sub 1-x}Ni{sub x}O{sub 2-y} nanosystems prepared by a reverse microemulsion method were characterized with synchrotron-based X-ray diffraction, X-ray absorption spectroscopy, Raman spectroscopy, and density functional calculations. The Ce{sub 1-x}Ni{sub x}O{sub 2-y} systems adopt a lattice with a fluorite-type structure with an acute local order where Ni displays a strongly distorted (oxygen) nearest-neighbor coordination and the presence of Ni atoms as first cation distances, pointing to the existence of Ni-O-Ni entities embedded into the ceria lattice. A Ni {leftrightarrow} Ce exchange within the CeO{sub 2} leads to a charge redistribution and the appearance of O vacancies. The Ni?O bonds in Ce{sub 1-x}Ni{sub x}O{sub 2-y} are more difficult to reduce than the bonds in pure NiO. The specific structural configuration of Ni inside the mixed-metal oxide leads to a unique catalyst with a high activity for the water gas shift (CO + H{sub 2}O {yields} H{sub 2} + CO{sub 2}) reaction and a simultaneous reduction of the methanation activity of nickel. Characterization results indicate that small particles of metallic Ni at the interface position of a ceria network may be the key for high WGS activity and that the formate?carbonate route is operative for the production of hydrogen.

  7. Unusual Physical and Chemical Properties of Ni in Ce1-xNixO2-y Oxides: Structural Characterization and Catalytic Activity for the Water Gas Shift Reaction

    SciTech Connect

    Barrio, L.; Kubacka, A; Zhou, G; Estrella, M; Martinez-Arias, A; Hanson, J; Fernandez-Garcia, M; Rodriguez, J

    2010-01-01

    The structural and electronic properties of Ce{sub 1-x}Ni{sub x}O{sub 2-y} nanosystems prepared by a reverse microemulsion method were characterized with synchrotron-based X-ray diffraction, X-ray absorption spectroscopy, Raman spectroscopy, and density functional calculations. The Ce{sub 1-x}Ni{sub x}O{sub 2-y} systems adopt a lattice with a fluorite-type structure with an acute local order where Ni displays a strongly distorted (oxygen) nearest-neighbor coordination and the presence of Ni atoms as first cation distances, pointing to the existence of Ni-O-Ni entities embedded into the ceria lattice. A Ni {leftrightarrow} Ce exchange within the CeO{sub 2} leads to a charge redistribution and the appearance of O vacancies. The Ni-O bonds in Ce{sub 1-x}Ni{sub x}O{sub 2-y} are more difficult to reduce than the bonds in pure NiO. The specific structural configuration of Ni inside the mixed-metal oxide leads to a unique catalyst with a high activity for the water gas shift (CO + H{sub 2}O {yields} H{sub 2} + CO{sub 2}) reaction and a simultaneous reduction of the methanation activity of nickel. Characterization results indicate that small particles of metallic Ni at the interface position of a ceria network may be the key for high WGS activity and that the formate-carbonate route is operative for the production of hydrogen.

  8. Self-assembly growth of alloyed NiPt nanocrystals with holothuria-like shape for oxygen evolution reaction with enhanced catalytic activity

    NASA Astrophysics Data System (ADS)

    Ding, Tao; Wang, Wenliang; Zhou, Xiaoli; Zhang, Li; Wang, Chunde; Jiang, Jun; Yang, Weilai; Yang, Qing

    2016-01-01

    Self-assembly growth of alloyed NiPt nanocrystals with holothuria-like wire shape has been achieved via a facile and moderate hydrothermal process at 120 °C for 1 h from the reaction of nickel nitrate and chloroplatinic acid in alkaline solution in the presence of ethanediamine and hydrazine hydrate. The holothuria-like alloyed NiPt wires are Ni-rich in composition (Ni23.6Pt) and uniform in diameter with many tiny tips outstretched from the wires surface. The holothuria-like wires are assembled from granular subunits with the assistance of capping molecular of ethanediamine and the wires display an improved oxygen evolution reaction catalytic activity.

  9. α and 2p2n emission in fast neutron-induced reactions on Ni60

    DOE PAGESBeta

    Fotiades, N.; Devlin, M.; Haight, R. C.; Nelson, R. O.; Kunieda, S.; Kawano, T.

    2015-06-19

    The cross sections for populating the residual nucleus in the reaction AZX(n,x)A-4Z-2Y exhibit peaks as a function of incident neutron energy corresponding to the (n,n'α) reaction and, at higher energy, to the (n,2p3n) reaction. In addition, the relative magnitudes of these peaks vary with the Z of the target nucleus.

  10. Au-NiCo2O4 supported on three-dimensional hierarchical porous graphene-like material for highly effective oxygen evolution reaction

    NASA Astrophysics Data System (ADS)

    Xia, Wei-Yan; Li, Nan; Li, Qing-Yu; Ye, Kai-Hang; Xu, Chang-Wei

    2016-03-01

    A three-dimensional hierarchical porous graphene-like (3D HPG) material was synthesized by a one-step ion-exchange/activation combination method using a cheap metal ion exchanged resin as carbon precursor. The 3D HPG material as support for Au-NiCo2O4 gives good activity and stability for oxygen evolution reaction (OER). The 3D HPG material is induced into NiCo2O4 as conductive support to increase the specific area and improve the poor conductivity of NiCo2O4. The activity of and stability of NiCo2O4 significantly are enhanced by a small amount of Au for OER. Au is a highly electronegative metal and acts as an electron adsorbate, which is believed to facilitate to generate and stabilize Co4+ and Ni3+ cations as the active centres for the OER.

  11. Au-NiCo2O4 supported on three-dimensional hierarchical porous graphene-like material for highly effective oxygen evolution reaction

    PubMed Central

    Xia, Wei-Yan; Li, Nan; Li, Qing-Yu; Ye, Kai-Hang; Xu, Chang-Wei

    2016-01-01

    A three-dimensional hierarchical porous graphene-like (3D HPG) material was synthesized by a one-step ion-exchange/activation combination method using a cheap metal ion exchanged resin as carbon precursor. The 3D HPG material as support for Au-NiCo2O4 gives good activity and stability for oxygen evolution reaction (OER). The 3D HPG material is induced into NiCo2O4 as conductive support to increase the specific area and improve the poor conductivity of NiCo2O4. The activity of and stability of NiCo2O4 significantly are enhanced by a small amount of Au for OER. Au is a highly electronegative metal and acts as an electron adsorbate, which is believed to facilitate to generate and stabilize Co4+ and Ni3+ cations as the active centres for the OER. PMID:26996816

  12. Au-NiCo2O4 supported on three-dimensional hierarchical porous graphene-like material for highly effective oxygen evolution reaction.

    PubMed

    Xia, Wei-Yan; Li, Nan; Li, Qing-Yu; Ye, Kai-Hang; Xu, Chang-Wei

    2016-01-01

    A three-dimensional hierarchical porous graphene-like (3D HPG) material was synthesized by a one-step ion-exchange/activation combination method using a cheap metal ion exchanged resin as carbon precursor. The 3D HPG material as support for Au-NiCo2O4 gives good activity and stability for oxygen evolution reaction (OER). The 3D HPG material is induced into NiCo2O4 as conductive support to increase the specific area and improve the poor conductivity of NiCo2O4. The activity of and stability of NiCo2O4 significantly are enhanced by a small amount of Au for OER. Au is a highly electronegative metal and acts as an electron adsorbate, which is believed to facilitate to generate and stabilize Co(4+) and Ni(3+) cations as the active centres for the OER. PMID:26996816

  13. Neutron Capture Reactions on Fe and Ni Isotopes for the Astrophysical s-process

    SciTech Connect

    Lederer, C.; Giubrone, G.; Massimi, C.; Žugec, P.; Barbagallo, M.; Colonna, N.; Domingo-Pardo, C.; Guerrero, C.; Gunsing, F.; Käppeler, F.; Tain, J.L.; Altstadt, S.; Andrzejewski, J.; Audouin, L.; Bečvář, F.; and others

    2014-06-15

    Neutron capture cross sections in the keV neutron energy region are the key nuclear physics input to study the astrophysical slow neutron capture process. In the past years, a series of neutron capture cross section measurements has been performed at the neutron time-of-flight facility n{sub T}OF at CERN focussing on the Fe/Ni mass region. Recent results and future developments in the neutron time-of-flight technique are discussed.

  14. New insights into the effects of alloying Pt with Ni on oxygen reduction reaction mechanisms in acid medium: a first-principles study.

    PubMed

    Ou, Li-Hui

    2015-11-01

    The effects of alloying Pt with transition metal Ni on oxygen reduction reaction (ORR) mechanisms was investigated based on a systematic density functional theory (DFT) calculation explored in the present work. New insights into the ORR mechanisms were reported at the atomic level on Pt-segregated Pt3Ni(111). Only one molecular chemisorption state with the end-on OOH configuration was identified through geometry optimization and minimum energy path (MEP) analysis; top-bridge-top configuration as observed on pure Pt(111) was not identified on Pt-segregated Pt3Ni(111), indicating that alloying Pt with Ni influences the intermediates of ORR, and leads to only the dissociation mechanism of chemisorption state OOH species being involved in acid medium on Pt-segregated Pt3Ni(111). By contrast, the dissociation mechanisms of chemisorbed O2 molecule with top-bridge-top configuration and OOH species both were involved on pure Pt(111). The rds of the entire four-electron ORR was changed after Pt alloying with Ni. The rds of the entire ORR is the proton and electron transfer to O2 to form OOH on Pt-segregated Pt3Ni(111), whereas it is the reaction of O atom protonation to form OH species on pure Pt(111), indicating that sublayer Ni strongly influences the rds of ORR. The comparison of the ORR mechanisms explained that Pt3Ni alloy enhanced the ORR electrocatalytic activity more than pure Pt. The effect of electrode potential on ORR pathway on the pure Pt and Pt3Ni alloy was considered to obtain further insights into the electrochemical reduction of O2. Results showed that the proton and electron transfer becomes difficult at high potential. The ORR can easily proceed when the electrode potential lowers. For pure Pt- and Pt-based alloys, this phenomenon may imply the origin of the overpotential. PMID:26450348

  15. Formation of gamma'-Ni3Al via the Peritectoid Reaction: gamma plus beta (+Al2O3) equals gamma'(+Al2O3)

    NASA Technical Reports Server (NTRS)

    Copland, Evan

    2008-01-01

    The activities of Al and Ni were measured using multi-cell Knudsen effusion-cell mass spectrometry (multi-cell KEMS), over the composition range 8 - 32 at.%Al and temperature range T = 1400 - 1750 K in the Ni-Al-O system. These measurements establish that equilibrium solidification of gamma'-Ni3Al-containing alloys occurs by the eutectic reaction, L (+ Al2O3) = gamma + beta (+ Al2O3), at 1640 plus or minus 1 K and a liquid composition of 24.8 plus or minus 0.2 at.%Al (at an unknown oxygen content). The {gamma + beta + Al2O3} phase field is stable over the temperature range 1633 - 1640 K, and gamma'-Ni3Al forms via the peritectiod, gamma + beta (+ Al2O3) = gamma'(+ Al2O3), at 1633 plus or minus 1 K. This behavior is inconsistent with the current Ni-Al phase diagram and a new diagram is proposed. This new Ni-Al phase diagram explains a number of unusual steady state solidification structures reported previously and provides a much simpler reaction scheme in the vicinity of the gamma'-Ni3Al phase field.

  16. Formation of gamma(sup prime)-Ni3Al via the Peritectoid Reaction: gamma + beta (+ Al2O3)=gamma(sup prime)(+ Al2O3)

    NASA Technical Reports Server (NTRS)

    Copeland, Evan

    2008-01-01

    The activities of Al and Ni were measured using multi-cell Knudsen effusion-cell mass spectrometry (multi-cell KEMS), over the composition range 8-32 at.%Al and temperature range T=1400-1750 K in the Ni-Al-O system. These measurements establish that equilibrium solidification of gamma(sup prime)-Ni3Al-containing alloys occurs by the eutectic reaction, L (+ Al2O3)=gamma + Beta(+ Al2O3), at 1640 +/- 1 K and a liquid composition of 24.8 +/- 0.2 at.%al (at an unknown oxygen content). The {gamma + Beta (+Al2O3} phase field is stable over the temperature range 1633-1640 K, and gamma(sup prime)-Ni3Al forms via the peritectoid, gamma + Beta (+ Al2O3)=gamma(sup prime) (+ Al2O3), at 1633 +/- 1 K. This behavior is consistent with the current Ni-Al phase diagram and a new diagram is proposed. This new Ni-Al phase diagram explains a number of unusual steady-state solidification structures reported previously and provides a much simpler reaction scheme in the vicinity of the gamma(sup prime)-Ni2Al phase field.

  17. Dynamic transformation of small Ni particles during methanation of CO2 under fluctuating reaction conditions monitored by operando X-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Mutz, B.; Carvalho, H. W. P.; Kleist, W.; Grunwaldt, J.-D.

    2016-05-01

    A 10 wt.-% Ni/Al2O3 catalyst with Ni particles of about 4 nm was prepared and applied in the methanation of CO2 under dynamic reaction conditions. Fast phase transformations between metallic Ni, NiO and NiCO3 were observed under changing reaction atmospheres using operando X-ray absorption spectroscopy (XAS). Removing H2 from the feed gas and, thus, simulating a H2 dropout during the methanation reaction led to oxidation of the active sites. The initial reduced state of the Ni particles could not be recovered under methanation atmosphere (H2/CO2 = 4); this was only possible with an effective reactivation step applying H2 at increased temperatures. Furthermore, the cycling of the gas atmospheres resulted in a steady deactivation of the catalyst. Operando XAS is a powerful tool to monitor these changes and the behavior of the catalyst under working conditions to improve the understanding of the catalytic processes and deactivation phenomena.

  18. Investigation of Shock-Induced Reactions in a Ni+Al Powder Mixture

    SciTech Connect

    Eakins, D. E.; Thadhani, N. N.

    2006-07-28

    The shock-compression and reaction response of equi-volumetric micron-scale ({approx}50-60% dense) spherical nickel and aluminum powder mixtures is investigated in the range of the calculated crush-up pressure (P = 0.4 GPa) and up to 6 GPa. Time resolved stress measurements (using PVDF gauges) coupled with VISAR data is used to determine the shock states. Evidence of reaction or lack thereof is inferred by comparing the measured states with calculated Hugoniot state of reaction products based on the ballotechnic model proposed by Bennett and Horie, (Shock Waves 4:127-136). Post-impact micro-structural analysis of recovered material and comparison of calculated and measured product states is used to establish the criterion for reaction occurring in the shock or post-shock states.

  19. Synthesis and characterization of NiFe{sub 2}O{sub 4}–Pd magnetically recyclable catalyst for hydrogenation reaction

    SciTech Connect

    Karaoğlu, E.; Özel, U.; Caner, C.; Baykal, A.; Summak, M.M.; Sözeri, H.

    2012-12-15

    Graphical abstract: Display Omitted Highlights: ► Novel superparamagnetic NiFe{sub 2}O{sub 4}–Pd magnetically recyclable catalyst was fabricated through co-precipitation. ► It could be reused several times without significant loss in catalytic activity for hydrogenation reaction. ► No further modification of the NiFe{sub 2}O{sub 4}–Pd magnetically recyclable catalyst is necessary for utilization as catalyst. -- Abstract: Herein we report the fabrication and characterization magnetically recyclable catalysts of NiFe{sub 2}O{sub 4}–Pd nanocomposite as highly effective catalysts for reduction reactions in liquid phase. The reduction Pd{sup 2+} was accomplished with polyethylene glycol 400 (PEG-400) instead of sodium borohydride (NaBH{sub 4}) and NiFe{sub 2}O{sub 4} nanoparticles was prepared by sonochemically using FeCI{sub 3}·6H{sub 2}O and NiCl{sub 2}. The chemical characterization of the product was done with X-ray diffractometry, Infrared spectroscopy, transmission electron microscopy, UV–Vis spectroscopy, thermal gravimetry and inductively coupled plasma. Thus formed NiFe{sub 2}O{sub 4}–Pd MRCs showed a very high activity in reduction reactions of 4-nitro aniline and 1,3-dinitrobenzene in liquid phase. It was found out that the catalytic activity of NiFe{sub 2}O{sub 4}–Pd MRCs on the reduction of 4-nitro aniline and 1,3-dinitrobenzene in liquid phase are between 99–93% and 98–93%, respectively. Magnetic character of this system allowed recovery and multiple use without significant loss of its catalytic activity. It is found that NiFe{sub 2}O{sub 4}–Pd MRCs showed very efficient catalytic activity and multiple usability.

  20. The influence of transfer reactions on the sub-barrier fusion enhancement in the systems {sup 58.64}Ni +, {sup 92,100}Mo

    SciTech Connect

    Rehm, K.E.; Jiang, C.L.; Esbensen, H.

    1995-08-01

    High resolution experiments performed during the past few years demonstrated that the various reaction modes occurring in heavy ion collisions can strongly influence each other. This interrelation of the different reaction modes brings a nuclear structure dependence to the fusion and deep-inelastic channels that were previously described in the framework of pure statistical models. In order to fully understand the interrelation between these reaction channels, a complete set of measurements including elastic and inelastic scattering, few-nucleon transfer and fusion is required. In continuation of our earlier measurements of the fusion cross sections in the system {sup 58,64}Ni + {sup 92,100}Mo we finished the studies of the quasielastic process in these systems. The experiments were done in inverse reaction kinematics using the split-pole spectrograph with its hybrid focal-plane detector for particle identification. The experiments with {sup 100}Mo beams were performed previously. First test runs with {sup 92}Mo showed the possible interference with {sup 98}Mo ions which could be eliminated by using the 13{sup +} charge state from the ECR source. The data from these experiments were completely analyzed. The smallest transfer cross sections are observed for the systems {sup 64}Ni + {sup 100}Mo and {sup 58}Ni + {sup 92}Mo, i.e., the most neutron-rich and neutron-deficient systems, respectively. For the other systems, {sup 64}Ni + {sup 92}Mo and {sup 58}Ni + {sup 100}Mo, the transfer cross sections at energies close to the barrier are about of equal magnitude. This observation does not correlate with the deviation of the experimental fusion cross sections from the coupled-channels predictions. While for {sup 58}Ni + {sup 100}Mo discrepancies between the experimental and theoretical fusion cross sections are observed, the system {sup 64}Ni + {sup 92}Mo which shows about the same transfer yields, is quite well described by the coupled-channels calculations.

  1. Catalytic properties of intermetallic compounds Ln(NiM)/sub 5/ and their hydrides in hydrogenation reactions

    SciTech Connect

    Konenko, I.R.; Starodubtseva, E.V.; Urazbaeva, K.A.; Fedorovskaya, E.A.; Klabunovskii, E.I.; Slinkin, A.A.; Mordovin, V.P.

    1989-02-01

    The catalytic (hydrogenation of propylene), asymmetric (enantioselective hydrogenation of ethyl acetoacetate), and magnetic properties of intermetallic compounds with the composition Ln(NiM)/sub 5/(IMC), where Ln = La, Sm, Gd; M = Ti, V, Cr, Mn, Cu, and of their hydrides have been studied. The data obtained indicate that the catalytic activity of the above compounds in both reactions is due to structural peculiarities of IMC and to the affinity of IMC to H/sub 2/. The observed changes in the total and the optical yield of the product of hydrogenation in the presence of IMC hydrides, modified with R,R-(+) tartaric acid, as functions of the nature of d-metals and their combinations, in the initial complex catalyst lead to the assumption that different metal tartrate complexes are formed on the hydride surface which act as centers of enantioselective hydrogenation.

  2. Towards an accurate specific reaction parameter density functional for water dissociation on Ni(111): RPBE versus PW91.

    PubMed

    Jiang, Bin; Guo, Hua

    2016-08-01

    In search for an accurate description of the dissociative chemisorption of water on the Ni(111) surface, we report a new nine-dimensional potential energy surface (PES) based on a large number of density functional theory points using the RPBE functional. Seven-dimensional quantum dynamical calculations have been carried out on the RPBE PES, followed by site averaging and lattice effect corrections, yielding sticking probabilities that are compared with both the previous theoretical results based on a PW91 PES and experiment. It is shown that the RPBE functional increases the reaction barrier, but has otherwise a minor impact on the PES topography. Better agreement with experimental results is obtained with the new PES, but the agreement is still not quantitative. Possible sources of the remaining discrepancies are discussed. PMID:27436348

  3. Predominant time scales in fission processes in reactions of S, Ti and Ni with W: zeptosecond versus attosecond.

    PubMed

    du Rietz, R; Hinde, D J; Dasgupta, M; Thomas, R G; Gasques, L R; Evers, M; Lobanov, N; Wakhle, A

    2011-02-01

    The inhibition of fusion by quasifission is crucial in limiting the formation of superheavy elements in collisions of heavy nuclei. Time scales of ∼10(-18)  s inferred for fissionlike events from recent crystal blocking measurements were interpreted to show either that quasifission itself is slower than previously believed, or that the fraction of slow fusion-fission is higher than expected. New measurements of mass-angle distributions for (48)Ti and (64)Ni bombarding W targets show that in these reactions quasifission is the dominant process, typically occurring before the system formed after contact has made a single rotation, corresponding to time scales of ≤10(-20)  s. PMID:21405390

  4. A first principles study of oxygen reduction reaction on a Pt(111) surface modified by a subsurface transition metal M (M = Ni, Co, or Fe).

    PubMed

    Duan, Zhiyao; Wang, Guofeng

    2011-12-01

    We have performed first-principle density functional theory calculations to investigate how a subsurface transition metal M (M = Ni, Co, or Fe) affects the energetics and mechanisms of oxygen reduction reaction (ORR) on the outermost Pt mono-surface layer of Pt/M(111) surfaces. In this work, we found that the subsurface Ni, Co, and Fe could down-shift the d-band center of the Pt surface layer and thus weaken the binding of chemical species to the Pt/M(111) surface. Moreover, the subsurface Ni, Co, and Fe could modify the heat of reaction and activation energy of various elementary reactions of ORR on these Pt/M(111) surfaces. Our DFT results revealed that, due to the influence of the subsurface Ni, Co, and Fe, ORR would adopt a hydrogen peroxide dissociation mechanism with an activation energy of 0.15 eV on Pt/Ni(111), 0.17 eV on Pt/Co(111), and 0.16 eV on Pt/Fe(111) surface, respectively, for their rate-determining O2 protonation reaction. In contrast, ORR would follow a peroxyl dissociation mechanism on a pure Pt(111) surface with an activation energy of 0.79 eV for its rate-determining O protonation reaction. Thus, our theoretical study explained why the subsurface Ni, Co, and Fe could lead to multi-fold enhancement in catalytic activity for ORR on the Pt mono-surface layer of Pt/M(111) surfaces. PMID:22187733

  5. Asymmetric pathways in the electrochemical conversion reaction of NiO as battery electrode with high storage capacity

    DOE PAGESBeta

    Boesenberg, Ulrike; Marcus, Matthew A.; Shukla, Alpesh K.; Yi, Tanghong; McDermott, Eamon; Teh, Pei Fen; Srinivasan, Madhavi; Moewes, Alexander; Cabana, Jordi

    2014-11-20

    Electrochemical conversion reactions of transition metal compounds create opportunities for large energy storage capabilities exceeding modern Li-ion batteries. However, for practical electrodes to be envisaged, a detailed understanding of their mechanisms is needed, especially vis-à-vis the voltage hysteresis observed between reduction and oxidation. Here, we present such insight at scales from local atomic arrangements to whole electrodes. NiO was chosen as a simple model system. The most important finding is that the voltage hysteresis has its origin in the differing chemical pathways during reduction and oxidation. This asymmetry is enabled by the presence of small metallic clusters and, thus, ismore » likely to apply to other transition metal oxide systems. Lastly, the presence of nanoparticles also influences the electrochemical activity of the electrolyte and its degradation products and can create differences in transport properties within an electrode, resulting in localized reactions around converted domains that lead to compositional inhomogeneities at the microscale.« less

  6. Synthetic control of FePtM nanorods (M = Cu, Ni) to enhance the oxygen reduction reaction.

    PubMed

    Zhu, Huiyuan; Zhang, Sen; Guo, Shaojun; Su, Dong; Sun, Shouheng

    2013-05-15

    To further enhance the catalytic activity and durability of nanocatalysts for the oxygen reduction reaction (ORR), we synthesized a new class of 20 nm × 2 nm ternary alloy FePtM (M = Cu, Ni) nanorods (NRs) with controlled compositions. Supported on carbon support and treated with acetic acid as well as electrochemical etching, these FePtM NRs were converted into core/shell FePtM/Pt NRs. These core/shell NRs, especially FePtCu/Pt NRs, exhibited much improved ORR activity and durability. The Fe10Pt75Cu15 NRs showed a mass current densities of 1.034 A/mgPt at 512 mV vs Ag/AgCl and 0.222 A/mgPt at 557 mV vs Ag/AgCl, which are much higher than those for a commercial Pt catalyst (0.138 and 0.035 A/mgPt, respectively). Our controlled synthesis provides a general approach to core/shell NRs with enhanced catalysis for the ORR or other chemical reactions. PMID:23634823

  7. Ring-opening hydrogenation reactions of monoalkyl-substituted cyclobutanes over Ni/SiO{sub 2} catalyst

    SciTech Connect

    Toeroek, B.; Bartok, M.

    1995-02-01

    The hydrogenative ring-opening reactions of methyl- and propylcyclobutane were studied over Ni/SiO{sub 2} catalyst in wide temperature and hydrogen pressure ranges. Firstly, the temperature dependence of ring opening was determined and maximum curves were observed for both reactants. On the basis of the temperature dependence curves, various temperatures were selected for hydrogen pressure studies. At both 523 and 573 K, only hydrogenative ring opening occurred, and the ring opened mostly in the sterically less hindered direction in the case of methylcyclobutane over clean as well as working catalysts. However, for propylcyclobutane the selectivity was close to statistical or opposite to that for methylcyclobutane, especially at lower hydrogen pressures over the initial catalyst. At the lowest temperature at which ring opening occurred at all, exclusive heptane formation (ring opening in the more hindered direction) was observed. The hydrogen pressure dependence curves over the initial and working catalysts were used to draw mechanistic inferences concerning the ring-opening reactions. 25 refs., 5 figs., 2 tabs.

  8. Selective activation/coupling of polyhalogenated nucleophiles in ni/cr-mediated reactions: synthesis of c1-c19 building block of halichondrin bs.

    PubMed

    Yan, Wuming; Li, Zhanjie; Kishi, Yoshito

    2015-05-20

    The C1-C19 building block 46 of halichondrin Bs was synthesized via a selective activation/coupling of β-bromoenone 34 with aldehyde 35 in a Ni/Cr-mediated reaction. The first phase of study was a method development to effect a coupling of a "naked" vinylogous anion with an aldehyde. The study with the coupling of 9 + 10 → 11 revealed: (1) β-bromoenone 9b is a better nucleophile than the corresponding β-iodo- and β-chloroenones 9a,c; (2) (Me)2Phen(OMe)2·NiCl2 13b is a better Ni-catalyst than (Me)2Phen(H)2·NiCl2 13a; and (3) a low Ni-catalyst loading, for example, 0.05-0.1 mol % Ni-catalyst against 10 mol % Cr-catalyst, is crucial for an effective coupling. The second phase of study was a method development to realize a selective activation/coupling of polyhalogenated nucleophiles such as 34. The competition experiment of 10 + 9b over 10 + 31a-c revealed: (1) (Me)2Phen(OMe)2·NiCl2 13b is more effective than (Me)2Phen(H)2·NiCl2 13a for the required selective activation/coupling; (2) a low Ni-catalyst loading, for example, 0.05-0.1 mol % Ni-catalyst against 10 mol % Cr-catalyst, is crucial for discriminating β-bromoenone 9b from the three types of vinyl iodides 31a-c. The third phase of study was an application of the developed method to execute the proposed coupling of 34 + 35 → 36. For this application, a polyether-type Ni-catalyst 37c, readily soluble in the reaction medium, was introduced to achieve the selective activation/coupling with higher efficiency. With use of ion-exchange resin-based device, the coupling product 36 was transformed to the C1-C19 building block 46 of halichondrin Bs without purification/separation of the intermediates. PMID:25923602

  9. Low Temperature Propane Oxidation over Co3O4 based Nano-array Catalysts. Ni Dopant Effect, Reaction Mechanism and Structural Stability

    SciTech Connect

    Ren, Zheng; Wu, Zili; Gao, Puxian; Song, Wenqiao; Xiao, Wen; Guo, Yanbing; Ding, Jun; Suib, Steven L.; Gao, Pu-Xian

    2015-06-09

    Low temperature propane oxidation has been achieved by Co3O4-based nano-array catalysts featuring low catalytic materials loading. The Ni doping into the Co3O4 lattice has led to enhanced reaction kinetics at low temperature by promoting the surface lattice oxygen activity. In situ DRIFTS investigation in tandem with isotopic oxygen exchange reveals that the propane oxidation proceeds via Mars-van Krevelen mechanism where surface lattice oxygen acts as the active site whereas O2 in the reaction feed does not directly participate in CO2 formation. The Ni doping promotes the formation of less stable carbonates on the surface to facilitate the CO2 desorption. The thermal stability of Ni doped Co3O4 decreases with increased Ni concentration while catalytic activity increases. A balance between enhanced activity and compromised thermal stability shall be considered in the Ni doped Co3O4 nano-array catalysts for low temperature hydrocarbon oxidation. This study provides useful and timely guidance for rational catalyst design toward low temperature catalytic oxidation.

  10. Low Temperature Propane Oxidation over Co3O4 based Nano-array Catalysts. Ni Dopant Effect, Reaction Mechanism and Structural Stability

    DOE PAGESBeta

    Ren, Zheng; Wu, Zili; Gao, Puxian; Song, Wenqiao; Xiao, Wen; Guo, Yanbing; Ding, Jun; Suib, Steven L.; Gao, Pu-Xian

    2015-06-09

    Low temperature propane oxidation has been achieved by Co3O4-based nano-array catalysts featuring low catalytic materials loading. The Ni doping into the Co3O4 lattice has led to enhanced reaction kinetics at low temperature by promoting the surface lattice oxygen activity. In situ DRIFTS investigation in tandem with isotopic oxygen exchange reveals that the propane oxidation proceeds via Mars-van Krevelen mechanism where surface lattice oxygen acts as the active site whereas O2 in the reaction feed does not directly participate in CO2 formation. The Ni doping promotes the formation of less stable carbonates on the surface to facilitate the CO2 desorption. Themore » thermal stability of Ni doped Co3O4 decreases with increased Ni concentration while catalytic activity increases. A balance between enhanced activity and compromised thermal stability shall be considered in the Ni doped Co3O4 nano-array catalysts for low temperature hydrocarbon oxidation. This study provides useful and timely guidance for rational catalyst design toward low temperature catalytic oxidation.« less

  11. Cross sections of the {sup 67}Zn(n,{alpha}){sup 64}Ni reaction at 4.0, 5.0, and 6.0 MeV

    SciTech Connect

    Zhang Guohui; Liu Jiaming; Wu Hao; Liu Xiang; Chen Jinxiang; Gledenov, Yu. M.; Sedysheva, M. V.; Stolupin, V. A.; Khuukhenkhuu, G.; Szalanski, P. J.

    2010-11-15

    Experimental cross section data of the {sup 67}Zn(n,{alpha}){sup 64}Ni reaction are very scanty because the residual nucleus {sup 64}Ni is stable and the commonly used activation method is not feasible. As a result, very large deviations (about 10 times) exist among different nuclear data libraries. In the present work, cross sections of the partial {sup 67}Zn(n,{alpha}{sub 0}){sup 64}Ni and total {sup 67}Zn(n,{alpha}){sup 64}Ni reactions are measured at neutron energies of 4.0 and 5.0 MeV for the first time, and those of 6.0 MeV are remeasured for consistency checking. A twin-gridded ionization chamber was used as the charged-particle detector and two enriched back-to-back-set {sup 67}Zn samples were adopted. Experiments were performed at the 4.5 MV Van de Graaff Accelerator of Peking University. Neutrons were produced through the {sup 2}H(d,n){sup 3}He reaction using a deuterium gas target. Absolute neutron flux was determined by counting the fission fragments from a {sup 238}U sample placed inside the gridded ionization chamber while a BF{sub 3} long counter was employed as neutron flux monitor. Present data are compared with results of previous measurements, evaluations, and talys code calculations.

  12. Ductile phase toughened ceramics by partial reduction reactions in the Ni-Al-O system: Mechanical properties and effect of dopants

    SciTech Connect

    Uestuendag, E.; Ret, P.; Shapiro, Y.; Subramanian, R.; Dieckmann, R.; Sass, S.L.

    1995-10-01

    Partial reduction reactions in the Ni-Al-O system, starting with the spinel compound NiAl{sub 2}O{sub 4}, are used to form metal-ceramic microstructures in situ. Two different morphologies of nearly pure Ni particles, equiaxed and rod-like, form within a ceramic matrix depending on the choice of processing parameters. Electron microscopy studies were performed for microstructural characterization, phase identification and chemical analysis. The fracture toughness of the Ni-Al{sub 2}O{sub 3} mixture was significantly improved with respect to that of the original spinel phase. It is shown that cracking at the original spinel grain boundaries, likely due to the large volume changes associated with the reduction reaction, can be avoided by the addition of small amounts of ZrO{sub 2}. It is seen that ZrO{sub 2} also acts as a nucleation site for the precipitating metal and hence allows morphology control in microstructures obtained by partial reduction reactions.

  13. Controlled formation of Ni(DMG)2 microrods/tubes by manipulating the kinetics of chemical reactions and their application in naked-eye sensors.

    PubMed

    Qin, Jianli; Wang, Bo; Zhang, Xiujuan; Zhang, Xiaohong

    2012-08-01

    We have demonstrated controlled preparation of Ni(DMG)2 microrods/tubes via chemical reaction method. By manipulating the reaction kinetics via the concentration of reactants, shapes of the resulting microstructures can be easily tuned from microrods to microtubes. Size of the resulting products can also be controlled through changing the reaction temperatures. It was proposed that under high reactants' concentrations, molecules will prefer to grow at corners or edges of nuclei with high free energies, to reduce the total energy in the system, which would lead to partial or complete hollow interiors and eventually resulted in mircotubes. The fact that DMG show high selectivity with Ni2+ and accompanied with obvious color change enable us to fabricate test strip for naked-eye detection of Ni2+. Benefit from the large surface areas of DMG nanoparticles on the test strip, the detection limit is improved by two orders over that of conventional solution method. This strategy is sensitive, simple and easy to handle, thus expected to possess potentials for the practical Ni2+ detection applications. PMID:22962793

  14. Extraction of Gamow-Teller strength distributions from 56Ni and 55Co via the (p,n) reaction in inverse kinematics

    NASA Astrophysics Data System (ADS)

    Sasano, M.; Perdikakis, G.; Zegers, R. G. T.; Austin, Sam M.; Bazin, D.; Brown, B. A.; Caesar, C.; Cole, A. L.; Deaven, J. M.; Ferrante, N.; Guess, C. J.; Hitt, G. W.; Honma, M.; Meharchand, R.; Montes, F.; Palardy, J.; Prinke, A.; Riley, L. A.; Sakai, H.; Scott, M.; Stolz, A.; Suzuki, T.; Valdez, L.; Yako, K.

    2012-09-01

    Background: Gamow-Teller (GT) transition strength distributions in stable and unstable pf-shell isotopes are key inputs for estimating electron-capture rates important for stellar evolution. Charge-exchange experiments at intermediate beam energies have long been used to test theoretical predictions for GT strengths, but previous experiments were largely restricted to stable nuclei. Since a large fraction of the nuclei relevant for astrophysical applications (including key nuclei such as 56Ni) are unstable, new methods are needed to perform charge-exchange experiments in inverse kinematics with unstable isotopes.Purpose: The 56Ni(p,n) and 55Co(p,n) reactions were measured in inverse kinematics in order to extract GT strengths for transitions to 56Cu and 55Ni, respectively. The extracted strength distributions were compared with shell-model predictions in the pf shell using the KB3G and GXPF1J interactions. By invoking isospin symmetry, these strength distributions are relevant for electron captures on the ground states of 56Ni and 55Ni to final states in 56Co and 55Co, respectively.Method: Differential cross sections and excitation energy spectra for the 56Ni(p,n) and 55Co(p,n) reactions were determined by measuring neutrons recoiling from a liquid hydrogen target into the Low Energy Neutron Detector Array. GT contributions to the spectra were extracted by using a multipole decomposition analysis and were converted to strengths by employing the proportionality between GT strength and differential cross section at zero linear momentum transfer.Results: GT strengths from 56Ni and 55Co were extracted up to excitation energies of 8 and 15 MeV, respectively. Shell-model calculations performed in the pf shell with the GXPF1J interaction reproduced the experimental GT strength distributions better than calculations with the KB3G interaction.Conclusions: A new technique for measuring (p,n) charge-exchange reactions on unstable nuclei was successfully developed. It can be

  15. Gamow-Teller transitions studied in the high-resolution Ni64(He3,t)Cu64 reaction

    NASA Astrophysics Data System (ADS)

    Popescu, L.; Adachi, T.; Berg, G. P. A.; Brentano, P. Von; Frekers, D.; Frenne, D. De; Fujita, K.; Fujita, Y.; Grewe, E.-W.; Harakeh, M. N.; Hatanaka, K.; Jacobs, E.; Nakanishi, K.; Negret, A.; Sakemi, Y.; Shimbara, Y.; Shimizu, Y.; Tameshige, Y.; Tamii, A.; Uchida, M.; Wörtche, H. J.; Yosoi, M.

    2009-06-01

    To study the Gamow-Teller (GT) transitions to the pf-shell nucleus Cu64, the Ni64(He3,t)Cu64 experiment was performed at the Research Center for Nuclear Physics (RCNP) Ring Cyclotron, Osaka, using a He3 beam of 140 MeV/nucleon. The outgoing tritons were momentum analyzed by the Grand Raiden spectrometer at 0°. A high energy resolution of 32 keV (full width at half-maximum) allowed the separation of individual levels in the excitation-energy region from 0 to 3.5 MeV. In addition to the ground state (gs), known to be a Jπ=1+ GT state, many low-lying states showed L=0 nature, suggesting that they are candidates for GT states. Because the GT strength B(GT) for the gs transition is known from the β-decay measurement, the strengths for the excited states could be determined using the proportionality between the B(GT) and the reaction cross section extrapolated to q=0 momentum transfer. At higher excitation energies, the level density becomes high and the so-called GT giant resonance dominates the spectrum. The lower and the upper limits of the strength contained in this energy region were estimated. Our results show that less than 55% of the strength predicted by the Ikeda sum rule is located in the excitation-energy region from 0 to 17 MeV.

  16. [NiFe]Hydrogenase from Citrobacter sp. S-77 surpasses platinum as an electrode for H2 oxidation reaction.

    PubMed

    Matsumoto, Takahiro; Eguchi, Shigenobu; Nakai, Hidetaka; Hibino, Takashi; Yoon, Ki-Seok; Ogo, Seiji

    2014-08-18

    Reported herein is an electrode for dihydrogen (H2) oxidation, and it is based on [NiFe]Hydrogenase from Citrobacter sp. S-77 ([NiFe]S77). It has a 637 times higher mass activity than Pt (calculated based on 1 mg of [NiFe]S77 or Pt) at 50 mV in a hydrogen half-cell. The [NiFe]S77 electrode is also stable in air and, unlike Pt, can be recovered 100 % after poisoning by carbon monoxide. Following characterization of the [NiFe]S77 electrode, a fuel cell comprising a [NiFe]S77 anode and Pt cathode was constructed and shown to have a a higher power density than that achievable by Pt. PMID:24895095

  17. Exploring the influence of transfer channels on fusion reactions: The case of 40 Ca + 58,64 Ni

    DOE PAGESBeta

    Bourgin, D.; Courtin, S.; Haas, F.; Goasduff, A.; Stefanini, A. M.; Montagnoli, G.; Montanari, D.; Corradi, L.; Huiming, J.; Scarlassara, F.; et al

    2015-01-29

    Fusion cross sections have been measured in the 40Ca + 58Ni and 40Ca + 64Ni systems at beam energies ranging from Elab = 104.75 MeV to 153.5 MeV using the Laboratori Nazionali di Legnaro electrostatic deflector. Distributions of barriers have been extracted from the experimental data. Preliminary coupled channel calculations were performed and hints of effects of neutron transfers on the fusion below the barrier in the 40Ca + 64Ni are discussed.

  18. Oxygen Reduction Reaction Kinetics in Sr-Doped La2NiO4+  Ruddlesden-Popper Phase as Cathode for Solid Oxide Fuel Cells

    DOE PAGESBeta

    Guan, B.; Li, W.; Zhang, H.; Liu, X.

    2015-01-01

    In this paper, electro-catalytic reduction of oxygen in Sr-doped lanthanum nickelates, La2-xSrxNiO4+δ (0 ≤ x ≤ 0.4) RuddlesdenPopper(R-P)phase,hasbeeninvestigated.Theoxygenreductionreaction(ORR)kineticsisevaluatedviaelectrochemicalimpedance spectroscopy (EIS) with the symmetric cell configuration. The maximum performance is achieved with the un-doped La2NiO4+δ, ∼0.13 cm2 at 800◦C. Sr doping decreases the electrode performance progressively. Further detailed analysis indicates that bulk ionicdiffusionandsurfaceoxygenexchangeco-limittheORRofthosecathodes.Srsubstitutionleadstobothloweredbulkdiffusion and surface exchange rates. With high Sr content (x = 0.3, 0.4), oxygen ion transfer resistance between nickelate/electrolyte is observed. As for the surface exchange process, oxygen adsorption is suggested to be the main rate-limiting step (RLS) according to the reaction orders, which is retarded further by themore » oxidation of Ni2+ to Ni3+ as Sr content increases. The possible role of incorporation process in determining the overall reaction rate is also discussed.« less

  19. Oxygen Reduction Reaction Kinetics in Sr-Doped La2NiO4+  Ruddlesden-Popper Phase as Cathode for Solid Oxide Fuel Cells

    SciTech Connect

    Guan, B.; Li, W.; Zhang, H.; Liu, X.

    2015-01-01

    In this paper, electro-catalytic reduction of oxygen in Sr-doped lanthanum nickelates, La2-xSrxNiO4+δ (0 ≤ x ≤ 0.4) RuddlesdenPopper(R-P)phase,hasbeeninvestigated.Theoxygenreductionreaction(ORR)kineticsisevaluatedviaelectrochemicalimpedance spectroscopy (EIS) with the symmetric cell configuration. The maximum performance is achieved with the un-doped La2NiO4+δ, ∼0.13 #2;cm2 at 800◦C. Sr doping decreases the electrode performance progressively. Further detailed analysis indicates that bulk ionicdiffusionandsurfaceoxygenexchangeco-limittheORRofthosecathodes.Srsubstitutionleadstobothloweredbulkdiffusion and surface exchange rates. With high Sr content (x = 0.3, 0.4), oxygen ion transfer resistance between nickelate/electrolyte is observed. As for the surface exchange process, oxygen adsorption is suggested to be the main rate-limiting step (RLS) according to the reaction orders, which is retarded further by the oxidation of Ni2+ to Ni3+ as Sr content increases. The possible role of incorporation process in determining the overall reaction rate is also discussed.

  20. Ni/Fe-supported over hydrotalcites precursors as catalysts for clean and selective oxidation of Basic Yellow 11: reaction intermediates determination.

    PubMed

    Ovejero, G; Rodríguez, A; Vallet, A; García, J

    2013-01-01

    In this work, Basic Yellow 11 (BY 11) was employed as model compound to study catalytic wet air oxidation as a pre-treatment step to the conventional biological oxidation. Ni and Fe catalysts supported over hydrotalcite (HT) were prepared by incipient wetness and excess impregnation to obtain catalysts with different metal loadings (from 1 to 10 wt.%). HTs were synthesized by co-precipitation and characterized with XRD, X-ray fluorescence (XRF), BET, thermogravimetric analysis and SEM. Results showed that dye conversion increased with Ni and Fe content up to 7 wt.% and that the most effective catalyst were prepared by incipient wetness impregnation. The influence of metal loading in the catalyst, and the preparation method as well as the reaction conditions was investigated. A mechanism and reaction pathways for BY 11 during catalytic liquid phase oxidation have also been proposed. PMID:22960061

  1. Role of pH value during chemical reaction, and site occupancy of Ni2+ and Fe3+ ions in spinel structure for tuning room temperature magnetic properties in Ni1.5Fe1.5O4 ferrite

    NASA Astrophysics Data System (ADS)

    Kumar, K. S. Aneesh; Bhowmik, R. N.; Mahmood, Sami H.

    2016-05-01

    The magnetic properties of Ni1.5Fe1.5O4 ferrite have been investigated using the techniques of dc magnetometry and Mӧssbauer spectroscopy. The material has been prepared by chemical reaction of metal nitrates at different pH values and subsequently, annealed at different temperatures to improve the microstructure. The samples with single-phased cubic spinel structure have been used for magnetic study. The material showed a variety of magnetic features, including superparamagnetic and soft ferromagnetic properties. At room temperature, changes of the ferromagnetic parameters of the material have been found in the range 0-47 emu/g for spontaneous magnetization, 0-0.37 for squareness, and 0-195 Oe for coercivity. Variation of the pH value during chemical reaction and changes of the grain size by thermal treatment played an important role in tuning the coexisting superparamagnetic and ferromagnetic components in the material. Samples prepared at high pH value showed small grain size and superparamagnetic features, whereas the samples prepared at low pH value produced large grain size and better ferromagnetic features. The ferromagnetic properties of the material have been enhanced by lowering the pH value and increasing the annealing temperature. Mössbauer spectra provided insight of the local magnetic order, site occupancy of Ni and Fe ions and oxidation state of Fe ions in the spinel structure of Ni1.5Fe1.5O4 ferrite.

  2. Novel one-step synthesis of wool-ball-like Ni-carbon nanotubes composite cathodes with favorable electrocatalytic activity for hydrogen evolution reaction in alkaline solution

    NASA Astrophysics Data System (ADS)

    Chen, Zhouhao; Ma, Zhipeng; Song, Jianjun; Wang, Lixin; Shao, Guangjie

    2016-08-01

    In this work, supergravity fields are performed to prepare Ni-CNTs composite cathodes with wool-ball-like morphology from the Watts bath containing well-distributed functionalized CNTs. The prepared Ni-CNTs composite cathodes are used as noble metal-free electrocatalyst with favorable electrocatalytic activity for hydrogen evolution reaction (HER) in alkaline solutions. The crystal structure and morphology of the composite cathodes are characterized by XRD and SEM measurements. The electrochemical activities of the cathodes are characterized through Tafel polarization measurement, electrochemical impedance spectroscopy and cyclic voltammetric study in 1.0 M NaOH solution. The results indicate that catalytic activities of the Ni-CNTs cathodes prepared under supergravity fields are enhanced significantly, and the sample prepared at rotating speed 3000 rpm from the bath containing 1 g dm-3 CNTs exhibits the highest HER activity with smallest Tafel slope and largest exchange current density of 823.9 μA cm-2. Furthermore, the effects of both the CNTs concentrations and the intensities of supergravity fields on the properties of the Ni-CNTs cathodes are investigated.

  3. Unified Synthesis of C1-C19 Building Blocks of Halichondrins via Selective Activation/Coupling of Polyhalogenated Nucleophiles in (Ni)/Cr-Mediated Reactions.

    PubMed

    Li, Jingwei; Yan, Wuming; Kishi, Yoshito

    2015-05-20

    A unified synthesis of the C1-C19 building blocks 8-10 of halichondrins A-C was developed from the common synthetic intermediates 26a,b. Acetylenic ketones 26a,b were in turn synthesized via selective activation/coupling of polyhalogenated nucleophiles 23a,b with aldehyde 11 in a (Ni)/Cr-mediated coupling reaction. Compared with Ni/Cr-mediated couplings of vinyl iodides and aldehydes, this (Ni)/Cr-mediated coupling exhibited two unique features. First, the coupling was found to proceed with a trace amount or no added Ni-catalyst. Second, TES-Cl, a dissociating agent to regenerate the Cr-catalyst, was found to give a better yield than Zr(Cp)2Cl2. An adjustment of the oxidation state was required to transform acetylenic ketones 26a,b into C1-C19 building blocks 8 and 9 of halichondrins A and B, respectively. In the halichondrin B series, a hydroxyl-directed (Me)4NBH(OAc)3 reduction of E- and Z-β-alkoxy-enones 30 was found cleanly to achieve the required transformation, whereas a DMDO oxidation of E-vinylogous ester 27 allowed to introduce the C13 hydroxyl group with a high stereoselectivity in the halichondrin A series. In the halichondrin C series, Hf(OTf)4 was used to convert the double oxy-Michael product 28 into C1-C19 building block 10. PMID:25923790

  4. Mechanisms of the sup 64 Zn(d, sup 6 Li) sup 60 Ni reaction at E sub lab = 16. 4 MeV

    SciTech Connect

    Bowsher, J.E.

    1989-01-01

    Cross-sections, A{sub y}, A{sub yy}, and A{sub xx} for the {sup 64}Zn(d, {sup 6}Li) reaction forming the ground and first excited states of {sup 60}Ni were measured in 5{degree} steps from {theta}{sub lab} = 25{degree} to 80{degree} using an E{sub lab} = 16.4 MeV beam of vector and tensor polarized deuterons. These data include the first measurement of A{sub xx} and A{sub yy} for the (d, {sup 6}Li) reaction on a medium to heavy target nucleus. The A{sub y} measurement is also among the first for (d,{sup 6}Li) reactions. Also measured were excitation functions of d{sigma}/d{Omega}, A{sub y}, A{sub yy}, and A{sub xx} for {sup 64}Zn(d,d) scattering at E{sub lab} = 16.4 MeV. The {sup 6}Li ground state and seven other wave functions, each representing {sup 6}Li continuum states of a given spin, I, and internal orbital angular momentum, l, l {le} 2, were included in coupled-channels (CC) calculations of {sup 60}Ni({sup 6}Li, {sup 6}Li) elastic scattering and finite-range, coupled channel Born approximation (CCBA) calculations for the {sup 64}Zn(d,{sup 6}Li) reaction forming the {sup 60}Ni ground state. This analysis is the first to consider the influence of {sup 6}Li continuum states on the (d, {sup 6}Li) reaction. The {sup 6}Li-{sup 60}Ni interactions were generated using a cluster folding model. Both the folding model and the CC and CCBA calculations were performed by the code FRESCO. For the {sup 64}Zn(d, {sup 6}Li) reaction, CCBA calculations demonstrated that {alpha} transfers forming the 3{sup +} state of {sup 6}Li affect d{sigma}/d{Omega} and A{sub y} very strongly.

  5. Evaluation of the antioxidant capacity of natural polyphenolic compounds using a macrocyclic Ni-(II) complex-catalysed Briggs-Rauscher reaction.

    PubMed

    Li, Mengshuo; Hu, Gang; Chen, Yangyang

    2016-04-15

    This paper reports a method for evaluating antioxidant capacity based on the inhibitory effects of a macrocyclic Ni(II) complex-catalysed Briggs-Rauscher reaction. The macrocyclic Ni(II) complex NiL(ClO4)2, in which L is 5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradeca-4,11-diene, is a porphyrin-like compound, the structure of which can be found in certain enzymes. The experiments indicated that three natural compounds could temporarily quench the oscillations for a period of time prior to regeneration of oscillations. The inhibition time was related to the compound type and concentration; thus, procedures for evaluating the antioxidant activities of polyphenolic compounds were successfully established. Three polyphenolic compounds were tested to evaluate their antioxidant activities: protocatechuic acid, rutin hydrate and procyanidin. Of these three naturally occurring compounds, procyanidin was found to be the most efficient antioxidant. We have also discussed the reaction of the antioxidant with the hydroperoxyl radical (HOO) present in the oscillating system. PMID:26617044

  6. Glycolaldehyde as a probe molecule for biomass derivatives: reaction of C-OH and C═O functional groups on monolayer Ni surfaces.

    PubMed

    Yu, Weiting; Barteau, Mark A; Chen, Jingguang G

    2011-12-21

    Controlling the activity and selectivity of converting biomass derivatives to syngas (H(2) and CO) is critical for the utilization of biomass feedstocks as renewable sources for chemicals and fuels. One key chemistry in the conversion is the selective bond scission of the C-OH and C═O functionalities, which are present in many biomass derivatives. Because of the high molecular weight and low vapor pressure, it is relatively difficult to perform fundamental surface science studies of C6 sugars, such as glucose and fructose, using ultrahigh vacuum techniques. Glycolaldehyde (HOCH(2)CH═O) is the smallest molecule that contains both the C-OH and C═O functional groups, as well as the same C/O ratio as C6 sugars, and thus is selected as a probe molecule in the current study to determine how the presence of the C═O bond affects the reaction mechanism. Using a combination of density functional theory calculations and experimental measurements, our results indicate that the reaction pathway of glycolaldehyde to produce syngas can be enhanced by supporting monolayer Ni on a Pt substrate, which shows higher activity than either of the parent metals. Furthermore, the Pt substrate can be replaced by tungsten monocarbide to achieve similar activity and selectivity, indicating the possibility of using Ni/WC to replace Ni/Pt as active and selective catalysts with higher stability and lower cost. PMID:22066750

  7. Glycolaldehyde as a Probe Molecule for Biomass Derivatives: Reaction of C-OH and C=O Functional Groups on Monolayer Ni Surfaces

    SciTech Connect

    Yu, Weiting; Barteau, Mark A.; Chen, Jingguang G.

    2011-12-21

    Controlling the activity and selectivity of converting biomass derivatives to syngas (H₂ and CO) is critical for the utilization of biomass feedstocks as renewable sources for chemicals and fuels. One key chemistry in the conversion is the selective bond scission of the C—OH and C=O functionalities, which are present in many biomass derivatives. Because of the high molecular weight and low vapor pressure, it is relatively difficult to perform fundamental surface science studies of C6 sugars, such as glucose and fructose, using ultrahigh vacuum techniques. Glycolaldehyde (HOCH₂CH=O) is the smallest molecule that contains both the C—OH and C=O functional groups, as well as the same C/O ratio as C6 sugars, and thus is selected as a probe molecule in the current study to determine how the presence of the C=O bond affects the reaction mechanism. Using a combination of density functional theory calculations and experimental measurements, our results indicate that the reaction pathway of glycolaldehyde to produce syngas can be enhanced by supporting monolayer Ni on a Pt substrate, which shows higher activity than either of the parent metals. Furthermore, the Pt substrate can be replaced by tungsten monocarbide to achieve similar activity and selectivity, indicating the possibility of using Ni/WC to replace Ni/Pt as active and selective catalysts with higher stability and lower cost.

  8. Kinetics and mechanisms of the reactions of alkyl radicals with oxygen and with complexes of Co(III), Ru(III), and Ni(III)

    SciTech Connect

    Kelley, D.

    1990-10-08

    The kinetics of the reactions of C{sub 2}H{sub 5} radical with Co(NH{sub 3}){sub 5}X{sup 2+}, Ru(NH{sub 3}){sub 5}X{sup 2+}, and Co(dmgH){sub 2} (X) (Y) (X = Br, Cl, N{sub 3}, SCN; Y = H{sub 2}O, CH{sub 3}CN) complexes were studied using laser flash photolysis of ethylcobalt complexes. The kinetics were obtained by the kinetic probe method. Some relative rate constants were also determined by a competition method based on ethyl halide product ratios. The kinetics of colligation reactions of a series of alkyl radicals with {beta}-Ni(cyclam){sup 2+} were studied using flaser flash photolysis of alkylcobalt complexes. Again, the kinetics were obtained by employing the kinetic probe competition method. The kinetics of the unimolecular homolysis of a series of RNi(cyclam)H{sub 2}O{sup 2+} were studied. Activation parameters were obtained for the unimolecular homolysis of C{sub 2}H{sub 5}Ni(cyclam)H{sub 2}O{sup 2+}. Kinetic and thermodynamic data obtained from these reactions were compared with those for the {sigma}-bonded organometallic complexes. The kinetics of the unimolecular homolysis of a series of RNi(cyclam)H{sub 2}O{sup 2+} complexes were studied by monitoring the formation of the oxygen insertion product RO{sub 2}Ni(cyclam)H{sub 2}O{sup 2+}. The higher rate constants for the reactions of alkyl radicals with oxygen in solution, as compared with those measured in the gas phase, were discussed. 30 refs.

  9. Synthesis and characterizations of (In0.90Sn0.05Ni0.05)2O3 nanoparticles using solid state reaction method

    NASA Astrophysics Data System (ADS)

    Babu, S. Harinath; Krishna, N. Sai; Kaleemulla, S.; Rao, N. Madhusudhana; Kuppan, M.; Krishnamoorthi, C.; Joshi, Girish M.; Basheed, G. A.

    2016-05-01

    ITO (In0.95Sn0.05)2O3 and Ni doped ITO (In0.90Sn0.05Ni0.05)2O3 nanoparticles (NPs) were synthesized by solid state reaction method and subjected to study their structural, optical and magnetic properties. The NPs had a size distribution in the range of 40 nm and were identified as the bcc cubic In2O3 by X-ray diffraction (XRD). Optical properties of the samples were studies using UV-Vis-NIR spectrophotometer. Magnetic measurements were carried out at room temperature and at 100 K using vibrating sample magnetometer and found that the ITO nanoparticles were ferromagnetic in nature at room temperature. The strength of the magnetization decreased in ITO nanoparticles when the magnetic measurements carried out at 100 K.

  10. Centrality dependence of isospin effect signatures in {sup 124}Sn+{sup 64}Ni and {sup 112}Sn+{sup 58}Ni reactions

    SciTech Connect

    Planeta, R.; Brzychczyk, J.; Majka, Z.; Sochocka, A.; Amorini, F.; Cavallaro, S.; Toro, M. Di; Giustolisi, F.; Lanzalone, G.; Anzalone, A.; Bonasera, A.; Colonna, M.; Maiolino, C.; Porto, F.; Rizzo, F.; Russotto, P.; Auditore, L.; Trifiro, A.; Trimarchi, M.; Baran, V.

    2008-01-15

    Signatures of isospin effects were investigated for neutron-rich ({sup 124}Sn+{sup 64}Ni) and neutron-poor ({sup 112}Sn+{sup 58}Ni) systems at 35 MeV/nucleon for noncentral collisions. The centrality dependence of these signatures was tested for several impact parameter estimators. Our main observations are (i) the yields of {sup 1}H and {sup 3}He particles in the neutron-poor system are strongly enhanced with respect to the neutron-rich system, and the yields of {sup 3}H, {sup 6}He, and {sup 7,8}Li are suppressed at all impact parameters, (ii) the yields of {sup 2}H, {sup 4}He, and {sup 6}Li particles are almost the same for both systems, (iii) the N/Z ratio of intermediate mass fragments is correlated with the neutron richness of the system and is weakly dependent on the centrality of the collision, and (iv) the neutron richness of the detected fragments increases strongly with decreasing rapidity in the range from that of the projectile-like fragment to the c.m. region. The gross features of experimental data are reproduced by quantum molecular dynamics model calculations. A comparison between model calculations and the data indicates that the fragments produced in the c.m. regions are weakly excited.

  11. Thermodynamic properties for bunsenite, NiO, magnetite, Fe3O4, and hematite, Fe2O3, with comments on selected oxygen buffer reactions

    USGS Publications Warehouse

    Hemingway, B.S.

    1990-01-01

    Smoothed values of the heat capacities and derived thermodynamic functions are given for bunsenite, magnetite, and hematite for the temperature interval 298.15 to 1800 K. The Gibbs free energy for the reaction Ni + 0.5O2 = NiO is given by the equation ??rG0T = -238.39 + 0.1146T - 3.72 ?? 10-3T ln T and is valid from 298.15 K to 1700 K. The Gibbs free energy (in kJ) of the reaction 2 magnetite + 3 quartz = 3 fayalite + O2 may be calculated from the equation ??rG0T = 474.155 - 0.16120 T in kJ and between 800 and 1400 K. The Gibbs free energy (in kJ) of the reaction 6 hematite = 4 magnetite + O2 may be calculated from the following equations: ??rG0T = 496.215 - 0.27114T, ??rG0T = 514.690 - 0.29753T, ??rG0T = 501.348 - 0.2854T. -from Author

  12. Trends in activity for the water electrolyser reactions on 3d M(Ni,Co,Fe,Mn) hydr(oxy)oxide catalysts

    NASA Astrophysics Data System (ADS)

    Subbaraman, Ram; Tripkovic, Dusan; Chang, Kee-Chul; Strmcnik, Dusan; Paulikas, Arvydas P.; Hirunsit, Pussana; Chan, Maria; Greeley, Jeff; Stamenkovic, Vojislav; Markovic, Nenad M.

    2012-06-01

    Design and synthesis of materials for efficient electrochemical transformation of water to molecular hydrogen and of hydroxyl ions to oxygen in alkaline environments is of paramount importance in reducing energy losses in water-alkali electrolysers. Here, using 3d-M hydr(oxy)oxides, with distinct stoichiometries and morphologies in the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) regions, we establish the overall catalytic activities for these reaction as a function of a more fundamental property, a descriptor, OH-M2+δ bond strength (0 ≤ δ ≤ 1.5). This relationship exhibits trends in reactivity (Mn < Fe < Co < Ni), which is governed by the strength of the OH-M2+δ energetic (Ni < Co < Fe < Mn). These trends are found to be independent of the source of the OH, either the supporting electrolyte (for the OER) or the water dissociation product (for the HER). The successful identification of these electrocatalytic trends provides the foundation for rational design of ‘active sites’ for practical alkaline HER and OER electrocatalysts.

  13. Effect of reaction time and P content on mechanical strength of the interface formed between eutectic Sn-Ag solder and Au/electroless Ni(P)/Cu bond pad

    NASA Astrophysics Data System (ADS)

    Alam, M. O.; Chan, Y. C.; Tu, K. N.

    2003-09-01

    In this work, shear strengths of the solder joints for Sn-Ag eutectic alloy with the Au/electroless Ni(P)/Cu bond pad were measured for three different electroless Ni(P) layers. Sn-Ag eutectic solder alloy was kept in molten condition (240 °C) on the Au/electroless Ni(P)/Cu bond pad for different time periods ranging from 0.5 min to 180 min to render the ultimate interfacial reaction and the consecutive shear strength. After the shear test, fracture surfaces were investigated by scanning electron microscopy equipped with energy dispersed x ray. Cross-sectional studies of the interfaces were also conducted to correlate with the fracture surfaces. It was found that formation of crystalline phosphorous-rich Ni layer at the solder interface of Au/electroless Ni(P)/Cu bond pad with Sn-Ag eutectic alloy deteriorates the mechanical strength of the joints significantly. It was also noticed that such weak P-rich Ni layer appears quickly for high-P content electroless Ni(P) layer. However, when this P-rich Ni layer disappears from a prolonged reaction, the shear strength increases again.

  14. Mg segregation in Mg-rich Mg-Ni switchable mirror studied by Rutherford backscattering, elastic recoil detection analysis, and nuclear reaction analysis

    SciTech Connect

    Sekiba, D.; Horikoshi, M.; Abe, S.; Ishii, S.

    2009-12-01

    Pd/Mg{sub 3.3}Ni films were prepared by dc sputtering deposition on three different substrates of glass, diamondlike carbon/Si, and Si. Hydrogenation and dehydrogenation cycles were performed on these samples simultaneously. The optical switching property due to the hydrogenation and dehydrogenation was monitored by the transmission of laser light via the glass substrate. The switching ability was totally lost after 120 cycles. We made comparative study of the composition change between the new (as-deposited) and old (after 120 switching cycles) samples by Rutherford backscattering (RBS), elastic recoil detection analysis (ERDA), and nuclear reaction analysis (NRA). From the RBS results we found out the segregation of a Mg layer between the Pd cap layer and the rest of the Mg-Ni layer. At the Pd/Mg interface in the old sample, thin MgO layer formed probably during the dehydrogenation process with O{sub 2}. ERDA showed that there is much hydrogen in the old sample. NRA displayed the depth profiles of hydrogen distribution in the old sample. It is revealed that much hydrogen is accumulated at the interface between the Pd cap layer and the segregated Mg layer. It can be concluded that the formations of oxide and hydride of the segregated Mg layer are the main reasons for the degradation of the Mg{sub 3.3}Ni switchable mirror.

  15. A comparative study of composition and morphology effect of Ni(x)Co(1-x)(OH)2 on oxygen evolution/reduction reaction.

    PubMed

    Wang, Lei; Lin, Chong; Huang, Dekang; Zhang, Fengxing; Wang, Mingkui; Jin, Jian

    2014-07-01

    Oxygen electrochemistry has been intensely studied in the pursuit of sustainable and efficient energy conversion and storage solutions. Over the years, developing oxygen electrode catalysts with high activity and low cost remains a great challenge, despite tremendous efforts. Here, NixCo1-x(OH)2 is used as a bifunctional electrocatalyst for both oxygen evolution reaction (OER) and oxygen reduction reaction (ORR). The effect of its compositions (x = 1, 0.55, 0) and morphologies (including both multilayer and single-layer NixCo1-x(OH)2) on catalytic activity is studied systematically in order to optimize the oxygen-electrochemical performance of 3d-M (M = Ni and Co) metal hydroxides. Our results show that the compositions of NixCo1-x(OH)2 has a great influence on overpotentials by comparing multilayer Co(OH)2, Ni0.55Co0.45(OH)2, and Ni(OH)2 for OER. Multilayer Ni(OH)2 exhibits the lowest overpotential of 324 mV at the current density of 5 mA/cm(2). Moreover, the overpotential could be greatly lowered by using single-layer NixCo1-x(OH)2. Single-layer Ni(OH)2 nanosheet manifests 71 mV overpotential decrease (5 mA/cm(2)) and a factor of 14 turnover frequency increase as compared to multilayer Co(OH)2 for OER. As for ORR, multilayer Co(OH)2 shows the best activity among multilayer NixCo1-x(OH)2. Similar to OER, single-layer NixCo1-x(OH)2 demonstrates enhanced ORR activity over multilayer NixCo1-x(OH)2. Single-layer Co(OH)2 exhibits the best catalytic activity and 3.7 electrons are transferred during oxygen reduction process. The successful identification of the composition and morphology effect of 3d metal hydroxides on electrocatalytic performance provides the foundation for rational design of active sites for high-performance catalyst for both OER and ORR. PMID:24915609

  16. Flame Synthesis of Nanosized Cu-Ce-O, Ni-Ce-O, and Fe-Ce-O Catalysts for the Water-Gas Shift (WGS) Reaction

    SciTech Connect

    Pati, R.; Lee, I; Hou, S; Akhuemonkhan, O; Gaskell, K; Wang, Q; Frenkel, A; Chu, D; Salamanca-Riba, L; Ehrman, S

    2009-01-01

    A flame synthesis method has been used to prepare nanosized, high-surface-area Cu-Ce-O, Ni-Ce-O, and Fe-Ce-O catalysts from aqueous solutions of metal acetate precursors. The particles were formed by vaporization of the precursors followed by reaction and then gas to particle conversion. The specific surface areas of the synthesized powders ranged from 127 to 163 m{sup 2}/g. High-resolution transmission electron microscope imaging showed that the particle diameters for the ceria materials are in the range of 3-10 nm, and a thin layer of amorphous material was observed on the surface of the particles. The presence and surface enrichment of the transition-metal oxides (CuO, NiO, and Fe{sub 2}O{sub 3}) on the ceria particles were detected using X-ray photoelectron spectroscopy. Electron energy-loss spectroscopic studies suggest the formation of a core-shell structure in the as-prepared particles. Extended X-ray absorption fine structure studies suggest that the dopants in all M-Ce-O systems are almost isostructural with their oxide counterparts, indicating the doping materials form separate oxide phases (CuO, Fe{sub 2}O{sub 3}, NiO) within the host matrix (CeO{sub 2}). Etching results confirm that most of the transition-metal oxides are present on the surface of CeO{sub 2}, easily dissolved by nitric acid. The performance of the flame-synthesized catalysts was examined toward water-gas shift (WGS) activity for fuel processing applications. The WGS activity of metal ceria catalysts decreases in the order Cu-Ce-O > Ni-Ce-O > Fe-Ce-O > CeO{sub 2} with a feed mixture having a hydrogen to carbon monoxide (H{sub 2}/CO) ratio of 1. There was no methane formation for these catalysts under the tested conditions.

  17. Synthesis of PtM (M=Co, Ni)/Reduced Graphene Oxide Nanocomposites as Electrocatalysts for the Oxygen Reduction Reaction.

    PubMed

    Li, Jialiang; Fu, Xinning; Mao, Zhou; Yang, Yushi; Qiu, Tong; Wu, Qingzhi

    2016-12-01

    A series of PtM (M=Co, Ni)/reduced graphene oxide (rG-O) nanocomposites were successfully synthesized through a facile hydrothermal method. The as-synthesized nanocomposites were characterized using transmission electron microscopy and high-resolution transmission electron microscopy, X-ray diffraction, inductively coupled plasma-atomic emission spectrometer, and X-ray photoelectron spectroscopy. The electrochemical performance and oxygen reduction reaction (ORR) activity of PtM/rG-O nanocomposites were evaluated using cyclic voltammetry and the rotating disk electrode method. The results show that the addition of the reductant (1,2-hexadecanediol, HAD) in the reaction system slightly improved the ORR activity of PtM/rG-O nanocomposites with a negligible influence on the size and morphology of alloy NPs. Furthermore, PtNi/rG-O nanocomposites displayed the higher electrochemical stability than PtCo/rG-O nanocomposites. These results provide a facile strategy for the synthesis of Pt-based alloy NPs/rG-O nanocomposites for applications in catalysis and energy-related processes. PMID:26732276

  18. The kinetics of the O2/CO2 reaction in molten carbonate - Reaction orders for O2 and CO2 on NiO. [in fuel cells

    NASA Technical Reports Server (NTRS)

    Winnick, J.; Ross, P. N.

    1980-01-01

    The kinetics of the O2/CO2 reaction in molten carbonate is investigated using paste electrolytes and nickel sinter electrodes. A two-step approach to the determination of reaction orders is employed. First, exchange currents at various P(CO2) and P(O2) were measured using the low polarization method. Second, alpha(+) and alpha(-) values were obtained from the slope of the Allen-Hickling plot for current densities low enough so that concentration polarization within the electrode can be neglected. The reaction orders are + 1/4 in CO2 and + 5/8 in O2 in the cathodic direction, and - 3/4 in CO2 and + 1/8 in O2 in the anodic direction.

  19. Radiation effects on interface reactions of U/Fe, U/(Fe + Cr), and U/(Fe + Cr + Ni)

    NASA Astrophysics Data System (ADS)

    Shao, Lin; Chen, Di; Wei, Chaochen; Martin, Michael S.; Wang, Xuemei; Park, Youngjoo; Dein, Ed; Coffey, Kevin R.; Sohn, Yongho; Sencer, Bulent H.; Rory Kennedy, J.

    2015-01-01

    We study the effects of radiation damage on interdiffusion and intermetallic phase formation at the interfaces of U/Fe, U/(Fe + Cr), and U/(Fe + Cr + Ni) diffusion couples. Magnetron sputtering is used to deposit thin films of Fe, Fe + Cr, or Fe + Cr + Ni on U substrates to form the diffusion couples. One set of samples are thermally annealed under high vacuum at 450 °C or 550 °C for one hour. A second set of samples are annealed identically but with concurrent 3.5 MeV Fe++ ion irradiation. The Fe++ ion penetration depth is sufficient to reach the original interfaces. Rutherford backscattering spectrometry analysis with high fidelity spectral simulations is used to obtain interdiffusion profiles, which are used to examine differences in U diffusion and intermetallic phase formation at the buried interfaces. For all three diffusion systems, Fe++ ion irradiations enhance U diffusion. Furthermore, the irradiations accelerate the formation of intermetallic phases. In U/Fe couples, for example, the unirradiated samples show typical interdiffusion governed by Fick's laws, while the irradiated ones show step-like profiles influenced by Gibbs phase rules.

  20. Radiation effects on interface reactions of U/Fe, U/(Fe+Cr), and U/(Fe+Cr+Ni)

    SciTech Connect

    Shao, Lin; Chen, Di; Wei, Chaochen; Martin, Michael S.; Wang, Xuemei; Park, Youngjoo; Dein, Ed; Coffey, Kevin R.; Sohn, Yongho; Sencer, Bulent H.; Rory Kennedy, J.

    2014-10-01

    We study the effects of radiation damage on interdiffusion and intermetallic phase formation at the interfaces of U/Fe, U/(Fe + Cr), and U/(Fe + Cr + Ni) diffusion couples. Magnetron sputtering is used to deposit thin films of Fe, Fe + Cr, or Fe + Cr + Ni on U substrates to form the diffusion couples. One set of samples are thermally annealed under high vacuum at 450 C or 550 C for one hour. A second set of samples are annealed identically but with concurrent 3.5 MeV Fe++ ion irradiation. The Fe++ ion penetration depth is sufficient to reach the original interfaces. Rutherford backscattering spectrometry analysis with high fidelity spectral simulations is used to obtain interdiffusion profiles, which are used to examine differences in U diffusion and intermetallic phase formation at the buried interfaces. For all three diffusion systems, Fe++ ion irradiations enhance U diffusion. Furthermore, the irradiations accelerate the formation of intermetallic phases. In U/Fe couples, for example, the unirradiated samples show typical interdiffusion governed by Fick’s laws, while the irradiated ones show step-like profiles influenced by Gibbs phase rules.

  1. Radiation effects on interface reactions of U/Fe, U/(Fe+Cr), and U/(Fe+Cr+Ni)

    DOE PAGESBeta

    Shao, Lin; Chen, Di; Wei, Chaochen; Martin, Michael S.; Wang, Xuemei; Park, Youngjoo; Dein, Ed; Coffey, Kevin R.; Sohn, Yongho; Sencer, Bulent H.; et al

    2014-10-01

    We study the effects of radiation damage on interdiffusion and intermetallic phase formation at the interfaces of U/Fe, U/(Fe + Cr), and U/(Fe + Cr + Ni) diffusion couples. Magnetron sputtering is used to deposit thin films of Fe, Fe + Cr, or Fe + Cr + Ni on U substrates to form the diffusion couples. One set of samples are thermally annealed under high vacuum at 450 C or 550 C for one hour. A second set of samples are annealed identically but with concurrent 3.5 MeV Fe++ ion irradiation. The Fe++ ion penetration depth is sufficient to reachmore » the original interfaces. Rutherford backscattering spectrometry analysis with high fidelity spectral simulations is used to obtain interdiffusion profiles, which are used to examine differences in U diffusion and intermetallic phase formation at the buried interfaces. For all three diffusion systems, Fe++ ion irradiations enhance U diffusion. Furthermore, the irradiations accelerate the formation of intermetallic phases. In U/Fe couples, for example, the unirradiated samples show typical interdiffusion governed by Fick’s laws, while the irradiated ones show step-like profiles influenced by Gibbs phase rules.« less

  2. The (t,3He) reaction at 43 MeV/nucleon on 48Ca and 58Ni: Results and microscopic interpretation

    NASA Astrophysics Data System (ADS)

    Guillot, J.; Galès, S.; Beaumel, D.; Fortier, S.; Rich, E.; Giai, N. Van; Colò, G.; Berg, A. M.; Brandenburg, S.; Davids, B.; Harakeh, M. N.; Hunyadi, M.; Huu, M. De; Werf, S. Y.; Wörtche, H. J.; Bäumer, C.; Frekers, D.; Grewe, E.-W.; Haefner, P.; Junk, B. C.; Fujiwara, M.

    2006-01-01

    We have used the 43 MeV/nucleon primary tritium beam of the AGOR facility with an intensity of 4×107 pps and the BBS experimental setup to study the (t,3He) reaction between 0° and 5° lab angles on 12C, 48Ca, and 58Ni targets. The standard ray-tracing procedure has allowed us to obtain excitation-energy spectra up to 30 MeV in six angular bins for each residual nucleus, with an average energy resolution of 350 keV. The reaction mechanism has been described in distorted-waves Born approximation (DWBA) using the DWBA98 code. In this approximation, the form factor is treated as a folding of an effective projectile-nucleon interaction with a transition density. The effective projectile-nucleon interaction has been adjusted to reproduce the 0° cross section of the 1+ ground state of 12B populated in the 12C(t,3He) reaction. We have employed random-phase approximation (RPA) wave functions of excited states to construct the form factor instead of the normal modes wave functions used earlier. This new DWBA+RPA analysis is used to compare calculated and experimental cross sections directly and to discuss the giant resonance excitations in 48K and 58Co nuclei.

  3. The (t,{sup 3}He) reaction at 43 MeV/nucleon on {sup 48}Ca and {sup 58}Ni: Results and microscopic interpretation

    SciTech Connect

    Guillot, J.; Gales, S.; Beaumel, D.; Fortier, S.; Rich, E.; Nguyen Van Giai; Colo, G.; Berg, A.M. van den; Brandenburg, S.; Davids, B.; Harakeh, M.N.; Hunyadi, M.; Huu, M. de; Werf, S.Y. van der; Woertche, H.J.; Baeumer, C.; Frekers, D.; Grewe, E.-W.; Haefner, P.; Junk, B.C.

    2006-01-15

    We have used the 43 MeV/nucleon primary tritium beam of the AGOR facility with an intensity of 4x10{sup 7} pps and the BBS experimental setup to study the (t,{sup 3}He) reaction between 0 deg. and 5 deg. lab angles on {sup 12}C, {sup 48}Ca, and {sup 58}Ni targets. The standard ray-tracing procedure has allowed us to obtain excitation-energy spectra up to 30 MeV in six angular bins for each residual nucleus, with an average energy resolution of 350 keV. The reaction mechanism has been described in distorted-waves Born approximation (DWBA) using the DWBA98 code. In this approximation, the form factor is treated as a folding of an effective projectile-nucleon interaction with a transition density. The effective projectile-nucleon interaction has been adjusted to reproduce the 0 deg. cross section of the 1{sup +} ground state of {sup 12}B populated in the {sup 12}C(t,{sup 3}He) reaction. We have employed random-phase approximation (RPA) wave functions of excited states to construct the form factor instead of the normal modes wave functions used earlier. This new DWBA+RPA analysis is used to compare calculated and experimental cross sections directly and to discuss the giant resonance excitations in {sup 48}K and {sup 58}Co nuclei.

  4. Evaporation Residue Yields in Reactions of Heavy Neutron-Rich Radioactive Ion Beams with 64Ni and 96Zr Targets

    SciTech Connect

    Shapira, Dan; Liang, J Felix; Gross, Carl J; Varner Jr, Robert L; Beene, James R; Stracener, Daniel W; Mueller, Paul Edward; Kolata, Jim J; Roberts, Amy; Loveland, Walter; Vinodkumar, A. M.; Prisbrey, Landon; Sprunger, Peter H; Grzywacz-Jones, Kate L; Caraley, Anne L

    2009-01-01

    As hindrance sets in for the fusion of heavier systems, the effect of large neutron excess in the colliding nuclei on their probability to fuse is still an open question. The detection of evaporation residues (ERs), however, provides indisputable evidence for the fusion (complete and incomplete) in the reaction. We therefore devised a system with which we could measure ERs using low intensity neutron-rich radioactive ion beams with an efficiency close to 100%. We report on measurements of the production of ERs in collisions of {sup 132,134}Sn, {sup 134}Te and {sup 134}Sb ion beams with medium mass, neutron-rich targets. The data taken with {sup 132,134}Sn bombarding a {sup 64}Ni target are compared to available data (ERs and fusion) taken with stable Sn isotopes. Preliminary data on the fusion of {sup 132}Sn with {sup 96}Zr target are also presented.

  5. Evaporation residue yields in reactions of heavy neutron-rich radioactive ion beams with {sup 64}Ni and {sup 96}Zr targets

    SciTech Connect

    Shapira, D.; Liang, J. F.; Gross, C. J.; Varner, R. L.; Beene, J. R.; Stracener, D. W.; Mueller, P. E.; Kolata, J. J.; Roberts, A.; Loveland, W.; Vinodkumar, A. M.; Prisbrey, L.; Sprunger, P.; Jones, K. L.; Caraley, A. L.

    2009-03-04

    As hindrance sets in for the fusion of heavier systems, the effect of large neutron excess in the colliding nuclei on their probability to fuse is still an open question. The detection of evaporation residues (ERs), however, provides indisputable evidence for the fusion (complete and incomplete) in the reaction. We therefore devised a system with which we could measure ERs using low intensity neutron-rich radioactive ion beams with an efficiency close to 100%. We report on measurements of the production of ERs in collisions of {sup 132,134}Sn, {sup 134}Te and {sup 134}Sb ion beams with medium mass, neutron-rich targets. The data taken with {sup 132,134}Sn bombarding a {sup 64}Ni target are compared to available data (ERs and fusion) taken with stable Sn isotopes. Preliminary data on the fusion of {sup 132}Sn with {sup 96}Zr target are also presented.

  6. Facial synthesis of PtM (M = Fe, Co, Cu, Ni) bimetallic alloy nanosponges and their enhanced catalysis for oxygen reduction reaction.

    PubMed

    Zhu, Zhijun; Zhai, Yanling; Dong, Shaojun

    2014-10-01

    Constructing electrocatalysts with enhanced activity and stability is necessary due to the increasing demands of the fuel cell industry. This work demonstrates a facile approach to synthesize well-defined three-dimensional (3D) PtM (M = Fe, Co, Cu, Ni) bimetallic alloy nanosponges (BANs) in the presence of Al. Significantly, with the aid of Al, the as-prepared BANs exhibit greatly enhanced electrochemistry catalytic activity in an oxygen reduction reaction (ORR), and PtFe BANs appear the best ORR property among the four BANs and commercial Pt/C catalysts. This work may provide a universal approach for convenient and large-scale fabrication of porous bimetallic nanocatalysts, thus providing promising potential application as an efficient cathodic component in fuel cells for industrial production. PMID:25223424

  7. On the ortho-positronium quenching reactions promoted by Fe(II), Fe(III), Co(III), Ni(II), Zn(II) and Cd(II) cyanocomplexes

    NASA Astrophysics Data System (ADS)

    Fantola Lazzarini, Anna L.; Lazzarini, Ennio

    The o-Ps quenching reactions promoted in aqueous solutions by the following six cyanocomplexes: [Fe(CN) 6] 4-; [Co(CN) 6] 3-; [Zn(CN) 4] 2-; [Cd(CN) 6] 2-; [Fe(CN) 6] 3-; [Ni(CN) 4] 2- were investigated. The first four reactions probably consist in o-Ps addition across the CN bond, their rate constants at room temperature, Tr, being ⩽(0.04±0.02) × 10 9 M -1 s -1, i.e. almost at the limit of experimental errors. The rate constant of the fifth reaction, in o-Ps oxydation, at Tr is (20.3±0.4) × 10 9 M -1 s -1. The [Ni(CN) 4] 2-k value at Tr, is (0.27±0.01) × 10 9 M -1 s -1, i.e. 100 times less than the rate constants of o-Ps oxydation, but 10 times larger than those of the o-Ps addition across the CN bond. The [Ni(CN) 4] 2- reaction probably results in formation of the following positronido complex: [Ni(CN) 4Ps] 2-. However, it is worth noting that the existence of such a complex is only indirectly deduced. In fact it arises from comparison of the [Ni(CN) 4] 2- rate constant with those of the Fe(II), Zn(II), Cd(II), and Co(III) cyanocomplexes, which, like the Ni(II) cyanocomplex, do not promote o-Ps oxydation or spin exchange reactions.

  8. Influence of the Coulomb Field on Charged Particle Emission in Ar + Ni Reaction at 77 MeV/u

    NASA Astrophysics Data System (ADS)

    Wosinska, K.; Pluta, J.; Hanappe, F.; Stuttge, L.; Angelique, J. C.; Basrak, Z.; Benoit, B.; de Goes Brennand, E.; Bizard, G.; Colin, J.; Costa, G.; Desesquelles, P.; Dorvaux, O.; Durand, D.; Erazmus, B.; Kuleshov, S.; Lednicky, R.; Leszczynski, P.; Marques, M.; Materna, Th.; Mikhailov, K.; Papatheofanous, G.; Pawlak, T.; Przewlocki, M.; Staranowicz, A.; Stavinskiy, A.; Sztenkiel, A.; Tamain, B.; Vlasov, A.; Vorobyev, L.

    2004-03-01

    Ar+Ni collisions at 77 MeV/u were studied in the experiment E286 performed at GANIL. An important advantage of this experiment was an application of the neutron detector DEMON for registration of both neutral and charged particles. This feature allows to compare characteristics of neutrons and protons detected by the same detector and gives a possibility to determine the influence of the Coulomb field on the proton emission. Estimation of a charge of the emitting source was performed by comparing energy spectra of neutrons and protons detected under identical experimental conditions. The experimental results were compared with the prediction of the SIMON model [D. Durand, Nucl. Phys. A541, 266 (1992)] and Landau--Vlasov model [Z. Basrak, Ph. Eudes, P. Abgrall, F. Haddad, F. Sébille, Nucl. Phys. A624, 472 (1997)].

  9. Desulfurization of thiophenic compounds by Ni(111): Adsorption and reactions of thiophene, 3-methylthiophene, and 2,5-dimethylthiophene

    SciTech Connect

    Huntley, D.R.; Mullins, D.R.; Wingeier, M.P.

    1996-12-12

    The adsorption and reactivity of thiophene, 2,5-dimethylthiophene, and 3-methylthiophene on Ni(111) have been examined. The saturation coverages of the three molecules are similar, about 0.13 monolayer (ML), and in all cases alkenes are the major hydrocarbon products. On initially clean surfaces, decomposition to sulfur, carbon and hydrogen is the major pathway, but the selectivity to hydrocarbon production can be enhanced by a factor of about 3 by predosing the surface with hydrogen. Sulfur is easily removed from the ring, and C-S bond scission is complete by 150 K. The rate-limiting step in alkene formation is hydrogenation of a highly unsaturated hydrocarbon intermediate. The hydrocarbon intermediates formed are difficult to unambiguously identify but are most likely cyclic structures, retaining the C{sub 4} framework. 44 refs., 9 figs., 1 tab.

  10. Kinetic Study of Parasitic Reactions in Lithium-Ion Batteries: A Case Study on LiNi(0.6)Mn(0.2)Co(0.2)O2.

    PubMed

    Zeng, Xiaoqiao; Xu, Gui-Liang; Li, Yan; Luo, Xiangyi; Maglia, Filippo; Bauer, Christoph; Lux, Simon Franz; Paschos, Odysseas; Kim, Sung-Jin; Lamp, Peter; Lu, Jun; Amine, Khalil; Chen, Zonghai

    2016-02-10

    The side reactions between the electrode materials and the nonaqueous electrolytes have been the major contributor to the degradation of electrochemical performance of lithium-ion batteries. A home-built high-precision leakage current measuring system was deployed to investigate the reaction kinetics between the delithiated LiNi(0.6)Mn(0.2)Co(0.2)O2 and a conventional nonaqueous electrolyte. It was found that the rate of parasitic reaction had strong dependence on the upper cutoff potential of the cathode material. The kinetic data also indicated a change of reaction mode at about 4.5 V vs Li(+)/Li. PMID:26795232

  11. Surface profile control of FeNiPt/Pt core/shell nanowires for oxygen reduction reaction

    SciTech Connect

    Zhu, Huiyuan; Zhang, Sen; Su, Dong; Jiang, Guangming; Sun, Shouheng

    2015-03-18

    The ever-increasing energy demand requires renewable energy schemes with low environmental impacts. Electrochemical energy conversion devices, such as fuel cells, combine fuel oxidization and oxygen reduction reactions and have been studied extensively for renewable energy applications. However, their energy conversion efficiency is often limited by kinetically sluggish chemical conversion reactions, especially oxygen reduction reaction (ORR). [1-5] To date, extensive efforts have been put into developing efficient ORR catalysts with controls on catalyst sizes, compositions, shapes and structures. [6-12] Recently, Pt-based catalysts with core/shell and one-dimensional nanowire (NW) morphologies were found to be promising to further enhance ORR catalysis. With the core/shell structure, the ORR catalysis of a nanoparticle (NP) catalyst can be tuned by both electronic and geometric effects at the core/shell interface. [10,13,14] With the NW structure, the catalyst interaction with the conductive support can be enhanced to facilitate electron transfer between the support and the NW catalyst and to promote ORR. [11,15,16]

  12. Surface profile control of FeNiPt/Pt core/shell nanowires for oxygen reduction reaction

    DOE PAGESBeta

    Zhu, Huiyuan; Zhang, Sen; Su, Dong; Jiang, Guangming; Sun, Shouheng

    2015-03-18

    The ever-increasing energy demand requires renewable energy schemes with low environmental impacts. Electrochemical energy conversion devices, such as fuel cells, combine fuel oxidization and oxygen reduction reactions and have been studied extensively for renewable energy applications. However, their energy conversion efficiency is often limited by kinetically sluggish chemical conversion reactions, especially oxygen reduction reaction (ORR). [1-5] To date, extensive efforts have been put into developing efficient ORR catalysts with controls on catalyst sizes, compositions, shapes and structures. [6-12] Recently, Pt-based catalysts with core/shell and one-dimensional nanowire (NW) morphologies were found to be promising to further enhance ORR catalysis. With themore » core/shell structure, the ORR catalysis of a nanoparticle (NP) catalyst can be tuned by both electronic and geometric effects at the core/shell interface. [10,13,14] With the NW structure, the catalyst interaction with the conductive support can be enhanced to facilitate electron transfer between the support and the NW catalyst and to promote ORR. [11,15,16]« less

  13. Hydrogen generation arising from the {sup 59}Ni(n,p) reaction and its impact on fission-fusion correlations

    SciTech Connect

    Greenwood, L.R.; Garner, A.F.

    1996-04-01

    Whilte the influence of transmutant helium on radiation-induced microstructural evolution has often been studied, there is a tendency to overlook the influence of concurrently-generated hydrogen. There have been some recent speculation and studies, however, that suggest that the influence of hydrogen may be enhanced in the presence of large amounts of helium, especially at lower irradiation temperatures typical of projected ITER operation. The impact of the (n,p) reaction on both hydrogen generation rates and displacement rates are evaluated in this paper for a variety of neutron spectra employed in fission-fusion correlation.

  14. Measurement of the 58Ni(n,t)56Co, 59Co(n,p)59Fe, and 63Cu(n,{alpha})60Co Reaction Cross Sections from 14 to 20 MeV

    SciTech Connect

    Semkova, V.; Plompen, A.J.M.; Smith, D.L.

    2005-05-24

    Neutron activation cross sections for the 63Cu(n,{alpha})60Co, 59Co(n,p)59Fe, and 58Ni(n,t)56Co reactions were measured in the energy range from 13 to 21 MeV. The irradiations were carried out at the 7-MV Van de Graaff accelerator at IRMM, Geel. Quasi-monoenergetic neutrons were produced via the 3H(d,n)4He reaction at 1-, 2-, 3-, and 4-MeV incident deuteron energy. All reaction cross sections measured in the present work are referenced to the 27Al(n,{alpha})24Na standard reaction cross section. Neutron flux spectra were determined by an activation spectral index method in combination with TOF spectrum measurements. Standard {gamma}-ray spectrometry was employed for the measurement of radioactivity. The measured results are compared with work by other authors, TALYS-0.57 and EMPIRE-II model calculations, and current evaluated data files. The new results contribute substantially to the experimental database of the measured reactions. Recommendations are provided for the best evaluations for the 59Co(n,p)59Fe, and 63Cu(n,{alpha})60Co reactions. For the 58Ni(n,t)56Co reaction no current evaluation is in good agreement with all available data. For this reaction further measurements would help to guide new modeling efforts.

  15. Correlations of neutral and charged particles in 40Ar- 58Ni reaction at 77 MeV/u

    NASA Astrophysics Data System (ADS)

    Wosińska, K.; Pluta, J.; Hanappe, F.; Stuttge, L.; Angelique, J. C.; Benoit, B.; de Goes Brennand, E.; Bizard, G.; Colin, J.; Costa, G.; Desesquelles, P.; Dorvaux, O.; Durand, D.; Erazmus, B.; Kuleshov, S.; Lednicky, R.; Marques, M.; Materna, Th.; Mikhailov, K.; Papatheofanous, G.; Pawlak, T.; Staranowicz, A.; Stavinskiy, A.; Tamain, B.; Vlasov, A.; Vorobyev, L.

    2007-04-01

    The measurement of the two-particle correlation function for different particle species allows to obtain information about the development of the particle emission process: the space-time properties of emitting sources and the emission time sequence of different particles. The single-particle characteristics and two-particle correlation functions for neutral and charged particles registered in forward direction are used to determine that the heavy fragments (deuterons and tritons) are emitted in the first stage of the reaction (pre-equilibrium source) while the majority of neutrons and protons originates from the long-lived quasi-projectile. The emission time sequence of protons, neutrons and deuterons has been obtained from the analysis of non-identical particle correlation functions.

  16. Evaporation residue cross sections for the {sup 64}Ni + {sup 144,154}Sm reaction -- Energy dissipation in hot nuclei

    SciTech Connect

    Back, B.B.; Blumenthal, D.J.; Davids, C.N.

    1995-08-01

    The fission hindrance of hot nuclei was deduced recently from an enhanced emission of GDR {gamma} rays, neutrons and charged particles prior to scission of heavy nuclei. In the most recent experiments addressing this topic, namely new measurements of the pre-scission {gamma} rays and evaporation residues from the {sup 32}S + {sup 184}W reaction, a rather sharp transition from negligible to full one-body dissipation occurs over the excitation energy region E{sub exc} = 60-100 MeV. However, the cross section does not appear to level out or start to decline again at the upper end of the energy range as expected in this interpretation. It is therefore clearly desirable to extend the excitation energy range to look for such an effect in order to either corroborate or refute this interpretation.

  17. Titanium oxynitride interlayer to influence oxygen reduction reaction activity and corrosion stability of Pt and Pt-Ni alloy.

    PubMed

    Tan, XueHai; Wang, Liya; Zahiri, Beniamin; Kohandehghan, Alireza; Karpuzov, Dimitre; Lotfabad, Elmira Memarzadeh; Li, Zhi; Eikerling, Michael H; Mitlin, David

    2015-01-01

    A key advancement target for oxygen reduction reaction catalysts is to simultaneously improve both the electrochemical activity and durability. To this end, the efficacy of a new highly conductive support that comprises of a 0.5 nm titanium oxynitride film coated by atomic layer deposition onto an array of carbon nanotubes has been investigated. Support effects for pure platinum and for a platinum (50 at %)/nickel alloy have been considered. Oxynitride induces a downshift in the d-band center for pure platinum and fundamentally changes the platinum particle size and spatial distribution. This results in major enhancements in activity and corrosion stability relative to an identically synthesized catalyst without the interlayer. Conversely, oxynitride has a minimal effect on the electronic structure and microstructure, and therefore, on the catalytic performance of platinum-nickel. Calculations based on density functional theory add insight with regard to compositional segregation that occurs at the alloy catalyst-support interface. PMID:25470445

  18. Ab initio molecular dynamics with enhanced sampling for surface reaction kinetics at finite temperatures: CH2⇌ CH + H on Ni(111) as a case study.

    PubMed

    Sun, Geng; Jiang, Hong

    2015-12-21

    A comprehensive understanding of surface thermodynamics and kinetics based on first-principles approaches is crucial for rational design of novel heterogeneous catalysts, and requires combining accurate electronic structure theory and statistical mechanics modeling. In this work, ab initio molecular dynamics (AIMD) combined with the integrated tempering sampling (ITS) method has been explored to study thermodynamic and kinetic properties of elementary processes on surfaces, using a simple reaction CH2⇌CH+H on the Ni(111) surface as an example. By a careful comparison between the results from ITS-AIMD simulation and those evaluated in terms of the harmonic oscillator (HO) approximation, it is found that the reaction free energy and entropy from the HO approximation are qualitatively consistent with the results from ITS-AIMD simulation, but there are also quantitatively significant discrepancies. In particular, the HO model misses the entropy effects related to the existence of multiple adsorption configurations arising from the frustrated translation and rotation motion of adsorbed species, which are different in the reactant and product states. The rate constants are evaluated from two ITS-enhanced approaches, one using the transition state theory (TST) formulated in terms of the potential of mean force (PMF) and the other one combining ITS with the transition path sampling (TPS) technique, and are further compared to those based on harmonic TST. It is found that the rate constants from the PMF-based TST are significantly smaller than those from the harmonic TST, and that the results from PMF-TST and ITS-TPS are in a surprisingly good agreement. These findings indicate that the basic assumptions of transition state theory are valid in such elementary surface reactions, but the consideration of statistical averaging of all important adsorption configurations and reaction pathways, which are missing in the harmonic TST, are critical for accurate description of

  19. Carbon- and Binder-Free NiCo2O4 Nanoneedle Array Electrode for Sodium-Ion Batteries: Electrochemical Performance and Insight into Sodium Storage Reaction

    NASA Astrophysics Data System (ADS)

    Lee, Jong-Won; Shin, Hyun-Sup; Lee, Chan-Woo; Jung, Kyu-Nam

    2016-02-01

    Sodium (Na)-ion batteries (NIBs) have attracted significant interest as an alternative chemistry to lithium (Li)-ion batteries for large-scale stationary energy storage systems. Discovering high-performance anode materials is a great challenge for the commercial success of NIB technology. Transition metal oxides with tailored nanoarchitectures have been considered as promising anodes for NIBs due to their high capacity. Here, we demonstrate the fabrication of a nanostructured oxide-only electrode, i.e., carbon- and binder-free NiCo2O4 nanoneedle array (NCO-NNA), and its feasibility as an anode for NIBs. Furthermore, we provide an in-depth experimental study of the Na storage reaction (sodiation and desodiation) in NCO-NNA. The NCO-NNA electrode is fabricated on a conducting substrate by a hydrothermal method with subsequent heat treatment. When tested in an electrochemical Na half-cell, the NCO-NNA electrode exhibits excellent Na storage capability: a charge capacity as high as 400 mAh g-1 is achieved at a current density of 50 mA g-1. It also shows a greatly improved cycle life (~215 mAh g-1 after 50 cycles) in comparison to a conventional powder-type electrode (~30 mAh g-1). However, the Na storage performance is still inferior to that of Li, which is mainly due to sluggish kinetics of sodiation-desodiation accompanied by severe volume change.

  20. Proton-helium correlation in 94 MeV/nucleon sup 16 O-induced reactions on Al, Ni, and Au targets

    SciTech Connect

    Badala, A.; Barbera, R.; Palmeri, A.; Pappalardo, G.S. ); Riggi, F. ); Bizard, G.; Durand, D.; Laville, J.L. )

    1992-04-01

    Azimuthal distributions of helium ions have been measured in coincidence with high-energy protons in reactions induced by {sup 16}O at 94 MeV/nucleon on {sup 27}Al, {sup 58}Ni, and {sup 197}Au. Helium ions have been detected in a large area multidetector. Protons have been observed at 90{degree}. Mean multiplicities of light charged particles (H and He) are found slightly dependent on the target mass. Strong azimuthal asymmetries whose intensity is larger for the Al target and vanishes with the increasing of the target mass are observed in the He distributions. Experimental data are discussed in the framework of the participant-spectator picture of a modified fireball model, taking into account intermediate energy corrections. In this framework the behavior of the azimuthal asymmetries, as a function of the target mass, indicates a strong final-state interaction between participant and spectator fragments. Such a result is found in agreement with interaction time predictions of a microscopical calculation based on the Boltzmann-Nordheim-Vlasov equation.

  1. Synthesis and characterization of NiFe2O4 electrocatalyst for the hydrogen evolution reaction in alkaline water electrolysis using different polymer binders

    NASA Astrophysics Data System (ADS)

    Chanda, Debabrata; Hnát, Jaromír; Paidar, Martin; Schauer, Jan; Bouzek, Karel

    2015-07-01

    NiFe2O4 electrocatalyst for the hydrogen evolution reaction (HER) has been synthesized using the co-precipitation method of the respective metal ions from water solution. After calcination of the precipitate, the resulting electrocatalyst was characterized by a broad range of techniques to obtain information on its crystallographic structure, specific surface area, morphology and chemical composition. The electrocatalytic activity towards HER in alkaline water electrolysis was investigated by means of linear sweep voltammetry. The catalyst showed promising electrocatalytic properties. Subsequently three types of binders were used to prepare a cathode catalytic layer based on a catalyst synthesized on top of a nickel foam support, namely an anion-selective quaternized poly(phenylene oxide) (qPPO) ionomer, an electroneutral polymer polytetrafluoroethylene and cation-selective Nafion®. The resulting membrane-electrode assemblies (MEAs), based on an anion-selective membrane, were tested in an alkaline water electrolyzer. In a single-cell test the MEA with a qPPO ionomer exhibited higher HER activity compared to the remaining binders tested. The current density obtained using a MEA containing qPPO binder attained a value of 125 mA cm-2 at a cell voltage of 1.85 V. The stability of the MEA containing qPPO binder was examined by continuous operation for 143 h, followed by 55 h intermittent electrolysis.

  2. Reaction of H{sub 2} and H{sub 2}S with CoMoO{sub 4} and NiMoO{sub 4}: TPR, XANES, time-resolved XRD, and molecular-orbital studies

    SciTech Connect

    Rodriguez, J.A.; Chaturvedi, S.; Hanson, J.C.; Brito, J.L.

    1999-02-04

    The combination of two metals in an oxide matrix can produce materials with novel physical and chemical properties. The reactivity of a series of cobalt and nickel molybdates ({alpha}-AMoO{sub 4}, {beta}-AMoO{sub 4}, and AmoO{sub 4}{center_dot}nH{sub 2}O; A = Co or Ni) toward H{sub 2} and H{sub 2}S was examined using temperature programmed reduction (TPR), synchrotron-based X-ray powder diffraction (XRD), and X-ray absorption near-edge-spectroscopy (XANES). In general, the cobalt and nickel molybdates are more reactive toward H{sub 2} and easier to reduce than pure molybdenum oxides: MoO{sub 2} < MoO{sub 3} < CoMoO{sub 4} < NiMoO{sub 4}. The interaction of H{sub 2} with surfaces of {alpha}-NiMoO{sub 4}, {alpha}-CoMoO{sub 4}, and {alpha}-MoO{sub 3} was investigated using ab initio SCF calculations and cluster models. The mixed-metal oxides are easier to reduce due to the combination of two factors. First, it is easier to adsorb and dissociate H{sub 2} on Ni or Co sites than on Mo sites of an oxide. And second, as a result of differences in the strength of the metal-oxygen bonds, it is easier to remove oxygen as water from the nickel and cobalt molybdates than from MoO{sub 3} or MoO{sub 2}. The extra reactivity that the Co and Ni atoms provide also makes the rate of sulfidation of the cobalt and nickel molybdates faster than that of pure molybdenum oxides. For the adsorption of H{sub 2}S, HS, and S on {alpha}-NiMoO{sub 4} and {alpha}-MoO{sub 3} clusters, the results of ab initio SCF calculations show bigger bonding energies on the Ni sites than on the Mo sites. In these systems, the oxidation state of the Ni atoms is substantially lower (i.e., larger electron density) than that of the Mo atoms, favoring the formation of Ni {r_arrow} SH and Ni {r_arrow} S dative bonds. Results of time-resolved XRD and XANES indicate that the reduced AMoO{sub 4} compounds can be regenerated by reaction with O{sub 2} at high temperatures (350--450 C). A similar procedure (S{sub a} + O

  3. Influence of the reaction temperature and ph on the coordination modes of the 1,4-benzenedicarboxylate (BDC) ligand: a case study of the Ni(II)(BDC)/2,2'-bipyridine system.

    PubMed

    Go, Yong Bok; Wang, Xiqu; Anokhina, Ekaterina V; Jacobson, Allan J

    2005-11-14

    Three new Ni(BDC)/2,2'-bipy compounds, Ni2(BDC)(HBDC)2(2,2'-bipy)2 (2), Ni3(BDC)3(2,2'-bipy)2 (3), and Ni(BDC)(2,2-bipy)2.2H2O (5), in addition to the previously reported Ni(BDC)(2,2'-bipy).0.75H2BDC (1) and Ni(BDC)(2,2'-bipy)(H2O) (4) [BDC = 1,4-benzenedicarboxylate; 2,2'-bipy = 2,2'-bipyridine], have been synthesized by hydrothermal reactions. A systematic investigation of the effect of the reaction temperature and pH resulted in a series of compounds with different compositions and dimensionality. The diverse product slate illustrates the marked sensitivity of the structural chemistry of polycarboxylate aromatic ligands to synthesis conditions. Compound 1, which has a channel structure containing guest H2BDC molecules, is formed at the lowest pH. The guest H2BDC molecules are connected by hydrogen bonds and form extended chains. At a slightly higher pH, a dimeric molecular compound 2 is formed with a lower number of protonated carboxylate groups per nickel atom and per BDC ligand. Reactions at higher temperature and the same pH lead to the transformation of 1 and 2 into the two-dimensional, layered trinuclear compound 3. As the pH is increased, a one-dimensional polymer 4 is formed with a water molecule coordinated to Ni2+. Bis-monodentate and bischelating BDC ligands alternate along the chain to give a crankshaft rather than a regular zigzag arrangement. A further increase of the pH leads to the one-dimensional chain compound 5, which has two chelating 2,2'-bipy ligands. Crystal data: 2, triclinic, space group P, a = 7.4896(9) angstroms, b = 9.912(1) angstroms, c = 13.508(2) angstroms, alpha = 86.390(2) degrees , beta = 75.825(2) degrees, gamma = 79.612(2) degrees, Z = 2; 3, orthorhombic, space group Pbca, a = 9.626(2) angstroms, b = 17.980(3) angstroms, c = 25.131(5) angstroms, Z = 4; 5, orthorhombic, space group Pbcn, a = 14.266(2) angstroms, b = 10.692(2) angstroms, c = 17.171(2) angstroms, Z = 8. PMID:16270964

  4. Silicide formation process of Pt added Ni at low temperature: Control of NiSi2 formation

    NASA Astrophysics Data System (ADS)

    Ikarashi, Nobuyuki; Masuzaki, Koji

    2011-03-01

    Transmission electron microscopy (TEM) and ab initio calculations revealed that the Ni-Si reaction around 300 °C is significantly changed by adding Pt to Ni. TEM analysis clarified that NiSi2 was formed in a reaction between Ni thin film (˜1 nm) and Si substrate, while NiSi was formed when Pt was added to the Ni film. We also found that the Ni-adamantane structure, which acts as a precursor for NiSi2 formation around the reaction temperature, was formed in the former reaction but was significantly suppressed in the latter reaction. Theoretical calculations indicated that Pt addition increased stress at the Ni-adamantane structure/Si-substrate interface. The increase in interface stress caused by Pt addition should raise the interface energy to suppress the Ni-adamantane structure formation, leading to NiSi2 formation being suppressed.

  5. Carbon- and Binder-Free NiCo2O4 Nanoneedle Array Electrode for Sodium-Ion Batteries: Electrochemical Performance and Insight into Sodium Storage Reaction.

    PubMed

    Lee, Jong-Won; Shin, Hyun-Sup; Lee, Chan-Woo; Jung, Kyu-Nam

    2016-12-01

    Sodium (Na)-ion batteries (NIBs) have attracted significant interest as an alternative chemistry to lithium (Li)-ion batteries for large-scale stationary energy storage systems. Discovering high-performance anode materials is a great challenge for the commercial success of NIB technology. Transition metal oxides with tailored nanoarchitectures have been considered as promising anodes for NIBs due to their high capacity. Here, we demonstrate the fabrication of a nanostructured oxide-only electrode, i.e., carbon- and binder-free NiCo2O4 nanoneedle array (NCO-NNA), and its feasibility as an anode for NIBs. Furthermore, we provide an in-depth experimental study of the Na storage reaction (sodiation and desodiation) in NCO-NNA. The NCO-NNA electrode is fabricated on a conducting substrate by a hydrothermal method with subsequent heat treatment. When tested in an electrochemical Na half-cell, the NCO-NNA electrode exhibits excellent Na storage capability: a charge capacity as high as 400 mAh g(-1) is achieved at a current density of 50 mA g(-1). It also shows a greatly improved cycle life (~215 mAh g(-1) after 50 cycles) in comparison to a conventional powder-type electrode (~30 mAh g(-1)). However, the Na storage performance is still inferior to that of Li, which is mainly due to sluggish kinetics of sodiation-desodiation accompanied by severe volume change. PMID:26831683

  6. Exploring the influence of transfer channels on fusion reactions: The case of 40 Ca + 58,64 Ni

    SciTech Connect

    Bourgin, D.; Courtin, S.; Haas, F.; Goasduff, A.; Stefanini, A. M.; Montagnoli, G.; Montanari, D.; Corradi, L.; Huiming, J.; Scarlassara, F.; Fioretto, E.; Simenel, C.; Rowley, N.; Jiang, C. L.; Szilner, S.; Mijatović, T.

    2015-01-29

    Fusion cross sections have been measured in the 40Ca + 58Ni and 40Ca + 64Ni systems at beam energies ranging from Elab = 104.75 MeV to 153.5 MeV using the Laboratori Nazionali di Legnaro electrostatic deflector. Distributions of barriers have been extracted from the experimental data. Preliminary coupled channel calculations were performed and hints of effects of neutron transfers on the fusion below the barrier in the 40Ca + 64Ni are discussed.

  7. Hydrogenolysis of cellulose to C4-C7 alcohols over bi-functional CuO-MO/Al2O3 (M=Ce, Mg, Mn, Ni, Zn) catalysts coupled with methanol reforming reaction.

    PubMed

    Wu, Yanhua; Gu, Fangna; Xu, Guangwen; Zhong, Ziyi; Su, Fabing

    2013-06-01

    This work demonstrates the efficient hydrogenolysis of cellulose to C4-C7 alcohols and gas products (reaction 1) by coupling it with the reforming reaction of methanol (reaction 2) over bi-functional CuO-based catalysts. In this process, the CuO-based catalysts catalyze both the reactions 1 and 2, and the in situ regenerated H2 in the reaction 2 is used for the reaction 1. A series of CuO-MO/Al2O3 (M=Ce, Mg, Mn, Ni, Zn) catalysts were prepared by the co-precipitation method. Among these catalysts, CuO-ZnO/Al2O3 exhibited the highest activity to generate a high cellulose conversion of 88% and a high C4-C7 alcohols content above 95% in the liquid products. The CuO-ZnO/Al2O3 catalyst was stable under the reaction conditions and reusable after 4 runs. This work provides a cost-effective route to convert abundant renewable cellulose to liquid fuels. PMID:23591118

  8. NiII, CuII and ZnII complexes with a sterically hindered scorpionate ligand (TpmsPh) and catalytic application in the diasteroselective nitroaldol (Henry) reaction.

    PubMed

    Rocha, Bruno G M; Mac Leod, Tatiana C O; Guedes da Silva, M Fátima C; Luzyanin, Konstantin V; Martins, Luísa M D R S; Pombeiro, Armando J L

    2014-10-28

    The Ni(II) and Zn(II) complexes [MCl(Tpms(Ph))] (Tpms(Ph) = SO3C(pz(Ph))3, pz = pyrazolyl; M = Ni 2 or Zn 3) and the Cu(II) complex [CuCl(Tpms(Ph))(H2O)] (4) have been prepared by treatment of the lithium salt of the sterically demanding and coordination flexible tris(3-phenyl-1-pyrazolyl)methanesulfonate (Tpms(Ph))(-) (1) with the respective metal chlorides. The (Tpms(Ph))(-) ligand shows the N3 or N2O coordination modes in 2 and 3 or in 4, respectively. Upon reaction of 2 and 3 with Ag(CF3SO3) in acetonitrile the complexes [M(Tpms(Ph))(MeCN)](CF3SO3) (M = Ni 5 or Zn 6, respectively) were formed. The compounds were obtained in good yields and characterized by analytic and spectral (IR, (1)H and (13)C{(1)H} NMR, ESI-MS) data, density functional theory (DFT) methods and {for 4 and [(n)Bu4N](Tpms(Ph)) (7), the latter obtained upon Li(+) replacement by [(n)Bu4N](+) in Li(Tpms(Ph))} by single crystal X-ray diffraction analysis. The Zn(II) and Cu(II) complexes (3 and 4, respectively) act as efficient catalyst precursors for the diastereoselective nitroaldol reaction of benzaldehydes and nitroethane to the corresponding β-nitroalkanols (up to 99% yield, at room temperature) with diastereoselectivity towards the formation of the anti isomer, whereas the Ni(II) complex 2 only shows a modest catalytic activity. PMID:25185114

  9. Kinetics of Ni Sorption in Soils: Roles of Soil Organic Matter and Ni Precipitation

    SciTech Connect

    Shi, Zhenqing; Peltier, Edward; Sparks, Donald L.

    2012-12-10

    The kinetics of Ni sorption to two Delaware agricultural soils were studied to quantitatively assess the relative importance of Ni adsorption on soil organic matter (SOM) and the formation of Ni layered double hydroxide (Ni-LDH) precipitates using both experimental studies and kinetic modeling. Batch sorption kinetic experiments were conducted with both soils at pH 6.0, 7.0, and 7.5 from 24 h up to 1 month. Time-resolved Ni speciation in soils was determined by X-ray absorption spectroscopy (XAS) during the kinetic experiments. A kinetics model was developed to describe Ni kinetic reactions under various reaction conditions and time scales, which integrated Ni adsorption on SOM with Ni-LDH precipitation in soils. The soil Ni speciation (adsorbed phases and Ni-LDH) calculated using the kinetics model was consistent with that obtained through XAS analysis during the sorption processes. Under our experimental conditions, both modeling and XAS results demonstrated that Ni adsorption on SOM was dominant in the short term and the formation of Ni-LDH precipitates accounted for the long-term Ni sequestration in soils, and, more interestingly, that the adsorbed Ni may slowly transfer to Ni-LDH phases with longer reaction times.

  10. First application of core-shell Ag@Ni magnetic nanocatalyst for transfer hydrogenation reactions of aromatic nitro and carbonyl compounds

    EPA Science Inventory

    A magnetic separable core-shell Ag@Ni nanocatalyst was prepared by a simple one-pot synthetic route using oleylamine both as solvent and reducing agent and triphenylphosphine as surfactant. The synthesized nanoparticles were characterized by several techniques such as X-ray diffr...

  11. Decomposition and multiphase reactions in the system UO 2(NO 3) 2·6H 2O-Ni(NO 3) 2·6H 2O at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Kalekar, Bhupesh B.; Rajagopalan, K. V.; Ravindran, P. V.

    2009-09-01

    Solid state reactions between uranyl nitrate hexahydrate and nickel nitrate hexahydrate in mixtures of various ratios have been studied at elevated temperatures. The binary system of uranyl nitrate hexahydrate and nickel nitrate hexahydrate was found to form a eutectic of composition 53 mol% uranyl nitrate hexahydrate and 47 mol% nickel nitrate hexahydrate at 40 °C. The overlap of evolution of nitric oxide (NO) and water vapour above 230 °C confirmed the presence of hydroxynitrates of uranium and nickel as intermediate products. These hydroxynitrates began to react above 280 °C to form nickel uranate, NiU 3O 10, in the case of mixtures containing 75 mol% uranyl nitrate hexahydrate. When the proportion of uranyl nitrate hexahydrate in the mixture was higher than 75 mol%, U 3O 8 formed along with nickel uranate. For the mixtures containing uranyl nitrate hexahydrate lower than 75 mol%, NiO was observed to form along with NiU 3O 10.

  12. Bench- and Pilot-Scale Studies of Reaction and Regeneration of Ni-Mg-K/Al2O3 for Catalytic Conditioning of Biomass-Derived Syngas

    SciTech Connect

    Magrini-Bair, K. A.; Jablonski, W. S.; Parent, Y. O.; Yung, M. M.

    2012-05-01

    The National Renewable Energy Laboratory (NREL) is collaborating with both industrial and academic partners to develop technologies to help enable commercialization of biofuels produced from lignocellulosic biomass feedstocks. The focus of this paper is to report how various operating processes, utilized in-house and by collaborators, influence the catalytic activity during conditioning of biomass-derived syngas. Efficient cleaning and conditioning of biomass-derived syngas for use in fuel synthesis continues to be a significant technical barrier to commercialization. Multifunctional, fluidizable catalysts are being developed to reform undesired tars and light hydrocarbons, especially methane, to additional syngas, which can improve utilization of biomass carbon. This approach also eliminates both the need for downstream methane reforming and the production of an aqueous waste stream from tar scrubbing. This work was conducted with NiMgK/Al{sub 2}O{sub 3} catalysts. These catalysts were assessed for methane reforming performance in (i) fixed-bed, bench-scale tests with model syngas simulating that produced by oak gasification, and in pilot-scale, (ii) fluidized tests with actual oak-derived syngas, and (iii) recirculating/regenerating tests using model syngas. Bench-scale tests showed that the catalyst could be completely regenerated over several reforming reaction cycles. Pilot-scale tests using raw syngas showed that the catalyst lost activity from cycle to cycle when it was regenerated, though it was shown that bench-scale regeneration by steam oxidation and H{sub 2} reduction did not cause this deactivation. Characterization by TPR indicates that the loss of a low temperature nickel oxide reduction feature is related to the catalyst deactivation, which is ascribed to nickel being incorporated into a spinel nickel aluminate that is not reduced with the given activation protocol. Results for 100 h time-on-stream using a recirculating/regenerating reactor suggest

  13. Ab initio investigation of the oxygen reduction reaction activity on noble metal (Pt, Au, Pd), Pt3M (M = Fe, Co, Ni, Cu) and Pd3M (M = Fe, Co, Ni, Cu) alloy surfaces, for Lisbnd O2 cells

    NASA Astrophysics Data System (ADS)

    Sankarasubramanian, Shrihari; Singh, Nikhilendra; Mizuno, Fuminori; Prakash, Jai

    2016-07-01

    First principles, density functional theory (DFT) modelling of the oxygen reduction reaction (ORR) on noble metal (Pt, Au, Pd), Pt3M (M = Fe, Co, Ni, Cu) and Pd3M (M = Fe, Co, Ni, Cu) alloy surfaces, was carried out. Periodic models of close-packed (111) surfaces were constructed, their geometry was optimized and the most stable geometric surface configuration was identified. The correlation between the intermediate species binding energy and the favored reaction pathway from amongst 1e-, 2e-, and 4e- mechanisms were studied by calculating the binding energies of a 1/4 monolayer of O, O2, LiO, LiO2, Li2O2, and Li2O on various sites and orientations. The reaction free energies (ΔGrxn) were calculated and used to compute the catalytic activity of the surfaces using molecular kinetics theory. Plots of the catalytic activity vs. Oxygen binding energy (EBinding (O)) showed a typical "volcano" profile. The insights gained from this study can be used to guide the choice of cathode catalysts in Lisbnd O2 cells.

  14. Reactive Ni/Ti nanolaminates

    SciTech Connect

    Adams, D. P.; Bai, M. M.; Rodriguez, M. A.; McDonald, J. P.; Jones, E. Jr.; Brewer, L.; Moore, J. J.

    2009-11-01

    Nickel/titanium nanolaminates fabricated by sputter deposition exhibited rapid, high-temperature synthesis. When heated locally, self-sustained reactions were produced in freestanding Ni/Ti multilayer foils characterized by average propagation speeds between approx0.1 and 1.4 m/s. The speed of a propagating reaction front was affected by total foil thickness and bilayer thickness (layer periodicity). In contrast to previous work with compacted Ni-Ti powders, no preheating of Ni/Ti foils was required to maintain self-propagating reactions. High-temperature synthesis was also stimulated by rapid global heating demonstrating low ignition temperatures (T{sub ig})approx300-400 deg. C for nanolaminates. Ignition temperature was influenced by bilayer thickness with more coarse laminate designs exhibiting increased T{sub ig}. Foils reacted in a vacuum apparatus developed either as single-phase B2 cubic NiTi (austenite) or as a mixed-phase structure that was composed of monoclinic B19{sup '} NiTi (martensite), hexagonal NiTi{sub 2}, and B2 NiTi. Single-phase, cubic B2 NiTi generally formed when the initial bilayer thickness was made small.

  15. Activity and Stability of Ruddlesden-Popper-Type La(n+1) Ni(n) O(3n+1) (n=1, 2, 3, and ∞) Electrocatalysts for Oxygen Reduction and Evolution Reactions in Alkaline Media.

    PubMed

    Yu, Jie; Sunarso, Jaka; Zhu, Yinlong; Xu, Xiaomin; Ran, Ran; Zhou, Wei; Shao, Zongping

    2016-02-18

    Increasing energy demands have stimulated intense research activity on cleaner energy conversion such as regenerative fuel cells and reversible metal-air batteries. It is highly challenging but desirable to develop low-cost bifunctional catalysts for both the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER), the lack of which is currently one of the major limiting components towards commercialization of these technologies. Here, we have conducted a systematic study on the OER and ORR performances of the Ruddlesden-Popper family of La(n+1)Ni(n) O(3n+1) (n=1, 2, 3, and ∞) in an alkaline medium for the first time. It is apparent that the Ni-O bond lengths and the hyperstoichiometric oxides in the rock-salt layers correlate with the ORR activities, whereas the OER activities appear to be influenced by the OH(-) content on the surface of the compounds. In our case, the electronic configuration fails to predict the electrocatalytic activity of these compounds. This work provides guidelines to develop new electrocatalysts with improved performances. PMID:26788934

  16. Approach to equilibrium of the water-gas shift reaction on a Ni/zirconia anode under solid oxide fuel-cell conditions

    NASA Astrophysics Data System (ADS)

    Ahmed, K.; Föger, K.

    The reverse water-gas shift reaction is carried out in a solid oxide fuel-cell at a range of fuel utilization levels and the approach of this reaction to thermodynamic equilibrium is calculated from the experimental data. It is found that the water-gas shift reaction is close to equilibrium only at high levels of fuel utilization. This is an important finding for modeling and simulation of fuel-cells.

  17. Study of the deformation-driving νd5/2 orbital in 6728Ni39 using one-neutron transfer reactions

    NASA Astrophysics Data System (ADS)

    Diriken, J.; Patronis, N.; Andreyev, A. N.; Antalic, S.; Bildstein, V.; Blazhev, A.; Darby, I. G.; De Witte, H.; Eberth, J.; Elseviers, J.; Fedosseev, V. N.; Flavigny, F.; Fransen, Ch.; Georgiev, G.; Gernhauser, R.; Hess, H.; Huyse, M.; Jolie, J.; Kröll, Th.; Krücken, R.; Lutter, R.; Marsh, B. A.; Mertzimekis, T.; Muecher, D.; Nowacki, F.; Orlandi, R.; Pakou, A.; Raabe, R.; Randisi, G.; Reiter, P.; Roger, T.; Seidlitz, M.; Seliverstov, M.; Sieja, K.; Sotty, C.; Tornqvist, H.; Van De Walle, J.; Van Duppen, P.; Voulot, D.; Warr, N.; Wenander, F.; Wimmer, K.

    2014-09-01

    The νg9/2,d5/2,s1/2 orbitals are assumed to be responsible for the swift onset of collectivity observed in the region below 68Ni. Especially the single-particle energies and strengths of these orbitals are of importance. We studied such properties in the nearby 67Ni nucleus, by performing a (d,p)-experiment in inverse kinematics employing a post-accelerated radioactive ion beam (RIB) at the REX-ISOLDE facility. The experiment was performed at an energy of 2.95 MeV/u using a combination of the T-REX particle detectors, the Miniball γ-detection array and a newly-developed delayed-correlation technique as to investigate μs-isomers. Angular distributions of the ground state and multiple excited states in 67Ni were obtained and compared with DWBA cross-section calculations, leading to the identification of positive-parity states with substantial νg9/2 (1007 keV) and νd5/2 (2207 keV and 3277 keV) single-particle strengths up to an excitation energy of 5.8 MeV. 50% of the νd5/2 single-particle strength relative to the νg9/2-orbital is concentrated in and shared between the first two observed 5/2+ levels. A comparison with extended Shell Model calculations and equivalent (3He, d) studies in the region around 9040Zr50 highlights similarities for the strength of the negative-parity pf and positive-parity g9/2 state, but differences are observed for the d5/2 single-particle strength.

  18. Isospin-spin excitations in the A=58 mass region: The {sup 58}Ni({sup 3}He,t){sup 58}Cu reaction

    SciTech Connect

    Bes, D. R.; Civitarese, O.

    2008-07-15

    The experimental information on isospin-spin excitations around {sup 58}Ni is analyzed by using isoscalar and isovector pairing vibrations, Gamow-Teller (GT) modes, and their couplings. It is found that the proposed coupling scheme accounts for a sizable amount of the strength associated with isospin-spin excitations, which include transitions to both one- and two-phonon states. The calculations are performed within the framework of perturbation theory, accounting for the renormalization of the charge by the collective GT excitations.

  19. Reaction Rate Constants of CH4(ads) ⇌ CH3(ads) + H(ads) on Ni(111): The Effect of Lattice Motion.

    PubMed

    Wang, Wenji; Zhao, Yi

    2015-12-31

    Methane dissociation on metal surfaces is of great commercial importance. The dissociation and recombination rate constants of CH4 on Ni(111) are calculated using the quantum instanton approach with the path integral Monte Carlo method. The Ni(111) lattice is treated rigidly, classically, and quantum mechanically to reveal the effects of lattice motion and quantum tunneling. For the dissociation of CH4, the rates have the smallest value on the rigid lattice, while they possess the largest value on the quantum lattice. For instance, at 300 K, the rates on the classical and quantum lattices are 5 and 12 times larger than that on the rigid lattice, respectively. The curve of the Arrhenius plot for the dissociation rates on the rigid lattice demonstrates that the quantum tunneling effect of the ruptured H atom is remarkable, while the nearly invariable dissociation rates at low temperatures on the quantum lattice confirm that the thermally assisted tunneling should be dominant at low temperatures. For the recombination of CH4, the quantum lattice still has rates that are much larger than that of the rigid lattice. For instance, the ratio of the recombination rates on the quantum and rigid lattices is 12 at 300 K. The quantum tunneling effect seems to play a minor role in the recombination rates on the rigid lattice; however, the thermally assisted tunneling is still very significant for the recombination process. PMID:26650500

  20. Characterization of oxidation resistant Fe@M (M=Cr, Ni) core@shell nanoparticles prepared by a modified reverse micelle reaction

    NASA Astrophysics Data System (ADS)

    Naik, Sweta H.; Carroll, Kyler J.; Carpenter, Everett E.

    2011-04-01

    Iron-based nanoparticles are the forerunners in the field of nanotechnology due to their high magnetization saturation and biocompability which affords them use in a variety of applications. However, iron-based nanoparticles, due to a high surface-to-volume ratio, suffer from oxidation and limit its practicality by lowering the magnetic moment significantly. To avoid this oxidation, the surfaces of the particles have to be passivated. One such way to accomplish this passivation is to synthesize core@shell nanoparticles that have a surface treatment of chromium or nickel. These core@shell nanoparticles have been synthesized using a reverse micelle technique. The Cr and Ni passivated iron nanoparticles were characterized by x-ray diffraction, transmission electron microscopy, vibrating sample magnetometry, and x-ray photoelectron spectroscopy to determine their phase, morphology, surface properties, and magnetization saturation. A high magnetization saturation of 160 and 165 emu/g for Cr and Ni passivated iron core@shell nanoparticles was achieved.

  1. Study on Reaction Mechanism of Reducing Dephosphorization of Fe-Ni-Si Melt by CaO-CaF2 Slag

    NASA Astrophysics Data System (ADS)

    Chen, Pei-Xian; Zhang, Guo-Hua; Chu, Shao-Jun

    2016-02-01

    In the present study, the dephosphorization of Fe-Ni-Si melt by CaO-saturated CaO-CaF2 slag was investigated, from which it was found that the dephosphorization efficiency increases as increasing the silicon content, meanwhile the increase rate becomes rapid when the silicon content is more than 10 mass pct. By analyzing the phase compositions of the dephosphorization slag of a high silicon Fe-Ni-Si melt, it was first found the dephosphorization products change with the silicon content. When Si contents are 10.5, 31.48, 34.71, and 43.15 mass pct, the de-P products are Ca2P2, Ca10+ x Si12-2 x P16, Ca4SiP4, and Ca10+ x Si12-2 x P16, as well as Ca4SiP4, respectively. The corresponding dephosphorization mechanism can be described as (2x)(CaO) + (x + 2y)[Si] + 2z[P] = x(SiO2 ) + 2(Cax Siy Pz ).

  2. Electrochemical and Infrared Spectroscopic Studies Provide Insight into Reactions of the NiFe Regulatory Hydrogenase from Ralstonia eutropha with O2 and CO.

    PubMed

    Ash, Philip A; Liu, Juan; Coutard, Nathan; Heidary, Nina; Horch, Marius; Gudim, Ingvild; Simler, Thomas; Zebger, Ingo; Lenz, Oliver; Vincent, Kylie A

    2015-10-29

    The regulatory hydrogenase (RH) from Ralstonia eutropha acts as the H2-sensing unit of a two-component system that regulates biosynthesis of the energy conserving hydrogenases of the organism according to the availability of H2. The H2 oxidation activity, which was so far determined in vitro with artificial electron acceptors, has been considered to be insensitive to O2 and CO. It is assumed that bulky isoleucine and phenylalanine amino acid residues close to the NiFe active site "gate" gas access, preventing molecules larger than H2 interacting with the active site. We have carried out sensitive electrochemical measurements to demonstrate that O2 is in fact an inhibitor of H2 oxidation by the RH, and that both H(+) reduction and H2 oxidation are inhibited by CO. Furthermore, we have demonstrated that the inhibitory effect of O2 arises due to interaction of O2 with the active site. Using protein film infrared electrochemistry (PFIRE) under H2 oxidation conditions, in conjunction with solution infrared measurements, we have identified previously unreported oxidized inactive and catalytically active reduced states of the RH active site. These findings suggest that the RH has a rich active site chemistry similar to that of other NiFe hydrogenases. PMID:26115011

  3. Analytical performance of a lab-made concomitant metal analyzer to generate volatile species of Ag, Au, Cd, Cu, Ni, Sn and Zn using 8-hydroxyquinoline as a reaction media.

    PubMed

    Villanueva-Alonso, Julia; Peña-Vázquez, Elena; Bermejo-Barrera, Pilar

    2012-10-15

    This study evaluated the main parameters affecting Ag, Au, Cd, Cu, Ni, Sn and Zn vapor generation using a lab-made concomitant metal analyzer (CMA) as a reaction chamber and gas-liquid separator. The modifier used in the reaction media was 8-hydroxyquinoline, and Inductively-Coupled Plasma Optical Emission Spectrometry was used as detection technique. The performance of the lab-made concomitant analyzer was compared with the performance of a continuous flow gas-liquid separator and of a cyclonic spray chamber. Standards were prepared in acid media and included 1 mg L(-1) of Co as a catalyzer. The optimum concentrations of the reagents in the standards were: 450 mg L(-1) of 8-hydroxyquinoline and 0.4 M nitric acid. The optimum concentration of sodium borohydride to generate the vapors was 2.25% (w/v) (prepared in 0.4% (w/v) NaOH). The volatile species were swept from the CMA to the torch by an argon flow of 0.6 mL min(-1). The use of the CMA led to an improvement of the detection limits for some elements compared to conventional nebulization: 1.1 μg L(-1) for Ag, 7.0 μg L(-1) for Au and 4.3 μg L(-1) for Sn. The limit of detection for Cu was 1.4 μg L(-1) and for Ni 22.5 μg L(-1). The direct mixing of the reagents on the spray chamber was not effective for Cd and Zn; a deviation of the linearity was observed for these elements. PMID:23141310

  4. Neutron Spectroscopic factors of 56Ni

    NASA Astrophysics Data System (ADS)

    Sanetullaev, A.; Ghosh, T. K.; Lynch, W. G.; Bazin, D.; Chajecki, Z.; Coupland, Daniel; Hodges, R.; Lee, Jenny; Henzl, V.; Henzlova, D.; Rogers, A. M.; Sun, Z. Y.; Tsang, M. B.; Winkelbauer, J.; Youngs, M.; Famiano, M.; Clement, R. R. C.; Howard, M. E.; Cizewski, J. A.; O'Malley, P. D.; Manning, B.; Charity, R. J.; Charity, L. G.; Shapira, D.; Shmitt, K. T.

    2011-10-01

    The exact shell-structure of the unstable doubly-magic nucleus 56Ni has attracted a lot of interest recently. To test if 56Ni is a good core, 56Ni(p, d)55Ni transfer reactions were measured using 56Ni beam at two different energies, 37 MeV/u and 80 MeV/u, in inverse kinematics in two experiments. The second measurement was done in order to test the sensitivity of reaction cross sections and models to reaction energies. The measurements were performed at NSCL using HiRA array and S800 spectrometer. Spectroscopic factors have been extracted for the first experiment. The results show good agreement with shell-model calculations. Preliminary results of the measurements with 80 MeV/u beam will be presented as well. This work is funded by NSF under Grant No. PHY-0606007.

  5. Ab initio molecular dynamics with enhanced sampling for surface reaction kinetics at finite temperatures: CH2 ⇌ CH + H on Ni(111) as a case study

    NASA Astrophysics Data System (ADS)

    Sun, Geng; Jiang, Hong

    2015-12-01

    A comprehensive understanding of surface thermodynamics and kinetics based on first-principles approaches is crucial for rational design of novel heterogeneous catalysts, and requires combining accurate electronic structure theory and statistical mechanics modeling. In this work, ab initio molecular dynamics (AIMD) combined with the integrated tempering sampling (ITS) method has been explored to study thermodynamic and kinetic properties of elementary processes on surfaces, using a simple reaction CH 2 ⇌ CH + H on the Ni(111) surface as an example. By a careful comparison between the results from ITS-AIMD simulation and those evaluated in terms of the harmonic oscillator (HO) approximation, it is found that the reaction free energy and entropy from the HO approximation are qualitatively consistent with the results from ITS-AIMD simulation, but there are also quantitatively significant discrepancies. In particular, the HO model misses the entropy effects related to the existence of multiple adsorption configurations arising from the frustrated translation and rotation motion of adsorbed species, which are different in the reactant and product states. The rate constants are evaluated from two ITS-enhanced approaches, one using the transition state theory (TST) formulated in terms of the potential of mean force (PMF) and the other one combining ITS with the transition path sampling (TPS) technique, and are further compared to those based on harmonic TST. It is found that the rate constants from the PMF-based TST are significantly smaller than those from the harmonic TST, and that the results from PMF-TST and ITS-TPS are in a surprisingly good agreement. These findings indicate that the basic assumptions of transition state theory are valid in such elementary surface reactions, but the consideration of statistical averaging of all important adsorption configurations and reaction pathways, which are missing in the harmonic TST, are critical for

  6. Thermal Treatment of PtNiCo Electrocatalysts: Effects of Nanoscale Strain and Structure on the Activity and Stability for the Oxygen Reduction Reaction

    SciTech Connect

    Wanjala, Bridgid N.; Loukrakpam, Rameshwori; Luo, Jin; Njoki, Peter; Mott, Derrick; Zhong, Chuan-Jian; Shao, Minhua; Protsailo, Lesia; Kawamura, Tetsuo

    2010-10-21

    The ability to control the nanoscale size, composition, phase, and facet of multimetallic catalysts is important for advancing the design and preparation of advanced catalysts. This report describes the results of an investigation of the thermal treatment temperature on nanoengineered platinum-nickel-cobalt catalysts for oxygen reduction reaction, focusing on understanding the effects of lattice strain and surface properties on activity and stability. The thermal treatment temperatures ranged from 400 to 926 C. The catalysts were characterized by microscopic, spectroscopic, and electrochemical techniques for establishing the correlation between the electrocatalytic properties and the catalyst structures. The composition, size, and phase properties of the trimetallic nanoparticles were controllable by our synthesis and processing approach. The increase in the thermal treatment temperature of the carbon-supported catalysts was shown to lead to a gradual shrinkage of the lattice constants of the alloys and an enhanced population of facets on the nanoparticle catalysts. A combination of the lattice shrinkage and the surface enrichment of nanocrystal facets on the nanoparticle catalysts as a result of the increased temperature was shown to play a major role in enhancing the electrocatalytic activity for catalysts. Detailed analyses of the oxidation states, atomic distributions, and interatomic distances revealed a certain degree of changes in Co enrichment and surface Co oxides as a function of the thermal treatment temperature. These findings provided important insights into the correlation between the electrocatalytic activity/stability and the nanostructural parameters (lattice strain, surface oxidation state, and distribution) of the nanoengineered trimetallic catalysts.

  7. Thermal Treatment of PtNiCo Electrocatalysts: Effects of Nanoscale Strain and Structure on the Activity and Stability for the Oxygen Reduction Reaction

    SciTech Connect

    B Wanjala; R Loukrakpam; J Luo; P Njoki; D Mott; C Zhong; M Shao; L Protsailo; T Kawamura

    2011-12-31

    The ability to control the nanoscale size, composition, phase, and facet of multimetallic catalysts is important for advancing the design and preparation of advanced catalysts. This report describes the results of an investigation of the thermal treatment temperature on nanoengineered platinum-nickel-cobalt catalysts for oxygen reduction reaction, focusing on understanding the effects of lattice strain and surface properties on activity and stability. The thermal treatment temperatures ranged from 400 to 926 C. The catalysts were characterized by microscopic, spectroscopic, and electrochemical techniques for establishing the correlation between the electrocatalytic properties and the catalyst structures. The composition, size, and phase properties of the trimetallic nanoparticles were controllable by our synthesis and processing approach. The increase in the thermal treatment temperature of the carbon-supported catalysts was shown to lead to a gradual shrinkage of the lattice constants of the alloys and an enhanced population of facets on the nanoparticle catalysts. A combination of the lattice shrinkage and the surface enrichment of nanocrystal facets on the nanoparticle catalysts as a result of the increased temperature was shown to play a major role in enhancing the electrocatalytic activity for catalysts. Detailed analyses of the oxidation states, atomic distributions, and interatomic distances revealed a certain degree of changes in Co enrichment and surface Co oxides as a function of the thermal treatment temperature. These findings provided important insights into the correlation between the electrocatalytic activity/stability and the nanostructural parameters (lattice strain, surface oxidation state, and distribution) of the nanoengineered trimetallic catalysts.

  8. Dynamical cluster-decay model for hot and rotating light-mass nuclear systems applied to the low-energy {sup 32}S+{sup 24}Mg{yields}{sup 56}Ni{sup *} reaction

    SciTech Connect

    Gupta, Raj K.; Kumar, Rajesh; Singh, Dalip; Balasubramaniam, M.; Beck, C.

    2005-01-01

    The dynamical cluster-decay model (DCM) is developed further for the decay of hot and rotating compound nuclei (China) formed in light heavy-ion reactions. The model is worked out in terms of only one parameter, namely the neck-length parameter, which is related to the total kinetic energy TKE(T) or effective Q value Q{sub eff}(T) at temperature T of the hot CN and is defined in terms of the CN binding energy and ground-state binding energies of the emitted fragments. The emission of both the light particles (LP), with A{<=}4,Z{<=}2, as well as the complex intermediate mass fragments (IMF), with 42, is considered as the dynamical collective mass motion of preformed clusters through the barrier. Within the same dynamical model treatment, the LPs are shown to have different characteristics compared to those of the IMFs. The systematic variations of the LP emission cross section {sigma}{sub LP} and IMF emission cross section {sigma}{sub IMF} calculated from the present DCM match exactly the statistical fission model predictions. A nonstatistical dynamical description is developed for the first time for emission of light particles from hot and rotating CN. The model is applied to the decay of {sup 56}Ni* formed in the {sup 32}S+{sup 24}Mg reaction at two incident energies E{sub c.m.}=51.6 and 60.5 MeV. Both the IMFs and average TKE{sup lowbar} spectra are found to compare resonably well with the experimental data, favoring asymmetric mass distributions. The LPs' emission cross section is shown to depend strongly on the type of emitted particles and their multiplicities.

  9. Tailoring the potential window of negative electrodes: A diagnostic method for understanding parasitic oxidation reactions in cells with 5 V LiNi0.5Mn1.5O4 positive electrodes

    NASA Astrophysics Data System (ADS)

    Levi, Mikhael D.; Dargel, Vadim; Shilina, Yuliya; Borgel, Valentina; Aurbach, Doron; Halalay, Ion C.

    2015-03-01

    We present herein a diagnostic method which provides insights into the interactions between parasitic reactions at battery electrodes and their consequences for battery performance degradation. We also provide a cautionary tale about misinterpreting or misrepresenting the significance of test data, as is sometimes found in the peer-reviewed literature or in developers' claims. Reversible cycling of the LiNi0.5Mn1.5O4 positive electrode in a full cell with an electrolyte solution containing no additives may appear achievable through tailoring of the operating potential window of the cell. Self-discharging of the negative stems from parasitic oxidation products formed on the positive. We show that either excess negative electrode capacity over the positive or initial pre-lithiation of the negative suppresses their detrimental effect on capacity retention. Simultaneous monitoring the potentials of the two electrodes vs. Li/Li+ during galvanostatic cycling of a full cell shows, however, that self-discharging of the negative still takes place. The latter process was tracked by the drift of the average potential of the cell towards higher values and leads to two characteristic patterns in the failure of full cells during their long-term cycling, depending on whether a cut-off voltage or a capacity limit is used as the control criterion during cycling.

  10. Breakup of the projectile in [sup 16]O-induced reactions on [sup 27]Al, [sup 58]Ni, and [sup 197]Au targets around 100 MeV/nucleon

    SciTech Connect

    Badala, A.; Barbera, R.; Palmeri, A.; Pappalardo, G.S. ); Riggi, F. Dipartimento di Fisica dell'Universita di Catania, Corso Italia 57, 95129 Catania )

    1993-08-01

    The spatial correlation among the four He ions coming from the disassembly of the [sup 16]O projectile on [sup 27]Al, [sup 58]Ni, and [sup 197]Au targets has been studied at 94 MeV/nucleon. Charged particles have been detected by a multielement array of plastic scintillators covering the angular domain between 3[degree] and 150[degree]. Standard relativistic kinematics has been used to reconstruct the excitation energy of the primary projectilelike nucleus ([ital E][sub PLN][sup *]). Mean values of this quantity are found independent of the target mass and the comparison with existing similar data taken at lower bombarding energies shows a saturation of [ital E][sub PLN][sup *] around 3 MeV/nucleon. An event-by-event analysis has been performed in order to study the distributions of some global variables such as coplanarity, sphericity, and relative angle, helpful in the understanding of the topological characteristics of the process and in the evaluation of its time scale. Experimental data have also been compared with the results of Monte Carlo simulations based on different reaction mechanisms and it is possible to conclude that sequential emission of the fragments is preferred.